

Lecture Notes in Computer Science 7460
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Antoine Miné David Schmidt (Eds.)

Static Analysis
19th International Symposium, SAS 2012
Deauville, France, September 11-13, 2012
Proceedings

13

Volume Editors

Antoine Miné
École Normale Supérieure
Département d’Informatique
45, rue d’Ulm
75005 Paris, France
E-mail: mine@di.ens.fr

David Schmidt
Kansas State University
Department of Computing and Information Sciences
234 Nichols Hall
Manhattan, KS 66506, USA
E-mail: das@ksu.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33124-4 e-ISBN 978-3-642-33125-1
DOI 10.1007/978-3-642-33125-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012945543

CR Subject Classification (1998): D.2.4-5, D.2.7, D.3.1-2, D.3.4, F.3.1-3, F.4.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Static analysis is increasingly recognized as a fundamental tool for program
verification, bug detection, compiler optimization, program understanding, and
software maintenance. The series of Static Analysis Symposia has served as the
primary venue for presentation of theoretical, practical, and application advances
in the area.

This volume contains the proceedings of the 19th International Static Analy-
sis Symposium, SAS 2012, which was held during September 11–13 in Deauville,
France. Previous symposia were held in Venice, Perpignan, Los Angeles, Valen-
cia, Kongens Lyngby, Seoul, London, Verona, San Diego, Madrid, Paris, Santa
Barbara, Pisa, Aachen, Glasgow, and Namur.

As in the last two years, the 19th International Static Analysis Symposium
was held together with three workshops. The 4th Workshop on Numerical and
Symbolic Abstract Domains (NSAD 2012) and the Third Workshop on Static
Analysis and Systems Biology (SASB 2012) were held in parallel on September
10. The Third Workshop on Tools for Automatic Program AnalysiS (TAPAS
2012) was held on September 14.

The program of the 19th International Static Analysis Symposium consisted
in the presentation of 25 articles selected among 62 submissions from 23 coun-
tries. The contributions were selected by the Program Committee based on scien-
tific quality, originality, and relevance to SAS, after a rigorous reviewing process
involving at least three Program Committee members and external reviewers.
In addition to the contributed papers, the program of the symposium featured
four invited presentations by Gilles Barthe (IMDEA Software Institute, Spain),
Dino Distefano (Queen Mary University of London and Monoidics, UK), Shri-
ram Krishnamurthi (Brown University, USA), and Jens Palsberg (University of
California, Los Angeles, USA). This volume includes an invited article by Jens
Palsberg et al.

We would like to thank the external reviewers for their participation in the
reviewing process. We would also like to thank the Département d’informatique
de l’École normale supérieure and the Délegation régionale du CNRS Paris B for
their administrative support. We thank the EasyChair team for the use of their
software. We are grateful to our sponsors: CNRS, École normale supérieure, and
INRIA.

September 2012 Antoine Miné
Dave Schmidt

Organization

Program Chairs

Antoine Miné CNRS and École Normale Supérieure, France
David Schmidt Kansas State University, USA

Program Committee

Elvira Albert Complutense University of Madrid, Spain
Patrick Cousot École Normale Supérieure, France and

New York University, USA
Pietro Ferrara ETH Zurich, Switzerland
Gilberto Filè University of Padova, Italy
Chris Hankin Imperial College London, UK
Suresh Jagannathan Purdue University, USA
Matthieu Martel Université de Perpignan Via Domitia, France
Matthew Might University of Utah, USA
Anders Møller Aarhus University, Denmark
David Monniaux CNRS, Verimag, France
Markus Müller-Olm Universität Münster, Germany
Andreas Podelski University of Freiburg, Germany
G. Ramalingam Microsoft Research, India
Sriram Sankaranarayanan University of Colorado Boulder, USA
Francesca Scozzari Università di Chieti-Pescara, Italy
Manu Sridharan IBM Research, USA
Thomas Wies New York University, USA
Eran Yahav Technion, Israel
Kwangkeun Yi Seoul National University, Korea

Steering Committee

Patrick Cousot École Normale Supérieure, France and
New York University, USA

Radhia Cousot CNRS and École Normale Supérieure, France
Roberto Giacobazzi University of Verona, Italy
Gilberto Filè University of Padova, Italy
Manuel Hermenegildo IMDEA Software Institute, Spain
David Schmidt Kansas State University, USA

VIII Organization

Additional Reviewers

Diego Esteban Alonso-Blas
Gianluca Amato
Sylvie Boldo
Olivier Bouissou
Hugues Cassé
Pavol Černý
Alexandre Chapoutot
Sungkeun Cho
Livio Colussi
Mauro Conti
Jesús Correas Fernández
Antonio Flores-Montoya
Goran Frehse
Sumit Gulwani
Arie Gurfinkel
Miguel Gómez-Zamalloa
Julien Henry
Kihong Heo
Jochen Hoenicke
Arnault Ioualalen
François Irigoin
Deokhwan Kim
Andy King
Tim King
Soonho Kong
Michael Kuperstein
Vincent Laviron
Oukseh Lee

Wonchan Lee
Woosuk Lee
Shuying Liang
Mark Marron
Isabella Mastroeni
Laurent Mauborgne
Yuri Meshman
Andrzej Murawski
Benedikt Nordhoff
Aditya Nori
Hakjoo Oh
Nimrod Partush
Simon Perdrix
Gustavo Petri
Ruzica Piskac
Corneliu Popeea
Noam Rinetzky
Sukyoung Ryu
Oliver Rüthing
Yassamine Seladji
Mihaela Sighireanu
Axel Simon
Fausto Spoto
Tullio Vardanega
Alexander Wenner
Enea Zaffanella
Damiano Zanardini

Sponsoring Institutions

École Normale Supérieure, CNRS, INRIA

Table of Contents

Invited Talks

Computer-Aided Cryptographic Proofs . 1
Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin

A Voyage to the Deep-Heap . 3
Dino Distefano

Semantics and Analyses for JavaScript and the Web 4
Shriram Krishnamurthi

Efficient May Happen in Parallel Analysis for Async-Finish
Parallelism . 5

Jonathan K. Lee, Jens Palsberg, Rupak Majumdar, and Hong Hong

Contributed Papers

Modular Static Analysis with Zonotopes . 24
Eric Goubault, Sylvie Putot, and Franck Védrine

Polyhedral Analysis Using Parametric Objectives . 41
Jacob M. Howe and Andy King

Inference of Polynomial Invariants for Imperative Programs: A Farewell
to Gröbner Bases . 58

David Cachera, Thomas Jensen, Arnaud Jobin, and Florent Kirchner

A New Abstract Domain for the Representation of Mathematically
Equivalent Expressions . 75

Arnault Ioualalen and Matthieu Martel

An Abstract Domain to Infer Types over Zones in Spreadsheets 94
Tie Cheng and Xavier Rival

Bilateral Algorithms for Symbolic Abstraction . 111
Aditya Thakur, Matt Elder, and Thomas Reps

Making Abstract Interpretation Incomplete: Modeling the Potency of
Obfuscation . 129

Roberto Giacobazzi and Isabella Mastroeni

Invariant Generation for Parametrized Systems Using Self-reflection 146
Alejandro Sanchez, Sriram Sankaranarayanan, César Sánchez, and
Bor-Yuh Evan Chang

X Table of Contents

Automatic Fence Insertion in Integer Programs via Predicate
Abstraction . 164

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen,
Carl Leonardsson, and Ahmed Rezine

Control Flow Analysis for the Join Calculus . 181
Peter Calvert and Alan Mycroft

When the Decreasing Sequence Fails . 198
Nicolas Halbwachs and Julien Henry

Loop Leaping with Closures . 214
Sebastian Biallas, Jörg Brauer, Andy King, and Stefan Kowalewski

Path-Sensitive Backward Slicing . 231
Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and
Andrew E. Santosa

Symbolic Learning of Component Interfaces . 248
Dimitra Giannakopoulou, Zvonimir Rakamarić, and
Vishwanath Raman

Liveness-Based Pointer Analysis . 265
Uday P. Khedker, Alan Mycroft, and Prashant Singh Rawat

Succinct Representations for Abstract Interpretation: Combined
Analysis Algorithms and Experimental Evaluation 283

Julien Henry, David Monniaux, and Matthieu Moy

Craig Interpretation . 300
Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik

Satisfiability Solvers Are Static Analysers . 317
Vijay D’Silva, Leopold Haller, and Daniel Kroening

A Generalization of St̊almarck’s Method . 334
Aditya Thakur and Thomas Reps

A Structural Soundness Proof for Shivers’s Escape Technique: A Case
for Galois Connections . 352

Jan Midtgaard, Michael D. Adams, and Matthew Might

Modular Heap Analysis for Higher-Order Programs 370
Ravichandhran Madhavan, G. Ramalingam, and Kapil Vaswani

Binary Reachability Analysis of Higher Order Functional Programs 388
Ruslán Ledesma-Garza and Andrey Rybalchenko

Table of Contents XI

On the Limits of the Classical Approach to Cost Analysis 405
Diego Esteban Alonso-Blas and Samir Genaim

Termination Proofs for Linear Simple Loops . 422
Hong Yi Chen, Shaked Flur, and Supratik Mukhopadhyay

Finding Non-terminating Executions in Distributed Asynchronous
Programs . 439

Michael Emmi and Akash Lal

Author Index . 457

Computer-Aided Cryptographic Proofs

Gilles Barthe1, Benjamin Grégoire2, and Santiago Zanella Béguelin3

1 IMDEA Software Institute
2 INRIA Sophia Antipolis - Méditerranée

3 Microsoft Research

Provable security [6] is at the heart of modern cryptography. It advocates a math-
ematical approach in which the security of new cryptographic constructions is
defined rigorously, and provably reduced to one or several assumptions, such as
the hardness of a computational problem, or the existence of an ideal function-
ality. A typical provable security statement is of the form: for all adversary A
against the cryptographic construction S, there exists an adversary B against
a security assumption H, such that if A has a high probability of breaking the
scheme S in time t, then B has a high probability of breaking the assumption H
in time t′ (defined as a function of t).

EasyCrypt [1] is a framework for building and verifying machine-checked se-
curity proofs for cryptographic constructions in the computational model. Fol-
lowing the code-based approach [4], EasyCrypt uses probabilistic programs with
adversarial computations to formulate unambiguously reductionist arguments. In
EasyCrypt, cryptographic constructions are modelled as probabilistic programs,
and their security is given by the probability of an event in a experiment, where
an adversary interacts with the construction; similarly, security assumptions are
stated in terms of the probability of an event in a probabilistic experiment.
The key novelty of EasyCrypt (and its predecessor CertiCrypt [2]) is to provide
programming languages tools to capture common reasoning patterns in cryp-
tographic proofs. In particular, EasyCrypt provides support for a probabilistic
relational Hoare Logic (pRHL) [2], whose judgments |= c1 ∼ c2 : Ψ ⇒ Φ relate
two probabilistic programs c1 and c2 (that typically involve adversarial code)
relative to a pre-condition Ψ and a post-condition Φ, both defined as relations
over program states. Informally, a judgment is valid iff for every initial memories
that are related by the pre-condition, the sub-distributions of final memories are
related by the lifting of the post-condition to distributions; the definition of the
lifting operator L is adopted from probabilistic process algebra [7], and has close
connections with the Kantorovich metric, and with flow networks [5]. As secu-
rity properties are typically expressed in terms of probability of events rather
than pRHL judgments, EasyCrypt implements mechanisms to derive from valid
judgments probability claims, i.e. inequalities between expressions of the form
Pr [c,m : S] that denote the probability of the event S in the sub-distribution
�c� m.

To automate reasoning in pRHL, EasyCrypt implements an automated proce-
dure that given a logical judgment involving loop-free closed programs, computes

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 1–2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 G. Barthe, B. Grégoire, and S. Zanella Béguelin

a set of sufficient conditions for its validity, known as verification conditions. In
the presence of loops or adversarial code, we require the user to provide the nec-
essary annotations. The outstanding feature of this procedure, and the key to its
effectiveness, is that verification conditions are expressed as first-order formulae,
without any mention of probability, and thus can be discharged automatically
using off-the-shelf SMT solvers and theorem provers.

To date, EasyCrypt (and its predecessor CertiCrypt) have been used to verify
prominent examples of cryptographic constructions, including the OAEP padding
scheme, the Cramer-Shoup encryption scheme, the Full Domain Hash signature
scheme, the Merkle-Damg̊ard hash function design, and zero-knowledge proofs.
Moreover, CertiCrypt and EasyCrypt have been extended to reason about differ-
entially private computations [3]. More recently, EasyCrypt has been used for the
first time to prove the security of a novel cryptographic construction. Specifically,
we have used EasyCrypt to prove the IND-CCA security of ZAEP, a redundancy-
free public-key encryption scheme based on the Rabin function and RSA with
exponent 3.

More information about the project can be found at:

http://easycrypt.gforge.inria.fr

References

1. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-Aided Security
Proofs for the Working Cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

2. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)

3. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic reasoning for dif-
ferential privacy. In: 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, pp. 97–110. ACM, New York (2012)

4. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

5. Deng, Y., Du, W.: Logical, metric, and algorithmic characterisations of probabilis-
tic bisimulation. Technical Report CMU-CS-11-110, Carnegie Mellon University
(March 2011)

6. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

7. Jonsson, B., Yi, W., Larsen, K.G.: Probabilistic extensions of process algebras. In:
Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp.
685–710. Elsevier, Amsterdam (2001)

A Voyage to the Deep-Heap

Dino Distefano

Queen Mary University of London
and Monoidics Ltd.

This talk is the diary of a journey that brought the theoretical advances of
Separation Logic all the way to a commercial static analyzer. It reports on some
of the key insights which made this journey possible. It reviews the difficulties we
have encountered along the way, the present status, and some of the challenges
that remain open.

I have shared this journey with Cristiano Calcagno, Peter O’Hearn, and
Hongseok Yang.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, p. 3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Semantics and Analyses

for JavaScript and the Web

Shriram Krishnamurthi

Brown University

The Web’s lingua franca, JavaScript, is a large and complex language with
an unconventional object model, a highly dynamic semantics, and many non-
orthogonal features. We therefore defined λJS , a core language for JavaScript
that presents just a small set of essential constructs. This core language was
designed to be friendly to the needs of analysis and proof.

Of course, many have defined purported core calculi for large and complex lan-
guages. Somewhat unconventionally, we actually implemented a compiler from
the source language to λJS . This compiler, composed with a small interpreter for
λJS , results in a new implementation for JavaScript, which we can compare to
those used in the real world. The heart of our effort on λJS is to make the results
from the λJS implementation produce results as similar as possible to those of
real implementations, yielding a semantics that matches what users actually use
(and attackers actually attack).

We have used and are using λJS to build both tools and applications of these
tools. These include:

– a sophisticated type system that captures the idioms of JavaScript
– the verification of the actual source of a Web sandbox

We have also created a Coq embedding of the semantics, and are building other
tools such as a symbolic evaluator. In addition, many of our underlying theories
apply broadly to many scripting languages, such as Python, Ruby, and Lua.

In addition to focusing on the JavaScript in a Web page, we must also ad-
dress its execution context. Client-side JavaScript runs inside the browser, which
has multiple consequences. For one, the JavaScript in a page is effectively inert:
it only runs in response to events. Thus, to reflect a page’s behavior, we have
developed a (tested) semantics to capture the browser’s complex event model.
In addition, most browsers enable their users to install JavaScript modules to
extend the browser’s behavior. These extensions, written by third parties, may
violate the browser’s invariants, such as preserving privacy choices. We are there-
fore adapting our type system to enable reasoning about browser extensions.

All our models and tools are available from our project site:

www.jswebtools.org

Our tools are all Open Source, and we are happy to support others who want to
use them. We welcome you to give them a try!

This work was done with a talented group of colleagues: Arjun Guha, Joe
Gibbs Politz, Benjamin S. Lerner, Claudiu Saftoiu, Matthew J. Carroll, Hannah
Quay-de la Vallee, Dan P. Kimmel, and Spiridon Eliopoulos. It has been partially
supported by the US National Science Foundation and by Google.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, p. 4, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient May Happen in Parallel Analysis

for Async-Finish Parallelism

Jonathan K. Lee, Jens Palsberg, Rupak Majumdar, and Hong Hong

UCLA Computer Science Department, University of California, Los Angeles, USA

Abstract. For concurrent and parallel languages, the may-happen-in-
parallel (MHP) decision problem asks, given two actions in the program,
if there is an execution in which they can execute in parallel. Closely
related, the MHP computation problem asks, given a program, which
pairs of statements may happen in parallel. MHP analysis is the basis
for many program analysis problems, such as data race detection and
determinism checking, and researchers have devised MHP analyses for a
variety of programming models.

We present algorithms for static MHP analysis of a storeless abstrac-
tion of X10-like languages that have async-finish parallelism and pro-
cedures. For a program of size n, our first algorithm solves the MHP
decision problem in O(n) time, via a reduction to constrained dynamic
pushdown networks (CDPNs). Our second algorithm solves the MHP
computation problem in O(n · max(n, k)) time, where k is a statically
determined upper bound on the number of pairs that may happen in
parallel. The second algorithm first runs a type-based analysis that pro-
duces a set of candidate pairs, and then it runs the decision procedure
on each of those pairs. For programs without recursion, the type-based
analysis is exact and gives an output-sensitive algorithm for the MHP
computation problem, while for recursive programs, the type-based anal-
ysis may produce spurious pairs that the decision procedure will then
remove. Our experiments on a large suite of X10 benchmarks suggest
that our approach scales well. Our experiments also show that while k
is O(n2) in the worst case, k is often O(n) in practice.

1 Introduction

For concurrent and parallel languages, the may-happen-in-parallel (MHP) deci-
sion problem asks, given two actions in the program, if there is an execution in
which they can execute in parallel. Closely related, the MHP computation prob-
lem asks, given a program, which pairs of statements may happen in parallel.
MHP analyses are useful as a basis for tools such as data race detectors [6,14]
and determinism checkers.

In this paper we study MHP analysis of a storeless model of X10-like lan-
guages that have async-finish parallelism and procedures. In X10 [5], the async
statement enables programs to create threads, while the finish statement pro-
vides a form of synchronization. Specifically, a finish statement finish s waits
for termination of all async statement bodies started while executing s.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 5–23, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

6 J.K. Lee et al.

Researchers have studied static MHP analysis for a variety of storeless pro-
gramming models. Roughly, there are three categories of decidability results.

First, consider models with threads and synchronization mechanisms such as
rendezvous. In case there are no procedures, Taylor proved in his seminal pa-
per [21] that the MHP decision problem is NP-complete for a set of tasks that
each contains only straight-line code, even when the set of possible rendezvous is
known. The decision problem becomes undecidable if, in addition, procedure calls
are allowed [18]. The decision problem is decidable if restricted synchronization
techniques, such as nested locks, are used [9], but the complexity is exponen-
tial. The async-finish concurrency constructs of X10-like languages are different
from threads with synchronization idioms such as rendezvous and locks, so the
intractability results above do not immediately apply; indeed, we demonstrate
a linear-time algorithm for the decision problem.

Second, consider models with syntactically specified synchronization, such
as fork-join parallelism (e.g., Cilk). For fork-join parallelism, Seidl and Steffen
[19] showed that the MHP decision problem is decidable in linear time. This
result was extended by Lammich and Müller-Olm [10] in the presence of the
async operator (called spawn in [10]) which can create new threads. Neither
of these results immediately captures the finish construct of X10, in which an
unbounded number of concurrently executing processes must synchronize. In
the Seidl-Steffen paper, the fork-join construct ensures that there is at most
a syntactically bounded number of processes executing and synchronizing in
parallel. In the Lammich-Müller-Olm paper, spawned threads do not synchronize
and synchronization is limited to an additional fork-join construct. Gawlitza et
al. [8] made major progress and showed that MHP analysis is decidable for a
model with nested locking and a join construct that has similarities with the
finish construct in X10.

Finally, decidability results for MHP analysis have so far been mostly of theo-
retical interest. In particular, the decision procedures in [19,19,8] weren’t applied
to realistic benchmarks. Instead, most previous papers on practical MHP anal-
ysis present static analyses that give conservative, approximate answers to the
MHP computation problem [7,13,15,16,12,3,1,11]. The relationship between the
approximate analyses and the theoretically optimal algorithms is unclear; if the
theoretically optimal algorithms are also practically efficient, then that would
make research into approximate analyses moot.

We study MHP analysis of Featherweight X10 [11], which is a core calculus
for async-finish parallelism and procedures, and which is essentially a subset of
X10. We give a store-less abstract semantics of Featherweight X10 and define
the MHP decision problem and the MHP computation problem in terms of this
semantics. The resulting MHP problems are all about control flow.

The Challenge. For async-finish parallelism and procedures, is optimal MHP
computation practical?

Our Results. For Featherweight X10, we present two new algorithms for the MHP
decision and computation problems, and we show that they scale well in practice.

Efficient May Happen in Parallel Analysis for Async-Finish Parallelism 7

1 void f () {
2 a1
3 }
4
5 void main () {
6 f in i sh {
7 async {
8 a2
9 } ;

10 a3
11 } ;
12 loop {
13 async {
14 f ()
15 }
16 }
17 }

1 void g () {
2 g ()
3 }
4
5 void main () {
6 loop {
7 async { a1 } ;
8 g ()
9 }

10 }

1 void main () {
2 loop {
3 async {
4 chain0 () ;
5 }
6 }
7 }
8
9 void chain0 () {

10 a0 ; chain1 () ;
11 }
12 void chain1 () {
13 a1 ; chain2 () ;
14 } . . .
15 void chainN () {
16 an ; chain0 () ;
17 }

Fig. 1. Three Featherweight X10 programs

Our first algorithm solves the MHP decision problem in linear time, via a
reduction from Featherweight X10 programs to constrained dynamic pushdown
networks (CDPNs) [4]. We give a careful complexity analysis of a known decision
procedure for CDPNs [4] for when it is applied to the CDPNs produced by our
reduction.

Our second algorithm solves the MHP computation problem in O(n·max(n, k))
time, where k is a statically determined upper bound on the number of pairs that
may happen in parallel. The second algorithm first runs a type-based analysis
that produces a set of candidate pairs, and then it runs the decision procedure on
each of those pairs. Following Lee and Palsberg [11], we recast the type analysis
problem as a constraint solving problem that we can solve in O(n · max(n, k))
time. For programs without recursion, the type-based analysis is exact and gives
an output-sensitive algorithm for the problem, while for recursive programs, the
type-based analysis may produce spurious pairs that the decision procedure will
then remove.

Our experiments on a large suite of X10 benchmarks suggest that our approach
scales well. Our experiments also show that while k is O(n2) in the worst case,
k is often O(n) in practice. Thus, output-sensitivity is often crucial in getting
algorithms to scale.

In summary, our results demonstrate two tractable MHP analyses for a prac-
tical parallel programming language.

In the following section we recall Featherweight X10 and give it an abstract
semantics, and in Section 3 we define the MHP analysis problems. In Section 4
we present our type-based algorithm that produces a set of candidate pairs, in
Section 5 we present our CDPN-based algorithm for the MHP decision problem,
and in Section 6 we present our algorithm for solving the MHP computation

8 J.K. Lee et al.

(Statement) s ::= s ; s | loop s | async s | finish s | al | skip | f()

(Context) C ::= C ; s | P ;C | async C | finish C | �
(ParStatement) P ::= P ;P | async s

(Redex) R ::= skip ; s | P ; skip | loop s | async skip

| finish skip | al | f()

[] : Context× Statement → Statement

(�)[s′] = s′ (C ; s)[s′] = (C[s′]) ; s (P ;C)[s′] = P ; (C[s′])

(async C)[s′] = (async C[s′]) (finish C)[s′] = (finish C[s′])

Fig. 2. Syntax of Featherweight X10

problem. Finally in Section 7 we present experimental results. We have omitted
a large example and most of the proofs of correctness of our two algorithms;
they are given in the appendices of the full version of the paper.

2 Featherweight X10

We now recall Featherweight X10 [11], and provide a store-less abstract se-
mantics. In contrast to [11], we give a semantics based on evaluation contexts.
Figure 1 shows three Featherweight X10 programs.

A program is a collection of procedures of the form

void f() { s }

where f is a procedure name and s is the procedure body. We use body(f) to refer
to the body of the procedure f . The procedure body is a statement generated by
the grammar in Figure 2. We assume there is a procedure with the name main.
The execution of a program begins by executing the body of main.

Syntax. Figure 2 gives the syntax of statements, contexts, parallel statements,
and redexes, as well as a function for plugging a statement into a context. In
the production for Statement , s ; s denotes statement sequence, loop s executes
s zero, one, or more times, async s spawns off s in a separate thread, finish s
waits for termination of all async statement bodies started while executing s, al

is a primitive statement with label l, skip is the empty statement, and f() is a
procedure call.

A context is a statement with a hole into which we can plug a statement. A
parstatement is a statement in which multiple statements can execute in parallel.
A redex is a statement that can execute at least one step of computation.

Featherweight X10 has no conditional statement; however, all the results in
this paper can be extended easily to a conditional statement with nondetermin-
istic branching.

Efficient May Happen in Parallel Analysis for Async-Finish Parallelism 9

The following theorem, proved by straightforward induction on s, character-
izes statements in terms of contexts and redexes.

Theorem 1 (Statement Characterization). For every statement s, either
s = skip, or there exists a context C and a redex R such that s = C[R].

The characterization in Theorem 1 isn’t necessarily unique. For example, if s =
(async a5); (async skip), we can choose C1 = (async �); (async skip) and R1 =
a5 and get s = C1[R1], and we can choose C2 = (async a5);� and R2 =
async skip and get s = C2[R2]. The non-uniqueness reflects the nature of parallel
computation: more than one statement can execute next, in some cases.

Abstract Semantics. We will define a small-step abstract store-less operational
semantics. First we give some of the intuition behind the semantics by explaining
how the semantics models the finish construct. Consider the statement:

(finish s1); s2 (1)

Notice that the context P ;C does not match (1) because finish s1 is not
a ParStatement . Thus, we cannot execute s2. Rather, the only context that
matches (1) is C; s. Thus, we will have to execute s1 and if s1 eventually becomes
skip, then we will have rules that can bring us from (finish skip); s2 to s2.

We define a relation → ⊆ Redex× Statement:

skip ; s→ s (2)

P ; skip→ P (3)

loop s→ skip (4)

loop s→ s ; loop s (5)

async skip→ skip (6)

finish skip→ skip (7)

al → skip (8)

f() → body(f) (9)

The program is fixed and implicit in the rules. Notice that for every redex R
there exists s such that R→ s.

Intuitively, Rules (2)–Rule (3) say that skip is left unit for all statements and
a right unit for ParStatement’s. Rules (4)–Rule (5) say that a loop executes its
body zero or more times. Rules (6)–(7) say that async and finish have outplayed
their roles when their body is skip. Rule (8) models primitive statements; in our
store-less semantics, we don’t record any effort. Rule (9) replaces a call to a
procedure with the body of that procedure.

Next we define a relation �−→ ⊆ Statement× Statement:

C[R] �−→ C[s] ⇐⇒ R→ s

We write �−→∗ for the reflexive transitive closure of �−→. The context C ; s ensures
that we can execute the first statement in a sequence, as usual. The contexts

10 J.K. Lee et al.

P ;C and async C ensure that in a statement such as (async s1); (async s2),
we can execute either of s1 or s2 next. The context finish C ensures that we
can execute the body a finish statement.

3 The May-Happen-in-Parallel Problems

We now define the May Happen in Parallel decision and computation problems.
We define:

CBE(s, l1, l2) = ∃C1, C2 : C1 	= C2 ∧ s = C1[a
l1] = C2[a

l2]

CBE(s) = { (l1, l2) | CBE(s, l1, l2) }
MHPsem(s) =

⋃
s′:s�−→∗s′

CBE(s′)

Intuitively, CBE(s, l1, l2) holds if statements labeled l1 and l2 can both execute
at s. We use the subscript sem in MHPsem to emphasize that the definition is
semantics-based.

For example, if s = (async a5); a6, we can choose C1 = (async �); a6 and
R1 = a5 and get s = C1[R1], and we can choose C2 = (async a5);� and
R2 = a6 and get s = C2[R2]. We conclude CBE(s, 5, 6) and (5, 6) ∈ CBE(s).

We define the MHP decision problem as follows.

May Happen in Parallel (decision problem)

Instance: (s, l1, l2) where s is a statement and l1, l2 are labels.
Problem: (l1, l2) ∈ MHPsem(s) ?

Equivalently, we can phrase the decision problem as: does there exist s′ such
that s �−→∗ s′ and CBE(s′, l1, l2) ?

We define the MHP computation problem as follows.

May Happen in Parallel (computation problem)

Input: a statement s.
Output: MHPsem(s).

4 A Type System for Producing Candidate Pairs

We now present a type system that gives a conservative solution to the MHP
computation problem.

Type Rules. We define

symcross : Set× Set→ PairSet

symcross(S1, S2) = (S1 × S2) ∪ (S2 × S1)

We use symcross to help produce a symmetric set of pairs of labels.

Efficient May Happen in Parallel Analysis for Async-Finish Parallelism 11

B � s1 : M1, O1, L1 B � s2 : M2, O2, L2

B � s1 ; s2 : M1 ∪M2 ∪ symcross(O1, L2), O1 ∪O2, L1 ∪ L2
(10)

B � s : M,O, L

B � loop s : M ∪ symcross(O,L), O, L
(11)

B � s : M,O, L

B � async s : M,L, L
(12)

B � s : M,O, L

B � finish s : M, ∅, L (13)

B � al : ∅, ∅, {l} (14)

B � skip : ∅, ∅, ∅ (15)

B � f() : M,O,L (if B(f) = (M,O, L)) (16)

B � si : Mi, Oi, Li B(fi) = (Mi, Oi, Li) i ∈ 1..n

� void f1(){ s1 } . . . void fn(){ sn } : B
(17)

Fig. 3. Type rules

We will use judgments of the forms B
 s : M,O,L and
 p : B. Here, s is a
statement, p is a program, M is a set of label pairs, O and L are sets of labels,
and B is a type environment that maps procedure names to triples of the form
(M,O,L). The meaning of B
 s : M,O,L is that in type environment B, (1)
the statement s has MHP information M , (2) while s is executing statements
with labels in L will be executed, and (3) when s terminates, statements with
labels in O may still be executing. The meaning of
 p : B is that the program
p has procedures that can be described by B. Figure 3 shows the eight rules for
deriving such judgments.

Notice that if a derivation of
 p : B contains the judgment B
 s : M,O,L,
then O ⊆ L.

Let us now explain the eight rules in Figure 3. Rule (10) says that we can com-
bine information for s1 and information for s2 into information for s1; s2 mainly
by set union and also by adding the term symcross(O1, L2) to the set of pairs.
The role of symcross(O1, L2) is to capture that the statements (with labels in
O1) that may still be executing when s1 terminates may happen in parallel with
the statements (with labels in L2) that will be executed by s2. Rule (11) has
the term symcross(O1, L2) as part of the set of pairs because the loop body
may happen in parallel with itself. Rule (12) says that the body of async may
still be executing when the async statement itself terminates. Note here that the
second piece of derived information is written as L rather than O ∪ L because,
as noted above, O ⊆ L. Rule (13) says that no statements in the body of finish
will still be executing when the finish statement terminates. Rule (14) states
that just the statement al will execute. Rule (15) states no labeled statements

12 J.K. Lee et al.

will execute. Rule (16) states that B contains all the information we need about
a procedure. Rule (17) says that if B correctly describes every procedure, then
it correctly describes the entire program.

Example. As an example, let us show a type derivation for the first program in
Figure 1. Let

B = [f �→ (∅, ∅, {1}), main �→ ({(1, 1), (2, 3)}, {1}, {1, 2, 3})]

From Rule (17) we have that to show that the entire program has type B, we
must derive the following two judgments:

B
 body(f) : ∅, ∅, {1} (18)

B
 body(main) : {(1, 1), (2, 3)}, {1}, {1, 2, 3}) (19)

Let us consider those judgments in turn.
We have that body(f) = a1 so Rule (14) gives us the judgment (18).
We have that body(main) = s1; s2 where

s1 = finish { async { a2 }; a3 }
s2 = loop { async { f() } }

From Rules (13), (10), (12), (14), we can produce this derivation:

B
 a2 : ∅, ∅, {2}
B
 async { a2 } : ∅, {2}, {2} B
 a3 : ∅, ∅, {3}

B
 async { a2 }; a3 : {(2, 3)}, {2}, {2, 3}
B
 s1 : {(2, 3)}, ∅, {2, 3}

From Rules (11), (12), (16), we can produce this derivation:

B
 f() : ∅, ∅, {1}
B
 async { f() } : ∅, {1}, {1}

B
 s2 : {(1, 1)}, {1}, {1}

Finally, we can use Rule (10) to produce the judgment (19).

Properties. The following four theorems are standard and have straightforward
proofs.

Theorem 2 (Existence of Typing). For all B, there exists M,O,L such that
B
 s : M,O,L.

Theorem 3 (Unique Typing). If B
 s : M1, O1, L1 and B
 s : M2, O2, L2,
then M1 = M2 and O1 = O2 and L1 = L2.

Theorem 4 (Subject Reduction). For a program p, if
 p : B and B
 R :
M,O,L and R → s′, then there exists M ′, O′, L′ such that B
 s′ : M ′, O′, L′

and M ′ ⊆M and O′ ⊆ O and L′ ⊆ L.

Efficient May Happen in Parallel Analysis for Async-Finish Parallelism 13

Theorem 5 (Preservation). For a program p, if
 p : B and B
 s : M,O,L
and s �−→ s′, then there exists M ′, O′, L′ such that B
 s′ : M ′, O′, L′ and
M ′ ⊆M and O′ ⊆ O and L′ ⊆ L.

Proof. From s �−→ s′ we have that there exist a context C and a redex R such
that s = C[R], and that there exists s′′ such that C[R] �−→ C[s′′] and R → s′′.
The proof proceeds by straightforward induction on C. ��

For a statement s and a type environment B, we have from Theorem 2 and
Theorem 3 that there exist unique M,O,L such that B
 s : M,O,L, so we
define

MHPB
type(s) = M

We use the subscript type to emphasize that the definition is type based.
The following two theorems say that the type system gives a conservative

approximation to the MHP computation problem, and an exact solution for
programs without recursion.

Theorem 6 (Overapproximation). For a program p, a statement s in p, and
a type environment B such that
 p : B, we have MHPsem(s) ⊆ MHPB

type(s).

We patterned Theorem 6 after [11, Theorem 3]. In the case where s is the body
of the main procedure, Theorem 6 says thatMHPB

type(s) is an overapproximation
of the MHP information for the entire program.

The next theorem shows that there is no loss of precision in the type-based
approach for programs without recursion. See Appendix B of the full version for
a proof.

Theorem 7 (Equivalence). For a program without recursion, where the body
of main is the statement s, we have that there exists B such that MHPsem(s) =
MHPB

type(s).

Complexity. We can now state the complexity of the type-based approach.

Theorem 8. For a program of size n, we can compute B and MHPB
type(s) in

O(n ·max(n, k)) time, where k = |MHPB
type(s)| is the size of the output produced

by the type system.

Proof. We first note that we can use the approach of Lee and Palsberg [11] to
rephrase the problem of computing B and MHPB

type(s) as the problem of finding
the minimal solution to a collection of set constraints that are generated from
the program text. For our type system, those set constraints are all of the forms:

l ∈ v (20)

v ⊆ v′ (21)

symcross(v, v′) ⊆ w (22)

w ⊆ w′ (23)

14 J.K. Lee et al.

Here v, v′ range over sets of labels, while w,w′ range over sets of pairs of labels.
The maximal size of each set of labels is O(n), the maximal size of each set
of pairs of labels is k (by definition), and the number of constraints is O(n).
We proceed by first solving the constraints of the forms (20) and (21) by a
straightforward propagation-based algorithm akin to the one that Palsberg and
Schwartzbach used to solve a related kind of set constraints [17]; this takes
O(n2) time. Then we solve the constraints of the forms (22) and (23) by the
same algorithm but this time we propagate pairs of labels rather than single
labels; this takes O(n · k) time. In total, we spent O(n ·max(n, k)) time. ��

Since k = O(n2) in the worst case, we get a cubic algorithm, but our experiments
show that k is O(n) in practice.

When we combine Theorem 7 and Theorem 8, we get that we can solve the
MHP computation problem for programs without recursion in O(n ·max(n, k))
time, while we get a conservative approximation for programs with recursion.

Programs with Recursion. Theorems 6 and 7 indicate that some uses of recursion
cause the type system to produce an approximate result rather than an accu-
rate result. Specifically, our type system may be conservative if recursive calls
introduce non-termination. For example, see the second program in Figure 1.
The program has a loop with the statement async{a1} in the body so one might
think that a1 may happen in parallel with itself. However, the loop body also
calls the procedure g that is non-terminating. So, the program execution will
never get around to executing async{a1} a second time. In summary, for the
second program in Figure 1, the MHP set is empty.

Let us now take a look at how the type system analyzes the second program
in Figure 1. Let

B = [g �→ (∅, ∅, ∅), main �→ ({(1, 1)}, {1}, {1})]

From Rule (17) we have that to show that the entire program has type B, we
must derive the following two judgments:

B
 body(g) : ∅, ∅, ∅ (24)

B
 body(main) : {(1, 1)}, {1}, {1} (25)

Let us consider those judgments in turn.
We have that body(g) = g() so Rule (16) gives us the judgment (24).
We have that body(main) = loop { async { a1 }; g() } so from Rules (11), (12),

(14), (16) we can produce this derivation that concludes with judgment (25):

B
 a1 : ∅, ∅, {1}
B
 async { a1 } : ∅, {1}, {1} B
 g() : ∅, ∅, ∅

B
 async { a1 }; g() : ∅, {1}, {1}
B
 body(main) : {(1, 1)}, {1}, {1}

In conclusion, the type system over-approximates non-termination and therefore
concludes that a1 may happen in parallel with itself.

Efficient May Happen in Parallel Analysis for Async-Finish Parallelism 15

5 An Algorithm for the MHP Decision Problem

We now give a linear-time algorithm for the MHP decision problem, even in
the presence of recursion and potential non-termination. Our algorithm is based
on constrained dynamic pushdown networks (CDPNs) [4], an infinite model of
computation with nice decidability properties. Informally, CDPNs model collec-
tions of sequential pushdown processes running in parallel, where each process
can “spawn” a new process or, under some conditions, observe the state of its
children. We follow the presentation in [4].

Preliminaries. Let Σ be an alphabet, and let ρ ⊆ Σ × Σ be a binary relation
on Σ. A set S ⊆ Σ is ρ-stable if and only if for each s ∈ S and for each t ∈ Σ,
if (s, t) ∈ ρ then t is also in S. A ρ-stable regular expression over Σ is defined
inductively by the grammar:

e ::= S | e · e | e∗

where S is a ρ-stable set. We derive a ρ-stable regular language from a ρ-stable
regular expression in the obvious way and identify the expression with the lan-
guage it denotes.

CDPNs. A constrained dynamic pushdown network (CDPN) [4] (A,P, Γ,Δ) con-
sists of a finite set A of actions, a finite set P of control locations, a finite alphabet
Γ of stack symbols (disjoint from P), and a finite set Δ of transitions of the fol-
lowing forms:

φ : pγ
a−→ p1w1 or φ : pγ

a−→ p1w1 � p2w2,

where p, p1, p2 ∈ P , γ ∈ Γ , a ∈ A, w1, w2 ∈ Γ ∗, and φ is a ρΔ-stable regular
expression over P with

ρΔ = { (p, p′) ∈ P × P | ∃ψ : pγ
a−→ p′w in Δ, or ∃ψ : pγ

a−→ p′w � p′′w′ in Δ }

The ρ-stable property guarantees that whenever a control location p is matched
by an expression φ, all its successors’ control locations are also matched.

Semantics. CDPN configurations model the execution states of CDPN instances.
Intuitively, a configuration of a CDPN is a tree with each node marked with the
configuration of a pushdown process, and the children of a node are configura-
tions of pushdown processes spawned by it, which are ordered by age (the more
recently spawned child is to the right). The configuration of each pushdown
process models a single thread execution state in a parallel program, which in-
cludes control location describing the thread state and stack symbols modeling
the stack storage. Formally, given a set X = {x1, . . . , xn} of variables, define the
set T [X] of M -terms over X ∪ P ∪ Γ as the smallest set satisfying:

(a) X ⊆ T [X];
(b) If t ∈ T [X] and γ ∈ Γ , then γ(t) ∈ T [X];
(c) For each n ≥ 0, if t1, . . . , tn ∈ T [X] and p ∈ P , then p(t1, . . . , tn) ∈ T [X].

16 J.K. Lee et al.

Notice that n can be zero in case (c); we often write p for the term p(). A ground
M -term is an M -term without free variables. The set of ground M -terms is
denoted T .

We now define the semantics of CDPNs as a transition system. An M -
configuration is a ground M -term; we write ConfM to denote the set of M -
configurations. We define a context C as a M -term with one free variable, which
moreover appears at most once in the term. If t is a ground M -term, then C[t]
is the ground M -term obtained by substituting the free variable with t.

The M -configuration γm . . . γ1p(t1, . . . , tn), for n,m ≥ 0 represents a process
in control location p and γm . . . γ1 on the stack (with γ1 on top), which has
spawned n child processes. The ith child, along with all its descendants, is given
by ti. The child processes are ordered so that the rightmost child tn is latest
spawned. We call γm . . . γ1p the topmost process in the M -configuration.

The semantics of a CDPN is given as a binary transition relation →M

between M -configurations. Given an M -configuration t of one of the forms
γm . . . γ1p(t1, . . . , tn), n ≥ 1 or γm . . . γ1p, we define root(t) to be the control
location p of the topmost process in t. We define →M as the smallest relation
such that the following hold:

(a) if (φ : pγ
a−→ p1w1) ∈ Δ and root(t1) . . . root(tn) ∈ φ, then

C[γp(t1, . . . , tn)]→M C[wR
1 p1(t1, . . . , tn)]; and

(b) if (φ : pγ
a−→ p1w1 � p2w2) ∈ Δ and root(t1) . . . root(tn) ∈ φ, then

C[γp(t1, . . . , tn)]→M C[wR
1 p1(t1, . . . , tn, w

R
2 p2)].

Intuitively, transitions between M -configurations model parallel program exe-
cution. With a CDPN transition rule φ : pγ

a−→ p1ω1, a process in the M -
configuration steps to its next state and updates its stack; with a CDPN tran-
sition rule φ : pγ

a−→ p1ω1 � p2ω2, a process in the M -configuration spawns a
new pushdown process as its newest child. The constraint φ in a transition rule
provides a simple way to communicate between the parent process and its chil-
dren. For example, given control location
 ∈ P standing for termination state,
a parent process cannot step over a transition rule
∗ : pγ

a−→ p1ω1 until all its
children have terminated.

Given the transition relation →M , we define the operators pre and pre∗ on
sets of M -configurations in the standard way.

Regular Sets of M -configurations. We define M -tree automata that accept a set
of M -configurations. Formally, an M -tree automaton (Q,F, δ) consists in a finite
set Q of states, a set F ⊆ Q of final states, and a set δ of rules of the following
two forms: (a) γ(q) → q′, where γ ∈ Γ , and q, q′ ∈ Q, and (b) p(L) → q where
p ∈ P , q ∈ Q, and L is a regular language over Q. We define the relation →δ

between terms over P ∪Γ ∪Q as: t→δ t′ if and only if there exists a context C,
statements s, s′, and a rule r ∈ δ such that t = C[s], t′ = C[s′], and (a) either
r = γ(q)→ q′ and s = γ(q) and s′ = q′, or (b) r = p(L)→ q, s = p(q1, . . . , qn),
q1 . . . qn ∈ L, and s′ = q. A term t is accepted by the M -tree automaton AM

denoted as t ∈ L(AM) if t →∗
δ q for some q ∈ F , where →∗

δ is the reflexive

Efficient May Happen in Parallel Analysis for Async-Finish Parallelism 17

transitive closure of →δ. The language of an M -tree automaton is the set of all
M -terms accepted by it.

From X10 to CDPNs. We now give a translation from programs in our syntax to
CDPNs. Our translation starts with a control-flow graph (CFG) representation of
a program, in which each procedure f is represented as a labeled, directed graph
Gf = (Vf , Ef , entryf , exitf) where Vf is a set of control nodes, Ef ⊆ Vf×ops×Vf

is a set of labeled directed edges labeled by operations from ops (defined below),
and entryf and exitf are nodes in Vf denoting the entry and exit nodes of a

CFG. Each edge label is either a labeled action al, a call call(g) to a procedure
g, an asynchronous call async(g) to a procedure g, or a finish finish(g) to a
procedure g. A control flow graph representation can be computed from the
program syntax using standard compiler techniques [2].

Additionally, we make the simplifying assumption that each label l is used
at most once, and that if the primitive statement al is translated to the edge
(u, al, v), then the node u has no other outgoing edges. Thus, the node u uniquely
determines the label l which is about to be executed, and we can identify node
u with l.

As usual, we assume Vf ∩ Vg = ∅ for two distinct procedures f, g. Let

V = ∪{ Vf | f is a procedure } E = ∪{ Ef | f is a procedure }.

We now define a CDPN MG from a CFG representation G. The set of ac-
tions consists of all actions a in ops, together with a new “silent” action τ .
The set of control locations P = {#,
}. The set of stack symbols Γ = V ∪
{wait[u, g, v] | (u, finish(g), v) ∈ E} ∪ {$}. Intuitively, we will use the stack to
maintain the program stack, with the topmost symbol being the current pro-
gram point. The control location # is the dummy location used to orchestrate
program steps, and the control location
 is used to indicate the process execu-
tion has terminated. We shall implicitly assume that each stack has a bottom
symbol $.

Now for the transitions in Δ. For each (u, a, v) ∈ E, we have the rule P ∗ :

#u
a−→ # v. For each edge (u, call(g), v), we have the rule P ∗ : #u

τ−→ # entryg v.

For each edge (u, async(g), v), we have the rules P ∗ : #u
τ−→ # v�# entryg. To

model returns from a procedure g, we add the rule P ∗ : # exitg
τ−→ #. For each

edge (u, finish(g), v), we add the rule P ∗ : #u
τ−→ #wait[u, g, v]�# entryg.

Next, we give the rules performing the synchronization at the end of a finish
statement. The first rule,
∗ : # $

τ−→
, encodes that a process on its last stack
symbol “$” goes to the control state
 when all its children terminated. The
second rule, P ∗
 : #wait[u, p, v]

τ−→ # v, encodes that the “top level” finish call
finishes when the entire finish (spawned as its youngest child) finishes. These
two rules ensure that a process makes progress beyond a finish(g) statement
only when all processes spawned transitively from g terminate.

It is easy to see that for every CFG G, the CDPN MG preserves all the
behaviors of G. Moreover, MG is linear in the size of G.

18 J.K. Lee et al.

Solving the MHP Decision Problem. We solve the MHP decision problem by
performing a reachability test between the initial program M -configuration and
a family of interesting M -configurations. In particular, for the MHP problem
given two labels l and l′, we are interested in the family of M -configurations
ConfMl,l′ in which there exists two processes, one about to execute l and the other
about to execute l′. Formally, for edges l

a−→v, l′
a′
−→v′ on G with labels l, l′ and

primitive statements a, a′, we define M -configuration c ∈ ConfMl,l′ if and only if
there exists two processes in c of the form γl(p(t1, . . . , tn)) and γ′l′(p(t′1, . . . , t

′
m))

in c where γ, γ′ ∈ Γ ∗, t1, . . . , tn, t
′
1, . . . , t

′
m are ground M -terms. Both processes

have program points l, l′ on the top of the stacks, and thus, l and l′ may happen
in parallel.

We now give a M -tree automaton AM
l,l′ that can recognize exactly the M -

configurations in ConfMl,l′ . Given CDPN M with two labels l, l′ (program points

on G), we define the M -tree automaton AM
l,l′ = (Q,F, δ) as follow. The state set

is defined as
Q = Qp ∪Qr

where two symmetric subsets

Qp = {qp00, qp10, qp01, qp11} Qr = {qr00, qr10, qr01, qr11}

give all states for P -transitions and Γ -transitions. We define qpi as the i-th state
in Qp, and qri as the i-th state in Qr for i = 1, 2, 3, 4. The 4 states in both sets
Qp and Qr with tags 00, 10, 01, 11 on subscripts give the intuitive meanings that
neither stack symbol l nor l′ has been recognized yet, stack symbol l has been
recognized (the first bit is set), stack symbol l′ has been recognized (the second
bit is set), both stack symbol l and stack symbol l′ have been recognized (both
bits are set). The terminal state set is defined as

F = {qr11, qp11}.

The transition rule set is defined as

δ = {p()→ qp00 , l(qp01)→ qr11 , l′(qp10)→ qr11 , l(qp00)→ qr10 ,

l′(qp00)→ qr01 , p(Q∗, q10, Q
∗, q01, Q

∗)→ qp11 ,

p(Q∗, q01, Q
∗, q10, Q

∗)→ qp11 , γ(qi)→ qri , p(Q∗, qi, Q
∗)→ qpi}.

In the transition rule set above, notice that qi is the state in {qri, qpi}, and simi-
larly q00, q10, q01, q11 are states in {qr00, qp00}, {qr10, qp10}, {qr01, qp01}, {qr11, qp11}
respectively; γ ∈ Γ is an arbitrary stack symbol; and p ∈ P is an arbitrary
control location. We will follow this convention in the rest of this paper.

It is easy to perform a bottom up scan on any M -configuration t with M -tree
automaton AM

l,l′ . The M -tree automaton AM
l,l′ recognizes t if and only if there

are two processes in t running at program points l, l′ in parallel. To be noted
that the M -configuration t is not necessary a valid program configuration to be
recognized by AM

l,l′ as long as it belongs to Conf
M
l,l′ . A valid program configuration

means the configuration is reachable from the initial program configuration by
execution. The following theorem is proved in Appendix C of the full version.

Efficient May Happen in Parallel Analysis for Async-Finish Parallelism 19

Theorem 9. ConfMl,l′ = L(AM
l,l′).

Algorithm and Complexity. The key to our decision procedure is the following
main result of [4].

Theorem 10. [4] For every CDPN M , and for every M -tree automaton A,
there is an effective procedure to construct an M -tree automaton A∗ such that
L(A∗) = pre∗(L(A)).

The procedure in [4] applies backward saturation rules to the automaton A.
Given a CFG G, the MHP decision problem is solved by:

(a) Constructing CDPN MG and M -tree automaton AM
l,l′ ;

(b) Finding the pre∗-image of L(AM
l,l′) using Theorem 10, and checking if the

initial configuration #entrymain is in pre∗(L(AM
l,l′)).

Step (a) can be performed in time linear in the size of the input G. The M -tree
automaton AM

l,l′ is clearly constant and independent of the input program. A
careful observation of the construction in [4] shows that (b) is also linear. Thus,
we have the following theorem.

Theorem 11. The MHP decision problem can be solved in linear time in the
size of a program.

Appendix A of the full version gives a detailed example of the CDPN-based
approach applied to the first program in Figure 1.

6 Solving the MHP Computation Problem

We can compute all pairs of statements that may happen in parallel with this
two-step algorithm:

1. Run the type-based analysis (Section 4) and produce a set of candidate pairs.
2. For each of the candidate pairs, run the CDPN-based decision procedure

(Section 5), and remove those pairs that cannot happen in parallel.

Theorem 12. For a program of size n, for which the type-based analysis pro-
duces k candidate pairs, the MHP computation problem can be solved in O(n ·
max(n, k)) time.

Proof. Theorem 8 says that Step 1 runs in O(n·max(n, k)) time, and Theorem 11
implies that Step 2 runs in O(n · k) time because we apply an O(n) algorithm k
times. The total run time of the two-step algorithm is O(n ·max(n, k))+O(n ·k)
= O(n ·max(n, k)). ��

7 Experimental Results

We now show experimental results that show (1) how to use our MHP analysis for
race detection and (2) how much time is spent on the two parts of the algorithm
in Section 6. We ran our experiments on a Apple iMac with Mac OS X and a
2.16 GHz Intel Core 2 Duo processor and 1 Gigabyte of memory.

20 J.K. Lee et al.

Static counts Data-race detection Analysis time (ms)

MHP MHP+Types
Benchmarks LOC #async MHP +Types +Andersen Step:1 Steps:1+2 All-pairs

stream 70 4 160 21 9 7 33 318

sor 185 7 31 8 3 16 21 169

series 290 3 3 3 3 11 13 237

sparsemm 366 4 55 4 2 14 52 2,201

crypt 562 2 366 100 100 54 164 2,289

moldyn 699 14 31882 880 588 43 14,992 57,308

linpack 781 8 67 33 33 14 60 5,618

mg 1,858 57 4884 431 421 69 9,970 114,239

mapreduce 53 3 3 2 2 3 16 78

plasma 4,623 151 8475 2084 760 503 36,491 5,001,310

Fig. 4. Data-race detection

Benchmarks. We use 10 benchmarks taken from the HPC challenge benchmarks
(stream), the Java Grande benchmarks in X10 (sor, series, sparsemm, crypt,
moldyn, linpack), the NAS benchmarks (mg), and two benchmarks written by
ourselves (mapreduce, plasma). In Figure 4, columns 2+3 show the number of
lines of code (LOC) and the number of asyncs. The number of asyncs includes
the number of foreach and ateach loops, which are X10 constructs that let all the
loop iterations run in parallel. We can think of foreach and ateach as plain loops
where the body is wrapped in an async. Our own plasma simulation benchmark,
called plasma, is the longest and by far the most complicated benchmark with
151 asyncs and 84 finishes. None of the benchmarks use recursion! In particular,
none of the benchmarks use the problematic programming style illustrated in
the second program in Figure 1.

Measurements. In Figure 4, columns 4–6 show results from doing race detection
on our 10 benchmarks. The column MHP shows the number of pairs of primitive
statements that read or write nonlocal variables that our analysis found may
happen in parallel. Given that none of the benchmarks use recursion, we needed
to use only Step 1 of the algorithm in Section 6.

The MHP analysis problem is all about control flow. We complement the
control-flow analysis with two data flow analyses, one that uses types and one
that uses pointer analysis. The column Type Check refines the MHP column
by allowing only pairs of statements for which the accesses are to variables of
the same type. The column Andersen Algo refines the Type Check column by
allowing only pairs of statements for which Andersen’s pointer analysis algorithm
finds that the statements may access the same variable.

Note that we can give an alternative and slower algorithm for the MHP com-
putation problem by running the CDPN-based decision procedure on all possible
pairs. In Figure 4, column 7 shows the analysis time for the type-based Step 1
that is sufficient for our benchmarks, column 8 shows how long it would take to
run Step 1+2 in case we were unable to determine that Step 2 was unnecessary,

Efficient May Happen in Parallel Analysis for Async-Finish Parallelism 21

Fig. 5. The cubic root of the analysis time for the third program in Figure 1

and column 9 shows the analysis times for the CDPN-based decision procedure
on all pairs. For all benchmarks, it much faster to run Step 1 only rather than
Step 1+2, which, in turn, is much faster than to run the decision procedure on
all pairs.

Assessment. The combination of the control-flow-oriented MHP analysis and
the data-flow-oriented Type Check and Andersen’s algorithm is powerful. The
final column in Figure 4 contains numbers that are low enough that they are
a good starting point for other analyses or testing techniques that depend on
MHP information. One such approach is the Race Directed Random Testing of
Sen [20] that needs MHP information as a starting point.

Scalability. Our X10 benchmarks form one extreme for the algorithm in Section
6: Step 2 isn’t needed at all for those benchmarks. Let us now consider the other
extreme where Step 1 provides no savings because the program is recursive and
the size of the output is O(n2). Our question is then: how much time is spent
on Step 1 and how much time is spent on Step 2? As our benchmarks, we will
use the family of programs that are shown as the third program in Figure 1. For
each N , we have one such program. The Nth program contains N procedures
that call each other recursively in a closed chain. The main procedure executes
a parallel loop that calls the 0’th procedure.

Our experiments show that the running times for the type-based Step 1 grow
more slowly than the running times for the CDPN-based Step 2. The type-based
Step 1 can handle N = 450 within 100 seconds, while for N = 100, the CDPN-
based Step 2 takes a lot more than 100 seconds. Figure 5 shows the cubic-root
of the analysis time for N up to 500. The near-linear curves in Figure 5 suggest

22 J.K. Lee et al.

that both steps use cubic time for the third program in Figure 1. Two linear
regressions on the data in Figure 5 lead to these formulas for the running times:

Type-based Step 1: time(n) = .00109× n3 + . . .
CDPN-based Step 2: time(n) = .06943× n3 + . . .

The constant in front of n3 is more than 63 times bigger for Step 2 than for Step
1 so in the worst case Step 2 dwarfs Step 1.

8 Conclusion

We have presented two algorithms for static may-happen-in-parallel analysis of
X10 programs, including a linear-time algorithm for the MHP decision prob-
lem and a two-step algorithm for the MHP computation problem that runs in
O(n · max(n, k)) time, where k is a statically determined upper bound on the
number of pairs that may happen in parallel. Our results show that the may-
happen-in-parallel analysis problem for languages with async-finish parallelism
is computationally tractable, as opposed to the situation for concurrent lan-
guages with rendezvous or locks. Our results are applicable to various forms of
parallelism and synchronization, including fork-join parallelism.

Acknowledgements. This material is based upon research performed in col-
laborative facilities renovated with funds from the National Science Foundation
under Grant No. 0963183, an award funded under the American Recovery and
Reinvestment Act of 2009 (ARRA).

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of X10 programs. In: Yelick, K.A., Mellor-Crummey, J.M. (eds.) PPOPP,
pp. 183–193. ACM (2007)

2. Aho, A.V., Sethi, R.I., Ullman, J.D.: Compilers: Principles, Techniques, and Tools,
2nd edn. Addison-Wesley, Reading (1986)

3. Barik, R.: Efficient Computation of May-Happen-in-Parallel Information for Con-
current Java Programs. In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sa-
dayappan, P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 152–169. Springer, Heidel-
berg (2006)

4. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular Symbolic Analysis of Dynamic
Networks of Pushdown Systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)

5. Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra, A., Sarkar, V., Von
Praun, C.: X10: An object-oriented approach to non-uniform cluster computing.
In: Proceedings of the 20th ACM SIGPLAN Conference on Object-oriented Pro-
graming, Systems, Languages, and Applications, pp. 519–538. ACM SIGPLAN
(2005)

Efficient May Happen in Parallel Analysis for Async-Finish Parallelism 23

6. Choi, J.-D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridharan, M.: Ef-
ficient and precise datarace detection for multithreaded object-oriented programs.
In: PLDI, pp. 258–269 (2002)

7. Duesterwald, E., Soffa, M.L.: Concurrency analysis in the presence of procedures
using a data-flow framework. In: Symposium on Testing, Analysis, and Verification,
pp. 36–48 (1991)

8. Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Join-Lock-
Sensitive Forward Reachability Analysis for Concurrent Programs with Dynamic
Process Creation. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538,
pp. 199–213. Springer, Heidelberg (2011)

9. Kahlon, V.: Boundedness vs. unboundedness of lock chains: Characterizing decid-
ability of pairwise CFL-reachability for threads communicating via locks. In: LICS
2009, 24th Annual Symposium on Logic in Computer Science, pp. 27–36 (2009)

10. Lammich, P., Müller-Olm, M.: Precise Fixpoint-Based Analysis of Programs with
Thread-Creation and Procedures. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR
2007. LNCS, vol. 4703, pp. 287–302. Springer, Heidelberg (2007)

11. Lee, J.K., Palsberg, J.: Featherweight X10: a core calculus for async-finish paral-
lelism. In: Proceedings of PPOPP 2010, 15th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming, Bangalore, India (January
2010)

12. Li, L., Verbrugge, C.: A Practical MHP Information Analysis for Concurrent Java
Programs. In: Eigenmann, R., Li, Z., Midkiff, S.P. (eds.) LCPC 2004. LNCS,
vol. 3602, pp. 194–208. Springer, Heidelberg (2005)

13. Masticola, S.P., Ryder, B.G.: Non-concurrency analysis. In: PPOPP, pp. 129–138
(1993)

14. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
Proceedings of POPL 2007, SIGPLAN–SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 327–338 (2007)

15. Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting
all pairs of statement that happen in parallel. In: SIGSOFT FSE, pp. 24–34 (1998)

16. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An Efficient Algorithm for Comput-
ing MHP Information for Concurrent Java Programs. In: Wang, J., Lemoine, M.
(eds.) ESEC 1999 and ESEC-FSE 1999. LNCS, vol. 1687, pp. 338–354. Springer,
Heidelberg (1999)

17. Palsberg, J., Schwartzbach, M.I.: Object-Oriented Type Systems. John Wiley &
Sons (1994)

18. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Transactions on Programming Languages and Systems 22(2), 416–430
(2000)

19. Seidl, H., Steffen, B.: Constraint-Based Inter-Procedural Analysis of Parallel Pro-
grams. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 351–365. Springer,
Heidelberg (2000)

20. Sen, K.: Race directed random testing of concurrent programs. In: Proceedings of
PLDI 2008, ACM SIGPLAN Conference on Programming Language Design and
Implementation, Tucson, Arizona, pp. 11–21 (June 2008)

21. Taylor, R.N.: Complexity of analyzing the synchronization structure of concurrent
programs. Acta Inf. 19, 57–84 (1983)

Modular Static Analysis with Zonotopes

Eric Goubault, Sylvie Putot, and Franck Védrine

CEA Saclay Nano-INNOV, CEA LIST,
Laboratory for the Modelling and Analysis of Interacting Systems,

Point Courrier 174, 91191 Gif sur Yvette CEDEX
{Eric.Goubault,Sylvie.Putot,Franck.Vedrine}@cea.fr

Abstract. Being able to analyze programs function by function, or
module by module is a key ingredient to scalable static analyses. The
main difficulty for modular static analysis is to be able to do so while
not losing too much precision. In this paper, we present a new summary-
based approach that builds on previous work of the authors, a zonotopic
functional abstraction, that is economical both in space and time com-
plexity. This approach has been implemented, and experiments on nu-
merical programs, reported here, show that this approach is very efficient,
and that we still obtain precise analyses in realistic cases.

1 Introduction

In this paper, we use the particular properties that the zonotopic abstract do-
main [GP06, GGP09, GGP10] exhibits, to design a new modular static analysis
of numeric properties. This domain has some advantages over the other sub-
polyhedric abstract domains such as [Min01, SSM05, CH78], namely that its
abstract transfer functions are of low complexity, while being more precise for
instance for non-linear computations. This makes it a good candidate for scal-
able analyses of numeric properties. It has been the basis for the static analyzer
FLUCTUAT, that extends this domain to deal with finite-precision arithmetic
semantics (e.g. floating-point numbers) as in [GP11]. Experiments with FLUC-
TUAT [DGP+09] have proved the usefulness of this domain for analysing mid-
sized programs (up to 50KLoCs typically, on standard laptop computers). As we
are dealing with precise numerical invariants (ranges of variables or functional
properties, numerical errors and their provenance), the standard global interpre-
tation of programs, re-analysing every function at each call site, may still prove
too costly for analysing large programs of over 100KLoCs to several MLoCs.

But this zonotopic domain exhibits other properties that make it a perfect
candidate for being used in modular static analyses: as shown in [GP09], our
domain is a functional abstraction, meaning that the transfer functions we define
abstract input/output relationships. This paper builds on this property, to design
a precise and fast modular static analysis for numerical programs.

The program of Figure 1 will be used to exemplify the basic constructs in
our modular analysis. Let us quickly sketch on this example, the behavior of the
zonotopic modular abstraction that will be detailed in the rest of the paper. Intu-
itively, affine sets abstract a program variable x by a form x̂ =

∑
i c

x
i εi+

∑
j p

x
j ηj ,

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 24–40, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modular Static Analysis with Zonotopes 25

real mult(real a, real b)

{ return a*(b-2); }

compute(x ∈ [-1,1]);

real compute(real x)

{ real y1 = mult(x+1, x);

real y2 = mult(x, 2*x);

return y2-y1;

}
Fig. 1. Running example

where cxi and pxj are real coefficients that define the abstract value, εi are sym-
bolic variables with values in [−1, 1] that abstract uncertain inputs and parame-
ters, and ηj are symbolic variables with values in [−1, 1] that abstract uncertainty
on the value of x due to the analysis (i.e. to non-affine operations). The symbolic
variables εi and ηj are shared by program variables, which implicitly expresses
correlation. An affine form x̂ is thus a function of the inputs of the program: it is
a linear form of the noise symbols εi, which are directly related to these inputs.

Here, function compute is called with x̂ = ε1 (input in [-1,1]). We build a
summary for function mult after its first call (y1 = mult(x+1, x);). Using
the semantics on affine sets to abstract the body of the function, we get as
summary the ordered pair of affine sets (I, O) such that I = (ε1 + 1, ε1), O =
(−1.5− ε1 + 0.5η1), where I abstracts the calling context and O the output.

At the next call (y1 = mult(x, 2*x);), we try to see if the previous summary
can be used, that is if the calling context is contained in the input I of the
summary: it is not the case as (ε1, 2ε1) ≤ (ε1 + 1, ε1) does not hold (with the
order on affine sets defined by Equation 3).

We merge the two calling contexts with the join operator of Definition 4, and
analyze again the body of the function: this gives a new (larger) summary for
function mult: I = (0.5+ε1+0.5η2, 1.5ε1+0.5η3), O = (− 1

4−
5
4ε1−η2+

1
4η3+

9
4η4).

Then, this new summary can be instantiated to the two calls (or any other call
with calling context contained in affine set I = (0.5+ ε1 +0.5η2, 1.5ε1+0.5η3)).
Without instantiation, the output value of the summary ranges in [−5, 4.5], using
concretization of Definition 3. But the summary is a function defined over input
ε1 of the program, and over the symbols η2 and η3 that allow expressing the
inputs of function mult: we will thus get a tighter range for the output, as well
as a function of input ε1, by instantiating η2 and η3 and substituting them in
the output of the summary. For instance, for the second call of function mult,
with (ε1, 2ε1), we identify ε1 with 0.5+ε1+0.5η2 and 2ε1 with 1.5ε1+0.5η3, and
deduce η2 = −1 and η3 = ε1, which yields for the output 3

4 − ε1 +
9
4η4 ∈ [− 5

2 , 4].
Direct computation gives 1− 2ε1 + η4 ∈ [−2, 4], which is just slightly tighter.

We illustrate this in Figure 2: we represent on the left picture, the calling
contexts (a, b) for the two calls (I1 is first call, I2 is second call), and the zonotopic
concretization of the calling context after merge, I1�I2. On the right part of the
figure, the parabola is the exact results of the second call, ExM(I2). The dashed
zonotope is the result of the abstraction with the semantics of affine sets of the
second call, Mult(I2). The zonotope in plain lines is the output of the summary,
Mult(I1 � I2). The zonotope in dotted lines is the summary instantiated to the
second call.

26 E. Goubault, S. Putot, and F. Védrine

I1 � I2

I1

I2

−2 −1 0 1 2

−2

−1

0

1

2

a

b

Mult(I1 � I2)

Mult(I2)

ExM(I2)

−1 −0.5 0 0.5 1

−5

−4

−3

−2

−1
0

1

2

3

4

5

ε1

Output

Fig. 2. Summary and instantiation (left is input, right output)

The performances of this modular analysis with our prototype implementation
are demonstrated in Section 5.2.

Related Work and Contributions. Finding efficient ways to analyze inter pro-
cedural code is a long standing problem. A first class of methods consists in
analyzing the whole control flow graph, re-analysing every procedure for each
context. This may prove to be rather inefficient, as this may impose to analyze
several times the same functions in very similar contexts. A second class con-
siders separate analyses of procedures in a context-insensitive way. The same
abstract return value is used for each call site. The advantage is that functions
are only analyzed once, but the drawback is that the results that are used at
each call site of a function may be a gross over-approximation of the correct re-
sult. This might lead to both imprecise and even time inefficient analyses, since
imprecise abstractions might lead to lengthy imprecise least fixed point compu-
tations. Another approach is based on call strings abstractions [SP81]: the results
of different calls to the same function are joined when the abstraction of the call
stack (without considering environments, just the string of functions called) is
the same. Among the classic abstractions of the call stack is the k-limiting ab-
straction, that considers equal all patterns of calls to functions that have their
last k names of functions called, in order, equal. A way to improve on this is
to use summary-based analyses. One creates an abstract value for each proce-
dure, that summarizes its abstract transfer function, and which is instantiated
for each call site. Most approaches use tabulation-based procedure summaries,
see [SP81, CC77, RHS95, SRH96]. These tabulation-based approaches may be
time and memory consuming while not always precise.

We develop here a context sensitive, summary-based approach, that corre-
sponds to a symbolic relational separate analysis in the sense of [CC02], which
is a relational function-abstraction in the sense of [JGR05]. The main origi-
nality of our work lies in the fact that we use a particular zonotopic domain
[GP06, GP09], which abstracts functions (somewhat similarly, but in a much

Modular Static Analysis with Zonotopes 27

more efficient way, than the classic augmentation process with the polyhedric
abstract domain [CC02]), and can thus be naturally instantiated. We will also
briefly elaborate on improvements of our method, using a dynamic partitioning
approach, as introduced in [Bou92]: one uses several summaries for a function,
controlling their number by joining the closest (in a semantic sense) ones.

As already mentioned, the subject of modular analyses is huge, we mention
here the closest work to ours. Some linear invariants are also found in a modular
way in [MOS04]. Procedure summaries are inferred, but this time by using a
backward analysis, in [GT07]. In the realm of pointer and shape analysis, which is
orthogonal to our work, numerous techniques have been tried and implemented.
See for instance [RC11, YYC08] for alias analysis, to mention but a few recent
ones. Some complementary approaches can be found for instance in [Log07] for
object-oriented features, and in [QR04] for dealing with concurrent programs.

Contents. We first state some of the basics of our zonotopic (or affine sets)
functional abstract domain in Section 2. We describe in Section 3 how we create
summaries, which associate to a given input context I, encoded as a zonotope,
a zonotope O abstracting the input/output relationship, valid for all inputs that
are included in I. We demonstrate how the input-output relationship abstracted
in our zonotopic domain makes it very convenient to retrieve precise information
on smaller contexts, through an instantiation process of the summary. We end
up by presenting benchmarks in Section 5.

2 Functional Abstraction with Zonotopes

In this section, we quickly describe the abstract domain based on affine sets
which is the basis for our modular analysis. Affine sets define an abstract do-
main for static analysis of numerical programs, based on affine arithmetic. The
geometric concretization of an abstract value of affine sets is a zonotope, but
the order we define on affine sets is stronger than the inclusion of the geomet-
ric concretization: it is equivalent to the inclusion of the zonotopes describing
the abstract value and the inputs of the program. We thus get an input/output
abstraction, which is naturally well suited for modular abstraction. The intersec-
tion, and thus the interpretation of tests, is a problematic operation: we partially
by-pass this difficulty by enhancing our affine sets with constraints on the noise
symbols [GGP10] used to define the affine sets. For a lighter presentation, the
modular analysis will be presented here on affine sets without these constraints,
but it can of course be used in the same manner with constrained affine sets.

2.1 Basics: Affine Sets and Zonotopes

Affine arithmetic is an extension of interval arithmetic on affine forms, first in-
troduced in [CS93], that takes into account affine correlations between variables.
An affine form is a formal sum over a set of noise symbols εi

x̂
def
= αx

0 +

n∑
i=1

αx
i εi, (1)

28 E. Goubault, S. Putot, and F. Védrine

with αx
i ∈ R for all i. Each noise symbol εi stands for an independent component

of the total uncertainty on the quantity x̂, its value is unknown but bounded
in [-1,1]; the corresponding coefficient αx

i is a known real value, which gives the
magnitude of that component. The same noise symbol can be shared by several
quantities, indicating correlations among them.

The semantics of affine operations is straightforward, they are exact in affine
arithmetic. Non-affine operations are linearized, and new noise symbols are in-
troduced to handle the approximation term. In our analysis, we indicate these
new noise symbols as ηj noise symbols, thus introducing two kinds of symbols
in affine forms of Equation 1: the εi noise symbols model uncertainty in data or
parameters, while the ηj noise symbols model uncertainty coming from the anal-
ysis. For instance, the multiplication of two affine forms, defined, for simplicity
of presentation, on εi only, writes

x̂ŷ = αx
0α

y
0 +

n∑
i=1

(αx
i α

y
0 + αy

i α
x
0) εi +

⎛⎝ n∑
i=1

|αx
i α

y
i |+

n∑
i<j

|αx
i α

y
j + αx

jα
y
i |

⎞⎠ η1.

More generally, non-affine operations are abstracted by an approximate affine
form obtained for instance by a first-order Taylor expansion, plus an approx-
imation term attached to a new noise symbol. Affine operations have linear
complexity in the number of noise symbols, whereas non-affine operations can
be defined with quadratic cost.

Example 1. Let us demonstrate the abstraction on the following program:
a = [-2,0]; b = [1,3]; x = a + b; y = -a; z = x * y;

The assignments of a and b create new noise symbols ε1, ε2: â = −1 + ε1,
b̂ = 2+ε2. Affine expressions are handled exactly, we get x̂ = 1+ε1+ε2, ŷ = 1−ε1.
The multiplication produces a new η1 symbol, we get ẑ = 0.5 + ε2 + 1.5η1. The
range of z given by ẑ is [−2, 3] while the exact range is [−2, 2.25].

In what follows, we introduce matrix notations to handle tuples of affine forms.
We note M(n, p) the space of matrices with n lines and p columns of real co-
efficients. A tuple of affine forms expressing the set of values taken by p vari-
ables over n noise symbols εi, 1 ≤ i ≤ n, can be represented by a matrix
A ∈ M(n+ 1, p). Let tA denote the transpose of matrix A. We define the zono-
topic concretization of such tuples by :

Definition 1. Let a tuple of affine forms with p variables over n noise symbols,
defined by a matrix A ∈ M(n+ 1, p). Its concretization is the zonotope

γ(A) =

{
tA

(
1
ε

)
| ε ∈ [−1, 1]n

}
⊆ Rp .

Modular Static Analysis with Zonotopes 29

x

y

10 15 20 25 30
5

10

15 For instance, for n = 4 and p = 2,
the gray zonotope is the con-
cretization of the affine set (x̂, ŷ),
with x̂ = 20 − 4ε1 + 2ε3 + 3ε4,
ŷ = 10 − 2ε1 + ε2 − ε4, and

tA =

(
20 −4 0 2 3
10 −2 1 0 −1

)
.

Now, we saw in the Definition of non-linear arithmetic operations, that our affine
forms are defined over two kind of noise symbols, the εi and ηj . We thus define
affine sets as Minkowski sums of a central zonotope, γ(CX) and of a perturba-
tion zonotope centered on 0, γ(PX). Central zonotopes depend on central noise
symbols εi, that represent the uncertainty on input values to the program, with
which we want to keep as many relations as possible. Perturbation zonotopes
depend on perturbation symbols ηj which are created along the interpretation
of the program and represent the uncertainty of values due to operations that
are not interpreted exactly: for instance the control-flow abstraction while com-
puting the join of two abstract values, or non-affine arithmetic operations.

Definition 2. We define an affine set by the pair of matrices
X = (CX , PX) ∈M(n+ 1, p)×M(m, p).
The affine form Xk = cX0k +

∑n
i=1 c

X
ikεi +

∑m
j=1 p

X
jkηj describes its kth variable.

2.2 Geometric and Functional Orders

Definition 3. Let X = (CX , PX) be an affine set in M(n + 1, p) ×M(m, p).
Its concretization in P(Rp) is

γ(X) =

{
tCX

(
1
ε

)
+ tPXη | (ε, η) ∈ [−1, 1]n+m

}
.

If we were only interested in abstractions of current values of variables, the
partial order to consider would be the subset inclusion of their concretization,
as formalized in Definition 3. But we are interested in abstracting input/output
relations, this will be instrumental in our modular analysis.

Let X be a set of functions of the form x : Rq → Rp. We write x1, . . . , xp its p
components. Our goal is to abstract the input/output relationship of functions in
X using an affine setX , i.e. to automatically determine an over-approximationX
of the set of values that e1, . . . , eq, x1, . . . , xp can take, conjointly, where e1, . . . , eq
are slack variables representing the initial values of the q input variables of
functions x ∈ X : to one particular run of the program, corresponds exactly one
fixed tuple of values e1, . . . , eq. This fits in the relational function-abstraction of

[JGR05]. Let γ(X̃) be such an augmented zonotope, X̃ ∈M(r, p+ q), where the
set of symbols is decomposed in r = n+m symbols ε1, . . . , εn, the central noise
symbols, and η1, . . . , ηm, the perturbation symbols, as introduced in Definition
2. From now on, we will consider the augmented affine set X̃ :

30 E. Goubault, S. Putot, and F. Védrine

X̃ =

(
E CX

0 PX

)
(2)

where E ∈ M(n + 1, q) is the affine set describing the inputs to the functions
in X . The concretization γf of such augmented affine sets in terms of sets of
functions from Rq to Rp is as follows:

γf (X̃) =

⎧⎨⎩f : Rq → Rp |
∀ε ∈ [−1, 1]n, ∃η ∈ [−1, 1]m,

f(tE

(
1
ε

)
) = tCX

(
1
ε

)
+ tPXη

⎫⎬⎭
The (partial) order relation on augmented affine sets X̃, Ỹ , is given by: X̃ ≤f Ỹ

if γf (X̃) ⊆ γf (Ỹ), which in turn is equivalent to γ(X̃) ⊆ γ(Ỹ), hence correctness
of our functional abstraction is given naturally as for any concretization-based
abstract interpretation [CC92]: X̃ is a correct abstraction of a set X of functions
if X ⊆ γf (X̃). Then, similarly for the interpretation of an abstraction F of a

function F on augmented affine sets: ∀X ∈ Rn+p, F(X) ⊆ γ(F (X̃)).
Now, the order relation on augmented affine sets can be reformulated in terms

of the current parameterization of abstract values for variables x1, . . . , xp, with-
out having to consider the extra n variables e1, . . . , en: let X and Y be two affine
sets. We say that X ≤ Y iff for all t ∈ Rp,

‖(CY − CX)t‖1 ≤ ‖P Y t‖1 − ‖PXt‖1 . (3)

This functional (pre-)order ≤ always implies ≤f , and is equivalent in most in-
teresting situations, for instance when matrix E of equation 2, without its first
line, is invertible: this covers in particular the case when the inputs are given in
intervals and have unknown dependency. We do not prove this property here as
this is not central to the rest of the paper, some hints about it can be found in
[GP09].

Example 2. Take X : (X1 = ε1, X2 = ε2) and Y : (Y1 = ε2, Y2 = ε1). We have
γ(X) = γ(Y) = [−1, 1]2. But X and Y are incomparable for the functional
ordering of Equation 3. Indeed, X and Y represent two very different functions
from the inputs (ε1, ε2) to the values of the variables (x1, x2).

2.3 Join Operation

In general, there exists no least upper bound for affine sets. We define a join
operator over affine sets which gives a minimal upper bound in some cases, can
always be computed efficiently, and presents some nice properties: for instance,
the range of the joined value on each variable is equal to the union of the interval
ranges on the variable. We refer the reader to [GP09] for details.

Let us first introduce some notations. For two real numbers α and β, let α∧β
denote their minimum and α ∨ β their maximum. We define

argmin|.|(α, β) = γ such that γ ∈ [α ∧ β, α ∨ β] and |γ| is minimal

Modular Static Analysis with Zonotopes 31

Let x and y be two intervals. We say that x and y are in generic positions if,
whenever x ⊆ y, inf x = inf y or supx = supy. And for an interval x, we note
mid(x) its center.

Definition 4. Let two affine sets X and Y where (CX , PX) and (CY , PY) are
in M(n + 1, p) ×M(m, p), we define Z = X � Y such that for all k, l ∈ [1, p],
i ∈ [1, n], j ∈ [1,m]:

If γ(Xk) and γ(Yk) are in generic position:

cZ0,k = mid (γ(Xk) ∪ γ(Yk))

cZi,k = argmin|.|(c
X
i,k, c

Y
i,k), p

Z
j,k = argmin|.|(p

X
j,k, p

Y
j,k)

pZm+k,k = sup(γ(Xk) ∪ γ(Yk))− cZ0,k −

⎛⎝ n∑
i=1

| cZi,k | +
m∑
j=1

| pZj,k |

⎞⎠

Else: cZ0,k =
cX0,k + cY0,k

2
, cZi,k =

cXi,k + cYi,k
2

, pZj,k =
pXj,k + pYj,k

2

pZ
m+k,k =

1

2

n∑
i=0

∣∣cYi,k − cXi,k
∣∣+ 1

2

m∑
j=1

∣∣pYj,k − pXj,k
∣∣

And in both cases: pZm+l,k = 0 for l 	= k

Intuitively, by using the argmin operator, this join operator keeps the depen-
dencies to the inputs that are common to both form joined.

We then have the following result (whose second item is proved in [GP09]):

Lemma 1. Z = X � Y is an upper bound of X and Y such that:

– for all k ∈ [1, p], Zk is a minimal upper bound of Xk and Yk

– if Xk and Yk are in generic positions, then k ∈ [1, p], γ(Zk) = γ(Xk)∪γ(Yk)
where ∪ is here the union in the lattice of intervals.

Example 3. Take X : (X1 = 1 + ε1, X2 = ε1) and Y : (Y1 = 2ε1, Y2 = ε1). We
have γ(X1) = [0, 2], γ(Y1) = [−2, 2], so that X1 and Y1 are in generic positions.
Then Z = X ∪ Y : (Z1 = ε1 + η1, Z2 = ε1) is a minimal upper bound of X , Y .

3 Affine Sets Summary and Specialization

We will now define function summaries as pairs (I, O) of input and output zono-
topes, I and O being defined as introduced in Section 2. These zonotopes I and
O are parametrized by the same central noise symbols ε1, . . . , εn representing
the inputs of the program, and thus each represent a function of these inputs.
But the pair also represents functions from γ(I) to γ(O), and we will introduce
a new functional concretization γf (I, O) that extends the γf of Section 2.

32 E. Goubault, S. Putot, and F. Védrine

Pairs (I, O) abstract sets of functions from γ(I) to γ(O), deduced from I andO
seen as sets of functions of the inputs of the program (the noise symbols εi), and
of uncertainties introduced by the analysis (the noise symbols ηj). Indeed, as O
represents some computation on entries I, O contains the perturbation symbols
of I: say η1, . . . , ηm1 for I, ηm1+1, . . . , ηm for the symbols only appearing in O.
More formally, the concretization of a pair (I, O) of input and output zonotopes,
in terms of functions F from γ(I) to γ(O), is as follows:

γf (I, O) =

⎧⎨⎩
F : γ(I)→ γ(O) | ∀ε1, . . . , εn, η1, . . . , ηm1

∃ηm1+1, . . . , ηm with (ε, η) ∈ [−1, 1]n+m

and F (tIt(1, ε, η1, . . . , ηm1)) =
tOt(1, ε, η)

⎫⎬⎭
As outputs are defined over these same noise symbols, the summaries can be
instantiated to a given calling context, by substituting some of these perturbation
noise symbols by their expression for the particular calling context.

Consider a current calling context C, and a current function summary Sf =
(I, O) for f , the interpretation of the function call f(C) in our inter-procedural
analysis is given in Algorithm 1. Its different steps are detailed in the sections
that follow.

Algorithm 1. Interpretation of function call f(C), given calling context C, and
function summary Sf = (I, O)

if !(C ≤ I) // test if calling context C matches summary input I then
I ← I � C // join calling context and summary input (Definition 4)
Sf ← (I, [[f]](I)) // new summary creation (Section 3.2)

end if
return [[I == C]]O // summary instantiation (Section 3.3)

3.1 Program Syntax and Semantics

Programs Prog we are considering in what follows are sets of functions f ∈ Prog,
acting on an environment made up of variables Vf local to function f , and global
variables G. We suppose that the Vf , f ∈ Prog, and G, form a partition of the set
of program variables V . There is a unique data type: the real numbers. Function
definitions are as follows:

funct = function f(v1, . . . , vp) {
instr; return r } v1, . . . , vp ∈ Vf , r ∈ Vf

Function calls f(expr1, . . . , exprp), where expr1 to exprp are p expressions, have
the call by value semantics: their evaluation correspond to computing the value
of each expression expr1 to exprp in that order, and assigning each local vari-
able vi with the corresponding value of expri (i = 1, . . . , p) in the environment
of the call. The body of the functions is standard, it is made of a classic set of in-
structions instr for imperative languages: assignment of expressions to variables,
tests, loops. The return at the end of the definition of f just returns the value

Modular Static Analysis with Zonotopes 33

of one of the local variables, r, of f , to the caller. We consider global variables as
part of the calling context and output of functions. A function f is thus defined
from Rp to Rq, for some q ≤ card(G) + 1.

We suppose given a set of control points attached to instructions of our lan-
guage, including (callif) just before executing the ith call to f : f(expr, . . . , expr)

in an expression, and (returni
f), right after the ith call to function f has returned

the flow of execution to the calling expression.
The concrete collecting semantics is given in terms of concrete environments

e ∈ Env = V → R, and a semantics function, partitioned over the control points
d ∈ D, [[instr]]c : Env → Env, such that [[E]]dce (E ∈ instr, e ∈ Env) gives
the change of concrete environment when interpreting instruction E in context
e, at control point d. The concrete collecting semantics [[P]]ce, partitioned over
d ∈ D as [[P]]dce, of a program P , is obtained as the least solution in ℘(Env)
(with subset ordering), over some set of initial environments e ∈ ℘(Env), of the
semantic equations given by [[E]]dc lifted from Env to ℘(Env), at each control
point of P .

For the abstract collecting semantics, we use the abstract domain of affine
sets Z for all instructions, except for calls to functions. In order to define a
modular static analysis, we suppose now abstract environments in Enva are
made of bindings of variables to affine sets, as well as bindings of function names
to summaries, i.e. pairs of affine sets: Enva = Z × (Prog → Z ×Z). We call
[[instr]]da : Enva → Enva the corresponding semantics functions (forward ab-
stract transformers). The correctness of the abstract semantics with respect to
the concrete one is formalized as follows. For all initial possible sets of environ-
ments e ∈ ℘(Env), we form e� = (e�V ,⊥) where e�V is any abstract environment

in Z, dealing only with program variables, such that e ∈ γ(e�V), and ⊥ in the
second component of e� means that for all functions f of Prog, we start in an
environment where we do not have any summary of f , then we must have, for
all control points d ∈ D:

[[P]]dce ⊆ γ
(
π1([[P]]dae

�)
)

(4)

where π1 : Enva → Z is the projection on the first component of environments.

3.2 Summary Creation

The operations involved, order≤ and join, have already been described in Section
2. Let us just here consider Example 1. Function compute is called with x ∈
[−1, 1], which can be abstracted by x = ε1. The first call to function mult is
then interpreted in Algorithm 1 as a new summary creation, since the current
summary for mult is ⊥. We thus interpret mult with arguments a1 = 1 + ε1
and b1 = ε1. Multiplication a1 × (b1 − 2) in the abstract domain of affine sets
produces a1× (b1− 2) = −1.5− ε1 +0.5η1, where η1 is a new noise symbol with
values in [−1, 1]. The abstract environment at the end of this first call to mult

contains the entry, for mult (I = (a1 = 1+ ε1, b1 = ε1), O = −1.5− ε1 + 0.5η1).

34 E. Goubault, S. Putot, and F. Védrine

3.3 Summary Instantiation

The instantiation of a summary for a given calling context resembles the meet
operation on constrained affine sets [GGP10]: indeed, it consists in adding con-
straints on noise symbols that correspond to component-wise equality of affine
forms. Still, it does not require the formalism of constrained affine sets as we do
not abstract constraints, they are immediately used to substitute in the summary
the noise symbols introduced by the join operation due to merging contexts, by
the affine expression of the other noise symbols.

The instantiation operator is thus a function that takes a summary (I, O), an
input affine set C such that C ≤ I and returns Z = [[I == C]]O. We form the
following matrix U , given I = (CI , P I) and C = (CC , PC) two affine sets with
(CI , P I), (CC , PC) ∈M(n+ 1, p)×M(m, p):

U =

⎛⎝pIm,1 − pCm,1 . . . pI1,1 − pC1,1 cIn,1 − cCn,1 . . . cC0,1 − cC0,1
. . .

pIm,p − pCm,p . . . pI1,p − pC1,p cIn,p − cCn,p . . . cC0,p − cC0,p

⎞⎠
Performing Gauss elimination [Bee06], on U we obtain the row-echelon form
for U : U ′ = t(U1|U2) where U1 ∈ M(n + m + 1, r) and U2 ∈ M(n + m +
1, p − r) with r = min(m, p) and U1 and U2 upper triangular. Matrix U1 en-
codes the fact that we must have, when “interpreting” I == C, relations of the
form ηk1 = R1(ηk1−1, . . . , η1, εn, . . . , ε1), ηk2 = R2(ηk2−1, . . . , η1, εn, . . . , ε1), . . .,
ηkr = Rr(ηkr−1, . . . , η1, εn, . . . , ε1), with k1 > k2 > . . . kr.

The principle of the instantiation operator defined below is, first, to interpret
the relation U t(ηm, . . . , η1, εn, . . . , ε1) = 0 as constraints on the values taken by
noise symbols, and to use the r relations R1, . . . , Rkr to eliminate the pertur-
bation symbols that have been introduced the most recently in the summary
output O of function f , ηk1 , . . . , ηkr :

Definition 5. Let I = (CI , P I), C = (CC , PC) and O = (CO, PO) be three
affine sets with (CI , P I), (CC , PC) ∈ M(n + 1, p) ×M(m, p) and (CO, PO) ∈
M(n + 1, q) ×M(m, q) (by convention, m is the total number of perturbation
noise symbols, some lines in P I , PC and PO may contain only zeros). In Z =
[[I == C]]O, the (CZ , PZ) are defined by substituting in (CO, PO) the values of
ηk1 to ηkr given by R1(ηk1−1, . . . , η1, εn, . . . , ε1) to Rkr (ηkr−1, . . . , η1, εn, . . . , ε1)
respectively, in terms of the ηj of lower indices, and of the εj.

In practice, there is actually no need to first perform the Gauss elimination on
U : constraints I == C are of such a particular form that it is enough (and this
is what is implemented and tested in this article) to substitute in (CO, PO), in
order to obtain (CZ , PZ), only the relations in U that are already in row-echelon
form.

Note that when a function contains only operations that are affine with respect
to the calling context (no join operation), the instantiation of the summary to
a particular context gives the same result as would do the direct abstraction of
the function in that context. When non-affine operations are involved, such as in
the running example, we will see that the instantiation also gives tight results.

Modular Static Analysis with Zonotopes 35

Let us consider the second call to function mult in our running example, with
a2 = ε1 and b2 = 2ε1. This calling context is not included in the previous one,
so in Algorithm 1 we need first to merge the current summary input context I
with the current call context, giving (a3, b3) = (a2, b2) � (a1, b1) = (0.5 + ε1 +
0.5η2, 1.5ε1+0.5η3) (note that we are in the non-generic case of Definition 4). The
zonotopic concretizations of the two calling contexts, and of the merged value
giving the input context of the summary, are represented on the left picture of
Figure 2 (and respectively named I1, I2 and I1 � I2).

The result of the multiplication for the merged context is then a3× (b3− 2) =
− 1

4 −
5
4ε1 − η2 +

1
4η3 +

9
4η4 ∈ [−5, 92], so we create the new summary for mult:

(I = (a3 = 0.5+ ε1+0.5η2, b3 = 1.5ε1+0.5η3), O = − 1
4 −

5
4ε1− η2+

1
4η3+

9
4η4).

This is the zonotope (parallelepiped, here), represented in plain lines on the right
picture of Figure 2.

Let us now instantiate this summary for the second call (last part of Algorithm
1), when a = ε1 = 0.5 + ε1 + 0.5η2 and b = 2ε1 = 1.5ε1 + 0.5η3: we deduce
by elimination η2 = −1 and η3 = ε1. Instantiating the summary with these
values of η2 and η3 yields a3 × (b3 − 2) = 3

4 − ε1 +
9
4η4 ∈ [− 5

2 , 4]. While direct
computation a2× (b2− 2) = 1− 2ε1 + η4 ∈ [−2, 4], which is just slightly tighter.
The instantiated and directly computed zonotopes are also represented on the
right picture of Figure 2, respectively in dotted and dashed lines.

3.4 Correctness and Complexity

The correctness of instantiation comes from the fact that, writing F|γ(C) for the
restriction of a function F : γ(I) → γ(O) ∈ γf (I, O) (remember that C ≤ I,
hence γ(C) ⊆ γ(I)), first, F (γ(C)) ⊆ γ(Z) and

{F|γ(C) : γ(C)→ γ(Z)|F ∈ γf (I, O)} ⊆ γf (C,Z) (5)

The last statement meaning that (C,Z) is a correct summary for restrictions of
functions F summarized by the more general summary (I, O).

We can conclude from this that Algorithm 1 is correct in the sense of Equation
4. This is done by showing inductively on the semantics that, for any program
P , and for any concrete environment e and abstract environment e� such as in
the premises of Equation 4,

{F |∀x ∈ [[P]]
(callig)
c e, F (x) = [[g]]

(returni
g)

c x} ⊆ γf

(
π2

(
[[P]]

(returni
g)

a e�
)
(g)

)
(6)

[[P]]
(callig)
c e ⊆ γ

(
π1

(
[[P]]

(callig)
a e�

))
(7)

In Equation 6, π2 : (Enva = Z × (Prog → Z × Z)) → (Prog → Z × Z), ex-
tracts the part of the abstract semantics which accounts for the representation
of summaries. The fact that Equation 6 is true comes from the fact that sum-
mary instantiations compute correct over-approximations of concrete functions
on the calling contexts, see Equation 5. The fact that Equation 7 is true comes

36 E. Goubault, S. Putot, and F. Védrine

from the fact that in Algorithm 1 we join the calling context with the current
summary context as soon as it is not included in it, so we safely over-approximate
all calling contexts in the abstract fixed-point.

Without the inclusion test, the complexity of Algorithm 1 and of (the simpler
version of) summary instantiation is O(q × nb noise), where q is the number of
arguments of the called function and nb noise is the number of noise symbols
involved in the affine form of the calling context. The main contribution to the
complexity comes from the (particularized) Gauss elimination in the substitu-
tion. The inclusion test is by default exponential in the number of noise symbols.
However, simpler O(q × nb noise) versions can be used as a necessary condition
for inclusion, and in many cases the full test can be avoided, see [GP09]. Also,
the use of a modular abstraction as proposed here helps to keep the number of
noise symbols quite low.

4 Summary Creation Strategies

In order to control the loss of accuracy due to summarizing, it is natural to use
several (a bounded number n of) summaries instead of a unique one. We present
here a method inspired from tabulation-based procedure summaries [SP81] and
dynamic partitioning [Bou92].

We consider a function call f(C), when k summaries (Ij , Oj), j = 1, . . . , k
exist for function f . Either C is included in one of the inputs Ij , and the call
reduces to instantiating Oj and thus returning [[Ij == C]]Oj . Or else, we dis-
tinguish two cases. If the maximal number n of pairs (Ij , Oj) is not reached, we
add a new summary (C, [[f]](C)). And if it is reached, we take the closest calling
context Ij to C (such that the cost c(C, Ij) is minimal) and replace in the table
of summaries, (Ij , Oj) by the new summary (Ij � C, [[f]](Ij � C)).

For instance, the cost function c could be chosen as follows: let (el)1≤l≤p be
the canonical basis of Rp,

c(X,Y) =

p∑
l=1

(
‖(CY − CX)el‖1− | ‖P Y el‖1 − ‖PXel‖1 |

)
.

By definition of the order relation 3, if X ≤ Y or Y ≤ X then c(X,Y) ≤ 0. This
function, which defines a heuristic to create or not new summaries, expresses a
cost function on the component-wise concretizations of the affine sets X and Y .
And it can be computed more efficiently (in O(p(n +m)) operations, where p is
the number of variables and n+m the number of noise symbols) than if we used
a stronger condition linked to the order on the concretizations of these affine sets.

5 Examples

We have implemented the zonotopic summarizing in a small analyzer of C pro-
grams. The part dedicated to zonotopes and summarizing represents about 7000
lines of C++ code. We present experiments showing the good behavior in time

Modular Static Analysis with Zonotopes 37

and accuracy of summaries, then some results on realistic examples. The exam-
ples are available on http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/
benchs.html.

5.1 Performance of the Modular Analysis

To evaluate the performance of the summarizing process, we slightly transform
the running example of Figure 1, so that mult is called with different calling
contexts (Figure 3 below). We analyze it with different numbers n of noise sym-
bols for input x. Note that even though the interval abstraction for x is always
[−1, 1], the relational information between the arguments of mult evolves.

We now compare the summary-based modular analysis to the classic zonotopic
iterations when n evolves (see Figure 3). We see the much better performance of
the modular analysis when the instantiation succeeds: it is linear in the number
n of noise symbols, whereas the non-modular one is quadratic, because of the
multiplication. This is of course a toy example, where increasing the number
of noise symbols brings no additional information. But in the analysis of large
programs, which is the context where modularity makes the more sense, we will
often encounter this kind of situation, with possibly many noise symbols if we
want a fine abstraction of correlations and functional behavior (sensitivity to in-
puts and parameters). This complexity gain is thus crucial. Note that the results
for the modular analysis are still very accurate: we obtain, for y1, [−6.5, 2.5], to
be compared to [−3, 0] with the non-modular analysis, and for y2, [−4, 4], to be
compared to [−2, 4].

int N = 100, i;

int main(...)

{ double x ∈ [−1, 1];
double y1, y2;

for (i=0; i<N; i++)

{ y1 = mult(x+1,x);

y2 = mult(x, 2*x);

x /= 2;

}
}

Fig. 3. Number of operations in the analysis, function of the number of symbols

5.2 Application of Summarizing on Benchmarks

We consider the following set of simple benchmarks: img filter is a simple filter
that performs edge detection on a small image composed of 20 pixels. The algo-
rithm uses iterative filtering that calls a blur filter followed by 6 calls to a Sobel
filter. The application thus filters 40 different descriptions of the initial pixels.

http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/benchs.html
http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/benchs.html

38 E. Goubault, S. Putot, and F. Védrine

sincos computes an approximation of the sin and the cos functions with differ-
ent order 5 polynomials, depending on the range of the inputs. The application
makes 64 different calls to the function computing the results. At the end of each
call, we formally verify that sin2 +cos2−1 remains in small ranges.

order2 filter is a linear filter of order two: S = a∗E+b∗E0+c∗E1+d∗S0+e∗S1.
The formal parameters of the function are a close to 0.7, b close to −1.3, c close
to 1.1, d close to 1.4 and e close to −0.7; inputs E are independent, within
[−1, 1]. Close to means that the value of these coefficients is only known to be
in a range of width 2% of their value. The filter is called 8 times.

The results are shown in Table 1. Even on a rather small number of function
calls, we have a significant time gain (at least 5 times as fast as the non-modular
analysis) without losing too much precision (worst case being around 2).

Table 1. Comparison of modular and non-modular analyses

example img filter sincos filter

Characteristics #lines of C/#vars 194/135 208/135 96/19

Non-modular analysis time (s) 11.8 3.84 49
average interval [0.056, 0.067] [−0.026, 0.026] [−1.24, 2.99]

Modular analysis time(s) 1.7 0.79 10
instantiations 18/20 63/65 6/8
average interval [0.056, 0.067] [−0.058, 0.058] [−1.58, 3.33]

Comparison time gain 6.9 4.9 4.9
precision loss 1 2.23 1.27

Our aim is of course to apply this modular analysis to real industrial control
software for numerical validation. The applications we target are large reactive
systems. Most of the source code for these applications is generated automat-
ically from high-level synchronous data-flow specifications written in SCADE
or SIMULINK. These languages allow programming the control software in a
highly hierarchical way, with many calls to different levels of blocks. The struc-
ture of the C source generated in such a way is one main function that calls
many numerical blocks, generally iterating on a large number of cycles.

We report here on a partially manual, partially automated simulation of our
method to a real industrial test case, part of a control command software used
in the aeronautics industry. This program is about 37500 lines of C, consisting
of an infinite loop. The core of the loop first updates the inputs with the sensors’
data and then calls a function composed of eight different blocks. We unroll this
loop 6 times here, after which the ranges are stable. The program has about 20
input variables, more than 500 sensor variables, more than 10000 constant and
local variables, and about 30 output variables. The automated part was done
on an interactive version of FLUCTUAT [DGP+09], but we manually simulated
the instantiation and call mechanisms. We did not use our standalone prototype
here since the code contained features (in particular arrays), that are not treated
in the prototype we specifically developed for this article.

Modular Static Analysis with Zonotopes 39

A summary is built for the whole function in the loop, and it is reused or
updated if necessary by the next iterations. The input summary has 70 vari-
ables, the output summary has 90. The analysis takes about 10 minutes for each
cycle / function call on a standard Linux desktop. The summary applications
is immediate (less than 1 second), and only one summary creation is needed
here. For the 6 iterations, the analysis takes 60 minutes without summaries, and
10 minutes with summaries. The time gain may be less impressive than on the
smaller examples, but it depends on the structure of the program, and this one
is not especially modular. Also, if more loop iterations were needed (thus more
function calls), the gain would of course have been higher. The final results are
similar with and without summaries; only some partial results are less precise
with summaries, but the loss of accuracy is always within 20%.

6 Conclusion and Future Work

We showed in this paper that zonotopic abstractions are particularly well suited
as a basis for modular static analysis, by the fact that they form a natural
parameterization of input-output relationships between program variables. The
algorithm we presented and tested is both simple and efficient. Future work
includes the proper testing and improvement of the dynamic partitioning exten-
sion to our algorithm (Section 4) and the combination of this numerical modular
abstract interpretation together with modular alias analyses. One possibility is
to use recent work on shape analysis [RC11], that eases such combinations.

Acknowledgement. This work was funded by CEA Carnot program and ANR
projects ASOPT and DEFIS (grants ANR 2008 SEGI 023 02 and ANR 2011 INS
008 05).

References

[Bee06] Beezer, R.: A First Course in Linear Algebra (2006),
http://linear.ups.edu/online.html

[Bou92] Bourdoncle, F.: Abstract interpretation by dynamic partitioning. J. Funct.
Program. 2(4), 407–423 (1992)

[CC77] Cousot, P., Cousot, R.: Static determination of dynamic properties of re-
cursive procedures. In: Formal Description of Programming Concepts, pp.
237–277. North-Holland (1977)

[CC92] Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of
Logic and Computation 2(4), 511–547 (1992)

[CC02] Cousot, P., Cousot, R.: Modular Static Program Analysis. In: Horspool,
R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg
(2002)

[CH78] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among
variables of a program. In: POPL 1978, pp. 84–96. ACM (1978)

[CS93] Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer
graphics. In: SIBGRAPI 1993 (1993)

http://linear.ups.edu/online.html

40 E. Goubault, S. Putot, and F. Védrine

[DGP+09] Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.:
Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Soft-
ware. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS,
vol. 5825, pp. 53–69. Springer, Heidelberg (2009)

[GGP09] Ghorbal, K., Goubault, E., Putot, S.: The Zonotope Abstract Domain Tay-
lor1+. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
627–633. Springer, Heidelberg (2009)

[GGP10] Ghorbal, K., Goubault, E., Putot, S.: A Logical Product Approach to Zono-
tope Intersection. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 212–226. Springer, Heidelberg (2010)

[GP06] Goubault, É., Putot, S.: Static Analysis of Numerical Algorithms. In: Yi,
K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

[GP09] Goubault, E., Putot, S.: A zonotopic framework for functional abstractions.
CoRR, abs/0910.1763 (2009)

[GP11] Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations.
In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–
247. Springer, Heidelberg (2011)

[GT07] Gulwani, S., Tiwari, A.: Computing Procedure Summaries for Interproce-
dural Analysis. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
253–267. Springer, Heidelberg (2007)

[JGR05] Jeannet, B., Gopan, D., Reps, T.: A relational abstraction for functions. In:
Int. Workshop on Numerical and Symbolic Abstract Domains (2005)

[Log07] Logozzo, F.: Cibai: An Abstract Interpretation-Based Static Analyzer for
Modular Analysis and Verification of Java Classes. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 283–298. Springer, Heidelberg
(2007)

[Min01] Miné, A.: A New Numerical Abstract Domain Based on Difference-Bound
Matrices. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053,
pp. 155–172. Springer, Heidelberg (2001)

[MOS04] Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear
algebra. In: POPL 2004, pp. 330–341. ACM (2004)

[QR04] Qadeer, S., Rajamani, S.K.: Summarizing procedures in concurrent pro-
grams. In: POPL 2004, pp. 245–255. ACM Press (2004)

[RC11] Rival, X., Chang, B.-Y.E.: Calling context abstraction with shapes. In:
POPL, pp. 173–186. ACM Press (2011)

[RHS95] Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis
via graph reachability. In: POPL 1995, pp. 49–61. ACM (1995)

[SP81] Sharir, M., Pnueli, A.: Two approaches to interprocedural data-flow analy-
sis. In: Program Flow Analysis: Theory and Applications (1981)

[SRH96] Sagiv, S., Reps, T.W., Horwitz, S.: Precise interprocedural dataflow analysis
with applications to constant propagation. TCS 167, 131–170 (1996)

[SSM05] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable Analysis of Linear
Systems Using Mathematical Programming. In: Cousot, R. (ed.) VMCAI
2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

[YYC08] Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure
summaries. In: POPL 2008, pp. 221–234. ACM (2008)

Polyhedral Analysis

Using Parametric Objectives

Jacob M. Howe1 and Andy King2

1 School of Informatics, City University London, EC1V 0HB, UK
2 School of Computing, University of Kent, CT2 7NF, UK

Abstract. The abstract domain of polyhedra lies at the heart of many
program analysis techniques. However, its operations can be expensive,
precluding their application to polyhedra that involve many variables.
This paper describes a new approach to computing polyhedral domain
operations. The core of this approach is an algorithm to calculate variable
elimination (projection) based on parametric linear programming. The
algorithm enumerates only non-redundant inequalities of the projection
space, hence permits anytime approximation of the output.

1 Introduction

Polyhedra [10] form the basis of a wide range of tools for static analysis and
model checking. Their attraction is the expressivity of linear inequalities which
capture not only the range of values that a variable can assume, but also de-
pendencies between them. The drawback of polyhedra is the cost of the domain
operations – this has motivated much recent work investigating the tradeoff of
expressivity for efficiency. This paper introduces a new approach to polyhedral
domain operations that sidesteps many of the problems associated with current
approaches. At the heart of the work is a new approach to variable elimination
(projection, or existential quantifier elimination).

Many polyhedral libraries are based on the double description method (DDM)
[3,5,6,24,28,35]. DDM maintains two representations: the constraint representa-
tion in which the polyhedron is described as the solutions of a system of linear
inequalities, and the frame representation in which the polyhedron is generated
from a finite set of points, rays and lines. The method has proved popular since
the constraint representation is convenient when computing the meet of two
polyhedra (intersection) and the frame representation is convenient when com-
puting join (the frame representation of the join of two polyhedra is merely the
union of their frame representations). The maintenance of the two representa-
tions requires an algorithm to convert between the two, and this is the core of
the method. The drawback of working with a double description is that main-
tenance algorithms are expensive. For example, to apply join to two polyhedra
in constraint representation they both have to be converted to the frame rep-
resentation, a potentially exponential operation [21]. The dominating cost of
maintaining the double description can be avoided by working solely with con-
straints and reformulating join in terms of variable elimination [32]. Variable
elimination can be performed with Fourier-Motzkin elimination [27], but the

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 41–57, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

42 J.M. Howe and A. King

technique needs to be applied together with techniques for avoiding the gener-
ation of redundant inequalities [12,17,22] or methods for removing them after
generation [23]. Even then, Fourier-Motzkin shares the problem with DDM that
an intermediate result can be exponentially larger than the input, in addition
to the problem of generation of redundant constraints that cannot always be
removed until variable elimination is completed.

The algorithms deployed for manipulating unrestricted polyhedra [3,24,35]
have barely changed since the inception of polyhedral analysis over 30 years ago
[10]. This paper presents a radically different approach to the computation of
projection and hence convex hull which can be reduced to projection [32]. The
approach is based on the constraint representation, admits anytime approxima-
tion and invites parallelisation. The approach has two key steps. The first step
describes the projection of the input constraint system as a bounded polyhedron
(polytope) in a dual space. The vertices in this dual description of the projection
correspond to non-redundant inequalities in the constraint representation of the
projection. The second step is to enumerate these vertices. This is achieved by
using parametric linear programming (PLP). The formulation of projection as
PLP implementing vertex enumeration of a dual description of the projection
space is not obvious, therefore this paper makes the following contributions:

– Lemma 3.2 of [19] builds on the projection lemma [36] to explain how projec-
tion can be reformulated as a vertex enumeration problem. Alas, this lemma
is not correct to the level of generality that is required and the starting point
of this paper is a reworking of this result.

– In a somewhat different way to [19] it is shown how PLP can be used to
enumerate the vertices of a polytope. When this polytope is a description of
the projection space, the output corresponds to irredundant inequalities of
the constraint description of the projection.

– Together this gives an algorithm that projects arbitrary (possibly unbounded)
polyhedra onto lower dimensions. (This fundamental algorithm may well find
application outside static analysis, for example in control theory [19,29].)

– It is shown that this formulation enables inequalities in the projection space
to be enumerated one-by-one, without requiring any post-processing to re-
move redundant inequalities. A consequence of this is that projection is
naturally anytime – it can be stopped prematurely to yield a safe over-
approximation of the projection. This compares favourably with DDM which
is monolithic in the sense that the inequalities need to be completely con-
verted to a frame, and then the projected frame is completely converted to
the constraints representation before a single inequality in the projection
space is found. The force of the anytime property is that if the projection
is found to be excessively large, then the projection need only be computed
up to that point and no further whilst still yielding a useful result.

Given the novelty of the contributions to theory (and the length of their ex-
position) a description of the implementation is postponed to a later paper; to
the best of the authors’ knowledge the implementions techniques are themselves
novel and require space in their own right.

Polyhedral Analysis Using Parametric Objectives 43

2 Background

2.1 Matrices and Vectors

Let a = 〈a1, . . . , an〉 ∈ Rn denote a column vector which is an n× 1 matrix. If
a = 〈a1, . . . , an〉 then a :: a = 〈a, a1, . . . , an〉. The dot product of two column
vectors a, b ∈ Rn is defined a · b = aTb where AT denotes transpose of a
matrix A. For any matrix A, (A)j refers to the jth column of A and (A)J
refers to the submatrix of columns indexed by J . Likewise (A)j refers to the jth
row and (A)J refers to the submatrix of rows indexed by J . Similar notations
are used for vectors, though bracketing is omitted when the column and row
operator is clear. If A = {a1, . . . , an} ⊆ R and a1 < a2 < . . . < an then
(A)i = (a)i where a = 〈a1, . . . , an〉. The lexicographical ordering relation on
vectors is defined by 〈〉 � 〈〉 and (a :: a) � (b :: b) iff a ≤ b or (a = b and
a � b). If A = {a1, . . . ,am} ⊆ Rn then min(A) = ai such that ai � aj for all
1 ≤ j ≤ m. A vector (row) is lex-positive iff its first non-zero element is positive.

2.2 Basic and Non-basic Variables

The simplex algorithm [7,34] is formulated in terms of pivoting operations on
bases. To introduce simplex consider maximising the cost function c · λ, where
c = 〈1, 1,−3,−3,−1,−1, 0〉, subject to the constraints Aλ = b where λ ≥ 0 and

A =

[
1 −1 1 −1 2 −2 0
2 2 2 2 8 8 2

]
b =

[
0
1

]
Let B = {1, 6} and N = {1, . . . , 7} \ B so that λB = 〈λ1, λ6〉 and λN =
〈λ2, . . . , λ5, λ7〉 and moreover

AB =

[
1 −2
2 8

]
AN =

[
−1 1 −1 2 0
2 2 2 8 2

]
Then Aλ = b can be expressed as ABλB+ANλN = b hence ABλB = b−ANλN .
Since the square matrix AB is nonsingular this is equivalent to

λB = A−1
B b−A−1

B ANλN (1)

This suggests putting λN = 0 to give

λB = A−1
B b =

1

12

[
8 2
−2 1

] [
0
1

]
=

1

12

[
2
1

]
Since λB ≥ 0 the point λ = 〈16 , 0, 0, 0, 0,

1
12 , 0〉 satisfies both the equality con-

straints Aλ = b and inequalities λ ≥ 0, five of which are saturated by λ.
Geometrically, λ is a vertex of the polyhedron {λ ≥ 0 | Aλ = b} and for this
point c · λ = 1

12 . In fact a vertex is defined by any B for which AB is invertible
(though a vertex may be defined by different B). In this classical set up, B is
called the basis, N the co-basis and λB and λN are, respectively, the basic and

44 J.M. Howe and A. King

non-basic variables. Moreover, the objective function c ·λ too can be considered
to be a function of the non-basic variables λN . To see this, observe

c · λ = cB · λB + cN · λN = cB ·A−1
B b+ (cTN − cTBA

−1
B AN) · λN (2)

The equalities of (1) and the objective given in (2) constitute the dictionary.

2.3 Pivoting

In the (revised) simplex method [11], a path is found between adjacent bases
that terminates with a basis that maximises the objective. Adjacent bases differ
by one index and pivoting is used to transition from one basis to another. In each
pivoting step, the basis B is updated with B′ = (B\{i})∪{j} where i ∈ B is the
index of a basic variable that leaves B and j ∈ N is the index for a non-basic
variable that enters B. The index j ∈ N is chosen so that the corresponding
element of cTN − cTBA

−1
B AN is positive. This is achieved by solving yTAB = cTB

since then yT = cTBA
−1
B hence cTN − cTBA

−1
B AN = cTN − yTAN . To illustrate for

B = {1, 6}, so that cB = 〈1,−1〉 and cN = 〈1,−3,−3,−1, 0〉. Then

yT = cTBA
−1
B =

1

12

[
1 −1

] [8 2
−2 1

]
=

1

12

[
10 1

]
cTN − yTAN =

[
1 −3 −3 −1 0

]
− 1

12

[
10 1

] [−1 1 −1 2 0
2 2 2 8 2

]
= 1

6

[
2 −24 −22 −20 −1

]
The entering variable can only be λ2. To find a leaving variable for i = 2, let

d = A−1
B (A)2 =

1

12

[
8 2

−2 1

] [
−1
2

]
=

1

12

[
−4
4

]
Then the largest t ≥ 0 is found such that λB − td ≥ 0. This occurs when t = 1

4
and then λB−td = 〈14 , 0〉. The second element of this vector is 0 hence the second
variable of B, namely λ6, leaves the basis. This gives the new basis B = {1, 2}
for which λB = 〈14 ,

1
4 〉 and c · λ = 1

2 which has increased as desired. Repeating
the process with B = {1, 2} gives cB = 〈1, 1〉, cN = 〈−3,−3,−1,−1, 0〉 and

yT =
1

12

[
6 3
]

cTN − yTAN =
1

2

[
−8 −6 −8 −4 −1

]
Hence there is no variable to enter B and c · λ is maximal. Although revised
simplex is usually introduced with this pivoting rule, alternative rules may be
attractive in certain situations.

2.4 Avoiding Cycling with Lexicographic Pivoting

Cycling, hence non-termination, can be resolved [2] by lexicographic pivot selec-
tion [7]. This pivoting rule is defined for a subset of the bases which are called

Polyhedral Analysis Using Parametric Objectives 45

lex-positive; each vertex, including degenerate ones, has a unique lex-positive
basis. The graph of lex-positive bases is a subgraph of the basis graph yet still
covers all the vertices. In the rest of this paper the dictionary is embedded into
Aλ = b by extending it to the system C(μ :: λ) = (0 :: b) where

C =

[
1 −c
0 A

]
The rows and columns of C (and only this matrix) are indexed from 0 to preserve
the correspondance with Aλ = b. To illustrate, if B = {0, 1, 6} then

C =

⎡⎣1 −1 −1 3 3 1 1 0
0 1 −1 1 −1 2 −2 0
0 2 2 2 2 8 8 2

⎤⎦ CB =

⎡⎣1 −1 1
0 1 −2
0 2 8

⎤⎦
A basis B is said to be lex-positive if each row (L)j is lex-positive where j > 0

and L = [C−1
B (0 :: b) | C−1

B]. For example, B is lex-positive since

C−1
B =

1

12

⎡⎣12 10 1
0 8 2
0 −2 1

⎤⎦ L =
1

12

⎡⎣1 12 10 1
2 0 8 2
1 0 −2 1

⎤⎦
Lexicographic pivoting pivots whilst preserving the lex-positive basis property.

In each pivoting step, row zero r = (C−1
B C)0 is inspected to find an index j ∈ N

such that (r)j < 0. For

C−1
B C =

1

12

⎡⎣12 0 −20 48 28 40 0 2
0 12 −4 12 −4 32 0 4
0 0 4 0 4 4 12 2

⎤⎦
this would give j = 2. Then i = lexminratio(B, j) > 0 is computed which pre-
scribes which i ∈ B should be replaced with j. The lexminratio operation is
defined

lexminratio(B, j) =

{
0 if S = ∅
(B)k+1 else if (L)k/(d)k = min(S)

where d = C−1
B (C)j and S = {(L)k/(d)k | 0 < k∧0 < (d)k}. Crucially ifB is lex-

positive then so is B′ = (B \{i})∪{j}. Continuing with j = 2, d = 〈−20,−4, 4〉,
S = { 1

48 [1, 0,−2, 1]} and i = (B)2 = 6. Hence B′ = {0, 1, 2}. Observe that B′ is
lex-positive since

[C−1
B′ (0 :: b) | C−1

B′] =
1

4

⎡⎣2 4 0 2
1 0 2 1
1 0 −2 1

⎤⎦
Then

C−1
B′ C =

1

4

⎡⎣4 0 0 16 16 20 20 4
0 4 0 4 0 12 4 2
0 0 4 0 4 4 12 2

⎤⎦
and since all elements of row (C−1

B′ C)0 are positive, no new variable can enter
B′ and c · λ is maximal.

46 J.M. Howe and A. King

1: x + y + z≤ 2
2: x + y − z≤ 2
3: −3x− y + z≤−3
4: −3x− y − z≤−3
5: −x + y + 2z≤ 2
6: −x + y − 2z≤ 2

�

�

-2 -1 0 1 2 3 x

-2

-1

0

1

2

3

y

�
�
��

�
�

��

��������

��
��

�
�
�
�
�
�
��

�
�

��

�
�
�
�
�
�
�
�
��

�
� 1 + 2: x + y≤ 2

1 + 4: −2x≤−1
1 + 6: y≤ 2
3 + 2: −2x≤−1
3 + 4: −3x− y≤−3
3 + 6: −4x≤−1
5 + 2: x + 3y≤ 6
5 + 4: −7x− y≤−4
5 + 6: −x + y≤ 2

Fig. 1. (a) Inequalities (b) Projection (graphically) (c) Projection (Fourier-Motzkin)

3 Worked Example

This section centres on a worked example that illustrates the steps involved in
setting up and applying the projection algorithm. The more formal aspects of
the algorithm are detailed in the next section. The example involves eliminating
the variable z from the following system of inequalities given in Fig 1(a). The
system of inequalities is sufficiently simple for Fourier-Motzkin elimination to
be applied. The projection is obtained by combining all the inequalities with a
positive coefficient for z with those that have a negative coefficient for z. The
resulting inequalities are given in Fig 1(c), where the left hand column indicates
how the inequalities of Fig 1(a) are combined.

The system contains many redundant inequalities as is illustrated in the di-
agram given in Fig 1(b) – it can be seen that the projection is a cone that can
be described by just two inequalities, namely −3x − y ≤ −3 and x + y ≤ 2.
The challenge is to derive these constraints without generating the redundant
inequalities, a problem that is magnified when eliminating many variables.

3.1 Overview

The algorithm presented in this section proceeds in three separate steps, each of
which is detailed in its own section. Sect. 3.2 shows how to formulate the projec-
tion problem in a dual fashion so that any inequality entailed by the projection
corresponds to points in a cone. Sect. 3.3 shows how to compute a slice through
the cone yielding a polytope (a bounded polyhedra). The vertices of the poly-
tope then represent the non-redundant inequalities in the projection. Sect. 3.5
explains how to use PLP to enumerate the vertices of this polytope. By enumer-
ating each vertex exactly once, the inequalities are generated with no repetition
and no redundancy other than the enumeration of the trivial constraint 0 ≤ 1.

3.2 Describing the Output Inequalities as a Cone

To represent the inequalities in the projection as a cone, a formulation of [19]
is adapted in which a set of points of the form 〈α1, α2, β〉 is used to represent

Polyhedral Analysis Using Parametric Objectives 47

inequalities α1x + α2y ≤ β that are entailed by the system given in Fig 1(a).
The inequalities are augmented with the trivial constraint 0 ≤ 1. These points
are defined as solutions to the systems (3) and (4) below:⎡⎣α1

α2

β

⎤⎦ = ETλ ET =

⎡⎣1 1 −3 −3 −1 −1 0
1 1 −1 −1 1 1 0
2 2 −3 −3 2 2 1

⎤⎦ (3)

where λ = 〈λ1, . . . , λ7〉 ≥ 0 and

D =
[
1 −1 1 −1 2 −2 0

]
Dλ = [0] (4)

The matrix ET represents the x, y coefficients and constants of the input in-
equalities. The λ variables are interpreted as weightings that prescribe positive
linear combinations of the input inequalities that yield an entailed inequality.
The equation given in (4) stipulates that the sum of the z coefficients is zero, in
other words z is eliminated.

Let Λ = {λ ∈ R7 | Dλ = 0 ∧ λ ≥ 0} and ETΛ = {ETλ | λ ∈ Λ}. Observe
that if 〈α1, α2, β〉 ∈ ETΛ, that is, the point 〈α1, α2, β〉 satisfies (3) and (4), then
μ〈α1, α2, β〉 ∈ ETΛ for any μ ≥ 0 hence ETΛ constitutes a cone. Importantly
the final column of ET permits the constant β of an inequality to be relaxed: if
α1x+ α2y ≤ β is entailed and β ≤ β′, then α1x+ α2y ≤ β′ is also entailed.

3.3 Slicing the Cone with a Plane to Obtain a Polytope

In order to construct a polytope in the 〈α1, α2, β〉 space, a plane slicing through
the cone ETΛ is required. To find such a plane, consider the inequalities that
are entailed by the initial system given in Fig 1(a), again represented dually as
a set of points, denoted G. Any inequality α1x + α2y + α3z ≤ β entailed by
the inequalities of Fig 1(a) is represented by a point 〈α1, α2, α3, β〉 ∈ G where
G = {Rμ | μ ≥ 0} and

R =

⎡⎢⎢⎣
1 1 −3 −3 −1 −1 0
1 1 −1 −1 1 1 0
1 −1 1 −1 2 −2 0
2 2 −3 −3 2 2 1

⎤⎥⎥⎦
Each column of R gives the coefficients αi and the constant β of an inequality
of Fig 1(a), again augmented with the additional inequality 0 ≤ 1. G is a cone
incident to the origin where the columns of R are extremal rays of G (rays that
cannot be obtained as positive linear combinations of others).

A plane that slices ETΛ can be derived from one that slices G. Let aα1+bα2+
cα3 + dβ = 0 be a plane that supports the cone G at the origin, hence all the
rays of G are strictly above this plane. By setting μ = 〈1, . . . , 1〉 in G, the ray
{μ〈1, 1, 1, 2〉 | μ ≥ 0} gives the point 〈1, 1, 1, 2〉, similarly {μ〈1, 1,−1, 2〉 | μ ≥ 0}
gives 〈1, 1,−1, 2〉, etc. Values for a, b, c, d can be found by setting up a linear
program which asserts that each of these 7 points are strictly above the plane
by at least some quantity ε:

48 J.M. Howe and A. King

Maximise ε subject to ε≤ a+ b+ c+ 2d −1 ≤ a ≤ 1
ε≤ a+ b− c+ 2d −1 ≤ b ≤ 1
ε≤−3a− b + c− 3d −1 ≤ c ≤ 1
ε≤−3a− b − c− 3d −1 ≤ d ≤ 1
ε≤−a+ b+ 2c+ 2d 0 ≤ ε
ε≤−a+ b− 2c+ 2d ε ≤ d

The bounds −1 ≤ a, b, c, d ≤ 1 are included for normalisation since the plane
aα1+bα2+cα3+dβ = 0 can also be described by μaα1+μbα2+μcα3+μdβ = 0
where μ ≥ 0 is any positive multiplier. Solving the linear program gives a = −1,
b = 1

3 , c = 0, d = 2
3 and ε = 2

3 . The value of ε is discarded and the equation of
the plane that supports G is −3α1 + α2 + 0α3 + 2β = 0.

Next observe that ETΛ = {〈α1, α2, β〉 | 〈α1, α2, 0, β〉 ∈ G}. As a consequence,
a supporting plane for ETΛ can be found merely by removing the α3 component
(note that c = 0 is an oddity of this particular example). This gives −3α1 +
α2 + 2β = 0 which indeed supports ETΛ. Finally the constant for the plane
is adjusted so that it slices through ETΛ. Any positive value may be chosen,
here the plane is set to have constant 1, that is, −3α1 + α2 + 2β = 1. Since
〈α1, α2, β〉 = ETλ the equation of the plane induces a further constraint on λ:

1 = −3α1 + α2 + 2β = −3
[
1 1 −3 −3 −1 −1 0

]
λ+[

1 1 −1 −1 1 1 0
]
λ+

2
[
2 2 −3 −3 2 2 1

]
λ =

[
2 2 2 2 8 8 2

]
λ

Augmenting equation (4) the system Aλ = c is obtained where:

A =

[
1 −1 1 −1 2 −2 0
2 2 2 2 8 8 2

]
c =

[
0
1

]
(5)

Under this construction, the set Λ′ = {λ ∈ R7 | Aλ = c ∧ λ ≥ 0} is not a cone;
it is a polytope. ETΛ′ is a polytope as a consequence.

3.4 The Vertices of the Polytope as Irredundant Inequalities

For each non-redundant inequality α1x+ α2y ≤ β in the projection there exists
a unique vertex 〈α1, α2, β〉 ∈ ETΛ′. Moreover, if 〈α1, α2, β〉 is a vertex of ETΛ′

there exists a vertex λ of Λ′ such that 〈α1, α2, β〉 = ETλ. However, the converse
does not hold. If λ is a vertex of Λ′ then ETλ is not necessarily a vertex of
ETΛ′. To illustrate, the following table gives the vertices λ of Λ′ for the system
given in (5) and 〈α1, α2, β〉 = ETλ:

λ1 λ2 λ3 λ4 λ5 λ6 λ7 α1 α2 β
1
4

1
4 0 0 0 0 0 1

2
1
2 1

1
4 0 0 1

4 0 0 0 − 1
2 0 − 1

4
1
6 0 0 0 0 1

12 0 1
12

1
4

1
2

0 1
4

1
4 0 0 0 0 − 1

2 0 − 1
4

0 0 1
4

1
4 0 0 0 − 3

2 −
1
2 −

3
2

λ1 λ2 λ3 λ4 λ5 λ6 λ7 α1 α2 β

0 0 1
6 0 0 1

12 0 − 7
12 −

1
12 −

1
3

0 1
6 0 0 1

12 0 0 1
12

1
4

1
2

0 0 0 1
6

1
12 0 0 − 7

12 −
1
12 −

1
3

0 0 0 0 1
16

1
16 0 − 1

8
1
8

1
4

0 0 0 0 0 0 1
2 0 0 1

2

Polyhedral Analysis Using Parametric Objectives 49

First observe thatET 〈0, 0, 16 , 0, 0,
1
12 , 0〉= 〈−

7
12 ,−

1
12 ,−

1
3 〉= ET 〈0, 0, 0, 16 ,

1
12 , 0, 0〉

and second that − 7
12x−

1
12y ≤ −

1
3 is a redundant inequality. In fact, only rows

1 and 5 give non-redundant inequalities; row 10 gives the trivial inequality 0 ≤ 1
and the remaining rows give inequalities that are redundant. (Note that this
table is only given for the purposes of exposition and is not actually calculated
as part of the projection algorithm.)

3.5 Enumerating Inequalities Using PLP

To enumerate the vertices of the polytope defined in section 3.3, hence the ir-
redundant inequalities of the projection space, PLP is used. As the parameters
vary the basis representing the optimum changes – a subset of these bases corre-
spond to the vertices. Consider an objective function parameterised by variables
δ1 and δ2:

δ1α1 + δ2α2 = δ1(E
T)1 · λ + δ2(E

T)2 · λ = c · λ

where c = 〈δ1+ δ2, δ1+ δ2,−3δ1− δ2,−3δ1− δ2,−δ1+ δ2,−δ1+ δ2, 0〉. The range
of values taken by δ1 and δ2 can be constrained to −1 ≤ δ1, δ2 ≤ 1 without
changing the set of possible objectives. This leads to tableau:

C=

[
1 −c 0
0 Ab

]
=

⎡⎣1 (−δ1−δ2) (−δ1−δ2) (3δ1+δ2) (3δ1+δ2) (δ1−δ2) (δ1−δ2) 0 0
0 1 −1 1 −1 2 −2 0 0
0 2 2 2 2 8 8 2 1

⎤⎦
An initial basis (hence vertex) is found by fixing δ1 and δ2 and optimising.

Here, δ1 = δ2 = 1, hence α1 +α2 is maximised, to give B = {0, 1, 2}. The pivots
involved in this optimisation lead to:

CB =

⎡⎣1 (−δ1 − δ2) (−δ1 − δ2)
0 1 −1
0 2 2

⎤⎦ C−1
B =

1

4

⎡⎣4 0 (2δ1 + 2δ2)
0 2 1
0 −2 1

⎤⎦

T1=C−1
B C=

⎡⎣1 0 0 (4δ1+2δ2) (4δ1+2δ2) (5δ1+3δ2) (5δ1+3δ2) (δ1+δ2) (2δ1+2δ2)
0 1 0 1 0 3 1 1

2
1
4

0 0 1 0 1 1 3 1
2

1
4

⎤⎦
Observe that with δ1 = δ2 = 1 this tableau represents an optimum since (in

row T 0
1) the objective entry for each non-basic column is positive. However, de-

creasing the δ1 parameter to − 1
2 leads to the objective entries for columns 3 and

4 to be 0. Hence with the new parameters there are potential alternative bases
that correspond to points optimal with respect to the objective (optimal bases).
These possibilities are explored, that is, columns 3 and 4 are considered as can-
didates to enter the basis with objective − 1

2α1+α2. Note that this treatment of
pivoting is slightly non-standard – when optimising with respect to an objective
a column is considered as a candidate to enter the basis when its objective entry
is strictly negative; here, it is optimal bases that are of interest and the condition
is that objective entries that are zero. In the example column 3 is selected as the

50 J.M. Howe and A. King

candidate to enter the basis, lexminratio(B, 3) = 1 so that column 1 leaves, with
the result that B is now {0, 2, 3}. Pivoting gives:

T2 =

⎡⎣1 (−4δ1 − 2δ2) 0 0 (4δ1 + 2δ2) (−7δ1 − 3δ2) (δ1 + δ2) −δ1 − δ1
2

0 1 0 1 0 3 1 1
2

1
4

0 0 1 0 1 1 3 1
2

1
4

⎤⎦
Observe that with δ1 = − 1

2 and δ2 = 1 this still represents an optimum.
However, this tableau does not represent a vertex of the projection space. At
a vertex, the parameters should have sufficient freedom that a perturbation in
one parameter can be balanced by perturbations in the other parameters such
that the perturbed objective is still optimal. In T2, columns 1 and 4 can only be
non-negative with the current parameter values – any perturbation cannot be
balanced, leaving the objective non-optimal. Now column 4 enters the basis and
column 2 leaves. The basis is now {0, 3, 4} and pivoting gives:

T3=

⎡⎣1(−4δ1−2δ2)(−4δ1−2δ2) 0 0(−11δ1−5δ2) (−11δ1−5δ2)(−3δ1−δ2) (− 3δ1
2 −

δ2
2)

0 1 0 1 0 3 1 1
2

1
4

0 0 1 0 1 1 3 1
2

1
4

⎤⎦
Observe that T3 is a vertex – the columns with value zero (columns 1 and 2)
can remain with non-negative entries when the values of δ1 or δ2 are perturbed.
Next observe that no further pivots are available with −1 ≤ δ1 < − 1

2 . Again,
with δ1 = − 1

2 fixed, there are no pivots available for any value −1 ≤ δ2 ≤ 1.
Returning to the original basis and tableau, and this time allowing the δ2

parameter to vary, it can be observed that an alternative basis may be optimal
when δ2 = −1, see column 7. When 7 enters the basis, 2 is chosen to leave the
basis, giving basis {0, 1, 7}. Pivoting gives:

T4 =

⎡⎣1 0 (−2δ1 − 2δ2) (4δ1 + 2δ2) 2δ1 (3δ1 + δ2) (−δ1 − 3δ2) 0 0
0 1 −1 1 −1 2 −2 0 0
0 0 2 0 2 2 6 1 1

2

⎤⎦
Again this represents a vertex. A further sequence of pivots is explored, with the
basis becoming {0, 4, 7} when δ1 = 1

2 and δ2 = −1, then {0, 3, 4} when δ1 = 1
3 ,

δ2 = −1. This leads again to the tableau T3. No further vertices are generated,
that is, the output is the three basis {0, 1, 2}, {0, 3, 4}, {0, 1, 7} corresponding to
the tableaux T1, T3 and T4. The constant columns for these tableaux are:⎡⎣− 1

2
1
4
1
4

⎤⎦ ⎡⎣−21
4
1
4

⎤⎦ ⎡⎣ 0
1
4
0

⎤⎦
The basis and the weighting of the basis elements indicates how inequalities

from the input are combined in order to give a non-redundant output inequality.
In the {0, 1, 2} basis the 1 and 2 inequalities are weighted equally giving x+ y ≤
2, in the {0, 3, 4} basis the 3 and 4 inequalities are weighted equally giving
−3x− y ≤ −3 and in the {0, 7, 2} basis the 2 inequality is not weighted, giving
the 0 ≤ 1 trivial constraint. That is, the output is, up to the trivial constraint,
the non-redundant inequalities of the projection space.

Polyhedral Analysis Using Parametric Objectives 51

4 Anytime Projection Using Vertex Enumeration

This section explains how an anytime projection algorithm can be obtained
through vertex enumeration, where each vertex is in one-to-one correspondence
with an irredundant inequality in the projection (with the exception of a sin-
gle vacuous inequality that is a by-product of the construction). To concisely
formulate the projection problem consider the system Cx + Dy ≤ b where C
and D are matrices of coefficients of dimension m × d and m × d′, x and y
are d-ary and d′-ary vectors of (distinct) variables, and b is an m-ary vector of
constants. The construction starts with the well-known projection lemma [36].
The lemma states that points in the projection satisfy linear combinations of
the input inequalities:

Lemma 1. If P = {x :: y ∈ Rd+d′ | Cx + Dy ≤ b} is a polyhedron, and
Λ = {λ ∈ Rm | DTλ = 0 ∧ λ ≥ 0}, then the projection of P onto x is given by

πx(P) = {x ∈ Rd | ∀λ ∈ Λ . λTCx ≤ λTb}

The next step in the construction is, on the face of it, rather odd. Cx+Dy ≤ b
is augmented with the vacuous inequality 0 ≤ 1. Thus let C′ be the m + 1 × d
matrix where C′m+1 = 0, D′ be the m + 1 × d matrix where D′m+1 = 0, and
b′ = b :: 1 and :: denotes concatenation. To match against the previous section,
define E = [C′ | b′]. The main result can now be stated:

Theorem 1. Suppose

P =
{
x :: y ∈ Rd+d′ |Cx+Dy ≤ b

}
Λ′ =

{
λ′ ∈ Rm+1

∣∣D′Tλ′ = 0 ∧ λ′ ≥ 0
}

S =
{
α :: β ∈ Rd+1

∣∣∣ ∃λ′ ∈ Λ′ ∧ α = C′
T
λ′ ∧ β = b′

T
λ′
}

and the plane S′ = {(α :: β) ∈ Rd+1 | αT c + β = 1} slices the cone S where
c ∈ Rd. Then the following representation of πx(P) is irredundant

πx(P) =
{
x ∈ Rd

∣∣αTx ≤ β ∧ α :: β ∈ vertex(S ∩ S′) ∧ α :: β 	= 0 :: 1
}

where vertex(S ∩ S′) denotes the vertices of S ∩ S′.

Proof.

– Let α :: β ∈ S and x ∈ πx(P). Thus there exists λ′ = 〈λ1, . . . , λm+1〉 ∈ Λ′

such that α = C′
T
λ′ and β = b′

T
λ′. Let λ = 〈λ1, . . . , λm〉. Since DTλ = 0

by lemma 1 it follows λTCx ≤ λTb. But α = CTλ hence αT = λTC and
β = λTb+ λm+1 where λm+1 ≥ 0. Thus αTx = λTCx ≤ λTb ≤ β.

– Let α :: β ∈ vertex(S ∩ S′) such that α :: β 	= 0 :: 1. Suppose α :: β =

μ0+
∑�

i=1 μi(αi :: βi) for some α1 :: β1, . . . , α� :: β� ∈ S and μ0 ≥ 0, μ1 ≥ 0,
. . . , μ� ≥ 0. Observe 0 :: 1 ∈ S ∩ S′ and put α0 :: β0 = 0 :: 1. Thus α :: β =∑�

i=0 μi(αi :: βi). But 1 = (α :: β)T (c :: 1) =
∑�

i=0 μi(αi :: βi)
T (c :: 1) =∑�

i=0 μi hence 1 =
∑�

i=0 μi. Since α :: β 	= 0 :: 1 there exists 1 ≤ i ≤ � such
that α :: β = αi :: βi thus α

Tx ≤ β is irredundant. �

52 J.M. Howe and A. King

Note that the plane αT c + β = 1 used to define S′ does not compromise gen-
erality. Indeed if it where αT c + β.cn+1 = 1 for some cn+1 ∈ R then it would
follow that cn+1 > 0 since S′ cuts the ray 0 :: 1. Yet the translated plane
αT c + β.cn+1 = cn+1 also cuts the rays, hence the assumption αT c + β = 1.
The force of the theorem is that it shows how inequalities in the projection can
be found independently, one-by-one, except for the removal of the vacuous in-
equality. The sequel explains how vertex enumeration can be realised with PLP.

5 Vertex Enumeration Using PLP

The algorithm to enumerate the vertices of the projection space using PLP is
presented across Algorithms 1, 2 and 3, that are described separately below.

5.1 Vertex Enumeration

Algorithm 1 takes as its argument the tableau of form C as described in sec-
tion 3.5. The vector δ represents the parameters of the objective. Each parameter
δi assumes a value in range [−1, 1] though initially δ = 1.

The algorithm uses a worklist WL of tableau/parameter pairs to drive the
vertex enumeration. The output OP is a set of tableaux representing the ver-
tices. The first step on line 3 of Algorithm 1 finds the tableau with the initial
value of δ optimised. The main loop removes a pair from the worklist, then for
every parameter δi finds a tableau corresponding to an adjacent vertex and a
corresponding value for that parameter such that the vertex is optimal.

These values are returned from the calls to nextVertex on lines 11 and 15,
with first call searching for further vertices with the current parameters and the
second call invoked when line 11 does not give a new tableau. Note that in some
cases only δi changes its value and that null returns are possible for the tableau,
indicating that pivoting is not possible. If no new tableau is found then δi is
updated to -1 and this is added to the worklist (line 18). Otherwise, both the
worklist and the output are updated.

5.2 Next Parameter

Algorithm 2 returns for parameter δi the highest value less than its current
value that induces a pivot. Again note that since it is optimal bases that are
of interest, pivots occur when objective entries become zero, rather than when
they are negative. Line 2 of the algorithm finds the set Δ′ of values (less than δi)
that the parameter can take in order that a non-basis objective entry can take
value 0. Here T 0

j (δ) evaluates the objective entry in column j with parameters
δ. If Δ′ is non-empty the largest value less than the current value is returned
(line 3). Otherwise the return is −1.

Polyhedral Analysis Using Parametric Objectives 53

Algorithm 1. Vertex enumeration with PLP

1: function enumVertices(Tin)
2: WL = [], OP = [], δ = 1
3: T = maximise(Tin, δ)
4: WL.add(T, δ), OP.add(T)
5: while WL
= [] do
6: (T, δ) = WL.remove()
7: for i = 1 to |δ| do
8: if δi
= −1 then
9: T ′ = null
10: if ∃j ∈ (T.cobasis).T 0

j (δ) = 0 then
11: (T ′, δ′) = nextVertex(T, δ, i)
12: end if
13: if T ′ = null then
14: δ′′ = nextDelta(T, δ, i)
15: (T ′, δ′) = nextVertex(T, δ′′, i)
16: end if
17: if T ′ = null then
18: WL.add(T, δ′)
19: else
20: WL.add(T ′, δ′), OP.add(T ′)
21: end if
22: end if
23: end for
24: end while
25: return OP

5.3 Next Vertex

Algorithm 3 defines a recursive function that returns a tableau/parameter pair
representing a vertex. That a tableau represents a vertex can be tested by solving
a linear program describing that at a vertex the parameters should have sufficient
freedom that a perturbation in one parameter can be balanced by perturbations
in the others so that a pivot is not induced. Recall the example in section 3.5.

The algorithm performs a lexicographic pivot step with a candidate entering
column at line 4. If the pivot leads to a basis that has already been generated,
the resulting tableau is null and the loop moves on to the next j column. This
avoids the cycling phenomena in which a vertex is visited repeatedly. Otherwise,
if the new tableau/parameter pair does not represent a vertex, then the function
calls itself, continuing its search for a vertex. The algorithm returns (null, δ) if
there are no pivots available.

The combined effect of the three algorithms is to systematically explore the
tableaux corresponding to optima with respect to the parameter space. By re-
turning those tableaux corresponding to vertices the inequalities of the projection
space can be found. In summary, projection is reduced to repeated pivoting.

Proposition 1. Algorithm 1 is complete, that is, if α :: β ∈ vertex(S ∩ S′),
α :: β is in its output.

54 J.M. Howe and A. King

Algorithm 2. Finding the next δ value

1: function nextDelta(T, δ, i)
2: Δ′ = {δ′i | ∃j ∈ (T.cobasis).T 0

j (δ[i �→ δ′i]) = 0 ∧ δ′i < δi}
3: δ∗i = max(Δ′ ∪ {−1})
4: return δ[i �→ δ∗i]

Algorithm 3. Finding the next vertex

1: function nextVertex(T, δ, i)
2: for j = 1 to |δ| do
3: if j ∈ T.cobasis ∧ T 0

j (δ) = 0 then
4: T ′ = T.pivot(j)
5: if T ′
= null then
6: if T ′.isVertex(δ) then
7: return (T ′, δ)
8: else
9: return nextVertex(T ′, δ, i)
10: end if
11: end if
12: end if
13: end for
14: return (null, δ)

Proof. (Outline) The algorithm is complete if it gives a series of pivots from the
initial tableau to a tableau representing any vertex of the output space. Consider
some vertex v, then there exists objective δv such that a tableau for v is optimal
with respect to δv . Now consider the initial tableau which is optimal with respect
to 1. With objective δv there must be a series of pivots from the initial tableau
to that for vertex v. The parameter values δ always suggest an entering column
for pivoting. To see this consider a tableau representing vertex v′ that is optimal
with respect to δ: for some i a decrease in δi will suggest a pivot to a tableau
that gives a higher value for δv than that for v′, hence this pivot must also be
selectable when optimising δv from v′. Therefore v is output by Algorithm 1. ��

6 Related Work

This paper can be considered to be a response to the agenda promoted by the
weakly relational domains [14,16,25,26,33] which seek to curtail the expressive-
ness of the linear inequalities up front so as to recover tractability. These domains
are classically formulated in terms of a closure operation which computes the
planar shadows [1] of a higher-dimensional polyhedron defined over x1, . . . , xn;
one shadow for each xi, xj pair. Operations such as join are straightforward once
the shadows are known. This hints at the centrality of projection in the design
of a numeric domain, an idea that is taken to the limit in this paper. Other
ingenious ways of realising weakly relational domains include representing in-
equalities with unary coefficients as binary decision diagrams [8], using an array

Polyhedral Analysis Using Parametric Objectives 55

of size n to compactly represent a system of two variable equality constraints
over n variables [13], and employing k-dimensional simplices as descriptions since
they can be represented as k + 1 linearly independent frame elements [31].

An interesting class of weakly relational domain are the template domains [30]
in which the inequalities conform to patterns given prior to analysis, say, ax2 +
bx3 + cx6 ≤ d. During analysis values for coefficients a, b and c (on the left) and
constants d (on the right) are inferred using linear programming. This domain
has recently been relaxed [9] so that the right-hand side can be generalised
to any parametric two-variable linear expression. The advance in this work is
that the domain operations can then be performed in an output sensitive way:
the computational effort is governed not only by the size of the input but the
output too, rather than that of any intermediate representation. Fractional linear
programming [4] is used to simulate the Jarvis march [18] and thereby project
a higher dimensional polyhedron onto a plane in an output sensitive fashion.

Further afield, finite-horizon optimal problems can be formulated as PLP [19].
PLPs allow the control action to be pre-computed off-line for every possible value
of the parameter μ, simplifying an on-line implementation. In a study of how
to solve PLPs, the link between PLP and projection has been explored [19], a
connection that is hinted at in the seminal work on PLP [15]. Yet the foundation
result of [19], lemma 3.2, overlooks the need to relax constants and only addresses
the problem of the uniqueness of the representation of a vertex by making a
general position assumption. This assumption is unrealistic in program analysis
where polyhedra can be degenerate, hence the use of lexicographical pivoting in
this work. As a separate work, there has been interest in realising PLP using
reverse search [2,20] though again making a general position assumption.

7 Conclusions

This paper has revisited the abstract domain of polyhedra, presenting a new
algorithm to calculate projection. Apart from one trivial inequality that can be
recognised syntactically the projection does not enumerate redundant inequali-
ties, hence does not incur expensive post-processing. Moreover, if there are an
excessively large number of inequalities in the projection then, since projection is
computed incrementally, one inequality at a time, the calculation can be aborted
prematurely yielding an over-approximation of the result without compromising
soundness. The new algorithm is based on pivoting which is known to have fast
implementations and even appears to be amenable to parallelisation. Since con-
vex hull can be calculated using meet and projection [32] the presented algorithm
can form the core of a polyhedra analysis.

Acknowledgements. This work was funded by a Royal Society Industrial
Fellowship number IF081178, the EPSRCVIP grant, and a Royal Society Interna-
tional Grant number JP101405. London Mathematical Society Scheme 7 enabled
the authors to visit Freie Universität Berlin and they are indebted to Günter Rote
for alerting them to the connection between projection and PLP. The authors also
thank Darko Dimitrov, Axel Simon and Sriram Sankaranarayanan for interesting
discussions.

56 J.M. Howe and A. King

References

1. Amenta, N., Ziegler, G.: Shadows and Slices of Polytopes. In: Symposium on Com-
putational Geometry, pp. 10–19. ACM Press (1996)

2. Avis, D.: lrs: A Revised Implementation of the Reverse Search Vertex Enumera-
tion Algorithm. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes – Combinatorics and
Computation, pp. 177–198. Brikhäuser, Basel (2000)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward
a Complete Set of Numerical Abstractions for the Analysis and Verification of
Hardware and Software Systems. Science of Computer Programming 72(1-2), 3–21
(2008)

4. Boyd, S., Vandenberghe, S.: Convex Optimization. Cambridge University Press
(2004)

5. Burger, E.: Über Homogene Lineare Ungleichungssysteme. Zeitschrift für Ange-
wandte Mathematik und Mechanik 36, 135–139 (1956)

6. Chernikova, N.V.: Algorithm for Discovering the Set of All the Solutions of a
Linear Programming Problem. Computational Mathematics and Mathematical
Physics 8(6), 1387–1395 (1968)

7. Chvátal, V.: Linear Programming. W.H. Freeman and Company (1983)

8. Clarisó, R., Cortadella, J.: The Octahedron Abstract Domain. Science of Computer
Programming 64(1), 115–139 (2007)

9. Colón, M.A., Sankaranarayanan, S.: Generalizing the Template Polyhedral Do-
main. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 176–195. Springer,
Heidelberg (2011)

10. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints among Vari-
ables of a Program. In: Principles of Programming Languages, pp. 84–97. ACM
Press (1978)

11. Dantzig, G.B., Orchard-Hays, W.: The Product Form for the Inverse in the Simplex
Method. Mathematical Tables and other Aids to Computation 8(46), 64–67 (1954)

12. Duffin, R.J.: On Fourier’s Analysis of Linear Inequality Systems. Mathematical
Programming Studies 1, 71–95 (1974)

13. Flexeder, A., Müller-Olm, M., Petter, M., Seidl, H.: Fast Interprocedural Linear
Two-Variable Equalities. ACM Transactions on Programming Languages and Sys-
tems 33(6) (2011)

14. Fulara, J., Durnoga, K., Jakubczyk, K., Shubert, A.: Relational Abstract Domain
of Weighted Hexagons. Electronic Notes in Theoretical Computer Science 267(1),
59–72 (2010)

15. Gass, S., Saaty, T.: The Computational Algorithm for the Parametric Objective
Function. Naval Research Logistics Quarterly 2(1-2), 39–45 (1955)

16. Howe, J.M., King, A.: Logahedra: A New Weakly Relational Domain. In: Liu, Z.,
Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 306–320. Springer, Heidelberg
(2009)

17. Imbert, J.-L.: Fourier’s Elimination: Which to Choose?. In: First Workshop on
Principles and Practice of Constraint Programming, pp. 117–129 (1993)

18. Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the
plane. Information Processing Letters 2(1), 18–21 (1973)

19. Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: On Polyhedral Projection
and Parametric Programming. Journal of Optimization Theory and Applica-
tions 138(2), 207–220 (2008)

Polyhedral Analysis Using Parametric Objectives 57

20. Jones, C.N., Maciejowski, J.M.: Reverse Search for Parametric Linear Program-
ming. In: IEEE Conference on Decision and Control, pp. 1504–1509 (2006)

21. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V.: Generating All
Vertices of a Polyhedron is Hard. Discrete and Computational Geometry 39, 174–
190 (2008)

22. Kohler, D.A.: Projections of Convex Polyhedral Sets. Technical Report 67-29, Op-
erations Research Centre, University of California, Berkeley (1967)

23. Lassez, J.-L., Huynh, T., McAloon, K.: Simplification and Elimination of Redun-
dant Linear Arithmetic Constraints. In: Benhamou, F., Colmerauer, A. (eds.) Con-
straint Logic Programming, pp. 73–87. MIT Press (1993)

24. Le Verge, H.: A Note on Chernikova’s algorithm. Technical Report 1662, Institut
de Recherche en Informatique, Campus Universitaire de Beaulieu, France (1992)

25. Miné, A.: A New Numerical Abstract Domain Based on Difference-Bound Matri-
ces. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172.
Springer, Heidelberg (2001)

26. Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

27. Motzkin, T.S.: Beiträge zur Theorie der Linearen Ungleichungen. PhD thesis, Uni-
versität Zurich (1936)

28. Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The Double Description
Method. In: Annals of Mathematics Studies, vol. 2, pp. 51–73. Princeton University
Press (1953)

29. Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J.-D., Merlet, J.-P.: On Com-
puting Four-Finger Equilibrium and Force-Closure Grasps of Polyhedral Objects.
International Journal of Robotics Research 16(2), 11–35 (1997)

30. Sankaranarayanan, S., Colón, M.A., Sipma, H., Manna, Z.: Efficient Strongly Re-
lational Polyhedral Analysis. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI
2006. LNCS, vol. 3855, pp. 111–125. Springer, Heidelberg (2005)

31. Seidl, H., Flexeder, A., Petter, M.: Interprocedurally Analysing Linear Inequality
Relations. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 284–299.
Springer, Heidelberg (2007)

32. Simon, A., King, A.: Exploiting Sparsity in Polyhedral Analysis. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 336–351. Springer, Heidelberg
(2005)

33. Simon, A., King, A., Howe, J.M.: Two Variables per Linear Inequality as an Ab-
stract Domain. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89.
Springer, Heidelberg (2003)

34. Todd, M.J.: The Many Facets of Linear Programming. Mathematical Program-
ming 91(3), 417–436 (2002)

35. Wilde, D.K.: A Library for Doing Polyhedral Operations. Technical Report 785,
Institut de Recherche en Informatique, Campus Universitaire de Beaulieu, France
(1993)

36. Ziegler, G.M.: Lectures on Polytopes. Springer (2007)

Inference of Polynomial Invariants for Imperative
Programs: A Farewell to Gröbner Bases�

David Cachera1, Thomas Jensen2, Arnaud Jobin3, and Florent Kirchner4,��

1 ENS Cachan Bretagne, IRISA, Rennes, France
2 Inria Rennes - Bretagne Atlantique, France
3 Université Rennes 1, IRISA, Rennes, France

4 CEA, LIST, Gif-sur-Yvette, France
{david.cachera,thomas.jensen,arnaud.jobin}@irisa.fr,

florent.kirchner@cea.fr

Abstract. We propose a static analysis for computing polynomial in-
variants for imperative programs. The analysis is derived from an
abstract interpretation of a backwards semantics, and computes pre-
conditions for equalities like g = 0 to hold at the end of execution.
A distinguishing feature of the technique is that it computes polynomial
loop invariants without resorting to Gröbner base computations. The
analysis uses remainder computations over parameterized polynomials
in order to handle conditionals and loops efficiently. The algorithm can
analyse and find a large majority of loop invariants reported previously
in the literature, and executes significantly faster than implementations
using Gröbner bases.

1 Introduction

The problem of automatically inferring non-linear (polynomial) invariants of
programs is a challenge in program verification. This stands in contrast to the
case for linear invariants where the initial work by Karr [8] and Cousot and
Halbwachs [5] has led to efficient implementations based on variants of the poly-
hedral domain. As an example of a polynomial invariant, consider the algorithm

1. y1 := 0; y2 := 0; y3 := x1;
2. while y3 �= 0 do

3. if x2 = y2 + 1 then

4. y1 := y1 + 1; y2 := 0; y3 := y3 − 1;
5. else

6. y2 := y2 + 1; y3 := y3 − 1;
7.

Fig. 1. A division algorithm with polynomial invariant

� This work was partly supported by the ANR Decert and the Région Bretagne
CertLogs projects.

�� Work performed while at Inria Rennes - Bretagne Atlantique.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 58–74, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Inference of Polynomial Invariants for Imperative Programs 59

in Figure 1 which computes the Euclidean division of x1 by x2 [10]. The invariant
we want to compute for this example is non-linear, viz., y1 ∗ x2 + y2 + y3 = x1.
For more examples, see [16].

A central observation in existing work on generating polynomial invariants is
that n-ary relations of the form {x ∈ R

m|p1(x) = . . . = pj(x) = 0}, i.e., rela-
tions that can be described as the zeroes of a set of polynomials, correspond to a
lattice of polynomials ideals. Such ideals are finitely generated which means that
fixpoint iterations are guaranteed to terminate (more details in Section 2). The
lattice of ideals have been used in several ways. Sankaranarayanan et al. [19] pro-
posed a constraint-based strategy for generating non-linear invariants, derived
from their previous work on linear invariants [3]. Müller-Olm and Seidl [11,12]
define an abstract interpretation method that can generate polynomial invari-
ants for a restrictive class of guarded-loop programs where tests in conditionals
are polynomial disequalities. Their analysis is a backward propagation based
method: they start from a polynomial p and compute the weakest preconditions
of the relation p = 0. More precisely, in order to prove that a polynomial relation
p = 0 is valid at the end of a program, they show that the set of zeroes of a
polynomial p can be exactly abstracted by a polynomial ideal. The restrictions
imposed on the language are sufficiently strong to ensure that their method can
be proven complete. Rodríguez-Carbonell and Kapur [18,17] define the analysis
as an abstract interpretation problem over a domain of ideals of variety, and use
iteration-based techniques to compute polynomial invariants.

All these approaches rely on Gröbner base computations [6], either when
checking the inclusion of one polynomial ideal within another when analysing
loops [12], when analysing variable assignments [19] or when computing the in-
tersection of ideals in [18,17]. Computing Gröbner bases however slows down
considerably the overall analysis. It is made even slower when the techniques for
generation of polynomial invariants employ parameterized polynomials [12,19]
of the form a0 + a1.x1 + a2.x2 + a3.x1x2 + a4.x12 + a5.x22 (also called polynomial
templates) and infer the coefficients of the polynomial in a second phase. This
means that the computation has to calculate Gröbner bases for parameterized
polynomials.

In this paper, we propose an abstract interpretation based method [4] for
inferring polynomial invariants that entirely avoids computing Gröbner bases.
The method is precise and efficient, and is obtained without restricting the ex-
pressiveness of the polynomial programming language. Our analysis consists in a
backward propagation mechanism that extends Müller-Olm and Seidl’s work [12]
to a general polynomial structured programming language that includes if and
while constructs where branching conditions are both polynomial equalities and
disequalities. As in this previous approach, our analysis uses a form of weakest
precondition calculus for showing that a polynomial relation g = 0 holds at the
end of a program. We show that the backward approach, which was already ob-
served to be well adapted to polynomial disequality guards [12] can be extended
to if constructs with equality guards by using parameterized polynomial division.

60 D. Cachera et al.

The main contribution of the paper is a constraint-based algorithm for in-
ferring polynomial invariants. Such constraint-based techniques (rather than
iteration) when dealing with loops means that it becomes feasible to analyse
conditionals precisely, using parameterized polynomial division. This leads to a
backwards static analysis, expressed as a constraint generation algorithm that
at the same time computes polynomial ideals and a set of constraints, which
together characterize the program invariants. A salient feature of this analysis,
which distinguishes it from previous analyses, is that it does not require the use
of Gröbner base computations. We have implemented this algorithm in Maple
and our benchmarks show that our analyzer can successfully infer invariants on
a sizeable set of examples, while performing two orders of magnitude faster than
other existing implementations.

The rest of the paper is organized as follows. Section 2 contains mathematical
background material: multivariate polynomial algebra, division and remainder
operators and the lattice structure of ideals. Section 3 defines the syntax and
semantics of polynomial programs. In Section 4, we present the abstract seman-
tics of polynomial programs over the lattice of ideals. Section 5 presents our
method for fast inferring polynomial loop invariants without fixpoint iteration
nor Gröbner base computation. We report on benchmarks for our implementa-
tion in Section 6 and discuss related work in Section 7.

2 Preliminaries

We consider polynomials in R[x1, . . . , xm] where m represents the number of vari-
ables of the program1. In the rest of the paper, we will distinguish between x,
element of R

m, xi element of R, and xi variable of the program.
A set of polynomial equalities {p1 = 0, . . . , ps = 0} enjoys the property of

being stable under a few select arithmetic operations: this corresponds to the
algebraic structure of an ideal, as recalled by the following definition.

Definition 1 (Polynomial ideal). A set I ⊆ R[x1, . . . , xm] is a polynomial
ideal if it contains 0, is stable under addition (if p1, p2 ∈ I then p1 +p2 ∈ I) and
stable under external multiplication (if q ∈ R[x1, . . . , xm] and p ∈ I then q ·p ∈ I).
We write I for the set of polynomial ideals of R[x1, . . . , xm], and <S> for the
polynomial ideal generated by a set S of polynomials. By definition, <S> is the
smallest ideal containing all polynomials of S.

The set I can be given a partial order structure by using the reverse subset in-
clusion between ideals. The least upper bound (lub) of a set of polynomial ideals
is then the intersection of its elements, while the greatest lower bound (glb) is
the ideal generated by the union of the elements2.

1 A careful reader will see that our analysis can be set in any F[x1, . . . , xm] where F is a
noetherian ring, i.e. a ring satisfiying the ascending chain condition on its ideal set.

2 The union set of two ideals is not an ideal in general.

Inference of Polynomial Invariants for Imperative Programs 61

Definition 2 (Lattice structure of I). Given I and J two polynomial ideals,
we define I

⊔�
J = I

⋂
J , I

��
J = <I

⋃
J> and �� = ⊇. Operators

⊔� and�� are extended in a standard fashion to range over sets of polynomial ideals.
Equipped with these operators, I is a complete lattice, where the least element is
⊥� = <1> and the greatest element is �� = <0>.

A crucial property of polynomial ideals is that they are finitely generated.

Theorem 1 (Hilbert). Every polynomial ideal I ∈ I is finitely generated, i.e.,
I = <S> for a finite subset S of I.

Theorem 1 above also exhibits the tight link that exists between polynomial
equality sets and an ideal structure. We have already seen that such a set can
naturally be represented as an ideal. Conversely, any polynomial ideal can be
represented by a finite set of polynomials, that can be seen as a polynomial
equality set. A direct consequence of this theorem is that operations on ideals
can be defined thanks to finite sets of generators representing these ideals. For
instance, given the two ideals I = <q1, . . . , qr> and J = <h1, . . . , hs>, their
abstract glb is defined by I

�� J = <q1, . . . , qr, h1, . . . , hs>. The reader should
remember this finite representation for the rest of the paper.

The notion of division on multivariate polynomial rings will play an important
role when defining the analysis. Contrary to the univariate case, the polynomial
ring R[x1, . . . , xm] is not equipped with a Euclidean division, nevertheless it is
common to define a division according to a monomial ordering [6]. In our case,
we define a general division operator as follows.

Definition 3 (Division operator, remainder). A division operator div is a
function mapping a pair of polynomials (g, p) ∈ R[x1, . . . , xm]2 to a pair (q, r) ∈
R[x1, . . . , xm]2 such that g = pq + r. Polynomial r is called the remainder of g by
p according to div, and is noted Rem(g, p, div) or only Rem(g, p) if the division
operator doesn’t need to be explicitly given.
We extend this definition to any poylnomial ideal I = <g1, . . . , gs> by defining
Rem(I, p) = <Rem(g1, p), . . . , Rem(gs, p)>.

Our concrete semantics will operate over the domain (P(Rm),⊆,
⋃

,
⋂

) of sub-
sets, whereas our abstract semantics will deal with polynomial ideals. The link
between these two domains is given by the following Galois connection:

α : P(Rm)→ I
X
→ {p ∈ R[x1, . . . , xm] | ∀x ∈ X, p(x) = 0}

γ : I → P(Rm)
I
→ {x ∈ R

m | ∀p ∈ I, p(x) = 0}
such that ∀X ∈ P(Rm), ∀I ∈ I : X ⊆ γ(I)⇔ α(X) �� I.

3 Syntax and Semantics of Polynomial Programs

Our analysis produces invariants of polynomial programs, i.e., programs where
assignments are polynomial and conditional tests are polynomial (dis)equalities.

62 D. Cachera et al.

Definition 4 (Syntax of polynomial programs). Let V = {x1, . . . , xm} a set
of program variables. We denote by p an element of R[x1, . . . , xm] and by var an
element of V.
T � test ::= p = 0 | p �= 0
P � c ::= var := p | c ; c | if test then c else c | while test do c | skip
We define the semantics of polynomial programs as a backwards collecting seman-
tics (a weakest liberal precondition calculus [7]) over sets of states. This collecting
semantics can be proved equivalent to a classical operational semantics [2].

Definition 5 (Backward collecting semantics (BCS))
Let �� stand for = or �=, and �p �� 0� = {x ∈ R

m | p(x) �� 0}.
Bν�c� : P(Rm)→ P(Rm)

Bν�xj := p� S = {x ∈ R
m | x[[p(x)]]j ∈ S}

where x[[p(x)]]j is the element (x1, . . . , xj−1, p(x), xj+1, . . . , xm)

Bν�skip� S = S

Bν�c1; c2� S = Bν�c1� (Bν�c2� S)

Bν�if p �� 0 then c1 else c2� S =(Bν�c1� S
⋂ �p �� 0�)⋃ (Bν�c2� S

⋂ �p ��� 0�)
Bν�while p �� 0 do c� S = νFc,p,S

where Fc,p,S = λX.(�p ��� 0� ⋂ S)
⋃

(�p �� 0� ⋂ Bν�c� X)

The polynomial analysis only deals with partial correctness, hence the weakest
liberal precondition calculus is expressed using a greatest fixpoint definition in
this semantics.

We can now give the formal definition of a polynomial invariant. Intuitively,
a polynomial g is said to be invariant for a program if all final states of exe-
cution for this program are zeroes of g. As our semantics operates backwards,
this is equivalent to saying that, starting from a state zeroing g, the collecting
semantics reaches the whole set of potential initial states.

Definition 6 (Polynomial invariant). A polynomial g ∈ R[x1, . . . , xm] is said
to be invariant at the end of a program c if Bν�c� (γ(<g>)) = R

m.

Note that, for a program where any initial state leads to an infinite execution,
every polynomial will be invariant, i.e., the analysis provides no information for
such programs.

4 Verifying and Generating Polynomial Invariants

The concrete semantics is not computable because of the presence of fixpoint
computations in the infinite lattice P(Rm) that does not satisfy the ascending
chain condition. A classical idea to overcome this problem is to approximate the
concrete semantics by using polynomial ideals [12,17,19]. This provides a method
for both verifying and generating polynomial invariants.

Inference of Polynomial Invariants for Imperative Programs 63

�c�� : I → I
�xj := p��I = <{q[[xj �→ p]], q ∈ I}>
where q[[xj �→ p]] is the polynomial q(x1, . . . , xj−1, p(x1, . . . , xm), xj+1, . . . , xm)

�skip��I = I

�s1; s2��I = �s1��(�s2��I)

�if p �= 0 then c1 else c2��I = p · (�c1��I)
�� Rem(�c2��I, p)

�if p = 0 then c1 else c2��I = p · (�c2��I)
�� Rem(�c1��I, p)

�while p �= 0 do c��I = ν(F �
c,p,I)

where F �
c,p,I = λJ. p · (�c��J)

�� Rem(I, p)

�while p = 0 do c��I = ν(F
�
c,p,I)

where F
�
c,p,I = λJ. p · I �� Rem(�c��J, p)

Fig. 2. Abstract semantics for polynomial programs

The abstract interpretation of polynomial programs using ideals as interpreta-
tion domain is given on Figure 2. This semantics is derived from Müller-Olm and
Seidl’s work [12,13] (see Section 7 for a discussion on similarities and differences).
A few remarks on this abstract semantics are in order. As it acts backwards, as-
signments only consist in a substitution. Also note that the semantics of the if
and while constructs use the Rem-operator introduced in Definition 3. Indeed,
consider an if statement guarded by a (dis)equality p: if we want to prove that
relation g = 0 holds and we know that relation p = 0 holds, it suffices to com-
pute Rem(g, p) = g − pq for a given polynomial q, and prove that the relation
Rem(g, p) = 0 holds. This property does not depend on the choice of q; in partic-
ular, this choice does not impact the correctness of our approach. We will show
in the next section how parameterized quotients can be used to infer relevant
invariants.

The semantics for while is defined by a greatest fixpoint definition, which fol-
lows the definition of the concrete semantics. The abstract transfer function for
while can computed with a Kleene fixpoint iteration starting from �� = <0>,
the top element of the lattice I.

For any given program c, the abstract semantics satisfies the following cor-
rectness property, expressed using the Galois connection defined in Section 2. It
states that abstract computations under-approximate concrete behaviour.

γ(�c��<g>) ⊆ Bν�c� γ(<g>) (1)
A detailed proof of this property can be found in [2].

Thus, to verify that a given polynomial g is invariant it suffices to compute
the abstract semantics �c�� on <g> and verify that the initial state computed
by the semantics is equal to the null ideal <0>. As γ(<0>) = R

m, this ensures
that g holds at the end of the execution of c, independently of the starting state.

In practice, the algorithms for computing polynomial invariants [19,12] oper-
ate on candidate polynomials of bounded degree and with unknown coefficients,
expressed as parameters. For example, a0+a1.x1+a2.x2+a3.x1x2+a4.x12+a5.x22

is the most generic parameterized polynomial of R[x1, x2] of degree 2 for the set

64 D. Cachera et al.

{a1, . . . , a5} of coefficients. The algorithm for computing polynomial invariants
of maximum degree d for a program c then starts from g, the most generic param-
eterized polynomial of degree d and computes the abstract semantics �c��<g>,
using iteration over parameterized polynomials whenever loops are involved. The
result is a set of parameterized polynomials whose coefficients are linear com-
binations of the initial ais. Finding the parameters for which �c��<g> = <0>
then amounts to solving a linear system of equations where these coefficients are
equal to zero.

The upshot of Hilbert’s Theorem is that the fixpoint iteration induced by
the semantics of the while construct terminates in finitely many steps. As this
results in an increasing sequence, the stopping criterion consists in checking if
the polynomials at step n + 1 belong to the ideal generated at step n. This ideal
membership problem is decidable via Gröbner base computations [6]. As these
are particularly costly for parameterized polynomials, we propose in the next
section an analysis technique that will not iterate the semantics and hence avoid
these computations.

5 Fast Inference of Loop Invariants

The basic idea for computing loop invariants fast is to avoid fixpoint iterations
by using constraint-based techniques. A central observation for this approach to
work is the fact that we can restrict attention to a particular set of invariant
candidates: a polynomial g is a loop invariant if, starting from a state verifying
the relation g = 0, the execution of the body of the loop leads to a state that
satisfies this relation g = 0. In this section we will show how to reduce the in-
ference of polynomial invariants to a search for such loop invariants. We first
formalize this notion in Section 5.1, then show in Section 5.2 how it translates
into a notion of constraints between ideals, resulting in our Fastind analysis.
We then explain in Section 5.3 how to solve these constraints, before developing
a detailed example in Section 5.4.

5.1 Loop Invariants

The informal definition of a loop invariant can be formalized using the backward
concrete semantics.

Definition 7 (Loop invariant). Let w ≡ while b do c be a polynomial loop
program and g ∈ R[x1, . . . , xm]. Then, g is a loop invariant for w if and only if
γ(<g>) ⊆ Bν�c� γ(<g>).

The first step of our method consists in finding a counterpart of the notion of
loop invariant in the context of the abstract semantics. The following theorem
gives a sufficient condition for a polynomial to be a loop invariant.

Definition 8 (Abstract loop invariant). Assuming the notations of Defini-
tion 7, a polynomial g is an abstract loop invariant for program w if �c��<g> =
<g>.

Inference of Polynomial Invariants for Imperative Programs 65

Theorem 2. If g is an abstract loop invariant for w, then g is a loop invariant
for w.

Proof. Correctness relation (1) states that γ(�c��<g>) ⊆ Bν�c� γ(<g>). Hy-
pothesis �c��<g> = <g> and Definition 7 allow to conclude the proof.

The benchmarks in Section 6 will show that the abstract loop invariant property
is not a real restriction, but rather allows to infer a large number of invariants.

Theorem 2 and consequently Theorem 3 below have a direct consequence on
fixpoint computations: by restricting our search to abstract loop invariants, iter-
ations are not needed any more to compute abstract while statements guarded
by a polynomial disequality. If we look closely at the semantics of a program
c ≡ if p �= 0 then c1 else skip, we have �c��I = p · (�c1��I)

�� Rem(I, p) =
p · (�c1��I)

��(I − p · q) for a given polynomial quotient q. We thus remark that,
without any a priori hypothesis on c1, a correct choice for a quotient is given by
q = 0, which defines Rem(g, p) = g for any g in I. Even if not the optimal one in
some cases, this choice coincides with Müller-Olm and Seidl’s abstract function
and gives good results in practice. As the abstract transfer function for while is
derived from c ≡ if p �= 0 then c1 else skip, the abstract definition of a while
statement guarded by a polynomial disequality is given by the trivial division
operator that leaves its argument unchanged. As a direct consequence, the ideal
that is taken as postcondition of this while statement is left unchanged when
computing its semantics, as expressed by the following theorem.

Theorem 3. Let I ∈ I and w ≡ while p �= 0 do c be a polynomial program.
Suppose that �c��I = I. Then �w��I = I.

Proof. With a null quotient for the Rem operator, the definition of F �
c,p,I simpli-

fies into λJ.p · (�c��J)
�� I. By hypothesis, �c��I = I, so p · (�c��I) = p · I ⊆ I,

which proves that stabilization is reached immediately and concludes the proof.

The proof shows that, even if the semantics of the guard is taken into account
in the product p · (�c��I), this effect is masked in the resulting ideal. Hence,
the semantics of the while construct with polynomial disequality guard is ex-
pressed by the constraint �c��I = I, as will be made explicit in the new abstract
semantics we propose in Section 5.2.

Note that Theorem 3 does not remain valid in the case of loops with equality
guards. As loop guards of the form p = 0 are not frequent and taking them into
account would increase the cost of the analysis significantly, we propose to ignore
the information that could be obtained from such loop guards. This results in an
approximation of the abstract semantics and brings us back to the quick single
iteration case. As a summary, guards of if and while constructs will be handled
as follows.

– Disequality guards in loops do not give rise to remainder computations. The
iterative semantics of this kind of loops is replaced by the efficient compu-
tation of loop invariants.

66 D. Cachera et al.

– Loops with equality guards are handled by ignoring their guards. Thanks to
this approximation, the iterative semantics of this kind of loops is also re-
placed by the efficient computation of loop invariants as in the previous case.

– Positive or negative guards for if constructs, which do not require itera-
tion but still deserve precise abstract semantics are handled by introducing
parameterized quotients, as explained below.

5.2 Inferring Loop Invariants by Fastind Analysis

As stated in Section 4 and as it is commonly done [19,12], our abstract semantics
will operate on parameterized polynomials in order to infer, and not only verify,
polynomial invariants.

Definition 9 (Linear ai-parameterized polynomial). Let A = {ai | i ∈
N} be a set of parameters and LA = {∑n

j=1 λj · aij | n ∈ N and (i1, . . . in) ∈
Nn and (λ1, . . . , λn) ∈ R

n} be the set of finite linear combinations of the ais over
R. The set of linear ai-parameterized (ai-lpp) polynomials is LA[x1, . . . , xm]. For
example, a0 + a1.x1 + a2.x2 + a3.x1x2 + a4.x12 + a5.x22 is the most generic linear
ai-parameterized polynomial of L{a0,...,a5}[x1, x2] of degree 2. An ideal is said to
be a linear ai-parameterized ideal if it is generated by linear ai-parameterized
polynomials3. The set of linear parameterized ideals is denoted by Ipar.

The Fastind analysis consists in integrating the abstract loop invariant condi-
tion of Definition 8 into the polynomial inference process. This condition, which
will be asserted for each loop of a program, is written as an equality between
two polynomial ideals, under the form �c��I = I where c stands for the body of
a loop. We begin by defining the domain of constraints on polynomial ideals.

Definition 10 (Domain of ideal constraints). An equality constraint be-
tween ideals is a finite set of pairs of linear parameterized ideals. Intuitively,
this represents a conjunction of equalities of the form I0 ≡ I1 where I0 and I1

stand for ai-lpp ideals. Formally, we define the domain C of equality constraints
between ideals: C = Pf (Ipar × Ipar). A solution to these constraints is a set of
instantiations of the parameters by real values such that the ideal equalities are
satisfied.

The abstract semantics of Fastind analysis depicted on Figure 3 is derived from
the abstract semantics �.�� by instrumentating it with the polynomial constraints
resulting from the loop invariant property.

Note that abstract computations of if statements imply division operations
of linear parameterized polynomials by polynomial guards. These operations, as
explained in the following definition, require the introduction of new parameters.

Definition 11 (Parameterized division operator). Let p ∈ R[x1, . . . , xm]
and g ∈ LA[x1, . . . , xm] of respective degrees d and d1 ≤ d. Let (bi)i∈N be a set
3 Remark that a member of a linear parameterized ideal is a not a linear parameterized

polynomial in general.

Inference of Polynomial Invariants for Imperative Programs 67

�c��c : Ipar × C → Ipar × C
�xj := p��c(I,C) = (<{q[[xj �→ p]], q ∈ I}>, C)

�skip��c(I,C) = (I,C)

�s1; s2��c(I,C) = (�s1��c(�s2��c(I,C))

�if p �= 0 then c1 else c2��c(I,C) = (p · I1

�� Rempar(I2, p), C1 ∪ C2)

�if p = 0 then c1 else c2��c(I,C) = (p · I2

�� Rempar(I1, p), C1 ∪ C2)
where �c1��c(I,C) = (I1, C1)

and �c2��c(I,C) = (I2, C2)

�while p �= 0 do c��c(I,C) = (I,C′ ∪ Cw)

�while p = 0 do c��c(I,C) = (I,C′ ∪ Cw)
where �c1��c(I,C) = (I ′, C′)

and Cw = {I ≡ I ′}
Fig. 3. Abstracting polynomial programs assuming loop invariant property

of fresh parameters. We will note Rempar(g, p) the ai, bi-lpp polynomial defined
by Rempar(g, p) = g − q · p where q is the most generic bi-lpp of degree d − d1.
Considering a linear parameterized ideal I = <g1, . . . , gs> ∈ Ipar, we will note
Rempar(I, p) = <Rempar(g1, p), . . . , Rempar(gs, p)>.

The use of this parameterized division operator will be illustrated in the example
of Section 5.4.

This abstract semantics gives raise to Algorithm 1 that computes polynomial
loop invariants. The correctness of this algorithm is asserted by Theorem 4 below.

input : c ∈ P, d ∈ N and a = {ai | i ∈ N} parameters
output: a set of polynomials G
begin1

g := the most generic ai-polynomial of degree d;2

computing abstract semantics (I,C) = �c��c<g>;3
generating Cg,c, the constraint C ∪ (I ≡ <0>);4
computing Sg,c, set of solutions of Cg,c;5
G := set of polynomials obtained by ai-instanciating g by elements of Sg,c;6

end7

Algorithm 1. Inference of polynomial invariants assuming loop invariant
property

Theorem 4. Let c ∈ P and d ∈ N. Polynomials computed by Algorithm 1 are
polynomial invariants at the end of the program c, whose degree are less or equal
to d.

68 D. Cachera et al.

Proof. This theorem is a direct consequence of correctness relation (1) stated in
Section 4 and of loop invariant property (Definition 8).

Let c ∈ P, d ∈ N and a = {ai | i ∈ N} a set of parameters. Let g be the most
generic ai-lpp polynomial of degree d and I and C such that �c��c<g> = (I, C).
The important point of this proof is that the abstract semantics �.�� and �.��c

coincide on all non-loop statements. Moreover, Theorem 3 states that the loop
invariant hypothesis makes these two abstract semantics coincide on loop state-
ments too. Thus, under loop invariant hypothesis, we can prove by induction on
polynomial programs that �c��<g> = I. The correctness relation (1) then gives
γ(I) ⊆ Bν�c� γ(g). Line 3 of Algorithm 1 enforces the constraint I ≡ <0>. As-
suming this constraint on the coefficients of g, we have Bν�c� γ(g) = R

m, which
proves that polynomials computed by Algorithm 1 are polynomial invariants at
the end of the program c.

5.3 Handling and Solving Constraints

The Fastind analysis is based on an abstract domain mixing ideals and equality
constraints between ideals, that allows eliminating iteration in the computation
of the abstract semantics. The complexity of the whole analysis thus depends on
the efficiency in constraint solving. However, checking equality of two ai-lpp ide-
als I0 and I1 is not easy in general. Basically, one has to prove that each polyno-
mial of I0 belongs to I1 and vice-versa. Such a complete proof could be achieved
by Gröbner base computations, which are nonetheless very costly for parame-
terized polynomials. The goal is to avoid Gröbner base computations altogether
in order to keep tractability, so we propose to assert ideal equality by impos-
ing stronger predicates between polynomials , following a suggestion of Sankara-
narayanan et al. [19]. We detail the different possible choices for polynomial
equality predicates. The problem of ensuring equality I0 ≡ I1 depends on the
nature of I0 and I1. We first consider the case where I0 and I1 are principal ideals,
which means that I0 = <g> and I1 = <h> for some ai-lpp polynomials g and h.

Ensuring <g> ≡ <h>. Equality between principal ideals can be strength-
ened by asserting simple equality between their base polynomials. Clearly,

g = h ⇒ <g> = <h> (2)
Such an equality is then achieved by solving a linear system in the ai parameters.

A weaker condition consists in asserting constant scale equality: equality be-
tween the polynomials g and h up to a multiplication by a constant also leads
to the equality of the generated ideals

∃λ, g = λh ⇒ <g> = <h> (3)
Imposing this equality comes to assuming the equality between coefficients of g
and λh. This results into particular quadratic systems composed of equations of
the form l0 +λ1l1+ · · ·+λnln = 0 where li denotes a linear combination of the ai

parameters. The way of solving these parametric linear constraint systems has al-
ready been studied in the literature [19] and is not developed here. The Fastind

Inference of Polynomial Invariants for Imperative Programs 69

analysis first tries to use simple equality property. If this property does not suc-
ceed to produce a polynomial invariant, we switch to constant scale equality.

Ensuring <g> ≡ �c��<g>. Due to the possible presence of if -statements,
�c��<g> may not be a principal ideal but in the form <h1, . . . , hn> for n > 1.
This kind of ideal equalities is managed by imposing simple equality or constant
scale equality between g and each polynomial hi.
Note that, in the case where �c��<g> is of the form <h1, q · h2>, we may al-
ternatively chose a slightly different condition by asserting <g> ≡ <h1> and
<g> ≡ <h2>. This choice is correct because <g, q ·g> = <g> and will be made
when deg(g) = deg(h2).

Ensuring <g1, . . . , gs> ≡ �c��<g1>
��

. . .
�� �c��<gs>. This case is

treated as the previous one by imposing simple equality or constant scale equal-
ity between <gi> and �c��<gi>.

Note that, except for dijkstra and wensley programs, all the invariants
presented in Section 6 have been inferred using the equality property (2).

5.4 Illustrating the Fastind Analysis on mannadiv Example

In this section, we develop the different steps of the Fastind analysis on the
program mannadiv given in Figure 1 in the introduction of this paper. This pro-
gram, that yields an invariant of degree 2, has been chosen in order to illustrate
the different techniques that come into play for computing loop invariants. More
precisely:

– it demonstrates the use of the loop invariant property,
– the presence of a conditional statement whose guard cannot be ignored in

order to infer a non-trivial invariant illustrates the use of Rempar-operations,
– it shows constraints generation and solving.

We will denote by (Ii, Ci) the element of Ipar × C computed at line i. As the
Fastind analysis acts backward, we start from the pair (I7, C7) where I7 is the
ideal generated by the most generic quadratic ai-lpp polynomial g (I7 = <g>)
and C7 = ∅. In other words, the abstract semantics of mannadiv program is
given by

(I1, C1) = �mannadiv��c(I7, C7)
= �y1 := 0; y2 := 0; y3 := x1;while y3 �= 0 do cif ��c(I7, C7)
= �y1 := 0; y2 := 0; y3 := x1��c(�while y3 �= 0 do cif ��c(I7, C7))

where cif denotes the if -statement of the program and pif its guard (pif =
x2− y2− 1). According to the abstract semantics presented in Figure 3, we have

�while y3 �= 0 do cif ��c(I7, C7) = (I7, C3 ∪ Cw)
where Cw = (I3 ≡ I7) is the constraint set resulting from imposing the loop
invariant property and �c��c = (I3, C3). As cif is an if -statement, it does not

70 D. Cachera et al.

modify the set of constraints and we have C3 = C7 = ∅. It remains to express
I3 as the weakest precondition of cif w.r.t. I7. For the then-branch, we have

�y1 := y1 + 1; y2 := 0; y3 := y3 − 1��c(I7, Cw) = (I4, Cw)
where I4 = <g4> and g4 = g[y3−1/y3; 0/y2 ; y1+1/y1]. In the same way, the ab-
stract semantics of the else-branch is given by

�y2 := y2 + 1; y3 := y3 − 1��c(I7, Cw) = (I6, Cw)
where I6 = <g6> and g6 = g[y3−1/y3; y2+1/y2]. Finally, ideal I3 is given by
I3 = pif · I6

�� Rempar(I4, pif). According to Definition 11, the computation of
Rempar(I4, pif) requires the introduction of q, the most generic bi-lpp of degree
deg(g4)− deg(pif) = 1, and yields
Rempar(g4, p) = g4−q.p = g4−(b0+b1 x1+b2 x2+b3 y1+b4 y2+b5 y3).(x2−y2−1).
Note that the resulting polynomial is in {ai, bi}-lpp form, which is essential for
the linearity of the constraints generated further. Finally, we get

�mannadiv��c(I7, C7) = �y1 := 0; y2 := 0; y3 := x1��c(I7, Cw) = (I1, Cw)
where I1 = <g1> and g1 = g[x1/y3; 0/y2; 0/y1].

The last step of the algorithm consists in solving the constraints in Cw ∪ C0

where C0 is the constraint set obtained by initial nullness, namely C0 = (I1 ≡
<0>), and Cw corresponds to the ideal equality <g> ≡ <pif ·g6, Rempar(g4, pif)>.
This equality will be ensured by the special case of simple equality, which means
that this constraint is satisfied by enforcing both Rempar(g4, pif) = g and g6 = g.
By definition, initial nullness is equivalent to g1 = 0. We note C4, C6 and C0 the
respective linear systems induced by these polynomial equalities.

C0 C6 C4
a6 + a10 + a20 = 0 a20 = a18 a10 = a8 a18 + a13 = 0
a1 + a5 = 0 a19 = 2 a18 a20 = a15 a9 = a16 = a19 = 0
a7 + a14 = 0 a17 = a16 b4 + a13 = 0 b1 = b2 = b3 = b5 = 0
a0 = a2 = a11 = 0 a4 = a5 b0 = a12 − a14

a10 = a9 a5 = a3 − a14 + a12
a7 + a14 a4 = a12 − a13 − a14
a14 = a13 a17 = 2 a15

These resolve into a12 = a5 = a4 = b0 = −a1, all other parameters equating to
0. Finally, the direct instantiation of the ai-lpp polynomial g returns the single
program invariant: x1 = y1 x2 + y2 + y3.

6 Benchmarks

Column Fastind of Table 1 presents the results of the Maple implementation of
the Fastind analysis, run on Rodríguez-Carbonell and Kapur’s benchmarks [18]
and mannadiv example. Even if our method is incomplete due to our way to solve
constraints, our analysis was able to find all the invariants inferred by Rodríguez-
Carbonell and Kapur’s first approach [18] and a large majority of invariants of
Rodríguez-Carbonell and Kapur’s second technique [17]. Our tests were run on
a 2.8 GHz Intel Core 2 Duo with 4 GB of DDR3 RAM. The other columns of the
table are the results of the implementations of literature approaches [12,18,17].
Execution times (in seconds) are given by the authors [14,18,17]. More precisely,

Inference of Polynomial Invariants for Imperative Programs 71

MOS column gives the results of Petter implementation [14,15] of Müller-Olm
and Seidl approach. It uses the algebra system Singular (2.0.5) to deal with
polynomial operations, and was run on an Intel architecture with an AMD
Athlon XP 3000+ and 1Gb of memory. RCK columns present the results of the
implementation of the two Rodríguez-Carbonell and Kapur’s approaches [18,17].
First column gives the time taken by the Maple implementation of their sim-
ple loop approach [18]. Second column gives the time taken by the Macaulay2
implementation of their general approach [17]. These two implementations were
run on a 3.4 GHz Pentium 4 with 2 Gb of memory.

Table 1. Performance results for the Maple implementation

RCK
Name d Var MOS simple loop general Fastind

[18] [17]
dijkstra 2 5 − 1.5 1.31 0.043
divbin 2 5 − 2.1 0.99 0.005
freire1 2 3 − 0.7 0.38 0.006
freire2 2 4 − 0.7 0.85 0.007
cohencu 2 4 − 0.7 0.94 0.009
fermat 2 5 − 0.8 0.92 0.006
wensley 2 5 − 1.1 0.99 0.037
euclidex 2 8 − 1.4 1.95 0.008
lcm 2 6 3.5 1.0 1.22 0.006
prod4 3 6 − 2.1 4.63 0.013
knuth 3 9 − 55.4 2.61 0.084
mannadiv 2 5 − − 1.12 0.005
petter1 2 2 0.776 1.0 0.5 0.003
petter2 3 2 1.47 1.1 0.8 0.003
petter3 4 2 2.71 1.3 4.2 0.004
petter4 5 2 10.3 1.3 > 300 0.004
petter5 6 2 787.2 1.4 > 300 0.006
petter30 31 2 − − − 1.423

In this table d is the degree of the invariants; Var is the
number of variables in the initial polynomial. All times are in seconds, and the dash symbol (−) is
used when no result is available. Examples and their provenance can be found at [16], and in [18].

Results displayed on column Fastind proves the efficiency of the analysis.
Even if Müller-Olm et al. [13] propose in their implementation to optimize Gröb-
ner base computations by using modules, the iterative process and the cost of
module inclusion checking still show a high computational cost, as shown by
the Petter5 example. Last line of the table presents the result of the Fastind
analysis on the program petter30 that computes the integer 30 power sum
(
∑N

i=0 i30) and yields an invariant of degree 31. This shows that our method can
effectively infer invariants of high degree. A thorough analysis of these results
can be found in the technical report [2]. Our Maple sheets are available from
www.irisa.fr/celtique/ext/polyinv.

7 Related Work

Our approach to computing polynomial invariants is developed from a combi-
nation of two techniques developed in literature [12,19]. From Müller-Olm and

www.irisa.fr/celtique/ext/polyinv

72 D. Cachera et al.

Seidl’s analysis [12], we have taken the idea to compute pre-conditions for equal-
ities like g = 0 to hold at he end of execution. From Sankaranarayanan et al.’s
work [19], we have pursued the idea of searching for loop invariants by a con-
straint based approach.

More precisely, the abstract semantics presented in Figure 2 extends the initial
work of Müller-Olm and Seidl [12] to a structured language with both polyno-
mial equality and disequality guards. This extension relies on our computation
of quotients and remainders for parameterized polynomials. In the special case
of a program c ≡ if p �= 0 then c1 else skip, chosing q = 0 as a quotient coin-
cides with Müller-Olm and Seidl’s abstract function. Note that the same authors
mentionned the possibility of using non-null quotients for handling polynomial
equality guards [13], but without pursuing this idea. Indeed, the analysis of
Müller-Olm and Seidl is based on fixpoint iterations using Gröbner bases and
iterating Rempar-operations in loops would give rise to an excessively expensive
analysis. The constraint-based technique that we propose in the abstract seman-
tics given on Figure 3 eliminates the need for iteration. We are thus able to
compute with parameterized quotients in our analysis.

In terms of computational complexity, we propose a practical alternative to
iteration-based methods by focussing on a particular form of loop invariants, as
suggested by Sankaranarayanan et al. [19]. More precisely, condition (2) which
provides the most efficient invariant computation corresponds to their notion
of constant value consecution, and condition (3), which is the loop invariant
hypothesis of Definition 8, corresponds to their notion of constant-scale consecu-
tion. Sankaranarayanan et al. are concerned with computing a forwards analysis
whereas our analysis works backwards. In a forwards analysis, abstract assign-
ments are handled by fresh variable introduction and elimination which requires
computing ideal intersections using Gröbner bases. In a backwards analysis, as-
signments are abstracted by a simple substitution, which avoids Gröbner bases.

Rodríguez-Carbonell and Kapur [17] propose a method adapted to both kinds
of guards, but at the price of a high degree of computational complexity. First,
their abstract domain is the set of ideal varieties, i.e., ideals such that α◦γ(I) = I
(called the IV property). The transfer function for disequality guards comes down
to computing ideal quotients in this abstract domain. The IV property is costly
to maintain, since it relies on the computation of radical ideals, which again
involves Gröbner bases. By default, their implementation skips these computa-
tions and ignores disequality guards, inducing over-approximations. As above,
their forwards analysis uses Gröbner bases for handling assignment. Abstract
equality tests, which are easier to handle in this kind of approach, still need IV
computations due to the nature of the abstract domain: these are often skipped
in practice. Because their transfer function can be non-terminating, they have to
introduce a widening operator that removes all polynomials above a given degree.

Finally, taking the alternative approach of restricting expressiveness,
Rodríguez-Carbonell and Kapur [18] propose an analysis restricted to assign-
ments involving only solvable mappings, which essentially amounts to having
invertible abstract assignments. This leads to a complete analysis for which

Inference of Polynomial Invariants for Imperative Programs 73

the number of iterations is bounded; nevertheless it systematically demands
iterative fixpoint computations. The process of computing all polynomial
invariants for a restricted class of programs was extended by Kovács in [9] which
provides, again through iterative fixpoint computation, a complete invariant
generation method for a specific loop pattern with nested conditionals.

8 Conclusion

We have presented a method for inferring polynomial invariants based on a back-
wards abstract interpretation of imperative programs. The inference technique
is constraint-based rather than iteration-based, relies on parameterized polyno-
mial division for improved precision when analyzing conditionals, and reduces
the analysis problem to constraint solving on ideals of polynomials. The central
result of the paper is that combining constraint-based techniques with backwards
analysis has as consequence that the analysis can be implemented without the
use of Gröbner base computations. Benchmarks show that the resulting analyzer
achieves both good precision, even if not complete, and fast execution, compared
to existing implementations using Gröbner bases.

This contribution constitutes a foundation for extensions to an analysis tool
that covers a full-fledged language. Our technique should have good scalability
properties as the limiting factor is the number of variables and not the degree
of the polynomials nor the size of the code. We have began its integration into
the Sawja static analysis framework for Java (sawja.inria.fr) with promising
results.

We have undertaken the mechanized formalization of all the material of this
paper with the Coq proof assistant, following Besson et al.’s approach [1] to
linear invariant generation. In addition to the gain in confidence, this lays the
groundwork for a certifying analysis toolchain, i.e., the combination of an an-
alyzer that generates certificates in predefined format, and a formally verified
checker that validates them.

References

1. Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Certified Result Checking
for Polyhedral Analysis of Bytecode Programs. In: Wirsing, M., Hofmann, M.,
Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 253–267. Springer,
Heidelberg (2010)

2. Cachera, D., Jensen, T., Jobin, A., Kirchner, F.: Fast inference of polynomial
invariants for imperative programs. Research Report RR-7627, INRIA (2011)

3. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear Invariant Generation Using
Non-linear Constraint Solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL,
pp. 238–252. ACM Press (1977)

sawja.inria.fr

74 D. Cachera et al.

5. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among
variables of a program. In: POPL, pp. 84–96. ACM Press (1978)

6. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms, 3rd edn.
Undergraduate Texts in Mathematics. Springer (2007)

7. Dijkstra, E.: A Discipline of Programming. Prentice-Hall (1976)
8. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6,

133–151 (1976)
9. Kovács, L.: A Complete Invariant Generation Approach for P-solvable Loops. In:

Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009. LNCS, vol. 5947, pp.
242–256. Springer, Heidelberg (2010)

10. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill (1974)
11. Müller-Olm, M., Seidl, H.: Polynomial Constants Are Decidable. In: Hermenegildo,

M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg
(2002)

12. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Information
Processing Letters 91(5), 233–244 (2004)

13. Müller-Olm, M., Petter, M., Seidl, H.: Interprocedurally Analyzing Polynomial
Identities. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
50–67. Springer, Heidelberg (2006)

14. Petter, M.: Berechnung von polynomiellen Invarianten. Master’s thesis, Technische
Universität München (2004)

15. Petter, M., Seidl, H.: Inferring polynomial program invariants with Polyinvar.
Short paper, NSAD (2005)

16. Rodríguez-Carbonell, E.: Some programs that need polynomial invariants in order
to be verified,
http://www.lsi.upc.edu/~erodri/webpage/polynomial_invariants/list.html

17. Rodríguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial in-
variants of bounded degree using abstract interpretation. Science of Computer
Programming 64(1), 54–75 (2007)

18. Rodríguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in
simple loops. Journal of Symbolic Computation 42(4), 443–476 (2007)

19. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using Gröbner bases. In: POPL, pp. 318–329. ACM Press (2004)

http://www.lsi.upc.edu/~erodri/webpage/polynomial_invariants/list.html

A New Abstract Domain for the Representation

of Mathematically Equivalent Expressions�

Arnault Ioualalen1,2,3 and Matthieu Martel1,2,3

1 Univ. Perpignan Via Domitia, Digits,
Architectures et Logiciels Informatiques, F-66860, Perpignan, France

2 Univ. Montpellier II,
Laboratoire d’Informatique Robotique et de Microélectronique de Montpellier,

UMR 5506, F-34095, Montpellier, France
3 CNRS,

Laboratoire d’Informatique Robotique et de Microélectronique de Montpellier,
UMR 5506, F-34095, Montpellier, France

{arnault.ioualalen,matthieu.martel}@univ-perp.fr

Abstract. Exact computations being in general not tractable for com-
puters, they are approximated by floating-point computations. This is
the source of many errors in numerical programs. Because the floating-
point arithmetic is not intuitive, these errors are very difficult to detect
and to correct by hand and we consider the problem of automatically syn-
thesizing accurate formulas. We consider that a program would return an
exact result if the computations were carried out using real numbers. In
practice, roundoff errors arise during the execution and these errors are
closely related to the way formulas are written. Our approach is based
on abstract interpretation. We introduce Abstract Program Equivalence
Graphs (APEGs) to represent in polynomial size an exponential num-
ber of mathematically equivalent expressions. The concretization of an
APEG yields expressions of very different shapes and accuracies. Then,
we extract optimized expressions from APEGs by searching the most
accurate concrete expressions among the set of represented expressions.

1 Introduction

In computers, exact computations are approximated by the floating-point arith-
metic which relies on a finite representation of the numbers [1,12,15]. Although
this approximation is often accurate enough, in some cases, it may lead to ir-
relevant or too inaccurate results. In programs, these roundoff errors are very
difficult to understand and to rectify by hand. At least this task is strongly time
consuming and, sometimes, it is almost impossible. Recently, validation tech-
niques based on abstract interpretation [2] have been developed to assert the
numerical accuracy of floating-point computations and to help the programmer
to correct their codes [11,10]. For example, Fluctuat is a static analyzer that

� This work was partly supported by the SARDANES project from the french Aero-
nautic and Space National Foundation.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 75–93, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

76 A. Ioualalen and M. Martel

computes the inaccuracies of floating-point computations in C codes and helps
to understand their origin [5,6]. This tool has been successfully used in many
industrial projects, in aeronautics and other industries [4]. However, this method
does not indicate how to correct programs in order to produce smaller errors.
It is up to the programmers to write a new version of their program until they
reach a version with the desired accuracy. As floating-point arithmetic is not
intuitive and as there are many ways to write a program this process can be
long and tedious.

Our work concerns the automatic optimization, at compile-time, of the accu-
racy of arithmetic expressions. To synthesize an accurate expression, we proceed
in two phases. In the first phase, we build a large but yet polynomial under-
approximation of all its mathematically equivalent expressions. In the second
phase, we explore our abstract representation to find, still in polynomial-time,
the expression with the best accuracy. More precisely, we select an expression
which minimizes the roundoff errors in the worst case, i.e. for the worst inputs
taken in the ranges specified by the user. This article mainly focuses on the first
phase, the second phase not being described in details because of space limi-
tations. Briefly speaking, this second phase uses an analysis à la Fluctuat to
guide a local exploration of the abstract structure in order to extract an accu-
rate expression. In this article, we present a new method to generate a large set
of arithmetic expressions all mathematically equivalent. This kind of semantics-
based transformation [3] has been introduced in [10,11] and the current work
strongly improves the existing transformations as it allows the generation of
alternative expressions of very different shapes.

Technically, we define a intermediate representation called Abstract Program
Expression Graph (APEG), presented in Section 2 and defined in Section 3,
which is inspired from the Equivalence Program Expression Graphs (EPEG)
introduced in [17]. Our APEGs are built thanks to a set of polynomial algorithms
presented in Section 4. We have proven the correctness of our approach in Section
5, by introducing a Galois connection between sets of equivalent expressions
and APEGs and we introduce an abstract semantics to under-approximate by
APEGs the set of transformation traces of an arithmetic expression. We present
in Section 6 an overview of how we extract an accurate expression from an APEG.
Finally, Section 7 describes experimental results obtained with the Sardana tool
which implements these techniques.

2 Overview

In this section, we give an overview of the methodology used to construct APEGs.
APEGs are designed to represent, in polynomial size, many expressions that are
equal to the original one we intend to optimize. Mathematical equality is defined
with respect to a certain set � of transformation rules of expressions, for example
associativity and distributivity. Our goal is to build a tractable abstraction of
the set of equal expressions and then to explore this abstract set to find an
expression which minimizes the roundoff errors arising during its evaluation.

Domain for the Representation of Mathematically Equivalent Expressions 77

2.0

×
+

2.62

[3.14 , 3.15] +

8.62

—

7.61

Fig. 1. Syntactic tree of expression e

2.0

×

+

2.62

[3.14 , 3.15] +

8.62

+

[3.14 , 3.15]

8.62 +

2.62

—

7.61

Fig. 2. APEG built on e by associativity

2.0

×

+

2.62

[3.14 , 3.15]
+

8.62

+

×

[3.14 , 3.15]2.0

×

2.0

+

× ×

2.622.0 8.622.0

—

7.61

Fig. 3. Example of product propagation

2.0

×

+

2.62

[3.14 , 3.15] +

8.62

—

7.61

+ ([3.14 , 3.15], 2.62, 8.62)

[3.14 , 3.15]

+

+ (2.62, 8.62)

Fig. 4. APEG with abstraction boxes

First of all, an APEG is built upon the syntactic tree of an arithmetic expres-
sion. We assume that, for each input variable, an interval describing its range
is provided by the user. An APEG then contains the usual arithmetic operators
(like +,× or −), variables and constants in the interval domain. An example of
syntactic tree is given in Figure 1 (intervals are written between brackets). An
APEG has two main features: First, it is a compact data structure, of polynomial
size, which is able to cope with the issue of a combinatorial explosion thanks
to the concept of classes of equivalent nodes. Next, it contains abstraction boxes
which represent an exponential number of expressions.

The first feature of APEGs is the notion of equivalent nodes. Equivalent nodes
are obtained by attaching to each node of the tree a set of additional nodes
(written inside dashed ellipses in the figures). An APEG is always built by adding
new nodes in these sets of equivalent nodes, or by adding a new node with its own
set of equivalent nodes. An important point is that nodes are never discarded. For
example, if � contains only the associativity of addition, we construct the APEG
of Figure 2 over the expression e = 7.61 − 2.0 × ([3.14; 3.15] + (2.62 + 8.62)).
Remark that the APEG of Figure 2 represents the expressions 7.61 − 2.0 ×
([3.14; 3.15]+ (2.62+8.62)) and 7.61− 2.0× (([3.14; 3.15]+2.62)+8.62) without
duplicating the common parts of both expressions.

In order to produce various shapes of expressions, we use several algorithms
to expand the APEG while keeping its size polynomial. First, by propagating
the products in the APEG of Figure 2, we obtain the APEG of Figure 3. Next,
we propagate the subtraction in products and sums. This transformation under-
lines the interest of APEGs: A naive approach would introduce a combinatorial
explosion, since the propagation of a negation into each product can be done
in two ways (−(a × b) = (−a) × b = a × (−b)). Instead, as APEGs do not

78 A. Ioualalen and M. Martel

+

+

2.0

×

— +

— × ×

—

+

7.61 7.61

2.0

2.0

2.62
2.62

8.62
8.62

+—

—
—

——

—

[3.14 , 3.15] [3.14 , 3.15]

Fig. 5. Example of subtraction propagation

duplicate the common parts, we simply add to each multiplication a new branch
connected to the lower part of the structure (see Figure 5). Thus we represent
all the possible propagations of the subtraction without growing exponentially.

The second main feature of APEGs is the notion of abstraction box. We
add abstraction boxes into APEGs in the sub-trees where the same operator is
uniformly applied. Abstraction boxes are represented in our figures by rectangles
with a double outline. Intuitively, an abstraction box is an abstraction of all the
parsings that we can obtain with the sub-expressions contained in the box and

a specific operator. For example, the box +, (a, b, c) stands for any parsing of

the sum of a, b and c. Abstraction boxes allow to represent exactly (2n − 1)!!
[13, §6.3] equivalent expressions. An example of the abstraction boxes we add to
the APEG of Figure 2 is given in Figure 4.

Our approach consists of combining all these transformations, in order to gen-
erate the largest (yet polynomial) APEG. The key idea is that we only add to
APEGs expressions which are equivalent to the original one. The correctness
relies on a Galois connection between a collecting semantics containing traces of
transformation and evaluation of expressions and APEGs. This Galois connec-
tion is constructed as an under-approximation of the set of equivalent expres-
sions in order to cover only equivalent expressions. Hence, we do not cover all
the equivalent expressions but we represent an exponential number of them.

3 Formal Definition of APEGs

APEGs are inspired from the EPEG intermediate representation introduced in
[17]. Initially, EPEGs were defined for the phase ordering problem, to represent
multiple equivalent versions of an imperative program. They are built upon a C
program by application of a set of rewriting rules until saturation. These rules
correspond for example to constant propagations or loop unfoldings. This process
is arbitrary stopped at a certain depth to avoid infinite processing. Our APEGs
are not built from a set of rewriting rules applied until saturation. Instead, we
use a set of deterministic and polynomial algorithms described in Section 4.

Domain for the Representation of Mathematically Equivalent Expressions 79

An APEG is built from an initial expression e with respect to a certain set of
binary relations � = {�i, 1 ≤ i ≤ n}, representing the mathematically equiva-
lent transformations we allow to perform on e. Usually we define � as a subset
of rules of the real field containing associativity, commutativity, distributivity
and factorization. Formally, if an expression e1 can be transformed into the ex-
pression e2 using a relation of �, then e1 and e2 are mathematically equivalent.
We generalize this property with the �-equal relation.

Definition 1. �-equal : Let e1 and e2 be two arithmetic expressions, e1 is
�-equal to e2 if (e1, e2) ∈ �� where �� is the transitive reflexive closure of
the set of �i relations.

APEGs are syntactic trees whose nodes are sets of �-equal expressions, and
which contain abstraction boxes representing efficiently large sets of �-equal ex-
pressions. Abstraction boxes are defined by a binary symmetric operator ∗ (like
+ or ×) and a set of operands L. Note that L may contain constants, variables,
expressions or other abstraction boxes (abstraction boxes may be nested). The

abstraction box B = ∗, L represents the set of expressions made of the ∗ op-

erator applied to the operands of L. For example, +, (x1, x2, x3, x4) abstracts

all the parsings of
∑i=4

i=1 xi and, for a nested box, +, (x1, x2, +, (y1, y2, y3))

abstracts all the parsings of ∪x3∈Y {
∑i=3

i=1 xi} where Y denotes all the parsings

of
∑i=3

i=1 yi.
Abstraction boxes are essential for our abstraction as they allow to represent

efficiently an exponential number of �-equal expressions.
From a formal point of view, the set Π� of APEGs is defined inductively as

the smallest set such that:

(i) a ∈ Π� where a is a leaf (a constant or an identifier or an interval [x, y]
abstracting all the values a such that x ≤ a ≤ x),

(ii) ∗(lop, rop) ∈ Π� where ∗ is a binary operator, lop and rop are APEGs
representing the left and right operands of ∗,

(iii) ∗, (p1, . . . , pn) ∈ Π� is an abstraction box defined by the operator ∗ and

the APEGs p1, . . . , pn as operands,

(iv) 〈p1, . . . , pn〉 ∈ Π� is a class of �-equal expressions, where p1, . . . , pn are
APEGS. Note that p1, . . . , pn cannot be classes of �-equal expressions
themselves, i.e. p1, . . . , pn must be induced by the cases (i) to (iii) of the
definition.

Case (iv) of the definition forbids nested equivalence classes since any equiva-
lence class of the form 〈p1, . . . , pn, 〈p′1, . . . , p′m〉〉 could always be rewritten in
〈p1, . . . , pn, p′1, . . . , p′m〉. Examples of APEGs are given in figures 2 to 4. Equiv-
alence classes are represented by dashed ellipses in the pictures.

80 A. Ioualalen and M. Martel

4 APEG Construction

In this section, we introduce the transformations which add to APEGs new
�-equal expressions and abstraction boxes. Each transformation is intended to
only add new nodes into the APEGs without discarding any other node. First
of all, recall from Section 3 that abstraction boxes are defined by a symmetric
operator and a set of expressions. In order to produce the largest abstraction
boxes, we have to introduce homogeneous parts inside APEGs.

Definition 2. Full homogeneity Let ∗ be a symmetric binary operator and π
an APEG. We say that π is fully homogeneous if it contains only variables or
constants and the operator ∗.
Partial homogeneity We say that an APEG is partially homogeneous if it con-
tains a fully homogeneous sub-expression e1 ∗ . . . ∗ en where ∀i, 1 ≤ i ≤ n, ei is
any sub-expression.

For example, the expression e = a + (b + c) is a fully homogeneous expression,
while e′ = ((a× b) + (c+ d)) × e is partially homogeneous since, for e1 = a× b
the sub-expression e1 + (c+ d) of e′ is fully homogeneous.

We introduce two kinds of transformations. First, we perform the homoge-
nization of the APEG by adding new nodes which introduce new homogeneous
sub-expressions. Next we apply the expansion functions which insert abstrac-
tion boxes in the homogenized APEGs. Both transformations are designed to be
executed in sequence, in polynomial-time. The homogenization transformations
insert into an APEG as many �-equal expressions as possible.

4.1 Homogenization Transformations

Transformation of Multiplication:Multiplication may yield two �-equal ex-
pressions: Either by applying the distributivity over the addition or subtraction,
or by applying a further factorization to one or both of its operands (whenever
it is possible). For example, the expression e = a × (b + c) + a × d can be dis-
tributed either in e1 = (a× b + a × c) + a× d or factorized into the expression
e2 = a× ((b+ c) + d). In both cases e1 and e2 contain an homogeneous part for
the + operator. This transformation is illustrated in the upper part of Figure 6.

Transformation of Minus: The minus operator introduces three kinds of
transformations depending on which expression it is applied to. If the minus
operator is applied to an addition then it transforms the addition into a sub-
traction plus an unary minus operator. For example, −(a + b) is transformed
into (−a)− b. If the minus operator is applied to a multiplication then it gener-
ates two �-equal expressions, depending on the operands. For example, −(a× b)
generates the �-equal expressions (−a)× b and a× (−b). If the minus operator
is applied on another minus operator they anneal each other. This transforma-
tion is illustrated in the lower part of Figure 6. Note that, as shown in the
graphical representation of the transformation given in Figure 6, in both cases

Domain for the Representation of Mathematically Equivalent Expressions 81

×

a +

d

+

×

a c

×

a b

+

× ×

+a

b

a d

c

eke1

+

× ×

+a

b

a d

c

eke1

-

×

a b

×

- b

a

-

+

a b
eke1

-

- b

a

-

+

a b
eke1

eke1 eke1

-

×

a b

×

a -

b

+

-

b

Fig. 6. Graphical representation of the homogenization transformations. �-equal ex-
pressions e1 . . . ek are represented by dashed trees. The top transformation corresponds
to the transformation over multiplication and the next two schemes illustrate the trans-
formation over minus, for an addition and a product respectively.

(transformation of multiplication and minus), we add as few nodes as possible
to the pre-existing APEG. Each transformation only adds a polynomial number
of node.

4.2 Expansion Functions

The expansion functions insert abstraction boxes with as many operands as pos-
sible. Currently, we have defined three expansion functions. From an algorithmic
point of view, each expansion function is applied through all the nodes of the
APEG, recursively. As the size of an APEG is polynomial in the number of its
leaves, the expansion functions can be performed in polynomial-time.

Horizontal Expansion: The horizontal expansion introduces abstraction boxes
which are built on some fully or partially homogeneous some sub-trees of an ho-
mogeneous part. If we split an homogeneous part in two, both parts are also ho-
mogeneous. Then we can either build an abstraction box containing the leaves
of the left part of the homogeneous tree, or the leaves of the right part. For
example let us consider the expression described in the top of Figure 7 where
we perform and addition between the left sub-tree grouping the leaves l1, . . . , lk
and the right sub-tree grouping the leaves l′1, . . . , l

′
k′ . We can either create a

box B1 = (+, (l1, . . . , lk)) or a box B2 = (+, (l′1, . . . , l
′
k′)). In one case we

82 A. Ioualalen and M. Martel

+

+

l1,…,lk

+

l'1,…,l'k'

+

+(l1,…,lk)

eke1

+

+

l1,…,lk

+

l'1,…,l'k'

eke1

+

l1,…,lk

 l'1,…,l'k'

+

+

l1,…,lk

 l'1,…,l'k'

+

eke1

+

+(l1,…,lk)

+

l'1,…,l'k'

eke1

Fig. 7.Graphical representation of the expansion transformations. The dotted triangles
with l1, . . . , lk written inside represent homogeneous parts. From top to bottom, the
figure represents the horizontal and vertical expansion transformations.

collapse all the parsings of
∑k

i=1 li and keep a certain parsing of
∑k′

j=1 l
′
j (in an

englobing expression). In the other case we keep a certain parsing of
∑k

i=1 li plus

any parsing of
∑k′

j=1 l
′
j . This transformation is illustrated in Figure 7. We intro-

duce only O(2n) boxes, among the exponential number of possible combinations.

Vertical Expansion: The vertical expansion introduces abstraction boxes in
an homogeneous structure by splitting it into two parts. Here, the splitting is
performed by considering in one hand the leaves contained in a sub-expression
and in the other hand the leaves contained in the englobing expression. Let us
consider an homogeneous structure defined by a set P = {p1, . . . , pn} of operands
and the binary operator ∗. Each occurrence of ∗ defines a sub-expression with a
set {p′1, . . . , p′k} ⊆ P of leaves. The vertical expansion introduces for each occur-
rence of ∗, an abstraction box defined by ∗ and the set P \{p′1, . . . , p′k} of leaves.
Also the vertical expansion introduces for each leaf an abstraction box contain-
ing all the others. This transformation is illustrated in Figure 7. It introduces
O(2n) boxes into an homogeneous part of size n.

Box Expansion: The box expansion is designed to add new abstraction boxes
over the existing ones. As we allow abstraction boxes to be recursive, then for

any abstraction box B′ = (∗′, P ′) which is contained in B = (∗, P), if ∗ = ∗′

then we can merge P and P ′ into a new abstraction box B′′ = (∗, P ∪ P ′).

It is obvious that �-equal expressions represented by B′′ strictly includes the
�-equal expressions represented by B.

Domain for the Representation of Mathematically Equivalent Expressions 83

5 Correctness

5.1 Collecting Semantics

For the sake of clarity, we define a collecting semantics enabling only the trans-
formation of expressions and we omit to include the reduction rules correspond-
ing to the usual evaluation of expressions. Let (|e|)� be the set of partial traces
for the transformation of e into �-equal expressions. To define this collecting se-
mantics, we need to introduce some transformation rules of arithmetic expres-
sions into other equivalent expressions. We define R = ∪n

i=1�i with ∀i, 1 ≤
i ≤ n, �i ⊆ Expr × Expr. We do not require the �i relations to be transi-
tive since � may be applied many times along a trace. For example, we can set
�1 = {((a+ b)+ c, a+(b+ c)) ∈ Expr2 : a, b, c ∈ Expr}, �2 = {((a+ b)× c, a×
c + b × c) ∈ Expr2 : a, b, c ∈ Expr} and �3 and �4 the symmetric relations of
�1 and �2. We define the transformation relation � by means of the rules below,
where ∗ stands for +, − or ×:

e�i e
′, �i ∈ R
e� e′

e1 � e′1
e1 ∗ e2 � e′1 ∗ e2

e2 � e′2
e1 ∗ e2 � e1 ∗ e′2

(1)

Next we define (|e|)� as the set �∗ of �-chains, i.e. the set of all the sequences
e� e1 � . . .� en such that ∀i, 1 ≤ i < n, ei ∈ Expr and ei � ei+1 and e� e1.

Obviously, the collecting semantics (|e|)� is often intractable on a computer.
For example the number of �-equal expressions is exponential if � contains the
usual laws of the real field (associativity, distributivity, etc.) Our abstraction of
the collecting semantics by APEGs is an under-approximation. We compute our
APEG abstract value by iterating a function Φ : Π� → Π� until a fixed point
is reached: [[e]]� = Fix Φ(⊥). The function Φ corresponds to the transformations
introduced in Section 4. The correctness stems from the fact that we require
that a) Φ is extensive, ie. ∀t� ∈ Π�, t� � Φ(t�), b) Φ is Scott-continuous (ie.
x � y ⇒ Φ(x) � Φ(y) and for any increasing chain X , �x∈XΦ(x) = Φ(�X))
and c) for any set of abstract traces t�, γ(t�) ⊆ (|e|)� ⇒ γ(Φ(t�)) ⊆ (|e|)�.
These conditions holds for the transformations of Section 4 which only add
�-equal elements in APEGs and never discard existing elements. By condition
a), the chain C made of the iterates ⊥, Φ(⊥), Φ(2)(⊥), . . . is increasing. Then
C has an upper bound since Π� is a CPO (see Section 5.3). The function Φ
being continuous, �c∈CΦ(c) = Φ(�C) and, finally, by condition c) γ([[e]]�) =
γ(Fix Φ(⊥)) = γ(�c∈CΦ(c)) = γ(Φ(�C)) � (|e|)�.

Intuitively, computing an under-approximation of the collecting semantics
ensures that we do not introduce into the APEG some expressions that would
not be mathematically equivalent to e using the relations in �. This is needed
to ensure the correctness of the transformed expression. Using our conditions,
any abstract trace of the resulting APEG is mathematically correct wrt. the
transformation rules of � and can be chosen to generate a new expression.

84 A. Ioualalen and M. Martel

5.2 Abstraction and Concretization Functions

For an initial expression e, the set (|e|)� contains transformations of the expres-
sion e into �-equal expressions as defined in Equation (1). The elements of (|e|)�
are of the form e � e′ � . . . � en, where e, e′, . . . , en are �-equal and we may
aggregate them into a global APEG since this structure has been introduced
to represent multiple �-equal expressions. So we define the abstraction function
α, as the function that aggregates each expression contained in the traces in a
single APEG. In order to define the concretization function γ we introduce the
following functions:

– the function C(p, π) which returns the set of sub-APEGs of π which are in
the same equivalence class than p, In other words, C(p, π) = {p1, . . . pn} if
there exists an equivalence class 〈p1, . . . pn〉 in π such as p ∈ 〈p1, . . . pn〉,

– the composition ◦∗ of two traces by some operator ∗. Intuitively, given eval-
uation traces t1 and t2 for two expressions e1 and e2, we aim at building the
evaluation trace of e1 ∗ e2. Following the rules of Equation (1), ◦∗(t1, t2) is
the trace in which, at each step, one of the sub-expressions e1 or e2 of e1 ∗ e2
is transformed as they were transformed in t1 or t2.

The concretization γ of an APEG π ∈ Π� is defined by induction by:

(i) if π = a where a is a leaf (i.e. a constant or a variable) then γ(π) = {a},
(ii) if π = ∗(lop, rop) where ∗ is a binary operator, and lop and rop are the

operands of ∗, if the traces of γ(C(lop, π)) are of the form t = t0 � . . .� tn,
and the traces of γ(C(rop, π)) are of the form s = s0 � . . . � sm, then we
have

γ(∗(lop, rop)) =
⋃

t ∈ γ(C(lop, π)), |t| = n
s ∈ γ(C(rop, π)), |s| = m

t0 ∗ s0� t1 ∗ s1� . . .� tn+m ∗ sn+m

(2)
where at each step either ti� ti+1 and si = si+1, or ti = ti+1 and si� si+1,
and where |t| is the length of the trace t.

(iii) if π = 〈p1, . . . , pn〉, let us take pi and pj , two distinct nodes in π. Let
t ∈ γ(pi) and t′ ∈ γ(pj) such as t = t0 � . . . � tn and t′ = t′0 � . . . � t′m.
We defined Jij the set of all pairs (k, l) with 0 ≤ k ≤ n and 0 ≤ l ≤ m
such as tk � t′l is a valid transformation. Then we defined γ(π) as all the
�-compatible junction of pieces of traces of γ(pi) and γ(pj) for all pi and
pj . Formally

γ(π) =
⋃

pi, pj ∈ π
(k, l) ∈ Jij

t0 � . . .� tk � t′l � . . .� tm (3)

This definition works for one function point between two traces, but it could
be generalized to multiple junction points.

Domain for the Representation of Mathematically Equivalent Expressions 85

(iv) if π = ∗, (p1, . . . , p2) then, by definition of an abstraction box, γ(π) =⋃
p∈P γ(p), where P is the set of all the parsing of p1, . . . , pn using the

binary operator ∗(lop, rop) whose concretization is defined in Point (ii).

5.3 The Abstract Domain of APEGs

In this section, we show that the set of APEGs is a complete partial order. Then
we show the existence of a Galois connection between sets of traces and APEGs.

First, we define ��, the partial order on the set of abstraction boxes. Let

B1 = ∗, (p1, . . . , pn) and let B2 = ∗′, (p′1, . . . , p′m) , we say that B2 �� B1 if

and only if the following conditions are fulfilled:

(i) ∗ = ∗′,
(ii) ∀p′i ∈ {p′1, . . . , p′m}, if p′i is not an abstraction box, ∃pj ∈ {p1, . . . , pn} such

that pj = p′i,

(iii) ∀p′i ∈ {p′1, . . . , p′m}, if p′i is an abstract box B3 = ∗′′, (p′′1 , . . . , p′′k) we have:

(a) if ∗′′ = ∗ then ∀p′′j ∈ {p′′1 , . . . , p′′k} if p′′j is not an abstraction box then
p′′j ∈ {p1, . . . , pn}, else if p′′j is an abstract box then ∃pi ∈ {p1, . . . , pn}
such that pi is an abstract box and p′′j �� pi,

(b) if ∗′′ 	= ∗ then ∃pj ∈ {p1, . . . , pn} such that pj is an abstraction box and
p′i �� pj .

In order to define the join �� of two boxes B1 = ∗, (p1, . . . , pn) and B2 =

∗′, (p′1, . . . , p′m) , we introduce B3 = ∗, (p1, . . . , pn, p′1, . . . , p′m) . By definition,

B1 �� B2 = B3 if ∗ = ∗′, otherwise, if ∗ 	= ∗′ then B1 �� B2 = �. Next we
extend the operators �� and �� to whole APEGs. We obtain new operators �
and � defined as follows. For �, given two APEGs π1, π2 ∈ Π� we have π1 � π2

if and only if one of the following conditions hold:

(i) π1 = a, π2 = a′ and a = a′, where a is a constant or an identifier,
(ii) if π1 and π2 fulfill all of the following conditions: π1 = ∗(lop, rop), π2 =

∗′(lop′, rop′), ∗ = ∗′, lop � lop′ and rop � rop′,
(iii) if π1 = 〈p1, . . . , pn〉, π2 = 〈p′1, . . . , p′m〉 and ∀i, 1 ≤ i ≤ n, ∃j, 1 ≤ j ≤ m

such that pi � p′j ,
(iv) if π1 is a fully homogeneous APEG defined by ∗ and the nodes {p1, . . . , pn},

and π2 contains an abstraction box B′ such that ∗, (pi, ..., pn) �� B′,

(v) if π1 = 〈p1, . . . , pn〉, π2 = ∗(lop, rop), lop ∈ 〈pl1, . . . , plkl
〉, rop ∈ 〈pr1, . . . , prkr

〉
and ∀pi ∈ π1, ∃plj ∈ C(lop, π) and ∃prk ∈ C(rop, π) such that pi � ∗(plj, prk).

In order to define π1 � π2, with π1, π2 ∈ Π�, we observe first that π1 and π2

only contain �-equal expressions. The join of two APEGs π1 and π2 is defined
as the union of the corresponding trees. Boxes are joined using �� and the join
of two nodes of the syntactic tree p1 and p2 yields the equivalence class 〈p1, p2〉.
Finally we define ⊥ as the empty APEG, and � as the APEG built with all the
possible expression transformations of �.

86 A. Ioualalen and M. Martel

We have the following Galois connection between the collecting semantics and
the APEGs where ℘(X) denotes the powerset of X :

〈℘((|e|)�),⊆〉 −−−→←−−−
α

γ
〈Π�,�〉 (4)

6 Profitability Analysis

In this section we give an overview of how our profitability analysis works. First,
we recall how the roundoff errors are computed, and next we briefly describe the
search algorithm employed to explore APEGs.

We use a non-standard arithmetic where error terms are attached to the
floating-point numbers [1,9,11]. They indicate a range for the roundoff error
due to the rounding of the exact value in the current rounding mode. The exact
error term being possibly not representable in finite precision, we compute an
over-approximation and return an interval with bounds made of multiple preci-
sion floating-point numbers. Indeed, the error interval may be computed in an
arbitrarily large precision since it aims at binding a real number and, in practice,
we use the GMP multi-precision library [18]. Note that the errors can be either
positive or negative. This depends on the direction of the rounding operation
which can create either an upper or a lower approximation.

Error terms are propagated among computations. The error on the result of
some operation x ∗ y is the propagation of the errors on x and y through the
operator ∗ plus the new error due to the rounding of the result of the operation
itself. Let x and y be to values represented in our arithmetic by the pairs (fx, ex)
and (fy, ey) where fx and fy are the floating-point or fixed-point numbers ap-
proximating x and y and ex and ey the error terms on both operands. Let ◦(v)
be the rounding of the value v in the current rounding mode and let ε(v) be
the roundoff error, i.e. the error arising when rounding v into ◦(v). We have by
definition ε(v) = v−◦(v) and, in practice, when v is an interval, we approximate
◦(v) by [− 1

2ulp(m), 12ulp(m)] in floating-point arithmetic, or by [0, ulp(m)] in
fixed-point arithmetic, where m is the maximal bound of v, in absolute value,
and ulp is the function which computes the unit in the last place of m [14]. The
elementary operations are defined in equations (5) to (7).

x+ y =
(
◦ (fx + fy), ex + ey + ε(fx + fy)

)
(5)

x− y =
(
◦ (fx − fy), ex − ey + ε(fx − fy)

)
(6)

x× y =
(
◦ (fx × fy), fy × ex + fx × ey + ex × ey + ε(fx × fy)

)
(7)

For an addition, the errors on the operands are added to the error due to the
roundoff of the result. For a subtraction, the errors on the operands are sub-
tracted. The semantics of the multiplication comes from the development of
(fx + ex)× (fy + ey). For other operators, like division and square root, we use
power series developments to compute the propagation of errors [9].

Domain for the Representation of Mathematically Equivalent Expressions 87

We use the former semantics to evaluate which expression in an APEG yields
the smallest error. The main difficulty is that it is possible to extract an ex-
ponential number of expressions from an APEG. For example, let us consider
an operator ∗(p1, p2) where p1 and p2 are equivalence classes p1 = 〈p′1, . . . p′n〉
and p2 = 〈p′′1 , . . . p′′m〉. Then we have to consider all the expressions ∗(p′i, p′′j) for
1 ≤ i ≤ n and 1 ≤ j ≤ m. In general, the sub-APEGs contained in p1 and p2 may
be operations whose operands are again equivalence classes. To cope with this
combinatorial explosion, we use a limited depth search strategy. We select the
way an expression is evaluated by considering only the best way to evaluate its
sub-expressions. This corresponds to a local choice. In our example, synthesizing
an expression for ∗(p1, p2) consists of searching the expression p′i∗p′′j whose error
is minimal with respect to any p′i ∈ p1 and any p′′j ∈ p2.

For a box B = ∗, (p1, . . . , pn) we use an heuristic which synthesizes an accu-

rate expression (yet not always optimal). This heuristic is defined as a greedy
algorithm which searches at each step the pair pi and pj such that the error term
carried out by the expression pi ∗ pj is minimal. Then pi and pj are removed
from the box and a new term pij is added whose accuracy is equal to the error
term of pi ∗ pj defined by Equations (5) to (7). This process is repeated until
there is only one node left in the box. This last node corresponds to the root
of the expression synthesized for the abstraction box. Remark that other algo-
rithms could be used including algorithms performing additional computations
to compensate the errors [19,16].

7 Experimental Results

In this section, we present experimental results obtained using our tool, Sardana.
We present statistical results on randomly generated expressions. Then we show
exhaustive tests on summations and polynomial functions.

7.1 Statistical Results

In this section, we present statistical results concerning the reduction of the
roundoff errors on randomly generated expressions. First, we consider summa-
tions whose operands belong to intervals. Summations are fundamental in our
domain since they correspond to the core of many numerical algorithms (scalar
products, matrix products, means, integrators, etc). Despite their apparent sim-
plicity, summations may introduce many accuracy errors and many algorithms
have been proposed (this is still an active research field e.g. [19]). Hence, a main
challenge for our analysis is to improve the accuracy of sums.

We use 4 configurations taken from [8] and which illustrate several pitfalls
of the summation algorithms in floating-point arithmetic. We call large value
a floating-point interval around 1016, medium value an interval around 1, and
small value an interval around 10−16. We consider the following configurations:

88 A. Ioualalen and M. Martel

Table 1. Statistical improvement of accuracy for summation and polynomials

10 terms expression 20 terms expression
expression form interval width large small large small

100%+

Configuration 1 35.3% 33.4% 16.2% 16.5%
Configuration 2 35.2% 34.3% 15.8% 34.3%
Configuration 3 54.2% 59% 46.5% 51.9%
Configuration 4 46.2% 52.9% 41.4% 46.3%

45%+, 10%×, 45%−
Configuration 1 12.9% 14.5% 13.1% 15%
Configuration 2 11.8% 12.9% 11.8% 12%
Configuration 3 15.1% 14.9% 13.9% 14.5%
Configuration 4 10.0% 11.3% 11% 11.4%

50%+, 25%×, 25%−
Configuration 1 15% 16.4% 15.2% 16.4%
Configuration 2 12.9% 13.6% 12.2% 13.1%
Configuration 3 18.4% 17.7% 16.4% 16.9%
Configuration 4 12.7% 13.5% 12.2% 12.3%

1) Only positive sign, 20% of large values among small values. Accurate sums
should first add the smallest terms,

3) Only positive sign, 20% of large values among small and medium values.
Accurate sums should add terms in increasing order,

3) Both signs, 20% of large values that cancel, among small values. Accurate
sums should add terms in decreasing order of absolute values,

4) Both signs, 20% small values and same number of large and medium values.
Accurate sums should add terms in decreasing order of absolute values.

For all these configurations, we present in the first row of Table 1 the average
improvement on the error bound, i.e. the percentage of reduction of the error
bound. We test each configuration on two expression sizes: With 10 or 20 terms,
and with two widths of intervals: Small width (interval width about 10−12 times
the values) or large width (interval width about 10% of the values). Each result
is an average of the error reduction on 103 randomly generated expressions. Each
source expression has been analyzed in the IEEE-754 binary 64 format by our
tool in matter of milliseconds on a laptop computer. We can see that our tool
is able to reduce the roundoff error on the result by 30% to 50% for a 10 terms,
and between 16% and 45% for 20 terms. This means that our tool synthesize
new expressions whose evaluation yields smaller roundoff errors than the original
ones in the worst case, for any concrete configuration taken into the intervals for
which the transformation has been performed.

Table 1 presents also the average improvement for more complex expressions.
We used the same configurations as before but on two new sets of randomly
generated expressions: The former with 45% of sums, 10% of products and 45%
of subtractions, and the latter with 50% of additions, 25% of products and 25%
subtractions. We obtained an accuracy improvement by 10% to 18% in average.
We believe that the accuracy improvement is less significant because the data
are not specifically ill-conditioned for these kind of expressions.

Domain for the Representation of Mathematically Equivalent Expressions 89

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 20 40 60 80 100 120 140

N
um

be
r

of
 e

xp
re

ss
io

n

Bound on the absolute error

Number of Expressions (Dataset 1)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 20 40 60 80 100 120 140

N
um

be
r

of
 e

xp
re

ss
io

n

Bound on the absolute error

Number of Optimized Expressions (Dataset 1)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 10 20 30 40 50 60 70

N
um

be
r

of
 e

xp
re

ss
io

n

Bound on the absolute error

Number of Expressions (Dataset 3)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 10 20 30 40 50 60 70

N
um

be
r

of
 e

xp
re

ss
io

n

Bound on the absolute error

Number of Optimized Expressions (Dataset 3)

Fig. 8. First line: Results for the sum of 9 terms, Configuration 1. Second line: Results
with Configuration 2. Left and right part illustrate the initial and optimized accuracy.

7.2 Benchmarks

Transformation of Summations. First we present some exhaustive tests con-
cerning the summations. Our goal is to determine the performance of our tool
for all the possible initial parsings of a sum. Let us remark that a sum of n terms
has (2n−1)!! evaluation schemes [13, §6.3] which can all have various accuracies.
For example, a 9 term sum yields 2 millions evaluation schemes, and a 10 term
sum yields almost 40 millions schemes. We performed our benchmarks on all the
initial parsings of sums going from 5 to 9 terms. For each parsing we have tested
the same four configurations and the two interval widths of value described in
Section 7.1. We present the results obtained using the IEEE-754 binary 64 format
to perform 9 terms summations with large interval width (other interval widths
yield similar observations and this configuration presents the most significant
results of our benchmarks).

Our results are depict by histograms organized as follows: The x-axis indicates
the roundoff error on the result of the evaluation of one summation (i.e. for a
specific parsing) using the configuration mentioned in the caption and the y-
axis indicates how many parsings among all the initial parsings have introduced
the corresponding roundoff error (note that many parsings yield the same error,
for instance about 3, 5 · 106 yield an absolute error of magnitude 64 in the first
histogram of figure 1). We have first performed an analysis to determine the

90 A. Ioualalen and M. Martel

 0

 100000

 200000

 300000

 400000

 500000

 0 10 20 30 40 50 60

N
um

be
r

of
 e

xp
re

ss
io

n

Bound on the absolute error

Number of Expressions (Dataset 5)

 0

 100000

 200000

 300000

 400000

 500000

 0 10 20 30 40 50 60

N
um

be
r

of
 e

xp
re

ss
io

n

Bound on the absolute error

Number of Optimized Expressions (Dataset 5)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 20 40 60 80 100 120

N
um

be
r

of
 e

xp
re

ss
io

n

Bound on the absolute error

Number of Expressions (Dataset 7)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 20 40 60 80 100 120

N
um

be
r

of
 e

xp
re

ss
io

n

Bound on the absolute error

Number of Optimized Expressions (Dataset 7)

Fig. 9. Sum of 9 terms for configurations 3 and 4 (first and second line resp.)

maximal error bound on each source sum. This corresponds to the leftmost
histograms of Figures 1 and 9. Then we have applied our tool to each source
sum with the same data in order to obtain the error bounds on the optimized
sums. The right-hand side of Figure 1 gives the number of sums corresponding
to each accuracy after program transformation. Intuitively, the more the bars
are shifted to the left, the better it is. In all the figures presented in this section,
both the leftmost and rightmost histograms of each line have the same scale.

First, let us remark that, initially, the distribution of the errors is similar
for each configuration (leftmost histograms of figures 1 and 9). The distribu-
tion looks like gaussian: There are few optimal parsings (leftmost bar) and few
parsings returning the worst accuracy (rightmost bar). Remark that on config-
urations 1, 3 and 4 our tool is able to shift the gaussian-like distribution of the
bars to the left, which corresponds to an average gain of 50% of accuracy.

For each sum in Configuration 2 our tool is able to produce a parsing of
optimal accuracy. This result is due to how we generate code when we reify an
abstraction box: We perform a greedy association of terms and, in the case of
positive values, it corresponds to sorting them by increasing order of magnitude
which is the optimal solution in this case.

Transformation of Polynomials. We focus now on the transformation of
monovariate polynomials. Polynomials are pervasives in numerical codes yet it
is less famous that numerical errors arise during their evaluation close to a root

Domain for the Representation of Mathematically Equivalent Expressions 91

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 2e-15 4e-15 6e-15 8e-15 1e-14 1.2e-14 1.4e-14

N
um

be
r

of
 E

xp
re

ss
io

n

Bound on the absolute error

Polynomial (x-1)5 initial schemes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 2e-15 4e-15 6e-15 8e-15 1e-14 1.2e-14 1.4e-14

N
um

be
r

of
 E

xp
re

ss
io

n

Bound on the absolute error

Polynomial (x-1)5 optimized schemes

Fig. 10. Leftmost histogram illustrates the initial accuracy of the polynomials P 5(x),
the rightmost histogram yields the accuracy of the optimized one

(and even more close to a multiple root [7]). We have tested exhaustively all

the polynomials defined by Pn(x) =
∑n

k=0(−1)k ×
(
n
k

)
× xkwhich correspond

to the developed form of the function (x − 1)n. In our source expressions, xn

is written as the product
∏n

i=1 x. We let n range from 2 to 5. The variable
x is set to an interval around 1 ± 10−12 in the IEEE-754 binary 64 format.
To grasp the combinatorial explosion in the number of ways to evaluate the
polynomial, note that for n = 5 there are 2.3 million distinct schemes, and for
n = 6 there are 1.3 billion schemes [13, §6.2.2]. Left part of Figure 10 shows the
error distribution of the initial schemes of P 5(x) and the right part shows the
error distribution of the optimized schemes. We can see that initially most of the
schemes induces a rounding error which is between 8.0 · 10−15 and 1.2 · 10−14.
Our tool produces optimized schemes of P 5(x) with an error bound between
4.0 · 10−15 and 9.0 · 10−15, which represents a 25% to 50% improvement of the
numerical accuracy.

8 Conclusion

In this article, we have introduced a new technique to represent a large set of
mathematically equal arithmetic expressions. Our goal is to improve the numer-
ical accuracy of an expression in floating-point arithmetic. We have define an
abstract intermediate representation called APEG which represents very large
set of arithmetic expressions that are equal to an original one. We construct
APEGs by using only deterministic and polynomial functions, which allow us
to represent an exponential number of equal expressions of very various shapes.
The correctness is based on a Galois connection between the collecting semantics
of transformations of arithmetic expressions and our abstract domain of APEG.
Our experimental results show that, statistically, the roundoff error on summa-
tions may be reduced by 40% to 50% and by 20% for polynomials. We intend
to present in more details the approach we use to explore APEGs and select
expressions, as well as the implementation of our tool.

92 A. Ioualalen and M. Martel

We believe that our method can be improved and extended in many ways.
First, we want to introduce more expansion functions in order to increase the
variety of equal expressions in APEGs. We already think about defining some
expansion functions to achieve partial regroupings of identical terms in a sum.
Then we want to extend APEGs in order to handle the transformation of whole
pieces of programs and not only isolated arithmetic expressions. We intend to
handle control structure as well as recursive definitions of variables or iteration
structure. At short term, we aim at transforming small standalone programs
such as embedded controllers or small numerical algorithms.

Acknowledgments. We would like to thank Radhia and Patrick Cousot,
Damien Massé and all the members of the Abstraction team for inspiring dis-
cussions about various aspects of this work.

References

1. ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic, std 754-2008
edition (2008)

2. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximations of fixed points. In: POPL,
pp. 238–252. ACM (1977)

3. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. In: POPL, pp. 178–190. ACM (2002)

4. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: To-
wards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Software. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
53–69. Springer, Heidelberg (2009)

5. Putot, S., Goubault, É., Martel, M.: Static Analysis-Based Validation of Floating-
Point Computations. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.)
Numerical Software with Result Verification. LNCS, vol. 2991, pp. 306–313.
Springer, Heidelberg (2004)

6. Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations. In:
Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011)

7. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society
for Industrial and Applied Mathematics, Philadelphia (2002)

8. Langlois, P., Martel, M., Thévenoux, L.: Accuracy Versus Time: A Case Study
with Summation Algorithms. In: PASCO, pp. 121–130. ACM (2010)

9. Martel, M.: Semantics of roundoff error propagation in finite precision calculations.
Journal of Higher Order and Symbolic Computation 19, 7–30 (2006)

10. Martel, M.: Semantics-Based Transformation of Arithmetic Expressions. In: Riis
Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 298–314. Springer,
Heidelberg (2007)

11. Martel, M.: Enhancing the implementation of mathematical formulas for fixed-
point and floating-point arithmetics. Journal of Formal Methods in System De-
sign 35, 265–278 (2009)

12. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans-
actions of Programming Language Systems (TOPLAS) 30(3), 12 (2008)

Domain for the Representation of Mathematically Equivalent Expressions 93

13. Mouilleron, C.: Efficient computation with structured matrices and arithmetic ex-
pressions. PhD thesis, Université de Lyon–ENS de Lyon (November 2011)

14. Muller, J.-M.: On the definition of ulp(x). Technical Report 5504, INRIA (2005)
15. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V.,

Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser, Boston (2010)

16. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM Journal
on Scientific Computing (SISC) 26(6), 1955–1988 (2005)

17. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: A new approach
to optimization. In: POPL, pp. 264–276. ACM (2009)

18. Torbjorn Granlund and the GMP development team. The GNU Multiple Precision
Arithmetic Library, 5.0.2 edn. (2011), http://gmplib.org

19. Zhu, Y.-K., Hayes, W.B.: Algorithm 908: Online exact summation of floating-point
streams. Transactions on Mathematical Software 37(3), 1–13 (2010)

http://gmplib.org

An Abstract Domain

to Infer Types over Zones in Spreadsheets�

Tie Cheng1,2,3 and Xavier Rival1,2

1 École Normale Supérieure, Paris, France
2 INRIA Paris–Rocquencourt, France

3 École Polytechnique, Palaiseau, France
{tie.cheng,xavier.rival}@ens.fr

Abstract. Spreadsheet languages are very commonly used, by large user
bases, yet they are error prone. However, many semantic issues and errors
could be avoided by enforcing a stricter type discipline. As declaring and
specifying type information would represent a prohibitive amount of work
for users, we propose an abstract interpretation based static analysis for
spreadsheet programs that infers type constraints over zones of spread-
sheets, viewed as two-dimensional arrays. Our abstract domain consists
in a cardinal power from a numerical abstraction describing zones in a
spreadsheet to an abstraction of cell values, including type properties.
We formalize this abstract domain and its operators (transfer functions,
join, widening and reduction) as well as a static analysis for a simpli-
fied spreadsheet language. Last, we propose a representation for abstract
values and present an implementation of our analysis.

1 Introduction

Spreadsheet softwares such as Excel or OpenOffice are very widely used, and
include not only an interface to visualize and manipulate two-dimensional arrays
of cells but also a programming language which permits complex calculations.
For instance, Excel includes Visual Basic for Applications (VBA) and OpenOffice
includes a Basic like language.

These programming languages are used in many industrial and financial ar-
eas for important applications such as statistics, organization and management.
Reports of spreadsheet related errors appear in the global media at a fairly con-
sistent rate. It is not surprising that, as an example, a consulting firm, Coopers
and Lybrand in England, found that 90% of all spreadsheets with more than
150 rows that it audited contained errors [1]. Spreadsheet errors result in var-
ious problems such as additional audit costs, money loss, false information to
public, wrong decision making, etc. As the risks they incur are not considered
acceptable, the defects in such applications have attracted increasing attention
from communities such as Excel advanced users and IT professionals.

� The research leading to these results has received funding from the European
Research Council under the European Union’s seventh framework programme
(FP7/2007-2013), grant agreement 278673, Project MemCAD.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 94–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Abstract Domain to Infer Types over Zones in Spreadsheets 95

Various techniques were considered in order to tackle spreadsheet risks. One
class of existing work enhances the functional aspect of spreadsheets, viewed as a
first-order functional environment [2,3,4,5]. Another body of work attempts to im-
proving quality of spreadsheets using model-driven engineering spreadsheet devel-
opment environments [6,7,8,9]. Last, ad hoc methods [10,11,12] were proposed to
detect specific kinds of problems, using most of the time algorithms with no math-
ematical foundation, that neither sound nor complete. One major drawback of the
existing work is that currently they only consider spreadsheet interface, but not
consider applications attached to the spreadsheets, which arewritten e.g., in VBA.

In this paper, we address the lack of static types in current spreadsheet ap-
plications. For instance, it is impossible to declare abstract types (e.g. integer,
boolean, etc.) for a cell in Microsoft Excel; a value of any type may be assigned
to any cell at any time. This feature of spreadsheet applications may provide
users with a high level of flexibility but it becomes a serious source of errors
which would be avoided in well typed languages.

Therefore, we verify the absence of some class of type errors to improve the
safety of spreadsheet programs, that existing research in enhancing spreadsheet
languages or focusing on spreadsheet interface hardly deals with. Our approach is
based on a static analysis by abstract interpretation, which guarantees the sound-
ness of our approach and makes it possible to existing abstract domains and tools.

More precisely, our analysis aims at inferring type information about zones
in spreadsheets, taking into account an initial condition on the spreadsheet, and
all possible sequences of operations of the associated programs. We make the
following contributions:

– we introduce an abstract domain to express type properties of array zones,
based on a cardinal power of zone abstractions and type abstractions (Sect. 4);

– we propose a set of transfer functions and join and widening operators for
the analysis of spreadsheet programs (Sect. 5);

– we validate our approach using a prototype implementation (Sect. 6) with
the analysis of simple spreadsheet programs.

2 Overview

We show a simple program 1 in a restricted spreadsheet language that we con-
sider in the paper. Although its syntax is not exactly the same as that of VBA
or Basic in OpenOffice, its task of selecting data sharing certain properties is
realistic and common in practice. The rectangle zone [1, 100]× [1, 1] of the sheet
has already been initialized to integer values. The main procedure goes through
column 1, for each cell, we compare its value to 9 and assign the boolean result
to the cell in the same line in column 2. If the integer value is less than 9, it is
copied to the first empty cell in column 3. Our analyzer infers invariants about
types of different parts of the sheet, and it also detects different sorts of type
conflicts hidden in the code, which may result in strange behaviors in VBA for
instance. The index error in line 16, operand error in line 17, condition error in
line 18 and assignment error in line 21 will be more explained further.

96 T. Cheng and X. Rival

1 program
2 var
3 i, j : int;
4 name
5 ([1, 100], [1, 1]) : int;
6 begin
7 i := 1; j := 1;
8 while i < 51 do
9 Sheet(i, 2) := Sheet(i, 1) < 9;
10 if Sheet(i, 2) then begin
11 Sheet(j, 3) := Sheet(i, 1);

12 j := j + 1
13 end fi
14 i := i+ 1
15 od;
16 i := Sheet(true, 1);
17 i := 1 + Sheet(11, 2);
18 if Sheet(j, 3) then
19 j := 1 else
20 j := 2 fi
21 Sheet(i− 1, 1) := true
22 end.

Fig. 1. An example program

The concrete states refer to the concrete value of variables and the run-time
contents of the sheet cells. Figure 2 represents a concrete state of loop between
line 8 and line 9. Precisely, the cells [1, 7]× [2, 2] store boolean values, the cells
[1, 4] × [3, 3] store integer values. [1, 100] × [1, 1] is reserved by the declaration
name at lines 4 and 5 of the program, which means only integer values should
be stored in that area.

i = 8 j = 5

1 2 3
5 true 5
17 false 8
8 true 3
12 false 4
23 false
3 true
4 true

2

1

4

7

100

Fig. 2. A concrete state

i : [1, 50] j : [1, i]

1

100

1

int

1

2

bool

1

i− 1

j − 1

3

int

Fig. 3. An abstract state

In order to verify that no illegal operation will be performed in the spreadsheet
program due to type issue, and that type properties in the reserved zone are not
violated, the analysis should relate type information to spreadsheet cells. At-
taching a type predicate to each cell would not be effective, and it would not be
even doable for spreadsheet regions of non fixed size. Moreover, users naturally
view a spreadsheet as a set of zones where they store homogeneous sorts of data.
Therefore, we consider an abstraction, where type information are attached to
spreadsheet zones. Precisely, an abstract state will consist in a pair made of an
abstraction of integer variables, and an abstraction of type properties of sheet

An Abstract Domain to Infer Types over Zones in Spreadsheets 97

cells (e.g.. Figure 3 is an intuitive image of the abstract state corresponding
to the concrete state of Figure 2). The abstraction of integer variables relies
on inequality constraints over variables and constants. The abstraction of type
properties of sheet cells consists in a form of cardinal power [13] from the ab-
straction of sheet zones to type properties, where zones are characterized by
set of constraints tying cell coordinates to program variables. Although analyz-
ing the simple program, chosen to facilitate the illustration, needs only column
abstraction, the abstraction of a large variety of zones is necessary in practice
and can be achieved by our domain (e.g. rectangular abstraction is performed
to analyze programs in Sect. 6).

3 Spreadsheet Programs

In this paper, we focus on a restricted spreadsheet language, where instruc-
tions are assignments, “if” and “while” statements, with data-types ranging in
T = {int, bool, . . .}. We assume program variables all have type int, whereas
spreadsheet cells may store values of any type. Compared to a classical impera-
tive language, our language has two specific features. First, the keyword “Sheet”
denotes a cell in the spreadsheet. For instance, expression “Sheet(br, bc)” evalu-
ates into the value stored in cell (br, bc); “Sheet(br, bc) := e” affects the value of
e to the cell (br, bc). In the paper, we restrict to cell indexes (br and bc) which are
either an integer constant c or an integer variable plus an integer constant x+ c.
Other variables are assumed to be declared at the beginning of the program.
Second, spreadsheet areas can be reserved to a type by the keyword “name”.
For instance, “name ([1, 100], [1, 1]) : int” in Program 1 means that only integer
values should be stored in that area (storing a value of another type would be
considered a semantic error).

In the following, we let V (resp., Vi) denote the set of values (resp., integer
values). We let X denote the set of program variables, augmented with two
special variables x, y which we will use to express relations over cell indexes.
Moreover, N2 represents the set of cells. We use an operational semantics, which
collects all program executions. An execution is a sequence of states (or trace),
where a state is a pair made of a control state l and a memory state ρ = (ρv, ρs),
where ρv : X → Vi and ρs : N2 → V are respectively functions mapping integer
variables and sheet cells into values. We let→ denote the transition relation from
one state to another (modelling one step of computation) and Ω represent the
error state (no transition from Ω is possible). For a detailed presentation of the
syntax and concrete semantics of our restricted spreadsheet language, see [14].

4 Abstract Domain

In this section, we formalize the abstract domain used in our analysis as a cardi-
nal power. First, we consider in Sect. 4.1 the abstraction of a set of spreadsheets
using one type and constraints of one zone. Then, we show the case of a set of
zones in Sect. 4.2. Last, we specialize our abstraction using Difference-Bound
Matrices (DBMs) as a base abstraction in Sect. 4.3.

98 T. Cheng and X. Rival

4.1 Abstraction of a Typed Zone

We assume a numerical abstract domain D�
i is fixed for the abstraction of nu-

merical variables, with a concretization function γi : D
�
i → P(X→ Vi).

Abstraction of a Typed Zone. An abstract value in the typed zone abstract
domain D�

z,1 consists in a pair (Z, t) where Z ∈ D�
i describes a set of numerical

constraints (binding x, y to other variables and constants in the store) and t is a
data-type. The meaning of such an abstract value is that all cells the coordinates
(x, y) of which satisfy constraints Z store a value of type t. More formally, this
yields the concretization relation below:

γz,1(Z, t)
	
= {(ρv, ρs) | ∀x, y ∈ N

2, ρv ∈ γi(Z|x=x,y=y)⇒ ρs(x, y) : t}

The concrete state shown in Figure 2 can be approximated by the following
typed zone abstract elements:

– (Z0, t0) where Z0 = 1 ≤ x ∧ x ≤ 100 ∧ y = 1 and t0 = int
– (Z1, t1) where Z1 = 1 ≤ x ∧ x ≤ i− 1 ∧ y = 2 and t1 = bool
– (Z2, t2) where Z2 = 1 ≤ x ∧ x ≤ j − 1 ∧ y = 3 and t2 = int

This construction is an abstraction of the cardinal power [13]. Indeed the cardinal
power abstract domain would collect all monotone function from an abstraction
of zones into a type domain. We perform here an additional step of abstraction,
where functions from zones to types are approximated with only one pair leaving
the other zones unconstrained.

Product Abstraction. In practice, we always consider an abstraction over the
variables together with an abstraction of the spreadsheet contents, using a prod-
uct domain D�

×,1 = D�
i × D�

z,1. An abstract value consists in a pair (V , {(Z, t)})
where V ∈ D�

i describes constraints over variables and (Z, t) ∈ D�
z,1 describes

constraints over one zone and its type. Therefore, the combined domain con-
cretization boils down to

γ×,1(V , {(Z, t)})
	
= {(ρv, ρs) | ρv ∈ γi(V) ∧ (ρv, ρs) ∈ γz,1(Z, t)}

As an example, the concrete state shown in Figure 2 can be approximated by
abstract state (V , {(Z, t)})) where V = 1 ≤ i ∧ i ≤ 50 ∧ 1 ≤ j ∧ j ≤ i, Z =
1 ≤ x ∧ x ≤ 100 ∧ y = 1 and t = int. We will consider the case of a combined
abstraction with several typed zones in Sect. 4.2, after studying some properties
of the product abstraction.

Properties. The definition of γz,1 and γ× allows to prove the properties below:
1. Propagating constraints over variables into the zone abstraction preserves

concretization: γ×(V , {(Z, t)}) = γ×(V , {(Z � V , t)}), where � simply joins two
sets of constraints.

An Abstract Domain to Infer Types over Zones in Spreadsheets 99

2. Replacing the abstraction of variables (resp. zones) with an equivalent
abstraction preserves concretization: if γi(V) = γi(V ′) ∧ γi(Z) = γi(Z ′) then
γ×(V , {(Z, t)}) = γ×(V ′, {(Z ′, t)})

3. Replacing the abstraction of variables with a weaker abstraction results in
a weaker abstract state: if γi(V) ⊆ γi(V ′) then γ×(V , {(Z, t)}) ⊆ γ×(V ′, {(Z, t)})

4. Replacing the zone abstraction with a weaker abstraction results in a
stronger abstract state: if γi(Z) ⊆ γi(Z ′) then γ×(V , {(Z, t)}) ⊇ γ×(V , {(Z ′, t)})

4.2 Abstraction of a Set of Typed Zones

In practice, we need to bind several distinct zones in the spreadsheet to type
information. For instance, three zones are needed to faithfully abstract the con-
crete state of Figure 2. Therefore, we define D�

Z as the set of finite sets of elements

of D�
z,1, with concretization γZ defined by:

γZ({(Z0, t0), . . . , (Zn, tn)})
	
=

⋂
0≤k≤n

γz,1(Zk, tk)

The definition of the product domain given in Sect. 4.1 extends in a straightfor-
ward manner, and the properties mentioned in Sect. 4.1 still hold:

γ×(V , {(Z0, t0), . . . , (Zn, tn)})
	
= {(ρv, ρs) | ρv ∈ γi(V) ∧ (ρv, ρs) ∈ γZ({(Z0, t0), . . . , (Zn, tn)})}

Then, the concrete state of Figure 2 can be described by the abstract state
(V , {(Z0, t0), (Z1, t1), (Z2, t2)}) with the notations used in Sect. 4.1. This ab-
stract state actually corresponds to Figure 3.

4.3 An Instantiation with Difference-Bound Matrices

When abstracting array properties, bounds of the form c or x + c are often
expressive enough to capture large classes of invariants. Similarly, we found that
such bounds are usually adequate to describe spreadsheet zones. This suggests
using an abstraction based on Difference-Bound Matrices (DBM) (a weaker form
of octagons [15], where constraints are either of the form c ≤ x, x ≤ c or x−y ≤ c)
in order to describe zones. We actually do not need full expressiveness of DBMs
in order to describe zones, as we will be interested only in relations that relate
an index variable (x or y) to a constant or an expression of the form x + c.
Therefore, in the following, we set the following abstraction:

– program variables abstractions (V) are described by DBMs;
– zones abstractions (Z) are described by a weaker form of DBMs, where no

relation among pairs of variables u, v 	∈ {x, y} is represented.

A large variety of zones can be expressed using this abstraction, including in
particular rectangular (c0 ≤ x ≤ c1, c2 ≤ y ≤ c3), triangular (c0 ≤ x ≤ y, c0 ≤
y ≤ c3), and trapezoidal (c0 ≤ x ≤ y + c1, c2 ≤ y ≤ c3) zones. As shown in
Sect. 4.1, this set of constraints allows us to describe all zones relevant in the
example program of Fig. 1.

100 T. Cheng and X. Rival

In this step, the classical representation of DBMs using matrices of difference
appears unnecessarily heavy for zone constraints Zp, as no relation needs to be
stored for pairs of program variables in Zp. This leads us to a hollow representa-
tion of the Zp DBMs, where the submatrix corresponding to the integer variables
is removed. We call this representation “Matrix Minus Matrix” (or MMM).

For instance, letting d (resp., m) denote a DBM (resp., MMM) in the fol-
lowing, all concrete states at the beginning of line 9 in Program 1 can be over-
approximated by the abstract value (d, {(m0, int), (m1, bool), (m2, int)}) (de-
picted in Figure 3), where

d = m0 = m1 = m2 =

i j 0
i 0 0 −1
j +∞ 0 −1
0 50 +∞ 0

x y i j 0
x 0 +∞ +∞ +∞ −1
y +∞ 0 +∞ +∞ −1
i +∞ +∞
j +∞ +∞
0 100 1

x y i j 0
x 0 +∞ +∞ +∞ −1
y +∞ 0 +∞ +∞ −2
i −1 +∞
j +∞ +∞
0 +∞ 2

. . .

5 Domain Operations

In this section, we describe the operations of the domain based on DBM and
MMM structures, including transfer functions, reduction, union and widening.

5.1 Transfer Functions

Transfer functions have two purposes:

– compute a sound post-condition for a program statement, that is accounting
for all concrete states reachable after executing the statement from a given
pre-state;

– report alarms for operations that could not be proved exempt of type error.

The alarm reporting reduces to the checking that all operations are applied to
data of valid type. For instance, if a program statement contains expression
i + Sheet(k, l), and the analysis current abstract state at that point is of the
form (d, {(m0, t0), . . . , (mn, tn)}), then it should check that for all ρv ∈ γi(d)
there exists j such that 0 ≤ j ≤ n and (x = k|ρv , y = l|ρv) ∈ mj |ρv , which
guarantees that cell Sheet(k, l) has integer type. In the following, we discuss
the computation of post-conditions only.

Assignment Transfer Function. Assignment instructions are either of the
form x := e where x is a program variable and e is an expression or of the
form Sheet(e0, e1) := e where e0, e1 and e are expressions. In the first case, the
standard assignment transfer function of DBMs shown in [15] leads to define a
sound result for transfer function assign� in the combined domain (when the

An Abstract Domain to Infer Types over Zones in Spreadsheets 101

right hand side e reads a spreadsheet cell, we conservatively assume this read
operation may return any possible value, as our abstraction does not carry a
precise information about the values stored in the spreadsheet besides type).

In the second case, the typed zones abstractions need to be updated. Let us
assume we are computing an abstract post-condition for abstract state X� =
(d, {(m0, t0), . . . , (mn, tn)}). Then:

– when the cell modified in the assignment can be proved to belong to zone
mk the type of the right hand side is tk, then typed zone abstractions do
not need be modified, and X� is a valid abstract post-condition;

– otherwise zones need be updated, by removing zone information that may
not be preserved in the assignment operation and adding a new zone reduced
to the cell that has been modified.

Let us illustrate by an example with an abstract value X� = (d, {(m, t)}) =
({i : [3, 5]}, {({x : [1, i], y : [1, 3]}, int)}). For Sheet(i−1, 2) := 5, the assignment
transfer function infers that γi(x = i− 1∧ y = 2) ⊆ γi(m) under d = {i : [3, 5]},
and the type of the expression on the right of the assignment is same as the one of
the zone, so X� remains the same. However, for Sheet(i−1, 2) := true, the type
of the expression of the assignment value is different, if Sheet(i− 1, 2) is within
a zone reserved to int, an assignment error Ωassign will be raised, otherwise the
abstract zone needs to be split as shown below.

int

i

1

1 3
int

i− 2

1

1 3

inti

1 3

inti− 1

1

booli− 1

2

inti− 1

3

Many zone splitting strategies could be used, e.g. either vertically first or hor-
izontally first. All strategies would yield a sound result. Reduction (Sect. 5.2)
tends to remove unnecessary partitions, so that the choice of the splitting strat-
egy is not so crucial.

Condition Test Transfer Function. Condition tests are analyzed with a
guard� abstract function, which inputs an abstract state X� and a condition c
and computes an over-approximation of the concrete states in γ×(X

�) such that c
evaluates to true. When c involves only program variables, we simply let guard�

call the condition test function of DBMs [15]. When c involves spreadsheet cells,
we let it return X� (which is always a sound result) as our abstraction ignores
spreadsheet values.

102 T. Cheng and X. Rival

5.2 Reduction

As we can see in Sect. 5.1, assignments may generate additional abstract zones,
resulting in increasingly large sets of zones. For instance, constraints ({x :
[1, i − 1], y = 2}, bool), {({x = i, y = 2}, bool)} could be described by just one
constraint. Performing this simplification is the purpose of a (partial) reduction
operator, by merging zones when this can be done with no loss in precision.

In the following we let d∗ denote the closure of d, the closure m∗ associated
with d∗ is obtained by computing m∗ from the information in both m and d∗.
We write ∨ for the point-wise least upper bound over DBMs (resp., MMMs),
thus (d ∨ d′)ij = max(dij ,d

′
ij) (resp., (m ∨m′)ij = max(mij ,m

′
ij)). We allow

the intersection ∧ over an MMM and a DBM if their sizes and the variables
they describe are consistent, the result is a DBM. We define the intersection of
a (h× l− h′ × l′) MMM m and a h′ × l′ DBM d by:{

d′i+h−h′,j+l−l′
	
= dij if (i, j) ∈ [1× h′]× [1× l′]

d′ij
	
= mij otherwise

We assume an abstract value (d, {(m0, t0), . . . , (mn, tn)}) is given. Let us first
look at a pair of its zones (mi, ti) and (mj , tj). Obviously we don’t consider merg-
ing the two zones if ti 	= tj . In the other case, we first carry out the normalization,
and obtain the closures d∗, m∗

i and m∗
j associated with d∗. Then we let m∨ be

the result ofm∗
i ∨m∗

j , which ensures thatm∨∧d∗ is an upper bound for (m∗
i∧d∗)

and (m∗
j ∧d∗). But we consider merging these two zones only when (m∨∧d∗) is

an exact join of (m∗
i ∧d∗) and (m∗

j∧d∗), otherwise the merged zone would be less
precise than the two initial zones. To verify if (m∨∧d∗) = (m∗

i ∧d∗)∨(m∗
j ∧d∗),

we use the algorithm “Exact Join Detection for Integer Bounded Difference
Shapes” introduced in [16], which consists in finding a 4-tuple (i, j, l, k) such that
w1(i, j) < w2(i, j)∧w2(k, l) < w1(k, l)∧w1(i, j)+w2(k, l)+2 ≤ w(i, l)+w(k, j),
where wk and w represent respectively the difference matrices of the 2 operands
and the result of the join. If such a 4-tuple exists, the join is not exact. Overall,
the reduction algorithm attempts to merge pairs of zone constraints with equal
type. Then, the merging rule of two abstract typed zones writes down:

{(mi, ti), (mj , tj)}
ti=tj and

(m∨∧d∗) is an exact join of (m∗
i∧d

∗) and (m∗
j∧d

∗)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ {(m∨, ti)}

where m∨ 	
= mi ∨mj . In the above example, the following reduction can be

performed:

({i : [1,+∞]}, {({x : [1, i− 1], y = 2}, bool); {({x = i, y = 2}, bool)})
−→ ({i : [1,+∞]}, {({x : [1, i], y = 2}, bool)})

Now given the whole abstract value (d, {(m0, t0), . . . , (mn, tn)}) which may con-
tain several typed zones, we compute the normalization of all the zones at once.
Then reduction picks one zone Zi, and goes through the other zones, looks for a

An Abstract Domain to Infer Types over Zones in Spreadsheets 103

zone that can be merged with Zi. A join needs to be calculated, and if the join
is exact, the reduction merges both zones into one new zone and proceeds with
the other zones. The complexity of a normalization (Floyd-Warshall algorithm)
is O(l3), where l is the length of the side of mk (number of program and index
variables). The most costly part of the algorithm, the exact join detection, has
a worst-case complexity bound in O(l3 + r1r2), where rk is the number of edges
in difference matrix wr, but the detection may finish quickly when the join is
not exact, which occurs often in practice. Overall the worst-case complexity of
the reduction is O(n2 × l3). The algorithm is sound:

Theorem 1 (Soundness). r� is an abstract reduction,

γ×(X
�) ⊆ γ×(r

�(X�))

5.3 Upper Bound Operator

We now propose an algorithm to compute upper bounds for typed zone con-
straints, which will also serve as a basis for a widening operator (Sect. 5.4).

We assume two abstract values X�
0, X

�
1 ∈ D�

× are given, and we assume X�
k =

(dk, {(mk, t)}) (the cases where types do not match or where there are several
zones will be discussed afterward). Property 3 and Property 4 (Sect. 4.1) provide

a straightforward way to compute a common over-approximation for X�
0 and X�

1:

indeed, if we let d = d0 ∨ d1 and m = m0 ∧m1, we clearly have γ×(X
�
i) ⊆

γ×(d, {m, t}), thus X� = (d, {m, t}) provides a sound upper bound.
Unfortunately, this straightforward technique is not very precise. Indeed, let

us consider the case of X�
0 = ({i : [2, 2]}, {({x : [i + 6, i + 6], y = 1}, int)}) and

X�
1 = ({i : [3, 3]}, {({x : [i + 5, i + 6], y = 1}, int)}) (these abstract elements

would naturally arise in the first two iterations over a loop that fills a zone with
integer values). Then, we obtain d = {i : [2, 3]} and m = {x : [i + 6, i + 6], y =
1}. While the variable abstraction is satisfactory, the zone is not precise: both

X�
0 and X�

1 express the existence of a zone of values of type int with bounds
8 ≤ x ≤ i + 6 ∧ y = 1. When i = 3, that zone contains two cells, whereas the
zone described by {x : [i+6, i+6], y = 1} only remembers that Sheet(9, 1) has
type int, but forgets about Sheet(8, 1).

In order to avoid such imprecision, the abstract join algorithm should per-
form some rewriting steps on both inputs before it actually computes the lower
bound on zones. In the case of our example, X�

0 is equivalent (in the sense

of γ×) to ({i : [2, 2]}, {({x : [8, i + 6], y = 1}, int)}) and X�
1 is equivalent to

({i : [3, 3]}, {({x : [8, i + 6], y = 1}, int)}). Applying the lower bounds on zone
constraints will then produce the desired result. These transformations do not
modify the concretization, as shown by Property 2.

For a better illustration, we summarize the general algorithm in Figure 4
and show a step-by-step execution of the algorithm, on the case of the above
example in Figure 5. For the sake of simplicity, we omit the constraint y = 1
as it is appears in both operands and can be handled trivially. So the general
algorithm consists of five steps:

104 T. Cheng and X. Rival

d0, {(m0, t)} d1, {(m1, t)}

d∗
0 d∗

1

m∗
0 m∗

1

duplicates: P0 duplicates: P1

deletable common duplicates: C

choose a best pair of contractionsd∗
0 ∨ d∗

1

m∗
0 m∗

1

Fig. 4. (d0, {(m0, t)}) �� (d1, {(m1, t)}) �
= (d∗

0 ∨ d∗
1, {(m∗

0 ∧m∗
1, t)})

– Normalize. Given two abstract values (dk, {(mk, t)}), we first carry out the
normalization, and obtain the closures d∗k and m∗

k associated with d∗k.
– Calculate Duplicates. A difference matrix can be seen as a representation

of a directed graph G = (V ,A, w) with weighted edges. From its (shortest-path)
closure, there are some edges which can be restored by other edges. E.g., in
m∗

0 ∧ d∗0, w(x, i) = −6 is deletable, because it can be restored by the sum of
w(x, 0) = −8 and w(0, i) = 2. We say w(x, i) is a duplicate of w(x, 0) and
w(0, i), and we let (x, i) ←↩ 0 denote this duplication. A contraction m∗ of an
MMM m∗ associated with d∗, refers to an MMM deleting some duplicates, and
m∗ can still be restored from m∗ ∧d∗. E.g., m∗

0 ∧d∗0 without w(x, i) is actually
one contraction of m∗

0∧d∗0. So this step aims at finding the set of all the possible
duplicates Pk in m∗

k ∧ d∗k.
– Find Deletable Common Duplicates. Considering now the 2 operands to-

gether, we can find the set of the common duplicates of the 2 operands: P0 ∩P1.
Then some subsets of this set, which are actually some common duplicates, can
be deleted from both operands to compute two contractions. This step searches
for the set of this kind of subsets that C denotes.

– Choose a Best Pair of Contractions. Taking the 2 operands of our example,
C contains both {(x, i), (0, x)} and {(i, x), (x, 0)}. Although the concretization
of a contraction is always the same as the one of the original matrix, if we
forecast the next step – the intersection of both contractions, the choice of the
set of duplicates to delete, resulting in the contractions, makes actually a real
difference: Both contractions formed by deleting {(x, i), (0, x)} gives a larger
intersection than the ones formed by deleting {(i, x), (x, 0)}. So based on C, m∗

k

An Abstract Domain to Infer Types over Zones in Spreadsheets 105

Initial operands:

i 0

i 0 −2
0 2 0

⎛⎜⎜⎜⎜⎝
x y i 0

x 0 −6
y 0
i 6
0

, int

⎞⎟⎟⎟⎟⎠
i 0

i 0 −3
0 3 0

⎛⎜⎜⎜⎜⎝
x y i 0

x 0 −5
y 0
i 6
0

, int

⎞⎟⎟⎟⎟⎠
After normalization:

i 0

i 0 −2
0 2 0

⎛⎜⎜⎜⎜⎝
x y i 0

x 0 −6 −8
y 0
i 6 0 −2
0 8 2 0

, int

⎞⎟⎟⎟⎟⎠
i 0

i 0 −3
0 3 0

⎛⎜⎜⎜⎜⎝
x y i 0

x 0 −5 −8
y 0
i 6 0 −3
0 9 3 0

, int

⎞⎟⎟⎟⎟⎠
2 sets of duplicates:

P0 = {(x, i) ←↩ 0, (x, 0) ←↩ i,
(i, x) ←↩ 0, (0, x) ←↩ i, . . .}

P1 = {(x, i) ←↩ 0, (x, 0) ←↩ i,
(i, x) ←↩ 0, (0, x) ←↩ i, . . .}

Sets of deletable common duplicates:
C = {{(x, i), (0, x)}, {(x, i), (i, x)}, {(x, 0), (0, x)}, {(i, x), (x, 0)}, . . .}

Choose a best pair of contractions:

i 0

i 0 −2
0 2 0

⎛⎜⎜⎜⎜⎝
x y i 0

x 0 −8
y 0
i 6 0 −2
0 2 0

, int

⎞⎟⎟⎟⎟⎠
i 0

i 0 −3
0 3 0

⎛⎜⎜⎜⎜⎝
x y i 0

x 0 −8
y 0
i 6 0 −3
0 3 0

, int

⎞⎟⎟⎟⎟⎠
Final join:

i 0

i 0 −2
0 3 0

⎛⎜⎜⎜⎜⎝
x y i 0

x 0 −8
y 0
i 6
0

, int

⎞⎟⎟⎟⎟⎠

Fig. 5. Computation of a join

and d∗0 ∨ d∗1, this step finds a set of duplicates to delete, thus computes a pair
of contractions m∗

k for the next step.
– Join of DBMs and Intersection of MMMs. The final step joins the two

transformed operands by joining their DBMs and intersecting their MMMs.
As all steps either preserve concretization or return an over-approximation of
the arguments (under-approximating zones), this algorithm is sound:

Theorem 2 (Soundness). With the above notations:

γ×(X
�
0) ∪ γ×(X

�
1) ⊆ γ×(X

�)

Computation of a New Zone. So far, we focused on the case where both
operands of �� consist of exactly one zone. In practice, most cases fall out of this
scope. We consider here the case where the left argument contains no zone and

106 T. Cheng and X. Rival

After normalization:

i 0

i 0 −1
0 1 0

(⊥zone, int)

i 0

i 0 −2
0 2 0

⎛⎜⎜⎜⎜⎝
x y i 0

x 0 1 −1
y 0
i −1 0 −2
0 1 2 0

, int

⎞⎟⎟⎟⎟⎠
Sets of duplicates:

P0 = not applicable
P1 = {(x, i) ←↩ 0, (x, 0) ←↩ i,

(i, x) ←↩ 0, (0, x) ←↩ i, . . .}
Sets of deletable duplicates:

D0 = not applicable
D1

= {{(x, i), (0, x)}, {(x, i), (i, x)},
{(x, 0), (0, x)}, {(i, x), (x, 0)}, . . .}

Choose a best contraction:

i 0

i 0 −1
0 1 0

⎛⎜⎜⎜⎜⎝
x y i 0

x 0 −1
y 0
i −1 0 −1
0 1 0

, int

⎞⎟⎟⎟⎟⎠
i 0

i 0 −2
0 2 0

⎛⎜⎜⎜⎜⎝
x y i 0

x 0 −1
y 0
i −1 0 −2
0 2 0

, int

⎞⎟⎟⎟⎟⎠
Final join:

i 0

i 0 −1
0 2 0

⎛⎜⎜⎜⎜⎝
x y i 0

x 0 −1
y 0
i −1
0

, int

⎞⎟⎟⎟⎟⎠

Fig. 6. Creation of a new typed zone in join

the right operand contains one zone, and we will treat the general case in the
next paragraph. This case is typically encountered when computing an abstract
join after the first iteration of a loop that initializes a spreadsheet zone. For
instance, such a program would give us abstract states X�

0 = ({i = 1}, ∅) at

iteration 0 and X�
1 = ({i = 2}, {({x = 1, y = 1}, int)}) at iteration 1. Then

X�
0 is actually equivalent to abstract state ({i = 1}, {(⊥zone, int)}) where ⊥zone

denotes the MMM with empty concretization, hence the empty zone. We remark
that the constraints of the zone can in both cases be rewritten into {1 ≤ x ≤
i − 1, y = 1}: indeed, when i = 1, this is equivalent to the empty MMM. Thus,
({i : [1, 2]}, {({x : [1, i − 1], y = 2}, int)}) is an over-approximation for both
operands, hence a valid result for ��.

We assume that operands are of the form X�
0 = (d0, {(⊥zone, t)}) and X�

1 =
(d1, {(m1, t)}). Then, we follow the algorithm given in the case of two abstract
states with exactly one zone up to the step normalization. Then for the following
two steps about duplicates, as the zone of the left operand is ⊥zone, we calculate
only the part of the right operand. Then for the step of choosing a contraction, we
search for a set of deletable duplicates inD1 to delete, thus computes a contraction
m∗

1 of m∗
1 associated with d∗1 (therefore γi(m∗

1 ∧ d∗1) = γi(m
∗
1 ∧ d∗1)) , such that

An Abstract Domain to Infer Types over Zones in Spreadsheets 107

m∗
1 ∧d0 = ∅. If such a m∗

1 can be found, �� keeps it for MMMs of both operands,
and computes a join for the DBMs of both operands. Otherwise, the right hand
zone is discarded. Fig. 6 shows this algorithm on the above example.

Case of an Arbitrary Number of Zones. We now consider the case of
two D�

× elements X�
k = (dk, {(mk,0, tk,0), . . . , (mk,n, tk,n)}), k ∈ {0, 1}. In that

case, abstract join operator �� should identify pairs of zones that can be over-
approximated with minimal loss of precision, and zones in the right hand side
argument that can be joined with an empty zone with no loss of precision.
Precisely, the steps of the normalization and the calculation of duplicates can be
first done on every zone of both operands at once. Then for one zone (m0,i, t0,i)

of X�
0, the algorithm goes through the zones of X�

1, proceed the step of deletable
common duplicates and see if an optimal pair of contractions can be found. If so,
the algorithm considers the pair of zones is identified; otherwise, it continues to
examine the rest of the zones in X�

1. In the end if a pair of zones is identified, it
adds their join to the result set, and remove them from both operands; otherwise,
it adds the join of (m0,i, t0,i) and (⊥zone, t0,i) to the result set, and remove the

zone from X�
0. The whole algorithm proceeds this way for each zone in X�

0.
The most costly step of a join of 2 zones is to compute the sets of deletable
common duplicates C: larger the sets of duplicates and their intersection are,
more computation it requires. The complexity of the step to choose a best pair
of contractions is proportional to the size of C and the one of each element.
Finally the number of zones in each operand and the size of mk also determines
the complexity of the entire operation.

5.4 Widening Operator

Abstract join operator �� shown in Sect. 5.3 returns an upper bound of its
argument, but does not enforce termination of abstract iterates. However, we
can extend �� into a widening operator as follows:

– we let ∇� use a widening operator ∇�
d over DBMs instead of ∨;

– after a fixed number of iterations N∇� , the steps of the computation of m∗
k

and their intersection are replaced by a lower bound computation:

m∗
0 ∧m∗

1 =

{
m∗

0 if ∀i, j, (m∗
0)ij ≤ (m∗

1)ij ,
⊥zone otherwise

(in practice, empty zones are pruned out of D�
Z elements).

This provides a sound and terminating widening operator ∇� over D�
×.

5.5 Analysis

Transfer functions shown in Sect. 5.1 and the reduction, join and widening oper-
ators of Sect. 5.2-5.4 allow us to define a standard abstract interpretation based

108 T. Cheng and X. Rival

static analysis for the restricted spreadsheet language of Sect. 3. Our analysis
implements a classic iteration engine over the program control flow graphs, and
performs widening at loop heads. We use a delayed widening iteration strategy,
where the regular join operator �� is used in the first iterations over each loop,
and ∇� is used for the following iterations. The reduction operator of Sect. 5.2 is
used after the computation of transfer functions which modify the structure of
zones. It is not applied to the widening output, as this might break termination.
Our analysis is sound in the sense of the correctness theorem below:

Theorem 3 (Correctness)

If (l, ρ) is reachable for →, then ρ ∈ γ×(X
�
l) where X�

l is the invariant at l.
If (l, ρ) is reachable for →, and (l, ρ)→ Ω, then an alarm is reported at l.

6 Prototype and Results

The analysis was implemented in OCaml and represents around 3000 lines of
code, including a front-end for our restricted spreadsheet language. We have
applied our analysis to a number of small programs and examined type properties
of the arrays that they manipulate. We ran the analysis on programs consisting
of a single loop as well as programs with nested loops. In the table, we show the
size in pre-processed lines of code and the analysis time without any spurious
type warning on a 2.80 GHz Intel Core Duo with 4GB RAM. The analyzer raises
various type errors (e.g., Ωassign) if they exist in the programs.

Benchmark Loop Level Code Size (loc) Run Time (sec)
initialization of a row 1 13 0.042
creation of 2 columns (program 1) 1 31 0.258
copy of a matrix 2 20 0.071
insertion sort of a column 2 29 0.135
multiplication of 2 matrices 3 35 0.096

7 Conclusion and Future Work

Our proposal enables static analysis of spreadsheet programs and verifies that
an important class of type errors will not occur. It is based on a combination of
numeric abstraction to describe spreadsheet zones and a type abstraction over
cell contents.

The upper bound operators of our abstract domain accommodates an under-
approximation operation of a sub-domain. [17] presents generic procedures that
work for any base domain to compute under-approximations. In comparison with
their approach, our domain is adapted specifically for the application, thus closer
to a precise and efficient analysis for spreadsheet programs.

Substituting other lattices to the type lattice used in this paper will allow us
to carry out other analyses. E.g. in practice we may relax the exact type charac-
terization and permit approximate types (e.g. “int or bool”) to more compactly

An Abstract Domain to Infer Types over Zones in Spreadsheets 109

capture zones which maybe otherwise need to be split to a large number of
smaller zones. Existing work has considered other type properties, such as units
and dimensions properties [18,19] (e.g., distinguishing hours, minutes, seconds,
etc.), albeit only at the interface level, whereas we are considering the spread-
sheet programs. Our work could be extended to deal with notions of units in a
very straightforward manner by only substituting lattices. Information to build
that lattice could be determined from header and labels in the spreadsheets.

Another important extension of our work would be to deal with a full spread-
sheet language instead of the restricted language considered in this paper, so as
to analyze industrial applications.

Our work also opens some more theoretical abstract domain design issues. In
particular, it would be interesting to explore other instantiations of the abstract
domain, with other kinds of numerical constraints over zones. For instance, we
may consider octagons [20] (also allowing constraints of the form x + i ≥ c
where i is a program variable), or simple disequalities [21]. This would require
a more general representation of zone constraints, and operators to cope with
this more general representation. Last, it would also be interesting to extend
array content analysis such as [22,23] to our two dimensional zones, so as to
discover relations between program variable data and more complex properties
of contents of spreadsheet zones.

Acknowledgments. We would like to thank Antoine Miné, Enea Zaffanella
and members of the EuSpRIG (European Spreadsheet Risks Interest Group) for
helpful discussions. We are grateful to the referees for their encouraging and
useful comments on the early version of the article.

References

1. Panko, R.R.: What we know about spreadsheet errors. Journal of End User Com-
puting 10, 15–21 (1998)

2. Jones, S.P., Blackwell, A., Burnett, M.: A user-centred approach to functions in
excel. In: ICFP 2003: Proceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming, pp. 165–176. ACM (2003)

3. Sestoft, P.: Implementing function spreadsheets. In: WEUSE 2008: Proceedings
of the 4th International Workshop on End-user Software Engineering, pp. 91–94.
ACM, New York (2008)

4. Cheng, T.: Excel Functional Programming. In: Explore Another Dimension of
Spreadsheet Programming (2010)

5. Wakeling, D.: Spreadsheet functional programming. J. Funct. Program. 17(1), 131–
143 (2007)

6. Erwig, M., Abraham, R., Kollmansberger, S., Cooperstein, I.: Gencel: a program
generator for correct spreadsheets. J. Funct. Program. 16, 293–325 (2006)

7. Abraham, R., Erwig, M.: Inferring templates from spreadsheets. In: Proceedings of
the 28th International Conference on Software Engineering, ICSE 2006, pp. 182–
191. ACM Press, New York (2006)

8. Silva, A.: Strong Types for Relational Data Stored in Databases or Spreadsheets.
PhD thesis, University of Minho (2006)

110 T. Cheng and X. Rival

9. Cunha, J., Saraiva, J., Visser, J.: From spreadsheets to relational databases and
back. In: PEPM 2009: Proceedings of the 2009 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, pp. 179–188. ACM (2009)

10. Rajalingham, K., Chadwick, D.R., Knight, B.: Classification of spreadsheet er-
rors. In: EuSpRIG 2000 Symposium: Spreadsheet Risks, Audit and Development
Methods (2001)

11. Bradley, L., McDaid, K.: Using bayesian statistical methods to determine the level
of error in large spreadsheets. In: ICSE Companion, pp. 351–354 (2009)

12. Bishop, B., McDaid, K.: Spreadsheet debugging behaviour of expert and novice
end-users. In: Proceedings of the 4th International Workshop on End-user Software
Engineering, WEUSE 2008, pp. 56–60. ACM, New York (2008)

13. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Antonio, Texas, pp. 269–282. ACM
Press, New York (1979)

14. Cheng, T.: Verification of spreadsheet programs by abstract interpretation. Mas-
ter’s thesis, École Polytechnique (2011)

15. Miné, A.: A New Numerical Abstract Domain Based on Difference-Bound Matrices.
In: Danvy, O., Filinski, A. (eds.) PADO II. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001)

16. Bagnara, R., Hill, P.M., Zaffanella, E.: Exact join detection for convex polyhedra
and other numerical abstractions. Computational Geometry: Theory and Applica-
tions 43(5), 453–473 (2010)

17. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, pp. 235–246.
ACM, New York (2008)

18. Chambers, C., Erwig, M.: Automatic detection of dimension errors in spreadsheets.
Journal of Visual Languages and Computing 20(4), 269–283 (2009)

19. Antoniu, T., Steckler, P.A., Krishnamurthi, S., Neuwirth, E., Felleisen, M.: Vali-
dating the unit correctness of spreadsheet programs. In: ICSE 2004: Proceedings
of the 26th International Conference on Software Engineering, pp. 439–448. IEEE
Computer Society, Washington, DC (2004)

20. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

21. Péron, M., Halbwachs, N.: An Abstract Domain Extending Difference-Bound Ma-
trices with Disequality Constraints. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 268–282. Springer, Heidelberg (2007)

22. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI 2008: 2008 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pp. 339–348. ACM (June 2008)

23. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: Conference Record of the 38th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 105–118. ACM Press, New York (2011)

Bilateral Algorithms for Symbolic Abstraction�

Aditya Thakur1, Matt Elder1, and Thomas Reps1,2,��

1 University of Wisconsin, Madison, WI, USA
2 GrammaTech, Inc., Ithaca, NY, USA

Abstract. Given a concrete domain C, a concrete operation τ : C → C,
and an abstract domain A, a fundamental problem in abstract interpre-
tation is to find the best abstract transformer τ# : A → A that over-
approximates τ . This problem, as well as several other operations needed
by an abstract interpreter, can be reduced to the problem of symbolic
abstraction: the symbolic abstraction of a formula ϕ in logic L, denoted
by α̂(ϕ), is the best value in A that over-approximates the meaning of ϕ.
When the concrete semantics of τ is defined in L using a formula ϕτ that
specifies the relation between input and output states, the best abstract
transformer τ# can be computed as α̂(ϕτ).

In this paper, we present a new framework for performing symbolic
abstraction, discuss its properties, and present several instantiations for
various logics and abstract domains. The key innovation is to use a bilat-
eral successive-approximation algorithm, which maintains both an over-
approximation and an under-approximation of the desired answer.

1 Introduction

For several years, we have been investigating connections between abstract inter-
pretation and logic—in particular, how to harness decision procedures to obtain
algorithms for several fundamental primitives used in abstract interpretation.
Automation ensures correctness and precision of these primitives [3, §1.1], and
drastically reduces the time taken to implement the primitives [19, §2.5] This
paper presents new results on this topic.

Like several previous papers [25,15,11,34], this paper concentrates on the prob-
lem of developing an algorithm for symbolic abstraction: the symbolic abstraction
of a formula ϕ in logic L, denoted by α̂(ϕ), is the best value in a given abstract
domain A that over-approximates the meaning of ϕ [25]. To be more precise,
given a formula ϕ ∈ L, let [[ϕ]] denote the meaning of ϕ—i.e., the set of con-
crete states that satisfy ϕ. Then α̂(ϕ) is the unique value a ∈ A such that (i)

� Supported, in part, by NSF under grants CCF-{0810053, 0904371}, by ONR under
grants N00014-{09-1-0510, 10-M-0251, 11-C-0447}, by ARL under grant W911NF-
09-1-0413, by AFRL under grants FA9550-09-1-0279 and FA8650-10-C-7088; and by
DARPA under cooperative agreement HR0011-12-2-0012. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the
authors, and do not necessarily reflect the views of the sponsoring agencies.

�� T. Reps has an ownership interest in GrammaTech, Inc., which has licensed elements
of the technology discussed in this publication.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 111–128, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

112 A. Thakur, M. Elder, and T. Reps

[[ϕ]] ⊆ γ(a), and (ii) for all a′ ∈ A for which [[ϕ]] ⊆ γ(a′), a � a′. In this pa-
per, we present a new framework for performing symbolic abstraction, discuss
its properties, and present several instantiations for various logics and abstract
domains.

Several key operations needed by an abstract interpreter can be reduced to
symbolic abstraction. For instance, one use of symbolic abstraction is to bridge
the gap between concrete semantics and an abstract domain. Cousot and Cousot
[5] gave a specification of the most-precise abstract interpretation of a concrete
operation τ that is possible in a given abstract domain:

Given a Galois connection C −−−→←−−−
α

γ
A, the best abstract transformer,

τ# : A → A, is the most precise abstract operator possible that over-
approximates τ . τ# can be expressed as follows: τ# = α ◦ τ ◦ γ.

The latter equation defines the limit of precision obtainable using abstraction
A. However, the definition is non-constructive; it does not provide an algorithm,
either for applying τ# or for finding a representation of the function τ#. In
particular, in many cases, the explicit application of γ to an abstract value would
yield an intermediate result—a set of concrete states—that is either infinite or
too large to fit in computer memory.

In contrast, it is often convenient to use a logic L to state the concrete se-
mantics of transformer τ as a formula ϕτ ∈ L that specifies the relation between
input and output states. Then, using an algorithm for symbolic abstraction, a
representation of τ# can be computed as α̂(ϕτ).

To see how symbolic abstraction can yield better results than conventional
approaches to the creation of abstract transformers, consider an example from
machine-code analysis: the x86 instruction “add bh,al” adds al, the low-order
byte of 32-bit register eax, to bh, the second-to-lowest byte of 32-bit register ebx.
The semantics of this instruction can be expressed in quantifier-free bit-vector
(QFBV) logic as

ϕI
def
= ebx′ =

(
(ebx & 0xFFFF00FF)
| ((ebx+ 256 ∗ (eax & 0xFF)) & 0xFF00)

)
∧ eax′ = eax, (1)

where “&” and “|” denote bitwise-and and bitwise-or. Eqn. (1) shows that the
semantics of the instruction involves non-linear bit-masking operations.

Now suppose that abstract domain A is the domain of affine relations over
integers mod 232 [11]. For this domain, α̂(ϕI) is (216ebx′ = 216ebx + 224eax)
∧(eax′ = eax), which captures the relationship between the low-order two bytes
of ebx and the low-order byte of eax. It is the best over-approximation to
Eqn. (1) that can be expressed as an affine relation. In contrast, a more conven-
tional approach to creating an abstract transformer for ϕI is to use operator-by-
operator reinterpretation of Eqn. (1). The resulting abstract transformer would
be (eax′ = eax), which loses all information about ebx. Such loss in precision is
exacerbated when considering larger loop-free blocks of instructions.

Bilateral Algorithms for Symbolic Abstraction 113

Motivation. Reps, Sagiv, and Yorsh (RSY) [25] presented a framework for
computing α̂ that applies to any logic and abstract domain that satisfies certain
conditions. King and Søndergaard [15] gave a specific α̂ algorithm for an abstract
domain of Boolean affine relations. Elder et al. [11] extended their algorithm to
affine relations in arithmetic modulo 2w—i.e., for some bit-width w of bounded
integers. (When the generalized algorithm is applied to ϕI from Eqn. (1), it finds
the α̂(ϕI) formula indicated above.) Because the generalized algorithm is similar
to the Boolean one, we refer to it as KS. We use RSY[AR] to denote the RSY
framework instantiated for the abstract domain of affine relations modulo 2w.

The RSY[AR] and KS algorithms resemble one another in that they both
find α̂(ϕ) via successive approximation from “below”. However, the two algo-
rithms are not the same. As discussed in §2, although both the RSY[AR] and
KS algorithms issue queries to a decision procedure, compared to the RSY[AR]
algorithm, the KS algorithm issues comparatively inexpensive decision-procedure
queries. Moreover, the differences in the two algorithms cause an order-of-
magnitude difference in performance: in our experiments, KS is approximately
ten times faster than RSY[AR].

These issues motivated us to (i) investigate the fundamental principles un-
derlying the difference between the RSY[AR] and KS algorithms, and (ii) seek a
framework into which the KS algorithm could be placed, so that its advantages
could be transferred to other domains. A third motivating issue was that nei-
ther the RSY framework nor the KS algorithm are resilient to timeouts. Because
the algorithms maintain only under-approximations of the desired answer, if the
successive-approximation process takes too much time and needs to be stopped,
they must return � to be sound. We desired an algorithm that could return a
nontrivial (non-�) value in case of a timeout.

The outcome of our work is a new framework for symbolic abstraction that

– is applicable to any abstract domain that satisfies certain conditions (similar
to the RSY algorithm)

– uses a successive-approximation algorithm that is parsimonious in its use of
the decision procedure (similar to the KS algorithm)

– is bilateral ; that is, it maintains both an under-approximation and a (non-
trivial) over-approximation of the desired answer, and hence is resilient to
timeouts: the procedure can return the over-approximation if it is stopped
at any point (unlike the RSY and KS algorithms).

The key concept used in generalizing the KS algorithm is an operation that we
call AbstractConsequence (Defn. 1, §3). We show that many abstract domains
have an AbstractConsequence operation that enables the kind of inexpensive
decision-procedure queries that we see in the KS algorithm (Thm. 2, §3).

Our experiments show that the bilateral algorithm for the AR domain im-
proves precision at up to 15% of a program’s control points (i.e., the beginning
of a basic block that ends with a branch), and on average is more precise for
3.1% of the control points (computed as the arithmetic mean).

114 A. Thakur, M. Elder, and T. Reps

Algorithm 1. α̂↑RSY〈L,A〉(ϕ)
1 lower ← ⊥
2

3 while true do
4

5 S ← Model(ϕ ∧ ¬γ̂(lower))
6 if S is TimeOut then
7 return �
8 else if S is None then
9 break // ϕ⇒ γ̂(lower)

10 else // S
|= γ̂(lower)
11 lower ← lower � β(S)

12 ans ← lower
13 return ans

Algorithm 2. α̂↑KS(ϕ)

1 lower ← ⊥
2 i ← 1

3 while i ≤ rows(lower) do
4 p ← Row(lower,−i) // p � lower

5 S ← Model(ϕ ∧ ¬γ̂(p))
6 if S is TimeOut then
7 return �
8 else if S is None then
9 i ← i+ 1 // ϕ⇒ γ̂(p)

10 else // S
|= γ̂(p)
11 lower ← lower � β(S)

12 ans ← lower
13 return ans

Contributions. The contributions of the paper can be summarized as follows:

– We show how the KS algorithm can be modified into a bilateral algorithm
that maintains sound under- and over-approximations of the answer (§2).

– We present a framework for symbolic abstraction based on a bilateral algo-
rithm for computing α̂ (§3).

– We give several instantiations of the framework (§3 and §4).
– We compare the performance of various algorithms (§2 and §5).
§6 discusses related work. A longer version is available as a technical report [32].

2 Towards a Bilateral Algorithm

Alg. 1 shows the general RSY algorithm (α̂↑RSY〈L,A〉) [25], which is parameter-

ized on logic L and abstract domain A. Alg. 2 shows the KS algorithm (α̂↑KS)
[15,11], which is specific to the QFBV logic and the affine-relations (AR) domain.
The following notation is used in the algorithms:

– The operation of symbolic concretization (line 5 of Algs. 1 and 2), denoted
by γ̂, maps an abstract value a ∈ A to a formula γ̂(a) ∈ L such that a and
γ̂(a) represent the same set of concrete states (i.e., γ(a) = [[γ̂(a)]]).

– Given a formula ψ ∈ L, Model(ψ) returns (i) a satisfying model S if a decision
procedure was able to determine that ψ is satisfiable in a given time limit,
(ii) None if a decision procedure was able to determine that ψ is unsatisfiable
in a given time limit, and (iii) TimeOut otherwise.

– The representation function β (line 11 of Algs. 1 and 2) maps a singleton
concrete state S ∈ C to the least value in A that over-approximates {S}.

An abstract value in the AR domain is a conjunction of affine equalities, which
can be represented in a normal form as a matrix in which each row expresses
a non-redundant affine equality [11]. (Rows are 0-indexed.) Given a matrix m,

Bilateral Algorithms for Symbolic Abstraction 115

(a) (b)
Fig. 1. (a) Scatter plot showing of the number of decision-procedure queries during each
pair of invocations of α̂↑

RSY and α̂↑
KS, when neither invocation had a decision-procedure

timeout. (b) Log-log scatter plot showing the times taken by each pair of invocations
of α̂↑

RSY and α̂↑
KS, when neither invocation had a decision-procedure timeout.

rows(m) returns the number of rows of m (line 3 in Alg. 2), and Row(m,−i),
for 1 ≤ i ≤ rows(m), returns row (rows(m)− i) of m (line 4 in Alg. 2).

Both algorithms have a similar overall structure. Both are successive approxi-
mation algorithms: they compute a sequence of successively “larger” approxima-
tions to the set of states described by ϕ. Both maintain an under-approximation
of the final answer in the variable lower, which is initialized to ⊥ on line 1. Both
call a decision procedure (line 5), and having found a model S that satisfies the
query, the under-approximation is updated by performing a join (line 11).

The differences between Algs. 1 and 2 are highlighted in gray. The key dif-
ference is the nature of the decision-procedure query on line 5. α̂↑RSY uses all

of lower to construct the query, while α̂↑KS uses only a single row from lower
(line 4)—i.e., just a single affine equality, which has two consequences. First,

α̂↑KS should issue a larger number of queries, compared with α̂↑RSY. Suppose that
the value of lower has converged to the final answer via a sequence of joins per-
formed by the algorithm. To discover that convergence has occurred, α̂↑RSY has

to issue just a single decision-procedure query, whereas α̂↑KS has to confirm it by
issuing rows(lower)− i number of queries, proceeding row-by-row. Second, each

individual query issued by α̂↑KS is simpler than the ones issued by α̂↑RSY. Thus,
a priori, it is not clear which algorithm will perform better in practice.

We compared the time for α̂↑RSY (instantiated for QFBV and the AR domain)

and α̂↑KS to compute basic-block transformers for a set of x86 executables. There
was no overall timeout imposed on the invocation of the procedures, but each
invocation of the decision procedure (line 5 in Algs. 1 and 2) had a timeout of 3
seconds. (Details of the experimental setup are described in §5.) Fig. 1(a) shows a
scatter-plot of the number of decision-procedure calls in each invocation of α̂↑RSY

116 A. Thakur, M. Elder, and T. Reps

Algorithm 3. α̂↑KS(ϕ)

1

2 lower ← ⊥
3 i ← 1
4 while i ≤ rows(lower) do
5 p ← Row(lower,−i)
// p � lower

6 S ← Model(ϕ ∧ ¬γ̂(p))
7 if S is TimeOut then
8 return �
9 else if S is None then

// ϕ⇒ γ̂(p)
10 i ← i+ 1

11 else // S
|= γ̂(p)
12 lower ← lower � β(S)

13 ans ← lower
14 return ans

Algorithm 4. α̃
�
KS+(ϕ)

1 upper ← �
2 lower ← ⊥
3 i ← 1
4 while i ≤ rows(lower) do
5 p ← Row(lower,−i)
// p � lower, p
� upper

6 S ← Model(ϕ ∧ ¬γ̂(p))
7 if S is TimeOut then
8 return upper
9 else if S is None then

10 upper ← upper � p // ϕ⇒ γ̂(p)
i ← i+ 1

11 else // S
|= γ̂(p)
12 lower ← lower � β(S)

13 ans ← lower
14 return ans

versus the corresponding invocation of α̂↑KS, when neither of the procedures had

a decision-procedure timeout. α̂↑RSY issues fewer decision-procedure queries: on

average (computed as an arithmetic mean), α̂↑KS invokes 42% more calls to the
decision procedure. Fig. 1(b) shows a log-log scatter-plot of the total time taken

by each invocation of α̂↑RSY versus the time taken by α̂↑KS. α̂
↑
KS is much faster

than α̂↑RSY: overall, computed as the geometric mean of the speedups on each of

the x86 executables, α̂↑KS is about ten times faster than α̂↑RSY.
The order-of-magnitude speedup can be attributed to the fact that each of the

α̂↑KS decision-procedure queries is less expensive than the ones issued by α̂↑RSY.

At line 4 in α̂↑KS, p is a single constraint; consequently, the decision-procedure

query contains the single conjunct ¬γ̂(p) (line 5). In contrast, at line 5 in α̂↑RSY,
lower is a conjunction of constraints, and consequently the decision-procedure
query contains ¬γ̂(lower), which is a disjunction of constraints.

Neither α̂↑RSY nor α̂↑KS is resilient to timeouts. A decision-procedure query—or
the cumulative time for α̂↑—might take too long, in which case the only safe
answer that can be returned is � (line 6 in Algs. 1 and 2). To remedy this

situation, we show how α̂↑KS can be modified to maintain a non-trivial over-
approximation of the desired answer. Alg. 4 is such a bilateral algorithm that
maintains both an under-approximation and over-approximation of α̂(ϕ). The

original α̂↑KS is shown in Alg. 3 for comparison; the differences in the algorithms
are highlighted in gray. (Note that line numbers are different in Algs. 2 and 3.)

The α̃
�
KS+ algorithm (Alg. 4) initializes the over-approximation (upper) to �

on line 1. At any stage in the algorithm ϕ⇒ γ̂(upper). On line 10, it is sound
to update upper by performing a meet with p because ϕ⇒ γ̂(p). Progress is
guaranteed because p 	# upper. In case of a decision-procedure timeout (line 7),

Bilateral Algorithms for Symbolic Abstraction 117

Fig. 2. Abstract Consequence:
For all a1, a2 ∈ A
where γ(a1) � γ(a2), if a =
AbstractConsequence(a1, a2),
then γ(a1) ⊆ γ(a) and
γ(a)
⊇ γ(a2)

Algorithm 5. α̃�〈L,A〉(ϕ)
1 upper ← �
2 lower ← ⊥
3 while lower
= upper ∧ ResourcesLeft do
// lower � upper

4 p ← AbstractConsequence(lower, upper)
// p � lower, p
� upper

5 S ← Model(ϕ ∧ ¬γ̂(p))
6 if S is TimeOut then
7 return upper
8 else if S is None then // ϕ⇒ γ̂(p)
9 upper ← upper � p

10 else // S
|= γ̂(p)
11 lower ← lower � β(S)

12 ans ← upper
13 return ans

Alg. 4 returns upper as the answer (line 8). We use “ ˜ ” to emphasize the fact

that α̃
�
KS+(ϕ) can return an over-approximation of α̂(ϕ) in case of a timeout.

However, if the loop exits without a timeout, then α̃
�
KS+(ϕ) returns α̂(ϕ).

3 A Parametric Bilateral Algorithm

Like the original KS algorithm, α̃
�
KS+ applies only to the AR domain. The re-

sults presented in §2 provide motivation to generalize α̃
�
KS+ so that we can take

advantage of its benefits with domains other than AR. In this section, we present
the bilateral framework we developed. Proofs for all theorems are found in [32].

We first introduce the abstract-consequence operation, which is the key oper-
ation in our generalized algorithm:

Definition 1. An operation AbstractConsequence(·, ·) is an acceptable
abstract-consequence operation iff for all a1, a2 ∈ A such that a1 � a2,
a = AbstractConsequence(a1, a2) implies a1 � a and a 	# a2. ��

Fig. 2 illustrates Defn. 1 graphically, using the concretizations of a1, a2, and a.
Alg. 5 presents the parametric bilateral algorithm α̃�〈L,A〉(ϕ), which per-

forms symbolic abstraction of ϕ ∈ L for abstract domain A. The differences
between Alg. 5 and Alg. 4 are highlighted in gray.

The assumptions placed on the logic and the abstract domain are as follows:

1. There is a Galois connection C −−−→←−−−
α

γ
A between A and concrete domain C.

2. Given a1, a2 ∈ A, there are algorithms to evaluate a1 � a2 and a1 � a2, and
to check a1 = a2.

3. There is a symbolic-concretization operation γ̂ that maps an abstract value
a ∈ A to a formula γ̂(a) in L.

118 A. Thakur, M. Elder, and T. Reps

S

(b)(a)

Fig. 3. The two cases arising in Alg. 5: ϕ ∧ ¬γ̂(p) is either (a) unsatisfiable, or (b)
satisfiable with S |= ϕ and S
|= γ̂(p). (Note that although lower � α̂(ϕ) � upper and
[[ϕ]] ⊆ γ(upper) are invariants of Alg. 5, γ(lower) ⊆ [[ϕ]] does not necessarily hold, as
depicted above.)

4. There is a decision procedure for the logic L that is also capable of returning
a model satisfying a formula in L.

5. The logic L is closed under conjunction and negation.
6. There is an acceptable abstract-consequence operation for A (Defn. 1).

The abstract value p returned by AbstractConsequence (line 4 of Alg. 5) is
used to generate the decision-procedure query (line 5); Fig. 3 illustrates the two
cases arising based on whether ϕ∧¬γ̂(p) is satisfiable or unsatisfiable. The overall
resources, such as time, used by Alg. 5 can be controlled via the ResourcesLeft
flag (line 3).

Theorem 1. [Correctness of Alg. 5] Suppose that L and A satisfy require-
ments 1–6, and ϕ ∈ L. Let a ∈ A be the value returned by α̃�〈L,A〉(ϕ). Then
1. a over-approximates α̂(ϕ); i.e., α̂(ϕ) � a.
2. If A has neither infinite ascending nor infinite descending chains and

α̃�〈L,A〉(ϕ) returns with no timeout, then a = α̂(ϕ). ��

Defn. 1 allows AbstractConsequence(a1, a2) to return any a ∈ A as long as
a satisfies a1 � a and a 	# a2. Thus, for a given abstract domain A there
could be multiple implementations of the AbstractConsequence operation. In
particular, AbstractConsequence(a1, a2) can return a1, because a1 � a1 and
a1 	# a2. If this particular implementation of AbstractConsequence is used,
then Alg. 5 reduces to the RSY algorithm (Alg. 1). However, as illustrated in
§2, the decision-procedure queries issued by the RSY algorithm can be very
expensive.

Conjunctive Domains. We now define a class of conjunctive domains, for
which AbstractConsequence can be implemented by the method presented as
Alg. 6. The benefit of Alg. 6 is that it causes Alg. 5 to issue the kind of inexpensive
queries that we see in α̂↑KS. Let Φ be a given set of formulas expressed in L. A
conjunctive domain over Φ is an abstract domain A such that:

Bilateral Algorithms for Symbolic Abstraction 119

Algorithm 6. AbstractConsequence(a1, a2) for conjunctive domains

1 if a1 = ⊥ then return ⊥
2 Let Ψ ⊆ Φ be the set of formulas such that γ̂(a1) =

∧
Ψ

3 foreach ψ ∈ Ψ do
4 a ← μα̂(ψ)
5 if a
� a2 then return a

– For any a ∈ A, there exists a finite subset Ψ ⊆ Φ such that γ̂(a) =
∧
Ψ .

– For any finite Ψ ⊆ Φ, there exists an a ∈ A such that γ(a) = �∧Ψ�.
– There is an algorithm μα̂(ϕ) (“micro-α̂”) that, for each singleton formula

ϕ ∈ Φ, returns aϕ ∈ A such that α̂(ϕ) = aϕ.
– There is an algorithm that, for all a1, a2 ∈ A, checks a1 � a2.

Many common domains are conjunctive domains. For example, using v, vi for
program variables and c, ci for constants:

Domain Φ

Interval domain inequalities of the form c1 ≤ v and v ≤ c2
Octagon domain [20] inequalities of the form ±v1 ± v2 ≤ c
Polyhedral domain [7] linear inequalities over reals or rationals
KS domain [15,11] linear equalities over integers mod 2w

Theorem 2. When A is a conjunctive domain over Φ, Alg. 6 is an acceptable
abstract-consequence operation. ��
Discussion.We can weaken part 2 of Thm. 1 to allowA to have infinite descend-
ing chains by modifying Alg. 5 slightly. The modified algorithm has to ensure
that it does not get trapped updating upper along an infinite descending chain,
and that it exits when lower has converged to α̂(ϕ). We can accomplish these
goals by forcing the algorithm to perform the basic RSY iteration step at least
once every N iterations, for some fixed N . A version of Alg. 5 that implements
this strategy is presented in [32].

As presented, Alg. 5 exits and returns the value of upper the first
time the decision procedure times out. We can improve the precision of
Alg. 5 by not exiting after the first timeout, and instead trying other
abstract consequences. The algorithm will exit and return upper only if
it cannot find an abstract consequence for which the decision-procedure
terminates within the time bound. For conjunctive domains, Alg. 5 can
be modified to enumerate all conjuncts of lower that are abstract conse-
quences; to implement this strategy, lines 4–7 of Alg. 5 are replaced with

progress ← false // Initialize progress
foreach p such that p = AbstractConsequence(lower, upper) do
S ← Model(ϕ ∧ ¬γ̂(p))
if S is not TimeOut then
progress ← true // Can make progress

break

if ¬progress then return upper // Could not make progress

120 A. Thakur, M. Elder, and T. Reps

Henceforth, when we refer to α̃�, we mean Alg. 5 with the above two changes.

Relationship of AbstractConsequence to Interpolation. To avoid the po-
tential for confusion, we now discuss how the notion of abstract consequence
differs from the well-known concept of interpolation [8]:

A logic L supports interpolation if for all ϕ1, ϕ2 ∈ L such that ϕ1⇒ϕ2,
there exists a formula I such that (i) ϕ1⇒ I, (ii) I⇒ϕ2, and (iii) I uses
only symbols in the shared vocabulary of ϕ1 and ϕ2.

Although condition (i) is part of Defn. 1, the restrictions imposed by conditions
(ii) and (iii) are not part of Defn. 1. From an operational standpoint, condition
(iii) in the definition of interpolation serves as a heuristic that generally allows
interpolants to be expressed as small formulas. In the context of α̃�, we are
interested in obtaining small formulas to use in the decision-procedure query
(line 5 of Alg. 5). Thus, given a1, a2 ∈ A, it might appear plausible to use an
interpolant I of γ̂(a1) and γ̂(a2) in α̃� instead of the abstract consequence of a1
and a2. However, there are a few problems with such an approach:

– There is no guarantee that I will indeed be simple; for instance, if the vocab-
ulary of γ̂(a1) is a subset of the vocabulary of γ̂(a2), then I could be γ̂(a1)
itself, in which case Alg. 5 performs the more expensive RSY iteration step.

– Converting the formula I into an abstract value p ∈ A for use in line 9 of
Alg. 5 itself requires performing α̂ on I.

As discussed above, many domains are conjunctive domains, and for conjunctive
domains is it always possible to find a single conjunct that is an abstract conse-
quence (see Thm. 2). Moreover, such a conjunct is not necessarily an interpolant.

4 Instantiations

4.1 Herbrand-Equalities Domain

Herbrand equalities are used in analyses for partial redundancy elimination,
loop-invariant code motion [30], and strength reduction [31]. In these analyses,
arithmetic operations (e.g., + and *) are treated as term constructors. Two
program variables are known to hold equal values if the analyzer determines
that the variables hold equal terms. Herbrand equalities can also be used to
analyze programs whose types are user-defined algebraic data-types.

Basic Definitions. Let F be a set of function symbols. The function arity : F →
N yields the number of parameters of each function symbol. Terms over F are
defined in the usual way; each function symbol f always requires arity(f) param-
eters. Let T (F , X) denote the set of finite terms generated by F and variable
set X . The Herbrand universe of F is T (F , ∅), the set of ground terms over F .

A Herbrand state is a mapping from program variables V to ground terms
(i.e., a function in V → T (F , ∅)). The concrete domain consists of all sets of

Herbrand states: C def
= P (V → T (F , ∅)). We can apply a Herbrand state σ to a

term t ∈ T (F ,V) as follows:

Bilateral Algorithms for Symbolic Abstraction 121

σ[t]
def
=

{
σ(t) if t ∈ V
f(σ[t1], . . . , σ[tk]) if t = f(t1, . . . , tk)

The Herbrand-Equalities Domain. Sets of Herbrand states can be ab-
stracted in several ways. One way is to use conjunctions of equations among
terms (whence the name “Herbrand-equalities domain”). Such systems of equa-
tions can be represented using Equivalence DAGs [30]. A different, but equiv-
alent, approach is to use a representation based on idempotent substitutions :
A = (V → T (F ,V))⊥. Idempotence means that for each σ 	= ⊥ and v ∈ V ,
σ[σ(v)] = σ(v). The meaning of an idempotent substitution σ ∈ A is given by
its concretization, γ : A → C, where γ(⊥) = ∅, and otherwise

γ(σ) = {ρ : V → T (F , ∅) | ∀v ∈ V : ρ(v) = ρ[σ(v)]} . (2)

We now show that the Herbrand-equalities domain satisfies the requirements
of the bilateral framework. We will assume that the logical language L has all
the function symbols and constant symbols from F , equality, and a constant
symbol for each element from V . (In a minor abuse of notation, the set of such
constant symbols will also be denoted by V .) The logic’s universe is the Herbrand
universe of F (i.e., T (F , ∅)). An interpretation maps the constants in V to terms
in T (F , ∅). To be able to express γ̂(p) and ¬γ̂(p) (see item 5 below), we assume
that L contains at least the following productions:

F ::= F ∧ F | ¬F | v = T for v ∈ V | false
T ::= v ∈ V | f(T1, . . . , Tk) when arity(f) = k

(3)

1. There is a Galois connection C −−−→←−−−
α

γ
A:

– The ordering on C is the subset relation on sets of Herbrand states.
– γ(σ) is given in Eqn. (2).
– α(S) =

�
{a | γ(a) ⊇ S}.

– For a, b ∈ A, a � b iff γ(a) ⊆ γ(b).
2. Meet is most-general unification of substitutions, computed by standard uni-

fication techniques [18, Thm. 3.1].
3. Join is most-specific generalization, computed by “dual unification” or “anti-

unification” [23,26], [18, Thm. 5.8].
4. Equality checking is described by Lassez et al. [18, Prop. 4.10].
5. γ̂: γ̂(⊥) = false; otherwise, γ̂(σ) is

∧
v∈V v = σ(v).

6. One can obtain a decision procedure for L formulas using the built-in
datatype mechanism of, e.g., Z3 [9] or Yices [10], and obtain the necessary
decision procedure using an existing SMT solver.

7. L is closed under conjunction and negation.
8. AbstractConsequence: The domain is a conjunctive domain, as can be seen

from the definition of γ̂.

Thm. 1 ensures that Alg. 5 returns α̂(ϕ) when abstract domain A has neither in-
finite ascending nor infinite descending chains. The Herbrand-equalities domain
has no infinite ascending chains [18, Lem. 3.15]. The domain described here also

122 A. Thakur, M. Elder, and T. Reps

has no infinite descending chains, essentially because every right-hand term in
every Herbrand state has no variables but those in V . (Worked examples of α̃�

(Alg. 5) for the Herbrand-equalities domain are given in [32].)

4.2 Polyhedral Domain

An element of the polyhedral domain [7] is a convex polyhedron, bounded by hy-
perplanes. It may be unbounded in some directions. The symbolic concretization
of a polyhedron is a conjunction of linear inequalities. The polyhedral domain is
a conjunctive domain:

– Each polyhedron can be expressed as some conjunction of linear inequalities
(“half-spaces”) from the set F =

{∑
v∈V cvv ≥ c

∣∣ c, cv are constants
}
.

– Every finite conjunction of facts from F can be represented as a polyhedron.
– μα̂: Each formula in F corresponds to a simple, one-constraint polyhedron.
– There is an algorithm for comparing two polyhedra [7].

In addition, there are algorithms for join, meet, and checking equality.

a2a1

a

Fig. 4. Abs. conseq. for polyhedra.
a = AbstractConsequence(a1, a2).

The logic QF LRA (quantifier-free linear
real arithmetic) supported by SMT solvers
provides a decision procedure for the frag-
ment of logic that is required to express nega-
tion, conjunction, and γ̂ of a polyhedron.
Consequently, the polyhedral domain satis-
fies the bilateral framework, and therefore
supports the α̃� algorithm. The polyhedral
domain has both infinite ascending chains
and infinite descending chains, and hence
Alg. 5 is only guaranteed to compute an over-
approximation of α̂(ϕ).

Because the polyhedral domain is a con-
junctive domain, if a1 � a2, then some single
constraint a of a1 satisfies a 	# a2. For in-
stance, for the polyhedra a1 and a2 in Fig. 4,
the region a above the dotted line is an ac-
ceptable abstract consequence.

5 Experiments

In this section, we compare two algorithms for performing symbolic abstraction
for the affine-relations (AR) domain [15,11]:

– the α̂↑KS procedure of Alg. 2 [11].
– the α̃�〈AR〉 procedure that is the instantiation of Alg. 5 for the affine-

relations (AR) domain and QFBV logic.

Bilateral Algorithms for Symbolic Abstraction 123

Performance (x86) Better

Prog. Measures of size α̂↑
KS α̃�〈AR〉 α̃�〈AR〉

name instrs procs BBs brs WPDS t/o WPDS precision

finger 532 18 298 48 104.0 4 138.9 6.3%
subst 1093 16 609 74 196.7 4 214.6 0%
label 1167 16 573 103 146.1 2 171.6 0%
chkdsk 1468 18 787 119 377.2 16 417.9 0%
convert 1927 38 1013 161 287.1 10 310.5 0%
route 1982 40 931 243 618.4 14 589.9 2.5%
logoff 2470 46 1145 306 611.2 16 644.6 15.0%
setup 4751 67 1862 589 1499 60 1576 1.0%

Fig. 5. WPDS experiments. The columns show the number of instructions (instrs); the
number of procedures (procs); the number of basic blocks (BBs); the number of branch
instructions (brs); the times, in seconds, for α̂↑

KS and α̃�〈AR〉 WPDS construction;
the number of invocations of α̂↑

KS that had a decision procedure timeout (t/o); and
the degree of improvement gained by using α̃�〈AR〉-generated ARA weights rather
than α̂↑

KS weights (measured as the percentage of control points whose inferred one-
vocabulary affine relation was strictly more precise under α̃�〈AR〉-based analysis).

Although the bilateral algorithm α̃�〈AR〉 benefits from being resilient to time-
outs, it maintains both an over-approximation and an under-approximation.
Thus, the experiments were designed to understand the trade-off between per-
formance and precision. In particular, the experiments were designed to answer
the following questions:

1. How does the speed of α̃�〈AR〉 compare with that of α̂↑KS?

2. How does the precision of α̃�〈AR〉 compare with that of α̂↑KS?

To address these questions, we performed affine-relations analysis (ARA) on x86
machine code, computing affine relations over the x86 registers. Our experiments
were run on a single core of a quad-core 3.0 GHz Xeon computer running 64-bit
Windows XP (SP2), configured so that a user process has 4GB of memory. We
analyzed a corpus of Windows utilities using the WALi [14] system for weighted

pushdown systems (WPDSs). For the α̂↑KS-based (α̃�〈AR〉-based) analysis we
used a weight domain of α̂↑-generated (α̃�〈AR〉-generated) ARA transformers.
The weight on each WPDS rule encodes the ARA transformer for a basic block
B of the program, including a jump or branch to a successor block. A formula ϕB

is created that captures the concrete semantics of B, and then the ARA weight
for B is obtained by performing α̂(ϕB). We used EWPDS merge functions [17]
to preserve caller-save and callee-save registers across call sites. The post* query
used the FWPDS algorithm [16].

124 A. Thakur, M. Elder, and T. Reps

Fig. 5 lists several size parameters of the examples (number of instructions,
procedures, basic blocks, and branches).1 Prior research [11] shows that the calls
to α̂ during WPDS construction dominate the total time for ARA. Although the
overall time taken by α̂ is not limited by a timeout, we use a 3-second timeout
for each invocation of the decision procedure (as in Elder et al. [11]). Column

7 of Fig. 5 lists the number invocations of α̂↑KS that had a decision-procedure

timeout, and hence returned �. (Note that, in general, α̂↑KS implements an over-
approximating α̃ operation.)

Columns 6 and 8 of Fig. 5 list the time taken, in seconds, for α̂↑KS and α̃�〈AR〉
WPDS construction. We observe that on average α̃�〈AR〉 is about 10% slower

than α̂↑KS (computed as the geometric mean), which answers question 1.
To answer question 2 we compared the precision of the WPDS analysis when

using α̂↑KS with the precision obtained using α̃�〈AR〉. In particular, we compare

the affine-relation invariants computed by the α̂↑KS-based and α̃�〈AR〉-based
analyses for each control point—i.e., the beginning of a basic block that ends
with a branch. The last column of Fig. 5 shows the percentage of control points
for which the α̃�〈AR〉-based analysis computed a strictly more precise affine re-
lation. We see that the α̃�〈AR〉-based analysis improves precision at up to 15%
of control points, and, on average, the α̃�〈AR〉-based analysis is more precise for
3.1% of the control points (computed as the arithmetic mean), which answers
question 2.

6 Related Work

6.1 Related Work on Symbolic Abstraction

Previous work on symbolic abstraction falls into three categories:

1. algorithms for specific domains [24,3,2,15,11]
2. algorithms for parameterized abstract domains [12,35,28,22]
3. abstract-domain frameworks [25,34].

What distinguishes category 3 from category 2 is that each of the results cited
in category 2 applies to a specific family of abstract domains, defined by a
parameterized Galois connection (e.g., with an abstraction function equipped
with a readily identifiable parameter for controlling the abstraction). In contrast,
the results in category 3 are defined by an interface; for any abstract domain
that satisfies the requirements of the interface, one has a method for symbolic
abstraction. The approach presented in this paper falls into category 3.

Algorithms for Specific Domains. Regehr and Reid [24] present a method
that constructs abstract transformers for machine instructions, for interval and

1 Due to the high cost of the ARA-basedWPDS construction, all analyses excluded the
code for libraries. Because register eax holds the return value from a call, library func-
tions were modeled approximately (albeit unsoundly, in general) by “havoc(eax)”.

Bilateral Algorithms for Symbolic Abstraction 125

bitwise abstract domains. Their method does not call a SAT solver, but instead
uses the physical processor (or a simulator of a processor) as a black box.

Brauer and King [3] developed a method that works from below to derive
abstract transformers for the interval domain. Their method is based on an
approach due to Monniaux [22] (see below), but they changed two aspects:

1. They express the concrete semantics with a Boolean formula (via “bit-
blasting”), which allows a formula equivalent to ∀x.ϕ to be obtained from ϕ
(in CNF) by removing the x and ¬x literals from all of the clauses of ϕ.

2. Whereas Monniaux’s method performs abstraction and then quantifier elim-
ination, Brauer and King’s method performs quantifier elimination on the
concrete specification, and then performs abstraction.

Barrett and King [2] describe a method for generating range and set abstractions
for bit-vectors that are constrained by Boolean formulas. For range analysis, the
algorithm separately computes the minimum and maximum value of the range
for an n-bit bit-vector using 2n calls to a SAT solver, with each SAT query
determining a single bit of the output. The result is the best over-approximation
of the value that an integer variable can take on (i.e., α̂).

Algorithms for Parameterized Abstract Domains. Graf and Säıdi [12]
showed that decision procedures can be used to generate best abstract trans-
formers for predicate-abstraction domains. Other work has investigated more
efficient methods to generate approximate transformers that are not best trans-
formers, but approach the precision of best transformers [1,4].

Yorsh et al. [35] developed a method that works from above to perform α̃(ϕ)
for the kind of abstract domains used in shape analysis (i.e., “canonical abstrac-
tion” of logical structures [27]).

Template Constraint Matrices (TCMs) are a parametrized family of linear-
inequality domains for expressing invariants in linear real arithmetic. Sankara-
narayanan et al. [28] gave a parametrized meet, join, and set of abstract trans-
formers for all TCM domains. Monniaux [22] gave an algorithm that finds the
best transformer in a TCM domain across a straight-line block (assuming that
concrete operations consist of piecewise linear functions), and good transform-
ers across more complicated control flow. However, the algorithm uses quan-
tifier elimination, and no polynomial-time elimination algorithm is known for
piecewise-linear systems.

Abstract-Domain Frameworks. Thakur and Reps [34] recently discovered a
new framework for performing symbolic abstraction from “above”: α̃↓. The α̃↓

framework builds upon the insight that St̊almarck’s algorithm for propositional
validity checking [29] can be explained using abstract-interpretation terminol-
ogy [33]. The α̃↓ framework adapts the same algorithmic components of this
generalization to perform symbolic abstraction. Because α̃↓ maintains an over-
approximation of α̂, it is resilient to timeouts.

126 A. Thakur, M. Elder, and T. Reps

The α̃↓ framework is based on much different principles from the RSY and
bilateral frameworks. The latter frameworks use an inductive-learning approach
to learn from examples, while the α̃↓ framework uses a deductive approach by
using inference rules to deduce the answer. Thus, they represent two different
classes of frameworks, with different requirements for the abstract domain.

6.2 Other Related Work

Cover Algorithms. Gulwani and Musuvathi [13] defined what they termed
the “cover problem”, which addresses approximate existential quantifier elimi-
nation: Given a formula ϕ in logic L, and a set of variables V , find the strongest
quantifier-free formula ϕ in L such that [[∃V : ϕ]] ⊆ [[ϕ]]. They presented cover
algorithms for the theories of uninterpreted functions and linear arithmetic, and
showed that covers exist in some theories that do not support quantifier elimi-
nation.

The notion of a cover has similarities to the notion of symbolic abstraction,
but the two notions are distinct. Our technical report [32] discusses the differ-
ences in detail, describing symbolic abstraction as over-approximating a formula
ϕ using an impoverished logic fragment (e.g., approximating an arbitrary QFBV
formula, such as Eqn. (1), using conjunctions of modular-arithmetic affine equal-
ities) while a cover algorithm only removes variables V from the vocabulary of
ϕ. The two approaches yield different over-approximations of ϕ, and the over-
approximation obtained by a cover algorithm does not, in general, yield suitable
abstract values and abstract transformers.

Logical Abstract Domains. Cousot et al. [6] define a method of abstract
interpretation based on using particular sets of logical formulas as abstract-
domain elements (so-called logical abstract domains). They face the problems of
(i) performing abstraction from unrestricted formulas to the elements of a logical
abstract domain [6, §7.1], and (ii) creating abstract transformers that transform
input elements of a logical abstract domain to output elements of the domain
[6, §7.2]. Their problems are particular cases of α̂(ϕ). They present heuristic
methods for creating over-approximations of α̂(ϕ).

Connections to Machine-Learning Algorithms. In [25], a connection was
made between symbolic abstraction (in abstract interpretation) and the problem
of concept learning (in machine learning). In machine-learning terms, an abstract
domain A is a hypothesis space; each domain element corresponds to a concept.
Given a formula ϕ, the symbolic-abstraction problem is to find the most specific
concept that explains the meaning of ϕ.

α̂↑RSY (Alg. 1) is related to the Find-S algorithm [21, §2.4] for concept learn-
ing. Both algorithms start with the most-specific hypothesis (i.e., ⊥) and work
bottom-up to find the most-specific hypothesis that is consistent with positive
examples of the concept. Both algorithms generalize their current hypothesis
each time they process a (positive) training example that is not explained by
the current hypothesis. A major difference is that Find-S receives a sequence of

Bilateral Algorithms for Symbolic Abstraction 127

positive and negative examples of the concept (e.g., from nature). It discards
negative examples, and its generalization steps are based solely on the positive
examples. In contrast, α̂↑RSY repeatedly calls a decision procedure to generate

the next positive example; α̂↑RSY never sees a negative example.
A similar connection exists between α̃� (Alg. 5) and a different concept-

learning algorithm, called the Candidate-Elimination algorithm [21, §2.5]. Both
algorithms maintain two approximations of the concept, one that is an over-
approximation and one that is an under-approximation.

References

1. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for
Model Checking C Programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 268–283. Springer, Heidelberg (2001)

2. Barrett, E., King, A.: Range and set abstraction using SAT. ENTCS 267(1) (2010)

3. Brauer, J., King, A.: Automatic Abstraction for Intervals Using Boolean Formulae.
In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 167–183. Springer,
Heidelberg (2010)

4. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-
C programs using SAT. FMSD 25(2-3) (2004)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL, pp. 269–282 (1979)

6. Cousot, P., Cousot, R., Mauborgne, L.: Logical abstract domains and interpreta-
tions. In: The Future of Software Engineering (2011)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear constraints among vari-
ables of a program. In: POPL (1978)

8. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Sym. Logic 22(3) (September 1957)

9. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Dutertre, B., de Moura, L.: Yices: An SMT solver (2006), yices.csl.sri.com/

11. Elder, M., Lim, J., Sharma, T., Andersen, T., Reps, T.: Abstract Domains of Affine
Relations. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 198–215. Springer,
Heidelberg (2011)

12. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

13. Gulwani, S., Musuvathi, M.: Cover Algorithms and Their Combination. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 193–207. Springer, Hei-
delberg (2008)

14. Kidd, N., Lal, A., Reps, T.: WALi: The Weighted Automaton Library (2007),
http://www.cs.wisc.edu/wpis/wpds/download.php

15. King, A., Søndergaard, H.: Automatic Abstraction for Congruences. In: Barthe,
G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 197–213. Springer,
Heidelberg (2010)

16. Lal, A., Reps, T.: Improving Pushdown SystemModel Checking. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 343–357. Springer, Heidelberg (2006)

yices.csl.sri.com/
http://www.cs.wisc.edu/wpis/wpds/download.php

128 A. Thakur, M. Elder, and T. Reps

17. Lal, A., Reps, T., Balakrishnan, G.: Extended Weighted Pushdown Systems. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 434–448.
Springer, Heidelberg (2005)

18. Lassez, J.-L., Maher, M.J., Marriott, K.: Unification Revisited. In: Boscarol, M.,
Carlucci Aiello, L., Levi, G. (eds.) Foundations of Logic and Functional Program-
ming. LNCS, vol. 306, pp. 67–113. Springer, Heidelberg (1988)

19. Lim, J., Reps, T.: A System for Generating Static Analyzers for Machine Instruc-
tions. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 36–52. Springer, Hei-
delberg (2008)

20. Miné, A.: The octagon abstract domain. In: WCRE, pp. 310–322 (2001)
21. Mitchell, T.: Machine Learning. WCB/McGraw-Hill, Boston (1997)
22. Monniaux, D.: Automatic modular abstractions for template numerical constraints.

Logical Methods in Comp. Sci. 6(3) (2010)
23. Plotkin, G.: A note on inductive generalization. In: Machine Intelligence, vol. 5,

pp. 153–165. Edinburgh Univ. Press (1970)
24. Regehr, J., Reid, A.: HOIST: A system for automatically deriving static analyzers

for embedded systems. In: ASPLOS (2004)
25. Reps, T., Sagiv, M., Yorsh, G.: Symbolic Implementation of the Best Trans-

former. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266.
Springer, Heidelberg (2004)

26. Reynolds, J.: Transformational systems and the algebraic structure of atomic for-
mulas. Machine Intelligence 5(1), 135–151 (1970)

27. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
TOPLAS 24(3), 217–298 (2002)

28. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable Analysis of Linear Sys-
tems Using Mathematical Programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

29. Sheeran, M., St̊almarck, G.: A tutorial on St̊almarck’s proof procedure for propo-
sitional logic. FMSD 16(1), 23–58 (2000)

30. Steffen, B., Knoop, J., Rüthing, O.: The value flow graph: A program representa-
tion for optimal program transformations. In: ESOP (1990)

31. Steffen, B., Knoop, J., Rüthing, O.: Efficient Code Motion and an Adaption to
Strength Reduction. In: Abramsky, S., Maibaum, T.S.E. (eds.) TAPSOFT 1991,
CCPSD 1991, and ADC-Talks 1991. LNCS, vol. 494, pp. 394–415. Springer, Hei-
delberg (1991)

32. Thakur, A., Elder, M., Reps, T.: Bilateral algorithms for symbolic abstrac-
tion. TR 1713, CS Dept., Univ. of Wisconsin, Madison, WI (March 2012),
http://www.cs.wisc.edu/wpis/papers/tr1713.pdf

33. Thakur, A., Reps, T.: A Generalization of St̊almarck’s Method. In: SAS (2012)
34. Thakur, A., Reps, T.: A Method for Symbolic Computation of Abstract Opera-

tions. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
174–192. Springer, Heidelberg (2012)

35. Yorsh, G., Reps, T., Sagiv, M.: Symbolically Computing Most-Precise Abstract
Operations for Shape Analysis. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 530–545. Springer, Heidelberg (2004)

http://www.cs.wisc.edu/wpis/papers/tr1713.pdf

Making Abstract Interpretation Incomplete:
Modeling the Potency of Obfuscation

Roberto Giacobazzi and Isabella Mastroeni

Dipartimento di Informatica, Università di Verona, Verona, Italy
{roberto.giacobazzi,isabella.mastroeni}@univr.it

Abstract. Recent studies on code protection showed that incompleteness, in the
abstract interpretation framework, has a key role in understanding program ob-
fuscation. In particular, it is well known that completeness corresponds to ex-
actness of a given analysis for a fixed program semantics, hence incompleteness
implies the imprecision of an analysis with respect to the program semantics. In
code protection, if the analysis corresponds to attacker capability of understand-
ing a program semantics, then to study incompleteness means to study how to
make an attacker harmless. We recently showed that this is possible by trans-
forming the program semantics towards incompleteness, which corresponds to a
code obfuscation. In this paper, we show that incompleteness can be induced also
by transforming abstract domains. In this way we can associate with each ob-
fuscated program (semantics) the most imprecise, harmless, analysis. We show
that, for both the forms of completeness, backward and forward, we can uniquely
simplify domains towards incompleteness, while in general it is not possible to
uniquely refine domains. Finally, we show some examples of known code pro-
tection techniques that can be characterized in the new framework of abstract
interpretation incompleteness.

1 Introduction

Abstract interpretation [7] is not only a theory for the approximation of the semantics of
dynamic systems, but also a way of understanding information and computation. In par-
ticular, the notion of completeness/incompleteness in abstract interpretation provides
a deep insight into the meaning of precise/imprecise analyses of programs. Abstract
interpretation-based static analysis consists in fixing a level of abstraction for observ-
ing/analyzing the program behaviour in order to determine whether programs satisfy
given properties in a sound way. For instance, if we analyse the sign property of vari-
ables, we compute the values of program variables looking only at their sign. Suppose
to analyze x := a + b, then if a ≥ 0 and b ≥ 0 we surely know that x ≥ 0, but if
b < 0 then we cannot say anything about the sign of x . This situation depends on the
incompleteness of the sign analysis with respect to the integer addition. In other words,
the sign analysis is, in this case, imprecise, meaning that the abstract observer loses in-
formation about the program behaviour that it is unable to rebuild. Consider x := a ∗ b,
in this case we can check that, whichever is the sign of a and b we are always able
to precisely characterize the sign of x (the rule sign of product). In this case we say
that the analysis is precise, complete, since it captures exactly the property of x . This
means that the concrete information the analysis ignores, by abstracting the program
semantics, is useless for the computation of the program property.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 129–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

130 R. Giacobazzi and I. Mastroeni

Why This Framework Can Be Useful in Code Protection? Code protection, and in par-
ticular code obfuscation, relies upon making security inseparable from code: a program,
or parts of it, are transformed in order to make them hard to understand or analyze [4].
In programming languages, this means that the transformed code has to preserve the
same desired behaviour, as the original program, yet making untrusted users analyses
unable to reveal certain program (secret) properties. Hence, the connection between
incompleteness and successful code obfuscation is clear, since the main objective of
code obfuscation is that of making attacker program analysis useless, namely impre-
cise, and incompleteness models precisely the degree of imprecision of a given analysis
[15]. Recently, this strong connection has been exploited for designing incompleteness-
driven obfuscation techniques [23]. The idea is to combine two different frameworks:
the obfuscators are designed as program interpreters, guaranteeing by construction the
preservation of the semantics, and incompleteness is used to determine what kind of
transformation we have to design in order to make a given analysis (the attacker model)
imprecise. For instance, if we prove that by adding opaque predicates (predicates that
are always true or false) [2] we make the control-flow graph analysis incomplete, then
we know that we have to add precisely opaque predicates for making it obscure for an
attacker able to analyze exactly the control-flow graph structure.

Our Idea: Incompleteness Transformers for “Measuring” Potency. Measuring the po-
tency of obfuscating transformations is a key challenge in code protection. The classical
notion of code obfuscation [3,5] defines an obfuscator as a potent transformation that
preserves observable behaviour of programs. In this setting a transformation is potent
when the obfuscated program is more complex (to analyze) than the original one. In
other words, if there exists at least one analysis that is made harder, or even impossi-
ble to perform, namely imprecise. Again, the connection between (in)completeness and
potency is quite straightforward, namely if, given the obfuscated program, we can find
an incomplete analysis, then we can say that the obfuscation technique is potent.

The idea we propose in this paper is to extend the (in)completeness transformers
framework in order to provide a formal model of the potency of obfuscation and a sys-
tematic method for characterizing it. The idea is to start from the systematic method
existing for making an abstract domain Obs complete [20] and to invert/adjoin this con-
struction. Hence, instead of constructing the most abstract complete refinement of Obs,
i.e., R(Obs), we characterize the most abstract incomplete simplification UR(Obs) that
(in order not to go too far) shares the same complete refinement with Obs. In this way
we characterize the potency of an obfuscation technique by providing a “range” of po-
tency: we guarantee that all the analyses between R(Obs) (excluded) and UR(Obs) (in-
cluded) are imprecise, and therefore harmless, for the obfuscated program. In this case,
the minimality of UR(Obs) systematically characterize a canonical imprecise analysis
for which the obfuscation is potent. In contrast with completeness, where the problem
of transforming domains for making them complete/precise has been widely studied
[17,20], the problem of making domains incomplete by abstract domain transforma-
tions is still unexplored. We solve this problem for generic abstract domains in the Ga-
lois connection based abstract interpretation theory and show that the potency of well
known obfuscation techniques such as opaque predicates [5], data-type obfuscation [11]
and slicing obfuscation [24], can analyzed in this framework.

Making Abstract Interpretation Incomplete: Modeling the Potency of Obfuscation 131

2 Abstract Domains Individually and Collectively

Standard abstract domain definition is formalised in [7] and [8] in terms of Galois
connections. It is well known that this is a restriction for abstract interpretation be-
cause relevant abstractions do not form Galois connections and Galois connections
are not expressive enough for modelling dynamic fix-point approximation [9]. For-
mally, if 〈C ,≤,�,⊥,∨,∧〉 is a complete lattice, monotone functions α : C m−→A
and γ : A m−→C form an adjunction or a Galois connection if for any x ∈ C and
y ∈ A: α(x) ≤A y ⇔ x ≤C γ(y). α [resp. γ] is the left- [right-]adjoint to γ [α]
and it is additive [co-additive], i.e. it preserves lub’s [glb] of all subsets of the domain
(emptyset included). The right adjoint of a functionα is α+ def

= λx .
∨{

y
∣∣α(y) ≤ x

}
.

Conversely the left adjoint of γ is γ−
def
= λx .

∧{
y
∣∣ x ≤ γ(y)

}
[8]. Abstract domains

can be also equivalently formalized as closure operators on the concrete domain. An
upper [lower] closure operator ρ : C −→C on a poset C is monotone, idempotent,
and extensive: ∀x ∈ C . x ≤C ρ(x) [reductive: ∀x ∈ C . x ≥C ρ(x)]. Closures are
uniquely determined by their fix-points ρ(C). The set of all upper [lower] closure op-
erators on C is denoted by uco(C) [lco(C)]. The lattice of abstract domains of C ,
is therefore isomorphic to uco(C), (cf. [7, Section 7] and [8, Section 8]). Recall that
if C is a complete lattice, then 〈uco(C),�,�,�, λx .�, id〉 is a complete lattice [27],
where id

def
= λx .x and for every ρ, η ∈ uco(C), ρ � η iff ∀y ∈ C . ρ(y) ≤ η(y)

iff η(C) ⊆ ρ(C). A1 is more precise than A2 (i.e., A2 is an abstraction of A1) iff
A1 � A2 in uco(C). An element x ∈ C is meet-irreducible if x 	= � and x = a ∧ b
implies x ∈ {a, b}. The set of meet-irreducible elements in C is denoted Mirr(C).
The downward closure of S ⊆ C is defined as ↓ S def

= {x ∈ C | ∃y ∈ S . x ≤C y},
and for x ∈ C , ↓ x is a shorthand for ↓ {x}. Given X ⊆ C , the least abstract domain
containing X is the least closure including X as fix-points, which is the Moore-closure
M(X)

def
= {

∧
S | S ⊆ X }.

Precision of an abstract interpretation typically relies upon the structure of the ab-
stract domain [20]. Depending on where we compare the concrete and the abstract com-
putations we obtain two different notions of completeness. If we compare the results in
the abstract domain, we obtain what is called backward completeness (B), while, if we
compare the results in the concrete domain we obtain the so called forward complete-
ness (F) [8,17,20]. Formally, if f : C m−→C and ρ ∈ uco(C), then ρ is B-complete
if ρ ◦ f ◦ ρ = ρ ◦ f , while it is F -complete if ρ ◦ f ◦ ρ = f ◦ ρ. The problem of mak-
ing abstract domains B-complete has been solved in [20] and later generalised to F -
completeness in [17]. In a more general setting let f : C1−→C2 and ρ ∈ uco(C2) and
η ∈ uco(C1). 〈ρ, η〉 is a pair of B[F]-complete abstractions for f if ρ ◦ f = ρ ◦ f ◦ η
[f ◦ η = ρ ◦ f ◦ η]. A pair of domain transformers has been associated with any com-
pleteness problem [12,18], which are respectively a domain refinement and simplifica-
tion. In [20] and [17], a constructive characterization of the most abstract refinement,
called complete shell, and of the most concrete simplification, called complete core, of
any domain, making it F or B-complete, for a given continuous function f , is given as
a solution of simple domain equations based on the following basic operators:

RF
f

def
= λX .M(f (X)) RB

f
def
= λX .M(

⋃
y∈X max(f −1(↓y)))

CF
f

def
= λX .

{
y ∈ L

∣∣ f (y) ⊆ X
}

CB
f

def
= λX .

{
y ∈ L

∣∣max(f −1(↓y)) ⊆ X
}

132 R. Giacobazzi and I. Mastroeni

•
•
•
•

•

•
•
•

��
��

��
��

����

����

Z

[0,+∞]

[0, 99]

[0, 9]

[0]

[−∞, 0]

[−99, 0]

[−9, 0]

•
•
•
◦

•

◦
◦
•

��
��

��
��

��

����

����
������

��

��

����

Z

[0,+∞]

[0, 99]

[0, 9]

[0]

[−∞, 0]

[−99, 0]

[−9, 0]

•
•
◦
•

•

◦
◦
•

��
��

��
��

��

����

����
������

��

��

����

Z

[0,+∞]

[0, 99]

[0, 9]

[0]

[−∞, 0]

[−99, 0]

[−9, 0]

S = ρS(℘(Z)) (a) (b)

Fig. 1. The abstract domain S and two abstractions

Let � ∈ {F ,B}. In [20] the authors proved that the most concrete β # ρ such that
〈β, η〉 is �-complete and the most abstract β � η such that 〈ρ, β〉 is �-complete are re-
spectively the �-complete core and �-complete shell, which are: CB

f ,η(ρ)
def
= ρ � CB

f (η)
[CF

f ,ρ(η)
def
= η � CF

f (ρ)] and RB
f ,ρ(η)

def
= η � RB

f (ρ) [RF
f ,η(ρ)

def
= ρ � RF

f (η)].
When η = ρ, then the fix-point iteration on abstract domains of the above function

R�
f (ρ) = gfp(λX . ρ � R�

f (X)) is called the absolute �-complete shell. By construction
if f is additive then RB

f = RF
f + (analogously CB

f = CF
f +) [17]. This means that when

we have to solve a problem of B-completeness for an additive function then we can
equivalently solve the corresponding F -completeness problem for its right adjoint.

Example 1. Assume S be the domain in Fig. 1, which is an abstraction of 〈℘(Z),⊆〉
for the analysis of integer variables and sq : ℘(Z) → ℘(Z) be the square operation
defined as follows: sq(X) =

{
x 2
∣∣x ∈ X

}
for X ∈ ℘(Z). Let ρS ∈ uco(℘(Z))

be the closure operator associated with S. The best correct approximation of sq in S

is sqS : S → S such that sqS(X) = ρS(sq(X)), with X ∈ S (the arrows in Fig. 1
(a)). It is easy to see that the abstraction ρa = {Z, [0,+∞], [0, 99], [−9, 0], [0]} (black
dots in Fig. 1 (a)) is not B-complete on the concrete domain S for sqS (for instance
ρa(sq

S(ρa([0, 9]))) = [0,+∞] but ρa(sqS([0, 9])) = [0, 99]). The complete shell adds
the maximal of inverse images of sqS, namely it adds [0, 9]. Note that, the shell does
not add [−99, 0] and [−∞, 0] since max

{
X
∣∣ sqS(X) ⊆ [0,+∞]

}
= �, hence all the

other elements X such that sqS(X) = [0,+∞] are not added. The complete core erases
[0, 99] hence it is {Z, [0,+∞], [−9, 0], [0]}.

On the other hand, ρb = {Z, [0,+∞], [0, 9], [−9, 0], [0]} (black dots in Fig. 1 (b)) is
not F -complete on the concrete domain S for sqS (for instance ρb(sqS(ρb([−9, 0]))) =
[0,+∞] but sqS(ρb([−9, 0])) = [0, 99]). The complete shell adds the direct images of
ρb fix points, i.e., [0, 99], while the core erases the incomplete elements obtaining the
domain {Z, [0,+∞], [0]}.

2.1 Adjoining Closure Operators

In the following we will make an extensive use of adjunction, in particular of clo-
sure operators. Janowitz [22] characterized the structure of residuated (adjoint) closure

Making Abstract Interpretation Incomplete: Modeling the Potency of Obfuscation 133

operators. The following result strengthen the characterization provided in [22] by
showing the order-theoretic structure of residuated closures.

Proposition 2. [16] Let τ ∈ lco(C) and η ∈ uco(C). If 〈τ, τ+〉 and 〈η−, η〉 are
pairs of adjoint functions then we have τ+ = λX .

∨
{Y |τ(Y) = τ(X)} and η− =

λX .
∧
{Y |η(X) = η(Y)}.

In particular this result leads to the observation that the existence of adjunction is re-
lated to the notion of closure uniformity. Uniform closures have been introduced in
[19] for specifying the notion of abstract domain compression, namely the operation
for reducing abstract domains to their minimal structure with respect to some given
abstraction refinement η ∈ lco(uco(C)). An upper closure η is meet-uniform [19] if
η(
∧
{Y |η(X) = η(Y)}) = η(X). Join-uniformity is dually defined for lower clo-

sures. Well-known non-co-additive upper closures are meet-uniform, such as the down-
ward closure ↓ of a subset of a partially ordered set [19].

It is known that any ρ ∈ uco(C) is join-uniform and the set of meet-uniform upper
closures uco∗(C) is a Moore-family of uco(C). Dually, the same holds for lower clo-
sure operators, namely τ ∈ lco(C) is meet-uniform and the set of join-uniform lower
closures lco∗(C) is a Moore-family of lco(C). As observed in [19] when only unifor-
mity holds, the adjoint function may fail monotonicity. In [19] the authors proved that
the adjoint function is monotone on a lifted order induced by τ , ≤τ⊆ C × C , defined
as: x ≤τ y ⇔ (τ(x) ≤ τ(y)) ∧ (τ(x) = τ(y) ⇒ x ≤ y). ≤τ is such that ≤⇒≤τ .
The following result is immediate by [22] and Prop. 2.

Proposition 3. [16] Let τ ∈ lco(C) [η ∈ uco(C)]. 〈τ, τ+〉 [〈η−, η〉] is a pair of
adjoint closures on the lifted order iff τ is join-uniform [η is meet-uniform].

Example 4. Consider the Sign domain in Fig. 2, let us consider uco(Sign):

D1 = {�} D2 = {�, 0+} D3 = {�, 0} D4 = {�,⊥}
D5 = {�, 0−} D6 = {�, 0+,⊥} D7 = {�, 0+, 0} D8 = {�, 0,⊥}
D9 = {�, 0−, 0} D10 = {�, 0−,⊥} D11 = {�, 0+, 0,⊥} D12 = {�, 0+, 0−, 0}

D13 = {�, 0−, 0,⊥} D14 = D

Consider the domain transformer τa = λX . X � D7. The lco domain with respect to
the lifted order�τ is depicted in Fig 2 (a), where the circled domains are the fix points.
Fig 2 (b) provides another example of lifted order where τb = λX .X �D3. It is worth
noting that both the domain transformers are join-uniform, implying additivity on the
lifted lco(Sign), namely admitting the right adjoints.

3 Potency by Incompleteness

In this paper we aim to use incompleteness domain transformers for modeling the po-
tency of obfuscation. Before formally introducing the transformers we aim to describe
what we mean by modeling potency by incompleteness, in particular with respect to
related works, and then we show, by means of an example, how the transformers should
modify abstract domains for inducing incompleteness and how this is used for measur-
ing potency in code obfuscation.

134 R. Giacobazzi and I. Mastroeni

�

⊥

0+0−

0

Sign

D1

D2 D3

D7

D4

D8D6

D11

D5

D9

D12

D10

D13

D14

(a)

D1

D2 D4 D5

D7 D8 D9

D12
D6 D10

D11 D13

D14

D3

(b)

Fig. 2. Lifted lco(Sign)

3.1 Modeling Potency of Code Obfuscation

In this paper, we start from the model of potency introduced in [15] and used in [23].
First of all, consider a program P and let �P� denotes its semantics, computed as fix-
point of the operator fP, namely �P� =

{
lfp

s
fP
∣∣ s ∈ Σ

}
. Let Σ be the set of states of

P and ρ, η ∈ uco(Σ). Finally, let O a program obfuscation transformer. Then, consider
the following conditions that have to hold when dealing with code obfuscation:

(1) �P� = �O(P)�, by definition of code obfuscation [2]
(2) ρ(�P�) = �P�(ρ,η) def

=
{

lfp
s
ρ◦ fP ◦η

∣∣ s ∈ Σ
}

i.e., suppose (ρ, η) B-complete for �P�, implying the need of obfuscation
when (ρ, η) is the property to protect in P.

Hence, the property (ρ, η) is obfuscated if �P�(ρ,η) � �O(P)�(ρ,η), which holds iff
ρ(�O(P)�) � �O(P)�(ρ,η) (see [15]). In other words, a property is obfuscated iff it is
incomplete for the obfuscated program.

In [15] and in [23] the objective is to provide an incompleteness-driven construction
of a potent obfuscator, while here we aim to use this incompleteness-based characteri-
zation for ”measuring” potency. In fact, we aim to define formal domain transformers
inducing incompleteness that allow to systematically characterize a range of analyses
that are made incomplete, and therefore imprecise, by the performed code obfuscation.
In particular, if Obs can be precisely analyzed by the attacker, the incomplete compres-
sion UR(Obs) (that will be defined in the next section) systematically characterizes
the most abstract domain such that any abstract analysis between Obs (excluded) and
UR(Obs) (included) is obfuscated.

This not the first attempt to model potency by means of abstract interpretation. In
[10], the basic idea is to define potency in terms of the most concrete output obser-
vation left unchanged by the obfuscation, i.e., δO such that δO(�P�) = δO(�O(P)�).

Making Abstract Interpretation Incomplete: Modeling the Potency of Obfuscation 135

The set of all the obfuscated properties, making the obfuscator potent, is determined
by all the analyses

{
Obs

∣∣Obs not more abstract than δO
}

. This characterization does
not use (in)completeness since it is based on the observation of the computed output of
programs, and not on the iterative computation of program semantics.

3.2 Example: Control-Flow Obfuscation

Let us consider the obfuscation technique based on the use of opaque predicate [5], and
let us recall the incompleteness characterization already provided in [23].

Opacity is an obfuscation technique based on the idea of confusing the control struc-
ture of a program by inserting predicates that are always true (or false) independently
of the memory [5]. In [23] we show that opacity is making incomplete an abstract in-
terpreter, we characterize the construction of the control-flow graph (the attack) as an
abstract interpretation and we prove that a program contains opaque predicates if and
only if this abstract interpretation is incomplete. Let us consider the graph semantics
�P�G modeling the semantics of a program, keeping trace also of its control-flow graph
[23].

Example 5. Consider the following program and the generated graph when x = 1:

1.input x ;
2.y := 2;
3.while x > 0 do

4.y := y + 2;
5.x := x − 1

endw
6.output y ;
7.end

2: y:=2;1: input x; 3: while x> 0 do 6: output y

4: y:=y+2;

5: x:=x-1;endw

States in Σ are defined as 〈σ, 〈l , l ′〉,Gl〉, where σ is a memory, namely the actual values
of variables, l ∈ N is the executed statement of P, l ′ ∈ N is next statement to execute,
and Gl is the computed control-flow graph. The transition relation is gP(〈σ, 〈l , l ′〉,G〉) =
〈σ′, 〈l ′,NextP(l ′)〉,G′〉, where the nodes are Nodes(G′) = Nodes(G) ∪ {l , l ′} and the
edges are Arcs(G′) = Arcs(G) ∪ {〈l , l ′〉} (for details on the computation of σ and
on definition of NextP see [23]). Hence, we build the executed control-flow graph
as the fix-point iteration of this transition function, starting from any state s : �P�G ={

lfp
s
C◦gP

∣∣ s ∈ Σ
}

, where C ignores the memory (unnecessary when looking at the
control structure of programs) and merges the collected histories of computations.

At this point, for measuring precision of the obfuscation technique adding opaque
predicates, we consider the completeness equation lfp

s
C ◦ gP = lfp

s
C ◦ gP ◦ id (for

s ∈ Σ) where P contains at least one opaque predicate, and we look for the input
abstraction B (abstracting the graph component of states augmenting the set of edges)
such that lfp

s
C◦gP 	= lfp

s
C◦gP ◦B. Intuitively, in lfp

s
C◦gP, due to the C abstraction, we

evaluate the opaque predicates on the set of all the possible memories, and since these
predicates are opaque, only one branch is always followed. In other words, the resulting
graph contains nodes corresponding to control structures with only one outgoing edge.
Hence, for inducing incompleteness the input abstraction B has to abstract states in

136 R. Giacobazzi and I. Mastroeni

order to force any control structure node to follow always both the possible branches. B
can be obtained from the identity abstraction by erasing all the states that lead to follow
only one branch, namely all the states corresponding to the evaluation of an opaque
predicate. In other words, B has to ignore the evaluation of any control statement guard,
considering always both the branches of computation.

This abstraction, informally described here as an incompleteness driven simplifica-
tion of the identity domain, corresponds precisely to the abstraction statically char-
acterizing the control-flow semantics in [23]. Namely, the control-flow graph of an
imperative program is the fix-point abstraction of the concrete semantics: �P�CFG =
lfp

s
(gCFG

P) where gCFG
P

def
= C ◦ gP ◦ B. Note that, in [23] opacity is characterized by the

absence of completeness, showing that C(�P�G) =G �P�CFG iff P doesn’t contain opaque
predicates.

4 Making Abstract Domains Incomplete

In this section, we formalize the construction of the most abstract domain having a fixed
complete refinement, i.e., the incomplete domain compressor. The idea is to consider
the complete shell in [20], and to show that it admits right adjoint and that this right
adjoint is exactly the incomplete compressor.

4.1 Simplifying Abstractions

First of all, we observe that a complete shell always admits right adjoint. Indeed, by
Prop. 3 we know that the right adjoint of an lco exists iff the lco is join-uniform. At this
point, since complete shells have the form of pattern completion, we observe that pat-
tern completion domain transformers are always join-uniform (this result was observed
for the first time in [19]).

Lemma 6. Let C a complete lattice and η ∈ uco(C) then the pattern completion func-
tion fη

def
= λδ.δ � η is join-uniform.

Note that, the domain transformers defined in Ex. 4 are exactly of this form, and indeed,
the fact that they admit right adjoint on the lifted orders depends precisely on the fact
that these transformers are join-uniform by Lemma 6.

Forward Incomplete Compressor
Consider F completeness, i.e., ρ ◦ f ◦ η = f ◦ η with ρ, η ∈ uco(C), C complete
lattice, and f : C −→ C , denoting also its additive lift to ℘(C). The completeness
shell is RF

f ,η which refines the output domain by adding all the f -images of elements of
η to ρ. Hence, by Lemma 6 we have the following result.

Proposition 7. RF
f ,η = λρ. ρ �M(f (η))1 is join-uniform on uco(C).

Being R
def
= RF

f ,η join-uniform, its right adjoint exists (Prop. 3) and by Prop. 2 it is

R+ = λρ.
⊔{

δ
∣∣R(δ) = R(ρ)

}
= λρ.

⊔{
δ
∣∣ δ �M(f (η)) = ρ �M(f (η))

}
1 f (η) stands for f (η(C)).

Making Abstract Interpretation Incomplete: Modeling the Potency of Obfuscation 137

By join-uniformity we know that R◦R+(ρ) = R(ρ), namelyR+(ρ) is the most abstract
domain such that R+(ρ) �M(f (η)) = ρ �M(f (η)), which by definition is exactly the
pseudo-complement (ρ �M(f (η))) &M(f (η))2. By [13] we know that if C is meet-
generated by Mirr(C) then uco(C) is pseudo-complemented and for any A ∈ uco(C),
C &A = M(Mirr(C) �A). Hence we define

URF
f ,η

def
= λρ.M(Mirr(ρ �M(f (η))) �M(f (η)))

This transformation first erases all the elements that we should avoid, and then by the
Moore-family completion adds only those necessary for obtaining a Moore-family, i.e.,
an abstract domain. We call this transformation incomplete compressor.

Proposition 8. URF
f ,η = (RF

f ,η)
+

Example 9. Consider the operation sq(X) =
{
x 2
∣∣x ∈ X

}
for X ∈ ℘(Z), this time

on the lattice of integer intervals Int
def
=
{
[a, b]

∣∣ a, b ∈ Z
}
∪
{
[−∞, b]

∣∣b ∈ Z
}
∪{

[a,+∞]
∣∣a ∈ Z

}
[6,7]. In this case the best correct approximation of sq in Int is

sq� : Int → Int such that sq�(X) = Int(sq(X)), with X ∈ Int. Note that, by defini-
tion of sq�, we trivially have Int ◦ sq� ◦ Int = sq� ◦ Int, i.e., F -completeness. For in-
stance sq�([3, 4]) = [9, 16] ∈ Int. Let us transform the output Int domain in order to
induce incompleteness, namely let us derive the forward incomplete compression of
Int. Note that Mirr(Int) =

{
[−∞, b]

∣∣b ∈ Z
}
∪
{
[a,+∞]

∣∣a ∈ Z
}

[20] and that
M(sq�(Int)) =

{
[a2, b2]

∣∣a, b ∈ Z
}
∪
{
[−∞, b2]

∣∣b ∈ Z
}
∪
{
[a2,+∞]

∣∣a ∈ Z
}
#

Int. Hence we have that Int′
def
= URF

sq�,Int
(Int) = M(Mirr(Int)�M(sq�(Int)) namely

Int′ = M(
{
[−∞, b]

∣∣ b ∈ Z,�c ∈ Z. b = c2
} ∪ {

[a,+∞]
∣∣a ∈ Z,�c ∈ Z. a = c2

}
)

=
{
[a, b]

∣∣a, b ∈ Z,�c, d ∈ Z. a = c2 ∧ b = d2
}∪{

[−∞, b]
∣∣ b ∈ Z,�c ∈ Z. b = c2

} ∪ {
[a,+∞]

∣∣a ∈ Z,�c ∈ Z. a = c2
}

So, for instance, we have that sq�([3, 4]) = [9, 16] /∈ Int′, meaning incompleteness.

Note that this transformation does not always generate an incomplete domain. The fol-
lowing result provides the formal conditions that have to hold in order to induce incom-
pleteness, namely in order to guarantee the existence of incomplete compression. The
domains that does not satisfy these conditions are complete and are complete shells of
only themselves, namely we cannot find a unique most concrete simplification which is
incomplete.

Theorem 10. Let η, ρ ∈ uco(C) and f : C −→ C . URF
f ,η(ρ) (here denoted UR) is

such that UR(ρ) ◦ f ◦ η 	= f ◦ η iff one of the following conditions hold:

1. ρ ◦ f ◦ η 	= f ◦ η, i.e., ρ was incomplete before simplification;
2. M(f (η)) ∩Mirr(ρ) 	= ∅;

In the following examples we show the meaning of these conditions.

2 If C is a meet-semilattice with bottom, then the pseudo-complement of x ∈ C , when it exists,
is the unique element x∗ ∈ C such that x ∧ x∗ = ⊥ and such that ∀y ∈ C . (x ∧ y = ⊥) ⇒
(y ≤ x∗) [1].

138 R. Giacobazzi and I. Mastroeni

Example 11. Consider the Sign domain in Fig. 2. Consider a complete shell such that
M(f (η)) = D7, then the completeness transformer is R = λX .X � D7. The result-
ing lco on the corresponding lifted order is in Fig 2(a), where the circled domains are
the complete ones, i.e., {D7,D11,D12,D14}. All of them contain the meet-irreducible
elements of D7 (condition (2) of Th. 10 is satisfied) and therefore we can find the in-
complete compression of any domain, e.g., UR(D12) = D5.

Th. 10 says that some conditions have to hold in order to have a unique incomplete sim-
plification, this does not mean that we cannot find anyway an incomplete simplification,
even if it is not unique. Consider the following example.

Example 12. Consider again the domain in Fig 2 and suppose the shell now is R =
λX .X � D3. The lifted lco is depicted in Fig. 1(b). In this case the complete domains
are {D3,D7,D8,D9,D11,D12,D13,D14}. We can observe that not all of them have
meet-irreducibles in common with D3. In particular, D12 and D14 are shell only of
themselves. In this case we could only choose one of the closest complete domains that
contains meet-irreducible elements of D3, e.g., for D14 we can choose between D11 or
D13, and then we can transform one of the chosen domains for finding one of the closest
incomplete domains, i.e., D6 or D10.

Absolute Incomplete Compressor. We can exploit the previous transformation relative
to a starting input abstraction ρ, in order to characterize the abstract domain which is
incomplete for a given function, both in input and in output. This is possible without
fix-point iteration since, the domain transformer reaches the fix-point in one iteration.

Theorem 13. Let f : C −→ C be a monotone function, ρ ∈ uco(C).
Let UR(ρ)

def
= URF

f ,ρ(ρ) ∈ uco(C) be an incomplete compression of ρ such that we
have UR(ρ) 	= �. Then UR(ρ)◦ f ◦UR(ρ) 	= f ◦UR(ρ).

Note that, if UR(ρ) = � we cannot find the absolute incomplete compressor since
�◦ f ◦� = �◦ f always holds.

Example 14. Consider the situation described in Ex. 9, and compute URF
sq�,Int’

(Int′).
Recall the following facts

Mirr(Int′) =
{
[−∞, b]

∣∣ b ∈ Z,�c ∈ Z. b = c2
} ∪ {

[a,+∞]
∣∣a ∈ Z,�c ∈ Z. a = c2

}
M(sq�(Int′)) =

{
[a2, b2]

∣∣a, b ∈ Z,�c, d ∈ Z. a = c2 ∧ b = d2
}∪{

[−∞, b2]
∣∣ b ∈ Z,�c ∈ Z. b = c2

} ∪ {
[a2,+∞]

∣∣a ∈ Z,�c ∈ Z. a = c2
}

Now we show that Th. 13 holds. Note that, Mirr(Int′)∩M(sq�(Int′)) = ∅, for instance,
[a,+∞] ∈ Mirr(Int′) then �c ∈ Z.a = c2, which means that [a,+∞] /∈M(sq�(Int′)),
since by construction the elements of this form are of the kind [c2,+∞] (with the
additional, but useless, condition that c is not the square of any integer), and viceversa.

Moreover, Mirr(Int′) ⊆ Mirr(Int′ � M(sq�(Int′)), since by construction if x ∈
Mirr(Int′) then we also have x ∈ Mirr(Int), on the other hand M(sq�(Int′)) ⊆ Int,
therefore x remain meet-irreducible also in the reduced product. Therefore,

Mirr(Int′) = Mirr(Int′)�M(sq�(Int′)) ⊆ Mirr(Int′ �M(sq�(Int′))�M(sq�(Int′))

namely Int′ # URF
sq�,Int’

(Int′), and since by construction we have the other inclusion,
we showed the equality, i.e., URF

sq�,Int’
(Int′) = Int′.

Making Abstract Interpretation Incomplete: Modeling the Potency of Obfuscation 139

Example 15. Consider the ρb domain in Fig. 1(b).
Then Mirr(ρb) = {[0,+∞], [−9, 0], [0, 9]} andM(sqS(ρb)) = {Z, [0,+∞], [0, 99], [0]}.

S′ def
= URF

sqS,ρb
(ρb) = M(Mirr(ρb �M(sqS(ρb)))�M(sqS(ρb)))

= M(Mirr(ρb)�M(sqS(ρb))) = M({[0,+∞], [−9, 0], [0, 9]}) = {Z, [−9, 0], [0, 9], [0]}

Finally, we can easily check that S′ ◦sqS ◦S′ 	= sqS ◦S′.

Backward Incompleteness Compressor
In this section we show that all the results holding for F completeness can be instanti-
ated also to B completeness. First of all, by Lemma 6 we have that

Proposition 16. RB
f ,ρ is join-uniform on the domain of upper closure operators.

This result tells us that also the B shell admits right adjoint, and as before, its adjoint
can be characterized as a pseudo-complement in the following way.

Proposition 17. Let Rf
def
= λδ.M(

⋃
y∈δ max(f −1(↓ y))) ∈ uco(C), then we have that

URB
f ,ρ

def
= λη.M(Mirr(η � Rf (ρ))� Rf (ρ)) = (RB

f ,ρ)
+.

Finally, also for B completeness we can prove that the B incomplete compressor exists
iff some conditions hold, as stated in the following theorem.

Theorem 18. Let η, ρ ∈ uco(C) and f : C −→ C . URB
f ,ρ(η) (here denoted simply

UR) is such that ρ ◦ f ◦ UR(η) 	= ρ ◦ f iff one of the following conditions hold:

1. ρ ◦ f ◦ η 	= ρ ◦ f , i.e., η was incomplete before simplification;
2. Rf (ρ) ∩Mirr(η) 	= ∅;

Finally, we can characterize also the absolute B incomplete compressor.

Theorem 19. Let f : C −→ C be a monotone function, η ∈ uco(C).
Let UR(η)

def
= (RB

f ,η)
+(η) ∈ uco(C) be an incomplete compressor such that we have

UR(η) 	= �. Then UR(η)◦ f ◦UR(η) 	= UR(η)◦ f .

Example 20. Let us consider data obfuscation, and in particular the incompleteness
characterization provided in [23]. This obfuscation technique is based on the encoding
of data [11]. In this case obfuscation is achieved by data-refinement, namely by ex-
ploiting the complexity of different data-structures or values in such a way that actual
computations can be viewed as abstractions of the refined (obfuscated) ones. The idea
consists in choosing a pair of statements cα and cγ such that cγ ; cα ≡ skip. This means
that both cα and cγ are statements of the form: cα ≡ x := G(x) and cγ ≡ x := F (x),
for some function F and G . A program transformation O(P)

def
= cγ ; τx (P); c

α is data-
type obfuscation for data-type x if O(P) ≡ P, where τx adjusts the data-type compu-
tation for x on the refined type (see [11]). It is known that data-type obfuscation can
be modeled as adjoint functions (Galois connections), where cγ represents the program
concretizing , viz. refining, the datum x and cα represents the program abstracting the
refined datum x back to the original data-type. As proved in [15], this is precisely mod-
eled as a pair of adjoint functions: α : V−→V� and γ : V�−→V relating the standard
data-type V for x with its refined version V�. For instance, consider P = x := x + 2;,

140 R. Giacobazzi and I. Mastroeni

cα ≡ x := x/2 and cγ ≡ x := 2x , then we have τx (P) = x := 2(x/2 + 2), namely
x := x + 4, therefore: O(P) ≡ x := 2x ; x := x + 4; x := x/2. Consider, for instance
the program: P = x := 1; s := 0;while x < 15 do s := s + x ; x := x + 1; endw.
Then τx (P) = x := 2; s := 0;while x < 30 do s := s + x/2; x := x + 2; endw.
α, γ, V, and V� are the most obvious ones. In [23], given ρ ∈ uco(V), we showed
that for any pair of adjoint functions (α, γ) such that γα � ρ and program refine-
ment τx (for some variable x in P) mapping programs into incomplete structures for ρ:
ρ(�P[O(Q)]� � ρ�P[O(Q)]�ρ.

Hence, let opP be a syntactic operation in a programming language. Then URB(ρ)
is the absolute incomplete compression of ρ, unable to precisely analyze the semantics
of opP. Namely, it is such that URB(ρ)◦ �opP�◦URB(ρ) 	= URB(ρ)◦ �opP�.

Consider, for instance opP
def
= sqS and ρa defined in Ex. 1 and consider the abstrac-

tion ρ′
def
= RB(ρa) = {Z, [0,+∞], [0, 99], [0, 9], [−9, 0], [0]}. ρ′ is complete for opP by

construction, hence for characterizing the potency of the obfuscation technique con-
sisting in using the operator opP in a program. Hence, we can compute URB(ρ′) =
URB(ρa) = M(Mirr(ρ′ � RsqS(ρ′)) � RsqS(ρ′)) = M(Mirr(ρ′) � RsqS(ρ′)). Not-
ing that RsqS(ρ′)) = {Z, [0, 9], [−9, 0], [0]}, the resulting incomplete compression is
URB(ρ′) = {Z, [0,+∞], [0, 99]}. In this way we provide a model of the potency of the
obfuscation technique since we know that all the analyses between ρ′ (excluded) and
URB(ρ′) (included) are made imprecise by the performed code transformation.

4.2 Refining Abstractions: Incomplete Expanders

If we consider the other direction, when we want to transform the input abstraction, it
is well known (see [20]) that, for inducing F [B] completeness we can simplify the
domain by erasing all the η-elements whose f [inverse] image goes out of ρ. In this
case we are considering the completeness core CF

ρ,f [CB
η,f]. If we aim to induce incom-

pleteness we should add all the elements such that the f [inverse] image is out of ρ, i.e.,{
x
∣∣ f (x) /∈ ρ

}
[
{
y
∣∣max

{
x
∣∣ f (x) ≤ y

}
	⊆ η

}
]. We wonder if this transformation

always exists.
Unfortunately, the following result implies, by Prop. 3, that we cannot find the most

concrete abstraction that refines ρ and which is incomplete.

Theorem 21. The operator CF
ρ,f [C

B
η,f] is not meet-uniform.

5 The Potency of Data Dependency Obfuscation

In this section we describe program slicing [21,28] as an abstraction of a program se-
mantics constructing the program dependency graph (PDG for short). In particular we
show that slicing obfuscation [24], against attackers performing slicing analyses, is po-
tent when there are syntactic dependencies between variables that do not correspond
to semantic dependencies. We will call these dependencies fake dependencies. For in-
stance, in the assignment y = x + 1 there is a semantic dependency of y on x , while in
y = x + 5 − x there is a fake dependency between y and x since the value of y does
not depend on x . We show that slicing can be modeled as an abstraction of program
semantics and it is precisely the most abstract incomplete compression of the concrete
semantics that is obfuscated by fake dependencies.

Making Abstract Interpretation Incomplete: Modeling the Potency of Obfuscation 141

5.1 Program Slicing

Let us provide a brief overview on program slicing [28] and on the way slices are
computed in [21].

Definition 22 ((Semantic) Program slicing). For a variable v and a statement (pro-
gram point) s (final use of v), the slice S of program P with respect to the slicing
criterion 〈s , v〉 is any executable program such that S can be obtained by deleting zero
or more statements from P and if P halts on input I then the value of v at the statement
s , each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v
each time s is executed by P .
The standard approach for characterizing slices is based on PDG [21]. A program de-
pendence graph [14] PP for a program P is a directed graph with vertexes denoting
program components and edges denoting dependencies between components. The ver-
texes of PP, Nodes(PP), represent the assignment statements and control predicates that
occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow depen-
dence. Control dependence edges u −→c v are such that (1) u is the Entry vertex and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested
within the control predicate represented by u . Flow dependence edges u −→f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graphs, a slice for a criterion 〈s , v〉 is
the sub-graph containing all the vertexes that can reach s via flow/control edges. It is
worth noting that these slices are characterized by means of syntax-based dependencies,
therefore in general they are not the smallest program fragments satisfying Def. 22 [25].
Example 23. Consider the following programs [26], Note that P2 is a slice of P1.

P1

⎡⎣ 1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

⎡⎣ 1.x := 0 ;

4.y := x ;

On the right we find a representation of
the program dependence graph of P1. In
this representation we have only con-
trol and flow dependence edges, with-
out distinction. In this graph we can
note that slice P2 (with criterion the
value of y) can be computed by follow-
ing backwards the edges starting from
node y := x , the final definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

5.2 Semantic PDG as Abstraction of Program Semantics

We define now the abstractions characterizing the program semantics that can be ab-
stracted in the program slicing. In particular, we first define a semantics, similar to

142 R. Giacobazzi and I. Mastroeni

graph semantics [23] (briefly described in Sect. 3.2) which, instead of computing the
control flow graph, computes the semantic PDG, namely the PDG including only se-
mantic/real dependencies among variables.

The program semantics is a transition system with states inΣ of the form 〈σ, 〈l , l ′〉,Pl〉,
where σ is the memory, namely the actual values of program variables, 〈l , l ′〉 ∈ N× N

is a pair of program states, l is the executed statement and l ′ is next statement to ex-
ecute, finally Pl is the computed PDG. Let us concentrate on the structure and on the
iterative construction of P. A PDG Pl is defined as a triple 〈Nodesl ,Arcsl ,Dl〉, where
Nodesl ⊂ N and Arcsl ⊂ N × N describe respectively the nodes and the edges of the
PDG graph. In particular, we have two kinds of edges, the control dependence edges
Controll and the flow dependence edges Flowl , hence Arcsl = Controll ∪ Flowl . Fi-
nally, Dl is an auxiliary information, necessary for constructing flow dependencies. In
fact Dl : Var −→ N associates with each variable the last statement where the variable
has been defined. For instance, in Ex. 23, D4(x) = 1 while D4(y) = 4.

For each program point l ′ ∈ N we can also define the following auxiliary maps:

StmP : N −→ P s.t. StmP(l) is the statement in program line l
Dep : N −→ Var s.t. Dep(l) is the set of variables the statement in l depends on
Use : N −→ Var s.t. Use(l) is the set of variables used in l

In general, Dep(l) ⊆ Use(l), if there are not fake dependencies we have the equality.

The transition function is pP(〈σ, 〈l1, l2〉,Pl1〉) = 〈σ′, 〈l2,NextP(l2)〉,Pl2〉 where σ′

is the memory modified by executing statement in l1 and NextP computes the following
statement to execute (see [23] for details) and Pl2 is computed as follows:

Dl2 = Dl1 [Dx = l2] if Stm(l2) = x := e (it is Dl1 otherwise)
Nodesl2 = Nodesl1 ∪ {l2}

Controll2 = Controll1 ∪
{
〈l2, l〉

∣∣Stm(l2) ∈ {if,while} and Stm(l) is nested in l1
}

Flowl2 = Flowl1 ∪
{
〈Dl1(x), l2〉

∣∣ x ∈ Dep(l2)
}

We compute the PDG semantics as �P�PDG

def
=
{

lfp
s

id◦pP
∣∣ s ∈ Σ

}
. The precision mea-

sure of an input abstraction α of this semantics is provided by the B completeness
equation �P�PDG = �P�αPDG, where �P�αPDG

def
=
{

lfp
s
id◦pP ◦α

∣∣ s ∈ Σ
}

, where the consid-
ered abstractions of states α augment the set of PDG (flow) edges. Hence, we can use
the incomplete compressor for characterizing a simplification of the identity inducing
completeness, and it is exactly the syntactic PDG-based computation of slices [21].

Proposition 24. Consider a program P with fake dependencies. The input abstraction
S computing the PDGP in terms of Flowl2 = Flowl1 ∪

{
〈Dl1(x), l2〉

∣∣ x ∈ Use(l2) } is
the B incomplete compressor of the identity map on states unable to precisely compute
program slices, namely such that �P�PDG 	= �P�SPDG.

In order to understand this transformation observe that it consists in erasing the (maxi-
mal) inverse images of the semantics �P�PDG of a program containing fake dependencies.
This means that �P�PDG generates flow branches where not all the used variables are con-
nected to the defined one, for instance in y := x + z − x we have an edge from z to y
but not from x to y which is a fake dependence. Hence in order to force incompleteness

Making Abstract Interpretation Incomplete: Modeling the Potency of Obfuscation 143

�P�SPDG has to generate PDGs where, for each variable definition, all the used variables
are taken into account in the flow edges construction. In this way we guarantee, due the
presence of fake dependencies, that the resulting PDGs are different. This construction
suggests also the following result, which perfectly fits in the approach to program ob-
fuscation proposed in [23], where programs are obfuscated by specializing interpreters
distorted with respect to a fixed syntactic feature that has to be added into the program
in order to make imprecise a given analysis.

Proposition 25. �P�PDG = �P�SPDG iff P does not contain fake dependencies.

6 Conclusion

The paper provides two main contributions. The first consists in extending (an in some
sense completing) the framework of abstract domain transformers for completeness and
incompleteness in abstract interpretation. This is achieved by formalizing the abstract
domain simplifications making abstract domains incomplete, i.e., incompleteness com-
pressors. The second contribution consists in modeling the potency of code obfuscation
by associating attackers (i.e., abstract interpretations [15]) with their incomplete com-
pressor. In particular, we showed that the potency of well known obfuscation techniques
such as opaque predicates and data-type obfuscation can be modeled in our incomplete-
ness framework. Moreover, we formally showed that if the attacker is able to perform
program slicing, then we obtain a potent obfuscation technique by adding fake depen-
dencies among variables. The minimality of our result implies the minimality of fake
dependencies for protecting programs against slicing. We believe that most code obfus-
cation strategies can be modeled in this way or, equivalently, that we can characterize
the obfuscation techniques potent with respect to most of attackers that can be specified
as approximate interpreters.

As far as the formal framework is concerned, we already know how to make abstract
domains complete [17,20], and how to transform semantics in order to induce both
completeness and incompleteness [16]. In particular, the incompleteness transformers,
both of domains (developed in this paper) and of semantics [16], have been obtained
by adjoining the corresponding completeness transformers. It would be interesting to
study the formal relation between domain and semantics transformers. We believe that
this would provide an important contribution in the obfuscation field due to the strong
relation between obfuscation and incompleteness. Indeed, it is clear that to transform
semantics for inducing incompleteness corresponds to obfuscate programs [15], while,
as we underlined, transforming domains for inducing incompleteness characterize the
harmless attackers. Hence, understanding the relation between incomplete domains and
semantics transformers allows to formally study the relation between the power of at-
tackers and the obfuscation transformations devoted to protect code.

References

1. Birkhoff, G.: Lattice Theory, 3rd edn. AMS Colloquium Publication, AMS (1967)
2. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and Tamper-

proofing for Software Protection. Addison-Wesley Professional (2009)

144 R. Giacobazzi and I. Mastroeni

3. Collberg, C., Thomborson, C.: Breaking abstrcations and unstructural data structures. In:
Proc. of the 1994 IEEE Internat. Conf. on Computer Languages, ICCL 1998, pp. 28–37
(1998)

4. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obduscation-tools for
software protection. IEEE Trans. Software Eng., 735–746 (2002)

5. Collberg, C., Thomborson, C.D., Low, D.: Manufactoring cheap, resilient, and stealthy
opaque constructs. In: Proc. of Conf. Record of the 25th ACM Symp. on Principles of Pro-
gramming Languages, POPL 1998, pp. 184–196. ACM Press (1998)

6. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Pro-
ceedings of the 2nd International Symposium on Programming, pp. 106–130. Dunod, Paris
(1976)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: Conference Record of the
4th ACM Symposium on Principles of Programming Languages, POPL 1977, pp. 238–252.
ACM Press (1977)

8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Conference
Record of the 6th ACM Symposium on Principles of Programming Languages, POPL 1979,
pp. 269–282. ACM Press (1979)

9. Cousot, P., Cousot, R.: Comparing the Galois Connection and Widening/Narrowing Ap-
proaches to Abstract Interpretation (Invited Paper). In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

10. Dalla Preda, M., Giacobazzi, R.: Semantic-Based Code Obfuscation by Abstract Interpre-
tation. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 1325–1336. Springer, Heidelberg (2005)

11. Drape, S., Thomborson, C., Majumdar, A.: Specifying Imperative Data Obfuscations. In:
Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
299–314. Springer, Heidelberg (2007)

12. Filé, G., Giacobazzi, R., Ranzato, F.: A unifying view of abstract domain design. ACM Com-
put. Surv. 28(2), 333–336 (1996)

13. Filé, G., Ranzato, F.: Complementation of abstract domains made easy. In: Maher, M. (ed.)
Proceedings of the 1996 Joint International Conference and Symposium on Logic Program-
ming, JICSLP 1996, pp. 348–362. The MIT Press (1996)

14. Gallagher, K.B., Lyle, J.R.: Using program slicing in software maintenance. IEEE Trans. on
Software Engineering 17(8), 751–761 (1991)

15. Giacobazzi, R.: Hiding information in completeness holes - new perspectives in code obfus-
cation and watermarking. In: Proc. of the 6th IEEE International Conferences on Software
Engineering and Formal Methods (SEFM 2008), pp. 7–20. IEEE Press (2008)

16. Giacobazzi, R., Mastroeni, I.: Transforming Abstract Interpretations by Abstract Interpre-
tation. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 1–17. Springer,
Heidelberg (2008)

17. Giacobazzi, R., Quintarelli, E.: Incompleteness, Counterexamples, and Refinements in Ab-
stract Model-Checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373.
Springer, Heidelberg (2001)

18. Giacobazzi, R., Ranzato, F.: Refining and Compressing Abstract Domains. In: Degano, P.,
Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 771–781.
Springer, Heidelberg (1997)

19. Giacobazzi, R., Ranzato, F.: Uniform closures: order-theoretically reconstructing logic pro-
gram semantics and abstract domain refinements. Inform. and Comput. 145(2), 153–190
(1998)

20. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretation complete. Journal
of the ACM 47(2), 361–416 (2000)

Making Abstract Interpretation Incomplete: Modeling the Potency of Obfuscation 145

21. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence graphs. ACM
Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

22. Janowitz, M.F.: Residuated closure operators. Portug. Math. 26(2), 221–252 (1967)
23. Jones, N.D., Giacobazzi, R., Mastroeni, I.: Obfuscation by partial evaluation of distorted

interpreters. In: Kiselyov, O., Thompson, S. (eds.) Proc. of the ACM SIGPLAN Symp. on
Partial Evaluation and Semantics-Based Program Manipulation (PEPM 2012), pp. 63–72.
ACM Press (2012)

24. Majumdar, A., Drape, S.J., Thomborson, C.D.: Slicing obfuscations: design, correctness,
and evaluation. In: DRM 2007: Proceedings of the 2007 ACM Workshop on Digital Rights
Management, pp. 70–81. ACM (2007)

25. Mastroeni, I., Zanardini, D.: Data dependencies and program slicing: From syntax to abstract
semantics. In: Proc. of the ACM SIGPLAN Symp. on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM 2008), pp. 125–134. ACM Press (2008)

26. Reps, T., Turnidge, T.: Program Specialization via Program Slicing. In: Danvy, O., Gltick, R.,
Thiemann, P. (eds.) Partial Evaluation. LNCS, vol. 1110, pp. 409–429. Springer, Heidelberg
(1996)

27. Ward, M.: The Closure Operators of a Lattice. Annals of Mathematics 43(2), 191–196 (1942)
28. Weiser, M.: Program slicing. In: ICSE 1981: Proceedings of the 5th International Conference

on Software Engineering, pp. 439–449. IEEE Press (1981)

Invariant Generation
for Parametrized Systems Using Self-reflection

Alejandro Sanchez1, Sriram Sankaranarayanan2,
César Sánchez1,3, and Bor-Yuh Evan Chang2,�

1 IMDEA Software Institute, Madrid, Spain
{firstname.lastname@imdea.org}

2 University of Colorado, Boulder, CO, USA
{firstname.lastname@colorado.edu}

3 Institute for Applied Physics, CSIC, Spain

Abstract. We examine the problem of inferring invariants for parametrized sys-
tems. Parametrized systems are concurrent systems consisting of an a priori
unbounded number of process instances running the same program. Such sys-
tems are commonly encountered in many situations including device drivers,
distributed systems, and robotic swarms. In this paper we describe a technique
that enables leveraging off-the-shelf invariant generators designed for sequential
programs to infer invariants of parametrized systems. The central challenge in
invariant inference for parametrized systems is that naı̈vely exploding the tran-
sition system with all interleavings is not just impractical but impossible. In our
approach, the key enabler is the notion of a reflective abstraction that we prove
has an important correspondence with inductive invariants. This correspondence
naturally gives rise to an iterative invariant generation procedure that alternates
between computing candidate invariants and creating reflective abstractions.

1 Introduction

We study the problem of automatically inferring invariants for parametrized systems.
Parametrized systems are multi-threaded programs that may be executed by a finite but
unbounded number of thread instances executing in parallel. The individual thread in-
stances belonging to the same process type execute the same set of program instructions
involving local variables that are unique to each thread instance, as well as the global
shared variables. Parametrized programs are useful in many settings including device
drivers, distributed algorithms, concurrent data structures, robotic swarms, and biolog-
ical systems. The thread instances in a parametrized program communicate through
shared memory and synchronization mechanisms including locks, synchronous ren-
dezvous, and broadcast communication.

In this paper, we define an abstract-interpretation–based framework for inferring in-
dexed invariants of parametrized programs. A k-indexed invariant of a parametrized

� This work was supported in part by the US National Science Foundation (NSF) under grants
CNS-0953941 and CCF-1055066; the EU project FET IST-231620 HATS, MICINN project
TIN-2008-05624 DOVES, CAM project S2009TIC-1465 PROMETIDOS, and by the COST
Action IC0901 Rich ModelToolkit-An Infrastructure for Reliable Computer Systems.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 146–163, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Invariant Generation for Parametrized Systems Using Self-reflection 147

T1 Ti Tj TN

|| · · · || · · ·

MIRROR || P[1]
Materialized || P[2]

Materialized

Fig. 1. A reflective abstraction to infer 2-indexed invariants of a parametrized system. We abstract
the system as two materialized processes and the mirror process.

system is an invariant over the local variables of an arbitrary k distinct thread instances
and the global shared variables. The main idea is to build what we call a reflective ab-
straction of the parametrized program that consists of a fixed number of materialized
processes composed with a mirror abstraction that summarizes the effect of the remain-
ing thread instances on the global variables. In Fig. 1, we hint at this construction for
deriving 2-indexed invariants (and discussed further in Sect. 2).

We show how invariants computed at various program locations of the materialized
processes can be transferred in a suitable way into guards of the mirror process. In this
way, the abstraction of other interfering threads via the mirror process varies during
the course of the analysis — much like how materialization in shape analysis enables
the heap abstraction to vary for better precision. Our approach can be viewed as an ab-
stract interpretation over the cartesian product of the abstract domain of state assertions
over program variables and the reflective abstractions of the environment. This allows
us to cast existing methods for invariant generation for parametrized systems [4,30] as
different iteration schemes for computing fixed points. Finally, we define new iteration
schemes and compare their effectiveness empirically. In summary, we arrive at a char-
acterization of invariants of the parametrized program as fixed points of a monotone
functional that (a) computes a (post-) fixed point on the reflective abstraction and (b)
transfers the fixed point to the guards of the mirror processes.

Overall, this paper contains the following contributions. We present the notion of a
reflective abstraction, which gives a means to summarize the effects of other threads
dynamically during the analysis (Sect. 3). We then formally prove a correspondence
between reflective abstractions and inductive invariants, which leads naturally to an
iterative invariant generation procedure that allows leveraging off-the-shelf invariant
generators for sequential programs (Sect. 4.1). We discuss how the reflective abstrac-
tion framework encompasses interference abstractions (Sect. 4.2), as well as practical
considerations for an implementation (Sect. 4.3). Finally, we present some initial expe-
rience on evaluating applications of our reflective abstraction framework (Sect. 5). In
particular, we study three variants of reflective abstraction and one variant of interfer-
ence abstraction and how they compare with respect to the invariants they obtain. We
find that surprisingly, widening appears to have a less predictable effect for parame-
trized systems than for sequential systems.

148 A. Sanchez et al.

global data: int array(len) where len > 0, next: int where next = 0;

thread P {

local c: int where c = 0, end: int where end = 0;

0 atomic if (next + 10 <= len) { c := next; next := end := next + 10; }

1 while (c < end) {

2 assert(0 <= c && c < len); data[c]:= . . . process data[c] . . .;
3 c := c + 1;

4 }

}

Fig. 2. WORKSTEAL: A parametrized array processing program. Each thread processes a
“chunk” with 10 elements.

2 Overview: Self-reflection

In this section, we illustrate the basic idea behind reflective abstractions of parametrized
systems, and we give a sense of how such a construction enables inference of k-indexed
invariants. Consider the program WORKSTEAL in Fig. 2. Parametrized programs con-
sist of a fixed but unbounded number of thread instances T1, . . . ,TN where N ≥ 1. In the
rest of this paper, we use [N] to denote the set of indices {1, . . . ,N}. Each thread runs
the set of statements in P. In this program, there is a global array data of size len and
a global variable next that holds the current unprocessed index. Each instance Ti has
thread local variables c[i] and end[i] for i ∈ [N], that is, local variables are replicated for
and indexed by each thread instance. The local variable c[i] holds a current index of the
data element being processed by the thread instance Ti. The variable end[i] holds the
limiting index for thread Ti.

Our goal is to prove properties about the behavior of parametrized systems that must
hold regardless of the number of running thread instances N. The simplest properties
involve only global variables, such as ψ0 : (next mod 10 = 0). Other properties may
also involve local variables, as well as globals. In case local variables are involved, we
differentiate instances of local variables by indexing them. A 1-indexed property refers
to a local variable from a single thread instance. In our example, we wish to prove the
1-indexed property corresponding to the assertion at location 2:

ψ1 : (∀ i) 0≤ c[i]< len (i.e., access of array data is in bounds). (1)

An example of a 2-indexed property is where we wish to establish race-freedom for
distinct thread instances i1, i2 whenever one of the instances resides at location 2:

ψ2 : (∀ i1, i2) c[i1] 	= c[i2] (i.e., access of array data is race free). (2)

We will use i, i1, i2, . . . to refer to process instances ranging within the set of thread
indices [N]. We will assume implicitly that different symbols i j, ik involved in a given
assertion ψ are used to refer to different process instances (e.g., there is an implicit
pre-condition that i1 	= i2 in ψ2).

In this paper, we adapt existing invariant synthesis techniques to parametrized pro-
grams. Our technique allows us to generate invariants such as ψ0, ψ1, and ψ2 for the

Invariant Generation for Parametrized Systems Using Self-reflection 149

Materialized

MIRROR

�0

�1

�2 �4

�3

next+10 ≤ len ∧
c′ = next ∧
next′ = end′

= next+10

next+10 > len

c < end

process data[c]

c′ = c+1

c ≥ end

m

(∃ c,end,c′,end′)

⎛⎜⎝ Inv@�0 ∧
next+10≤ len ∧

c′ = next ∧
next′ = end′ = next+10

⎞⎟⎠

Fig. 3. Transition system models for a materialized thread and the MIRROR process. The guard
Inv@�0 for the MIRROR transition comes from the invariant computed at location �0 in a materi-
alized thread.

parametrized program in Fig. 2. Our approach, inspired by the idea of materialization
in shape analysis [33], is based on identifying a fixed number of materialized processes
and summarizing the remaining processes into a single, separate process that we will
call the MIRROR. We show this idea pictorially in Fig. 1 where a parametrized system
with N thread instances is modeled by three threads: 2 materialized thread instances
P[1],P[2] and the mirror process that summarizes the effects of the N − 2 remaining
thread instances on the shared global variables. The number of materialized processes
is fixed a priori based on the desired form of the invariants. For example, we need to
materialize at least 2 threads to infer 2-indexed invariants. The novel aspect of our re-
flective approach is that the MIRROR process is not fixed a priori but rather is derived
as part of the fixed point analysis.

Fig. 3 shows the basic setup for invariant synthesis for the WORKSTEAL program.
The composition of the materialized thread(s) and the MIRROR yields a regular sequen-
tial transition system that can be analyzed using a standard abstract interpretation en-
gine. The MIRROR process simulates the effect that the remaining (non-materialized)
threads in the system have on the shared variables next and len. In particular, the
MIRROR process has no local variables. The running example has a single transition
from location �0 to �1 that affects the shared variable next (highlighted), and variable
len is never updated anywhere. This transition is copied as a self-loop around a single
location in the MIRROR process, and the local variable updates are quantified away.
However, to maintain precision, it is preferable to restrict the scope of this transition
only to those states of the program that are actually reachable at location �0. We will
over-approximate these states by an assertion Inv@�0. The main question is then to
precisely determine what Inv@�0 is. A simple solution is to assume Inv@�0 : true to
yield a valid over-approximation of all states that are reachable whenever some pro-
cess resides at location �0, but true is very often a coarse over-approximation. Our
key observation is that Inv@�0 and correspondingly the construction of the MIRROR

process need not be fixed a priori. Instead, we build a more precise abstraction by

150 A. Sanchez et al.

incrementally constructing MIRROR as follows. The first iteration sets Inv@�0 : false,
in effect, disabling the mirror. This iteration approximates only those states reachable
by the materialized threads running in isolation. Subsequently, we run an abstract inter-
preter and compute invariants of the composition of the current MIRROR process and the
materialized threads. The MIRROR process for the next iteration is updated with Inv@�0

set to the candidate invariants computed at location �0 in the materialized threads with
the local variables projected out. This candidate invariant reflection allows the MIRROR

to run from a larger portion of the reachable state space. Convergence is achieved when-
ever the invariants obtained at some iteration are subsumed by those at the previous
iteration. At this point, the effect of the mirror and the materialized processes in the
invariants and the guards is stable. Upon convergence, we obtain k-indexed invariants
that relate the local variables of the k materialized threads to the global variables.

3 Reflective Abstractions and Inductive Invariants

In this section, we define the notion of a reflective abstraction of a parametrized system.
We first present the basic model of parametrized systems. The main result of this section
(Theorem 1) proves the soundness of reflective abstractions.

A parametrized system consists of a large, a priori unbounded set of processes that
(a) run the same sequence of instructions and (b) interact with each other through some
synchronization primitives. The model presented here is based on concurrent systems
communicating through shared memory. For convenience, we use the fair transition sys-
tem model [27]. To simplify the presentation further, all program variables are assumed
to be of integer type.

A parametrized transition system Π is described by 〈G,X ,Trs, �0,Θ〉 consisting of
a set of shared (global) variables g ∈ G, a set of local variables x ∈ X , a finite set
of locations � ∈ Loc, a finite set of transitions τ ∈ Trs, an initial location �0, and an
initial condition Θ that denotes the set of possible initial values of the global and local
variables. A transition τ :

〈
�src, �tgt,ρ

〉
consists of a pre-location �src, a post-location

�tgt and a transition relation ρ that relates the values of the variables (global and local)
before the transition with the values after it. We use primed variables (e.g., g′ ∈ G′ and
x′ ∈ X ′) to refer to the values of the corresponding variables in the post-location.

Example 1 (Parametrized Transition System). Consider the WORKSTEAL program from
Fig. 2. Its corresponding parametrized transition system Π consists of globals G =
{len,next}, locals X = {c,end}, and locations Loc = {�0, �1, �2, �3, �4} with the ini-
tial location being �0. Ignoring the MIRROR process, Fig. 3 depicts the transition re-
lations Trs of the parametrized transition system (solid edges). Not modeling the ar-
ray data means the transition relation ρ between �2 and �3 is a no-op, that is, ρ =
preserve(G∪X). We define preserve(Z)

def
=∧z∈Z z′ = z for any set of variables Z, that is,

the transition relation where all variables in Z are preserved.

The semantics of a parametrized system is given with respect to a positive number N
of thread instances. The overall state of a parametrized system with N thread instances
is described by valuations of the shared (global) variables, the local variable instances,
and the location instances of each thread. That is, a local variable instance x[i] is the

Invariant Generation for Parametrized Systems Using Self-reflection 151

instance of local variable x ∈ X for thread instance i ∈ [N]. The set X [i] refers to the
local variable instances of thread instance i.

A state σ : 〈L,V 〉 is characterized by a map L : [N]⇀fin Loc that associates a location
L(i) for each thread instance i and a valuation map V that maps each shared (global)
variable and each local variable instance to its integer value. We write V (G) to denote
the valuations to all global variables and V (X [i]) to denote the valuations of locals of
thread i. We write V |= ϕ for a valuation V satisfying a formula ϕ . Where helpful for
clarity in presentation, we write ϕ [G,X] to indicate the variables over which the formula
ϕ is defined. A run of a parametrized system instantiated with N thread instances is
a finite or infinite sequence of states such that (1) the initial state satisfies the initial
condition, and (2) a step between two successive states is obtained by executing one
transition in one thread instance. More detailed definitions of parametrized systems and
their runs are given in our companion TR [34].

Definition 1 (1-Indexed Invariant). A pair 〈�,ϕ〉 consisting of a location � and asser-
tion ϕ [G,X] is a 1-index invariant of a parametrized program Π iff for every reachable
state σ : (L,V) with N > 0 thread instances, and for every i ∈ [N]

if L(i) = � then (V (G),V (X [i])) |= ϕ .

In other words, the valuations of the local variables X [i] and global variables G for any
thread instance i reaching the location � satisfies ϕ .

The notion of 1-indexed invariants generalizes to k-indexed invariants involving the
global variables and the local variables of some k > 0 threads. This generalization is
given explicitly in our companion TR [34].

Example 2 (k-Indexed Invariants). Property ψ1 (see (1) on page 148) is an example of
a 1-indexed invariant for the parametrized system in Example 1 (i.e., 〈�2,0≤ c< len〉).
Property ψ2 (see (2) in page 148) corresponds to many 2-indexed invariants at different
pairs of locations. Each invariant is of the form 〈�2, ,c[1] 	= c[2]〉 or 〈 , �2,c[1] 	= c[2]〉
where refers to any location. These invariants say that one of the thread instances
resides at location �2 (and the other anywhere else) with the respective instances of the
local variable c holding different values.

Reflective Abstractions. In essence, a reflective abstraction is an over-approximation
of a parametrized transition system by a sequential one. What makes an abstraction
reflective is that the over-approximation is computed under an assertion map.

We skip the formal definition of sequential transition systems, noting that these cor-
respond to single thread instances of parametrized transition systems. To denote specif-
ically a sequentially transition system, we use the meta-variable Σ . Let Γ [X] be some
fixed first-order language of assertions, such as the theory of integer arithmetic, in-
volving free variables X . We overload |= to denote the semantic entailment relation
between these formulae. An assertion map η : Loc ⇀fin Γ [X] maps each location to an
assertion in Γ [X]. An assertion map η is inductive whenever (1) the assertion at the
initial location subsumes the initial condition (i.e., initiation) and (2) the assertion map
respects the (strongest) post-condition transformer (i.e., consecution): for any transition

152 A. Sanchez et al.

τ between �src and �tgt, the post-condition transformer for τ applied to η(�src) entails
η(�tgt). Standard definitions for the post-condition transformer and inductive assertion
maps are given in our TR [34]. Inductive invariants are fundamental to the process of
verifying safety properties of programs. In order to prove an assertion ϕ over all reach-
able states at a location �, we seek an inductive assertion map η over the entire program
such that η(�) |= ϕ . The map η is termed an inductive strengthening of ϕ .

We now formally define the notion of a reflective abstraction, which abstracts a pa-
rametrized system by a system with a k > 0 materialized processes, and a MIRROR

process that models the “interference” of the remaining threads on the shared variables
G. Our key result is that an invariant of a reflective abstraction is that of a parametrized
system. To simplify the presentation, the rest of this section will describe reflective ab-
stractions with a single materialized thread (i.e., k = 1). Our definitions readily extend
to the case when k > 1.

Let η be an assertion map over the locations of a parametrized system Π . Our goal
is to define a sequential system REFLECTΠ (η). Such a system will contain transitions
to model one specific thread instance, termed the materialized thread, and the MIRROR

process, which models the influence of the other threads on the shared variables.

Definition 2 (Reflective Abstraction). The reflective abstraction of a parametrized
system Π : 〈G,X ,Loc,Trs, �0,Θ〉 with respect to an assertion map η is a sequential
transition system, written REFLECTΠ (η), over variables G∪X, with locations given by
Loc and transitions given by Trs ∪ { MIRROR(τ,η , �) | τ ∈ Trs and � ∈ Loc } .
The original transitions Trs model the materialized thread, while the MIRROR transi-
tions model the visible effects of the remaining threads.

For transition τ : 〈�src, �tgt,ρ〉 and some location �∈ Loc, the corresponding MIRROR

transition MIRROR(τ,η , �) is defined as follows:〈
�, �, preserve(X) ∧ (∃ Y,Y ′)

(
η(�src)[G,Y] ∧ ρ [G,Y,G′,Y ′]

)〉
.

Finally, the initial location of the reflective abstraction is �0 and the initial condition
Θ (i.e., comes directly from the parametrized system).

Note that each MIRROR transition is a self-loop at location � of the materialized thread,
or equivalently, MIRROR can be seen as a process with a single location and self-looping
transitions that is composed with the materialized thread. Note that each MIRROR tran-
sition preserves the local variables of the materialized thread. Also, observe that the
(underlined) guard of the MIRROR transition includes the invariant η(�src) of the inter-
fering thread at the pre-location, which can be seen as reflecting the invariant of the
materialized thread at �src on to the interfering thread. Finally, the local variables are
projected away from the transition relation using existential quantification to model the
effect of the materialized transition on the shared variables.

Example 3 (Reflective Abstraction). The following table shows a part of an assertion
map η for the program in Fig. 2, along with the corresponding mirror transitions com-
puted from it, that is, of REFLECTΠ (η). We write ρ(τ) for the transition relation of
transition τ (in the original parametrized system Π) and ρ(m) for the transition relation
of a MIRROR transition in the reflective abstraction. Note that the assertion map η is not
necessarily inductive.

Invariant Generation for Parametrized Systems Using Self-reflection 153

Name Invariant/Relation

η(�0) next= 0 ∧ c= 0 ∧ end= 10

ρ(τ0 : 〈�0, �1,ρ0〉) next+10≤ len ∧ c′ = next ∧ next′ = end′ = next+10
∧ preserve({len})

ρ(m0 : MIRROR(τ0,η,)) next= 0 ∧ 10≤ len ∧ next′ = 10 ∧ preserve({len,c,end})
ρ(τ ′0 : 〈�0, �1,ρ ′0〉) next+10 > len ∧ preserve({next, len,c,end})
ρ(m′0 : MIRROR(τ ′0,η,)) 10 > len ∧ preserve({next, len,c,end})
η(�3) next≥ 0 ∧ c≥ 0 ∧ c< end

ρ(τ3 : 〈�3, �1,ρ3〉) c′ = c+1 ∧ preserve({next, len,end})
ρ(m3 : MIRROR(τ3,η,)) next≥ 0 ∧ preserve({next, len,c,end})
η(�4) next≥ 0 ∧ c≥ 10

The transition relation of the MIRROR transition m0 is derived from the original transi-
tion τ0 by computing: preserve({c,end})∧ ((∃ c,end,c′,end′) η(�0)∧ρ0). Eliminating
the existential quantifier from

preserve({c,end}) ∧

(∃ c,end,c′,end′)

⎡⎣ next= 0 ∧ c = 0 ∧ end= 10 ∧
next+ 10≤ len ∧ c′ = next ∧ next′ = end′ = next+ 10 ∧

preserve({len})

⎤⎦
yields the MIRROR transition relation of m0 shown above. We note that other MIRROR

transitions preserve the global variables next and len (e.g., m′0 or m3). Thus, these tran-
sitions may be omitted from the MIRROR process while preserving all behaviors. Mirror
transition m0 is the one illustrated in Fig. 3.

We now present the main result involving reflective abstractions: if η is an inductive
invariant of the reflective abstraction REFLECTΠ (η) for a parametrized program Π ,
then for every location �, the assertion η(�) is a 1-indexed invariant (Cf. Definition 1).

Theorem 1 (Reflection Soundness). Let η be an assertion map such that η is induc-
tive for the system REFLECTΠ (η). It follows that for each location � of Π , η(�) is a
1-index invariant.

The proof proceeds by induction on the runs of the parametrized system Π . The full
proof is provided in our companion TR [34]. To summarize, if one discovers a map
η that is inductive for the system REFLECTΠ (η), then we may conclude that η(�) is
a 1-index invariant for location � in Π . In spite of its circularity, this characterization
naturally suggests that the process of constructing a suitable η can be cast as a fixed
point and solved using abstract interpretation.

To generalize reflective abstraction to k > 1 materialized threads, we first construct
a transition system that is the product of k-copies of the parametrized program Π . This
transition system uses k-copies of the locals and a single instance of the globals from Π .
Then, given an assertion map η , we add MIRROR transitions to construct the reflective
abstraction following Definition 2 on this product system. Each transition τ is projected
onto the (global) shared variables guarded by the assertion given by η in the transition’s
pre-location. An inductive assertion derived on the reflective abstraction of the product
system is a k-indexed invariant for the original parametrized system.

154 A. Sanchez et al.

4 Reflective Abstract Interpretation

In this section, we present an iterative procedure to generate invariants of a parame-
trized system by applying abstract interpretation on reflective abstractions. We explain
a lazy and an eager approach to reflective abstract interpretation and contrast reflective
abstraction with interference abstraction, a commonly-used approach when analyzing
multi-thread programs (e.g., [30]).

First, we briefly recall the theory of abstract interpretation [13,14,5] for finding in-
ductive assertion maps as the fixed point of a monotone operator over an abstract do-
main. Abstract interpretation is based on the observation that invariants of a program
are over-approximations of the concrete collecting semantics η∗, an assertion map that
associates each location � with a first-order assertion η∗(�) characterizing all reach-
able states at the location �. Formally, we write η∗ = lfp FΣ (false). Here, FΣ (η) is
a “single-step” semantics—a monotone operator over the lattice of assertion maps that
collects all the states reachable in at most one step of the system Σ , and false maps every
location to false. For this presentation, we will rewrite slightly that familiar equation,
making the transition system Σ an explicit argument of F (rather than fixed):

η∗ = lfp F (false,Σ) . (3)

We can also define a structural pre-order on sequential transition systems. We say Σ
structurally refines Σ ′, written Σ � Σ ′, as simply saying that Σ and Σ ′ have the same
structure—in terms of their variables, locations, and transitions—and where the initial
conditions and the corresponding transition relations are ordered by |=. It is clear that if
Σ � Σ ′, then the behaviors of Σ ′ over-approximate the behaviors of Σ . A more detailed
definition is given in our companion TR [34]. Now, we can see that the concrete collect-
ing semantics functional F (η ,Σ) is monotone over both arguments: (a) over concrete
assertion maps ordered by |= location-wise and (b) over sequential transition systems
using the structural pre-order.

The abstract interpretation framework allows one to approximate the collecting se-
mantics of programs in an abstract domain A : 〈A,�,⊥,�,�,�〉 defined by a lattice.
The abstract lattice is related to the concrete lattice of first-order assertions Γ [X] through
a Galois connection described by an abstraction function α : Γ [X]→ A that maps as-
sertions in the concrete domain to abstract objects and γ : A → Γ [X] that interprets
abstract objects as concrete assertions representing sets of states. In the abstract inter-
pretation framework, we lift the operator F defined over the concrete domain to the
corresponding monotone operator F̂ over the abstract domain A . Analogously, we
write η̂ : Loc ⇀fin A for an abstract assertion map. A fixed point computation in (3) is
then expressed in terms of the abstract domain A as follows: η̂∗ = lfp F̂ (⊥,Σ). Here,
⊥ is the abstract assertion map that maps every location to the bottom element of the
abstract domain ⊥. If A is an abstract domain, then it follows that γ ◦ η̂∗ yields an
inductive assertion map over the concrete domain.

If the domain A is finite or has the ascending chain condition, the least-fixed point
lfp operator may be computed iteratively. On the other hand, many domains of interest
fail to satisfy these conditions. Herein, abstract interpretation provides us a framework
using the widening operator that can be repeatedly applied to guarantee convergence to

Invariant Generation for Parametrized Systems Using Self-reflection 155

a post-fixed point that over-approximates the least-fixed point. Concretizing this post-
fixed point leads to a valid (but weaker) inductive assertion map.

4.1 Abstract Interpretation Using Reflection

The overall idea behind our invariant generation technique is to alternate between con-
structing a (sequential) reflective abstraction of the given parametrized system Π and
applying abstract interpretation for sequential systems on the reflective abstraction. We
distinguish two abstract interpretation schemes: lazy and eager.

Lazy Reflective Abstract Interpretation. Lazy reflective abstract interpretation for
a parametrized system Π proceeds as follows: First, begin with an initial abstract can-
didate invariant map η̂0 that maps each location to the least abstract element ⊥. Then,
iterate the following steps until convergence: (a) compute the reflective abstraction Σ j

Using η̂ j; (b) on the reflective abstraction Σ j, apply an abstract interpreter for sequen-
tial systems to obtain the next candidate invariant map η̂ j+1; (c) terminate the iteration
whenever η̂ j+1(�)� η̂ j(�) for all � ∈ Loc. We now proceed formally to derive the lazy
abstract interpretation scheme above. Let ĜLAZY ,Π be the following operator defined
over the abstract lattice:

ĜLAZY ,Π (η̂) def
= lfp F̂ (⊥,REFLECTΠ (γ ◦ η̂)) . (4)

Given a map η̂ associating locations with abstract objects, the operator ĜLAZY ,Π is
implemented by (a) concretizing η̂ to compute REFLECTΠ (γ ◦ η̂), the reflective ab-
straction; and (b) applying the least fixed point of F̂ over the reflection. We note that
the monotonicity of ĜLAZY holds where lfp is computable. In particular, we note that
REFLECTΠ (η) is a monotone operator. The overall scheme for inferring invariants of
the original system Π consists of computing the following:

η̂∗ = lfp ĜLAZY ,Π (⊥) and let map ηinv
def
= γ ◦ η̂∗. (5)

Soundness follows from the soundness of abstract interpretation and reflection sound-
ness (Theorem 1). In practice, we implement the operator ĜLAZY by constructing a re-
flective abstraction and calling an abstract interpreter as a black-box. Note that if the ab-
stract interpreter uses widening to enforce convergence, ĜLAZY is not necessarily mono-
tone since the post-fixed point computation cannot be guaranteed to be monotone. We
revisit these considerations in Sect. 4.3.

Eager Reflective Abstract Interpretation. In contrast with the lazy scheme, it is pos-
sible to construct an eager scheme that weaves the computation of a least-fixed point
and the reflective abstractions in a single iteration. This scheme can be thought of as ab-
stract interpretation on the Cartesian product of the abstract domain A and the space of
reflective abstractions REFLECTΠ (γ ◦ η̂) for η̂ ∈ (Loc ⇀fin A) ordered by the structural
pre-order relation �.

The eager scheme consists of using an eager operator and an eager reflective abstract
interpretation as a least-fixed point computation with that operation starting at ⊥:

ĜEAGER ,Π (η̂)
def
= F̂ (η̂ ,REFLECTΠ (γ ◦ η̂)) and η̂∗ = lfp ĜEAGER ,Π (⊥) . (6)

In other words, we apply a single step of the abstract operator F̂ starting from the map
η̂ over the reflective abstraction from γ ◦ η̂.

156 A. Sanchez et al.

4.2 Interference Abstraction versus Reflective Abstraction

We compare and contrast the eager and lazy reflective abstraction approaches with the
commonly used interference abstraction. The goal of interference abstraction (see for
example [30]) is to capture the effect of interfering transitions flow-insensitively much
like a reflective abstraction. The interference semantics can be expressed concisely in
the formalism developed in this section by the following operator:

η̂∗ = lfp F̂ (⊥,Σ�) where Σ�
def
= REFLECTΠ (true) . (7)

Here � represents the abstract assertion map that associates each location with � ∈ A.
In particular, the mirror process is fixed to say that any transition in Π (i.e., of an
interfering thread) can fire at any point.

global g: int where g >= 0;

thread P {

local x: int where x = 0;

0 atomic { await(g > 0);

x := g; g := 0; }

1 x := x + 1;

2 atomic { g := x; }

3 }

As a concrete example, consider the parame-
trized system with a global variable g and a lo-
cal variable x shown on the right. At location 0,
a thread waits until the value of the global g is
positive and then saves that value into its local
variable x while setting g to 0. It then increments
that value saved locally and writes it back to the
global g signaling completion of its processing.
Our first goal is to establish that g≥ 0 everywhere.
Consider the transition from location �2 to �3. Following the framework described
in this paper, the ideal transition relation for the corresponding MIRROR transition is
((∃ x) η∗(�2)∧ g′ = x). The interference semantics over-approximates η∗(�2) with
true, so this interference transition is simply a non-deterministic update to g, which
causes a failure to derive g ≥ 0 anywhere. In contrast, the reflective abstraction ap-
proach described in this paper over-approximates η∗ incrementally starting from ⊥ in
the abstract domain. Doing so enables inferring invariants on x that can then be used
to derive g ≥ 0—in particular, using that x > 0 for any thread instance at location �2.
However, the reflective abstraction approach is not complete either. For instance, reflec-
tive abstractions cannot be used to establish the invariant g = 0 when all threads are at
location �1 or �2 without the use of additional auxiliary variables.

4.3 Theory versus Practice: The Effect of Widening

Thus far in this section, we have defined all iterations via least-fixed points of monotone
operators, implicitly assuming abstract domains for which the least-fixed point is com-
putable. However, in practice, abstract interpretation is used with abstract domains that
do not enjoy this property. In particular, we want to be able to use abstract domains that
rely on widening to enforce convergence to a post-fixed point that over-approximates
the least-fixed point.

Applying abstract interpretation with widening instead of lfp in the previous defi-
nitions of this section raises a number of issues in an implementation. First, the lazy
reflective operator ĜLAZY defined in (4) on page 155 is not necessarily monotonic. To
remedy this in our implementation we enforce monotonicity by applying an “outer join”
that joins the assertion maps from the previous iteration with the one from the current

Invariant Generation for Parametrized Systems Using Self-reflection 157

iteration. To enforce convergence of this iteration, we must apply an “outer widening”
should the abstract domain warrant it.

Another consequence is that the relative precision of the reflective abstract inter-
pretation schemes are unclear. Perhaps counter-intuitively, the interference abstraction
approach described in Sect. 4.2 is not necessarily less precise than the reflective ab-
stract interpretation with ĜEAGER as defined in (6). To see this possibility, let η̂∗EAGER

be the fixed point abstract assertion map computed by iterating ĜEAGER . While the fi-
nal reflective abstraction ΣEAGER : REFLECTΠ (γ ◦ η̂∗EAGER) using ĜEAGER is trivially no
less precise than the interference abstraction ΣINTERFERE: REFLECTΠ (true), the abstract
interpretation with widening is not guaranteed to be monotonic. Instead, this observa-
tion suggests another scheme, which we call eager+. The eager+ scheme runs ĜEAGER

to completion to get ΣEAGER and then applies standard abstract interpretation over this
sequential transition system. In other words, the eager+ scheme is defined as follows:

η̂∗EAGER = lfp ĜEAGER ,Π (⊥) η̂∗EAGER+ = lfp F̂ (⊥,REFLECTΠ (γ ◦ η̂∗EAGER)) . (8)

5 Empirical Evaluation: Studying Iteration Schemes

We present here an empirical evaluation of implementations of the eager, eager+, lazy,
and interference schemes. The main questions that we seek to answer are: (a) how
effective are each of these schemes at generating invariants of interest, and (b) how do
the invariants generated by each scheme compare with each other in terms of precision?
We also look at performance of the analyses secondarily.

Methodology. We consider a set of five benchmarks, including a simple barrier algo-
rithm [29], a centralized barrier [29], the work stealing algorithm presented in Fig. 2, a
generalized version of dinning philosophers with a bounded number of resources, and
a parametrized system model of autonomous swarming robots inside a m×n grid [12].
They range in size from 2–75 locations, 6–24 variables, and 4–49 transitions. For each
problem, we specify a set of target invariants, with the intention to check whether the
automatically generated invariants imply a given program’s safety specification. The
number of target invariants ranges from 4–16. Our study focuses on examining the tech-
nique space rather than the benchmark space, so we do not discuss the details of the
benchmarks. Those details are available in our companion TR [34].

We have implemented the reflective and interference abstraction schemes in the
LEAP theorem proving framework for verifying functional correctness properties of pa-
rametrized programs, currently being developed at the IMDEA Software Institute. The
approaches proposed here extend LEAP by generating invariant assertions automati-
cally. After compiling a parametrized program written in an imperative language into
a transition system, we generate inductive assertions using the lazy, eager, and eager+
reflective abstraction schemes and the interference abstraction scheme. Our framework
directly uses the abstract domains implemented in the Apron library [23]. Narrowing is
used for the eager, eager+, and interference schemes but not the lazy scheme.

Results. Table 1 presents a comparison of timings and precision across the lazy, eager,
eager+, and interference schemes. The running time in seconds is given for each method

158 A. Sanchez et al.

Table 1. Timing and precision results for Lazy, Eager, Eager+ and Interference abstract interpre-
tations. Legend: ID: benchmark identifier, Dom: abstract domains, I: intervals, O: octagons, P:
polyhedra, Prps: total number of properties to be proven, Time: seconds, Prp: number of prop-
erties proved, TO: timed out (≥ 1.5 hours), Wid: number of widening iterations (*) for the lazy
scheme we report external widening applications.

ID Dom Prps Lazy Eager Eager+ Interf.

Time Wid* Prp Time Wid Prp Time Wid Prp Time Wid Prp

Tbar I 4 0.1 2 0 0.1 5 0 0.1 5 0 0.1 4 0
P 0.2 4 4 0.1 5 4 0.1 5 4 0.1 4 4
O 0.8 3 3 0.1 5 3 0.1 5 3 0.1 4 3

Wsteal I 5 0.3 6 2 0.1 5 1 0.1 5 1 0.1 4 0
P 2.4 6 1 0.1 7 1 0.2 7 3 0.1 7 5
O 8.2 6 4 7.5 6 4 0.2 6 4 6.2 5 4

Cbar I 9 0.9 3 4 0.1 7 0 0.1 8 0 0.1 7 0
P TO 0 1.7 11 4 2.7 12 5 1.1 10 6
O TO 0 7.5 9 6 11.3 9 6 6.2 8 4

Phil I 14 1.9 4 2 0.1 8 2 0.1 8 2 0.1 7 0
P 11.8 6 14 1.1 11 8 1.8 11 8 6.3 13 14
O TO 0 25 12 4 40 12 4 20 12 4

Rb(2,2) I 16 31.3 8 4 0.4 10 4 0.4 11 4 0.2 10 0
P TO 0 9.3 22 3 15 23 3 5.8 15 4
O TO 0 142 25 3 225 26 3 105 18 3

Rb(2,3) I 18 133 8 6 0.7 10 6 0.9 11 6 0.5 10 0
P TO 0 23 22 5 36.8 23 5 16 15 5
O TO 0 404 25 5 629 26 5 320 18 5

Rb(3,3) I 23 1141 8 9 1.6 10 9 2.1 11 9 0.9 10 0
P TO 0 68.2 22 8 111.5 23 8 52 15 8
O TO 0 1414 25 8 2139 26 8 1168 18 8

Rb(4,4) I 29 TO 0 6.7 11 16 9.4 11 16 3.2 11 0
P TO 0 49 23 15 396 23 15 303 15 15
O TO 0 TO 0 TO 0 TO 0

under the Time columns. While interference abstractions are the fastest, as expected, it
is perhaps surprising to note that the lazy scheme was markedly slower than the remain-
ing techniques considered. In fact, it times out on many instances. Likewise, we note
that eager and eager+ were only slower by a factor of 1.1–1.5 on most benchmarks when
compared to interference abstraction. Also surprisingly, the time for using polyhedra is
generally faster than octagons. According to the Apron authors, the execution time of
polyhedra can vary widely between good and bad cases, while the worst case and best
case execution time of octagons is the same, which may explain this observation.

The properties proved by each method are given under the Prp columns. Again, sur-
prisingly, the interference semantics fares noticeably better than the other schemes for
the polyhedral domain but noticeably worse on the interval domain. Also, the interval
domain itself seems to fare surprisingly better than the polyhedral domain in terms of
properties proved. In many cases, however, the properties proved by these domains were
non-overlapping. Perhaps the simplest explanation for this result is that the properties
themselves mostly concern proving bounds on variables. It is not surprising that the

Invariant Generation for Parametrized Systems Using Self-reflection 159

interval domain can establish this. Yet another factor is the use of polyhedral widening.
Since a widening needs to be carried out at every location in the program, the loss of
precision in the polyhedral domain can be considerable.

Table 2. Comparing the strength of
the inference. For a comparison A:B,
+ means A’s invariants are stronger
than B in at least one location and not
weaker elsewhere (conversely for −),
= means the same everywhere, and 	=
means incomparable somewhere.

ID Dom L:E L:E+ L:In E:In E+:In E:E+

Tbar I − − + + + =
P = = + + + =
O = = + + + =

Wsteal I + + + + + =
P + 	= 	= 	= 	= −
O = = + + + =

Cbar I 	= 	= + + + =
P TO TO TO 	= 	= −
O TO TO TO + + =

Phil I + + + + + =
P + + + − − =
O TO TO TO + + =

Rb(2,2) I + + + + + =
P TO TO TO 	= 	= −
O TO TO TO 	= + −

Rb(2,3) I + + + + + =
P TO TO TO 	= 	= −
O TO TO TO 	= + −

Rb(3,3) I + + + + + =
P TO TO TO 	= 	= −
O TO TO TO 	= + −

Rb(4,4) I TO TO TO + + =
P TO TO TO 	= 	= −
O TO TO TO TO TO TO

In Table 2, we compare each pair of methods in
terms of the relative strengths of the invariants in-
ferred. Some surprising patterns are revealed. For
one, lazy (L), eager (E), and eager+ (E+) prove
stronger invariants for the interval domain when
compared to the interference (In) scheme. On the
other hand, the trend is reversed for the polyhe-
dral domain. In many cases, the invariants are ei-
ther incomparable or invariants of one technique
are stronger at some location and weaker at oth-
ers. Conjoining the invariants in these cases can
produce stronger invariants overall.

Interpretation of Results. In theory, all the
methods presented can be viewed as post-fixed
point computations in the product domain repre-
senting sets of states and reflective abstractions.
Our intuition with abstract interpretation suggests
that the interference scheme, which applies a sin-
gle iteration on the sequential system generated
from the � reflection, should fare worse than the
eager scheme which computes a least fixed point
using Kleene iteration. The comparison results
are quite surprising, however. We conclude that
widening and the associated non-monotonicity
play a significant role for parametrized systems.
This effect is much more so than for sequential
systems, wherein, our past experience suggests
that non-monotonicity of widening plays a more limited role. A future direction of
research might focus on minimizing the use of widenings or avoiding them altogether
using constraint-based techniques [11] or recent advances based on policy and strategy
iterations [19,20].

6 Related Work

The problem of verifying parametrized systems has received a lot of attention in recent
years. This problem is, in general, undecidable [3]. However, numerous decidable sub-
classes have been identified [7,15,21,16,25,8,1,2,6]. Our approach here is an instance of
the general framework of thread-modular reasoning [18,22,26,9], wherein one reasons
about a thread in isolation given some assumptions about its environment (i.e., the other
concurrently executing threads). Notably, the approach considered here builds up the
assumptions incrementally via self-reflection.

160 A. Sanchez et al.

One of the main issues in verifying parametrized programs is the interaction between
a given thread and its environment, consisting of the remaining threads. Abstracting
this interaction finitely has been considered by many, recently by Berdine et al. [4] and
Farzan et al. [17]. In particular, the approach of Berdine et al. is very closely related.
Similarities include the notion of transferring invariants from a materialized thread to
the abstraction of the remaining threads. However, Berdine et al. do not explicitly spec-
ify an iteration scheme, that is, how the inferred candidate invariants are transferred
to the environment abstraction. Furthermore, the effects of widening, including the po-
tential non-monotonicity in many domains, are not studied. As observed in this paper,
such considerations have a significant impact on the generated invariants. Another re-
cent contribution is that of Farzan et al. that explores the interleaving of control and
data-flow analyses to better model the thread interference in parametrized programs. In
our framework, their setup roughly corresponds to the lazy scheme. However, Farzan
et al. do not incrementally consider the transference of data properties, and instead they
focus on ruling out infeasible interferences due to control.

The idea of abstracting away the effects of interacting threads by projecting away
the local variables is quite standard. The recent work of Miné et al. [30] analyzes multi-
threaded embedded systems using this abstraction. Likewise, Kahlon et al. present a
framework for the abstract interpretation of multi-threaded programs with finitely-many
threads. Therein, a melding operator is used to model the effect of an interfering thread
on the abstract state of the current thread [24].

Our approach presented here does not explicitly handle synchronization constructs
such as locks and pairwise rendezvous. These constructs can be handled using the
framework of transaction delineation presented by Kahlon et al. [24]. Here, a single-
threaded sequential analysis pass is first carried out to identify sections of the program
which can be executed “atomically” while safely ignoring the interferences by the re-
maining threads. Exploring the use of the delineated transactions to construct the reflec-
tive abstraction in the framework of this paper is a promising future direction that will
enable us to analyze larger and more complex software systems.

Another class of approaches relies on finite model properties wherein invariants of fi-
nite instantiations generalize to the parametrized system as a whole. One such approach
is that of invisible invariants pioneered by Pnueli et al. [32,35]. This approach finds in-
ductive invariants by fixing the number of processes and computing invariants of the
instantiated system. These invariants are heuristically generalized to the parametrized
system, which are then checked to be inductive. In [28], invisible invariants are gen-
eralized in the abstract interpretation framework as fixed points. In specific instances,
a finite model property is used to justify the completeness of this technique. A related
method is that of splitting invariants [31,10] that ease the automation of invariant gen-
eration but also assumes finite state processes and the existence of a cut-off [15].

7 Conclusion

We have described the reflective abstraction approach for inferring k-indexed invari-
ants of parametrized systems. This approach was inspired partly by the notions of
materialization-summarization from shape analysis. The central idea was that infer-
ences made on materialized threads can be transferred or reflected on to the summarized

Invariant Generation for Parametrized Systems Using Self-reflection 161

threads (i.e., the MIRROR process). This perspective not only suggests a new technique
but describes a space of possible invariant inference techniques, including previously-
defined interference abstractions. As such, we studied three variants of reflective ab-
straction that we defined and the interference abstraction to better understand their
relative strength in inferring invariants. To our surprise, our study revealed what appears
to be a significant amount of unpredictability in invariant inference strength as the result
of widening. The effect of widening seems to be larger for reflective abstract interpre-
tation of parametrized systems than for standard abstract interpretation of sequential
systems. We hypothesize that the presence of loops at each program location (from the
composition with the MIRROR process) is the primary culprit behind this observation,
suggesting a direction for future inquiry. Another future direction is to examine how
additional structure can be imposed on the summarized threads.

References

1. Abdulla, P.A., Bouajjani, A., Jonsson, B., Nilsson, M.: Handling Global Conditions in Pa-
rameterized System Verification. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 134–145. Springer, Heidelberg (1999)

2. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized Verification of Infinite-State Pro-
cesses with Global Conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

3. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems.
Info. Proc. Letters 22(6), 307–309 (1986)

4. Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread Quantification
for Concurrent Shape Analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 399–413. Springer, Heidelberg (2008)

5. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: Design and Implementation of a Special-Purpose Static Program Analyzer for Safety-
Critical Real-Time Embedded Software. In: Mogensen, T.Æ., Schmidt, D.A., Hal Sudbor-
ough, I. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 85–108. Springer, Heidel-
berg (2002)

6. Bozzano, M., Delzanno, G.: Beyond Parameterized Verification. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 221–235. Springer, Heidelberg (2002)

7. Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks with many identical
finite-state processes. In: PODC 1986, pp. 240–248. ACM (1986)

8. Clarke, E.M., Grumberg, O., Jha, S.: Veryfying Parameterized Networks using Abstraction
and Regular Languages. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962,
pp. 395–407. Springer, Heidelberg (1995)

9. Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy Right: The Environment Abstraction
Framework for Model Checking Concurrent Systems. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg (2008)

10. Cohen, A., Namjoshi, K.S.: Local proofs for global safety properties. FMSD 34(2), 104–125
(2009)

11. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear Invariant Generation Using Non-
linear Constraint Solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 420–432. Springer, Heidelberg (2003)

12. Correll, N., Martinoli, A.: Collective inspection of regular structures using a swarm of minia-
ture robots. In: ISER. Springer Tracts in Advanced Robotics, vol. 21, pp. 375–386. Springer
(2004)

162 A. Sanchez et al.

13. Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL 1977, pp. 238–252. ACM
(1977)

14. Cousot, P., Cousot, R.: Comparing the Galois Connection and Widening/Narrowing Ap-
proaches to Abstract Interpretation (Invited Paper). In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

15. Allen Emerson, E., Kahlon, V.: Reducing Model Checking of the Many to the Few. In:
McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 236–254. Springer, Hei-
delberg (2000)

16. Emerson, E.A., Namjoshi, K.S.: Automatic Verification of Parameterized Synchronous Sys-
tems. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 87–98. Springer,
Heidelberg (1996)

17. Farzan, A., Kincaid, Z.: Verification of parameterized concurrent programs by modular rea-
soning about data and control. In: POPL 2012, pp. 297–308. ACM (2012)

18. Flanagan, C., Qadeer, S.: Thread-Modular Model Checking. In: Ball, T., Rajamani, S.K.
(eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

19. Gaubert, S., Goubault, É., Taly, A., Zennou, S.: Static Analysis by Policy Iteration on Rela-
tional Domains. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 237–252. Springer,
Heidelberg (2007)

20. Gawlitza, T., Seidl, H.: Precise Fixpoint Computation Through Strategy Iteration. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg (2007)

21. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. of the
ACM 39(3), 675–735 (1992)

22. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread-Modular Abstraction Refine-
ment. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 262–274.
Springer, Heidelberg (2003)

23. Jeannet, B., Miné, A.: APRON: A Library of Numerical Abstract Domains for Static Analysis.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer,
Heidelberg (2009)

24. Kahlon, V., Sankaranarayanan, S., Gupta, A.: Semantic Reduction of Thread Interleavings
in Concurrent Programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 124–138. Springer, Heidelberg (2009)

25. Lesens, D., Halbwachs, N., Raymond, P.: Automatic verification of parameterized linear net-
works of processes. In: POPL 1997, pp. 346–357. ACM (1997)

26. Malkis, A., Podelski, A., Rybalchenko, A.: Precise Thread-Modular Verification. In: Riis
Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 218–232. Springer, Heidelberg
(2007)

27. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer (1995)
28. McMillan, K.L., Zuck, L.D.: Invisible Invariants and Abstract Interpretation. In: Yahav, E.

(ed.) SAS 2011. LNCS (LNAI), vol. 6887, pp. 249–262. Springer, Heidelberg (2011)
29. Mellor-Crummey, J.M., Scott, M.L.: Barriers for the sequent symmetry,

ftp://ftp.cs.rochester.edu/pub/packages/scalable synch/locks and

barriers/Symmetry.tar.Z

30. Miné, A.: Static Analysis of Run-Time Errors in Embedded Critical Parallel C Programs. In:
Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 398–418. Springer, Heidelberg (2011)

31. Namjoshi, K.S.: Symmetry and Completeness in the Analysis of Parameterized Systems.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313. Springer,
Heidelberg (2007)

ftp://ftp.cs.rochester.edu/pub/packages/scalable_synch/locks_and_barriers/Symmetry.tar.Z
ftp://ftp.cs.rochester.edu/pub/packages/scalable_synch/locks_and_barriers/Symmetry.tar.Z

Invariant Generation for Parametrized Systems Using Self-reflection 163

32. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic Deductive Verification with Invisible Invariants.
In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidel-
berg (2001)

33. Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages with de-
structive updating. ACM Trans. Program. Lang. Syst. 20(1), 1–50 (1998)

34. Sanchez, A., Sankaranarayanan, S., Sánchez, C., Chang, B.Y.E.: Invariant generation for
parametrized systems using self-reflection (extended version). Tech. Rep. CU-CS-1094-12,
University of Colorado Boulder (2012)

35. Zuck, L.D., Pnueli, A.: Model checking and abstraction to the aid of parameterized systems
(a survey). Computer Languages, Systems & Structures 30, 139–169 (2004)

Automatic Fence Insertion
in Integer Programs via Predicate Abstraction�

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1,
Yu-Fang Chen2, Carl Leonardsson1, and Ahmed Rezine3

1 Uppsala University, Sweden
2 Academia Sinica, Taiwan

3 Linköping University, Sweden

Abstract. We propose an automatic fence insertion and verification framework
for concurrent programs running under relaxed memory. Unlike previous ap-
proaches to this problem, which allow only variables of finite domain, we target
programs with (unbounded) integer variables. The problem is difficult because it
has two different sources of infiniteness: unbounded store buffers and unbounded
integer variables. Our framework consists of three main components: (1) a fi-
nite abstraction technique for the store buffers, (2) a finite abstraction technique
for the integer variables, and (3) a counterexample guided abstraction refinement
loop of the model obtained from the combination of the two abstraction tech-
niques. We have implemented a prototype based on the framework and run it
successfully on all standard benchmarks together with several challenging exam-
ples that are beyond the applicability of existing methods.

1 Introduction

Modern concurrent process architectures allow relaxed memory, in which certain mem-
ory operations may overtake each other. The use of weak memory models makes rea-
soning about the behaviors of concurrent programs much more difficult and error-prone
compared to the classical sequential consistency (SC) memory model. In fact, sev-
eral algorithms that are designed for the synchronization of concurrent processes, such
as mutual exclusion and producer-consumer protocols, are not correct when run on
weak memories [3]. One way to eliminate the non-desired behaviors resulting from
the use of weak memory models is to insert memory fence instructions in the pro-
gram code. A fence instruction forbids certain reordering between instructions issued
by the same process. For example, a fence may forbid an operation issued after the
fence instruction to overtake an operation issued before it. Recently, several research
efforts [9,8,14,6,15,13,18,5,4,10,11,2] have targeted developing automatic verification
and fence insertion algorithms of concurrent programs under relaxed memory. How-
ever, all these approaches target finite state programs. For the problem of analyzing
algorithms/programs with mathematical integer variables (i.e., variables of an infinite
data domain), these approaches can only approximate them by, e.g., restricting the up-
per and lower bounds of variables. The main challenge of the problem is that it contains

� This research was in part funded by the Swedish Research Council within the UPMARC Lin-
naeus centre of Excellence.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 164–180, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automatic Fence Insertion in Integer Programs via Predicate Abstraction 165

two different dimensions of infiniteness. First, under relaxed memory, memory opera-
tions may be temporarily stored in a buffer before they become effective and the size of
the buffer is unbounded. Second, the variables are ranging over an infinite data domain.

In this paper, we propose a framework (Fig. 1) that can automatically verify a concur-
rent system S (will be defined in Sec. 2) with integer variables under relaxed memory
and insert fences as necessary to make it correct. The framework consists of three main
components. The first component (Sec. 4) is responsible for finding a finite abstraction
of the unbounded store buffers. In the paper, we choose to instantiate it with a technique
introduced in [15]. Each store buffer in the system keeps only the first k operations and
makes a finite over-approximation of the rest. For convenience, we call this technique k-
abstraction in this paper. The second component (Sec. 5) (1) finds a finite abstraction of
the data and then (2) combines it with the first abstraction to form a finite combined ab-
straction for both the buffer and data. For the data abstraction, in this paper we choose to
instantiate it with predicate abstraction; a finite set of predicates over integer variables
in the system is applied to partition the infinite data domain into finitely many parts. The
combined abstraction gives us a finite state abstraction of the concurrent system S . A
standard reachability algorithm (Sec. 6) is then performed on the finite abstraction. For
the case that a counterexample is returned, the third component analyzes it (Sec. 7) and
depending on the result of the analysis it may refine the concurrent system by adding
fences, refine the abstract model by increasing k or adding more predicates, or report
that ce is an unpreventable counterexample trace, i.e., a bad behavior exists even in the
SC model and cannot be removed by adding fences.

Concurrent System S

Counter Example ce

Safe

Reachability Check-
ing Algorithm (Sec. 6)

Abstraction of
Buffers (Sec. 4)

Abstraction of
Variables (Sec. 5)

Counter Example
Analysis (Sec. 7)

Case (1)

Case (2)

Case (3)

Case (4)

Bug in SC

Add new fences

Increase k

Add new predicates

Case (1) ce is feasible under SC

Case (2) ce is infeasible under SC, but feasible under TSO

Case (3) ce is infeasible under TSO, but feasible under k-abstraction

Case (4) ce is infeasible under k-abstraction, but feasible under comb-abstraction

Fig. 1. Our fence insertion/verification framework

Because of the space limit and in order to simplify presentation, we demonstrate our
technique under the total store order (TSO) memory model. However, our technique can
be generalized to other memory models such as the partial store order (PSO) memory
model. In this paper, we use the usual formal model of TSO, developed in, e.g., [20,22],

166 P.A. Abdulla et al.

and assume that it gives a faithful description of the actual hardware on which we run
our programs. Conceptually, the TSO model adds a FIFO buffer between each process
and the main memory (Fig. 2). The buffer is used to store the write operations performed
by the process. Thus, a process executing a write operation inserts it into its store buffer
and immediately continues executing subsequent operations. Memory updates are then
performed by non-deterministically choosing a process and executing the oldest write
operation in its buffer. A read operation by a process p on a variable x can overtake
some write operations stored in its own buffer if all these operations concern variables
that are different from x. Thus, if the buffer contains some write operations to x, then
the read value must correspond to the value of the most recent write operation to x.
Otherwise, the value is fetched from the memory. A fence means that the buffer of the
process must be flushed before the program can continue beyond the fence. Notice that
the store buffers of the processes are unbounded since there is a priori no limit on the
number of write operations that can be issued by a process before a memory update
occurs.

Memory
x = 8
y = 7

Read x, value of x is in the buffer.

Read y, value of y is NOT in the buffer.

(x,3) (x,2) (x,7) (x,2) ← Process q

(x,5) (y,7) (x,4) (y,3) ← Process p

Fig. 2. TSO memory model

To our knowledge, our approach is
the first automatic verification and fence
insertion method for concurrent integer
programs under relaxed memory. We
implemented a prototype and run it suc-
cessfully on all standard benchmarks to-
gether with challenging examples that
are beyond the applicability of existing
methods. For instance, we can verify
Lamport’s Bakery algorithm without as-
suming an upper bound on ticket num-
bers.

2 Concurrent Systems

Our goal is to verify safety properties of concurrent systems under relaxed memory. A
concurrent system (P,A,XS,XL) consists of a set of processes P running in parallel with
shared variables XS and local variables XL. These processes P are modeled by a set of
finite automata A = {Ap | p ∈ P}. Each process p in P corresponds to an automaton
Ap in A. Each local variable in XL belongs to one process in P, i.e., we assume that
two processes will not use the same local variable in XL. The automaton Ap is a triple
(Qp,qinit

p ,δp), where Qp is a finite set of program locations (sometimes “locations” for
short), qinit

p is the initial program location, and δp is a finite set of transitions. Each
transition is a triple (l,op, l′), where l, l′ are locations and op is an operation in one
of the following forms: (1) read operation read(x,v), (2) write operation write(x,v),
(3) fence operation f ence, (4) atomic read write operation arw(x,v,w), (5) assignment
operation v := e, and (6) guard operation e1 ◦ e2, for ◦ ∈ {>,=,<}. In the above, x
is a shared variable in XS, v,w are local variables in XL, and e, e1, e2 are quantifier-
free Presburger formulae over XL. We write l

op−→p l′ to denote that (l,op, l′) ∈ δp. We
assume that Qp∩Qq = /0 for all p,q∈P such that p 	= q and use Q to denote the set of all

Automatic Fence Insertion in Integer Programs via Predicate Abstraction 167

locations in the concurrent program, i.e., Q =
⋃

p∈P Qp. In the next section, we formally
define the semantics of concurrent systems under TSO and the verification problem we
are interested in.

3 The TSO Transition System

We define the semantics of concurrent systems under TSO in this section. We begin
with the definition of some terms and notations that will be used in this paper. In the
rest of the paper, we fix a concurrent system S = (P,A,XS,XL).

3.1 Definitions and Notations

We write N for the set of natural numbers (the set of positive integers) and Z for
the set of integers. Given a set S, we use |S| to denote the cardinality of S. For each
process p ∈ P and an integer value i ∈ N , we use the variable bp,i to denote the i-th
operation of the store buffer of p. We assume that the smaller the value i is, the closer
it is to the memory, i.e., the longer it stayed in the buffer. We use XB to denote the set
{bp,i | p ∈ P∧ i ∈N } and call it the set of buffer variables. For a partial function f , we
use the notation f (x) =⊥ to denote that f is undefined on x.

After these basic definitions, we will start to explain the semantics of concurrent
systems under TSO. This is done by first defining system configurations and then the
transition relation between these configurations w.r.t different operations.

3.2 Configurations

A configuration is a snapshot of a concurrent system, which captures values of shared
and local variables, the current location of each process, and the content of the store
buffers. Formally, we define a configuration as a tuple (M,L, pc,Bx,Bv), where M :
XS→Z maps a shared variable to its value, L : XL→Z maps a local variable to its value,
the function pc : P→ Q maps a process p to its current location in Qp, Bx : XB → XS

maps a buffer variable to its corresponding shared variable, and Bv : XB → Z maps a
buffer variable to its value. For example, if the i-th operation in the buffer of process
p is (x,3) (update the value of x to 3), then Bx(bp,i) = x and Bv(bp,i) = 3. Notice that
here the functions Bx and Bv are partial. A configuration (M,L, pc,Bx,Bv) is said to be
initial if pc(p) = qinit

p for all p ∈ P, M(x) = 0, L(v) = 0, Bx(b) = ⊥, Bv(b) = ⊥ for all
x ∈ XS, v ∈ XL and b ∈ XB

1.

3.3 Transition Relation

The transition relation between configurations is defined as follows. Assume that in the
concurrent system S , we have l

op−−→p l′. There exists a transition from the configuration
(M,L, pc,B) to a next configuration (M′,L′, pc′,B′) if the following hold: (1) pc(p) = l,
pc′(p) = l′, ∀q ∈ P.q 	= p→ pc(q) = pc′(q) and (2) at least one of the transition rules
in Fig.3 is satisfied. Below we explain the rules in Fig.3.

1 Notice that for simplicity we assume the initial values of all shared and local variables are 0.
This can be generalized by defining a new symbol � representing arbitrary integer values and
assigning the initial values of all shared and local variables to �.

168 P.A. Abdulla et al.

Contain(x)

L’(v)=LastWrite(x)
READ-B

¬Contain(x)

L’(v)=M(x)
READ-M

|Bp|= i

B′x(bp,i+1) = x B′v(bp,i+1) = L(v)
WRITE

Empty
FENCE

Empty M(x) = L(v)

M′(x) = L(w)
ARW

L′(v) = e[L]
ASSIGN e1[L]◦ e2 [L]

GUARD
|Bp|= i Bx(bp,1) = x1 . . . Bx(bp,i) = xi Bv(bp,1) = v1 . . . Bv(bp,i) = vi

M′(x1) = v1 B′x(bp,1) = x2 . . . B′x(bp,i−1) = xi B′v(bp,1) = v2 . . . B′v(bp,i−1) = vi B′x(bp,i) = B′v(bp,i) =⊥
UPDATE

Fig. 3. Transition Rules of a Transition System under TSO. The conditions above the horizontal
line are the “pre-condition” that decide whether this transition can be triggered and those below
the line are the “post-condition” that decide what the next configuration should be. For a more
clear presentation, in the post-condition of the rules defined in this paper (including those in the
other sections), we focus only on the component that has been changed. For the components that
has not been changed, we assume implicitly that the primed version (the component in the next
configuration) is equal to the non-primed version (the same component in the current configura-
tion). For example, for all shared variables x ∈ XS, if M′(x) has not been assigned a value in the
rule, we assume implicitly M′(x) = M(x).

READ-B Rule: When op=read(x, v), if the buffer of p contains write operations to x,
we read the value of the last write operation to x in p’s buffer. We use Contain(x) as a
shorthand for (∃i ∈ N .Bx(bp,i) = x), or, informally, there exists some write operations
to x in the buffer. We use LastWrite(x) to denote the most recent value written to x in the
buffer of p. Formally, LastWrite(x) =Xv(bp,i), where i =Max({ j ∈N |Bx(bp, j) = x}).

READ-M Rule: When op=read(x, v), if the buffer of p does not contain write opera-
tions to x, we read the value of x from the memory.

WRITE Rule: When op=write(x, v), we put the operation (x,v) to the end of the buffer.
We use |Bp| to denote the length of the buffer of p. Notice that this number equals the in-
dex of the most recent operation in p’s buffer. Formally, |Bp|= Max({j∈N |Bx(bp,j) 	=
⊥}∪{0}).

FENCE Rule: When op=fence, the transition can be executed only when the buffer of
p is empty. Here we use the predicate Empty as a shorthand for Bx(bp,1) =⊥.

ARW Rule: When op=arw(x,v,w), the transition can be executed only when the buffer
of p is empty and the value of x in the memory equals the value of v in p. When it is
executed, the value of x in the memory is immediately changed to the value of w in p.

UPDATE Rule: The write operations in the buffer can be at any time nondeterministi-
cally delivered to the memory. This is handled by implicitly adding self-loop transitions

l
update−−−−→ l from all the locations in Q. Notice that the transition l

update−−−−→ l is internal, i.e.,
it never appears explicitly in the definition of the concurrent system. In this rule, the
oldest operation in p’s buffer (the one with index 1) will be used to update the memory
while all the other operations in the buffer are shifted one step closer to the memory,
i.e., their indices are reduced by 1.

Automatic Fence Insertion in Integer Programs via Predicate Abstraction 169

ASSIGN Rule: When op = (v := e), where e is a Presburger expression over XL, we
update the value of v to the evaluation of e under the assignment L (denoted as e[L]).

GUARD Rule: When op = (e1 ◦ e2), where e1 and e2 are Presburger expressions over
XL, the transition can be executed only when (e1[L] ◦ e2[L]) holds, i.e., the evaluations
of e1 and e2 under L is in the binary relation ◦. Here we let ◦ ∈ {>,=,<}.

3.4 The Reachability Problem

The problem of verifying safety properties can be reduced to reachability problems.
We use cinit to denote the initial configuration (defined in Section 3.2) and assume
that a partial function Bad : P → Q is given. We use CBad to denote the set of bad
configurations {(M,L, pc,Bx,Bv) | ∀p ∈ P.Bad(p) =⊥∨ pc(p) = Bad(p)}. Intuitively,
taking a mutex problem of processes p1, p2, and p3 as an example. If we want to
describe the property that p1 and p2 cannot enter their critical sections at the same
time, we define Bad(p1) = lcs1∧Bad(p2) = lcs2∧Bad(p3) =⊥, where lcs1 and lcs2 are
the locations of the critical sections. The reachability problem of a concurrent system
under TSO asks if there exists some configuration in CBad reachable from the initial
configuration cinit following the transition rules described in Fig. 3. We say that the
concurrent system is “correct” iff all configurations in CBad are not reachable from
cinit . Notice that we can extend this approach to allow finitely many bad functions
Bad1 : P → Q, . . . ,Badm : P → Q. In this case, the set of bad configurations becomes
{(M,L, pc,Bx,Bv) |

∨
1≤i≤m∀p ∈ P.Badi(p) =⊥∨ pc(p) = Badi(p)}.

m1 m2 . . . mk x

m1 m2 . . . mk (x,5)

m1 m2 . . . mk (x,5)

m1 m2 . . . mk (x,5)

encodes

Arbitrary sequence of write
operations on x with the last
operation (x,5)

The most recent value of x in the
buffer of p is 5, i.e., R(lwp,x) =
5.

..
.

Fig. 4. A k-abstract buffer and the TSO buffer it encodes

4 k-Abstraction

Notice that the store buffers under TSO may grow infinitely large. Therefore, a naive
algorithm that exhaustively explores all reachable configurations would not work. One
way to deal with the problem is to find a proper finite abstraction of the buffer. In this
section, we introduce a finite abstraction technique of the buffer and the corresponding
abstract transition system [15]. We call this technique k-abstraction (for a given integer
k). The basic idea is that, for a buffer with more than k write operations, we keep only

170 P.A. Abdulla et al.

the oldest k operations and assume that any operation can appear in the buffer after
these k operations. To be more specific, for the operations with index larger than k, we
only use (1) a set to record the variable part of those write operations together with
(2) a function to record the most recent value of each shared variable in the buffer and
abstract away other information. In Fig. 4, we illustrate the relation between a k-abstract
buffer and the set of TSO buffers it encodes.

4.1 Definitions and Notations

In the sequel, we refer to the transition system induced from the concurrent system un-
der TSO as “TSO system” and the system after k-abstraction as “k-abstract system”.
As a consequence, we call a configuration, a buffer, and a transition in the TSO system
a “TSO configuration”, a “TSO buffer”, and a “TSO transition”, respectively. We call
a configuration, a buffer, and a transition in a k-abstract system a “k-abstract config-
uration”, a “k-abstract buffer”, and a “k-abstract transition”, respectively. In a similar
manner, to the case of buffer variables, for a process p∈ P and a shared variable x ∈ XS,
we use the variable lwp,x to refer to the value of the last write operation to x in the buffer
of p. Let XLW = {lwp,x | p ∈ P∧ x ∈ XS}.

4.2 k-Abstract Configurations

Formally, a k-abstract configuration is a tuple (M,L, pc,Bx,Bv,S,R), where M, L, pc,
Bx,and Bv are defined in the same way as in a TSO configuration, S : P→ 2XS records,
for each process in P, the set of variables in the TSO buffer with index larger than k,
and R : XLW → Z is a partial function that records the most recent value of each shared
variable in the buffer.

In the rest of this section, we introduce the two functions γk (concretization) and αk

(abstraction) that relate k-abstract configurations and TSO configurations. Here we only
give an informal description of these two functions and leave the formal definition to
the appendix.

Given a k-abstract configuration ck, the function γk(ck) maps the k-abstract config-
uration ck to a set CT SO of TSO configurations it encodes. A TSO configuration cT SO

in CT SO has the same memory, valuation to local variables, and locations as cs. The
relation between the buffers of ck and cTSO can be best explained using Fig.4. If the
buffer of ck is the k-abstract buffer on the left of Fig.4, then the buffer of cT SO is one of
the TSO buffers on the right. Similarly, given a TSO configuration cT SO, the function
αk(cT SO) maps it to a k-abstract configuration ck with the same memory, valuation to
local variables, and locations. The relation between their buffers can again be explained
using Fig.4. The buffer of cT SO corresponds to one of the buffers on the right of Fig. 4.
After k-abstraction, we should obtain the k-abstract buffer on the left of Fig.4.

4.3 k-Abstract Transition Relation

Assume that we have l
op−−→p l′ in the concurrent system S . There exists a k-abstract

transition from a k-abstract configuration (M,L, pc,Bx,Bv,S,R) to the other k-abstract

Automatic Fence Insertion in Integer Programs via Predicate Abstraction 171

configuration (M′,L′, pc′,B′x,B
′
v,S

′,R′) if the following holds (1) pc(p) = l, pc′(p) = l′,
∀q ∈ P.q 	= p → pc(q) = pc′(q) and (2) one of the k-abstract transition rules (Fig.5)
holds.

|Bp|= k∨S(p) 	= /0

R′(lwp,x) = L(v) S′(p) = S(p)∪{x} WRITE-G
|Bp|= i < k S(p) = /0

B′x(bp,i+1) = x B′v(bp,i+1) = R′(lwp,x) = L(v)
WRITE-L

|Bp|= i 	= 0 Bx(bp,1) = x1 . . .Bx(bp,i) = xi Bv(bp,1) = v1 . . .Bv(bp,i) = vi

M′(x1) = v1 B′x(bp,1) = x2 . . .B′x(bp,i−1) = xi B′v(bp,1) = v2 . . .B′v(bp,i−1) = vi B′x(bp,i) = B′v(bp,i) =⊥
UPDATE-NE

x ∈ S(p) |Bp| = 0

M′(x) = M′(x)
UPDATE-AM

x ∈ S(p) |Bp|= 0

M′(x) = R(lwp,x) S′(p) = S(p)\{x} UPDATE-AS

Fig. 5. k-Abstract Transition Rules. We list only rules that are different from the rules in Fig.3.

READ-B, READ-M, FENCE, ARW, ASSIGN, GUARD Rules: For op = read(x,v),
the rule of k-abstract transitions is almost the same as the one of TSO transitions. The
only exception is that the definition of the predicate Contain(x) should be changed to
(x ∈ S)∨ (∃i ∈N .Bx(bp,i) = x) and LastWrite(x) = R(lwp,x). The case of op = f ence
or op= arw(x,v,w) can be handled in a similar way. We only need to change the defini-
tion of Empty to (Bx(bp,1) =⊥∧S(p) = /0). The case of local operations op = (v := e)
and op = (e1 ◦ e2) can be handled by exactly the same rule as in a TSO transition.

WRITE Rules: When op = write(x,v), we need to consider the cases where the size of
the abstract buffer is less than k (WRITE-L) and equal to or greater than k (WRITE-
G). When the size is smaller than k, it behaves the same as in the TSO system. For the
case that the size is equals to or greater than k, we (1) modify the record of the last write
operation of x and (2) add x to the set S(p).

UPDATE Rules: When op = update, different cases have to be considered. When the
k-bounded buffer is not empty, i.e., B(bp,1) 	=⊥ (UPDATE-NE), the oldest operation in
the buffer (the one with index 1) is sent to the memory and all the other operations in the
buffer are shifted one step closer to the memory. For the case that the k-bounded buffer is
empty, i.e., B(bp,1) =⊥, but the k-abstract buffer is already an over-approximation, i.e,
S(p) 	= /0, there are two possible sub-cases. One is when the corresponding TSO buffer
has more than one operation on x (UPDATE-AM) and one is when the TSO buffer has
only one operation on x left (UPDATE-AS). For the former case, the update operation
may change the memory value of any variables in S(p) to any value in Z. Hence we do
not need any constraint on M′(x) and put a tautology M′(x) = M′(x) to show that the
value of x in the memory has been changed. For the latter case, since only one write
operation to x is left in the buffer, the most recent and the oldest write operation to x in
the buffer coincide. Therefore, the update operation changes the memory value of the
variable x in S(p) to R(lwp,x).

5 Combined Abstraction

The elements in a k-abstract state (M,L, pc,Bx,Bv,S,R) can be categorized into two
parts. The data components include M, L, Bv, R, which are assignments to variables

172 P.A. Abdulla et al.

ranging over Z, and the rest belongs to the control components. Since the numbers of
shared variables |XS|, processes |P|, locations of each process |Q|, and the lengths of the
k-bounded buffers are finite, there exists only a finite number of different control com-
ponents. However, this is not the case for data components. Since the data domain Z is
an infinite set, there exists an infinite number of different data components. It follows
that the number of possible configurations can be infinite. In this case, the reachability
problem becomes non-trivial. One possible solution is to also apply abstraction tech-
niques on data in order to get a finite abstraction of reachable configurations. Then the
reachability problem can be solved by simple depth first or breadth first search algo-
rithms. In this section, we will demonstrate how to use predicate abstraction to form a
finite abstraction of the data components and how k-abstraction and predicate abstrac-
tion are combined.

5.1 Definitions and Notations

We have X = XS ∪XL ∪XB ∪XLW , the set of all integer variables in the k-abstract sys-
tem (recall that XS,XL,XB,XLW , is the set of shared, local, buffer, and last-write vari-
ables, respectively). Given a formula e, we define the substitution operation e[x/x′]
as the formula obtained by replacing all free occurrences of x in e with x′. Given a
set of variables X = {x1, . . . ,xn}, we use X ′ to denote the primed version of X , i.e.,
X ′ = {x′ | x ∈ X}. If X and X ′ are two disjoint sets, we write e[x/x′]x∈X as a shorthand
for e[x1/x′1][x2/x′2] . . . [xn/x′n], i.e., replacing all free occurrences of elements x ∈ X ap-
pearing in e with their new variants x′. In the paper, we refer to a transition system on the
combined abstraction domain as a “comb-abstract system”. As a consequence, we call
a configuration, a buffer, and a transition in a comb-abstract system a “comb-abstract
configuration”, a “comb-abstract buffer”, and a “comb-abstract transition”, respectively.

5.2 The Idea

The idea of predicate abstraction is to use predicates over variables in X to partition
the data components of k-abstract configurations into finitely many parts. Each parti-
tion may encode an infinite number of different data components. An example can be
found in Fig.6. In the figure on the left, we abstract the data components by a predicate
f = (x > y∧bp,4 = t∧ lwp,y = t) while we store the control component exactly. We call
the result a comb-abstract configuration. In the example, the comb-abstract configura-
tion encodes k-abstract configurations with the same control components and with data
components satisfying the constraint defined in the predicate f . Taking the k-abstract
configuration (M,L, pc,Bx,Bv,S,R) 1 on the top-right of Fig 6 as an example, it has the
same control components as the comb-abstract configuration on the left. By substituting
x and y in f with M(x) and M(y), t with L(t), bp,4 with Bv(bp,4), lwp,y with R(lwp,y),
we obtain the formula 8 > 7∧ 4 = 4∧ 4 = 4, which evaluates to true. Hence it is a
k-abstract configuration encoded by the comb-abstract configuration.

1 Recall that S : P→ 2XS records, for each process in P, the set of variables in the TSO buffer
with index larger than k, and R : XLW → Z is a partial function that records the most recent
value of each shared variable in the buffer.

Automatic Fence Insertion in Integer Programs via Predicate Abstraction 173

f =x > y ∧ bp,4 = t ∧ lwp,y = t

x y x x x,y ← q:
pc = l4

x y y y ← p:
pc = l3

R(lwq,x) = 2, R(lwq,y) = 1

R(lwp,x) = 1, R(lwp,y) = 4

x = 8
y = 7

(x,3) (y,2) (x,7) (x,2) x,y ←
q:
u = 2
v = 5
pc = l4

(x,1) (y,4) (y,7) (y,4) ←
p:
s = 3
t = 4
pc = l3

R(lwq,x) = 5, R(lwq,y) = 5

R(lwp,x) = 3, R(lwp,y) = 2

x = 4
y = 3

(x,5) (y,1) (x,3) (x,3) x,y ←
q:
u = 4
v = 3
pc = l4

(x,3) (y,4) (y,5) (y,2) ←
p:
s = 5
t = 2
pc = l3

..
.

k-Abstract Configurations

Comb-Abstract Configuration

encodes

Fig. 6. A comb-abstract configuration and the k-abstract configurations it encodes. Here XS =
{x,y} and XL = {s, t,u,v}. All the configurations in the figure have the same control components
pc, Bx, and S, where pc(p) = l3 ∧ pc(q) = l4, Bx(bp,1) = Bx(bq,1) = Bx(bq,3) = Bx(bq,4) = x∧
Bx(bp,2) = Bx(bp,3) = Bx(bp,4) = Bx(bq,2) = y, and S(p) = /0∧S(q) = {x,y}.

5.3 Comb-Abstract Configurations

Formally, a comb-abstract configuration is a tuple (f , pc,Bx,S), where f is a formula
over X that encodes data components, and the control components pc, Bx, S are defined
in a similar manner as in a k-abstract configuration. Given a k-abstract configuration
ck = (M,L, pc,Bx,Bv,S,R) and a formula f over X , we define the evaluation of f in
ck, denoted as f [ck], as the value obtained by substituting all free occurrences of x ∈ XS

in f with M(x), v ∈ XL in f with L(v), b ∈ XB in f with Bv(b), and lw ∈ XLW in f
with R(lw). Given a comb-abstract configuration cc = (f , pc,Bx,S), we define the con-
cretization function γc(cc) = {ck = (M,L, pc,Bx,Bv,S,R) | f [ck]}. Given a set of comb-
abstract configurations Cb, we define γc(Cb) =

⋃
cb∈Cb

γc(cb). Given a set of k-abstract
configurations Ck, we use αc(Ck) to denote the set of comb-abstract configurations that
encodes exactly Ck, i.e., Ck = γc(αc(Ck)).

5.4 Predicate Abstraction

Let f be a formula over X and P a set of predicates over X . Each predicate in P parti-
tions the valuation of variables in X into two parts. For each predicate π ∈ P such that
f → π is valid, or equivalently, f ∧¬π is unsatisfiable, π characterizes a superset of data
components of those characterized by f . The predicate abstraction function αpa(f ,P)
returns a conjunction of all predicates π ∈ P such that f → π is valid.

174 P.A. Abdulla et al.

5.5 Comb-Abstract Transition Relation (w.r.t a Set of Predicates P)

Assume that we have l
op−−→p l′ in the concurrent system S . There exists a comb-abstract

transition w.r.t. P from the comb-abstract configuration (f , pc,Bx,S) to a next configu-
ration (αpa(f ′,P), pc′,B′x,S

′) if the following hold (notice that we always apply predi-
cate abstraction to the formula f ′ of the next configuration): (1) pc(p) = l, pc′(p) = l′,
∀q ∈ P.q 	= p→ pc(q) = pc′(q), (2) f ′ is satisfiable, and (3) at least one of the comb-
abstract transition rules in Fig.7 is satisfied.

¬Contain(x)

f ′ = (∃X . f ∧ v′ = x∧Equ(X \{v}))[x′/x]x′∈X ′
READ-M

Contain(x)

f ′ = (∃X . f ∧ v′ = lwp,x∧Equ(X \{v}))[x′/x]x′∈X ′
READ-B

|Bp|= k∨S(p) 	= /0

f ′ = (∃X . f ∧ lw′p,x = v∧Equ(X \{lw′p,x}))[x′/x]x′∈X ′ S′(p) = S(p)∪{x} WRITE-G

|Bp|= i < k S(p) = /0

f ′ = (∃X . f ∧b′p,i = lw′p,x = v∧Equ(X \{bp,i, lwp,x}))[x′/x]x′∈X ′ B′x(bp,i) = x
WRITE-L Empty

FENCE
Empty

f ′ = (∃X . f ∧ x = v∧ x′ = w∧Equ(X \{x}))[x′/x]x′∈X ′
ARW

|Bp|= i 	= 0 Bx(bp,1) = x1 . . .Bx(bp,i) = xi

B′x(bp,1) = x2 . . .B′x(bp,i−1) = xi B′x(bp,i) =⊥
f ′ = (∃X . f ∧ x′1 = bp,1∧

∧
1≤k≤i−1 b′p,k = bp,k+1 ∧Equ(X \{x1,bp,1, . . . ,bp,i−1}))[x′/x]x′∈X ′

UPDATE-NE

x ∈ S(p) |Bp|= 0

f ′ = (∃X . f ∧Equ(X \{x}))[x′/x]x′∈X ′
UPDATE-AM

x ∈ S(p) |Bp|= 0

f ′ = (∃X . f ∧ x′ = lwp,x∧Equ(X \{x}))[x′/x]x′∈X ′ S′(p) = S(p)\{x} UPDATE-AS

f ′ = (∃X . f ∧ v′ = e∧Equ(X \{v}))[x′/x]x′∈X ′
ASSIGN f ∧ (e1 ◦ e2)}

GUARD

Fig. 7. Comb-Abstract Transition Rules. We use the predicate Equ(V) to denote
∧

v∈V v′ = v, i.e.,
no change made to variables in V in this transition. We assume all bounded variables are renamed
to fresh variables that are not in X ∪X ′ so the substitution will not assign the names of bounded
variables to some free variable.

6 The Reachability Checking Algorithm

Alg.1 solves they reachability problem of a comb-abstract system derived from a given
concurrent system. The inputs of the algorithm include a value k, a set of predicates
P , a concurrent system S = (P,A,XS,XL), and a partial function Bad : P → Q. We
first generate the initial comb-abstract configuration cinit = (true, pc,Bx,S), where ∀p∈
P.(pc(p) = qinit

p ∧S(p) = /0)∧∀b ∈ XB.Bx(b) =⊥.
For the reachability algorithm, we maintain two sets, Next and Visited (Line 2).

Next contains pairs of a comb-abstract configuration c and a path that leads to c. Vis-
ited contains comb-abstract configurations that have been visited. Notice that Visited
stores comb-abstract configurations in an efficient way; if both the comb-abstract con-
figurations (f1, pc,Bx,S) and (f2, pc,Bx,S) should be put into Visited, we put (f1 ∨
f2, pc,Bx,S) instead. When Next is not empty (Line 3), a pair ((pd, pc,Bx,S),ce) is
removed from Next and the algorithm tests if (pd, pc,Bx,S) encodes some bad TSO
configurations (Line 5). For the case that it does, the algorithm stops and returns ce as
a counterexample. Otherwise (pd, pc,Bx,S) is merged into Visited (Line 6). Then the

Automatic Fence Insertion in Integer Programs via Predicate Abstraction 175

Algorithm 1. Reachability Algorithm
Input : S = (P,A,XS,XL), an integer k, a set of predicates P , a partial function Bad : P→ Q
Output: Either the program is safe or a counterexample ce

1 cinit = (true, pc,Bx,S), where ∀p ∈ P.(pc(p) = qinit
p ∧S(p) = /0)∧∀b ∈ XB.Bx(b) =⊥;

2 Next:={(cinit,ε)}, Visited:= /0;
3 while Next 	= /0 do
4 Pick and remove ((pd, pc,Bx,S),ce) from Next;
5 if ∀p ∈ P.Bad(p) 	=⊥→ pc(p) = Bad(p) then return ce is a counterexample;
6 if ∃(f , pc,Bx ,S)∈Visited then replace it with (f∨pd, pc,Bx ,S) else add (pd, pc,Bx ,S) to Visited;

7 foreach l
op−→p l′ such that pc(p) = l do

8 foreach comb-abstract transition rule r do
9 compute the next configuration (pd′, pc′,B′x,S

′) of (pd, pc,Bx,S) w.r.t l
op−→p l′ , r, and P ;

10 if ¬(∃(f , pc′,B′x,S
′)∈Visited s.t. pd′ → f) then

11 add ((pd′, pc′ ,B′x,S
′),ce · (l op−→p l′,r)) to Next;

12 return The program is safe;

reachability algorithm explores the next configurations of (pd, pc,Bx,S) w.r.t the tran-
sitions in S and the comb-abstract transition rules (Lines 7-11). Once Next becomes
empty, the algorithm reports that the program is safe. Notice that in the counterexample
ce, we record not only the sequence of transitions of S but also the sequence of transi-
tion rules that have been applied. We need this in order to remove non-determinism in
the comb-abstract system and thus simplify the counterexample analysis. To be more
specific, assume that l

op−→p l′ and a comb-abstract configuration c is given, it is possible
that there exists more than one transition rules that can be applied and thus the same
transition l

op−→p l′ may lead to two different comb-abstract configurations. For exam-
ple, assume that op = update and the length of the TSO buffer is larger than k. It could
happen that both of the rules UPDATE-AM and UPDATE-AS can be applied. Then
the current comb-abstract configuration c may have two different next comb-abstract
configurations w.r.t the same transition l

op−→p l′.

7 Counter Example Guided Abstraction Refinement

The counterexample detected by the reachability checking algorithm is a sequence of
pairs in the form of (δ,r), where δ is a transition in S and r is a comb-abstract transition

rule. Let ce=(l1
op1−−→p1 l′1,r1)(l2

op2−−→p2 l′2,r2) . . . (ln
opn−−→pn l′n,rn) be the counterexample

returned from the reachability module. We next analyze ce and decide how to respond
to it. Four possible responses are described in Fig.1.

Case (1): We will not formally define the transition system induced from the concurrent
system under sequential consistency (SC) model for lack of space. Informally, under
the SC model, all operations will be immediately sent to the memory without buffering.
We simulate ce under SC and if ce is feasible under SC, ce is not a bug caused by the
relaxation of the memory model. In this case, it cannot be fixed by just adding fences.
The algorithm reports that ce is a bug of the concurrent system under the SC model.

Case (2): We can check if the counterexample ce is feasible under TSO by simulat-
ing it on the TSO system following the rules defined in Fig. 3. For the case that ce is

176 P.A. Abdulla et al.

f4f3

op4,r4

f2

g2
op3,r3

f1

g1
op2,r2

f0

g0
op1,r1

Fig. 8. Data components produced by ce

infeasible under SC, but feasible under TSO, we can find a set of fences that can help
to remove the spurious counterexample ce by the following steps. First we add fences
immediately after all write operations in ce. We then repeatedly remove these newly
added fences while keeping it infeasible under the TSO system. We do this until we
reach a point where removing any fences would make ce feasible under TSO. In such
case, the subsequently remaining such fences are those that need to be added. A more
efficient algorithm of extracting fences from error traces can be found in [2].

Case (3): When ce is infeasible under TSO, but feasible under k-abstraction, we keep
increasing the value of k until we reach a value i such that ce is feasible under (i-1)-
abstraction, but infeasible under i-abstraction. In such case, we know that we need to
increase the value of k to i in order to remove this spurious counterexample. Such a
value i always exists, because the length of the sequence ce is finite, which means that
it contains a finite number of write operations, say n operations, and thus the size of
the buffer will not exceed n. When we set k to n, then in fact the behavior of ce will
be the same under TSO and under k-abstraction. It follows that it is infeasible under
k-abstraction when k equals n.

Case (4): When ce is infeasible under k-abstraction, but is feasible in the comb-
abstract system, it must be the case that predicate abstraction made a too coarse over-
approximation of the data components and has to be refined. An example can be found
in Fig. 8, where g0 (respectively, f0) characterizes the data components of the ini-
tial k-abstract configuration (respectively, comb-abstract configuration) and gi (respec-
tively, fi) characterizes the data components of the k-abstract configuration (respec-
tively, comb-abstract configuration) after i steps of ce are executed. The rule r3 has a
precondition on data components such that g2 cannot meet this condition, but f2 can
(note that this can happen only when r3 is a GUARD rule or an ARW rule). This situa-
tion arises because the predicate abstraction in the first 2 steps of ce made a too coarse
over-approximation. That is, some data components encoded in f2∧¬g2 that satisfy the
pre-condition of transition rule r3 are produced from the predication abstraction. In or-
der to fix the problem, we have to find some proper predicates to refine f0, f1, and f2 so
the ce cannot be executed further after 2 steps in the comb-abstract system. Hence we
have to generate some more predicates to refine the comb-abstract system. This can be
done using the classical predicate extraction technique based on Craig interpolation [7].

Automatic Fence Insertion in Integer Programs via Predicate Abstraction 177

8 Discussion

How to Generalize the Proposed Technique? The proposed technique can be gener-
alized to memory models such as the partial store order memory model or the power
memory model. Such models use infinite buffers and one can define finite abstractions
by applying the k-abstraction technique [15]. Predicate abstraction and counterexample
analysis can be done in the same way as we described in this paper. The Presburger ex-
pressions used in this paper can also be extended to any theory for which satisfiability
and interpolation are efficiently computable. Notice that although the formula f ′ in the
comb-abstract transtion rules has existential quantifiers, we do not need to assume that
quantifier elimination is efficiently computable for the given theory. This is because in
predicate abstraction, for a given predicate π, instead of checking whether f ′ → π is
valid, we check if f ′ ∧¬π is unsatisfiable. For satisfiability checking, we can ignore the
outermost existential quantifiers in f ′.

Further Optimizations. Assume that two local variables v,u of process p and a predi-
cate v < u describing their relation are given. When the size of the buffer of p is k and
p executes the operation write(x,v), the value of the buffer variable bp,k+1 will be as-
signed to the value of v. Then the relation v < u should propagate to the buffer variable
and hence we should also have bp,k+1 < u. However, in order to generate this predicate,
it requires another counterexample guided abstraction refinement iteration. It would re-
quire even more loop iterations for the relation v < u to propagate to the variable x and
generate the relation x < u. Notice that for such situations, the “shapes” of the predi-
cates remain the same while propagating in the buffer. Based on this observation, we
propose an idea called “predicate template”. In this example, instead of only keeping
v < u in the set P of predicates, we keep a predicate template � < �. The formulae
returned by the predicate abstraction function αpa(f ,P) are then allowed to contain
predicates x0 < x1 for any x0,x1 ∈ X s.t. f → x0 < x1 is valid. We call predicates in this
form parameterized predicates.

Modules in the Framework Our framework is in fact flexible. The k-abstraction can
be replaced with any abstraction technique that abstracts the buffers to finite sequences.
E.g., instead of keeping the oldest k operations in the buffer, one can also choose to keep
the newest k operations and abstract away others. For the integer variable, instead of ap-
plying predicate abstraction techniques, we also have other choices. In fact, a k-abstract
system essentially can be encoded as a sequential program with integer variables run-
ning under the SC model. Then one can choose to verify it using model checkers for
sequential programs such as BLAST or CBMC.

9 Experimental Results
Table 1. Experimental results

LOC Time Fences/proc # Predicates
1. Burns [19] 9 0.02 s 1 1
2. Simple Dekker [23] 10 0.04 s 1 1
3. Full Dekker [12] 22 0.06 s 1 1
4. Dijkstra [19] 22 0.35 s 1 4
5. Lamport Bakery [16] 20 154 s 2 17
6. Lamport Fast [17] 32 2 s 2 4
7. Peterson [21] 12 2 s 1 6
8. Linux Ticket Lock2 16 2 s 0 2

We have implemented the method de-
scribed in this paper in C++ geared
with parameterized predicates. Instead
of keeping the oldest k operations in the
buffer, we choose to keep the newest k

178 P.A. Abdulla et al.

operations and abstract away older operations. In the counter-example guided refine-
ment loop, for Case 2 (fence placement) we use the more efficient algorithm described
in [2].

We applied it to several classical examples. Among these examples, the Lamport
Bakery and Linux Ticket Lock involves integer variables whose values can grow un-
boundedly. To our knowledge, these examples cannot be handled by any existing al-
gorithm. The experiments were run on a 2.27 GHz laptop with 4 GB of memory. The
MathSat4 [1] solver is used as the procedure for deciding satisfiability and computing
interpolants. All of the examples involve two processes. The results are given in Table 1.
For each protocol we give the total number of instructions in the program, the total time
to infer fence positions, the number of necessary fences per process, and the greatest
number of parameterized predicates used in any refinement step.

References

1. MATHSat4, http://mathsat4.disi.unitn.it/
2. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-Example

Guided Fence Insertion under TSO. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 204–219. Springer, Heidelberg (2012)

3. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. Computer 29(12)
(1996)

4. Alglave, J., Maranget, L.: Stability in Weak Memory Models. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg (2011)

5. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification problem for
weak memory models. In: POPL (2010)

6. Atig, M.F., Bouajjani, A., Parlato, G.: Getting Rid of Store-Buffers in TSO Analysis. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115. Springer,
Heidelberg (2011)

7. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker blast: Ap-
plications to software engineering. In: STTT (2007)

8. Burckhardt, S., Alur, R., Martin, M.: CheckFence: Checking consistency of concurrent data
types on relaxed memory models. In: PLDI (2007)

9. Burckhardt, S., Alur, R., Martin, M.M.K.: Bounded Model Checking of Concurrent Data
Types on Relaxed Memory Models: A Case Study. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 489–502. Springer, Heidelberg (2006)

10. Burckhardt, S., Musuvathi, M.: Effective Program Verification for Relaxed Memory Models.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120. Springer, Heidel-
berg (2008)

11. Burnim, J., Sen, K., Stergiou, C.: Sound and Complete Monitoring of Sequential Consistency
for Relaxed Memory Models. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS,
vol. 6605, Springer, Heidelberg (2011)

12. Dijkstra, E.W.: Cooperating sequential processes. Springer-Verlag New York, Inc., New York
(2002)

2 The “Linux Ticket Lock” protocol was taken from the Linux kernel. Its correctness on x86 was
the topic of a lively debate among the developers on the Linux Kernel Mailing List in 1999.
(See the mail thread starting with https://lkml.org/lkml/1999/11/20/76.)

http://mathsat4.disi.unitn.it/
https://lkml.org/lkml/1999/11/20/76

Automatic Fence Insertion in Integer Programs via Predicate Abstraction 179

13. Huynh, T.Q., Roychoudhury, A.: A Memory Model Sensitive Checker for C#. In: Misra,
J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 476–491. Springer,
Heidelberg (2006)

14. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In: FMCAD
(2011)

15. Kuperstein, M., Vechev, M., Yahav, E.: Partial-coherence abstractions for relaxed memory
models. In: PLDI (2011)

16. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. CACM 17 (Au-
gust 1974)

17. Lamport, L.: A fast mutual exclusion algorithm (1986)
18. Linden, A., Wolper, P.: A Verification-Based Approach to Memory Fence Insertion in Re-

laxed Memory Systems. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823,
pp. 144–160. Springer, Heidelberg (2011)

19. Lynch, N., Patt-Shamir, B.: Distributed Algorithms, Lecture Notes for 6.852 FALL 1992.
Technical report, MIT, Cambridge, MA, USA (1993)

20. Owens, S., Sarkar, S., Sewell, P.: A Better x86 Memory Model: x86-TSO. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407.
Springer, Heidelberg (2009)

21. Peterson, G.L.: Myths About the Mutual Exclusion Problem. IPL 12(3) (1981)
22. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-tso: A rigorous and

usable programmer’s model for x86 multiprocessors. CACM 53 (2010)
23. Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual Version 9. PTR Prentice

Hall (1994)

180 P.A. Abdulla et al.

A Abstraction and Concretization Functions for k-Abstraction

Given a k-abstract configuration ck = (M,L, pc,Bx,Bv,S,R). Let |Bp| = Max({i ∈ N |
Bx(bp,i) 	=⊥}∪{0}) denote the length of the buffer of process p, as encoded by Bx and
Bv. We define LastWritep(x,B′x,B

′
v) = B′v(bp,i), where i = Max({ j ∈ N | B′x(bp, j) =

x}) and the last write constraint LW (p,ck,B′x,B
′
v) = ∀x ∈ S(p).LastWritep(x,B′x,B

′
v) =

R(lwp,x). Let the buffer constraint BC(p,m,ck,B′x,B
′
v) equal the following

∀0 < i≤ |Bp|.(B′x(bp,i) = Bx(bp,i)∧B′v(bp,i) = Bv(bp,i))
∧

S(p) 	= /0→

⎛⎜⎜⎜⎜⎝
∀x ∈ S(p).∃|Bp|< i < m.B′x(bp,i) = x

∧
∀|Bp|< i < m.(B′x(bp,i) ∈ S(p)∧B′v(bp,i) 	=⊥)

∧
∀m≤ i.(B′x(bp,i) = B′v(bp,i) =⊥)

⎞⎟⎟⎟⎟⎠
∧

S(p) = /0→ (∀|Bp|< i.(B′x(bp,i) = B′v(bp,i) =⊥))

We use γk(ck) to denote the set of TSO configurations encoded in ck, which equals the
set {(M,L, pc,B′x,B

′
v) | ∀p ∈ P.((∃m ∈N .BC(p,m,ck,B′x,B

′
v))∧LW (p,ck,B′x,B

′
v))}

On the other hand, given a TSO configuration cT SO = (M,L, pc,Bx,Bv), we define
αk(cT SO) = (M,L, pc,B′x,B

′
v,S,R), where (1) ∀0 < i ≤ k, p ∈ P.(B′x(bp,i) = Bx(bp,i)∧

B′v(bp,i) = Bv(bp,i)), (2) ∀k < i, p ∈ P.((Bx(bp,i) 	=⊥→ Bx(bp,i) ∈ S(p))∧ (B′x(bp,i) =
B′v(bp,i) =⊥)), and (3) ∀p ∈ P,x ∈ XS.R(lwp,x) = LastWritep(x,Bx,Bv).

Control Flow Analysis for the Join Calculus

Peter Calvert and Alan Mycroft

Computer Laboratory, University of Cambridge
William Gates Building, JJ Thomson Avenue,

Cambridge CB3 0FD, UK
firstname.lastname@cl.cam.ac.uk

Abstract. Since first being described, the Join Calculus has been incor-
porated into a variety of languages as an alternative concurrency primi-
tive. While there has been some work on efficient library implementation
of the calculus, there has been little on statically analysing and trans-
forming it. This work explores adapting conventional analysis techniques
to the Join Calculus. In particular, we present three variations of con-
trol flow analysis for a flattened version, and consider two important
optimisations: inlining and queue bounding.

Keywords: program analysis, concurrency, optimisation.

1 Introduction

Over recent years, the elegant primitives of the Join Calculus [5] have been
popular as language extensions—both functional [3,12] and imperative [1,18]—
and libraries [15], as researchers have looked for paradigms that allow developers
to express parallelism naturally, without introducing the intermittent bugs often
associated with concurrency. However, consideration of efficient execution has
mostly been focussed on the implementation of the primitives [17] rather than
on employing any static analysis or transformations. This paper tries to redress
the balance by building on the limited work that has been done [7].

Our main contribution is a variation of control flow analysis (Section 6) that
we use to describe two optimisations. Consider the following example:

def ^memcell(i,k) = val(i); k(get, set)

| get(m) & val(x) = val(x); m(x)

| set(x,m) & val(y) = val(x); m()

Each signal1 (i.e. memcell, get, val and set) has an associated unordered mes-
sage queue. The transition rules in a definition then dictate what can occur after
messages matching their left-hand-side join pattern are present on these queues.
In this case, emitting a message to memcell (i.e. making a call) creates a new
memory cell (since memcell is marked as a constructor with ^), returning a get-
ter and setter via the continuation k. Note that the names get and set are not
exported, and that continuations in the Join Calculus are just signal values.

1 Signals are also called channels and names in other work.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 181–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

182 P. Calvert and A. Mycroft

It is clear that val never escapes from this definition, and also that it will
always have exactly one message available. Therefore, we can optimise this to:

def ^memcell(i,k) = (loc := i); k(get, set)

| get(m) = m(!loc)

| set(x,m) = (loc := x); m()

where loc now refers to an (instance-local) ML-style memory location corre-
sponding to the single val message. By analysing message queue lengths in
order to reduce the number of signals in the left-hand-side patterns of transition
rules, this optimisation (Section 7.1) removes both the overhead of manipulating
the message queue and also of checking whether messages are available at val
when trying to fire a transition.

While the first optimisation enables the removal of signals, the second removes
rules by adapting inlining to the Join Calculus. Consider the following example
for expressions P and Q, having free variables x and y respectively:

def ^p(x,k) = k(P)

def ^q(y,k) = k(Q)

def ^f(x,y,k) = ^p(x,m); ^q(y,n); s(k)

| m(a) & n(b) & s(k) = k(a * b)

The behaviour of a call ^f(x,y,k) is to invoke k on P * Q. If there is insufficient
parallelism to fire ^p and ^q concurrently, we prefer to inline these, and the
final multiplication a * b, to eliminate the overheads associated with passing
messages and firing transitions—resulting in the optimised code of:

def ^f(x,y,k) = k(P * Q)

We briefly introduce relevant background in Section 2, before setting out our
contributions as follows:

– The language that we use throughout the paper is introduced in Section 3,
along with its concrete semantics in terms of a simple abstract machine.

– Section 4 presents a direct translation of existing zeroth-order techniques.
– This is refined to be instance-local in Section 5 (0-LCFA).
– A more accurate k-LCFA analysis is given in Section 6. This forms the basis

of all our transformations.
– Section 7 defines queue bounding to lower signal queues to raw memory

operations and formulates inlining for the Join Calculus

We discuss our work in Section 8, offering examples where the analysis could be
further improved, and also talk about opportunities for further work.

2 Background and Notation

Previously, only Le Fessant and Maranget’s work with JoCaml [7] has discussed
performing analysis on the Join Calculus. In their implementation, a signal can

Control Flow Analysis for the Join Calculus 183

be in one of three states {0, 1, N} depending on the length of its message queue.
Whereas 0 and 1 can be implemented efficiently with a single memory location,
N requires an actual queue for the signal. They therefore describe how to use
semantic analysis to eliminate the possibility of N where possible, but do not
describe the semantic analysis itself, stating that they only have a “rudimentary
name usage analyzer” that suffices for certain cases. This corresponds to the
queue bounding transformation we describe later using our control-flow analysis.

In the literature, there are two main styles of control-flow analysis—the
constraint-based approach developed by Faxén [4] and popularised in [11]; and
the abstract interpretation method by Shivers [16] and more recently revisited
by Might [9]. In constraint methods, we first describe the flow of data through
the program using constraints, and then solve for these. Abstract interpreta-
tion techniques tend to merge the two steps, simply constructing the solution
as it walks through the program.2 Although it has been successfully used for
concurrent versions of the λ-calculus [10], in the presence of non-deterministic
join-pattern matching, ensuring that a direct abstraction of the operational se-
mantics considers all cases is rather more difficult. Constraints, on the other
hand, seem a natural choice, since they can describe all possible executions at
once. As far as possible, we adopt the notation used by Faxén’s polyvariant anal-
ysis [4], combined with the convention that ‘hats’ introduce abstract domains.

Throughout this paper, we make use of both multisets and sequences. The
notation m(X) is used to denote multisets over the set X , and + the addition
of multisets. We abuse this slightly by writing M + x instead of M + {x}. The
set of all possible sequences over X is written X∗, and those bounded by length
k as X≤k. Fixed-length sequences are referred to as tuples and written �v (with
elements vi), while we use σ (or σ̂) for variable-length stacks. Concatenation is
denoted by · and ε gives the empty sequence.

3 The Flattened Join Calculus

Our source language syntax is given in Figure 1. Here x ranges over variables
(local to a rule), op over arithmetic operators and f over signal names. Signal
names play a similar role to function names in functional or object-oriented lan-
guages, except the Join Calculus allows join patterns (multiple signal names each
with formal parameters) on the left-hand side of transition rules . Signals have
definition-local scope and instances of them are first-class values. By contrast
constructor signal names marked by ^f are exported from definitions, but do
not give first-class values. However, when no ambiguity results we allow f to
range over both constructor and non-constructor signal names. We write Con-
structor for the set of constructor signals in a given program; Rule represents its
set of rules and CRule the subset of constructor rules. We require names to be
globally unique and constructor and non-constructor names to be disjoint.

2 Note that the store that is added for abstract interpretation provides a level of
indirection that is similar in spirit to that provided by constraints.

184 P. Calvert and A. Mycroft

e ::= x | f | op(e1, . . . en) (expressions)

s ::= varx = e (local variables)

| s; s′ | if e then s else s′ (control flow)

| e0(e1, . . . , en) | ^f(e1, . . . , en) | finish (join calculus)

r ::= f1(x
1
1, . . . , x

1
k1
)& . . . & fn(x

n
1 , . . . , x

n
kn

) = s (transition rules)

| ^f(x1, . . . , xn) = s (constructor rules)

d ::= def r1 | · · · | rn (definitions)

p ::= d1 . . . dn (program)

Fig. 1. Abstract Syntax of the Flattened Join Calculus

The main difference between our language and previous presentations of the
calculus is to forbid nested join definitions. This both enables a clearer pre-
sentation of the CFA, and offers other benefits [2], without any loss of expres-
sive power. Nested definitions can still be encoded through a process similar to
lambda-lifting, or Java’s encoding of inner classes.

Invoking a constructor creates an instance of the definition which consists of a
signal instance (conceptually a message queue) for each of the definition’s signal
names. When sufficient messages are available on these queues, one of the tran-
sitions can be fired. Messages are placed on the queues by emission calls. Signal
values are first-class values and resemble closures in the λ-calculus—semantically
being (signal name, instance identifier) pairs. A constructor would normally pass
out some of its definition’s signal instances as these are not otherwise exported.
Note that if we restrict rules to have a single signal in the left-hand-side pat-
tern, we get a traditional functional language and definition instances play no
interesting role.

Rather than the Chemical Abstract Machine [5] or rewriting [12] style of se-
mantics previously used for the Join Calculus, we describe its operation in terms
of a JVM-like stack-based abstract machine—the JCAM of Figure 2. Programs
in the above syntax can easily be translated to this machine code by a post-order
walk of the abstract syntax tree. This style uses an environment Γ which is typ-
ically the focus of abstraction in CFA techniques, and corresponds more closely
to actual implementations of the calculus (although these would typically use
per-signal-instance queues instead of the single large multiset Γ). The operand
stack also allows the parameters of a transition rule to be implicitly concate-
nated, rather than needing complex indexing (as appears for transition rules
in Figure 1). Indeed, this enables us to omit formal parameters when referring
to JCAM transition rules (as for the fire rule in Figure 2). Our semantics runs
the right-hand-side of a rule to completion (FINISH) before firing another rule,
resulting in transition-level interleaving, although this gives the same observable
behaviour as more fine-grained interleavings.

Control Flow Analysis for the Join Calculus 185

Instructions: LOAD.SIGNAL<f>l, CONSTRUCT<f>l, EMITl, FINISHl, . . .
where l is a unique label and next(l) gives the successor instruction.

Domains:

(f, t), (f, θ) ∈ SignalValue = Signal×Time

Γ,Δ ∈ Environment = m(SignalValue× Value∗) (available messages)

t ∈ Time = N0

Σ = (l, θ, σ) ∈ State = Label×Time × Value∗ (PC, context, stack)

v ∈ Value = SignalValue ∪ Primitive

Operational Semantics: Γ, t,Σ → Γ ′, t′, Σ′

Γ +Δ, t, (FINISHl, ,) → Γ, t, (l0, θ, �v1 · . . . · �vn) (fire)

where Δ = {((fi, θ), �vi) | 1 ≤ i ≤ n}
and f1 & . . . & fn = {l0, l1, . . .} is a rule.

Γ, t, (EMITl, θ, s · �v · σ) → Γ + (s,�v), t, (next(l), θ, σ) (emit)

Γ, t, (CONSTRUCT<f>l, θ, �v · σ) → Γ + ((f, t), �v), t+ 1, (next(l), θ, σ) (construct)

Γ, t, (LOAD.SIGNAL<f>l, θ, σ) → Γ, t, (next(l), θ, (f, θ) · σ) (load)

Fig. 2. Key Operations of the Join Calculus Abstract Machine (JCAM)

The firing rule of the semantics defines the characteristic Join Calculus be-
haviour in a similar way to how Petri-net semantics are normally described.
It requires that the current environment Γ contains messages Δ that match
the join pattern of a rule. These messages must also all be associated with the
same instance θ, which, in this semantics, constructors obtain by reading and
incrementing the JCAM time t. The JCAM start state is as follows:

{((^main, 0), �v)}, 1, (FINISHl, 0, ε)

We require that the program provides a main constructor typed in accordance
with the input �v. This input must only contain primitive values, or signal values
(e.g. giving access to system calls) that cannot conflict with any program defi-
nition instances—past, present or future. This can be achieved by drawing their
instance identifiers from a disjoint set—e.g. the negative integers.

This work is part of a wider project that uses the JCAM as an architecture-
neutral intermediate representation for concurrent and parallel languages.3 The
full JCAM also supports many JVM-style [8] control-flow and data structure
instructions, excluding method-calls which are replaced by join-calculus primi-
tives. However, our use as an architecture-neutral intermediate format for po-
tentially distributed systems results in various JCAM design decisions: (i) we
retain the continuation-passing style of the calculus as sugarings can be done

3 Turon and Russo’s work [17] supports this by showing that Join Calculus implemen-
tations of some primitives (e.g. barriers) can outperform the classic implementation.

186 P. Calvert and A. Mycroft

at source-level; (ii) global mutable state is encoded by recursive rules (equiv-
alent to cyclic Petri-nets) as in our memcell example; and (iii) local mutable
state via structures or arrays is permitted but these must respect a memory-
isolation property by only allowing writes when a transition firing holds the
sole reference. A compiler for the JCAM may possibly use additional target-
architecture shared-global-memory operations, for example to represent the op-
timised memcell. These are not discussed here—instead our queue-bounding
analysis merely determines when such operations can be inserted by a code gen-
erator.

4 Translating Classical Techniques: 0-CFA

We start by offering a zeroth-order analysis for the JCAM. This provides an
introduction to our notation in the context of a well-known technique. In many
ways, the resultant technique is similar to the CFA used by Reppy and Xiao [14]
for Concurrent ML, although we do not make use of type-sensitivity.

For this straightforward abstraction, we discard the instance identifier from
each signal value. This effectively conflates all instances, as is done for the differ-
ent environments that a closure might receive in a λ-calculus 0-CFA. As normal,
values on the operand stack in the concrete semantics are abstracted to sets of
0-CFA values, although we slip between this and the isomorphic function-form
that we can refine later. We are only interested in signal values, so all primitives
are abstracted to PRIM.

ŝ ∈ ̂SignalValue = Signal

v̂ ∈ V̂alue = ℘(̂SignalValue ∪ {PRIM})
∼= (̂SignalValue ∪ {PRIM})→ {⊥,�}

We use c to range over ̂SignalValue ∪ {PRIM}, while f only ranges over signal

values. V̂alue inherits the order ⊥ � �, which in the set view corresponds to
⊆. However, rather than using these values directly, we use flow variables as is
typical in a constraint-based approach, along with a constraint set S over these.
The operand stack that represents intermediate values is abstracted to a list of
flow variables σ̂. A constant mapping Γ̂ : Signal→ FlowVar∗ associates a tuple
of flow variables with each signal (i.e. one per argument to the signal). These
represent all possible values that might be sent in messages to the signal. We
build constraints using the rules in Figure 3. The emission constraint �α �→ β
generated for EMIT and CONSTRUCT instructions can be read as saying that any
tuple of values represented by the flow variables �α could be used to send a
message to any of the signal values in β. Note that whilst =⇒ is formally
logical implication in these rules, it also depicts an abstract execution step. We
use ∃α to allocate a new flow variable. However, since there may be cycles in
the control-flow graph of rule bodies, in general an implementation will need to
reuse such α’s to ensure termination. Typically, 0-CFA allocates one per program

Control Flow Analysis for the Join Calculus 187

Constraint Syntax:

S ⊆ Constraint ::= α1 � α2 | α � {c} | �α �→ β where c ∈ ̂SignalValue ∪ {PRIM}
Constraint Generation Rules: (with judgement form S, Γ̂ � l, σ̂)

S, Γ̂ � EMIT
l, α · �β · σ̂ =⇒ (S, Γ̂ � next(l), σ̂) ∧ {�β �→ α} ⊆ S

S, Γ̂ � CONSTRUCT<f>l, �β · σ̂ =⇒ ∃α.(S, Γ̂ � next(l), σ̂) ∧ {�β �→ α, α � {f}} ⊆ S

S, Γ̂ � LOAD.SIGNAL<f>l, σ̂ =⇒ ∃α.(S, Γ̂ � next(l), α · σ̂) ∧ {α � {f}} ⊆ S

S, Γ̂ � FINISH
l, σ̂ always holds

Model of Constraints: (Φ, Γ̂ |= S iff Φ, Γ̂ |= s for all s ∈ S)

Φ, Γ̂ |= α1 � α2 ⇐⇒ Φ(α1) � Φ(α2)

Φ, Γ̂ |= α � {c} ⇐⇒ c ∈ Φ(α)

Φ, Γ̂ |= �α �→ β ⇐⇒ ∀f ∈ Φ(β).∀j.Φ(Γ̂ (f)j) � Φ(αj)

Closure of Constraint Sets: S+ ⊇ S

{α1 � α2, α2 � {c}} ⊆ S+ =⇒ {α1 � {c}} ⊆ S+

{�α �→ β, β � {f}} ⊆ S+ =⇒ ∀i.{Γ̂ (f)i � αi} ⊆ S+

Fig. 3. Definition of 0-CFA

point—i.e. α is treated as αl at program point l. The constraint set S is then
defined as the least set that satisfies, for each rule f1 & . . . & fn = {l0, . . .}:

S, Γ̂
 l0, Γ̂ (f1) · . . . · Γ̂ (fn)

Solutions to the analysis are of the form Φ : FlowVar → V̂alue. Figure 3 also
defines what it means for such a Φ to be a valid model of the constraints, and
gives a dynamic transitive closure algorithm for computing S+. Given S+, we
can read off the (least) solution as:

Φ(α) = {c | (α + {c}) ∈ S+}

5 Dealing with Message Interaction: 0-LCFA

Whilst 0-CFA is useful for functional languages, it is often insufficient for the Join
Calculus as it cannot differentiate between different signal instances. In particu-
lar, the firing semantics only allows two messages to interact when they belong
to the same instance. There is no need for such discrimination in functional lan-
guages (i.e. predicting whether two closures share the same environment, rather
than two environments that bind the same values to variables).

To do so, we must abstract the times allocated by CONSTRUCT. In past tech-
niques, it is typical to use a call-site history of depth k, in place of the unbounded

188 P. Calvert and A. Mycroft

1 2

1

1 2

1

1

^fib1(3, k) temp1(k) k(2)

^fib2(1, a1) a1(1
)

^
f
i
b
3
(2

,
b
1
)

temp3(b1) b
1
(1

)

^fib4(0, a3)
^fib

5(1, b
3)

a3(0
)

b3
(1
)

rule number

instance time

1. def ^fib(x, k) = if x < 2 then k(x)

else temp(k); ^fib(x-2,a); ^fib(x-1,b)

2. | temp(k) & a(x) & b(y) = k(x + y)

Fig. 4. Call DAG for ^fib(3,k)

Constraint Syntax:

S ⊆ Constraint ::= α1 � α2 | α � {c} | �α �→ β where c ∈ ̂SignalValue ∪ {*}

Constraint Generation Rules: (with judgement form S, Γ̂ � l, σ̂)

S, Γ̂ � EMIT
l, α · �β · σ̂ =⇒ (S, Γ̂ � next(l), σ̂) ∧ {�β �→ α} ⊆ S

S, Γ̂ � CONSTRUCT<f>l, �β · σ̂ =⇒ ∃α.(S, Γ̂ � next(l), σ̂) ∧ {�β �→ α, α � {*} } ⊆ S

S, Γ̂ � LOAD.SIGNAL<f>l, σ̂ =⇒ ∃α.(S, Γ̂ � next(l), α · σ̂) ∧ {α � {f}} ⊆ S

S, Γ̂ � FINISH
l, σ̂ always holds

Model of Constraints: (Φ, Γ̂ |= S iff Φ, Γ̂ |= s for all s ∈ S)

Φ, Γ̂ |= α1 � α2 ⇐⇒ Φ(α1) � Φ(α2)

Φ, Γ̂ |= α � {c} ⇐⇒ c ∈ Φ(α)

Φ, Γ̂ |= �α �→ β ⇐⇒
(
∀f ∈ Φ(β).∀j. Φ(Γ̂ (f)j) � Φ(αj)

)
∧

(
* ∈ Φ(β) =⇒ ∀f ∈ ⋃

i Φ(αi).∀j.Φ(Γ̂ (f)j) � {*}
)

Closure of Constraint Sets: S+ ⊇ S

{α1 � α2, α2 � {c}} ⊆ S+ =⇒ {α1 � {c}} ⊆ S+

{�α �→ β, β � {f}} ⊆ S+ =⇒ ∀i.{Γ̂ (f)i � αi} ⊆ S+

{αi � {f}, �α �→ β, β � {*}} ⊆ S+ =⇒ ∀i.{Γ̂ (f)i � {*}} ⊆ S+

Fig. 5. Definition of 0-LCFA (changes highlighted)

Control Flow Analysis for the Join Calculus 189

concrete call string to give instance identifiers.4 However, in the Join Calculus,
call strings are replaced by more complex traces. These can be described by a
pomset [13], or more intuitively a DAG where each node represents a rule fir-
ing (e.g. Figure 4). Forming an abstract version of these call DAGs is further
complicated by the non-deterministic choice of messages that is made when a
transition fires.

In Section 6, we show how to abstract these for the purposes of accuracy.
However, that technique is not suitable for comparing abstract instances (i.e.
it cannot imply either equality or inequality of concrete instances). Instead, we
use a näıve refinement that uses two abstract times: definitely ‘this’ instance (i.e.
local); and possibly another instance. We call the resultant analysis zeroth-order
local CFA (0-LCFA).

We therefore abstract signal values as follows: a local signal value is abstracted
as its signal name,5 ranged over by f as before (discarding the time component);
other signal values (either from other definitions or another instance of this defi-
nition) are abstracted to a wildcard *. This wildcard also represents local signals
that have escaped the instance and might then be passed back in.6 However, it
does not represent local signals that do not escape.7 We are not interested in
primitive values, so for simplicity represent these by * too—this conveniently
captures the fact that other definition instances are able to fabricate any primi-
tive value they wish. Our abstract value set therefore changes to:

v̂ ∈ V̂alue = ℘(̂SignalValue ∪ {*})
∼= (̂SignalValue ∪ {*})→ {⊥,�}

The updated analysis (Figure 5) requires a new constraint generation rule for
CONSTRUCT as well as changes to the model and closure algorithm for emission
constraints. These simply ensure that whenever a local signal value may escape
to another instance, its Γ̂ flow variables are updated to include * for each of its
arguments. The initial conditions of the analysis must also include the following
constraints, which specify that constructors may receive any external value:

∀f ∈ Constructor.{Γ̂ (f)i + {∗} | 1 ≤ i ≤ arity(f)} ⊆ S

Unlike 0-CFA, this new analysis can be used for both queue bounding and in-
lining (Section 7).

4 Call strings can also improve accuracy (k-CFA). However, this and identifying in-
stances are two distinct problems, and for the Join Calculus we solve them separately.

5 The abstract value f in 0-LCFA corresponds to a single concrete value (f, this)
whereas it previously gave (f, θ) for all θ in 0-CFA.

6 The wildcard treatment is not dissimilar to the concept of a ‘most general attacker’
in security, or approaches used for address-taken variables.

7 Clearly determining whether a signal escapes is undecidable, but simply requiring
that the solution to the analysis is self-consistent results in a safe approximation.

190 P. Calvert and A. Mycroft

6 Abstracting Call DAGs: k-LCFA

The limitations of our approach so far are the same as those of other zeroth-order
and monovariant approaches for the λ-calculus. This is illustrated by two small
examples (‘handshake’ and ‘handshake-with-swap’ respectively):

A: a(x,m) & b(y,n) = m(x); n(y)

B: a(x,m) & b(y,n) = m(y); n(x)

Consider the calls a(i,p), a(j,q), b(k,r) and b(l,s). The table below indi-
cates the results of 0-LCFA, compared to the optimum—i.e. what could actually
occur on a real execution:

Example A Example B
0-LCFA Optimum 0-LCFA Optimum

p {i, j} {i} {k, l} {k, l}
q {i, j} {j} {k, l} {k, l}
r {k, l} {k} {i, j} {i, j}
s {k, l} {l} {i, j} {i, j}

The case where the optimum solution is not attained is A. However, in some non-
trivial situations the simple approach does as well as possible. As expected, the
inaccuracy is due to arguments passed from different call-sites being conflated.
It is this issue that we now address, while still allowing for the non-deterministic
combination of call-sites (as exemplified by case B above).

In zeroth-order approaches, the problem is our simple approximation of a
single flow variable per signal argument, as given by Γ̂ . More accurate k-CFA
approaches for the λ-calculus refine this ‘global’ variable into a set of variables,
indexed by the last k call-sites. However, as already discussed, the Join Cal-
culus gives call DAGs rather than call strings. Furthermore, they include non-
deterministic choices wherever different messages could have been combined.

Our approach is to continue to calculate zeroth-order results for the flow
variables in Γ̂ , and then use these as background information while following
each possible (foreground) path in the DAG (up to depth k). We arrange that
the union of the analyses for each path gives a suitable result for the whole DAG.
The trick is to ensure that the inaccurate background information is overridden
by the more accurate constraints generated by the foreground path. In order to
do this, we further refine the abstract value domain to tag each value:

v̂ ∈ V̂alue = (̂SignalValue ∪ {*})→ {⊥,B,F}

The ordering ⊥ � B � F ensures the F tag takes priority. For convenience, we
continue to use set-style notation, with the tag given by annotations—e.g.

{F(c)} ≡ λx.

{
F if x = c

⊥ otherwise

Note {B(c)} � {F(c)} and, less obviously, that x ranges over both a and b in:

∀B(x) ∈ {F(a),B(b)}. . . .

Control Flow Analysis for the Join Calculus 191

Figure 6 presents the new analysis. Values always start off as being tagged F ,
and it is only the emission constraint that later lowers them to B. The only other
change to the constraint generation rules is that we now maintain a foreground
call-string context h ∈ Label≤k that is used to implement ∃α—for example,
α = αl,h. This context is also included on emission constraints.

Examining the model of the emission constraints, we first note that it only has
any effect for destination values tagged with F . This prevents the background
B values causing inaccuracy. In the first and last lines, it states similar require-
ments to our 0-LCFA. The Γ̂ flow variables are predominantly made up of B
values, since these are used to give values to signal arguments not in the current
foreground path. The exception is when a signal f escapes the instance, then
F(*) is added to each Γ̂ (f)j since the * values are not attributable to any par-
ticular call-site, so will not be considered on a foreground path. For this reason,
we still require that the following holds for each rule f1 & . . . & fn = {l0, . . .},
even though this typically generates very few constraints directly:

S, Γ̂
ε l0, Γ̂ (f1) · . . . · Γ̂ (fn)

As before, we pass ∗ (actually F(∗)) to the entry points of each definition:

∀f ∈ Constructor. {Γ̂ (f)i + {F(∗)} | 1 ≤ i ≤ arity(f)} ⊆ S

The second line of the emission constraint’s model is new, and performs the anal-
ysis along the foreground path. The ∃�γ in both the model and closure algorithm
is responsible for choosing new flow variables, and it is here that the choice of k
affects an implementation, as it reuses flow variables for emissions with common
h.

The dynamic transitive closure algorithm also changes to accommodate the
alterations. In particular, it may introduce a new form of constraint that corre-
sponds to raising tags from B to F , and lowering them the other way.

Both our 0-LCFA and this k-LCFA essentially perform a form of escape-
analysis. However, if we look at the results of our k-LCFA for the memcell

example, we find that all three signals (get, set and val) receive * (i.e. external
values) for each of their arguments. Whilst this is correct, we would like to
distinguish between get (or set), which could be called any number of times
from outside the definition, and val, which is only called internally, despite
receiving foreign values via set. We achieve this by also constructing an escape
set E ⊇ Constructor, which is the minimal set satisfying:

(�α �→h β) ∈ S ∧ F(*) ∈ Φ(β) =⇒ ∀B(f) ∈
⋃
i

Φ(αi). f ∈ E

This is computed by initialising E to Constructor and closing under:

{αi + {B(f)}, �α �→h β, β + {F(*)}} ⊆ S+ =⇒ f ∈ E

{αi + {F(f)}, �α �→h β, β + {F(*)}} ⊆ S+ =⇒ f ∈ E

192 P. Calvert and A. Mycroft

Constraint Syntax:

S ⊆ Constraint ::= α1 � F (α2) | α1 � B (α2) | α � { F (c)} | α � { B (c)} | �α �→h β

Constraint Generation Rules: (with judgement form S, Γ̂ �h l, σ̂)

S, Γ̂ �h EMIT
l, α · �β · σ̂ =⇒ (S, Γ̂ �h next(l), σ̂) ∧ {�β �→firstk(l·h) α} ⊆ S

S, Γ̂ �h CONSTRUCT<f>l, �β · σ̂ =⇒ ∃α.(S, Γ̂ �h next(l), σ̂)

∧ {�β �→firstk(l·h) α, α � { F (*)}} ⊆ S

S, Γ̂ �h LOAD.SIGNAL<f>l, σ̂ =⇒ ∃α.(S, Γ̂ �h next(l), α · σ̂) ∧ {α � { F (f)}} ⊆ S

S, Γ̂ �h FINISH
l, σ̂ always holds

Notation:

mkF(X) = {F(x) | B(x) ∈ X} and mkB(X) = {B(x) | B(x) ∈ X}

Model of Constraints: (Φ, Γ̂ |=h S iff Φ, Γ̂ |=h s for all s ∈ S)

Φ, Γ̂ |= α1 � F (α2) ⇐⇒ Φ(α1) � mkF (Φ(α2))

Φ, Γ̂ |= α1 � B (α2) ⇐⇒ Φ(α1) � mkB (Φ(α2))

Φ, Γ̂ |= α � { F (c)} ⇐⇒ F (c) ∈ Φ(α)

Φ, Γ̂ |= α � { B (c)} ⇐⇒ B (c) ∈ Φ(α)

Φ, Γ̂ |= �α �→h β ⇐⇒
∀ F (f•) ∈ Φ(β).

(
∀j.Φ(Γ̂ (f•)j) � mkB (Φ(αj))

∧ ∀(f1 & ...& f• & ...& fn = {l0, ...}) ∈ Rule. ∃S,�γ. (Φ, Γ̂ |= S)

∧ (S, Γ̂ �h l0, Γ̂ (f1) · ... · �γ · ... · Γ̂ (fn)) ∧ ∀j. Φ(γj) � mkF(Φ(αj))
)

∧
(

F (*) ∈ Φ(β) =⇒ ∀ B (f) ∈ ⋃
i Φ(αi).∀j.Φ(Γ̂ (f)j) � { F (*)}

)
Closure of Constraint Sets: S+ ⊇ S

{α1 � F (α2), α2 � { F (c)}} ⊆ S+ =⇒ {α1 � { F (c)}} ⊆ S+

{α1 � F (α2), α2 � { B (c)}} ⊆ S+ =⇒ {α1 � { F (c)}} ⊆ S+

{α1 � B (α2), α2 � { F (c)}} ⊆ S+ =⇒ {α1 � { B (c)}} ⊆ S+

{α1 � B (α2), α2 � { B (c)}} ⊆ S+ =⇒ {α1 � { B (c)}} ⊆ S+

{�α �→h β, β � { F (f)}} ⊆ S+ =⇒ ∀i. {Γ̂ (f)i � B (αi)} ⊆ S+

{�α �→h β, β � {F(f•)}} ⊆ S+ =⇒
∃�γ.∀i.{γi � F(αi)} ⊆ S+

∧ S+, Γ̂ �h l0, Γ̂ (f1) · ... · �γ · ... · Γ̂ (fn)

for each rule of the form f1 & ...& f• & ...& fn = {l0, ...}
{αi � { B (f)}, �α �→h β, β � { F (*)}} ⊆ S+ =⇒ ∀i. {Γ̂ (f)i � { F (*)}} ⊆ S+

{αi � { F (f)}, �α �→h β, β � { F (*)}} ⊆ S+ =⇒ ∀i. {Γ̂ (f)i � { F (*)}} ⊆ S+

Fig. 6. Definition of k-LCFA (main changes highlighted)

Control Flow Analysis for the Join Calculus 193

Initialisation:

�f� = min
c∈CRule

{�c•(f)�}

 f! =

{
∞ if f ∈ (E \ Constructor)

maxc∈CRule{ c•(f)!} otherwise

Computation: ∀r ∈ (Rule \ CRule)

•r(f) > �r•(f)� =⇒ �f� = 0
•r(f) < r•(f)! =⇒ f! = ∞

Fig. 7. Algorithm for Computing Queue Bound of f

The escape set E is useful for both queue bounding and proving our k-LCFA
technique to be sound with respect to the concrete semantics. The proof is
available from the first author’s homepage.

Returning to the examples presented earlier, this novel approach overcomes
the inaccuracy of conflating call-sites while still allowing for the firing semantics.
For the functional subset of the Join Calculus, our approach collapses to con-
ventional k-CFA for a CPS lambda-lifted λ-calculus. In particular, * represents
only primitives when there is just a single instance, and if all rules are functional
then we never make use of Γ̂ and always deal with F values.

7 Applications

7.1 Queue Bounding

Our motivating example for queue bounding was the memory cell encoding. We
hoped that the val signal could be replaced by a memory location and removed
from patterns. To do this, we need to bound the possible queue lengths for each
signal f . The result of this is a pair (,f-, .f/) ∈ (N0×N

∞
0) giving the minimum

and maximum queue size. We use helper functions inspired by Petri-net notation:

• ∈ Rule→ (Signal→ N0) (input count)
• ∈ Rule→ (Signal→ (N0 × N

∞
0)) (output range)

The first is defined by the number of occurrences of a signal in the left-hand-
side pattern of a rule. The second requires analysis of the transition rule body’s
control-flow graph. There is insufficient space to give it here, but this amounts
to a relatively straightforward use of the LCFA results and range arithmetic,
incorporating dominator analysis to detect loops and prevent counting to ∞.

The queue bounds of a signal f can then be approximated by the simple
algorithm in Figure 7. A more accurate solution would consider the interaction
between signals in a similar manner to boundness checking, or invariants for
Petri-nets, but we leave this for future work. Our approach accurately (with

194 P. Calvert and A. Mycroft

respect to •) finds signals with a constant queue length, so can still replace
signals with memory locations in many situations.

The optimisation itself is straightforward: wherever ,f- = .f/, we remove f ,
replacing it with ,f- memory locations. We also remove f from the left-hand-
side of every rule that previously matched on it—and modify its body to use the
memory locations and behave atomically (e.g. by using transactional memory).

7.2 Inlining

Our second optimisation—inlining—is very similar to its classical counterpart.
Wherever our LCFA resolves the destination of an EMIT to a single signal, we
can inline transitions to reduce firing overheads. As before, a heuristic or code
annotations would determine when to do this, since inlining in the Join Calculus
may reduce the available parallelism. However, the Join Calculus does present
a few complications. Firstly, signals and join patterns are in a many-to-many
relation, so we may need to resolve multiple EMITs before being able to inline, and
might have to decide between multiple transitions (i.e. resolve non-determinism).
Secondly, LCFA only considers message interaction within a single instance, so
cannot support whole-program inlining. We now address these issues.

Transition Inlining. The inlinings that are possible become clearest by con-
structing a Petri-net version of the LCFA results for the definition. In this net,
places correspond to signals, and the pre-places of a transition are given by its
join pattern. The post-places are given by EMIT instructions with a resolved desti-
nation, which are statically known to be executed a fixed number of times. Valid
inlinings then correspond to valid transition mergings in this Petri-net—these
can be represented as pomset paths [13].

The pomset paths restrict the ordering of the original transition bodies within
the merged transition. Any EMIT or FINISH instructions, which become internal
due to inlining, should be removed, and local variables used to thread values
between the original transition bodies. One complication occurs in the case that
the new transition matches on a signal that it might also emit. In this case, the
new transition may deadlock—for example, inlining just the signal b() in:

a() = b(); c()

b() & c() = ...

gives:

a() & c() = c(); ...

Assuming c() does not appear elsewhere, then the former allows a() to fire but
not the latter, potentially causing deadlock. One solution is to retain the original
transitions along with the inlined version and make the scheduler responsible for
picking the faster inlined option where possible.

Control Flow Analysis for the Join Calculus 195

Instance Inlining. The technique above can only perform inlining within a
definition. To allow a more global effect, we now describe how whole ‘child’
instances can be inlined within a ‘parent’. This clearly preserves semantics—
just as two Petri-nets placed next to each other do not interact. However, since
inlining is a static optimisation, we must know statically that a given CONSTRUCT

instruction is called exactly once. Hence, we only inline definitions instantiated
within a constructor, and outside a loop.

To do this, we copy non-constructor transitions into the parent definition, α-
renaming to preserve globally unique signal names, and replace the CONSTRUCT

instruction with the body of the child’s constructor transition rule. Any FINISHes
are replaced by branches to the successor of the original CONSTRUCT. For example,
in the following code:

def ^main() = ^mutex(s)

| s(p,v) = ...

def ^mutex(k) = free(); k(lock,unlock)

| lock(k) & free() = k()

| unlock(k) = k(); free()

inlining ^mutex gives:

def ^main() = free(); s(lock, unlock)

| s(p,v) = ...

| lock(k) & free() = k()

| unlock(k) = k(); free()

One issue with this approach, is that it does enlarge the possible state space
of the parent definition, which grows exponentially with the number of signals.
Ideally, the total state space would remain constant, with part of it simply being
transferred from the child definition instance to the parent. An implementation
can achieve this by considering disjoint sets of signals. We start by treating all
signals as disjoint, then consider each rule in turn. Whenever two signals appear
in a join pattern together, their respective sets must be unioned. The state spaces
of the disjoint sets can then be considered separately leading to the result we
hoped for (since the inlined signals will clearly be disjoint from all others).

8 Discussion and Further Work

It is worth considering a few cases where our k-LCFA produces inaccurate results
(for any k). Firstly, it is unaware of any ordering of calls that might be enforced
by the program. Consider the example (compare is assumed to be a system call
which prints “Yes” or “No” depending on whether its arguments are equal):

def ^main() = i(a); a()

| a() & i(x) = i(b); b(); compare(a, x)

| b() & i(x) = compare(b, x)

196 P. Calvert and A. Mycroft

Clearly the printed message should always be “Yes”. However, our analysis can-
not tell that specific calls to i are forced to join with each of the signals, and
therefore concludes that either a or b could be passed as the second argument
to compare on each occasion—a refinement of our approach might address this.

The second source of imprecision is more expected (and reminiscent of how
tuples are analysed in an independent-attribute approach [6]). Consider:

a(k) & b(m,x) = k(m,x)

c(m,x) = m(x)

with calls of a(c), b(p,q) and b(r,s). The call to c is considered while a is
on the foreground path. It therefore receives the argument sets {p, r} and {q, s}
for b, and cannot determine whether p receives argument q or s. A relational
method would address this, but at some cost in algorithmic complexity.

9 Conclusion

This paper has developed a novel and accurate k-LCFA approach (Section 6)
for the Join Calculus, along with a simpler 0-LCFA (Section 5). In addition, we
have given two optimisations (Section 7) that make use of this information to
remove some of the overheads associated with the calculus.

Our approach was targeted at a flattened Join Calculus Abstract Machine
(Section 3) that we hope might be suitable as a universal IR for parallel ar-
chitectures. This work should enable implementations to reduce the number of
firings that occur. However, it is still unclear how effective inlining heuristics
and scheduling can be in making intelligent use of resources as set out in [2].

Acknowledgements. We thank the Schiff Foundation, University of Cam-
bridge, for funding this research through a PhD studentship. We are also grateful
to the anonymous reviewers for their useful feedback on our submission.

References

1. Benton, N., Cardelli, L., Fournet, C.: Modern Concurrency Abstractions for C#.
TOPLAS 26(5), 769–804 (2004)

2. Calvert, P., Mycroft, A.: Mapping the Join Calculus to Heterogeneous Hardware.
In: 5th International Workshop on Programming Language Approaches to Con-
currency and Communication-cEntric Software, PLACES, pp. 45–51 (2012)

3. Conchon, S., Le Fessant, F.: JoCaml: Mobile Agents for Objective-Caml. In: 1st In-
ternational Symposium on Agent Systems and Applications, and 3rd International
Symposium on Mobile Agents, ASAMA, pp. 22–29. IEEE (1999)

4. Faxén, K.-F.: Polyvariance, Polymorphism and Flow Analysis. In: Dam, M. (ed.)
LOMAPS-WS 1996. LNCS, vol. 1192, pp. 260–278. Springer, Heidelberg (1997)

5. Fournet, C., Gonthier, G.: The Reflexive CHAM and the Join-Calculus. In: 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL, pp. 372–385. ACM (1996)

Control Flow Analysis for the Join Calculus 197

6. Jones, N.D., Muchnick, S.: Complexity of Flow Analysis, Inductive Assertion Syn-
thesis and a Language due to Dijkstra. In: 21st Annual Symposium on Foundations
of Computer Science, FOCS, pp. 185–190. IEEE (1980)

7. Le Fessant, F., Maranget, L.: Compiling Join-Patterns. In: 3rd International Work-
shop on High-Level Concurrent Languages, HLCL. Electronic Notes in Theoretical
Computer Science, vol. 16(3), pp. 205–224 (1998)

8. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual Machine Spec-
ification. Oracle (2011)

9. Might, M.: Abstract Interpreters for Free. In: Cousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 407–421. Springer, Heidelberg (2010)

10. Might, M., Van Horn, D.: A Family of Abstract Interpretations for Static Analy-
sis of Concurrent Higher-Order Programs. In: Yahav, E. (ed.) SAS 2011. LNCS,
vol. 6887, pp. 180–197. Springer, Heidelberg (2011)

11. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(1999)

12. Odersky, M.: Functional Nets. In: Smolka, G. (ed.) ESOP/ETAPS 2000. LNCS,
vol. 1782, pp. 1–25. Springer, Heidelberg (2000)

13. Pratt, V.: Modeling Concurrency with Partial Orders. International Journal of
Parallel Programming 15(1), 33–71 (1986)

14. Reppy, J., Xiao, Y.: Specialization of CML Message-Passing Primitives. In: 34th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL, pp. 315–326. ACM (2007)

15. Russo, C.: The Joins Concurrency Library. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 260–274. Springer, Heidelberg (2007)

16. Shivers, O.G.: Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University (1991)

17. Turon, A., Russo, C.: Scalable Join Patterns. In: International Conference on
Object-Oriented Programming Systems, Languages and Applications, OOPSLA,
pp. 575–594. ACM (2011)

18. Von Itzstein, G.S.: Introduction of High Level Concurrency Semantics in Object
Oriented Languages. PhD thesis, University of South Australia (2005)

When the Decreasing Sequence Fails�

Nicolas Halbwachs and Julien Henry

Vérimag��, Grenoble University, France

Abstract. The classical method for program analysis by abstract in-
terpretation consists in computing a increasing sequence with widening,
which converges towards a correct solution, then computing a decreasing
sequence of correct solutions without widening. It is generally admit-
ted that, when the decreasing sequence reaches a fixpoint, it cannot be
improved further. As a consequence, all efforts for improving the pre-
cision of an analysis have been devoted to improving the limit of the
increasing sequence. In this paper, we propose a method to improve a
fixpoint after its computation. The method consists in projecting the
solution onto well-chosen components and to start again increasing and
decreasing sequences from the result of the projection.

1 Introduction

Program analysis by abstract interpretation [CC77] consists in computing an
upper approximation of the least fixpoint of an abstract semantic function in
a suitable abstract lattice of properties. When the abstract lattice is of infinite
depth, the standard approach [CC76, CC77] consists in computing an increasing
sequence whose convergence is forced using a widening operator ; then, from
the obtained limit of the increasing sequence, one can improve the solution by
computing a decreasing sequence, by iterating the function without widening.
The decreasing sequence may either stop at a fixpoint of the semantic function,
or be infinite, but since all its terms are correct solutions, one can stop the
computation after a fixed number of terms, or limit its length using a narrowing
operator .

Of course, the precision of the result depends both on the ability of the widen-
ing operator to “guess” a precise limit of the increasing sequence, and on the
information gathered during the decreasing sequence. Intuitively, the increasing
sequence extrapolates the behaviour of the program from the first steps of its
execution, while the decreasing sequence gathers information about the end of
the execution of the program, its loops, or more generally, the way the strongly
connected components of its control flow graph are left.

While significant efforts have been devoted to improving the precision of the
limit of the increasing sequence (see §1.2 for a quick survey), little attention

� This work has been partially supported by the ASOPT project of the “Agence
Nationale de la Recherche” of the French Ministry of Research.

�� Verimag is a joint laboratory of Université Joseph Fourier, CNRS and Grenoble-INP.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 198–213, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

When the Decreasing Sequence Fails 199

i:=0

i<100?

i:=i+1

�
[0, 0]

[0, 0]

[0, 0]

[1, 1]

⊥

[0,∞]

[0, 99]

[1, 100]

[100,∞]

[0, 100]

[100, 100]

iterations 1 2 3↓

convergence fixpoint

(a) A classical example where the decreasing sequence reaches the least fixpoint

i:=0

j:=0

j:=j+1

i:=i+1

iterations

convergence

[0,∞][0, 100]

[0,∞][100, 100]

[1,∞][100, 100]

[100,∞][100, 100]

fixpoint

5↓

(b) A nested loop prevents the decreasing sequence to get precise results

�
1

[0, 0]

[0, 0]

[0, 0]

[0, 0][0, 0]

[0, 0][0, 0]

[0, 0][0, 0]

[0, 0][1, 1]

⊥
⊥
⊥

[0, 0][0,∞]

[0, 0][0, 99]

[0, 0][1, 100]

[0, 0][100,∞]

[1, 1][100,∞]

⊥

2 3

[0, 1]

[0, 1]

[0, 1][0, 0]

[0,∞][0,∞]

[0,∞][0, 99]

[0,∞][1, 100]

[0,∞][100,∞]

[1,∞][100,∞]

[100,∞][100,∞]

4

[0,∞][0,∞]

[0, 99][0, 0]

[0, 99]

[0,∞]
i<100?

j<100?

Fig. 1. Example 1 – nested loops

has been paid to the decreasing sequence. It is generally admitted that, when
the decreasing sequence reaches a fixpoint, it cannot be improved. However, it
appears that such a fixpoint can be far from the least fixpoint, so improving it
may have a significant influence. More specifically, we shall see in §1.1 that slight
modifications in a program may have a surprising influence on the amount of
information gathered during the decreasing sequence.

1.1 Motivating Examples

Let’s illustrate the problem with two very simple examples:

Example 1. is a classical example of what can be obtained by interval analy-
sis [CC76]. Fig. 1.a shows the control-flow graph (CFG) of a very simple loop
incrementing a variable i from 0 to 100. The increasing sequence consists of 2

200 N. Halbwachs and J. Henry

iterations; at iteration 2, the widening is applied, and the sequence converges.
Iteration 3 shows the descending sequence, which reaches a fixpoint in 1 step.
The results are the best possible: i ∈ [100, 100] at the end of the loop. Now, the
CFG shown in Fig.1.b is obtained from the preceding one by nesting a second
loop on another variable j within the first one. The increasing sequence converges
after 4 steps. Again, the descending sequence reaches a fixpoint in 1 step, but
now, the result for i is imprecise: i ∈ [100,∞] at the end. The reason is that the
nested loop neither modifies nor tests the variable i; so, as soon as its interval
has been widened to [0,∞], it will remain unchanged in the inside loop. Notice
that it is also the case if we select both loop heads as widening nodes (see Note 1
in §2 on the selection of widening nodes).

Example 2: Our second example illustrates a situation which occurs commonly
in reactive programs, cyclically sampling their environment. A first program
(Fig. 2.a) is just an infinite loop with a counter modulo 60. It is properly analysed
after 2 steps of increasing sequence and one descending step.

[1, 1]

[1, 1]

[0,∞]

[0, 0]

[1, 60]

[0, 60]

[0, 60]

[0, 0]

[1, 60]

[0, 60]

FT

n:=0

n:=0

n<60?

n:=n+1

iterations

�
[0, 0]

[0, 0]

⊥

1 2 3↓

convergence fixpoint

(a) An infinite loop with a counter modulo 60

TT F

T

[1, 1]

[1, 1]

[0,∞]

[1, 60]

[0, 60]

[0, 0]

[0,∞]

[0,∞]

F

n:=0

read(sec)?

n:=0

n<60?

n:=n+1 n:=0

n<60?

n:=n+1

iterations

�
[0, 0]

[0, 0]

1 2

⊥

[0, 1]

fixpoint

[0, 0]

(b) A loop counting the occurrences of “seconds”

Fig. 2. Example 2 – intermittent counting

When the Decreasing Sequence Fails 201

Now, assume that we don’t want to count all loop iterations, but only when
some external event (e.g., a “second”) is detected. This is done by the program
of Fig. 2.b. As before, the increasing sequence converges after 2 steps, but now,
the limit is a fixpoint, so there is no decreasing sequence, and the upper bound of
the counter is missed. This second example can be simply explained as follows: let
(L,�,�,�,�,⊥) be the abstract lattice, and F be an abstract semantic function
from L to L. Let G = Id�F (i.e., λX.X �F (X)). Then, it is easy to see that G
has the same least fixpoint as F , but G is extensive (i.e., ∀X ∈ L,X � G(X)).
As a consequence, any postfixpoint of F is a fixpoint of G. So, while the limit of
the increasing sequence with F may be a strict postfixpoint of F — which can be
improved by a decreasing sequence —, this limit will be a fixpoint of G, meaning
that there is no decreasing sequence with G. This is exactly what happens with
our example, where the dummy branch in the loop of Fig. 2.b adds an identity
term to the semantic function at the widening node.

1.2 Related Works

Beside researches proposing new abstract domains, many existing works aim
at fighting the imprecision of analysis, considered to be essentially due to the
widening operation. Apart from proposals of systematic design of widening and
narrowing operators [CZ11], one can distinguish at least three big tracks: (1) de-
signing smart widening operators, generally dedicated to some specific domains;
(2) avoiding or minimising the use of widening, by focusing either on some classes
of programs or on some classes of abstract domains; (3) applying widening and
narrowing using smart strategies.

Smart Widening. Several proposals concern smart widening operators, especially
for the polyhedra domain [CH78, BHRZ03]. Widening up to or with thresholds
[Hal93, HPR97, BCC+03, LCJG11] consists in choosing — generally from the
conditions appearing in the program — some tentative limits to the widening.
Widening with landmarks follows the same idea, but the selection of limits is
made dynamically. Widening with care set [WYGI07] makes use of a proof ob-
jective. Some of these proposals can properly deal with some of our examples,
mainly because they can reach a precise solution at the end of the increasing
sequence. However, they are not independent of the considered abstract domain.
Our method will work for any abstract domain, and is compatible with any
widening operation.

Avoiding Widening. Other authors try to avoid the use of widening. Accelera-
tion techniques [BGP97, WB98, CJ98, BFLP03, GH06] are dedicated to some
classes of programs or loops, the effect of which can be exactly computed. Other
approaches can be applied only with some kinds of domains — namely “weakly
relational domains” [Min04] or “templates” [SSM04, SSM05] — in which pol-
icy iteration [SW04, CGG+05, GS07] allows least fixpoints to be precisely com-
puted. These methods generally solve our problem, but they are restricted either
to some class of programs or to some abstract domains.

202 N. Halbwachs and J. Henry

Widening Strategies. An obvious way of improving the precision of the widen-
ing is to delay its application [Hal93, BCC+03], i.e., applying it only after a
fixed number of exact steps or intermittently, or applying it after some loop un-
rolling [Gou01, PGM03]. Some strategies adapt the application of the widening
according to the discovery of new feasible paths [Hal93, HPR97, BCC+03] in
the program. In particular, [GR06, GR07] proposes a very clever strategy, called
lookahead widening, where a succession of increasing-decreasing sequences are
computed for more and more feasible paths of the program. Stratified analysis
[ML11] is a succession of analyses concerning more and more variables, accord-
ing to their dependencies. None of these strategies provides a general solution
to our problem.

Anyway, while some of these methods can work on some of our examples,
none of them specifically address the problem of improving the result of the
decreasing sequence. We don’t pretend our method is better than these works,
but that it is different and complementary.

1.3 Contribution and Summary

In this paper, we propose a method starting from the result of the decreasing
sequence, and trying to improve it as follows: the solution will be projected on
some of its components, whose propagation is likely to provide a more precise
solution, according to some criteria. New increasing and decreasing sequences
will be started from the result of the projection, providing a new solution which
can be intersected with the previous one. The method is independent from the
abstract domain. We’ll show that it properly solves our running examples, and
that in some cases, it can gather non trivial information about the end of program
execution.

The paper is organised as follows: Section 2 introduce the necessary definitions
and notations; our method is presented in Section 3 and illustrated on an example
in Section 4; Section 5 proposes some ways for improving the performances and
Section 6 gives some experimental results.

2 Definitions and Notations

Abstract Lattice. As said before, we assume that the analysis makes use of an
abstract complete lattice (L,�,�,�,�,⊥). We assume this lattice to be of infi-
nite depth. The lattice operations are supposed to be available, together with a
widening operator ∇, and the interpretation of each program statement s as a
function (predicate transformer) fs : L �→ L.

Control-Flow Graph. A control-flow graph (CFG) is a graph (N,E), where
– the finite set N = {ν1, ..., νk} is made of 3 types of nodes: the start nodes,

the junction nodes, and the statement nodes. With each statement node νi
is associated a function fi : L �→ L.

When the Decreasing Sequence Fails 203

– E ⊆ N×N is the set of edges. Start nodes have no incoming edge, statement
nodes have one incoming edge, junction nodes have several incoming edges.

Remark: for simplicity, each node has a single output. This means that the
classical “test nodes” (used in Figures 1 and 2) are split into pairs of statement
nodes, whose associated function returns an abstraction of the intersection of
its argument with the condition of the test (“then” part) or its negation (“else”
part). As an example, Fig. 3 shows the CFG of our example 1.b.

i:=0

i<100? i≥100?

j:=0

j<100? j≥100?

j:=j+1 i:=i+1

ν1

ν2

ν3

ν4 ν5

ν6

ν7

ν8

ν9

ν10

ν11

Fig. 3. CFG of the example 1.b

Semantic Equations. The analysis will associate with each node νi of the CFG
an abstract value Xi ∈ L, these abstract values being defined by a system of
recursive equations:

∀i = 1..k, Xi =

⎧⎨⎩
� if νi is a start node
fi(Xj) if νi is a statement node and (νj , νi) ∈ E⊔

(νj ,νi)∈E Xj if νi is a junction node

We’ll often write this system of equations as a vectorial fixpoint equation:
X = F (X) in the lattice Lk.

Increasing Sequence. Since the lattice L is of infinite depth, the Kleene sequence
X0 = ⊥k,X�+1 = F (X�) may be infinite. The classical approach consists in
computing the increasing sequence Y 0 = ⊥k,Y �+1 = Y �∇F (Y �); from the
properties of the widening operator, this sequence is guaranteed to converge
after a finite number of steps towards a limit Y ∇, which is a postfixpoint of
F , i.e., F (Y ∇) � Y ∇. Of course, the increasing sequence is computed in a
chaotic way (cf. Figures 1 and 2), by propagating changes along the paths of the
CFG, and since the widening operation loses information, it is only applied on
a selected set W of widening nodes intersecting each loop of the CFG.

Note 1 (On the Selection of Widening Nodes). The set W of widening nodes
must be as small as possible, to minimise the number of applications of the

204 N. Halbwachs and J. Henry

widening operator. Since finding a minimal cutting set W is an NP-complete
problem, the heuristic classically applied is the method of strongly connected
subcomponents (SCSC) proposed by Bourdoncle [Bou93]: the method recursively
uses Tarjan’s algorithm [Tar72] to find the strongly connected components (SCC)
of a directed graph, together with an entry node to each SCC. Entry nodes are
the target of back edges, so they are all junction nodes. Bourdoncle’s method
consists in adding all SCC entry nodes toW , then removing them from the graph
and recursively apply Tarjan’s algorithm to the rest of each SCC. The result is a
hierarchy of SCSC, each of which being cut by a junction node in W . An obvious
improvement of this method (which we did not find published anywhere) consists
in considering again the hierarchy of SCSC bottom-up, checking whether each
SCSC is disconnected by the cut-points of its children. For instance, on the
CFG of Fig. 3, a first application of Tarjan’s algorithm finds one non-trivial
SCC, c1 = {ν3, ν4, ν6, ν7, ν8, ν9, ν10, ν11}, with entry node ν3. Removing node
ν3 and applying again the algorithm provides the SCSC c2 = {ν7, ν8, ν9}, with
entry node ν7, whose removal disconnects the graph. So, Bourdoncle’s method
provides W = {ν3, ν7}. Now, since the cut-point ν7 of the leaf SCSC c2 also
disconnects the father SCSC c1, it’s enough to choose W = {ν7}, as done in
Fig. 3.

Decreasing Sequence. The limit Y ∇ of the in-
creasing sequence is a post-fixpoint of F . If it
is a strict post-fixpoint (F (Y ∇) � Y ∇), it can
be improved by computing a decreasing sequence
Z0 = Y ∇, Z�+1 = F (Z�). This sequence can be
infinite, or reach a fixpoint of F . In practice, it
generally reaches a fixpoint after very few steps.
Anyway, since all of its terms are post-fixpoints
of F , hence correct approximations of the least
fixpoint, one can stop it after a fixed number of
steps, or force its convergence using a narrowing
operator. In the following, we’ll note ZΔ the last
term of the descending sequence, and we’ll gen-
erally assume that ZΔ is a fixpoint; however, the
results still hold if ZΔ is a strict post-fixpoint.

(X�)

�

PostFix(F)

(Z�)

Y ∇

⊥

lfp(F)

ZΔ

(Y�)

Fix(F)

The above figure classically illustrates the sequences in the abstract lattice:
(X�) is the (generally infinite) Kleene’s sequence, (Y�) is the (finite) increasing
sequence, leading to the post-fixpoint Y ∇, and (Z�) is the decreasing sequence
of post-fixpoints providing a solution ZΔ.

3 Improving a (Post-)Fixpoint Solution

3.1 An Intuition of the Solution

Let’s look again at example 1.b (see Fig. 3). At the widening node ν7, during the
decreasing sequence, we have Z7 = Z6�Z9. At the end of the decreasing sequence,

When the Decreasing Sequence Fails 205

we find ZΔ
7 = (i ∈ [0,∞], j ∈ [0, 100]), while ZΔ

6 = (i ∈ [0, 99], j ∈ [0, 0]) and
ZΔ
9 = (i ∈ [0,∞], j ∈ [1, 100]). Obviously, i ∈ [0, 99], found in ZΔ

6 , is a correct
invariant, which is lost in ZΔ

7 because of the least upper bound with i ∈ [0,∞]
imprecisely found in ZΔ

9 . Our idea is to start again a propagation of ZΔ
6 after

resetting ZΔ
9 to ⊥.

3.2 Generalised Sequences

Restarting an iteration from an arbitrary point requires some changes in the
definition of the iteration sequences. We must ensure that a widened sequence
starting form an arbitrary point (not necessarily a pre-fixpoint) is increasing;
moreover, widening operators are generally designed under the assumption that
their first operand is smaller than the second one. We introduce the following
notations: Let F be a monotone function from L to L. Let X ∈ L. Then,

– we note F∇(X) the limit of the sequence Y0 = X, Y�+1 = Y�∇(X � F (Y�));
– we note F∇Δ(X) the last term ZΔ of a descending sequence (Z�) starting

at Z0 = F∇(X)

Remarks:

– The second operand X � F (Y�) of the widening is always greater than the
first one, and the increasing sequence (Y�) is indeed increasing. Obviously,
F∇(X) is the classical approximation of the least fixpoint of the function
λX.(X � F (Y)), i.e., of the least fixpoint of F greater than X .

– Notice also that, withX = ⊥, these definitions of sequences and limits match
the classical ones recalled in §2.

– For any X , F∇Δ(X) is a correct approximation of the least fixpoint of F ,
i.e., ∀X ∈ L, F∇Δ(X) # lfp(F).

– Neither F∇ nor F∇Δ is increasing. As a consequence, there can be some X
such that F∇Δ(X) � F∇Δ(⊥), i.e., such that the limit obtained from X is
more precise than the one computed by the classical iteration.

We address the problem of analysing an SCC of the graph, since the analysis of
a complex graph considers each SCC in turn. We consider first the case of an
SCC with only one widening node, before addressing the general case.

3.3 Case of a Single Widening Node

We need some additional definitions:

Path Transformers. Let νi, νj be two nodes. Let Pi,j denote the set of nodes
belonging to an elementary path in the CFG going from νi to νj . Intuitively
the path transformer from νi to νj is the function Fi,j : L �→ L, which, from
an abstract value X associated with νi, provides the abstract value Fi,j(X)
corresponding to the propagation of X along the elementary paths from νi to
νj . We have:

206 N. Halbwachs and J. Henry

Fi,j(X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⊥ if Pi,j = ∅
X if νi = νj
fj(Fi,k(X)) if νj is a statement node and (νk, νj) ∈ E⊔
(νk, νj) ∈ E
νk ∈ Pi,j

Fi,k(X) if νj is a junction node

Now, let us consider an SCC with only one widening node,
νi. νi is a junction node (from the way widening nodes
are selected). The abstract value at νi depends on those
at the preceding nodes in the SCC, and on abstract values
propagated from outside (start nodes and preceding SCCs),
which we note Y 0

i since it is the first value 	= ⊥ at node
νi during the increasing sequence. Let νj1 , . . . , νjm be the
source nodes of incoming back edges to νi.The semantic
equations considered during the descending sequence can
be subsumed as:

νi

Y 0
i

νj1 νjm

Zi = Y 0
i � Zj1 � . . . � Zjm , Zj� = Fi,j�(Zi), � = 1..m

At the end of the sequence, we have ZΔ
i # Y 0

i � ZΔ
j1 � . . . � ZΔ

jm (an equality if

ZΔ is a fixpoint).

Projection According to Improving Components. The idea is to select a set S of
nodes, such that the propagation of terms {ZΔ

j�
|νj� ∈ S} is likely to improve the

solution. More precisely, we define ZΔ ⇓ S by

(
ZΔ ⇓ S

)
k
=

{
ZΔ
k if νk ∈ S
⊥ otherwise

The choice of S should make F∇Δ(ZΔ ⇓ S) more precise or incomparable with
ZΔ, so that ZΔ � F∇Δ(ZΔ ⇓ S) is an improved result.

For instance, and following the intuition of §3.1, in
our example 1.b (Fig. 3), we should choose S = {ν6}
and restart increasing and decreasing sequences from
ZΔ ⇓ S, i.e., a vector U such that

Uk = (if k = 6 then ([0, 99], [0, 0])
else if k = 1 then � else ⊥)

With this choice, F∇Δ(U) is the best possible re-
sult (the least fixpoint of F), shown by the opposite
vector.

i j
ν3 [0,100]
ν7 [0,99] [0,100]
ν9 [0,99] [1,100]
ν11 [1,100] [100,100]
ν5 [100,100]

When the Decreasing Sequence Fails 207

The opposite figure shows the new sequences:
the classical solution ZΔ is projected on
U = ZΔ ⇓ S (generally not a pre-fixpoint),
from which a new increasing sequence (U�) and
a new decreasing sequence (V�) provide a new
limit V Δ. The improved solution is the greatest
lower bound ZΔ � V Δ.

Choice of Improving Components. A compo-
nent ZΔ

j�
is likely to improve the solution if it

is strictly smaller than ZΔ
i . It may happen for

two reasons:
– either some “initial states” in Y 0

i have been
left on the paths from νi to νj�; this case is
not interesting since Y 0

i clearly consists of
states which won’t be shown to be unreach-
able. They will belong to any solution.

�

(Z�)

Y ∇

⊥

new

lfp(F)

solution

ZΔ

U∇

(U�)

(Y�)

(V�)

V Δ

U = ZΔ ⇓ S

– or, during its propagation along these paths, ZΔ
i has been “truncated” by

some condition; this is the interesting case which can add some information.

As a consequence, νj� will be selected in S if

Y 0
i � ZΔ

j�
� ZΔ

i (Criterion 1)

Moreover, it is useless to propagate again Y 0
i , which already provided the existing

result ZΔ. So, νj� will be selected in S only if

ZΔ
j�
	� Y 0

i (Criterion 2)

Now, let’s consider our example 2.b. At convergence, no predecessor of the widen-
ing node satisfy our criteria. However, the widening node is preceded by a suc-
cession of two junction nodes, the first one being associated with an obviously
interesting invariant: n ∈ [0, 60]. A simple change in the CFG taking into ac-
count the associativity of junction, would bring this node in the predecessors of
the widening node. So, it can be useful to look for “improving nodes” further
upstream the widening node. We change our selection process as follows:

A node νj will be selected in S if

– it precedes a junction node (possibly νi) (C0)
– Y 0

i � Fj,i(Z
Δ
j) � ZΔ

i (C1)

– Fj,i(Z
Δ
j) 	� Y 0

i (C2)

The criterion (C0) above comes from the fact that, during the descending se-
quence, only junction nodes lose information. The other two criteria generalise
our preceding Criteria 1 and 2, by allowing the candidate node νj not to be an
immediate predecessor of νi. Note that, in our example 2.b, the selected node νj
is such that Fj,i = Id. However, our criteria allow also some statement nodes to
be on the path from νj to νi.

208 N. Halbwachs and J. Henry

3.4 General Case

The case of an SCC with several widening nodes is very similar. Only the defi-
nition of Pi,j needs to be modified: it denotes the set of nodes belonging to an
elementary path in the CFG going from i to j without going through a widening
node: only the extremities νi and/or νj can belong to W . Our criteria for select-
ing the improving nodes are essentially unchanged: a node νj will be selected in
S if

– it precedes a junction node (C0)
– there exists a widening node νi such that

• Y 0
i � Fj,i(Z

Δ
j) � ZΔ

i (C1)

• Fj,i(Z
Δ
j) 	� Y 0

i (C2)

and the definition of ZΔ ⇓ S is unchanged.

4 A More Illustrative Example

Our two running examples are properly analysed with the proposed method.
They would be also solved with a smart choice of “thresholds” [Hal93, BCC+03,
LCJG11] for limiting the widening during the increasing sequence. Let us con-
sider now another example to show that our method can discover constraints
that don’t appear as conditions in the program. The example is a rather ad-hoc
modification of Example 1.b by variable change.

i := 0;
while i < 4 do {
j := 0;
while j < 4 do { i := i + 1; j := j + 1;}
i := i− j + 1;

}

i := 0

i < 4? i ≥ 4?

j := 0

j ≥ 4? j < 4?

i := i− j + 1

j := j + 1

i := i+ 1

ν1

ν2

ν3

ν5ν4

ν6

ν7

ν8

ν10

ν9

ν11

j

i

Fig. 4. Example 3

When the Decreasing Sequence Fails 209

Fig. 4 shows the corresponding CFG together with the set of variable states
traversed by the execution at ν7. Fig. 5 shows the abstract values at widening
node ν7, during a polyhedra analysis:

– at the end of the classical increasing sequence, we get (0 ≤ j ≤ i);
– the decreasing sequence reaches a fixpoint ZΔ in one step, giving (0 ≤j≤ i,

j ≤ 4);
– at node ν6, we have ZΔ

6 = (0 ≤ i ≤ 3, j = 0), which satisfies all our criteria;
we start again from ZΔ ⇓ {ν6};

– after a new increasing sequence, we get (0 ≤ j ≤ i ≤ j + 3);
– the decreasing sequence converges in one step, giving the best possible poly-

hedral invariant (0 ≤ j ≤ i ≤ j + 3, j ≤ 4).

Notice that the constraint i ≤ j + 3 doesn’t appear in the program, so it could
not be chosen as a “threshold” for widening.

End of increasing sequence End of decreasing sequenceRestarting at
0 ≤ i ≤ 3, j = 0

End of increasing sequence End of decreasing sequence

0 ≤ j ≤ i ≤ j + 3 0 ≤ j ≤ i ≤ j + 3, j ≤ 4

0 ≤ j ≤ i 0 ≤ j ≤ i, j ≤ 4

j

i

j

i

j

i

j

i

j

i

Fig. 5. Analysis of Example 3

5 Some Improvements

Of course, our method involves the computation of new iteration sequences,
which may look expensive. We propose here two simple improvements to limit
the cost of this computation.

The first one is obvious: since the result, in general, is the greatest lower
bound of the classical solution ZΔ and the new limit V Δ, one can intersect with
ZΔ each term of the new increasing sequence. In our Example 3, this would
force the convergence of the new increasing sequence directly on the fixpoint
(0 ≤ j ≤ i ≤ j + 3, j ≤ 4), without need of a decreasing sequence.

The second improvement is a compromise: it saves computation, but may
lose precision (although we did not find any example where it happens). The
selected components {ZΔ

j | νj ∈ S} are intended to lead to improvements of

210 N. Halbwachs and J. Henry

other components, but in general, they are not supposed to be improved by the
new iteration. With this idea in mind, we can limit the computation of the new
iteration to the part of the CFG which doesn’t influence only the components in
S. More precisely, a component at node νk must be computed again only if there
is a path from νk to a widening node which doesn’t intersect S. In our Example
3, this would limit the new iteration to the subgraph {ν7, ν9, ν11}, since any path
from {ν8, ν10, ν3, ν4} to the widening node ν7 goes through the selected node ν6.

6 Experimental Results

Our technique has been implemented inside our prototype static analyser, called
Pagai, which computes numerical invariants in programs expressed in the LLVM
internal representation [LA04]. In this representation, a function is a graph of
basic blocks. The analyser takes as input such an LLVM file (that can be obtained
from a C, C++, Fortran program by llvm-gcc or clang), and outputs for each
basic block a numerical inductive invariant over the variables that are live at
the head of this block. We can choose among several abstract domains : convex
polyhedra, octagons, intervals, etc. through the Apron library [JM09]. Since
Pagai is an intra-procedural analyser, we can apply function inlining to obtain
more precise results. We can also apply some LLVM optimisation passes, such as
loop unrolling, or promoting memory variables to registers (mem2reg), in order
to increase precision.

In the current state of our implementation, we only choose as improving com-
ponents basic-blocks that are direct predecessors of a widening point, i.e., we
don’t apply our criteria C0 and C1 in their full generality. We apply only the
first improvement proposed in §5: during the new increasing sequence, we inter-
sect our new result with ZΔ at each step.

We compared our technique with the classical abstract interpretation with
standard widening/narrowing, on a variety of benchmarks.

The benchmark from the Mälardalen WCET research group1 contains inter-
esting programs such as sorts, matrix transformations, fft, etc. These programs
have been instrumented with a variable that counts the number of instructions
being executed. These 98 functions have been analysed, using the polyhedra ab-
stract domain. For 69 functions, the results of the new method are the same as
the classical one, with a negligible time overhead (1.008 factor). For the other 29
functions, the new methods gives better results at 35% of widening points, with
a 1.76 overhead factor. So, on this benchmark, not only the results are better
for a significant subset of functions, but the new method costs almost nothing
when it doesn’t improve the results.

However, these encouraging experimental conclusions should not be overesti-
mated: on a benchmark made of various highly used GNU functions (e.g., a2ps,
gawk, gnuchess, gnugo, grep, gzip, lapack, make, sed and tar), the results are
improved only at 4.14% of the widening points, with an overhead factor of 1.56
even on non improved functions.

1 www.mrtc.mdh.se/projects/wcet/benchmarks.html

When the Decreasing Sequence Fails 211

7 Conclusion

A claim of the present paper is that the information about the end of executions
can be as rich, complex and useful than the one derived from their beginning. To
permit a better gathering of this information, we presented a method to improve
the solution obtained by classical analysis: this solution is projected on some of
its components, and the result of the projection is used to start a new pair of
increasing and decreasing sequences.

The method is independent of the abstract lattice, it is compatible with any
smart widening operator and any iteration strategy.

Acknowledgement. We are indebted to Laure Gonnord and David Monniaux
for having put our attention on the problem — and specially on Examples 1 and
2 — and for helpful discussions.

References

[BCC+03] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Monniaux, D., Rival, X.: A static analyzer for large safety-critical
software. In: ACM SIGPLAN SIGSOFT Conference on Programming
Language Design and Implementation, PLDI 2003, San Diego (Ca.), pp.
196–207 (June 2003)

[BFLP03] Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Fast Acceleration
of Symbolic Transition Systems. In: Hunt Jr., W.A., Somenzi, F. (eds.)
CAV 2003. LNCS, vol. 2725, pp. 118–121. Springer, Heidelberg (2003)

[BGP97] Bultan, T., Gerber, R., Pugh, W.: Symbolic Model Checking of Infinite
State Systems using Presburger Arithmetic. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 400–411. Springer, Heidelberg (1997)

[BHRZ03] Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise Widening Op-
erators for Convex Polyhedra. In: Cousot, R. (ed.) SAS 2003. LNCS,
vol. 2694, pp. 337–354. Springer, Heidelberg (2003)

[Bou93] Bourdoncle, F.: Efficient Chaotic Iterations Strategies with Widening.
In: Pottosin, I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS,
vol. 735, pp. 128–141. Springer, Heidelberg (1993)

[CC76] Cousot, P., Cousot, R.: Static determination of dynamic properties of
programs. In: 2nd Int. Symp. on Programming. Dunod, Paris (1976)

[CC77] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In: 4th ACM Symposium on Principles of Programming Lan-
guages, POPL 1977, Los Angeles (January 1977)

[CGG+05] Costan, A., Gaubert, S., Goubault, É., Martel, M., Putot, S.: A Policy
Iteration Algorithm for Computing Fixed Points in Static Analysis of
Programs. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 462–475. Springer, Heidelberg (2005)

[CH78] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among
variables of a program. In: 5th ACM Symposium on Principles of Pro-
gramming Languages, POPL 1978, Tucson, Arizona (January 1978)

212 N. Halbwachs and J. Henry

[CJ98] Comon, H., Jurski, Y.: Multiple Counters Automata, Safety Analysis and
Presburger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427,
pp. 268–279. Springer, Heidelberg (1998)

[CZ11] Cortesi, A., Zanioli, M.: Widening and narrowing operators for abstract
interpretation. Computer Languages, Systems & Structures 37(1), 24–42
(2011)

[GH06] Gonnord, L., Halbwachs, N.: Combining Widening and Acceleration in
Linear Relation Analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 144–160. Springer, Heidelberg (2006)

[Gou01] Goubault, É.: Static Analyses of the Precision of Floating-Point Oper-
ations. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 234–259.
Springer, Heidelberg (2001)

[GR06] Gopan, D., Reps, T.: Lookahead Widening. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)

[GR07] Gopan, D., Reps, T.: Guided Static Analysis. In: Riis Nielson, H., Filé,
G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg
(2007)

[GS07] Gawlitza, T., Seidl, H.: Precise Fixpoint Computation Through Strategy
Iteration. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–
315. Springer, Heidelberg (2007)

[Hal93] Halbwachs, N.: Delay Analysis in Synchronous Programs. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 333–346. Springer, Heidel-
berg (1993)

[HPR97] Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time sys-
tems using linear relation analysis. Formal Methods in System De-
sign 11(2), 157–185 (1997)

[JM09] Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains
for Static Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 661–667. Springer, Heidelberg (2009)

[LA04] Lattner, C., Adve, V.: LLVM: a compilation framework fopr lifelong pro-
gram analysis & transformation. In: CGO 2004, pp. 75–86. IEEE Com-
puter Society, Washington, DC (2004)

[LCJG11] Lakhdar-Chaouch, L., Jeannet, B., Girault, A.: Widening with Thresh-
olds for Programs with Complex Control Graphs. In: Bultan, T., Hsiung,
P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 492–502. Springer, Heidel-
berg (2011)

[Min04] Miné, A.: Weakly relational numerical abstract domains. PhD thesis,
Ecole Polytechnique (2004)

[ML11] Monniaux, D., Le Guen, J.: Stratified static analysis based on variable
dependencies. In: Third International Workshop on Numerical and Sym-
bolic Abstract Domains, Venice (September 2011)

[PGM03] Putot, S., Goubault, É., Martel, M.: Static Analysis-Based Validation of
Floating-Point Computations. In: Alt, R., Frommer, A., Kearfott, R.B.,
Luther, W. (eds.) Numerical Software with Result Verification. LNCS,
vol. 2991, pp. 306–313. Springer, Heidelberg (2004)

[SSM04] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-Based Linear-
Relations Analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148,
pp. 53–68. Springer, Heidelberg (2004)

[SSM05] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable Analysis of Lin-
ear Systems Using Mathematical Programming. In: Cousot, R. (ed.) VM-
CAI 2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

When the Decreasing Sequence Fails 213

[SW04] Su, Z., Wagner, D.: A Class of Polynomially Solvable Range Constraints
for Interval Analysis without Widenings and Narrowings. In: Jensen, K.,
Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 280–295. Springer,
Heidelberg (2004)

[Tar72] Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Jour-
nal on Computing 1, 146–160 (1972)

[WB98] Wolper, P., Boigelot, B.: Verifying Systems with Infinite but Regular
State Spaces. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–
97. Springer, Heidelberg (1998)

[WYGI07] Wang, C., Yang, Z., Gupta, A., Ivančić, F.: Using Counterexamples for
Improving the Precision of Reachability Computation with Polyhedra.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
352–365. Springer, Heidelberg (2007)

Loop Leaping with Closures

Sebastian Biallas1, Jörg Brauer1,2, Andy King3,4, and Stefan Kowalewski1

1 Embedded Software Laboratory, RWTH Aachen University, Germany
2 Verified Systems International GmbH, Bremen, Germany

3 Portcullis Computer Security, Pinner, UK
4 School of Computing, University of Kent, UK

Abstract. Loop leaping is the colloquial name given to a form of pro-
gram analysis in which summaries are derived for nested loops starting
from the innermost loop and proceeding in a bottom-up fashion con-
sidering one more loop at a time. Loop leaping contrasts with classical
approaches to finding loop invariants that are iterative; loop leaping is
compositional requiring each stratum in the nest of loops to be considered
exactly once. The approach is attractive in predicate abstraction where
disjunctive domains are increasingly used that present long ascending
chains. This paper proposes a simple and an efficient approach for loop
leaping for these domains based on viewing loops as closure operators.

1 Introduction

Abstract interpretation [9] provides a compelling theory for modelling a program
with descriptions of concrete data values. Not only does it show how domains
can be defined, refined and related to their concrete counterparts, but it provides
a methodology for constructing transformers that simulate the behaviour of the
primitive operations that arise in a program. Best transformers can, at least in
principle, always be automatically constructed for domains of finite height [30]
which, notably, includes the abstract domain of conjunctions of predicates [4]
that has proved so popular in verification [14]. Techniques for deriving trans-
formers for whole blocks of code have recently emerged due, in part, to the
development of robust decision procedures [6,21,25] and efficient quantifier elim-
ination techniques [7,24,27]. The step beyond blocks is the automatic synthesis
of transformers for loops.

Calculational techniques for deriving transformers for loops are colloquially
referred to loop leaping [2] or loop frogging [22,23]. These evocative terms cap-
ture the central idea of jumping over the computational obstacle presented by
repeatedly reaching, iterating and stabilising on each loop in a nest of loops. In-
stead, the whole loop nest is summarised in a straight-line block, ideally with the
summary computed in a compositional fashion, starting with the innermost and
ending with the outermost loop. The case for loop summarisation becomes more
convincing for domains with long chains such as those admitted by Boolean for-
mulae over large numbers of predicates [28]. Boolean formulae can be widened,
even in ways that are sensitive to the underlying Boolean function rather than

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 214–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Loop Leaping with Closures 215

merely its representation [20], yet it is our contention that the rich structure of
formulae aids rather than impedes loop analysis when loop leaping is applied.

Ideally one would derive a best transformer that summarises the execution of
a loop, or loop nest, to the limits of what is expressible in the abstract domain.
A best transformer is exactly that: a mapping from the set of input descrip-
tions to the set of output descriptions where the output description given by
the transformer is the most precise characterisation of the set of all the output
states that are reachable from all the input states described by the input descrip-
tion. This immediately presents a problem for Boolean formulae: the number of
input descriptions. Even for the sub-class of monotonic Boolean formulae, the
simplest domain that can express both conjunctive and disjunctive properties,
the number of formulae grows rapidly with the number of predicates: 2, 3, 6, 20,
168, 7581, 7828354, 2414682040998, 56130437228687557907788 [37]. It is there-
fore not surprising that previous work has sought to curtail the representation,
for instance, by bounding the number of disjuncts [28]. Without exploiting com-
mon structure in and between the input and output formulae, the only realistic
prospective is to design a transformer whose representation is suitably compact
and whose summary is sufficiently precise: the former can be ensured through
design but the latter can only be tested empirically.

The contribution of this paper is simple. It is to show how loop transform-
ers can be computed from maps of the form ↑f : Σ → ℘(℘(Σ)) where Σ =
{σ1, . . . , σn} is the finite set of predicates under consideration. If σi ∈ Σ then
Δi = ↑f(σi) is interpreted as a monotonic formula in DNF. For example
{{σ1, σ2}, {σ1, σ3}} represents the formula θ = (σ1∧σ2)∨(σ1∧σ3) = σ1∧(σ2∨σ3).
Crucially the map ↑f is defined by just n formulaeΔ1 = ↑f(σ1), . . . ,Δn = ↑f(σn).
The map ↑f does not constitute a loop transformer itself since it only specifies
how to map an input formula, which is one of the predicates, to an output for-
mula. Yet ↑f is designed so that logical combinators can be applied toΔ1, . . . , Δn

to compute an output formula for an arbitrary input formula. To illustrate, if
the input formula is θ then the output formula is Δ1 ∧ (Δ2 ∨Δ3), where here
the distinction between a monotonic Boolean function and its representation is
blurred. The construction rests on ↑f : Σ → ℘(℘(Σ)), or rather its extension
↑f : ℘(℘(Σ))→ ℘(℘(Σ)), being a closure operator, that is, a map which is mono-
tonic, idempotent and extensive (extensivity means that the operator relaxes a
formula whenever it is applied). The centrality of these three concepts explains
the title of the paper and the (mysterious) ↑symbol that indicates closure. These
three properties square with the way a loop transformer maps an input formula
to an output formula which describes the final state of a loop. This fit leads to
a loop summarisation method that is both simple and effective.

Expositionally this paper is laid out as follows: First, Sect. 2 explains the
key ingredients of our method for both, unnested and nested loops, by means
of an example, followed by a formalisation and correctness arguments in Sect. 3.
Then, Sect. 4 presents experimental evidence which compares the precision of
our techniques to related ones based on predicate abstraction. Finally the paper
concludes with a survey of related work in Sect. 5 and a discussion in Sect. 6.

216 S. Biallas et al.

(1) assume i = 0;
(2) assume n > 0;
(3) while i < n do
(4) b := nondet();
(5) if b
= 0 then
(6) i := i+ 1;
(7) else
(8) skip;
(9) endif
(10) endwhile

if i < n then
b := nondet();
if b
= 0 then

i := i+ 1;
else

skip;
endif

else
skip

endif

(1) if i < n then
(2) b′ := nondet();
(3) if b′
= 0 then
(4) i′ := i+ 1;
(5) else
(6) i′ := i;
(7) endif
(8) else
(9) i′ := i;
(10) endif
(11) n′ := n

Fig. 1. Single loop example: (a) code; (b) loop block; (c) loop block in a SSA-form

2 Worked Examples

The ethos of our method is to summarise a loop with a closure operator on the
domain of monotonic Boolean formulae, D, where the predicates are drawn from
a given finite set of predicates, Σ, that is defined up-front. Monotonic Boolean
formulae are a class of propositional functions which take the following syntactic
form: if σ ∈ Σ then σ ∈ D and if f1, f2 ∈ D then it follows f1 ∧ f2 ∈ D
and f1 ∨ f2 ∈ D [31]. The domain D is ordered by entailment |= and with
appropriate factoring (the details of which are postponed to the sequel) a finite
lattice 〈D, |=,∨,∧〉 can be obtained.

To illustrate how a loop can be summarised using closures over D consider the
program that is listed to the leftmost column of Figure 1. Observe that the loop
transforms the state that the program has when the loop is first encountered
into the state that is obtained by repeated applications of the loop body. A
loop summary expresses this transformation. Since state is described in terms
of monotonic formulae, the summary is itself a mapping from an input formula
to an output formula. The input formula describes the initial state at the head
of the loop: the state of the program when the loop is first encountered. The
output formula describes all the states that are reachable at the head of the
loop, by repeatedly applying the loop body, from any of the initial states. Since
the number of monotonic formulae grows rapidly with |Σ| [37], the challenge
is to find a way to summarise a loop that is both descriptive and yet can be
represented compactly and derived straightforwardly.

Observe that the while loop is equivalent to repeated applications of the block
of statements in the middle column that will collectively be referred to as S.
Suppose too that the set of predicates is defined as Σ = Σ0 ∪Σ1 ∪Σ2 where:

Σ0 = { (n < 0) , (n = 0) , (n > 0)}
Σ1 = { (i < 0) , (i = 0) , (i > 0)}
Σ2 = { (i < n), (i = n), (i > n)}

Loop Leaping with Closures 217

Although Σ is entirely natural given the predicates in the program, observe
that S does not mutate n, hence S does not alter the truth or falsity of the
predicates of Σ0. We shall thus restrict our attention to summaries over the
predicates Σ1∪Σ2; extending the summaries to Σ increases the number of cases
that need to be considered without offering the reader fresh insight.

2.1 Closing the Loop over Σ

Using SMT-based reachability analysis [8,14], a function f is computed which
maps input formulae, which coincide with each of the predicates σ ∈ Σ1 ∪ Σ2,
to their corresponding output formulae. To derive the output formulae, S is put
into a form of single static assignment [10], which gives the block listed in the
rightmost column, denoted S′. The three paths through S′ correspond to three
systems of constraints that are:

c1 = (i < n) ∧ (b′ 	= 0) ∧ (i′ = i+ 1) ∧ (n′ = n)
c2 = (i < n) ∧ ¬(b′ 	= 0) ∧ (i′ = i) ∧ (n′ = n)
c3 = ¬(i < n) ∧ (i′ = i) ∧ (n′ = n)

To illustrate, consider computing the abstract transformer αΣ′
1∪Σ′

2
((i = 0) ∧ c1)

of (i = 0) ∈ Σ1 subject to path c1, where the abstraction map α is outlined below
and Σ′1 and Σ′2 denote sets of predicates, analogous to Σ1 and Σ2 respectively,
but defined over primed output variables. Passing (i = 0)∧ c1 to an SMT solver
gives a model m1, e.g.:

m1 =
{
(i = 0) ∧ (n = 2) ∧ (i′ = 1) ∧ (n′ = 2)

}
Since we can check that a concrete model m satisfies a given predicate σ ∈ Σ,
that is, m ∈ γΣ(σ), then αΣ(m) can be computed thus:

αΣ(m) =
∧
{σ ∈ Σ |m ∈ γΣ(σ)}

Note that α is parametric in the set Σ. By abstractingm1, we obtain αΣ′(m1) =
(i′ > 0)∧ (i′ < n′). In a second iteration, we add ¬αΣ′(m1) to the SMT instance
as a blocking clause. Then, passing (i = 0) ∧ c1 ∧ ¬αΣ′(m1) to a solver yields
a different model m2, in which all concrete values described by αΣ′(m1) are
blocked. Suppose m2 is defined as:

m2 =
{
(i = 0) ∧ (n = 1) ∧ (i′ = 1) ∧ (n′ = 1)

}
This model induces an output αΣ′(m2) = (i′ > 0)∧ (i′ = n′). Then, the formula
(i = 0)∧c1∧¬αΣ′(m1)∧¬αΣ′(m2) becomes unsatisfiable, and thus (i = 0)∧c1 |=
αΣ′(m1)∨αΣ′(m2), which entails f(i = 0∧ c1) = (i′ > 0)∧ ((i < n′)∨ (i′ = n′)).
Applying this strategy to (i = 0) ∧ c2 and (i = 0) ∧ c3 gives:

f((i = 0) ∧ c1) = (i′ > 0) ∧ ((i′ = n′) ∨ (i′ < n′))
f((i = 0) ∧ c2) = (i′ = 0) ∧ (i′ < n′)
f((i = 0) ∧ c3) = (i′ = 0) ∧ ((i′ = n′) ∨ (i′ > n′))

218 S. Biallas et al.

Combining these three results we derive a formula which describes the effect of
executing S under input that satisfies the predicate σ = (i = 0). In what follows
simplifications have been applied to make the presentation more accessible:

f(i = 0) =
∨3

j=1 f((i = 0) ∧ cj)

= f((i = 0) ∧ c1) ∨ f((i = 0) ∧ c2) ∨ f((i = 0) ∧ c3)
= (i′ = 0) ∨ ((i′ > 0) ∧ ((i′ < n′) ∨ (i′ = n′)))

Likewise, for the remaining predicates in Σ, we compute:

f(i < 0) = (i′ < 0) ∨ ((i′ = 0) ∧ ((i′ < n′) ∨ (i′ = n′)))
f(i > 0) = (i′ > 0)
f(i < n) = (i′ < n′) ∨ (i′ = n′)
f(i = n) = (i′ = n′)
f(i > n) = (i′ > n′)

The map f characterises one iteration of the block S. To describe many itera-
tions, f is relaxed to a closure, that is, an operator over D which is idempotent,
monotonic and extensive. Idempotent so as to capture the effect to repeatedly
applying S until the output formula does not change; monotonic since if the
input formula is relaxed then so is the output formula; and extensive so as to
express that the output formula is weaker than in the input formula. The last
point deserves amplification: the input formula characterises the state that holds
when the loop is first encountered whereas the output summarises that states
that hold when the loop head is first and then subsequently encountered, hence
the former entails the latter.

With renaming applied to eliminate the auxiliary predicates of Σ′1 ∪ Σ′2, the
closure of f(i = 0), denoted ↑f(i = 0), is computed so as to satisfy:

↑f(i = 0) = ↑f(i = 0) ∨ (↑f(i > 0) ∧ ↑f(i < n)) ∨ (↑f(i > 0) ∧ ↑f(i = n))

Likewise, the closures for all predicates in Σ are required such that:

↑f(i < 0) = ↑f(i < 0) ∨ (↑f(i = 0) ∧ ↑f(i < n)) ∨ (↑f(i = 0) ∧ ↑f(i = n))
↑f(i > 0) = ↑f(i > 0)
↑f(i < n) = ↑f(i < n) ∨ ↑f(i = n)
↑f(i = n) = ↑f(i = n)
↑f(i > n) = ↑f(i > n)

This recursive equation system can be solved iteratively until it stabilises, a
property that is guaranteed due to monotonicity and finiteness of the domain.
In fact it is straightforward to see that ↑f(i > 0) = (i > 0), ↑f(i = n) = (i = n),
and ↑f(i > n) = (i > n). Using substitution, we then obtain ↑f(i < n) =
(i < n) ∨ (i = n). Likewise, for (i = 0), we compute:

↑f(i = 0) = (i = 0) ∨ ((i > 0) ∧ (i < n)) ∨ ((i > 0) ∧ (i = n))

Also by simplification we obtain:

↑f(i < 0) = (i < 0) ∨ ((i > 0) ∧ ((i < n) ∨ (i = n))) ∨ (↑f(i = 0) ∧ (i = n))
= (i < 0) ∨ (i < n) ∨ (i = n)

which completes the derivation of the closure.

Loop Leaping with Closures 219

2.2 Applying Closures

Thus far, we have computed a function ↑f that maps each predicate σ ∈ Σ to
a formula that represents the states reachable at the head of the loop from σ.
Yet ↑f can be interpreted as more than a loop transformer over just Σ since if
σ1, σ2 ∈ Σ it follows that:

↑f(σ1 ∧ σ2) |= ↑f(σ1) ∧ ↑f(σ2)

This holds because the closure operator is monotonic. Moreover, due to the rich
structure of our domain, we also have:

↑f(σ1 ∨ σ2) = ↑f(σ1) ∨ ↑f(σ2)

This follows from the way σ1 ∨ σ2 is formally interpreted as set union and the
operator ↑f is defined so as to distribute over union. The force of this is that
↑f can be lifted to an arbitrary formula over Σ, thereby prescribing a loop
transformer that is sufficiently general to handle any conceivable input formula.
As an example, suppose that the loop is first reached with state described by
the input formula (i = 0) ∧ (i < n). Then

↑f((i = 0) ∧ (i < n))
� ↑f(i = 0) ∧ ↑f(i < n)
= ((i = 0) ∨ ((i > 0) ∧ (i < n)) ∨ ((i > 0) ∧ (i = n))) ∧ ((i < n) ∨ (i = n))
= ((i = 0) ∨ (i > 0)) ∧ ((i < n) ∨ (i = n))

which, with some simplifications applied, describes all the states that are reach-
able at the head of the loop. The complete loop transformer then amounts
to intersecting this formula with the negation of the loop-condition, that is,
(i = n)∨ (i > n), which gives the formula ((i = 0)∨ (i > 0))∧ (i = n) which char-
acterises the states that hold on exit from the loop as desired. The importance
of this final step cannot be overlooked.

2.3 Leaping Nested Loops

The strength of the construction is that it can be used to compositionally sum-
marise nested loops. Given an inner loop SI , we first compute a loop transformer
↑fI , which is then incorporated into the body of the outer loop SO. Our analysis
thus computes loop transformers bottom-up, which is both attractive for con-
ceptual as well computational reasons. As an example, consider the program in
Fig. 2 (nested.c from [15]) with the sets of predicates defined as:

Σ1 = {(y < 0), (y = 0), (y > 0)} Σ4 = {(t < m), (t = m), (t > m)}
Σ2 = {(t < 0), (t = 0), (t > 0)} Σ5 = {(y < m), (y = m), (y > m)}
Σ3 = {(t < y), (t = y), (t > y)}

220 S. Biallas et al.

(1) assume y = 0;
(2) assume m ≥ 0;
(3) assume t = 0;
(4) while y < m do
(5) y := y + 1;
(6) t := 0;
(7) while t < y do
(8) t := t+ 1;
(9) endwhile
(10) endwhile
(11) assert y = m

(1) assume y = 0;
(2) assume m ≥ 0;
(3) assume t = 0;
(4) while y < m do
(5) y′ := y + 1;
(6) t′ := 0;
(7) if y′ < 0 then assume y′′ < 0 endif
(8) if y′ = 0 then assume y′′ = 0 endif
(9) if y′ > 0 then assume y′′ > 0 endif
(10) if t′ = 0 then assume t′′ ≥ 0 endif
(11) if t′ > 0 then assume t′′ > 0 endif
(12) if t′ < y′ then assume t′′ ≤ y′′ endif
(13) if t′ = y′ then assume t′′ = y′′ endif
(14) if t′ > y′ then assume t′′ > y′′ endif
(15) assume t′′ ≥ y′′

(16) endwhile
(17) assert y = m

Fig. 2. Bottom-up derivation of transformer for a nested loop from [15]

Applying our technique to the inner loop on predicates Σ1∪Σ2∪Σ3, we compute
the map fI as follows:

fI(y < 0) = (y < 0)
fI(y = 0) = (y = 0)
fI(y > 0) = (y > 0)

fI(t < 0) = (t < 0) ∨ (t = 0)
fI(t = 0) = (t = 0) ∨ (t > 0)
fI(t > 0) = (t > 0)

fI(t < y) = (t < y) ∨ (t = y)
fI(t = y) = (t = y)
fI(t > y) = (t > y)

Then, as before, we compute the closure of fI to give:

↑fI(y < 0) = (y < 0)
↑fI(y = 0) = (y = 0)
↑fI(y > 0) = (y > 0)
↑fI(t < 0) = ↑fI(t < 0) ∨ ↑fI(t = 0) = (t < 0) ∨ (t = 0) ∨ (t > 0) = true
↑fI(t = 0) = (t = 0) ∨ (t > 0)
↑fI(t > 0) = (t > 0)
↑fI(t < y) = ↑fI(t < y) ∨ ↑fI(t = y) = (t < y) ∨ (t = y)
↑fI(t = y) = (t = y)
↑fI(t > y) = (t > y)

To abstract the outer loop in Fig. 2, we replace the inner loop, defined at lines
(7)–(9) on the left, by its summary. This gives the program on the right. Here,
lines (7)–(14) encode an application of the closure, whereas line (15) models the
loop exit condition of SI . Note that lines 10 and 12 relax strict inequalities to non-
strict inequalities to simultaneously express two predicates (which is merely for

Loop Leaping with Closures 221

presentational purposes). Even though the transformed program appears to have
multiple paths, it is not treated as such: lines (7)–(14) rather model auxiliary
constraints imposed by the closure on a single path.

Next a predicate transformer fO for the outer loop SO is computed which
amounts, like before, to reachability analysis over the predicates

⋃5
i=1 Σi. We

obtain a map fO : Σ → ℘(℘(Σ)) defined as:

fO(y < 0) = ((y < 0) ∨ (y = 0)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(y = 0) = (y > 0) ∧ (t > 0) ∧ (t = y)
fO(y > 0) = (y > 0) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t < 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t = 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t > 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(t < y) = (t = y)
fO(t = y) = (t = y)
fO(t > y) = (t > y)
fO(t < m) = (t = y) ∨ (t > y)
fO(t = m) = (t = y) ∨ (t > y)
fO(t > m) = (t = y) ∨ (t > y)
fO(y < m) = ((y < m) ∨ (y = m)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
fO(y = m) = (y = m)
fO(y > m) = (y > m)

Analogous to before, closure computation amounts to substituting the predicates
in the image of fO. In case of the predicate (y = 0) ∈ Σ1, for example, computing
the closure of fO(y = 0) = (y > 0) ∧ (t > 0) ∧ (t = y) amounts to substituting
(y > 0), (t > 0) and (t = y) by ↑fO(y > 0), ↑f(t > 0) and ↑f(t = y), respectively.
By repeated substitution (with entailment checking), we obtain the following
closures for (y = 0) ∈ Σ1, (t = 0) ∈ Σ3 and (y < m) ∈ Σ5:

↑fO(y = 0) = (y > 0) ∧ (t > 0) ∧ (t = y)
↑fO(t = 0) = ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))
↑fO(y < m) = ((y < m) ∨ (y = m)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))

Likewise, we close f for the remaining predicates.
To illustrate the precision of this type of transformer for nested loops, suppose

(y = 0) ∧ (y < m) ∧ (t = 0) holds on enter into the outer loop. The loop
transformer for (y = 0)∧ (y < m)∧ (t = 0) is computed as ↑fO(y = 0)∧↑fO(y <
m) ∧ ↑fO(t = 0), which simplifies to give:

↑fO(y = 0) ∧ ↑fO(y < m) ∧ ↑fO(t = 0)

=

⎧⎨⎩ (y > 0) ∧ (t > 0) ∧ (t = y) ∧
((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y)) ∧
((y < m) ∨ (y = m)) ∧ ((t = 0) ∨ (t > 0)) ∧ ((t = y) ∨ (t > y))

= (y > 0) ∧ (t > 0) ∧ (t = y) ∧ ((y < m) ∨ (y = m))

By conjoining this output of the outer loop with the exit-condition (y ≥ m), we
obtain the post-state of the program after the loop:

222 S. Biallas et al.

↑fO((y = 0) ∧ (y < m) ∧ (t = 0))) ∧ (y ≥ m)
= (y > 0) ∧ (t > 0) ∧ (t = y) ∧ ((y < m) ∨ (y = m)) ∧ (y ≥ m)
= (y > 0) ∧ (t > 0) ∧ (t = y) ∧ (y = m)

Clearly, the assertion in line (11) of Fig. 2 follows, as is required.

3 Semantics

In this section we formalise our approach to predicate abstraction and demon-
strate its correctness. The starting is a (countable) finite concrete domain B
that is interpreted as the set of possible program states, for instance, B =
[−231, 231 − 1]2 for a program with just two 32-bit signed integer variables. For
generality the definition of B is left open. To illustrate the compositional na-
ture of our analysis, the formal study focuses on a language L of structured
statements S defined by

S ::= skip | assume(ρ) | transform(τ) | S;S | if ρ then S else S | while ρ do S

where τ ⊆ B × B is a relation between assignments and ρ ⊆ B is a predicate.
Since τ is a binary relation, rather than a function, the statement transform(τ)
can express non-determinism. If τ = {〈x, y〉 × 〈x′, y′〉 ∈ ([−231, 231 − 1]2)2 | x′ =
x}, for instance, then the statement transform(τ) preserves the value of x but
assigns y to an arbitrary 32-bit value. For brevity of presentation, we define the
composition of a unary relation ρ ⊆ B with a binary relation τ ⊆ B × B which
is defined thus ρ ◦ τ = {b′ ∈ B | b ∈ ρ ∧ 〈b, b′〉 ∈ τ} (and should not be confused
with function composition whose operands are sometimes written in the reverse
order). We also define ¬ρ = B \ ρ for ρ ⊆ B.

3.1 Concrete Semantics

Because of the non-deterministic nature of transform(τ) the semantics that is
used as the basis for abstraction operates on sets of values drawn from B. The
semantics is denotational in nature, associating with each statement in a program
with a mapping ℘(B)→ ℘(B) that expresses its behaviour. The function space
℘(B) → ℘(B) is ordered pointwise by f1 � f2 iff f1(ρ) ⊆ f2(ρ) for all ρ ⊆ B.
In fact 〈℘(B) → ℘(B),�,�, λρ.∅, λρ.B〉 is a complete lattice where f1 � f2 =
λρ.f1(ρ)∩f2(ρ) and likewise f1�f2 = λρ.f1(ρ)∪f2(ρ). The complete lattice L →
℘(B) → ℘(B) is defined analogously. With this structure in place a semantics
for statements can be defined:

Definition 1. The mapping [[·]]C : L → ℘(B)→ ℘(B) is the least solution to:

[[skip]]C = λσ.σ
[[assume(ρ)]]C = λσ.σ ∩ ρ

[[transform(τ)]]C = λσ.σ ◦ τ
[[S1;S2]]C = λσ.[[S2]]C([[S1]]C(σ))

[[if ρ then S1 else S2]]C = λσ.([[S1]]C(σ ∩ ρ)) ∪ ([[S2]]C(σ ∩ ¬ρ))
[[while ρ do S]]C = λσ.([[while ρ do S]]C([[S]]C(σ ∩ ρ))) ∪ (σ ∩ ¬ρ)

Loop Leaping with Closures 223

3.2 Abstract Semantics

The correctness of the bottom-up analysis, the so-called closure semantics, is ar-
gued relative a top-down analysis, the abstract semantics, which, in turn, is
proved correct relative to the concrete semantics. The abstract semantics is
parametric in terms of a finite set of predicates Σ = {σ1, . . . , σn} where σ1,
. . . , σn ⊆ B with σi 	= σj if i 	= j are distinct predicates. A set of predicates
δ ∈ Δ ⊆ ℘(Σ) is interpreted by the following:

Definition 2. The concretisation map γ : ℘(℘(Σ))→ ℘(B) is defined:

γ(Δ) =
⋃
δ∈Δ

γ(δ) where γ(δ) =
⋂
σ∈δ

σ

Example 1. Suppose δ0 = ∅, δ1 = {σ1} and δ2 = {σ1, σ2}. Then γ(δ0) = B,
γ(δ1) = σ1 and γ(δ2) = σ1 ∩ σ2.

The concretisation map γ induces an quasi-ordering on ℘(℘(Σ)) by Δ1 � Δ2

iff γ(Δ1) ⊆ γ(Δ2). To obtain a poset an operator ↓ is introduced to derive a
canonical representation for an arbitrary Δ ⊆ ℘(Σ) by forming its down-set.
The down-set is defined ↓Δ = {δ′ ⊆ Σ | ∃δ ∈ Δ.γ(δ′) ⊆ γ(δ)} from which we
construct D = {↓Δ | Δ ⊆ ℘(Σ)}. Observe that if Δ1, Δ2 ∈ D then Δ1∩Δ2 ∈ D.
To see that Δ1∪Δ2 ∈ D let δ ∈ Δ1∪Δ2 and suppose δ ∈ Δi. Then if γ(δ′) ⊆ γ(δ)
it follows that δ′ ∈ Δi ⊆ Δ1 ∪Δ2. Moreover 〈D,⊆,∪,∩, ∅, ℘(Σ)〉 is a complete
lattice where ∩ is meet and ∪ is join.

Proposition 1. The maps α : ℘(B) → D and γ : D → ℘(B) form a Galois
connection between 〈℘(B),⊆〉 and 〈D,⊆〉 where α(σ) = ∩{Δ ∈ D | σ ⊆ γ(Δ)}

Example 2. Suppose Σ = {σ1, σ2} where σ1 = (0 ≤ i ≤ 1) and σ2 = (1 ≤ i ≤ 2).
Let Δ1 = {{σ1} , {σ1, σ2}} and Δ2 = {{σ2} , {σ1, σ2}}. Note that ↓Δ1 = Δ1 and
↓Δ2 = Δ2 thus Δ1, Δ2 ∈ D. However {{σ1}} 	∈ D and {{σ2}} 	∈ D. Observe
γ(Δ1) = σ1 and γ(Δ2) = σ2. Moreover Δ1 ∩ Δ2 ∈ D and Δ1 ∪ Δ2 ∈ D with
γ(Δ1 ∩ Δ2) = σ1 ∩ σ2 = (i = 1) and γ(Δ1 ∪ Δ2) = σ1 ∪ σ2 = (0 ≤ i ≤ 2).
Furthermore α(i = 1) = {{σ1, σ2}} and α(0 ≤ i ≤ 2) = {{σ1}, {σ2}, {σ1, σ2}}.

Example 3. Observe that if Δ = ∅ then Δ ∈ D and γ(Δ) = ∅. But if δ = ∅,
δ ∈ Δ and Δ ∈ D then Δ = ℘(Σ) since γ(δ′) ⊆ B = γ(δ) for all δ′ ⊆ Σ.

Proposition 2. If σ ∈ Σ then α(σ) = ↓{{σ}}.

Both for brevity and for continuity of the exposition, the proofs are relegated to
a technical report [5].

As before, the abstract semantics is denotational associating each statement
with a mappingD → D. The function spaceD → D is ordered point-wise by f1 �
f2 iff f1(Δ) ⊆ f2(Δ) for allΔ ∈ D. Also like before 〈D → D,�,�, λΔ.∅, λΔ.℘(Σ)〉
is a complete lattice where f1 � f2 = λΔ.f1(Δ) � f2(Δ) and likewise f1 � f2 =
λΔ.f1(Δ) � f2(Δ). Moreover, the point-wise ordering on D → D lifts to define a
point-wise ordering on L → D → D in an analogous manner. Since L → D → D
is a complete lattice the following is well-defined:

224 S. Biallas et al.

Definition 3. The mapping [[·]]A : L → D → D is the least solution to:

[[skip]]A = λΔ.Δ
[[assume(ρ)]]A = λΔ.Δ ∩ α(ρ)

[[transform(τ)]]A = λΔ.α(γ(Δ) ◦ τ)
[[S1;S2]]A = λΔ.[[S2]]A([[S1]]A(Δ))

[[if ρ then S1 else S2]]A = λΔ.([[S1]]A(Δ ∩ α(ρ))) ∪ ([[S2]]A(Δ ∩ α(¬ρ)))
[[while ρ do S]]A = λΔ.([[while ρ do S]]A([[S]]A(Δ ∩ α(ρ))) ∪ (Δ ∩ α(¬ρ))

Proposition 3. Let S ∈ L. If ρ ∈ γ(Δ) then [[S]]C(ρ) ⊆ γ([[S]]A(Δ)).

3.3 Closure Semantics

At the heart of the closure semantics are functions with signature Σ → D. Join
and meet lift point-wise to the function space Σ → D since if f1 : Σ → D and
f2 : Σ → D then f1 � f2 = λσ.f1(σ)∪ f2(σ) and f1 � f2 = λσ.f1(σ)∩ f2(σ). The
key idea is to construct a mapping f : Σ → D whose extension to f : D → D is
a closure, that is, an operation which is monotonic, extensive and idempotent. A
map f : Σ → D lifts to f : ℘(Σ)→ D and then further lifts to f : ℘(℘(Σ))→ D
by f(δ) = ∩{f(σ) | σ ∈ δ} and f(Δ) = ∪{f(δ) | δ ∈ Δ} respectively. Observe
that a lifting f : D → D is monotonic, irrespective of f , since if Δ1 ⊆ Δ2

then f(Δ1) ⊆ f(Δ2). It also distributes over union, that is, f(Δ1) ∪ f(Δ2) =
f(Δ1 ∪Δ2). We introduce ↑f : Σ → D to denote the idempotent relaxation of
f : Σ → D which is defined thus:

Definition 4. If f : Σ → D then

↑f = �{f ′ : Σ → D | f � f ′ ∧ ∀σ ∈ Σ.f ′(σ) = f ′(f ′(σ))}

Note the use of overloading within the expression f ′(f ′(σ)): the inner f ′ has
type f ′ : Σ → D whereas the outer f ′ has type f ′ : Σ → D. Observe too that
↑f : Σ → D is extensive if f : Σ → D is extensive. Although the above
definition is not constructive, the idempotent relaxation can be computed in
an iterative fashion using the following result:

Proposition 4. ↑f = �i=0fi where f0 = f and fi+1 = fi � λσ.fi(fi(σ))

With ↑f both defined and computable (by virtue of the finiteness of Σ), an
analysis based on closures can be formulated thus:

Definition 5. The mapping [[·]]L : L → D → D is the least solution to:

[[skip]]L = λΔ.Δ
[[assume(ρ)]]L = λΔ.Δ ∩ α(ρ)

[[transform(τ)]]L = λΔ.α(γ(Δ) ◦ τ)
[[S1;S2]]L = λΔ.[[S2]]L([[S1]]L(Δ))

[[if ρ then S1 else S2]]L = λΔ.([[S1]]L(Δ ∩ α(ρ))) ∪ ([[S2]]L(Δ ∩ α(¬ρ)))
[[while ρ do S]]L = λΔ.↑f(Δ) ∩ α(¬ρ) where

f = λσ.↓{{σ}} ∪ [[S]]L(↓{{σ}} ∩ α(ρ))

Loop Leaping with Closures 225

Table 1. Experimental results

Program |Σ| Time Input Result

counter.c 12 0.1 s x = 0 ∧ n ≥ 0 n ≥ 0 ∧ x = n

ex1a.c 12 0.1 s 0 ≤ x ≤ 2 ∧ 0 ≤ y ≤ 2 x ≥ 0 ∧ x ≤ 2

ex1b.c 20 0.1 s m = 0 ∧ x = 0 m ≥ 0 ∧ n > m ∧ x = n ∧ x > 0

ex3.c 25 0.6 s x ≤ y ∧ x = 0 ∧ y = m x ≤ m ∧ x = n ∧ x = y ∧ y ≥ m

lockstep.c 12 0.1 s x ≤ y ∧ x ≥ y x = y ∧ x = n

nested.c 15 1.0 s t = 0 ∧ y = 0 ∧ m ≥ 0 t > 0 ∧ t = y ∧ y = m ∧ y > 0

two-loop.c 20 0.2 s x = 0 ∧ y = 0 x = n ∧ y = n

Note that ↑f is a closure since f is extensive by construction. Observe too that
[[while ρ do S]]L is defined with a single call to [[S]]L whereas [[while ρ do S]]A is
defined in terms of possibly many calls to [[S]]A. Thus the closure semantics can
be realised without auxiliary structures such as memo tables that are needed to
intercept repeated calls.

Conceptually the closure semantics simulates the top-down flow of the abstract
semantics from which it is derived, until a loop is encountered at which point
the loop body is entered. The loop body is then evaluated, again top-down, for
each of the predicates. The closure is then calculated, applied to the formula that
holds on entry to the loop, and the result composed with the negation of the loop
condition, to infer the formula that holds on exit from the loop. Yet because of
the structured nature of the domain, the loop transformer can be represented as a
straight-line block of conditional assumptions. Thus the transformer has the dual
attributes of: closely mimicking the top-down abstract semantics, which aids in
constructing a convincing correctness argument, whilst being fully compositional
which is the key attribute in the bottom-up approach to loop summarisation.

Proposition 5. Let S ∈ L and Δ ∈ D. Then [[S]]A(Δ) ⊆ [[S]]L(Δ).

By composing propositions 3 and 5 the main correctness result is obtained:

Corollary 1. Let S ∈ L. If ρ ∈ γ(Δ) then [[S]]C(ρ) ⊆ γ([[S]]L(Δ)).

4 Experiments

A prototype analyser had been implemented in Ruby [13], with the express
aim of evaluating the precision of our technique on some loops used elsewhere
for benchmarking. The analyser faithfully realises the closure semantics as set
out in Def. 5. In addition to the examples outlined in Sect. 2, we applied our
prototype to the programs evaluated in [18] which are available from [15]. These
sample programs test and mutate integers with loop structures are either single
loops, nested loops, or sequences of loops.

The results our experiments are presented in Tab. 1. The column |Σ| denotes
the number of predicates used, followed by Time which indicates the runtime

226 S. Biallas et al.

required to evaluate the whole program. The column Input gives the formula
that input to the program (actually an assumption that was given in the bench-
mark). Likewise for Σ we chose those predicates which are listed in a comment
in the benchmark itself. The Result column documents the formula obtained by
running the program on this input (in a cleaned format as is explained below).
The runtime for all tests where less than a second on a 2.6GHz MacBook Pro
equipped with 4GiB RAM.

Interestingly, our implementation seems to outperform the invariant genera-
tion technique presented in [18] for speed in all except one benchmark (nested.c).
This result is rather surprising as our prototype has been implemented näıvely
in Ruby, more as a sanity check on the design rather than a tool for assessing
performance. Considering that Ruby is interpreted, the runtimes of our proof-
of-concept implementation are encouraging. It should be noted, however, that
we generate the transformers for blocks off-line, prior to applying the analysis,
rather than using a SMT solver to compute block transformers on-the-fly. Never-
theless the dominating time is the closure calculation since it needs to repeatedly
combine formulae; pruning intermediate formulae should improve this.

In terms of precision, most output formulae are actually disjunctive, but the
table gives conjunctive simplifications to make the presentation accessible. In
case of counter.c, for instance, we write n ≥ 0∧x = n instead of the disjunctive
formula (n = 0 ∧ x = n) ∨ (n > 0 ∧ x = n). Manually we checked that each of
the component cubes (conjunctions) were genuinely reachable on program exit.
(It may not be feasible to infer invariants by hand but if Σ is small it is possible
to manually verify that a cube is irredundant with a high degree of confidence.)
We conclude that these invariants appear to be optimal even though the closure
semantics can, in principle, lead to a sub-optimal transformer for loops.

5 Related Work

The key idea in predicate abstraction [3,12,14] is to describe a large, possibly
infinite, set of states with a finite set of predicates. If the two predicates ρi and ρj
describe, respectively, the sets of states γ(ρi) and γ(ρj), then all the transitions
between a state in γ(ρi) and a state in γ(ρj) are described with a single abstract
transition from ρi to ρj . The existence of a transition between γ(ρi) and γ(ρj),
and hence an abstract one between ρi and ρj , can be determined by querying
a SAT/SMT solver [8] or a theorem prover [14]. The domain of conjuncts of
predicates is related to the domain of sets of states by a Galois connection
[4], allowing the framework of abstract interpretation [9], as well as domain
refinements such as disjunctive completion [4], to be applied to systematically
derive loop invariants using iterative fixpoint computation.

5.1 Loop Summarisation

Motived by the desire to improve efficiency, a thread of work has emerged on
compositional bottom-up analysis that strives to reorganise iterative fixed-point

Loop Leaping with Closures 227

computation by applying loop summarisation [34]. The idea is to substitute
a loop with a conservative abstraction of its behaviour, constructing abstract
transformers for nested loops starting from the inner-most loop [2,22]. Various
approaches have been proposed for loop summarisation, such as taking cues
from the control structure to suggest candidate invariants that are subsequently
checked for soundness [22, Sect. 3.3]. Inference rules have also been proposed for
deriving summaries based on control structures [33]. Increasingly loop summari-
sation is finding application in termination analysis [2,36].

5.2 Quantifier Elimination

Existential quantification has also been applied to characterise inductive loop in-
variants. Kapur [19] uses a parameterised first-order formula as a template and
specifies constraints on these parameters using quantification. Quantifiers are
then eliminated to derive the loop invariants [19, Sect. 3] which, though attrac-
tive conceptually, inevitably presents a computational bottleneck [11]. Likewise
Monniaux (see [25, Sect. 3.4] and [26, Sect. 3.4]) uses quantification to specify
inductive loop invariants for linear templates [32].

5.3 Disjunctive Invariants

Gulwani et al. [18] derive loop invariants in bounded DNF using SAT by specify-
ing constraints that model state on entry and exit of a loop as well as inductive
relations. Monniaux and Bodin [28] apply predicate abstraction to compute au-
tomata (with a number of states that is bounded a priori) which represent the
semantics of reactive nodes using predicates and an abstract transition relation.
Rather than computing abstractions as arbitrary formulae over predicates, they
consider disjunctions of a fixed number of cubes. The specification of loop in-
variants itself is not dissimilar to that in [25, Sect. 3.4]. However, bounding the
problem allows for the application of incremental techniques to improve per-
formance [28, Sect. 2.4]. Similar in spirit, though based on classical abstract
interpretation rather than SMT-based predicate abstraction, is the work of Bal-
akrishnan et al. [1] on control-structure refinement for loops in Lustre.

Disjunctive loop invariants have also been studied in other contexts, for in-
stance, Gulwani et al. [16,17] apply auxiliary variables in the complexity analysis
of multi-path loops, where disjunctive invariants describe the complexities over
counter variables. Recent work by Sharma et al. [35] focusses on the structure
of loops in general. The authors observed that loops, which require disjunctive
invariants, often depend on a single phase-transition. They provide a technique
that soundly detects whether a loop relies on such, and if so, rewrite the program
so that conjunctive techniques can be applied. Such invariants are easier to han-
dle than disjunctive ones. By way of contrast, Popeea and Chin [29] compute
disjunctions of convex polyhedra using abstract interpretation. To determine
whether a pair of two polyhedra shall be merged, they apply distance metrics so
to balance expressiveness against computational cost.

228 S. Biallas et al.

6 Conclusions

This paper advocates a technique for leaping loops in predicate abstraction where
the abstract domain is not merely a conjunction of predicates that simultane-
ously hold but rather a (possibly disjunctive) monotonic formula over the set
of predicates. Each loop is summarised with a closure that enables each loop to
be treated as if it were a straight-line block. Because the number of monotonic
formulae grows rapidly with the number of predicates, the method, by design,
does not compute a best transformer. Instead closures are derived solely for the
atomic predicates and, as a result, each closure can be represented by just n
monotonic formulae where n is the number of predicates. Applying the loop
transformer then amounts to computing logical combinations of these n formu-
lae. The compact nature of the loop transformers, their conceptual simplicity,
as well as their accuracy which is demonstrated empirically, suggests that this
notion of closure is a sweet-point in the design space for loop leaping on this
domain. Future work will investigate adapting these loop leaping techniques to
other abstract domains.

Acknowledgements. This work was supported, in part, by the DFG research
training group 1298 Algorithmic Synthesis of Reactive and Discrete-Continuous
Systems and by the DFG Cluster of Excellence on Ultra-high Speed Information
and Communication, German Research Foundation grant DFG EXC 89. This
cooperation was funded, in part, by a Royal Society Industrial Fellowship and
the Royal Society Joint Project grant JP101405.

References

1. Balakrishnan, G., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Refining the Con-
trol Structure of Loops using Static Analysis. In: EMSOFT 2009, pp. 49–58. ACM
Press (2009)

2. Ball, T., Kupferman, O., Sagiv, M.: Leaping Loops in the Presence of Abstraction.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 491–503.
Springer, Heidelberg (2007)

3. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic Predicate
Abstraction of C Programs. In: PLDI, pp. 203–213 (2001)

4. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for
Model Checking C Programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 268–283. Springer, Heidelberg (2001)

5. Biallas, S., Brauer, J., King, A., Kowalewski, S.: Proof Appendix for Loop Leaping
with Closures. Technical Report 3-12, University of Kent, Canterbury, CT2 7NF,
UK (June 2012), http://www.cs.kent.ac.uk/people/staff/amk/pubs.html

6. Brauer, J., King, A.: Transfer Function Synthesis without Quantifer Elimination.
Logical Methods in Computer Science 8 (2012)

7. Brauer, J., King, A., Kriener, J.: Existential Quantification as Incremental SAT.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207.
Springer, Heidelberg (2011)

http://www.cs.kent.ac.uk/people/staff/amk/pubs.html

Loop Leaping with Closures 229

8. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

9. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL,
pp. 238–252. ACM Press (1977)

10. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Effciently
computing static single assignment form and the control dependence graph. ACM
Transaction on Programming Languages and Systems, 451–590 (1991)

11. Davenport, J., Heintz, J.: Real Quantifier Elimination is Doubly Exponential. Jour-
nal of Symbolic Computation 5(1), 29–35 (1988)

12. Flanagan, C., Qadeer, S.: Predicate Abstraction for Software Verification. In:
POPL, pp. 191–202 (2002)

13. Flanagan, D., Matsumoto, Y.: The Ruby Programming Language. O’Reilly (2008)

14. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

15. Gulwani, S.: Source Files and Invariants Generated (2009),
http://research.microsoft.com/en-us/um/people/sumitg/benchmarks/pa.html

16. Gulwani, S.: SPEED: Symbolic Complexity Bound Analysis. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 51–62. Springer, Heidelberg
(2009)

17. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static
estimation of program computational complexity. In: POPL, pp. 127–139 (2009)

18. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-Based Invariant Inference
over Predicate Abstraction. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 120–135. Springer, Heidelberg (2009)

19. Kapur, D.: Automatically Generating Loop Invariants Using Quantifier Elimina-
tion. In: Deduction and Applications, vol. 05431. IBFI (2005)

20. Kettle, N., King, A., Strzemecki, T.: Widening ROBDDs with Prime Implicants.
In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 105–119. Springer,
Heidelberg (2006)

21. King, A., Søndergaard, H.: Automatic Abstraction for Congruences. In: Barthe,
G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 197–213. Springer,
Heidelberg (2010)

22. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop
Summarization Using Abstract Transformers. In: Cha, S(S.), Choi, J.-Y., Kim,
M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 111–125.
Springer, Heidelberg (2008)

23. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.:
Loopfrog: A Static Analyzer for ANSI-C Programs. In: ASE, pp. 668–670. IEEE
Computer Society (2009)

24. Kroening, D., Strichman, O.: Decision Procedures. Springer (2008)

25. Monniaux, D.: Automatic Modular Abstractions for Linear Constraints. In: POPL,
pp. 140–151. ACM Press (2009)

26. Monniaux, D.: Automatic Modular Abstractions for Template Numerical Con-
straints. Logical Methods in Computer Science 6(3) (2010)

27. Monniaux, D.: Quantifier Elimination by Lazy Model Enumeration. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer,
Heidelberg (2010)

http://research.microsoft.com/en-us/um/people/sumitg/benchmarks/pa.html

230 S. Biallas et al.

28. Monniaux, D., Bodin, M.: Modular Abstractions of Reactive Nodes Using Dis-
junctive Invariants. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 19–33.
Springer, Heidelberg (2011)

29. Popeea, C., Chin, W.-N.: Inferring Disjunctive Postconditions. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 331–345. Springer, Heidelberg
(2008)

30. Reps, T., Sagiv, M., Yorsh, G.: Symbolic Implementation of the Best Trans-
former. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266.
Springer, Heidelberg (2004)

31. Rudeanu, S.: Boolean Functions and Equations. North-Holland (1974)
32. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-Based Linear-Relations

Analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer,
Heidelberg (2004)

33. Seghir, M.N.: A Lightweight Approach for Loop Summarization. In: Bultan, T.,
Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 351–365. Springer, Heidel-
berg (2011)

34. Sharir, M., Pnueli, A.: Two Approaches to Interprocedural Data Flow Analysis.
In: Program Flow Analysis: Theory and Applications, pp. 189–234. Prentice-Hall
(1981)

35. Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying Loop Invariant Generation
Using Splitter Predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 703–719. Springer, Heidelberg (2011)

36. Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop Summariza-
tion and Termination Analysis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 81–95. Springer, Heidelberg (2011)

37. Wiedemann, D.: A computation of the eighth Dedekind number. Order 1(8), 5–6
(1991)

Path-Sensitive Backward Slicing

Joxan Jaffar1, Vijayaraghavan Murali1, Jorge A. Navas2, and Andrew E. Santosa3

1 National University of Singapore
2 The University of Melbourne

3 University of Sydney

Abstract. Backward slicers are typically path-insensitive (i.e., they ignore the
evaluation of predicates at conditional branches) often producing too big slices.
Though the effect of path-sensitivity is always desirable, the major challenge is
that there are, in general, an exponential number of predicates to be considered.
We present a path-sensitive backward slicer and demonstrate its practicality with
real C programs. The crux of our method is a symbolic execution-based algo-
rithm that excludes spurious dependencies lying on infeasible paths and avoids
imprecise joins at merging points while reusing dependencies already computed
by other paths, thus pruning the search space significantly.

1 Introduction

Weiser [19] defined the backward slice of a program with respect to a program location
� and a variable x, called the slicing criterion, as all statements of the program that
might affect the value of x at �, considering all possible executions of the program.
Slicing was first developed to facilitate software debugging, but it has subsequently
been used for performing diverse tasks such as parallelization, software testing and
maintenance, program comprehension, reverse engineering, program integration and
differencing, and compiler tuning.

Although static slicing has been successfully used in many software engineering ap-
plications, slices may be quite imprecise in practice - ”slices are bigger than expected
and sometimes too big to be useful [2]”. Two possible sources of imprecision are: in-
clusion of dependencies originated from infeasible paths, and merging abstract states
(via join operator) along incoming edges of a control flow merge. A systematic way to
avoid these inaccuracies is to perform path-sensitive analysis. An analysis is said to be
path-sensitive if it keeps track of different state values based on the evaluation of the
predicates at conditional branches. Although path-sensitive analyses are more precise
than both flow-sensitive and context-sensitive analyses they are very rare due to the
difficulty of designing efficient algorithms that can handle its combinatorial nature.

The main result of this paper is a practical path-sensitive algorithm to compute back-
ward slices. Symbolic execution (SE) is the underlying technique that provides path-
sensitiveness to our method. SE uses symbolic inputs rather than actual data and exe-
cutes the program considering those symbolic inputs. During the execution of a path all
its constraints are accumulated in a formula P. Whenever code of the form if(C) then
S1 else S2 is reached the execution forks the current state and updates the two copies
P1 ≡ P∧C and P2 ≡ P∧¬C, respectively. Then, it checks if either P1 or P2 is unsatisfi-
able. If yes, then the path is infeasible and hence, the execution stops and backtracks to

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 231–247, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

232 J. Jaffar et al.

the last choice point. Otherwise, the execution continues. The set of all paths explored
by symbolic execution is called the symbolic execution tree (SET).

Not surprisingly, a backward slicer can be easily adapted to compute slices on SETs
rather than control flow graphs (CFGs) and then mapping the results from the SET to
the original CFG. It is not difficult to see that the result would be a fully path-sensitive
slicer. However, there are two challenges facing this idea. First, the path explosion prob-
lem in path-sensitive analyses that is also present in SE since the size of the SET is
exponential in the number of conditional branches. The second challenge is the infinite
length of symbolic paths due to unbounded loops. To overcome the latter we borrow
from [17] the use of inductive invariants produced from an abstract interpreter to au-
tomatically compute approximate loop invariants. Because invariants are approximate
our algorithm cannot be considered fully path-sensitive in the presence of loops. Never-
theless our results in Sec. 5 demonstrate that our approach can still produce significantly
more precise slices than a path-insensitive slicer.

Therefore, the main technical contribution of this paper is how to tackle the path-
explosion problem. We rely on the observation that many symbolic paths have the same
impact on the slicing criterion. In other words, there is no need to explore all possible
paths to produce the most precise slice. Our method takes advantage of this observation
and explores the search space by dividing the problem into smaller sub-problems which
are then solved recursively. Then, it is common for many sub-problems to be “equiva-
lent” to others. When this is the case, those sub-problems can be skipped and the search
space can be significantly reduced with exponential speedups. In order to successfully
implement this search strategy we need to (a) store the solution of a sub-problem as well
as the conditions that must hold for reusing that solution, (b) reuse a stored solution if
a new encountered sub-problem is “equivalent” to one already solved.

Our approach symbolically executes the program in a depth-first search manner. This
allows us to define a sub-problem as any subtree contained in the SET. Given a subtree,
our method following Weiser’s algorithm computes dependencies among variables that
allow us to also infer which statements may affect the slicing criterion. The fundamen-
tal idea for reusing a solution is that when the set of feasible paths in a given subtree
is identical to that of an already explored subtree, it is not possible to deduce more
accurate dependencies from the given subtree. In such cases we can safely reuse de-
pendencies from the explored subtree. However, this check is impractical because it is
tantamount to actually exploring the given subtree, which defeats the purpose of reuse.
Hence we define certain reusing conditions, the cornerstone of our algorithm, which are
both sound and precise enough to allow reuse without exploring the given subtree.

First, we store a formula that succinctly captures all the infeasible paths detected
during the symbolic execution of a subtree. We use efficient interpolation techniques to
generate interpolants [5] for this purpose. Then, whenever a new subtree is encountered
we check if the constraints accumulated imply in the logical sense the interpolant of an
already solved subtree. If not, it means there are paths in the new subtree which were
unexplored (infeasible) before, and so we need to explore the subtree in order to be
sound. Otherwise, the set of paths in the new subtree is a subset of that of the explored
subtree. However, being a subset is not sufficient for reuse since we need to know if they
are equivalent, but the equivalence test, as mentioned before, is impractical. Here, we

Path-Sensitive Backward Slicing 233

�1 x=0;y=5;

�2 if (a>0)

�3 b=x+y;

�4 if (*)

�5 x=1;

else

�6 y=0;

�7 if (y>0)

�8 z=x;

�9

x=0;y=5

a>0

a<=0

1

2

3

true true

x=1 y=0

y<=0

y>0

z=x

4

5 6

7

8

9

b=x+y

2:1

1:1

a>0

x=0;y=5

{y}

{ }

5:1

true true

7:27:1

y=0

y>0

z=x

8:1

9:1

6:1

9:3
8:29:2

y<=0

{ }

{ }

x=1

{x,y}

{y}

{y} 4:1

3:1
{y}

5:2

true true

7:47:3

y=0

y>0

z=x

8:3

9:4

6:2

9:6
8:49:5

y<=0

{x}

{ }

{ }

x=1

{x,y}

{y}

{y} 4:2

a<=0

{x}

b=x+y

2:1

1:1

a>0

x=0;y=5

{y}

{ }

5:1

true true

7:27:1

y=0

y>0

z=x

8:1

9:1

6:1

9:3
8:29:2

y<=0

{ }

{ }

x=1

{x,y}

{y}

{y} 4:1

3:1
{y}

4:2

{x}

b=x+y

{y}

a<=0

(a) (b) (c)

Fig. 1. (a) A program and its transition system, (b) its naive symbolic execution tree (SET) and
(c) its interpolation-based SET, for slicing criterion 〈�9,{z}〉. The final slice consists of the un-
derlined statements.

make use of our intuition that only few paths contribute to the dependency information
in every subtree. Hence, to check for equivalence of subtrees we need not check all
paths, but only those few that contributed to the dependencies, what we call the witness
paths. Now, if the previous implication succeeds we also check if the conjunctions of
constraints along the witness paths of the explored subtree are satisfiable in the new
subtree. If yes, we reuse dependencies. Otherwise, the equivalence test failed.

Finally, it is worth mentioning that some previous works have tackled the problem
of path-sensitive backward slicing before as we will discuss them in Sec. 6. However,
to the best of our knowledge either they suffer from the path-explosion problem or
efficiency is achieved at the expense of losing some path-sensitiviness. One essential
result of our method is that it produces exact slices for loop-free programs. By “exact”
we mean that the algorithm guarantees to not produce dependencies from spurious1

(i.e., non-executable) paths. In other words, it produces the smallest possible, sound
slice of a loop-free program for any given slicing criterion.

2 Motivating Example

We first describe our approach through an example. Consider the program in Fig. 1(a)
and assume we would like to slice it wrt location �9 and variable z. The assignment
x=0 at �1 should not be included in the slice because any path that reaches �8 through �5

redefines x and any path that reaches �8 through �6 (without redefining x) is infeasible.
Note that a path insensitive algorithm would not be able to infer this from the CFG.

1 Of course, limited by theorem prover technology which decides whether a formula is unsatis-
fiable or not.

234 J. Jaffar et al.

Fig. 1(b) shows the naive symbolic execution tree of the program. The nodes are
labeled with � : k (� is a program location and k is an identifier to distinguish nodes with
the same program location belonging to different symbolic paths) and edges between
two locations are labeled by the intervening program operation. Solid (black) edges
denote feasible transitions and zigzag (red) edges denote infeasible transitions. Each
node is annotated with its dependency set between brackets (blue) obtained by running
Weiser’s [19] algorithm. Informally, a dependency set at location � contains all variables
that may affect the slicing criterion from any path reachable from �. A statement at �
is included in the slice if the intersection between the dependency set and the set of
variables both defined at � (i.e., left-hand side of the assignment) is not empty. Note that
the dependency set at 2:1 only contains y and therefore, the statement x=0 at �1 would
not be included in the slice. Hence it is clear that the path-sensitive SET improves the
accuracy of slices. The problem is that the size of the tree is exponential in the number of
branches. However, consider now the tree2 in Fig. 1(c) constructed by our method where
dotted (green) edges denote reusing transitions. This tree contains the same relevant
information needed to exclude x=0 from the slice but without some redundant paths
present in Fig. 1(b). Let us see how our method generates the tree in Fig. 1(c).

Our algorithm performs symbolic execution guided by depth-first search exploring
first the path �1 · �2 · �3 · �4 · �5 · �7 · �8 · �9. As usual, it accumulates the constraints along
the path in a formula Π, where variable redefinitions are denoted by primed versions.
For the above path, Π9:1 ≡ x = 0∧ y = 5∧ a > 0∧ b = x+ y∧ x′ = 1∧ y > 0∧ z = x′

is the formula built at 9:1, which is satisfiable. It then applies Weiser’s algorithm to
compute the dependency set at each node along the path. In addition, it also computes
at each node one of the reusing conditions: the (smallest possible) set of paths from
which the dependency set was generated. For example, at 7:1 the dependency set {x,y}
was obtained from the suffix path �7 · �8 · �9, at 4:1 the dependency set {y} was ob-
tained from �4 · �5 · �7 · �8 · �9, and so on. These paths are called the witness paths and
they represent the paths along which each variable in the dependency set affects the
slicing criterion.

Next our algorithm backtracks and explores the path �1 · �2 · �3 · �4 · �5 · �7 · �9 with
constraints Π9:2 ≡ x = 0∧y = 5∧a > 0∧b = x+y∧x′ = 1∧y≤ 0. This formula is un-
satisfiable and hence the path is infeasible. Now it generates another reusing condition:
a formula called interpolant that captures the essence of the reason of infeasibility of
the path. The main purpose of the interpolant is to exclude irrelevant facts pertaining to
the infeasibility so that the reusing conditions are more likely to be reusable in future.
For the above path a possible interpolant is y = 5 which is enough to capture its infeasi-
bility and the infeasibility of any path that carries the constraint y≤ 0. In summary, our
algorithm generates two kind of reusing conditions: witness paths from feasible paths
and interpolants from infeasible paths.

Next it backtracks and explores the path �1 · �2 · �3 · �4 · �6 · �7. At 7:2, it checks
whether it can reuse the solution from 7:1 by checking first if the accumulated con-
straints Π7:2 ≡ x = 0∧ y = 5∧ a > 0∧ b = x+ y∧ y′ = 0 imply the interpolant at 7:1,

2 In fact, it is a Directed Acyclic Graph (DAG) due to the existence of reusing edges.

Path-Sensitive Backward Slicing 235

y′ = 53. Since the implication fails, it has to explore 7:2 in order to be sound. The sub-
tree after exploring this can be seen in Fig. 1(c). An important thing to note here is
that while applying Weiser’s algorithm, it has obtained a more accurate dependency
set (empty set) at 7:2 than that which would have been obtained if it reused the solu-
tion from 7:1. Also note that at 4:1, the dependency set is still {y} with witness path
�4 · �5 · �7 · �8 · �9 and interpolant y = 5.

Note what happens now. When our algorithm backtracks to explore the path �1 · �2 ·
�4, it checks at 4:2 if it can reuse the solution from 4:1. This time, the accumulated
constraints x = 0∧ y = 5∧ a ≤ 0 imply the interpolant at 4:1, y = 5. In addition, the
witness path at 4:1 is also feasible under 4:2. Hence, it simply reuses the dependency set
{y} from 4:1 both in a sound and precise manner, and backtracks without exploring 4:2.
In this way, it prunes the search space while still maintaining as much as accuracy as the
naive SET in Fig. 1(b). Now, when Weiser’s algorithm propagates back the dependency
set {y} from 4:2, we get the dependency set {y} again at 2:1, and the statement x=0 at
1:1 is not included in the slice.

3 Background

Syntax. We restrict our presentation to a simple imperative programming language
where all basic operations are either assignments or assume operations, and the do-
main of all variables are integers. The set of all program variables is denoted by Vars.
An assignment x = e corresponds to assign the evaluation of the expression e to the
variable x. In the assume operator, assume(c), if the boolean expression c evaluates to
true, then the program continues, otherwise it halts. The set of operations is denoted
by Ops. We then model a program by a transition system. A transition system is a
quadruple 〈Σ, I,−→,O〉 where Σ is the set of states and I ⊆ Σ is the set of initial states.
−→⊆ Σ×Σ×Ops is the transition relation that relates a state to its (possible) succes-
sors executing operations. This transition relation models the operations that are exe-

cuted when control flows from one program location to another. We shall use �
op−−→ �′

to denote a transition relation from � ∈ Σ to �′ ∈ Σ executing the operation op ∈ Ops.
Finally, O⊆ Σ is the set of final states.

Symbolic Execution. A symbolic state υ is a triple 〈�,s,Π〉. The symbol � ∈ Σ corre-
sponds to the current program location (with special symbols for initial location, �start,
and final location, �end). The symbolic store s is a function from program variables to
terms over input symbolic variables. Each program variable is initialized to a fresh in-
put symbolic variable. The evaluation �c�s of a constraint expression c in a store s is
defined recursively as usual: �v�s = s(v) (if c ≡ v is a variable), �n�s = n (if c ≡ n is
an integer), �e opr e′�s = �e�s opr �e′�s (if c ≡ e opr e′ where e,e′ are expressions and
opr is a relational operator <,>,=, ! =,>=,<=), and �e opa e′�s = �e�s opa �e′�s (if
c ≡ e opa e′ where e,e′ are expressions and opa is an arithmetic operator +,−,×, . . .).
Finally, Π is called path condition and it is a first-order formula over the symbolic inputs

3 The variable versions used in the interpolants must be properly renamed to be consistent with
the versions used in a formula Π. For instance, here we know that the interpolant at 7:1 must
be y′ = 5, where y′ is the newest version of y used in Π7:2.

236 J. Jaffar et al.

and it accumulates constraints which the inputs must satisfy in order for an execution
to follow the particular corresponding path. The set of first-order formulas and sym-
bolic states are denoted by FOL and SymStates, respectively. Given a transition system
〈Σ, I,−→,O〉 and a state υ≡ 〈�,s,Π〉 ∈ SymStates, the symbolic execution of �

op−−→ �′

returns another symbolic state υ′ defined as:

υ′ �
{
〈�′,s,Π∧ �c�s〉 if op ≡ assume(c) and Π∧ �c�s is satisfiable
〈�′,s[x �→ �e�s],Π〉 if op ≡ x = e

(1)

Note that Eq. (1) queries a theorem prover for satisfiability checking on the path condi-
tion. We assume the theorem prover is sound but not necessarily complete. That is, the
theorem prover must say a formula is unsatisfiable only if it is indeed so.

Abusing notation, given a symbolic state υ≡ 〈�,s,Π〉 we define �υ� : SymStates→
FOL as the formula (

∧
v ∈ Vars �v�s)∧Π where Vars is the set of program variables.

A symbolic path π≡ υ0 ·υ1 · ... ·υn is a sequence of symbolic states such that ∀i•1≤
i≤ n the state υi is a successor of υi−1. A symbolic state υ′ ≡ 〈�′, ·, ·〉 is a successor of

another υ≡〈�, ·, ·〉 if there exists a transition relation �
op−−→ �′. A path π≡ υ0 ·υ1 · ... ·υn

is feasible if υn≡〈�,s,Π〉 such that �Π�s is satisfiable. If �∈O and υn is feasible then υn

is called terminal state. Otherwise, if �Π�s is unsatisfiable the path is called infeasible
and υn is called an infeasible state. If there exists a feasible path π≡ υ0 ·υ1 · ... ·υn then
we say υk (0≤ k≤ n) is reachable from υ0 in k steps. We say υ′′ is reachable from υ if
it is reachable from υ in some number of steps.

A symbolic execution tree contains all the execution paths explored during the sym-
bolic execution of a transition system by triggering Eq. (1). The nodes represent sym-
bolic states and the arcs represent transitions between states.

Program Slicing. The backward slice of a program wrt a program location � and a set
of variables V ⊆ Vars, called the slicing criterion 〈�,V 〉, is all statements of the program
that might affect the values of V at �.4 We follow the dataflow approach described by
Weiser [19] reformulated as an abstract domain D ≡ {⊥}∪P (Vars) (where P (Vars)
is the powerset of program variables) with a lattice structure 〈�,⊥,�,�,�〉, such that
�≡⊆, � ≡ ∪, and � ≡ ∩ are conveniently lifted to consider the element⊥.

We say σ� ∈ D is the approximate set of variables at location � that may affect
the slicing criterion. We will abuse notation to denote the dependencies associated to a
symbolic state υ also as συ. Backward data dependencies can be formulated using this

set, defining two kinds of dataflow information. Given a transition relation �
op−−→ �′ we

define def (op) and use(op) as the sets of variables altered and used during the execution
of op, respectively. Then,

σ� �
{
(σ�′ \ def(op))∪use(op) if σ�′ ∩ def(op) 	= /0
σ�′ otherwise

(2)

4 W.l.o.g., we assume in this paper a single slicing criterion at �end.

Path-Sensitive Backward Slicing 237

where σ�′ = V if �′ = �end. We say a transition relation �
op−−→ �′ where op ≡ x = e is

included in the slice if:
σ�′ ∩ def(op) 	= /0 (3)

Backward control dependencies can also affect the slicing criterion. A transition relation
δ≡ �

op−−→ �′ where op ≡ assume(c) is included in the slice if any transition under the
range of influence of δ (any path between δ and its nearest postdominator [19] in the
transition system) is included in the slice, and (4)

σ� � σ�′ ∪use(op) (5)

Finally, a function p̂reD (σ�,op) that returns the pre-state after executing backwards
the operation op with the post-state σ� is defined using Eqs. (2), (3), (4), and (5).

4 Algorithm

A path-sensitive slicing algorithm over a symbolic execution tree (SET) can be defined
as an annotation process which labels each symbolic state υ≡ 〈�, ·, ·〉 with σ� ∈ D by
computing a fixpoint (later formalized) over the tree, using Eqs. (2) and (5) described
in Sec. 3. In an interleaved process, the final SET is obtained through Eqs. (3) and (4).
Since the SET may have multiple instances of the same transition relation, we say that a
transition relation is included in the final slice if at least one of its instances is included
in the slice on the SET. It is easy to see that the path-sensitiveness comes from how
symbolic execution builds the tree since no dependencies from a non-executable path
can be considered.

Our algorithm performs symbolic execution in a depth-first search manner exclud-
ing all infeasible paths. Whenever the forward traversal of a path finishes due to a (a)
terminal state, (b) infeasible state, or (c) reusing state (i.e., a state reusing a solution
from another state), the algorithm halts and backtracks to the next path. During this
backtracking each symbolic state υ is labelled with its solution, i.e., the set of variables
συ at υ that may affect the slicing criterion. Furthermore, the reusing conditions are
computed at each state for future use. We first introduce formally the two key concepts
which will decide whether a solution can be reused or not.

Definition 1 (Interpolant). Given two first order logic (FOL) formulas A and B such
that A∧B is f alse a Craig interpolant [5] wrt A is another FOL formula Ψ such that
(a) A |= Ψ, (b) Ψ∧B is false, and (c) Ψ is formed using common variables of A and B.

Interpolation allows us to remove irrelevant facts from A without affecting the unsatis-
fiability of A∧B. It is worth mentioning that efficient interpolation algorithms exist for
quantifier-free fragments of theories such as linear real/integer arithmetic, uninterpreted
functions, pointers and arrays (e.g., [4]) where interpolants can be extracted from the
refutation proof in linear time on the size of the proof.

Definition 2 (Witness Paths and Formulas). Given a symbolic state υ ≡ 〈�, ·, ·〉 an-
notated with the set of variables συ that affect the slicing criterion at �end, a witness
path for a variable v∈ συ is a symbolic path π≡ 〈�, ·, ·〉 · ... · 〈�end, ·,Πend〉 with the final
symbolic state υ′ ≡ 〈�end, ·,Πend〉 such that �υ′� is satisfiable (i.e., π is feasible). We call
�υ′� the witness formula of v, denoted ωv.

238 J. Jaffar et al.

- � : Dω×Dω →Dω

σω
1�σω

2 � σω
1 ∪σω

2

- �: Dω×Dω → Bool

σω
1 � σω

2 if and only if σω
1 ⊆ σω

2

- p̂re : Dω× (Σ×Σ×Ops)× (Vars→ SymVars)→Dω.

p̂re(σω′, �
op−−→ �′,s) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

let σω = p̂re aux(σω ′, �
op−−→ �′,s)

foreach 〈x,ωx〉 ∈ σω,〈x,ωx′ 〉 ∈ σω

σω=σω \{〈x,ωx〉,〈x,ωx′ 〉}
if ωx |= ωx′ then σω=σω ∪{〈x,ωx′ 〉}
else σω=σω ∪{〈x,ωx〉}

if (σω ∩de f (op) or INFL(� −→ �′)∩S 	= /0) then
S=S∪{� −→ �′}

in σω

where:

p̂re aux(σω ′, �
op−−→ �′,s) �⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{〈x,ωx ∧ �y = e�s〉 | 〈x,ωx〉 ∈ σω′,op ≡ y = e, x 	∈ de f (op)}∪
{〈v,ωx ∧ �y = e�s〉 | 〈x,ωx〉 ∈ σω′,op ≡ y = e, x ∈ de f (op),v ∈ use(op)}∪
{〈x,ωx ∧ �c�s〉 | 〈x,ωx〉 ∈ σω′,op≡ assume(c)}∪
{〈x,�Ππ�s∧ �c�s〉 | 〈x, ·〉 /∈ σω′,op≡ assume(c),x ∈ use(op),

INFL(� −→ �′)∩S 	= /0,∃ π≡ �′ · . . . · �end}

Fig. 2. Main Abstract Operations for Dω

Intuitively, a witness path for a variable at a node is a path below the node along which
the variable affects the slicing criterion at the end. A witness formula represents a con-
dition sufficient for the variable to affect the slicing criterion along the witness path.

Prior to establishing the reusing conditions, we augment the abstract domain D to
accommodate the witness formulas. Here, and in the rest of the paper, we will refer
to the term “dependency” as the set of variables that may affect the slicing criterion
together with their witnesses.

Definition 3 (Dω). We define a new abstract domain Dω as a lattice 〈�,⊥,�,�〉 such
that Dω � {⊥}∪ P (Vars×FOL) (i.e., set of pairs of the form 〈x,ωx〉 where x is a
variable and ωx is its witness formula) and abstract operations described in Fig. 2.5

Note that the witness formulas can be obtained only from (feasible) paths in the pro-
gram. Therefore, the number of witness formulas is always finite. As we will see later,
even with loops, the size of each witness formula is also finite because we make the
symbolic subtree of the loop finite. That is, we perform symbolic execution on a finite

5 For lack of space, trivial treatment of the element ⊥ is omitted from operations in Fig. 2.

Path-Sensitive Backward Slicing 239

program once loop invariants are given. This ensures that the abstract domain Dω is
finite and hence, termination is guaranteed for any fixpoint computation based on it.

In Fig. 2, the operator � computes the least upper bound of the abstract states by
simply applying the set union of the two set of states. The operator � simply tests
whether one set is a subset of the other. p̂re is a bit more elaborated but basically consists
of the Eqs. (2), (3), (4), and (5) defined in Sec. 3 extended with witnesses formulas.
We assume here and in the algorithm in Fig. 3 that p̂re accesses S which is the set of
transitions included in the slice so far. In function p̂re aux, there are four cases to handle
different kinds of statements and dependencies:

- In the first two cases, if the operation is an assignment, the dependencies are prop-
agated from the defined to the used variables and any dependency from a variable
not defined is kept. In these cases, the pre-state witness formula is the conjunction
of the post-state witness formula with the corresponding statement.

- In the third case, if the operation is an assume, any used variable is preserved, with
its pre-state witness formula being the conjunction of the post-state witness formula
and the corresponding guard.

- In the last case, for any variable x occurring in an assume statement without any
dependency, if any transition under the range of influence [19] (computed by INFL)
of the assume is already in the slice, then x is added (due to control dependency)
and its witness formula is the conjunction of the guard and the path condition of
any (feasible) path from the assume statement that leads to the end of the program.

In addition, in function p̂re whenever two pairs from the set of dependencies computed
by p̂re aux refer to the same variable, we use an entailment test to choose the one with
the weaker witness formula (which is more likely to be reused). In practice, the entail-
ment test can be skipped by choosing arbitrarily one. Finally, a transition is included in
the slice if one of the Eqs. (3) and (4) holds.

Definition 4 (Reusing Conditions). Given a current symbolic state υ ≡ 〈�, ·,Π〉 and
an already solved symbolic state υ′ ≡ 〈�, ·, ·〉 such that Ψ is the interpolant generated
for υ′ and σω are the dependencies together with their attached witnesses at υ′, we say
υ is equivalent to υ′ (or υ can reuse the solution at υ′) if the following conditions hold:

(a) �υ� |= Ψ (b) ∀〈x, ·〉 ∈ σω •∃〈x,ωx〉 ∈ σω such that �υ�∧ωx is satisfiable (6)

The condition (a) affects soundness and it ensures that the set of symbolic paths reach-
able from υ must be a subset of those from υ′. The condition (b) is the witness check
which essentially states that for each variable x in the dependency set at υ′, there must be
at least one witness path with formula ωx that is feasible from υ. This affects accuracy
and ensures that the reuse of dependencies does not incur any loss of precision.

We now describe in detail the main features of our algorithm defined by the function
BackwardDepsV in Fig. 3. The main purpose of BackwardDepsV is to keep track of
the backward dependencies between the program variables and the slicing criterion by
inferring for each state the set of variables that may affect the slicing criterion. From
these dependencies it is straightforward to obtain the slice of the program as explained

240 J. Jaffar et al.

BackwardDepsV (υ≡ 〈�,s,Π〉,σω)
1: change = false
2: if INFEASIBLE(υ) then 〈Ψ,σω〉 = 〈false, /0〉 and goto 12
3: if TERMINAL(υ) then 〈Ψ,σω〉 = 〈true,{〈v, true〉 | v ∈V}〉 and goto 12
4: if ∃ υ′ ≡ 〈�,s, ·〉 labelled with 〈Ψ,σω〉 such that REUSE(υ,υ′) then goto 12

5: if � is the header of a loop then
6: υ = invariant(υ, �→ . . .→ �)

7: 〈Ψ,σω,change〉 = UnwindTreeV (υ,σω) and goto 12
8: if ∃ �′ such that �→ �′ is a backedge of a loop then
9: 〈·, ·,Π〉 = invariant(υ, �′ → . . .→ �)
10: 〈Ψ,σω〉 = 〈Π,σω〉 and goto 12

11: 〈Ψ,σω,change〉 = UnwindTreeV (υ, σω)
12: let υ be annotated with 〈·,σω

old〉
13: label υ with 〈Ψ,σω〉 and return 〈Ψ,σω,change∨¬(σω

old �Dω σω)〉

UnwindTreeV (υ≡ 〈�,s,Π〉,σω
in)

1: Ψ=true, σω = σω
in, change = false

2: foreach transition relation �
op−−→ �′

3:

υ′ �
{
〈�′,s,Π∧ �c�s〉 if op ≡ assume(c)
〈�′,s[x �→ Sx],Π∧ �x = e�s〉 if op ≡ x = e and Sx fresh variable

4: 〈Ψ′,σω′,c〉= BackwardDepsV (υ′,σω
in)

5: Ψ= Ψ∧ ŵl p(op,Ψ′)
6: σω= σω �Dω p̂reDω(σω′,op,s)
7: change = change ∨ c
8: return 〈Ψ,σω,change〉

BackwardDepsLoopV (υ, σω)
1: σω′ = σω, change = false
2: do 〈·,σω′,change〉 = BackwardDepsV (υ,σω′) while (change)

Fig. 3. Path-Sensitive Backward Slicing Analysis

at the beginning of this section. For clarity of presentation, let us omit for now the
content of the grey boxes and assume programs do not have loops, which we will come
to later.

BackwardDepsV : SymStates×Dω → FOL×Dω × Bool requires the program to
have been translated to a transition system 〈Σ, I,−→,O〉 and taking an initial symbolic
state υ ≡ 〈� ∈ I,ε, true〉 and an initially empty σω. V is the set of variables of the
slicing criterion. The set of transitions included in the slice, S, is also empty. Recall that
S is only modified by p̂reDω , and hence, we omit it from the description of the algorithm

Path-Sensitive Backward Slicing 241

defining it as a global variable. The returned value is a triple with the interpolant, depen-
dencies (i.e., reusing conditions and solution) and a boolean flag representing whether
any change occurred in a dependency set at any symbolic state during the algorithm’s
backward traversal (this is used mainly to handle loops later). The actual object of in-
terest computed by the algorithm is the set of transitions S included in the slice.

BackwardDepsV implements a recursive algorithm whose objective is to generate a
finite complete SET while reusing solutions whenever possible to avoid path explosion.
Line 1 initializes the (local) variable change to false, which will be updated later. Next,
the three base cases for symbolic states are handled - infeasible, terminal, and reuse:

- In line 2, the function INFEASIBLE(〈·, ·,Π〉) checks whether Π is satisfiable. If not,
the symbolic execution detects an infeasible path and halts, excluding any depen-
dency which would have been inferred from the non-executable path. In addition,
it produces an interpolant from Π and false, namely Ψ ≡ false, which generalizes
the current path condition (Π |= Ψ and Ψ is false). Since the path is not executable
there is no variable that may affect the slicing criterion and hence, the set of de-
pendencies returned is empty.

- In line 3, the function TERMINAL(〈�, ·, ·〉) checks if the symbolic state is a terminal
node by checking if � = �end. If yes, the execution has reached the end of a path.
Since the path is feasible, it can be fully generalized returning the interpolant Ψ≡
true. Since � is a terminal node, the set of dependencies is the set of variables in the
slicing criterion, V . The witness formula for each variable from V is initially true.

- In line 4 the algorithm searches for another state υ′ whose dependencies can be
reused by the current state υ so that the symbolic execution can be stopped. For
this, the function REUSE(υ,υ′) tests the reusing conditions in Eq. 6. If the test
holds, the state υ can reuse the dependencies computed by υ′. Note that the amount
of search space pruned by our method depends on how often this case is triggered.

If all three base cases are not applicable, the algorithm unwinds the execution tree by
calling the procedure UnwindTreeV at line 11. UnwindTreeV , at line 3, executes one
symbolic step 6 and calls the main procedure BackwardDepsV with the successor state
(line 4). After the call, the two key remaining steps are to compute:

- the interpolant Ψ (UnwindTreeV line 5) that generalizes the symbolic execution tree
below υ while preserving its infeasible paths. The procedure ŵlp : Ops×FOL→
FOL ideally computes the weakest liberal precondition (wlp) [7] which is the weak-
est formula on the initial state ensuring the execution of op results in a final state
Ψ′

. In practice, we approximate wlp following the algorithm described in [14].7

The interpolant Ψ is an FOL formula consisting of the conjunction of the result of
ŵlp on each child’s interpolant.

6 Note that the rule described in line 3 is slightly different from the one described in Sec. 3
because no consistency check is performed. Instead, the consistency check is postponed and
done by the first base case at line 2.

7 Current SMT solvers (e.g. [4]) can produce (very efficiently) interpolants at each location
along a path from a single query which can be used for approximating wlp’s. However, those
interpolants are often stronger than those generated by [14].

242 J. Jaffar et al.

- the solution, σω, for the current state υ at line 6 which is computed by executing
p̂reDω on each child’s solution and then combining all solutions using �Dω .

In addition, at line 7 it also records changes in any child’s symbolic state (if any) and
then returns a triple in the same format as BackwardDepsV ’s return value. In Backward-
DepsV , line 12 updates change to true if either it was set to true in UnwindTreeV at
line 11 or the current symbolic state is about to be updated with a more precise solution
than that it already has. The final operation before returning from BackwardDepsV is to
label the state υ with the reusing conditions and solution (line 13).

Now we continue describing our algorithm by discussing how it handles loops. The
main issue is to produce a finite symbolic execution tree on which a fixpoint of the
dependencies can be computed.

For this, the algorithm in Fig. 3 takes an annotated transition system in which pro-
gram points are labelled with inductive invariants inferred automatically by an abstract
interpreter using an abstract domain such as octagons or polyhedra (we borrow the
ideas presented in [17] for this purpose). We assume the abstract interpreter provides a
function getAssrt which, given a program location � and a symbolic store s, returns an
assertion in the form of an FOL formula renamed using s, which holds at �. Note that
when applied at loop headers, getAssrt will return a loop invariant. However, we would
like to strengthen it using the constraints propagated from the symbolic execution. The
function invariant performs this task as follows:

invariant(〈�,s,Π〉, �1 → �n) �

⎧⎨⎩
let s′ = havoc(s,modifies(�1 → �n))

Π = getAssrt(�,s′)∧Π
in 〈�,s′,Π〉

havoc(s,Vars) � ∀v ∈Vars• s[v �→ z]
where z is a fresh variable (implicitly ∃-quantified).

modifies(�1 → . . .→ �n) takes a sequence of transitions and
returns the set of variables that may be modified during its symbolic execution.

Intuitively, invariant clears the symbolic store of all variables modified in the loop (using
the havoc function) and then enhances the path condition Π of the symbolic state with
the invariants from the abstract interpreter.

Let us now explain the grey boxes in Fig. 3. Lines 5-7 in BackwardDepsV cover the
case when a loop header has been encountered. The objective is to abstract the current
symbolic state by using the loop invariant obtained from the abstract interpreter. The
algorithm calls the function invariant (at line 6) with the transitions in the loop so as to
obtain a copy of the current symbolic state annotated with the approximate loop invari-
ant in its path condition. At line 7, the UnwindTreeV procedure is called on the resulting
abstracted symbolic state to explore the symbolic subtree associated with the loop.

If the symbolic execution encounters a loop backedge (lines 8-10) from � to �′ it halts
and backtracks. The reason is that the loop header at �′ has already been symbolically
executed with a loop invariant. Hence there is no need to continue the loop since the
invariant ensures that no new feasible paths will be encountered if it is explored again.
This is our basic mechanism to make the symbolic execution of the loop finite.

Path-Sensitive Backward Slicing 243

Finally, the main algorithm to handle loops, BackwardDepsLoopV , makes calls to the
function BackwardDepsV until there is no change detected in the symbolic state of any
program point. We present it in its simplest form, but it can be easily optimized to call
BackwardDepsV only with those loop transitions affected by a change.

5 Results

We implemented a proof-of-conceptprototype as an extension to TRACER [14]. TRACER

is a software verifier for C programs from which we used mainly its symbolic execution
interpreter and its capabilities for computing interpolants from infeasible paths.

Our prototype augmented TRACER in different ways. Given an operation that in-
volves pointers our prototype updated the sets def and use to accommodate the points-
to information correctly. For instance, given the statement *p =*q the set def contains
everything that might be pointed to by p and the set use includes everything that might
be pointed by q. Regarding loops, programs were first annotated with loop invariants8

provided by the abstract intepreter InterProc [15] ensuring that symbolic execution is
finite. Then, we implemented a fixpoint algorithm operating over symbolic execution
trees that computes dependencies among variables following [19]. Witness paths were
represented as formulas (conjunction of the constraints along the path) and stored ef-
ficiently in order to increase sharing among them. Functions were inlined and external
functions were modeled as having no side effects and returning an unknown value.9

We used several instrumented device driver programs previously used as software
model checking benchmarks: cdaudio, diskperf, floppy, and serial. In addition, we also
considered mpeg, the mpeg-1 algorithm for compressing video, and fcron.2.9.5, a cron
daemon. For the slicing criterion we consider variables that may be of interest during
debugging tasks. For the instrumented software model checking programs, we choose
as the slicing criterion the set of variables that appear in the safety conditions used for
their verification in [10]. In the case of mpeg we choose a variable that contains the type
of the video to be compressed. Finally, in fcron.2.9.5 we choose all the file descriptors
opened and closed by the application.

Table 1 compares our path-sensitive slicer (columns labelled with Path-Sens) against
the same slicer but without path-sensitivity (labelled with Path-Insens). Path-insensitivity
is achieved by the following modifications in our slicer: (1) considering all paths as fea-
sible, and (2) always forcing reuse. These changes have the same effect as always merg-
ing the abstract states along incoming edges in a control-flow merging node. In other
words, they mimic running a path-insensitive slicer on the original CFG. We could have
used a faster off-the-shelf path-insensitive program slicer (using e.g., [11]), however,
our objective here is to isolate the impact of path-sensitivity and hence, we decided to
perform the comparison on a common platform to produce the fairest results.

8 We tried several numerical abstract domains with different tradeoffs between performance
and precision (e.g., octagons and polyhedra) but obtained same results. As a limitation, those
invariants cannot express properties about heap-allocated data structures.

9 It is well-known that function inlining can be very inefficient and in fact, not possible in the
presence of recursive functions. However, performing an interprocedural path-sensitive analy-
sis is beyond the scope of this paper.

244 J. Jaffar et al.

Table 1. Results on Intel 3.2Gz 2Gb evaluating path-sensitiveness

Path-Insens Path-Sens
Program LOC Size Red Time Size Red Time

mpeg 5K 4% 21s 8% 628s
diskperf 6K 32% 2s 57% 94s
floppy 8K 36% 9s 47% 263s

cdaudio 9K 23% 10s 52% 301s
serial 12K 39% 16s 50% 395s

fcron.2.9.5 12K 42% 32s 61% 832s

Mean 23% 15s 38% 418s

The column LOC represents the number of lines of program without comments. The
column Size Red shows the reduction in slice size (in %) wrt the original program size.
The reduction size is computed using the formula (1− size o f slice

size o f original)× 100. By size
we mean all executable statements in the program, excluding type declarations, unused
functions, comments, and blank lines. A minor complication here is that the SET may
contain multiple instances of program points in the CFG, as can be seen in Fig. 1(c). To
compare the reduction in slice sizes fairly, we use the rule mentioned at the beginning of
Sec. 4 to compute slices: a transition in the original CFG is included in the slice if any
of its instances in the SET is included in the slice. The column Time reflects the running
time of the analysis in seconds excluding the external abstract interpreter. Finally, we
summarize in row Mean the numbers of columns Size Red and Time by computing their
geometric and arithmetic mean, respectively.

Our experimental evaluation shows that our path-sensitive slicer improves signifi-
cantly in terms of size reduction over its path-insensitive counterpart. Roughly, slices
produced by Path-Sens are 38% smaller than the original programs while only 23% in
the case of Path-Insens. The mpeg program is an exception since the size of the slices
in both Path-Insens and Path-Sens are quite big (i.e., very small reduction). The rea-
son is that in mpeg all the computations depend on the type of video to be compressed
which is our slicing criterion. On the other hand, the running times of Path-Sens (with
a mean of 418 secs) are reasonable considering the size of the programs and the current
status of our prototype implementation which has significant room for improvement.
The analysis of mpeg is especially slow and it is due to the existence of many nested
loops which are not supported efficiently by our naive fixpoint implementation.

To emphasize the importance of our reuse technique based on interpolation and wit-
nesses we experimented with two variants of our algorithm. We first ran our path-
sensitive slicer without reuse which mimics Conditioned Slicing [3] (see Sec. 6 for
more details). Our second variant replaced interpolants with a syntactic method avoid-
ing using the solver. Given formulas A and B (the inputs to the interpolation algorithm)
the reusing condition is a formula formed from A such that any constraint syntactically
independent from B is removed (taking into account the transitive closure of constraint
dependencies). Then, the REUSE procedure can be implemented as a subset operation
rather than an entailment test. Interestingly, neither of these two variants was able to
finish with any program after a timeout of 1 hour or memory consumption of 2.5 Gb.

Path-Sensitive Backward Slicing 245

6 Related Work

Static slicing remains a very active area of research. We limit our discussion to the
most relevant works that take into account path-sensitiveness. We also discuss pruning
techniques that might have influenced our work.

Fully Path-Sensitive Methods. Conditioned slicing [3] also performs symbolic exe-
cution excluding infeasible paths before applying a static slicing algorithm, and hence
it is fully path-sensitive (for loop-free programs) similar to us. However, even efficient
implementations (e.g., [6]) still perform full path enumeration and essentially explore
the search space of the naive SET suffering from the path explosion problem.

Partially Path-Sensitive Methods. A more scalable but not fully path-sensitive ap-
proach is described by Snelting et al. [18]. They compute the dependency between two
program points y and x using the Program Dependence Graph (PDG) [11] and apply the
following rule to remove spurious dependencies: I(y,x)⇒ ∃v̄ : PC(y,x), where I(y,x)
stands for y influences x (i.e., there is a dependency at x on y), v̄ is some assignment of
values to program variables and PC(y,x) is the path condition from y to x. Essentially
it means that if the path condition from y to x is found to be unsatisfiable, then there is
definitely no influence from y to x. If there are multiple paths between two points, the
path condition is computed as a disjunction of each path.

For the program in Fig. 1(a), Snelting et al. would proceed as follows. In the PDG
there will be a dependency edge from �8 to �1, hence they would check to see if the path
condition PC(1,8) is unsatisfiable. First they calculate the path condition from �4 to �8

as PC(4,8) ≡ (x = 1∧ y > 0∧ z = x)∨ (y = 0∧ y > 0∧ z = x) ≡ (x = 1∧ y > 0∧ z =
x). Now they use this to calculate PC(1,8) ≡ (x = 0∧ y = 5∧ ((a > 0∧ b = x+ y∧
PC(4,8))∨ (a≤ 0∧PC(4,8))))10, which is not unsatisfiable. Hence the statement x=0
at �1 will be included in the slice. The fundamental reason for this is that for them, path
conditions are only necessary and not sufficient, so false alarms in examples such as the
above are possible. An important consequence of this is the fact that even for loop-free
programs, their algorithm cannot be considered “exact” in the sense described at the
end in Sec. 1. However, our algorithm guarantees to produce no false alarms for such
programs.

Another slicer that takes into account path-sensitiveness up to some degree is Con-
strained slicing [8] which uses graph rewriting as the underlying technique. As the
graph is rewritten, modified terms are tracked. As a result, terms in the final graph can
be tracked back to terms in the original graph identifying the slice of the original graph
that produced the particular term in the final graph. The rules described in [8] mainly
perform constant propagation and dead code detection but not systematic detection of
infeasible paths. More importantly, [8] does not define rules to prune the search space.

Interpolation and SAT. Interpolation has been used in software verification (e.g.,
[1,10,16,12,14]) as a technique to eliminate facts which are irrelevant to the proof.
Similarly, SAT can explain and record failures in order to perform conflict analysis.
By traversing a reverse implication graph it can build a nogood or conflict clause which

10 We have simplified this formula since Snelting et al. use the SSA form of the program and add
constraints for Φ-functions, but the essential idea is the same.

246 J. Jaffar et al.

will avoid making the same wrong decision. Our algorithm has in common the use of
interpolation that can be seen also as a form of nogood learning in order to prune the
search space. But this is where the similarity ends. A fundamental distinction is that in
program verification there is no solution (e.g., backward dependencies) to compute/dis-
cover and hence, there is no notion of reuse and the concept of witness paths does not
exist. The work of [9] uses interpolation-based model checking techniques to improve
the precision of dataflow analysis but still for the purpose of proving a safety property.

Finally, a recent work of the authors [13] has been a clear inspiration for this paper. [13]
uses interpolation and witnesses as well to solve not an analysis problem, but rather, a
combinatorial optimization problem: the Resource-Constrained Shortest Path (RCSP)
problem. Moreover, there are other significant differences. First, [13] is totally defined
in a finite setting. Second, [13] considers only the narrower problem of extraction of
bounds of variables for loop-free programs while we present here a general-purpose
program analysis like slicing. Third, this paper presents an implementation and demon-
strates its practicality on real programs.

7 Conclusions

We presented a fully path-sensitive backward slicer limited only by solving capabili-
ties and loop invariant technology. The main result is a symbolic execution algorithm
which avoids imprecision due to infeasible paths and joins at merging points and halts
execution of a path if certain conditions hold while reusing dependencies from already
explored paths. The conditions are based on a notion of interpolation and witness paths
with an aim to detect “a priori” whether the exploration of a path could improve the
accuracy of the dependencies computed so far by other paths. We demonstrated the
practicality of the approach with real medium-size C programs.

Finally, although this paper targets slicing, our approach can be generalized and ap-
plied to other backward program analyses (e.g., Live Variable, Very Busy Expressions,
Worst-Case Execution Time analysis, etc.) providing them path-sensitiveness.

References

1. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic Predicate Abstraction of C
Programs. In: PLDI 2001, pp. 203–213 (2001)

2. Bent, L., Atkinson, D.C., Griswold, W.G.: A Comparative Study of Two Whole Program
Slicers for C. Technical report, University of California at San Diego, La Jolla (2001)

3. Canfora, G., Cimitile, A., De Lucia, A.: Conditioned Program Slicing. Information and Soft-
ware Technology 40(11-12), 595–607 (1998)

4. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient Interpolant Generation in Satisfiability
Modulo Theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 397–412. Springer, Heidelberg (2008)

5. Craig, W.: Three Uses of Herbrand-Gentzen Theorem in Relating Model Theory and Proof
Theory. Journal of Symbolic Computation 22 (1955)

6. Daoudi, M., Ouarbya, L., Howroyd, J., Danicic, S., Harman, M., Fox, C., Ward, M.P.: Con-
sus: A Scalable Approach to Conditioned Slicing. In: WCRE 2002, pp. 109–118 (2002)

Path-Sensitive Backward Slicing 247

7. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall Series in Automatic Computa-
tion. Prentice-Hall (1976)

8. Field, J., Ramalingam, G., Tip, F.: Parametric Program Slicing. In: POPL 1995, pp. 379–392
(1995)

9. Fischer, J., Jhala, R., Majumdar, R.: Joining Dataflow with Predicates. In: ESEC/FSE-13, pp.
227–236 (2005)

10. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from Proofs. In:
POPL 2004, pp. 232–244 (2004)

11. Horwitz, S., Reps, T., Binkley, D.: Interprocedural Slicing using Dependence Graphs. In:
PLDI 1988, pp. 35–46 (1988)

12. Jaffar, J., Navas, J.A., Santosa, A.E.: Unbounded Symbolic Execution for Program Verifi-
cation. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 396–411. Springer,
Heidelberg (2012)

13. Jaffar, J., Santosa, A.E., Voicu, R.: Efficient Memoization for Dynamic Programming with
Ad-hoc Constraints. In: AAAI 2008, pp. 297–303 (2008)

14. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: TRACER: A Symbolic Execution Tool for
Verification. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 758–
766. Springer, Heidelberg (2012)

15. Lalire, G., Argoud, M., Jeannet, B.: The Interproc Analyzer (2009),
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc

16. McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: Touili, T., Cook,
B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer, Heidelberg (2010)

17. Seo, S., Yang, H., Yi, K.: Automatic Construction of Hoare Proofs from Abstract Interpre-
tation Results. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 230–245. Springer,
Heidelberg (2003)

18. Snelting, G., Robschink, T., Krinke, J.: Efficient Path Conditions in Dependence Graphs for
Software Safety Analysis. In: TOSEM 2006, vol. 15, pp. 410–457 (2006)

19. Weiser, M.: Program Slicing. In: ICSE 1981, pp. 439–449 (1981)

http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc

Symbolic Learning of Component Interfaces�

Dimitra Giannakopoulou1, Zvonimir Rakamarić2,��, and Vishwanath Raman3

1 NASA Ames Research Center, USA
dimitra.giannakopoulou@nasa.gov

2 School of Computing, University of Utah, USA
zvonimir.rakamaric@gmail.com

3 Carnegie Mellon University, USA
vishwa.raman@sv.cmu.edu

Abstract. Given a white-box component C with specified unsafe states, we
address the problem of automatically generating an interface that captures safe
orderings of invocations of C ’s public methods. Method calls in the generated
interface are guarded by constraints on their parameters. Unlike previous work,
these constraints are generated automatically through an iterative refinement pro-
cess. Our technique, named PSYCO (Predicate-based SYmbolic COmpositional
reasoning), employs a novel combination of the L* automata learning algorithm
with symbolic execution. The generated interfaces are three-valued, capturing
whether a sequence of method invocations is safe, unsafe, or its effect on the
component state is unresolved by the symbolic execution engine. We have imple-
mented PSYCO as a new prototype tool in the JPF open-source software model
checking platform, and we have successfully applied it to several examples.

1 Introduction

Component interfaces are at the heart of modular software development and reasoning
techniques. Modern components are open building blocks that are reused or connected
dynamically to form larger systems. As a result, component interfaces must step up,
from being purely syntactic, to representing component aspects that are relevant to tasks
such as dynamic component retrieval and substitution, or functional and non-functional
reasoning about systems. This paper focuses on “temporal” interfaces, which capture
ordering relationships between invocations of component methods. For example, for
the NASA Crew Exploration Vehicle (CEV) model discussed in Sec. 7, an interface
prescribes that a lunar lander cannot dock with a lunar orbiter without first jettisoning
the launch abort sub-system. Temporal interfaces are well-suited for components that
exhibit a protocol-like behavior. Control-oriented components, such as NASA control
software, device drivers, and web-services, often fall into this category.

An ideal interface should precisely represent the component in all its intended
usages. In other words, it should include all the good interactions, and exclude all
problematic interactions. Previous work presented approaches for computing temporal
interfaces using techniques such as predicate abstraction [16] and learning [2,11,25].

� This research was supported by the NASA CMU grant NNA10DE60C.
�� The author did this work while at Carnegie Mellon University.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 248–264, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Symbolic Learning of Component Interfaces 249

Our work studies a more general problem: automatic generation of precise temporal in-
terfaces for components that include methods with parameters. Whether a method call
is problematic or not may depend on the actual values passed for its formal parameters.
Therefore, we target the generation of interfaces which, in addition to method orderings,
also include method guards (i.e., constraints on the parameters of the methods), as illus-
trated in Fig. 2. We are not aware of any existing approaches that provide a systematic
and automated way of introducing method guards for temporal interface generation.

Our proposed solution is based on a novel combination of learning with symbolic
execution techniques. In particular, we use the L* [3,23] automata-learning algorithm
to automatically generate a component interface expressed as a finite-state automaton
over the public methods of the component. L* generates approximations of the com-
ponent interface by interacting with a teacher. The teacher uses symbolic execution to
answer queries from L* about the target component, and provides counterexamples to
L* when interface approximations are not precise. The teacher may also detect a need
for partitioning the space of input parameter values based on constraints computed by
the underlying symbolic engine. The alphabet is then refined accordingly, and learn-
ing restarts on the refined alphabet. Several learn-and-refine cycles may occur during
interface generation. The generated interfaces are three-valued, capturing whether a se-
quence of method invocations is safe, unsafe, or its effect on the component state is
unresolved by the underlying symbolic execution engine.

We have implemented our approach within the JPF (Java Pathfinder) software veri-
fication toolset [20]. JPF is an open-source project developed at the NASA Ames Re-
search Center. The presented technique is implemented as a new tool called PSYCO in
the JPF projectjpf-psyco. We have applied PSYCO to learn component interfaces of
several realistic examples that could not be handled automatically and precisely using
previous approaches. Our main contributions are summarized as follows:

– This work is the first to combine learning and symbolic techniques for temporal
interface generation, including method guards. The automated generation and re-
finement of these guards is based on constraints that are computed by symbolic
execution. A significant challenge, which our proposed algorithm addresses, is to
develop a refinement scheme that guarantees progress and termination.

– We use three-valued automata to account for potential incompleteness of the un-
derlying analysis technique. These automata record precisely whether a sequence
of method invocations is safe, unsafe, or unresolved. As a result, subsequent alter-
native analyses can be targetted to unresolved paths.

– We implemented the approach in an open-source and extensible tool within JPF and
successfully applied it to several realistic examples.

Related Work. Interface generation for white-box components has been studied ex-
tensively in the literature (e.g., [16,2,11,25]). However, as discussed, we are not aware
of any existing approach that provides a systematic and automated way of refining the
interface method invocations using constraints on their parameters.

Automatically creating component models for black-box components is a related
area of research. For methods with parameters, abstractions are introduced that map
alphabet symbols into sets of concrete argument values. A set of argument values rep-
resents a partition, and is used to invoke a component method. In the work by Aarts

250 D. Giannakopoulou, Z. Rakamarić, and V. Raman

et al. [1], abstractions are user-defined. Hower et al. [18] discover such abstraction map-
pings through an automated refinement process. In contrast to these works, availability
of the component source code enables us to generate guards that characterize precisely
each method partition, making the generated automata more informative. MACE [8]
combines black- and white-box techniques to discover concrete input messages that
generate new system states. These states are then used as initial states for symbolic ex-
ploration on component binaries. The input alphabet is refined based on a user-provided
abstraction of output messages. MACE focuses on increasing path coverage to discover
bugs, rather than generating precise component interfaces, as targeted here.

Interface generation is also related to assumption generation for compositional veri-
fication, where several learning-based approaches have been proposed [22,15,7,6]. A
type of alphabet refinement developed in this context is geared towards computing
smaller assumption alphabets that guarantee compositional verification achieves con-
clusive results [10,5]. None of these works address the automatic generation of method
guards in the computed interfaces/assumptions. Finally, recent work on the analysis of
multi-threaded programs for discovering concurrency bugs involves computing traces
and preconditions that aid component interface generation [4,19]. However, the data
that these works generate is limited, and cannot serve the purpose of temporal interface
generation, as presented in this paper.

2 Motivating Example

Our motivating example is the PipedOutputStream class taken from the java.io package.
Similar to previous work [2,25], we removed unnecessary details from the example;
Fig. 1 shows the simplified code. The example has one private field sink of type Piped-
InputStream, and four public methods called connect, write, flush, and close. Throwing
exceptions is modeled by asserting false, denoting an undesirable error state.

The class initializes field sink to null. Method connect takes a parameter snk of type
PipedInputStream, and goes to an error state (i.e., throws an exception) either if snk
is null or if one of the streams has already been connected; otherwise, it connects the
input and output streams. Method write can be called only if sink is not null, otherwise
an error state is reached. Methods flush and close have no effect when sink is null, i.e.,
they do not throw an exception.

Fig. 2 shows on the right the interface generated with PSYCO for this example. Note
that, as described in Section 4, PSYCO currently only handles basic types. Therefore,
we transformed the example in Figure 1 accordingly. The interface captures the fact
that flush and close can be invoked unconditionally, whereas write can only occur after
a successful invocation of connect. The guard snk 	= null∧ snk.connected = false, over
the parameter snk of the method connect, captures the condition for a successful con-
nection. Without support for guards in our component interfaces, we would obtain the
interface shown on the left. This interface allows only methods that can be invoked un-
conditionally, i.e., close and flush. Method connect is blocked from the interface since
it cannot be called unconditionally. Since connect cannot be invoked, write is blocked
as well. Clearly, the interface on the left, obtained using existing interface generation
techniques, precludes several legal sequences of method invocations. In existing ap-
proaches, a user is expected to manually define a refinement of the component methods

Symbolic Learning of Component Interfaces 251

class PipedOutputStream {
PipedInputStream sink = null;

public void connect(
PipedInputStream snk) {

if (snk == null) {
assert false;

} else if (sink != null ||
snk.connected) {

assert false;
}
sink = snk;
snk.connected = true;

}
}

public void write() {
if (sink == null) {

assert false;
} else {...}

}

public void flush() {
if (sink != null) {...}

}

public void close() {
if (sink != null) {...}

}
}

Fig. 1. Motivating example

0 π

close

flush

connect

write

1

π

0

close[true]flush[true]

write[true]

connect[snk 	= null ∧
snk.connected = false]

connect[snk = null ∨
snk.connected 	= false]

close[true]

write[true]

flush[true]
connect[true]

Fig. 2. Interfaces for our motivating example. On the left, there is no support for guards, while
on the right, PSYCO is used to generate guards. Initial states are marked with arrows that have no
origin; error states are marked with π . Edges are labelled with method names (with guards, when
applicable).

to capture these additional legal behaviors. Our approach performs such a refinement
automatically. Therefore, support for automatically generating guards enables PSYCO

to generate richer and more precise component interfaces for components that have
methods with parameters.

3 Preliminaries

Labeled Transition Systems (LTS). We use deterministic LTSs to express temporal
component interfaces. Symbols π and υ denote a special error and unknown state,
respectively. The former models unsafe states and the latter captures the lack of knowl-
edge about whether a state is safe or unsafe. States π and υ have no outgoing transitions.

A deterministic LTS M is a four-tuple 〈Q,αM,δ ,q0〉 where: 1) Q is a finite non-
empty set of states, 2) αM is a set of observable actions called the alphabet of M,

252 D. Giannakopoulou, Z. Rakamarić, and V. Raman

3) δ : (Q×αM) �→Q is a transition function, and 4) q0 ∈Q is the initial state. LTS M is
complete if each state except π and υ has outgoing transitions for every action in αM.

A trace, also called execution or word, of an LTS M is a finite sequence of observable
actions that label the transitions that M can perform starting from its initial state. A
trace is illegal if it leads M to state π , unknown if it leads M to state υ , and legal
otherwise. The illegal (resp. unknown, legal) language of M, denoted as Lillegal (M)
(resp. Lunknown (M), Llegal (M)), is the set of illegal (resp. unknown, legal) traces of M.

Three-Valued Automata Learning with L*. We use an adaptation [7] of the classic
L* learning algorithm [3,23], which learns a three-valued deterministic finite-state au-
tomaton (3DFA) over some alphabet Σ . In our setting, learning is based on partitioning
the words over Σ into three unknown regular languages L1, L2, and L3, with L* us-
ing this partition to infer an LTS with three values that is consistent with the partition.
To infer an LTS, L* interacts with a teacher that answers two types of questions. The
first type is a membership query that takes as input a string σ ∈ Σ∗ and answers true
if σ ∈ L1, false if σ ∈ L2, and unknown otherwise. The second type is an equivalence
query or conjecture, i.e., given a candidate LTS M whether or not the following holds:
Llegal (M) = L1, Lillegal (M) = L2, and Lunknown (M) = L3. If the above conditions hold
of the candidate M, then the teacher answers true, at which point L* has achieved its
goal and returns M. Otherwise, the teacher returns a counterexample, which is a string
σ that invalidates one of the above conditions. The counterexample is used by L* to
drive a new round of membership queries in order to produce a new, refined, candidate.
Each candidate M that L* constructs is smallest, meaning that any other LTS consis-
tent with the information provided to L* up to that stage has at least as many states as
M. Given a correct teacher, L* is guaranteed to terminate with a minimal (in terms of
numbers of states) LTS for L1, L2, and L3.

Symbolic Execution. Symbolic execution is a static program analysis technique for
systematically exploring a large number of program execution paths [21]. It uses sym-
bolic values as program inputs in place of concrete (actual) values. The resulting out-
put values are then statically computed as symbolic expressions (i.e., constraints), over
symbolic input values and constants, using a specified set of operators. A symbolic
execution tree, or constraints tree, characterizes all program execution paths explored
during symbolic execution. Each node in the tree represents a symbolic state of the
program, and each edge represents a transition between two states. A symbolic state
consists of a unique program location identifier, symbolic expressions for the program
variables currently in scope, and a path condition defining conditions (i.e., constraints)
that have to be satisfied in order for the execution path to this state to be taken. The
path condition describing the current path through the program is maintained during
symbolic execution by collecting constraints when conditional statements are encoun-
tered. Path conditions are checked for satisfiability using a constraint solver to establish
whether the corresponding execution path is feasible.

4 Components and Interfaces

Components and Methods. A component is defined by the grammar in Fig. 3. A com-
ponent C has a set of global variables representing internal state and a set of one or

Symbolic Learning of Component Interfaces 253

Component ::= class Ident { Global∗ Method+ }
Method ::= Ident (Parameters) { Stmt }
Global ::= Type Ident;

Arguments ::= Arguments, Expr | ε
Parameters ::= Pararameters, Parameter | ε
Parameter ::= Type Ident

Stmt ::= Stmt; Stmt

| Ident = Expr

| assert Expr

| if Expr then Stmt else Stmt

| while Expr do Stmt

| return Expr

Fig. 3. Component grammar. Ident, Expr, and Type have the usual meaning.

more methods. Furthermore, components are sequential. For simplicity of exposition,
we assume there is no recursion, and all method calls are inlined. Note, however, that
our implementation handles calls without inlining. Moreover, as customary, our sym-
bolic execution engine unrolls recursion to a bounded depth. We also assume the usual
statement semantics. We expect that all unsafe states are implied by assert statements.
Let Ids be the set of component method identifiers (i.e., names), Stmts the set of all
component statements, and Prms the set of all input parameters of component methods.
We define the signature Sigm of a method m as a pair 〈Idm,Pm〉 ∈ Ids× 2Prms; we write
Idm(Pm) for the signature Sigm of the method m. A method m is then defined as a pair
〈Sigm,sm〉 where sm ∈ Stmts is its top-level statement.

Let M be the set of methods in a component C and G be the set of its global vari-
ables. For every method m∈M , each parameter p∈ Pm takes values from a domain Dp

based on its type; similarly for global variables. We expect that all method parameters
are of basic types. Given a method m ∈M , an execution θ ∈ Stmts∗ of m is a finite
sequence of visited statements s1s2 . . . sn where s1 is the top-level method statement sm.
The set Θm ∈ 2Stmts∗ is the set of all unique executions of m. We assume that each exe-
cution θ ∈Θm of a method visits a bounded number of statements (i.e., |θ | is bounded),
and also that the number of unique executions is bounded (i.e., |Θm| is bounded); in
other words, the methods have no unbounded loops. Again, in our implementation,
loops are unrolled to a bounded depth, as is customary in symbolic execution. A valu-
ation over Pm, denoted [Pm], is a function that assigns to each parameter p ∈ Pm a value
in Dp. We denote a valuation over variables in G with [G]. We take [Gi] as the valuation
representing the initial values of all global variables. Given valuations [Pm] and [G], we
assume that the execution of m visits exactly the same sequence of statements; in other
words, the methods are deterministic.

Symbolic Expressions. We interpret all method parameters symbolically, using the
name of each parameter as its symbolic name; we abuse notation and take Prms to also
denote the set of symbolic names. A symbolic expression e is defined as follows:

e ::= C | p | (e ◦ e),

where C is a constant, p ∈ Prms a parameter, and ◦ ∈ {+,−,∗,/,%} an arithmetic
operator. The set of constants in an expression may include constants that are used in
statements or the initial values of component state variables in [Gi].

254 D. Giannakopoulou, Z. Rakamarić, and V. Raman

Constraints. We define a constraint ϕ as follows:

ϕ ::= true | false | e ⊕ e | ϕ ∧ ϕ | ϕ ∨ ϕ ,

where⊕ ∈ {<,>,=,≤,≥} is a comparison operator.

Guards. Given a method signature m = 〈Idm,Pm〉, a guard γm is defined as a constraint
that only includes parameters from Pm.

Interfaces. Previous work uses LTSs to describe temporal component interfaces. How-
ever, as described in Sec. 2, a more precise interface ideally also uses guards to capture
constraints on method input parameters.

We define an interface LTS, or iLTS, to take into account guards, as follows. An iLTS
is a tuple A = 〈M,S ,Γ ,Δ 〉, where M = 〈Q,αM,δ ,q0〉 is a deterministic and complete
LTS, S a set of method signatures, Γ a set of guards for method signatures in S , and
Δ : αM �→S ×Γ a function that maps each a ∈ αM into a method signature m ∈S
and a guard γm ∈ Γ . In addition, the mapping Δ is such that the set of all guards for a
given method signature form a partition of the input space of the corresponding method.
Let Γm = {γ | ∃a ∈ αM.Δ(a) = (m,γ)} be the set of guards belonging to a method m.
More formally, the guards for a method are (1) non-overlapping:

∀a,b∈ αM, γa,γb ∈Γ , m ∈S . a 	= b∧Δ(a) = (m,γa)∧Δ(b) = (m,γb)⇒¬γa∨¬γb,

(2) cover all of the input space: ∀m ∈S .
∨

γ∈Γm
γ = true, and (3) are non-empty.

Given an iLTS A = 〈M,S ,Γ ,Δ〉, an execution of A is a sequence of pairs σ =
(m0,γm0),(m1,γm1), . . . ,(mn,γmn), where for 0 ≤ i ≤ n, pair (mi,γmi) consists of a
method signature mi ∈ S and its corresponding guard γmi . Every execution σ has a
corresponding trace a0,a1, . . . ,an in M such that for 0 ≤ i≤ n, Δ(ai) = (mi,γmi). Then
σ is a legal (resp. illegal, unknown) execution in A, if its corresponding trace in M is le-
gal (resp. illegal, unknown). Based on this distinction, we define Llegal (A), Lillegal (A),
and Lunknown (A) as the sets of legal, illegal, and unknown executions of A, respectively.

An iLTS A = 〈M,S ,Γ ,Δ〉 is an interface for a component C if S is a subset of
method signatures of the methods M in C . However, not all such interfaces are accept-
able and a notion of interface correctness also needs to be introduced. Traditionally,
correctness of an interface for a component C is associated with two characteristics:
safety and permissiveness, meaning that the interface blocks all erroneous and allows
all good executions (i.e., executions that do not lead to an error) of C , respectively. A
full interface is then an interface that is both safe and permissive [16].

We extend this definition to iLTSs as follows. Let iLTS A be an interface for a compo-
nent C . An execution σ = (m0,γm0),(m1,γm1), . . . ,(mn,γmn) of A then represents every
concrete sequence σc = (m0, [Pm0]),(m1, [Pm1]), . . . ,(mn, [Pmn]) such that for 0 ≤ i ≤ n,
[Pmi] satisfies γmi . Each such concrete sequence defines an execution of the component
C . We say an execution of a component is illegal if it results in an assertion viola-
tion; otherwise, the execution is legal. Then, A is a safe interface for C if for every
execution σ ∈Llegal (A), we determine that all the corresponding concrete executions
of component C are legal. It is permissive if for every execution σ ∈ Lillegal (A), we
determine that all the corresponding concrete executions of component C are illegal.
Finally, A is tight if for every execution σ ∈Lunknown (A), we cannot determine whether

Symbolic Learning of Component Interfaces 255

symbolic interpreter /
alphabet refiner

membership query: is sequence σ legal?

equivalence query: Mi represents full interf.?

true/ false/unknown

false + cex

refined

L*

true
create/invoke

membership queries

refined

new alphabet / restart learning

Teacher

<Mi ,S , , >

alphabet
refiner

Fig. 4. PSYCO framework during iteration i of learning algorithm

the corresponding concrete executions of component C are legal or illegal; this explic-
itly captures possible incompleteness of the underlying analysis technique. To conclude,
we say A is full if it is safe, permissive, and tight. Moreover, we say A is k-full for some
k ∈ IN if it is safe, permissive, and tight for all method sequences of length up to k.

5 Symbolic Interface Learning

Let C be a component and S the set of signatures of a subset of the methods M in C .
Our goal is to automatically compute an interface for C as an iLTS A = 〈M,S ,Γ ,Δ 〉.
We achieve this through a novel combination of L* to generate LTS M, and symbolic
execution to compute the set of guards Γ and the mapping Δ . The termination crite-
rion for symbolic execution is that all paths be characterized as either legal, illegal or
unknown.

At a high level, our proposed framework operates as follows (see Fig. 4).
It uses L* to learn an LTS over an alphabet that initially corresponds to
a set of signatures S of the methods of C . For our motivating exam-
ple, we start with the alphabet αM = {close,flush,connect,write}, set of sig-
natures S = {close(),flush(),connect(snk),write()}, and Δ such that Δ(close) =
(close(), true), Δ(flush) = (flush(), true), Δ(connect) = (connect(snk), true), and
Δ(write) = (write(), true). As mentioned earlier, L* interacts with a teacher that re-
sponds to its membership and equivalence queries. A membership query over the al-
phabet αM is a sequence σ = a0,a1, . . . ,an such that for 0 ≤ i ≤ n, ai ∈ αM. Given a
query σ , the teacher uses symbolic execution to answer the query. The semantics of ex-
ecuting a query in this context corresponds to exercising all paths through the methods
in the query sequence, subject to satisfying the guards returned by the map Δ . When-
ever the set of all paths through the sequence can be partitioned into proper subsets that
are safe, lead to assertion violations, or to limitations of symbolic execution that prevent
further exploration, we refine guards to partition the input space of the methods in the
query sequence. We call this process alphabet refinement.

256 D. Giannakopoulou, Z. Rakamarić, and V. Raman

For our motivating example, the sequence σ = connect will trigger refinement of
symbol connect. As illustrated in Fig. 2, the input space of method connect must be
partitioned into the case where: (1) snk 	= null∧ snk.connected = false, which leads to
safe executions, and (2) the remaining inputs, which lead to unsafe executions. When
a method is partitioned, we replace the symbol in αM corresponding to the refined
method with a fresh symbol for each partition, and the learning process is restarted
with the new alphabet. For example, we partition the symbol connect into connect 1
and connect 2, corresponding to the two cases above, before we restart learning. The
guards that define the partitions are stored in Γ , and the mapping from each new symbol
to the corresponding method signature and guard is stored in Δ .

Algo. 1. Learning an iLTS for a component
Input: A set of method signatures S of a component C .
Output: An iLTS A = 〈M,S ,Γ ,Δ〉.
1: αM ← /0, Γ ← {true}
2: for all m ∈S do
3: a← CreateSymbol()
4: αM ← αM∪{a}
5: Δ (a)← (m,true)
6: loop
7: AlphabetRefiner.init(αM,Δ)
8: SymbolicInterpreter.init(
9: αM,AlphabetRefiner)

10: Teacher.init(Δ ,SymbolicInterpreter)
11: Learner.init(αM,Teacher)
12: M ← Learner.learnAutomaton()
13: if M = null then
14: (αM,Γ ,Δ)
15: ← AlphabetRefiner.getRefinement()
16: else
17: return A = 〈M,S ,Γ ,Δ〉

Algo. 1 is the top-level algorithm implemented by our interface generation frame-
work. First, we initialize the alphabet αM and the set of guards Γ on line 1. Then, we
create a fresh symbol a for every method signature m, and use it to populate the al-
phabet αM and the mapping Δ (lines 2–5). The main loop of the algorithm learns an
interface for the current alphabet; the loop either refines the alphabet and reiterates, or
produces an interface and terminates. In the loop, an alphabet refiner is initialized on
line 7, and is passed as an argument for the initialization of the SymbolicInterpreter on
line 9. The SymbolicInterpreter is responsible for invoking the symbolic execution en-
gine and interpreting the obtained results. It may, during this process, detect the need for
alphabet refinement, which will be performed through invocation of AlphabetRefiner.
We initialize a teacher with the current alphabet and the SymbolicInterpreter on line 10,
and finally a learner with this teacher on line 11. The learning process then takes place
to generate a classical LTS M (line 12). When learning produces an LTS M that is not
null, then an iLTS A is returned that consists of M and the current guards and mapping,
at which point the framework terminates (line 17). If M is null, it means that refinement

Symbolic Learning of Component Interfaces 257

void main(PipedInputStream snk) {
assume true; close();
assume snk != null && snk.connected == false; connect(snk);
assume true; write();

}

Fig. 5. The generated program Pσ for the query sequence σ = close,connect 1,write, where
Δ (close) = (close(),true), Δ (connect 1) = (connect(snk),snk 	= null∧ snk.connected = false),
and Δ (write) = (write(),true).

took place during learning. We obtain the new alphabet, guards, and mapping from the
AlphabetRefiner (line 15) and start a new learn-refine iteration.

Teacher. As discussed in Sec. 3, the teacher responds to membership and equivalence
queries produced by L*. Given a membership query σ = a0,a1, . . . ,an, the symbolic
teacher first generates a program Pσ . For each symbol ai in the sequence, Pσ invokes
the corresponding method mi while assuming its associated guard γmi using an assume
statement. The association is provided by the current mapping Δ , i.e., Δ(ai) = (mi,γmi).
The semantics of statement assume Expr is that it behaves as skip if Expr evaluates to
true; otherwise, it blocks the execution. This ensures that symbolic execution considers
only arguments that satisfy the guard, and ignores all other values.

For the example of Fig. 1, let σ = close,connect 1,write be a query,
where Δ(close) = (close(), true), Δ(connect 1) = (connect(snk),snk 	= null ∧
snk.connected = false), and Δ(write) = (write(), true). Fig. 5 gives the generated pro-
gram Pσ for this query. Such a program is then passed to the SymbolicInterpreter that
performs symbolic analysis and returns one of the following: (1) TRUE corresponding
to a true answer for learning, (2) FALSE corresponding to a false answer, (3) UNKNOWN
corresponding to an unknown answer, and (4) REFINED, reflecting the fact that alphabet
refinement took place, in which case the learning process must be interrupted, and the
learner returns an LTS M = null.

An equivalence query checks whether the conjectured iLTS A = 〈M,S ,Γ ,Δ 〉, with
M = 〈Q,αM,δ ,q0〉, is safe, permissive, and tight. One approach to checking these
three properties would be to encode the interface as a program, similar to the program
for membership queries. During symbolic execution of this program, we would check
whether the conjectured iLTS correctly characterizes legal, illegal, and unknown uses
of the component. However, conjectured interfaces have unbounded loops; symbolic
techniques handle such loops through bounded unrolling. We follow a similar process,
but rather than having the symbolic engine unroll loops, we reduce equivalence queries
to membership queries of bounded depth. Note that this approach, similar to loop un-
rolling during symbolic execution, is not complete in general. However, even in cases
where we face incompleteness, we provide useful guarantees of the generated iLTS.

In order to provide guarantees of the generated interface to some depth k, we proceed
as follows. During a depth-first traversal of M to depth k, whenever we reach state π
or υ , we generate the sequence σ that leads to this state, where σ = a0,a1, . . . ,an−1,an

in Lillegal (M) or Lunknown (M), respectively. Moreover, we generate the sub-sequence
σL = a0,a1, . . . ,an−1, knowing σL ∈ Llegal (M), since π and υ have no outgoing

258 D. Giannakopoulou, Z. Rakamarić, and V. Raman

transitions (Lillegal (M) and Lunknown (M) are suffix-closed). Whenever depth k is
reached during traversal, and the state reached is not π and not υ , we generate the se-
quence σ = a0,a1, . . . ,ak (with σ ∈Llegal (M)) leading to this state. In other words, we
generate all legal sequences in Llegal (M) of depth exactly k, all sequences in Lillegal (M)
and Lunknown (M) of depth less than or equal to k, as well as the largest prefix of each
generated illegal and unknown sequence that is in Llegal (M).

Every generated sequence σ is then queried using the algorithm for membership
queries. Since Llegal (M) is prefix-closed, and Lillegal (M) and Lunknown (M) are suffix-
closed, the generated queries are sufficient to check the conjectured interface to depth
k, as shown in the technical memorandum [12]. If the membership query for σ re-
turns REFINED, learning is restarted since the alphabet has been refined. Furthermore,
if the membership query for a sequence σ ∈ Llegal (M) (resp. σ ∈ Lillegal (M), σ ∈
Lunknown (M)) does not return TRUE (resp. FALSE, UNKNOWN), the corresponding inter-
face is not full and σ is returned to L* as a counterexample to the equivalence query.
Otherwise, the interface is guaranteed to be k-full, i.e., safe, permissive, and tight up to
depth k.

Symbolic Interpreter. Algo. 2 shows the algorithm implemented in
SymbolicInterpreter and called by the teacher. The algorithm invokes a symbolic
execution engine, and interprets its results to determine answers to queries. The input
to Algo. 2 is a program Pσ as defined above, and a set of symbols Σ . The output is
either TRUE, FALSE, or UNKNOWN, if no alphabet refinement is needed, or REFINED,
which reflects that alphabet refinement took place.

Algo. 2 starts by executing Pσ symbolically (line 1), treating main method param-
eters (e.g., snk in Fig. 5) as symbolic inputs. Every path through the program is then
characterized by a path constraint, denoted by pc. A pc is a constraint over symbolic
parameters, with each conjunct in the constraint stemming from a conditional state-
ment encountered along the path; a path constraint precisely characterizes a path taken
through the program. A constraint partitions the set of all valuations over input param-
eters of the program (i.e., input parameters of the called component methods) into the
set of valuations that satisfy the constraint and the set of valuations that do not satisfy
the constraint. We denote a set of path constraints as PC.

We define a map ρ : PC �→ {error,ok,unknown} which, given a path constraint
pc ∈ PC, returns error (resp. ok) if the corresponding path represents an erroneous
(resp. good) execution of the program; otherwise, ρ returns unknown. Mapping pc to
unknown represents a case when the path constraint cannot be solved by the underlying
constraint solver used by the symbolic execution engine. Symbolic execution returns a
set of path constraints PC and the mapping ρ , which are then interpreted by the algo-
rithm to determine the answer to the query.

After invoking symbolic execution, the algorithm initializes three constraints (ϕ err

for error, ϕ ok for good, and ϕ unk for unknown paths) to false on line 2. The loop on
lines 3–9 iterates over path constraints pc ∈ PC, and based on whether pc maps into
error, ok, or unknown, adds pc as a disjunct to either ϕ err, ϕ ok, or ϕ unk, respectively.
Let SAT : Φ �→ B, where Φ is the universal set of constraints, be a predicate such that
SAT(ϕ) holds if and only if the constraint ϕ is satisfiable. In lines 10–15, the algorithm

Symbolic Learning of Component Interfaces 259

Algo. 2 . Symbolic interpreter

Input: Program Pσ and set of symbols Σ .
Output: TRUE, FALSE, UNKNOWN, or REFINED.
1: (PC,ρ)← SymbolicallyExecute(Pσ)
2: ϕ err ← ϕ ok ← ϕ unk ← false
3: for all pc ∈ PC do
4: if ρ(pc) = error then
5: ϕ err ← ϕ err ∨ pc
6: else if ρ(pc) = ok then
7: ϕ ok ← ϕ ok ∨ pc
8: else
9: ϕ unk ← ϕ unk ∨ pc

10: if ¬(SAT(ϕ err)∨SAT(ϕ unk)) then
11: return TRUE

12: else if ¬(SAT(ϕ ok)∨SAT(ϕ unk)) then
13: return FALSE

14: else if ¬(SAT(ϕ err)∨SAT(ϕ ok)) then
15: return UNKNOWN

16: else
17: Σnew←AlphabetRefiner.refine(ϕ err,ϕ unk)
18: if |Σnew|= |Σ | then
19: return UNKNOWN

20: else
21: return REFINED

Algo. 3 . Symbolic alphabet refinement

Input: Set of symbols Σ , mapping Δ , and
constraints ϕ err, ϕ unk.

Output: Refinement Σnew, Γnew, Δnew.
1: Σnew ← Γnew ← /0
2: for all a ∈ Σ do
3: (m,γ)← Δ (a)
4: ϕ err

m ←Πm(ϕ err)
5: ϕ unk

m ← γ ∧¬ϕ err
m ∧Πm(ϕ unk)

6: if ¬MP(ϕ err
m)∧¬MP(ϕ unk

m) then
7: ϕ ok

m ← γ ∧¬ϕ err
m ∧¬ϕ unk

m
8: if SAT(ϕ err

m) then
9: aerr ← CreateSymbol()

10: Σnew ← Σnew∪{aerr}
11: Γnew ← Γnew∪{ϕ err

m }
12: Δnew(aerr)← (m,ϕ err

m)
13: if SAT(ϕ unk

m) then
14: aunk ← CreateSymbol()
15: Σnew ← Σnew∪{aunk}
16: Γnew ← Γnew∪{ϕ unk

m }
17: Δnew(aunk)← (m,ϕ unk

m)
18: if SAT(ϕ ok

m) then
19: aok ← CreateSymbol()
20: Σnew ← Σnew∪{aok}
21: Γnew ← Γnew∪{ϕ ok

m }
22: Δnew(aok)← (m,ϕ ok

m)
23: else
24: Σnew ← Σnew∪{a}
25: Γnew ← Γnew∪{γ}
26: Δnew(a)← (m,γ)
27: return Σnew,Γnew,Δnew

returns TRUE if all paths are good paths (i.e., if there are no error and unknown paths),
FALSE if all paths are error paths, or UNKNOWN if all paths are unknown paths.

Otherwise, alphabet refinement needs to be performed; method refine of the
AlphabetRefiner is invoked, which returns the new alphabet Σnew (line 17). If no new
symbols have been added to the alphabet, no methods have been refined. This can only
happen if all potential refinements involve mixed-parameter constraints. Informally, a
constraint is considered mixed-parameter if it relates symbolic parameters from mul-
tiple methods. As explained in Algo. 3, dealing with mixed parameters precisely is
beyond the scope of this work. Therefore, Algo. 2 returns UNKNOWN. Otherwise, refine-
ment took place, and Algo. 2 returns REFINED.

Symbolic Alphabet Refinement. The SymbolicInterpreter invokes the refinement al-
gorithm using method refine of the AlphabetRefiner. The current alphabet, mapping,
and constraints ϕ err and ϕ unk computed by the SymbolicInterpreter, are passed as in-
puts. Method refine implements Algo. 3.

260 D. Giannakopoulou, Z. Rakamarić, and V. Raman

In Algo. 3, the new set of alphabet symbols Σnew and guards Γnew are initialized on
line 1. The loop on lines 2–26 determines, for every alphabet symbol, whether it needs
to be refined, in which case it generates the appropriate refinement. Let Δ(a) = (m,γ).
An operator Πm is then used to project ϕ err on the parameters of m (line 4). When
applied to a path constraint pci, Πm erases all conjuncts that don’t refer to a symbolic
parameter of m. If no conjunct remains, then the result is false. For a disjunction of
path constraints ϕ = pc1∨ . . .∨ pcn (such as ϕ err or ϕ unk), Πm(ϕ) = Πm(pc1)∨ . . .∨
Πm(pcn). For example, if m = 〈foo,{x,y}〉, then Πm((s = t) ∨ (x < y) ∨ (s ≤ z ∧ y =
z)) �→ false ∨ (x < y) ∨ (y = z), which simplifies to (x < y) ∨ (y = z).

We compute ϕ unk
m on line 5. At that point, we check whether either ϕ err

m or ϕ unk
m

involve mixed-parameter constraints (line 6). This is performed using a predicate MP :
Φ �→ B, where Φ is the universal set of constraints, defined as follows: MP(ϕ) holds
if and only if |Mthds(ϕ)| > 1. The map Mthds : Φ �→ 2M maps a constraint ϕ ∈ Φ
into the set of all methods that have parameters occurring in ϕ . Dealing with mixed-
parameter constraints in a precise fashion would require more expressive automata, and
is beyond the scope of this paper. Therefore, refinement proceeds for a symbol only
if mixed-parameter constraints are not encountered in ϕ err

m and ϕ unk
m . Otherwise, the

current symbol is simply added to the new alphabet (lines 24–26).
We compute ϕ ok

m on line 7 in terms of ϕ err
m and ϕ unk

m , so it does not contain mixed-
parameter constraints either. Therefore, when the algorithm reaches this point, all of
ϕ err

m , ϕ unk
m , ϕ ok

m represent potential guards for the method refinement. Note that ϕ err
m ,

ϕ unk
m , and ϕ ok

m are computed in such a way that they partition the input space of the
method m, if it gets refined. A fresh symbol is subsequently created for each guard that
is satisfiable (lines 8, 13, 18), We update Σnew, Γnew, and Δnew with the fresh symbol
and its guard. In the end, the algorithm returns the new alphabet. The computed guards
and mapping are stored in local fields that can be accessed through the getter method
getRefinement() of the AlphabetRefiner (see Algo. 1, line 15).

6 Correctness and Guarantees

Prior to the application of our framework, loops and recursion are unrolled a bounded
number of times. Consequently, our correctness arguments assume that methods have
a finite number of paths. Proofs of our theorems appear in the technical memoran-
dum [12].

We begin by showing correctness of the teacher for L*. In the following lemma, we
prove that the program Pσ that we generate to answer a query σ captures all possible
concrete sequences for σ . The proof follows from the structure of Pσ .

Lemma 1. (Correctness of Pσ). Given a component C and a query σ on C , the set of
executions of C driven by Pσ is equal to the set of concrete sequences for σ .

The following theorem shows that the teacher correctly responds to membership
queries. The proof follows from the finiteness of paths taken through a component and
from an analysis of Algo. 2.

Theorem 1. (Correctness of Answers to Membership Queries). Given a component
C and a query σ , the teacher responds TRUE (resp. FALSE, UNKNOWN) if and only if all
executions of C for σ are legal (resp. illegal, cannot be resolved by the analysis).

Symbolic Learning of Component Interfaces 261

Next, we show that the teacher correctly responds to equivalence queries up to depth
k. The proof follows from our reduction of equivalence queries to membership queries
that represent all sequences of length ≤ k of the conjectured iLTS.

Theorem 2. (Correctness to Depth k of Answers to Equivalence Queries). Let M be
an LTS conjectured by the learning process for some component C , Γ the current set of
guards, and Δ the current mapping. If an equivalence query returns a counterexample,
A = 〈M,S ,Γ ,Δ 〉 is not a full interface for C . Otherwise, A is k-full.

In proving progress and termination of our framework, we use Lemma 2, which is a
property of L*, and Lemma 3, which is a property of our alphabet refinement.

Lemma 2. (Termination of Learning). If the unknown languages are regular, then L*
is guaranteed to terminate.

Lemma 3. (Alphabet Partitioning). Algo. 3 creates partitions for the alphabet sym-
bols it refines.

Given that the number of paths through a method is bounded, we can have at most as
many guards for the method as the number of these paths, which is bounded. Further-
more, if alphabet refinement is required, Algo. 3 always partitions at least one method.
This leads us to the following theorem.

Theorem 3. (Progress and Termination of Refinement). Alphabet refinement strictly
increases the alphabet size, and the number of possible refinements is bounded.

Finally, we characterize the overall guarantees of our framework with the following
theorem, whose proof follows from Theorem 2, Theorem 3, and Lemma 2.

Theorem 4. (Guarantees of PSYCO). If the behavior of a component C can be char-
acterized by an iLTS, then PSYCO terminates with a k-full iLTS for C .

7 Implementation and Evaluation

We implemented our approach in a tool called PSYCO within the Java Pathfinder
(JPF) open-source framework [20]. PSYCO consists of three new, modular JPF exten-
sions: (1) jpf-learn implements both the standard and the three-valued version of
L*; (2) jpf-jdart is our symbolic execution engine that performs concolic execu-
tion [13,24]; (3) jpf-psyco implements the symbolic-learning framework, including
the teacher for L*. For efficiency, our implementation of L* caches query results in a
MemoizedTable, which is preserved after refinement to enable reuse of previous learn-
ing results. Programs Pσ are generated dynamically by invoking their corresponding
methods using Java reflection. We evaluated our approach on the following examples:

SIGNATURE A class from the java.security package used in a paper by Singh et al. [25].
PIPEDOUTPUTSTREAM A class from the java.io package and our motivating example

(see Fig. 1). Taken from a paper by Singh et al. [25].

262 D. Giannakopoulou, Z. Rakamarić, and V. Raman

Table 1. Experimental results. Time budget is set to one hour. “#Methods” is the number of
component methods (and also the size of the initial alphabet); “k-max” the maximum value of
k explored (i.e., the generated iLTS is k-max-full); “k-min” the smallest value of k for which
our approach converges to the final iLTS that gets generated; “#Conjectures” the total number of
conjectured iLTSs; “#Refinements” the total number of performed alphabet refinements; “#Al-
phabet” the size of the final alphabet; “#States” the number of states in the final iLTS.

Example #Methods k-max k-min #Conjectures #Refinements #Alphabet #States

SIGNATURE 5 7 2 2 0 5 4
PIPEDOUTPUTSTREAM 4 8 2 2 1 5 3
INTMATH 8 1 1 1 7 16 3
ALTBIT 2 35 4 8 3 5 5
CEV-FLIGHTRULE 3 4 3 3 2 5 3
CEV 18 3 3 10 6 24 9

INTMATH A class from the Google Guava repository [14]. It implements arithmetic
operations on integer types.

ALTBIT Implements a communication protocol that has an alternating bit style of be-
havior. Howar et al. [18] use it as a case study.

CEV NASA Crew Exploration Vehicle (CEV) 1.5 EOR-LOR example modeling flight
phases of a space-craft; a Java state-chart model in the JPF distribution under
examples/jpfESAS. We translated the example from state-charts to plain Java.

CEV-FLIGHTRULE Simplified version of the CEV example that exposes a flight rule.

For all experiments, jpf-jdart used the Yices SMT solver [9]. The experiments
were performed on a 2GHz Intel Core i7 laptop with 8GB of memory running Mac
OS X. We budgeted a total of one hour running time for each application, after which
PSYCO was terminated. Using a simple static analysis, PSYCO first checks whether
a component is stateless. For stateless components (e.g., INTMATH), a depth of one
suffices, hence we fix k = 1. For such components, the interface generated by PSYCO

still provides useful information in terms of method guards. The resulting interface
automaton for INTMATH can reach state unknown due to the presence of non-linear
constraints, that cannot be solved using Yices. For all other components, the depth k
for equivalence queries gets incremented whenever no counterexample is obtained after
exhausting exploration of the automaton to depth k. In this way, we are able to report
the maximum depth k-max that we can guarantee for our generated interfaces within
the allocated time of one hour.

Table 1 summarizes the obtained experimental results. The generated interfaces are
shown in [12]. In addition, we inspected the generated interfaces to check whether or not
they correspond to our expected component behavior. For all examples, except CEV,
our technique converges, within a few minutes and with a relatively small k (see column
k-min in the table), to the expected iLTS. The iLTS do not change between k-min and
k-max. Our technique guarantees they are k-max- f ull. In general, users of our frame-
work may increase the total time budget if they require additional guarantees, or may
interrupt the learning process if they are satisfied with the generated interfaces. In all of
our examples the majority of the time was spent in symbolic execution.

Symbolic Learning of Component Interfaces 263

A characteristic of the examples for which PSYCO terminated with a smaller k-max,
such as CEV, is that they involve methods with a significant degree of branching. On
the other hand, PSYCO managed to explore ALTBIT to a large depth because branching
is smaller. This is not particular to our approach, but inherent in any path-sensitive pro-
gram analysis technique. If n is the number of branches in each method, and a program
invokes m methods in sequence, then the number of paths in this program is, in the worst
case, exponential in m∗n. As a result, symbolic analysis of queries is expensive both in
branching within each method as well as in the length of the query. Memoization and
reuse of learning results after refinement helps ameliorate this problem; for CEV, 7800
out of 12002 queries were answered through memoization.

8 Conclusions and Future Work

We have presented the foundations of a novel approach for generating temporal com-
ponent interfaces enriched with method guards. PSYCO produces three-valued iLTS,
with an unknown state reflecting component behavior that was not covered by the un-
derlying analysis. For compositional verification, unknown states can be interpreted
conservatively as errors, or optimistically as legal states, thus defining bounds for the
component interface. Furthermore, alternative analyses can be applied subsequently to
target these unexplored parts. The interface could also be enriched during testing or us-
age of the component. Reuse of previous learning results, similar to what is currently
performed, could make this process incremental.

In the future, we also intend to investigate ways of addressing mixed parameters
more precisely. For example, we plan to combine PSYCO with a learning algorithm for
register automata [17]. This would enable us to relate parameters of different methods
through equality and inequality. Moreover, we will incorporate and experiment with
heuristics both in the learning and the symbolic execution components of PSYCO. Fi-
nally, we plan to investigate interface generation in the context of compositional verifi-
cation.

Acknowledgements. We would like to thank Peter Mehlitz for his help with Java
PathFinder and Neha Rungta for reviewing a version of this paper.

References

1. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communication protocols
using regular inference with abstraction. In: ICTSS, pp. 188–204 (2010)

2. Alur, R., Cerný, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java
classes. In: POPL, pp. 98–109 (2005)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2),
87–106 (1987)

4. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: A complete and automatic lin-
earizability checker. In: PLDI, pp. 330–340 (2010)

5. Chaki, S., Strichman, O.: Three optimizations for assume-guarantee reasoning with L*.
FMSD 32(3), 267–284 (2008)

264 D. Giannakopoulou, Z. Rakamarić, and V. Raman

6. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.: Automated
Assume-Guarantee Reasoning through Implicit Learning. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer, Heidelberg (2010)

7. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning Minimal Separat-
ing DFA’s for Compositional Verification. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

8. Cho, C.Y., Babić, D., Poosankam, P., Chen, K.Z., Wu, E.X., Song, D.: MACE: Model-
inference-assisted concolic exploration for protocol and vulnerability discovery. In: USENIX
Security Symposium (2011)

9. Dutertre, B., Moura, L.D.: The Yices SMT solver. Technical report, SRI International (2006)
10. Gheorghiu, M., Giannakopoulou, D., Păsăreanu, C.S.: Refining Interface Alphabets for Com-

positional Verification. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 292–307. Springer, Heidelberg (2007)

11. Giannakopoulou, D., Păsăreanu, C.S.: Interface Generation and Compositional Verification
in JavaPathfinder. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp.
94–108. Springer, Heidelberg (2009)

12. Giannakopoulou, D., Rakamarić, Z., Raman, V.: Symbolic learning of component interfaces.
Technical report, NASA Ames Research Center (2012)

13. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing. SIGPLAN
Not. 40(6), 213–223 (2005)

14. Guava: Google core libraries, http://code.google.com/p/guava-libraries/
15. Gupta, A., McMillan, K.L., Fu, Z.: Automated Assumption Generation for Compositional

Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 420–432.
Springer, Heidelberg (2007)

16. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: ESEC/FSE, pp. 31–40
(2005)

17. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring Canonical Register Automata. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer,
Heidelberg (2012)

18. Howar, F., Steffen, B., Merten, M.: Automata Learning with Automated Alphabet Abstrac-
tion Refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–
277. Springer, Heidelberg (2011)

19. Joshi, S., Lahiri, S.K., Lal, A.: Underspecified harnesses and interleaved bugs. In: POPL, pp.
19–30 (2012)

20. Java PathFinder (JPF), http://babelfish.arc.nasa.gov/trac/jpf
21. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
22. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.: Learning

to divide and conquer: applying the L* algorithm to automate assume-guarantee reasoning.
FMSD 32(3), 175–205 (2008)

23. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Inf. Com-
put. 103(2), 299–347 (1993)

24. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In: ESEC/FSE,
pp. 263–272 (2005)

25. Singh, R., Giannakopoulou, D., Păsăreanu, C.: Learning Component Interfaces with May and
Must Abstractions. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 527–542. Springer, Heidelberg (2010)

http://code.google.com/p/guava-libraries/
http://babelfish.arc.nasa.gov/trac/jpf

Liveness-Based Pointer Analysis

Uday P. Khedker1, Alan Mycroft2, and Prashant Singh Rawat1

1 Indian Institute of Technology Bombay
{uday,prashantr}@cse.iitb.ac.in

2 University of Cambridge
Alan.Mycroft@cl.cam.ac.uk

Abstract. Precise flow- and context-sensitive pointer analysis (FCPA) is gen-
erally considered prohibitively expensive for large programs; most tools relax
one or both of the requirements for scalability. We argue that precise FCPA has
been over-harshly judged—the vast majority of points-to pairs calculated by ex-
isting algorithms are never used by any client analysis or transformation because
they involve dead variables. We therefore formulate a FCPA in terms of a joint
points-to and liveness analysis which we call L-FCPA. We implemented a naive
L-FCPA in GCC-4.6.0 using linked lists. Evaluation on SPEC2006 showed sig-
nificant increase in the precision of points-to pairs compared to GCC’s analysis.
Interestingly, our naive implementation turned out to be faster than GCC’s anal-
ysis for all programs under 30kLoC. Further, L-FCPA showed that fewer than
4% of basic blocks had more than 8 points-to pairs. We conclude that the usable
points-to information and the required context information is small and sparse
and argue that approximations (e.g. weakening flow or context sensitivity) are
not only undesirable but also unnecessary for performance.

1 Introduction

Interprocedural data flow analysis extends an analysis across procedure boundaries to
incorporate the effect of callers on callees and vice-versa. In order to compute precise
information, such an analysis requires flow sensitivity (associating different information
with distinct control flow points) and context sensitivity (computing different informa-
tion for different calling contexts). The efficiency and scalability of such an analysis
is a major concern and sacrificing precision for scalability is a common trend because
the size of information could be large. Hence precise flow- and context-sensitive pointer
analysis (FCPA) is considered prohibitively expensive and most methods employ heuris-
tics that relax one or both of the requirements for efficiency.

We argue that the precision and efficiency in pointer analysis need not conflict and
may actually be synergistic. We demonstrate this by formulating a liveness-based flow-
and context-sensitive points-to analysis (referred to as L-FCPA): points-to information
is computed only for the pointers that are live and the propagation of points-to informa-
tion is restricted to live ranges of respective pointers. We use strong liveness to discover
pointers that are directly used or are used in defining pointers that are strongly live. This
includes the effect of dead code elimination and is more precise than simple liveness.

Fig. 1 provides a motivating example. Since main prints z, it is live at O12 (exit of
node 12) and hence at I12 (entry of node 12). Thus w becomes live at O9 and hence at

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 265–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

266 U.P. Khedker, A. Mycroft, and P.S. Rawat

main()
{ x = &y;

w = &x;
p();
print z;

}
p()
{ if (...)
{ z = w;

p();
z = ∗z;

}
}

Sm 1

x = &y 2

w = &x 3

c1 4

r1 5

print z 6

Em 7

Sp 8

z = w9

c210

r211

z = ∗z12

Ep 13

Let In/On denote the entry/exit point of
node n. Let (a, b) at a program point u de-
note that a points-to b at u. Then,

– z is live at O9 which make w live at
O3. Hence we should compute (w, x)
in node 3 and thereby (z, x) in node 9.
This causes x to be live because of ∗z
in node 12. Hence we should compute
(x, y) in node 2 and (z, y) in node 12.

– (w, x) and (x, y) should not be propa-
gated to nodes 5, 6, 7 because w, x are
not live in these nodes.

Fig. 1. A motivating example for L-FCPA and its supergraph representation. The solid and dashed
edges represent intraprocedural and interprocedural control flow respectively.

O3 resulting in the points-to pair (w, x) at O3. This pair reaches I9 giving the pair (z, x)
at O9. When this information reaches I12, x becomes live. This liveness is propagated
to O2 giving the pair (x, y). Finally, we get the pair (z, y) at O12. Figures 6 and 7 give
fuller detail of the solution after formulating L-FCPA. Here we highlight the following:

– Use of liveness: points-to pairs are computed only when the pointers become live.
– Sparse propagation: pairs (x, y) and (w, x) are not propagated beyond the call to p

in main because they are not live.
– Flow sensitivity: points-to information is different for different control flow points.
– Context sensitivity: (z, x) holds only for the inner call to p made from within p but

not for the outer call to p made from the main procedure. Thus in spite of z being
live at I6, (z, x) is not propagated to I6 but (z, y) is.

We achieve this using a data flow framework (Section 3) that employs an interdependent
formulation for discovering strongly live pointer variables and their pointees. We com-
pute must-points-to information from may-points-to information without fixed-point
computation. Section 4 uses value-based termination of call strings for precise interpro-
cedural analysis without having to compute a prohibitively large number of call strings.
Section 5 discusses how heap locations, stack locations, and records are handled. After
Section 6 (related work), Section 7 details experimental results which suggest that the
traditional FCPA is non-scalable because it computes and stores (a) an order of magni-
tude more points-to pairs than can ever be used by a client analysis (e.g. pairs for dead
pointers), and (b) a prohibitively large number of redundant contexts.

2 Background

A procedure p is represented by a control-flow graph (CFG). It has a unique entry node
Sp with no predecessor and a unique exit node Ep with no successor; every node n is
reachable from Sp, and Ep is reachable from every n. At the interprocedural level, a

Liveness-Based Pointer Analysis 267

Forward Analysis (Outn depends on Inn) Backward Analysis (Inn depends on Outn)

Inn =

⎧⎨
⎩

BI n = Sp�
m∈pred(n)

Outm otherwise

Outn = fn(Inn)

Inn = fn(Outn)

Outn =

⎧⎨
⎩

BI n = Ep�
m∈succ(n)

Inm otherwise

Fig. 2. Typical data flow equations for some procedure p.

program is represented by a supergraph (e.g. in Fig. 1) which connects the CFGs by
interprocedural edges. A call to procedure p at call site i is split into a call node ci and
a return node ri with a call edge ci → Sp and a return edge Ep → ri.

Formulating Data Flow Analysis. Data flow variables Inn and Outn associate data
flow information with CFG node n (respectively for its entry point In and exit point
On); they must satisfy data flow equations (Fig. 2) involving node transfer functions fn.
Data flow values are taken from a meet-semilattice (meet represents confluence and the
initial data flow value is�). The boundary information BI represents the data flow infor-
mation at ISp

for forward analysis and OEp
for backward analysis. Its value is governed

by the semantics of the information being discovered. Interprocedural analysis elimi-
nates the need for a fixed BI (except for arguments to the main procedure) by computing
it from the calling contexts during the analysis. Flow-insensitive approaches disregard
intraprocedural control flow for efficiency; they effectively treat the flow-equations as
inequations (�) and constrain all the Inn to be equal (and similarly all the Outn). Flow-
sensitive analyses honour control flow and keep the data flow information separate for
each program point. Iterative methods solve data flow equations by repeatedly refining
the values at each program point n starting from a conservative initialisation of�; there
are various strategies for this including round robin sweeps and work list methods.

The most precise data flow information at the intraprocedural level is the Meet over
Paths (MoP) solution [1, 2]. However, in general, an algorithm can at best compute
the Maximum Fixed Point (MFP) solution [1, 2]; however this is possible only if it is
flow-sensitive. For distributive frameworks, e.g. live-variable analysis, MFP and MoP
coincide; for non-distributive frameworks such as points-to analysis, they may differ.

Pointer Analysis. Points-to relations are computed by identifying locations corre-
sponding to the left- and right-hand sides of a pointer assignment and taking their
cartesian product [3, 4]. The points-to pairs of locations that are modified are removed.
May-points-to information at n contains the points-to pairs that hold along some path
reaching n whereas must-points-to information contains the pairs that hold along every
path reaching n (hence a pointer can have at most one pointee) [4]. Fig. 3 exempli-
fies flow-sensitive points-to analysis. By contrast an inclusion-based (Andersen) flow-
insensitive analysis [5] associates (p, r), (p, s), (q, r), (r, s), (s, r) with all program
points while the weaker equality-based (Steensgaard) analysis [6] further adds (q, s).

Interprocedural Data Flow Analysis. A supergraph contains control flow paths which
violate nestings of matching call return pairs (e.g. 1-2-3-4-8-13-11 for the supergraph in

268 U.P. Khedker, A. Mycroft, and P.S. Rawat

q = &r 1

p = q 2

p = ∗p 3

print p 4

s = q

5

r = &s 6

p = ∗p 7

Node
May analysis Must analysis

Inn Outn Inn Outn

1 ∅ (q, r) ∅ (q, r)

2
(p, r), (p, s),

(q, r), (r, s), (s, r)
(p, r), (q, r),
(r, s), (s, r)

(q, r) (p, r), (q, r)

3
(p, r), (q, r),
(r, s), (s, r)

(p, s), (q, r),
(r, s), (s, r)

(p, r),
(q, r)

(q, r)

4
(p, s), (q, r),
(r, s), (s, r)

(p, s), (q, r),
(r, s), (s, r)

(p, s),
(q, r)

(p, s), (q, r)

5
(p, r), (q, r),
(r, s), (s, r)

(p, r), (q, r),
(r, s), (s, r)

(p, r),
(q, r)

(p, r), (q, r),
(s, r)

6
(p, r), (p, s),

(q, r), (r, s), (s, r)
(p, r), (p, s),

(q, r), (r, s), (s, r)
(q, r), (q, r), (r, s)

7
(p, r), (p, s),

(q, r), (r, s), (s, r)
(p, r), (p, s),

(q, r), (r, s), (s, r)
(q, r),
(r, s)

(q, r), (r, s)

Fig. 3. An example of flow-sensitive intraprocedural points-to analysis

Fig. 1). Such paths correspond to infeasible contexts. An interprocedurally valid path
is a feasible execution path containing a legal sequence of call and return edges.

A context-sensitive analysis retains sufficient information about calling contexts to
distinguish the data flow information reaching a procedure along different call chains.
This restricts the analysis to interprocedurally valid paths. A context-insensitive analy-
sis does not distinguish between valid and invalid paths, effectively merging data flow
information across calling contexts. Recursive procedures have potentially infinite con-
texts, yet context-sensitive analysis is decidable for data flow frameworks with finite
lattices and it is sufficient to maintain a finite number of contexts for such frameworks.
Since this number is almost always impractically large, most context-sensitive methods
limit context sensitivity in some way.

At the interprocedural level, the most precise data flow information is the Meet over
Interprocedurally Valid Paths (IMoP) and the Maximum Fixed Point over Interprocedu-
rally Valid Paths (IMFP) [7–9]. For computing IMFP, an interprocedural method must
be fully flow and context sensitive. Relaxing flow (context) sensitivity admits invalid
intraprocedural (interprocedural) paths; since no path is excluded, the computed in-
formation is provably safe but could be imprecise. Some examples of fully flow- and
context-sensitive methods are: the graph reachability method [8] and the more general
functional and full call-strings methods [7]. We use a variant of the full call-strings
method [10] and compute the IMFP giving the most precise computable solution for
pointer analysis; the loss of precision due to non-distributivity is inevitable.

Call-Strings Method [1, 7, 10]. This is a flow- and context-sensitive approach that
embeds context information in the data flow information and ensures the validity of
interprocedural paths by maintaining a history of calls in terms of call strings. A call
string at node n is a sequence c1c2 . . . ck of call sites corresponding to unfinished calls
at n and can be viewed as a snapshot of the call stack. Call-string construction is gov-
erned by interprocedural edges. Let σ be a call string reaching procedure p. For an
intraprocedural edge m → n in p, σ reaches n. For a call edge ci → Sq where ci

Liveness-Based Pointer Analysis 269

belongs to p, call string σci reaches Sq . For a return edge Ep → rj where rj belongs
to a caller of p there are two cases: if σ = σ′cj then σ′ reaches rj ; otherwise σ and its
data flow value is not propagated to rj . This ensures that data flow information is only
propagated to appropriate call sites. In a backward analysis, the call string grows on
traversing a return edge and shrinks on traversing a call edge. The interprocedural data
flow information at node n is a function from call strings to data flow values. Merging
(�) the data flow values associated with all call strings reaching n gives the overall data
flow value at n.

The original full call-strings method [7] used a pre-calculated length resulting in an
impractically large number of call strings. We use value-based termination of call-string
construction [10]. For forward flow, call strings are partitioned at Sp based on equality
of their data flow values, only one call string per partition is propagated, and all call
strings of the partition are regenerated at Ep (and the other way round for backward
flows). This constructs only the relevant call strings (i.e. call strings with distinct data
flow values) reducing the number of call strings significantly. For finite data flow lat-
tices, we require only a finite number of call strings even in the presence of recursion.
Moreover, there is no loss of precision as all relevant call strings are constructed.

We briefly describe value-based termination of call strings for forward analysis.
Let df (σ, n) denote the data flow value for call string σ at the entry of node n. Let
df (σ1, Sp) = df (σ2, Sp) = v. Since data flow values are propagated along the same set
of paths from Sp to Ep, df (σ1, Sp) = df (σ2, Sp)⇒ df (σ1, Ep) = df (σ2, Ep). Thus,
we can propagate only one of them (say 〈σ1, v〉) through the body of p. Let it reach Ep

as 〈σ1, v
′〉. Then we can regenerate 〈σ2, v

′〉 at Ep by using df (σ1, Ep) if we remember
that σ2 was represented by σ1 at Sp.

Recursion creates cyclic call strings γαi where γ and α are non-overlapping call
site sequences and α occurs i times. Since the lattice is finite and the flow functions
are monotonic, some k≥0 must exist such that df (γαk+m, Sp) = df (γαk, Sp) where
m is the periodicity1 of the flow function for α. Hence γαk+m is represented by γαk.
Since df (γαk+i·m, Sp) = df (γαk, Sp), i>0, call string γαk+m is constructed for rep-
resentation but call strings γαk+i·m, i>1 are not constructed. Let df (γαk, Ep) be v.
Then we generate 〈γαk+m, v〉 in OutEp

which is propagated along the sequence of re-
turn nodes thereby removing one occurrence of α. Thus the call string reaches Ep as
γαk, once again to be regenerated as γαk+m. This continues until the values change,
effectively computing df (γαk+i·m, Ep), i>1 without constructing the call strings.

3 Liveness-Based Pointer Analysis

We consider the four basic pointer assignment statements: x = &y, x = y, x = ∗y,
∗x = y using which other pointer assignments can be rewritten. We also assume a
use x statement to model other uses of pointers (such as in conditions). Discussion of
address-taken local variables and allocation (new or malloc) is deferred to Section 5.

Let V denote the set of variables (i.e. “named locations”). Some of these variables
(those in P ⊂ V) can hold pointers to members of V . Other members of V hold

1 x is a periodic point of f if fm(x) = x and f i(x) �= x, 0<i<m. If m = 1, x is a fixed point
of f . See Fig. 9.12 on page 316 in [1] for a points-to analysis example where m = 2.

270 U.P. Khedker, A. Mycroft, and P.S. Rawat

non-pointer values. These include variables of non-pointer type such as int. NULL
is similarly best regarded as a member of V − P; finally a special value ‘?’ in V − P
denotes an undefined location (again Section 5 discusses this further).

Points-to information is a set of pairs (x, y) where x ∈ P is the pointer of the pair
and y ∈ V is a pointee of x and is also referred to as the pointee of the pair. The pair
(x, ?) being associated with program point n indicates that x may contain an invalid
address along some potential execution path from Sp to n.

The data flow variables Linn and Loutn give liveness information for statement n
while Ainn and Aoutn give may-points-to information. Must-points-to information,
Uinn and Uoutn, is calculated from may-points-to. Note that liveness propagates back-
wards (transfer functions map out to in) while points-to propagates forwards.

The lattice of liveness information is L = 〈P(P),⊇〉 (we only track the data flow of
pointer variables) and lattice of may-points-to information isA = 〈P(P × V),⊇〉. The
overall data flow lattice is the product L ×A with partial order 〈l1, a1〉 � 〈l2, a2〉 ⇔
(l1 � l2) ∧ (a1 � a2) ⇔ (l1 ⊇ l2) ∧ (a1 ⊇ a2) and having � element 〈∅, ∅〉 and ⊥
element 〈P, P × V 〉. We use standard algebraic operations on points-to relations: given
relation R ⊆ P × V and X ⊆ P, define relation application R X = {v | u ∈
X ∧ (u, v) ∈R} and relation restriction R|X = {(u, v) ∈ R | u ∈ X}.

Data Flow Equations. Fig. 4 provides the data flow equations for liveness-based
pointer analysis. They resemble the standard data flow equations of strong liveness anal-
ysis and pointer analyses [1] except that liveness and may-points-to analyses depend on
each other (hence the combined data flow is bi-directional in a CFG) and must-points-to
information is computed from may-points-to information.

Since we use the greatest fixpoint formulation, the initial value (� of the correspond-
ing lattices) is ∅ for both liveness and may-points-to analyses. For liveness BI is ∅ and
defines LoutEp

; for points-to analysis, BI is Linn × {?} and defines AinSp
. This reflects

that no pointer is live on exit or holds a valid address on entry to a procedure.

Extractor Functions. The flow functions occurring in Equations (3) and (5) use ex-
tractor functions Defn, Killn, Refn and Pointeen which extract the relevant pointer
variables for statement n from the incoming pointer information Ainn. These extractor
functions are inspired by similar functions in [3, 4].

Defn gives the set of pointer variables which a statement may modify and Pointeen

gives the set of pointer values which may be assigned. Thus the new may-points-to
pairs generated for statement n are Defn × Pointeen (Equation 5). Refn computes the
variables that become live in statement n. Condition Defn ∩ Loutn ensures that Refn
computes strong liveness rather than simple liveness. As an exception to the general
rule, x is considered live in statement ∗x = y regardless of whether the pointees of
x are live otherwise, the pointees of x would not be discovered. For example, given
{x=&a; y=3; *x=y; return;}, (x, a) cannot be discovered unless x is marked
live. Hence liveness of x cannot depend on whether the pointees of x are live. By con-
trast, statement y = ∗x uses the liveness of y to determine the liveness of x.

Killn identifies pointer variables that are definitely modified by statement n. This in-
formation is used to kill both liveness and points-to information. For statement ∗x = y,

Liveness-Based Pointer Analysis 271

Given relation R ⊆ P × V (either Ainn or Aoutn) we first define an auxiliary extractor function

Must(R) =
⋃
x∈P

{x} ×
⎧⎨
⎩

V R{x} = ∅ ∨ R{x} = {?}
{y} R{x} = {y} ∧ y �= ?
∅ otherwise

(1)

Extractor functions for statement n (Defn, Killn, Refn ⊆ P; Pointeen ⊆ V)
Notation: we assume that x, y ∈ P and a ∈ V . A abbreviates Ainn.

Stmt. Defn Killn
Refn Pointeen

if Defn ∩ Loutn �= ∅ Otherwise

use x ∅ ∅ {x} {x} ∅
x = &a {x} {x} ∅ ∅ {a}
x = y {x} {x} {y} ∅ A{y}
x = ∗y {x} {x} {y} ∪ (A{y} ∩ P) ∅ A(A{y} ∩ P)

∗x = y A{x} ∩ P Must(A){x} ∩ P {x, y} {x} A{y}
other ∅ ∅ ∅ ∅ ∅

Data Flow Values: Linn, Loutn ⊆ P Ainn, Aoutn ⊆ P × V

Loutn =

⎧⎨
⎩

∅ n is Ep⋃
s∈succ(n)

Lins otherwise (2)

Linn = (Loutn − Killn) ∪ Refn (3)

Ainn =

⎧⎪⎪⎨
⎪⎪⎩

Linn×{?} n is Sp⎛
⎝ ⋃

p∈pred(n)

Aoutp

⎞
⎠

∣∣∣∣∣∣
Linn

otherwise
(4)

Aoutn = ((Ainn − (Killn×V)) ∪ (Defn×Pointeen)) |Loutn
(5)

Fig. 4. Intraprocedural formulation of liveness-based pointer analysis

Killn depends on Ainn filtered using the function Must . When no points-to information
for x is available, the statement ∗x = y marks all pointers as killed; this theoretically
reflects the need for Killn to be anti-monotonic and practically that unreachable or C-
undefined code is analysed liberally. When the points-to information for x is non-empty,
Must performs a weak update or a strong update according to the number of pointees2:
when x has multiple pointees we employ weak update as we cannot be certain which
one will be modified because x may point to different locations along different exe-
cution paths reaching n. By contrast, when x has a single pointee other than ‘?’, it
indicates that x points to the same location along all execution paths reaching n and a
strong update can be performed. Having BI be Linn × {?} completes this: if there is a
definition-free path from Sp to statement n, the pair (x, ?) will reach n and so a pair
(x, z) reaching n cannot be incorrectly treated as a must-points-to pair.

2 Or whether x is a summary node (see Section 5). Here we ignore summary nodes.

272 U.P. Khedker, A. Mycroft, and P.S. Rawat

q = &r 1

p = q 2

p = ∗p 3

print p 4

s = q 5

r = &s 6

p = ∗p 7

{}L, {}A

{q}L, {(q, r)}A

{q}L, {(q, r)}A

{q}L, {(q, r)}A

{q}L, {(q, r)}A
{p, q}L, {(q, r)}A

{q}L, {(q, r)}A

{p, q}L, {(p, r), (q, r)}A

{p, q}L, {(q, r)}A

{q}L, {(q, r)}A

{p, q}L, {(p, r), (q, r)}A

{q}L, {(q, r)}A

q = &r 1

p = q 2

p = ∗p 3

print p 4

s = q 5

r = &s 6

p = ∗p 7

{}L, {}A

{q, r}L, {(q, r), (r, s)}A

{q}L, {(q, r)}A

{q}L, {(q, r)}A

{q}L, {(q, r)}A
{p, q}L, {(p, s), (q, r)}A

{q}L, {(q, r)}A

{p, q, r}L, {(p, r), (q, r), (r, s)}A

{p, q}L, {(p, s), (q, r)}A

{q, r}L, {(q, r), (r, s)}A

{p, q, r}L, {(p, r), (q, r), (r, s)}A

{q, r}L, {(q, r)}A

First round of liveness and points-to Second round of liveness and points-to

Fig. 5. Intraprocedural liveness-based points-to analysis of the program in Fig. 3. Shaded boxes
show the liveness and points-to information suffixed by L and A respectively.

The above discussion of Killn and Must justifies why must-points-to analysis need
not be performed as an interdependent fixed-point computation [4, 1]. Given pointer x,
a single points-to pair (x, y) with y �= ? in Ainn or Aoutn, guarantees that x points to y.
Conversely multiple may-points-to pairs associated with x means that its must-points-to
information is empty.3 Hence must-points-to information can be extracted from may-
points-to information by Uinn = Must(Ainn) and Uoutn = Must(Aoutn). Note that
generally Uinn ⊆ Ainn and Uoutn ⊆ Aoutn; the only exception would be for nodes
that are not reached by the analysis because no pointer has been found to be live. For
such nodes Uinn, Uoutn are P × V whereas Ainn, Aoutn are ∅; this matches previous
frameworks and corresponds to Must being anti-monotonic (see above).

Motivating Example Revisited. Fig. 5 gives the result of liveness-based pointer anal-
ysis for our motivating example of Fig. 3. After the first round of liveness analysis
followed by points-to analysis, we discover pair (p, r) in Ain3. Thus r becomes live
requiring a second round of liveness analysis. This then enables discovering the points-
to pair (r, s) in node 6. A comparison with traditional may-points-to analysis (Fig. 3)
shows that our analysis eliminates many redundant points-to pairs.

3 This is more general than a similar concept for flow-sensitive kill in [11]. See Section 6.

Liveness-Based Pointer Analysis 273

Correctness. The following two claims are sufficient to establish soundness: (a) the
flow functions in our formulation are monotonic (Theorem 1), and (b) for every use of
a pointer, the points-to information defined by our formulation contains all addresses
that it can hold at run time at a given program point (Theorem 2). Point (a) guarantees
MFP computation at the intraprocedural level; at the interprocedural level, the full call-
strings method ensures IMFP computation; point (b) guarantees that MFP (or IMFP)
contains all usable pointer information.

Theorem 1. The function Must is anti-monotonic hence the transfer functions Linn,
Loutn, Ainn and Aoutn in Fig. 4 are monotonic.

Theorem 2. If x ∈ P holds the address of z ∈ (V − {?}) along some execution path
reaching node n, then x ∈ Refn ⇒ (x, z) ∈ Ainn.

4 Interprocedural Liveness-Based Pointer Analysis

When our intraprocedural liveness-based points-to analysis is lifted to the interprocedu-
ral level using the call-strings method, Linn, Loutn and Ainn, Aoutn become functions
of contexts written as sets of pairs 〈σ, l〉, l ∈ L and 〈σ, a〉, a ∈ Awhere σ is a call string
reaching node n. Finally, the overall values of Ainn, Aoutn are computed by merging
(�) the values along all call strings.

Matching Contexts for Liveness and Points-to Analysis. Since points-to information
should be restricted to live ranges, it is propagated along the call strings constructed dur-
ing liveness analysis. In the presence of recursion, we may need additional call strings
for which liveness information may not yet be available. Such cases can be resolved by
using the existing call strings as explained below. Let σa denote an acyclic call string
and let σc = γαi be a cyclic call string (see Section 2). Then for liveness analysis:

– The partitioning information for every σa is available because either 〈σa, x〉 has
reached node n in procedure p or σa has been represented by some other call string.

– Let df (γαi, n) differ for 0 ≤ i ≤ k but let df (γαk, n) = df (γαk+j , n), j > 0 (the
periodicity m for liveness analysis is 1). Then the partitioning information is avail-
able for only γαk and γαk+1 because γαk+j , j > 1 are not constructed.

Consider a call string σ′ reaching node n during points-to analysis. If σ′ is an acyclic
call string then its partitioning information and hence its liveness information is avail-
able. If σ′ is a cyclic call string γαi, its liveness information may not be available if it
has not been constructed for liveness. In such a situation, it is sufficient to locate the
longest γαl, l < i among the call strings that have been created and use its liveness
information. This effect is seen below in our motivating example.

Motivating Example Revisited. For brevity, let In and On denote the entry and exit
of node n. In the first round of liveness (Fig. 6), z becomes live at I6 as 〈λ, z〉L,
reaches O13, I13, O12, I12, O11 as 〈c1, z〉L, becomes 〈c1c2, z〉L at I11, reaches O13 and
gets represented by 〈c1, z〉L. Hence 〈c1c2, z〉L is not propagated within the body of p.

274 U.P. Khedker, A. Mycroft, and P.S. Rawat

Sm1

x = &y2

w = &x3

c14

r15

print z6

Em7

Sp8

z = w9

c210

r211

z = ∗z12

Ep13

〈λ, z〉L

〈λ, z〉L

〈λ, z〉L

〈λ, wz〉L

〈c1, wz〉L
〈c1, z〉L

〈λ, z〉L

〈λ, ∅〉L

〈λ, ∅〉L

〈λ, (z, ?)〉A

〈λ, (z, ?)〉A

〈λ, (z, ?)〉A

〈λ, (w, x), (z, ?)〉A

〈c1, (w, x), (z, ?)〉A
〈c1, (z, ?)〉A

〈λ, (z, ?)〉A

〈λ, ∅〉A

〈λ, ∅〉A

〈c1, wz〉L

〈c1/c1c2, wz〉L

〈c1, w〉L

〈c1, wz〉L

〈c1c2, wz〉L
〈c1c2, z〉L

〈c1, z〉L
〈c1, z〉L

〈c1/c1c2, z〉L

〈c1, (w, x), (z, ?)〉A
〈c1c2/c1c2c2, (w, x), (z, x)〉A

〈c1/c1c2, (w, x)〉A

〈c1/c1c2, (w, x), (z, x)〉A

〈c1c2/c1c2c2, (w, x), (z, x)〉A

〈c1/c1c2, (z, x)〉A

〈c1c2/c1c2c2, (z, x)〉A

〈c1/c1c2, ∅〉A

〈c1, (z, ?)〉A
〈c1c2/c1c2c2, (z, x)〉A

Fig. 6. Liveness and points-to information (subscripted with L and A) after the first round of
interprocedural analysis. For brevity, set of live variables are represented as strings and ‘{’ and
‘}’ are omitted. Multiple call strings with the same data flow value are separated by a ‘/’.

〈c1c2, z〉L is regenerated at I8, becomes 〈c1, z〉L at I10, becomes 〈c1, w〉L at I9. At O8,
it combines with 〈c1, z〉L propagated from I13 and becomes 〈c1, w z〉L. Thus c1c2 is
regenerated as 〈c1c2, w z〉L at I8. 〈c1, w z〉L reaches O4 and becomes 〈λ, w z〉L at I4.

In the first round of points-to analysis (Fig. 6), since z is live at I1, BI = 〈λ, (z, ?)〉A.
〈λ, (w, x)〉A is generated at O3. Thus 〈c1, (w, x), (z, ?)〉A reaches I8. This becomes
〈c1, (w, x), (z, x)〉A at O9 and reaches as 〈c1c2, (w, x), (z, x)〉A at I8. Since z is not
live at I9, 〈c1c2, (w, x)〉A is propagated to I9. This causes 〈c1c2c2, (w, x), (z, x)〉A to
be generated at O10 which reaches I9 and is represented by 〈c1c2, (w, x), (z, x)〉A. This
is then regenerated as 〈c1c2c2, (z, x)〉A at O13 because only z is live at O13. Note that
we do not have the liveness information along c1c2c2 but we know (from above) that it
is identical to that along c1c2. We get 〈c1c2, (z, x)〉A and 〈c1, (z, x)〉A at O11. Since we
have no points-to information for x, we get 〈c1c2, ∅〉A and 〈c1, ∅〉A at O12.

We leave it for the reader to verify that, in the second round (Fig. 7), x becomes
live at I12 due to z = ∗z, reaches O2 and causes 〈λ, (x, y)〉A to be generated. As a
consequence, we get (z, y) at I12. Note that (z, x) cannot reach I6 along any interpro-
cedurally valid path. The invocation graph method [3] which is generally considered
the most precise flow- and context-sensitive method, does compute (z, x) at I6. This
shows that it is only partially context-sensitive. L-CFPA is more precise than [3] not
only because of liveness but also because it is fully context-sensitive.

Liveness-Based Pointer Analysis 275

Sm1

x = &y2

w = &x3

c14

r15

print z6

Em7

Sp8

z = w9

c210

r211

z = ∗z12

Ep13

〈c1/c1c2, x〉L

〈c1c2/c1c2c2, x〉L

〈c1c2, x〉L

〈c1c2/c1c2c2, x〉L

〈c1/c1c2, x〉L

〈c1/c1c2/c1c2c2, x〉L

〈c1c2/c1c2c2, x〉L

〈c1/c1c2, x〉L
〈λ, x〉L

〈λ, x〉L

〈c1, x〉L

〈λ, (x, y)〉A

〈λ, (x, y)〉A

〈c1, (x, y)〉A

〈c1/c1c2, (x, y)〉A

〈c1/c1c2, (x, y), (z, y)〉A

〈c1, (x, y)〉A

〈c1, (x, y)〉A

〈c1c2, (x, y)〉A
〈c1c2, (x, y), (z, y)〉A

〈c1, (x, y), (z, y)〉A

〈c1, (x, y), (z, y)〉A

〈c1, (z, y)〉A

〈λ, (z, y)〉A

Fig. 7. Second round of liveness and points-to analysis to compute dereferencing liveness and the
resulting points-to information. Only the additional information is shown.

5 Heaps, Escaping Locals and Records

Each data location statically specified in a program is an abstract location and may cor-
respond to multiple actual locations. It may be explicitly specified by taking the address
of a variable or implicitly specified as the result of new or malloc. For interprocedural
analysis, we categorise all abstract locations as shown in Fig. 8.

Define interprocedural locations as those abstract locations which are accessible in
multiple contexts reaching a given program point or whose data flow values depend
(via a dataflow equation) on another interprocedural location. These are the locations
for which interprocedural data flow analysis is required. Global variables and heap lo-
cations are interprocedural locations. For pointer analysis, a local variable x becomes
an interprocedural location if its address escapes the procedure containing it, or there is
an assignment x = y or x = ∗z with y, z or one of z’s pointees being an interprocedural
location. Interprocedural locations for liveness analysis are similarly identified.

It is easy to handle different instances of a local variable which is not an interproce-
dural location (even if its address is taken). To see how other local variables are handled,
consider a local variable x which becomes interprocedural from assignment x = y or
x = ∗z as in the previous paragraph. Since call strings store context-sensitive data flow
values of y and z, they also distinguish between instances of x whose data flow val-
ues may differ. Thus, call strings inherently support precise interprocedural analysis of
global variables and locals (even interprocedural locals) whose addresses do not escape
(the entry “No∗” for the latter category in Fig. 8 indicates that interprocedural analysis
is either not required or is automatically supported by call-strings method without any
special treatment).

276 U.P. Khedker, A. Mycroft, and P.S. Rawat

Issue Global
Variable

Local Variable Heap allocation
at a given

source line
Address
escapes

Address does
not escape

How many instances can exist? Single Arbitrarily many Arbitrarily many Arbitrarily many
Can a given instance be accessed
in multiple calling contexts? Yes Yes No Yes

Number of instances accessible
at a given program point?

At most
one Arbitrarily many At most one Arbitrarily many

Is interprocedural data flow
analysis required? Yes Yes No∗ Yes

Is a summary node required? No Yes No Yes

Fig. 8. Categorisation of data locations for interprocedural pointer analysis

Since the number of accessible instances of heap locations and locals whose ad-
dresses escape is not bounded,4 we need to create summary nodes for them. It is difficult
to distinguish between instances which are accessible in different contexts. Hence cre-
ating a summary node implies that the data flow values are stored context insensitively
(but flow sensitively) by merging values of all instances accessible at a given program
point. A consequence of this decision is that strong updates on these abstract locations
are prohibited; this is easily engineered by Must returning ∅ for summary-node pointees
which is consistent with the requirements of Uinn/Uoutn computation.

Recall that Equation 1 does not treat ‘?’ as a summary node. This depends on the
language-defined semantics of indirect writes via uninitialised pointers. In C (because
the subsequent program behaviour is undefined) or Java (because of ‘NullPointerEx-
ception’) it is safe to regard Must as returning all possible values when only ‘?’ occurs.
Alternatively, were the semantics to allow subsequent code to be executed in a defined
manner, then ‘?’ needs to be treated as a summary node so that Must returns ∅ and in-
direct writes kill nothing (in general this results in reduced optimisation possibilities).

Our implementation treats an array variable as a single scalar variable with weak up-
date (no distinction is made between different index values). Stack-allocated structures
are handled field-sensitively by using the offsets of fields. Heap-allocated structures are
also handled field sensitively where possible. Function pointers are handled as in [3].

6 Related Work

The reported benefits of flow and context sensitivity for pointer analysis have been
mixed in literature [12–15] and many methods relax them for efficiency [5, 6, 11, 16].
It has also been observed that an increase in precision could increase efficiency [17, 11].
Both these aspects have been studied without the benefit of liveness, partially explain-
ing marginal results. Some methods lazily compute pointer information on demand [18–
21]. By contrast, L-FCPA does not depend on a client analysis and proactively computes
the entire usable pointer information. If there are many demands, repeated incremental
computations could be rather inefficient [22]. Efficient encoding of information by us-
ing BDDs [23] has been an orthogonal approach of achieving efficiency. Although the

4 Local variables whose addresses escape may belong to recursive procedures.

Liveness-Based Pointer Analysis 277

usable pointer information discovered by L-FCPA is small, recording it flow sensitively
in a large program may benefit from BDDs.

The imprecision caused by flow insensitivity can be partially mitigated by using
SSA representation which enables a flow-insensitive method to compute flow-sensitive
information for local scalar variables. For pointers, the essential properties of SSA can
only be guaranteed for top-level pointers whose address is not taken. Some improve-
ments are enabled by Factored SSA [24] or Hashed SSA [25]. In the presence of global
pointer variables or multiple indirections, the advantages of SSA are limited unless in-
terleaved rounds of SSA construction and pointer analysis are performed [26, 27]. A re-
cent method introduces flow-sensitive kill in an otherwise flow-insensitive method [11].

Full context sensitivity can be relaxed in many ways: (a) using a context-insensitive
approach, (b) using a context-sensitive approach for non-recursive portions of a pro-
gram but merging data flow information in the recursive portions (e.g. [3, 27–29]), or
(c) using limited depth of contexts in both recursive and non-recursive portions (e.g.
the k-limited call-strings method [7] or [23]). Most context-sensitive approaches that
we are aware of belong to category (b). Our fully context-sensitive approach gener-
alises partially context-sensitive approaches such as object-sensitivity [30, 12, 17] as
follows. For an object x and its method f, a (virtual) call x.f(e1, . . . , en) is viewed as
the call (x.f in vtab)(&x, e1, . . . , en). Thus object identification reduces to capturing
the flow of values which is inherently supported by full flow and context sensitivity.

We highlight some key ideas that have not been covered above. A memoisation-based
functional approach enumerates partial transfer functions [28] whereas an alternative
functional approach constructs full transfer functions hierarchically in terms of pointer
indirection levels [27]. The invocation-graph-based approach unfolds a call graph in
terms of call chains [3]. Finally, a radically different approach begins with flow- and
context-insensitive information which is refined systematically to restrict it to flow- and
context-sensitive information [29]. These approaches merge points-to information in
recursive contexts (category (b) above). Fig. 9.6 (page 305) in [1] contains an example
for which a method belonging to category (b) or (c) above cannot compute precise
result—the pointer assignments in the recursion unwinding part undo the effect of the
pointer assignments in the part that builds up recursion and the overall function is an
identity function. When all recursive calls receive the same (merged) information, the
undo effect on the pointer information cannot be captured.

Finally, many investigations tightly couple analysis specification and implementa-
tion; by contrast our formulation maintains a clean separation between the two and does
not depend on intricate procedural algorithms or ad-hoc implementation for efficiency.

7 Implementation and Empirical Measurements

We implemented L-FCPA and FCPA in GCC 4.6.0 using the GCC’s Link Time Op-
timisation (LTO) framework.5 We executed them on various programs from SPEC
CPU2006 and CPU2000 Integer Benchmarks on a machine with 16 GB RAM with
8 64-bit Intel i7-960 CPUs running at 3.20GHz. We compared the performance of three

5 They can be downloaded from
http://www.cse.iitb.ac.in/grc/index.php?page=lipta

278 U.P. Khedker, A. Mycroft, and P.S. Rawat

Table 1. Time and unique points-to pairs measurements. For h264ref, FCPA ran out of memory.

Program kLoC
Call
Sites

Time in milliseconds Unique points-to pairs
L-FCPA

FCPA GPTA L-FCPA FCPA GPTA
Liveness Points-to

lbm 0.9 33 0.55 0.52 1.9 5.2 12 507 1911
mcf 1.6 29 1.04 0.62 9.5 3.4 41 367 2159
libquantum 2.6 258 2.0 1.8 5.6 4.8 49 119 2701

bzip2 3.7 233 4.5 4.8 28.1 30.2 60 210 8.8×104

parser 7.7 1123 1.2×103 145.6 4.3×105 422.12 531 4196 1.9×104

sjeng 10.5 678 858.2 99.0 3.2×104 38.1 267 818 1.1×104

hmmer 20.6 1292 90.0 62.9 2.9×105 246.3 232 5805 1.9×106

h264ref 36.0 1992 2.2×105 2.0×105 ? 4.3×103 1683 ? 1.6×107

methods: L-FCPA, FCPA and GPTA (GCC’s points-to analysis). Both L-FCPA and
FCPA are flow and context sensitive and use call strings with value-based termination.
L-FCPA uses liveness whereas FCPA does not. GPTA is flow and context insensitive
but acquires partial flow sensitivity through SSA.

Since our main goal was to find out if liveness increases the precision of points-to
information, both L-FCPA and FCPA are naive implementations that use linked lists and
linear searches within them. Our measurements confirm this hypothesis beyond doubt,
but we were surprised by the overall implementation performance because we had not
designed for time/space efficiency or scalability. We were able to run naive L-FCPA on
programs of around 30kLoC but not on the larger programs.

Table 1 presents the computation time and number of points-to pairs whereas Ta-
bles 2 and 3 present measurements of points-to information and context information
respectively. To measure the sparseness of information, we created four buckets of the
numbers of points-to pairs and call strings: 0, 1–4, 5–8 and 9 or more. We counted
the number of basic blocks for each bucket of points-to information and the number of
functions for each bucket of context information. Our data shows that:

– The usable pointer information is (a) rather sparse (64% of basic blocks have 0
points-to pairs), and (b) rather small (four programs have at most 8 points-to pairs
and in other programs, 9+ points-to pairs reach fewer than 4% basic blocks). In
contrast, GPTA computes an order-of-magnitude-larger number of points-to pairs
at each basic block (see the last column in Table 1).

– The number of contexts required for computing the usable pointer information is
(a) rather sparse (56% or more basic blocks have 0 call strings), and (b) rather small
(six programs have at most 8 call strings; in other programs, 9+ call strings reach
less than 3% basic blocks). Thus, contrary to the common apprehension, context in-
formation need not be exponential in practice. Value-based termination reduces the
number of call strings dramatically [10] and the use of liveness enhances this effect
further by restricting the computation of data flow values to the usable information.

Liveness-Based Pointer Analysis 279

Table 2. Liveness restricts the analysis to usable pointer information which is small and sparse

Total No. and percentage of basic blocks (BBs) for points-to (pt) pair counts
Program no. of 0 pt pairs 1-4 pt pairs 5-8 pt pairs 9+ pt pairs

BBs L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA

lbm 252 229 61 23 82 0 66 0 43
(90.9%) (24.2%) (9.1%) (32.5%) (26.2%) (17.1%)

mcf 472 356 160 116 2 0 1 0 309
(75.4%) (33.9%) (24.6%) (0.4%) (0.2%) (65.5%)

libquantum 1642 1520 793 119 796 3 46 0 7
(92.6%) (48.3%) (7.2%) (48.5%) (0.2%) (2.8%) (0.4%)

bzip2 2746
2624 1085 118 12 3 12 1 1637

(95.6%) (39.5%) (4.3%) (0.4%) (0.1%) (0.4%) (0.0%) (59.6%)
9+ pt pairs in L-FCPA: Tot 1, Min 12, Max 12, Mean 12.0, Median 12, Mode 12

sjeng 6000 4571 3239 1208 12 221 41 0 2708
(76.2%) (54.0%) (20.1%) (0.2%) (3.7%) (0.7%) (45.1%)

hmmer 14418
13483 8357 896 21 24 91 15 5949

(93.5%) (58.0%) (6.2%) (0.1%) (0.2%) (0.6%) (0.1%) (41.3%)
9+ pt pairs in L-FCPA: Tot 6, Min 10, Max 16, Mean 13.3, Median 13, Mode 10

parser 6875
4823 1821 1591 25 252 154 209 4875

(70.2%) (26.5%) (23.1%) (0.4%) (3.7%) (2.2%) (3.0%) (70.9%)
9+ pt pairs in L-FCPA: Tot 13, Min 9, Max 53, Mean 27.9, Median 18, Mode 9

h264ref 21315
13729 ? 4760 ? 2035 ? 791 ?(64.4%) (22.3%) (9.5%) (3.7%)

9+ pt pairs in L-FCPA: Tot 44, Min 9, Max 98, Mean 36.3, Median 31, Mode 9

The significant increase in precision achieved by L-FCPA suggests that a pointer anal-
ysis need not compute exponentially large information. We saw this sub-exponential
trend in programs of up to around 30kLoC and anticipate it might hold for larger pro-
grams too—because although reachable pointer information may increase significantly,
usable information need not accumulate and may remain distributed in the program.

A comparison with GPTA shows that using liveness reduces the execution time too—
L-FCPA outperforms GPTA for most programs smaller than 30kLoC. That a flow- and
context-sensitive analysis could be faster than flow- and context-insensitive analysis
came as a surprise to us. In hindsight, this is possible because the information that
we can gainfully use is much smaller than commonly thought. Note that a flow- and
context-insensitive analysis cannot exploit the small size of usable pointer information
because it is small only when considered flow and context sensitively.

The hypothesis that our implementation suffers because of linear search in linked
lists was confirmed by an accidental discovery: in order to eliminate duplicate pairs
in GPTA, we used our linear list implementation of sets from L-FCPA which never
adds duplicate entries. The resulting GPTA took more than an hour for the hmmer pro-
gram instead of the original 246.3 milliseconds! Another potential source of inefficiency
concerns the over-eager liveness computation to reduce the points-to pairs in L-CFPA:
a new round of liveness is invoked when a new points-to pair for y is discovered for
x = ∗y putting on hold the points-to analysis. This explains the unusually large time
spent in liveness analysis compared to points-to analysis for programs parser and sjeng.

280 U.P. Khedker, A. Mycroft, and P.S. Rawat

Table 3. Context information for computing usable pointer information is small and sparse

Total No. and percentage of functions for call-string counts
Program no. of 0 call strings 1-4 call strings 5-8 call strings 9+ call strings

functions L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA

lbm 22 16 3 6 19 0 0 0 0(72.7%) (13.6%) (27.3%) (86.4%)

mcf 25 16 3 9 22 0 0 0 0
(64.0%) (12.0%) (36.0%) (88.0%)

bzip2 100 88 38 12 62 0 0 0 0(88.0%) (38.0%) (12.0%) (62.0%)

libquantum 118 100 56 17 62 1 0 0 0(84.7%) (47.5%) (14.4%) (52.5%) (0.8%)

sjeng 151 96 37 43 45 12 15 0 54
(63.6%) (24.5%) (28.5%) (29.8%) (7.9%) (9.9%) (35.8%)

hmmer 584 548 330 32 175 4 26 0 53
(93.8%) (56.5%) (5.5%) (30.0%) (0.7%) (4.5%) (9.1%)

parser 372
246 76 118 135 4 63 4 98

(66.1%) (20.4%) (31.7%) (36.3%) (1.1%) (16.9%) (1.1%) (26.3%)
9+ L-FCPA call strings: Tot 4, Min 10, Max 52, Mean 32.5, Median 29, Mode 10

h264ref 624
351 ? 240 ? 14 ? 19 ?(56.2%) (38.5%) (2.2%) (3.0%)

9+ L-FCPA call strings: Tot 14, Min 9, Max 56, Mean 27.9, Median 24, Mode 9

The number of rounds of analysis required for these programs was much higher than in
other programs of comparable size. Finally, GCC’s LTO framework has only two op-
tions: either to load no CFG or to load all CFGs at the same time. Since the size of the
entire program could be large, this affects the locality and hence the cache behaviour.

8 Conclusions and Future Work

We have described a data flow analysis which jointly calculates points-to and live-
ness information. It is fully flow- and context-sensitive and uses recent refinements
of the call-strings approach. One novel aspect of our approach is that it is effectively
bi-directional (such analysis seem relatively rarely exploited).

Initial results from our naive prototype implementation were impressive: unsurpris-
ingly our analysis produced much more precise results, but by an order of magnitude (in
terms of the size of the calculated points-to information). The reduction of this size al-
lowed our naive implementation also to run faster than GCC’s points-to analysis at least
for programs up to 30kLoC. This is significant because GCC’s analysis compromises
both on flow and context sensitivity. This confirms our belief that the usable pointer
information is so small and sparse that we can achieve both precision and efficiency
without sacrificing one for the other. Although the benefit of precision in efficiency has
been observed before [17, 11], we are not aware of any study that shows the sparseness
and small size of points-to information to this extent.

Liveness-Based Pointer Analysis 281

We would like to take our work further by exploring the following:

– Improving our implementation in ways such as: using efficient data structures (vec-
tors or hash tables, or perhaps BDDs); improving GCC’s LTO framework to allow
on-demand loading of individual CFGs instead of loading the complete supergraph;
and experimenting with less-eager strategies of invoking liveness analysis.

– Exploring the reasons for the 30kLoC speed threshold; perhaps there are ways in
practice to partition most bigger programs (around loosely-coupled boundaries)
without significant loss of precision.

– We note that data flow information often only slightly changes when revisiting a
node compared to the information produced by the earlier visits. Hence, we plan to
explore incremental formulations of L-FCPA.

– GCC passes hold alias information in a per-variable data structure thereby using
the same information for every occurrence of the variable. We would like to change
this to use point-specific information computed by L-FCPA and measure how client
analyses/optimisations benefit from increased precision.

Acknowledgements. Prashant Singh Rawat was supported by GCC Resource Cen-
ter funding as part of the Government of India’s National Resource Center for Free
and Open Source Software (NRCFOSS). Empirical measurements were carried out by
Prachee Yogi and Aboli Aradhye. Prachee also implemented intraprocedural analysis
in Prolog. Ashwin Paranjape was involved in initial explorations. We are grateful to
the anonymous referee who requested more detail on our treatment of allocation and
summary nodes (Section 5); this helped our presentation.

References

1. Khedker, U.P., Sanyal, A., Karkare, B.: Data Flow Analysis: Theory and Practice. CRC Press
Inc. (2009)

2. Kildall, G.A.: A unified approach to global program optimization. In: Proc. of POPL 1973,
pp. 194–206 (1973)

3. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to analysis in
the presence of function pointers. In: Proc. of PLDI 1994, pp. 242–256 (1994)

4. Kanade, A., Khedker, U.P., Sanyal, A.: Heterogeneous Fixed Points with Application to
Points-To Analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 298–314. Springer,
Heidelberg (2005)

5. Andersen, L.O.: Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen (1994)

6. Steensgaard, B.: Points-to analysis in almost linear time. In: Proc. of POPL 1996, pp. 32–41
(1996)

7. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Muchnick,
S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applications. Prentice-Hall Inc.
(1981)

8. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reacha-
bility. In: Proc. of POPL 1995, pp. 49–61 (1995)

9. Knoop, J., Steffen, B.: The Interprocedural Coincidence Theorem. In: Pfahler, P., Kastens,
U. (eds.) CC 1992. LNCS, vol. 641, pp. 125–140. Springer, Heidelberg (1992)

282 U.P. Khedker, A. Mycroft, and P.S. Rawat

10. Khedker, U.P., Karkare, B.: Efficiency, Precision, Simplicity, and Generality in Interproce-
dural Data Flow Analysis: Resurrecting the Classical Call Strings Method. In: Hendren, L.
(ed.) CC 2008. LNCS, vol. 4959, pp. 213–228. Springer, Heidelberg (2008)

11. Lhoták, O., Chung, K.A.: Points-to analysis with efficient strong updates. In: Proc. of POPL
2011, pp. 3–16 (2011)

12. Lhoták, O., Hendren, L.: Context-Sensitive Points-to Analysis: Is It Worth It? In: Mycroft,
A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47–64. Springer, Heidelberg (2006)

13. Ruf, E.: Context-insensitive alias analysis reconsidered. In: Proc. of PLDI 1995, pp. 13–22
(1995)

14. Shapiro, M., Horwitz, S.: The Effects of the Precision of Pointer Analysis. In: Van Henten-
ryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 16–34. Springer, Heidelberg (1997)

15. Hind, M., Pioli, A.: Assessing the Effects of Flow-Sensitivity on Pointer Alias Analyses. In:
Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 57–81. Springer, Heidelberg (1998)

16. Hardekopf, B.C., Lin, C.: The ant and the grasshopper: Fast and accurate pointer analysis for
millions of lines of code. In: Proc. of PLDI 2007, pp. 290–299 (2007)

17. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: Understanding object-
sensitivity. In: Proc. of POPL 2011, pp. 17–30 (2011)

18. Guyer, S.Z., Lin, C.: Client-Driven Pointer Analysis. In: Cousot, R. (ed.) SAS 2003. LNCS,
vol. 2694, pp. 214–236. Springer, Heidelberg (2003)

19. Heintze, N., Tardieu, O.: Demand-driven pointer analysis. In: Proc. of PLDI 2001, pp. 24–34
(2001)

20. Sridharan, M., Gopan, D., Shan, L., Bodı́k, R.: Demand-driven points-to analysis for Java.
In: Proc. of OOPSLA 2005, pp. 59–76 (2005)

21. Zheng, X., Rugina, R.: Demand-driven alias analysis for C. In: Proc. of POPL 2008, pp.
197–208 (2008)

22. Rosen, B.K.: Linear cost is sometimes quadratic. In: Proc. of POPL 1981, pp. 117–124
(1981)

23. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In: Proc. of PLDI 2004, pp. 131–144 (2004)

24. Choi, J.D., Cytron, R., Ferrante, J.: On the efficient engineering of ambitious program anal-
ysis. IEEE Trans. Softw. Eng. 20, 105–114 (1994)

25. Chow, F.C., Chan, S., Liu, S.-M., Lo, R., Streich, M.: Effective Representation of Aliases
and Indirect Memory Operations in SSA Form. In: Gyimóthy, T. (ed.) CC 1996. LNCS,
vol. 1060, pp. 253–267. Springer, Heidelberg (1996)

26. Hasti, R., Horwitz, S.: Using static single assignment form to improve flow-insensitive
pointer analysis. In: Proc. of PLDI 1998, pp. 97–105 (1998)

27. Yu, H., Xue, J., Huo, W., Feng, X., Zhang, Z.: Level by level: making flow- and context-
sensitive pointer analysis scalable for millions of lines of code. In: Proc. of CGO 2010, pp.
218–229 (2010)

28. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for C programs. In:
Proc. of POPL 1995, pp. 1–12 (1995)

29. Kahlon, V.: Bootstrapping: a technique for scalable flow and context-sensitive pointer alias
analysis. In: Proc. of PLDI 2008, pp. 249–259 (2008)

30. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to anal-
ysis for Java. ACM Trans. Softw. Eng. Methodol. 14, 1–41 (2005)

Succinct Representations

for Abstract Interpretation�

Combined Analysis Algorithms
and Experimental Evaluation

Julien Henry1,2, David Monniaux1,3, and Matthieu Moy1,4

1 VERIMAG laboratory, Grenoble, France
2 Université Joseph Fourier

3 CNRS
4 Grenoble-INP

Abstract. Abstract interpretation techniques can be made more precise
by distinguishing paths inside loops, at the expense of possibly exponen-
tial complexity. SMT-solving techniques and sparse representations of
paths and sets of paths avoid this pitfall.

We improve previously proposed techniques for guided static analy-
sis and the generation of disjunctive invariants by combining them with
techniques for succinct representations of paths and symbolic represen-
tations for transitions based on static single assignment.

Because of the non-monotonicity of the results of abstract interpreta-
tion with widening operators, it is difficult to conclude that some abstrac-
tion is more precise than another based on theoretical local precision
results. We thus conducted extensive comparisons between our new tech-
niques and previous ones, on a variety of open-source packages.

1 Introduction

Static analysis by abstract interpretation is a fully automatic program analysis
method. When applied to imperative programs, it computes an inductive in-
variant mapping each program location (or a subset thereof) to a set of states
represented symbolically [8]. For instance, if we are only interested in scalar nu-
merical program variables, such a set may be a convex polyhedron (the set of
solutions of a system of linear inequalities) [10,16,2,4].

In such an analysis, information may flow forward or backward; forward pro-
gram analysis computes super-sets of the states reachable from the initialization
of the program, backward program analysis computes super-sets of the states
co-reachable from some property of interest (for instance, the violation of an
assertion). In forward analysis, control-flow joins correspond to convex hulls if
using convex polyhedra (more generally, they correspond to least upper bounds
in a lattice); in backward analysis, it is control-flow splits that correspond to
convex hulls.

� This work was partially funded by ANR project “ASOPT”.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 283–299, 2012.
� Springer-Verlag Berlin Heidelberg 2012

284 J. Henry, D. Monniaux, and M. Moy

It is a known limitation of program analysis by abstract interpretation that this
convex hull, or more generally, least upper bound operation, may introduce states
that cannot occur in the real program: for instance, the convex hull of the inter-
vals [−2,−1] and [1, 2] is [−2, 2], strictly larger than the union of the two. Such
introduction may prevent proving desired program properties, for instance 	= 0.
The alternative is to keep the union symbolic (e.g. compute using [−2,−1]∪ [1, 2])
and thus compute in the disjunctive completion of the lattice, but the number of
terms in the union may grow exponentially with the number of successive tests in
the program to analyze, not to mention difficulties for designing suitable widening
operators for enforcing the convergence of fixpoint iterations [2,4,3]. The exponen-
tial growth of the number of terms in the union may be controlled by heuristics
that judiciously apply least upper bound operations, as in the trace partitioning
domain [29] implemented in the Astrée analyzer [7,9].

Assumingwe are interested in a loop-free program fragment, the above approach
of keeping symbolic unions gives the same results as performing the analysis sep-
arately over every path in the fragment. A recent method for finding disjunctive
loop invariants [15] is based on this idea: each path inside the loop body is consid-
ered separately.Two recent proposals use SMT-solving [22] as a decision procedure
for the satisfiability of first-order arithmetic formulas in order to enumerate only
paths that are needed for the progress of the analysis [12,27]. They can equivalently
be seen as analyses over a multigraph of transitions between some distinguished
control nodes. This multigraph has an exponential number of edges, but is never
explicitly represented inmemory; instead, this graph is implicitly or succinctly rep-
resented: its edges are enumerated as needed as solutions to SMT problems.

An additional claim in favor of the methods that distinguish paths inside the
loop body [15,27] is that they tend to generate better invariants than methods
that do not, by behaving better with respect to the widening operators [8] used
for enforcing convergence when searching for loop invariants by Kleene itera-
tions. A related technique, guided static analysis [14], computes successive loop
invariants for increasing subsets of the transitions taken into account, until all
transitions are considered; again, the claim is that this approach avoids some
gross over-approximation introduced by widenings.

All these methods improve the precision of the analysis by keeping the same
abstract domain (say, convex polyhedra) but changing the operations applied
and their ordering. An alternative is to change the abstract domain (e.g. oc-
tagons, convex polyhedra [25]), or the widening operator [1,17].

This article makes the following contributions:

1. We recast the guided static analysis technique from [14] on the expanded
multigraph from [27], considering entire paths instead of individual transi-
tions, using SMT queries and binary decision diagrams (See �3).

2. We improve the technique for obtaining disjunctive invariants from [15] by
replacing the explicit exhaustive enumeration of paths by a sequence of SMT
queries (See �4).

3. We implemented these techniques, in addition to “classical” iterations and
the original guided static analysis, inside a prototype static analyzer. This

Succinct Representations for Abstract Interpretation 285

tool uses the LLVM bitcode format [23,24] as input, which can be produced
by compilation from C, C++ and Fortran, enabling it to be run on many
real-life programs. It uses the APRON library [21], which supports a variety
of abstract domains for numerical variables, from which we can choose with
minimal changes to our analyzer.

4. We conducted extensive experiments with this tool, on real-life programs.

2 Bases

2.1 Static Analysis by Abstract Interpretation

Let X be the set of possible states of the program variables; for instance, if
the program has 3 unbounded integer variables, then X = Z3. The set P(X) of
subsets of X , partially ordered by inclusion, is the concrete domain. An abstract
domain is a set X� equipped with a partial order � (the associated strict order
being �); for instance, it can be the domain of convex polyhedra in Q3 ordered
by geometric inclusion. The concrete and abstract domains are connected by a
monotone concretization function γ :

(
X�,�

)
→ (P(X),⊆): an element x� ∈ X�

represents a set γ(x�).
We also assume a join operator � : X� × X� → X�, with infix notation; in

practice, it is generally a least upper bound operation, but we only need it to
satisfy γ(x�) ∪ γ(y�) ⊆ γ(x� � y�) for all x�, y�.

Classically, one considers the control-flow graph of the program, with edges
labeled with concrete transition relations (e.g. x′ = x + 1 for an instruction
x = x+1;), and attaches an abstract element to each control point. A concrete
transition relation τ ⊆ X ×X is replaced by an abstract forward abstract trans-
former τ � : X� → X�, such that ∀x� ∈ X�, x, x′ ∈ X, x ∈ γ(x�)∧(x, x′) ∈ τ =⇒
x′ ∈ γ ◦ τ �(x�). It is easy to see that if to any control point p ∈ P we attach
an abstract element x�

p such that (i) for any p, γ(x�
p) includes all initial states

possible at control node p (ii) for any p, p′, τ �p,p′ (x�
p) � x�

p′ , noting τp,p′ the tran-

sition from p to p′, then (γ(x�
p))p∈P form an inductive invariant : by induction,

when the control point is p, the program state always lies in γ(x�
p).

Kleene iterations compute such an inductive invariant as the stationary limit,
if it exists, of the following system: for each p, initialize x�

p such that γ(x�
p) is a

superset of the initial states at point p; then iterate the following: if τ �p,p′(x�
p) 	�

x�
p′ , replace x

�
p′ by x�

p′ � τ �p,p′ (x�
p). Such a stationary limit is bound to exist if X�

has no infinite ascending chain a1 � a2 � . . . ; this condition is however not met
by domains such as intervals or convex polyhedra.

Widening-accelerated Kleene iterations proceed by replacing x�
p′ � τ �p,p′(x�

p)

by x�
p′ �(x�

p′ � τ �p,p′(x�
p)) where � is a widening operator : for all x�, y�, γ(y�) ⊆

γ(x� � y�), and any sequence u�
1, u

�
2, . . . of the form u�

n+1 = u�
n� v�n, where v�n is

another sequence, become stationary. The stationary limit (x�
p)p∈P , defines an

inductive invariant (γ(x�
p))p∈P . Note that this invariant is not, in general, the

least one expressible in the abstract domain, and may depend on the iteration
ordering (the successive choices p, p′).

286 J. Henry, D. Monniaux, and M. Moy

Once an inductive invariant γ((x�
p)p∈P) has been obtained, one can attempt

decreasing or narrowing iterations to reduce it. In their simplest form, this just
means running the following operation until a fixpoint or a maximal number

of iterations are reached: for any p′, replace x�
p′ by x�

p′ ∩
(⊔

p∈P τ �p,p′(x�
p)
)
. The

result also defines an inductive invariant. These decreasing iterations are indis-
pensable to recover properties from guards (tests) in the program in most iter-
ation settings; unfortunately, certain loops, particularly those involving identity
(no-operation) transitions, may foil them: the iterations immediately reach a
fixpoint and do not decrease further (see example in �2.3). Sections 2.4 and 2.5
describe techniques that work around this problem.

2.2 SMT-Solving

Boolean satisfiability (SAT) is the canonical NP-complete problem: given a
propositional formula (e.g. (a∨¬b)∧(¬a∨b∨¬c)), decide whether it is satisfiable
— and, if so, output a satisfying assignment. Despite an exponential worst-case
complexity, the DPLL algorithm [22,6] solves many useful SAT problems in prac-
tice.

SAT was extended to satisfiability modulo theory (SMT): in addition to propo-
sitional literals, SMT formulas admit atoms from a theory. For instance, the the-
ories of linear integer arithmetic (LIA) and linear real arithmetic (LRA) have
atoms of the form a1x1 + · · · + anxn � C where a1, . . . , an, C are integer con-
stants, x1, . . . , xn are variables (interpreted over Z for LIA and R or Q for LRA),
and � is a comparison operator =, 	=, <,≤, >,≥. Satisfiability for LIA and LRA
is NP-complete, yet tools based on DPLL(T) approach [22,6] solve many useful
SMT problems in practice. All these tools provide a satisfying assignment if the
problem is satisfiable.

2.3 A Simple, Motivating Example

Consider the following program, adapted from [27], where input(a, b) stands for
a nondeterministic input in [a, b] (the control-flow graph on the right depicts the
loop body, s is the start node and e the end node):

1 void r a t e l i m i t e r () {
2 i n t x o l d = 0 ;
3 while (1) {
4 i n t x = i n p u t (−100000, 100000) ;
5 i f (x > x o l d +10) x = x o l d +10;
6 i f (x < x o ld −10) x = x o ld −10;
7 x o l d = x ;
8 } }

s

e

This program implements a construct commonly found in control programs
(in e.g. automotive or avionics): a rate or slope limiter.

Succinct Representations for Abstract Interpretation 287

The expected inductive invariant is x old ∈ [−100000, 100000], but classical
abstract interpretation using intervals (or octagons or polyhedra) finds x old ∈
(−∞,+∞) [9]. Let us briefly see why.

Widening iterations converge to x old ∈ (−∞,+∞); let us now see why de-
creasing iterations fail to recover the desired invariant. The x > x old+10 test at
line 6, if taken, yields x old ∈ (−∞, 99990); followed by x = x old+10, we obtain
x ∈ (−∞, 100000), and the same after union with the no-operation “else” branch.
Line 7 yields x ∈ (−∞,+∞).

We could use “widening up to” or “widening with thresholds”, propagating the
“magic values”±100000 associated to x into x old, but these syntactic approaches
cannot directly cope with programs for which x ∈ [−100000,+100000] is itself
obtained by analysis. The guided static analysis of [14] does not perform better,
and also obtains x old ∈ (−∞,+∞).

In contrast, let us distinguish all four possible execution paths through the
tests at lines 6 and 7. The path through both “else” branches is infeasible; the
program is thus equivalent to a program with 3 paths:

1 void r a t e l i m i t e r () {
2 i n t x o l d = 0 ;
3 while (1) {
4 i n t x = i n p u t (−100000, 100000) ;
5 i f (x > x o l d +10) x o l d = x o l d +10;
6 else i f (x < x o ld −10) x o l d = x o ld −10;
7 else x o l d = x ;
8 } }

s

e

Classical interval analysis on this program yields x old ∈ [−100000, 100000].
We have transformed the program, manually pruning out infeasible paths; yet in
general the resulting program could be exponentially larger than the first, even
though not all feasible paths are needed to compute the invariant.

Following recent suggestions [12,27], we avoid this space explosion by keeping
the second program implicit while simulating its analysis. This means we work on
an implicitly represented transition multigraph ; it is succinctly represented by
the transition graph of the first program. Our first contribution (�3) is to recast
the “guided analysis” from [14] on such a succinct representation of the paths
in lieu of the individual transitions. A similar explosion occurs in disjunctive
invariant generation, following [15]; our second contribution (�4) applies our
implicit representation to their method.

2.4 Guided Static Analysis

Guided static analysis was proposed by [14] as an improvement over classical
upward Kleene iterations with widening. Consider the program in Fig. 1, taken
from [14].

Classical iterations on the domain of convex polyhedra [10,1] or octagons [25]
start with x = 0 ∧ x = 0, then continue with x = y ∧ 0 ≤ x ≤ 1. The widening
operator extrapolates from these two iterations and yields x = y ∧ x ≥ 0. From

288 J. Henry, D. Monniaux, and M. Moy

1 i n t x = 0 , y = 0 ;
2 while (1) {
3 i f (x <= 50) y ++;
4 else y−−;
5 i f (y < 0) break ;
6 x ++;
7 }

x

y

y ≤ x ∧ y ≤ 102 − x ∧ y ≥ 0.

Fig. 1. Example program and its invariant: the piecewise linear, solid line is the
strongest invariant, the grayed polyhedron is its convex hull

there, the “else” branch at line 4 may be taken; with further widening, 0 ≤ y ≤ x
is obtained as a loop invariant, and thus the computed loop postcondition is
x ≥ 0 ∧ y = 0. Yet the strongest invariant is (0 ≤ x ≤ 51 ∧ y = x) ∨ (51 ≤ x ≤
102 ∧ x+ y = 102), and its convex hull, a convex polyhedron (Fig. 1).

Intuitively, this disappointing result is obtained because widening extrapolates
from the first iterations of the loop, but the loop has two different phases (x ≤ 50
and x > 50) with different behaviors, thus the extrapolation from the first phase
is not valid for the second.

Gopan and Reps’ idea is to analyze the first phase of the loop with a widening
and narrowing sequence, and thus obtain 0 ≤ x ≤ 50 ∧ y = x, and then analyze
the second phase, finally obtaining invariant (2.4); each phase is identified by
the tests taken or not taken.

The analysis starts by identifying the tests taken and not taken during the
first iteration of the loop, starting in the loop initialization. The branches not
taken are pruned from the loop body, yielding:

while (1) {
i f (x <= 50) y ++;
else break ; / * not taken i n phase 1 * /
i f (y < 0) break ;
x ++;

}

Analyzing this loop using widening and narrowing on convex polyhedra or
octagons yields the loop invariant 0 ≤ x ≤ 51 ∧ y = x. Now, the transition at
line 4 becomes feasible; and we analyze the full loop, starting iterations from
0 ≤ x ≤ 51 ∧ y = x, and obtain invariant (2.4) in Fig 1.

More generally, this analysis method considers an ascending sequence of sub-
sets of the transitions in the loop body ; for each subset, an inductive invariant
is computed for the program restricted to it. The starting subset consists in the
transitions reachable in one step from the loop initialization. If for a given sub-
set S in the sequence, no transitions outside S are reachable from the inductive
invariant attached to S, then iterations stop; otherwise, add these transitions to
S and iterate more. Termination ensues from the finiteness of the control-flow
graph.

Succinct Representations for Abstract Interpretation 289

2.5 Path-focusing

Monniaux & Gonnord’s path-focusing [27] technique distinguishes the different
paths in the program in order to avoid loss of precision due to merge operations.
Since the number of paths may be exponential, the technique keeps them implicit
and computes them when needed using SMT-solving. The (accelerated) Kleene
iterations (�2.1) are computed over a reduced multigraph instead of the classical
transition graph.

Let P be the set of control points in the transition graph, PW ⊆ P the set
of widening points such that removing the points in PW gives an acyclic graph.
One can choose a set PR such that PW ⊆ PR ⊆ P .

The set of paths is kept implicit by an SMT formula ρ expressing the semantics
of the program, assuming that the transition semantics can be expressed within a
decidable theory. For an easy construction of ρ, we also assume that the program
is expressed in SSA form, meaning that each variable is only assigned once in the
transition graph. This is not a restriction, since there exists standard algorithms
that transform a program into an SSA format.

This formula contains Boolean reachability predicates bi for each control points
pi /∈ PR, b

s
i and bdi for each pi ∈ PR, so that a path pi1 → pi2 → · · · → pin

between two points pi1 , pin ∈ PR can easily be expressed as the conjunction
bsi1 ∧

∧
2≤k<n bik ∧ bdin . The Boolean bsi is true when the path starts at point pi,

whereas bdi is true when the path arrives at pi. In other words, we split the points
in PR into a source point, with only outgoing transitions, and a destination point,
with only incoming transitions, so that the resulting graph is acyclic and there
are no paths going through control points in PR.

In order to find focus paths, we solve an SMT formula which is satisfiable when
there exists a path starting at a point pi ∈ PR in a state included in the current
invariant candidate Xi, and arriving at a point pj ∈ PR in a state outside Xj . In
this case, we construct this path using the model and update Xj . When pi = pj ,
meaning that the path is actually a self-loop, we can apply a widening/narrowing
sequence, or even compute the transitive closure of the loop (or an approximation
thereof, or its application to Xi) using abstract acceleration [13].

We assume that we can encode the concrete semantics of the program into
the SMT formula, or at least an abstraction thereof at least as precise as the one
applied by the abstract interpreter (in simple terms: we want to avoid the case
where the SMT solver exhibits a possible path, but the static analyzer realizes
that this path is infeasible; this would lead to nontermination, because the SMT
solver would exhibit the same path on the next iteration). A workaround would
be to apply satisfiability modulo path programs [18]: from each path ruled in-
feasible by abstract interpretation, extract a blocking clause for the SAT solver
underlying the SMT-solver.

3 Guided Analysis over the Paths

Guided static analysis, as proposed by [14], applies to the transition graph of the
program. We now present a new technique applying this analysis on the implicit

290 J. Henry, D. Monniaux, and M. Moy

multigraph from [27], thus avoiding control flow merges with unfeasible paths.
In this section, we use the same notations as �2.5.

The combination of these two techniques aims at first discovering a precise
inductive invariant for a subset of paths between two points in PR, by the mean of
ascending and narrowing iterations. When an inductive invariant has been found,
we add new feasible paths to the subset and compute an inductive invariant for
this new subset, starting with the results from the previous analysis. In other
words, our technique considers an ascending sequence of subsets of the paths
between two points in PR. We iterate the operations until the whole program (i.e
all the feasible paths) has been considered. The result will then be an inductive
invariant of the entire program.

The ascending iteration applies path-focusing [27] to a subset of the multi-
graph. As [14], we do some narrowing, to recover precision lost by widening,
before computing and taking into account new feasible paths. Thus, our tech-
nique combines the advantages of Guided Static Analysis and Path-focusing.

Algorithm 1 performs Guided static analysis on the implicitly represented
multigraph. Ip denotes a set of initial states at program point p (thus ∅ for
most p). The current working subset of paths, noted P and initially empty, is
stored using a compact representation, such as binary decision diagrams. We
also maintain two sets of control points:
– A′ : points in PR that may be the starting points of new feasible paths.
– A : points in PR on which we apply the ascending iterations. When the

abstract value of a control point p is updated, p is added to both A and A′.

Algorithm 1. Guided static analysis on implicit multigraph

1: A′ ← {p|PR/Ip
= ∅}
2: A ← ∅
3: P ← ∅ // Paths in the current subset
4: for all pi ∈ PR do
5: Xi ← Ipi
6: end for
7: while A′
= ∅ do
8: while A′
= ∅ do
9: Select pi ∈ A′

10: A′ ← A′ \ {pi}
11: ComputeNewPaths(pi) // Update A, A′ and P
12: end while
13: // ascending iterations on P
14: while A
= ∅ do
15: Select pi ∈ A
16: A ← A \ {pi}
17: PathFocusing(pi) // Update A and A′

18: end while
19: Narrow
20: end while
21: return {Xi, i ∈ PR}

Succinct Representations for Abstract Interpretation 291

We distinguish three phases in the main loop of the analysis:

1. We start finding a new relevant subset P of the graph. Either the previous
iteration or the initialization led us to a state where there are no more paths
in the previous subset P , starting at pi, that make the abstract values of
the successors grow (otherwise, the SMT solver would not have answered
“unsat”). Narrowing iterations preserve this property. However, there may
exist such paths in the entire multigraph, that are not in P . This phase
computes these paths and adds them to the subset. This phase is described
in 3.2 and corresponds to lines in 8 to 12 in Algorithm 1.

2. Given a new subset P , we search for paths starting at point pi ∈ PR, such
that these paths are in P , i.e are included in the working subgraph. Each
time we find a path, we update the abstract value of the destination point
of the path. This is the phase explained in 3.1, and corresponds to lines 14
to 18 in Algorithm 1.

3. We perform narrowing iterations the usual way (line 19 in algorithm 1) and
reiterate from step 1 unless there are no more points to explore, i.e. A′ = ∅.

The order of steps is important: narrowing has to be performed before adding
new paths, or spurious new paths would be added to P . Starting with the addi-
tion of new paths avoids doing the ascending iterations on an empty graph.

3.1 Ascending Iterations by Path-focusing

For computing an inductive invariant over a subgraph, we use the Path-focusing
algorithm from [27] with special treatment for self loops (line 17 in algorithm 1).

In order to find which path to focus on, we construct an SMT formula f(pi),
whose model when satisfiable is a path that starts in pi, goes to a successor
pj ∈ PR of pi, such that the image of Xi by the path transformation is not
included in the current Xj . Intuitively, such a path makes the abstract value
Xj grow, and thus is an interesting path to focus on. We loop until the formula
becomes unsatisfiable, meaning that the analysis of pi is finished.

If we note Succ(i) the set of indices j such that pj ∈ PR is a successor of pi
in the expanded multigraph, and Xi the abstract value associated to pi :

f(pi) = ρ ∧ bsi ∧
∧

j∈PR
j �=i

¬bsj ∧Xi ∧
∨

j∈Succ(i)

(bdj ∧ ¬Xj)

The difference with [27] is that we do not work on the entire transition graph but
on a subset of it. Therefore we conjoin the formula f(pi) with the actual set of
working paths, noted P , expressed as a Boolean formula, where the Boolean vari-
ables are the reachability predicates of the control points. We can easily construct
this formula from the binary decision diagram using dynamic programming, and
avoiding an exponentially sized formula. In other words, we force the SMT solver
to give us a path included in P . Each time the invariant candidate of a point
pj has been updated, pj is inserted into A′ since it may be the start of a new
feasible paths.

292 J. Henry, D. Monniaux, and M. Moy

3.2 Adding New Paths

Our technique computes the fixpoint iterations on an ascending sequence of
subgraphs, until the complete graph is reached. When the analysis of a subgraph
is finished, meaning that the abstract values for each control point has converged
to an inductive invariant for this subgraph, the next subgraph to work on has
to be computed.

This new subgraph contains all the paths from the previous one, and also new
paths that become feasible regarding the current abstract values. The new paths
in P are computed one after another, until no more path can make the invariant
grow. This is line 11 in Algorithm 1, which corresponds to Algorithm 2. We also
use SMT solving to discover these new paths, but we subtly change the SMT
formula given to the SMT solver: we now try to find a path that is not yet in
P , but is feasible and makes the invariant candidate of its destination grow. We
thus check the satisfiability of the formula f ′(pi), where:

f ′(pi) = f(pi) ∧ ¬P
Xj is updated using an abstract union when the point pj is the target of a new
path. This way, further SMT queries do not compute other paths with the same
source and destination if it is not needed (because these new paths would not
make Xj grow, hence would not be returned by the SMT solver).

Algorithm 2. ComputeNewPaths

1: while true do
2: res ← SmtSolve [f ′(pi)]
3: if res = unsat then
4: break
5: end if
6: Compute the path e from the model
7: Xj ← Xj � τe(Xi)
8: P ← P ∪ {e}
9: A ← A ∪ {pi}
10: A′ ← A′ ∪ {pi}
11: end while

When a new path has been found, it is immediately added into P . We then
have to add pi and pj into A (since we do not apply widening in this section)
and pj into A′, since pj may be the starting point of a new feasible path.

3.3 Termination

Termination of this algorithm is guaranteed, because: 1. the subset of paths P
strictly increases at each loop iteration, and is bounded by the finite set of paths
in the entire graph. 2. when computing new paths, we cunjunct our formula with
¬P , meaning that we obtain each possible path only once. The number of path
is finite, so this computation always terminates. 3. the Path-focusing iterations
terminate because of the properties of widening.

Succinct Representations for Abstract Interpretation 293

3.4 Example

We revise the rate limiter described in 2.3. In this example, Path-focusing works
well because all the paths starting at the loop header are actually self loops. In
such a case, the technique performs a widening/narrowing sequence or acceler-
ates the loop, thus leading to a precise invariant. However, in some cases, there
also exists paths that are not self loops, in which case Path-focusing applies
widening. This widening may induce unrecoverable loss of precision.

Suppose the main loop of the rate limiter contains a nested loop like:

1 void r a t e l i m i t e r () {
2 i n t x o l d = 0 ;
3 while (1) {
4 i n t x = i n p u t (−100000, 100000) ;
5 i f (x > x o l d +10) x = x o l d +10;
6 i f (x < x o ld −10) x = x o ld −10;
7 x o l d = x ;
8 while (wa i t ()) {}
9 } }
We choose PR as the set of loop headers of the function, plus the initial state.

In this case, we have three elements in PR.
The main loop in the expanded multigraph has then 4 distinct paths going to

the header of the nested loop.
Guided static analysis from [14] yields, at line 3, x old ∈ (−∞,+∞). Path-

focusing [27] also finds x old ∈ (−∞,+∞). Now, let us see how our technique
performs on this example.

Figure 2 shows the sequence of subset of paths during the analysis. The points
in PR are noted pi, where i is the corresponding line in the code: for instance,
p3 corresponds to the header of the main loop.
1. The starting subgraph is depicted on Figure 2 Step 1. At the beginning, this

graph has no transitions.
2. We compute the new feasible paths that have to be added into the subgraph.

We first find the path from p1 to p3 and obtain at p3 x old = 0.
The image of x old = 0 by the path that goes from p3 to p8, and that goes

through the else branch of each if-then-else, is −10 ≤ x old ≤ 10. This path
is then added to our subgraph.

Moreover, there is no other path starting at p3 whose image is not in
−10 ≤ x old ≤ 10.

Finally, since the abstract value associated to p8 is −10 ≤ x old ≤ 10, the
path from p8 to p3 is feasible and is added into P . The final subgraph is
depicted on Figure 2 Step 2.

3. We then compute the ascending iterations by path-focusing. At the end of
these iterations, we obtain −∞ ≤ x old ≤ +∞ for both p3 and p8.

4. We now can apply narrowing iterations, and recover the precision lost by
widening: we obtain −10000 ≤ x old ≤ 10000 at points p3 and p8.

5. Finally, we compute the next subgraph. The SMT-solver does not find any
new path that makes the abstract values grow, and the algorithm terminates.

294 J. Henry, D. Monniaux, and M. Moy

Our technique gives us the expected invariant x old ∈ [−10000, 10000]. Here,
only 3 paths out of the 6 have been computed during the analysis. In practice,
depending on the order the SMT-solver returns the paths, other feasible paths
could have been added during the analysis.

p1

p3

p8

Step 1 p1

p3

p8

Step 2

x old ← 0

−10000 ≤ x ≤ 10000
x old − 10 ≤ x
x ≤ x old + 10/
x old ← x

Fig. 2. Ascending sequence of subgraphs

In this example, we see that our technique actually combines best of Guided
Static Analysis and Path Focusing.

4 Disjunctive Invariants

While many (most?) useful program invariants on numerical variables can be ex-
pressed as conjunctions of inequalities and congruences, it is sometimes necessary
to introduce disjunctions. For instance, the loop for (int i=0; i<n; i++) {...} has
head invariant 0 ≤ i ≤ n ∨ (i = 0 ∧ n < 0). For this very simple example, a sim-
ple syntactic transformation of the control structure (into i=0; if (i<n)do {...}
while (i<n)) is sufficient, but in more complex cases more advanced analyses are
necessary [5,20,30,26]; in intuitive terms, they discover phases or modes in loops.

Gulwani & Zuleger [15] proposed a technique for computing disjunctive in-
variants, by distinguishing all the paths inside a loop. In this section, we propose
to improve this technique by using SMT queries to find interesting paths, the
objective being to avoid an explicit exhaustive enumeration of an exponential
number of paths.

For each control point pi, we compute a disjunctive invariant
∨

1≤j≤mi
Xi,j .

We denote by ni the number of distinct paths starting at pi. To perform the
analysis, one chooses an integer δi ∈ [1,mi], and a mapping function σi : [1,mi]×
[1, ni] �→ [1,mi]. The k-th path starting fom pi is denoted τi,k. The image of the
j-th disjunct Xi,j by the path τi,k is then joined with Xi,σ(j,k). Initially, the
δi-th abstract value contains the initial states of pi, and all other abstract values
contain ∅.

For each control point pi ∈ PR, mi, δi and σi can be defined heuristically. For
instance, one could define σi so that σi(j, k) only depends on the last transition
of the path, or else construct it dynamically during the analysis.

Succinct Representations for Abstract Interpretation 295

Our method improves this technique in two ways :

– Instead of enumerating the whole set of paths, we keep them implicit and
compute them only when needed.

– At each loop iteration of the original algorithm [15], an image by each path
inside the loop is computed for each disjunct of the invariant candidate.
Yet, many of these images may be redundant: for instance, if our invariant
candidate is (0 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 1000) ∨ (x < −10 ∧ y < −10), then
there is no point enumerating paths whose image is included in this invariant
candidate. In our approach, we compute such an image only if it makes the
resulting abstract value grow.

Our improvement consists in a modification of the SMT formula we solve in
3. We introduce in this formula Boolean variables {dj , 1 ≤ j ≤ m}, so that
we can easily find in the model which abstract value of the disjunction of the
source point has to be chosen to make the invariant of the destination grow. The
resulting formula that is given to the SMT solver is defined by g(pi). When the
formula is satisfiable, we know that the index j of the starting disjunct that has
to be chosen is the one for which the associate Boolean value dj is true in the
model. Then, we can easily compute the value of σi(j, k), thus know the index
of the disjunct to join with.

g(pi) = ρ∧bsi ∧
∧

j∈PR
j �=i

¬bsj∧
∨

1≤k≤mi

(dk∧Xi,k∧
∧
l �=k

¬dl)∧
∨

j∈Succ(i)

(bdj ∧
∧

1≤k≤mi

(¬Xj,k))

In our algorithm, the initialization of the abstract values slightly differs from
algorithm 1 line 5, since we now have to initialize each disjunct. Instead of
Line 5, we initialize Xi,k with ⊥ for all k ∈ {1, ..,mi} \ {δi}, and Xi,δi with
← Ipi .

Furthermore, the Path-focused algorithm (line 17 from algorithm 1) is en-
hanced to deal with disjunctive invariants, and is detailed in algorithm 3.

The Update function can classically assign Xi,σi(j,k) �(Xi,σi(j,k) � τi,k(Xi,j))
to Xi,σi(j,k), or can integrate the special treatment for self loops proposed by
[27], with widening/narrowing sequence or acceleration.

We experimented with a heuristic of dynamic construction of the σi functions,
adapted from [15]. For each control point pi ∈ PR, we start with one single
disjunct (mi = 1) and define δi = 1. M denotes an upper bound on the number
of disjuncts per control point.

The σi functions take as parameters the index of the starting abstract value,
and the path we focus on. Since we dynamically construct these functions during
the analysis, we store their already computed image into a compact representa-
tion, such as Algebraic Decision Diagrams. σi(j, k) is then constructed on the
fly only when needed, and computed only once. When the value of σi(j, k) is
required but undefined, we first compute the image of the abstract value Xi,j by
the path indexed by k, and try to find an existing disjunct of index j′ so that
the least upper bound of the two abstract values is exactly their union (using
SMT-solving). If such an index exists, then we set σi(j, k) = j′. Otherwise:

296 J. Henry, D. Monniaux, and M. Moy

Algorithm 3. Disjunctive invariant computation with implicit paths

1: while true do
2: res ← SmtSolve [g(pi)]
3: if res = unsat then
4: break
5: end if
6: Compute the path τi,k from res
7: Take j ∈ {l|dl = true}
8: Update(Xi,σi(j,k))
9: end while

– if mi < M , we increase mi by 1 and define σi(j, k) = mi

– if mi = M , we define σi(j, k) = M

The main difference with the original algorithm [15] is that we construct σi(j, k)
using SMT queries instead of enumerating a possibly exponential number of
paths to find a solution.

5 Implementation and Experimental Comparisons

We have implemented our proposed solutions inside a prototype of intraproce-
dural static analyzer called PAGAI, as well as the classical abstract interpreta-
tion algorithm, and the state-of-the-art techniques Path Focusing [27] andGuided
Static Analysis [14]. It is available online at https://forge.imag.fr/projects/
pagai/. The implementation is documented in [19].

PAGAI operates over LLVM bitcode [24,23], which is a target for several com-
pilers, most notably Clang (supporting C and C++) and llvm-gcc (supporting
C, C++, Fortran and Ada). Abstract domains are provided by the APRON li-
brary [21], and include convex polyhedra (from the builtin Polka “PK” library),
octagons, intervals, and linear congruences. For SMT-solving, our analyzer uses
Yices [11] or Microsoft Z3 [28].

PAGAI currently neither models the memory heap nor performs interproce-
dural analysis. Instead, LLVM optimization phases are applied prior to analysis,
in order to inline non-recursive function calls and lift certain memory accesses to
operations on explicit numerical variables (e.g. y=t [0]* t [0]; preceded by t [0]=x;
without any aliased write in between is replaced by y=x*x;). The remaining mem-
ory reads are considered as indeterminates, and memory writes are ignored; this
is a sound abstraction.

We conducted extensive experiments on real-life programs in order to compare
the different techniques, mostly on open-source projects (Fig. 3) written in C,
C++ and Fortran. These results confirm that our combined technique improve
the analysis in comparison with the two techniques taken individually, at a rea-
sonable cost. The extensionwith disjunctive invariants increases precision inmany
cases, but with higher cost in terms of execution time.

https://forge.imag.fr/projects/pagai/
https://forge.imag.fr/projects/pagai/

Succinct Representations for Abstract Interpretation 297

Table 1. Execution times for various techniques

Size Execution time (seconds)

Name kLOC |PR| S G PF G+PF DIS

a2ps-4.14 55 2012 23 74 34 115 162
gawk-4.0.0 59 902 15 46 12 40 50
gnuchess-6.0.0 38 1222 50 220 81 312 351
gnugo-3.8 83 2801 77 159 92 766 1493
grep-2.9 35 820 41 85 22 65 122
gzip-1.4 27 494 22 268 91 303 230
lapack-3.3.1 954 16422 294 3740 3773 8159 10351
make-3.82 34 993 67 108 53 109 257
tar-1.26 73 1712 37 218 115 253 396

0

2

4

6

8

10

12

14

16

G
/S

PF/S

PF/G

G
+
PF/PF

G
+
PF/G

G
+
PF/S

D
IS/G

+
PF

p
er
ce
n
ta
g
e
o
f
co
n
tr
o
l
p
o
in
ts �

�
uncomparable

Fig. 3.Comparison of the abstract values obtained on several open-source projects. The
table shows their respective number of lines of code, number of control points in PR, and
execution time on various techniques. Techniques are classical abstract interpretation
(S), Guided Static Analysis (G), Path-focused technique (PF), our combined technique
(G+PF), and its version with disjunctive invariants (DIS). The � bars (resp. �) gives
the percentage of invariants stronger (more precise; smaller with respect to inclusion)
with the left-side (resp. right-side) technique, and “uncomparable” gives the percentage
of invariants that are uncomparable, i.e neither greater nor smaller; the code points
where both invariants are equal make up the remaining percentage.

6 Conclusion and Future Prospects

Roughly, an analysis by abstract interpretation is defined by the choice of an it-
eration strategy and an abstract domain. In this article, we demonstrated that
changes in the iteration algorithm can significantly improve precision, sometimes
while improving analysis times.

A common criticism of analysis techniques based on SMT-solving is that they
do not scale up. Yet, our experiments show that, for numerical properties, they

298 J. Henry, D. Monniaux, and M. Moy

scale up to the size of typical functions and loops. It is however quite certain that,
naively applied, they cannot scale to the kind of programs targeted by e.g. the
Astrée tool, that is, a dozens or hundreds of thousands of lines of code in a single
loop operating over similar numbers of remanent variables. Actually, for such ap-
plications, only (quasi-)linear algorithms scale up, and “cheap” abstract domains
such as octagons (O(n3) where n is the number of variables) are not applied to
the full variable set, but to restricted subsets thereof. It thus seems reasonable
that techniques such as considering “packs” of related variables, slicing, etc. may
similarly help SMT-based techniques to scale to global analyses.

We compared the precision of different techniques and abstract domains by
comparing the invariants for the inclusion ordering. A better metric is perhaps
to take a client analysis — such as the detection of overflows and array bound
violations — and compare the rates of alarms.

We focused on numerical properties, because they are supported by easily avail-
able abstract libraries. Yet, in most programs, properties of data structures are im-
portant for proving interesting properties. Further investigations are needed not
only on good abstractions for pointers (many are already known) but also on their
conversion to SMT problems.

References

1. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for con-
vex polyhedra. Science of Computer Programming 58(1-2), 28–56 (2005)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library, version 0.9,
http://www.cs.unipr.it/ppl

3. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains.
International Journal on Software Tools for Technology Transfer (STTT) 8(4-5),
449–466 (2006)

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)

5. Balakrishnan, G., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Refining the control
structure of loops using static analysis. In: EMSOFT, pp. 49–58. ACM (2009)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam
(2009)

7. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Programming
Language Design and Implementation (PLDI), pp. 196–207. ACM (2003)

8. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. of Logic and Com-
putation, 511–547 (August 1992)

9. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Principles of Programming Languages (POPL), pp. 84–96. ACM
(1978)

http://www.cs.unipr.it/ppl

Succinct Representations for Abstract Interpretation 299

11. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

12. Gawlitza, T., Monniaux, D.: Improving Strategies via SMT Solving. In: Barthe, G.
(ed.) ESOP 2011. LNCS, vol. 6602, pp. 236–255. Springer, Heidelberg (2011)

13. Gonnord, L., Halbwachs, N.: Combining Widening and Acceleration in Linear Re-
lation Analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006)

14. Gopan, D., Reps, T.W.: Guided Static Analysis. In: Riis Nielson, H., Filé, G. (eds.)
SAS 2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007)

15. Gulwani, S., Zuleger, F.: The reachability-bound problem. In: PLDI, pp. 292–304.
ACM (2010)

16. Halbwachs, N.: Détermination automatique de relations linéaires vérifiées par les
variables d’un programme. Ph.D. thesis, Grenoble University (1979)

17. Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)

18. Harris, W.R., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Program analysis via
satisfiability modulo path programs. In: POPL, pp. 71–82. ACM (2010)

19. Henry, J.: Static Analysis by Path Focusing. Master’s thesis, Grenoble INP (2011),
http://www-verimag.imag.fr/~jhenry/pdf/M2R_report.pdf

20. Jeannet, B.: Dynamic partitioning in linear relation analysis: Application to the ver-
ification of reactive systems. Formal Methods in System Design 23(1), 5–37 (2003)

21. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static
Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

22. Kroening, D., Strichman, O.: Decision procedures. Springer (2008)
23. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-

ysis & transformation. In: CGO, pp. 75–86. IEEE Computer Society, Washington,
DC (2004)

24. LLVM team: LLVM Language Reference Manual (2011), http://llvm.org/docs/
LangRef.html

25. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

26. Monniaux, D., Bodin, M.: Modular Abstractions of Reactive Nodes Using Dis-
junctive Invariants. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 19–33.
Springer, Heidelberg (2011)

27. Monniaux, D., Gonnord, L.: Using Bounded Model Checking to Focus Fixpoint It-
erations. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 369–385. Springer,
Heidelberg (2011)

28. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

29. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. Transactions on
Programming Languages and Systems (TOPLAS) 29(5), 26 (2007)

30. Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying Loop Invariant Genera-
tion Using Splitter Predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 703–719. Springer, Heidelberg (2011)

http://www-verimag.imag.fr/~jhenry/pdf/M2R_report.pdf
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html

Craig Interpretation

Aws Albarghouthi1, Arie Gurfinkel2, and Marsha Chechik1

1 Department of Computer Science, University of Toronto, Canada
2 Software Engineering Institute, Carnegie Mellon University, USA

Abstract. Abstract interpretation (AI) is one of the most scalable au-
tomated approaches to program verification available today. To achieve
efficiency, many steps of the analysis, e.g., joins and widening, lose pre-
cision. As a result, AI often produces false alarms, coming from the
inability to find a safe inductive invariant even when it exists in a chosen
abstract domain.

To tackle this problem, we present Vinta, an iterative algorithm that
uses Craig interpolants to refine and guide AI away from false alarms.
Vinta is based on a novel refinement strategy that capitalizes on recent
advances in SMT and interpolation-based verification to (a) find coun-
terexamples to justify alarms produced by AI, and (b) to strengthen
an invariant to exclude alarms that cannot be justified. The refinement
process continues until either a safe inductive invariant is computed, a
counterexample is found, or resources are exhausted. This strategy allows
Vinta to recover precision lost in many AI steps, and even to compute
inductive invariants that are inexpressible in the chosen abstract domain
(e.g., by adding disjunctions and new terms).

We have implementedVinta and compared it against top verification
tools from the recent software verification competition. Our results show
that Vinta outperforms state-of-the-art verification tools.

1 Introduction

Abstract interpretation (AI) is one of the most scalable automated approaches
to program verification available today. AI iteratively computes an inductive
invariant I of a given program P in a chosen abstract domain D. P is safe, i.e.,
it cannot reach an error location e, if I is safe, i.e., it does not include e. The
price of AI’s efficiency is false alarms (i.e., inability to find a safe I even when
it exists in D), that are introduced through imprecision inherent in many steps
of the analysis (e.g., join and widening).

In this paper, we present Vinta
1, an iterative algorithm that uses Craig in-

terpolants [8] to refine and guide AI away from false alarms. Vinta marries the
efficiency of AI with the precision of Bounded Model Checking (BMC) [6] and
the ability to generalize from concrete executions of interpolation-based software
verification [15,1].

1 Verification with INTerpolation and Abstract interpretation.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 300–316, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Craig Interpretation 301

The main phases of the algorithm are shown in Fig. 1. Given a program P
and a safety property ϕ, Vinta starts by computing an inductive invariant I of
P using an abstract domain D (the AI phase). If I is safe (i.e., I ⇒ ϕ), then P is
safe as well. Otherwise,Vinta goes to a novel refinement phase. First, refinement
uses BMC to check for a counterexample in the explored part of P . Second, if
BMC fails to find a counterexample, it uses an interpolation-based procedure to
strengthen I to I ′. If I ′ is not inductive (checked in the “Is Inductive?” phase),
the AI phase is repeated to weaken I ′ to include all reachable states of P . This
process continues until either a safe inductive invariant or a counterexample is
found, or resources (i.e., time or memory) are exhausted.

In our experience, Vinta is able to recover precision lost due to widening,
join, imprecise post-image, and inexpressiveness of the chosen domain D. Fur-
thermore, unless aborted, it never produces false alarms.While we presentVinta

as a refinement strategy for AI, it can equivalently be seen as an interpolation-
based verification algorithm guided by AI. Indeed, we show that both the BMC
and interpolation phases benefit greatly from the invariants discovered by AI. We
have implemented Vinta in Ufo [2,1], our software verification framework built
on top of the LLVM compiler [14]. For evaluation, we used benchmarks from the
recent Software Verification Competition (SV-COMP) [4]. We have compared
several configurations of Vinta with our prior tool, Ufo [1], and with the top
two tools from SV-COMP, CPAchecker-ABE and CPAchecker-Memo. The
results show that Vinta outperforms these state-of-the-art approaches.

This paper makes several contributions. First, the AI phase is a novel AI-
based invariant computation algorithm. It works on a summary of a Control
Flow Graph (CFG) that contains only loop-heads. It efficiently maintains dis-
junctive loop invariants. Finally, it provides counterexamples to justify alarms.
Second, we present a new widening strategy that extends widening from a given
domain D to its finite powerset Pf (D). Third, we present a novel refinement
strategy for strengthening invariants and eliminating potential false alarms. Un-
like existing work on interpolation-based refinement (e.g., [1,15]), our strategy is
both guided and bounded by the invariants discovered by AI. Finally, we show
empirically that the new approach outperforms other state-of-the-art techniques
on a collection of software verification benchmarks.

Related Work. Our approach is closely related to the Dagger tool of Gulavani
et al. [10] that is also based on refining AI, and to our earlier tool Ufo [1] that
combines predicate abstraction with interpolation-based verification. The key
differences between Vinta and Dagger are: (1) Dagger can only refine im-
precision caused by widening and join. Vinta can refine imprecision up to the
concrete semantics of the program (as modeled in SMT). (2) Dagger refines
joins explicitly, which may result in an exponential increase in the number of
abstract states compared to the size of the program. Vinta refines joins implic-
itly using interpolants and SMT. (3) Dagger requires a specialized interpola-
tion procedure, which, so far, has only been developed for the octagon and the
polyhedra domains. Vinta can use any off-the-shelf interpolating SMT solver,
immediately benefiting from any advances in the field.

302 A. Albarghouthi, A. Gurfinkel, and M. Chechik

Abstract
Interpretation
(Exploration)

Interpolant
Generation

Is Inductive?

Cex

UNSAT
Proof

Safe ARG
Labeling

Safe

ARG with
Safe Labels

Bounded
Model

Checking

Safe
Abstract

Reachability
Graph (ARG)Program P

Safety
Property ϕ

AI-guided
Refinement Phase

Fig. 1. High-level overview of Vinta

�1

�2

�e

x := 0;

y := 0;
loop body

[x >= 4 &&

y <= 2]

v1

va2

vb2

vc2

ve

true

x = 0∧
y = 0

x ≥ 0∧
y ≥ 0

x ≥ 0∧
y ≥ 0

true

x = 0∧
y = 0

0 ≤ x ≤ 1∧
y ≥ 0

0 ≤ x ≤ 2∧
y ≥ 0

vd2

(a)

(b) (c) (d)

�1:
�2:

�e:

v1

va2

vb2

vc2

ve

vd2

x ≥ 4∧
0 ≤ y ≤ 2 false

Fig. 2. (a) A safe program P (‘*’ denotes a nondeterministic choice). (b) A cutpoint
graph of P . An ARG of P after (c) the first and (d) after the second AI step.

Compared toUfo,Vinta improves both the exploration algorithm (by extend-
ing it to an arbitrary abstract domain) and the refinement procedure (by extend-
ing it to use intermediate invariants computed by AI). Both of these extensions
are important for Vinta’s success, as shown in the experiments in Sec. 5.

The rest of the paper is organized as follows: Sec. 2 gives a general overview
of Vinta. Sec. 3 provides the notation and definitions required for the paper.
Sec. 4 formally presents our algorithm. Sec. 5 describes our implementation,
optimizations and experimental results. Finally, Sec. 6 concludes the paper.

Craig Interpretation 303

2 Example

In this section, we illustrate Vinta on proving safety (i.e., unreachability of �e)
of program P from [10], shown in Fig. 2(a). P is known to be hard to analyze
without refinement, and even the refinement approaches of [9] and [17] fail to
solve it (see [10] for details). Dagger [10] (the state-of-the-art in AI-refinement)
solves it using the domain of polyhedra by computing the safe invariant x ≤ y ≤
100x. Here, we show how Vinta solves the problem using the Box domain and
refinement to compute an alternative safe invariant: x ≥ 4 ⇒ y > 100. In this
example, the refinement must recover imprecision lost due to widening and join,
and extend the base-domain with disjunction. All of this is done automatically
via an SMT-based interpolation procedure. Due to space limitations, we show
only the first few iterations of the analysis.

Step 1.1: AI. Vinta works on a cutpoint graph (CPG) of a program: a collapsed
CFG where the only nodes are cutpoints (loop-heads), entry, and error locations.
A CPG for P is shown in Fig. 2(b).

Vinta uses a typical AI-computation following the recursive iteration strat-
egy [7] and widening at every loop unrolling. Additionally, it records the finite
traces explored by AI in an Abstract Reachability Graph (ARG). An ARG is an
unrolling of the CPG. Each node u of an ARG corresponds to some node v of
a CPG, and is labeled with an over-approximation of the set of states reachable
at that point.

Fig. 2(c) shows the ARG from the first AI-computation on P . Each node vi in
the ARG refers to node �i in the CPG. The superscript in nodes va2 , v

b
2, v

c
2, and

vd2 is used to distinguish between the different unrollings of the loop at �2. The
labels of the nodes va2 , v

b
2, and vc2 over-approximate the states reachable before

the first, second, and third iterations of the loop, respectively. The node vc2 is
said to be covered (i.e., subsumed) by {va2 , vb2}. The labels of the set {va2 , vb2} form
an inductive invariant I1 ≡ (x ≥ 0∧ y ≥ 0). The node vd2 is called an unexplored
child, and has no label and no children. It is used later when AI-computation is
restarted. Finally, note that I1 is not safe (the error location ve is not labeled
by false), and thus refinement is needed.

Step 1.2: AI-guided Refinement. First, Vinta uses a BMC-style technique
[11] to check using an SMT-solver whether the current ARG has a feasible ex-
ecution to the error node �e. There is no such execution in our example (see
Fig. 2(c)) and the algorithm moves to the next phase.

The second phase of refinement is based on a novel interpolation-based pro-
cedure that is described in detail in Sec. 4. Specifically, the procedure takes the
current ARG (Fig. 2(c)) and its labeling and produces a new safe (but not nec-
essarily inductive) labeling shown in Fig. 2(d). Here, refinement reversed the
effects of widening by restoring the upper bounds on x. Note that the new labels
are stronger than the original ones – this is guaranteed by the procedure and
the original labels are used to guide it.

304 A. Albarghouthi, A. Gurfinkel, and M. Chechik

Step 1.3: Is Inductive? The new ARG labeling (Fig. 2(d)) is not inductive
since the label of vc2 is not contained in the label of vb2 (checked by an SMT-
solver), and another AI phase is started.

Step 2.1: AI (again). AI is restarted “lazily” from the nodes that have unex-
plored children. Here, vc2 is the only such node. This ensures that AI is restarted
from the inner-most loop where the invariant is no longer inductive. First, the
label of vc2 is converted into an element of an abstract domain by a given ab-
straction function. In our example, the label is immediately expressible in Box,
so this step is trivial. Then, AI-computation is restarted as usual.

In the following four iterations (omitted here), refinement works with the AI-
based exploration to construct a safe inductive invariant x ≥ 4⇒ y > 100. Note
that since the invariant contains a disjunction, this means refinement had to
recover from imprecision of join (as well as recovering from imprecision due to
widening shown above).

This example is simple enough to be solvedwith other interpolation-based tech-
niques, but they require more iterations.Ufo [1], our prior approach without AI-
based exploration and refinement, needs nine iterations, and a version of Vinta

with unguided refinement from Ufo needs seven. Our experiments suggest that
this translates into a significant performance difference on bigger programs.

3 Definitions

In this section, we present the definitions and notation used in the rest of the
paper.

Programs as Cutpoint Graphs. We represent a program by a cutpoint graph
(CPG), a collapsed form of a CFG where each node is a loop-head and each
edge is a loop-free path between two loop-heads. Formally, a program P is a
tuple (CP , δ, en, err,Var), where CP is a finite set of cutpoints, δ is a finite set
of actions, en ∈ CP is a special cutpoint denoting the entry location of P ,
err ∈ CP is the error cutpoint, and Var is the set of variables of program P .
An action (�1, T, �2) ∈ δ represents loop-free paths between �1 and �2, where
�1, �2 ∈ CP and T is the set of statements along the paths. We assume that
there does not exist an action (�1, T, �2) ∈ δ s.t. �1 = err. T can be viewed
as a transition relation over the variables Var ∪ Var′, where Var′ is the set of
primed versions of variables in Var. We write �T � for the standard semantics of
a statement T . For example, if T is if x = 0 then x := 1 else x := 2, then
�T � ≡ (x = 0⇒ x′ = 1) ∧ (x 	= 0⇒ x′ = 2).

A program P is safe iff there does not exist an execution that starts in en and
reaches err through the actions in δ.

Weak Topological Ordering. A Weak Topological Ordering (WTO) [7] of a
directed graph G = (V,E) is a well-parenthesized total-order, denoted ≺, of V
without two consecutive “(” s.t. for every edge (u, v) ∈ E:

(u ≺ v ∧ v 	∈ ω(u)) ∨ (v � u ∧ v ∈ ω(u)),

Craig Interpretation 305

where elements between two matching parentheses are called a (wto-)component,
the first element of a component is called a head, and ω(v) is the set of heads of
all components containing v.

Let v ∈ V , and U be the innermost component that contains v in the WTO.
We write WtoNext(v) for an element u ∈ U that immediately follows v, if it
exists, and for the head of U otherwise.

Let Uv be a component with head v. First, suppose that Uv is a subcomponent
of some component U . If there exists a u ∈ U s.t. u 	∈ Uv and u is the first element
in the total-order s.t. v ≺ u, then WtoExit(v) = u. Otherwise, WtoExit(v) =
w, where w is the head of U . Second, suppose that Uv is not a subcomponent
of any other component, then WtoExit(v) = u, where u is the first element
in the total-order s.t. u 	∈ Uv and v ≺ u. Intuitively, if the WTO represented
program locations, then WtoExit(v) is the first control location visited after
exiting the loop headed by v. For example, for the program in Fig. 2(b), a
WTO of the control locations is �1(�2)�3, where �2 is the head of the component
comprising the while loop. WtoNext(�2) = �2 and WtoExit(�2) = �3. Note
thatWtoNext andWtoExit are partial functions and we only use them where
they have been defined.

Abstract Reachability Graphs (ARGs). Let P = (CP, δ, en, err,Var) be a
program. An Abstract Reachability Graph (ARG) of P is a tuple (V,E, ven, ν, τ, ψ),
where (V,E, ven) is a directed acyclic graph (DAG) rooted at the entry node
ven ∈ V , ν : V → CP is a map from nodes to cutpoints of P where ν(ven) = en,
τ : E → δ is a map from edges to actions of P s.t. for every edge (u, v) ∈ E there
exists an action (ν(u), τ(u, v), ν(v)) ∈ δ, and ψ : V → B is a map from nodes V
to Boolean formulas over Var. A node v s.t. ν(v) = err is called an error node.

A node v ∈ V is covered iff there exists a node u ∈ V that dominates v and
there exists a set of nodes X ⊆ V , s.t. ψ(u) ⇒

∨
x∈X ψ(x) and ∀x ∈ X · ν(u) =

ν(x) ∧ u 	� x, where � is the ancestor relation on nodes and all x ∈ X are less
than u according to some fixed total order on nodes V . A node u dominates v iff
all paths from ven to v pass through u. By convention, every node dominates itself.

Definition 1 (Well-labeledness of ARGs). Given an ARG A = (V,E, ven,
ν, τ, ψ) of a program P = (CP, δ, en, err,Var) and a map L from every v ∈ V
to a Boolean formula over Var, we say that L is a well-labeling of A iff (1)
L(ven) ≡ true; and (2) ∀(u, v) ∈ E · L(u) ∧ �τ(u, v)� ⇒ L(v)′. If ψ is a well-
labeling of A, we say that A is well-labeled.

An ARG is safe iff for all v ∈ V s.t. ν(v) = err, ψ(v) ≡ false. An ARG is
complete iff for all uncovered nodes u, for all (ν(u), T, �) ∈ δ, there exists an
edge (u, v) ∈ E s.t. ν(v) = � and τ(u, v) = T .

Theorem 1 (Program Safety [1]). If there exists a safe, complete, and well-
labelled ARG for a program P , then P is safe.

Abstract Domain. Abstract and concrete domains are often presented as
Galois-connected lattices. In this paper, we use a more operational presenta-
tion. Without loss of generality, we restrict the concrete domain to a set B

306 A. Albarghouthi, A. Gurfinkel, and M. Chechik

1: func VintaMain (Program P) :
2: create nodes ven, verr
3: ψ(ven) ← true ; ν(ven) ← en
4: ψ(verr) ← false ; ν(verr) ← err
5: marked(ven) ← true
6: labels ← ∅
7: while true do
8: ExpandArg()
9: if ψ(verr) is UNSAT then
10: return SAFE
11: labels ← Refine(A)
12: if labels = ∅ then
13: return UNSAFE

14: func GetFutureNode (� ∈ CP) :
15: if FN(�) is defined then
16: return FN(�)

17: create node v
18: ψ(v) ← true ; ν(v) ← �
19: FN(l) ← v
20: return v

21: func ExpandNode (v ∈ V) :
22: if v has children then
23: for all (v, w) ∈ E do
24: FN(ν(w)) ← w

25: else
26: for all (ν(v), T, �) ∈ δ do
27: w ← GetFutureNode(�)
28: E ← E ∪ {(v, w)} ; τ (v, w) ← T

29: func ExpandArg () :
30: vis ← ∅ ; FN ← ∅
31: FN(err) ← verr ; v ← ven
32: while true do
33: � ← ν(v)
34: ExpandNode(v)
35: if marked(v) then
36: marked(v) ← false
37: ψ(v) ← ComputePost(v)
38: ψ(v) ← WidenWith({ψ(u) | u ∈ vis(�)}, ψ(v))
39: for all (v, w) ∈ E do marked(w) ← true

40: else if labels(v) is defined then
41: ψ(v) ← labels(v)
42: for all {(v, w) ∈ E | labels(w) is undefined} do
43: marked(w) ← true

44: vis(�) ← vis(�) ∪ {v}
45: if v = verr then break

46: if Smt.IsValid(ψ(v) ⇒ ∨
u∈vis(�),u �=v ψ(u)) then

47: erase FN(�)
48: repeat � ← WtoExit(�) until FN(�) is defined
49: v ← FN(�) ; erase FN(�)
50: for all {(v, w) ∈ E |
 ∃u
= v · (u,w) ∈ E} do
51: erase FN(ν(w))

52: else
53: � ← WtoNext(�)
54: v ← FN(�) ; erase FN(�)

Fig. 3. Vinta algorithm

of all Boolean expressions over program variables (as opposed to the pow-
erset of concrete program states). We define an abstract domain as a tuple
D = (D,�,⊥,�,�, α, γ), where D is the set of abstract elements with two des-
ignated elements �,⊥ ∈ D, called top and bottom, respectively; two binary
functions �,� : D ×D → D, called join and widen, respectively; and two func-
tions: an abstraction α : B → D and a concretization γ : D → B. The functions
respect the expected properties: α(true) = �, γ(⊥) = false, for x, y, z ∈ D·
if z = x � y then γ(x) ∨ γ(y) ⇒ γ(z), etc. Note that D has no meet and no
abstract order – we do not use them. Finally, we assume that for every action
T , there is a sound abstract transformer PostD s.t. if d2 = PostD(T, d1) then
γ(d1) ∧ �T � ⇒ γ(d2)

′, where d1, d2 ∈ D, and for a formula X , X ′ is X with all
variables primed.

4 Vinta

In this section, we formally describe Vinta and discuss its properties.

4.1 Main Algorithm

VintaMain. Function VintaMain in Fig. 3 implements the loop in Fig. 1.
It takes a program P = (CP, δ, en, err,Var) and checks whether the error loca-
tion err is reachable.Without loss of generality, we assume that every location

Craig Interpretation 307

in CP is reachable from en and can reach err (ignoring the semantics of ac-
tions). VintaMain maintains a globally accessible ARG A = (V,E, ven, ν, τ, ψ).
If VintaMain returns SAFE, then A is safe, complete, and well-labeled (thus
proving safety of P by Theorem 1).

VintaMain is parameterized by (1) the abstract domain D, and (2) the
refinement functionRefine. First, an ARG is constructed by ExpandArg using
an abstract transformer PostD. For simplicity of presentation, we assume that
all labels are Boolean expressions that are implicitly converted to and from D
using functions α and γ, respectively. ExpandArg always returns a complete
and well-labeled ARG. So, on line 9,VintaMain only needs to check whether the
current ARG is safe. If the check fails, Refine is called to find a counterexample
and remove false alarms. We describe our implementation of Refine in Sec. 4.3,
but the correctness of the algorithm depends only on the following abstract
specification:

Definition 2 (Specification of Refine [1]). Refine returns an empty map
(labels = ∅) if there exists a feasible execution from ven to verr in A. Otherwise, it
returns a map labels from nodes to Boolean expressions s.t. (1) labels(ven) ≡ true
and labels(verr) ≡ false, and (2) ∀(u, v) ∈ E · labels(u) ∧ �τ(u, v)� ⇒ labels(v)′.

In our case, refinement uses BMC and interpolation through an SMT solver to
compute labels, therefore, if no labels are found, refinement produces a coun-
terexample as a side-effect.

Whenever Refine returns a non-empty labeling (i.e., false alarms were re-
moved), VintaMain calls ExpandArg again. ExpandArg uses labels to re-
label the existing ARG nodes and uses PostD to expand the ARG further, as
necessary.

ExpandArg. ExpandArg constructs the ARG in a recursive iteration strat-
egy [7], It assumes existence of a weak topological ordering (WTO) [7] of the
CPG and two functions, WtoNext and WtoExit as described in Sec. 3.

ExpandArg maintains two local maps: vis and FN. vis maps a cutpoint � to
the set of visited nodes corresponding to �, and FN maps a cutpoint � to the first
unexplored node v ∈ V s.t. ν(v) = �. The predicate marked specifies whether a
node is labeled using AI (marked is true) or it gets a label from the map labels
produced by Refine (marked is false). Marks are propagated from a node to
children (lines 39 and 42). Initially, the entry node is marked (line 5), which
causes all of its descendants to be marked as well. AI over all incoming edges
of a node v is done using ComputePost(v) that over-approximates PostD
computations over all predecessors of a node v (that are in vis).

Note that Vinta uses an ARG as an efficient representation of a disjunc-
tive invariant: for each cutpoint � ∈ CP, the disjunction

∨
v∈vis(�) ψ(v) is an

inductive invariant. The key to efficiency is two-fold. First, a possibly expensive
abstract subsumption check is replaced by an SMT-check (line 46). Second, in-
spired by [10], an expensive powerset widening is replaced by a simple widening
scheme,WidenWith, that lifts base domain widening � to a widening between a
set and a single abstract element. We describe WidenWith in detail in Sec. 4.2.

308 A. Albarghouthi, A. Gurfinkel, and M. Chechik

Vinta is based on Ufo [1], but improves it in two directions: (1) it extends
Ufo to arbitrary abstract domains using widening and (2) it employs a more
efficient covering strategy (line 46). While in theory Vinta is compatible with
the refinement strategy of Ufo, in Sec. 4.3 we describe the shortcomings of
Ufo’s refinement in our setting and present a new refinement strategy.

4.2 Widening

In this section, we describe the powerset widening operator widenWith used
by Vinta.

Definition 3 (Specification of WidenWith). Let D = (D,�,⊥,�,�, α, γ)
be an abstract domain. An operator �W : Pf (D) × D → D is a widenWith

operator iff it satisfies the following two conditions:

1. (soundness) for any X ⊆ D and y ∈ D, (γ(X) ∨ γ(y))⇒ (γ(X) ∨ γ(X �W y));
2. (termination) for any X ⊆ D, and a sequence {yi}i ∈ D, the sequence
{Zi}i ⊆ D, where Z0 = X, and Zi = Zi−1 ∪ {Zi−1 �W yi} converges, i.e.,
∃i · γ(Zi)⇐ γ(Zi+1),

where γ(X) ≡
∨

x∈X γ(x), for some set of abstract elements X.

Note that unlike traditional powerset widening operators (e.g., [3]), widenWith

is defined for a pair of a set and an element (and not a pair of sets). It is inspired
by the widening operator �p

T of Gulavani et al. [10], but differs from it in three
important aspects. First, we do not require that if z = widenWith(X, y), then
z is “bigger” than y, i.e., γ(y)⇒ γ(z). Intuitively, if X and y approximate sets of
reachable states, then z over-approximates the frontier of y (i.e., states in y but
not in X). Second, our termination condition is based on concrete implication
(and not on an abstract order). Third, we do not require that X or the sets {Zi}i
in Def. 3 contain only “maximal” elements [10]. These differences give us more
freedom in designing the operator and significantly simplify the implementation.

We now describe two implementations ofWidenWith: the first,WidenWith�,
is based on �p

T from [10] and applies to any abstract domain while the second,
WidenWith∨, requires an abstract domain that supports disjunction (∨) and
set difference (\). One example of such a domain is Boxes [12]. The operators
are defined as follows:

WidenWith�(∅, y) = y WidenWith∨(∅, y) = y (1)

WidenWith�(X, y) = x�(x � y) (2)

WidenWith∨(X, y) =
(
(
∨

X)�(
∨

X ∨ y)
)
\
∨

X (3)

where x ∈ X is picked non-deterministically from X .

Theorem 2 (widenWith{∨,�} Correctness). WidenWith� and
WidenWith∨ satisfy the two conditions of Def. 3.

Craig Interpretation 309

1: func UfoRef (ARG A = (V, E, ven, ν, τ, ψ)) :
2: LE ← EncodeBmc(A); I ← DagItp((V, E, ven, verr),LE); returnDecodeBmc(I)

Fig. 4. Ufo refinement procedure

4.3 Refinement

In this section, we formalize our refinement strategy. We start by reviewing the
strategy used by Ufo and based on a concept of a Restricted DAG Interpolant
(RDI) – an extension of a path interpolant [13,15] to DAGs. In the rest of this
section, we write F for a set of formulas; G = (V,E, ven, vex) for a DAG with an
entry node ven ∈ V and an exit node vex ∈ V , where ven has no predecessors,
vex has no successors, and every node v ∈ V lies on a (ven, vex)-path. We also
write desc(v) and anc(v) for the sets of descendants and ancestors of a node
v ∈ V , respectively; LE : E → F and LV : V → F for maps from edges and
vertices to formulas, respectively; and FV (ϕ) for the set of free variables in a
given formula ϕ.

Definition 4 (Restricted DAG Interpolant (RDI)). Let G, LE, and LV

be as defined above. An RDI is a map I : V → F s.t.

1. ∀e = (vi, vj) ∈ E ·
(
I(vi) ∧ LV (vi) ∧ LE(e)

)
=⇒ I(vj) ∧ LV (vj),

2. I(ven) ≡ true, and
(
I(vex) ∧ LV (v

ex)
)
≡ false, and

3. ∀vi ∈ V · FV (I(vi)) ⊆
(⋃

u∈desc(vi) FV (I(u))
)
∩
(⋃

u∈anc(vi) FV (I(u))
)
.

Whenever ∀v · LV (v) = true, we say that an RDI is unrestricted or simply a
DAG Interpolant (DI). Intuitively, a DI I is a labeling of G such that for every
path ven, . . . , vex, the sequence I(ven), . . . , I(vex) is a path interpolant [13,15].
In general, in a proper RDI I (i.e., when ∃v · LV (v) 	= true), I(v) is not an
interpolant by itself, but is a projection of an interpolant to LV (v). That is,
I(v) is the restriction needed to turn LV (v) into an interpolant. Thus, an RDI
can be weaker (and possibly easier to compute) than a DI.

UfoRefinement.Ufo’s refinement procedure is shown in Fig. 4. It uses the pro-
cedure DagItp from [1]2 to compute a DI. Given an ARG A = (V,E, ven, ν, τ, ψ)
with an error node verr, it first constructs an edge labeling LE using a BMC-
encoding such that for each ARG edge e,LE(e) is the semantics of the correspond-
ing action τ(e) (i.e., �τ(e)�), with variables renamed and added as necessary, and
such that for any path v1, . . . , vk, the formula

∧
i∈[1,k) LE(vi, vi+1) encodes all ex-

ecutions from v1 to vk. Many BMC-encodings can be used for this step, and we
use the approach of [11]. For example, for the three edges (v1, v

a
2), (v

a
2 , ve), (v

a
2 , v

b
2)

of the ARG in Fig. 2(c), the LE map is

2 [1] used a different terminology. DagItp refers to the procedure in Thm. 3 of [1].

310 A. Albarghouthi, A. Gurfinkel, and M. Chechik

LE(v1, v
a
2) ≡ x0 = 0 ∧ y0 = 0 (4)

LE(v
a
2 , ve) ≡ xφ ≥ 4 ∧ yφ ≤ 2 ∧ xφ = x0 ∧ yφ = y0 (5)

LE(v
a
2 , v

b
2) ≡ (x1 = x0 + 1 ∧ y1 = y0 + 1) ∨ (6)

(x0 ≥ 4 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1) ∨
(x1 = x0 ∧ y1 = y0)

where, in addition to renaming, two extra variables xφ and yφ were added for
the SSA encoding since node ve has multiple edges incident on it. LE(v1, v

a
2) ∧

LE(v
a
2 , ve) encodes all executions on the path v1, v

a
2 , ve, and LE(v1, v

a
2)∧LE(v

a
2 , v

b
2)

encodes all executions on the path v1, v
a
2 , v

b
2. Second, the refined labels are com-

puted as a DI I = DagItp((V,E, ven, verr),LE). Note that after reversing the
renaming done by BMC-encoding (i.e., removing the subscripts), the DI I is a
safe (by condition 2 of Def. 4) well-labeling (by condition 1 of Def. 4) of the
ARG A. Furthermore, I(v) is expressed completely in terms of variables defined
before and used after v ∈ V . The result of refinement on our running example
is shown in Fig. 2(d).

v1 va2 vb2 vc2

ve

true

(a)

�1:
�2:

�e: x = 10 x ≤ 10 x ≤ 10

x = 9

(b)

Fig. 5. (a) A program and (b) its ARG

Using Ufo Refinement with Vinta. While Vinta can use Ufo’s refinement
since it satisfies the specification of Refine in Def. 2, we found that it does not
scale in practice. We believe there are two key reasons for this.

The first reason is that the DI-based refinement uses just the ARG while
completely ignoring its node labeling (i.e., the set of reachable states discovered
by AI). Thus, while the DI-based refinement recovers from imprecision to remove
false alarms, it may introduce imprecision for further exploration steps. For
example, consider the program in Fig. 5(a) and its ARG in Fig. 5(b) produced
by AI using the Box domain.

The ARG has a false alarm (in reality, ve is unreachable). A possible DI-based
refinement changes the labels of vb2, v

c
2, and ve to x ≤ 10 ∧ x 	= 9, x 	= 9, and

false, respectively. While this is sufficient to eliminate the false alarm, the new
labels do not form an inductive invariant – thus further unrolling of the ARG is
required. Note that the refinement “improved” the label of vc2 to x 	= 9, but “lost”
an important fact x ≤ 10. Instead, we propose to restrict refinement to produce
new labels that are stronger than the existing ones. In this example, such a
restricted refinement would change the labels of vb2, v

c
2, and ve to x ≤ 10∧x 	= 9,

x ≤ 10 ∧ x 	= 9, and false, thus completing the verification.

Craig Interpretation 311

1: func VintaRef (ARG A = (V,E, ven, ν, τ, ψ)) :
2: LE ← EncodeBmc(A) ; LV ← Encode(ψ)
3: I ← VintaRdi((V,E, ven, verr),LE ,LV)
4: if I = ∅ then return I
5: for all v ∈ V do I(v) ← I(v) ∧ LV (v)

6: return DecodeBmc(I)

Require: LV is a well-labeling of G
7: func VintaRdi (G, LE , LV) :
8: for all e = (u, v) ∈ E do
9: LE(e) ← LV (u) ∧ LE(e)

10: I ← DagItp(G,LE)
11: return I

Fig. 6. VintaRef refinement procedure

The second reason is that ARGs produced by AI are large, and generating
interpolants directly from them takes too long. Here, again, part of the problem
is that refinement does not use the existing labeling to simplify the constraints.
Instead of computing a DI of the ARG, we propose to compute an RDI re-
stricted by the current labeling. Since an RDI is simpler (i.e., weaker, has fewer
connectives, etc.) than a corresponding DI, the hope is that it is also easier to
compute.

Vinta Refinement. Vinta’s refinement procedure VintaRef is shown in
Fig. 6. It takes a labeled ARG A and returns a new safe well-labeling labels
of A. First, it encodes the edges of A using BMC-encoding as described above
(line 2). Second, the current labeling ψ of A is encoded to match the renaming
introduced by the BMC-encoding. For example, for va2 in our running example,
ψ(va2) ≡ x = 0 ∧ y = 0, and the encoding LV (v

a
2) ≡ x0 = 0 ∧ y0 = 0. Third,

it uses VintaRdi (shown in Fig. 6) to compute an RDI of A restricted by LV .
Fourth, it turns the RDI into a DI by conjoining it with LV (line 5). Finally, it
decodes the labels by undoing the BMC-encoding (line 6).

The function VintaRdi computes an RDI by reducing it to computing a DI
using the DagItp procedure from [1] described earlier. Note that it requires
that LV is a well-labeling, i.e., for all (u, v) ∈ E, LV (u) ∧ LE(u, v) ⇒ LV (v).
The idea is to “communicate” to the SMT-solver the restriction of node u by
conjoining LV (u) to every edge from u. This information might be helpful to the
SMT-solver for simplifying its proofs and the resulting interpolants.

Theorem 3 (Correctness of VintaRef). VintaRef satisfies the specifica-
tion of Refine in Def. 2.

There is a simple generalization of VintaRef: ψ on line 2 can be replaced by any
over-approximation U of reachable states. The current invariant represented by
the ARG is a good candidate and so are invariants computed by other techniques.
The only restriction is that VintaRdi requires U to be a well-labeling. Removing
this restriction from VintaRdi remains an open problem.

5 Implementation and Evaluation

5.1 Implementation

We have implemented Vinta in the Ufo framework [2] for verifying C programs,
which is built on top of the LLVM compiler infrastructure [14]. Our modular
implementation of Vinta allows abstract domains to be easily plugged in and

312 A. Albarghouthi, A. Gurfinkel, and M. Chechik

experimented with. Currently, the abstract domains used by Vinta are Box and
Boxes, defined in [12]. For SMT-solving and interpolation, Vinta uses Z3 [16]
and MathSat5

3, respectively. In the rest of this section, we highlight the tech-
nical challenges addressed by our implementation. Specifically, we discuss our
implementation of abstraction functions from Boolean expressions to Box and
Boxes elements, and describe key SMT-solving techniques that are instrumen-
tal to Vinta’s efficiency. Our implementation and complete experimental results
are available at http://www.cs.toronto.edu/~aws/vinta.

Abstraction Functions. We are using a simple abstraction function to convert
between Boolean expressions and Boxes and Box abstract domains. Given a
formula ϕ, we first convert it to NNF. Then, we replace all literals involving more
than one variable (e.g., x + y = 0) with true, thus over-approximating ϕ and
removing all terms not expressible in Box. Finally, for Box, we additionally
use join to approximate disjunction. This naive approach is very imprecise in
general, but works well on our benchmarks.

Incremental Solving for Covering. Recall that ExpandArg in Fig. 3 uses
an SMT call at every cover check (line 46 in Fig. 3). This is highly inefficient. In
practice, we exploit Z3’s incremental interface (using push and pop commands)
as follows. For each cutpoint �, we maintain a separate SMT context ctx�. Every
time a node v s.t. ν(v) = � is not covered (i.e., the check on line 46 in Fig. 3 fails),
¬ψ(v) is added to ctx�. To check whether a node u with ν(u) = � is covered,
we check whether ψ(u) is satisfiable in ctx�. If the result is UNSAT, then u is
covered; otherwise, it is not covered and ¬ψ(u) is added to ctx�. Effectively, this
is the same as checking whether ψ(u) ∧

∧
v∈vis(ν(u)),v �=u ¬ψ(v) is UNSAT, which

is equivalent to line 46 of ExpandArg.

Using Post Computations for Simplification. In our implementation, we
keep track of those ARG edges for which PostD computations returned ⊥. For
each such edge e, we can replace LE(e) in VintaRdi with false, thus reducing
the size of the formula.

Improving Interpolation with UNSAT Cores. One technical challenge we
faced is that MathSat5’s performance degrades significantly when interpola-
tion support is turned on, particularly on large formulas. To reduce the size of
the formula given to MathSat5, we use the assumptions feature in the highly
efficient but lacking interpolation support Z3. Let a formula ϕ1 ∧ . . .∧ϕn and a
set X = {bi}ni=1 of Boolean assumptions variables be given. When Z3 is passed
a formula Φ = (b1 ⇒ ϕ1) ∧ . . . ∧ (bn ⇒ ϕn), it returns a subset of X , called
UNSAT core, that has to be true to make Φ UNSAT. In our case, we add an
assumption for each literal appearing in formulas in LE , and use Z3 to find un-
necessary literals, i.e., those not in the UNSAT core. Since Z3 does not produce
a minimal core, we repeat the minimization process three times. Finally, we set
unnecessary literals to true and use MathSat5 to interpolate over the simplified
formula.

3 http://mathsat.fbk.eu

http://www.cs.toronto.edu/~aws/vinta
http://mathsat.fbk.eu

Craig Interpretation 313

Table 1. Summary of results on 93 C programs. Numbers in bold indicate the best
result.

Algorithm #Solved #Safe #Unsafe Total Time (s)

vBox 71 20 51 580 (539/41)

uBox 68 19 49 1,240 (1,162/78)

vBoxes 67 25 42 1,782 (596/1,186)

uBoxes 60 18 42 2,731 (808/1,923)

CpaAbe 65 29 36 1,167 (707/460)

CpaMemo 64 24 40 1,794 (454/1,341)

uInterp 70 20 50 1,535 (1,457/78)

uCp 69 19 50 1,687 (1,509/178)

uBp 64 15 49 1,062 (57/1,006)

(a) (b)

0 50 100

Timeout (in seconds)

0

10

20

S
ol
ve
d
in
st
an

ce
s

vBoxes

vBox

CpaAbe

CpaMemo

Instances solved within a given timeout (SAFE)

0 50 100

Timeout (in seconds)

0

25

50

S
ol
ve
d
in
st
an

ce
s

vBoxes

vBox

CpaAbe

CpaMemo

Instances solved within a given timeout (UNSAFE)

Fig. 7. Number of solved instances vs. timeout: (a) safe benchmarks; (b) unsafe bench-
marks

5.2 Evaluation

For evaluation, we used ntdrivers-simplified, ssh-simplified, and systemc

benchmarks from the 2012 Software Verification Competition (SV-COMP 2012)
[4]. In total, we had 93 C programs (41 safe and 52 buggy).

We implemented several instantiations of Vinta: vBox, vBoxes, uBox, and
uBoxes, using the Box and Boxes domains, and VintaRef and UfoRef re-
finements, respectively. For Box and Boxes, we used the widening operators
WidenWith� andWidenWith∨ from Sec. 4.2, respectively. In all cases, we ap-
plied widening on every third unrolling of each loop. We comparedVinta against
the top two tools from SV-COMP 2012: CpaChecker-Abe (CpaAbe) and
CpaChecker-Memo (CpaMemo), which are two variations of the predicate-
abstraction-based software model checker CpaChecker [5]. For both tools, we
used the same version and configuration as in the competition. We also com-
pared against several instantiations of our Ufo framework: uInterp, uCp, and
uBp, using interpolation-based verification by itself and in combination with
Cartesian and Boolean predicate abstractions, respectively.

The overall results are summarized in Table 1. All experiments were conducted
on a 3.40GHz Intel Core i7 processor with 8GB of RAM running Ubuntu Linux
v11.10. We imposed a time limit of 500 seconds and a memory limit of 4GB
per program. For each tool, we show the number of safe and unsafe instances
solved and the total time taken. For example, vBox solved 20 safe and 51 unsafe

314 A. Albarghouthi, A. Gurfinkel, and M. Chechik

Table 2. Time of running Vinta, CpaAbe, and CpaMemo on 21 safe benchmarks.
‘–’ indicates a timeout.

Program vBoxes uBoxes vBox uBox CpaAbe CpaMemo

s3 clnt 1 0.30 0.30 8.61 13.67 7.34 11.63

s3 clnt 2 0.3 0.30 8.79 13.45 6.72 8.53

s3 clnt 3 0.30 0.29 9.01 6.80 9.72 7.10

s3 clnt 4 0.30 0.30 9.55 8.52 6.33 12.43

s3 srvr 1a 0.15 – 1.08 – 2.86 4.344

s3 srvr 1b 0.02 0.02 – – 1.49 1.64

s3 srvr 1 0.00 0.00 0.00 0.00 21.21 8.63

s3 srvr 2 0.64 115.48 – 115.13 63.44 113.07

s3 srvr 3 0.75 123.57 69.70 123.61 17.23 22.55

s3 srvr 4 0.59 168.44 85.81 168.08 7.50 14.57

s3 srvr 6 473.15 319.00 74.87 359.39 181.82 –

s3 srvr 7 13.82 – – 274.12 24.84 112.53

s3 srvr 8 0.69 78.53 245.52 76.12 18.48 8.82

token ring.01 0.94 – 4.05 – 4.13 8.04

token ring.02 2.53 – 18.29 – 6.69 49.11

token ring.03 6.06 – – – 29.55 –

token ring.04 18.22 – – – 146.43 –

token ring.05 76.29 – – – – –

token ring.06 – – – – – –

token ring.07 – – – – – –

token ring.08 – – – – – –

examples in 580 seconds, spending 539s on safe ones and 41s on unsafe ones (time
spent in unsolved instances is not counted). vBox is an overall winner, and is
able to solve the most unsafe instances in the least amount of time. CpaAbe is
the winner on the safe instances, with vBoxes coming in second. In the rest of
this section, we examine these results in more detail.

Instances Solved vs. Timeout. Fig. 7 shows the number of instances solved
in a given timeout for (a) safe and (b) unsafe benchmarks, respectively. To
avoid clutter, we omit uInterp, uBp, and uCp from the graphs and restrict the
timeout to 120s, since only a few instances took more time. For the safe cases,
vBoxes is a clear winner for the timeout of ≤ 10s. Indeed, on most safe bench-
marks, vBoxes takes a lot less time to complete than CpaAbe, CpaMemo,
and all other instantiations of Ufo and Vinta. For the unsafe cases, vBox

is a clear winner for all timeouts. Interestingly, the extra precision of Boxes

makes vBoxes perform poorly on unsafe instances: it either solves an unsafe
instance in one iteration (i.e., no refinement), or runs out of time in the first AI-
or refinement-phase.

Detailed Comparison. We now examine a portion of the benchmark suite in
more detail, specifically, safe ssh-simplified benchmarks and safe token ring

benchmarks (from systemc). Table 2 shows the time taken by the different in-
stantiations of Vinta, CpaAbe, and CpaMemo. On these benchmarks, we ob-
serve that vBoxes outperforms all other approaches.

Compared with CpaAbe and CpaMemo, vBoxes is able to solve almost
all instances in much less time. For example, on token ring.05, both CpaAbe

and CpaMemo fail to return a result, but vBoxes proves safety in 76 seconds.
Similarly, vBoxes is superior on most ssh-simplified examples.

Craig Interpretation 315

To understand the importance of the refinement strategy, consider the
ssh-simplified benchmarks. The invariant for most ssh-simplified instances
is computable using Boxes with an appropriate widening strategy (“widen on
every fourth unrolling”). The results in the table show how Vinta’s refinement
strategy is able to recover precision when an inadequate refinement strategy is
used (i.e., “widen on every third unrolling”). Using Ufo’s refinement, uBoxes

takes substantially more time and more iterations or fails to return a result
within the allotted time limit. For example, on s3 srvr 2, vBoxes requires a
single refinement, whereas uBoxes requires 38. Positive effects of Vinta’s AI-
guided refinement are also visible in vBox vs. uBox.

In summary, our results demonstrate the power of Vinta’s refinement strat-
egy and show how basic instantiations of Vinta can compete and outper-
form highly-optimized verification tools like CpaChecker. To further improve
Vinta’s performance, it would be interesting to experiment with other abstract
domains as well as with different automatic strategies for choosing an appropriate
domain. For example, we saw that Boxes, in comparison with Box, generates
very large ARGs for unsafe examples. One strategy would be to keep track of
ARG size and time spent in refinement and revert to a less precise abstract
domain like Box when they become too large.

6 Conclusion

In this paper, we presented Vinta, an iterative algorithm that uses Craig inter-
polants to refine invariants produced by abstract interpretation and eliminate
false alarms. Vinta’s verification technique marries the efficiency of abstract
interpretation with the precision of bounded model checking and the ability to
“guess” invariants of interpolation-based verification.

Our evaluation of Vinta against state-of-the-art verification tools demon-
strates the power of our approach and calls for further experimentation with our
refinement strategy on different abstract domains.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From Under-Approximations to
Over-Approximations and Back. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 157–172. Springer, Heidelberg (2012)

2. Albarghouthi, A., Gurfinkel, A., Chechik, M.: UFO: A Framework for Abstraction-
and Interpolation-Based Software Verification. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 672–678. Springer, Heidelberg (2012)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening Operators for Powerset Domains.
STTT 8(4-5), 449–466 (2006)

4. Beyer, D.: Competition on Software Verification - (SV-COMP). In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012), http://sv-comp.sosy-lab.org/

5. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

http://sv-comp.sosy-lab.org/

316 A. Albarghouthi, A. Gurfinkel, and M. Chechik

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

7. Bourdoncle, F.: Efficient Chaotic Iteration Strategies with Widenings. In: Bjøcrner,
D., Broy, M., Pottosin, I.V. (eds.) Proc. of FMPA 1993. LNCS, vol. 735, pp. 128–
141. Springer, Heidelberg (1993)

8. Craig, W.: Three Uses of the Herbrand-Gentzen Theorem in Relating Model The-
ory and Proof Theory. J. of Symbolic Logic 22(3), 269–285 (1957)

9. Gulavani, B., Henzinger, T., Kannan, Y., Nori, A., Rajamani, S.: SYNERGY: A
New Algorithm for Property Checking. In: Proc. of FSE 2006, pp. 117–127 (2006)

10. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically Re-
fining Abstract Interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

11. Gurfinkel, A., Chaki, S., Sapra, S.: Efficient Predicate Abstraction of Program
Summaries. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 131–145. Springer, Heidelberg (2011)

12. Gurfinkel, A., Chaki, S.: Boxes: A Symbolic Abstract Domain of Boxes. In: Cousot,
R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg
(2010)

13. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
Proofs. In: Proc. of POPL 2004, pp. 232–244 (2004)

14. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proc. of CGO 2004, pp. 75–88 (2004)

15. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

16. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Wang, C., Yang, Z., Gupta, A., Ivančić, F.: Using Counterexamples for Improving
the Precision of Reachability Computation with Polyhedra. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 352–365. Springer, Heidelberg
(2007)

Satisfiability Solvers Are Static Analysers�

Vijay D’Silva��, Leopold Haller, and Daniel Kroening

Department of Computer Science, Oxford University
firstname.surname@cs.ox.ac.uk

Abstract. This paper shows that several propositional satisfiability al-
gorithms compute approximations of fixed points using lattice-based ab-
stractions. The Boolean Constraint Propagation algorithm (bcp) is a
greatest fixed point computation over a lattice of partial assignments.
The original algorithm of Davis, Logemann and Loveland refines bcp

by computing a set of greatest fixed points. The Conflict Driven Clause
Learning algorithm alternates between overapproximate deduction with
bcp, and underapproximate abduction, with conflict analysis. Thus, in a
precise sense, satisfiability solvers are abstract interpreters. Our work is
the first step towards a uniform framework for the design and implemen-
tation of satisfiability algorithms, static analysers and their combination.

1 How I Learned to Stop SAT Solving and Love Abstract
Interpretation

The abstract interpretation approach to program analysis is to compute proper-
ties of programs using lattices, transformers and fixed points [5]. The satisfiability
approach is to encode programs as formulae that can be analysed with theorem
provers [17]. The satisfiability approach has gained popularity in recent years
due to dramatic improvements in the performance of propositional satisfiability
solvers. The goal of much current research is to combine techniques based on
abstract interpretation and based on satisfiability.

This paper shows that propositional satisfiability algorithms compute approx-
imations of fixed points using lattices. Thus, analyses traditionally formulated
over lattices and those formulated in terms of satisfiability can both be under-
stood in terms of abstract interpretation. To appreciate the significance of such
understanding, consider the program below, where ϕ is a formula with Boolean
variables initialised to arbitrary values.

if (ϕ) { assert(false) }

If ϕ is unsatisfiable, a program verifier that uses a sat solver will conclude
that the assertion is not violated. In contrast, a static analysis like constant
propagation (or its conditional variant [26]) cannot always prove the absence of

� Supported by the Toyota Motor Corporation, EPSRC project EP/H017585/1 and
ERC project 280053.

�� Supported by a Microsoft Research European PhD Scholarship.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 317–333, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

318 V. D’Silva, L. Haller, and D. Kroening

assertion violations if a formula is unsatisfiable. This result is surprising because
we show that all sat solvers derived from the dpll procedure use the same
lattice as constant propagation. The insight of sat algorithms is that we can use
imprecise abstract domains to gain efficiency, and techniques like decisions and
clause-learning to improve precision.

Contribution. This paper demonstrates that a broad range of propositional
satisfiability algorithms have natural abstract interpretation descriptions. Our
contributions include the following characterisations.

1. Propositional satisfiability as a property of fixed points of transformers over
the lattice of truth assignments.

2. Boolean Constraint Propagation (bcp) as a greatest fixed point computation
over the same lattice as constant propagation.

3. The Davis Putnam Logemann and Loveland algorithm (dpll) as a refine-
ment of bcp that uses value-based trace partitioning.

4. The conflict driven clause learning algorithm (cdcl) as a combination of
overapproximate deduction with underapproximate abduction.

In separate work, we used the formalisation presented here to embed the interval
abstract domain inside cdcl and verify programs that are beyond the scope of
existing techniques [12]. This paper is organised as follows: We give fixed point
semantics to propositional formulae in § 2. To illustrate our approach on simple
examples, we formalise truth tables and resolution in § 3. The dpll algorithm
and cdcl are covered in § 4 and § 5.

2 Propositional Satisfiability via Transformers

This section contains a new characterisation of propositional satisfiability using
fixed points. We first recall background on propositional logic and lattices.

Propositional Logic. Fix a set Prop of propositional variables. A literal is a
variable or its negation. A clause is a disjunction of literals and a cube is a con-
junction of literals. A formula in conjunctive normal form (cnf) is a conjunction
of clauses, and a formula in disjunctive normal form (dnf) is a disjunction of
cubes. Note that the negation of a cube is a clause and vice versa.

The set of truth values is B =̂ {t, f}. An assignment σ : Prop → B maps
variables to truth values. An assignment σ is a model of ϕ, denoted σ |= ϕ, if σ
satisfies ϕ and is a countermodel of ϕ otherwise. A formula is satisfiable if it has
a model and is unsatisfiable otherwise.

Lattices A lattice (L,�,�,�) is a partially ordered set with a meet and a join.
Two functions f, g : Q→ L from a set Q to L can be ordered pointwise, denoted
f � g, if f(x) � g(x) holds for all x in Q. All functions over L can similarly be
lifted pointwise to Q → L. The least and greatest fixed points of a monotone
function F on a complete lattice will be denoted lfp(F) and gfp(F), respectively.

Satisfiability Solvers Are Static Analysers 319

Let idS be the identity function. A Galois connection between posets (C,�)
and (A,�), written C −−−→←−−−

α

γ
A, is a pair of monotone functions α : C → A and

γ : A→ C that satisfy the pointwise constraints α ◦ γ � idA and idC � γ ◦ α.
We identify a few lattices of particular interest. The lattice of truth values

(B,⇒,∨,∧) consists of truth values with the implication order f ⇒ t. Disjunction
is the join and conjunction is the meet of truth values. The powerset lattice over
a set X , written (P(S),⊆,∪,∩), consists of all subsets of S order by inclusion.
Let (S,�) be a poset. A set Q ⊆ S is downwards closed if for every x in Q and
y in S, y � x implies that y is in Q. A downwards closed set is called a downset.
The downset lattice over (S,�), written (D(S),⊆,∩,∪), is the set of downsets
of S ordered by inclusion. Downsets strictly generalise powersets because the
powerset lattice of S is the downset lattice of S with the identity relation.

2.1 Concrete Semantics of Propositional Formulae

We present new, fixed point characterisations of the models and countermodels
of a formula. Satisfiability and validity are properties of such fixed points.

Let Asg =̂ Prop → B be the set of assignments. The concrete domain of as-
signments is (P(Asg),⊆,∪,∩). A formula ϕ defines four assignment transform-
ers. The name assignment transformers is used by analogy to state transformers
and predicate transformers. Let X be a set of assignments. The model trans-
former modϕ removes all countermodels of ϕ from X , the countermodel trans-
former cmodϕ removes all models of ϕ from X , the universal model transformer
umodϕ adds all models of ϕ to X , and the universal countermodel transformer
ucmodϕ adds all countermodels of ϕ to X .

modϕ(X) =̂ {σ ∈ X | σ |= ϕ} umodϕ(X) =̂ {σ ∈ Asg | σ |= ϕ or σ ∈ X}
cmodϕ(X) =̂ {σ ∈ X | σ 	|= ϕ} ucmodϕ(X) =̂ {σ ∈ Asg | σ 	|= ϕ or σ ∈ X}

Properties of a formula can be expressed with transformers. The set of models
of ϕ is modϕ(Asg), or equivalently, umodϕ(∅). The set of countermodels of ϕ
is cmodϕ(Asg), or equivalently, ucmodϕ(∅). Algebraic properties of assignment
transformers aid in deriving fixed point characterisations of satisfiability. The
De Morgan dual of a function f on P(Asg) is the function ¬ ◦ f ◦ ¬.
Theorem 1. The assignment transformers have the following properties.

1. The pairs (modϕ, ucmodϕ) and (cmodϕ, umodϕ) are De Morgan duals.
2. There are two Galois connections as below.

P(Asg) −−−−−−−→←−−−−−−−
modϕ

ucmodϕ

P(Asg) P(Asg) −−−−−−→←−−−−−−
cmodϕ

umodϕ

P(Asg)

Consider the statement assume(ϕ). The strongest postcondition is equivalent to
modϕ and the weakest liberal precondition is equivalent to ucmodϕ. Sound ap-
proximations of these transformers are available in abstract domain libraries.
Since our characterisation use these transformers, the overhead of lifting satisfi-
ability algorithms to new domains is low. Theorem 2 provides several fixed point
characterisations of satisfiability.

320 V. D’Silva, L. Haller, and D. Kroening

Theorem 2. The following statements are equivalent.

1. A formula ϕ is unsatisfiable.
2. The set of assignments modϕ(Asg) is empty.
3. The set of assignments umodϕ(∅) is empty.
4. The set cmodϕ(Asg) contains all assignments.
5. The set ucmodϕ(∅) contains all assignments.
6. The greatest fixed point gfp(modϕ) contains no assignments.
7. The least fixed point lfp(umodϕ) contains no assignments.
8. The greatest fixed point gfp(cmodϕ) contains all assignments.
9. The least fixed point lfp(ucmodϕ) contains all assignments.

Proof. Due to space restrictions, we do not prove all cases.
(1 iff 2) The formula ϕ is unsatisfiable exactly if it has no models. An assign-

ment σ is in modϕ(Asg) exactly if σ is a model of ϕ. The set modϕ(Asg) is
empty exactly if ϕ is unsatisfiable.

(2 iff 5) Recall that ucmodϕ(X) is the De Morgan dual of modϕ. If modϕ(Asg)
is the emptyset, ucmodϕ(∅) equals ¬modϕ(¬∅), which equals Asg.

(2 iff 4) The function modϕ is idempotent, meaning that modϕ(X) is equal
to modϕ(modϕ(X)) for all X . Since modϕ is monotone, modϕ(Asg) equals
modϕ(modϕ(Asg)), so the greatest fixed point of modϕ is modϕ(Asg). Thus
modϕ(Asg) is empty exactly if gfp(modϕ) is empty.

The argument for the remaining equivalences is similar.

Since all the transformers are idempotent, the fixed points in Theorem 2 may
seem superfluous. A sound abstraction of an idempotent function is not nec-
essarily idempotent, so iterating an abstract transformer can provide strictly
better results than applying it once. This intuition is formalised by the method
of locally decreasing iterations [13].

2.2 Abstract Satisfaction

We use the term abstract satisfaction for the application of abstract interpreta-
tion to design satisfiability algorithms. Abstract interpretation is typically used
to overapproximate a least fixed point (such as reachable states), or to underap-
proximate a greatest fixed point (such as the set of dead variables at a program lo-
cation). In contrast, we will overapproximate the greatest fixed point gfp(modϕ)
or underapproximate the least fixed point lfp(ucmodϕ). If an overapproximation
of gfp(modϕ) is the emptyset, ϕ is unsatisfiable. If an underapproximation of
lfp(ucmodϕ) contains all assignments, ϕ is unsatisfiable. Combining information
from different approximations yields better results than using either in isolation.

Abstract Interpretation. Assume a Galois connection C −−−→←−−−
α

γ
A. The lattice C is

called the concrete domain and A is called the abstract domain. If C is a powerset
lattice, an abstract domain with respect to the subset order satisfies x ⊆ γ(α(x))

Satisfiability Solvers Are Static Analysers 321

and is called an overapproximation. An abstract domain with respect to the
superset order satisfies x ⊇ γ(α(x)) and is called an underapproximation.

Functions on a concrete domain are called concrete transformers and those on
abstract domains are abstract transformers. The abstract transformer G soundly
approximates F if F ◦ γ � γ ◦G holds. The best abstract transformer α ◦ F ◦ γ
represents the maximum precision that can be derived from an abstraction.

Abstract Interpretation of Satisfiability. This section presents new, fixed
point approximations of satisfiability.

Let (O,�,�,�) be an overapproximation of the domain of assignments and
(U,�,�,) be underapproximation. The approximation is formalised by the
Galois connections below. The orders � and � both refine the subset order on
assignments. That is, a � b implies γ(a) ⊆ γ(b), and x � y implies γ(x) ⊆ γ(y).

(P(Asg),⊆) −−−−→←−−−−
αO

γO

(O,�) (P(Asg),⊇) −−−−→←−−−−
αU

γU

(U,
)

Abstract transformers can be defined for over- or underapproximating abstrac-
tions. We use an overapproximation of the model transformer and underap-
proximations of the countermodel and universal countermodel transformers. An
abstract model transformer amodO

ϕ : O → O, an abstract countermodel trans-

former acmodU
ϕ : U → U , and an abstract universal countermodel transformer

aucmodU
ϕ : U → U are monotone functions satisfying the constraints below.

modϕ ◦ γO ⊆ γO ◦ amodO
ϕ ucmodϕ ◦ γU ⊇ γU ◦ aucmodU

ϕ

cmodϕ ◦ γU ⊇ γU ◦ acmodU
ϕ

Theorem 3 provides sound and possibly incomplete characterisations of unsatis-
fiability. In contrast to concrete fixed points, the characterisations below are not
equivalent because the domains and transformers may have different precision.

Theorem 3. A propositional formula ϕ is unsatisfiable if at least one of the
conditions below hold.

1. The set γO(gfp(amodO
ϕ)) is empty.

2. The set γU (lfp(aucmodU
ϕ)) contains all assignments.

3. The set γO(x) ∩ ¬γU (y) is empty in (x, y) = γOU (gfp(amcOU
ϕ)).

Theorem 3 follows from the soundness of abstract interpretation. The rest of the
paper shows that satisfiability algorithms compute these abstract fixed points.

3 Sound and Complete Abstractions

In this section, we formalise the construction of truth tables and resolution proofs
in the abstract satisfaction framework. Truth table construction is abstract trans-
former application and the resolution rule is a sound abstract transformer. Re-
peated application of the resolution rule is abstract transformer iteration.

322 V. D’Silva, L. Haller, and D. Kroening

Truth Tables. A truth table is an enumeration that represents whether each
truth assignment satisfies a formula. In abstract satisfaction, truth tables are
a representation of the domain of assignments and truth table construction is
application of the best abstract transformer for a formula. Binary Decision Di-
agrams are semantically equivalent but have a more efficient representation.

Example 1. This example illustrates the order on truth tables. Consider the
formula ϕ = p ∧ ¬q. The set of assignments {p, q} → B is shown in gray below.
The truth tables for the formulae p and ¬q are shown below.

p q

f f

f t

t f
t t

p

f
f
t
t

¬q
t
f
t
f

p ∧ ¬q
f
f
t
f

� =

If the implication order on B is lifted to truth tables, the truth table for p ∧ ¬q
is the pointwise meet of the truth tables for p and ¬q. �

A truth table is a function in Table =̂ Asg → B. The domain of truth tables
(Table,�,�,�) is ordered by pointwise lifting of the implication order on truth
values. Specifically, T1 � T2 if T1(σ) ⇒ T2(σ) for every assignment σ. A set of
assignments X abstracts to the truth table T that maps assignments in X to
t and all other assignments to f. The functions α and γ below form a Galois
connection, are bijections and satisfy that γ ◦α and α ◦ γ are identity functions.
That is, the Galois connection is a Galois isomorphism, meaning that truth
tables do not abstract information.

α(X) =̂ {σ �→ t | σ ∈ X} ∪ {σ �→ f | σ /∈ X} γ(T) =̂ {σ | T (σ) = t}

Consider the best abstract transformer for modϕ, denoted amodϕ. Observe that
amodϕ(�) represents the truth table for ϕ. Thus, truth table construction can be
viewed as transformer application. The completeness of truth-table construction
is expressed as modϕ ◦ γ = γ ◦ amodϕ.

Resolution. The resolution principle states that an assignment satisfying the
clauses C ∨ p and ¬p ∨ D also satisfies C ∨ D [21]. The variable p is the pivot
and C ∨D is the resolvent. Resolution is sound but is not complete for deriving
arbitrary implications. For example, the formula p ∧ q implies p ∨ ¬q, but this
implication cannot be derived by resolution. Resolution is refutation complete: a
formula is unsatisfiable exactly if the empty clause can be derived by resolution.

In abstract satisfaction, cnf formulae, with the superset order, are an ab-
stract domain, and resolution defines an abstract transformer. The abstract
transformer is a sound but incomplete abstraction.

Let Lit be the set of literals over the propositional variables Prop, and Clause =̂
P(Lit) be the set of clauses. The cnf domain CNF =̂ P(Clause) contains sets
of clauses with the superset order (CNF ,⊇,∩,∪). The superset order underap-
proximates implication because ϕ ⊇ ψ entails ϕ ⇒ ψ but the converse is not

Satisfiability Solvers Are Static Analysers 323

true. The functions below are related by the Galois connection (P(Asg),⊆)
−−−→←−−−

α

γ
(CNF ,⊇).

α(X) =̂ {C | X ⊆ modC(Asg)} γ(ϕ) =̂ modϕ(Asg)

We formalise resolution with a transformer. The resolvents derived from ϕ with
pivot x are denoted res(x, ϕ). The resolution transformer Resϕ : CNF → CNF
adds all possible resolvents to a set of clauses.

res(x, ϕ) =̂ {C ∨D | x ∨ C and ¬x ∨D are in ϕ}

Resϕ(ψ) =̂ ϕ ∪ ψ ∪
⋃

x∈Prop

res(x, ϕ)

We express properties of resolution next. Logical soundness stating that every
clause derived by resolution is implied by ϕ becomes the condition α ◦modϕ ⊇
Resϕ◦α. Resϕ is not idempotent, so multiple applications of resolution yield more
resolvents than a single application. The set of clauses derived by resolution is
the fixed point gfp(Resϕ). Resolution is not complete for arbitrary implications,
so in general, α(gfp(modϕ)) is a strict superset of gfp(Resϕ). The refutation
completeness of resolution becomes the condition that γ(gfp(Resϕ)) is the empty
set exactly if gfp(Resϕ) contains the empty clause.

4 Fixed Point Refinement

In this section, we formalise the classic dpll procedure. We first characterise
Boolean Constraint Propagation as abstract fixed point iteration.

4.1 Boolean Constraint Propagation

The workhorse of all solvers based on dpll is the Boolean Constraint Propa-
gation (bcp) routine. bcp repeatedly applies a transformation called the unit
rule to a data structure called a partial assignment. In abstract satisfaction,
partial assignments are an abstract domain, the unit rule is the best abstract
transformer for a clause, and bcp computes a greatest fixed point.

Example 2. We illustrate bcp with the formula below.

ϕ =̂ p ∧ (¬p ∨ ¬q) ∧ (q ∨ r ∨ ¬s) ∧ (q ∨ r ∨ s)

Initially, nothing is known about the formula, encoded by the empty set. Then,
bcp concludes that p must be true in every satisfying assignment. Since p must
be true, bcp concludes that q must be false to satisfy the clause ¬p ∨ ¬q.

π0 =̂ � π1 =̂ 〈p:t〉 π2 =̂ 〈p:t, q:f〉

All the remaining clauses have more than one literal unassigned, so bcp termi-
nates. bcp is a sound but incomplete deduction procedure. bcp need not begin

324 V. D’Silva, L. Haller, and D. Kroening

P ∪Q P ∪Q P ∪Q P ∪Q

P P ⊕Q Q Q P ⊕Q P

P ∩Q P ∩Q P ∩Q P ∩Q

Vars → B

∅

p:t q:t q:f p:f

p:t, q:t p:t, q:f p:f, q:t p:f, q:f

�

⊥

Fig. 1. Domains for assignments over p and q. The concrete domain P(Asg) is on the
left. The set P contains assignments that map p to true. Partial assignments are on the
right. The shaded elements of P(Asg) cannot be represented as partial assignments.

with π0 as above. We can begin by assuming p is true, q is false, and r is false,
written π =̂ 〈p:t, q:f, r:f〉. Given π, bcp concludes, from (q∨ r∨¬s), that s must
be false and from (q ∨ r ∨ s) that s must be true. This situation, denoted ⊥, is
a conflict. No assignment extending π satisfies ϕ. �
We show that partial assignments are an abstract domain. A partial assignment
is a partial function in Prop → B. Consider the set {t, f,�} with the information
order t � � and f � �. We model a partial assignment as a total function
π : Prop → {t, f,�}, where for each variable p, π(x) is � if π is undefined on p.
The domain of partial assignments (PAsg,�) contains a set PAsg =̂ (Prop →
{t, f,�}) ∪ {⊥}, of partial assignments extended with a least element ⊥, called
a conflict. The order between non-⊥ elements is the pointwise lifting of the
information order. A partial assignment in which p is t and other variables map
to � is written 〈p:t〉. Figure 1 depicts partial assignments over two variables.

A variant of the partial assignments domain is used for constant propaga-
tion [16] and is equivalent to the Cartesian abstraction [4]. In abstract inter-
pretation parlance, partial assignments as presented here are a reduction of the
Cartesian abstraction domain in which the empty set has a unique representa-
tion. The abstraction and concretisation functions αPAsg : P(Asg)→ PAsg and
γPAsg : PAsg → P(Asg) below are standard and are known to form a Galois
connection.

αPAsg(∅) =̂ ⊥ αPAsg(S) =̂
{
x �→

⊔
{σ(x) | σ ∈ S} | x ∈ Prop

}
, for S 	= ∅

γPAsg(⊥) =̂ ∅ γPAsg (π) =̂ {σ ∈ Asg | for all x in Prop, σ(x) � π(x)}

We formalise the unit rule. The unit rule states that if all but one literals in a
clause are false under a partial assignment, the remaining literal must be true.
It is defined by a function unit : Clause × PAsg → PAsg. The image of a clause
θ under a partial assignment π is false if π and makes all literals in θ false.

Satisfiability Solvers Are Static Analysers 325

unit(θ, π) =̂

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⊥ if π(θ) is f

π ∪ {p �→ t} if θ is ψ ∨ p and π(ψ) = f

π ∪ {p �→ f} if θ is ψ ∨ ¬p and π(ψ) = f

π otherwise

Example 3. We illustrate the unit rule with ϕ =̂ ¬p∧ (p∨¬q). Assume we have
best abstract transformers for literals. The abstract transformer for ϕ is derived
by replacing conjunction and disjunction by pointwise meet and join.

amodϕ =̂ amod¬p � (amodp � amod¬q)

We compute a greatest fixed point in the partial assignments domain.

π0 =̂ 〈p:�, q:�〉 π1 =̂ 〈p:f, q:�〉 π2 =̂ 〈p:f, q:f〉 π3 =̂ 〈p:f, q:f〉

Applying the unit rule generates the same sequence. �

Lemma 1. For a fixed clause θ, the unit rule is equivalent to the best abstract
transformer: unit(θ, π) = αPAsg ◦modθ ◦ γPAsg(π).

Proof. Consider a partial assignment π and the best abstract transformer amodθ =̂
αPAsg ◦modθ ◦ γPAsg . We distinguish the cases in the definition of unit.
(π(θ) is f) If π makes every literal in θ false, unit(θ, π) = ⊥. No assignment

in γPAsg (π) will θ, so modθ(γPAsg (π)) is the empty set and by definition of
αPAsg , from amodθ(π) = ⊥.

(θ = ψ ∨ p and π(ψ) = f) Here, unit(θ, π) = π ∪ {p �→ t}. Since p is unassigned,
π(p) = �, and γ(π) contains assignments in which every p is true and false
and all in ϕ are false. The set modθ(γπ(π)) only includes assignments that
satisfy p because no other literal is satisfied. All other variables are unaffected.
Thus, αPAsg(mod θ(γπ(π))) equals π ∪ {p �→ t}.

(π undefined for multiple variables in θ) The unit rule leaves π unchanged. At
least two literals in θ are undefined in π, somodθ(γPAsg (π)) contains an assign-
ment that makes one true and the other false and vice-versa. Consequently,
the variables for both literals map to � in αPAsg(mod θ(γPAsg (π))) and π is
unchanged, as required.

bcp maps a formula ϕ and a partial assignment π representing an assumption
to the result of applying the unit rule repeatedly with all clauses till no changes
are observed. Formally, bcp is a function bcp : CNF × PAsg → PAsg.

Let ϕ be a formula, θ represent a clause, and amod θ be the best abstract
transformer for modθ. We model the effect of concrete deduction from a partial
assignment Δ with the concrete transformer modϕ,Δ.

modϕ : PAsg ×P(Asg)→P(Asg) modϕ,Δ(x) =̂ modϕ(x ∩ γ(Δ))

326 V. D’Silva, L. Haller, and D. Kroening

The abstract deduction transformer below overapproximates modϕ,Δ.

dedϕ : PAsg × PAsg → PAsg dedϕ,Δ(π) =̂
�
{amodθ(π �Δ) | θ is in ϕ}

The soundness constraint modϕ,Δ ◦ γPAsg ⊆ γPAsg ◦ dedϕ,Δ implies that all
conclusions derived by dedϕ,Δ are satisfied by all models of ϕ in Δ. Example 4
shows that the deduction transformer is not complete.

Example 4. The formula ϕ =̂ (¬p∨q)∧(p∨¬q)∧(¬p∨¬q)∧(p∨q) is unsatisfiable.
The best abstract transformer satisfies αPAsg (modϕ,�(γPAsg (�))) = ⊥ whereas
the deduction transformer satisfies αPAsg(modϕ,�(γPAsg(�))) = �. Thus, the
abstract deduction transformer is incomplete. �

Theorem 4. The result of Boolean Constraint Propagation bcp(ϕ,Δ) is equiv-
alent to the greatest fixed point gfp(dedϕ,Δ).

In abstract interpretation terms, bcp is bottom-up abstract interpretation of
Boolean expressions with locally decreasing iterations [13,4].

4.2 The Classic DPLL Algorithm

We say classic dpll, or dpll, for the algorithm of Davis, Logemann, and Love-
land [10]. The dpll algorithm simplifies the algorithm of Davis and Putnam [11]
by eliminating the resolution and pure literal rules. If bcp is viewed as a static
analysis, dpll can be understood as running bcp on the sequence of programs
below. In abstract satisfaction terms, dpll dynamically restricts the range of
values a variable can take to improve precision. It is a procedure to dynamically
discover value-based trace partitions [20].

P0 =̂
if(ϕ)
assert(f)

P1 =̂
if(p) P0
else P0

P2 =̂
if(q) P1
else P1

Example 5. Revisit the formula ϕ =̂ (¬p∨q)∧(p∨¬q)∧(¬p∨¬q)∧ (p∨q) which
could not be refuted by bcp. Since gfp(dedϕ,�) is �, dpll concludes that pre-
cision was lost and computes two fixed points gfp(dedϕ,〈p:t〉) and gfp(dedϕ,〈p:f〉).
Both fixed points are ⊥, so dpll concludes that ϕ is unsatisfiable. �

dpll operates in two phases, using two abstract domains. One phase con-
sists of deduction under assumptions and uses bcp. The other phase refines
assumptions and is formalised next. dpll only considers assumptions that can
be represented by partial assignments, but such a restriction is not necessary.

Example 6. Figure 2 illustrates partitions of two variable assignments. An ele-
ment · · · /f, f represents a partition in which one block contains the assignment
{p �→ f, q �→ f} and the other block contains all other assignments. dpll can be
run using the assignments in each partition as assumptions. The partition lattice
is large, with the size given by the Bell number.

An abstract lattice of partitions reduces the cases that must be considered.
Figure 2 depicts partitions that can be expressed as partial assignments.

Satisfiability Solvers Are Static Analysers 327

· · · /f, f · · · /f, t · · · /t, f · · · /t, t

· · · /t, f/f, f · · · /t, f/f, t t, t/ · · · /f, f t, t/ · · · /f, t

Asg

t, t/t, f/f, t/f, f

t,�/f,� �, t/�, f

�,�

t, t/t, f/f, t/f, f

Fig. 2. The concrete domain for case-based reasoning is the lattice of partitions over
assignments. The abstract domain only contains partitions that can be expressed as
partial assignments.

The partition consisting of the two sets represented by p ⇐⇒ q and p ⇐⇒ ¬q
cannot be expressed with partial assignments but the partition consisting of
p ⇐⇒ f and p ⇐⇒ t can. �
An abstract partition is a set χ ⊆ A of elements from an abstract domain satis-
fying that {γ(a) | a ∈ χ} is a partition. Given two abstract partitions, χ1 refines
χ2, denoted χ1 � χ2, if for every a2 in χ2, there is an a1 in χ1 such that a1 � a2.
An abstract partition represents cases used in deduction. Let (Cases(PAsg),�)
be the set of abstract partitions over partial assignments ordered by refinement.

Let χ be an abstract partition. The case deduction transformer models the
effect of using each block of a partition as an assumption.

acaseϕ : χ→ PAsg acaseϕ =̂ {Δ �→ gfp(dedϕ,Δ) | Δ ∈ χ}

In the refinement step, a variable that is currently undefined is used to refine
a block of the partition. We model selection of an unassigned variable with a
function pick : PAsg → Prop that maps a partial assignment π to a variable p
for which π(p) = �. The case split function split : PAsg →P(PAsg) formalises
refinement of a partition based on deduction.

split(π) =̂ {π � 〈p:t〉, π � 〈p:f〉 | p = pick (gfp(dedϕ,π))}

dpll runs until the formula is shown to be unsatisfiable or a satisfying assign-
ment is found. Satisfying assignments are formalised using covering. An element
a in a lattice covers ⊥ if there is no distinct a′ satisfying ⊥ � a′ � a. Elements of
PAsg covering ⊥ are assignments. If deduction under every block of a partition
yields ⊥, the formula is unsatisfiable.

Algorithm 1 presents an abstract interpretation perspective of dpll. Since
every function acaseϕ represents a trace partition [20], dpll can be understood
as a procedure to dynamically discover a trace partition.

5 Conflict Driven Clause Learning

This section formalises the Conflict Driven Clause Learning (cdcl) algorithm.
Though cdcl historically derives from dpll, dpll can naturally be viewed as a

328 V. D’Silva, L. Haller, and D. Kroening

Abstract-DPLL(ϕ, χ)
Compute acaseϕ

if acaseϕ(Δ) = ⊥ for all Δ in χ then return UNSAT
if acaseϕ(Δ) covers ⊥ for some Δ in χ then return SAT
else

χ ← (χ \ {Δ}) ∪ split(Δ)

Abstract-DPLL(ϕ, χ)

Algorithm 1: dpll as fixed point computation with dynamic refinement

recursive search procedure, while the search pattern of cdcl is more intricate.
dpll uses case based reasoning to refine an analysis. cdcl uses clause learning
to refine the transformers used to compute a fixed point. In terms of programs,
every iteration of cdcl generates and analyses a program of the form below.

P0 =̂ if(ϕ) assert(f) P1 =̂ if(θ1) P0 P2 =̂ if(θ2) P1

Example 7. This example illustrates a run of cdcl on a formula ϕ.

ϕ =̂ { {¬u, v, w} , {¬w,¬x} , {¬w, y} , {x,¬y, z} , {x,¬z} , {x, y} , {¬y,¬x} }

cdcl initially proceeds like dpll and alternates bcp and decisions. The steps
in bcp are recorded by an implication graph shown below. A directed edge from
u to w and from ¬v to w indicates that bcp deduced that w is true if u is true
and v is false. A cut in the graph represents a conjunction of literals. A cut that
separates u and ¬v from ⊥ represents a sufficient condition for a conflict. The
disjunction of formulae represented by a set of cuts is also sufficient for a conflict.

u

v w x

y
z ⊥

cut x ∧ ycut w

Implication graph Choices

uvwxyz

w

xy . . .

xy

The first step of conflict analysis is to heuristically choose a cut. A single cut is
used rather than a set to save space. Suppose the solver chooses the cut ¬x ∧ y.

The second step is to generalise the cut. Observe that if ¬x holds, the unit
rule and the clause {x, y} imply y. Similarly, the solver can use y and {¬x,¬y}
to deduce ¬x. The conflict can be generalised to either or ¬x or y. If ¬x is
sufficient for a conflict, its negation x must be satisfied by all models of ϕ. The
solver learns the clause {x} and continues with model search. �
We view cdcl as operating in two phases. In the model search phase, cdcl uses
bcp to draw conclusions about all models of ϕ. Since ϕ ⇒ ψ if all models of ϕ
satisfyψ, we say that bcp overapproximates deduction. The incompleteness of bcp
translates into imprecision in an abstract transformer. cdcl uses decisions to gain
precision. That is, cdcl makes assumptions (that we write as a formula Δ) until

Satisfiability Solvers Are Static Analysers 329

Model Search Conflict Analysis

gfp(amodϕ)

Dual widen

lfp(aucmodϕ)

Dual narrow

SAT UNSAT

Conflict

Clause

Fig. 3. Abstract Interpretation view of CDCL

it finds a satisfying assignment, or until ϕ ∧ Δ ⇒ f. Unlike in dpll, only one
assumption is made, so the use of assumptions is unsound.

After a conflict is found, cdcl enters the conflict analysis phase. The goal
of conflict analysis is to derive a formula θ such that ϕ ∧ θ implies f. Given
formulae ϕ and ψ, the task of deriving θ such that ϕ∧θ ⇒ ψ is called abduction.
Conflict analysis only derives those θ that can be expressed as a cube, so this
step underapproximates abduction. The abstract interpretation view of cdcl is
illustrated in Figure 3 and formalised next.

Model Search and Extrapolation. As before, bcp is a greatest fixed point
computation with the abstract transformer amodϕ. Decisions are used to in-
crease precision by iterating below the greatest fixed point gfp(dedϕ,�). Recall
that widening operators are used to ascend up a lattice in a least fixed point
computation. Decisions underapproximate the greatest fixed point computed by
bcp and are dual widening operators [8]. Widening is typically used to enforce
convergence. The goal of decisions is not convergence, so we use the term ex-
trapolation, suggested in [8] for a weakening of widening without a convergence
requirement.

A downwards extrapolation on a lattice is a function f : L → L satisfying
f(a) � a for all a. Such a function is usually called reductive or decreasing,
but we prefer extrapolation to emphasise the connection to widening. We model
decisions with the downwards extrapolation function below.

ext� : PAsg → PAsg

ext�(π) =̂ π � 〈p:b〉 where p = pick (π) and b ∈ B

The model search phase of cdcl computes π = gfp(dedϕ,�). If π is ⊥, the for-
mula is unsatisfiable. If π covers ⊥, the formula is satisfiable. In other cases,
extrapolation is used to derive a partial assignment Δ = ext�(π). This par-
tial assignment represents the new assumptions that will be used. Model search
continues by computing gfp(dedϕ,Δ). Extrapolation is typically used to
accelerate convergence of a fixed point computation by losing precision while

330 V. D’Silva, L. Haller, and D. Kroening

preserving soundness. The application of extrapolation to gain precision at the
cost of soundness in cdcl is unusual.

Conflict Analysis and Interpolation. If model search with extrapolation dis-
covers an element Δ such that gfp(dedϕ,Δ) is ⊥ cdcl enters the conflict analysis
phase. The goal of conflict analysis is to generalise the reason for the conflict. In
terms of concrete transformers, we have that modϕ(γ(Δ)) is empty and wish to
compute the set of countermodels ucmodϕ(γ(Δ)). This set is underapproximated
using an underapproximate domain and transformer.

Example 8. This example illustrates the domain and transformers used for con-
flict analysis. Revisit the implication graph in Example 7. Every cut in the graph
that separates the vertices u and ¬v from ⊥ is a reason for a conflict. Such cuts
can be computed by traversing the graph starting from ⊥.

C0 = {{⊥}} C1 = {{⊥} , {¬x, z}} C2 = {{⊥} , {¬x, z} , {¬x, y}}

Note that a graph cut is a set of vertices, so the set of graph cuts is a set of
sets of vertices. Unlike breadth-first reachability, which only maintains a set of
vertices, the iteration above maintains a set of sets of vertices. �
We formalise the domain and transformer for conflict analysis. A cut in the
implication graph represents a conjunction of literals, so every cut c can be rep-
resented by a partial assignment πc. A set of cuts is a set of partial assignments.
If c is a set of vertices representing a cut every set of vertices d that contains
c also represents a cut. If c is contained in d, the corresponding partial assign-
ments satisfy πd � πc. The domain for conflict analysis is downwards closed sets
(downsets) of partial assignments.

Let (D(PAsg),⊆) be the family of downsets of partial assignments. We make
the standard assumption that downsets are represented by their maximal ele-
ments. The lattice of downsets is an underapproximating abstract domain with
the following abstraction and concretisation functions [7].

αD(X) =
⋃
{π� | γPAsg (π) ⊆ X} γD(Y) = {γPAsg(π) | π ∈ Y }

Since every set of assignments is also a set of partial assignments, this abstract
domain can represent all sets of assignments. We also note that the downset
lattice is called the disjunctive completion of an abstract domain.

We model concrete abduction with the transformer below.

ucmodϕ : PAsg ×P(Asg)→P(Asg) ucmodϕ,Δ(x) =̂ ucmodϕ(x ∪ γPAsg(Δ))

An abstract abduction transformer abdϕ : PAsg × D(PAsg) → D(PAsg) under-
approximates concrete abduction and maps a partial assignment Δ and set Q
to a set of partial assignments derived from Q.

We describe an instance of abduction which formalises clauseminimisation [23].
In general, other techniques such as cutting a conflict graph [22] may also be used.

minimiseϕ,Δ(P) =̂ {π ∈ PAsg | ∃θ ∈ Form . amod θ(π) � π′, π′ ∈ P ∪ {Δ}}

Satisfiability Solvers Are Static Analysers 331

The conflict minimisation transformer minimiseϕ,Δ finds all partial assignments
from which a known conflict can be deduced with the unit rule. Applying ab-
duction may produce a set of partial assignments. Conflict analysis is expensive,
so solvers heuristically choose a single partial assignment and return to model
search.

In a dual manner to deduction, underapproximating the set of reasons for a
conflict can be viewed as a least fixed point computation. Recall that narrow-
ing operators are used to overapproximate the limit of a decreasing iteration
sequence [8]. A dual narrowing operator can be used to underapproximate the
limit of an increasing iteration sequence. Choosing a reason for a conflict can be
viewed as dual narrowing. For similar reasons to our use of extrapolation, the
term interpolation is more appropriate because convergence is not an issue. The
use of the term interpolation should not be confused with Craig interpolants.

An upwards interpolation on a lattice is a function f : L × L → L satisfying
that a � b ⇒ a � f(a, b) � b for all a, b. We model heuristic choice among
candidates as the upwards interpolation function below.

int
 : D(PAsg)×D(PAsg)→ D(PAsg)

For P ⊆ Q, int
(P,Q) =̂ {choose(p,Q) | p is maximal in P}

The statement choose(p,Q) above is defined when p is an element of Q and
returns a maximal element q of Q with p � q.

Example 9. In Example 8, the initial conflict is p = 〈u : t, v : f, w : t, x : f, y : t, z :
f〉. The two graph cuts produce the set of candidates Q = {〈w : t〉, 〈x : f, y : t〉}.
The second element of the set is chosen. This corresponds to the application of
upwards interpolation int
({p}, Q) = {〈x : f, y : t〉}. �

6 Related Work and Discussion

Standard static analysis is, of necessity, incomplete and computes approxima-
tions. A surprising insight of our work is that satisfiability procedures operate
over imprecise abstractions but obtain sound and complete results. The main
reason is that sat solvers use techniques to refine the precision of an analysis.

The verification literature contains numerous examples of domain refinement,
originating in [6]. A very popular refinement technique at present is Counterex-
ample Guided Abstraction Refinement (cegar) [3]. We believe the refinement
in sat solvers is very different from cegar. Each iteration of the cegar loop
requires constructing a new abstraction and new transformers. In stark contrast,
sat solvers never change the domain. This immutability is crucial for efficiency
as abstract domain implementations can be highly optimised. In fact, sat al-
gorithms can be understood as a portfolio of techniques for refinement without
domain manipulation.

The refinement in bcp is to compute a fixed point instead of applying a trans-
former. bcp uses locally decreasing iterations [13] to refine conditional constant

332 V. D’Silva, L. Haller, and D. Kroening

propagation [26], which in turn refines constant propagation [16]. The refine-
ment in dpll is to compute a set of fixed points instead of a single fixed point.
A run of dpll can be understood as a search for a sufficiently precise set of
fixed points or as a search for a trace partition [15,20]. cdcl uses two types
of refinements. Decisions refine the starting element for fixed point iteration to
eliminate precision loss. Conflict analysis refines the input constraints.

We are not aware of existing program analysis techniques that generalise
cdcl in a strict mathematical sense but there are several tantalizing similarities
that deserve closer study. Transformer refinement in predicate abstraction [1]
achieves a similar effect to clause learning. Counterexample dags in [14] play a
similar role to implication graphs, while the combination of testing with weakest
preconditions in Yogi [2] and with interpolants in lazy annotation [18] resembles
the interplay between decisions and conflict analysis.

The breadth and diversity of the satisfiability literature made it infeasible to
cover all but a few propositional satisfiability procedures in this paper. St̊almarck’s
method is not covered in this paper but can naturally be understood as an
extension of bcp that combines case-based refinement with joins. Thakur and
Reps [24,25] have recently applied abstract interpretation to generalise St̊almarck’s
method and shown that this generalisation has applications beyond sat solving.

We conjecture that algorithms for solving satisfiability in a theory (smt) have
abstract interpretation characterisations and may independently exist in the
static analysis literature. The analysis of a formula based on its propositional
structure in DPLL(T) [19] is remarkably similar to the program analysis us-
ing control flow paths. The Nelson-Oppen combination procedure was recently
shown to be an instance of the iterative reduced product [9]. We believe that
these are but a few directions that must be explored en route to an exciting uni-
fication of the theory and practice of decision procedures and static analysers.

Acknowledgements. We are deeply indebted to the French static analysis
community, and Patrick and Radhia Cousot in particular, for their encourage-
ment and support.

References

1. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: PLDI, pp. 203–213. ACM Press (2001)

2. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
Proc. of Software Testing and Analysis, pp. 3–14. ACM Press (2008)

3. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. JACM 50, 752–794 (2003)

4. Cousot, P.: Abstract interpretation. MIT Course 16.399 (February-May 2005)
5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM Press (1977)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL, pp. 269–282. ACM Press (1979)

Satisfiability Solvers Are Static Analysers 333

7. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
Journal of Logic Programming 13(2-3), 103–179 (1992)

8. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2(4), 511–547 (1992)

9. Cousot, P., Cousot, R., Mauborgne, L.: The Reduced Product of Abstract Domains
and the Combination of Decision Procedures. In: Hofmann, M. (ed.) FOSSACS
2011. LNCS, vol. 6604, pp. 456–472. Springer, Heidelberg (2011)

10. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
CACM 5, 394–397 (1962)

11. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7,
201–215 (1960)

12. D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric Bounds Analysis
with Conflict-Driven Learning. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 48–63. Springer, Heidelberg (2012)

13. Granger, P.: Improving the Results of Static Analyses Programs by Local Decreas-
ing Iteration (Extended Abstract). In: Shyamasundar, R. (ed.) FSTTCS 1992.
LNCS, vol. 652, pp. 68–79. Springer, Heidelberg (1992)

14. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically Re-
fining Abstract Interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

15. Holley, L.H., Rosen, B.K.: Qualified data flow problems. In: POPL, pp. 68–82.
ACM Press, New York (1980)

16. Kildall, G.A.: A unified approach to global program optimization. In: POPL, pp.
194–206. ACM, New York (1973)

17. King, J.C.: A Program Verifier. PhD thesis (1969)
18. McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: Touili,

T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer,
Heidelberg (2010)

19. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
JACM 53, 937–977 (2006)

20. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. TOPLAS 29(5),
26 (2007)

21. Robinson, J.A.: A machine-oriented logic based on the resolution principle.
JACM 12(1), 23–41 (1965)

22. Silva, J.P.M., Sakallah, K.A.: GRASP – a new search algorithm for satisfiability.
In: ICCAD, pp. 220–227 (1996)

23. Sörensson, N., Biere, A.: Minimizing Learned Clauses. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 237–243. Springer, Heidelberg (2009)

24. Thakur, A., Reps, T.: A Generalization of St̊almarck’s Method. In: SAS. Springer
(2012)

25. Thakur, A., Reps, T.: A Method for Symbolic Computation of Abstract Opera-
tions. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
174–192. Springer, Heidelberg (2012)

26. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
TOPLAS 13, 181–210 (1991)

A Generalization of St̊almarck’s Method�

Aditya Thakur1 and Thomas Reps1,2,��

1 University of Wisconsin, Madison, WI, USA
2 GrammaTech., Inc., Ithaca, NY, USA

Abstract. This paper gives an account of St̊almarck’s method for valid-
ity checking of propositional-logic formulas, and explains each of the key
components in terms of concepts from the field of abstract interpretation.
We then use these insights to present a framework for propositional-logic
validity-checking algorithms that is parametrized by an abstract domain
and operations on that domain. St̊almarck’s method is one instantiation
of the framework; other instantiations lead to new decision procedures
for propositional logic.

1 Introduction

A tool for validity checking of propositional-logic formulas (also known as a
tautology checker) determines whether a given formula ϕ over the propositional
variables {pi} is true for all assignments of truth values to {pi}. Validity is dual
to satisfiability: validity of ϕ can be determined using a SAT solver by checking
the satisfiability of ¬ϕ and complementing the answer: VALID(ϕ) = ¬SAT(¬ϕ).

With the advent of SAT-solvers based on conflict-directed clause learning (i.e.,
CDCL SAT solvers) [11] and their use in a wide range of applications, SAT meth-
ods have received increased attention during the last twelve years. Previous to
CDCL, a fast validity checker (and hence a fast SAT solver) already existed, due
to St̊almarck [13]. St̊almarck’s method was protected by Swedish, European, and
U.S. patents [15], which may have discouraged experimentation by researchers.
Indeed, one finds relatively few publications that concern St̊almarck’s method—
some of the exceptions are by Harrison [9], Cook and Gonthier [2], and Björk [1].
(Kunz and Pradhan [10] discuss a closely related method.)

In this paper, we give a new account of St̊almarck’s method by explaining
each of the key components in terms of concepts from the field of abstract in-
terpretation [3]. In particular, we show that St̊almarck’s method is based on a

� Supported, in part, by NSF under grants CCF-{0810053, 0904371}, by ONR under
grants N00014-{09-1-0510, 10-M-0251, 11-C-0447}, by ARL under grant W911NF-
09-1-0413, and by AFRL under grants FA9550-09-1-0279 and FA8650-10-C-7088.
Any opinions, findings, and conclusions or recommendations expressed in this pub-
lication are those of the authors, and do not necessarily reflect the views of the
sponsoring agencies.

�� T. Reps has an ownership interest in GrammaTech, Inc., which has licensed elements
of the technology discussed in this publication.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 334–351, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Generalization of St̊almarck’s Method 335

certain abstract domain and a few operations on that domain. For the program-
analysis community, the abstract-interpretation account explains the principles
behind St̊almarck’s method in terms of familiar concepts. In the long run, our
hope is that a better understanding of St̊almarck’s method will lead to

– better program-analysis tools that import principles found in St̊almarck’s
method into program analyzers

– improvements to St̊almarck-based validity checkers by (i) incorporating do-
mains other than the ones that have been used (implicitly) in previous im-
plementations of the method, or (ii) improving the method in other ways by
incorporating additional techniques from the field of abstract interpretation.

There has been one payoff already: in [18], we describe ways in which ideas from
St̊almarck’s method can be adopted for use in program analysis. The techniques
described in [18] are quite different from the huge amount of recent work based
on reducing a program path π to a formula ϕπ via symbolic execution, and then
passing ϕπ to a decision procedure to determine whether π is feasible. Instead,
we adopted—and adapted—the key ideas from St̊almarck’s method to create
new algorithms for key program-analysis operations.

In this paper, we use the vantage point of abstract interpretation to de-
scribe the elements of the Dilemma Rule—the inference rule that distinguishes
St̊almarck’s method from other propositional-reasoning approaches—as follows:

Branch of a Proof: In St̊almarck’s method, each proof-tree branch is associ-
ated with a so-called formula relation [13]. In abstract-interpretation terms,
each branch is associated with an abstract-domain element.

Splitting: The step of splitting the current goal into sub-goals can be expressed
in terms of meet (�).

Application of Simple Deductive Rules: St̊almarck’s method applies a set
of simple deductive rules after each split. In abstract-interpretation terms,
the rules perform a semantic reduction [4] by means of a technique called
local decreasing iterations [8].

“Intersecting” results: The step of combining the results obtained from an
earlier split are described as an “intersection” in St̊almarck’s papers. In the
abstract-interpretation-based framework, the combining step is the join (�)
of two abstract-domain values.

This more general view of St̊almarck’s method furnishes insight on when an
invocation of the Dilemma Rule fails to make progress in a proof. In particu-
lar, both branches of a Dilemma may each succeed (locally) in advancing the
proof, but the abstract domain used to represent proof states may not be precise
enough to represent the common information when the join of the two branches
is performed; consequently, the global state of the proof is not advanced.

We use these insights to present a parametric framework for propositional
validity-checking algorithms. The advantages of our approach are

336 A. Thakur and T. Reps

– We prove correctness at the framework level, once and for all, instead of for
each instantiation.

– Instantiations that use different abstract domains lead to different decision
procedures for propositional logic. St̊almarck’s method is the instantiation
of our framework in which the abstract domain tracks equivalence relations
between subformulas—or, equivalently, 2-variable Boolean affine relations
(2-BAR). By instantiating the framework with other abstract domains, such
as k-variable Boolean affine relations (k-BAR) and 2-variable Boolean in-
equality relations (2-BIR), we obtain more powerful decision procedures.

Contributions. The contributions of the paper can be summarized as follows:
– We explain St̊almarck’s method in terms of abstract interpretation [3]—in

particular, we show that it is one instance of a more general algorithm.
– The vantage point of abstract interpretation provides new insights on the

existing St̊almarck method.
– Adopting the abstract-interpretation viewpoint leads to a parametric frame-

work for validity checking, parameterized by an abstract domain that sup-
ports a small number of operations.

Organization. The remainder of the paper is organized as follows: §2 reviews
St̊almarck’s algorithm, and presents our generalized framework at a semi-formal
level. §3 defines terminology and notation. §4 describes St̊almarck’s method us-
ing abstract-interpretation terminology and presents the general framework. §5
describes instantiations of the framework that result in new decision procedures.
§6 presents preliminary experimental results. §7 discusses related work. Proofs
and a discussion of efficiency issues are presented in [17].

2 Overview

In this section, we first review St̊almarck’s method with the help of a few ex-
amples. We then present our generalized framework at a semi-formal level. The
algorithms that we give are intended to clarify the principles behind St̊almarck’s
method, rather than represent the most efficient implementation.

2.1 St̊almarck’s Method

Consider the tautology ϕ = (a ∧ b) ∨ (¬a ∨ ¬b). Ex. 1 below shows that the
simpler component of the two components of St̊almarck’s method (application
of “simple deductive rules”) is sufficient to establish that ϕ is valid.

Example 1. We use 0 and 1 to denote the propositional constants false and
true, respectively. Propositional variables, negations of propositional variables,
and propositional constants are referred to collectively as literals. St̊almarck’s
method manipulates formula relations, which are equivalence relations over lit-
erals. A formula relation R will be denoted by ≡R, although we generally omit
the subscript when R is understood. We use 0 ≡ 1 to denote the universal (and
contradictory) equivalence relation {li ≡ lj | li, lj ∈ Literals}.

A Generalization of St̊almarck’s Method 337

v1 ⇔(v2 ∨ v3) (1)

v2 ⇔(a ∧ b) (2)

v3 ⇔(¬a ∨ ¬b) (3)

Fig. 1. Integrity constraints corresponding
to the formula ϕ = (a∧b)∨ (¬a∨¬b). The
root variable of ϕ is v1.

p⇔(q ∨ r) p ≡ 0

q ≡ 0 r ≡ 0
Or1

p⇔(q ∧ r) q ≡ 1 r ≡ 1

p ≡ 1
And1

Fig. 2. Propagation rules

St̊almarck’s method first assigns to every subformula of ϕ a unique Boolean
variable in a set of propositional variables V , and generates a list of integrity
constraints as shown in Fig. 1. An assignment is a function in V → {0, 1}. The
integrity constraints limit the set of assignments in which we are interested. Here
the integrity constraints encode the structure of the formula.

St̊almarck’s method establishes the validity of the formula ϕ by showing that
¬ϕ leads to a contradiction (which means that ¬ϕ is unsatisfiable). Thus, the sec-
ond step of St̊almarck’s method is to create a formula relation that contains the
assumption v1 ≡ 0. Fig. 2 lists some propagation rules that enable St̊almarck’s
method to refine a formula relation by inferring new equivalences. For instance,
rule Or1 says that if p⇔(q ∨ r) is an integrity constraint and p ≡ 0 is in the
formula relation, then q ≡ 0 and r ≡ 0 can be added to the formula relation.

Fig. 3 shows how, starting with the assumption v1 ≡ 0, the propagation rules
derive the explicit contradiction 0 ≡ 1, thus proving that ϕ is valid. ��

Alg. 1 (Fig. 4) implements the propagation rules of Fig. 2. Given an integrity
constraint J ∈ I and a set of equivalences R1 ⊆ R, line 1 calls the function
ApplyRule, which instantiates and applies the derivation rules of Fig. 2 and
returns the deduced equivalences in R2. The new equivalences in R2 are incor-
porated into R and the transitive closure of the resulting equivalence relation
is returned. We implicitly assume that if Close derives a contradiction then it
returns 0 ≡ 1. Alg. 2 (Fig. 4) describes 0-saturation, which calls propagate re-
peatedly until no new information is deduced, or a contradiction is derived. If a
contradiction is derived, then the given formula is proved to be valid.

Unfortunately, 0-saturation is not always sufficient.

v1 ≡ 0 . . . by assumption
v2 ≡ 0, v3 ≡ 0 . . . by rule Or1 using Eqn. (1)
¬a ≡ 0, ¬b ≡ 0 . . . by rule Or1 using Eqn. (3)
a ≡ 1, b ≡ 1 . . . interpretation of logical negation
v2 ≡ 1 . . . by rule And1 using Eqn. (2)
0 ≡ 1 . . . v2 ≡ 0, v2 ≡ 1

Fig. 3. Proof that ϕ is valid

338 A. Thakur and T. Reps

Algorithm 1. propagate(J,R1, R, I)
1 R2 = ApplyRule[I](J, R1)
2 return Close(R ∪ R2)

Algorithm 2. 0-saturation(R, I)
1 repeat
2 R′ ← R
3 foreach J ∈ I,R1 ⊆ R do
4 R ← propagate(J,R1, R, I)
5 until (R = R′) ‖ contradiction(R)
6 return R

Algorithm 3. 1-saturation(R, I)
1 repeat
2 R′ ← R
3 foreach vi, vj such that

vi ≡ vj
∈ R and vi ≡ ¬vj
∈ R
do

4 R1 ← Close(R ∪ {vi ≡ vj})
5 R2 ← Close(R ∪ {vi ≡ ¬vj})
6 R′

1 ← 0-saturation(R1)
7 R′

2 ← 0-saturation(R2)
8 R ← R′

1 ∩R′
2

9 until (R = R′) ‖ contradiction(R)
10 return R

Algorithm 4. k-saturation(R, I)
1 repeat
2 R′ ← R
3 foreach vi, vj such that

vi ≡ vj
∈ R and vi ≡ ¬vj
∈ R
do

4 R1 ← Close(R ∪ {vi ≡ vj})
5 R2 ← Close(R ∪ {vi ≡ ¬vj})
6 R′

1 ← (k–1)-saturation(R1, I)
7 R′

2 ← (k–1)-saturation(R2, I)
8 R ← R′

1 ∩R′
2

9 until (R = R′) ‖ contradiction(R)
10 return R

Algorithm 5. k-St̊almarck(ϕ)

1 (vϕ, I) ← integrity(ϕ)
2 R ← {vϕ ≡ 0}
3 R′ ← k-saturation(R, I)
4 if R′ = 0 ≡ 1 then return valid
5 else return unknown

Fig. 4. St̊almarck’s method. The operation Close performs transitive closure on a
formula relation after new tuples are added to the relation.

Example 2. Consider the tautology ψ = (a ∧ (b ∨ c))⇔((a ∧ b) ∨ (a ∧ c)), which
expresses the distributivity of ∧ over ∨. The integrity constraints for ψ are:

u1 ⇔ (u2⇔u3) u2 ⇔ (a ∧ u4) u3 ⇔ (u5 ∨ u6)
u4 ⇔ (b ∨ c) u5 ⇔ (a ∧ b) u6 ⇔ (a ∧ c)

The root variable of ψ is u1. Assuming u1 ≡ 0 and then performing 0-saturation
does not result in a contradiction; all we can infer is u2 ≡ ¬u3.

To prove that ψ is a tautology, we need to use the Dilemma Rule, which is a
special type of branching and merging rule. It is shown schematically in Fig. 5.
After two literals vi and vj are chosen, the current formula relation R is split
into two formula relations, based on whether we assume vi ≡ vj or vi ≡ ¬vj ,
and transitive closure is performed on each variant of R. Next, the two relations
are 0-saturated, which produces the two formula relations R′1 and R′2. Finally,
the two proof branches are merged by intersecting the set of tuples in R′1 and
R′2. The correctness of the Dilemma Rule follows from the fact that equivalences
derived from both of the (individual) assumptions vi ≡ vj and vi ≡ ¬vj hold
irrespective of whether vi ≡ vj holds or whether vi ≡ ¬vj holds.

A Generalization of St̊almarck’s Method 339

R

R1 = Close(R ∪ {vi ≡ vj}) R2 = Close(R ∪ {vi ≡ ¬vj})

R′
1 R′

2

R′ = R′
1 ∩ R′

2

Fig. 5. The Dilemma Rule

The Dilemma Rule is applied repeatedly until no new information is deduced
by a process called 1-saturation, shown in Alg. 3 (Fig. 4). 1-saturation uses two
literals vi and vj , and splits the formula relation with respect to vi ≡ vj and vi ≡
¬vj (lines 4 and 5). 1-saturation finds a contradiction when both 0-saturation
branches identify contradictions (in which case R = R′1 ∩R′2 equals 0 ≡ 1). The
formula ψ in Ex. 2 can be proved valid using 1-saturation, as shown in Fig. 6.
The first application of the Dilemma Rule, which splits on the value of b, does
not make any progress; i.e., no new information is obtained after the intersection.
The next two applications of the Dilemma Rule, which split on the values of a
and c, respectively, each deduce a contradiction on one of their branches. Each
contradictory branch is eliminated because the (universal) relation 0 ≡ 1 is
the identity element for intersection, and hence the intersection result is the
equivalence relation from the non-contradictory branch. We illustrate this fact
in Fig. 6 by eliding the merges with contradictory branches. Finally, splitting on
the variable b leads to a contradiction on both branches. ��

Unfortunately 1-saturation may not be sufficient to prove certain tautologies.
The 1-saturation procedure can be generalized to the k-saturation procedure
shown in Alg. 4 (Fig. 4). St̊almarck’s method (Alg. 5 of Fig. 4) is structured
as a semi-decision procedure for validity checking. The actions of the algorithm
are parameterized by a certain parameter k that is fixed by the user. For a
given tautology, if k is large enough St̊almarck’s method can prove validity, but
if k is too small the answer returned is “unknown”. In the latter case, one can
increment k and try again. However, for each k, (k+1)-saturation is significantly
more expensive than k-saturation: the running time of Alg. 5 as a function of k
is O(|ϕ|k) [13].

Each equivalence relation that arises during St̊almarck’s method can be
viewed as an abstraction of a set of variable assignments. More precisely, at
any moment during a proof there are some number of open branches. Each
branch Bi has its own equivalence relation Ri, which represents a set of variable
assignments Ai that might satisfy ¬ϕ. In particular, the contradictory equiva-
lence relation 0 ≡ 1 represents the empty set of assignments. Overall, the proof
represents the set of assignments

⋃
i Ai, which is a superset of the set of assign-

ments that might satisfy ¬ϕ. Validity of ϕ is established by showing that the set⋃
i Ai equals ∅.

340 A. Thakur and T. Reps

{[u1,0][u2,¬u3]}

b ≡ 0 b ≡ 1

{[b, u1,0][u2,¬u3,¬u6], [u4, c]} {[u1,0][u2, a, u5,¬u3][b, u4,1]}

{[u1,0][u2,¬u3]}

a ≡ 0 a ≡ 1

0 ≡ 1 {[u1,0][u5, b][u2, u4,¬u3][u6, c][a, 1]}

c ≡ 0 c ≡ 1

{[u1, c, u6,0][u4, b, u5, u3, u2,¬u4][a,1]} 0 ≡ 1

b ≡ 0 b ≡ 1

0 ≡ 1 0 ≡ 1

Fig. 6. Sequence of Dilemma Rules in a 1-saturation proof that ψ is valid. (Details of
0-saturation steps omitted.)

2.2 Generalizing St̊almarck’s Method

Instead of computing an equivalence relation ≡ on literals, let us compute an
inequality relation ≤ between literals. Fig. 7 shows a few of the propagation rules
that deduce inequalities. Because (i) an equivalence a ≡ b can be represented
using two inequality constraints, a ≤ b and b ≤ a, (ii) an inequivalence a 	≡ b can
be treated as an equivalence a ≡ ¬b, and (iii) a ≤ b cannot be represented with
any number of equivalences, inequality relations are a strictly more expressive
method than equivalence relations for abstracting a set of variable assignments.
Moreover, Ex. 3 shows that, for some tautologies, replacing equivalence relations
with inequality relations enables St̊almarck’s method to be able to find a k-
saturation proof with a strictly lower value of k.

Example 3. Consider the formula χ = (p⇒ q)⇔(¬q⇒¬p). The corresponding
integrity constraints are w1⇔(w2⇔w3), w2⇔(p⇒ q), and w3⇔(¬q⇒¬p). The
root variable of χ is w1. Using formula relations (i.e., equivalence relations over
literals), St̊almarck’s method finds a 1-saturation proof that χ is valid. In con-
trast, using inequality relations, a St̊almarck-like algorithm finds a 0-saturation
proof. The proof starts by assuming that w1 ≤ 0. 0-saturation using the propa-
gation rules of Fig. 7 results in the contradiction 1 ≤ 0, as shown in Fig. 8. ��

A Generalization of St̊almarck’s Method 341

a⇔(b⇒ c)

c ≤ a ¬a ≤ b
Imp1

a⇔(b⇔ c) a ≤ 0

b ≤ ¬c ¬c ≤ b
Iff1

a⇔(b⇒ c) 1 ≤ b c ≤ 0

a ≤ 0
Imp2

Fig. 7. Examples of propagation rules for inequality relations on literals

w1 ≤ 0 . . . by assumption
w2 ≤ ¬w3, ¬w3 ≤ w2 . . . Rule Iff1 on w1 ⇔(w2 ⇔w3)
q ≤ w2, ¬w2 ≤ p . . . Rule Imp1 on w2 ⇔(p⇒ q)
q ≤ ¬w3 . . . q ≤ w2, w2 ≤ ¬w3

w3 ≤ p . . . w2 ≤ ¬w3 implies w3 ≤ ¬w2,¬w2 ≤ p
¬p ≤ w3, ¬w3 ≤ ¬q . . . Rule Imp1 on w3 ⇔(¬q⇒¬p)
q ≤ 0 . . . ¬w3 ≤ ¬q implies q ≤ w3, q ≤ ¬w3

1 ≤ p . . . w3 ≤ p,¬p ≤ w3 implies ¬w3 ≤ p
w2 ≤ 0, . . . Rule Imp2 on w2 ⇔(p⇒ q)
w3 ≤ 0 . . . Rule Imp2 on w3 ⇔(¬q⇒¬p)
1 ≤ 0 . . . w2 ≤ ¬w3,¬w3 ≤ w2, w2 ≤ 0, w3 ≤ 0

Fig. 8. 0-saturation proof that χ is valid, using inequality relations on literals

We say that the instantiation of St̊almarck’s method with inequality relations
is more powerful than the instantiation with equivalence relations. In general,
St̊almarck’s method can be made more powerful by using a more expressive
abstraction: when you plug in a more expressive abstraction, a proof may be
possible with a lower value of k. This observation raises the following questions:

1. What other abstractions can be used to create more powerful instantiations?
2. Given an abstraction, how do we come up with the propagation rules?
3. How do we split the current abstraction at the start of the Dilemma Rule?
4. How do we perform the merge at the end of the Dilemma Rule?
5. How do we guarantee that the above operations result in a sound and

complete decision procedure?

Abstract interpretation provides the appropriate tools to answer these questions.

3 Terminology and Notation

3.1 Propositional Logic

We write propositional formulas over a set of propositional variables V using the
propositional constants 0 and 1, the unary connective ¬, and the binary con-
nectives ∧, ∨, ⇒, ⇔, and ⊕ (xor). Propositional variables, negations of proposi-
tional variables, and propositional constants are referred to collectively as literals.
voc(ϕ) denotes the subset of V that occurs in ϕ.

The semantics of propositional logic is defined in the standard way:

342 A. Thakur and T. Reps

Definition 1. An assignment σ is a (finite) function in V → {0, 1}. Given a
formula ϕ over the propositional variables x1, . . . , xn and an assignment σ that
is defined on (at least) x1, . . . , xn, the meaning of ϕ with respect to σ, denoted
by [[ϕ]](σ), is the truth value in {0, 1} defined inductively as follows:

[[0]](σ)=0 [[¬ϕ]](σ)=1− [[ϕ]](σ) [[ϕ1⇒ϕ2]](σ)= ([[ϕ1]](σ) ≤ [[ϕ2]](σ))
[[1]](σ)=1 [[ϕ1 ∧ ϕ2]](σ)=min([[ϕ1]](σ), [[ϕ2]](σ)) [[ϕ1⇔ϕ2]](σ)= ([[ϕ1]](σ) = [[ϕ2]](σ))
[[xi]](σ)=σ(xi) [[ϕ1 ∨ ϕ2]](σ)=max([[ϕ1]](σ), [[ϕ2]](σ)) [[ϕ1⊕ϕ2]](σ)= ([[ϕ1]](σ) 	= [[ϕ2]](σ))

Assignment σ satisfies ϕ, denoted by σ |= ϕ, iff [[ϕ]](σ) = 1. Formula ϕ is
satisfiable if there exists σ such that σ |= ϕ; ϕ is valid if for all σ, σ |= ϕ.

We overload the notation [[·]] as follows: [[ϕ]] means {σ | σ : V → {0, 1} ∧ σ |=
ϕ}. Given a finite set of formulas Φ = {ϕi}, [[Φ]] means

⋂
i [[ϕi]]. ��

3.2 Abstract Domains

In this paper, the concrete domain C is P(V → {0, 1}). We will work with several

abstract domains A, each of which abstracts C by a Galois connection C −−−→←−−−
α

γ
A.

We assume that the reader is familiar with the basic terminology of abstract
interpretation [3] (⊥, �, �, �, �, α, γ, monotonicity, distributivity, etc.), as well

as with the properties of a Galois connection C −−−→←−−−
α

γ
A.

Definition 2. An element R of the domain of equivalence relations (Equiv)
over the set Literals[V] formed from Boolean variables V, their negations, and
Boolean constants represents a set of assignments in P(V → {0, 1}). The special
value ⊥Equiv represents the empty set of assignments, and will be denoted by
“0 ≡ 1”. Each other value R ∈ Equiv is an equivalence relation on Literals[V];
the concretization γ(R) is the set of all assignments that satisfy all the equiv-
alences in R. The ordering a1 �Equiv a2 means that equivalence relation a1 is
a coarser partition of Literals[V] than a2. The value �Equiv is the identity rela-
tion, {(v, v)|v ∈ V}, and thus represents the set of all assignments. R1 �R2 is
the coarsest partition that is finer than both R1 and R2.

An alternative way to define the same domain is to consider it as the domain
of two-variable Boolean affine relations (2-BAR) over V. Each element
R ∈ 2-BAR is a conjunction of Boolean affine constraints, where each constraint
has one of the following forms:

vi⊕ vj = 0 vi⊕ vj ⊕1 = 0 vi = 0 vi⊕ 1 = 0,

which correspond to the respective equivalences

vi ≡ vj vi ≡ ¬vj vi ≡ 0 vi ≡ 1.

The value ⊥2-BAR is any set of unsatisfiable constraints. The value �2-BAR is
the empty set of constraints. The concretization function γ2-BAR, and abstraction
function α2-BAR are:

γ2-BAR(R) = {c ∈ (V → {0, 1}) | R =
∧

i ri and for all i, c |= ri}
α2-BAR(C) =

∧
{r | for all c ∈ C, c |= r}

A Generalization of St̊almarck’s Method 343

For convenience, we will continue to use equivalence notation (≡) in examples
that use 2-BAR, rather than giving affine relations (⊕). ��

Definition 3. An element of the Cartesian domain represents a set of as-
signments in P(V → {0, 1}). The special value ⊥Cartesian denotes the empty set
of assignments; all other values can be denoted via a 3-valued assignment in
V → {0, 1, ∗}. The third value “∗” denotes an unknown value, and the values 0,
1, ∗ are ordered so that 0 � ∗ and 1 � ∗.

The partial ordering � on 3-valued assignments is the pointwise extension of
0 � ∗ and 1 � ∗, and thus �Cartesian = λw.∗ and �Cartesian is pointwise join.
The concretization function γCartesian, and abstraction function αCartesian are:

γCartesian(A) = {c ∈ (V → {0, 1}) | c � A}
αCartesian(C) = λw.

⊔
{c(w) | c ∈ C}

We will denote an element of the Cartesian domain as a mapping, e.g., [p �→
0, q �→ 1, r �→ ∗], or [0, 1, ∗] if p, q, and r are understood. ��

Local Decreasing Iterations. Local decreasing iterations [8] is a technique
that is ordinarily used for improving precision during the abstract interpreta-
tion of a program. During an iterative fixed-point-finding analysis, the technique
of local decreasing iterations is applied at particular points in the program, such
as, e.g., the interpretation of the true branch of an if-statement whose branch
condition is ϕ. The operation that needs to be performed is the application of
the abstract transformer for assume(ϕ). As the name “local decreasing itera-
tions” indicates, a purely local iterative process repeatedly applies the operator
assume(ϕ) either until some precision criterion or resource bound is attained, or
a (local) fixed point is reached. The key theorem is stated as follows:

Theorem 1. ([8, Thm. 2]) An operator τ is a lower closure operator if it
is monotonic, idempotent (τ ◦ τ = τ), and reductive (τ � λx.x). Let τ be a
lower closure operator on A; let (τ1, . . . , τk) be a k-tuple of reductive operators
on A, each of which over-approximates (#) τ ; and let (un)n∈N be a sequence of
elements in [1, . . . , k]. Then the sequence of reductive operators on A defined by

η0 = τu0 ηn+1 = τun+1 ◦ ηn

is decreasing and each of its elements over-approximates τ . ��

Example 4. The propagation rules of Fig. 2 can be recast in terms of reductive
operators that refine an element R of the 2-BAR domain as follows:

Operator Derived from
τ1(R) = R ∪ ((v1 ≡ 0 ∈ R) ? {v2 ≡ 0, v3 ≡ 0} : ∅) v1⇔(v2 ∨ v3) ∈ I
τ2(R) = R ∪ (({a ≡ 1, b ≡ 1} ⊆ R) ? {v2 ≡ 1} : ∅) v2⇔(a ∧ b) ∈ I
τ3(R) = R ∪ (({v3 ≡ 0} ∈ R) ? {a ≡ 1, b ≡ 1} : ∅) v3⇔(¬a ∧ ¬b) ∈ I
τ4(R) = ({v2 ≡ 0, v2 ≡ 1} ⊆ R) ? 0 ≡ 1 : R

344 A. Thakur and T. Reps

Table 1. Abstract-interpretation account of St̊almarck’s method

St̊almarck’s Method Abstract-Interpretation Concept

Equivalence relation Abstract-domain element
Propagation rule Sound reductive operator
0-saturation Local decreasing iterations
Split Meet (�) in each proof-tree branch: one with a

splitting-set element a and one with a’s companion
Intersection (∩) Join (�)

The operators τ1, τ2, and τ3 instantiate the rules of Fig. 2 for the three in-
tegrity constraints shown in Fig. 1. The derivation described in Fig. 3 can now
be stated as τ4(τ2(τ3(τ1({v1 ≡ 0})))) = (τ4 ◦ τ2 ◦ τ3 ◦ τ1)({v1 ≡ 0}), which
results in the abstract state 0 ≡ 1. ��

4 The Generalized Framework

In this section, we map the concepts used in St̊almarck’s method to concepts
used in abstract interpretation, as summarized in Tab. 1. The payoff is that
we obtain a parametric framework for propositional validity-checking algorithms
(Alg. 9) that can be instantiated in different ways by supplying different abstract
domains. The proofs of all theorems stated in this section are found in [17].

Definition 4. Given a Galois connection C −−−→←−−−
α

γ
A between abstract domain A

and concrete domain C = P(V → {0, 1}), an acceptable splitting set S for A
satisfies
1. S ⊆ A
2. For every a ∈ S, there exists b ∈ S such that γ(a) ∪ γ(b) = γ(�). Two

elements a, b ∈ S such that γ(a) ∪ γ(b) = γ(�) are called companions.
3. For every assignment C ∈ V → {0, 1} there exists MC ⊆ S such that

γ(MC) = C. We call MC the cover of C. ��

Example 5. The set of “single-point” partial assignments {�[v← 0]} ∪ {�[v ←
1]} is an acceptable splitting set for both the Cartesian domain and the 2-BAR
domain. Another acceptable splitting set for the 2-BAR domain is the set con-
sisting of all 2-BAR elements that consist of a single constraint. ��

The assumptions of our framework are rather minimal:

1. There is a Galois connection C −−−→←−−−
α

γ
A between A and the concrete domain

of assignments C = P(V → {0, 1}).
2. A is at least as expressive as the Cartesian domain (Defn. 3); that is, for all

Ac ∈ Cartesian, there exists A ∈ A such that γCartesian(Ac) = γA(A).
3. There is an algorithm to perform the join of arbitrary elements of the domain;

that is, for all A1, A2 ∈ A, there is an algorithm that produces A1 �A2.

A Generalization of St̊almarck’s Method 345

Algorithm 6. propagateA(J,A1, A, I)
1 requires(J ∈ I ∧ A1 � A)
2 return A � α([[J]] ∩ γ(A1))

Algorithm 7. 0-saturationA(A, I)
1 repeat
2 A′ ← A
3 foreach J ∈ I,A1 � A such

that |voc(J) ∪ voc(A1)| < ε) do
4 A ← propagateA(J,A1, A,I)
5 until (A = A′) ‖ A = ⊥A
6 return A

Algorithm 8. k-saturationA(A, I)
1 repeat
2 A′ ← A
3 foreach a, b that are companions

such that a
� A and b
� A do
4 A1 ← A � a
5 A2 ← A � b
6 A′

1 ← (k–1)-saturationA(A1, I)
7 A′

2 ← (k–1)-saturationA(A2, I)
8 A ← A′

1 �A′
2

9 until (A = A′) ‖ A = ⊥A
10 return A

4. There is an algorithm to perform the meet of arbitrary elements of the
domain; that is, for all A1, A2 ∈ A, there is an algorithm that produces
A1 � A2.

5. There is an acceptable splitting set S for A (Defn. 4).

Assumption 2 ensures that any instantiation that satisfies assumptions 1–4 will
satisfy assumption 5: the set of “single-point” partial assignments inherited from
the Cartesian domain (Ex. 5) is always an acceptable splitting set.

Note that because the concrete domain C is over a finite set of Boolean
variables, the abstract domain A has no infinite descending chains. It is not
hard to show that 2-BAR meets assumptions (1)–(5). The standard version of
St̊almarck’s method (§2.1) is the instantiation of the framework presented in this
section with the abstract domain 2-BAR.

At any moment during our generalization of St̊almarck’s method, each open
branch Bi represents a set of variable assignments Ci ∈ C such that

⋃
iCi ⊇

[[¬ϕ]]. That is, each branch Bi represents an abstract state Ai ∈ A such that⋃
i γ(Ai) ⊇ [[¬ϕ]]. Let Ā =

⊔
i Ai. Then Ā is sound, i.e., γ(Ā) ⊇

⋃
i γ(Ai) ⊇ [[¬ϕ]].

The net result of the proof rules is to derive a semantic reduction Ā′ of Ā with
respect to the integrity constraints I; that is, γ(Ā′) ∩ [[I]] = γ(Ā) ∩ [[I]], and
Ā′ � Ā. If the algorithm derives that Ā′ = ⊥A, then the formula ϕ is proved
valid.

Generalized Propagation Rules. The propagation rules aim to refine the
abstract state by assuming a single integrity constraint J ∈ I. It is possible to
list all the propagation rules in the style of Fig. 2 for the 2-BAR domain; for
brevity, Alg. 6 is stated in terms of the semantic properties that an individual
propagation rule satisfies, expressed using the operations α, γ, and � of abstract
domain A. This procedure is sound if the abstract value Ā returned satisfies
γ(Ā) ⊇ [[I]] ∩ γ(A). Furthermore, to guarantee progress we have to show that
Alg. 6 implements a reductive operator, i.e., Ā � A.

Theorem 2. [Soundness of Alg. 6] Let Ā := propagateA(J,A1, A, I) with
J ∈ I and A1 # A. Then γ(Ā) ⊇ [[I]] ∩ γ(A) and Ā � A. ��

346 A. Thakur and T. Reps

Example 6. Let us apply Alg. 6 with J = v1⇔(v2 ∨ v3), A1 = {v1 ≡ 0} and
A = {v1 ≡ 0, v4 ≡ 0}. To save space, we use 3-valued assignments to represent
the concrete states of assignments to v1, . . . , v4.

[[J]] = {(1, 0, 1, ∗), (1, 1, 0, ∗), (1, 1, 1, ∗), (0, 0, 0, ∗)}
γ(A1) = {(0, ∗, ∗, ∗)}

C = [[J]] ∩ γ(A1) = {(0, 0, 0, ∗)}
α(C) = {v1 ≡ 0, v2 ≡ 0, v3 ≡ 0}

Ā = A � α(C) = {v1 ≡ 0, v2 ≡ 0, v3 ≡ 0, v4 ≡ 0}

Thus, the value Ā computed by Alg. 6 is exactly the abstract value that can be
deduced by propagation rule Or1 of Fig. 2. ��

Generalized 0-Saturation. Alg. 7 shows the generalized 0-saturation proce-
dure that repeatedly applies the propagation rules (line 4) using a single integrity
constraint (line 3), until no new information is derived or a contradiction is found
(line 5); voc(ϕ) denotes the set of ϕ’s propositional variables.

To improve efficiency the quantities J and A1 are chosen so that
|voc(J) ∪ voc(A1)| is small (line 3). Such a choice enables efficient symbolic
implementations of the operations used in Alg. 6, viz., implementing truth-
table semantics on the limited vocabulary of size ε. Because J in Alg. 6 is a
single integrity constraint, there are only a bounded number of Boolean opera-
tors involved in each propagation step. By limiting the size of voc(J) ∪ voc(A1)
(line 3 of Alg. 7), it is possible to generate automatically a bounded number of
propagation-rule schemas to implement line 2 of Alg. 6.

To prove soundness we show that the abstract value Ā returned by Alg. 7
satisfies γ(Ā) ⊇ [[I]] ∩ γ(A).

Theorem 3. [Soundness of Alg. 7]
For all A ∈ A, γ(0-saturationA(A, I)) ⊇ [[I]] ∩ γ(A). ��

Generalized k-Saturation. Alg. 8 describes the generalized k-saturation pro-
cedure that repeatedly applies the generalized Dilemma Rule. By requirement 5,
there is an acceptable splitting set S forA. The generalized Dilemma Rule, shown
schematically in Fig. 9, splits the current abstract stateA into two abstract states
A1 and A2 using companions a, b ∈ S. Using the fact that γ(a) ∪ γ(b) = γ(�)
(Defn. 4), we can show that γ(A1)∪γ(A2) = γ(A). This fact is essential for prov-
ing the soundness of the generalized Dilemma Rule. To merge the two branches
of the generalized Dilemma Rule, we perform a join of the abstract states derived
in each branch. The dashed arrows from A to A′, A1 to A′1, and A2 to A′2 in
Fig. 9 indicate that, in each case, the target value is a semantic reduction of the
source value. The next theorem proves that Alg. 8, which utilizes the generalized
Dilemma Rule, is sound.

Theorem 4. [Soundness of Alg. 8]
For all A ∈ A, γ(k-saturationA(A, I)) ⊇ [[I]] ∩ γ(A). ��

A Generalization of St̊almarck’s Method 347

Algorithm 9. k-St̊almarckA(ϕ)

1 (vϕ, I) ← integrity(ϕ)
2 A ← �A[vϕ ← 0]
3 A′ ← k-saturationA(A, I)
4 if A′ = ⊥A then return valid
5 else return unknown

A

A1
' A2

'

A 6 b = A2A1 = A 6 a

A' A1
' A2

'7=

b t

b

b

t

t

b

Fig. 9. Generalized Dilemma Rule

Generalized k-St̊almarck. Alg. 9 describes our generalization of St̊almarck’s
method, which is parameterized by an abstract domain A. Line 1 converts the
formula ϕ into the integrity constraints I, with vϕ representing ϕ. We have to
prove that Alg. 9 returns valid when the given formula ϕ is indeed valid.

Theorem 5. [Soundness of Alg. 9]
If k-St̊almarckA(ϕ) returns valid, then [[¬ϕ]] = ∅. ��

Completeness. As we saw in §2, Alg. 9 is not complete for all values of k.
However, Alg. 9 is complete if k is large enough. To prove completeness we make
use of item 3 of Defn. 4. After performing k-saturation, Alg. 9 has considered all
assignments C that have a cover of size k. Let MinCover[C] = min{|M | | M ⊆
S is a cover of C}, and let m = maxC∈CMinCover[C].m-St̊almarckA(ϕ) will con-
sider all assignments, and thus is complete; that is, if m-St̊almarckA(ϕ) returns
unknown, then ϕ is definitely not valid. The efficiency of our generalization of
St̊almarck’s Method is discussed in [17].

5 Instantiations

St̊almarck’s method is the instantiation of the framework from §4 with the ab-
stract domain 2-BAR. In this section, we present the details for a few other in-
stantiations of the framework from §4. As observed in §4, any instantiation that
satisfies the first four assumptions of the framework has an acceptable splitting
set; hence, we only consider the first four assumptions in the discussion below.

Cartesian Domain. The original version of St̊almarck’s method [16] did not use
equivalence classes of propositional variables (i.e., the abstract domain 2-BAR).
Instead, it was based on a weaker abstract domain of partial assignments, or
equivalently, the Cartesian domain. It is easy to see that the Cartesian domain
meets the requirements of the framework.

Three-Variable Boolean Affine Relations (3-BAR). The abstract domain
3-BAR is defined almost identically to 2-BAR (Defn. 2). In general, a non-
bottom element of 3-BAR is a satisfiable conjunction of constraints of the form⊕3

i=1(ai ∧ xi)⊕ b = 0, where ai, b ∈ {0,1}.

348 A. Thakur and T. Reps

R1 : {z⊕ 1 = 0, x⊕ y = 0} R2 : {z = 0, x⊕ y⊕ 1 = 0}

R1 � R2 = {x⊕ y⊕ z⊕ 1 = 0}

R1 : {z ≡ 1, x ≡ y} R2 : {z ≡ 0, x ≡ ¬y}

R1 �R2 = �2-BAR

(a) (b)

Fig. 10. 3-BAR (a) retains more information at the join than 2-BAR (b)

1. The definitions of the γ and α functions of the Galois connection P(V →
{0, 1}) −−−→←−−−

α

γ
3-BAR are identical to those stated in Defn. 2.

2. 3-BAR generalizes 2-BAR, and so is more precise than the Cartesian domain.
3. A1 � A2 can be implemented by first extending A1 and A2 with all implied

constraints, and then intersecting the extended sets.
4. A1 � A2 can be implemented by unioning the two sets of constraints.

Example 7. Fig. 10 presents an example in which 2-BAR and 3-BAR start with
equivalent information in the respective branches, but 2-BAR loses all infor-
mation at a join, whereas 3-BAR retains an affine relation. Consequently, the
instantiation of our framework with the 3-BAR domain provides a more power-
ful proof procedure than the standard version of St̊almarck’s method. ��

Two-Variable Boolean Inequality Relations (2-BIR). 2-BIR is yet an-
other constraint domain, and hence defined similarly to 2-BAR and 3-BAR. A
non-bottom element of 2-BIR is a satisfiable conjunction of constraints of the
form x ≤ y, x ≤ b, or b ≤ x, where x, y ∈ V and b ∈ {0,1}.

1. The definitions of γ and α are again identical to those given in Defn. 2.
2. An equivalence a ≡ b can be represented using two inequality constraints,

a ≤ b and b ≤ a, and hence 2-BIR is more precise than 2-BAR, which in
turn is more precise than the Cartesian domain.

3. A1 � A2 can be implemented by first extending A1 and A2 with all implied
constraints, and then intersecting the extended sets.

4. A1 � A2 can be implemented by unioning the two sets of constraints.

Example 8. Fig. 11 presents an example in which 2-BAR and 2-BIR start with
equivalent information in the respective branches, but 2-BAR loses all informa-
tion at a join, whereas 2-BIR retains a Boolean inequality. Consequently, the
instantiation of our framework with the 2-BIR domain provides a more powerful
proof procedure than the standard version of St̊almarck’s method. ��

R1 : {a ≤ 0, a ≤ b} R2 : {1 ≤ a,1 ≤ b, a ≤ b, b ≤ a}

R1 � R2 = {a ≤ b}

R1 : {a ≡ 0} R2 : {a ≡ 1, b ≡ 1, a ≡ b}

R1 �R2 = �2-BAR

(a) (b)

Fig. 11. 2-BIR (a) retains more information at the join than 2-BAR (b)

A Generalization of St̊almarck’s Method 349

6 Experiments

As discussed in §1, a validity-checking algorithm can be used for checking sat-
isfiability. In this section, we present preliminary experimental results for the
following instantiations of our parametric framework:

– 1-St̊almarck[Cartesian]: uses 1-saturation and the Cartesian domain.
– 1-St̊almarck[2-BAR]: uses 1-saturation and the 2-BAR domain.
– 1-St̊almarck[2-BIR]: uses 1-saturation and the 2-BIR domain.
– 2-St̊almarck[Cartesian]: uses 2-saturation and the Cartesian domain.

We compared the above algorithms with the mature SAT solver, MiniSat (v2.2.0)
solver [7]. For our evaluation, we used the Small, Difficult Satisfiability Bench-
mark (SDSB) suite, which contains 3,608 satisfiability benchmarks that have up
to 800 literals, and have been found to be difficult for solvers [14]. We used a
time-out limit of 500 seconds. If an algorithm could not determine whether a
benchmark was satisfiable or unsatisfiable, then the solver is recorded as taking
the full 500 seconds for that benchmark.

For each of the five algorithms, Fig. 12(a) is a semi-log plot in which each
point (n, t) means that there were n benchmarks that were each solved correctly
in no more than t seconds. Fig. 12(b) and Fig. 13 give log-log scatter plots of the
time taken (in seconds) for each of the benchmarks, for several combinations of
the five algorithms. As seen in Fig. 12(a), MiniSat correctly solves 3,484 of 3,608
benchmarks, and is significantly faster than 1-St̊almarck[2-BAR] (Fig. 12(b)).

When comparing among the instantiations of our framework, we expect more
benchmarks to be solved correctly as we move to more expressive abstract

(a) (b)

Fig. 12. (a) Semi-log plot showing the number of benchmarks that were each solved
correctly in no more than t seconds. (b) Log-log scatter plot of the time taken (in
seconds) by MiniSat versus 1-St̊almarck[2-BAR].

350 A. Thakur and T. Reps

(a) (b)

Fig. 13. Log-log scatter plots of the time taken (in seconds) by (a) 1-St̊almarck[2-BAR]
versus 1-St̊almarck[Cartesian], and (b) 1-St̊almarck[2-BIR] versus 1-St̊almarck[2-BAR].

domains. For instance, 1-St̊almarck[2-BAR] (1,545 benchmarks) solves 36 bench-
marks that 1-St̊almarck[Cartesian] (1,509 benchmarks) was unable to solve. On
the other hand, 1-St̊almarck[2-BAR] is slower than 1-St̊almarck[Cartesian], as
seen in Fig. 13(a), because the join operation of the 2-BAR domain is more ex-
pensive than that of the Cartesian domain. The complexity of the join operation
plays an even greater role for the 2-BIR domain: although 1-St̊almarck[2-BIR]
solves 9 benchmarks that 1-St̊almarck[2-BAR] was unable to solve, overall
1-St̊almarck[2-BIR] is only able to solve 754 benchmarks in the 500-second time
limit. We are currently investigating more efficient implementations of the join
algorithms for the various domains.

Using 2-saturation allows St̊almarck’s method instantiated with Cartesian
domain to correctly solve 2,758 benchmarks (Fig. 12(a)), including 1,213 bench-
marks that 1-St̊almarck[2-BAR] was unable to solve and 1,774 benchmarks that
1-St̊almarck[2-BIR] was unable to solve.

7 Related Work

St̊almarck’s method was patented under Swedish, U.S., and European patents
[15]. Sheeran and St̊almarck [13] give a lucid presentation of the algorithm.
Björk [1] explored extensions of St̊almarck’s method to first-order logic.

CDCL/DPLL solvers [12] are alternatives to St̊almarck’s method for validity
checking and SAT. D’Silva et al. [5] give an abstract-interpretation-based account
of CDCL/DPLL SAT solvers. Thus, though having similar goals, our work and
that of D’Silva et al. are complementary. Our work and that of D’Silva et al. were
performed independently and contemporaneously. They have also lifted their

A Generalization of St̊almarck’s Method 351

technique from a propositional SAT solver to a floating-point decision procedure
that makes use of floating-point intervals [6].

References

1. Björk, M.: First order St̊almarck. J. Autom. Reasoning 42(1), 99–122 (2009)
2. Cook, B., Gonthier, G.: Using St̊almarck’s Algorithm to Prove Inequalities. In: Lau,

K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 330–344. Springer,
Heidelberg (2005)

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL (1979)

5. D’Silva, V., Haller, L., Kroening, D.: Satisfiability solvers are static analyzers. In:
SAS (2012)

6. D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric Bounds Analysis
with Conflict-Driven Learning. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 48–63. Springer, Heidelberg (2012)

7. Eén, N., Sjørensson, N.: The MiniSat solver (2006), minisat.se/MiniSat.html
8. Granger, P.: Improving the Results of Static Analyses Programs by Local Decreas-

ing Iteration (Extended Abstract). In: Shyamasundar, R. (ed.) FSTTCS 1992.
LNCS, vol. 652, pp. 68–79. Springer, Heidelberg (1992)

9. Harrison, J.: St̊almarck’s Algorithm as a HOL Derived Rule. In: von Wright, J.,
Grundy, J., Harrison, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 221–234.
Springer, Heidelberg (1996)

10. Kunz, W., Pradhan, D.: Recursive learning: A new implication technique for effi-
cient solutions to CAD problems–test, verification, and optimization. IEEE Trans.
on CAD of Integrated Circuits and Systems 13(9), 1143–1158 (1994)

11. Marques Silva, J., Sakallah, K.: GRASP – a new search algorithm for satisfiability.
In: ICCAD (1996)

12. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: DAC (2001)

13. Sheeran, M., St̊almarck, G.: A tutorial on St̊almarck’s proof procedure for propo-
sitional logic. FMSD 16(1), 23–58 (2000)

14. Spence, I.: tts: A SAT-solver for small, difficult instances. Journal on Sat., Boolean
Modeling and Computation (2008), Benchmarks
http://www.cs.qub.ac.uk/~i.spence/sdsb

15. St̊almarck, G.: A system for determining propositional logic theorems by applying
values and rules to triplets that are generated from a formula (1989), Swedish
Patent No. 467,076 (approved 1992); U.S. Patent No. 5,276,897 (approved 1994);
European Patent No. 403,454 (approved 1995)

16. St̊almarck, G., Säflund, M.: Modeling and verifying systems and software in propo-
sitional logic. In: Int. Conf. on Safety of Computer Controls Systems (1990)

17. Thakur, A., Reps, T.: A generalization of St̊almarck’s method. TR 1699 (revised),
CS Dept., Univ. of Wisconsin, Madison, WI (June 2012),
www.cs.wisc.edu/wpis/papers/tr1699r.pdf

18. Thakur, A., Reps, T.: A Method for Symbolic Computation of Abstract Opera-
tions. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
174–192. Springer, Heidelberg (2012)

minisat.se/MiniSat.html
http://www.cs.qub.ac.uk/~i.spence/sdsb
www.cs.wisc.edu/wpis/papers/tr1699r.pdf

A Structural Soundness Proof

for Shivers’s Escape Technique

A Case for Galois Connections

Jan Midtgaard1, Michael D. Adams2, and Matthew Might3

1 Aarhus University, Denmark
2 Portland State University, USA

3 University of Utah, USA

Abstract. Shivers’s escape technique enables one to analyse the con-
trol flow of higher-order program fragments. It is widely used, but its
soundness has never been proven. In this paper, we present the first
soundness proof for the technique. Our proof is structured as a composi-
tion of Galois connections and thus rests on the foundations of abstract
interpretation.

1 Introduction

Control-flow analysis is traditionally a whole program analysis [Nielson et al.,
1999] meaning that it needs access to the entire program text. As flow-analysis
algorithms such as 0CFA require cubic time in the size of the program,1 this
limits their applicability to large programs.

Techniques exist, however, for analysing only a part of a program (e.g., an
independent module). One such technique is Shivers’s escape technique [Shivers,
1991, Sec. 3.8.2]:

“Our abstract analysis can handle this by defining two special tokens:
the external procedure xproc, and the external call xcall. The xproc rep-
resents unknown procedures that are passed into our program from the
outside world at run time. The xcall represents calls to procedures that
happen external to the program text.

. . .

We maintain a set ESCAPED of escaped procedures, which initially con-
tains xproc and the top-level lambda of the program. The rules for the
external call, the external procedure and escaped functions are simple:
1. Any procedure passed to the external procedure escapes.
2. Any escaped procedure can be called from the external call.
3. When a procedure is called from the external call, it may be applied

to any escaped procedure.”

1 For typed programs the complexity is usually not that bad [Heintze and McAllester,
1997].

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 352–369, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Structural Soundness Proof for Shivers’s Escape Technique 353

SExp) s ::= (t0 t1 . . . tn)
� (application)

TExp) t ::= x� (variable)

| (λ x1 . . . xn. s)
� (function)

Fig. 1. CPS language

Shivers does not prove his technique to be sound, however. In this paper, we
show how his technique can be derived using abstract interpretation by compos-
ing a number of well-known Galois connections.

We wish to stress that the escape technique presented in this paper is appli-
cable to any higher-order program analysis even though we present it in terms
of a higher-order language in continuation-passing style. It is thus as relevant to
a higher-order language like JavaScript as it is to a higher-order language like
Scheme. This proof technique grew out of an unpublished soundness proof for
the fast type-recovery of Adams et al. [2011].

2 Control-Flow Analysis

To focus on the topic at hand, namely modularity, we limit ourselves to a core
language consisting of the lambda calculus in continuation-passing style (CPS).
The grammar of the language is presented in Figure 1. Following Reynolds [1998]
the grammar distinguishes serious expressions (SExp) whose evaluation may di-
verge from trivial expressions (TExp) whose evaluation is guaranteed to termi-
nate. As is standard [Nielson et al., 1999], we label all sub-expressions with a
unique label � to distinguish different occurrences of the same sub-expression.
For the remainder of this paper, we let labels on variables be implicit to ease the
syntactic overhead.

There are a number of advantages to the small-step CPS framework. First,
since all intermediate results are bound to a variable, an analysis can be char-
acterized in terms of computing an abstract environment or store. One would
otherwise need to compute an abstract cache that maps labels to abstract val-
ues [Nielson et al., 1999]. Second, since all calls are tail calls, the analysis does
not need special measures to propagate return flow. This is instead handled by
bindings to continuation variables. CPS therefore makes for a simple, uniform
analysis.

The control-flow analysis is formulated in terms of the curried transfer func-
tion T defined in Figure 2. For a given program P , the analysis is defined as
the least fixed point of T (P). The analysis computes an abstract environment,
ρ : Var→ Val, which approximates the bindings of an actual program run. T re-
lies on a helper function E for analysing trivial expressions. We furthermore use
the shorthand notation [x �→ E(t, ρ)] to mean [x1 �→ E(t1, ρ), . . . , xn �→ E(tn, ρ)].
T considers all call sites (t0 t1 . . . tn)

� of the program P in each iteration. This
is easily accomplished by a traversal of P ’s abstract syntax tree. Here we simply

354 J. Midtgaard, M.D. Adams, and M. Might

T : ℘(SExp) → (Var → Val) → (Var → Val)

T (P)(ρ) =
⊔

(t0 t1...tn)�∈P

(λx1...xn. s)�
′∈E(t0,ρ)

ρ � [x �→ E(t, ρ)]

where
E(x, ρ) = ρ(x)

E((λ x1 . . . xn. s)
�, ρ) = {(λ x1 . . . xn. s)

�}

Fig. 2. CPS analysis

Var = XVar+ IVar (variables)

Lam = XLam+ ILam (functions)

Val = ℘(Lam) (values)

TExp = XTExp+ ITExp (trivial exprs)

SExp = XSexp + ISexp (serious exprs)

Fig. 3. Syntactic and analysis domains

express P in terms of a set of call sites. For each possible receiver of a call,
the analysis binds the (analysis result of the) actual parameters to the formals.
This analysis agrees with the 0CFAs of Midtgaard and Jensen [2008] and Might
[2010] (sans reachability) and is therefore known to be sound.

We define the domains for the refined analysis in Figure 3. To pave the way
for a CFA over open programs, we split the domains into disjoint external and
internal sets and assume some basic consistencies among them. Variables bound
in an internal lambda are all internal variables. An analogous constraint applies
to external variables and external lambdas. Similarly, trivial sub-expressions of
an internal serious expression are all internal trivial expressions. However, the
trivial sub-expressions of an external serious expression may be either internal
or external.

For example, consider an analysis restricted to the boxed expression below.
The sub-expressions outside the box are external while those inside the box are
internal. Note that, inside the box, the variable occurrence of k is an internal
expression but refers to the external variable k.

(λk. (k (λx. (k x))))

Finally, we assume that internal variables must be located inside an internal
lambda. Hence, for an external call site (t0 t1 . . . tn) none of the tj can be
internal variables. If tj is an internal lambda located immediately inside such an
external call site, we include it in a dedicated set Toplevel ⊂ ILam.

A Structural Soundness Proof for Shivers’s Escape Technique 355

3 Abstract Interpretation

A Galois connection is a pair of functions (the adjoints) α : C → A and γ : A→
C which connect two partially ordered sets 〈C;�〉 and 〈A;≤〉 such that:

∀c ∈ C, a ∈ A : α(c) ≤ a ⇐⇒ c � γ(a)

Following abstract interpretation tradition [Cousot and Cousot, 1994], we type-

set Galois connections as 〈C;�〉 −−−→←−−−
α

γ
〈A;≤〉.

Galois connections enjoy a number of properties. First, α and γ are necessarily
monotone. Second, the composition γ ◦ α is extensive (∀c ∈ C : c � γ ◦ α(c))
and the composition α ◦ γ is reductive (∀a ∈ A : α ◦ γ(a) ≤ a). For Galois
connections with a surjective α (or equivalently with an injective γ), the latter
composition yields the identity α ◦ γ = 1. These are called Galois surjections

(or Galois insertions) and are typeset as 〈C;�〉 −−−→−→←−−−−
α

γ
〈A;≤〉. When both α

and γ are surjective, the Galois connection is an isomorphism and is typeset as

〈C;�〉 −−−→−→←←−−−−
α

γ
〈A;≤〉.

Galois connections that connect complete lattices have even more properties.
For example, α is a complete join morphism (CJM) and thus preserves joins (i.e.,
α(�iSi) = ∨i α(Si)), and γ is a complete meet morphism and thus preserves
meets (i.e., γ(∧iSi) = �i γ(Si)). For easy reference, we summarize in Figure 4
the Galois connections relevant to this paper. Following Might [2010] we typeset
them as inference rules. For the purposes of this paper they all connect complete
lattices.

Galois connections interact nicely with fixed points. Given a Galois connection
between complete lattices and a monotone function F , the fixed-point transfer
theorem [Cousot and Cousot, 1979] provides an approximation of lfpF :

α(lfpF) ≤ lfp(α ◦ F ◦ γ) ≤ lfpF �

Here, F � is a monotone function such that α ◦ F ◦ γ ≤̇F �. Whereas any
F � satisfying these requirements will do, the best abstraction satisfying F � =
α ◦ F ◦ γ represents the best possible function over the chosen abstract do-
main [Cousot and Cousot, 1992]. In the calculational approach to abstract in-
terpretation, Cousot [1999] advocates simple algebraic manipulation to find such
a function (if it exists) or a sound approximation thereof.

When F expresses an execution step in the formal semantics for a program,
lfpF describes the collecting semantics of the program: an ideal but generally
uncomputable exploration of program paths that is subject to over approxima-
tion.

4 Abstracting the Domains

We derive Shivers’s escape technique in two steps. In this section, we define
Galois connections that abstract over the domains of our analysis. Then, in

356 J. Midtgaard, M.D. Adams, and M. Might

Transitive abstraction [Cousot and Cousot, 1994]

〈D0;�0〉 −−−→←−−−
α1

γ1
〈D1;�1〉 〈D1;�1〉 −−−→←−−−

α2

γ2
〈D2;�2〉

〈D0;�0〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2
〈D2;�2〉

Trans

Elementwise abstraction [Cousot and Cousot, 1997]

@ : C → A

〈℘(C);⊆〉 −−−−−−−−−−−−−−−−→−→←−−−−−−−−−−−−−−−−−
α@=λP. {@(p) | p∈P}

γ@=λQ. {p | @(p)∈Q}
〈℘(A);⊆〉

Element

Isomorphic maps

〈(A+B)→ C; �̇〉 −−−−−−−−−−−−−−−−−−−−−→−→←←−−−−−−−−−−−−−−−−−−−−−−
α∼=λf. (f |A,f |B)

γ∼=λ(g,h). λx.

⎧
⎨
⎩

g(x) x∈A

h(x) x∈B

〈(A→ C)× (B → C); �̇× �̇〉

Iso

Collapsing abstraction

〈D → ℘(C); ⊆̇〉 −−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−
α∪=λf.∪x∈Dom(f)f(x)

γ∪=λs. λx. s
〈℘(C);⊆〉

Collapse

Pointwise abstraction [Cousot and Cousot, 1994]

〈℘(C);⊆〉 −−−→←−−−
α1

γ1
〈A;�〉

〈D → ℘(C); ⊆̇〉 −−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−
α·=λf. λx. α1(f(x))

γ·=λf. λx. γ1(f(x))
〈D → A; �̇〉

Pointwise

Product abstraction [Cousot and Cousot, 1994]

〈C1;�1〉 −−−→←−−−
α1

γ1
〈A1;≤1〉 〈C2;�2〉 −−−→←−−−

α2

γ2
〈A2;≤2〉

〈C1 × C2;�1 ×�2〉 −−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−
α×=λ(c1,c2). (α1(c1),α2(c2))

γ×=λ(a1,a2). (γ1(a1),γ2(a2))

〈A1 ×A2;≤1 ×≤2〉
Component

Subset abstraction [Cousot and Cousot, 1997]

S ⊂ C

〈℘(C);⊆〉 −−−−−−−−−−−−−→−→←−−−−−−−−−−−−−−
α⊂=λc. c∩S

γ⊂=λs. s∪(C\S)
〈℘(S);⊆〉

Subset

Fig. 4. Galois connection reference

Section 5, we use these abstractions to derive the transfer function of an analysis
incorporating Shivers’s escape technique.

Figure 5 provides an overview of the Galois connections defined in this section
using the judgments defined in Figure 4.

A Structural Soundness Proof for Shivers’s Escape Technique 357

4.1 Abstracting Values

The operator @ : Lam → ILam+ {xproc} maps lambdas to either internal
lambdas or the dedicated token xproc representing all external procedures:

@((λx1 . . . xn. s)
�) =

{
(λx1 . . . xn. s)

� (λx1 . . . xn. s)
� ∈ ILam

xproc (λx1 . . . xn. s)
� ∈ XLam

Using @, both Element judgments in Figure 5 build an elementwise abstrac-
tion on values. Since @ is surjective, the resulting Galois connection is a Galois
surjection:

℘(Lam) −−−−→−→←−−−−−
α@

γ@

℘(ILam+ {xproc})

4.2 Abstracting the Store

We abstract the store by, first, mapping the store to an isomorphic representation
containing two stores: one for external bindings and one for internal bindings.
Then, we abstract each component individually. By transitivity, the resulting
abstraction is a Galois connection.

The Iso judgment in Figure 5 uses the fact that Var = XVar+ IVar and an
isomorphic representation of the store to build the following Galois connection:

(XVar+ IVar)→ Val −−−−→−→←←−−−−−
α∼

γ∼
(XVar→ Val)× (IVar→ Val)

This isomorphism is well-known within set theory [Winskel, 2010], semantics,
and functional programming [Wand and Vaillancourt, 2004]. It allows us to ab-
stract the external bindings separately from the internal bindings.

Next, the Collapse judgment in Figure 5 abstracts the external bindings
with a collapsing abstraction α∪ that join all bindings and aliases them into a
single set of values:

XVar→ ℘(Lam) −−−−→←−−−−
α∪

γ∪
℘(Lam)

The Pointwise judgment in Figure 5 abstracts the internal bindings using a
standard pointwise lifting of the value abstraction:

IVar→ ℘(Lam) −−−→←−−−
α·

γ·
IVar→ ℘(ILam+ {xproc})

Finally, the Component judgment composes the two abstractions to form a
product abstraction of both external and internal bindings:

(XVar → Val)×(IVar → Val)−−−−→←−−−−
α×

γ×
℘(ILam+{xproc})×(IVar → ℘(ILam+{xproc}))

358 J. Midtgaard, M.D. Adams, and M. Might

(1
)

C
o
l
l
a
p
s
e

X
V
a
r
→

V
a
l
−−

→
←−

−
℘
(L

a
m
)

℘
(L

a
m
)
−−

→−→
←−

−−
℘
(I
L
a
m

+
{x

p
r
o
c
})

E
l
e
m
e
n
t

X
V
a
r
→

V
a
l
−−

→
←−

−
℘
(I
L
a
m

+
{x

p
r
o
c
})

T
r
a
n
s

I
s
o

V
a
r
→

V
a
l
−−

→−→←←
−−

−
(X

V
a
r
→

V
a
l)

×
(I
V
a
r
→

V
a
l)

(1
)

X
V
a
r
→

V
a
l
−−

→
←−

−
℘
(I
L
a
m

+
{x

p
r
o
c
})

V
a
l
−−

→−→
←−

−−
℘
(I
L
a
m

+
{x

p
r
o
c
})

E
l
e
m
e
n
t

IV
a
r
→

V
a
l
−−

→
←−

−
IV

a
r
→

℘
(I
L
a
m

+
{x

p
r
o
c
})

P
o
i
n
t
w
i
s
e

(X
V
a
r
→

V
a
l)

×
(I
V
a
r
→

V
a
l)

−−
→

←−
−

℘
(I
L
a
m

+
{x

p
r
o
c
})

×
(I
V
a
r
→

℘
(I
L
a
m

+
{x

p
r
o
c
})

)
C
o
m
p
o
n
e
n
t

V
a
r
→

V
a
l
−−

→
←−

−
℘
(I
L
a
m

+
{x

p
r
o
c
})

×
(I
V
a
r
→

℘
(I
L
a
m

+
{x

p
r
o
c
})

)
T
r
a
n
s

F
ig
.
5
.
G
a
lo
is

co
n
n
ec
ti
o
n
in
fe
re
n
ce

tr
ee

A Structural Soundness Proof for Shivers’s Escape Technique 359

4.3 Abstracting Programs

The analysis in Figure 2 computes a join for each call site of the input program
P . When only a part of the program is available, we represent the information
loss as an abstraction of the set of call sites. This is formulated as a subset
abstraction where P omits XSexp and keeps only ISexp:

℘(SExp) −−−−→−→←−−−−−
α⊂

γ⊂
℘(ISexp)

5 Abstracting the Analysis

In this section, we use the Galois connections defined in Section 4 to abstract T
and derive a new transfer function, T �, that is sound with respect to T . By the
fixed-point transfer theorem [Cousot and Cousot, 1979], the fixed point of T � is
a sound approximation of the fixed point of T .

5.1 Abstracting the Helper Function

We calculate a sound approximation of E, the helper function defined in Figure 2,
by composing it with the adjoints of the Galois connections.

α@ ◦ E(t, γ∼ ◦ γ×(ρe, ρi)) (def. of E)

=

{
α@((γ∼ ◦ γ×(ρe, ρi))(x)) t = x

α@({(λx1 . . . xn. s)
�}) t = (λ x1 . . . xn. s)

�
(def. of γ×)

=

{
α@((γ∼(γ∪ ◦ γ@(ρe), γ·(ρi)))(x)) t = x

α@({(λx1 . . . xn. s)
�}) t = (λ x1 . . . xn. s)

�
(def. of γ∼)

=

⎧⎪⎨⎪⎩
α@((γ∪ ◦ γ@(ρe))(x)) t = x ∈ XVar

α@((γ·(ρi))(x)) t = x ∈ IVar

α@({(λ x1 . . . xn. s)
�}) t = (λ x1 . . . xn. s)

�

(def. of γ∪)

=

⎧⎪⎨⎪⎩
α@(γ@(ρe)) t = x ∈ XVar

α@((γ·(ρi))(x)) t = x ∈ IVar

α@({(λ x1 . . . xn. s)
�}) t = (λ x1 . . . xn. s)

�

(def. of γ·)

=

⎧⎪⎨⎪⎩
α@(γ@(ρe)) t = x ∈ XVar

α@(γ@(ρi(x))) t = x ∈ IVar

α@({(λ x1 . . . xn. s)
�}) t = (λ x1 . . . xn. s)

�

(Galois surjection)

=

⎧⎪⎨⎪⎩
ρe t = x ∈ XVar

ρi(x) t = x ∈ IVar

α@({(λ x1 . . . xn. s)
�}) t = (λ x1 . . . xn. s)

�

(def. of α@)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρe t = x ∈ XVar

ρi(x) t = x ∈ IVar

{xproc} t = (λx1 . . . xn. s)
� ∈ XLam

{(λ x1 . . . xn. s)
�} t = (λx1 . . . xn. s)

� ∈ ILam

360 J. Midtgaard, M.D. Adams, and M. Might

Hence by defining Ê as:

Ê(t, ρe, ρi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρe t = x ∈ XVar

ρi(x) t = x ∈ IVar

{xproc} t = (λx1 . . . xn. s)
� ∈ XLam

{(λx1 . . . xn. s)
�} t = (λx1 . . . xn. s)

� ∈ ILam

the following lemma holds by construction.

Lemma 1 (Ê is the best abstraction of E)

∀t, ρe, ρi : α@ ◦ E(t, γ∼ ◦ γ×(ρe, ρi)) = Ê(t, ρe, ρi)

While Ê is not an operator from a domain to itself, it nevertheless represents
the best abstraction of the operator E in terms of the abstract arguments ρe
and ρi.
By inspecting Ê applied to external expressions, we have the following bound.

Lemma 2 (Upper bound on Ê)

∀t ∈ XTExp, ρe, ρi : Ê(t, ρe, ρi) ⊆ ρe ∪ {xproc}

By a simple case analysis on t, we furthermore discover that Ê is monotone in
its environment arguments, ρe and ρi.

Lemma 3 (Ê is monotone in environment arguments)

∀t, ρe, ρ′e, ρi, ρ′i : (ρe, ρi) � (ρ′e, ρ
′
i) =⇒ Ê(t, ρe, ρi) ⊆ Ê(t, ρ′e, ρ

′
i)

5.2 Abstracting the Transfer Function

We now construct the abstract transfer function T � by composing T with the
adjoints of the Galois connections. Given Pi, ρe, and ρi, we have:

α× ◦ α∼ ◦ (T (γ⊂(Pi))) ◦ γ∼ ◦ γ×(ρe, ρi)

= . . .

� (ρe ∪ {xproc} ∪ Toplevel , ρi)

�
⊔

{(t0 t1...tn)
�}⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]
Ê(tj , ρe, ρi), ρi)

�
⊔

(λ x1...xn. s)�∈ρe∪Toplevel

(ρe, ρi ∪̇ [x �→ (ρe ∪ {xproc} ∪Toplevel)])

�
⊔

{(t0 t1...tn)
�}⊆Pi

(λ x1...xn. s)�
′
∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)])

A Structural Soundness Proof for Shivers’s Escape Technique 361

The full calculation is lengthy and is therefore deferred to Appendix A. Nonethe-
less, it proceeds from simple algebraic rewritings relying only on standard Galois-
connection reasoning.

By defining the abstract transfer function T � as:

T � : ℘(ISexp)→ Ênv → Ênv

T �(Pi)(ρe, ρi) = (ρe ∪ {xproc} ∪Toplevel , ρi)

�
⊔

{(t0 t1...tn)
�}⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]
Ê(tj , ρe, ρi), ρi)

�
⊔

(λ x1...xn. s)�∈ρe∪Toplevel

(ρe, ρi ∪̇ [x �→ (ρe ∪ {xproc} ∪ Toplevel)])

�
⊔

{(t0 t1...tn)
�}⊆Pi

(λ x1...xn. s)�
′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)])

where Ênv = ℘(ILam+ {xproc})× (IVar→ ℘(ILam+ {xproc}))
the following lemma holds by construction.

Lemma 4 (T � is a sound approximation of T)

∀Pi, ρe, ρi : α× ◦ α∼ ◦ (T (γ⊂(Pi))) ◦ γ∼ ◦ γ×(ρe, ρi) � T �(Pi)(ρe, ρi)

By a sequence of upward judgments (�) from ρe to ρ′e, and from ρi to ρ′i and by
appeal to Lemma 3 we can furthermore verify that the derived transfer function
is monotone.

Lemma 5 (T � is monotone)

∀Pi, ρe, ρ
′
e, ρi, ρ

′
i : (ρe, ρi) � (ρ′e, ρ

′
i) =⇒ T �(Pi)(ρe, ρi) � T �(Pi)(ρ

′
e, ρ

′
i)

Finally, the soundness of the derived analysis follows from the fixed-point transfer
theorem [Cousot and Cousot, 1979]:

Theorem 1 (Soundness of the analysis with Shivers’s escape tech-
nique)

∀Pi : α× ◦ α∼(lfp T (γ⊂(Pi))) � lfpT �(Pi)

5.3 Proof Summary

The soundness of the analysis (Theorem 1) is proven using the fixed-point trans-
fer theorem. In order to use the fixed-point transfer theorem, we construct a Ga-
lois connection between the domains of T and T � (Section 4), prove that T � is a
sound approximation of T (Lemma 4) and prove that T � is monotone (Lemma 5).

Since T includes a helper function, E, we also abstract E to E�. Lemmas 1
and 2 simplify the calculations relating to E� in the proof of Lemma 4. We
use the fact that E� is monotone (Lemma 3) in the proof that T � is monotone
(Lemma 5).

362 J. Midtgaard, M.D. Adams, and M. Might

XProc

({xproc} ∪ Toplevel) ⊆ ρe

(t0 t1 . . . tn)
� ∈ Pi xproc ∈ ̂E(t0, ρe, ρi)

̂E(tj , ρe, ρi) ⊆ ρe, j ∈ [1;n]
Escape

XCall

(λx1 . . . xn. s)
� ∈ (ρe ∪ Toplevel)

(ρe ∪ {xproc} ∪ Toplevel) ⊆ ρi(x)

(t0 t1 . . . tn)
� ∈ Pi (λx1 . . . xn. s)

�′ ∈ ̂E(t0, ρe, ρi)

̂E(t, ρe, ρi) ⊆ ρi(x)
ICall

Fig. 6. CFA constraints

6 Extracting Constraints

Given the transfer function T �, we are now in a position to take a step backwards
and extract constraints equivalent to T � [Cousot and Cousot, 1995]. For any
post-fixed point (ρe, ρi) of T �, it holds that T �(Pi)(ρe, ρi) � (ρe, ρi). This is
equivalent to the constraint rules in Figure 6.

The XCall constraint is needlessly complex, however, as XProc guarantees
that both {xproc} and Toplevel are already subsets of ρe. Hence we can simplify
XCall to:

XCall’

(λx1 . . . xn. s)
� ∈ ρe

ρe ⊆ ρi(x)

The resulting constraints can be understood as follows.

– XProc: External procedures and top-level procedures may escape.
– Escape: If a call-site may target an external procedure, all of the actual

parameters escape.
– XCall’: If a procedure escapes, then its formal parameters may take any

escaped value.
– ICall: For internal call-sites and procedures, values flow from the actual

parameters to the formal parameters (as in the base analysis).

It is striking how close these constraints are to Shivers’s original description
as quoted in Section 1. In our characterization, the external environment ρe
plays the role of Shivers’s ESCAPED set. The two descriptions differ in that we
have not found the need to abstract external call-sites into a dedicated xcall
token. Doing so can be achieved by replacing the subset abstraction by another
elementwise abstraction over call sites. In his description, Shivers also omits the
detail that external (free) variables should be looked up in ESCAPED (i.e., ρe).

An implementation of the analysis can be realized as a direct implementation
of the transfer function T � by performing Kleene iteration or by outputting con-
ditional constraints based on Figure 6 in the style of Palsberg and Schwartzbach
[1995] and subsequently solving them in O(n3) time.

A Structural Soundness Proof for Shivers’s Escape Technique 363

7 Related Work

This work derives from the Galois-connection school of abstract interpreta-
tion [Cousot and Cousot, 1979]. Previous work by the present authors investi-
gate derivations of CFAs using Galois connections [Midtgaard and Jensen, 2008,
2012; Might, 2010].

Shivers [1991, Sec. 3.8.2] conceived of the escaping-lambdas technique using
xproc to denote an external procedure, xcall to denote an external call, and
ESCAPED to denote the set of escaping procedures. However, he did not prove
the soundness of the technique. Serrano and Feeley [1996] used a similar concept
of escaping to the top of the lattice in their development of modular analyses for
both first-order and higher-order languages. Ashley and Dybvig [1998] later used
the escaping-to-top idea to formulate a sub-cubic CFA by jumping to top if more
than a constant number of procedures flow to a particular variable. The imple-
mentation described in Ashley’s dissertation [Ashley, 1996, Sec. 6.1.1] further-
more uses an escape set to accommodate free variables. However, Ashley’s sound-
ness proof assumes programs are closed. The present authors [Adams et al., 2011]
have recently combined the escaping-to-top idea with novel algorithms and data
structures to develop a fast, flow-sensitive type-recovery analysis. We did not
prove soundness of the escape technique in that work.

Flanagan and Felleisen [1999] developed a componential set-based analysis.
Their approach extends the set-based analysis by Heintze [1992] by avoiding re-
extracting constraints from unmodified program modules upon later re-analysis.
As a consequence, they achieve substantial speed-ups in their interactive setting
of a static debugger [Flanagan, 1997]. In a follow-up paper, Meunier et al. [2006]
develop a set-based analysis for program modules with contracts. The contracts
enable their analysis to statically detect and pin-point possible breaches (i.e.,
“blame” in the terminology of the contract literature).

Lee et al. [2002] construct 0CFA/m, a 0CFA variant extended to modules,
which analyses a program’s modules in order of dependence. The precision of
their 0CFA/m is better than a standard 0CFA as it avoids some of the spurious
flows of a standard 0CFA. In an accompanying technical report, they prove it
sound with respect to module-variant 0CFA, an instantiation of Nielson and
Nielson’s infinitary collecting semantics [Nielson and Nielson, 1997]. Whereas
the overall goal of our work agrees with that of Lee et al. [2002], it differs in that
our reconstruction of Shivers’s escape technique is a sound approximation of the
base analysis, 0CFA. As such, it is still monovariant, whereas 0CFA/m is not.

The present paper and the above work focus on untyped programs, but oth-
ers have investigated modular CFA for typed programs. Banerjee and Jensen
[2003] developed a modular and polyvariant CFA based on intersection types
for simply-typed programs with recursive function definitions. Like Shivers’s un-
typed escape technique, it handles sub-expressions with free variables. Banerjee
and Jensen’s analysis is furthermore compositional in that the analysis of an ex-
pression can be calculated by combining the analysis results of its sub-expressions
without re-analysing any of them. Reppy [2006] uses ML’s type abstraction to
improve the precision of a flow analysis by approximating the arguments of an

364 J. Midtgaard, M.D. Adams, and M. Might

abstract type with results computed earlier for the same abstract type. For a
broader survey of CFA, we refer the reader to Midtgaard [2012].

Cousot and Cousot [2002] present four strategies for modular program anal-
ysis to debunk the myth that abstract interpretation is inherently a whole-
program analysis technique. One of these is a worst-case separate analysis, which
analyses external objects based on no information (i.e, � in the lattice). Shiv-
ers’s escape technique goes beyond that approach, by keeping track of previously
escaped procedures in the ESCAPED set.

8 Conclusion

Both abstract interpretation and (untyped) control-flow analysis are often pre-
sented as inherently whole-program analyses. By characterizing Shivers’s CFA
escape technique in terms of Galois connections, we show how to extend these
to open programs. In doing so, we systematically derive an analysis which is
provably sound by construction. Our soundness proof is modular in that the ab-
straction is structured as a combination of Galois connections. It is furthermore
economical in that these Galois connections are well known from the literature.
The structure of our approach indicates that staged proofs are a viable way for-
ward for future higher-order analyses. After a base analysis is defined and proven
sound, the escape technique can be added and the combination proven sound.

Whereas CPS allows us to focus on the task at hand, one can imagine a
number of extensions. For one, our base CFA does not track the reachability
of the individual serious expressions. Instead, it conservatively assumes that all
sub-expressions are reachable. Adding an additional set to track reachability in
the style of Midtgaard and Jensen [2008] and performing a subset abstraction
thereof is straightforward. Another extension is to abstract external call-sites
to xcall as outlined in Section 6 to pave the way for a modular kCFA sound-
ness proof. In such a setting the modularized contours would consist of mixed
strings of internal call sites and xcall tokens. Characterizing the flat-lattice sub-
0CFA [Ashley and Dybvig, 1998] as an abstract interpretation and subsequently
its open program extension would be another interesting endeavor.

Acknowledgement. We thank Peter A. Jonsson for comments on an earlier
version of this paper.

References

Adams, M.D., Keep, A.W., Midtgaard, J., Might, M., Chauhan, A., Dybvig, R.K.: Flow-
sensitive type recovery in linear-log time. In: Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA 2011), Portland, Oregon (October 2011)

Ashley, J.M.: Flexible and Practical Flow Analysis for Higher-Order Programming
Languages. PhD thesis, Department of Computer Science, Indiana University,
Bloomington, Indiana (May 1996)

A Structural Soundness Proof for Shivers’s Escape Technique 365

Ashley, J.M., Dybvig, R.K.: A practical and flexible flow analysis for higher-order
languages. ACM Transactions on Programming Languages and Systems 20(4),
845–868 (1998)

Banerjee, A., Jensen, T.: Modular control-flow analysis with rank 2 intersection types.
Mathematical Structures in Computer Science 13(1), 87–124 (2003)

Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M.,
Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series. IOS Press,
Amsterdam (1999)

Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Rosen,
B.K. (ed.) Proc. of the Sixth Annual ACM Symposium on Principles of Programming
Languages, San Antonio, Texas, pp. 269–282 (January 1979)

Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
Journal of Logic Programming 13(2-3), 103–179 (1992)

Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to com-
portment analysis generalizing strictness, termination, projection and PER analysis
of functional languages). In: Bal, H. (ed.) Proc. of the Fifth IEEE International Con-
ference on Computer Languages, Toulouse, France, pp. 95–112 (May 1994) (invited
paper)

Cousot, P., Cousot, R.: Compositional and Inductive Semantic Definitions in Fix-
point, Equational, Constraint, Closure-condition, Rule-based and Game-Theoretic
Form (Invited Paper). In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 293–308.
Springer, Heidelberg (1995)

Cousot, P., Cousot, R.: Abstract Interpretation of Algebraic Polynomial Systems. In:
Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 138–154. Springer, Heidelberg
(1997)

Cousot, P., Cousot, R.: Modular Static Program Analysis. In: Horspool, R.N. (ed.) CC
2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002)

Flanagan, C.: Effective Static Debugging via Componential Set-Based Analysis. PhD
thesis, Rice University, Houston, Texas (May 1997)

Flanagan, C., Felleisen, M.: Componential set-based analysis. ACM Transactions on
Programming Languages and Systems 21(2), 370–416 (1999)

Heintze, N.: Set-Based Program Analysis. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania (October 1992)

Heintze, N., McAllester, D.: Linear-time subtransitive control flow analysis. In: Cytron,
R.K. (ed.) Proc. of the ACM SIGPLAN 1997 Conference on Programming Languages
Design and Implementation, Las Vegas, Nevada, pp. 261–272 (June 1997)

Lee, O., Yi, K., Paek, Y.: A proof method for the correctness of modularized 0CFA.
Information Processing Letters 81(4), 179–185 (2002)

Meunier, P., Findler, R.B., Felleisen, M.: Modular set-based analysis from contracts. In:
Peyton Jones, S. (ed.) Proc. of the 33rd Annual ACM Symposium on Principles of
Programming Languages, Charleston, South Carolina, pp. 218–231 (January 2006)

Midtgaard, J.: Control-flow analysis of functional programs. ACM Computing Sur-
veys 44(3) (2012)

Midtgaard, J., Jensen, T.: A Calculational Approach to Control-Flow Analysis by Ab-
stract Interpretation. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079,
pp. 347–362. Springer, Heidelberg (2008)

Midtgaard, J., Jensen, T.P.: Control-flow analysis of function calls and returns by
abstract interpretation. Information and Computation 211, 49–76 (2012); a prelim-
inary version was presented at the 2009 ACM SIGPLAN International Conference
on Functional Programming (ICFP 2009)

366 J. Midtgaard, M.D. Adams, and M. Might

Might, M.: Abstract Interpreters for Free. In: Cousot, R., Martel, M. (eds.) SAS 2010.
LNCS, vol. 6337, pp. 407–421. Springer, Heidelberg (2010)

Nielson, F., Nielson, H.R.: Infinitary control flow analysis: a collecting semantics for
closure analysis. In: Jones, N.D. (ed.) Proc. of the 24th Annual ACM Symposium on
Principles of Programming Languages, Paris, France, pp. 332–345 (January 1997)

Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer (1999)

Palsberg, J., Schwartzbach, M.I.: Safety analysis versus type inference. Information
and Computation 118(1), 128–141 (1995)

Reppy, J.: Type-sensitive control-flow analysis. In: Kennedy, A., Pottier, F. (eds.) ML
2006: Proc. of the ACM SIGPLAN 2006 Workshop on ML, pp. 74–83 (September
2006)

Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation 11(4), 363–397 (1998); reprinted from the
proceedings of the 25th ACM National Conference (1972)

Serrano, M., Feeley, M.: Storage use analysis and its applications. In: Dybvig, R.K.
(ed.) Proc. of the First ACM SIGPLAN International Conference on Functional
Programming, Philadelphia, Pennsylvania, pp. 50–61 (May 1996)

Shivers, O.: Control-Flow Analysis of Higher-Order Languages or Taming Lambda.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Technical Report CMU-CS-91-145 (May 1991)

Wand, M., Vaillancourt, D.: Relating models of backtracking. In: Fisher, K. (ed.) Proc.
of the Ninth ACM SIGPLAN International Conference on Functional Programming
(ICFP 2004), Snowbird, Utah, pp. 54–65 (September 2004)

Winskel, G.: Set theory for computer science. Unpublished lecture notes (2010),
http://www.cl.cam.ac.uk/~gw104/STfCS2010.pdf

A Calculating the Abstract Transfer Function

Let Pi, ρe, and ρi be given.

α× ◦ α∼ ◦ (T (γ⊂(Pi))) ◦ γ∼ ◦ γ×(ρe, ρi) (def. of T)

= α× ◦ α∼(
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))

γ∼ ◦ γ×(ρe, ρi) � [x �→ E(t, γ∼ ◦ γ×(ρe, ρi))])

(α× ◦ α∼ a CJM)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))

α× ◦ α∼(γ∼ ◦ γ×(ρe, ρi) � [x �→ E(t, γ∼ ◦ γ×(ρe, ρi))])

(α× ◦ α∼ a CJM)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))

α× ◦ α∼ ◦ γ∼ ◦ γ×(ρe, ρi) � α× ◦ α∼([x �→ E(t, γ∼ ◦ γ×(ρe, ρi))])

(Galois surjection)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))

(ρe, ρi) � α× ◦ α∼([x �→ E(t, γ∼ ◦ γ×(ρe, ρi))]) (case analysis)

http://www.cl.cam.ac.uk/~gw104/STfCS2010.pdf

A Structural Soundness Proof for Shivers’s Escape Technique 367

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) � α× ◦ α∼([x �→ E(t, γ∼ ◦ γ×(ρe, ρi))])

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) � α× ◦ α∼([x �→ E(t, γ∼ ◦ γ×(ρe, ρi))]) (def. of α∼)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) � α×([x �→ E(t, γ∼ ◦ γ×(ρe, ρi))], λx. ∅)

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) � α×(λx. ∅, [x �→ E(t, γ∼ ◦ γ×(ρe, ρi))]) (def. of α×)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) � (α@ ◦ α∪([x �→ E(t, γ∼ ◦ γ×(ρe, ρi))]), α·(λx. ∅))

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) � (α@ ◦ α∪(λx. ∅), α·([x �→ E(t, γ∼ ◦ γ×(ρe, ρi))]))

(def. of α∪)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) � (α@(
⋃

j∈[1;n]

E(tj , γ∼ ◦ γ×(ρe, ρi))), α·(λx. ∅))

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) � (α@(∅), α·([x �→ E(t, γ∼ ◦ γ×(ρe, ρi))])) (α@ a CJM)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) � (
⋃

j∈[1;n]

α@ ◦ E(tj , γ∼ ◦ γ×(ρe, ρi)), α·(λx. ∅))

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) � (α@(∅), α·([x �→ E(t, γ∼ ◦ γ×(ρe, ρi))])) (def. of α·)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) � (
⋃

j∈[1;n]

α@ ◦ E(tj , γ∼ ◦ γ×(ρe, ρi)), λx. α@(∅))

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) � (α@(∅), [x �→ α@ ◦ E(t, γ∼ ◦ γ×(ρe, ρi))]) (Lemma 1)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) � (
⋃

j∈[1;n]

Ê(tj , ρe, ρi), λx. α@(∅))

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) � (α@(∅), [x �→ Ê(t, ρe, ρi)]) (def. of α@)

368 J. Midtgaard, M.D. Adams, and M. Might

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) � (
⋃

j∈[1;n]

Ê(tj , ρe, ρi), λx. ∅)

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) � (∅, [x �→ Ê(t, ρe, ρi)]) (def. of �)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)]) (def. of α@)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈α@◦E(t0,γ∼◦γ×(ρe,ρi))

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)]) (Lemma 1)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λ x1...xn. s)�
′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)]) (α@ monotone)

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)
xproc∈α@◦E(t0,γ∼◦γ×(ρe,ρi))

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)]) (Lemma 1)

=
⊔

(t0 t1...tn)�∈γ⊂(Pi)

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

�
⊔

(t0 t1...tn)�∈γ⊂(Pi)

(λx1...xn. s)�
′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)]) (Galois connection)

=
⊔

α⊂({(t0 t1...tn)�})⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

�
⊔

α⊂({(t0 t1...tn)�})⊆Pi

(λx1...xn. s)�
′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)]) (def. of α⊂)

A Structural Soundness Proof for Shivers’s Escape Technique 369

=
⊔

{(t0 t1...tn)�}⊆XSexp

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

�
⊔

{(t0 t1...tn)�}⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

�
⊔

{(t0 t1...tn)�}⊆XSexp

(λx1...xn. s)�
′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)])

�
⊔

{(t0 t1...tn)�}⊆Pi

(λx1...xn. s)�
′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)]) (Lemma 2)

�
⊔

{(t0 t1...tn)�}⊆XSexp
xproc∈(ρe∪{xproc}∪Toplevel)

(ρe ∪ (ρe ∪ {xproc} ∪ Toplevel), ρi)

�
⊔

{(t0 t1...tn)�}⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

�
⊔

{(t0 t1...tn)�}⊆XSexp

(λx1...xn. s)�
′∈(ρe∪{xproc}∪Toplevel)

(ρe, ρi ∪̇ [x �→ (ρe ∪ {xproc} ∪ Toplevel)])

�
⊔

{(t0 t1...tn)�}⊆Pi

(λx1...xn. s)�
′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)]) (simplify)

= (ρe ∪ {xproc} ∪ Toplevel , ρi)

�
⊔

{(t0 t1...tn)�}⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

�
⊔

(λx1...xn. s)�∈ρe∪Toplevel

(ρe, ρi ∪̇ [x �→ (ρe ∪ {xproc} ∪ Toplevel)])

�
⊔

{(t0 t1...tn)�}⊆Pi

(λx1...xn. s)�
′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x �→ Ê(t, ρe, ρi)])

Modular Heap Analysis for Higher-Order Programs

Ravichandhran Madhavan, G. Ramalingam, and Kapil Vaswani

Microsoft Research, India
{t-rakand,grama,kapilv}@microsoft.com

Abstract. We consider the problem of computing summaries for procedures that
soundly capture the effect of calling a procedure on program state that includes
a mutable heap. Such summaries are the basis for a compositional program anal-
ysis and key to scalability. Higher order procedures contain callbacks (indirect
calls to procedures specified by callers). The use of such callbacks and higher-
order features are becoming increasingly widespread and commonplace even in
mainstream imperative languages such as C� and Java. Such callbacks compli-
cate compositional analysis and the construction of procedure summaries. We
present an abstract-interpretation based approach to computing summaries (of a
procedure’s effect on a mutable heap) in the presence of callbacks in a simple
imperative language. We present an empirical evaluation of our approach.

1 Introduction

In this paper, we present a compositional approach to heap analysis for an imperative
language with dynamic memory allocation and higher order functions (or callbacks).
Modular/compositional program analysis [1] is a key technique for scaling static analy-
sis to large programs. Our interest is in techniques to compute a summary for each pro-
cedure that approximates its relational semantics (relating input states to output states).
A significant benefit of this approach is that libraries can be analyzed once and the com-
puted library summaries reused for any program that uses the library. This is particularly
significant since modern applications rely on large libraries and frameworks.

A typical approach to computing procedure summaries is to first construct a call-
graph and then analyze procedures in the call-graph in a bottom-up fashion. Any col-
lection of mutually recursive procedures is iteratively analysed until their summaries
reach a fixed point. This approach is feasible when the call-graph can be constructed
easily and precisely, e.g., for languages with only direct calls. However, most modern
languages permit indirect calls (virtual methods, delegates, etc.), which pose several
challenges. Determining the targets of indirect calls (which depend on runtime values)
is itself a complex analysis, and depends upon the results of heap analysis. One possi-
bility is to integrate heap analysis and the call-graph construction into a single analysis.
However, the direct way of doing this gives up on modularity and resorts to a top-down
whole-program analysis. An alternative is to use a less precise call-graph construction
technique that does not require heap analysis: e.g., type-based techniques such as Class
Hierarchy Analysis (CHA). This approach too suffers from several drawbacks.

(a) A library procedure may call back a procedure defined by a client of the library.
This means that a conservative call-graph cannot be constructed for a library independent

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 370–387, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modular Heap Analysis for Higher-Order Programs 371

of its client. Hence, the library cannot be analyzed independent of its client. Thus, we
are again forced to resort to a whole-program analysis of each application separately.

(b) A conventional call-graph is necessarily context-insensitive. it identifies the pos-
sible targets of an indirect call in a procedure, but the targets actually called may vary
with calling contexts. A modular analysis, based on such a call-graph, will compute a
procedure summary that is context-insensitive (in terms of precision).

(c) A type-based call-graph can be very imprecise. Assuming that a delegate call, in
C�, can invoke any delegate (essentially a lambda expression) defined in the program
can be disastrous. The imprecision of type-based resolution also leads to significant
scalability problems, especially with common methods such as equals or hashcode
and common interfaces such as iterators.

Our Approach. Computing summaries describing heap effects is challenging even in
the absence of indirect calls, as the summary must capture the effects of a procedure
on the heap, without making assumptions about the aliasing in the input heap. Previ-
ously, we had presented an abstract-interpretation approach to computing such first-
order heap-effect summaries (based on prior work by Whaley, Salcianu, and Rinard)
[11,8,4]. In this paper, we extend this approach to deal with callbacks and higher-
order procedures modularly, by constructing higher-order heap-effect summaries. The
intuition behind our approach is informally described in Section 2.

The key and first step is to formulate a compositional concrete semantics for a lan-
guage with higher order procedures in a form suitable for abstraction, as shown in
Section 3. We then mimic the same structure to define an abstract semantics for proce-
dures and libraries (Sections 4 and 5), which serves as the basis for our analysis, which
can be applied to a library independent of its client(s).

We have implemented our analysis for C� and evaluated it on a collection of large
applications (Section 6). We find that indirect method calls are a widely used feature
of modern languages. We also find that call graphs based on our approach are signifi-
cantly more precise and compact compared to conventional class hierarchy analysis. As
a result, our heap analysis is able to scale to larger applications.

The ideas behind our approach are similar to those used in analyses presented by
Vivien et al. [10] and Lattner et al. [3]. However, neither of these analyses has a theo-
retical formulation or a correctness proof. We believe that these two seemingly different
analyses can be seen as instances of our abstract interpretation formulation. A compar-
ison of our work with these analyses and other related work appears in Section 7.

2 An Informal Overview

We now present an informal overview of how we extend our previous approach [4] to
handle higher-order procedures. The previous approach computes a shape-graph like
summary for first-order procedures that can be concretized as a transformer of concrete
heap graphs. We refer to these representations as transformer graphs. Let τ range over
such transformer graphs. We present a formal definition of transformer graphs later, as
the intuition behind the extension to higher-order procedures does not depend on this.

Representing Higher-Order Summaries. The basic idea is to extend the summary rep-
resentation to capture information about callbacks that can occur, delaying instantiating

372 R. Madhavan, G. Ramalingam, and K. Vaswani

(a) (b) (c)

Fig. 1. Informal interpretation of summary

the effects of the callback until sufficient context information is available to determine
the actual procedure(s) that are called, using first-order summaries (i.e., transformer
graphs) to represent code-fragments that are free of unresolved (indirect) calls.

Consider a procedure whose body is of the form S1;S2;S3, where S1 and S3 are
free of unresolved calls, and S2 consists of a single unresolved call. In this case, we can
compute graph transformers τ1 and τ3 that are abstractions of S1 and S3 respectively,
and utilize a symbolic summary of the form τ1;S2; τ3 for the procedure. While this is
basic idea behind our approach, we refine this idea in several ways.

Exploiting Local Context. Though we don’t know the exact side-effects of the indirect
call in S2, we can restrict the scope of these side-effects: the call can affect only the part
of the heap reachable via the call parameters and global variables. This observation lets
us decompose τ3 into two parts: τ �3 , concerning locations that cannot be modified by
the call in S2, and τg3 , concerning locations that could be modified by the call. We can
then write the summary as τ1;S2; τ

�
3 ; τ

g
3 , which simplifies to τ1 ◦ τ �3 ;S2; τ

g
3 . Note that

the composition “τ1 ◦ τ �3” can be computed once, even before the target of the indirect
call is determined, simplifying the summary.

A Flow-Insensitive Abstraction. In general, when the procedure contains many un-
resolved calls, this approach will lead to a summary representation that looks like a
control-flow-graph where every vertex (other than entry/exit vertices) represents a call-
statement, and every edge is annotated with a transformer graph. For efficiency reasons,
we utilize a more aggressive, but less precise, flow-insensitive abstraction that uses a
single graph transformer τ (instead of one per edge) and a set of call-statements w
(thus forgetting the control-flow between call-statements). For our previous example,
this produces a summary (τ, {S2}), where τ conservatively approximates both τ1 ◦ τ �3
and τg3 . Informally, a summary (τ, {c}) can be interpreted as the control-flow-graph
shown in Fig. 1(a). Since the transformers τ we use are isotonic (i.e., τ is a sound
approximation of the identity relation), this interpretation can be simplified to the one
shown in Fig. 1(b), which is the basis for our subsequent formalization. A summary
(τ, { c1, · · · , ck }) is interpreted as shown in Fig. 1(c).

Computing Higher Order Summaries. We present an algorithm that constructs the
desired transformer τ using a Sharir-Pnueli style interprocedural analysis. We present
details of this analysis later, but list some of the key components of the analysis here.

Modular Heap Analysis for Higher-Order Programs 373

Intraprocedural Analysis. We present an abstract semantics for primitive statements
that maps an input summary (τ, ω) to an output summary (τ ′, ω′).

Direct and Indirect Calls. The abstract semantics of a direct call statement is defined
using a composition operator that combines an input summary (τr , ωr) and the called
procedure’s summary (τe, ωe) into an output summary, after accounting for parameter
passing. Initially, an indirect call c is handled in a straightforward fashion, by updating
the input summary to include c as an unresolved call. However, as the analysis proceeds,
sufficient context information may become available to resolve indirect calls: e.g., when
a procedure summary containing an unresolved call is instantiated at a particular call-
site. Our analysis identifies indirect calls whose targets can be resolved. If a resolved
target’s summary is available, then it is instantiated. This is an iterative process, as
instantiating a resolved target’s summary may create further opportunities for resolving
more indirect calls.

Eliminating Indirect Calls. Completely resolving an indirect call can be a multi-stage
process. At intermediate stages, we might be able to identify some of the potential tar-
gets of an indirect call, but cannot be sure whether all possible targets of the indirect call
have been identified. Eventually, sufficient context information may become available
to let us determine that all possible targets of the indirect call have been identified. At
this point, the indirect call can be dropped from the summary.

3 The Language and Its Concrete Semantics

Syntax. A library (LP,LL) consists of a set of procedures LP and a set of nested libraries
LL (denoting libraries it is linked with). A procedure P consists of a name (belonging to
the set Procs) and a control-flow graph, with an entry vertex entry(P) and an exit vertex
exit(P). The entry vertex has no predecessor and the exit vertex has no successor. Every
edge of the control-flow graph is labelled by a primitive statement. The set of primitive

statements are shown in Fig. 2. We use u
S→ v to indicate an edge in the control-flow

graph from vertex u to vertex v labelled by statement S. In the sequel, we abuse notation
and do not distinguish between a procedure and its name, e.g. if P is a procedure then P

also denotes its name.
We use “function pointers” as the primitive for indirect calls. The statement “x = &P”

assigns the address of procedure P to variablex, and the indirect call “(∗x)(a1, · · · , ak)”
calls the procedure pointed to by x. This is sufficient to model common indirect call
mechanisms such as virtual functions and delegates. A closure c can be realized as a
pair consisting of a function pointer c.f and a data pointer c.d, and the call to c mod-
elled as “(∗(c.f))(c.d)”.

Concrete Semantics Domain. Let Vars denote a set of identifiers used as variable
names, partitioned into the following disjoint sets: the set of global variables Globals ,
the set of local variables Locals (assumed to be the same for every procedure), and
the set of formal parameter variables Params (assumed to be the same for every pro-
cedure). Let Fields denote a set of identifiers used as field names. We use a simple
language with only two primitive types: pointers to heap objects and function-pointers.

374 R. Madhavan, G. Ramalingam, and K. Vaswani

We use a graph-based representation for the concrete state. We use a level of indirec-
tion in representing function-pointer variables: the variable stores a procedure-id (iden-
tifying a procedure), and a separate table maps the procedure-id to its semantic value
(as formalized below). We use procedure-ids, instead of procedure names, to ensure
uniqueness of ids, for reasons explained soon.

Let Nc be an unbounded set of heap locations. Let PVc be an unbounded set of
values, disjoint from Nc, used as procedure-ids. A concrete (points-to) graph g ∈ Gc

is a triple (V,E, σ), where V ⊆ Nc ∪ PVc represents the set of objects in the heap,
E ⊆ (V ∩ Nc) × Fields × V represents values of pointer fields in heap objects, and
σ ∈ Σc = Vars �→ V represents the values of program variables. Nc includes a special
element null . Variables and fields of new objects are initialized to null .

Let Fc = Gc �→ 2Gc be the set of functions that map a concrete graph to a set
of concrete graphs. An element of Fc may also be thought of as a (binary) relation
on concrete graphs. The semantics of statements (and procedures), in the absence of
indirect calls, can be described using elements of Fc.

We now enrich the domain to support indirect procedure calls. We define two do-
mains Pc and Tc recursively as follows: Tc = PVc ↪→ Pc and Pc = Gc × Tc →i

2Gc×Tc . An element of Tc is a partial function, binding procedure-ids to their seman-
tics. (We may think of this as a simple “virtual-function table”.) The concrete state is
enriched by such a table. A procedure uses such a table to dispatch indirect calls (in-
cluding callbacks). But the procedure may also update the table (e.g., if it returns a
procedure-value). However, the procedure can only add new entries to the table, but not
modify pre-existing entries. The construct→i includes only such functions. A function
f in Gc × Tc → 2Gc×Tc is defined to be in Gc × Tc →i 2

Gc×Tc iff: (g′, t′) ∈ f(g, t)
implies ∀n ∈ dom(t).t′(n) = t(n). The domain Pc generalizes Fc and is used to give
semantics to higher-order statements and procedures. We define Lc to be Procs ↪→ Pc.

We define a partial order �c on Fc as: fa �c fb iff ∀g ∈ Gc.fa(g) ⊆ fb(g). Let
�c denote the corresponding least upper bound (join) operation defined by: fa �c fb =
λg.fa(g) ∪ fb(g). For any f ∈ Fc, we define f̂ : 2Gc �→ 2Gc by: f̂(G) = ∪g∈Gf(g).

We define the relational composition of two elements in Fc as: fa ◦ fb = λg.f̂b(fa(g)).
We extend these operators to the domain Pc, Tc and Lc following the structure of their
recursive definitions. E.g, �c is extended as follows: for any p1, p2 ∈ Pc, p1 �c p2 iff
(g′, t′) ∈ p1(g, t)⇒ ∃(g′′, t′′) ∈ p2(g, t) s.t. g′ = g′′, t′ �c t

′′ where t1 �c t2 iff ∀n ∈
dom(t1), t1(n) �c t2(n). For any l1, l2 ∈ Lc, l1 �c l2 iff ∀P ∈ dom(l1), l1(P) �c

l2(P).

Concrete Semantics. A primitive statement S has a semantics [[S]]c ∈ Pc, as shown
in Fig. 2. The semantics of call statements and the semantics of the procedures and
libraries that contain them are mutually interdependent. Hence, we parameterize the
semantics of call statements with a parameter AP, defined as follows. Let (LP, LL)
be a library consisting of a set of procedures LP and a set of nested libraries LL. Let
LLP denote the set of all procedures in LL. A direct call in the library can only reference
procedures defined in LP or in LL. The semantics of (LP, LL) is defined as the least fixed
point of a collection of equations (defined below) which contains a variableϕP for every
procedure P in LP. Define the partial function AP as follows: AP maps every P ∈ LP to
variable ϕP, and it maps every P ∈ LLP to its semantics [[P]]c. For simplicity, we assume

Modular Heap Analysis for Higher-Order Programs 375

Statement S Concrete semantics [[S]]c ((V,E, σ), t)

v1 = v2 { ((V,E, σ[v1 �→ σ(v2)]), t) }
v = new C { ((V ∪ {n}, E ∪ {n} × Fields × {null}, σ[v �→ n]), t) | n ∈ Nc \ V }
v1.f = v2 { ((V, {〈u, l, v〉 ∈ E | u
= σ(v1) ∨ l
= f} ∪ {〈σ(v1), f, σ(v2)〉}, σ), t) }
v1 = v2.f { ((V,E, σ[v1 �→ n]), t) | 〈σ(v2), f, n〉 ∈ E }
v = &P if P ∈ dom(AP)

then { ((V,E, σ[v �→ n]), t[n �→ AP(P)]) | n
∈ dom(t) }
else {}

P(v1, · · · , vk) if P ∈ dom(AP) then CallS(AP(P)) else {}
(∗v)(v1, · · · , vk) if σ(v) ∈ dom(t) then CallS(t(σ(v)))) else {}

Fig. 2. Statements in our language and their concrete semantics

that procedure names are unique across LP and LL. We can eliminate this assumption
by using unique qualified names for procedures. However, the semantics presented is
valid for all clients, including those that may reuse procedure names used in LP or
LL. To avoid name-capture when control flows back and forth between a client and the
library via callbacks, we identify procedures using unique ids generated at runtime, as
illustrated by the semantics of the statement “v = &P”. These unique ids are used as
indices into the “virtual function table” t.

A direct call to procedure P or taking the address of procedure P is valid only if
P ∈ dom(AP). In this case, the semantics of the statement is defined in terms of AP(P).
An indirect call, however, may reference other procedures, e.g., such as those defined by
clients of the libraries. The run-time parameter t is used to resolve indirect calls. Given
f ∈ Pc, CallS(f) is essentially the same as f , but accounts for parameter passing and
pushing/popping activation records and is defined in the Appendix.

Semantics of Procedures. We now define the concrete summary semantics [[P]]c ∈ Pc

for every procedure P in LP using the following equations, in the style of Sharir-Pnueli.
For every procedure P in LP, we introduce a new variable ϕu for every vertex in the
control-flow graph (of P) and a new variable ϕu,v for every edge u→ v in the control-
flow graph. We also introduce a variable ϕP. The semantics is defined as the least fixed
point of the following set of equations. The value of ϕu in the least fixed point is a
function that maps any concrete state (g, t) to the set of concrete states that arise at
program point u when the procedure containing u is executed with an initial state (g, t).
Similarly, ϕu,v captures the states after the execution of the statement labelling edge
u→ v.

ϕv = λ(g, t). {(g, t)} v is an entry vertex (1)

ϕv =
⊔

c{ϕu,v | u→ v} v is not an entry vertex (2)

ϕu,v = ϕu ◦ [[S]]c where u
S→ v (3)

ϕP = ϕexit(P) (4)

We define [[P]]c to be the value of ϕP in the least fixed point of equations (1)-(4).

376 R. Madhavan, G. Ramalingam, and K. Vaswani

Semantics of Libraries. (Note that an application or program is just a special case of a
library.) The semantics of a library is captured by an element ofLc, that maps (the name
of) every procedure in the library to its semantics: [[(LP, LL)]]c = { (P, [[P]]c) | P ∈ LP }.

4 Abstract Domains and Concretization

We now formally present an abstract interpretation that analyzes a library (LP, LL)
and computes a sound approximation of its concrete semantics presented earlier. Our
algorithm first analyzes all the libraries in LL, uses these results to analyze and compute
a summary for every procedure in LP. The algorithm can also be used to analyze an
application (whole program) or a single method in isolation, which are just special
cases of a library.

The Abstract Graph Domain. We utilize an abstract (points-to) graph to represent a
set of concrete graphs. Our formulation is parameterized by a set Na, the universal set
of all abstract graph nodes, and a set PVa, the set of abstract procedure-ids. An abstract
graph g ∈ Ga is a triple (V,E, σ), where V ⊆ Na ∪ PVa represents the set of abstract
heap objects, E ⊆ (V ∩ Na) × Fields × V represents possible values of pointer fields
in the abstract heap objects, and σ ∈ Vars �→ 2V is a map representing the possible
values of program variables. Given a concrete graph g1 = 〈V1,E1, σ1〉 and an abstract
graph g2 = 〈V2,E2, σ2〉 we say that a function h : V1 �→ V2 is an embedding of g1 into
g2, denoted g1 �h g2, iff:

〈x, f, y〉 ∈ E1 ⇒ 〈h(x), f, h(y)〉 ∈ E2, ∀v ∈ Vars . { h(σ1(v)) } ⊆ σ2(v)

The concretization γG(ga) of an abstract graph ga is defined to be the set of all concrete
graphs that can be embedded into ga: γG(ga) = {gc ∈ Gc | ∃h.gc �h ga}

The Transformer Graph Domain. A transformer graph τ [4] is a graph-based repre-
sentation that can be used to abstract the relational semantics of a first-order procedure
or code fragment. It is based on weak-updates to the heap. Hence, given any input graph,
a transformer graph identifies a set of heap objects that may be added to the input graph,
and a set of points-to edges that may be added to the input graph.

The set Fa of transformer graphs is defined as follows. An element τ ∈ Fa is a tuple
(EV,EE, π, IV, IE, σ) where, EV ⊆ Na is the set of external vertices, IV ⊆ Na ∪PVa is
the set of internal vertices, EE ⊆ V × Fields × EV is the set of external edges, where
V = EV ∪ IV, IE ⊆ V × Fields × V is the set of internal edges, π ∈ Vars �→ 2V

is a map representing the possible values of program variables in the initial state and
σ ∈ Vars �→ 2V is a map representing the possible values of program variables in
the final state. Internal nodes and edges are used to represent new nodes and points-to
edges to be added to the input graph. External nodes and external edges are used to
create symbolic access-paths evaluated against an input graph to determine the sources
and targets of edges to be added. More generally, an external node in the transformer
graph acts as a proxy for a set of vertices in the final output graph, which may include
nodes that exist in the input graph as well as new nodes added to the input graph.

Modular Heap Analysis for Higher-Order Programs 377

Formally, let τ be (EV,EE, π, IV, IE, σ) and gc ∈ Gc be (Vc,Ec, σc). To apply τ to
gc, we first compute a mapping η : EV∪ IV �→ (IV∪Vc), as illustrated in the Appendix.
(See [4] for more details.) We define the resulting output graph τ〈gc〉 to be (V′,E′, σ′)
where V′ = Vc∪ IV, E′ = Ec∪{〈v1, f, v2〉 | 〈u, f, v〉 ∈ IE, v1 ∈ η(u), v2 ∈ η(v)}, and
σ′ = λx.η̂(σ(x)). (Note that the output graph contains concrete and abstract vertices,
but can be considered an abstract graph for suitably defined Na and PVa.) We define
the concretization function γT : Fa → Fc as follows: γT (τ) = λgc. γG(τ〈gc〉).

Define a partial order �co on Fa as follows: τ1 �co τ2 iff EV1 ⊆ EV2, EE1 ⊆ EE2,
IV1 ⊆ IV2, π1 � π2, IE1 ⊆ IE2 and σ1 � σ2, where � for π and σ is defined as
pointwise inclusion: σ1 � σ2 iff ∀x.σ1(x) ⊆ σ2(x).

Higher Order Summaries. As explained earlier, we represent abstract higher order
summaries as pairs (τ, ω) consisting of a transformer graph τ and a set of (indirect)
call-statements ω. Formally, let CallStmt = Vars×Vars∗ denote the set of all indirect
call-statements. We define the abstract summary domain Pa = Fa × 2CallStmt . We
extend �co to Pa as follows: (τ1, ω1) �co (τ2, ω2) iff τ1 �co τ2 and ω1 ⊆ ω2. We
define La to be the set Procs ↪→ Pa (of partial functions from Procs to Pa).

As explained above, a first-order procedure can be summarized using a transformer
graph. Now consider a procedure that has no indirect calls, but has statements of the
form “x = &P”. A transformer graph τ is sufficient, in this case, to capture the proce-
dure’s effect on the graph component of state. However, the procedure’s effect also in-
cludes updates to the function-table component of the state. In our approach, this effect
is captured by the entire library summary (an element of La), which also summarizes
the effects of procedures (such as “P” above). Thus, the complete meaning of τ (in this
case) can be captured only in the context of a library summary La ∈ La. The function
γM : Fa × La → Pc formalizes this below. The semantics of a higher-order summary
(τ, ω) ∈ Pa is, in turn, formalized by γH : Pa × La �→ Pc, as this too is dependent
on the entire library summary. Finally, the semantics of a library summary La ∈ La is
formalized by a function γ : La �→ Lc. These functions are mutually recursive.

Given f ∈ Pc, we define f i inductively as f0 = λt.λg.{g} and f i+1 = f i ◦ f . We
define f∗ to be �c{f i | i ≥ 0}. We define γM, γH, γ as below.

γM (τ, La) = λ(gc, tc).{ (g′c, t′c) | ∃h.gc �h τ〈gc〉∧
t′c = tc 4 { (n, γ(La)(h(n))) | h(n) ∈ dom(La) }}

γH ((τ, ω), La) = γM(τ, La) ◦ (
⊔

c

({[[S]]c ◦ γM(τ, La) | S ∈ ω}))
∗

γ (La) = { (P, γH(La(P), La)) | P ∈ dom(La) }

The definition of γ(La) is straight forward: it maps every procedure P in the library La to
the concretization of its abstract summary given by La(P). The function γH((τ, ω), La)
interprets (τ, ω) as a control flow graph, as shown in Figure 1, and computes the con-
crete state transformer in Pc at the exit point of the control flow graph (via a fix-point
computation) where, the transfer functions for the edges labelled by τ are given by
γM(τ, La) and the transfer functions for the edges labelled by the call statements are
given by their concrete semantics defined in Figure 2. γM(τ, La) is defined as the func-
tion in Pc that maps a concrete state (gc, tc) to the set of all concrete states that are

378 R. Madhavan, G. Ramalingam, and K. Vaswani

compatible with the abstract graph τ〈gc〉 and the abstract library La. A concrete state
(g′c, t

′
c) is compatible with an abstract graph, abstract library pair (ga, La) iff g′c �h ga

and every entry (n, f) in the virtual function table t′c either belongs to the input table tc
or f is the concrete image of the abstract summary of the procedure h(n). (γM(τ, La)
assumes that the abstract procedure ids PVa are procedure names Procs .)

5 Abstract Semantics

Let (LP, LL) be a library, consisting of a set of procedures LP and a set of other li-
braries LL it links to. Let LLP denote the set of all procedures in LL. Assume that
we have analyzed LL and computed summaries for every procedure in LLP. The ab-
stract semantics of (LP, LL) is captured by an element of La as follows: [[(LP, LL)]]a =
{ (P, [[P]]a) | P ∈ LP }, where, [[P]]a is the value of the variable ϑP in the least fix point of
the collection of abstract semantic equations defined shortly. Define function Ls ∈ La

with domain LP ∪ LLP as follows: Ls maps every P ∈ LP to variable ϑP, and it maps
every P ∈ LLP to its pre-computed summary.

Node Abstraction. First, we fix the set Na and PVa. Recall that the domainFa defined
earlier is parameterized by these sets. We utilize an allocation-site based merging strat-
egy for bounding the size of the transformer graphs. We utilize the labels attached to
statements as allocation-site identifiers. Let Labels denote the set of statement labels in
the given program. We define Na to be {nx | x ∈ Labels ∪ Params ∪ Globals}. We
define PVa to be the set Procs of procedure names.

The Sharir-Pnueli Equations. For every procedure P ∈ LP, we define the following
set of equations, approximating the concrete semantics equations 1-3. We introduce a
variable ϑu for every vertex u in the control-flow graph of P, and a variable ϑu,v for
every edge u→ v in the control-flow graph.

ϑv = (ID, ∅) v is an entry vertex (5)

ϑv = �co{ϑu,v | u S→ v} v is not an entry vertex (6)

ϑu,v = [[S]]a(ϑu) where u
S→ v (7)

ϑP = simplify Ls ϑexit(P) (8)

Here, ID is a transformer graph consisting of a external vertex for each global
variable and each parameter (representing the identity function). Formally, ID =
(EV, ∅, π, ∅, ∅, π), where EV = {nx | x ∈ Params ∪ Globals} and π = λv. v ∈
Params ∪Globals → {nv} | v ∈ Locals → {null}.
These equations are straightforward, as they leave the abstraction work to the abstract
semantics of statements, explained below. The summary for the procedure, ϑP, is ob-
tained by simplifying the abstract value ϑexit(P) associated with the exit vertex of the
procedure as explained later.

Primitive Statements. The abstract semantics [[S]]a of primitive statements other than
call-statements is shown in Fig. 3. Given a set-valued function f : A �→ B and a ∈
A, b ∈ B, we use f [a ↪→ b] to denote a weak update of a i.e, f [a ↪→ b] = f [a �→

Modular Heap Analysis for Higher-Order Programs 379

[[v1 = v2]]a(τ, ω) = (τ [σ �→ σ[v1 ↪→ σ(v2)]]), ω)
[[l : v = new C]]a(τ, ω) = ((EV,EE, π, IV ∪ {nl}, IE ∪ {nl × Fields × {null}}, σ[v ↪→ nl]), ω)
[[v1.f = v2]]a(τ, ω) = (τ [IE �→ IE ∪ {(σ(v1) \ PVa)× {f} × σ(v2)}], ω)
[[l : v1 = v2.f]]a(τ, ω) = let A = {n | ∃n1 ∈ σ(v2), 〈n1 , f ,n〉 ∈ IE} in

let X = (σ(v2) \ PVa) in
let B = X ∩ Escaping(τ) in
if (B = ∅) then (τ [σ �→ σ[v1 ↪→ A]], ω)
else
((EV ∪ {nl},EE ∪B × {f} × {nl}, π, IV, IE, σ[v1 ↪→ A ∪ {nl}]), ω)

[[v = &P]]a(τ, ω) = (τ [σ �→ σ[v1 ↪→ {P}]], ω)

Fig. 3. Abstract semantics of primitive statements, where τ = (EV,EE, π, IV, IE, σ)

Call�S((τr, ωr), (τe, ωe)) = (pop�
S(τe〈〈push�

S(τr)〉〉a, τr), ωr ∪ ωe)

[[P(v1, · · · , vk)]]a(τ, ω) = Call�S((τ, ω), Ls(P))
MarkParam(τ,X) = τ [π �→ λx.if x ∈ X then π(x) ∪ σ(x) else π(x)]
[[(∗v)(v1, .., vk)]]a(τ, ω) = (MarkParam(τ, { v1, .., vk } ∪Globals), ω ∪ {(∗v)(v1, .., vk)})

Fig. 4. Abstract semantics of calls

f(a)∪b]. Given τ = (EV,EE, π, IV, IE, σ1), let τ [σ �→ σ2] denote (EV,EE, π, IV, IE, σ2)
and we use a similar notation for updating other components of τ . The set Escaping(τ)
used in the semantics of l : v1 = v2 .f is defined as {x | ∃w ∈ range(π). x is reachable
from w via EE ∪ IE edges }. Our abstract semantics closely resembles the one used in
[4], with one difference. Unlike in the earlier analysis, we perform weak updates on
all the variables (to conservatively over-approximate the transformers of all the code
segments between the indirect calls). In our implementation, we minimize the precision
loss due to weak updates via variable renaming.

Call Statements. Fig. 4 presents the abstract semantics of call statements. The abstract
semantics of a direct call statement utilizes the function Ls defined earlier, which maps
every P ∈ LP to variable ϑP, and every P ∈ LLP to its pre-computed summary. The op-
eration Call �(,) composes the graph transformer τr before the call-site with the graph
transformer τe of the callee’s summary, to find the resultant graph transformer. The ω
component is obtained simply by taking the union of the set of indirect calls in the caller
and callee. We use operations push�

S and pop�
S as abstractions of the parameter passing

mechanism and pushing/popping an activation record. These operations, defined in the
Appendix, are straightforward, except for one point: pop�

S updates local variables of
the caller weakly, defining their value as the join of their original value (in the caller)
and their final value (in the callee). This is done so that variables referred to in indi-
rect call-sites from the callee’s summary that are added to the caller can be interpreted
soundly.

The definition of 〈〈〉〉 is analogous to the definition of the 〈〉 operator used to define
the concretization function. While τ〈g〉 models relation application (it returns a rep-
resentation of all graphs related to g by τ), τ1〈〈τ2〉〉a models relation composition. A
formal definition of this operation appears in the appendix. When a callee’s summary is
instantiated at a call-site as above, we may be able to resolve some of the indirect calls

380 R. Madhavan, G. Ramalingam, and K. Vaswani

in the callee (i.e., determine the actual targets of these calls). The procedure simplify is
used to perform such resolution and simplify the result, as explained later.

The semantics of indirect call statements is mostly straightforward: the statement is
simply added to the list of unresolved calls. However, the transformer graph is updated
as indicated by function MarkParam . Recall that we wish to construct a transformer
graph that simultaneously approximates multiple code fragments, each starting/ending
at an indirect-call, entry vertex, or exit vertex. The code fragment starting after the given
indirect call may be thought of as having parameters { v1, · · · , vk } ∪ Globals : these
are the roots of part of the caller’s heap that is accessible to and may be modified by the
callee. Hence, nodes pointed to by these variables are marked as parameter nodes.

(a) (b)

Fig. 5. Resolving an indirect call

Resolving Indirect Calls. We
now describe how a summary is
simplified when an indirect call
is resolved. Consider the sce-
nario shown in Fig. 5(a). Let
(τ1, {(∗x)(· · ·)}) be a summary
computed during the analysis.
Suppose the possible values of
x includes a procedure P (i.e.,
P ∈ στ1(x)). Then, the indi-
rect call in the summary may in-
voke P. Let (τ2, {(∗y)(· · ·)}) be
the summary of P (either a pre-

computed summary or a partially-computed summary if P is part of the analysis scope).
Fig. 5(a) shows the combined control-flow graph we get from the two summaries. The
goal of the resolution process is to simplify, via abstraction, this control-flow graph to
one in normal form, as shown in Fig. 5(b). A couple of points are worth noting about
the summary shown in Fig. 5(b). Firstly, the original indirect call instruction (∗x)(· · ·)
is still present in the summary. This cannot be dropped until all possible targets of x
have been determined and instantiated (as detailed later). Secondly, the indirect calls
(∗x)(· · ·) and (∗y)(· · ·) are treated as if they are indirect calls of the summarized
method. In reality, the second is an indirect call in a target of the first.

The above procedure can be generalized to the case of summaries with multiple in-
direct calls. In general, instantiating a summary can trigger further summary instantia-
tions: e.g., sufficient context information may become available to resolve other indirect
calls. Hence, the resolution process is an iterative one of identifying indirect calls that
can be resolved and then instantiating summaries of identified targets. The operation
inline : La �→ (Pa �→ Pa) that realizes this iterative procedure is defined in Fig. 6.

The function inlineCall (in Fig. 6) performs the inlining operation for a single
indirect call as illustrated in Fig. 5, which involves a fix-point computation. Notice
the cycle in the control flow graph in Fig. 5(a) passing though the edges labelled
τ1 and τ2, the transformer graph τ shown in Fig. 5(b) is the fixed point of this cy-
cle; inlineCall computes this fixed point. The functions inlineOnce (and inlineCalls)
extend the inlineCall operation to a set of indirect calls by applying it sequentially
on every resolvable call in the input summary. (An indirect call is resolvable if its

Modular Heap Analysis for Higher-Order Programs 381

lfp f v = if (f v) = v then v else lfp f (f v)

inlineCall ((τe, ωe), S) (τr, ωr) =

let τ1 = Call�S((τr, ωr), (τe, ωe)) in

let τ2 = τr〈〈τ1〉〉a in

let τ3 = lfp (λf.f〈〈f〉〉a) τ2 in

(τ3〈〈τr〉〉a, ωr ∪ ωe)

inlineCalls Σ ψ =

{
ψ ifΣ = {}
inlineCalls Σ′ (inlineCall x ψ) ifΣ = {x} +Σ′

inlineOnce La (τ, ω) =

let Σ = {(La (P), c) | c ∈ ω ∧ c = (∗v)(v1 , · · · , vk) ∧ P ∈ σ(v) ∩ dom(La)} in

inlineCalls Σ (τ, ω)

inline La ψ = lfp (λψ′. inlineOnce La ψ′) ψ

Fig. 6. Definition of inline

target variable points to (abstract) procedure ids.) However, applying inlineOnce func-
tion may result in more resolvable indirect calls. Moreover, the summaries inlined by
inlineOnce could be mutually inter-dependent (if the procedures they correspond to are
mutually recursive in the context of the input summary). Both these cases are uniformly
handled by the inline function which repeatedly applies the inlineOnce operation until
a fixed point.

Eliminating Calls. Once all targets of an indirect call (∗x)(· · ·) have been identified
and their summaries instantiated, the call can be omitted from the summary. Trans-
former graphs use external nodes to represent unresolved values: e.g., input parameters.
If x does not point to any external node, then all possible values of x are known. How-
ever, the converse is not true: even if x points to an external node, all possible values of
x may already have been determined, as illustrated by the example in Fig. 7.

R () {
r = new T(); r.f = &P;
x = new T(); x.f = &Q;
while(*) {
t1 = r.f; (*t1)(x);
t2 = x.f; (*t2)(r);

} }

Fig. 7. Example program

The indirect calls in lines 4 and 5 can potentially call pro-
cedures P and Q. However, these indirect calls could also po-
tentially update the values of x.f or r.f , thus changing the
procedures that are called in subsequent executions of these
statements. The transformer graphs correctly account for this
possibility by creating external nodes (that represent the up-
dated values of x.f and r.f after these indirect calls). How-
ever, assume that procedures P and Q do not update the values

of x.f and r.f . Once the summaries of P and Q are instantiated in the summary of R,
we can determine that no new values are possible for t1 and t2, even though they point
to external nodes, and that all possible targets of these indirect calls have been instan-
tiated. We can, hence, eliminate these indirect calls from the summary. The algorithm
in Fig. 8 iteratively identifies potentially unresolved calls and eliminates the other calls.
This elimination creates opportunities to identify and eliminate useless external nodes.
Due to space constraints, we do not describe how this is done.

382 R. Madhavan, G. Ramalingam, and K. Vaswani

dropResolvedCalls ((EV,EE, π, IV, IE, σ), ω) =

let reach(X) = {y | ∃x ∈ X . y is reachable from x via. IE ∪ EE edges }
let einit = reach(∪{ π(x) | x ∈ Params ∪ Globals })
let em ((∗x)(a1 , . . . , ak)) = reach(π(a1)) ∪ . . . ∪ reach(π(ak))

let unresolved = lfp (λX .{(∗x)(a1 , . . . , ak) ∈ ω | (σ(x) ∩ EV) ∈ êm(X) ∪ einit}) ∅
((EV,EE, π, IV, IE, σ), unresolved)

simplify La ψ = dropResolvedCalls(inline La ψ)

Fig. 8. The Simplification Procedure

Other Optimizations and Details. Our analysis computes the fixed point of a (large)
collection of equations generated from a given library. Similar to a conventional modu-
lar analysis, we analyze each procedure one at a time. Typically, in a modular analysis,
the dependences between the equations can be identified statically and guide the or-
der in which equations are processed for fixed point computation (which generally is a
bottom-up or reverse topological order of the call-graph). Indirect calls, however, mean
that some of the dependences can only be identified during the course of the analysis
making it impossible to devise an optimal order of processing. We use a combination
of an initial approximate call-graph constructed using class hierarchy analysis and call-
graph edges identified dynamically during our analysis to guide the order in which pro-
cedures are iteratively analyzed. We also exploit an optimization to identify and merge
equivalent call statements: (∗a0)(a1, · · · , ak) and (∗b0)(b1, · · · , bk) are equivalent if
the abstract values of ai and bi are the same for every i. Finally, at the exit point of
each method (after the simplify operation) we remove the internal/external vertices not
reachable from Params ,Globals and the arguments of unresolved indirect calls from
the method summary (analogous to garbage collection). We omit details of several other
optimizations due to space constraints.

Correctness. We say that a concrete value Lc ∈ Lc is correctly represented by an
abstract value La ∈ La, denoted Lc ∼ La, iff Lc �c γ(La), and similarly for the other
domains as well.

Theorem 1. [[(LP, LL)]]c ∼ [[(LP, LL)]]a.

6 Experimental Evaluation

We have implemented a flow-insensitive version of our analysis for C� using the Mi-
crosoft Phoenix framework. Our implementation, referred to as SEAL (for Side-Effects
Analysis), is available at http://www.rise4fun.com/seal. SEAL is reasonably well tested,
with over 50 testcases, many using higher-order features of C� such as delegates and
LINQ. However, SEAL does not currently handle reflection and concurrency.

Fig. 9 shows the benchmarks used in our empirical evaluation along with their source
code sizes. All benchmarks except System.Core which is a part of the .NET framework,
are popular open source libraries from http://www.codeplex.com. We analysed each
benchmark using the pre-computed summaries for parts of the .NET framework, namely,

Modular Heap Analysis for Higher-Order Programs 383

Benchmark LOC Methods Pure Cond. Impure Impure Time
Pure & incomp

DocX (dx) 10K 612 285 89 61 177 1m17s
Facebook APIs (fb) 21K 4112 1886 91 1336 799 1m59s
Dynamic Data Display (ddd) 25K 2266 1285 334 258 389 3m58s
TestApis (test) 25K 1080 503 205 189 183 2m50s
Newtonsoft Json (json) 27K 1867 675 532 234 426 27m34s
Quickgraph (qg) 34K 3380 1703 653 628 396 1m50s
NRefactory (nr) 43K 3004 998 1036 262 708 21m49s
CUL (cul) 56K 3963 1519 1275 855 314 5m13s
PdfSharp (pdf) 96K 3883 1405 344 1031 1103 9m53s
DotSpatial (ds) 250K 11579 4656 2718 1737 2468 1h51m2s
System.core (sys) unknown 3092 1190 752 445 705 11m28s

Fig. 9. Results of running SEAL on 11 benchmark programs. On all the benchmarks, SEAL used
at most 4GB of memory.

mscorlib, system and system.core DLLs. Unlike a typical whole-program analysis that
would (re) analyse the .NET DLLs while analysing every benchmark, SEAL analyses
the .NET DLLs once and reuses their summaries during the subsequent analyses. Fur-
thermore, DotSpatial consists of 7 inter-dependent DLLs which were analysed one at a
time in a modular fashion (the numbers presented are the aggregate of all the DLLs).

Except in the case of a few commonly used methods (like System.Array mem-
bers) for which we used manually written stubs, we treated calls to methods for which
code was unavailable (such as native, GUI and database libraries) heuristically . Hence,
our analysis could be unsound in the presence of such calls.

Performance and Purity Classification. SEAL classifies every method into 4 cate-
gories. A pure method does not have any externally visible side-effects and does not
have any unresolved calls. A conditionally pure method has no side-effects but has one
or more unresolved calls and hence its purity depends on the calling-context. An impure
method has side-effects but has no unresolved calls. An impure & incomplete method
has side-effects and unresolved calls.

Fig. 9 shows the results of running SEAL on our benchmarks on a 2.83 GHz, 4
core, Intel Xeon server running Windows Server 2008. We observe that SEAL scales
to large, real world C� libraries with thousands of methods within reasonable time and
memory overhead. Also observe that there exists a significant number of procedures
whose purity and side-effects depends on unresolved calls, highlighting the need for a
sound and precise treatment of call-backs.

Fig. 10 presents statistics that provide interesting insights into the analysis. The first
column in Fig. 10 shows the average number of unresolved calls in the summary of
a method, i.e., the size of the ω component of the summaries (the absolute deviation,
i.e., the average of differences of the each of the values from mean is shown within
parenthesis). It can be seen that, across all benchmarks, SEAL finds at least 2 unresolved
calls per method on an average. In fact, many methods have many more unresolved
calls, as indicated by the large absolute deviation. (up to 7 unresolved calls per method
on average in json and sys).

384 R. Madhavan, G. Ramalingam, and K. Vaswani

Bench- Unresolved Completely Non-escaping
mark calls resolved calls internal nodes
dx 4.05 (5.42) 7% (10%) 33% (36%)
fb 2.55 (4.07) 6% (10%) 9% (15%)
ddd 2.10 (3.22) 1% (2%) 30% (37%)
test 2.52 (3.61) 5% (9%) 27% (34%)
json 7.32 (10.61) 6% (9%) 31% (35%)
qg 2.06 (3.13) 1% (3%) 10% (17%)
nr 4.04 (5.04) 1% (2%) 24% (32%)
cul 2.14 (2.84) 6% (11%) 19% (28%)
pdf 3.50 (5.13) 2% (3%) 37% (34%)
sys 6.87 (10.42) 4% (7%) 41% (35%)
ds 5.93 (8.77) 3% (5%) 10% (11%)

Fig. 10. Prevalence of unresolved calls and util-
ity of dropResolvedCalls / garbage collection

The second column of Fig. 10 shows
the average percentage of indirect calls in
unsimplified method summaries that are
classified as completely resolved (and re-
moved) by simplify . The third column
shows the average percentage of inter-
nal nodes allocated by a method (and
its callees) that are non-escaping. This
shows that in spite of unresolved calls,
the analysis is able to identify a signifi-
cant percentage (25% on average) of lo-
cally allocated objects as non-escaping
and eliminate them from the summaries.

A Comparison with CHA Callgraph
Based Modular Analysis. We now com-

pare SEAL with an alternative call-graph-based compositional heap analysis, which we
refer to as CCC. CCC works by first constructing a call-graph using Class Hierarchy
Analysis (CHA). It then processes procedures in bottom-up order over this call-graph,
using our first-order compositional heap analysis technique [4].

Our implementation of CCC is unsound for reasons explained below. However, our
intention is solely to use the reported numbers as an upper bound for precision and
lower bound for analysis time for a sound version of CCC. Our CCC implementation
constructs the call-graph of libraries independent of the application (or client), which is
potentially unsound due to callbacks. We exclude DotSpatial from this experiment due
to the complications in constructing a reasonably sound call-graph spanning multiple
DLLs. We found that conservatively modelling calls to virtual methods like equals and
hashCode (defined in the root class Object) as dispatching to any of their overridden
implementations doesn’t scale to even a 10 line program within reasonable time limits
when the referenced libraries are also included. For this reason, CCC heuristically (and
unsoundly) treats calls to such top-level interface methods (as having no side-effect).
(In contrast, SEAL does not resort to any such heuristics.)

The results in Fig. 11 show that CCC is dramatically slower than SEAL. The table
includes statistics about the call-graphs in the two cases which suggest that the perfor-
mance difference is likely due to the imprecision of the CCC call-graph. The SEAL call-
graph is a bit different from a conventional static call-graph, as it includes some (but
not all) transitive caller-callee relationships because of the way it inlines summaries.
However, these numbers capture (in both cases) the dependences that exist between
the summaries of different procedures. These numbers indicates that decoupling call-
graph construction from the heap analysis leads to over-estimating these dependences
and larger SCCs, which make the analysis slower and make a case for integrating the
call-graph construction with the heap analysis, as we do in a compositional fashion.

Modular Heap Analysis for Higher-Order Programs 385

SEAL CCC CCC call-graph SEAL call-graph
Time Time #Edges #SCCs Avg SCC Max SCC #Edges #SCCs Avg SCC Max SCC

Size Size Size Size
dx 1m17s 12m52s 684 0 NA NA 1273 0 NA NA
fb 1m59s 23m13s 4052 3 3.33 4 4090 1 2 2
ddd 3m58s ∞ 9105 6 18.17 99 3666 1 2 2
test 2m50s 16m7s 2532 13 5 25 1891 7 4 7
json 27m34s ∞ 10701 18 28.06 450 13033 8 4.63 12
qg 1m50s ∞ 296982 11 66.73 658 3416 1 2 2
nr 21m49s ∞ 20763 14 79.43 911 10976 10 14.4 55
cul 5m13s 2h34m12s 34231 11 35.82 354 4740 3 2.67 3
pdf 9m53s 23m31s 7339 21 3.62 19 14434 6 2.33 3
sys 11m28s 3h44m55s 56712 10 58.30 508 7292 11 8.45 45

Fig. 11. Comparison of SEAL and CCC. ∞ indicates timeout after 4 hours.

7 Related Work

This paper extends our previous work [4,5] on compositional heap analysis for first-
order procedures. The problem of resolving indirect calls has attracted a lot of attention,
ranging from various call-graph construction algorithms for object-oriented languages
to control-flow analysis algorithms for functional languages, e.g., see [9,2,6]. Many
of these algorithms, however, take a top-down, whole-program, analysis approach. In
contrast, we have focused on a compositional, bottom-up, approach that can be used to
compute summaries for libraries that can be reused for any client of the library.

Rountev et al. [7] present a framework for modular analysis of libraries in the pres-
ence of call-backs by extending Sharir and Pnueli’s functional approach. For procedures
containing indirect calls (directly or transitively), their approach constructs a simplified
control flow graph as a (higher-order) summary, by simplifying paths that contain only
direct calls to procedures that have a first-order summary to an edge labelled by its
transformer. This is similar to the starting point of our approach, but we push this ap-
proach further. We show how to inline a higher-order summary at a call-site, simplify
the resulting summary, resolve indirect calls when possible, and integrate a heap analy-
sis within this approach. (E.g., they rely on other, separate, analyses to identify targets
of indirect calls when a library’s summary is instantiated in the context of a client.)

Vivien et al. [10] present an approach for analyzing an arbitrary set of procedures in
a complete program. Their approach permits the summary computed for a procedure to
be incrementally refined using the summaries of callees when they become available.
However, this approach does not handle indirect calls, and assumes that a call-graph
is available. In contrast, we deal with indirect calls and callbacks, and construct a call-
graph during the analysis in a compositional fashion. Furthermore, the approach doesn’t
have a theoretical formalization or proof of correctness. We believe that our abstract
interpretation formalization can be easily adapted to express Vivien et al.’s approach.

Lattner et al. [3] present a modular unification-based pointer analysis for C pro-
grams in the presence of function pointers. Our approach shares several elements with
the Lattner et al. approach, most notably combining a (first-order) transformer with

386 R. Madhavan, G. Ramalingam, and K. Vaswani

a set of unresolved calls into a summary, but we use a more precise (non-unification)
pointer analysis. [3] does not simplify summaries as aggressively as we do, does not ex-
plain identification/elimination of completely resolved calls, does not have an abstract
interpretation formulation and is quite complex. We believe that our formalization can
be adapted with minor modifications to formalize Lattner et al. analysis. An interesting
aspect of [3] is the use of a context-sensitive heap abstraction (or heap cloning). Con-
ceptually, it is straight forward to incorporate heap cloning into our analysis by altering
the definition of Na and the abstract semantics of call statements, in fact, our implemen-
tation (SEAL) supports heap cloning. However, it has far reaching implications on the
precision and scalability of the analysis; initial evaluations indicate a dramatic increase
in the sizes of the transformer graphs and the number of unresolved indirect calls. In
the future, we plan to investigate ways of efficiently incorporating heap cloning into our
analysis.

References

1. Cousot, P., Cousot, R.: Modular Static Program Analysis. In: CC 2002. LNCS, vol. 2304, pp.
159–179. Springer, Heidelberg (2002)

2. Grove, D., DeFouw, G., Dean, J., Chambers, C.: Call graph construction in object-oriented
languages. In: OOPSLA, pp. 108–124 (1997)

3. Lattner, C., Lenharth, A., Adve, V.S.: Making context-sensitive points-to analysis with heap
cloning practical for the real world. In: PLDI, pp. 278–289 (2007)

4. Madhavan, R., Ramalingam, G., Vaswani, K.: Purity Analysis: An Abstract Interpretation
Formulation. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 7–24. Springer, Heidelberg
(2011)

5. Madhavan, R., Ramalingam, G., Vaswani, K.: Purity analysis: An abstract interpretation for-
mulation. Tech. rep., Microsoft Research (2011)

6. Might, M., Smaragdakis, Y., Horn, D.V.: Resolving and exploiting the k-cfa paradox: Illu-
minating functional vs. object-oriented program analysis. In: PLDI, Toronto, Canada, pp.
305–315 (June 2010)

7. Rountev, A., Kagan, S., Marlowe, T.: Interprocedural Dataflow Analysis in the Presence of
Large Libraries. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 2–16.
Springer, Heidelberg (2006)

8. Sălcianu, A., Rinard, M.: Purity and Side Effect Analysis for Java Programs. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg (2005)

9. Shivers, O.G.: Control-Flow Analysis of Higher-Order Languages or Taming Lambda. Ph.D.
thesis, Carnegie-Mellon Univeristy (May 1991)

10. Vivien, F., Rinard, M.: Incrementalized pointer and escape analysis. In: PLDI, pp. 35–46
(2001)

11. Whaley, J., Rinard, M.C.: Compositional pointer and escape analysis for java programs. In:
OOPSLA, pp. 187–206 (1999)

A Appendix

Definition of CallS . Let S be a procedure call statement with arguments a1,...,ak. Let
Param(i) denote the i-the formal parameter. Define the functions pushS ∈ Σc �→ Σc ,

Modular Heap Analysis for Higher-Order Programs 387

popS ∈ Σc × Σc �→ Σc , and CallS as follows:

pushS(σ) = λv. v ∈ Globals → σ(v) | v ∈ Locals → null | v = Param(i)→ σ(ai)

popS(σ, σ
′) = λv. v ∈ Globals → σ′(v) | v ∈ Locals ∪ Params → σ(v)

CallS(f) = λ((V,E, σ), t).{ ((V′,E′, popS(σ, σ
′)), t′) |

((V′,E′, σ′), t′) ∈ f ((V,E, pushS(σ)), t) }

Definition of η. Let τ ∈ Fa be (EV,EE, π, IV, IE, σ) and gc ∈ Gc be (Vc,Ec, σc). The
function η used in the definition of τ〈gc〉 is defined as follows. Define a mapping η :
(EV ∪ IV ∪ PVa) �→ (IV ∪ Vc) that maps every vertex (and procedure ids) in τ to a set
of values, as follows: Let Escaping(τ) = {x | ∃w ∈ range(π). x is reachable from w
via EE ∪ IE edges }.

v ∈ π(x)⇒ σc(x) ⊆ μ(v)

v ∈ IV ∪ PVa ⇒ v ∈ μ(v)

〈u, f, v〉 ∈ EE, u′ ∈ μ(u), 〈u′, f, v′〉 ∈ Ec ⇒ v′ ∈ μ(v)

〈u, f, v〉 ∈ EE, (μ(u) ∩ μ(u′) \ PVc \ PVa) 	= ∅, 〈u′, f, v′〉 ∈ IE,

u ∈ Escaping(τ)⇒ μ(v′) ⊆ μ(v)

Definition of push�
S and pop�

S . Let S be a direct/indirect call statement with arguments
a1, . . . , an and τ1 = (EV1,EE1, π1, IV1, IE1, σ1), τ2 = (EV2,EE2, π2, IV2, IE2, σ2)

push�
S(τ1) = (EV1,EE1, π1, IV1, IE1, σ

′
1) and pop�

S(τ2, τ1) = (EV2,EE2, π2, IV2, IE2,
σ′2) where, σ′1 = λv. (v = Param(i) → σ1(ai) | v ∈ Globals → σ1(v) | v ∈
Locals → null) and σ′2 = λv. (v ∈ Params ∪ Locals → σ1(v) ∪ σ2(v) | v ∈
Globals → σ2(v))

Definition of Relational Composition Operator 〈〈〉〉. Let τ1 =
(EV1,EE1, π1, IV1, IE1, σ1), τ2 = (EV2,EE2, π2, IV2, IE2, σ2). We define τ2〈〈τ1〉〉a to
be τ2〈〈τ1, ηa〉〉, where ηa is the least solution of the following set of constraints over the
variable μa.

u ∈ π2(p)⇒ σ1(p) ⊆ μa(u)

u ∈ (IV2 ∪ PVa)⇒ u ∈ μa(u)

〈u, f, v〉 ∈ EE2, u
′ ∈ μa(u), 〈u′, f, v′〉 ∈ IE1 ⇒ v′ ∈ μa(v)

〈u, f, v〉 ∈ EE2, (μa(u) ∩ μa(u
′) \ PVa) 	= {}, 〈u′, f, v′〉 ∈ IE2 ⇒ μa(v

′) ⊆ μa(v)

〈u, f, v〉 ∈ EE2, μa(u) ∩ Escaping(τ2〈〈τ1, μa〉〉) 	= {} ⇒ v ∈ μa(v)

Define τ2〈〈τ1, ν〉〉 to be τ ′ = (V′∩(IV1∪IV2),EE
′, π′,V′∩(EV1∪EV2), IE

′, σ′) where,

V′ = (IV1 ∪ EV1) ∪ ν̂(IV2 ∪ EV2)

IE′ = IE1 ∪ {〈v1, f, v2〉 | 〈u, f, v〉 ∈ IE2, v1 ∈ ν(u) \ PVa, v2 ∈ ν(v)}
EE′ = EE1 ∪ {〈u′, f, v〉 | 〈u, f, v〉 ∈ EE2, u

′ ∈ ν(u), u′ ∈ Escaping(τ ′)}
π′ = λvar. π1(var) ∪ ν̂(π2(var))

σ′ = λvar. σ1(var) ∪ ν̂(σ2(var))

Binary Reachability Analysis

of Higher Order Functional Programs

Ruslán Ledesma-Garza and Andrey Rybalchenko

Technische Universität München

Abstract. A number of recent approaches for proving program termi-
nation rely on transition invariants – a termination argument that can
be constructed incrementally using abstract interpretation. These ap-
proaches use binary reachability analysis to check if a candidate transi-
tion invariant holds for a given program. For imperative programs, its
efficient implementation can be obtained by a reduction to reachability
analysis, for which practical tools are available. In this paper, we show
how a binary reachability analysis can be put to work for proving termi-
nation of higher order functional programs.

1 Introduction

Tools and techniques for proving program termination are important for increas-
ing software quality [5]. System routines written in imperative programming lan-
guages received a significant amount of attention recently, e.g., [2,3,4,19,24,32].
A number of the proposed approaches rely on transition invariants – a termina-
tion argument that can be constructed incrementally using abstract interpreta-
tion [25]. Transition invariants are binary relations over program states. Checking
if an incrementally constructed candidate is in fact a transition invariant of the
program is called binary reachability analysis. For imperative programs, its effi-
cient implementation can be obtained by a reduction to the reachability analysis,
for which practical tools are available, e.g., [1,11,12,22]. The reduction is based
on a program transformation that stores one component of the pair of states
under consideration in auxiliary program variables, and then checks if the pair
is in the transition invariant [4]. The transformed program is verified using an
existing safety checker. If the safety checker succeeds then the original program
terminates on all inputs.

For functional programs, recent approaches for proving termination apply the
size change termination (SCT) argument [20]. This argument requires checking
the presence of an infinite descent within data values passed to application sites
of the program on any infinite traversal of the call graph. This check can be
realized in two steps. First, every program function is translated into a set of
so-called size-change graphs that keep track of decrease in values between the
actual arguments and values at the application sites in the function. Second,
the presence of a descent is checked by computing a transitive closure of the
size-change graphs. Originally, the SCT analysis was formulated for first order

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 388–404, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Binary Reachability Analysis of Higher Order Functional Programs 389

functional programs manipulating well-founded data, yet using an appropriate
control-flow analysis, it can be extended to higher order programs, see e.g., [28,
29, 30]. Alternatively, an encoding into term rewriting can be used to make
sophisticated decidable well-founded orderings on terms applicable to proving
termination of higher order programs [9].

The SCT analysis is a decision problem (that checks if there is an infinite
descent in the abstract program defined by size change graphs), however it is an
incomplete method for proving termination. SCT can return “don’t know” for
terminating programs that manipulate non-well-founded data, e.g., integers, or
when an interplay of several variables witnesses program termination. In such
cases, a termination prover needs to apply a more general termination argu-
ment. Usually, such termination arguments require proving that certain expres-
sions over program variables decrease as the computation progresses and yet the
decrease cannot happen beyond a certain bound.

In this paper, we present a general approach for proving termination of higher
order functional programs that goes beyond the SCT analysis. Our approach
explores the applicability of transition invariants to this task by proposing an
extension (wrt. imperative case) that deals with partial applications, a program-
ming construct that is particular for functional programs. Partial applications of
curried functions, i.e., functions that return other functions, represent a major
obstacle for the binary reachability analysis. For a curried function, the set of
variables whose values need to be stored in auxiliary variables keeps increasing as
the function is subsequently applied to its arguments. However these arguments
are not necessarily supplied simultaneously, which requires intermediate storage
of the argument values given so far. In this paper, we address such complications.

We develop the binary reachability analysis for higher order programs in
two steps. First, we show how intermediate nodes of program evaluation trees,
so-called judgements, can be augmented with auxiliary values needed for tracking
binary reachability. The auxiliary values store arguments provided at application
sites. Then, we show how this augmentation can be performed on the program
source code such that the evaluation trees of the augmented program corre-
spond to the result of augmenting the evaluation trees of the original program.
The source code transformation introduces additional parameters to functions
occurring in the program. For curried functions, these additional parameters are
interleaved with the original parameters, which allows us to deal with partial
applications.

Our binary reachability analysis for higher order programs opens up an ap-
proach for termination proving in the presence of higher order functions that
exploits a highly optimized safety checker, e.g., [13, 14, 16, 18, 33], for checking
the validity of a candidate termination argument. Hence, we can directly benefit
from sophisticated abstraction techniques and algorithmic improvements offered
by these tools, as inspired by [4].

In summary, this paper makes the following contributions.

– A notion of binary reachability analysis for higher order functional programs.

390 R. Ledesma-Garza and A. Rybalchenko

– A program transformation that reduces the binary reachability analysis to
the reachability analysis.

– An implementation of our approach and its evaluation on micro benchmarks
from the literature.

2 Illustration

In this section we illustrate what our transformation adds to the program in
order to keep track of pairs of argument valuations for checking a transition
invariant candidate.

We consider the following curried function f that has a type x:int -> y:int

-> ret:int. Here, we annotated the parameter and return value types with
identifiers to improve readability.

let rec f x = if x > 0 then f (x-1) else fun y -> f x y

This function shows that – in contrast to proving termination of recursive pro-
cedures in imperative programs – it is important to differentiate between partial
and complete applications when dealing with curried functions. First, we observe
that any partial application of f terminates. For example, f 10 stops after ten
recursive calls and returns a function fun y -> f 0 y where f is bound to a
closure. That is, there is no infinite sequence of f applications that are passed
only one argument. In contrast, any complete application of f does not termi-
nate. For example, f 1 1 will lead to an infinite sequence of f applications such
that each of them is given two arguments.

Our binary reachability analysis takes as input a specification that determines
which kind of applications we want to keep track of. The specification consists of
a function identifier, e.g., f, a number of parameters, e.g., one, and a transition
invariant candidate. Then, such a specification requires that applications of f to
one argument satisfy the transition invariant candidate. Alternatively, we may
focus on applications of f to two arguments.

Once the specification is given, we transform f into a function f m that keeps
track of arguments on which f was applied using additional parameters old x
and old y. As a result, f m fulfills two requirements. First, it computes a result
value res such that res = f x y. Second, it computes new values of additional
parameters. If f m were an imperative program, we would obtain the type

x:int * y:int * copied:bool * old_x:int * old_y:int ->

ret:int * new_copied:bool * new_x:int * new_y:int

where new x and new y are computed as follows. If old x already stores a value
that was given to x in the past, i.e., if copied = true, then new x = old x. Other-
wise, f m can nondeterministically either store x in new x and set new copied =
true, or leave new x = old x and new copied = false. The computation of
new y is similar. Given a transformed program, checking binary reachability
amounts to checking that at each application site the pair of tuples (old x, old y)
and (x, y) satisfies the transition invariant whenever copied is true.

Binary Reachability Analysis of Higher Order Functional Programs 391

Due to partial applications we cannot expect that values of x and y are pro-
vided simultaneously, which complicates both computation of new x and new y
and checking if (old x, old y) together with (x, y) satisfy the transition invari-
ant. Hence, we need to keep track of arguments as they are provided, which
requires “waiting” for missing arguments. We implement this waiting process by
introducing additional parameters old state x and old state y for each partial
application, together with their updated versions new state x and new state y.
Each additional parameter accumulates arguments in its first component, and
it keeps a tuple of previously provided arguments in its second component. We
obtain the following type for f m.

x:int

-> old_state_x:((int * int) * (* accumulate x and y *)

(bool * int * int)) (* store copied, x, and y *)

-> (y:int

-> old_state_y:((int * int) * (* accumulate x and y *)

(bool * int * int)) (* store copied, x, and y *)

-> ret:int * new_state_y:((int * int) *

(bool * int * int))) *

new_state_x:((int * int) *

(bool * int * int))

We refer to (int * int) * (bool * int * int) as state. Then f m has the
type:

x:int -> old_state_x:state ->

(y:int -> old_state_y:state -> ret:int * new_state_y:state) *

new_state_x:state

We formalize the above transformation in Section 5. Figure 8 presents a detailed
execution protocol of applying our transformation on the above program.

Note that if complete applications of a function terminate, then every par-
tial application of the function terminates. For example, consider the following
function g.

let rec g x = if x > 0 then g (x-1) else fun y -> x+y

This function does not have any infinite application sequences neither for com-
plete nor for partial applications.

3 Preliminaries

In this section we describe Mini-OCaml, the programming language that we use
to represent programs. We also present the logger monad [34] extended with an
update operation.

Mini-OCaml Syntax. Let X be a set of variables, e.g., x, List.map,
and myVar. Let C be a set of constants, e.g., +, 1, 2.5, and "h". Let C be
a set of constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X , c ∈ C,

392 R. Ledesma-Garza and A. Rybalchenko

E) e ::= c

| x
| c(e, ..., e)

| e e

| fun x -> e

| let p = e in e

| let rec x = fun x -> e in e

| match e with

| c(x, ..., x) -> e
...

| c(x, ..., x) -> e
(a)

τ ::= ι

| α

| τ -> τ

| (τ, ..., τ) ι
(b)

V) v ::= c

| c(v, . . . , v)

| (fun x -> e, E)
| (x, fun x -> e, E)

(c)

E � c ⇒ c

x ∈ Dom E
E � x ⇒ E x

E � en ⇒ vn . . . E � e1 ⇒ v1
E � c(e1, ..., en) ⇒ c(v1, . . . , vn)

E � ep ⇒ vp E � ef ⇒ c

E � ef ep ⇒ c vp

E � ep ⇒ vp E � ef ⇒ (fun x -> eb, Eb)
Eb + x �→ vp � eb ⇒ v

E � ef ep ⇒ v

E � ep ⇒ vp E � ef ⇒ (xf , fun x -> eb, Eb)
Eb + xf �→ (xf , fun x -> eb, Eb) + x �→ vp � eb ⇒ v

E � ef ep ⇒ v

E � e1 ⇒ v1 E + Bindings p v1 � e2 ⇒ v

E � let p = e1 in e2 ⇒ v

E � fun x -> eb ⇒ (fun x -> eb, E)

E + xf �→ (xf , fun x -> eb, E) � e2 ⇒ v

E � let rec xf = fun x -> eb in e2 ⇒ v

E � em ⇒ vm
ck(. . .k) is the first pattern to match vm
E + Bindings (ck(. . .k)) vm � ek ⇒ v

E � (
match em with | ...

) ⇒ v

(d)

Fig. 1. Mini-OCaml syntax (a), types (b), and evaluation rules (c). Rule premises are
ordered from left to right and from top to bottom. Patterns in (Match) are ordered
from top to bottom.

and c ∈ C. Figure 1(a) presents the syntax of Mini-OCaml expressions. We en-
code if-then-else expressions using match expressions. Function applications
are left associative. We assume that tuples of values are encoded using tuple
constructors. We assume that text in type writer font is Mini-OCaml code.

Mini-OCaml Types. We use the OCaml type system [21] to type Mini-OCaml
expressions. Let B be a set of base types, e.g., int, string, and in channel. Let
A be a set of type variables, e.g., ’a and ’b. Let B be a set of type constructors,
e.g., list, option, and bool. We assume ι ∈ B, α ∈ A, and ι ∈ B. Figure 1(b)
presents the set of Mini-OCaml types. We write the typing proposition e : τ if
expression e is of type τ under some typing context. We say that expression e is
well-typed if there exists a type τ such that e : τ. Examples of valid propositions
are 1 : int and + : int -> int -> int.

Mini-OCaml Semantics. Figure 1(c) presents values computed by
Mini-OCaml programs using judgements j of the form

J 5 j ::= E
 e ⇒ v

Binary Reachability Analysis of Higher Order Functional Programs 393

Every judgement is derived by applying rules shown in Figure 1(d). A judgement
j is valid if there exists an evaluation tree with j as the root. Each evaluation
tree is given by the set of its edges. Each edge is a sequence of judgements
j1, . . . , jn, j, where j1, . . . , jn are the predecessor nodes and j is the successor
node. If n = 0 then the edge represents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as shown below.

∅ � 2 ⇒ 2

∅ � 1 ⇒ 1 ∅ � + ⇒ +

∅ � (+) 1 ⇒ +1

∅ � 1 + 2 ⇒ 3

Let j1 = (∅
 1+2 ⇒ 3), j2 = (∅
 2 ⇒ 2), j3 = (∅
 (+) 1 ⇒ +1),
j4 = (∅
 1 ⇒ 1), j5 = (∅
 + ⇒ +). The evaluation tree t is given by
the set of five edges below.

t = {j2, j4, j5, (j4, j5, j3), (j2, j3, j1)}

Let eval E e be the value of expression e in the environment E, i.e., v = eval E e
if there is an evaluation tree for E
 e ⇒ v.

Recursion Relations and Binary Reachability. We are interested in keep-
ing track of (possibly partial) applications of a function defined in a program.
Let f be a function identifier of type τ1 → . . . → τm → τ that is bound using
a let-rec binding, and N be a number between 1 and m. An f/N -application
judgement describes evaluation of an application of f to N -many actual param-
eters, i.e., it is a judgement of the form E
 f e1 . . . en ⇒ v. A f/N -
recursion relation consists of pairs of value tuples (v1, . . . , vN) and (u1, . . . , uN)
that satisfy the following condition. For each (v1, . . . , vN) and (u1, . . . , uN) in
the relation we require existence of a pair of valid f/N -application judgements
j1 = E1
 f e1 . . . eN ⇒ v and j2 = E2
 f e1 . . . eN ⇒ u such that j2
appears in the evaluation tree of j1 and for each i ∈ 1..N we have eval E1 ei = vi
and eval E2 ei = ui.

The goal of binary reachability analysis is to check if the f/N -recursion rela-
tion of the program is contained in a given binary relation.

We fix f , N , and a binary relation TI for the rest of this paper. Further-
more, we assume that TI is represented as an assertion over tuples of variables
(a1, . . . , aN) and (m1, . . . , mN). This assumption will be used in Figure 6.

4 Binary Reachability on Evaluation Trees

In this section we make the first step towards our program transformation. We
present an augmentation of evaluation trees that allows us to reduce the bi-
nary reachability analysis to the validity analysis of annotated judgements. Each
judgement is augmented with a boolean and an N -ary tuple of values, which we
will refer to as a state.

394 R. Ledesma-Garza and A. Rybalchenko

E f
�

1
⇒

1
,
σ
f

E f
�

f
⇒

v f
,
σ
f

. . .
E f

1
�

x
>
0

⇒
t
r
u
e
,
σ
1

. . .
E f

1
�

x
-

1
⇒

0
,
σ
1

E f
1

�
f

⇒
v f

,
σ
1 . . .

E f
0

�
x
>

0
⇒

t
r
u
e
,
σ
1

E f
0

�
f
u
n

y
-
>

y
+

1
⇒

v f
x
,
σ
1

Ef + x �→ 0︸ ︷︷ ︸
Ef 0

� if ... ⇒ vf x, σ1

Ef 1 � f (x - 1) ⇒ vf x, σ1

Ef + x �→ 1︸ ︷︷ ︸
Ef 1

� if x > 0 then ... ⇒ vf x, σ1

Ef � f 1 ⇒ (fun y -> y + 1, [f �→ vf ; x �→ 0])︸ ︷︷ ︸
vf x

, σf

Fig. 2. Annotation of the evalution tree for f 1 in the environment Ef =
(f, fun x -> if x > 0 then f (x - 1) else fun y -> y + 1, ∅). The initial judge-
ment is annotated with σf = (false, 0). The annotation changes from σf to σ1 =
(true , 1) after the first call to f. Due to the lack of width, we had to rotate several
judgements.

Before presenting the augmentation procedure, we consider examples of tree
augmentation shown in Figure 2. The root of the tree is augmented with a state
σf = (false , 0), where false indicates that no argument has been used for the aug-
mentation yet. We use s to augment judgements in the subtree for the branches
that do not correspond to the evaluation of the body of f. When augmenting
the subtree that deals with the body, we can nondeterministically decide to start
augmenting with a state that records the argument of the current application.
That is, in the body subtree we augment with the state σ1 = (true, 1). Here, true
indicates that we took a snapshot of the current application argument, and 1
is the argument value. The remaining judgements are augmented with σ1, since
we will not change the snapshot if it was taken, i.e., if the first component of the
augmenting state is true.

We proceed with an algorithm Augment that takes as input an initial state and
an evaluation tree and produces an augmented tree. Each augmented judgement
is of the form E
 e ⇒ v, σ, where σ is a state. As an initial state we take a
pair (false , (v1 . . . , vN)) where v1 . . . , vN are some values.

See Figure 3. Augment traverses the input tree recursively, by starting from
the root. Whenever the current judgement is a f/N -application judgement, then
we choose whether to create a snapshot of the arguments and store them in the

Binary Reachability Analysis of Higher Order Functional Programs 395

1

2

3

4

5

6

7

8

9

10

11

12

13

let Augment ((c,) as σ) t =

let j = root t in

match j with

| E � f e1 . . . eN ⇒ v →
let v1, . . . , vN = eval E e1, . . . , eval E eN in

let σ’ = if ¬c ∧ nondet() then (true , v1, . . . , vN) else σ in

let tp, tf , tb = immediate subtrees of t in

let t′p, t
′
f , t

′
b = Augment σ tp, Augment σ tp, Augment σ’ tb in

({root t′p, root t′f , root t′b, (j, σ))} ∪ t′p ∪ t′f ∪ t′b
| →
let t1, . . . , tn = immediate subtrees of t in

let t′1, . . . , t
′
n = Augment σ t1, . . . , Augment σ tn in

({root t′1, . . . , root t′n, (j, σ))} ∪ t′1 ∪ · · · ∪ t′n

Fig. 3. Evaluation tree monitoring. The input consists of a monitor state σ and an
evaluation tree t. nondet() non-deterministically returns either true or false.

state that is used to augment the subtree that evaluates the body. We only cre-
ate a snapshot if the Boolean component of the current state is false. In case we
currently do not deal with a f/N -application judgement, no state change hap-
pens and we proceed with the subtrees. Once we obtain the augmented versions
of the subtrees, we put them together by creating a node that connects the roots
of the subtrees.

We establish a formal relationship between the f/N -recursion relation with
the augmented judgements obtained by applying Augment using the following
theorem.

Theorem 1 (Augment keeps track of f/N-recursion relation). A pair
(v1, . . . , vN) and (u1, . . . , uN) is in the f/N -recursion relation if and only if the
result of applying Augment wrt. some sequence of nondeterministic choices on
jand an initial state contains an augmented judgement of the form

E
 f e1 . . . eN ⇒ v, (true, (v1, . . . , vN))

such that for each i ∈ 1..N we have eval E ei = ui

5 Program Transformation

In this section we present a program transformation that realizes the function
Augment presented in Section 4. To implement the state passing between judg-
ments we apply a so-called logger monad.

396 R. Ledesma-Garza and A. Rybalchenko

1 (* logger monad type *)

2 type ’a m = state -> ’a * state

3 (* unit operator *)

4 let unit a = fun s -> (a, s)

5 (* bind operator *)

6 let (>>=) m k = fun s0 ->

7 let v1, s1 = m s0 in

8 k v1 s1

9 (* state transform operator *)

10 let update f = fun s -> ((), f s)

Fig. 4. Logger monad with state transform operator update. The unit operator takes
a value and constructs a monadic value. The bind operator takes a monadic value and
a function returning a monadic value, and constructs a new monadic value. The state
transform operator creates a new monadic value by applying the state transformer f.

Logger Monad. A monad consists of a type constructor m of arity 1 and two
operations

unit : ’a -> ’a m

(>>=) : ’a m -> (’a -> ’b m) -> ’b m

These operations need to satisfy three conditions called left unit, right unit,
and associative [35]. We assume that state is a given type. Figure 4 presents
a variant of the logger monad [34]. The state update operator update is of
type (state -> state) -> unit m. A monadic expression (resp. value) is an
expression (resp. value) of the logger monad type.

For example, the monadic expression unit 1 evaluates to a function that
takes a state σ and returns a pair (1, σ). As another example, the following
monadic expression evaluates to a function that takes a state σ and returns a
pair (1, σ + 1).

update (fun s -> s + 1) >>= fun () -> unit 1

Transformation of Types. We transform each program expression into a
monadic expression that keeps track of the state that results in the judgement
augmentation. Figure 5 presents the function monadic that maps types of ex-
pressions in the original program to types of the transformed program. Function
monadic indicates that a transformed program is a Mini-OCaml function that
takes an initial state and returns a pre-monadic program value together with a
final state.

For example, consider the following applications of monadic.

monadic (int -> (int -> int)) = (int -> ((pre m int -> int) m)) m

(int -> ((int -> int m) m)) m

Binary Reachability Analysis of Higher Order Functional Programs 397

1 let rec monadic τ = (pre m τ) m

2 and pre m = function

3 | τ1 -> τ2 → (pre m τ1) -> (pre m τ2) m

4 | (τ1, ..., τn) ι → ((pre m τ1), ..., (pre m τn)) ι

5 | τ → τ

Fig. 5. Type transformation function monadic

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

let enter = function

| f e1 →
“ fun v -> fun ((, a2, ..., aN), m) -> (v, a2, ..., aN), m ”

...

| (. . . (f e1) . . . eN−1) →
“ fun v -> fun ((a1, ..., aN−2, , aN), m) ->

(a1, ..., aN−2, v, aN), m ”

| (. . . (f e1) . . . eN) →
“ fun v -> fun ((a1, ..., aN−1,), m) ->

let a = a1, ..., aN−1, v in

let m c, m 1, ..., m N = m in

if m c then assert TI;

a, if not m c && nondet () then true, a else m ”

| → “ fun -> id ”

let exit = function

| f e1 | . . . | (. . . (f e1) . . . eN−1) → “ fun s -> (fun -> s) ”

| (. . . (f e1) . . . eN) → “ fun s -> (fun -> s) ”

| → “ fun -> id ”

Fig. 6. The transformer selector functions enter and exit. The operator “ · ” emits a
Mini-OCaml expression after evaluating expressions that are embedded using ‘ · ‘.

Transformation of Expressions. We present the transformation function
Transform in Figure 7. Transform uses two auxiliary functions enter and exit
shown in Figure 6.

For an expression e, Transform traverses the abstract syntax tree of e and gives
a core monadic expression that evaluates the user program together with two
state transform operations. Transform generates Mini-OCaml expressions using
the “ ·” function. For example, “let x = 1 in 1” emits the expression let x =

1 in 1. Within “ ·” we can perform an evaluation by applying ‘ · ‘. For example,
“let x = ‘1+2‘ in 1” emits let x = 3 in 1.

The important case is the transformation of f/N -applications. Such applica-
tions are recognized in enter and exit. The emitted code either saves the argument

398 R. Ledesma-Garza and A. Rybalchenko

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

let Transform e =

match e with

| c →
let x1, . . . , xArity c = FreshVar (), . . . , FreshVar () in

“ unit (fun x1->

...

unit (fun xArity c->

unit (c x1 ... xArity c)) ...) ”

| x → “ unit x ”

| c(e1, ..., en) →
let x1, . . . , xn = FreshVar (), . . . , FreshVar () in

“ ‘Transform en‘ >>= fun xn ->

...

‘Transform e1‘ >>= fun x1 ->

unit (c(x1, ..., xn)) ”

| ef ep →
let xapp, xp, sfull spartial = FreshVar (), FreshVar (), FreshVar (), FreshVar () in

“ fun sfull ->

(‘Transform ep‘ >>= fun xp ->

‘Transform ef‘ >>= fun xf ->

update (‘enter e‘ xp) >>= fun () spartial ->

(xf xp >>= fun xapp ->

update (‘exit e‘ sfull spartial) >>= fun () ->

unit xapp) spartial) sfull ”

| fun x -> eb → “ unit (fun x -> ‘Transform eb‘) ”

| let p = e1 in e2 → “ (‘Transform e1‘ >>= fun p -> ‘Transform e2‘) ”

| let rec xf = fun x -> eb in e2 →
“ (let rec xf = fun x -> ‘Transform eb‘ in ‘Transform e2‘) ”

| match em with | ep1 -> e1 ... | epi -> ei →
let xm = FreshVar () in

“ ‘Transform em‘ >>= fun xm ->

(match xm with

| ep1 -> ‘Transform e1‘

...

| epi -> ‘Transform ei‘

) ”

Fig. 7. The transformation function Transform. The operator “ · ” emits a Mini-OCaml
expression after evaluating expressions that are embedded using ‘ · ‘.

Binary Reachability Analysis of Higher Order Functional Programs 399

values into the state, or propagates further the current state. Furthermore, enter
performs a check if the snapshot stored in a state together with the arguments
of a f/N -application satisfy the transition invariant candidate TI . This check is
guarded by the condition that the snapshot must have been stored previously.

We show an example application of Transform in Figure 8 for analyzing f/1-
applications. First, we present subexpressions of the program and then show the
result of the application of Transform on them (we have partially simplified the
transformed expressions to improve readability).

We establish a relationship between augmented evaluation trees and evalua-
tion trees of the transformed program in the following theorem.

Theorem 2 (Transform Implements Augment). A pair (v1, . . . , vN)
and (u1, . . . , uN) is obtained from the augmented evaluation tree as described
in Theorem 1 if and only if a judgement of the following form appears in the
evaluation tree of the program obtained by applying Transform:

E
 f e1 . . . eN s ⇒ v,

such that eval E s = (true, (v1, . . . , vN)) and for each i ∈ 1..N we have
eval E ei = ui.

The following corollary of Theorem 2 allows one to rely on the assertion validity
in the transformed program to implement the binary reachability analysis of the
original program.

Theorem 3 (Binary Reachability Analysis as Assertion Checking).
Each pair (v1, . . . , vN) and (u1, . . . , uN) in the f/N -recursion relation of the
program satisfies TI if and only if the assertion inserted by enter is valid in the
transformed program.

6 Experimental Evaluation

In this section we describe our implementation and the corresponding experi-
mental evaluation.

Implementation. We implemented Transform as an extension to the Camlp4
parser [26]. Our implementation takes as input a user program and a specifica-
tion consisting of a function name, an arity, and candidate transition invariant.
Our implementation produces a transformed program following the procedure
depicted in Figure 8.

Experiments. Our experiments consisted of two steps. First we applied our trans-
formation to the set of benchmarks summarized in Figure 9. Then we analyzed
the transformed benchmarks using the reachability checker Dsolve [16,17]. The
set of benchmarks is available at http://www7.in.tum.de/~ruslan/binreach/.
Our benchmarks feature higher order functions and algebraic data types (lists).
We summarize our verified benchmarks in Figure 9. Benchmarks 11-15 cor-
respond to the higher-order programs in [28] that are strict and type-check.

400 R. Ledesma-Garza and A. Rybalchenko

e = let rec f x = if x > 0 then f (x - 1) else fun y -> f x y in f 1

e1 = if x > 0 then f (x - 1) else fun y -> f x y

e2 = x > 0

e3 = 0

e4 = (>) x

e5 = x

e6 = (>)

e7 = f (x - 1)

...

Transform e = let rec f = fun x -> ’Transform e1’ in ’Transform e20’

Transform e1 = ’Transform e2’ >>= fun x2 -> (if x2 then ’Transform e7’

else ’Transform e14’)

Transform e2 = fun s_full -> (’Transform e3’ >>= fun x3 ->

’Transform e4’ >>= fun x4 ->

update (fun s -> s) >>= fun () s_partial ->

(x4 x3 >>= fun xapp2 ->

update (fun s -> s) >>= fun () ->

unit xapp2) s_partial) s_full

Transform e3 = unit 0

Transform e4 = fun s_full -> (’Transform e5’ >>= fun x5 ->

’Transform e6’ >>= fun x6 ->

update (fun s -> s) >>= fun () s_partial ->

(x6 x5 >>= fun xapp4 ->

update (fun s -> s) >>= fun () ->

unit xapp4) s_partial) s_full

Transform e5 = unit x

Transform e6 = unit (fun z1 -> unit (fun z2 -> unit (z1 > z2)))

Transform e7 = fun s_full -> (’Transform e8’ >>= fun x8 ->

’Transform e13’ >>= fun x13 ->

update (fun (_, m) ->

let m_c, m_1 = m in

if m_c then assert (x8 > 0 && m_1 > x8);

x8, if not m_c && nondet () then true, x8

else m

) >>= fun () s_partial ->

(x13 x8 >>= fun xapp7 ->

update (fun _ -> s_full) >>= fun () ->

unit xapp7) s_partial) s_full

...

Fig. 8. Example application of Transform with N = 1 and TI = (a1 > 0 ∧m1 > a1).
Given a stored snapshot, the transformed application f (x - 1) checks that the current
actual satisfies TI .

The experiments show that our transformation can be used together with a
state of the art static analyzer to prove termination of higher-order programs
found in the literature.

Binary Reachability Analysis of Higher Order Functional Programs 401

Name Description Disjuncts in TI FunV wall time

1 ack The Ackermann function 2 0m1.320s

2 chop Chop the first n elements of a list 2 1m14.507s

3 dictionary An algebraic data type recursive manipulation 1 0m37.219s

4 fold2 (H) Fold a pair of lists 2 12m17.410s

5 mccarthy91 The McCarthy 91 function 1 0m20.142s

6 mult Recursive definition of multiplication 2 1m14.957s

7 rev append Append a list reversed 1 0m11.829s

8 rev merge Merge two lists 2 0m2.279s

9 simple-rec A simple recursive function 1 0m5.293s

10 sum The sum of the first n naturals 1 0m8.268s

11 sereni29 (H) map applied to a function constructed with
compose and a list

1 0m3.843s

12 sereni56 (H) Computation of the n-th Church numeral using
compose

1 0m4.046s

13 sereni81 (H) Fold left defined using fold right 1 0m9.859s

14 sereni85 (H) A program with two call sites to map 1 0m5.230s

15 sereni163 (H) A parameter function applied to a non-
terminating parameter function

1 0m2.002s

Fig. 9. Verified benchmarks. Benchmarks with higher order functions are marked with
(H). We show the number of disjuncts of the corresponding transition invariant in the
next to last column.

7 Related Work

Termination and control-flow analysis. Traditionally, termination analysis of
higher-order programs is developed on top of a control-flow analysis [28, 29, 30].
Our approach relies on the applied safety checker to keep track of control flow.
In principle, our transformation could benefit from the results of control-flow
analysis, as discussed in Section 8. Practically, such additional information was
not necessary when proving termination of all examples presented in [28,29,30].
Adding a control-flow analysis pass [8,23,27,31] before the transformation would
be akin to the application of (function) pointer analysis for imperative programs.
We leave a study of such an integration as future work.

Abstraction for termination. The size change termination argument [20] can be
extended to higher-order functional programs, see e.g. [15, 30]. This argument
requires checking the presence of an infinite descent in values passed to applica-
tion sites of the program on any infinite traversal of the call graph. In contrast,
our approach can keep track of a rank descent in arbitrary expressions over pro-
gram values. In principle, SCT can be seen a specific abstract domain that yields
termination arguments related to disjunctive well-foundedness [10]. We leave the
question if general abstraction techniques for termination [6, 7] can be reduced
by an appropriate source to source transformation as future work.

Contract checking. Contracts are pre- and post-condition specifications for func-
tions. Xu created a verification tool [36] for Haskell that is based on contracts
and partial evaluation. Their approach works well for checking safety proper-
ties, and can even detect divergence of programs. In contrast, our approach is

402 R. Ledesma-Garza and A. Rybalchenko

specialized to the verification of termination, and is a step towards the auto-
mated verification of termination through counterexample guided abstraction
refinement.

Liquid typing. Dsolve [16] is a reachability checker based on refinement type
inference. The type inference algorithm consists of two parts. First, a set of con-
straints over refinement predicates is generated from program code. Second, an
iterative algorithm tests candidate solutions constructed from a set of predicate
schemes in the theory of linear arithmetic and uninterpreted functions. As our
experiments show, the composition of our transformation and Dsolve yields a
binary reachability analysis tool.

8 A Limitation and Future Work

Compared to imperative programs, higher order functions impose additional
complication on the binary reachability analysis. The major current limitation
of our approach lies in the treatment of partial applications when arguments are
provided at different program points, as illustrated by the following example.

let rec f x = if x > 0 then f (x - 1) else fun y -> y + 1 in

let g = f 1 in

g 2

Proving termination of f/2 applications is not possible, since the second argu-
ment to f is given indirectly through an application of g. Without a control-flow
analysis, we cannot store 2 in the auxiliary state since it is not known syntacti-
cally that 2 is the second argument for f. Removing the above limitation is an
important step for future work, which can be accomplished either by relying on
results of a control-flow analysis, e.g. [27], that is performed before the transfor-
mation takes place. In simple cases, by using the following transformation that
is based on β reduction.

let rec f x = if x > 0 then f (x - 1) else fun y -> y + 1 in

(* let g = f 1 in *)

(f 1) 2

In the transformed program, both arguments are given to f directly.

Acknowledgements. Ruslán Ledesma-Garza is supported by the Deutsche
Forschungsgemeinschaft, through the research training group 1480 - Program
and Model Analysis.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL (2002)

2. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic Termination Proofs
for Programs with Shape-Shifting Heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

Binary Reachability Analysis of Higher Order Functional Programs 403

3. Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H.: Ranking Abstractions.
In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 148–162. Springer,
Heidelberg (2008)

4. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI (2006)

5. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5) (2011)

6. Cousot, P., Cousot, R.: Invited talk: Higher order abstract interpretation (and ap-
plication to comportment analysis generalizing strictness, termination, projection,
and per analysis. In: ICCL (1994)

7. Cousot, P., Cousot, R.: An abstract interpretation framework for termination. In:
POPL (2012)

8. Earl, C., Might, M., Horn, D.V.: Pushdown control-flow analysis of higher-order
programs: Precise, polyvariant and polynomial-time. In: Scheme (2010)

9. Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Au-
tomated termination proofs for haskell by term rewriting. ACM Trans. Program.
Lang. Syst. 33 (2011)

10. Heizmann, M., Jones, N.D., Podelski, A.: Size-Change Termination and Transition
Invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 22–50.
Springer, Heidelberg (2010)

11. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
(2002)

12. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft:
Software Verification Platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 301–306. Springer, Heidelberg (2005)

13. Jhala, R., Majumdar, R.: Counterexample refinement for functional programs
(2009), http://www.cs.ucla.edu/~rupak/Papers/CEGARFunctional.ps

14. Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: Verifying Functional Programs
Using Abstract Interpreters. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 470–485. Springer, Heidelberg (2011)

15. Jones, N.D., Bohr, N.: Termination Analysis of the Untyped λ-Calculus. In: van
Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 1–23. Springer, Heidelberg
(2004)

16. Kawaguchi, M., Rondon, P.M., Jhala, R.: Type-based data structure verification.
In: PLDI (2009)

17. Kawaguchi, M., Rondon, P.M., Jhala, R.: Dsolve: Safety Verification via Liquid
Types. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
123–126. Springer, Heidelberg (2010)

18. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: PLDI (2011)

19. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination Anal-
ysis with Compositional Transition Invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

20. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL (2001)

21. Leroy, X.: Polymorphic typing of an algorithmic language. Research report 1778,
INRIA (1992)

22. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

23. Might, M., Shivers, O.: Exploiting reachability and cardinality in higher-order flow
analysis. J. Funct. Program. 18(5-6) (2008)

http://www.cs.ucla.edu/~rupak/Papers/CEGARFunctional.ps

404 R. Ledesma-Garza and A. Rybalchenko

24. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination anal-
ysis of java bytecode by term rewriting. In: RTA (2010)

25. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS (2004)
26. Pouillard, N.: Camlp4 (retrieved on July 11, 2011)
27. Prabhu, T., Ramalingam, S., Might, M., Hall, M.W.: Eigencfa: accelerating flow

analysis with GPUs. In: POPL (2011)
28. Sereni, D.: Termination Analysis of Higher-Order Functional Programs. PhD the-

sis, University of Oxford (2006)
29. Sereni, D.: Termination analysis and call graph construction for higher-order func-

tional programs. In: ICFP (2007)
30. Sereni, D., Jones, N.D.: Termination Analysis of Higher-Order Functional Pro-

grams. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 281–297. Springer,
Heidelberg (2005)

31. Shivers, O.: Control-flow analysis in scheme. In: PLDI (1988)
32. Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for java bytecode based

on path-length. ACM Trans. Program. Lang. Syst. 32(3) (2010)
33. Terauchi, T.: Dependent types from counterexamples. In: POPL (2010)
34. Voigtländer, J.: Free theorems involving type constructor classes: functional pearl.

In: ICFP (2009)
35. Wadler, P.: Monads for functional programming. In: Advanced Functional Pro-

gramming, pp. 24–52 (1995)
36. Xu, D.N.: Static Contract Checking for Haskell. PhD thesis. University of Cam-

bridge (August 2008)

On the Limits of the Classical Approach

to Cost Analysis

Diego Esteban Alonso-Blas and Samir Genaim

DSIC, Complutense University of Madrid (UCM), Spain

Abstract. The classical approach to static cost analysis is based on
transforming a given program into cost relations and solving them into
closed-form upper-bounds. It is known that for some programs, this ap-
proach infers upper-bounds that are asymptotically less precise than the
actual cost. As yet, it was assumed that this imprecision is due to the
way cost relations are solved into upper-bounds. In this paper: (1) we
show that this assumption is partially true, and identify the reason due
to which cost relations cannot precisely model the cost of such programs;
and (2) to overcome this imprecision, we develop a new approach to cost
analysis, based on SMT and quantifier elimination. Interestingly, we find
a strong relation between our approach and amortised cost analysis.

1 Introduction

Cost analysis (a.k.a. resource usage analysis) aims at statically determining the
amount of resources required to safely execute a given program, i.e., without
running out of resources. By resource, we mean any quantitative aspect of the
program, such as memory consumption, execution steps, etc. Several cost analy-
sis frameworks are available [2,10,12,14,15,17]. Although different in their under-
lying theory, all of them usually report the cost of a program as an upper-bound
function (UBF for short) such that: when evaluated on (an abstraction of) a
given input, the UBF gives an upper-bound on the amount of resources required
for safely running the program on that specific input.

Many automatic cost analysis tools are based on the classical approach of
Wegbreit [22], which we describe using its extension for Java bytecode [2]. This
analysis is done in three steps: (1) the Java program is transformed into an
abstract program, in which data-structures are abstracted to their sizes, e.g.,
length of lists, depth of trees, etc.; (2) the abstract program is transformed into
a set of cost relations (CRs for short), which are a non-deterministic form of
recurrence equations that define the cost of executing the program in terms of
its input parameters; and (3) the CRs are solved into UBFs.

This analysis performs well in practice, however, for some classical examples,
it infers UBFs that are asymptotically less precise than the actual cost. Clearly,
the abstraction at step (1) may involve a loss of precision since it can introduce
spurious traces, which do not occur in the original program. This imprecision is
out of the scope of this paper. Instead, we focus on the imprecision at steps (2)

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 405–421, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

406 D.E. Alonso-Blas and S. Genaim

and (3). As yet, it was assumed that this imprecision is due to the way CRs are
solved into UBFs in step (3), and that, in principle, it could be overcome using
more precise resolution techniques.

The first contribution of this paper shows that this assumption is not true,
namely, that the cost of some programs cannot be modeled precisely with CRs.
This is because CRs are defined only in terms of the input parameters, and thus
they fail to capture dependencies between the output of a program and its cost.
These dependencies are crucial for programs in which the output of one part
is passed as input to another part, and transforming them into CRs introduces
spurious scenarios. Any resolution technique that solves CRs into UBFs must
cover these spurious scenarios, hence it would fail to obtain precise UBFs.

To eliminate these spurious scenarios, an UBF must be defined in terms of
both input and output. Our second contribution is a novel cost analysis that
uses the this notion of cost. It is based on quantifier elimination and template
UBFs. Briefly, it takes a given set of template UBFs, with some unknown param-
eters, and uses satisfiability modulo theory (SMT) and quantifier elimination to
instantiate those parameters, such that the resulting UBFs are safe.

The rest of the paper is organised as follows. Sec. 2 presents our running
examples and formally defines the language on which we apply our analysis.
Sec. 3 studies the limitations of CRs. Secs. 4 and 5 are the technical core of the
paper, in which we develop our cost analysis. Sec. 6 discusses the relation of our
analysis to amortised cost analysis. Sec. 7 describes a prototype implementation.
Sec. 8 overviews related work, and Finally, Sec. 9 concludes.

2 Motivating Examples and Preliminaries

In this section we describe an abstract cost rules (ACR for short) language [2],
which we use to formally present our cost analysis. In [2], a Java program is
automatically abstracted to this language. The abstraction guarantees that every
concrete trace has a corresponding abstract one with the same cost, but there
might be spurious abstract traces, which do not correspond to concrete ones.
Recall that our interest is in analysing ACR programs, the translation from
Java is out of the scope of this paper. We first explain the language using
some examples that we use along the paper. Then, we formally define its syntax,
semantics and the concrete notions of cost. As a notation, we refer to line number
n in a given Java (resp. ACR) program by Jn (resp. An).

Example 1. The Java code of the first example is depicted in Fig. 1 (on the left).
It implements a Stack data-structure using a linked list whose first element is
the top of the stack (field top points to this list). Method main has a loop (J14-
19) that in each iteration invokes method randPop (J15), which in turn pops an
arbitrary number of elements (J6-9), and then pushes a new element (J16). Note
that coin() at J6 non-deterministically returns true or false. Each pop operation
consumes m resources, as specified by the annotation @acquire(m) at J8, and each
push consumes 1 resource (J17). This example is based on a classical example
for amortised analysis [9], the only difference is that pop costs m units instead

On the Limits of the Classical Approach to Cost Analysis 407

1class Stack {
2 Node top;
3

4 //@requires m >= 1
5 void randPop(int m) {
6 while(top != null && coin()) {
7 top=top.next; //pop
8 //@acquire(m)
9 }

10 }
11

12 //@requires m >= 0
13 void main(int m) {
14 while(m > 0) {
15 randPop(m);
16 top = new Node(’a’,top); //push
17 //@acquire(1)
18 m = m−1;
19 }
20 }
21}

1 rpop([s,m], [s1]) ←
2 m ≥ 1,
3 s ≥ 0,
4 s1 = s.
5 rpop([s,m], [s1]) ←
6 m ≥ 1,
7 s ≥ 1,
8 acq(m),
9 s2 = s− 1,

10 rpop([s2 ,m], [s1]).
11

12 main([s,m], [s1]) ←
13 m = 0,
14 s1 = s,
15 main([s,m], [s1]) ←
16 m ≥ 1,
17 rpop([s,m], [s2]),
18 s3 = s2 + 1,
19 acq(1),
20 m1 = m− 1,
21 main([s3 ,m1], [s1]).

Fig. 1. Java code for Stack and its ACR program

of 1, to showcase some unique features of our analysis. These m units can be
seen as the cost of executing m iterations of a loop (which we omit).

Fig. 1 (on the right) includes the ACR version of Stack. It has been automat-
ically generated, and simplified for clarity, using the tools of [2]. A1-10 define a
procedure rpop that corresponds to randPop. It has two input parameters: s is
the size of the stack (i.e., the length of list top); and m is the value of variable
m. Note that s is an abstraction of top. It also has one output parameter s1
which corresponds to the size of the stack upon exit from randPop. Procedure
rpop is defined by means of two rules: the first one (A1-4) corresponds to the
case in which we do not enter the loop; and the second one (A5-10) corresponds
to executing one iteration and calling rpop recursively (A10) for more iterations.
The instruction s2 = s− 1 at A9 corresponds to removing an element from the
stack (J7). The translation of method main into procedure main (A12-20) is
done in a similar way. Just note that calling rpop (A17) with a stack of size s
results in a stack of size s2, and that s3 = s2 + 1 at A18 corresponds to J16.

A call main([s,m], [s1]) executes exactly m push operations, and thus, it can
execute at most s+m pop operations. Each push costs exactly 1, and each pop
at mostm. Since m varies from one call to rpop to another, then s·m+ 1

2 (m
2+m)

is an UBF on the resource consumption of main([s,m], [s1]). The analysis of [2]
infers the cubic UBF m3 + s·m2 +m, which is asymptotically less precise.

408 D.E. Alonso-Blas and S. Genaim

1//@requires n>=0
2void p(int n) {
3 if (n > 0) {
4 m = q(n);
5 //@release(m)
6 p(n−m);
7 //@release(m)
8 }
9}

10//@requires n>=1
11 int q(int n) {
12 int i = n/2;
13 do {
14 A x = new A();
15 B y = new B();
16 //@acquire(2)
17 i−−;
18 // [...]
19 } while(i>0 && coin());
20 return n/2 − i;
21}

1 p([n], []) ←
2 n = 0.
3 p([n], []) ←
4 n ≥ 1,
5 q([n], [m]),
6 rel(m),
7 n1 = n−m,
8 p([n1], []),
9 rel(m).

10 l([i], [i1]) ←
11 i ≥ 0,
12 acq(2),
13 i1 = i− 1.

14 l([i], [i1]) ←
15 i ≥ 1,
16 acq(2),
17 i2 = i− 1,
18 l([i2], [i1]).
19 q([n], [m]) ←
20 n ≥ 1
21 i = n/2,
22 l([i], [i1]),
23 m = i− i1.

Fig. 2. Java code for the peak, and its ACR program

Example 2. The second example is depicted in Fig. 2. We use it to explain the
notion of peak resource consumption. Method q (J10-21) receives an integer n,
executes at least 1 and at most n/2 iterations of a loop (J13-19), and returns
the number of iterations that have been performed. This loop creates 2 objects
in each iteration (J14-15). Method p executes a loop (using recursion) where
in each iteration it calls q with the current value of the loop counter n, and
then performs a recursive call where the loop counter is decremented by m (the
number of iterations that q has performed). The ACR version, depicted in Fig. 2
on the right, its relation to the Java code is as in Ex. 1. We skip details and
only comment that procedure l (A10-23) corresponds to the while loop (J13-19).
Note that the ACR includes explicit resource release instructions (A6 and A9).

A call p([n], []) creates exactly 2·n objects. However, assuming that objects
of type A (resp. B) become unreachable at J5 (resp. J7), then m objects can
be garbage collected when reaching J5 (resp. J7). Thus, at any given moment
there cannot be more than n reachable objects, which means that a memory for
n objects (the peak consumption) is enough for safely executing this program.

The analysis of [2,3] infers the UBF n·(n+1)
2 which is asymptotically less precise.

In both programs of Exs. 1 and 2, the resource consumption is specified with the
annotations acq(e) and rel(e), for acquiring and releasing e resources respec-
tively. It should be clear that we are interested in inferring safe UBFs assuming
the given annotations, and not in inferring the annotations.

Syntax. Formally, an ACR program is a set of procedures. A procedure p is
defined by a set of rules of the form p(x̄, ȳ)← b1, b2, . . . , bn where x̄ (resp. ȳ) is a
sequence of input (resp. output) parameters, and each bi is one of the following
instructions: a (linear) constraint ϕ; a procedure call q(w̄, z̄); or a resource con-
sumption instruction acq(e) or rel(e) where e is an arithmetic expression that
evaluates to a non-negative value. In the rest of the paper we assume a given
program P (to avoid repeating “for a given program P”).

On the Limits of the Classical Approach to Cost Analysis 409

1© q(x̄, ȳ) ← b̄′ ∈ P

〈ψ, q(x̄, ȳ) · b̄〉 0� 〈ψ, b̄′ · b̄〉
2© ψ∧ϕ
|= false

〈ψ,ϕ · b̄〉 0� 〈ψ ∧ ϕ, b̄〉

3© eval(e, ψ) = v ≥ 0

〈ψ, acq(e) · b̄〉 v� 〈ψ, b̄〉 4© eval(e,ψ) = v ≥ 0

〈ψ, rel(e) · b̄〉 v� 〈ψ, b̄〉

Fig. 3. Semantics of ACR programs

Semantics. A state s takes the form 〈ψ, b̄〉, where b̄ is a sequence of instructions
pending for execution, and ψ is a constraint over vars(b̄) and possibly other ex-
istentially quantified variables. The store ψ imposes relations between variables
(e.g., x = 1, x > y). An execution starts from an initial state 〈x̄ = v̄, p(x̄, ȳ)〉,
where v̄ is a sequence of integers, which is then rewritten according to the rules
in Fig. 3. These rules define a transition relation s1

v� s2, meaning that there is
a transition from s1 to s2 that consumes v resources. Rule 1© handles procedure
calls, it (non-deterministically) selects a rule from P that matches the call, and
adds its instructions b̄′ to the sequence of pending instructions. Variables in b̄′

(except x̄ ∪ ȳ) are renamed such that they are different from vars(b̄) ∪ vars(ψ).
Rule 2© handles constraints by adding them to the store, if the resulting state
is satisfiable. Rules 3©- 4© handle resource consumption. They evaluate e to a
non-negative value v, and label the corresponding transition with v or −v.

The execution stops when no rule is applicable, which happens when the
execution reaches (1) a final state 〈ψ′, ε〉 where ε is the empty sequence; or
(2) a blocking state 〈ψ′, ϕ · b̄〉 where ϕ ∧ ψ′ |= false. A trace t is a finite or
infinite sequence of states in which there is a valid transition between each pair
of consecutive states. Traces that end in a final state and infinite traces are
called complete. Namely, we exclude traces that end in a blocking state. We
write s1

∗� s2 for a finite trace starting from s1 and ending at s2.

Definition 1 (trace cost). Given a finite trace t, its net-cost τ̃ (t) is the sum
of the cost labels on its transitions. Given a complete trace t, its peak-cost τ̂(t)
is defined as max{τ̃(t′) | t′ is a prefix of t}.

Note that the peak-cost is always non-negative since the empty trace is a prefix
of any trace t. However, the net-cost can be also negative. This is because we do
not require that resources are acquired before they are released. This is useful for
modeling consumer/producer programs, where the produced data can be viewed
as resources. Though, we do not address such scenarios in this paper.

Definition 2 (procedure cost). Given a procedure p with m input and n out-
put parameters, its net-cost π̃(p) and peak-cost π̂(p) are defined as

π̃(p)={〈v̄1, v̄2, τ̃ (t)〉 | v̄1 ∈ Zm, v̄2 ∈ Zn, t ≡ 〈x̄ = v̄1, p(x̄, ȳ)〉 ∗� 〈ψ, ε〉, ȳ = v̄2 |= ψ}
π̂(p) ={〈v̄1, τ̂ (t)〉 | v̄1 ∈ Zm, t is a complete trace and starts in 〈x̄ = v̄1, p(x̄, ȳ)〉}

Intuitively, the net-cost tells what is the balance between the resources that have
been acquired and released during the execution of p. Note that it only considers

410 D.E. Alonso-Blas and S. Genaim

traces that terminate in a final state. The peak-cost tells what is the maximum
amount of resources that a program can hold (i.e., acquired but not released
yet) at any given state during the execution. Note that Def. 2 does not consider
traces that terminate in a blocking state. This is because they do not correspond
to valid traces in the Java program, and obtained due to the abstraction.

We say that C ≥ 0 resources are enough for safely executing p(v̄, ȳ) without
running out of resources if C ≥ max{c | 〈v̄, c〉 ∈ π̂(p)}. Note that for terminating
programs that only acquires resources, one could also use C ≥ max{c | 〈v̄, v̄′, c〉 ∈
π̃(p)}. This is the case for example of the Stack program. Our main interest is
in inferring UBFs on the peak-cost of each procedure, however, this will require
inferring first UBFs on the net-cost of each procedure p as we will see later.

3 Shortcomings of the Classical Approach to Cost
Analysis

As explained in Sec. 1, the classical approach to cost analysis first transforms
a given program into a set of CRs, and then solves these CRs into UBFs. The
following CRs are automatically generated by [2] for the Stack program of Fig. 1

(1) rpop(s,m) = 0 {m ≥ 1 ∧ s ≥ 0}
(2) rpop(s,m) = m+rpop(s2 ,m) {m ≥ 1 ∧ s ≥ 1 ∧ s2 = s− 1}
(3) main(s,m) = 0 {m=0 ∧ s ≥ 0}
(4) main(s,m) = 1+rpop(s,m)+main(s3 ,m1) {m≥1∧s3=s2+1∧m1=m−1∧s≥s2≥0}

Eqs. (1)-(2) capture the cost of executing procedure rpop on the input s and
m, and Eqs. (3)-(4) capture the cost of executing procedure main on the input
s and m. Eq. (4) states that when m ≥ 1, the cost of executing main(s,m) is
1 (for the push operation); plus the cost of executing rpop(s ,m); plus the cost
of executing main(s3 ,m1). The constraints on the right side of each equation
define the applicability conditions for that equation (e.g., m ≥ 1) and relations
between its variables (e.g., s3 = s2+1). Note that the above CRs have a similar
structure to the corresponding ACR program of Fig. 1.

A fundamental difference between ACRs and CRs is that the latter do not
include the output parameters. For example, in Eq. (4), the output parameter s2
in the call to rpop has been removed, and the constraint s ≥ s2 ≥ 0 (underlined
in Eq. (4)) has been added to indicate that, upon exit from rpop, the value of s2
is non-negative and smaller than or equal to s. Note that this is the most precise
relation between the input and the output parameters of rpop. This information
is obtained by value analysis (at the level of the ACR program) that infers
relations between the input and the output parameters [6].

CRs can be evaluated (they are similar to a functional program with con-
straints) to obtain the cost of a corresponding procedure. E.g., main(v1, v2) can
be evaluated to obtain the cost of executing main([v1, v2], [y]). Clearly, due to
the non-determinism (e.g., in the constraints), the evaluation of main(v1, v2)
might result in several possible values. Soundness requires that the cost of any
trace for main([v1, v2], [y]) is a possible result for main(v1, v2). Nevertheless, the

On the Limits of the Classical Approach to Cost Analysis 411

interest is not in evaluating CRs, since it is like executing the ACR program,
but rather in statically computing UBFs that bound their results. For example,
the solver of [1] infers the UBF m3 + m2·s + m for main(s,m). Intuitively, it
does this as follows: (a) it infers the maximum number of iterations that main
can perform, which is m; (b) it infers a worst-case behaviour for all iterations,
which is 1 + (s + m)·m since the stack can have at most s + m elements; and
(c) it multiplies (a) and (b) to get the above UBF.

It is known that, in practice, cost analysers that are based on CRs fail to
obtain the desired UBFs for programs like those in Fig. 1 and 2. Moreover, as
yet, it was assumed that this failure is due to (i) the way CRs are solved into
UBFs; and (ii) the imprecision in the value analysis which is used to infer input-
output relations (as s ≥ s2 ≥ 0 above). It was also assumed that, in principle,
one could develop more sophisticated techniques for solving CRs [4] or use more
precise value analysis (e.g., non-linear) that would obtain precise UBFs for such
programs. In what follows we show that these assumptions are not true. In
particular, that Eqs. (3)-(4) in the above CRs do not model precisely the cost
of procedure main, and thus any sound UBF for main would be imprecise.

Let us consider an evaluation of main(s,m) in the above CRs. It is easy
to see that, using Eq. (4), we can choose s2 = s and thus get main(s ,m) =
1+rpop(s ,m)+main(s+1 ,m−1). Then, in the same way, we can get main(s+
1 ,m − 1) = 1 + rpop(s + 1 ,m − 1) + main(s + 2 ,m − 2), and so on for each

main(s+i ,m−i). Thus, an evaluation ofmain(s ,m) admits
∑m−1

i=0 (1+rpop(s+
i ,m − i)) as a possible result. Since rpop(s ,m) can always evaluate to s·m, the

above sum can be reduced to u(s ,m) = (m−1)
6 ·(m2 +3 ·s ·m+m+6). This means

that any UBF f(s,m) for Eqs. (3)-(4) must satisfy ∀s,m : f(s,m) ≥ u(s,m),
which is asymptotically less precise than the UBF from Ex. 1. Thus, we conclude
that the imprecision is not related to how CRs are solved, and not to imprecision
in the value analysis since the input-output relation s ≥ s2 ≥ 0 that we used
above is the most precise one.

The actual reason for this imprecision is that, in Eq (4), the value for s2, i.e.,
the output of rpop, and the cost of rpop(m, s) can be chosen independently. For
example, in the original program it is not possible that s2 = s and that the cost
of rpop(s ,m) is s·m, in which case s2 must be 0. However, in the above CRs this
scenario is possible. This relation cannot be captured if the UBFs are defined
only in terms of the input parameters, an observation that lead us to the idea
of defining UBFs in terms of both input and output parameters.

Example 3. Consider again procedure rpop([s ,m], [s ′]) of Fig. 1. The CRs-based
approach infers the UBF s·m for rpop, which depends only on the input param-
eters s and m. This indeed is the most precise UBF if only input parameters are
allowed, since there exists an execution in which we remove all stack elements.
However, if we allow the use of output parameters also, then (s−s′)·m describes
the exact cost of rpop: s− s′ is the number of elements that have been removed
from the stack, and removing each one costs m.

At this point, the use of output parameters to define UBFs might look inappro-
priate. This is because UBFs are usually used to statically estimate the amount

412 D.E. Alonso-Blas and S. Genaim

of resource required for safely executing the program. However, requiring in-
formation on the output parameters in order to evaluate a given UBF is like
actually requiring to execute the program. This is not really the case because of
the following two reasons. First, when inferring UBFs on the net-cost, we dis-
tinguish between the entry procedure (e.g., main), and intermediate procedures
(e.g., rpop). The UBF for the entry procedure will (almost always) be definable
in terms of its input parameters only, however, in order to infer a precise UBF for
the entry procedure, we need UBFs for the intermediate procedures in terms of
input and output parameters. Second, UBFs on the peak-cost, which are the im-
portant ones for safety, will use only input parameters, however, inferring them
will make use of net-cost UBFs that depend on input and output parameters.

4 Inference of Net-Cost

In this section we describe our approach for inferring UBFs on the net-cost of
the program’s procedures, which is based on defining the cost in terms of the
input and output parameters. We show that it can infer the precise cost of the
Stack example of Fig. 1. In Sec. 5, we extend it to infer UBFs on the peak-cost.

Definition 3 (safe net-cost UBFs). Let p be a procedure with n input and m
output parameters. A function f̃p : Zn+m �→ Q is a safe UBF on the net-cost of

p iff for any 〈v̄1, v̄2, c〉 ∈ π̃(p) it holds f̃p(v̄1, v̄2) ≥ c.

Intuitively, a function f̃p is an UBF on the net-cost of p if for any possible
execution that starts with input v̄1, terminates in a final state with an output
v̄2, and have net-cost c, it holds that f̃p(v̄1, v̄2) ≥ c. Clearly, CRs cannot be used
to infer such UBFs, since they do not use the output parameters.

In what follows we develop a novel approach for inferring such UBFs that is
based on the use of quantifier elimination. We present our approach in two steps:
(1) verification: in which we are given a set of candidate UBFs on the net-cost
of each procedure, and our interest is to verify that these functions are safe, i.e.,
satisfy Def. 3; and (2) inference: in which we are given a set of template UBFs,
and our interest is to instantiate the templates parameters into safe UBFs.

Verification of UBFs on the Net-Cost. Let us start by explaining the
basics of the verification step. Assume that we have a procedure p defined by
the following single rule

p(x̄, ȳ)← acq(e), q1(x̄1, ȳ1), . . . , qn(x̄n, ȳn)

and that we have a set of safe UBFs f̃q1 , . . . , f̃qn on the net-cost of q1, . . . , qn. To

verify that a given f̃p is a safe UBF on the net-cost of p, it is sufficient to check

that the condition f̃p(x̄, ȳ) ≥ e+ f̃q1(x̄1, ȳ1)+ · · ·+ f̃qn(x̄n, ȳn) holds for any values
of the program variables. Applying this principle to all rules of the program, it
is possible to verify the safety of several candidate UBFs simultaneously.

On the Limits of the Classical Approach to Cost Analysis 413

Given a set F̃ of candidate UBFs on the net-cost that includes a function
f̃p : Zn+m �→ Q for each procedure p ∈ P , we build a verification condition (VC

for short) whose validity implies the safety of each f̃p ∈ F̃ . The net-cost VC is
generated from the program rules as follows.

Definition 4 (Net-cost VC). Given a set F̃ of candidate UBFs, for each rule
r ≡ p(x̄, ȳ)← b1, b2, . . . , bn, we generate a condition ψr as follows:

1. let ϕ be the conjunction of all constraints in r;
2. let the net-cost b̃ of an instruction b be defined as follows: if b ≡ qi(x̄i, ȳi)

then b̃ ≡ f̃q(x̄i, ȳi), if b ≡ acq(e) then b̃ ≡ e, if b ≡ rel(e) then b̃ ≡ −e, and
if b is a constraint then b̃ ≡ 0;

3. let ψr ≡ ∀w̄ : ϕ⇒ f̃p(x̄, ȳ) ≥ b̃1 + · · ·+ b̃n where w̄ = vars(r).

Then, the net-cost VC is defined as Ψ(F̃) = ∧r∈Pψr.

Note that ψr is the condition we explained before, but taking into account the
constraints ϕ of the rule r which define the context in which this condition holds.

Example 4. Consider the program in Fig. 1, and let f̃r(s,m, s1) and f̃m(s,m, s1)
be candidate UBFs on the net-cost of rpop([s ,m], [s1]) and main([s,m], [s1]),
respectively. The verification condition for this program w.r.t. F̃ = {f̃r(s,m, s1),
f̃m(s,m, s1)} is Ψ(F̃) = ψr1 ∧ ψr2 ∧ ψr3 ∧ ψr4 where:

ψr1 ≡ ∀w̄1 : m ≥ 1 ∧ s ≥ 0 ∧ s1 = s ⇒ f̃r(s,m, s1) ≥ 0

ψr2 ≡ ∀w̄2 : m ≥ 1 ∧ s ≥ 1 ∧ s2 = s− 1 ⇒ f̃r(s,m, s1) ≥ m+ f̃r(s2,m, s1)

ψr3 ≡ ∀w̄3 : m = 0 ∧ s1 = s ∧ s ≥ 0 ⇒ f̃m(s,m, s1) ≥ 0

ψr4 ≡ ∀w̄4 :
m ≥ 1 ∧ s3 = s2 + 1∧
m1 = m− 1 ∧ s ≥ 0

⇒ f̃m(s,m, s1) ≥ f̃r(s,m, s2) + 1 + f̃m(s3, m1, s1)

The condition ψr4 , for example, corresponds to the second rule of procedure
main. It states that f̃m(s,m, s1) is a safe UBF if it is greater than the cost of
the call to rpop, i.e., f̃r(s,m, s2), plus 1 for the push operation, plus the cost of
the recursive call to main, i.e, f̃m(s3,m1, s1). This condition should hold for any
values that satisfy the constraint m ≥ 1∧ s3 = s2 +1∧m1 = m− 1∧ s ≥ 0, i.e.,
in the context of the second rule. Let us consider now the validity of Ψ(F̃) for
the following possible concrete definitions of f̃r(s,m, s1) and f̃m(s,m, s1)

(a) f̃m(s,m, s1) = s·m+ 1
2 (m

2 +m), and f̃r(s,m, s1) = (s− s1)·m
(b) f̃m(s,m, s1) = s·m+ 1

2 (m
2 +m), and f̃r(s,m, s1) = s·m

Using (a), we get that Ψ(F̃) is a valid formula. Note that here we use the optimal
UBFs for main and rpop. Using (b), we get that Ψ(F̃) is invalid, though both
UBF are safe. This is because, in this case, using s·m as an UBF for rpop is not
enough for proving that s·m+ 1

2 (m
2 +m) is an UBF for main.

Theorem 1. Given a set F̃ of candidate UBFs, if |= Ψ(F̃) then F̃ is safe.

Note that checking the validity of Ψ(F̃) is a first order problem that can be
solved using SMT solvers (see Sec. 7).

414 D.E. Alonso-Blas and S. Genaim

Inference of UBFs on the net-cost. For many applications it is useful to
infer the set F̃ , instead of verifying the correctness of a given one. This can be
formulated as seeking a set F̃ of UBFs for which Ψ(F̃) is valid, which means
solving the formula ∃f̃1 f̃2 . . . f̃k : Ψ(F̃). However, this is a second order problem
and solving it in general is impractical. A common approach to avoid solving a
second order formula is the use of template functions that restrict the form of
functions that we are looking for. A template for f̃p(x̄, ȳ) is a function with a
fixed structure, defined over the variables x̄ ∪ ȳ, and some unknown template
parameters.

Example 5. The following are UBF templates for procedure main and rpop:

1. f̃r(s,m, s1) = λ1·s·m+ λ2·s1·m+ λ3·s+ λ4·m+ λ5·s1 + λ0

2. f̃m(s,m, s1) = μ1·s·m+ μ2·m2 + μ3·s1·m+ μ4·s+ μ5·m+ μ6·s1 + μ0

The variables λ̄ and μ̄ are the template parameters.

Assuming that F̃ is a set of candidate UBF templates, and that P is the set of
template parameters, the inference problem is reduced to solving the first order
problem ∃P : Ψ(F̃). This can be solved by combining quantifier elimination and
SMT solvers (see Sec. 7). The idea behind UBF templates is that later we will
assign values to the template parameters such that the resulting UBFs are safe.

Note that in Ex. 5 we have chosen simple templates just to keep the technical
details in the next examples simple. We could also choose a cubic polynomial
template, and later try to find an instantiation such that the parameters of the
cubic parts are assigned 0 (in order to get the quadratic UBF). In principle,
any template UBF can be used as far as it uses arithmetic expressions that are
supported by the quantifier elimination procedure (see Sec. 7).

Example 6. Using the templates of Ex. 5 in the VC of Ex. 4, we get a VCΨ(F̃) in
which the template variables λ̄∪ μ̄ are free variables. Eliminating the universally
quantified variables, we get a formula ξ over λ̄ ∪ μ̄ that is a conjunction of the
following equalities and inequalities:

λ1 ≥ 1 λ2 = −λ1 λ1 + λ3 ≥ 1 μ6 ≥ λ5 − λ1 2·μ2 ≥ λ1 + λ4

λ4 ≥ 0 μ1 = λ1 λ3 + λ5 ≥ 0 μ4 = λ1 − λ5 μ5 + μ2 ≥ μ4 + λ0 + λ4 + 1
μ0 ≥ 0 μ3 = 0 λ0 + λ4 ≥ 0 λ1 ≥ λ3 + λ5

Each model of ξ assigns values to the template parameters λ̄ and μ̄ such that
f̃r(s,m, s1) and f̃m(s,m, s1) of Ex. 5 are safe UBFs for rpop and main respec-
tively. For example, it is easy to check that

μ1 = 1, μ2 = μ5 =
1

2
, μ4 = μ6 = μ0 = 0, λ1 = 1, λ2 = −1, λ3 = λ4 = λ5 = 0

is a model of ξ, which corresponds to the desired UBFs s·m + 1
2 (m

2 +m) and
(s − s1)·m for procedures main and rpop respectively. It is worth noting the
inequalities λ1 ≥ 1 and λ2 = −λ1, meaning that any UBF for rpop must involve
both s·m and s1·m (recall that s1 is its output parameter). If we analyse rpop
alone this would not be the case, and UBFs like s·m would be possible, however,
this is essential in order to obtain the quadratic UBF for main.

On the Limits of the Classical Approach to Cost Analysis 415

It is important to note that once the constraints over the template parameters
(i.e., ξ in the above example) are generated, then one should try to find a model
of ξ that results in a tight UBF. This process usually depends on the kind of
expression used in the templates. For example, in the case of polynomial tem-
plates one could try to first set the parameters of the higher degree components
to 0, etc. Another possibility is to start from a polynomial with low degree, and
increment it gradually until an UBF is found.

5 Inference of Peak-Cost

When a given program only acquires resources, the net-cost analysis can be used
to estimate the amount of resources required for safely executing the program.
This, however, is not the case when the program can also release resources.
For example, the net-cost of the program in Fig 2 is 0, since all resources are
released either at J5 or J7, however, it requires at least n+ 1 resources in order
to execute correctly. In order to estimate the amount of resources required for
safely executing such programs, what we need is the peak-cost, which is the
maximum amount of resources that a program can hold simultaneously.

Definition 5 (safe peak-cost UBFs). Let p be a procedure with n input pa-

rameters. A function f̂p : Zn �→ Q is a safe UBF on the peak-cost of p, iff for

any 〈v̄1, c〉 ∈ π̂(p) it holds f̂p(v̄1) ≥ c.

Our approach for inferring UBFs on the peak-cost is done in two steps, verifica-
tion and inference, similar to the case of net-cost.

Verification of UBFs on the Peak-Cost. Let us start by explaining the
basics of the verification step. Assume that we have a procedure p defined by
the following single rule

p(x̄, ȳ)← q1(x̄1, ȳ1), q2(x̄2, ȳ2)

and assume that we have UBFs f̂q1 and f̂q2 on the peak-cost of q1 and q2 re-

spectively. We are interested in verifying that a given function f̂p(x̄) is indeed
a safe UBF on the peak-cost of p. When executing p, the peak-cost might be
reached while executing q1 or q2. If it is reached during q1, then the peak-cost
of p is like that of q1, and if it is reached during q2, then the peak-cost of
p is like that of q2 plus the amount of resources that p holds before calling
q2. Now note that this last amount is exactly the net-cost of q1. Thus, in or-
der to verify the correctness of f̂p it is sufficient to check that the condition

f̂p(x̄) ≥ f̂q1 (x̄1)∧ f̂p(x̄) ≥ f̃q1 (x̄1, ȳ1)+ f̂q2(x̄1) holds for any values of the program

variables, where f̃q1 (x̄1, ȳ1) is a safe UBF on the net-cost of q1. Applying this
principle to all rules of the program, it is possible to verify the correctness of
several UBFs simultaneously.

Given a set F̂ of candidate UBFs on the peak-cost, which includes a function
f̂p : Zn �→ Q for each procedure p ∈ P , we want to build a VC whose validity

416 D.E. Alonso-Blas and S. Genaim

implies that each f̂p is indeed a safe UBF. For this, we assume a given set F̃ of

safe UBFs on the net-cost of each procedure (later we will see that F̂ and F̃ can
be verified or inferred simultaneously). The peak-cost VC, denoted by Φ(F̃ , F̂),
is generated from the program rules as we explain next.

Definition 6 (Peak-cost VC). Let F̂ be a set of candidate UBFs on the peak-
cost, and F̃ be a set of safe UBFs on the net-cost. For each rule r ≡ p(x̄, ȳ) ←
b1, b2, . . . , bn, we generate a condition φr according to the following steps

1. let b�1, . . . , b�k , with 1 ≤ �1 < · · · < �k ≤ n, be all elements of the body that
are of the form q�i(x̄�i , ȳ�i) or acq(e). We assume there is at least one such
element, otherwise we add acq(0) at the end of r;

2. let ϕi be the conjunction of all constraints in r up to b�i ;

3. the peak-cost b̂�i of an instruction b�i is defined as follows: if b�i ≡ q�i(x̄�i , ȳ�i)

then b̂�i ≡ f̂q(x̄�i), and if b�i ≡ acq(e) then b̂�i ≡ e;

4. let φr be the formula below where w̄ = vars(r) and b̃j are as in Def. 4.

φr ≡ (∧k
i=1∀w̄ : ϕi ⇒ f̂p(x̄) ≥ (Σ�i−1

j=1 b̃j) + b̂j))︸ ︷︷ ︸
A

∧ (∀w̄ : ϕ1 ⇒ f̂p(x̄) ≥ 0))︸ ︷︷ ︸
B

Then, the peak-cost VC is Φ(F̃ , F̂) = ∧r∈Pφr.

Let us explain the parts of φr: (A) this part generalises the intuition that we have
explained before. Intuitively, the instructions b�1 , . . . , b�k are those that might
increase the resource consumption, thus, the peak-cost of p should be greater
than or equal to the peak-cost b̂�i of each b�i plus the resources

∑�i−1
j=1 b̃j that

p holds before executing b̂�i (note the use of the net-cost b̃j); and (B) this part
requires that the peak function is non-negative. Note that in principle we should
require ∀w̄ : ϕi ⇒ f̂p(x̄) ≥ 0 for all i ∈ [1 . . . k], however, requiring B is enough
since ϕi ⇒ ϕ1 for all i ∈ [2 . . . k]. In the examples below we sometimes omit the
second part B when it is redundant.

Example 7. The peak-cost VC for the program of Fig. 2, w.r.t. (some generic)
F̃ and F̂ , is Φ(F̃ , F̂) = φr1 ∧ · · · ∧ φr5 where

φr1 ≡ ∀w̄1 : n = 0 ⇒ f̂p(n) ≥ 0

φr2 ≡ (∀w̄2 : n ≥ 1 ⇒ f̂p(n) ≥ f̂q(n))∧
(∀w̄2 : n ≥ 1 ∧ n1 = n− 1 ⇒ f̂p(n) ≥ f̃q(n,m)−m+ f̂p(n1))∧
(∀w̄2 : n ≥ 1 ⇒ f̂p(n) ≥ 0)

φr3 ≡ ∀w̄3 : i ≥ 0 ⇒ f̂l(i) ≥ 2

φr4 ≡ (∀w̄4 : i ≥ 1 ⇒ f̂l(i) ≥ 2) ∧ (∀w̄4 : i ≥ 1 ∧ i2 = i− 1 ⇒ f̂l(i) ≥ 2 + f̂l(i2))

φr5 ≡ (∀w̄5 : n ≥ 1 ∧ i = n
2
⇒ f̂q(n) ≥ f̂l(i)) ∧ (∀w̄5 : n ≥ 1 ∧ i = n

2
⇒ f̂q(n) ≥ 0)

Formula φr2 , for example, corresponds to the second rule of procedure p. It
consists of 3 subformulas, the first two are the A-part and the last is the B-part.
In the second, note the expression f̃q(n,m)−m which is the amount of resource

that p holds before the recursive call to p. Using f̃q(n,m) = 2·m, f̂p(n) = n+ 2,

On the Limits of the Classical Approach to Cost Analysis 417

f̂q(n) = n+2, and f̂l(i, i1) = 2·i1+2, it is possible to verify that Φ(F̃ , F̂) is valid.

However, using another safe UBF on the net-cost of q, e.g., f̃q(n,m) = n + 2,

then Φ(F̃ , F̂) is not valid. Indeed, 2·m is the most precise UBF on the net-cost
of q, and is the one needed to verify the above UBF on the peak-cost of p.

Theorem 2. Given a set F̃ of safe UBFs on the net-cost (Th. 1), and a set F̂
of candidate UBFs on the peak-cost, if |= Φ(F̃ , F̂), then F̂ is safe.

As in the case of Ψ(F̃) cost, checking the validity of Φ(F̃ , F̂) reduces to a
satisfiability problem of first order logic.

Inferring UBFs on the Peak-Cost. Our main interest is in inferring F̂ rather
than verifying the correctness of a given one. This can be done using template
UBFs as the case of net-cost. However, an important point is that instead of
assuming a given set F̃ of UBFs on the net-cost, we can infer it at the same time
as F̂ , simply by considering the VC Φ(F̃ , F̂) ∧ Ψ(F̃). This is actually essential
in practice, since as we have seen in Ex. 7 not any safe UBF on the net-cost can
be used to infer the peak-cost. Inferring them simultaneously will force choosing
the required one.

Example 8. Let F̃ and F̂ be defined by the following linear UBF templates:

f̃p(n) = λ1·n+ λ2 f̃q(n,m) = λ3·n+ λ4·m+ λ5 f̃l(i, i1) = λ6·i+ λ7·i1 + λ8

f̂p(n) = μ1·n+ μ2 f̂q(n) = μ3·n+ μ4 f̂l(i) = μ5·i+ μ6

and let Φ(F̃ , F̂) be the VC of Ex. 7 using these F̃ and F̂ . Moreover, let Ψ(F̃) =
ψr1 ∧ · · · ∧ ψr5 be the corresponding net-cost VC using the above F̃ , where

ψr1 ≡ ∀w̄1 : n = 0 ⇒ f̃p(n) ≥ 0

ψr2 ≡ ∀w̄2 : n ≥ 1 ∧ n1 = n− 1 ⇒ f̃p(n) ≥ f̃q(n,m)−m+ f̃p(n1) +m

ψr3 ≡ ∀w̄3 : i ≥ 0 ∧ i1 = i− 1 ⇒ f̃l(i, i1) ≥ 2

ψr4 ≡ ∀w̄4 : i ≥ 1 ∧ i2 = i− 1 ⇒ f̃l(i, i1) ≥ 2 + f̃l(i2, i1)

ψr5 ≡ ∀w̄5 : n ≥ 1 ∧ i = n
2
,m = i− i1 ⇒ f̃q(n,m) ≥ f̃l(i, i1)

Then, applying quantifier elimination on Φ(F̃ , F̂) ∧ Ψ(F̃) to eliminate the uni-
versally quantified variables, we get a formula ξ over the template parameters
that is a conjunction of the following equalities and inequalities

λ2 ≥ 0 λ3 = 0 λ8 ≤ λ5 ≤ 0 λ1 = λ4 − 2 λ6 + λ8 ≥ 2
λ6 ≥ 2 μ6 ≥ 2 μ1 = λ1 + 1 λ4 = λ6 = −λ7 2·μ6 + μ5 ≤ 2·μ4 + 2·μ3

μ5 ≥ 2 μ2 ≥ 0 2·μ3 ≥ μ5 λ6 ≥ μ3 + 1 μ1 + μ2 ≥ μ3 + μ4

The models of ξ define possible instantiations F̃ and F̂ such that they are safe
UBFs. E.g., there is a model of ξ with μ1 = 1 and μ2 = 2 which defines the UBF
n + 2 on the peak-cost of p. Note the constraint λ3 = 0, which means that the
UBF on the net-cost of q must not depend on the input n (in Ex. 7 we failed with
f̃q(n,m) = n+ 2). This demonstrates how the peak-cost VC affects the net-cost
one. Note that, for p, we have inferred the UBF n+ 2 and not the optimal one
n+ 1 because the quantifier elimination is done over R and not over Z.

418 D.E. Alonso-Blas and S. Genaim

Example 9. Let us finish with an example of a non-terminating program. Con-
sider the following (contrived) program, which is defined by a single rule

p([n], [y1])← n ≥ m ≥ 0, acq(m), n1 = n−m, p([n1], [y1]).

Procedure p receives a non-negative integer n, non-deterministically chooses a
non-negative value m ≤ n, acquires m resources, and then calls p recursively
with n−m. The peak-cost of this program is exactly n, since any infinite trace
cannot acquire more than n resources and there are infinite traces that acquire
exactly n. The peak-cost VC for this program is

(∀n,m : n ≥ m ≥ 0⇒ f̂p(n) ≥ m) ∧ (∀n,m : n ≥ m ≥ 0⇒ f̂p(n) ≥ m+ f̂p(n1)

Assuming the template UBF f̂p(n) = λ1·n+λ2, the elimination of the universally
quantified variables result in the formula ξ = λ1 ≥ 1 ∧ λ2 ≥ 0. Since λ1 = 1 and
λ2 = 0 is a model of ξ, then f̂p(n) = n is a safe UBF.

6 Relation to Amortised Cost Analysis

In this section we discuss an interesting relation that we have observed between
UBFs that are defined in terms of both input and output parameters, and the
notion of potential functions used in the context of amortised cost analysis. This
may provide a semantics-based explanation to why amortised analysis can obtain
more precise UBFs.

A potential function, in the context of an ACR, is a function that maps a given
state to a non-negative rational number, which is called the potential of the state.
This potential can be interpreted as the amount of resources available in the given
state. An automatic amortised cost analysis [15] assigns to each procedure p(x̄, ȳ)
two potential functions: input Pp(x̄), and output Qp(ȳ). Intuitively, the input
potential Pp(x̄) must be large enough to pay for the cost of executing p(x̄, ȳ),
and, upon exit, leaving at least Qp(ȳ) resources to be consumed later. Thus, if c
is the net-cost of p, then Pp(x̄) ≥ c+Qp(ȳ) must hold. This later expression can
be rewritten as Pp(x̄)−Qp(ȳ) ≥ c, which means that Pp(x̄)−Qp(ȳ) is an UBF on
the net-cost of p, but also is an UBF that uses input and the output parameters.
Thus, the above potential functions are in principle UBFs as defined in Def. 3,
however, they are just a special case since Pp(x̄) −Qp(ȳ) does not allow using,
for example, expressions like s1·m.

We have tried to analyse (a functional version of) the Stack example using
the amortised analysis of [15], which uses the above notion of potential func-
tions. The analysis failed to obtain the expected quadratic UBF, and instead,
it reported a cubic UBF. This failure confirms that it is essential to define the
output potential for rpop as s1·m, which cannot be defined using the above kind
of potential functions. Note that this should not be interpreted as a fundamental
limitation of [15], since their underlying machinery can be easily adapted to sup-
port potential functions of this form. In addition, the above discussion should
be considered only in the context of the ACR language, since amortised analysis
has many other features that goes beyond the ACR language.

On the Limits of the Classical Approach to Cost Analysis 419

7 Implementation and Experiments

A prototype implementation of our analysis is available at
http://costa.ls.fi.upm.es/acrp. It receives as input an ACR program and
a set of template UBFs. Then, it generates the VCs described in Secs. 4 and 5 as
a Reduce script [20], executes the script to eliminate the universally quantified
variables, and finally outputs the template parameters constraints in SMT2-LIB
format, which can be then solved using off-the-shelf SMT solvers.

For the quantifier elimination, the Reduce script uses the Redlog pack-
age [11] with the theory of real closed fields. This theory allows using a wide
range of template UBFs, such as multivariate polynomial, max and min opera-
tions, etc. As done in [19], Redlog can be switched to use Slfq [7], which is
a formula simplifier for the theory of real closed fields. Using Slfq significantly
reduces the size of the template parameters constraints, and thus improves the
overall performance. For solving the template parameters constraints we have
used Z3 [21], employing the logic of non linear real arithmetic (QF NRA). Cur-
rently, we only ask the SMT solver for a satisfying assignment, which in turn
instantiate the templates to safe UBFs. Looking for an assignment that gives
the tightest UBFs is left for future work.

We have applied the analyser on small examples collected from cost analysis
literature. All are available in the above address. For these examples we obtained
the expected precise UBFs. Unfortunately, being based on real quantifier elimi-
nation, our procedure does not yet scale for large programs. In a future work we
plan to explore patterns of ACR programs for which (a variation of) the analysis
scales, e.g., for the case of the multivariate polynomials of [15].

8 Related Work

Static cost analysis dates back to the seminal work of Wegbreit [22]. Recently
it has received a considerable attention which resulted in several cost analysers
for different programming languages [2,10,12,15]. The research in this paper is
mostly related to [2] and [15], in the sense that our research was motivated by
the limitations of [2], and our solution turned to have common ideas with of [15]
as we have explained in Sec. 6. When comparing [15], the advantage of our
analysis is in that it has a more general notion of potential functions, it is not
limited to polynomial templates, and can handle variables with negative values.
However, unlike ours, their techniques can handle data-structures by assigning
potentials to its parts, and their tool is reasonably scalable and performs very
well in practice.

Our peak-cost constraints are similar to those of [3], they were used for infer-
ring memory consumption in the presence of garbage collection. The limitations
of CRs have been considered also in [4], but from a different perspective. Solving
CRs using template function and real quantifier elimination has been consid-
ered before in [5]. However, it cannot handle the limitations we pointed out in
this paper, and cannot handle non-terminating programs. Also [13,23] deal with

http://costa.ls.fi.upm.es/acrp

420 D.E. Alonso-Blas and S. Genaim

similar problems, however, they cannot handle the limitation described in this
paper, and cannot handle non-terminating programs. Real quantifier elimination
has been used for program verification in [8,16,18].

9 Conclusions

In this paper we have studied well known limitations of cost analysis approaches
that are based on the use of CRs. We have shown that, unlike it was assumed
so far, the reason for these limitations is that CRs ignore the output values of
procedures. In particular, we have shown that there are programs whose cost
cannot be modeled precisely using CRs. In order to overcome these limitations,
we have defined the notion of UBFs that use both input and output parameters,
and developed a novel approach for cost analysis that is based on this kind
of UBFs. Interestingly, we have found a relation between this kind of UBFs
and potential functions that are used in automatic amortised cost analysis [15],
which might give an alternative explanation to why amortised analysis (of ACR
programs) can be more precise than the classical approach.

Starting from template UBFs, our analysis generates a verification condition
over these templates in which the program variables are universally quantified.
Eliminating these variables using quantifier elimination tools results in a (pos-
sibly non-linear constraint) whose models define possible instantiations for the
templates such that they are safe UBFs. An important feature of approach is
that it can be used for inferring lower-bounds (for terminating programs) with
minimal changes: just replacing ≥ by ≤ in the VC, and, in addition, ∧ by ∨ in
each peak-cost condition φr. Due to lack of space we skipped the details. We
have also reported on a preliminary implementation and its evaluation on small
examples. For future work, we would like to find some special cases of ACR
program for which the analysis can scale to large programs.

Acknowledgements. This work was funded in part by the Information &
Communication Technologies program of the European Commission, Future
and Emerging Technologies (FET), under the ICT-231620 HATS project, by
the Spanish Ministry of Science and Innovation (MICINN) under the TIN-
2008-05624 and PRI-AIBDE-2011-0900 projects, by UCM-BSCH-GR35/10-A-
910502 grant and by the Madrid Regional Government under the S2009TIC-
1465 PROMETIDOS-CM project. Diego Alonso is supported by the UCM PhD
scholarship program.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Object-Oriented Bytecode Programs. Theoretical Computer Science 413(1), 142–
159 (2012)

On the Limits of the Classical Approach to Cost Analysis 421

3. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Parametric Inference of Memory
Requirements for Garbage Collected Languages. In: ISMM, pp. 121–130. ACM,
New York (2010)

4. Albert, E., Genaim, S., Masud, A.N.: More Precise Yet Widely Applicable Cost
Analysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp.
38–53. Springer, Heidelberg (2011)

5. Anderson, H., Khoo, S.-C., Andrei, Ş., Luca, B.: Calculating Polynomial Runtime
Properties. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 230–246. Springer,
Heidelberg (2005)

6. Benoy, F., King, A.: Inferring Argument Size Relationships with CLP(R). In: Gal-
lagher, J.P. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 204–223. Springer, Heidel-
berg (1997)

7. Brown, C.W., Gross, C.: Efficient Preprocessing Methods for Quantifier Elimina-
tion. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS,
vol. 4194, pp. 89–100. Springer, Heidelberg (2006)

8. Chen, Y., Xia, B., Yang, L., Zhan, N., Zhou, C.: Discovering Non-linear Ranking
Functions by Solving Semi-algebraic Systems. In: Jones, C.B., Liu, Z., Woodcock,
J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 34–49. Springer, Heidelberg (2007)

9. Cormen, T.H., Leiserson, C.E., Rivest, R., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

10. Debray, S.K., Lin, N.-W.: Cost Analysis of Logic Programs. ACM Transactions on
Programming Languages and Systems 15(5), 826–875 (1993)

11. Dolzmann, A., Sturm, T.: REDLOG: Computer Algebra meets Computer Logic.
ACM SIGSAM Bulletin 31(2), 2–9 (1997)

12. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In: Proc. of POPL 2009, pp.
127–139. ACM (2009)

13. Gulwani, S., Zuleger, F.: The Reachability-Bound Problem. In: PLDI, pp. 292–304.
ACM (2010)

14. Hickey, T.J., Cohen, J.: Automating Program Analysis. J. ACM 35(1), 185–220
(1988)

15. Hofmann, M., Hoffmann, J., Aehlig, K.: Multivariate Amortized Resource Analysis.
In: POPL 2011, pp. 357–370. ACM (2011)

16. Kapur, D.: Automatically generating loop invariants using quantifier elimination.
In: Deduction and Applications, vol. 05431 (2006)

17. Le Métayer, D.: ACE: An Automatic Complexity Evaluator. ACM Trans. Program.
Lang. Syst. 10(2), 248–266 (1988)

18. Monniaux, D.: Automatic modular abstractions for template numerical constraints.
Logical Methods in Computer Science 6(3) (2010)

19. Sturm, T., Tiwari, A.: Verification and Synthesis using Real Quantifier Elimination.
In: ISSAC 2011, pp. 329–336. ACM (2011)

20. REDUCE Computer Algebra System. REDUCE home page
21. Z3 Theorem Prover. Z3 home page
22. Wegbreit, B.: Mechanical Program Analysis. Communications of the ACM 18(9)

(1975)
23. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound Analysis of Imperative Pro-

grams with the Size-Change Abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS,
vol. 6887, pp. 280–297. Springer, Heidelberg (2011)

Termination Proofs for Linear Simple Loops�

Hong Yi Chen1, Shaked Flur2, and Supratik Mukhopadhyay1

1 Department of Computer Science
Louisiana State University
Baton Rouge, LA 70803

hchen11@lsu.edu, supratik@csc.lsu.edu
2 Department of Computer Science

The Technion
Haifa 32000, Israel

fshaked@cs.technion.ac.il

Abstract. Analysis of termination and other liveness properties of an
imperative program can be reduced to termination proof synthesis for
simple loops, i.e., loops with only variable updates in the loop body.
Among simple loops, the subset of Linear Simple Loops (LSLs) is par-
ticular interesting because it is common in practice and expressive in
theory. Existing techniques can successfully synthesize a linear ranking
function for an LSL if there exists one. However, when a terminating LSL
does not have a linear ranking function, these techniques fail. In this pa-
per we describe an automatic method that generates proofs of universal
termination for LSLs based on the synthesis of disjunctive ranking rela-
tions. The method repeatedly finds linear ranking functions on parts of
the state space and checks whether the transitive closure of the transition
relation is included in the union of the ranking relations. Our method ex-
tends the work of Podelski and Rybalchenko [27]. We have implemented
a prototype of the method and have shown experimental evidence of the
effectiveness of our method.

1 Introduction

Termination proof synthesis for simple loops, i.e., loops with only variable up-
dates in the loop body, are the building blocks of the liveness analysis of large
complex systems [16, 29, 17, 10, 23, 26, 25, 28, 22, 24]. In particular, we consider
a subclass of simple loops which contain only linear updates with the flexibility
of handling nondeterminism. We call them Linear Simple Loops (LSLs). LSLs
are interesting because most loops in practice are indeed linear; more impor-
tantly, with its capability to handle nondeterminism LSLs are expressive enough
to serve as a foundational model for other simple loops.

� This research is partially supported by NSF under the grant 0965024. Any opinions,
findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 422–438, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Termination Proofs for Linear Simple Loops 423

It is well known that termination of simple loops with linear guards and
linear assignments (they form the deterministic subclass of LSL) over rationals
or reals is decidable [34]. The termination problem for “homogeneous cases” over
integers, of the deterministic LSL subclass is also decidable [9]. Ben-Amram et
al. recently proved termination of LSLs is undecidable when the the coefficients
are from Z ∪ {r} with r being an arbitrary irrational number [2]. However,
when we reduce the analysis of a complex system to that of an LSL, knowing
whether or not the LSL terminates is not enough, we often need to obtain a
termination proof, such as a ranking function or a ranking relation, that the
overall analysis can build upon [16, 29, 17, 10, 23, 26, 25, 28]. When it comes to
finding termination proofs for LSLs, Podelski and Rybalchenko’s technique [27]
can generate a linear ranking function if there exists one. This method is based
on Farkas’s lemma [33] that provides a technique to derive hidden constraints
from a system of linear inequalities. The method is complete when LSLs range
over rationals or reals. However, if a terminating LSL has only non-linear ranking
functions, this method will return failure. In this paper, we extend the method
of Podelski and Rybalchenko, and solve cases for which only non-linear ranking
functions exist.

Our approach is closely related to the previous work on termination proof
synthesis based on disjunctive ranking relations. The traditional method for
proving program termination, proposed by Turing [35], relies on proving R ⊆
τ(f), where R is the program’s transition relation, τ(f) is a ranking relation
given by a ranking function f . The difficulty with Turing’s method is that a
single ranking function is usually hard to find. With LSLs in particular, non-
linear ranking functions are often difficult to synthesize. To address this problem
Podelski and Rybalchenko proposed [28] proving R+ ⊆ τ(f1)∪· · ·∪τ(fn), where
R+ is the transitive closure of R, and τ(f1)∪· · ·∪τ(fn) is a finite union of ranking
relations. Many recent approaches for proving termination for general programs
are based on disjunctive ranking relations [3, 4, 1, 18, 17, 29, 26, 25]. In this
paper, instead of trying to synthesize a single non-linear ranking function, we
generate disjunctive linear ranking functions and check the validity of R+ ⊆
τ(f1) ∪ · · · ∪ τ(fn).

To be able to apply the disjunctive ranking relation proof rule [28], we need
the technique of binary reachability check (BRC). That is, given a disjunctive
ranking relation T , we need to prove or disprove the inclusion R+ ⊆ T . We use
the technique developed by the Terminator team [17] to check this inclusion.
Their approach is to syntactically transform the program so that binary reach-
ability check is reduced to unary reachability check, which is a well studied task
and can be carried out on any temporal safety checker. Moreover, if the validity
of R+ ⊆ T is not satisfied, the construction of the transformed program will en-
able the safety checker to generate an error path that violates the inclusion. In
our problem setting, if the input to BRC is an LSL, the error path will induce a
new LSL which is an unrolling of the original LSL. Thus we can repeatedly check
for binary reachability and expand the current disjunctive ranking relation.

424 H.Y. Chen, S. Flur, and S. Mukhopadhyay

In this paper we provide a method for automatically generating disjunctive
ranking relations as proofs of universal termination for LSLs. Roughly speaking,
the idea is to repeatedly partition the state space based on trace segments [19, 31,
21] such that one of the subspace is guaranteed to have a linear ranking function.
The partitioning will generate a series of linear ranking functions fi’s such that
R ⊆

⋃
τ(fi). However this does not suffice as a termination proof since the

inclusion should refer to R+ and not to R. For a termination proof we leverage
BRC; if R+ ⊆

⋃
τ(fi) is satisfied, it returns success; if not, BRC provides a new

LSL, and we look for the next series of ranking functions fj’s. We then again
check for the inclusion R+ ⊆

⋃
τ(fi) ∪

⋃
τ(fj). This process continues until we

successfully find an over-approximation of R+. The question that remains is how
to effectively find the sub-space for which a linear ranking function exists. To
answer this question, we resort to the simple fact that when variables range over
Z and updates are deterministic, two constraints x ≥ b and x > x′, where b is a
number, x′ represents the value of x after one transition, guarantees x to be a
ranking function. Similarly, whenever we have a constraint of the form ϕ ≥ b, we
partition the state space by constraint ϕ > Shift(ϕ) (function Shift is formally
defined in Section 4.2) and its negation ϕ ≤ Shift(ϕ). When the variables range
over Q or R, or updates are nondeterministic, more complicated partition needs
to be performed, as is described in Section 3.2 and 4.2.

Lastly, we provide experimental results showing that our method outperforms
both linear ranking function synthesis [27] and polyranking method [7] on a suite
of LSL examples provided in [11].

Related Work. Rather than looking for disjunctive ranking relations as the
termination proof, Cousot [20] shows how non-linear ranking functions can be
synthesized over nonlinear loops based on the S-procedure for semi-definite pro-
gramming. Colón and Sipma’s work on linear loops with multiple paths and
assertional transition relations achieve to synthesize linear ranking functions via
polyhedral manipulation in [13, 14]. Bradley et al. show how to synthesize lexico-
graphic linear ranking functions with supporting linear invariants over loops with
linear assertional transition relations in [6]. Another type of termination proof
is polyranking functions raised by Bradley et al. A polyranking function needs
not always decrease but decreases eventually. It is a generalization of the regu-
lar polynomial ranking function. In [8], the authors show a method for finding
bounded expressions that are eventually negative over loops with parallel tran-
sitions. In [7], the authors demonstrate a method for synthesize lexicographic
linear polyranking functions with supporting linear invariants over linear loops.

Other related works include proving conditional termination, which aims to
find a set of initial states, usually an underapproximation of it, that guarantees
termination. Cook et al. in [15] proposed an approach that first finds potential
ranking functions then solves for the sub-space that guarantees the potential
ranking function to be a true ranking function. Bozga et al. represent the set
of non terminating states in terms of greatest fixpoint and then utilize quanti-
fier elimination to deduce the exact set and consequently the dual set (i.e. the
terminating states).

Termination Proofs for Linear Simple Loops 425

2 Preliminaries

2.1 Loop Model and Semantics

Through out this paper, all variables range over domain Z, Q, or R. The following
definition provides the syntax of LSLs.

Definition 1 (Linear Simple Loops). A Linear Simple Loop over program
variables X0 = (x1, x2, . . . , xm) and its n copies X1, X2, . . . , Xn (m,n ≥ 1) is
a tuple L = 〈Cond,Update, i, j〉 where

– Cond is a set of linear constraints of the form aiX
i � b

(� ∈ {<,≤,=,≥, >}).
– Update is a set of linear constraints of the form a0X

0 + · · ·+ anX
n � b

(� ∈ {<,≤,=,≥, >}).
– i and j are integers and 0 ≤ i < j ≤ n.
– ak and b are coefficients that range over Z or Q.

We sometime refer to Cond and Update as loop conditions and loop updates
respectively. Intuitively, L describes unrolling of a loop (and maybe some extra
constraints) with a back edge from j to i.

The formal semantics of LSL is defined as follows. Let L =
〈Cond,Update, i, j〉 be an LSL over variables X0 and its n copies
X1, X2, . . . , Xn. An (n + 1)-trace of L is a tuple (s0, s1, . . . , sn) such that all
the constraints in Cond and Update are satisfied simultaneously when assign-
ing s0 to X0, s1 to X1, . . . , sn to Xn. We denote by Rn+1(L) the set of all
(n+ 1)-traces of L and R(L) the relation L describes.

R(L) = {(si, sj) | (s0, s1, . . . , sn) ∈ Rn+1(L)}

The most simple LSL L = 〈Cond,Update, 0, 1〉 involves only X0 and X1.
Without explicitly stating i and j, by default we assume i = 0, j = 1. An
L = 〈Cond,Update, 0, 1〉 describes a transition relation from a state that is
before a transition (given by X0) to the corresponding state that is after the
transition (given by X1). For example, the following while loop

while (x > 0)

x := x− 1;

can be rewritten as the following LSL

L1 � 〈{x0 > 0}, {x1 = x0 − 1}, 0, 1〉

An L = 〈Cond,Update, 0, 1〉 can also have more than two copies of variables.
For example,

L2 � 〈{x0 > 0}, {x1 = x0 − 1, x1 > 0, x2 = x1 − 1, x2 ≤ 0}, 0, 2〉

X1 and X0 represent the values of the variable X after and before a transition,
respectively. The constraint x2 ≤ 0 restrains the input space of L2 to x0 ∈ {2}.

426 H.Y. Chen, S. Flur, and S. Mukhopadhyay

Note that x0 = 1 is not in our input space, since there does not exist x1 and
x2 satisfying L2. In our approach, we add such constraints over future transition
states such that the restrainedLSL is guaranteed to have a linear ranking function.

An LSL L = 〈Cond,Update, 0, k〉 describes a transition relation between
X0 and Xk. For example, in

L3 � 〈{x0 > 0, }, {x1 = x0 − 1, x1 > 0, x2 = x1 − 1}, 0, 2〉

the transition pairs described by L3 include: (5, 3), (4, 2), (3, 1), We often use
L = 〈Cond,Update, 0, k〉 when we are looking at the k-th unrolling of some
L′ = 〈Cond

′,Update
′, 0, 1〉.

To further generalize our loop model, we provide the ability not only to look
ahead, but also to look back.

L4 � 〈{x1 > 0}, {x0 > 0, x1 = x0 − 1, x2 = x1 − 1, x2 ≤ 0}, 1, 2〉

Despite having the same constraints as in L2, the input space of L4(1, 2) is
x1 ∈ {1}.

Note that LSLs allow nondeterminism. To be specific, we can have linear
expressions on both sides of an update statement, and inequalities instead of
equal relation. This gives us more flexibility to model nondeterministic inputs
or non-linear operations. For example, we can have an LSL such as

L5 � 〈{x0 > 0}, {x0 + x1 ≤ 1}, 0, 1〉

that cannot be expressed in any conventional programming language.

2.2 Disjunctive Ranking Relations

Definition 2 (Well-Ordered Sets). A set D is well-ordered with respect to a
relation < if,

1. < is a strict total ordered and,
2. There is no infinite sequence d0, d1, d2, . . . of elements in D such that di+1 <

di for every i ∈ N.

Definition 3 (Ranking Functions). Given a transition relation R ⊆ S × S,
a function r : S → D is a ranking function, if D is a well-ordered set and for
every (s1, s2) ∈ R we have r(s2) < r(s1), where < is the well order associated
with D.

A Ranking Function is called linear (Linear Ranking Function) if r is linear.

Definition 4 (Ranking Relations). Given a ranking function r : S → D we
define the corresponding ranking relation by

τ(r) = {(s1, s2) | r(s2) < r(s1)}

where < is the well order associated with D.

Termination Proofs for Linear Simple Loops 427

Definition 5 (Disjunctive Ranking Relations). A disjunctive ranking re-
lation T is a finite union of ranking relations. That is,

T = T1 ∪ · · · ∪ Tn

where Ti is a ranking relation for 1 ≤ i ≤ n, n ∈ N

The relation between disjunctive ranking relations and termination has been
established in [28] using Ramsey’s theorem [30]. Let P be a program, R be
the corresponding transition relation induced by P , R+ be the non-reflexive
transitive closure of R, then P is terminating if and only if

R+ ⊆ T

for some disjunctive ranking relation T .

2.3 Binary Reachability Check

Given an LSL L and a disjunctive ranking relation T , the goal of binary reacha-
bility check is to verify whether R+(L) ⊆ T . If yes, the procedure returns “true”.
Otherwise, the procedure returns an error path which induces a new LSL L′ such
that L′ is an unrolling of L and R(L′) � T . The input and output of procedure
BRC is described as follows (see [17] for more details):

input
LSL L, disjunctive ranking relation T
output
if (R+(L) ⊆ T) return “true”
else return LSL L′ such that L′ is an unrolling of L and R(L′) � T

2.4 Simple Linear Ranking Function Synthesis

The following theorem is proved in [27].

Theorem. An LSL given by the system (A0A1)
(
x0

x1

)
≤ b (i.e. i = 0, j = 1) is

terminating if there exist nonnegative vectors λ1, λ2 over rationals such that the
following system is satisfiable:

λ1A
1 = 0 (1)

(λ1 − λ2)(A
0) = 0 (2)

λ2(A
0 +A1) = 0 (3)

λ2b < 0 (4)

More over, the LSL has a linear ranking function of the form

ρ(X0) =

{
rX0 if exists X1 such that (A0A1)

(
x0

x1

)
≤ b

δ0 − δ otherwise

where r � λ2A
1, δ0 � −λ1b, and δ � −λ2b.

We will extend this method in Section 4 so that it works for the general form of
LSLs.

428 H.Y. Chen, S. Flur, and S. Mukhopadhyay

3 Example

We first demonstrate our technique with a simple deterministic LSL over the
integers. Then we will extend our technique for nondeterministic updates and
rational / real variables.

3.1 Deterministic Updates over Integer Domain

Consider the while loop in Figure 1. It has only 3 simple assignments, but it
is not obvious whether it is terminating. It is easy to see that the traces of z
are composed of two alternating numbers, one negative the other non-negative,
and that the negative number has a higher value. The variable y always gets
assigned to value of z from the previous state. Hence it behaves like z, except
being one step behind. The variable x increments itself with y. Therefore x will
alternatively increase (or stay unchanged) and decrease. Moreover the decrease
is larger than the increase, hence x will eventually become negative and the loop
will terminate.

int x, y, z;

while (x ≥ 0)

x := x + y;

y := z;

z := -z - 1;

Fig. 1. Example

Let us first convert the while loop above to an LSL.

L = 〈{x0 ≥ 0}, {x1 = x0 + y0, y1 = z0, z1 = −z0 − 1}, 0, 1〉

If we apply the method of Section 2.4 to L, it will return failure since L does
not have a linear ranking function. As mentioned earlier, we want to construct
multiple linear ranking functions, each of them over a restrained input space. We
do this by adding constraints to L such that the new LSL is guaranteed to have
a linear ranking function. From CondL we see that we already have the linear
expression x0 that is bounded, i.e., x0 ≥ 0. If we add to L a constraint x0 > x1,
then we know x0 can serve as a ranking function for the restrained LSL because
x0 has a lower bound and is strictly decreasing, which is a sufficient condition
for x0 to become a ranking function over the integer domain.

We break L into two LSLs L1.1 and L1.2 such that L1.1 is obtained by com-
bining L with constraint x0 > x1, and L1.2 is obtained by combining L with the
negation of the constraint, namely x0 ≤ x1.

L1.1 =〈CondL,UpdateL ∪ {x0 > x1}, 0, 1〉 (trivial case)

L1.2 =〈CondL,UpdateL ∪ {x0 ≤ x1}, 0, 1〉 (synthesis case)

Termination Proofs for Linear Simple Loops 429

We call L1.1 the trivial case since we immediately obtain a linear ranking function
from it.

ρ1(X
0) =

{
x0 if ∃X1 such that X0, X1 satisfies L1.1

−1 otherwise

We call L1.2 the synthesis case since it needs further examination. We callCondL

the Seed for partitioning L.
From this point onwards, we only need to take care of L1.2. First we check

whether L1.2 has a linear ranking function already. In this particular case we
find out that this is not true. Next, we would like to repeat the earlier process
on L1.2, i.e., adding constraints to L1.2 such that a linear ranking function must
exist. Since L1.2 already includes x0 ≤ x1, using x0 ≥ 0 ∧ x0 > x1 again will
no longer make sense. However observe that the new constraint in L1.2 gives a
new linear expression that is bounded below, i.e., x1 ≥ x0. This constraint will
become our new Seed, and we can use it to partition L1.2. This time we partition
with the constraint (x1 − x0) > (x2 − x1) and its negation.

At this point a new issue arises, x2 is introduced to denote the value of x after
one transition from x1. However from L1.2 alone, there is no such information
about x2. To remedy this situation, we first need to unroll L so that the unrolled
transition involves x2. We do this by making a copy of all the loop constraints
in L, then changing X1 to X2, X0 to X1 (the process is formally described by
Unroll(L) in Section 4). We get L2 as follows.

L′ =Unroll2(L)

=〈{x0 ≥ 0}, {x1 = x0 + y0, y1 = z0, z1 = −z0 − 1,

x1 ≥ 0, x2 = x1 + y1, y2 = z1, z2 = −z1 − 1}, 0, 1〉
L2 =〈CondL′ ,UpdateL′ ∪ Seed, 0, 1〉

=〈{x0 ≥ 0}, {x1 = x0 + y0, y1 = z0, z1 = −z0 − 1,

x1 ≥ 0, x2 = x1 + y1, y2 = z1, z2 = −z1 − 1} ∪ {x1 ≥ x0}, 0, 1〉

Now we can partition L2 using the constraint mentioned above.

L2.1 =〈CondL2 ,UpdateL2 ∪ {(x1 − x0) > (x2 − x1)}, 0, 1〉 (trivial case)

L2.2 =〈CondL2 ,UpdateL2 ∪ {(x1 − x0) ≤ (x2 − x1)}, 0, 1〉 (synthesis case)

L2.1 is again the trivial case, where a linear ranking function is guaranteed

ρ2(X
0) =

{
x1 − x0 = y0 if ∃X1, X2 such that X0, X1, X2 satisfies L2.1

0 otherwise

Now we check whether the synthesis case has a linear ranking function. Notice
that this time we can not use the method described in Section 2.4 any more,
since now the synthesis case LSL involvesX2. In Section 4, we describe a general
ranking function synthesis method which can handle this general form of LSLs.

430 H.Y. Chen, S. Flur, and S. Mukhopadhyay

If we feed L2.2 to the method in Section 4, we get the following linear ranking
function.

ρ3(X
0) =

{
2x0 + z0 if ∃X1, X2 such that X0, X1, X2 satisfies L2.2

−1 otherwise

As shown in Figure 2, up to this point we have divided L to three LSLs, L1.1,
L2.1, and L2.2. Each of these three has a linear ranking function. Let T = τ(ρ1)∪
τ(ρ2)∪ τ(ρ3). Theorem 2 in Section 4 shows us that R(L) ⊆ T . That is, any two
consecutive states form a pair that belongs to T .

R(L) ⊆ T = τ (ρ1) ∪ τ (ρ2) ∪ τ (ρ3)

Fig. 2. Execution of L � 〈{x0 ≥ 0}, {x1 = x0 + y0, y1 = z0, z1 = −z0 − 1}, 0, 1〉

Recall that our goal is to find a T such that R+(L) ⊆ T . We first check whether
the T we found already satisfies R+(L) ⊆ T . As it turns out for this particular
case, it is not. BRC gives an error path that executes L twice. Therefore we get
a new LSL L′′ that unrolls L twice and L′′ describes a relation from X0 to X2.

L′′ = Unroll2(L) with iL′′ = 0, jL′′ = 2

Note L′′ has the same set of constraints as L′, but has different backedge. We
feed L′′ to the method described in Section 4.1. It shows that L′′ has a linear
ranking function already.

ρ4(X
0) =

{
x0 + y0 if ∃X1, X2 such that X0, X1, X2 satisfies L′

−1 otherwise

Again we update T by T = T ∪τ(ρ4) and this time the test R+(L) ⊆ T succeeds,
i.e., we have successfully found a disjunctive ranking relation T for the original
LSL L.

Termination Proofs for Linear Simple Loops 431

3.2 Variables over Q or R and Nondeterministic Updates

Notice that when variables range over Q or R, the two constraints ϕ ≥ b and
ϕ > Shift(ϕ) can no longer guarantee ϕ to be a linear ranking function. One
way to remedy that is to pick a small positive value c and partition the state
space by ϕ − Shift(ϕ) > c and its negation ϕ − Shift(ϕ) ≤ c. Similar to the
integer example, the former constraint will generate the trivial case, and the
latter constraint will generate the synthesis case.

Another way is to still partition with ϕ > Shift(ϕ) and its negation ϕ ≤
Shift(ϕ). However since the former can no longer generate a trivial case, we
need to continue the partition process on the trivial case as well.

Nondeterministic updates are also an issue. If we look at ranking function ρ2
above, the expression y0 originates from the expression x1 − x0. We cannot use
x1 − x0 directly because the ranking functions need to be expressed in terms
of X0. With deterministic updates, we can get rid of x1 by substituting it with
x0 + y0. With nondeterministic updates, we may not be able to simplify the
expression in this manner. Therefore we need to apply Theorem 1 in Section 4.1
to generate ranking functions on X0 only, and when we fail to find one, we need
to partition the trivial case further. In our algorithm shown in Figure 4, this is
the approach we take in all situations.

4 Algorithm for Synthesizing Disjunctive Ranking
Relations

4.1 Extended Linear Ranking Function Synthesis

Let A denote the row vector (A0 . . . Ai . . . Aj . . . An), Ai denote the i-th element
Ai, A−i denote the row vector with all but the i-th element (A0 . . . Ai−1Ai+1 . . .
Aj . . . An). Similarly we define column vectors X, Xi, and X−i. Then we prove
the following theorem.

Theorem 1. An LSL L = 〈Cond,Update, i, j〉 given by the system AX ≤ b
is terminating if there exist non-negative vectors λ1, λ2 over rationals such that
the following system is satisfied:

λ1A−i = 0 (1)

λ2A−i,−j = 0 (2)

(λ1 − λ2)Ai = 0 (3)

λ2(Ai +Aj) = 0 (4)

λ2b < 0 (5)

More over, the LSL has a linear ranking function of the form

ρ(X i) =

{
rX i if exists Xj such that (X i, Xj) ∈ R(L)

δ0 − δ otherwise

where r � λ2Aj, δ0 � −λ1b, and δ � −λ2b.

432 H.Y. Chen, S. Flur, and S. Mukhopadhyay

Note that Theorem 1 cannot be replaced by using the Theorem in Section 2.4
because Theorem 1 guarantees to generate ranking functions expressed in X i

only, while the original theorem does not. Just as in [27], the converse of the
above theorem is true for rationals and reals. Since this paper does not focus on
the application of the converse theorem, we do not elaborate it here.

4.2 Formal Description

To help describing the algorithm, we need to define a few notations here. We
start by defining Shift which is the process of transforming constraint from a
certain copy of X to a higher copy. It does so by incrementing the superscript
of each X i. For example, Shift(x0 − x1 < 1) = x1 − x2 < 1.

Definition 6 (Shift). Given a linear combination ψ : a0X
0+a1X

1+· · ·+anX
n,

a linear constraint ϕ : ψ ≤ b, a set of linear constraints C, where b ∈ Z, we define

Shift(ψ) � a0X
1 + a1X

2 + · · ·+ anX
n+1

Shift1(ϕ) � Shift(ψ) ≤ b

Shiftk+1(ϕ) � Shiftk(Shift(ψ) ≤ b)

Shiftk(C) � {Shiftk(ϕ) | ϕ ∈ C}

Next we define function Unroll. This function produces an LSL with the same
traces as the original but with more copies of X . It does so by adding Shift of
the constraints to itself. Note that function Unroll is used in the partitioning
process (see L′ in Section 3.1). The BRC procedure also unrolls an LSL (see
L′′ in Section 3.1). The only difference between the two unrolling is that BRC
changes the value of j to the number of iterations in the error path.

Definition 7 (Unroll). Given a set of linear constraints C, an LSL L =
〈Cond, Update, i, j〉, we define

Unroll1,d(C) � C

Unrollk+1,d(C) � C ∪ Shiftd(Unrollk,d(C))

Unrollk(L) � 〈Cond,Unrollk,j−i(Cond ∪Update), i, j〉

Lastly we define function Diff. This function creates new constraints that we
use to partition the original LSL. It does so by taking constraint, shifting it and
then binding the constraint and its shift with > or ≤. For instance, for constraint
ϕ : x0 ≤ 0 we have Diff1,>(ϕ) = x1 > x0 and Diff1,≤(ϕ) = x1 ≤ x0.

Definition 8 (Diff). Given a linear constraint ϕ : ψ ≤ b and set of constraints
Seed, where b ∈ Z. We define

Diffi,∼(ϕ) � Shifti(ψ) ∼ ψ

Diffi,∼(Seed) � {Diffi,∼(ϕ) | ϕ ∈ Seed}

where ∼ is one of {>,≤}.

Termination Proofs for Linear Simple Loops 433

Now we give two procedures Main and DRR (for “Disjunctive Ranking Rela-
tion”). DRR, described in Figure 4, is a recursive procedure, that given an LSL
L returns a disjunctive ranking relation T such that R(L) ⊆ T . Procedure Main,
described in Figure 3, repeatedly calls DRR while R+(L) � T , each time feeding
DRR with an unrolling of the original L.

procedure Main
input: LSL Loriginal = 〈Cond,Update, 0, 1〉
output: disjunction ranking relation T or “fail”
begin

L ← Loriginal

T ← ∅
do

if DRR(L,CondL) succeeds with disjunctive ranking relation T ′

T ← T ∪ T ′

else
return “fail”

while (binary reachability check on (Loriginal, T) fails with updated L)
return T

end.

Fig. 3. Procedure Main

Suppose that DRR is called recursively k times with inputs (L1, Seed1),
(L2, Seed2), . . . , (Lk, Seedk). If the linear ranking function synthesis for Lk

succeeds and return the parameters r, δ0, δ the following is the ranking function
we use,

ρk(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(X) if exists X1 such that

(X,X1) ∈ R(Lk) [case-0]

δ0 − δ else if exists X1 such that

(X,X1) ∈ R(Lk−1) [case-1]

δ0 − 2δ else if exists X1 such that

(X,X1) ∈ R(Lk−2) [case-2]
...

...

δ0 − (k − 1)δ else if exists X1 such that

(X,X1) ∈ R(L1) [case-(k-1)]

δ0 − kδ otherwise [case-k]

(()

4.3 Correctness Proof

Theorem 2 insures the disjunctive ranking relation returned by DRR is large
enough to contain the transition relation of the input LSL. This, in turn, insures
that BRC will give a new counterexample for each iteration (until R+(L) ⊆ T)

434 H.Y. Chen, S. Flur, and S. Mukhopadhyay

procedure DRR
input: LSL L = 〈Cond,Update, 0, j〉, and Seed a subset of Cond ∪Update.
output: disjunction ranking relation T
begin

if linear ranking function synthesis on L succeeds with function r
return τ (r)

Lunroll ← Unroll2(L)
for each ϕ ∈ Seed

Seedtriv ← {Diffj,>(ϕ)}
Ltriv ← 〈CondLunroll ,UpdateLunroll ∪ Seedtriv, 0, j〉
T ← T∪ DRR(Ltriv, Seedtriv)

Seed ← Diffj,≤(Seed)
L ← 〈CondLunroll ,UpdateLunroll ∪ Seed, 0, j〉
return T∪ DRR(L, Seed)

end.

Fig. 4. Procedure DRR

and the termination condition converges towards a solution. The proof of theo-
rem 2 relies on lemma 1. Lastly theorem 3 asserts the correctness of the algo-
rithm.

Lemma 1. Let s0, . . . , sj , . . . , sm·j be an (m · j + 1)-trace of some L = 〈Cond,
Update, 0, j〉 and let Seed be over X0, . . . , Xm·(j−1). If DRR is called with L
and Seed as input and it succeeds then (s0, sj) is contained in the return set of
DRR.

Theorem 2. Suppose that DRR is called with input (L = 〈Cond,Update, 0, j〉,
Seed) where L is over X0, . . . , Xj and Seed = CondL. If DRR terminates suc-
cessfully with return value T then R(L) ⊆ T .

Theorem 3. If procedure Main terminates successfully on a program P , then
P terminates and has a disjunctive linear ranking relation T .

4.4 Termination and Complexity of the Algorithm

The procedures Main and DRR as given in this section may not always terminate,
in particular when the input LSL is not terminating. When implemented we need
to bound the recursion depth of DRR and the number of iterations of the main
loop. When the input LSL is deterministic and the variables range over Z, the
recursive calls to DRR for each ϕ ∈ Seed will succeed with no further calls and
therefore the number of calls to DRR will be linear in the depth bound. When
the LSL is non-deterministic or the variables range over Q or R, the number of
calls to DRR in the worst case is exponential in the depth bound. Finally we
note that the LSL Unrollk(L) has k times as many constraints and variables
as in L.

Termination Proofs for Linear Simple Loops 435

Table 1. Experiment results

Vars Terminating Linear Polyrank Ours BRC DRR Failed Proc

1 1 yes no no no - - DRR

2 1 yes yes yes yes 0 1 -

3 1 yes yes yes yes 0 1 -

4 1 yes yes yes yes 0 1 -

5 1 yes yes no yes 0 1 -

6 2 yes no no yes 0 2 -

7 2 no - - - - - DRR

8 2 no - - - - - DRR

9 2 no - - - - - DRR

10 2 no - - - - - DRR

11 2 yes no no no - - DRR

12 2 yes no no yes 0 2 -

13 2 yes no no yes 0 2 -

14 2 yes no no yes 0 2 -

15 2 yes yes no yes 0 1 -

16 2 no - - - - - DRR

17 2 no - - - - - DRR

18 2 yes no no yes 0 2 -

19 2 no - - - - - DRR

20 2 no - - - - - DRR

21 2 yes no no yes 0 2 -

22 2 no - - - - - DRR

23 2 yes no no yes 0 2 -

24 2 yes no no yes 0 2 -

25 2 yes yes yes yes 0 1 -

26 2 yes no no yes 0 2 -

27 2 yes no no yes 0 2 -

28 3 yes no no yes 0 2 -

29 3 no - - - - - DRR

30 3 yes no no no ∞ 3 BRC

31 3 yes no no yes 0 2 -

32 3 yes no no yes 0 2 -

33 3 no - - - - - DRR

34 3 yes no no yes 1 3 -

35 3 yes no no yes 0 2 -

36 3 yes no no yes 0 2 -

37 3 yes yes yes yes 0 1 -

38 4 yes no no yes 0 2 -

5 Experiments

We created a test suite of LSL loops. To our knowledge it is the first LSL test
suite. The loops are collected from other research work [27, 15, 34, 28, 9, 12, 6, 8,

436 H.Y. Chen, S. Flur, and S. Mukhopadhyay

13, 5] and real code. The test suite is still growing. At the time of our submission,
it contains 38 LSL loops. Among them 11 are non-terminating loops, 7 are
terminating with linear ranking functions, 20 are terminating with non-linear
ranking functions. Moreover, 6 are non-deterministic, 32 are deterministic, 5 have
1 variable, 22 have 2 variables, 10 have 3 variables, and one has 4 variables. All
loops are executed over domain Z. The test suite as well as the implementation
are available at [11].

We compared our method to linear ranking function synthesis method [27] us-
ing the implementation found in [32], and the polyranking method [7] using the
implementation found in [5]. Detailed experimental results are provided in Table
1. The “Vars” column indicates the number of variables used in the LSL. The
“Terminating” column indicate whether the LSL terminates. The columns of
“Linear”, “Polyrank”, and “Ours” indicate whether the methods of Podelski et
al.’s linear ranking function synthesis method [27], Bradley et al.’s polyranking
method [7], and our method, respectively, have successfully found a termination
proof. The “BRC” column states the number of times procedure BRC was called
and the “DRR” column states the accumulative depth of DRR recursion. The
“Failed Proc” column indicates which procedure, Main or DRR, failed termi-
nating if the whole process failed to terminate. Since the runtime for all three
methods was in the magnitude of a few milliseconds we omitted them from the
table.

As shown in the table, our method considerably outperformed the other two
methods. We succeed for all 7 loops with a linear ranking function. Out of the 20
terminating loops that have no linear ranking function we are successful for 17.
For all non-terminating loops, the execution needs to be manually terminated.
Except for one loop, all the proof searches fail in procedure DRR. In comparison,
the linear ranking function synthesis method [27] succeeds for all the 7 loops
with a linear ranking function; it fails to find a termination proof for all the
20 examples among the rest that were terminating. The polyranking method [7]
succeeds in proving termination for 5 out of the 7 examples with a linear ranking
function; it fails to find a termination proof for all the 20 examples among the
rest that were terminating. We set the tree depth to be 100 for the polyranking
method.

6 Conclusions

This paper describes an automatic method for generating disjunctive ranking
relations for Linear Simple Loops. The method repeatedly finds linear ranking
functions on restricted state space until it reaches an over-approximation of the
transitive closure of the transition relation. As demonstrated experimentally we
largely expanded the scope of LSLs that can be solved. We also extended an
existing technique for linear ranking function synthesis. The extended method
can handle more general form of LSLs. Another contribution is that we created
the first LSL test suite.

Termination Proofs for Linear Simple Loops 437

Acknowledgments. We thank Byron Cook for providing inspiring examples.
We thank the anonymous reviewers for their valuable insights.

References

[1] Balaban, I., Cohen, A., Pnueli, A.: Ranking Abstraction of Recursive Programs.
In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp.
267–281. Springer, Heidelberg (2005)

[2] Ben-Amram, A.M., Genaim, S., Masud, A.N.: On the Termination of Integer
Loops. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 72–87. Springer, Heidelberg (2012)

[3] Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance analy-
ses from invariance analyses. In: Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2007, pp.
211–224. ACM, New York (2007)

[4] Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic Termination
Proofs for Programs with Shape-Shifting Heaps. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

[5] Bradley, A.R.: polyrank: Tools for termination analysis (2005),
http://theory.stanford.edu/~arbrad/software/polyrank.html

[6] Bradley, A.R., Manna, Z., Sipma, H.B.: Linear Ranking with Reachability. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504.
Springer, Heidelberg (2005)

[7] Bradley, A.R., Manna, Z., Sipma, H.B.: The Polyranking Principle. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005)

[8] Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of Polynomial Programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidelberg
(2005)

[9] Braverman, M.: Termination of Integer Linear Programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006)

[10] Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H.: Ranking abstractions.
Technical report (2008)

[11] Chen, H.Y., Flur, S., Mukhopadhyay, S.: Lsl test suite,
https://tigerbytes2.lsu.edu/users/hchen11/lsl/

[12] Colon, M.A., Uribe, T.E.: Generating Finite-State Abstractions of Reactive Sys-
tems Using Decision Procedures. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 293–304. Springer, Heidelberg (1998)

[13] Colón, M.A., Sipma, H.B.: Synthesis of Linear Ranking Functions. In: Margaria,
T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg
(2001)

[14] Colón, M.A., Sipma, H.B.: Practical Methods for Proving Program Termination.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454.
Springer, Heidelberg (2002)

[15] Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving Condi-
tional Termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 328–340. Springer, Heidelberg (2008)

[16] Cook, B., Podelski, A., Rybalchenko, A.: Abstraction Refinement for Termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,
Heidelberg (2005)

http://theory.stanford.edu/~arbrad/software/polyrank.html
https://tigerbytes2.lsu.edu/users/hchen11/lsl/

438 H.Y. Chen, S. Flur, and S. Mukhopadhyay

[17] Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2006, pp. 415–426. ACM, New York (2006)

[18] Cook, B., Rybalchenko, A.: Proving that programs eventually do something good.
In: POPL 2006: Principles of Programming Languages, pp. 265–276. Springer
(2007)

[19] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S.S., Jones,
N.D. (eds.) Program Flow Analysis: Theory and Applications, ch. 10, pp. 303–342.
Prentice-Hall, Inc., Englewood Cliffs (1981)

[20] Cousot, P.: Proving Program Invariance and Termination by Parametric Abstrac-
tion, Lagrangian Relaxation and Semidefinite Programming. In: Cousot, R. (ed.)
VMCAI 2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

[21] Cousot, P., Cousot, R.: An abstract interpretation framework for termination. In:
POPL, pp. 245–258 (2012)

[22] Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invari-
ants for bound analysis. SIGPLAN Not. 44, 375–385 (2009)

[23] Gulwani, S., Mehra, K.K., Chilimbi, T.: Speed: precise and efficient static esti-
mation of program computational complexity. In: Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, pp. 127–139. ACM, New York (2009)

[24] Gulwani, S., Zuleger, F.: The reachability-bound problem. In: Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2010, pp. 292–304. ACM, New York (2010)

[25] Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination
Analysis with Compositional Transition Invariants. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

[26] Podelski, A., Rybalchenko, A.: Software model checking of liveness properties via
transition invariants. Technical report (2003)

[27] Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear
Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

[28] Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41 (2004)
[29] Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termi-

nation. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2005. ACM (2005)

[30] Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. 30, 491–504
(1930)

[31] Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5) (August 2007)

[32] Rybalchenko, A.: Rankfinder, http://www.mpi-sws.org/~rybal/rankfinder/
[33] Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc.,

New York (1986)
[34] Tiwari, A.: Termination of Linear Programs. In: Alur, R., Peled, D.A. (eds.) CAV

2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)
[35] Turing, A.M.: Checking a large routine. Report of a Conference on High Speed

Automatic Calculating Machines, pp. 67–69 (1948)

http://www.mpi-sws.org/~rybal/rankfinder/

Finding Non-terminating Executions

in Distributed Asynchronous Programs

Michael Emmi1,� and Akash Lal2

1 LIAFA, Université Paris Diderot
mje@liafa.univ-paris-diderot.fr

2 Microsoft Research India
akashl@microsoft.com

Abstract. Programming distributed and reactive asynchronous systems
is complex due to the lack of synchronization between concurrently ex-
ecuting tasks, and arbitrary delay of message-based communication. As
even simple programming mistakes have the capability to introduce di-
vergent behavior, a key liveness property is eventual quiescence: for any
finite number of external stimuli (e.g., client-generated events), only a
finite number of internal messages are ever created.

In this work we propose a practical three-step reduction-based approach
for detecting divergent executions in asynchronous programs. As a first
step, we give a code-to-code translation reducing divergence of an asyn-
chronous program P to completed state-reachability—i.e., reachability to
a given state with no pending asynchronous tasks—of a polynomially-sized
asynchronous program P ′. In the second step, we give a code-to-code trans-
lation under-approximating completed state-reachability of P ′ by state-
reachability of a polynomially-sized recursive sequential program P ′′(K),
for the given analysis parameter K ∈ N. Following Emmi et al. [8]’s
delay-bounding approach, P ′′(K) encodes a subset of P ′’s, and thus of
P ’s, behaviors by limiting scheduling nondeterminism. As K is increased,
more possibly divergent behaviors of P are considered, and in the limit as
K approaches infinity, our reduction is complete for programs with finite
data domains. As the final step we give the resulting state-reachability
query to an off-the-shelf SMT-based sequential program verification tool.

We demonstrate the feasibility of our approach by implementing a
prototype analysis tool called Alive, which detects divergent executions
in several hand-coded variations of textbook distributed algorithms. As
far as we are aware, our easy-to-implement prototype is the first tool
which automatically detects divergence for distributed and reactive asyn-
chronous programs.

1 Introduction

The ever-increasing popularity of online commercial and social networks, along
with proliferating mobile computing devices, promises to make distributed soft-
ware an even more pervasive component of technological infrastructure. In a

� Supported by a Fondation Sciences Mathématiques de Paris post-doctoral fellowship.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 439–455, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

440 M. Emmi and A. Lal

distributed program a network of physically separated asynchronous processors
coordinate by sending and asynchronously receiving messages. Such systems are
challenging to implement because of several uncertainties, including processor
timings, message delays, and processor failures. Although simplifying mecha-
nisms such as synchronizers and shared-memory simulation do exist [16], they
add significant runtime overhead which can be unacceptable in many situations.

Because of the inherit complexity in distributed asynchronous programming,
even subtle design and programming mistakes have the capability to introduce
erroneous or divergent behaviors, against which the usual reliability measures
are much less effective. The great amount of nondeterminism in processor tim-
ings and message delays tends to make errors elusive and hard to reproduce in
simulation and testing. The combinatorial explosion incurred by the vast num-
ber of processor interleavings and message-buffer contents tends to make formal
verification techniques intractable. Though many distributed algorithms are pro-
posed along with manual correctness proofs, key properties such as eventual qui-
escence—i.e., for any number of external stimuli such as client-generated events,
only a finite number of internal network messages are ever created—remain diffi-
cult to ensure with automatic techniques. Practically speaking, such properties
ensure the eventual construction of network spanning trees [16], the eventual
election of network leaders [20], and the eventual acceptance of network peer
proposals, e.g., according to the Paxos protocol [15].

In this work we develop an automatic technique to detect violations to even-
tual quiescence, i.e., executions of distributed systems for which a finite num-
ber of external stimuli result in an infinite number of internal messages. Our
reduction-based approach works in three steps. First, we reduce the problem of
finding nonterminating executions of a given (distributed) asynchronous program
P to the problem of computing reachability in a polynomially-sized (distributed)
asynchronous program P ′. This reduction is complete for programs with finite
data domains, in the sense that an answer to the reachability query on P ′ is a
precise answer to the nontermination query on P . In the second step, we reduce
reachability in P ′ to reachability in a polynomially-sized recursive sequential
program P ′′—without explicitly encoding the concurrent behavior of P ′ as data
in P ′′. This step is parameterized by an integer K ∈ N; for small K, P ′′ encodes
few concurrent schedules of P ′; as K is increased, P ′′ encodes and increasing
number of concurrent reorderings, and in the limit as K approaches infinity, P ′′

codes all possible behaviors of P ′—and thus P . Finally, using existing sequential
program verification tools, we check reachability in P ′′: a positive result indicates
a nonterminating execution in P , though the lack of nonterminating executions
in P can only be concluded in the limit as K approaches infinity. Our technique
supports fairness, in that we may consider only infinite executions in which no
message is ignored forever.

We demonstrate the feasibility of our reduction-based approach by imple-
menting a prototype analysis tool called Alive, which detects violations to
eventual quiescence in several hand-coded variations to textbook distributed
algorithms [16]. Our relatively easy-to-implement prototype leverages existing

Finding Non-terminating Executions in Distributed Asynchronous Programs 441

SMT-based program verification tools [14], and as far as we are aware, is the
first tool which can automatically detect divergence in distributed asynchronous
programs.

To begin in Section 2, we introduce a program model of distributed computa-
tion. In Section 3 we describe our reduction to sequential program analysis, and
provide code-to-code translations which succinctly encode the reduction. Fol-
lowing in Section 4 we describe our experimental results in analyzing textbook
distributed algorithms, and we conclude by discussing related work in Section 5.

2 Distributed Asynchronous Programs

We consider a distributed message-passing program model in which each proces-
sor is equipped with a procedure stack and an unordered buffer of pending mes-
sages. Initially all processors are idle. When an idle processor’s message buffer is
non-empty, some message is removed, and a message-dependent task is executed
to completion. Each task executes essentially as a recursive sequential program,
which besides accessing its own processor’s global storage, can post messages to
the buffers of any processor, including its own. When a task does complete, its
processor again becomes idle, chooses a next pending message to remove, and so
on. The distinction between messages and handling tasks is purely aesthetic, and
we unify the two by supposing each message is a procedure-and-argument pair.
Though in principle many message-passing systems, e.g., in Erlang and Scala,
allow reading additional messages at any program point, we have observed that
common practice is to read messages only upon completing a prior task [21].

Our choice to model message-passing programs with unordered buffers has
two important consequences. First, although some programming models do not
ensure messages are received in the order they are sent, others do; our unordered
buffer model should be seen as an abstraction of a model with faithful message
queues, since ignoring message order allows behaviors infeasible in the queue-
ordered model. Second, when message order is ignored, distributed executions
are task-serializable—i.e., equivalent to executions where the tasks across all
processors execute serially, one after the other. Intuitively this is true because
(a) tasks of different processors access disjoint memory, and (b) message posting
operations commute with each other. (Message posting operations do not com-
mute when buffers are ordered.) To simulate a distributed system with a single
processor we combine each processor’s global storage, and ensure each proces-
sor’s tasks access only their processor-indexed storage. Since serializability im-
plies that single processor systems precisely simulate the behavior of distributed
systems, we limit our discussion, without loss of generality, to single-processor
asynchronous programs [19].

2.1 Program Syntax

Let Procs be a set of procedure names, Vals a set of values, Exprs a set of ex-
pressions, Pids a set of processor identifiers, and let T be a type. Figure 1 gives

442 M. Emmi and A. Lal

P ::= var g:T (proc p (var l:T) s)∗

s ::= s; s | skip | x := e
| assume e
| if e then s else s
| while e do s
| call x := p e
| return e
| post p e

x ::= g | l

Fig. 1. The grammar of asynchronous
message-passing programs P . Here T is an
unspecified type, and e and p range over ex-
pressions and procedure names.

Dispatch

〈g, ε,m ∪ {f}〉 −→ 〈g, f,m〉

Complete

f = 〈�, return e; s〉
〈g, f,m〉 −→ 〈g, ε,m〉

Post

s1 = post p e; s2
�2 ∈ e(g, �1) f = 〈�2, sp〉

〈g, 〈�1, s1〉w,m〉 −→ 〈g, 〈�1, s2〉w,m ∪ {f}〉

Fig. 2. The transition relation →
of asynchronous message-passing pro-
grams

the grammar of asynchronous message-passing programs. We intentionally leave
the syntax of expressions e unspecified, though we do insist Vals contains true
and false, and Exprs contains Vals and the (nullary) choice operator �. We say
a program is finite-data when Vals is finite.

Each program P declares a single global variable g and a procedure sequence,
each p ∈ Procs having a single parameter l and top-level statement denoted sp; as
statements are built inductively by composition with control-flow statements, sp
describes the entire body of p. The set of program statements s is denoted Stmts.
Intuitively, a post p e statement is an asynchronous call to a procedure p with
argument e. The assume e statement proceeds only when e evaluates to true,
and this statement plays a role in disqualifying executions in our subsequent
reductions of Section 3. The programming language we consider is simple, yet
very expressive, since the syntax of types and expressions is left free, and we lose
no generality by considering only single global and local variables.

2.2 Program Semantics

A (procedure) frame f = 〈�, s〉 is a current valuation � ∈ Vals to the procedure-
local variable l, along with a statement s ∈ Stmts to be executed. (Here s
describes the entire body of a procedure p that remains to be executed, and is
initially set to p’s top-level statement sp; we refer to initial procedure frames t =
〈�, sp〉 as tasks, to distinguish the frames that populate task buffers.) The set of
all frames is denoted Frames. A configuration c = 〈g, w,m〉 is a current valuation
g ∈ Vals to the processor-global variable g, along with a procedure-frame stack
w ∈ Frames∗ and a multiset m ∈ M[Frames] representing the pending-tasks
buffer. The configuration c is called idle when w = ε, and completed when w = ε
and m = ∅. The set of configurations is denoted Configs.

Figure 2 defines the transition relation→ for the asynchronous behavior. (The
transitions for the sequential statements are standard.) The Post rule creates

Finding Non-terminating Executions in Distributed Asynchronous Programs 443

a new frame to execute the given procedure, and places the new frame in the
pending-tasks buffer. The Complete rule returns from the final frame of a task,
rendering the processor idle, and the Dispatch rule schedules a pending task
on the idle processor.

An execution of a program P (from c0) is a configuration sequence ξ = c0c1 . . .
such that ci → ci+1 for i ≥ 0; we say each configuration ci is reachable from
c0. An initial condition ι = 〈g0, �0, p0〉 is a global-variable valuation g0 ∈ Vals,
along with a local-variable valuation �0 ∈ Vals, and a procedure p0 ∈ Procs. A
configuration c = 〈g0, 〈�0, sp0〉 , ∅〉 of a program P is called 〈g0, �0, p0〉-initial. An
execution ξ = c0c1 . . . is called infinitely-often idle when there exists an infinite
set I ⊆ N such that for each i ∈ I, ci is idle.

Definition 1 (state-reachability). The (completed) state-reachability prob-
lem is to determine for an initial condition ι, global valuation g, and program P ,
whether there exists a (completed) g-valued configuration reachable in P from ι.

In this work we are interested in detecting non-terminating executions due to
asynchrony, rather than the orthogonal problem of detecting whether each indi-
vidual task may alone terminate. Our notion of non-termination thus considers
only executions which return to idle configurations infinitely-often.

Definition 2 (non-termination). The non-termination problem is to deter-
mine for an initial condition ι and a program P , whether there exists an infinitely-
often idle execution of P from some ι-initial configuration.

3 Detecting Non-termination

Though precise algorithms for detecting (fair) non-termination in finite-data
asynchronous programs are known (see Ganty and Majumdar [10]), the fair
non-termination problem is polynomial-time equivalent to reachability in Petri
nets, which is an EXPSPACE-hard problem for which only non-primitive re-
cursive algorithms are known. Though worst-case complexity is not necessarily
an indication of feasibility on practically-occurring instances, here we are inter-
ested in leveraging existing tools designed for more tractable problems whose
solutions can be used to incrementally under-approximate non-termination de-
tection; i.e., where for a given analysis parameter k ∈ N we can efficiently detect
non-termination from an interesting subset Bk of program behaviors.

Our strategy is to reduce the problem of detecting non-terminating execu-
tions in asynchronous programs to that of completed state-reachability in asyn-
chronous programs. We perform this step using the code-to-code translation of
Section 3.1, and in Section 3.2 we consider extensions to handle fairness. Then,
in the second step of Section 3.3, we apply an incrementally underapproximating
reduction from state-reachability in asynchronous programs to state-reachability
in sequential program [8, 4], and discharge the resulting program analysis prob-
lem using existing sequential analysis tools.

444 M. Emmi and A. Lal

3.1 Reduction from Non-termination to Reachability

In the first step of our reduction, we use the fact that every infinite execution
eventually passes through two configurations c1, and then c2, such that every
possible execution from c1 is also possible from c2; e.g., when c1 and c2 are idle
configurations with the same global valuation in which all tasks pending at c1
are also pending at c2. Formally, given two configurations c1 = 〈g1, w1,m1〉 and
c2 = 〈g2, w2,m2〉 we define the order c1 � c2 to hold when g1 = g2, w1 = w2,
and m1 ⊆ m2.

1 An execution c0c1 . . . is called periodic when ci � cj for two
idle configurations ci and cj such that i < j.2 The following lemma essentially
exploits the fact that � is a well-quasi-ordering on idle configurations.

Lemma 1. A finite-data program P has an infinitely-often idle execution from
ι if and only if P has a periodic execution from ι.

Proof. Suppose c0c1 . . . is the sequence of idle configurations in an infinitely-
often idle execution ξ. As the subset order ⊆ on multisets is a well-quasi order,
and the domain Vals of global variables is finite, � is a well-quasi order on idle
configurations. Thus there exists i < j such that ci � cj , so ξ is also periodic.

Supposing ξ = c0c1 . . . is a periodic execution from ι, there exists idle con-
figurations ci and cj of ξ such that i < j and ci � cj ; let ci = 〈gi, ε,mi〉 and
cj = 〈gj, ε,mj〉. Since gi = gj and mi ⊆ mj , by definition of �, the sequence
of execution steps between ci and cj is also enabled from configuration cj—we
may simply ignore the extra tasks mj \mi pending in cj . For any k, l ∈ N and
task buffer m ∈ M[Frames] such that k < l < |ξ|, let ξmk,l be the sequence of
configurations ckck+1 . . . cl−1 of ξ, each with additional pending tasks m. Fur-
thermore, let k ·m be the multiset union of k copies of m. Letting m = mj \mi,
then ξ0,iξi,jξ

m
i,jξ

2m
i,j ξ

3m
i,j . . . is an infinitely-often idle execution from ι which peri-

odically repeats the same transitions used to construct ξ between ci and cj .

We reduce the detection of periodic executions to completed state reachability in
asynchronous programs. Essentially, such a reduction must determine multiset
inclusion between the unbounded task buffers at two idle configurations; i.e., for
some idle configuration ci = 〈gi, ε,mi〉 reachable in an execution c0c1 . . ., there
exists j > i such that cj = 〈gj , ε,mj〉 with gi = gj and mi ⊆ mj. As the set mi of
pending tasks at ci is unbounded, any reduction cannot hope to store arbitrary
mi for later comparison with mj using finite-domain program variables.

Our reduction determines the correspondence between unbounded task buffers
in the source program using only finite-domain program variables by leveraging
the task buffers of the target program. For each instance of a task t which is
pending in ci, we post an additional task pro(t) when t is posted; for each task
t pending in cj , we either post an additional task anti(t) instead of t, or we
post nothing, to handle the case where t is never dispatched. We then check
that for each executed pro(t) a matching anti(t) is also executed, and that

1 Here ⊆ is the multiset subset relation.
2 As our definition of - only relates configurations with equal global valuations, our
notion of periodic is only complete for finite-data programs.

Finding Non-terminating Executions in Distributed Asynchronous Programs 445

1 // translation of var g: T
2 var repeated: B

3 var turn: B

4 var last: Procs × Vals
5 var G[B]: T
6

7 // translation of
8 // proc p (var l: T) s
9 proc p (var l:T , period:B) s
10

11 // translation of call x := p e
12 call x := p (e,period)

13 // translation of g
14 G[period]
15

16 // additional procedures
17 proc pro(var t: Procs× Vals)
18 assume turn;
19 last := t;
20 turn := false;
21 return
22 proc anti(var t: Procs× Vals)
23 assume !turn ∧ last = t;
24 turn := true;
25 return

26 // translation of post p e
27 if � then
28 assume !period;
29 post pro (p,e);
30 post p (e,true);
31 repeated := true
32 else if � then
33 assume period;
34 post anti (p,e)
35 else if � then
36 skip
37 else
38 post p (e,period)

Fig. 3. The translation ((P))nt of an asynchronous program P

at some point no pro(t) nor anti(t) tasks are pending. By considering execu-
tions which alternate between tasks of {pro(t) : t ∈ mi} and {anti(t) : t ∈ m′j}—
where m′j ⊆ mj such that mj \ m′j correspond to the dropped tasks—we can
ensure each instance of an mi task has a corresponding instance in mj , storing
only the last encountered pro(t) task, for t ∈ mi.

Figure 3 lists our code-to-code translation ((P))nt reducing non-termination in
an asynchronous program P to completed state reachability in the asynchronous
program ((P))nt. Besides the auxiliary variable last used to store the last en-
countered pro(t) task, for t ∈ mi, we introduce Boolean variables repeated, to
signal whether mi is non-empty, and turn, to signal whether an anti(t) task has
been executed since the last executed pro(t) task. We also divide the execution
of tasks into two phases by introducing a task-local Boolean variable period.
The first phase (!period) corresponds to the execution c0c1 . . . ci, while the sec-
ond phase (period) corresponds to ci+1ci+2 . . . cj . Initially pending tasks occur
in the first non-period phase. Then each time a new task t is posted, a non-
deterministic choice is made for whether t will execute in the non-period phase,
in the period phase, or never.

Finally, to determine which finite asynchronous executions prove the existence
of infinite asynchronous executions, we define the predicate ϕnt over initial con-
ditions ι and configuration c as

ϕnt(ι, c)
def
=

⎧⎪⎪⎨⎪⎪⎩
true when ¬repeated(ι) and turn(ι)

and repeated(c) and turn(c)
and G[0](c) = G[1](ι) = G[1](c)

false otherwise,

along with the mapping ϑnt which projects the initial conditions of ((P))nt to
those of P , as ϑnt(〈g, �, p〉) def

= 〈g′, �′, p′〉 when g(g′) = G[0](g), l(�′) = l(�), and
p′ = p. Essentially, in any completed configuration c reachable from ι satisfying
ϕnt(ι, c), we know that some task has executed during the period (since repeated
evaluates to true), and that for each task pending at the beginning of the period,
an identical task is pending at the end of the period (since turn evaluates to
true, and there are no pending tasks in c). Finally, the conditions on the global

446 M. Emmi and A. Lal

variable G ensure that the beginning and end of each period reach the same
global valuation.

Lemma 2. A finite-data program P has an infinitely-often idle execution from
ι0 if and only if a completed configuration c is reachable in ((P))nt from some ι
such that ϕnt(ι, c) = true and ϑnt(ι) = ι0.

Proof. For the forward direction, by Lemma 1, P also has a periodic execution
ξ = ξ0,iξi,jξj,ω from ι0—where ξk,l

def
= ckck+1 . . . cl−1 for k < l < |ξ|—and ci � cj

for idle configurations ci = 〈g, ε,m1〉 and cj = 〈g, ε,m2〉. We build an execution
ξ′ = ξ′0,iξ

′
i,jξmatch of ((P))nt such that

– the configurations c′k of ξ′0,i correspond to configurations ck of ξ0,i, with
g(ck) = G[0](c′k), G[1](c

′
k) = g,

– the configurations c′k of ξ′i,j correspond to configurations ck of ξi,j , with
g(ck) = G[1](c′k) and G[0](c′k) = g,

– the pending tasks of each configuration c′k of ξ′0,j , excluding pro and anti

tasks, are contained within those of ck,
– the local valuations of each configuration c′k of ξ′0,i (resp., of ξ

′
i,j) match those

of ck, except period evaluates to 0 (resp., to 1) in every frame of c′k, and
– the sequence ξmatch alternately executes pro and anti tasks such that each

pro(t) task is followed by a matching anti(t) task.

It follows that we can construct such a ξ′ which reaches a completed configuration
c from some ι such that ϕnt(ι, c), ϑnt(ι) = ι0, and G[0](c) = G[1](c) = g.

For the backward direction, the reachability of a completed configuration c of
((P))nt from ι such that ϕnt(ι, c) implies that there exists a periodic execution
ξ = c0c1 . . . of P ; in particular, there exist configurations ci � cj of ξ with i < j,
and which have the global valuations g(ci) = g(cj) = G[0](c) = G[1](c) reached
at the end of each period of ((P))nt’s execution, and the set of pending tasks
m in ci are those second-period tasks posted by ((P))nt from first-period tasks.
Since the set of tasks posted and pending by the end of the second period must
contain m—otherwise unexecutable pro tasks would remain pending—we can
construct a run where the pending tasks of cj contain the pending tasks of ci,
and so P has a periodic execution. By Lemma 1 we conclude that P also has an
infinitely-often idle execution.

3.2 Ensuring Scheduling Fairness

In many classes of asynchronous systems there are (at least) two sensible no-
tions of scheduling fairness against which to determine liveness properties: an
infinite execution is called strongly-fair if every infinitely-often enabled transi-
tion is fired infinitely often, and weakly-fair if every infinitely-often continuously
enabled transition is fired infinitely often. In our setting where asynchronous
tasks execute serially from a task buffer, weak fairness becomes irrelevant; while
one task executes no other transitions are enabled, and when idle (i.e., while no
tasks are executing), all pending tasks become enabled. Furthermore once a task

Finding Non-terminating Executions in Distributed Asynchronous Programs 447

is posted, it becomes pending, and it is thus enabled in all subsequent idle config-
urations until dispatched. We thus define fairness according to what is normally
referred to as strong fairness: an execution is fair when each infinitely-often
posted task is infinitely-often dispatched.

To extend our reduction so that only fair infinite executions are considered we
make two alterations to the translation of Figure 3. First, on Line 36 we replace
skip with assume period; this ensures participation of all tasks pending at the
beginning of each period. Second, we add auxiliary state to ensure at least one
instance of each task posted during the period is dispatched. This can be encoded
in various ways; for instance, we can add two arrays dropped and dispatched

of index type Procs × Vals and element type B that indicate whether each task
has been dropped/dispatched during the period phase (i.e., where the local vari-
able period evaluates to true). Initially dropped[t] = dispatched[t] = false
for all t ∈ Procs × Vals. Each time a post to task t is dropped during the pe-
riod phase (i.e., Line 36) we set dropped[t] to true, and each time task t is
executed during the period phase (i.e., Line 38 when period is true) we set
dispatched[t] to true. (Note that we need not consider the non-post of t on
Line 34 as dropped, since t is necessarily dispatched during the period phase;
otherwise there would remain a pending anti(t) task.) Finally, we add to our
reachability query the predicate ∀t.dropped[t]⇒dispatched[t], thus ensuring
that when all asynchronous tasks have completed the only dropped tasks have
been dispatched during the period.

Alternatively, we may also encode this fairness check by posting auxiliary
dropped and dispatched tasks to the task buffer, in place of using the dropped
and dispatched arrays. Essentially for each task t dropped during the period
phase on Line 36 we add post dropped(t), and for each task t posted into
the period phase we add post dispatched(t). Then, using a single additional
variable of type Procs×Vals we ensure that for every executed dropped(t) task
some dispatched(t) task also executes; a single variable suffices for this check
because we may consider only schedules where all dropped(t) and dispatch(t)

tasks execute contiguously for each t.

3.3 Delay-Bounded Reachability

Following the reduction from (fair) nontermination, we are faced with a highly-
complex problem: determining completed state-reachability in finite-data pro-
grams is polynomial-time equivalent to computing exact reachability in Petri
nets (i.e., such that all places representing pending tasks are empty), or alterna-
tively in vector addition systems (i.e., such that all vector components counting
pending tasks are zero). Though these problems are known to be decidable, there
is no known primitive-recursive upper complexity bound.

Rather than dealing with such difficult problems, our strategy is to consider
only a restricted yet interesting set of actual program behaviors. Following Emmi
et al. [8]’s delay-bounding scheme, we equip some deterministic task scheduler
with the ability to deviate from its deterministic schedule only a bounded number
of times (per task). As this development is very similar to Emmi et al. [8]’s,

448 M. Emmi and A. Lal

1 // translation of var g: T
2 var g: T
3 var G[K]: T
4

5 // translation of
6 // proc p (var l: T) s
7 proc p (var l: T, k: K) s
8

9 // translation of call x := p e
10 call x := p (e,k)

11 // translation of post p e
12 let temp: T = g
13 and guess: T
14 and k’: K in
15 assume k ≤ k’ < K;
16 g := G[k’];
17 G[k’] := guess;
18 call p (e,k’);
19 assume g = guess;
20 g := temp;

Fig. 4. The K delay sequential translation ((P))Kdb of an asynchronous program P

we refer the interested reader there. We recall in Figure 4 the essential delay-
bounded asynchronous to sequential translation.

To determine which executions of the sequential program ((P))
K
db prove the

existence of a valid asynchronous execution, we define the predicate ϕdb over
initial conditions ι and configuration c as

ϕdb(ι, c) =

⎧⎪⎨⎪⎩
true when G[0](ι) = g(c)

and ∀i ∈ N.0 < i < K ⇒ G[i](ι) = G[i− 1](c)

false otherwise,

along with the mapping ϑdb from initial conditions of ((P))
K
db to those of P as

ϑdb(〈g, �, p〉) def
= 〈g′, �′, p′〉 when g(g′) = g(g), l(�′) = l(�), and p′ = p. Essentially,

in any completed configuration c reachable from ι satisfying ϕdb(ι, c), we know
that the initially pending task returned with the shared global valuation G[0](ι)
resumed by the first-round tasks, and that the last (i−1) round task, for 0 <
i < K, returned with the shared global valuation G[i](c) resumed by the first i
round task. The following lemma follows from Emmi et al. [8].

Lemma 3. A valuation g is reachable in some completed configuration of a
program P from ι0 if some g-valued completed configuration c is reachable in
((P))

K
db from some ι, such that ϕdb(ι, c) = true and ϑdb(ι) = ι0, for some K ∈ N.

4 Experience

We have implemented a prototype analysis tool called Alive. Our tool takes
as input distributed asynchronous programs written in a variation of the Boo-
gie language [2] in which message posting is encoded with specially-annotated
procedure calls. Given a possibly non-terminating input program P ,Alive trans-
lates P into another asynchronous program P ′ (according to the translation of
Sections 3.1 and 3.2) that may violate a particular assertion if and only if P
has a (fair) non-terminating execution. Then Alive passes P ′ and a bounding
parameter K ∈ N to our AsyncChecker delay-bounded asynchronous pro-
gram analysis tool [9] which attempts to determine whether the assertion can be

Finding Non-terminating Executions in Distributed Asynchronous Programs 449

Example bug? K N time (s)

PingPong
√

1 5 5.32
PingPong-mod2

√
2 5 19.01

PingPong-mod2-1md × 1 5 4.94
PingPong-mod3

√
3 5 86.61

PingPong-mod3-1md × 2 5 23.53
PingPong-mod3-2md × 1 5 4.66
PingPongPung

√
2 5 111.92

PingPongPung-1md × 1 5 19.87

SpanningTree-bug
√

1 5 165.19
SpanningTree-correct × 2 3 28.80
Bfs-bug

√
1 5 286.95

Bfs-correct × 2 3 32.15
BellmanFord-bug

√
1 5 303.98

BellmanFord-correct × 2 3 33.74

Fig. 5. Experimental results with Alive.
Here K indicates the delay-bound, and N
the recursion-depth bound.

1 // program PingPong
2 var x: bool;
3

4 proc Ping ()
5 if ¬x then
6 post Ping ();
7 x := true;
8 return
9

10 proc Pong ()
11 if x then
12 post Pong ();
13 x := false;
14 return
15

16 proc Main ()
17 x := false;
18 post Ping ();
19 post Pong ();
20 return

3:Ping 6:Pong

1:Main

4:anti

2:pro 5:pro

7:anti

(a)

3:Ping 5:Pong

1:Main

7:anti

2:pro 4:pro

8:Pong

9:anti

6:Ping

(b)

Fig. 6. The PingPong program, along
with asynchronous executions of the
translations ((PingPong))nt (a) and
((PingPong-mod2))nt (b). Task order is
indicated by numeric prefixes; the dot-
ted line indicates delaying.

violated (in an execution using at most K delay operations, per task). Async-

Checker essentially performs a variation of our delay-bounded translation of
Section 3.3—which results in a sequential Boogie program—and hands the re-
sulting program P ′′ to the Corral SMT-based bounded model checker [14] to
detect assertion violations.

Our implementation is able to find (fair) non-terminating executions in sev-
eral toy examples, and handed-coded implementations of textbook distributed
algorithms [16]; the source code of our examples can be found online [7]. Figure 5
summarizes our experiments on two families of examples which we discuss below:
the PingPong family of toy examples, and the SpanningTree family of textbook
examples. For each family, Figure 5 lists both “buggy” variations (i.e., those with
infinite executions) and “correct” variations (those without infinite executions—
at least up to the given delay bound). In each case the delay bound is given by
K, and a recursion bound is given by N ; our back-end bounded model checker
Corral only explores executions in which the procedure stack never contains
more than N frames of any procedure, for a given recursion bound N ∈ N. Note
that our implementation is a simple unoptimized prototype; the running times
are simply listed as a validation that our reduction is feasible.

4.1 PingPong

As a simple example of a non-terminating asynchronous program, consider the
PingPong program of Figure 6. Initially the Main procedure initializes the Boolean

450 M. Emmi and A. Lal

variable x to false and posts asynchronous calls to Ping and Pong. When Ping

executes and x is false, then Ping posts a subsequent call to Ping, and sets x
to true; otherwise Ping simply returns. Similarly, when Pong executes and x is
true, then Pong posts a subsequent call to Pong, and sets x to false; otherwise
Pong simply returns. This program has exactly one non-terminating execution:
that where the pending instances to Ping and Pong execute in alternation. This
execution is periodic, as the configuration where x=false, and both Ping and
Pong have a single pending instance, is encountered infinitely often.

Figure 6a depicts an execution of the program resulting from our translation
(Section 3.1) of the PingPong program. Following our translation, the Main pro-
cedure takes the branch of Line 28 in Figure 3, posting both pro(Ping) and
Ping, then both pro(Pong) and Pong. Without using any delay operations, the
scheduler encoded by AsyncChecker executes the posted tasks in depth-first
order over the task-creation tree [8, 9]. Thus following Main, pro(Ping) exe-
cutes, then Ping, followed by anti(Ping). Subsequently, pro(Pong), Pong, and
anti(Pong) execute, in that order. Luckily this execution provides a witness to
nontermination without spending a single delay.

Our experiments include several variations of this example. The -mod2 and
-mod3 variations add an integer variable i which is incremented (modulo 2,
resp., 3) by each call of Ping. The addition of this counter complicates the
search for a repeated configuration, since besides the global variable x and pend-
ing tasks Ping and Pong, the value of i must also match in the repeating config-
uration. This addition also increases the number of delay operations required to
discover an infinite execution, as the depth-first task scheduler without delaying
considers only executions where all Ping tasks execute before all Pong tasks—
see Figure 6b; since, for instance, modulo 2 incrementation requires two of each
Ping and Pong tasks to return to a repeating configuration (i.e., with i=0), the
second Ping task must delay in order to occur after the first Pong task. In the
-1md and -2md variations, we reduce the budget of task delaying, and observe
that indeed the additional delay budgets are required to witness nonterminating
executions. The PingPongPung variation is an even more intricate variation in
which each task (i.e., Ping, Pong, or Pung) posts a different task.

4.2 SpanningTree

In Figure 7 we consider two examples of distributed algorithms taken from the
textbook of Lynch [16], and modified to introduce nonterminating executions.
Essentially, SpanningTree attempts to compute a spanning tree for an arbi-
trary network by building a parent relation from message broadcasts. When
the parent link is established asynchronously there exist (unfair) executions
in which nodes cyclically propagate their search messages without ever estab-
lishing the parent relation. The BellmanFord algorithm is a generalization of
SpanningTree in which links between nodes have weights; the algorithm at-
tempts to establish a spanning tree in which each node is connected by a minimal-
weight path. Our injection of a bug demonstrates that even the most trivial of

Finding Non-terminating Executions in Distributed Asynchronous Programs 451

1 // program SpanningTree
2 type Pid;
3 var parent[Pid]: Pid;
4 var reported[Pid]: bool;
5

6 proc Main ()
7 var root: Pid;
8 assume ∀p: Pid. reported[p] = false;
9 post search (root, root);
10 return
11

12 proc search (var this: Pid, sender: Pid)
13 var neighbor: Pid;
14

15 if ¬reported[this] then
16

17 // BUG: should be done synchronously!
18 post parent (this, sender);
19

20 while � do
21 let neighbor: Pid in
22 assume neighbor �= this;
23 assume neighbor �= sender;
24 post search (neighbor, this);
25

26 return
27

28 proc parent (var this: Pid, p: Pid)
29 parent[this] := p;
30 reported[this] := true;
31 return

1 // program BellmanFord
2 type Pid;
3 type Val;
4 var dist [Pid]: int;
5 var parent [Pid]: Pid;
6 const weight [Pid, Pid]: int;
7

8 proc Main ()
9 var root: Pid;
10 assume ∀p: Pid. dist[p] = INF;
11 post bellmanFord (root, 0, root);
12 return
13

14 proc bellmanFord (var this: Pid, w: int,
15 sender: Pid)
16 var neighbor: Pid;
17

18 // BUG: should check <, not ≤
19 if w + weight[this,sender] ≤ dist[this]
20 then
21 dist[this] := w + weight[this,sender];
22 parent[this] := sender;
23

24 while � do
25 let neighbor: Pid in
26 assume neighbor �= this;
27 assume neighbor �= sender;
28 post bellmanFord
29 (neighbor, dist[this], this);
30 return

Fig. 7. Two distributed asynchronous programs with divergent infinite executions

programming errors (e.g., typing ≤ rather than <) can introduce fair nontermi-
nating executions. Alive automatically discovers these nonterminating execu-
tions for an arbitrary, unspecified network.

4.3 Paxos

Lamport’s Paxos algorithm [15] provides a two-phase protocol for collaboratively
choosing a (numeric) value from a set of values proposed by various nodes in
a network; Figure 8 lists a basic variation of the algorithm. Initially a set of
proposers choose a unique value to propose, and broadcast their intention to the
set of acceptors via the preparemessage. Each acceptor then decides whether to
support the proposed value, depending on whether or not a higher proposal has
already been seen. When a proposal_OKmessage is received, the proposer checks
whether a majority has been achieved, and if so broadcasts an accept message.
If in the meantime the acceptors have not encountered a higher proposal, they
agree on the given proposal by setting accepted on Line 46.

Even in fair executions, divergent behavior can arise from several places. As
in the program of Figure 8, the proposers may periodically post higher proposals
in case their initial proposal is not answered within a timeout (Line 12), when
NOTIFY_DECLINED is false. Then even an individual proposer may repeatedly
propose new values just before receiving the acceptors’ proposal_OK messages.

452 M. Emmi and A. Lal

The acceptors, in turn, may continue to increment their prepared values, such
that previously agreed proposals will no longer be accepted (see the condition
on Line 40). Even preventing such behavior by assuming the proposers only
submit new proposals upon the reception of declined messages (i.e., suppose
NOTIFY_DECLINED is true), fair nonterminating executions may still arise by com-
petition between two or more proposers; for instance where two proposers con-
tinuously outbid the other before either’s proposal has been accepted.

Since each subsequent proposal in the Paxos algorithm proposed an increas-
ingly large number, strictly speaking our detection algorithm will not discover
such nonterminating executions, since the same values of proposal and prepared

will not be encountered twice. Essentially we must extend our well-quasi-ordering
of Section 3.1 by relaxing the equality on global state valuations to a well-quasi-
ordering which is compatible with the program’s transition relation. For the
purpose of our experiments, we have encoded manually such an order �′ for our
variations on the Paxos algorithm; the order relates global valuations g1 �′ g2
when there exists some δ ∈ N such that the values of proposal for proposing
processes, and prepared for accepting processes, in g1 and g2 uniformly increase
by δ, and all other variables in g1 and g2 are equal. With this small manual
effort, Alive is able to discover the “individual” nonterminating execution de-
scribed above, and while Alive can also detect the “competing” nonterminating
execution in theory, AsyncChecker times out on the reachability check after
30 minutes.

5 Related Work

Contrary to much work on sequential program (non)termination detection [5, 11],
less attention has been paid to concurrent programs, where nontermination can
arise from asynchronous interaction rather than diverging data values. Though
both Cook et al. [6] and Popeea and Rybalchenko [17] have proposed techniques
to prove termination in multithreaded programs, failure to prove termination
does not generally indicate the existence of nonterminating executions. In very re-
cent work, Atig et al. [1] suggest compositional nontermination detection for mul-
tithreaded programs based on bounded context-switch; their technique detects
infinite executions between a group of interfering, and each non-terminating,
threads. Our approach is orthogonal, as we detect infinite executions in which ev-
ery task terminates; nontermination arises from the never-ending creation of new
tasks. Technically, while Atig et al. [1] explore the behaviors between statically-
known threads, our problem is to detect the repetition of an unbounded set of
dynamically-created tasks.

Our reduction-based technique follows a recent trend of compositional transla-
tions to sequential program analysis by considering bounded program behaviors.
Based on the notion of bounded context-switch [18], Lal and Reps [13] proposed a
reduction fromdetecting safety violations inmultithreaded programs (with a finite
number of statically-known threads) to detecting safety violations in sequential
programs; shortly after La Torre et al. [12] extended this result to handle an arbi-
trary number of parametric threads, whichwas further extended by Emmi et al. [8]

Finding Non-terminating Executions in Distributed Asynchronous Programs 453

1 // The Proposers
2 var proposal[Pid]: int;
3 var agreed[Pid]: int;
4

5 proc propose (var p: Pid)
6 let n: int = gen_proposal_number () in
7 proposal[p] := n;
8 agreed[p] := 0;
9 post prepare (ACCEPTOR, p, n);
10

11 if ¬NOTIFY_DECLINED then
12 post propose(p);
13 return
14

15 proc proposal_OK (var p: Pid, n: int)
16 agreed[p] := agreed[p] + 1;
17 if agreed[p] ≥ MAJORITY then
18 post accept (ACCEPTOR, p,
19 proposal[p]);
20 return
21

22 proc declined (var p: Pid, n: int)
23 call propose (p);
24 return

26 // The Accepters
27 var prepared[Pid]: int;
28 var accepted[Pid]: int;
29

30 proc prepare (var p: Pid, sender: Pid, n: int
)

31 if prepared[p] ≥ n then
32 if NOTIFY_DECLINED then
33 post declined(sender, n)
34 else
35 prepared[p] := n;
36 post proposal_OK(sender, accepted[p])
37 return
38

39 proc accept (var p: Pid, sender: Pid, n: int)
40 if prepared[p] > n then
41 if NOTIFY_DECLINED then
42 post declined(sender, n)
43 else
44 // do there exists infinite runs
45 // which never accept any proposal?
46 accepted[p] := n
47 return

Fig. 8. A basic variation of the Paxos distributed algorithm; for simplicity we suppose
there is only a single accepting process named ACCEPTOR

to handle dynamic thread creation—including the case of task-buffer based “asyn-
chronous programs” [19]. More recently Bouajjani and Emmi [3] proposed a re-
duction from safety violations in distributed asynchronous programswith ordered
message queues. Thus far, only the recent (yet orthogonal—see above)work ofAtig
et al. [1] considers liveness properties such as nontermination.

Finally, although reductions from fair nontermination of task-buffer based
finite-data asynchronous programs (alternatively, Petri nets) are known—e.g., by
encoding into Petri net path logic formalæ [10]—our encoding into asynchronous
programs is original, and takes advantage of existing program analysis tools with
efficient under-approximating exploration strategies. Technically, Ganty and Ma-
jumdar [10]’s encoding uses constraints on marking-valued variables to ensure
that each task pending at the beginning of a repeating period is re-posted and
pending at the period’s end; a path-logic solver must then determine satisfia-
bility under those constraints. Our encoding handles the matching of pre- and
post-period pending tasks directly; we pose an asynchronous program reachabil-
ity query on a program whose additional tasks block executions in which pre-
and post-period tasks cannot be matched.

6 Conclusion

We have proposed a practical reduction-based algorithm for detecting divergent
executions in distributed asynchronous programs. By incrementally increasing
possible task reordering, our approach explores an increasing number of possibly-
divergent behaviors with increasing analysis cost, and any possibly-divergent

454 M. Emmi and A. Lal

behavior is considered at some cost. By reducing divergence of distributed asyn-
chronous programs to assertion violation in sequential programs, our approach
leverages efficient off-the-shelf sequential program analysis tools. Using our pro-
totype tool, Alive, we demonstrate that the approach is able to find divergent
executions in modified versions of typical textbook distributed algorithms.

References

[1] Atig, M.F., Bouajjani, A., Emmi, M., Lal, A.: Detecting Fair Non-termination
in Multithreaded Programs. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 210–226. Springer, Heidelberg (2012)

[2] Barnett, M., Leino, K.R.M., Moskal, M., Schulte, W.: Boogie: An intermediate ver-
ification language, http://research.microsoft.com/en-us/projects/boogie/

[3] Bouajjani, A., Emmi, M.: Bounded Phase Analysis of Message-Passing Programs.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 451–465.
Springer, Heidelberg (2012)

[4] Bouajjani, A., Emmi, M., Parlato, G.: On Sequentializing Concurrent Programs.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 129–145. Springer, Heidelberg
(2011)

[5] Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI 2006: Proc. ACM SIGPLAN 2006 Conference on Programming Language
Design and Implementation, pp. 415–426. ACM (2006)

[6] Cook, B., Podelski, A., Rybalchenko, A.: Proving thread termination. In: PLDI
2007: Proc. ACM SIGPLAN 2007 Conference on Programming Language Design
and Implementation, pp. 320–330. ACM (2007)

[7] Emmi, M., Lal, A.: Finding non-terminating executions in distributed asyn-
chronous programs (May 2012),
http://hal.archives-ouvertes.fr/hal-00702306/

[8] Emmi, M., Qadeer, S., Rakamarić, Z.: Delay-bounded scheduling. In: POPL 2011:
Proc. 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 411–422. ACM (2011)

[9] Emmi, M., Lal, A., Qadeer, S.: Asynchronous programs with prioritized task-
buffers. Technical Report MSR-TR-2012-1, Microsoft Research (2012)

[10] Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs.
CoRR, abs/1011.0551 (2010), http://arxiv.org/abs/1011.0551

[11] Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving
non-termination. In: POPL 2008: Proc. 35th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 147–158. ACM (2008)

[12] La Torre, S., Madhusudan, P., Parlato, G.: Model-Checking Parameterized Con-
current Programs Using Linear Interfaces. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 629–644. Springer, Heidelberg (2010)

[13] Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods in System Design 35(1), 73–97 (2009)

[14] Lal, A., Qadeer, S., Lahiri, S.K.: Corral: A Solver for Reachability Modulo The-
ories. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
427–443. Springer, Heidelberg (2012)

[15] Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–
169 (1998)

http://research.microsoft.com/en-us/projects/boogie/
http://hal.archives-ouvertes.fr/hal-00702306/
http://arxiv.org/abs/1011.0551

Finding Non-terminating Executions in Distributed Asynchronous Programs 455

[16] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996) ISBN 1-55860-
348-4

[17] Popeea, C., Rybalchenko, A.: Compositional Termination Proofs for Multi-
threaded Programs. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 237–251. Springer, Heidelberg (2012)

[18] Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

[19] Sen, K., Viswanathan, M.: Model Checking Multithreaded Programs with Asyn-
chronous Atomic Methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 300–314. Springer, Heidelberg (2006)

[20] Svensson, H., Arts, T.: A new leader election implementation. In: Erlang 2005:
Proc. 2005 ACM SIGPLAN Workshop on Erlang, pp. 35–39. ACM (2005)

[21] Trottier-Hebert, F.: Learn you some Erlang for great good!,
http://learnyousomeerlang.com/

http://learnyousomeerlang.com/

Author Index

Abdulla, Parosh Aziz 164
Adams, Michael D. 352
Albarghouthi, Aws 300
Alonso-Blas, Diego Esteban 405
Atig, Mohamed Faouzi 164

Barthe, Gilles 1
Biallas, Sebastian 214
Brauer, Jörg 214

Cachera, David 58
Calvert, Peter 181
Chang, Bor-Yuh Evan 146
Chechik, Marsha 300
Chen, Hong Yi 422
Chen, Yu-Fang 164
Cheng, Tie 94

Distefano, Dino 3
D’Silva, Vijay 317

Elder, Matt 111
Emmi, Michael 439

Flur, Shaked 422

Genaim, Samir 405
Giacobazzi, Roberto 129
Giannakopoulou, Dimitra 248
Goubault, Eric 24
Grégoire, Benjamin 1
Gurfinkel, Arie 300

Halbwachs, Nicolas 198
Haller, Leopold 317
Henry, Julien 198, 283
Hong, Hong 5
Howe, Jacob M. 41

Ioualalen, Arnault 75

Jaffar, Joxan 231
Jensen, Thomas 58
Jobin, Arnaud 58

Khedker, Uday P. 265
King, Andy 41, 214

Kirchner, Florent 58
Kowalewski, Stefan 214
Krishnamurthi, Shriram 4
Kroening, Daniel 317

Lal, Akash 439
Ledesma-Garza, Ruslán 388
Lee, Jonathan K. 5
Leonardsson, Carl 164

Madhavan, Ravichandhran 370
Majumdar, Rupak 5
Martel, Matthieu 75
Mastroeni, Isabella 129
Midtgaard, Jan 352
Might, Matthew 352
Monniaux, David 283
Moy, Matthieu 283
Mukhopadhyay, Supratik 422
Murali, Vijayaraghavan 231
Mycroft, Alan 181, 265

Navas, Jorge A. 231

Palsberg, Jens 5
Putot, Sylvie 24

Rakamarić, Zvonimir 248
Ramalingam, G. 370
Raman, Vishwanath 248
Rawat, Prashant Singh 265
Reps, Thomas 111, 334
Rezine, Ahmed 164
Rival, Xavier 94
Rybalchenko, Andrey 388

Sanchez, Alejandro 146
Sánchez, César 146
Sankaranarayanan, Sriram 146
Santosa, Andrew E. 231

Thakur, Aditya 111, 334

Vaswani, Kapil 370
Védrine, Franck 24

Zanella Béguelin, Santiago 1

	Title

	Preface
	Organization
	Table of Contents
	Invited Talks

	Computer-Aided Cryptographic Proofs
	References

	A Voyage to the Deep-Heap
	Semantics and Analyses
for JavaScript and the Web
	Efficient May Happen in Parallel Analysis
for Async-Finish Parallelism
	Introduction
	Featherweight X10
	The May-Happen-in-Parallel Problems
	A Type System for Producing Candidate Pairs
	An Algorithm for the MHP Decision Problem
	Solving the MHP Computation Problem
	Experimental Results
	Conclusion
	References

	Contributed Papers

	Modular Static Analysis with Zonotopes
	Introduction
	Functional Abstraction with Zonotopes
	Basics: Affine Sets and Zonotopes
	Geometric and Functional Orders
	Join Operation

	Affine Sets Summary and Specialization
	Program Syntax and Semantics
	Summary Creation
	Summary Instantiation
	Correctness and Complexity

	Summary Creation Strategies
	Examples
	Performance of the Modular Analysis
	Application of Summarizing on Benchmarks

	Conclusion and Future Work
	References

	Polyhedral Analysis
Using Parametric Objectives
	Introduction
	Background
	Matrices and Vectors
	Basic and Non-basic Variables
	Pivoting
	Avoiding Cycling with Lexicographic Pivoting

	Worked Example
	Overview
	Describing the Output Inequalities as a Cone
	Slicing the Cone with a Plane to Obtain a Polytope
	The Vertices of the Polytope as Irredundant Inequalities
	Enumerating Inequalities Using PLP

	Anytime Projection Using Vertex Enumeration
	Vertex Enumeration Using PLP
	Vertex Enumeration
	Next Parameter
	Next Vertex

	Related Work
	Conclusions
	References

	Inference of Polynomial Invariants for Imperative
Programs: A Farewell to Gröbner Bases
	Introduction
	Preliminaries
	Syntax and Semantics of Polynomial Programs
	Verifying and Generating Polynomial Invariants
	Fast Inference of Loop Invariants
	Loop Invariants
	Inferring Loop Invariants by Fastind Analysis
	Handling and Solving Constraints
	Illustrating the Fastind Analysis on mannadiv Example

	Benchmarks
	Related Work
	Conclusion
	References

	A New Abstract Domain for the Representation
of Mathematically Equivalent Expressions
	Introduction
	Overview
	Formal Definition of APEGs
	APEG Construction
	Homogenization Transformations
	Expansion Functions

	Correctness
	Collecting Semantics
	Abstraction and Concretization Functions
	The Abstract Domain of APEGs

	Profitability Analysis
	Experimental Results
	Statistical Results
	Benchmarks

	Conclusion
	References

	An Abstract Domain
to Infer Types over Zones in Spreadsheets
	Introduction
	Overview
	Spreadsheet Programs
	Abstract Domain
	Abstraction of a Typed Zone
	Abstraction of a Set of Typed Zones
	An Instantiation with Difference-Bound Matrices

	Domain Operations
	Transfer Functions
	Reduction
	Upper Bound Operator
	Widening Operator
	Analysis

	Prototype and Results
	Conclusion and Future Work
	References

	Bilateral Algorithms for Symbolic Abstraction
	Introduction
	Towards a Bilateral Algorithm
	A Parametric Bilateral Algorithm
	Instantiations
	Herbrand-Equalities Domain
	Polyhedral Domain

	Experiments
	Related Work
	Related Work on Symbolic Abstraction
	Other Related Work

	References

	Making Abstract Interpretation Incomplete:
Modeling the Potency of Obfuscation
	Introduction
	Abstract Domains Individually and Collectively
	Adjoining Closure Operators

	Potency by Incompleteness
	Modeling Potency of Code Obfuscation
	Example: Control-Flow Obfuscation

	Making Abstract Domains Incomplete
	Simplifying Abstractions
	Refining Abstractions: Incomplete Expanders

	The Potency of Data Dependency Obfuscation
	Program Slicing
	Semantic PDG as Abstraction of Program Semantics

	Conclusion
	References

	Invariant Generation for Parametrized Systems Using Self-reflection
	Introduction
	Overview: Self-reflection
	Reflective Abstractions and Inductive Invariants
	Reflective Abstract Interpretation
	Abstract Interpretation Using Reflection
	Interference Abstraction versus Reflective Abstraction
	Theory versus Practice: The Effect of Widening

	Empirical Evaluation: Studying Iteration Schemes
	Related Work
	Conclusion
	References

	Automatic Fence Insertion
in Integer Programs via Predicate Abstraction
	Introduction
	Concurrent Systems
	The TSO Transition System
	Definitions and Notations
	Configurations
	Transition Relation
	The Reachability Problem

	k-Abstraction
	Definitions and Notations
	k-Abstract Configurations
	k-Abstract Transition Relation

	Combined Abstraction
	Definitions and Notations
	The Idea
	Comb-Abstract Configurations
	Predicate Abstraction
	Comb-Abstract Transition Relation (w.r.t a Set of Predicates P)

	The Reachability Checking Algorithm
	Counter Example Guided Abstraction Refinement
	Discussion
	Experimental Results
	References

	Control Flow Analysis for the Join Calculus
	Introduction
	Background and Notation
	The Flattened Join Calculus
	Translating Classical Techniques: 0-CFA
	Dealing with Message Interaction: 0-LCFA
	Abstracting Call DAGs: k-LCFA
	Applications
	Queue Bounding
	Inlining

	Discussion and Further Work
	Conclusion
	References

	When the Decreasing Sequence Fails
	Introduction
	Motivating Examples
	Related Works
	Contribution and Summary

	Definitions and Notations
	Improving a (Post-)Fixpoint Solution
	An Intuition of the Solution
	Generalised Sequences
	Case of a Single Widening Node
	General Case

	A More Illustrative Example
	Some Improvements
	Experimental Results
	Conclusion
	References

	Loop Leaping with Closures
	Introduction
	Worked Examples
	Closing the Loop over
	Applying Closures
	Leaping Nested Loops

	Semantics
	Concrete Semantics
	Abstract Semantics
	Closure Semantics

	Experiments
	Related Work
	Loop Summarisation
	Quantifier Elimination
	Disjunctive Invariants

	Conclusions
	References

	Path-Sensitive Backward Slicing
	Introduction
	Motivating Example
	Background
	Algorithm
	Results
	Related Work
	Conclusions
	References

	Symbolic Learning of Component Interfaces
	Introduction
	Motivating Example
	Preliminaries
	Components and Interfaces
	Symbolic Interface Learning
	Correctness and Guarantees
	Implementation and Evaluation
	Conclusions and Future Work
	References

	Liveness-Based Pointer Analysis
	Introduction
	Background
	Liveness-Based Pointer Analysis
	Interprocedural Liveness-Based Pointer Analysis
	Heaps, Escaping Locals and Records
	Related Work
	Implementation and Empirical Measurements
	Conclusions and Future Work
	References

	Succinct Representations
for Abstract Interpretation
	Introduction
	Bases
	Static Analysis by Abstract Interpretation
	SMT-Solving
	A Simple, Motivating Example
	Guided Static Analysis
	Path-focusing

	Guided Analysis over the Paths
	Ascending Iterations by Path-focusing
	Adding New Paths
	Termination
	Example

	Disjunctive Invariants
	Implementation and Experimental Comparisons
	Conclusion and Future Prospects
	References

	Craig Interpretation
	Introduction
	Example
	Definitions
	Vinta
	Main Algorithm
	Widening
	Refinement

	Implementation and Evaluation
	Implementation
	Evaluation

	Conclusion
	References

	Satisfiability Solvers Are Static Analysers
	How I Learned to Stop SAT Solving and Love Abstract Interpretation
	Propositional Satisfiability via Transformers
	Concrete Semantics of Propositional Formulae
	Abstract Satisfaction

	Sound and Complete Abstractions
	Fixed Point Refinement
	Boolean Constraint Propagation
	The Classic DPLL Algorithm

	Conflict Driven Clause Learning
	Related Work and Discussion
	References

	A Generalization of St˚almarck’s Method
	Introduction
	Overview
	Stålmarck's Method
	Generalizing Stålmarck's Method

	Terminology and Notation
	Propositional Logic
	Abstract Domains

	The Generalized Framework
	Instantiations
	Experiments
	Related Work
	References

	A Structural Soundness Proof
for Shivers’s Escape Technique
	Introduction
	Control-Flow Analysis
	Abstract Interpretation
	Abstracting the Domains
	Abstracting Values
	Abstracting the Store
	Abstracting Programs

	Abstracting the Analysis
	Abstracting the Helper Function
	Abstracting the Transfer Function
	Proof Summary

	Extracting Constraints
	Related Work
	Conclusion
	References

	Modular Heap Analysis for Higher-Order Programs
	Introduction
	An Informal Overview
	The Language and Its Concrete Semantics
	Abstract Domains and Concretization
	Abstract Semantics
	Experimental Evaluation
	Related Work
	References

	Binary Reachability Analysis
of Higher Order Functional Programs
	Introduction
	Illustration
	Preliminaries
	Binary Reachability on Evaluation Trees
	Program Transformation
	Experimental Evaluation
	Related Work
	A Limitation and Future Work
	References

	On the Limits of the Classical Approach
to Cost Analysis
	Introduction
	Motivating Examples and Preliminaries
	Shortcomings of the Classical Approach to Cost Analysis
	Inference of Net-Cost
	Inference of Peak-Cost
	Relation to Amortised Cost Analysis
	Implementation and Experiments
	Related Work
	Conclusions
	References

	Termination Proofs for Linear Simple Loops
	Introduction
	Preliminaries
	Loop Model and Semantics
	Disjunctive Ranking Relations
	Binary Reachability Check
	Simple Linear Ranking Function Synthesis

	Example
	Deterministic Updates over Integer Domain
	Variables over Q or R and Nondeterministic Updates

	Algorithm for Synthesizing Disjunctive Ranking Relations
	Extended Linear Ranking Function Synthesis
	Formal Description
	Correctness Proof
	Termination and Complexity of the Algorithm

	Experiments
	Conclusions
	References

	Finding Non-terminating Executions
in Distributed Asynchronous Programs
	Introduction
	Distributed Asynchronous Programs
	Program Syntax
	Program Semantics

	Detecting Non-termination
	Reduction from Non-termination to Reachability
	Ensuring Scheduling Fairness
	Delay-Bounded Reachability

	Experience
	PingPong
	SpanningTree
	Paxos

	Related Work
	Conclusion
	References

	Author Index

