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Abstract. Artificial life evolutionary systems facilitate addressing lots
of fundamental questions in evolutionary genetics. Behavioral adaptation
requires long term evolution with continuous emergence of new traits,
governed by natural selection. We model organism’s genomes coding for
their behavioral model and represented by fuzzy cognitive maps (FCM),
in an individual-based evolutionary ecosystem simulation (EcoSim). Our
system allows the emergence of new traits and disappearing of others,
throughout a course of evolution. In this paper we show how continuous
adaptation to a changing environment affects genomic structure and ge-
netic diversity. We adopted the notion of Shannon entropy as a measure
of genetic diversity. We emphasized the difference in genetic diversity
between EcoSim and its neutral model (a partially randomized version
of EcoSim). In addition, we studied the effect that genetic diversity has
on species fitness and we showed how they correlate with each other. We
used Random Forest to build a classifier to further validate our findings,
along with some meaningful rule extraction.

Keywords: artificial life modeling, individual-based modeling, genetic
diversity, entropy, fitness.

1 Introduction

Charles Darwin’s theory of adaptation through natural selection came to be
widely seen as the primary explanation of the process of evolution and forms the
basis of modern evolutionary theory. Darwin’s principle of natural selection relies
on a number of propositions. The individuals in a population are not identical
but vary in certain traits. This variation, at least partly, is heritable. Individuals
vary in the number and the quality of their descendants, depending on the
interactions of the individual’s trait and its environment. Populations with these
characteristics may become more adapted to their environment over generations.
The key to adaptation by natural selection is the effect of a multitude of small
but cumulative changes. While most of these changes are random, the majority of
those that are preserved are not damaging to the fitness of individuals. Instead
these variations may turn out to be somehow beneficial to the reproductive
success of their carrier. From a genetic perspective, the combination of mutation
and natural selection, enforce the emergence of new traits and disappearance of
others. These continuous genetic changes help preserve genetic diversity.
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Genetic diversity serves as a way for populations to adapt to changing environ-
ments. With more variations, it is more likely that some individuals in a popula-
tion will possess variations of alleles that are suited for their current environment.
Those individuals are more likely to survive to produce offspring bearing those al-
leles. These alleles will propagate through the population over many generations
because of the success of these individuals. In summary, genetic diversity strength-
ens a population by increasing the likelihood that at least some of the individuals
will be able to survive major disturbances. Many biological studies showed that a
decrease in population genetic diversity can be associated with a decline in popu-
lation fitness [1] [2] [3]. Because overall population diversity seems to affect both
short-term individual fitness and long-term population adaptive capacity, there
is a need to develop an empirical quantitative understanding of the relationship
between population genetic diversity and population viability.

Like in many disciplines; simulation modeling played a great role in studying
evolutionary processes. Many biological studies that require data of hundreds
of years can be obtained by simulation modeling that produces results in a
matter of a few hours or days depending on the computational cost of each
system. In this paper we show how individuals in EcoSim [4], an evolutionary
predator-prey ecosystem simulation, follow the Darwinian evolutionary process
through natural selection. We show how genetic evolution and diversity governs
the adaptation process. We show that EcoSim’s individuals adapt to their chang-
ing environment by comparing their behavior with a neutral model - a partially
randomized version of EcoSim. We use the Shannon entropy, which is a mea-
sure of unpredictability and disorder from Information theory, as a measure of
genetic diversity and present the difference in entropy between EcoSim and the
neutral model to emphasize the adaptive characteristics of EcoSim. Furthermore,
we investigate the relationship between genetic diversity and species fitness and
present the correlations found between these two measures in EcoSim. The rest
of the paper is organized as follows: A brief description of EcoSim and its neu-
tral model is presented in Section 2 and 3 respectively. Section 4 depicts the
details of the entropy as a genetic diversity measure followed by a comparison
between EcoSim and its neutral model, in terms of entropy as a genetic diver-
sity, in 5. The correlation results between entropy and fitness are presented in
Section 6, followed by building a classifier for inference in Section 7. A summed
up conclusion is presented in Section 8.

2 The EcoSim Model

In order to investigate several open theoretical ecology questions we have de-
signed the individual-based evolving predator-prey ecosystem simulation plat-
form EcoSim, introduced by Gras et al. [4] 1. Our objective is to study how
individual and local events can affect high level mechanisms such as community
formation, speciation and evolution. EcoSim uses Fuzzy Cognitive Map as a be-
havior model [5] which allows a combination of compactness with a very low

1 http://sites.google.com/site/ecosimgroup/research/ecosystem-simulation

http://sites.google.com/site/ecosimgroup/research/ecosystem-simulation
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computational requirement while having the capacity to represent complex high
level notions. The complex adaptive agents (or individuals) of this simulation
are either prey or predators which act in a dynamic 2D environment of 1000
x 1000 cells. Each individual possesses several physical characteristics including
age, minimum age for breeding, speed, vision distance, levels of energy, and the
amount of energy transmitted to the offspring. Preys consume grass, and preda-
tors predate on prey individuals. Grass distribution is dynamic, as it diffuses
in the world and disappears when consumed by preys. An individual consumes
some energy each time it performs an action such as evasion, search for food,
eating or breeding. Each individual performs one action during a time step based
on its perception of the environment. Fuzzy Cognitive Map (FCM) [5] is used
to model the individual’s behavior and to compute the next action to be per-
formed. The individual’s FCM is coded in its genome and therefore subjected to
evolution. A typical run lasts tens of thousands of time steps, during which more
than a billion of agents are born and several thousands of species are generated,
allowing evolutionary processes to take place and new behaviors to emerge to
adapt to a constantly changing environment. Our simulation embodies species
as a set of individuals sharing similar genomes [6]. Indeed, every member of a
species has a genome that is within a threshold distance away from the species
genome - an average of the FCMs of its members. To model the process of spe-
ciation, EcoSim allows splitting of a species into two sister species. The splitting
mechanism produces two clusters of individuals with high intra-cluster similar-
ity and strong inter-cluster dissimilarity. It is worth noting that the speciation
mechanism is only a labeling process: the information about species membership
is not used for any purpose during the simulation but only for post-processing
analysis of the results.

Formally an FCM is a graph which contains a set of nodes, each node being a
concept, and a set of edges, each edge representing the influence of one concept
on another. In each FCM, three kinds of concepts are defined: sensitive (such as
distance to foe or food, amount of energy, etc), internal (fear, hunger, curiosity,
satisfaction, etc) and motor (evasion, socialization, exploration, breeding, etc.).
We use a FCM to model an agent’s behavior (structure of the graph) and to
compute the next action of the agent (i.e. through the dynamics of the map). The
FCM serves as a genome for each individual. The genome length is maximum 390
sites, where each site corresponds to an edge between two concepts of the FCM.
The FCM allows the formation of new edges and disappearing of others through
the evolutionary process. During a breeding event the FCMs of two parents are
combined and transmitted to their offspring after the possible addition of some
mutations which is similar to the genetic process of recombination. The behavior
model of each individual is therefore unique.

3 The Neutral Model

In order to study the effect of adaptation on evolution, we built a neutral shadow
[7] of EcoSim. All selection processes and behaviors in the neutral shadow for the
predator/prey are random, which eliminates natural selection from this model.
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In terms of the behavioral model of this version, all the actions such as eating,
hunting (for predators), socializing, searching for food and escaping (for prey)
are removed. The only two actions any individual can take are reproduction and
movement. Unlike in the EcoSim, in the neutral model there is no necessity for
the individuals to have genetic similarity to reproduce. Instead, in the neutral
model the reproduction action is done by randomly choosing any 2 individuals
in the world. The statistics of genetic operations (mutation rates and crossover)
are the same as EcoSim. In EcoSim, individuals choose to reproduce according
to their internal state, suitable environmental conditions and behavior model
but not in the neutral model. To preserve population dynamics in neutral model
similar to that of EcoSim, the Lotka-Volterra computational model [8] is used.
This model controls the number of births and deaths at each time step. In ad-
dition, death of individuals and pairs of parents for reproduction are randomly
selected. In this way a similarity in population sizes between the neutral shadow
and EcoSim is preserved. Finally, the movements in the neutral model are ran-
dom, but the distribution of distances is kept the same as in EcoSim.

The crucial property of EcoSim neutral shadow is that its evolutionary dynam-
ics are identical to EcoSim except that neither the presence not the frequency
of a genotype can be explained by its adaptive significance. This is because all
selection in the neutral model is random, so no genotype has any dominance
over any other. In other words, although gene states are subject to the same
variation as in EcoSim, they have no evolutionary fitness consequences or ef-
fects. In addition, changes in the environment have no effect on individuals in
the neutral model. Consequently, the process of natural selection is considered
to be eliminated in this neutral model.

4 Entropy as a Measure of Genetic Diversity

Depending on the specific problem or representation being used, ranging from
biological domain to genetic programming, numerous diversity measures and
methods exist. Foe example, Sherwin [9] has shown the efficancy of Shannon en-
tropy in measuring diversity in ecological community and genetics. He has also
highlighted the advantages of using entropy based genetic diversity measures,
and surveyed these diversity measures. A close relationship between biological
concepts of Darwinian fitness and information-theoretic measures such as Shan-
non entropy or mutual information, was found [10]. Shannon Information theory
[11] defines uncertainty (entropy) as the number of bits needed to fully specify
a situation, given a set of probabilities. These probabilities can be estimated by
simply counting the abundance of each genotype (site) in the population. The
per-site entropy of an ensemble of sequences X, in which genotype si occurs with
probability pi is calculated as

H(X) = −Σpi log2(pi) (1)

where the sum goes over all different genotypes i in X. Next, the entropy con-
tent of the whole sequence (genome) is approximated by summing the per-site
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entropy over all sites in the sequence. This is only an approximation because
it ignores interactions between sites (i.e. epistasis). We do not have a fixed set
of alleles but they are discreet values that change over time in the simulation.
The lower the entropy, the less diverse are the genomes of a population and
vice versa. There is a limit in the desired values of entropy in EcoSim. When it
approaches its maximum(corresponding to an uniform distribution of all geno-
types) it indicates a completely uniform population close to randomness. On the
other hand very low entropy (close to 0) means that there is too much similarity
between individual genomes, and means that individulas need to diverge more
in order to adapt to a dynamic environment. A good balance between learning
from the environment (low genetic diversity) and increasing the diversity (high
genetic diversity) should be met in order to ensure the well being of species.

5 Evolution in EcoSim verses Neutral Model

The FCM of each individual plays the role of its genome and has a maximum
size of 390 sites. Every site is a real discreet number which measures the level of
influence from one concept to another. Initially all prey and predator individuals
are given the same values for their genome respectively. Time step after another,
as more individuals are created, changes in the FCM occur due to the formation
of new edges, removal of existing ones and changes in the weight associated to
edges. We neglect the first couple of thousand of time steps in our calculations to
overcome any misleading results due to the initial similarity between individual
genomes. In each time step we have a value of entropy of all existing preys species,
along with the entropy of the entire population of prey. We also calculated the
fitness for every species as the average fitness of its individuals. We define fitness
of an individual as the age of death of the individual plus the sum of the age
of death of its entire direct offspring. Accordingly, the fitness value mirrors the
individual’s capability to survive longer and produce high number of strong
adaptive offspring.

The information contained within a genome determines how the organism
behaves in its current environment. Thus, this information determines the capa-
bility of the organism to reproduce and transmit its genome. The environment
changes from one place to another and from one time step to the next. Individ-
uals that evolve in different parts of the world have different information about
the environment they evolve in stored in their genome. Furthermore, as we model
a predator-prey system, we also have co-evolution. The strategies (behavior) of
each kind of individula(predator/prey) are continuously changing as they try to
adapt to the other kind. The more the individuals try to learn the more the
environment changes and the more there is still something different to learn.
This fact drives the individuals to keep learning and continuously try to come
up with survival strategies that helps them adapt to their changing environment.
This is the reason behind the fluctuations we see in the EcoSim entropy curves
see Fig.1. On the other hand the neutral model shows much more steadiness in
the entropy values. Under highly random conditions and when natural selection
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Fig. 1. Global Entropy for 10 different runs of the simulation. Top 5 curves are for
EcoSim and lower 5 for Neutral Model.

is eliminated, the genomic structure shows neither learning nor adaptation to
the surrounding environment. These results show that entropy changes through
the course of evolution. The EcoSim simulation gave us the chance to acquire
data for thousands of generations and to study the performance of entropy as a
genetic diversity measure.

6 Measuring Correlation between Entropy and Fitness

In order to further emphasize the importance of genetic diversity to adaptation
and thus the well being of individuals, we were encouraged to study the effect
that genetic diversity has on fitness. EcoSim gives us the chance to study the
relation between species genetic diversity and species fitness without the limits
in environmental conditions and time scales found in biological studies [2] [3]
[12], but in highly variable environments and across evolutionary time. There
are many factors affecting genetic diversity and fitness, and the correlation be-
tween them. At every time step we calculate the entropy and the fitness for all
existing species. In order to investigate their possible correlations, we first begin
by calculating the Spearman’s cross correlation [13], between entropy and fitness
of all prey species. A perfect Spearman correlation of +1 or -1 is attained when
each of the variables is a perfect monotone function of the other; a value close
to zero means that there is no correlation.

In our evolutionary ecosystem the effect of entropy on fitness is not immediate.
A time shift between the variation in entropy and its effect on fitness is therefore
expected. Also, because we did not determine which attribute is the cause of
the other we calculate the correlation in both shift directions. We computed the
Spearman correlation coefficient, between these two time series for every possible



Adaptation and Genomic Evolution in EcoSim 225

Fig. 2. Different species correlation values between entropy and fitness. x-axis repre-
sents the different time shifts. Y-axis represents the correlation values.

shift between -s and +s time steps. Thus, we correlated the entropy at time t
with fitness at time t + S where S ranges from -s to +s. We’ve presented the
cross-correlation charts for some prey species in Fig.2. The x-axis in these charts
represents the different shifts for the time series. The y-axis represents the cross-
correlation value at the corresponding shift. From the figure we see that not only
different species have different cross-correlation values, but also the same species
correlated differently based on the time shift.

It should be noted that the dynamic environment, co-evolution and changing
parameters with time, all affect species behavior. Thus, correlation values for the
same species might vary through the course of evolution. This presents a feasible
problem to study in our model but not in biological experiments. This fact encour-
aged us to add a time frame to the two series and measure correlation within the
specific time frame. Consequently, we split these time series into sliding windows.
Within each window we calculated all possible correlations with different shifts
�s. Then we chose the highest correlation value (whether positive or negative)
and assigned it to the corresponding species instance of the time series.

In order to examine the possible correlation values between species entropy
and fitness at every time step we usde data collected from 5 different runs of
the EcoSim simulation, each running with the same initial conditions. Each
replicate ran for 16,000 time steps and generated 110,000 instances (an instance
corresponding to one given species at give one time step) in average. For each
instance we calculated the Spearman’s cross correlation between entropy and
fitness for the corresponding window. We assigned three different classes to the
correlation values. Correlations with values between -0.5 and 0.5 are class WEAK
CORR which shows the situation where there is either no or weak correlation.
Correlation values above 0.5 are high positive (HIGHP) and correlation values
below -0.5 are high negative (HIGHN) respectively. Different shift values and
sliding windows ranges have been examined and previously presented in [14].
We choose�25 as a shift value based on the analysis of which shift leads to the
highest correlations and a sliding windows of 200. In an average of 5 different runs
of the simulation 26.8% of instances had HIGHP correlation, 38.4% of instances
had HIGHN correlation and 34.7% of instances had WEEK correlation.
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Although there are many factors that might affect fitness besides entropy,
we managed to find strong correlation between entropy and fitness for all prey
species. We observed high values for both negative and positive correlations.
These results support the claim of the great influence the genetic diversity has
on the well being of species. High positive correlation values mean that an in-
crease in the genetic diversity, results in an increase in species fitness. However,
there are many ways to interpret these results. A newly forming species with
a small population would gradually tend to increase its genetic diversity and
will therefore correlate positively with fitness. Also, since individuals in EcoSim
adapt to a constantly changing environment these adaptations could be mirrored
in the increase of individuals’ genome similarity (and thus a decrease in entropy),
as new behaviors diffuse in the population. Conversely negative correlations im-
ply that a species decreases diversity in order to reach stability by learning from
its environment and adapting.

7 Building a Random Forest Classifier for Inference and
Rule Learning

Our motivation to validate these results and further investigate the reason be-
hind these correlation values encouraged us to build a classifier. The purpose of
building this classifier is first to see if some specific species properties can predict
the current evolutionary behavior of the species, that is if it is learning from the
environment or increasing its diversity to be able to react to a future change
in the environment. It can also help to understand what factors and conditions
affect the evolutionary of behavior. The Random Forest [15] technique includes
an ensemble of decision trees and incorporates feature selection and interactions
within the learning process. It is nonparametric, efficient, and has high predic-
tion accuracy for many types of data including high dimensional ones. We chose
features from both individual’s internal and physical concepts, such as average
energy level, reproduction rate, population size, speed of individuals, spatial dis-
persal and others, to predict the class correlation value between genetic diversity
and fitness. All together we chose 15 features that best described internal and
physical properties of any species and verified if they could predict the class cor-
relation variable. To increase the quality of the classifier we used feature selection
[16] in order to extract the most important features from the above list. This
step provided more semantics about which features most influence the value of
correlation. The best chosen features were population size, entropy, fitness, spa-
tial dispersal, average age of the individuals and number of failed reproductions.
We used the Random Forest classifier implemented in the weka environment
[17]. We split instances for every run into two sets: train and test and used 10
fold cross validation. The average of 5 classifiers testing accuracies representing
5 different simulation runs was 96.7%. The high classification accuracy validates
our use of entropy as a measure of genetic diversity and its high correlation
with fitness. It also shows that there exist specific conditions of the species that
lead to a positive or negative correlation between fitness and genetic diversity.
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The model generated by the Random Forest can be challenging to interpret.
To by-pass this limitation we use the JRip rule learner [18] to extract more se-
mantics from the prediction model and gain more insight about the conditions
affecting correlation between genetic diversity and fitness. JRip implements a
propositional rule learner, Repeated Incremental Pruning to Produce Error Re-
duction (RIPPER), which is an optimized version of IREP. Different IF THEN
rules are learned from JRip to predict the three correlation classes. In 5 different
runs 19 rules were discovered in average with average accuracy of 76% using 10
fold cross validation see Table 1. We were mainly interested in studying the rules
that predict the HIGHP and HIGHN classes and we present some of these rules
having the highest number of instances.

Table 1. JRip rule learner accuracies and number of produced rules for five different
runs of the simulation

Run Train Test No. of
accuracy accuracy rules

Run 1 76% 75.6% 24

Run 2 71.7% 72% 23

Run 3 75% 75.8% 24

Run 4 79% 78.8% 7

Run 5 75.5% 76.1% 18

Average 75.4% 76% 19

– IF number of individuals is low, AND fitness is low, AND entropy is low,
AND failed reproduction is high THEN correlation is HIGHP.

– IF number of individulas is low, AND age is high, AND fitness is low, AND
entropy is low THEN correlation is HIGHP.

– IF fitness is low, AND age is medium, AND spatial dispersal is low THEN
correlation is HIGHP.

– IF number of individuals is high, AND age is high, AND entropy is high,
AND spatial dispersal is high THEN correlation is HIGHN.

– IF spatial dispersal is high, AND number of individulas is high, AND age is
medium, AND entropy is medium, AND fitness is high THEN correlation is
HIGHN.

– IF failed reproduction is low, AND entropy is high, AND number of individ-
uals is high THEN correlation is HIGHN.

The other discovered rules were also similar. In general, we found that a low
number of individuals associated with a low entropy, low fitness and low spatial
dispersal led to a high positive correlation between entropy and fitness. Small
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species tended to increase their genetic diversity in order to increase their fit-
ness. On the other hand, a high number of individuals associated with a high
entropy, high fitness and high average age led to high negative correlations be-
tween entropy and fitness. Large species in terms of population size tended to
move towards lower genetic diversity as individuals learned common survival
strategies that tended to increase their fitness.

8 Conclusion

We showed how the evolutionary process implemented in EcoSim affects the be-
havioral model of the individuals as they adapt to a changing environment. To
emphasize the capability of EcoSim to model evolutionary behavioral adapta-
tion we compared it to a partially random version focusing on genetic diversity.
We showed how entropy used to measure genetic diversity, behaves differently in
both systems. The fluctuation in entropy curves for EcoSim showed how individ-
uals try to learn and adapt to their environment. On the other hand the neutral
model showed more steadiness in the curves due to more randomness and elim-
ination of natural selection process. Furthermore, we presented high correlation
values between species fitness and genetic diversity which strongly indicates how
genetic diversity affects the well being of the species. A validation step was per-
formed with the use of machine learning techniques. A random forest classifier
was built to predict the correlation values based on internal and physical prop-
erties of species used as features. The rules discovered from the rule learner,
which seem to be biologically pertinent, gave us more understanding about
the conditions affecting the values of correlation between genetic diversity and
fitness.
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