
Succinct Representations

for Abstract Interpretation�

Combined Analysis Algorithms
and Experimental Evaluation

Julien Henry1,2, David Monniaux1,3, and Matthieu Moy1,4

1 VERIMAG laboratory, Grenoble, France
2 Université Joseph Fourier

3 CNRS
4 Grenoble-INP

Abstract. Abstract interpretation techniques can be made more precise
by distinguishing paths inside loops, at the expense of possibly exponen-
tial complexity. SMT-solving techniques and sparse representations of
paths and sets of paths avoid this pitfall.

We improve previously proposed techniques for guided static analy-
sis and the generation of disjunctive invariants by combining them with
techniques for succinct representations of paths and symbolic represen-
tations for transitions based on static single assignment.

Because of the non-monotonicity of the results of abstract interpreta-
tion with widening operators, it is difficult to conclude that some abstrac-
tion is more precise than another based on theoretical local precision
results. We thus conducted extensive comparisons between our new tech-
niques and previous ones, on a variety of open-source packages.

1 Introduction

Static analysis by abstract interpretation is a fully automatic program analysis
method. When applied to imperative programs, it computes an inductive in-
variant mapping each program location (or a subset thereof) to a set of states
represented symbolically [8]. For instance, if we are only interested in scalar nu-
merical program variables, such a set may be a convex polyhedron (the set of
solutions of a system of linear inequalities) [10,16,2,4].

In such an analysis, information may flow forward or backward; forward pro-
gram analysis computes super-sets of the states reachable from the initialization
of the program, backward program analysis computes super-sets of the states
co-reachable from some property of interest (for instance, the violation of an
assertion). In forward analysis, control-flow joins correspond to convex hulls if
using convex polyhedra (more generally, they correspond to least upper bounds
in a lattice); in backward analysis, it is control-flow splits that correspond to
convex hulls.

� This work was partially funded by ANR project “ASOPT”.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 283–299, 2012.
� Springer-Verlag Berlin Heidelberg 2012

284 J. Henry, D. Monniaux, and M. Moy

It is a known limitation of program analysis by abstract interpretation that this
convex hull, or more generally, least upper bound operation, may introduce states
that cannot occur in the real program: for instance, the convex hull of the inter-
vals [−2,−1] and [1, 2] is [−2, 2], strictly larger than the union of the two. Such
introduction may prevent proving desired program properties, for instance �= 0.
The alternative is to keep the union symbolic (e.g. compute using [−2,−1]∪ [1, 2])
and thus compute in the disjunctive completion of the lattice, but the number of
terms in the union may grow exponentially with the number of successive tests in
the program to analyze, not to mention difficulties for designing suitable widening
operators for enforcing the convergence of fixpoint iterations [2,4,3]. The exponen-
tial growth of the number of terms in the union may be controlled by heuristics
that judiciously apply least upper bound operations, as in the trace partitioning
domain [29] implemented in the Astrée analyzer [7,9].

Assumingwe are interested in a loop-free program fragment, the above approach
of keeping symbolic unions gives the same results as performing the analysis sep-
arately over every path in the fragment. A recent method for finding disjunctive
loop invariants [15] is based on this idea: each path inside the loop body is consid-
ered separately.Two recent proposals use SMT-solving [22] as a decision procedure
for the satisfiability of first-order arithmetic formulas in order to enumerate only
paths that are needed for the progress of the analysis [12,27]. They can equivalently
be seen as analyses over a multigraph of transitions between some distinguished
control nodes. This multigraph has an exponential number of edges, but is never
explicitly represented inmemory; instead, this graph is implicitly or succinctly rep-
resented: its edges are enumerated as needed as solutions to SMT problems.

An additional claim in favor of the methods that distinguish paths inside the
loop body [15,27] is that they tend to generate better invariants than methods
that do not, by behaving better with respect to the widening operators [8] used
for enforcing convergence when searching for loop invariants by Kleene itera-
tions. A related technique, guided static analysis [14], computes successive loop
invariants for increasing subsets of the transitions taken into account, until all
transitions are considered; again, the claim is that this approach avoids some
gross over-approximation introduced by widenings.

All these methods improve the precision of the analysis by keeping the same
abstract domain (say, convex polyhedra) but changing the operations applied
and their ordering. An alternative is to change the abstract domain (e.g. oc-
tagons, convex polyhedra [25]), or the widening operator [1,17].

This article makes the following contributions:

1. We recast the guided static analysis technique from [14] on the expanded
multigraph from [27], considering entire paths instead of individual transi-
tions, using SMT queries and binary decision diagrams (See �3).

2. We improve the technique for obtaining disjunctive invariants from [15] by
replacing the explicit exhaustive enumeration of paths by a sequence of SMT
queries (See �4).

3. We implemented these techniques, in addition to “classical” iterations and
the original guided static analysis, inside a prototype static analyzer. This

Succinct Representations for Abstract Interpretation 285

tool uses the LLVM bitcode format [23,24] as input, which can be produced
by compilation from C, C++ and Fortran, enabling it to be run on many
real-life programs. It uses the APRON library [21], which supports a variety
of abstract domains for numerical variables, from which we can choose with
minimal changes to our analyzer.

4. We conducted extensive experiments with this tool, on real-life programs.

2 Bases

2.1 Static Analysis by Abstract Interpretation

Let X be the set of possible states of the program variables; for instance, if
the program has 3 unbounded integer variables, then X = Z

3. The set P(X) of
subsets of X , partially ordered by inclusion, is the concrete domain. An abstract
domain is a set X� equipped with a partial order � (the associated strict order
being �); for instance, it can be the domain of convex polyhedra in Q

3 ordered
by geometric inclusion. The concrete and abstract domains are connected by a
monotone concretization function γ :

(
X�,�)→ (P(X),⊆): an element x� ∈ X�

represents a set γ(x�).
We also assume a join operator � : X� × X� → X�, with infix notation; in

practice, it is generally a least upper bound operation, but we only need it to
satisfy γ(x�) ∪ γ(y�) ⊆ γ(x� � y�) for all x�, y�.

Classically, one considers the control-flow graph of the program, with edges
labeled with concrete transition relations (e.g. x′ = x + 1 for an instruction
x = x+1;), and attaches an abstract element to each control point. A concrete
transition relation τ ⊆ X ×X is replaced by an abstract forward abstract trans-
former τ � : X� → X�, such that ∀x� ∈ X�, x, x′ ∈ X, x ∈ γ(x�)∧(x, x′) ∈ τ =⇒
x′ ∈ γ ◦ τ �(x�). It is easy to see that if to any control point p ∈ P we attach
an abstract element x�

p such that (i) for any p, γ(x�
p) includes all initial states

possible at control node p (ii) for any p, p′, τ �p,p′ (x�
p) � x�

p′ , noting τp,p′ the tran-

sition from p to p′, then (γ(x�
p))p∈P form an inductive invariant : by induction,

when the control point is p, the program state always lies in γ(x�
p).

Kleene iterations compute such an inductive invariant as the stationary limit,
if it exists, of the following system: for each p, initialize x�

p such that γ(x�
p) is a

superset of the initial states at point p; then iterate the following: if τ �p,p′(x�
p) ��

x�
p′ , replace x

�
p′ by x�

p′ � τ �p,p′ (x�
p). Such a stationary limit is bound to exist if X�

has no infinite ascending chain a1 � a2 � . . . ; this condition is however not met
by domains such as intervals or convex polyhedra.

Widening-accelerated Kleene iterations proceed by replacing x�
p′ � τ �p,p′(x�

p)

by x�
p′ �(x�

p′ � τ �p,p′(x�
p)) where � is a widening operator : for all x�, y�, γ(y�) ⊆

γ(x� � y�), and any sequence u�
1, u

�
2, . . . of the form u�

n+1 = u�
n� v�n, where v�n is

another sequence, become stationary. The stationary limit (x�
p)p∈P , defines an

inductive invariant (γ(x�
p))p∈P . Note that this invariant is not, in general, the

least one expressible in the abstract domain, and may depend on the iteration
ordering (the successive choices p, p′).

286 J. Henry, D. Monniaux, and M. Moy

Once an inductive invariant γ((x�
p)p∈P) has been obtained, one can attempt

decreasing or narrowing iterations to reduce it. In their simplest form, this just
means running the following operation until a fixpoint or a maximal number

of iterations are reached: for any p′, replace x�
p′ by x�

p′ ∩
(⊔

p∈P τ �p,p′(x�
p)
)
. The

result also defines an inductive invariant. These decreasing iterations are indis-
pensable to recover properties from guards (tests) in the program in most iter-
ation settings; unfortunately, certain loops, particularly those involving identity
(no-operation) transitions, may foil them: the iterations immediately reach a
fixpoint and do not decrease further (see example in �2.3). Sections 2.4 and 2.5
describe techniques that work around this problem.

2.2 SMT-Solving

Boolean satisfiability (SAT) is the canonical NP-complete problem: given a
propositional formula (e.g. (a∨¬b)∧(¬a∨b∨¬c)), decide whether it is satisfiable
— and, if so, output a satisfying assignment. Despite an exponential worst-case
complexity, the DPLL algorithm [22,6] solves many useful SAT problems in prac-
tice.

SAT was extended to satisfiability modulo theory (SMT): in addition to propo-
sitional literals, SMT formulas admit atoms from a theory. For instance, the the-
ories of linear integer arithmetic (LIA) and linear real arithmetic (LRA) have
atoms of the form a1x1 + · · · + anxn �� C where a1, . . . , an, C are integer con-
stants, x1, . . . , xn are variables (interpreted over Z for LIA and R or Q for LRA),
and �� is a comparison operator =, �=, <,≤, >,≥. Satisfiability for LIA and LRA
is NP-complete, yet tools based on DPLL(T) approach [22,6] solve many useful
SMT problems in practice. All these tools provide a satisfying assignment if the
problem is satisfiable.

2.3 A Simple, Motivating Example

Consider the following program, adapted from [27], where input(a, b) stands for
a nondeterministic input in [a, b] (the control-flow graph on the right depicts the
loop body, s is the start node and e the end node):

1 void r a t e l i m i t e r () {
2 i n t x o l d = 0 ;
3 while (1) {
4 i n t x = i n p u t (−100000, 100000) ;
5 i f (x > x o l d +10) x = x o l d +10;
6 i f (x < x o ld −10) x = x o ld −10;
7 x o l d = x ;
8 } }

s

e

This program implements a construct commonly found in control programs
(in e.g. automotive or avionics): a rate or slope limiter.

Succinct Representations for Abstract Interpretation 287

The expected inductive invariant is x old ∈ [−100000, 100000], but classical
abstract interpretation using intervals (or octagons or polyhedra) finds x old ∈
(−∞,+∞) [9]. Let us briefly see why.

Widening iterations converge to x old ∈ (−∞,+∞); let us now see why de-
creasing iterations fail to recover the desired invariant. The x > x old+10 test at
line 6, if taken, yields x old ∈ (−∞, 99990); followed by x = x old+10, we obtain
x ∈ (−∞, 100000), and the same after union with the no-operation “else” branch.
Line 7 yields x ∈ (−∞,+∞).

We could use “widening up to” or “widening with thresholds”, propagating the
“magic values”±100000 associated to x into x old, but these syntactic approaches
cannot directly cope with programs for which x ∈ [−100000,+100000] is itself
obtained by analysis. The guided static analysis of [14] does not perform better,
and also obtains x old ∈ (−∞,+∞).

In contrast, let us distinguish all four possible execution paths through the
tests at lines 6 and 7. The path through both “else” branches is infeasible; the
program is thus equivalent to a program with 3 paths:

1 void r a t e l i m i t e r () {
2 i n t x o l d = 0 ;
3 while (1) {
4 i n t x = i n p u t (−100000, 100000) ;
5 i f (x > x o l d +10) x o l d = x o l d +10;
6 else i f (x < x o ld−10) x o l d = x o ld −10;
7 else x o l d = x ;
8 } }

s

e

Classical interval analysis on this program yields x old ∈ [−100000, 100000].
We have transformed the program, manually pruning out infeasible paths; yet in
general the resulting program could be exponentially larger than the first, even
though not all feasible paths are needed to compute the invariant.

Following recent suggestions [12,27], we avoid this space explosion by keeping
the second program implicit while simulating its analysis. This means we work on
an implicitly represented transition multigraph ; it is succinctly represented by
the transition graph of the first program. Our first contribution (�3) is to recast
the “guided analysis” from [14] on such a succinct representation of the paths
in lieu of the individual transitions. A similar explosion occurs in disjunctive
invariant generation, following [15]; our second contribution (�4) applies our
implicit representation to their method.

2.4 Guided Static Analysis

Guided static analysis was proposed by [14] as an improvement over classical
upward Kleene iterations with widening. Consider the program in Fig. 1, taken
from [14].

Classical iterations on the domain of convex polyhedra [10,1] or octagons [25]
start with x = 0 ∧ x = 0, then continue with x = y ∧ 0 ≤ x ≤ 1. The widening
operator extrapolates from these two iterations and yields x = y ∧ x ≥ 0. From

288 J. Henry, D. Monniaux, and M. Moy

1 i n t x = 0 , y = 0 ;
2 while (1) {
3 i f (x <= 50) y ++;
4 else y−−;
5 i f (y < 0) break ;
6 x ++;
7 }

x

y

y ≤ x ∧ y ≤ 102 − x ∧ y ≥ 0.

Fig. 1. Example program and its invariant: the piecewise linear, solid line is the
strongest invariant, the grayed polyhedron is its convex hull

there, the “else” branch at line 4 may be taken; with further widening, 0 ≤ y ≤ x
is obtained as a loop invariant, and thus the computed loop postcondition is
x ≥ 0 ∧ y = 0. Yet the strongest invariant is (0 ≤ x ≤ 51 ∧ y = x) ∨ (51 ≤ x ≤
102 ∧ x+ y = 102), and its convex hull, a convex polyhedron (Fig. 1).

Intuitively, this disappointing result is obtained because widening extrapolates
from the first iterations of the loop, but the loop has two different phases (x ≤ 50
and x > 50) with different behaviors, thus the extrapolation from the first phase
is not valid for the second.

Gopan and Reps’ idea is to analyze the first phase of the loop with a widening
and narrowing sequence, and thus obtain 0 ≤ x ≤ 50 ∧ y = x, and then analyze
the second phase, finally obtaining invariant (2.4); each phase is identified by
the tests taken or not taken.

The analysis starts by identifying the tests taken and not taken during the
first iteration of the loop, starting in the loop initialization. The branches not
taken are pruned from the loop body, yielding:

while (1) {
i f (x <= 50) y ++;
else break ; / * not taken i n phase 1 * /
i f (y < 0) break ;
x ++;

}

Analyzing this loop using widening and narrowing on convex polyhedra or
octagons yields the loop invariant 0 ≤ x ≤ 51 ∧ y = x. Now, the transition at
line 4 becomes feasible; and we analyze the full loop, starting iterations from
0 ≤ x ≤ 51 ∧ y = x, and obtain invariant (2.4) in Fig 1.

More generally, this analysis method considers an ascending sequence of sub-
sets of the transitions in the loop body ; for each subset, an inductive invariant
is computed for the program restricted to it. The starting subset consists in the
transitions reachable in one step from the loop initialization. If for a given sub-
set S in the sequence, no transitions outside S are reachable from the inductive
invariant attached to S, then iterations stop; otherwise, add these transitions to
S and iterate more. Termination ensues from the finiteness of the control-flow
graph.

Succinct Representations for Abstract Interpretation 289

2.5 Path-focusing

Monniaux & Gonnord’s path-focusing [27] technique distinguishes the different
paths in the program in order to avoid loss of precision due to merge operations.
Since the number of paths may be exponential, the technique keeps them implicit
and computes them when needed using SMT-solving. The (accelerated) Kleene
iterations (�2.1) are computed over a reduced multigraph instead of the classical
transition graph.

Let P be the set of control points in the transition graph, PW ⊆ P the set
of widening points such that removing the points in PW gives an acyclic graph.
One can choose a set PR such that PW ⊆ PR ⊆ P .

The set of paths is kept implicit by an SMT formula ρ expressing the semantics
of the program, assuming that the transition semantics can be expressed within a
decidable theory. For an easy construction of ρ, we also assume that the program
is expressed in SSA form, meaning that each variable is only assigned once in the
transition graph. This is not a restriction, since there exists standard algorithms
that transform a program into an SSA format.

This formula contains Boolean reachability predicates bi for each control points
pi /∈ PR, b

s
i and bdi for each pi ∈ PR, so that a path pi1 → pi2 → · · · → pin

between two points pi1 , pin ∈ PR can easily be expressed as the conjunction
bsi1 ∧

∧
2≤k<n bik ∧ bdin . The Boolean bsi is true when the path starts at point pi,

whereas bdi is true when the path arrives at pi. In other words, we split the points
in PR into a source point, with only outgoing transitions, and a destination point,
with only incoming transitions, so that the resulting graph is acyclic and there
are no paths going through control points in PR.

In order to find focus paths, we solve an SMT formula which is satisfiable when
there exists a path starting at a point pi ∈ PR in a state included in the current
invariant candidate Xi, and arriving at a point pj ∈ PR in a state outside Xj . In
this case, we construct this path using the model and update Xj . When pi = pj ,
meaning that the path is actually a self-loop, we can apply a widening/narrowing
sequence, or even compute the transitive closure of the loop (or an approximation
thereof, or its application to Xi) using abstract acceleration [13].

We assume that we can encode the concrete semantics of the program into
the SMT formula, or at least an abstraction thereof at least as precise as the one
applied by the abstract interpreter (in simple terms: we want to avoid the case
where the SMT solver exhibits a possible path, but the static analyzer realizes
that this path is infeasible; this would lead to nontermination, because the SMT
solver would exhibit the same path on the next iteration). A workaround would
be to apply satisfiability modulo path programs [18]: from each path ruled in-
feasible by abstract interpretation, extract a blocking clause for the SAT solver
underlying the SMT-solver.

3 Guided Analysis over the Paths

Guided static analysis, as proposed by [14], applies to the transition graph of the
program. We now present a new technique applying this analysis on the implicit

290 J. Henry, D. Monniaux, and M. Moy

multigraph from [27], thus avoiding control flow merges with unfeasible paths.
In this section, we use the same notations as �2.5.

The combination of these two techniques aims at first discovering a precise
inductive invariant for a subset of paths between two points in PR, by the mean of
ascending and narrowing iterations. When an inductive invariant has been found,
we add new feasible paths to the subset and compute an inductive invariant for
this new subset, starting with the results from the previous analysis. In other
words, our technique considers an ascending sequence of subsets of the paths
between two points in PR. We iterate the operations until the whole program (i.e
all the feasible paths) has been considered. The result will then be an inductive
invariant of the entire program.

The ascending iteration applies path-focusing [27] to a subset of the multi-
graph. As [14], we do some narrowing, to recover precision lost by widening,
before computing and taking into account new feasible paths. Thus, our tech-
nique combines the advantages of Guided Static Analysis and Path-focusing.

Algorithm 1 performs Guided static analysis on the implicitly represented
multigraph. Ip denotes a set of initial states at program point p (thus ∅ for
most p). The current working subset of paths, noted P and initially empty, is
stored using a compact representation, such as binary decision diagrams. We
also maintain two sets of control points:
– A′ : points in PR that may be the starting points of new feasible paths.
– A : points in PR on which we apply the ascending iterations. When the

abstract value of a control point p is updated, p is added to both A and A′.

Algorithm 1. Guided static analysis on implicit multigraph

1: A′ ← {p|PR/Ip �= ∅}
2: A← ∅
3: P ← ∅ // Paths in the current subset
4: for all pi ∈ PR do
5: Xi ← Ipi
6: end for
7: while A′ �= ∅ do
8: while A′ �= ∅ do
9: Select pi ∈ A′

10: A′ ← A′ \ {pi}
11: ComputeNewPaths(pi) // Update A, A′ and P
12: end while
13: // ascending iterations on P
14: while A �= ∅ do
15: Select pi ∈ A
16: A← A \ {pi}
17: PathFocusing(pi) // Update A and A′

18: end while
19: Narrow
20: end while
21: return {Xi, i ∈ PR}

Succinct Representations for Abstract Interpretation 291

We distinguish three phases in the main loop of the analysis:

1. We start finding a new relevant subset P of the graph. Either the previous
iteration or the initialization led us to a state where there are no more paths
in the previous subset P , starting at pi, that make the abstract values of
the successors grow (otherwise, the SMT solver would not have answered
“unsat”). Narrowing iterations preserve this property. However, there may
exist such paths in the entire multigraph, that are not in P . This phase
computes these paths and adds them to the subset. This phase is described
in 3.2 and corresponds to lines in 8 to 12 in Algorithm 1.

2. Given a new subset P , we search for paths starting at point pi ∈ PR, such
that these paths are in P , i.e are included in the working subgraph. Each
time we find a path, we update the abstract value of the destination point
of the path. This is the phase explained in 3.1, and corresponds to lines 14
to 18 in Algorithm 1.

3. We perform narrowing iterations the usual way (line 19 in algorithm 1) and
reiterate from step 1 unless there are no more points to explore, i.e. A′ = ∅.

The order of steps is important: narrowing has to be performed before adding
new paths, or spurious new paths would be added to P . Starting with the addi-
tion of new paths avoids doing the ascending iterations on an empty graph.

3.1 Ascending Iterations by Path-focusing

For computing an inductive invariant over a subgraph, we use the Path-focusing
algorithm from [27] with special treatment for self loops (line 17 in algorithm 1).

In order to find which path to focus on, we construct an SMT formula f(pi),
whose model when satisfiable is a path that starts in pi, goes to a successor
pj ∈ PR of pi, such that the image of Xi by the path transformation is not
included in the current Xj . Intuitively, such a path makes the abstract value
Xj grow, and thus is an interesting path to focus on. We loop until the formula
becomes unsatisfiable, meaning that the analysis of pi is finished.

If we note Succ(i) the set of indices j such that pj ∈ PR is a successor of pi
in the expanded multigraph, and Xi the abstract value associated to pi :

f(pi) = ρ ∧ bsi ∧
∧

j∈PR
j �=i

¬bsj ∧Xi ∧
∨

j∈Succ(i)

(bdj ∧ ¬Xj)

The difference with [27] is that we do not work on the entire transition graph but
on a subset of it. Therefore we conjoin the formula f(pi) with the actual set of
working paths, noted P , expressed as a Boolean formula, where the Boolean vari-
ables are the reachability predicates of the control points. We can easily construct
this formula from the binary decision diagram using dynamic programming, and
avoiding an exponentially sized formula. In other words, we force the SMT solver
to give us a path included in P . Each time the invariant candidate of a point
pj has been updated, pj is inserted into A′ since it may be the start of a new
feasible paths.

292 J. Henry, D. Monniaux, and M. Moy

3.2 Adding New Paths

Our technique computes the fixpoint iterations on an ascending sequence of
subgraphs, until the complete graph is reached. When the analysis of a subgraph
is finished, meaning that the abstract values for each control point has converged
to an inductive invariant for this subgraph, the next subgraph to work on has
to be computed.

This new subgraph contains all the paths from the previous one, and also new
paths that become feasible regarding the current abstract values. The new paths
in P are computed one after another, until no more path can make the invariant
grow. This is line 11 in Algorithm 1, which corresponds to Algorithm 2. We also
use SMT solving to discover these new paths, but we subtly change the SMT
formula given to the SMT solver: we now try to find a path that is not yet in
P , but is feasible and makes the invariant candidate of its destination grow. We
thus check the satisfiability of the formula f ′(pi), where:

f ′(pi) = f(pi) ∧ ¬P
Xj is updated using an abstract union when the point pj is the target of a new
path. This way, further SMT queries do not compute other paths with the same
source and destination if it is not needed (because these new paths would not
make Xj grow, hence would not be returned by the SMT solver).

Algorithm 2. ComputeNewPaths

1: while true do
2: res← SmtSolve [f ′(pi)]
3: if res = unsat then
4: break
5: end if
6: Compute the path e from the model
7: Xj ← Xj 	 τe(Xi)
8: P ← P ∪ {e}
9: A← A ∪ {pi}
10: A′ ← A′ ∪ {pi}
11: end while

When a new path has been found, it is immediately added into P . We then
have to add pi and pj into A (since we do not apply widening in this section)
and pj into A′, since pj may be the starting point of a new feasible path.

3.3 Termination

Termination of this algorithm is guaranteed, because: 1. the subset of paths P
strictly increases at each loop iteration, and is bounded by the finite set of paths
in the entire graph. 2. when computing new paths, we cunjunct our formula with
¬P , meaning that we obtain each possible path only once. The number of path
is finite, so this computation always terminates. 3. the Path-focusing iterations
terminate because of the properties of widening.

Succinct Representations for Abstract Interpretation 293

3.4 Example

We revise the rate limiter described in 2.3. In this example, Path-focusing works
well because all the paths starting at the loop header are actually self loops. In
such a case, the technique performs a widening/narrowing sequence or acceler-
ates the loop, thus leading to a precise invariant. However, in some cases, there
also exists paths that are not self loops, in which case Path-focusing applies
widening. This widening may induce unrecoverable loss of precision.

Suppose the main loop of the rate limiter contains a nested loop like:

1 void r a t e l i m i t e r () {
2 i n t x o l d = 0 ;
3 while (1) {
4 i n t x = i n p u t (−100000, 100000) ;
5 i f (x > x o l d +10) x = x o l d +10;
6 i f (x < x o ld −10) x = x o ld −10;
7 x o l d = x ;
8 while (wa i t ()) {}
9 } }
We choose PR as the set of loop headers of the function, plus the initial state.

In this case, we have three elements in PR.
The main loop in the expanded multigraph has then 4 distinct paths going to

the header of the nested loop.
Guided static analysis from [14] yields, at line 3, x old ∈ (−∞,+∞). Path-

focusing [27] also finds x old ∈ (−∞,+∞). Now, let us see how our technique
performs on this example.

Figure 2 shows the sequence of subset of paths during the analysis. The points
in PR are noted pi, where i is the corresponding line in the code: for instance,
p3 corresponds to the header of the main loop.
1. The starting subgraph is depicted on Figure 2 Step 1. At the beginning, this

graph has no transitions.
2. We compute the new feasible paths that have to be added into the subgraph.

We first find the path from p1 to p3 and obtain at p3 x old = 0.
The image of x old = 0 by the path that goes from p3 to p8, and that goes

through the else branch of each if-then-else, is −10 ≤ x old ≤ 10. This path
is then added to our subgraph.

Moreover, there is no other path starting at p3 whose image is not in
−10 ≤ x old ≤ 10.

Finally, since the abstract value associated to p8 is −10 ≤ x old ≤ 10, the
path from p8 to p3 is feasible and is added into P . The final subgraph is
depicted on Figure 2 Step 2.

3. We then compute the ascending iterations by path-focusing. At the end of
these iterations, we obtain −∞ ≤ x old ≤ +∞ for both p3 and p8.

4. We now can apply narrowing iterations, and recover the precision lost by
widening: we obtain −10000 ≤ x old ≤ 10000 at points p3 and p8.

5. Finally, we compute the next subgraph. The SMT-solver does not find any
new path that makes the abstract values grow, and the algorithm terminates.

294 J. Henry, D. Monniaux, and M. Moy

Our technique gives us the expected invariant x old ∈ [−10000, 10000]. Here,
only 3 paths out of the 6 have been computed during the analysis. In practice,
depending on the order the SMT-solver returns the paths, other feasible paths
could have been added during the analysis.

p1

p3

p8

Step 1 p1

p3

p8

Step 2

x old← 0

−10000 ≤ x ≤ 10000
x old − 10 ≤ x
x ≤ x old + 10/
x old← x

Fig. 2. Ascending sequence of subgraphs

In this example, we see that our technique actually combines best of Guided
Static Analysis and Path Focusing.

4 Disjunctive Invariants

While many (most?) useful program invariants on numerical variables can be ex-
pressed as conjunctions of inequalities and congruences, it is sometimes necessary
to introduce disjunctions. For instance, the loop for (int i=0; i<n; i++) {...} has
head invariant 0 ≤ i ≤ n ∨ (i = 0 ∧ n < 0). For this very simple example, a sim-
ple syntactic transformation of the control structure (into i=0; if (i<n)do {...}
while (i<n)) is sufficient, but in more complex cases more advanced analyses are
necessary [5,20,30,26]; in intuitive terms, they discover phases or modes in loops.

Gulwani & Zuleger [15] proposed a technique for computing disjunctive in-
variants, by distinguishing all the paths inside a loop. In this section, we propose
to improve this technique by using SMT queries to find interesting paths, the
objective being to avoid an explicit exhaustive enumeration of an exponential
number of paths.

For each control point pi, we compute a disjunctive invariant
∨

1≤j≤mi
Xi,j .

We denote by ni the number of distinct paths starting at pi. To perform the
analysis, one chooses an integer δi ∈ [1,mi], and a mapping function σi : [1,mi]×
[1, ni] �→ [1,mi]. The k-th path starting fom pi is denoted τi,k. The image of the
j-th disjunct Xi,j by the path τi,k is then joined with Xi,σ(j,k). Initially, the
δi-th abstract value contains the initial states of pi, and all other abstract values
contain ∅.

For each control point pi ∈ PR, mi, δi and σi can be defined heuristically. For
instance, one could define σi so that σi(j, k) only depends on the last transition
of the path, or else construct it dynamically during the analysis.

Succinct Representations for Abstract Interpretation 295

Our method improves this technique in two ways :

– Instead of enumerating the whole set of paths, we keep them implicit and
compute them only when needed.

– At each loop iteration of the original algorithm [15], an image by each path
inside the loop is computed for each disjunct of the invariant candidate.
Yet, many of these images may be redundant: for instance, if our invariant
candidate is (0 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 1000) ∨ (x < −10 ∧ y < −10), then
there is no point enumerating paths whose image is included in this invariant
candidate. In our approach, we compute such an image only if it makes the
resulting abstract value grow.

Our improvement consists in a modification of the SMT formula we solve in
3. We introduce in this formula Boolean variables {dj , 1 ≤ j ≤ m}, so that
we can easily find in the model which abstract value of the disjunction of the
source point has to be chosen to make the invariant of the destination grow. The
resulting formula that is given to the SMT solver is defined by g(pi). When the
formula is satisfiable, we know that the index j of the starting disjunct that has
to be chosen is the one for which the associate Boolean value dj is true in the
model. Then, we can easily compute the value of σi(j, k), thus know the index
of the disjunct to join with.

g(pi) = ρ∧bsi ∧
∧

j∈PR
j �=i

¬bsj∧
∨

1≤k≤mi

(dk∧Xi,k∧
∧

l �=k

¬dl)∧
∨

j∈Succ(i)

(bdj ∧
∧

1≤k≤mi

(¬Xj,k))

In our algorithm, the initialization of the abstract values slightly differs from
algorithm 1 line 5, since we now have to initialize each disjunct. Instead of
Line 5, we initialize Xi,k with ⊥ for all k ∈ {1, ..,mi} \ {δi}, and Xi,δi with
← Ipi .

Furthermore, the Path-focused algorithm (line 17 from algorithm 1) is en-
hanced to deal with disjunctive invariants, and is detailed in algorithm 3.

The Update function can classically assign Xi,σi(j,k) �(Xi,σi(j,k) � τi,k(Xi,j))
to Xi,σi(j,k), or can integrate the special treatment for self loops proposed by
[27], with widening/narrowing sequence or acceleration.

We experimented with a heuristic of dynamic construction of the σi functions,
adapted from [15]. For each control point pi ∈ PR, we start with one single
disjunct (mi = 1) and define δi = 1. M denotes an upper bound on the number
of disjuncts per control point.

The σi functions take as parameters the index of the starting abstract value,
and the path we focus on. Since we dynamically construct these functions during
the analysis, we store their already computed image into a compact representa-
tion, such as Algebraic Decision Diagrams. σi(j, k) is then constructed on the
fly only when needed, and computed only once. When the value of σi(j, k) is
required but undefined, we first compute the image of the abstract value Xi,j by
the path indexed by k, and try to find an existing disjunct of index j′ so that
the least upper bound of the two abstract values is exactly their union (using
SMT-solving). If such an index exists, then we set σi(j, k) = j′. Otherwise:

296 J. Henry, D. Monniaux, and M. Moy

Algorithm 3. Disjunctive invariant computation with implicit paths

1: while true do
2: res← SmtSolve [g(pi)]
3: if res = unsat then
4: break
5: end if
6: Compute the path τi,k from res
7: Take j ∈ {l|dl = true}
8: Update(Xi,σi(j,k))
9: end while

– if mi < M , we increase mi by 1 and define σi(j, k) = mi

– if mi = M , we define σi(j, k) = M

The main difference with the original algorithm [15] is that we construct σi(j, k)
using SMT queries instead of enumerating a possibly exponential number of
paths to find a solution.

5 Implementation and Experimental Comparisons

We have implemented our proposed solutions inside a prototype of intraproce-
dural static analyzer called PAGAI, as well as the classical abstract interpreta-
tion algorithm, and the state-of-the-art techniques Path Focusing [27] andGuided
Static Analysis [14]. It is available online at https://forge.imag.fr/projects/
pagai/. The implementation is documented in [19].

PAGAI operates over LLVM bitcode [24,23], which is a target for several com-
pilers, most notably Clang (supporting C and C++) and llvm-gcc (supporting
C, C++, Fortran and Ada). Abstract domains are provided by the APRON li-
brary [21], and include convex polyhedra (from the builtin Polka “PK” library),
octagons, intervals, and linear congruences. For SMT-solving, our analyzer uses
Yices [11] or Microsoft Z3 [28].

PAGAI currently neither models the memory heap nor performs interproce-
dural analysis. Instead, LLVM optimization phases are applied prior to analysis,
in order to inline non-recursive function calls and lift certain memory accesses to
operations on explicit numerical variables (e.g. y=t [0]* t [0]; preceded by t [0]=x;
without any aliased write in between is replaced by y=x*x;). The remaining mem-
ory reads are considered as indeterminates, and memory writes are ignored; this
is a sound abstraction.

We conducted extensive experiments on real-life programs in order to compare
the different techniques, mostly on open-source projects (Fig. 3) written in C,
C++ and Fortran. These results confirm that our combined technique improve
the analysis in comparison with the two techniques taken individually, at a rea-
sonable cost. The extensionwith disjunctive invariants increases precision inmany
cases, but with higher cost in terms of execution time.

https://forge.imag.fr/projects/pagai/
https://forge.imag.fr/projects/pagai/

Succinct Representations for Abstract Interpretation 297

Table 1. Execution times for various techniques

Size Execution time (seconds)

Name kLOC |PR| S G PF G+PF DIS

a2ps-4.14 55 2012 23 74 34 115 162
gawk-4.0.0 59 902 15 46 12 40 50
gnuchess-6.0.0 38 1222 50 220 81 312 351
gnugo-3.8 83 2801 77 159 92 766 1493
grep-2.9 35 820 41 85 22 65 122
gzip-1.4 27 494 22 268 91 303 230
lapack-3.3.1 954 16422 294 3740 3773 8159 10351
make-3.82 34 993 67 108 53 109 257
tar-1.26 73 1712 37 218 115 253 396

0

2

4

6

8

10

12

14

16

G
/S

PF/S

PF/G

G
+
PF/PF

G
+
PF/G

G
+
PF/S

D
IS/G

+
PF

p
er
ce
n
ta
g
e
o
f
co
n
tr
o
l
p
o
in
ts �

�

uncomparable

Fig. 3.Comparison of the abstract values obtained on several open-source projects. The
table shows their respective number of lines of code, number of control points in PR, and
execution time on various techniques. Techniques are classical abstract interpretation
(S), Guided Static Analysis (G), Path-focused technique (PF), our combined technique
(G+PF), and its version with disjunctive invariants (DIS). The � bars (resp. �) gives
the percentage of invariants stronger (more precise; smaller with respect to inclusion)
with the left-side (resp. right-side) technique, and “uncomparable” gives the percentage
of invariants that are uncomparable, i.e neither greater nor smaller; the code points
where both invariants are equal make up the remaining percentage.

6 Conclusion and Future Prospects

Roughly, an analysis by abstract interpretation is defined by the choice of an it-
eration strategy and an abstract domain. In this article, we demonstrated that
changes in the iteration algorithm can significantly improve precision, sometimes
while improving analysis times.

A common criticism of analysis techniques based on SMT-solving is that they
do not scale up. Yet, our experiments show that, for numerical properties, they

298 J. Henry, D. Monniaux, and M. Moy

scale up to the size of typical functions and loops. It is however quite certain that,
naively applied, they cannot scale to the kind of programs targeted by e.g. the
Astrée tool, that is, a dozens or hundreds of thousands of lines of code in a single
loop operating over similar numbers of remanent variables. Actually, for such ap-
plications, only (quasi-)linear algorithms scale up, and “cheap” abstract domains
such as octagons (O(n3) where n is the number of variables) are not applied to
the full variable set, but to restricted subsets thereof. It thus seems reasonable
that techniques such as considering “packs” of related variables, slicing, etc. may
similarly help SMT-based techniques to scale to global analyses.

We compared the precision of different techniques and abstract domains by
comparing the invariants for the inclusion ordering. A better metric is perhaps
to take a client analysis — such as the detection of overflows and array bound
violations — and compare the rates of alarms.

We focused on numerical properties, because they are supported by easily avail-
able abstract libraries. Yet, in most programs, properties of data structures are im-
portant for proving interesting properties. Further investigations are needed not
only on good abstractions for pointers (many are already known) but also on their
conversion to SMT problems.

References

1. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for con-
vex polyhedra. Science of Computer Programming 58(1-2), 28–56 (2005)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library, version 0.9,
http://www.cs.unipr.it/ppl

3. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains.
International Journal on Software Tools for Technology Transfer (STTT) 8(4-5),
449–466 (2006)

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)

5. Balakrishnan, G., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Refining the control
structure of loops using static analysis. In: EMSOFT, pp. 49–58. ACM (2009)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam
(2009)

7. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Programming
Language Design and Implementation (PLDI), pp. 196–207. ACM (2003)

8. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. of Logic and Com-
putation, 511–547 (August 1992)

9. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Principles of Programming Languages (POPL), pp. 84–96. ACM
(1978)

http://www.cs.unipr.it/ppl

Succinct Representations for Abstract Interpretation 299

11. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

12. Gawlitza, T., Monniaux, D.: Improving Strategies via SMT Solving. In: Barthe, G.
(ed.) ESOP 2011. LNCS, vol. 6602, pp. 236–255. Springer, Heidelberg (2011)

13. Gonnord, L., Halbwachs, N.: Combining Widening and Acceleration in Linear Re-
lation Analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006)

14. Gopan, D., Reps, T.W.: Guided Static Analysis. In: Riis Nielson, H., Filé, G. (eds.)
SAS 2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007)

15. Gulwani, S., Zuleger, F.: The reachability-bound problem. In: PLDI, pp. 292–304.
ACM (2010)

16. Halbwachs, N.: Détermination automatique de relations linéaires vérifiées par les
variables d’un programme. Ph.D. thesis, Grenoble University (1979)

17. Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)

18. Harris, W.R., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Program analysis via
satisfiability modulo path programs. In: POPL, pp. 71–82. ACM (2010)

19. Henry, J.: Static Analysis by Path Focusing. Master’s thesis, Grenoble INP (2011),
http://www-verimag.imag.fr/~jhenry/pdf/M2R_report.pdf

20. Jeannet, B.: Dynamic partitioning in linear relation analysis: Application to the ver-
ification of reactive systems. Formal Methods in System Design 23(1), 5–37 (2003)

21. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static
Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

22. Kroening, D., Strichman, O.: Decision procedures. Springer (2008)
23. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-

ysis & transformation. In: CGO, pp. 75–86. IEEE Computer Society, Washington,
DC (2004)

24. LLVM team: LLVM Language Reference Manual (2011), http://llvm.org/docs/
LangRef.html

25. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

26. Monniaux, D., Bodin, M.: Modular Abstractions of Reactive Nodes Using Dis-
junctive Invariants. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 19–33.
Springer, Heidelberg (2011)

27. Monniaux, D., Gonnord, L.: Using Bounded Model Checking to Focus Fixpoint It-
erations. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 369–385. Springer,
Heidelberg (2011)

28. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

29. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. Transactions on
Programming Languages and Systems (TOPLAS) 29(5), 26 (2007)

30. Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying Loop Invariant Genera-
tion Using Splitter Predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 703–719. Springer, Heidelberg (2011)

http://www-verimag.imag.fr/~jhenry/pdf/M2R_report.pdf
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html

	Succinct Representations for Abstract Interpretation
	Introduction
	Bases
	Static Analysis by Abstract Interpretation
	SMT-Solving
	A Simple, Motivating Example
	Guided Static Analysis
	Path-focusing

	Guided Analysis over the Paths
	Ascending Iterations by Path-focusing
	Adding New Paths
	Termination
	Example

	Disjunctive Invariants
	Implementation and Experimental Comparisons
	Conclusion and Future Prospects
	References

