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Preface

This book contains the articles presented at the 12th International Conference
on the Simulation of Adaptive Behavior (SAB 2012), held in Odense at the
University of Southern Denmark in August 2012.

The objective of the biennial SAB conference is to bring together researchers in
computer science, artificial intelligence, artificial life, complex systems, robotics,
neurosciences, ethology, evolutionary biology, and related fields so as to further
our understanding of the behaviors and underlying mechanisms that allow natural
and artificial animals to adapt and survive in uncertain environments.

Adaptive behavior research is distinguished by its focus on the modeling
and creation of complete animal-like systems, which – however simple at the
moment – may be one of the best routes to understanding intelligence in nat-
ural and artificial systems. The conference is part of a long series that started
with the first SAB conference held in Paris in September 1990, which was fol-
lowed by conferences in Honolulu 1992, Brighton 1994, Cape Cod 1996, Zürich
1998, Paris 2000, Edinburgh 2002, Los Angeles 2004, Rome 2006, Osaka 2008,
and Paris 2010, where the 20th anniversary of the conference was celebrated.
In 1992, MIT Press introduced the quarterly journal Adaptive Behavior, now
published by SAGE Publications. The establishment of the International Soci-
ety for Adaptive Behavior (ISAB) in 1995 further underlined the emergence of
adaptive behavior as a fully-fledged scientific discipline. The present proceedings
provide a comprehensive and up-to-date resource for the future development of
this exciting field.

The articles cover the main areas in animat research, including the animat ap-
proach and methodology, perception and motor control, evolution, learning and
adaptation, and collective and social behavior. The authors focus on well-defined
models, computer simulations or robotic models, that help to characterize and
compare various organizational principles, architectures, and adaptation pro-
cesses capable of inducing adaptive behavior in real animals or synthetic agents,
the animats.

This conference and its proceedings would not exist without the substantial
help of many people. We would like to thank the members of the Program Com-
mittee, who critically reviewed 66 submissions and provided detailed suggestions
on how to improve the 44 articles accepted for inclusion in these proceedings and
presentation at the conference (22 talks, 22 posters). We also thank, once again,
Jean Solé for the artistic conception of the SAB 2012 poster and the proceedings
cover.

August 2012 Tom Ziemke
Christian Balkenius

John Hallam
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Natural and Artificial Systems:  
Compare, Model or Engineer? 

Kelly Vassie1 and Giuseppe Morlino2, 3 

1 Unaffiliated, London, UK 
kjvassie@ed-alumni.net 

2 Computer Science Department, Sapienza University, Rome, Italy 

3 Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy 
giuseppe.morlino@istc.cnr.it  

Abstract. Some areas of biological research use artificial means to explore the 
natural world. But how the natural and artificial are related across wide-ranging 
research areas is not always clear. Relations differ further for bioengineering 
fields. We propose a taxonomy which would serve to elucidate distinct 
relations; there are three ways in which the natural is linked to the artificial, 
corresponding with distinct methods of investigation: i) a comparative approach 
(natural vs artificial) in which artificial systems are treated in the same way as 
natural systems, ii) a modeling approach (natural via artificial) in which we use 
artificial systems to learn about features of natural ones, and iii) an engineering 
approach (natural pro artificial) in which natural systems are used to draw 
inspiration for artefacts. Ambiguities about and between these approaches limit 
the development of fields and impact negatively on interdisciplinary 
communication.  

Keywords: Artificial Life, Extended Mind, Thought Experiments, Modeling, 
Bioengineering. 

1 Introduction 

Distinction between two kinds of synthetic approaches to biology – i) comparative, 
such as ALife or Evolutionary Robotics and ii) the more widely known (and 
understood) modeling practice – are not entirely new. These approaches have 
previously been separated on the basis of: clarity or complexity [1]; methodology 
(Miller 1995 cited in [2], [3-5]; abstractness [6]; and as different levels of enquiry [7-
8]. There are implicit arguments about the relationship between natural and artificial 
underlying each of these distinctions but these considerations are not seen as 
important. For example, in [5] Harvey et al. argue that Evolutionary Robotics (ER) ‘is 
a new scientific tool’, insofar as the methodological emphases (minimal cognition, 
existence proofs and reduction of bias) are very different from modeling. They claim 
that ER ‘systems will not tell us how real cognitive systems work’ whereas, for 
example, neuroscientific models might [5]. It is clear that the artificial system in 
modeling stands in for the natural system – because results about the model tell us 
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how natural systems work. Yet it is not always clear how the ER system relates to a 
natural system. This is evidenced for example in the discussion of an ER simulation 
study into the origins of learning (Tuci et al. [9] cited in [5]). In this experiment some 
mechanisms for learning emerged, although no hypothesis could be made for these 
kinds of processes or the architecture that would support them – otherwise it could not 
be a study into the origins of learning itself. The learning mechanisms cannot be 
evidence for a natural system because the methodological processes have not 
specified a target system for this purpose, as modeling a learning mechanism would 
do [5]. What this ER experiment did show is that while an organism can evolve 
processes which enable it to learn, the actual mechanisms that emerged can only be 
used to help build concepts about learning. The relationship between natural and 
artificial in such work is not explicit; this has resulted in a negative view of simulation 
approaches. For example, Webb argues in [7] that because theoretical proofs 
eventually require comparison to the natural world they are basically a class of model, 
and if they don’t represent anything “real” in the natural world they are (or should be) 
irrelevant to biological investigation. The issue for simulation work, if Webb’s 
argument is accepted, is that it would be evaluated against the same requirements as 
modeling – justifying work on the basis of a concrete fit to empirical data [1], [7]. As 
we have just shown it is not empirical data that is generated but ideas about what 
mechanisms might be, and proof that learning can evolve from simple mechanical 
components. The outcome forced by Webb would not enable ALife researchers to 
develop scientific practices or revise relevant biological concepts (see [4] for an 
example), both of which are important for the advancement of this newer field. 
Furthermore, given the possibility that life might be artificially created, we would 
need a structure for the analysis of this artificial system because the artificial would 
have the same characteristic as a natural system, making it distinct from the 
representative characteristic of a model. 

These two distinct relationships between the natural and artificial each give rise to 
their own epistemological concerns and considerations. One important concern is that 
the processes of simulation work in ways that go beyond (or abstract away from) our 
cognitive abilities. The argument that the non-anthropocentric process of simulation 
requires different epistemological considerations follows Humphreys (see [3]). 
Humphreys has different arguments from the one we present here, but we do have 
similar conclusions – that a “new-analysis” of the relation between artificial and 
natural is necessary, and that this includes making their epistemological concerns 
distinct. Our paper provides a structure for this analysis to take place. 

As well as aiding the development of newer fields we see our work as providing an 
important framework for interdisciplinary communication. In light of the ever-greater 
specialisation within science – and, conversely, the rise of collaboration – our 
taxonomy offers a new tool for assisting professional dialogue and public science 
engagement. It is in this spirit that we include clarification of how the developing 
fields of bioengineering relate to the epistemological approaches of comparison and 
modeling. Finally, following Cordeschi [10] our intention here is not to carve 
unnecessary boundaries between approaches and opposing paradigms (i.e. we think 
that both comparative and modeling work is important, and within them, work from 
different kinds of theoretical positions). 
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2 Comparative, Modeling and Engineering Approaches 

In the following sections we outline the three approaches – natural vs artificial, 
natural via artificial and natural pro artificial – discussing the role of artificial systems 
in each. Figure 1 provides a context for this taxonomy. 

 

Fig. 1. Diagram showing the use of natural and artificial systems (arrows depict direction of 
system use) 

We will show that the difference between comparison and modeling also concerns 
different levels of explanation and experimentation. We then argue that as the relation 
between the natural world and the artificial system is different, the epistemological 
issues must also be different. Further distinction will then be made between the 
epistemological (scientific) approaches of vs and via, and the engineering 
(technological) one of pro. We explain how the relationship between natural and 
artificial is reversed in these engineering approaches; even though models can be 
physically built as artefacts (albeit using engineering techniques), the aim of an 
actualised model is still the explanation of a natural phenomenon. However, before 
we outline these approaches we need to disambiguate the use of “simulation” to avoid 
confusion between simulations as used in the comparative approach and the 
simulation techniques used in modeling and engineering: in the comparative approach 
(vs), simulations are artificial systems used to build theories, question assumptions 
and explore mechanisms (as in ALife); in the modeling approach (via), simulation is 
used to animate the model. Once a model – representing a natural system – has been 
developed, the simulation – representing the operation of the model over time – can 
act as a descriptive or predictive tool. Finally in engineering processes (pro), 
simulations are rich in detail and used to trial technologies for economic reasons; they 
are a more efficient test than expensive hardware prototypes. 

 
Comparing Systems: Natural vs Artificial. Comparative (animat) approaches1 to 
science investigate the origins and mechanisms of phenomena. In treating artificial 
systems like natural ones we can deepen our understanding of nature, gain further 
insight, or develop a new means of problem-solving – for example Webb notes that 

                                                           
1 We use the term “comparative approach” instead of the commonly used “animat approach” to 

show one alternative way to understand and explain the place of ALife in the biological 
sciences.  
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comparing a heart to a pump has an explanatory value distinct from modeling the 
process of blood circulation or creating an artificial heart [7]. The value lies in the 
pump being a kind of source model – usually seen as an artificial system that exists 
independently of the target system or hypothesis (i.e. the pump became a model for 
circulation after its creation) [7]. It is also common in the animat community to work 
with artificial and natural systems simultaneously (i.e. comparing the artificial and 
natural processes against each other, see [11] for an example). Thus comparison does 
not stop at treating artificial systems like natural ones; the term ‘compare’ implies that 
there is value in noting the similarities and dissimilarities. The vs approach can then 
be seen as a two-way explanatory relationship between the two kinds of system; 
which would have methodological similarities with ethological practices (e.g. [8]). 
Furthermore, this relation allows all possible similarities and dissimilarities to be 
addressed – i.e. counterfactual analysis. Under this approach we would identify at 
least two important kinds of experimentation. The first is thought experiment – 
‘devices of the imagination used to investigate the nature of things’ [12]. Thought 
experiments have no accepted definition but are widely held to be a useful method for 
highlighting inconsistencies in theories and building intuitions [2]. A famous example 
of a thought experiment is Schrödinger's Cat. The experiment shows that a quantum 
system (a cat in a box with various items including a radioactive substance) can be in 
two states at once (a superposition), because until you open the box and observe 
whether the radioactive substance has decayed, there is no other option but to hold 
that cat is both alive and dead.2 Secondly, we are introducing the notion of extended 
experiment to link the aims and methods of comparative approaches with those of the 
Extended Mind Thesis (EMT hereafter, [13]).3 We see affinity between comparative 
approaches, which can promote understanding and allow new means of problem 
solving, and EMT, which holds that artefacts can be tools for thought – because they 
can function as, and therefore enhance, our cognitive processes. EMT holds that the 
physical mechanisms of our thinking extends beyond our biological boundaries when 
a two-way relationship between cognitive and external systems exists – for example 
using a smart phone as an external memory store, or a notepad to work out a sum 
[13]. Thus extended experiments can also be extended systems (as defined by EMT), 
because cognitive processing is enhanced and distributed across biological and 
technological boundaries: in devising new theories we’re doing so with the additional 
processing power of technology, but it’s a reciprocal relationship because our 
biological processes are necessary to make sense of a scientific experiment. An 
important outcome in viewing the process and evaluation of simulation work in this 
way is that “experiment as a tool to further understanding” underlines the distinct 
scientific character of simulation and the two-way relationship between natural and 
artificial. It has been argued that simulation experiments have no scientific value 
(reported by Di Paolo et al. in [2]): they are seen merely as computer programs in 
which symbols are re-arranged logically and as such cannot give rise to new 
knowledge. However, given that in our taxonomy extended experiments can be tied to 

                                                           
2 In separating thought experiments from ALife simulations we are agreeing with Wheeler that 

‘ALife models are not thought experiments – philosophical or scientific’[14]. 
3

 See Humphreys [3] for an alternative (non-embodied) approach to defining hybrid 
 investigations.  
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cognitive processes as tools for problem-solving, they can be more than “just a 
computer program” – they can be part of a process which facilitates conceptual 
development. Therefore, extended experiments do not test concepts; rather, they come 
up with concepts, aiding the (re-)formation of concept and theory. ALife holds a 
special role within this context because it i) serves as a bridge between disciplines 
[14], [16], ii) allows phenomena to be described in abstract terms [1] and, iii) helps us 
derive intuitions about life [2].  

Evolutionary Robotics, like the origin of learning study mentioned above, is full of 
experiments that can be viewed as comparative (see also [5], [15] and [17]). 
Similarly, Ponticorvo and Miglino’s work [4] compares a simulation with a variety of 
natural behaviours. Their research aims for insight into the many potential 
mechanisms that cause spatial behaviours, in order to create “theoretical proof” – 
backing up the intuition that mechanisms of orientation behaviours in natural systems 
do not require a modular neuro-cognitive system. Importantly, they conclude that 
modeling work would be needed to provide “actual proof” for spatial mechanisms [4]. 
Consequently the study can be seen as effective if it aids cognitive processes for a re-
conceptualisation of spatial behaviours in natural systems, as opposed to providing 
actual evidence that architecture is non-modular. The epistemological concerns here 
are centred on how the artificial is compared to the natural at different stages of 
investigation, how results relate to theory or intuition about a natural phenomena, and 
how we learn from processes we cannot fully access.  

 
Modeling Systems: Natural via Artificial. Scientific models can be conceptual, 
computational, or mathematical representations of nature. The empirical inquiry 
surrounding modeling centres on how closely a model “applies” to anything in the 
world so as to be a useful prediction or explanation [7]. Once the model is said 
sufficiently (or perhaps roughly) to predict or explain something, the hypotheses are 
said to be true [1]. The degree to which ‘the hypothesis accounts for existing data and 
predicts new data from observations on the target phenomenon is taken to support its 
status as an explanation’ [7]. Cordeschi explains further: ‘The artefact therefore 
embodies the explanatory principles (the hypotheses) of the theory and is considered a 
test of the theory’s plausibility’ [10].4 However, the hypothesis is only associated with 
a simplified or narrow element of the natural system, factoring out unrelated 
phenomena, to make analysis possible [10]. The process of modeling as a whole is the 
process of creating a representation of a target phenomenon, testing this artificial 
system, and evaluating the success against evidence about the target system: the 
artificial system models the natural – this is as depicted in Figure 1. 

An inclusive account of what constitutes a model is required here so that more 
general or conceptual work is permitted. One such account is Barandiaran and 
collegues’s [18-19]; they propose that there are four types of modeling distinguished 
by their degree of abstraction: mechanistic, characterised by an almost one-to-one 
correspondence between variables in the model and observables in the natural system; 
functional, which aims for behavioral or functional (rather than a variable-to-variable) 
correspondence between the model system and the target natural system; generic, 

                                                           
4 To clarify, we’re not arguing for a specific view on the relationship between model and theory 

we mean to show that the structure provided here can accommodate various positions. 
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covering a wide spectrum of phenomena in search for generic principles of complex 
systems; and conceptual, which does not target any particular natural system nor a 
collection of them – it is built from theories. As such conceptual models illustrate 
concepts by representing theoretical principles [18]. Despite the abstract nature of the 
latter two modeling types, the process of an artificial system standing in for the 
natural remains common, allowing an exploration of a biologically founded 
hypothesis, which is subsequently evaluated on the strength of its ability to predict or 
explain the target natural systems or natural phenomenon. Models can also be used as 
metaphor to support justification. There are thus different levels of explanation and 
investigation: the construction of the model, the analysis of the model, and the way 
that the model is used to aid explanation. 

The epistemological concerns within the modeling approach – how we learn from 
models – have a complex history (see [10], [20-21]), especially in light of new 
debates on how modeling differs from ALife simulation [1], [14]. In modeling, the 
natural phenomenon is related to the stages of designing, building, manipulating and 
evaluating in different ways [20]. The scientific process and the epistemological 
processes are thus intricately linked – and there are two key arguments for this 
interconnection. According to Hughes [20] there are three stages involved in gaining 
knowledge from modeling. These are denoting (which links a theory or hypothesis of 
a natural system to the building of the model), demonstration (connecting the natural 
system to the representative model) and finally interpretation (linking the success of 
predictions to the explanation of the natural phenomenon). On Hughes’s view there 
are three clearly defined relationships between the model and the target system – 
which should hold for any level of abstraction. Another influential, and similar, view 
comes from Morgan. Her argument says that we learn from models in two ways – 
from building them, and from manipulating them – but it is the “representational 
mechanisms” involved which underlie both [21]. From both Hughes and Morgan, the 
representative essence of modeling provides the foundation for epistemological gain, 
and subsequently for philosophical debate. 

 
Engineering Systems: Natural pro Artificial. Engineers use natural systems to 
develop novel solutions to engineering problems and to construct technological 
artefacts; the artificial system in this approach is then the output of the process. 
Alongside the epistemological levels of vs and via there is a further “level” distinction 
– between epistemological approaches and technological approaches. A key 
characteristic of technological work is the separation of design and fabrication [22]. 
This pro approach includes, among others: bioengineering – taking what we know of 
natural systems and adapting it for the development of new engineering solutions. 
This kind of approach is widely used in synthetic biology; biomimicry – directly 
copying nature to create new technologies; and natural computation, incorporating 
the use of natural systems to develop alternative problem-solving techniques, the use 
of computers to synthesise natural phenomena, and the use of natural materials to 
compute [22]. Alongside electronic hardware, computation can be implemented in a 
range of media (e.g. silicone). 

An example of bioengineering is Micro-Aerial Vehicles [24] – small, insect-like 
flying devices developed for robustness and efficiency. Applications include video 
surveillance, weather mapping and military surveys. An example of biomimicry is the 
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creation of buildings that copy the structure of termite mounds for a more efficient, 
cheaper means of air circulation than air conditioning [25]. Meisel et al. in [22] 
classify the many types of naturally-inspired computation, including cellular 
automata, neural computation, evolutionary computation, swarm intelligence, 
artificial immune systems, membrane computing and amorphous computing. 

3 Differentiating Epistemological Concerns 

We have just outlined how comparison and modeling are distinct – based on how 
each approach uses artificial systems to learn about natural ones. In this section we 
develop this argument, showing that what follows from this are two distinct sets of 
epistemological concerns. We then differentiate engineering practice. 

The separation of the way that simulation and modeling relate to natural systems is 
important for four key reasons. One, comparative experiments have been seen as 
unscientific because their relation to natural systems is not easily defined, as it is in 
the more established approach of modeling. In modeling the explanandum is clearly 
stated at every stage but in extended experiments it might not need to be. This would 
mean embracing the difference between a model and a source model (see section 2): 
the model relates to a pre-specified natural phenomenon at all stages of investigation, 
whereas simulation is allowed to be separate, or perhaps more “opaque” – as in the 
way Di Paolo et al. mean in [2]. With proper foundations for separation, ALife can 
grow as a field and define its own scientific methods and processes. New kinds of 
experimental work might be permissible under this distinct approach. Two, following 
these “unscientific” criticisms, the evaluation stage of simulations has been seen as 
unsuccessful when assessed against modeling criteria. So, contrary to Webb [7], the 
epistemological value of a study using artificial means cannot be measured solely on 
the basis of its direct impact on reality (or on data generation) – because this does not 
relate to experimentation within the comparative approach – which can allow 
counterfactual analysis and foundational explanations [26]. Three, this taxonomy 
facilitates interdisciplinary communication. In clearly defining the investigation 
within a specific approach other researchers can access the work of fields vastly 
different from their own. This might be useful, for example, given that thought 
experiments are in the same category as ALife simulation: some of the philosophical 
literature on thought experiments might help the development of Alife [1]. Better 
foundations for communication would also aid research across related fields: paired 
together, practitioners of ALife and economics, say, or neuroscience and ecology, 
might see structures and patterns in practice and methodology, hitherto invisible and 
mutually beneficial. Four, practice and terminology overlap in all the approaches, 
which might confuse elements of an investigation that should be separate, or that 
operate on a different level. An example relating to terminology would be 
“simulation” (see section 2). Webb’s argument for conflating modeling and 
simulation [7] illustrates the problems that arise when different levels of practice are 
confused. She claims that because theoretical proofs require comparison to the natural 
world (in their evaluation) simulations should be seen as a class of model because 
they are methodologically similar. However, this argument conflates the levels (and 
processes) involved in relating natural to artificial. The evaluative processes involved 
in modeling and simulation may seem similar, but the scientific processes as a whole 
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are different. We should not want to evaluate two different processes in the same 
way, even if they come up with the same answer, because we will have lost a 
distinction they started with: theory, empirical data and the natural world are 
different. For example, in modeling we are matching the data from the model with the 
known data about the natural system – this is because the natural system has been 
specifically and directly related to the model. In the evaluative stages of comparison, 
however, we are assessing and contrasting the artificial system itself with a natural 
system, or perhaps a concept. The relationship of each scientific process within each 
approach thus operates on distinct conceptual levels.  

Following these level distinctions, the key epistemological difference lies in the 
way that comparative experiments can build or question theory, whereas models can 
represent or justify theory. Due to the character of their relationship with natural 
systems, comparative experiments and modeling have a number of distinct 
epistemological issues. We sum up the key philosophical questions in these 
approaches as:  

• Comparative – how we can know something new from a process we cannot fully 
access; how knowledge is acquired when intuition is involved; how we simplify an 
experiment of a natural phenomenon which is a characteristic of many different 
kinds of species (e.g. learning); and how we might apply a re-conceptualisation of 
a theory into future scientific practice (see [2] for a discussion of many of these).  

• Modeling – how models denote theory; whether models represent theories; how we 
build and simplify the natural phenomenon to create successful models (which as 
mentioned above is linked to producing evidence); and the processes of 
interpreting the models to form predictions [20].  

The separation of epistemological concerns is important. If there are different routes 
to gaining knowledge there must also be different ways to question how we are 
gaining that knowledge. 

 
Issues in the Confusion between the Approaches. The engineering approach is 
more obviously distinct than modeling and comparison. However, despite the clearer 
difference it could still be confused with elements of the other approaches. We would 
identify two potential mistakes: a) evaluating the validity or usefulness of an artefact 
on the basis of how much it is bio-inspired; or b) drawing inspiration from a natural 
system to construct an artefact as an explanation of a phenomenon. For example, in 
the case of the termite-inspired building, it would be a mistake to evaluate the 
usefulness of this building because it is a faithful replication of a termite mound. The 
extent to which it is bio-inspired bears no relationship to the success of the engineered 
artefact. Its success is in lowering building and operational costs and increasing 
efficient air circulation – removing the need for air conditioning. So, although the 
termite inspired building is a good example of a pro approach, it would not be hard to 
see how it might be misinterpreted as either a model of temperature control or as a 
building that didn’t look like a termite mound. An example of how this error 
manifests in artefacts that are constructed by faithfully copying a natural system – 
because they consider naturally-inspired design an accurate explanation of a 
phenomenon – can be found in the accidents (and fatalities) that occurred during the 
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first human attempts of flight. Machines were built to imitate the structure and shape 
of bird wings because these where seen as an explanation of flight dynamics [27]. The 
first significant successes in flight were achieved only when the principle of imitation 
began to be separated from the design process. 

An example that perhaps embodies both the issues with levels of explanation, and 
the confusion between using natural systems and aiming to explain them, is the 
potential for misunderstanding early (Classic) Artificial Intelligence. In Classic AI  
the metaphor of the mind as computer operated at a different explanatory level to the 
actual engineering and logic-based foundations, which focused on designing more 
useful computer programs [28]. Drawing on Cordeschi’s example (in [10]), it would 
be a mistake to use the metaphor as more than a kind of explanation – i.e. as a basis to 
engineer an artefact to explain a phenomenon. A specific example of the distinct 
levels is found in the “frame-problem”. This was originally an engineering issue for 
logic-based systems [28]; Dennet [29] subsequently noticed the epistemological 
concerns. The engineering problem has now been solved but the epistemological one 
remains an open debate [28]. If we apply the epistemological issue to engineering an 
artefact we would be holding the idea that a classic model of computer vision in a 
human environment could “see”. Clearly, classical approaches to computer vision are 
models that work in experimental environments and the Classic-based-logic is sound; 
the issue here lies in treating the system like a natural one – as both an epistemic and 
technological artefact. Treating the artificial system like a natural one we have shown 
as characteristic of the epistemological comparative approach. Computational theories 
of mind thus operate at an epistemological level not an engineering one. Your laptop 
does not exhibit human behaviour even if some of its processing is akin to the 
processes of your cognitive system. The mind as computer is not invalidated as 
metaphorical use of a model, but it is invalidated as an actual hypothesis of human 
intelligence as a whole – there are no existing robots that exhibit human intelligence 
based on this Classic logic [30]. 

4 Conclusions 

Distinction between comparative, modeling and engineering approaches can serve 
science and technology, resulting in clearer objectives and more effective 
interdisciplinary communication. As well as supporting dialogues within the 
approaches, our taxonomy would also aid cross-approach communication. ALife 
seems especially well placed for this [14]. We would however, like to point out that 
some overlaps between approaches may be fruitful; one might even use artificial 
systems developed in a comparative framework as a basis for developing a model [4]. 
So, while we think that research must be classified clearly, we don’t rule out the 
existence of additional approaches or advocate sharp distinctions that might hinder 
scientific or technological development. Application for future research includes the 
potential to develop new methodologies within the approaches. For example, the 
comparative approach could benefit from the practice of running experiments with 
natural and artificial systems in parallel, as outlined in [11]. Despite the greater issues 
faced in designing such an experiment (e.g. significant heterogeneity of natural and 
artificial systems) they might allow explanations of hypotheses without modeling. A 
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further challenge would be explicating the relationship between artificial and natural 
in more complex cases, such as when a natural system is itself used as a model --- sea 
slugs, cress and the common fruit fly are all now employed in science as (living) 
models of other systems. Finally, with the introduction of our extended experiments 
terminology under the comparative approach our aim is to cover a range of “actual” 
artificial systems acting as tools for conceptual thought: through this we hope to give 
“a new life to ALife”. 
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Abstract. We describe a robot construction kit named LocoKit and a
method for studying functional morphologies. LocoKit consists of simple
mechanical parts that allow for construction of a wide range of mor-
phologies and modular electronics for instrumentation and control. The
method relies on LocoKit for constructing functional morphologies and
an experimental setup borrowed from the study of functional morphol-
ogy in animals. We demonstrate the use of LocoKit and the method in
a case study on quadruped locomotion and conclude that the method-
ology represents a systematic and efficient approach to the study and
development of functional robot morphologies.

Keywords: Robot construction kit, experimental methodology,
functional morphology.

1 The Role of Functional Morphologies in Robotics

There is a potential to increase the adaptability, robustness and energy efficiency
of robots, while decreasing their complexity and cost, by adapting the function
of their morphology to support their desired behaviors[1]. Unfortunately, it is
not clear how to perform this morphological adaptation systematically and effi-
ciently. In an attempt to address this problem, we propose an iterative, bottom-
up, and model-free methodology that relies on a robot construction kit named
LocoKit, shown in Figure 6, and an experimental setup borrowed from the study
of functional morphology in animals.

Our methodology is based on the assumption that a robot’s behavior is a
result of the interaction between its morphology, control, and environment[1]. It
is also based on the assumption that, for robots with non-trivial morphologies,
this interaction is so complex that modeling is intractable and thus our method-
ology is in line with one of the tenets of behavior-based robotics, namely, that
the world is its own best model [2]. A consequence of this is that to we have
to rely on a tedious trial-and-error process to develop a useful combination of
morphology and control for a given environment. Our first proposal is to use a
robot construction kit to make the development process more efficient. A robot
construction kit allows us to rapidly explore a morphological space without the
need at every iteration to make mechatronics from scratch, for instance, in a
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study related to the case study on locomotion we will present in Section 5, we
were able to build and do experiments with 51 variations of the same morphology
in one day. The second proposal is to use an experimental setup typically used
in the study of functional morphology in animals. Basically, the experimental
setup provides data that is much richer than what is typically seen in robotics.
An experimental setup may for instance provide motor control outputs synchro-
nized with high-speed video, three-dimensional motion capture of key points on
the morphology (allowing for calculation of relative position, speed, and accel-
eration), and with output of transducers both internal and external registering
mechanical variables (e.g. forces, velocity, acceleration, pressure, etc.). This rich
data allows us to measure overall performance parameters like speed and energy
consumption and, in addition, how specific elements of the morphology or con-
troller contribute to the whole. This giving us valuable data to systematically
understand and improve both morphology and control. It is our hope that the
methodology described here with its focus on experimental methodology and the
use of LocoKit may provide a way to increase our understanding of the role of
functional morphologies. In addition to making it practical to take advantage of
functional morphologies in robots.

In the following, we will briefly describe related work, the methodology, the
implementation of the LocoKit robot construction kit, the experimental setup,
and a case-study demonstration on robot locomotion demonstrating the method-
ology in practice.

2 Related Work

We will limit our review of related work to methodologies that consider the
morphology of the robot important. An approach inspired by artificial life is to
evolve morphology and behavior in simulation [3] and then transfer the result to
the real world either through three-dimensional printing [4] or by using modular
robots [5]. However, both methods are limited by the intrinsic limitations of
how complex interactions can be simulated. Another similar approach is to use
a mechanical system whose configuration can be changed and use this as a basis
for evolution of morphology in the real world [6].

Our approach is also related to the bio-inspired approaches where animal
morphology inspires robot morphology, e.g., [7]. In particular, the work that
puts a strong emphasis on experimental analysis and validation [8,9]. However,
in contrast to this work, we use the experimental data as a design tool and not
only for analysis and validation.

LocoKit originated in the field of modular robots [10,11], but is more simi-
lar to construction toys such as Meccano and LEGO Mindstorms. In contrast
to the toys, LocoKit is more geared towards building sensor-and-actuator-rich,
dynamic robots with flexible morphologies. The contribution of this paper is an
extended description of our methodology compared to previous work [12] and
the introduction of LocoKit.



14 J.C. Larsen, D. Brandt, and K. Stoy

3 Methodology for Testing Morphological Hypotheses

The methodology we propose is outlined in Figure 1. The methodology is
hypothesis-driven so the first task is to formulate a hypothesis regarding func-
tional morphology. This hypothesis may have a biological origin, but this is not
crucial. The second step is to build a robot using a construction kit to test the
hypothesis. The construction of this first robot is guided by intuition and ex-
perience, however, as we will see errors or bad designs may be discovered and
corrected in later iterations. Once the robot has been constructed, relevant mor-
phological and motion data are measured. What to measure was outlined in the
introduction and will be elaborated in the section on experimental setup later.
This rich data provide the background for analyzing and explaining the function
of the morphology. It is an advantage if it is possible to obtain measurements
in a form that is comparable to that of other morphologies, biological or artifi-
cial, because that makes it possible to do a comparative analysis. This helps not
only in analysing the data, but also in explaining the functionality of the mor-
phology. Undesired functionality can often be tracked to mechanical or control
problems in the robot design which then can be fixed in another iteration. Once
the function of the morphology is acceptable from a technical point of view, the
measured data can be used to support or reject the scientific hypothesis or, as
is often the case, be used to refine the hypothesis.

The methodology is based on an experimental methodology that is common to
all of science. The methodology is, however, optimized for the study of functional
morphology. In particular, we suggest to use a robot construction kit and an
experimental setup borrowed from biomechanics.

Animal 
experiments 

provide
morphological 

and motion 
capture data

Experiment to 
obtain 

morphological 
and motion 
capture data

Build robot 
morphology 

using 
construction kit

Analyse and
explain

Formulate 
hypothesis 
regarding 

morphology

Biological 
inspiration

Fig. 1. Methodology for testing hypotheses regarding functional morphology (see main
text for explanation)
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4 LocoKit Implementation

4.1 Mechanical Components

The LocoKit elements connect with 4mm, off-the-shelf rods of varying lengths.
We use two types of rods either carbon-fibre or fibre-glass enhanced plastic
rods, but other materials are available as well. All of the construction elements
of LocoKit can be connected to or mounted on these rods using one or more
set screws. In the following four sections we will describe the four groups of
mechanical components.

Structural Components. All morphological structures built from LocoKit are
built from the rods described above and two mechanical connectors, a fixed joint
and a rotary joint, both made in aluminium.

(a) Rotary joint (A). Left part of joint (B).
Right part of joint (C). Bearing between
right and left sides (D). The two sides are
glued onto the bearing.

(b) Fixed joint (A). Left part of joint
(B). Right part of joint (C). Mounting
bolt (D). Balls (E). Springs pushing the
spheres towards opposite side (F).

Fig. 2. LocoKit joints

The rotary joint, shown in Figure 2a, is used to connect two rods and allows
the rods to rotate freely in parallel planes. On the sides of the rotary joint there
are mounting points that allow for future, additional elements to be attached.

In Figure 2b the fixed joint is shown. This joint can, like the rotary joint,
connect two rods, but in contrast to the rotary joint, it can fix the angle between
them. The joint rotates freely initially, but provide tactile feedback at one of 12
evenly distributed angles due to the spring-load steel ball and the 12 matching
holes on opposite sides of the joint. If the position is to stay fixed inside or outside
the 12 preferred angles the outside screw can be fastened. This arrangement
allows for rapid, precise construction of commonly used construction elements
such as rectangles, triangles, etc., but leave the user free to use an arbitrary
angle if needed.

Motor Mounts. In LocoKit we currently use three types of motors and two
motor mounts since two of the motors use the same type of mount. Despite being
different, the two mounts are designed to be interchangeable without changing
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the mechanical structure to which it is attached. We currently support Dy-
namixel Rx-10 motors, which together with its mount is shown in Figure 3b,
and Maxon motors with a 22mm gearing, two of which are shown attached to
their mount in Figure 3a.

(a) Maxon motor mount (C), mounted with
a 40W motor (A), and a 6W motor (B).

(b) Dynamixel motor mount (A)
with motor mounted (B).

Fig. 3. LocoKit motor mounts

Transmission Components. In Figure 4a we see the components used to
transfer the torque from a motor to the connection disk (A). The design includes
two converter disks, (C) and (B), which allow us to transfer torque from both
Maxon and Dynamixel motors. The connection disk has five holes at different
distance to the center which provides the attached rod rotation with different
offsets.

(a) (A) Connection disk. (C) and (B) Con-
verter disks allowing us to use different motors
on the same connection disk.

(b) (A) A rod compliantly at-
tached to the connection disk.
(B) Pieces that connect a rod to
a connection disk.

Fig. 4. LocoKit transmission components

In Figure 4b is shown the components we use to attach a rod to a connection
disk. The assortment of pieces allow us to mount a rod that rotates freely in a
plane parallel to the connection disk and allow us to make connections that are
compliant in the direction of the rod.
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Miscellaneous Elements. In addition to the core elements presented so far,
we also have a range of feet elements to be mounted at the end of a rod ranging
from simple ball-feet to spring-load compliant feet. We also have elements for
mounting batteries and power, control, and motor electronics boards, which we
will describe below, to the frame of the robot.

4.2 Electronics

LocoKit electronics provide internal and external communication, processing, a
sensor interface, low-level control of actuators, and a power supply for electron-
ics as well as actuators. These functionalities have been distributed across three
boards: power, processing and communication, and motor control. The process-
ing and communication board also hosts the sensor interface. This design makes
it easy to extend LocoKit with new boards, for instance for new types of ac-
tuators. It is also relatively easy to replace one of the existing boards with an
improved version at a later stage.

For communication internally between the processor and the motor controller
boards we use a full-duplex RS-485 bus operating at 1Mbps. In order to reduce
the amount of wires the communication is wired through a connector which also
distributes power.

Power Board. The power board provides a stable 24V voltage at a continuous
current of up to 10A with an efficiency between 90-95% (a result based on
experiments). The power board provides 240W, which is considered more than
sufficient, while keeping weight to a minimum. We use lithium polymer batteries
due to their high power to weight ratio. We use 6 cells in series giving a voltage of
18-25.2V. We have a battery pack that weighs 450g with a capacity of 2650mAh
and another weighing 100g with a capacity of 600mAh for smaller robots. The
power board also provides protection for the batteries.

Processor and Communication Board. The main purpose of the processor
board is to provide a computational platform for control applications and data
logging, a wireless interface to a PC and an interface to sensors. We use the
commercially available Gumstix Overo Air board which includes: A 600MHz
TI OMAP3 processor, 512MB of RAM, Wifi, Bluetooth and an microSD card
reader. The use of Gumstix enable us to use Linux as the operating system for
LocoKit, enabling us to use many standard software packages directly. Currently,
we are using the Angstrom Linux distribution which is targeted at embedded
systems. The Gumstix board is mounted on an interface board, which together
make the processor and communication board. The interface board provides
various functions and interfaces: low voltage regulation, three push buttons, 5
LEDs, 8 general purpose digital I/O, 4 analog inputs, an I2C interface, an RS-485
interface, and finally a USB device port for debugging.

Motor Controller Boards. Each motor in the robot is controlled by a separate
board, these boards implement the low-level motor control algorithms and the
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power electronics needed to operate the motors. The motor controller boards
are implemented using a small 48MHz ARM7 processor which performs both
RS-485 communication with the processing and communication board and low-
level motor control. The motor is driven by a standard triple half-bridge. Besides
the essential functionality a simple sensor interface is provided consisting of four
pins which can be configured as digital inputs or outputs or as analog inputs.
The physical connectors are compatible with most hall sensor based brushless
DC motors from Maxon.

5 Case Study

In our case-study we will demonstrate the use of our methodology and LocoKit
in practice. We will focus on the question of how the morphology of the robot in-
fluences locomotion. Specifically, how compliant feet influence the robots ability
to walk.

5.1 Experimental Setup

The experimental setup is shown in Figure 5. The track consists of three force
plates1 organized in a row with two wooden tracks at both ends. Between two
60cm x 50cm force plates the smaller 30cm x 50cm force plate was installed.
The force plates as well as the track modules were covered with carpet. For
motion capturing 7 infrared high-speed cameras2 were installed around the track
operating at 250Hz. One camera was, in addition to automatic motion capturing,
recording high-speed video of the robot.

Fig. 5. The experimental setup consisting of three force plates and seven infrared
cameras for motion capture. The camera with a white cap also recorded video.

1 Two 60cm x 50cm, Type 9260AA6; one 30cm x 50cm, Type 9260AA3, Kistler, Win-
terthur, Switzerland.

2 Oqus series, Qualisys, Gothenburg, Sweden.
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5.2 SpringyBot Hypothesis

We use LocoKit to construct the robot, named SpringyBot, shown in Figure 6.
The leg design has been inspired by concepts found in Scout [13] and iSprawl [14].
In Figure 6, a sketch shows how the legs of SpringyBot works. The continuous
rotation of the connection disk at the top of the leg creates a foot trajectory as
shown. The foot contains a spring which we hypothesize can keep the center-
of-mass of the robot at a constant height as seen in a Spring Loaded Inverted
Pendulum (SLIP) model [15].

Fig. 6. The SpringyBot built from LocoKit and a schematic of its leg design. The
leg is driven by the top disk and generates the trajectory shown. To be able to track
key parts of the morphology infrared markers (red) have been placed at the positions
shown.

5.3 Experiments

In our experiments we had the robot walking using a slow trot gait on the test
track while being monitored by the cameras as shown in Figure 5. We divided
the resulting data into gait cycles and extracted the total length of the leg, the
leg’s angle with respect to the ground, and the length of the compressible part
of the leg (due to the spring). From this we also calculated the incompressible
part of the leg for completeness.

Figure 7 shows phase plots of the total leg length as a function of leg angle for
SpringyBot and for comparison a trotting dog. The discontinuity of the phase
plots of SpringyBot is due to the spring since it is the only element of the leg
morphology that can change rapidly. What can be seen from the phase plots,
most clearly from the top-left one, is that just after contact with the ground
and just before take-off the leg is shortened and lengthened, respectively. In
the alternative visualization of the data in Figure 8, it becomes clear that it is
the spring that on contact with the ground immediately compresses fully, and
shortly before takeoff extends fully again and thus is compressed during most
of the stance phase. In other words, the spring works like a shock absorber.
This could be a desirable function of the morphology, but our goal was that the
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(a) Phase plot for trotting SpringyBot (b) Phase plot for trotting dog.

Fig. 7. Phase plot for each leg (L - left, R - right, F - front, H - hind, e.g. LF - left
front leg) showing the length of the leg as a function of specific angle for SpringyBot
and a trotting dog (�: Touch down, �: Take off)

spring should shorten the leg during mid-stance to keep the center-of-mass at
the same height similar to that of the SLIP model and the function of the dog
leg. The implication for us then is that the spring is too short or perhaps too
weak to support the weight of the robot and as a consequence we will in the next
iteration try with first a longer and then a stronger spring. Another interesting
research direction that this data indicates is to study the use of two springs, one
for absorbing the initial impact and one for stabilizing the center-of-mass.

6 Discussion

The specific problem or solution is not important here. The point is that discov-
ering the problem or even realizing it without the use of the rich experimental
data would have been difficult because of the robot’s dynamic behavior. A prob-
lem that will only be aggravated as we move towards faster locomotion. A second
point is that the data is recorded in a way that makes it directly comparable to
animal data which also can be an aid in debugging morphological problems. Fi-
nally, since the robot is built from LocoKit we can rebuild the robot quickly and
perform yet another experiment and thus rapidly converge towards the desired
functionality.

At a more general level, the case study demonstrates how we use our ex-
perimental methodology in practice in the context of understanding the role of
morphology in locomotion. A crucial point about this case study and our research
method in general is that experimental data is absolutely crucial. Experimental
data represents the true function of the morphology taking all constraints of the
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Fig. 8. Shows the length of different segments of the four legs during a stride cycle
(colors refer to the photo on the right, and L - left, R - right, F - front, H - hind, e.g.
LF - left front leg). The green curve represents the compressible part of the leg and
shows how the spring is fully compressed during almost the entire stance phase.

environment into account and thus is a valuable design tool which in contrast
to many other approaches may, if succesful, provide us with a functional robot
at the end.

Modeling is not employed at this stage, but may be useful after the robot has
been developed, for instance as a basis for simulation or comparison with similar
robots. In other words, models are useful for analysis and comparison, but we
think that experimental data is more valuable as a design tool for designing
functional morphologies.

7 Summary

It is a significant challenge to understand and, for roboticists, take advantage
of functional morphologies. In order to address this challenge, we introduced
the LocoKit robot construction kit that allows for rapid exploration of a mor-
phological space. LocoKit, together with an experimental setup borrowed from
biology, also plays a crucial role in the proposed iterative, bottom-up, model-free
method for the study of functional morphology in robots. We finally presented a
case study showing how LocoKit and the methodology can be used in practice for
the study of functional morphology in the context of locomotion. We conclude
that LocoKit combined with our methodology allows for systematic and effi-
cienct development and understanding of functional morphologies. As a whole,
we hope that our contribution can aid in the understanding of and development
of more morphologically advanced robots.



22 J.C. Larsen, D. Brandt, and K. Stoy

References

1. Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press (1999)
2. Brooks, R.: Elephants don’t play chess. Robotics and Autonomous Systems 6, 3–15

(1990)
3. Sims, K.: Evolving 3D morphology and behavior by competition. In: Brooks, R.,

Maes, P. (eds.) Proc., Artificial Life IV, pp. 28–39. MIT Press (1994)
4. Lipson, H., Pollack, J.: Automatic design and manufacture of robotic lifeforms.

Nature 406, 974–978 (2000)
5. Marbach, D., Ijspeert, A.: Co-evolution of configuration and control for homoge-

nous modular robots. In: Proc., 8th Int. Conf. on Intelligent Autonomous Systems,
Amsterdam, Holland, pp. 712–719 (2004)

6. Lichtensteiger, L.: Towards optimal sensor morphology for specific tasks: Evolution
of an artificial compound eye for estimating time to contact. In: Proc., SPIE Sen-
sor Fusion and Decentralized Control in Robotic Systems III, Boston, MA, USA,
vol. 4196, pp. 138–146 (2000)

7. Spenko, M., Haynes, G., Saunders, J., Cutkosky, M., Rizzi, A., Full, R., Koditschek,
D.: Biologically inspired climbing with a hexapedal robot. Journal of Field
Robotics 25, 223–242 (2008)

8. Li, C., Hoover, A., Birkmeyer, P., Umbanhowar, P., Fearing, R., Goldman, D.:
Systematic study of the performance of small robots on controlled laboratory sub-
strates. In: Proceedings, Society of Photo-Optical Instrumentation Engineers Con-
ference on Defense, Security, Sensing, Orlando, FL, USA, vol. 76790Z, pp. 1–13
(2010)

9. Nakatani, K., Sugimoto, Y., Osuka, K.: Demonstration and analysis of quadrupedal
passive dynamic walking. Advanced Robotics 23, 483–501 (2009)

10. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.: Modular self-reconfigurable robot systems. IEEE Robotics & Au-
tomation Magazine, 43–52 (2007)

11. Stoy, K., Christensen, D.J., Brandt, D.: Self-Reconfigurable Robots: An Introduc-
tion. MIT Press (2010)

12. Larsen, J., Brandt, D., Stoy, K.: Systematic bottom-up robot design using a biome-
chanical experimental methodology. In: Proceedings, 15th International Conference
on Climbing and Walking Robots and the Support Technologies for Mobile Ma-
chine, Baltimore, MD, USA (submitted, 2012)

13. Buehler, M., Battaglia, R., Cocosco, A., Hawker, G., Sarkis, J., Yamazaki, K.:
SCOUT: a simple quadruped that walks, climbs, and runs. In: Proceedings, IEEE
International Conference on Robotics and Automation, Leuven, Belgium, pp. 1707–
1712 (1998)

14. Kim, S.: iSprawl: Design and tuning for high-speed autonomous open-loop running.
The International Journal of Robotics Research 25, 903–912 (2006)

15. Blickhan, R.: The spring-mass model for running and hopping. Journal of Biome-
chanics 22, 1217–1227 (1989)



An Introduction to the Analysis of Braitenberg

Vehicles 2 and 3 Using Phase Plane Portrait
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Abstract. Braitenberg vehicles are a widely used model of animal be-
haviour in robotics and Artificial Life. This paper presents the first com-
prehensive and formal analysis of the behaviour of Braitenberg vehicles
2 and 3. After a review of their intuitive behaviour we present their
models as dynamical systems, that under circularly symmetric stimuli
can be simplified and analysed using the phase plot technique. We prove
that intuitive understanding is not enough to determine the potential
behaviour of vehicles 2b and 3a and, under certain circumstances, they
could behave as vehicles 2a and 3b respectively. This work paves the
way to a proper understanding of Braitenberg vehicles, as it provides
theoretical support for their many existing empirically grounded works.

1 Introduction

Braitenberg vehicles [1] have been used for decades on an empirical and intuitive
basis on different areas like Artificial Life [2,3] or robotics. Each vehicle displays
an expected behaviour according to the thought experiment presented in [1],
where simple control mechanisms in the vehicle allow to implement adaptive
behaviour. A key necessity to fully understand them from a theoretical viewpoint
is the need to model the environment. The simplest vehicles actually model taxis
behaviour [4], though the author provides metaphorical names for the resulting
motion like “fear”, “aggression” and “love”. A key difference between the vehicles
and existing models of animal steering [5] is that they inherently introduce the
animal symmetry and restrictions to motion. Animals are very good at moving
in the real world performing tasks like source seeking or trail following, very
suitable tasks for some robotics applications. Therefore, these vehicles represent
a good way to generate such behaviours.

Even though Braitenberg vehicles prove empirically to be a useful mechanism
to implement some behaviours, for instance in robotics, their applications rely
only on empirical knowledge, which can be only achieved by trial and error.
This paper presents the first qualitative review of Braitenberg vehicles 2 and
3, based on their model as non-linear dynamical systems. We prove that some
trajectories the vehicles can show would actually not match the expected intu-
itive behaviour. The conditions under which the vehicles behave as expected are
explicitly stated. Sticking to the spirit of the original idea of Braitenberg, the
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contents of the paper will be mostly theoretical with only qualitative analysis.
The rest of the paper is organised as follows. The rest of this section reviews
Braitenberg vehicle models 2 and 3 and presents some related works. Section 2
introduces their mathematical modelling, while the qualitative analysis of the
trajectories is performed in section 3. Finally, section 4 draws some conclusions
and presents future working lines.

1.1 Review of Vehicles 2 and 3

Braitenberg vehicles model apparently complex behaviour by including the effect
of the environmental external stimuli. The vehicles model animal behaviour,
abstracting and simplifying locomotion and perception, while capturing its main
characteristics. Wheels abstract locomotion and focus on steering, so they can
be used to model walking, swimming or crawling. This simplifies the control and
analysis of motion, and is a good approximation because forward moving animals
suffer from non-holonomic restrictions to motion like wheeled vehicles do [6]. On
the perceptual side, animals are immersed in environments with many stimuli of
different kinds, visual, acoustic or chemical among others. The vehicles can also
perceive the stimuli at a point through their non-directional sensors. For vehicles
2 and 3 only a stimulus source is present. Usually a stimulus source produces
a positive bounded stimulus that takes a maximum value where the source is,
while the intensity decreases smoothly with the distance.
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L RV V
+ +

(a) Vehicle 2a

EL
ER

L RV V
+ +

(b) Vehicle 2b
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L RV V__

(c) Vehicle 3a

EL
ER

L RV V_ _

(d) Vehicle 3b

Fig. 1. Braitenberg Vehicles 2 and 3

Fear and Aggression: Fear and aggression are two behaviours presented as ve-
hicles 2a and 2b. According to this model, fear differs from aggression in the
wiring between sensors and motors. We will speak of a-type vehicles for ipsilat-
eral connection between sensors and motors, while contralateral connection will
be noted b-type vehicles, as shown in figure 1. Vehicles 2, a- and b-type, have an
increasing connection linking perception to action, represented by the + sign on
figures 1(a) and 1(b). In both cases, the stimulus intensity is transmitted to the
motor devices in such a way that a stronger stimulus produces a higher action
response on the connected wheel. Therefore the velocity of the vehicle will be
high when it is close to the source.

On the one hand, for ipsilateral (a-type) increasing connection, shown in Fig-
ure 1(a), the resulting behaviour is the so called fear. Since the wheel correspond-
ing to the highest stimulated side will turn faster, the vehicle will move away
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from the source, or from high stimulus intensity areas. Moreover, the vehicle
slows down far from the source, like if it was indeed frightened by the stimulus
and safe far from it. On the other hand, the vehicle 2b, shown in Figure 1(b),
models aggression. Since the connections are contralateral, the most stimulated
side will have the smallest wheel velocity, and the vehicle will turn to face the
stimulus speeding up for high values. This is why the behaviour is called ag-
gression, the vehicle will reach a source with a maximal speed, like trying to
hit it. Interestingly, it has been shown that, depending on the source and the
connections, the aggression vehicle configuration produces trajectories different
from the intuitive one [7,8].

Love or Taxis: Vehicles 3a and 3b display a behaviour named love, which matches
animal tropotaxis [9], taxis with two symmetrically placed sensing organs. Like
in the previous case, there are a- and b-type vehicles, with ipsilateral and con-
tralateral connections between the sensors and the motors, but with a decreasing
relation between the stimulus and the speed of the wheel (notice the minus sign
in figures 1(c) and 1(d)). As pointed out in [10], the two vehicles produce differ-
ent behaviours, named permanent love, the real taxis behaviour, and exploratory
love in [10], some sort of negative taxis.

Figure 1(c) presents the a-type vehicle with a stimulus source close to the right
sensor, such that the right wheel spins at a lower speed, and the vehicle turns
towards the source with an overall decreasing velocity. If the stimulus source lays
exactly in front of the vehicle, the trajectory will be a straight line with decreas-
ing speed. Since the vehicle is assumed to be able to perceive the stimulus in any
direction, if the source is located behind the vehicle, it will turn in the shorter
angular direction to head the source while moving forward following a smooth
trajectory. There is no certainty about the source being reached, since the turn-
ing speed could not be enough to head the proper direction and, therefore, the
vehicle might miss it. The crossed connection presented in Figure 1(d) generates
a different behaviour. Since the slow turning wheel is the one further from the
stimulus, the vehicle will move away slowly when it is close to the source, but it
will increase its speed as it moves further. The obtained behaviour corresponds
to a negative taxis towards the stimulus as observed among some animals.

1.2 Related Works

Several kinds of Braitenberg vehicles have been used to provide robots with
different abilities. Obstacle avoidance and target acquisition are implemented in
[11], where Braitenberg vehicle 3a – to perform phototaxis – in a combination
with a modified version of vehicle 2b – to avoid obstacles through infrared sensors
– are used. In fact, the low level dynamical systems approach to behaviour
generation [12] can be viewed as a Braitenberg vehicle with a stimulus build up
from infrared sensor readings. Its motion is very smooth and natural, similar to
the animal motion. Braitenberg vehicles are also used in [13] for local navigation,
vehicle 2b is used for goal seeking, while vehicles 3b and 2a are used to avoid
obstacles in the front and back of the robot respectively. The Braitenberg control
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system is a set of fuzzy rules that generates an offset velocity for each wheel
instead of the velocity itself. Chemical source seeking is a very difficult problem
implemented in robots using Braitenberg vehicles. An experimental analysis of
vehicles 3a and 3b for odour source localisation is presented in [10], where the
connection between sensors and motors is linear, though sensor readings are
normalised and averaged. The sensor preprocessing is necessary due to the nature
of the used stimulus.

Braitenberg vehicles are used as test-bed for evolutive behaviour generation
sometimes implemented using neural networks. The work in [14] presents a four
neuron model of cricket phonotaxis which can be comparable to the combina-
tion of vehicles 2a and 3b. Evolution of Braitenberg vehicle 2b using genetic
algorithms is presented in [15], where the authors show that the evolved vehi-
cles outperform free random evolution of agent morphology and control. In this
work, fitness is measured in terms of a simulated reward, and the authors found
that half of the individuals actually converged to vehicle 3a. Another example of
evolutive strategies applied to Braitenberg vehicles can be found in [16]. In this
case an initial random mixture of vehicles 3a and 3b is evolved on a Khepera
robot to implement a wandering behaviour on a closed arena.

2 Mathematical Models of the Vehicles

Sticking to the original thought experiment of Braitenberg we will assume perfect
stimulus sources and noiseless sensors. The first step to understand Braitenberg
vehicles is to model the environment with all the existing stimuli. Since for
vehicles 2 and 3 the environment consists on a single stimulus source which
generates a time constant stimulus field, it can be modelled as a function of the
position with a single maximum at the source. We will also assume an isotropic
stimulus (no preferred emission direction) that decreases with the distance in
the form of a two dimensional non-negative function S(x) of the position x ∈
D ⊂ �2, with the source located at the origin of a Cartesian coordinate system.
Therefore, the maximum of the stimulus is at the origin S(0) > S(x)∀x ∈ D ⊂
�2. This means the gradient∇S(0) becomes zero while the Hessian is a negative
definite matrix ytD2S(0)y < 0∀y ∈ �2. The underlying assumption is that the
function S(x) is at least C2.

For vehicles 2 and 3, there is a direct relation between the perceived stimulus
and the velocity of the wheels that can be modelled as a function F (s) taking
non negative values, such that v = F (s) where ‘s’ is the stimulus on the sensor
and ‘v’ is the speed of the wheel. The restriction F (s) ≥ 0 forbids the vehicle to
move backward, a biologically plausible assumption. We will restrict the analysis
to smooth (C2) F (s) functions, which should be increasing for vehicles 2 and
decreasing for vehicles 3, which means they have positive or negative derivatives
respectively. The simplest example fulfilling this late constrain would be to select
a positive or negative constant k and make F (s) = k · s, however for k < 0
F (s) would not be positive and we should rather choose F (s) = g0 + k · s
with g0 > 0. Since F (s) is increasing or decreasing for different vehicles, the
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compound function F (S(x)) will have a maximum or minimum as it can preserve
the maximum of S(x) or turn it into a minimum.
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Fig. 2. Coordinate system at the front of the vehicle

From the velocities of each wheel, vr and vl, we can compute the overall
motion of the vehicle as:

v =
vr + vl

2
(1)

ω =
vr − vl
d

(2)

where d is the wheelbase of the vehicle.

2.1 Equations for a-Type Vehicles

Figure 2 shows the configuration of the sensors in front of the vehicle, where x
represents the midpoint between the sensors separated by a distance δ. We can
define the unit vector êt = [cos θ, sin θ], pointing in the direction of the vehicle
motion, and the vector êtp = [− sin θ, cos θ], orthogonal to ê, pointing to the left
of the vehicle, forming a reference frame linked to the front of the vehicle.

For a-type vehicles the velocity of each wheel depends on the stimulus on the
same side vr = F (S(xr)) and vl = F (S(xl)), where xr and xl are the positions
of the right and left sensors. These velocities can be approximated by a Taylor
series around the midpoint between the sensors as follows:

F (S(xl)) ≈ F (S(x)) +
δ

2
∇F (S(x)) · êp (3)

F (S(xr)) ≈ F (S(x)) − δ

2
∇F (S(x)) · êp (4)

where ∇F (S(x)) is the gradient of the compound function evaluated at the
midpoint between the sensors. Substituting equations (3) and (4) in (1) and
(2), and using the unicycle motion model, the dynamical system describing the
behaviour of a-type Braitenberg vehicles is:
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ẋ = F (S(x)) cos θ (5)

ẏ = F (S(x)) sin θ (6)

θ̇ = − δ
d
∇F (S(x)) · êp (7)

where x = [x, y]t. It is worth noting that, even though these equations model
vehicles 2a and 3a, the actual shape of F (S(x)) is very different, since for a
stimulus source F (S(x)) has a minimum at the origin for vehicle 3a, and a
maximum for 2a. If the minimum of F (s) for vehicle 3a takes the value zero the
resulting dynamical system will have an equilibrium point at the origin, but it
could be unstable. For vehicle 2a there is no stability point at the origin because
it is a maximum of F (s). Therefore, the behaviour of a-type vehicles is very
different even they share the same dynamical model.

2.2 Equations for b-Type Vehicles

Vehicles of b-type have crossed connections between sensors and wheels, which
means vr = F (S(xl)) and vl = F (S(xr)), but following the same procedure as
in the previous section, the motion equations for this type of vehicles can be
approximated as:

ẋ = F (S(x)) cos θ (8)

ẏ = F (S(x)) sin θ (9)

θ̇ =
δ

d
∇F (S(x)) · êp (10)

Even though the equations for vehicles 2b and 3b are the same, the properties
of F (s) are again different, as the dynamical system could have an equilibrium
point for vehicle 3b but not for 2b. If the stimulus intensity reaching both sensors
is the same, the vehicle will not turn since the turning rate is controlled by the
directional derivative along the direction in which sensors lay êp. This is the
result of sampling the stimulus at two different points. The forward velocity, on
the other hand, is controlled by the intensity of the stimulus at the midpoint, as
a first order approximation.

3 Analysis of the Resulting Behaviour

The above equations are valid for any kind of stimulus, but usually S(x) is a
function that only depends on the distance to the source, therefore, F (S(x)) will
also do. This means that the gradient of F (S(x)) has only radial component. If
the systems of differential equations (5), (6), (7) and (8), (9), (10) are converted
to polar coordinates, the equations describing the motion of any Braitenberg
vehicle can be stated as:
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ṙ = F (S(r)) cos(θ − ψ) (11)

ψ̇ =
F (S(r))

r
sin(θ − ψ) (12)

θ̇ = ∓ δ
d

∂F (S(r))

∂r
sin(θ − ψ) (13)

where (r, ψ) are the polar coordinates of the vehicle, and the sign on equation
(13) depends on the type of vehicle, negative for a-type and positive for b-type.

Since the angular variables always appear on the right hand side of the equa-
tions as the difference ‘ψ− θ’, a new variable η = ψ− θ can be defined to reduce
the number of equations describing the evolution of the vehicle to:

ṙ = F (S(r)) cos η (14)

η̇ = −
[
F (S(r))

r
± δ

d

∂F (S(r))

∂r

]
sin η (15)

The new variable η represents the heading direction of the vehicle relative to the
polar angular coordinate, such that when η = 0 the vehicle has the source on its
back, if η = ±π/2 the vehicle has the source to its left or right, and if η = π the
vehicle heads the source.

A dynamical system of two variables allows us to use the phase plane plot
technique to analyse the behaviour of the vehicles. By drawing the qualitative
vector fields generated by equations (14) and (15), we obtain all the trajectories
at a glance, since they are the integral lines of the flow [17], i.e. trajectories
come from following the directions of the arrows from a starting point on the
plane. Given the conditions imposed to F (S(x)) we can perform a qualitative
analysis, which will depend on the sign of the discriminant function G±(r) =
F (S(r))

r ± δ
d
∂F (S(r))

∂r . The phase plane portrait can be restricted to non negative
radial values and to the angular range η ∈ (−π, π], and it is presented for G±(r)
functions that keep a constant sign in figure 3.
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Fig. 3. State space vector flows for circular symmetric conditions

3.1 Vehicle 2a

The reduced equations describing the behaviour of this vehicle under a circularly
symmetric stimulus correspond to G+(r) in equations (14) and (15). By assump-
tion F (r) ≥ 0∀r, therefore the sign of the ṙ component of the flow depends on
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the sign of cos η, and it vanishes for η = ±π/2, when the vehicle changes from
approaching to moving away from the source or vice-versa. Specifically, since
ṙ > 0 for −π/2 < η < π/2, the vehicle moves away from the origin when the
source is on its back. Because F (r) has its maximum at r = 0, the ṙ component
is larger close to the source. The angular component of the flow η̇ vanishes, and
changes its sign at η = 0 and η = π since by assumption F (s) > 0 and F ′(s) > 0,
and, therefore, G+(r) > 0. This means that the component of the flow η̇ points
in the opposite direction of sin η, as plotted in Figure 3(a). There is no stability
point unless F (r) = 0 for some r0, and then there will be an attractor in the
reduced state space at (r0, 0). In any case, there is an angular attractor at η = 0,
which means the vehicle will always move away form the source.

3.2 Vehicle 2b

The equations for vehicle 2b correspond to G−(r), which means the radial com-
ponent of the flow, shown in figure 3(b), is the same as for vehicle 2a. However,
the sign of the discriminant function G−(r) can change for some r. If G−(r) > 0,
the flow is the same as for the vehicle 2a, and the resulting behaviour is fear in-
stead of aggression. For G−(r) < 0, the case presented in figure 3(b), the angular
flow component points in the direction of sin η and the behaviour of the vehicle
2b is the one expected. If G−(r) < 0, the angular variable has an attractor at
η = π, the vehicle heading the source, but the dynamical system has no equi-
librium point since F (s) > 0. It can be seen that there is a value r0 such that

the flow changes close to the origin, since lim
r→0+

F (r)
r = ∞ and lim

r→0+
F ′(r) = 0.

The consequence is that the vehicle moves away for small values of r and then
it cycles around the source.

3.3 Vehicle 3a

The corresponding discriminant function for vehicle 3a is also G+(r), though
in this case F ′(s) < 0 and, therefore, the maximum of S(r) is turned into a
minimum. This corresponds to the vehicle slowing down close to the source and
moving fast far from it, and, if the minimum value of F (r) is zero, there is an
equilibrium point at the origin. On the other hand, the sign of the radial com-
ponent coincides with the previous sections and the flow, for the case G+(r) < 0
is shown in figure 3(c), which corresponds to the taxis behaviour, i.e. the vehicle
moving towards the source at (0, π).

Since F (s) > 0 and F ′(s) < 0 there could be a r = r0 such that G+(r) =
0 with a sign change in G+(r). However, contrary to the aggression case, if
lim

r→0+
F (r) = 0 and since lim

r→0+
F ′(r) = 0, the behaviour will not necessarily

change close to the origin. If the source is initially on the back of the vehicle, η ∈
(−π/2, π/2), it will move away and turn to head the stimulus, and it will reach
the maximum distance from the source when η = ±π/2. It is worth reminding,
that the direction of the angular flow component can change making the vehicle
move away from the source and challenging our intuitive understanding of vehicle
3a.
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3.4 Vehicle 3b

The discriminant function for vehicle 3b is G−(r), which according to our as-
sumptions cannot change its sign, since F (s) > 0 and F ′(s) < 0. The corre-
sponding flow on the phase plane is shown in figure 3(d), which has an angular
attractor at η = 0, i.e. the vehicle with the source on its back, and can have an
equilibrium point at r = 0 if F (S(r)) vanishes at the origin. However, analysing
the phase plane, it is clear that the equilibrium is unstable, since any close trajec-
tory will end up with the source behind the vehicle and escaping with increasing
velocity, the above mentioned negative taxis. The behaviour of this vehicle is
similar to the one of vehicle 2a but with increasing forward velocity as it moves
far from the source.

4 Discussion and Further Work

Whilst previous works are mainly experimental and rely on empirical parameters
adjustment, this paper presents the first formal analysis of Braitenberg vehicles
2 and 3, modelled as a dynamical system, and using the phase plane portrait.
Even though their behaviour is easy to understand (reason why they are widely
used for teaching) this paper shows that the real behaviour can be different
from the intuitive one. Specifically, vehicles 2b and 3a can behave as 2a and 3b
if there is a change on the corresponding discriminant function G±(r). This work
supports and explains with a mathematical formulation existing empirical works
of Braitenberg vehicles (and probably also explains unreported experimental
results).

Relaxing the circularly symmetric assumption for the stimulus can generate
more complex behaviour that needs to be analysed, while more specific conclu-
sions for stimuli can be obtained if we assume S(x) follows the inverse-square law
or the inverse distance law. This paper deals only with the simplest theoretical
configuration, a single stimulus source, but the environments can have different
sources of several kinds. This will produce a richer behaviour and very complex
equations that probably cannot be analysed analytically. However, numerical
methods can be used for specific stimulus settings using the equations presented
in this work.
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Abstract. Taking inspiration from the hypothesis of muscle synergies,
we propose a method to generate open loop controllers for an agent solv-
ing point-to-point reaching tasks. The controller output is defined as a
linear combination of a small set of predefined actuations, termed syner-
gies. The method can be interpreted from a developmental perspective,
since it allows the agent to autonomously synthesize and adapt an effec-
tive set of synergies to new behavioral needs. This scheme greatly reduces
the dimensionality of the control problem, while keeping a good perfor-
mance level. The framework is evaluated in a planar kinematic chain,
and the quality of the solutions is quantified in several scenarios.

Keywords: motor primitives, motor control, development.

1 Introduction

Humans are able to perform a wide variety of tasks with great flexibility; learning
new motions is relatively easy, and adapting to new situations (e.g. change in
the environment or body growth) is usually dealt with no particular effort. The
strategies adopted by the central nervous system (CNS) to master the complexity
of the musculoskeletal apparatus and provide such performance are still not clear.
However, it has been speculated that an underlying modular organization of the
CNS may simplify the control and provide the observed adaptability. There
is evidence that the muscle activity necessary to perform various tasks (e.g.
running, walking, keeping balance, reaching and other combined movements)
may emerge from the combination of predefined muscle patterns, the so-called
muscle synergies [1]. This organization seems to explain muscle activity across
a wide range of combined movements [2–4].

The scheme of muscle synergies is inherently flexible and adaptable. Different
actions are encoded by specific combinations of a small number of predefined
synergies; this reduces the computational effort and the time required to learn
new useful behaviors. The learning scheme can be regarded as developmental
since information previously acquired (i.e. synergies) can be reused to gener-
ate new behaviors[5]. Finally, improved performance can be easily achieved by
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introducing additional synergies. Thus, the hypothetical scheme of muscle syner-
gies would contribute to the autonomy and the flexibility observed in biological
systems, and it could inspire new methods to endow artificial agents with such
desirable features.

In this paper we propose a method to control a dynamical system (i.e. the
agent) in point-to-point reaching tasks by linear combinations of a small set of
predefined actuations (i.e. synergies). Our method initially solves the task in
state variables by interpolation; then, it identifies the combination of synergies
(i.e. actuation) that generate the closest kinematic trajectory to the computed
interpolant. Additionally, we propose a strategy to synthesize a small set of
synergies that is tailored to the task and the agent. The overall method can be
interpreted in a developmental fashion; i.e. it allows the agent to autonomously
synthesize and update its own synergies to increase the performance of new
reaching tasks.

Other researchers in robotics and control engineering have recently proposed
architectures inspired by the concept of muscle synergies. In [6] the authors de-
rive an analytical form of a set of primitives that can drive a feedback linearized
system (known analytically) to any point of its configuration space. In [7] the
authors present a numerical method to identify synergies that optimally drive
the system over a set of desired trajectories. This method does not require an
analytical description of the system, and it has the advantage of assessing the
quality of the synergies in task space. However, it is computationally expensive
as it involves heavy optimizations. In [8] muscle synergies are identified by ap-
plying an unsupervised learning procedure to a collection of sensory-motor data
obtained by actuating a robot with random signals. In [9] the architecture of the
dynamic movement primitives (DMP) is proposed as a novel tool to formalize
control policies in terms of predefined differential equations. Linear combinations
of Gaussian functions are used as inputs to modify the attractor landscapes of
these equations, and to obtain the desired control policy.

In contrast to these works, our method to synthesize synergies does not rely
on feedback linearization, nor on repeated integrations of the dynamical system.
The method is grounded on the input-output relation of the dynamical system
(as in [8]), and it provides a computationally fast method to obtain the synergy
combinators to solve a given task. Furthermore, our method is inherently adapt-
able as it allows the on-line modification of the set of synergies to accommodate
to new reaching tasks.

2 Definitions and Methods

In this section we introduce the mathematical details of the method we propose.
After some definitions, we present the core element of our method: a general
procedure to compute actuations that solve point-to-point reaching tasks (see
Sec. 2.1). Subsequently, in Section 2.2, we propose a framework for the synthesis
and the development of a set of synergies.

Let us consider a differential equation modeling a physical system
D (q(t)) = u(t), where q(t) represents the time-evolution of its configuration
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variables (their derivatives with respect to time are q̇(t)), and u(t) is the actu-
ation applied. Inspired by the hypothesis of muscle synergies3 [1], we formulate
the actuation as a linear combination of predefined motor co-activation patterns:

u(t) =
Nφ∑

i=1
φi(t)bi := Φ(t)b, (1)

where the functions φi(t) ∈ Φ are called motor synergies. The notation Φ(t)
describes a formal matrix where each column is a different synergy. If we consider
a time discretization, Φ(t) becomes a N dim(q)-by-Nφ matrix, where N is the
number of time steps, dim(q) the dimension of the configuration space and Nφ

the number of synergies.
We define dynamic responses (DR) of the set of synergies as the responses

θi(t) ∈ Θ of the system to each synergy (i.e. forward dynamics):

D(θi(t)) = φi(t) i = 1...Nφ. (2)

with initial conditions chosen arbitrarily.

2.1 Solution to Point-to-Point Reaching Tasks

A general point-to-point reaching task consists in reaching a final state (qT , q̇T )
from an initial state (q0, q̇0) in a given amount of time T :

q(0) = q0, q̇(0) = q̇0,

q(T ) = qT , q̇(T ) = q̇T .
(3)

Controlling a system to perform such tasks amounts to finding the actuation u(t)
that fulfills the point constraints4 (3). Specifically, assuming that the synergies
are known, the goal is to identify the appropriate synergy combinators b. In this
paper we consider only the subclass of reaching tasks that impose motionless
initial and final postures, i.e. q̇T = q̇0 = 0.

The procedure consists of, first, solving the problem in kinematic space (i.e.
finding the appropriate q(t)), and then computing the corresponding actuations.
From the kinematic point of view, the task can be seen as an interpolation
problem; i.e. q(t) is a function that interpolates the data in (3). Therefore, a set
of functions is used to build the interpolant trajectory that satisfy the constraints
imposed by the task; these functions are herein the dynamic responses of the
synergies:

q(t) =
Nθ∑

i=1
θi(t)ai := Θ(t)a, (4)

3 With respect to the model of time-varying synergies, in this paper we neglect the
synergy onset times.

4 In this paper we assume that the initial conditions of the systems are equal to
(q0, q̇0).
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where the vector of combinators a is chosen such that the task is solved. As
mentioned earlier, if time is discretized, Θ(t) becomes a N dim(q)-by-Nθ ma-
trix, where Nθ is the number of dynamic responses. The quality of the DR as
interpolants is evaluated in Section 3.

Once a kinematic solution has been found (as linear combination of DRs), the
corresponding actuation can be obtained by applying the differential operator;
i.e. D (Θ(t)a) = ũ(t). Finally, the vector b can be computed by projecting ũ(t)
onto the synergy set Φ. If ũ(t) does not belong to the linear span of Φ, the
solution can only be approximated in terms of a defined norm (e.g. Euclidean):

b = arg min
b

||ũ(t) − Φ(t)b||. (5)

When the time is discretized, all functions of time become vectors and this
equation can be solved explicitly using the psuedoinverse of the matrix Φ,

Φ+ũ = Φ+D (Θa) = b. (6)

This equation highlights the operator Φ+ ◦ D ◦ Θ (◦ denotes operator composi-
tion) as the mapping between the kinematic combinators a (kinematic solution)
and the synergy combinators b (dynamic solution). Generically, this operator
represents a nonlinear mapping M : R

Nθ → R
Nφ , and it will be discussed in

Section 4.
To assess the quality of the solution we define the following measures:

Interpolation error: Measures the quality of the interpolant Θ(t)a with respect
to the task. Strictly speaking, only the case of negligible errors corresponds to
interpolation. A non-zero error indicates that the trajectory Θ(t)a only approx-
imates the task

errI =
√

||qT − Θ(T )a||2 + ||Θ̇(T )a||2, (7)

where || · || denotes the Euclidean norm, and the difference between angles are
mapped to the interval (−π, π].

Projection error: Measures the distance between the actuation that solves the
task ũ(t), and the linear span of the synergy set Φ

errP =

√∫ T

0
||ũ(t) − Φ(t)b||2dt. (8)

Forward dynamics error: Measures the error of a trajectory q̃(t, λ) generated by
an actuation Φ(t)λ, in relation to the task.

errF =
√

||q̃(T, λ) − qT ||2 + || ˙̃q(T, λ) − q̇T ||2. (9)

Replacing q̃(t, λ), qT and q̇T with their corresponding end-effector values pro-
vides the forward dynamics error of the end-effector.



Synthesis and Adaptation of Effective Motor Synergies 37

2.2 Synthesis and Development of Synergies

The synthesis of synergies is carried on in two phases: exploration and reduction.
The exploration phase consists in actuating the system with an extensive set of
motor signals Φ0 in order to obtain the corresponding DRs Θ0. The reduction
phase consists in solving a small number of point-to-point reaching tasks in
kinematic space (that we call proto-tasks) by creating the interpolants using the
elements of set Θ0, as described in Eq. (4). These solutions are then taken as
the elements of the reduced set Θ. Finally, the synergy set Φ is computed using
relation (2), i.e. inverse dynamics. As a result, there will be as many synergies as
the number of the proto-tasks (i.e. Nφ = Nθ). The intuition behind this reduction
is that the synergies that solve the proto-tasks may capture essential features
both of the task and of the dynamics of the system. Despite the non-linearities
of D, linear combination of these synergies might be useful to solve point-to-
point reaching tasks that are similar (in terms of Eq. (3)) to the proto-tasks
(see Sec. 3).

The number of proto-tasks as well as their specific instances determine the
quality of the synergy-based controller. To obtain good performance in a wide
variety of point-to-point reaching tasks, the proto-tasks should cover relevant re-
gions of the state space (see Sec. 3). Clearly, the higher the number of different
proto-tasks, the more regions that can be reached with good performance. How-
ever, a large number of proto-tasks (and the corresponding synergies) increases
the dimensionality of the controller. In order to tackle this trade-off, we propose
a procedure that parsimoniously adds a new proto-task only when and where it
is needed: if the performance in a new reaching task is not satisfactory, we add a
new proto-task in one of the regions with highest projection error or we modify
existing ones.

3 Results

We apply the methodology described in Section 2 to a simulated planar kinematic
chain (see [10] for model details) modeling a human arm[11]. In the exploration
phase, we employ an extensive set of motor signals Φ0 to actuate the arm model
and generate the corresponding dynamic responses Θ0. The panels in the first
row of Fig. 1 show the end-effector trajectories resulting from the exploration
phase. We test two different classes of motor signals: actuations that generate
minimum jerk end-effector trajectories (100 signals), and low-passed uniformly
random signals (90 signals). In order to evaluate the validity of the general
method described in Sec. 2.1, we use the sets Φ0 and Θ0 to solve 13 different
reaching tasks without performing the reduction phase. The second row of Fig.
1 depicts the trajectories drawn by the end-effector when the computed mixture
of synergies are applied as actuations (i.e. forward dynamics of the solution). It
has to be noted how the nature of the solutions (as well as that of the responses),
depends on the class of actuations used. The maximum errors are reported in
Table 1. The results are highly satisfactory for both the classes of actuations,
and show the validity of the method proposed. Since the reduction phase has
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not been performed, the dimension of the combinator vectors a and b equals the
number of actuations used in the exploration.

Table 1. Order of the maximum errors obtained by using Φ0 and Θ0 (no reduction
phase)

Min. Jerk Random
errI 10−15 10−15

errP 10−5 10−3

errF 10−4 10−3

The objective of the reduction phase is to generate a small set of synergies and
DRs that can solve desired reaching tasks effectively. As described in Section 2.2,
this is done by solving a handful of proto-tasks. The number (and the instances)
of these proto-tasks determines the quality of the controller. Figure 2 shows the
projection error as a function of the number of proto-tasks. The reduction is
applied to the low-passed random signal set. Initially, two targets are chosen
randomly (top left panel); subsequent targets are then added on the regions
characterized by higher projection error. As it can be seen, the introduction of
new proto-tasks leads to better performance on wider regions of the end-effector
space, and eventually the whole space can be reached with reasonable errors. In
fact, the figure shows that this procedure decreases the average projection error
to 10−3 (comparable to the performance of the whole set Φ0, see Tab. 1) and re-
duces the dimension of the combinator vector to 6, a fifteen-fold reduction. This
result shows that a set of “good” synergies can drastically reduce the dimen-
sionality of the controller, while maintaining similar performance. The bottom
right panel of the figure shows the forward dynamics error of the end-effector
obtained with the 6 proto-tasks. Comparing this panel with the bottom left one,
it can be seen that the forward dynamics error of the end-effector reproduces
the distribution of the projection error, rendering the latter a good estimate for
task performance.

To further demonstrate that the reduction phase we propose is not trivial, we
compare the errors resulting from the set of 6 synthesized synergies, with the
errors corresponding to 100 random subsets of size 6 drawn from the set of low-
passed random motor signals. Figure 3 shows this comparison. The task consists
in reaching the 13 targets in Fig. 1. The boxplots correspond to the errors of
the random subsets, and the filled circles to the errors of the synergies resulting
from the reduction phase. Observe that, the order of the error of the reduced set
is, in the worst case, equal to the error of the best random subset. However, the
mean error of the reduced set is about 2 orders of magnitude lower. Therefore,
the reduction by proto-tasks can produce a parsimonious set of synergies out of
a extensive set of actuations. Evaluating the performance with different classes
of proto-tasks (e.g. catching, hitting, via-points) is postponed to future works.
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Fig. 1. Comparison of explorations with two different classes of actuation: minimum
jerk and low-passed random signal. Each panel shows the kinematic chain in its initial
posture (straight segments). The limits of the end-effector are shown as the boundary
in solid line.

4 Discussion

The results shown in the previous section justify the interpretation of the method-
ology as a developmental framework. Initially, the agent explores its sensory-
motor system employing a variety of actuations. Later, it attempts to solve the
first reaching tasks (proto-tasks), perhaps obtaining weak performance as the
exploration phase may not have produced enough responses yet (see the box-
plots in Fig. 3). If the agent finds an acceptable solution to a proto-task, it is
used to generate a new synergy (populating the set Φ), otherwise it continues
with the exploration. The failure to solve tasks of importance for its survival,
could motivate the agent to include additional proto-tasks; Figure 2 illustrates
this mechanism. As it can be seen, the development of the synergy set incre-
mentally improves the ability of the agent to perform point-to-point reaching.
Alternatively, existing proto-tasks could be modified by means of a gradient de-
scent or other learning algorithms. In a nutshell, the methodology we propose
endows the agent with the ability to autonomously generate and update a set of
synergies (and dynamic responses) that solve reaching tasks effectively.

Despite the difficulty of the mathematical problem (i.e nonlinear differential
operator), our method seems to generate a small set of synergies that span the
space of actuations required to solve reaching tasks. This is not a trivial result,
since these synergies over-perform many other set of synergies randomly taken
from the set Φ0 (see Fig. 3). It appears as if the reduction phase builds features
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Fig. 2. Selection of targets based on projection error. Each panel shows the kinematic
chain in its initial posture (straight segments). The limits of the end-effector are the
boundary of the colored regions. The color of each point indicates the projection error
produced to reach a target in that position. The bottom right diagram shows the
forward dynamics error of the end-effector using 6 proto-tasks (6 synergies).

Fig. 3. Evaluation of the reduction phase. Errors produced by subsets randomly se-
lected from the exploration-actuations (boxplots) are compared with the errors ob-
tained after the reduction phase (filled circles).
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upon the exploration phase, that are necessary to solve new reaching tasks. To
verify whether solving proto-tasks plays a fundamental role, our synergies could
be compared with the principal components extracted from the exploration set.
This verification goes beyond the scope of this paper.

An important aspect of our method is the relation between Θ and Φ (see
Eq. (2)). This mapping makes explicit use of the body parameters (embedded in
the differential operator D), hence the synergies obtained can always be realized
as actuations. The same cannot be said, in general, for synergies identified from
numerical analyses of biomechanical data. Though some studies have verified the
feasibility of extracted synergies as actuations [12], biomechanical constraints
are not explicitly included in the extraction algorithms. Additionally, Eq. (2)
provides an automatic way to cope with smooth variations of the morphology
of the agent. That is, both the synergies and their dynamic responses evolve
together with the body. In line with [6, 7], these observations highlight the
importance of the body in the hypothetical modularization of the CNS.

Once the task is solved in kinematic space, the corresponding actuation can
be computed using the explicit inverse dynamical model of the system (i.e. the
differential operator D). It might appear that there is no particular advantage in
projecting this solution onto the synergy set. However, the differential operator
might be unknown. In this case, a synergy-based controller would allow to com-
pute the appropriate actuation by evaluating the mapping M on the vector a,
hence obtaining the synergy combinators b. Since M is a mapping between two
finite low-dimensional vector spaces, estimating this map may turn to be easier
than estimating the differential operator D. Furthermore, we believe that the
explicit use of D may harm the biological plausibility of our method. In order to
estimate the map M, the input-output data generated during the exploration
phase (i.e. Φ0 and Θ0) could be used as learning data-set. Further work is re-
quired to test these ideas. Additionally, preliminary theoretical considerations
(not reported here) indicate that the synthesis of synergies without the explicit
knowledge of D is also feasible.

Finally, the current formulation of the method does not includes joint limits
explicitly. The interpolated trajectories are valid, i.e. they do not go beyond
the limits, due to the lack of intricacy of the boundaries. In higher dimensions,
especially when configuration space and end-effector are not mapped one-to-one,
this may not be the case anymore. Nevertheless, joint limits can be included by
reformulating the interpolation as a constrained minimization problem. Another
solution might be the creation of proto-tasks with a tree-topology, relating our
method to tree based path planning algorithms[13].

5 Conclusion and Future Work

The current work introduces a simple framework for the generation of open loop
controllers based on synergies. The framework is applied to a planar kinematic
chain to solve point-to-point reaching tasks. Synergies synthesized during the
reduction phase over-perform hundreds of arbitrary choices of basic controllers
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taken from the exploration motor signals. Furthermore, our results confirm that
the introduction of new synergies increases the performance of reaching tasks.
Overall, this shows that our method is able to generate effective synergies, greatly
reducing the dimensionality of the problem, while keeping a good performance
level. Additionally, the methodology offers a developmental interpretation of the
emergence of task-related synergies that could be validated experimentally.

Due to the nonlinear nature of the operator D, the theoretical grounding of
the method poses a difficult challenge, and it is the focus of our current research.
Another interesting line of investigation is the validation of our method against
biological data, paving the way towards a predictive model for the hypothesis
of muscle synergies. Similarly, the development of an automatic estimation pro-
cess for the mapping M would further increase the biological plausibility of the
model.

The inclusion of joint limits into the current formulation must be prioritized.
Solving this problem will allow to test the method on higher dimensional redun-
dant systems. Tree-based path planning algorithms may offer a computationally
effective way to approach the issue.
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Abstract. Findings from eye movement research in humans have demon-
strated that the task determines where to look. One hypothesis is that
the purpose of looking is to reduce uncertainty about properties relevant
to the task. Following this hypothesis, we define a model that poses the
problem of where to look as one of maximising task performance by re-
ducing task relevant uncertainty. We implement and test our model on a
simulated humanoid robot which has to move objects from a table into
containers. Our model outperforms and is more robust than two other
baseline schemes in terms of task performance whilst varying three envi-
ronmental conditions, reach/grasp sensitivity, observation noise and the
camera’s field of view.

Keywords: Gaze control, reinforcement learning, decision making.

1 Introduction

Acting under uncertain and incomplete information is required every time hu-
mans engage in some task. This uncertainty can be reduced by looking at relevant
parts of the environment. The development of portable eye trackers has made it
possible to study the role of human gaze during natural tasks, such as driving,
tea and sandwich making, sports activities, etc. [10,12]. The key findings are
that, where we look is determined by the task being performed, the purpose of
looking is to reduce task relevant uncertainty, and that gaze patterns reflect ex-
tensive learning at several levels [12]. Furthermore, Johansson et al. [9] studied
in detail the temporal and spatial relation between manipulation actions and
gaze. Subjects had to grasp a bar and move it in a vertical plane to a target
point, whilst avoiding an obstacle. The main conclusion was that gaze fixations
specify landmark positions to which the manipulation actions are subsequently
directed. In addition, empirical evidence from neurophysiological experiments
has demonstrated that the human brain controls gaze via reward signals [8].
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In order to increase our understanding about how gaze can be coordinated, it
is useful to create models that can be formally analysed in different conditions.
Building on the work of Sprague et al. [11], we have defined a gaze allocation
model based on a reinforcement learning (RL) framework [14] that allows for
the control of the oculomotor system, multiple parallel motor systems, actions
of variable duration, and that reasons about the expected actual reduction in
uncertainty due to possible perceptual actions [4]. We implement and test our
model using the iCub simulator1 [2] (Fig. 1.A). Our manipulation task consists
of picking up objects from the table top and then placing them inside one of
two containers. In this work, the arms cannot interact with each other (e.g.
to perform bi-manual grasps), so the task is divided into two sub-tasks, one
for each arm. Thus, objects reachable by the right arm are placed inside the
right container, with the same happening for the left side. A new object appears
on the table every 60 seconds and also every time an object is put inside a
container. We reward the robot for task performance. The key idea is to select the
gaze at any moment that increases task rewards most by reducing task relevant
uncertainty about the location of objects and containers. The only precisely
known location to the robot is the centre of the table. In this paper we define
our reward based model and characterise how task performance varies in terms of
three environmental conditions, namely reach/grasp sensitivity in manipulation
actions, the level of observation noise, and the size of the camera’s field of view.

Besides Sprague et al. model, another reward based gaze control model was
presented in [5] for a multitasking scenario. However, they do not consider mul-
tiple motor systems, only two fixation points are considered, and it is not a
manipulation task. Other works have approached the problem of where to look
based on models of saliency in order to detect regions of interest which may pro-
vide possible fixation points [16]. Nevertheless, these systems do not explicitly
reason about how to reduce the uncertainty relevant to the task.

2 Coordinating Gaze and Actions

In this section we first describe how the task is modelled, then we explain the
different components of our system and their interaction as Fig. 1.B illustrates.
The robot initially learns the task and then performs the task by deciding what
actions to perform and where to look.

2.1 Modelling the Task

As described in Section 1, the task is to pick up objects from the table top and
then place them inside one of two containers. We consider two motor systems:
the right and left arm/hand. We divide the task into two sub-tasks, one for
each motor system. Furthermore, each sub-task is modelled with two levels. The

1 The main advantage of using the iCub simulator is that it works with the same
controllers used by the real robot. Thus, the transition between the simulation and
the real robot is relatively straightforward.
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Fig. 1. A. Snapshot of the iCub simulator, where the task is to pick up and place
objects from the table top to the containers. B. Schematic view of the system.

high-level models the sub-task qualitatively as a semi-Markov decision process
(SMDP)2 [13], with a discrete state representation. Whereas the low-level models
each high-level action with a continuous state space representation.

In the high-level SMDP, each motor system ms ∈ MS (where MS is the set
of motor systems), is modelled as a tuple 〈Sms,Oms, Tms,R〉, where Sms is the
set of discrete states, Oms is the set of temporally extended high-level actions
(called options as in [7]), Tms : Sms ×Oms × Sms × N � [0, 1] is the transition
probability distribution, where N is the set of natural numbers representing the
execution time of each option, and R : Sms ×Oms � R is the reward function.
For this domain, the reward function is identical for all motor systems.

In our case, an option Oj
ms ∈ Oms is modelled with continuous states (Sj)

and actions (Aj), and with a non-stochastic transition function (T j). Options
are defined as commands provided by the motor controllers available to the iCub
[3]. These controllers receive 3D positions in robot coordinates and they calculate
and execute trajectories in the joint space of the robot.

The set of motor systems for the high-level SMDPs is defined as MS =
{right arm, left arm}. A factorised discrete state space is used for both arms
(Sright arm and Sleft arm), with the state variables: armPosition = {onObject,
onTable, onContainer, outsideTable}, handStatus = {grasping, empty}, and ta-
bleStatus = {objectsOnTable, empty}. The set of options available for both arms
(Oright arm and Oleft arm) are: moveToObject(2.65sec), moveToTable(2.95sec),
moveToContainer(3.25sec), graspObject(2.87sec), and releaseObject(1.0sec). Next
to each option is the average completion time in seconds, which was obtained
by executing all options in sequence for 60 minutes. It is important to point
out that for option graspObject we use a special command, defined in the iCub
simulator, that makes the hand act like a magnet. Even though we simplify the
problem of grasping, we can control its sensitivity by checking the offset between

2 In contrast with the Markov decision processes (MDPs), SMDPs allow us to model
actions with variable duration.
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the centre of the hand and the centre of the object. Except for releaseObject, all
options can fail if the offset between the centre of the hand and the desired final
position is greater than some threshold (e.g. 1 cm). The iCub controllers have a
limited accuracy and the minimum value of that threshold is 0.5 cm.

2.2 Visual Memory

The central component in the system is what we call the visual memory (Fig.
1.B), which captures the continuous state information about object pose needed
for low-level control and supplies the discrete objects id’s needed to create the
high-level discrete state. We define the visual memory as the set of ordered pairs
VM = 〈(e1, bel(e1)), (e2, bel(e2)), . . . , (en, bel(en))〉, where ei is the ith entity of
interest on the table, where an entity can be an object or a container. Every time
a new entity is seen it is added to the visual memory. bel(ei) is a probability
density (or belief state), associated with the location of the entity ei. This loca-
tion is used by the low-level options. Each object has a diameter of 4 cm, and
its location refers to its centre projected in the X-Y plane in robot coordinates.
Containers are 10x10x3 cm in width, length and height, and the location refers
to its centre as well. The belief state for each entity ei is approximated by a
particle filter [15]. Each particle filter contains a set of particles Gi, where each
particle g ∈ Gi represents a possible location for entity ei.

2.3 Learning Phase

As described above, each high-level SMDP models a given sub-task, and learning
this sub-task is achieved via reinforcement learning (RL) using SMDP Q-learning
[6]. Each motor system ms learns a policy πms : Sms � Oms, that defines a
mapping from states to options. A policy contains Q-values, i.e. the cumulative
expected reward for each state-action pair. During learning we limit the number
of objects appearing on the table to 10. We follow a minimal time to goal strategy,
so for any option taken the robot receives -1 unit of reward. When the task
is completed (i.e. no more objects appear on the table) it receives 0 units of
reward. The robot initially learns how to perform the task under an assumption
of complete observability, i.e. the visual memory contains the complete list of
entities (ei), and their corresponding belief (bel(ei)) indicates the true location
of that entity.

2.4 Execution Phase

During execution the robot is in charge of maintaining the visual memory, which
does not contain any entity at the beginning. The robot has to look at entities
in order to add its pair (ei, bel(ei)) into visual memory. Every time an entity ei
is observed, its belief bel(ei) is updated with new information.
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Physical Action Selection: The robot selects options for each of its motor
systems by following the Q-MDP algorithm [1] in terms of particle filters:

oms = arg max
o∈Oms

1

|Gi|
∑
g∈Gi

weight(g)cost(g, o), (1)

where Gi is the set of particles representing the belief state of entity ei, and g
refers to an individual particle. weight(g) defines the weight given to the particle
g. Each belief bel(ei) determines the likelihood of success or failure of options,
which in turn determines changes in the discrete space described in Section 2.1.
For instance, the discrete state variable armPosition takes the value onObject
if and only if the offset between the centre of the hand and the centre of the
object is less or equal than some threshold (e.g. 1 cm). The cost(g, o) takes
the value of Qms(s, o) (i.e. the Q-value taken from the policy πms, where s is
the current discrete state) if the offset between the centre of the hand and the
particle g is less than or equal to some threshold, otherwise it takes the value of
mino∈Oms Qms(s, o), indicating that the option failed.

Gaze Coordination: The selection of perceptual actions works as follows:

1. Each entity ei listed in visual memory represents a fixation point, i.e. a
perceptual action p ∈ P , where P is the set of perceptual actions at any given
time. The number of perceptual actions varies depending on the number of
entities in visual memory.

2. We define msf as the motor system that will benefit the most if it is given
access to perception:

msf = arg max
ms∈MS

[
max
p∈P

{V p
ms} − max

o∈Oms

{V o
ms}

]
, (2)

where MS is the set of motor systems, and the expression inside the square
brackets represents the expected gain that would result if gaze is allocated to
motor system ms. V p

ms is the expected value for motor system ms assuming
perceptual action p is taken. V o

ms is the expected value with the current
uncertainty. In fact, maxo∈Oms{V o

ms} has been calculated during the option
selection using (1), so we can cache this value. The difference between the
maximum of these two values tells us how much we gain if gaze is allocated
to this motor system. To calculate V p

ms we follow:

V p
ms =

1

|Ω|
∑
ω∈Ω

max
o∈Oms

⎛
⎝ 1

|Gi|
∑
g∈Gi

weight(g, ω)cost(g, o)

⎞
⎠ , (3)

where Ω is the set of observations, ω is a particular observation, Gi is the set
of particles, and g is a single particle. weight(g, ω) represents the weight of
particle g after having observed ω, and cost(g, o) takes the value of Qms(s, o)
if the offset between the centre of the hand and the particle g is less than or
equal to some threshold, otherwise it takes the value of mino∈Oms Qms(s, o).
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This equation is trying to predict the value of moving the gaze to a specific
fixation point by using “imaginary” observations ω to update the current
belief, and then checking the effect this possible new belief would have in
the selection of options.

3. After a motor system is selected in (2), we define pf as the perceptual action
that will be executed:

pf = argmax
p∈P

{
V p
msf

}
, (4)

which is straightforward if we cache the results of maxp∈P {V p
ms} when cal-

culating (2).

The observations ω are sampled assuming that the robot would fixate on the
mean of the cloud of particles (mean(Gi)). First, a number of particles gj are
uniformly selected. Then a bivariate Gaussian distribution is chosen for each gj
by indexing an observation model learnt off-line (described below), according
to the location of particle gj and the imaginary fixation point (mean(Gi)) with
respect to the also imaginary oculomotor position. From the chosen bivariate
Gaussian distributions the observations Ω are sampled.

Visual Analysis: During a fixation, visual input is read from the right camera.
The entities inside the camera’s field of view (FoV) are detected3, and their 3D
locations (in robot coordinates) are calculated using the plane of the table to
obtain an estimate of the depth. Since only one camera is used the estimated 3D
locations are noisy4. In order to handle this noise during execution, an observa-
tion model was learnt off-line. This model is used for updating the particle filters
and for sampling imaginary observations. The observation model was created by
systematically moving the robot’s gaze and an object in the robot space, and
storing the coordinates depicted in Fig. 2.A. With these data points 405 bivari-
ate Gaussian distributions were fitted, each representing a particular relationship
between the position of the camera, the location of the fixation point and the
object. Fig. 2 shows three of these distributions. Distributions B and D repre-
sent the noise when objects are found at the left and the right of the fixation
point respectively, their location is less accurate. Distribution C represents the
noise when objects are found in line with the fixation point, which gives a more
accurate location. Finally, if an entity in visual memory is not seen for more than
1.5 seconds, Gaussian noise with zero mean and 1.0 cm of standard deviation is
added to its current estimate.

3 We have a noiseless object detection by using the simulator, this let us focus just on
a single source of uncertainty, namely the estimated 3D locations.

4 Using both cameras for triangulation results in a perfect estimate, as the cameras
are perfectly aligned in the simulator.
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Fig. 2. Observation model. A. The coordinates specifying fixation points and object
locations. B. Example of a distribution representing objects appearing at the left of
the fixation point. C. Objects in line with the fixation point. D. Objects appearing at
the right of the fixation point. The circle in the graph represents an object.

3 Experiments

We characterise our model by varying three environmental conditions: reach/grasp
sensitivity in the manipulation actions, the level of observation noise and the
camera’s field of view. In order to compare our reward based model, we also
implemented a random, and a round robin gaze allocation strategies.

Reach/Grasp Sensitivity Analysis: As described in Section 2.4, the success
or failure of options is determined by a threshold. This threshold controls the
sensitivity whilst reaching and grasping. We have defined six threshold values:
0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 cm. Fig. 3.A shows the results of the average number
of objects correctly placed in the containers for all gaze strategies. A total of 15
trials of 5 minutes each were performed for each strategy. The observation noise
is 1.0, meaning that we use an unmodified version of the observation model,
and the field of view (FoV) is 60�horizontally and 40�vertically (the default in
the simulator), these angles refer to the complete FoV. The error bars represent
the 95% confidence intervals. The results show how as the sensitivity increases
(i.e. when it moves towards 0.5 cm), the performance of all three strategies
decreases, since the task requires more accuracy. Notice that the ratio between
the uninformed strategies (i.e. random and round robin), and the reward based
strategy increases as the sensitivity increases. This means that if we require more
accuracy, we also require an efficient way to allocate gaze. The main reason is
that as the sensitivity increases the robot needs to fixate several times on an
object before reaching and grasping can succeed, something that the reward
based strategy is capable of doing but not the uninformed strategies.

Observation Noise Analysis: For these experiments we added noise to the
observation model to test for robustness. As explained above, the observation
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model is a set of bivariate Gaussian distributions. Noise was added to the distri-
butions by multiplying the two standard deviations that define each distribution
by some factor (1.0, 1.5, 2.0 and 2.5, in this case). Fig. 3.B presents the results
of the average number of objects correctly placed in the containers for all gaze
strategies. A total of 15 trials of 5 minutes each were performed for each strat-
egy. For this set of experiments the reach/grasp sensitivity is 1.0 cm and the
FoV is 60�x40�. As the level of observation noise increases the performance of all
strategies decreases. But notice how the ratio between the uninformed strategies
and the reward based strategy grows as the observation noise increases, showing
that the reward based strategy is much more robust to noise.

Field of View Analysis: For these experiments we vary the horizontal and
vertical angles of the field of view with the values: (60�x40�), (50�x35�), (40�x30�),
(35�x25�), (25�x20�). Fig. 3.C presents the results of the average number of ob-
jects correctly placed in the containers for all gaze strategies. A total of 10 trials
of 5 minutes each were performed for each strategy. For this set of experiments
the reach/grasp sensitivity is 1.0 cm and the observation noise is 1.0. As the
field of view is reduced the performance of all strategies decreases, since less
objects appear in the FoV. Although the reward based strategy outperforms
the other two in all cases, it is interesting to notice that the performance of
the uninformed strategies do not decrease so much. This is because as the FoV
decreases visual search becomes a critical issue for the good performance of the
task. The uninformed strategies are not too affected by this problem because
they move the gaze more around the table, finding new objects indirectly. So,
for instance, if the reward based strategy does not see objects on the left side
of the table, the left arm remains idle. At the moment we have implemented
a heuristic where every time the visual memory is empty the robot performs a
systematic search for objects across the table. However, these results show that
a better visual search strategy is required that can work together with the gaze
allocation model in order to maintain a good performance.

There are two factors that should be taken into account for the analysis of
all the previous results. First, the peripheral information has a major impact
in the performance, especially when the FoV is large. We update all entities
inside the FoV, this means that there might be objects that are never directly
fixated but the robot still succeeds in grasping them, particularly if the sensi-
tivity and/or observation noise decrease. This is why the performance of the
uninformed strategies is so good in some cases. The effect of the peripheral in-
formation is more evident when the reach/grasp sensitivity threshold is between
2.0 to 3.0 cm, where round robin is even slightly better than our model. Second,
the decision time is also an important factor. The reward based strategy takes
in average 0.65 sec to decide where to look, compared to the almost immediate
response of random and round robin. Unfortunately, it is not possible to directly
compare our model to Sprague et al. model [11]. They model tasks with multi-
ple concurrent goals within a single motor system, whereas we model tasks with
multiple motor systems, with a single goal for each motor system.



52 J. Nunez-Varela, B. Ravindran, and J.L. Wyatt

Fig. 3. A. Results for reach/grasp sensitivity analysis, with observation noise = 1.0
and field of view = 60�x40�. B. Results for observation noise analysis, with reach/grasp
sensitivity = 1.0 cm and field of view = 60�x40�. C. Results for field of view analysis
(horizontal x vertical angles), with reach/grasp sensitivity = 1.0 cm and observation
noise = 1.0. The error bars represent the 95% confidence intervals.

4 Conclusions and Future Work

In this paper we have defined a gaze allocation model based on rewards by
posing the problem of where to look as one of maximising task performance by
reducing task relevant uncertainty. In particular, the robot selects the gaze at any
moment that increases task rewards most by reducing task relevant uncertainty
about object location. Our experiments show the behaviour of this reward based
strategy compared with a random and round robin strategies, while varying
three environmental conditions: reach/grasp sensitivity, observation noise, and
the field of view. As the sensitivity and/or noise increases, the performance of
all strategies decreases. If the FoV is reduced, the performance is expected to
decrease, although we have concluded that a visual search mechanism is needed
in order to maintain good performance. The results show that our reward based
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strategy outperforms the random and round robin strategies in all cases, except
when reach/grasp sensitivity = 3.0 cm. This case helped us to identify two
factors that should be taken into account in the analysis of the results, namely
the peripheral information and the decision time. We are currently implementing
a formal method for visual search instead of the current heuristic. Also, we are
developing two more gaze strategies derived from our model, so that we can
compare with other informed strategies, not just uninformed ones. We are also
extending the system to take into account concurrent motor systems, so that the
arms can interact with each other. Finally, another interesting extension would
be to execute physical actions to help the perception process. For instance, if the
object of interest is occluded by another object, it would be better to remove
that object to get a better view.
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Abstract. In conventional “sense-think-act” control architectures, per-
ception is reduced to a passive collection of sensory information, followed
by a mapping onto a prestructured internal world model. For biological
agents, Sensorimotor Contingency Theory (SMCT) posits that percep-
tion is not an isolated processing step, but is constituted by knowing and
exercising the law-like relations between actions and resulting changes
in sensory stimulation. We present a computational model of SMCT
for controlling the behavior of a quadruped robot running on different
terrains. Our experimental study demonstrates that: (i) Sensory-Motor
Contingencies (SMC) provide better discrimination capabilities of en-
vironmental properties than conventional recognition from the sensory
signals alone; (ii) discrimination is further improved by considering the
action context on a longer time scale; (iii) the robot can utilize this
knowledge to adapt its behavior for maximizing its stability.

Keywords: active perception, terrain recognition, object recognition,
developmental robotics, adaptive behavior.

1 Introduction

In the majority of approaches to robot control the extraction and classification
of features from the sensory input is a crucial processing step that has a critical
effect on the behavioral performance of the artificial agent. Ever more complex
methods are employed to detect type and position of objects, to recognize land-
marks and obstacles, or to infer the spatial configuration of the surrounding area.
In mobile robotics, for example, this problem is typically solved by employing
several distal (non-contact) sensors: cameras, laser range finders, and possibly
also radar. Terrain classification into traversable vs. non-traversable is done in
a supervised manner through a set of labeled terrain examples [1]. This is used
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to update an internal representation of the world – a 2D occupancy grid that
in turn is used for planning a collision-free path. Although recent studies sug-
gest that the traditional “sense-think-act” approaches can also be extended to
real-world environments, their task domain is still limited.

The inherent problem of these approaches, in our view, is that they treat
perception as a separate, passive process that is detached from the agent’s ac-
tions. A “sensory snapshot” of the environment is taken that is then mapped
onto the states of an internal world model. However, we believe that perception
in biological agents has a different character. First, it is active. This view can
be traced back to the pragmatic philosopher John Dewey [3], and it was later
picked up by research in active perception (see [4] for an overview). Second, per-
ception occurs through the body. The information that reaches the brain is thus
critically shaped by the active generation of sensory stimuli and by the agent’s
embodiment (this is quantified in [10], for instance). Sensorimotor Contingency
Theory (SMCT)[15,14] as a representative of action-oriented approaches ascribes
sensory awareness and perception to the exercise of knowledge about the lawful
relations between actions and resulting changes in the sensory signals, called
Sensory-Motor Contingencies (SMCs), instead of activating an internal repre-
sentation of the perceived object.

We have recently developed a computational model for SMCs and demon-
strated its application in an object-recognition task [11]. Here we apply the
same model for controlling a robot with a completely different embodiment:
a quadruped “dog” robot. We start by investigating how different gaits and
terrains modulate the sensory information collected by the robot. Next we demon-
strate that taking the action explicitly into account improves the terrain clas-
sification accuracy. Taking the context of longer sensorimotor sequences into
account can further improve the classification performance. Finally, we show
that the robot can successfully deploy its perception of the properties of differ-
ent grounds to select gaits from a given repertoire to maximize its stability.

2 Related Work

The importance of sensorimotor information for object recognition in humans is
evident from studies of neurological disorders [22], even though it is sometimes
assigned only the role of a fall-back system [18]. In a scenario similar to ours,
E.J. Gibson et al. [5] studied how infants perceive the traversability of the envi-
ronment, implicitly taking into account their mode of locomotion – walking or
crawling – and exploiting not only visual but also tactile information. In gen-
eral, perceptual categorization in biological agents is a hard problem [7] resulting
from a complex interplay of the brain, body and environment, and the individual
effects are hard to separate. In this regard, robotics has provided efficient tools
to test these effects independently.

First, Pfeifer and Scheier [16] have demonstrated how sensorimotor coordina-
tion can greatly simplify classification or categorization in a study where mobile
robots distinguish between big and small cylinders by circling around them.
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Whereas this would be very difficult from a static camera picture when the
distance to the object is not known, different angular velocities resulting from
circling around them render the problem much easier. Similar results emerged
from studies in artificial evolution: the fittest agents were those engaging in
sensory-motor coordinated behavior [2].

Second, perception can be facilitated by the morphology of the body and the
sensory apparatus (see examples in [8]). In legged robots that engage in different
terrains, proprioceptive sensors can be particularly useful. In a previous study
in our platform, we have shown how information regarding the robot’s position
and orientation can be extracted [17]. A combination of proprioceptive sensors
has been successfully employed in a terrain recognition task in a hexapod [6].

Third, the action that caused a sensory stimulation can be explicitly taken into
account in a classification task. This has been done in [19], where sensory data
resulting from different actions are clustered separately. In [20], traversability
categories are predefined and the robot learns – for each action separately – a
mapping from initial percepts to these categories.

Many more approaches employ some form of sensorimotor information, but to
our knowledge the approach we will present here is one of the few in that actions
play a constitutive role for the perception of the agent as proposed by SMCT.
Our method allows for a context given by the sequence of previous actions, and
it is inherently multimodal. In addition, we will test the hypothesis that longer
sensorimotor sequences are needed for object categorization (i.e., the ground the
robot is running on in our case). Furthermore, to demonstrate the behavioral
relevance of the classification capabilities for the agent, we present a closed-loop
system that employs the perception of the properties of different grounds to
select gaits from a given repertoire to maximize stability.

3 Methods and Experiments

3.1 Robot and Experimental Setup

The Puppy robot (see Fig. 1 left) has four identical legs driven by position-
controlled servomotors in the hips. It has passive compliant joints at the knees.
We prepared five sets of position control commands for the servomotors, resulting
in five distinct gaits (bound forwards, bound left/right, crawl, trot backwards),
each of them with a periodic motor signal at 1 Hz. Four potentiometers measured
the joint angles on the passive knee joints, and 4 pressure sensors recorded forces
applied to the robot’s feet. Linear accelerations (in X, Y, and Z direction) were
measured by an onboard accelerometer. In total we used 11 sensory channels,
jointly sampled at 50Hz.

To investigate the long-term properties of our approach, we additionally de-
signed a model of Puppy in Webots [21], a physics-based simulator (see Fig. 1
right). For this model we used the same gait repertoire (2 gaits had to be adapted)
plus 4 additional gaits (turn left/right, pace, walk), obtaining a repertoire of nine
gaits. In both cases, gaits (actions) were exercised in 2-second-intervals during
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Fig. 1. Real and simulated robot and the sensor suite. The robot is 20 cm long.
The camera and infrared sensors that are also mounted on the robot were not used in
the experiments.

which the sensory data were collected, forming sensorimotor epochs of 2 seconds.
At the end of each epoch the robot could change the gait.

For the real robot, we prepared a small wall-enclosed arena of 2x1 m. Four dif-
ferent ground substrates covered the ground: plastic foil, cardboard, Styrofoam
and rubber. These materials differed in friction and also in structure (cardboard
and rubber had ridges). In the simulator, the arena was much bigger in size
(25x25 m), so encounters with the walls were much less frequent. The “foil”,
“cardboard”, and “rubber” were flat but differed in Coulomb friction coeffi-
cients (μ = 2, 11, and 20 respectively). To increase the differences between the
substrates in the simulator, the “Styrofoam” ground (μ = 9) was made uneven
with randomly placed smooth bumps of up to 3 cm height.

3.2 Feature Computation

For effective processing of sensorimotor information we compressed the raw data
by extracting some simple features. For the action space we chose a high abstrac-
tion level and used the gait as a single feature. In the sensory space, following
a similar strategy as we used in [17], we took advantage of the periodic nature
of the locomotion and created period-based features as follows: (1) sum of knee
amplitudes of all legs in a period,1 (2) sum of standard deviations of all knee
joints, (3) sum of mean pressures in each foot, (4) sum of standard deviations
of each foot pressure signal, (5-7) mean accelerations along X,Y, and Z-axis re-
spectively, (8-10) standard deviations of the accelerometer signals. Since frequent
gait transitions disrupt the locomotion and impact also the sensory values, only
the last second (i.e. the second locomotion period) from each 2s epoch was used
for the feature computation. Continuous feature values were used for classifica-
tion (Section 4.1); for learning the sensorimotor contingencies and optimizing

1 Note that the knees are passive compliant.
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the behavior using a Markov model (Section 4.2), each feature was quantized to
two levels only.

3.3 A Markov Model of SMCs

We employed the model that we presented in [11,12] with the necessary adap-
tations to the Puppy robot. The basic idea is to consider actions and resulting
changes in sensory signals in an integrated manner, and to keep a record of se-
quences of actions and sensory observations. For each epoch, the action a (the
gait in this case) and a vector of n sensory features observed during execution
of a are concatenated to a single vector ao(t) = [as1s2 . . . sn] that we call an
action-observation pair. Based on the sequence of action-observation tuples that
the robot experiences over time ch = [ao(t), ao(t − 1), . . . ao(t − h)], the model
samples the conditional probability distributions P h(ao(t + 1)|ch(t)), i.e. the
probability of experiencing a particular action-observation pair in the next time
step given a finite history h of previous pairs. In this study we use h = 0 . . . 4.
This probability distribution is what we call the extended Sensori-Motor Con-
tingencies (eSMC) of an agent, and a particular combination of ao(t + 1) and
ch(t) is a specific sample that in addition to its probability of occurrence can
have other properties like a value.

3.4 Value System and Action Selection

We extended the basic idea of SMCT by a value system and an action selection
algorithm. For each epoch t, we define the value2 of the robot’s state by a
weighted sum of three components:

v(t) = −tumbled− 0.4regularity − 0.1speed

We used the signal of the accelerometer in Z direction to determine if the robot
is upright (tumbled = 0) or has tipped over (tumbled = 1). The similarity of the
sensory patterns at the knee joints between the first and second period during
an epoch is reflected in the regularity value (1 for identical patterns during
both periods), and the normalized velocity computed from the robot’s global
coordinates yields the speed value.

We have devised a stochastic action selection algorithm that attempts to op-
timize the temporal average of the internal value. It selects actions that have
shown to activate eSMCs with high internal values, and explores the conse-
quences of new actions when no or only bad prior experiences exist in a given
situation. For each action-observation sequence ch(t) a record of actions exe-
cuted next anext(c

h(t)) and the average value v(anext(c
h(t)) =

∑
n v(t+ 1)/n is

kept, where n is the number that action anext was executed when context ch(t)
was encountered, and v(t+ 1) is the resulting value. Different history lengths h

2 In reinforcement learning terms, this would be called reward - it is the immediate
reward signal associated with each state.
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may yield different value information. Since we consider longer matches between
a particular action-observation sequence and the stored eSMCs as a more accu-
rate estimation of the state, preference is given to the value information from
longer matching histories. When the robot later experiences the same context
again, it knows the average value of the actions it has tried before. Random
values get assigned to the other actions. To avoid a predominantly random ex-
ploration in the initial learning phase when the robot has only little sensorimotor
knowledge, the expected value for the most recently executed action is given by
the internal value of the last epoch. This favors the continuation of successful
actions, and switching to another action otherwise. The action with the highest
expected value â = argmax

a
v(anext(c

h(t)) is then executed with a probability

p(â) = v(â) + 1.

4 Results

4.1 Perception and Discrimination of Different Grounds

In this section, we want to quantitatively assess the effect of considering actions
and the resulting changes in sensory stimulation in an integrated manner. First,
we compare the respective influence of the action (the gait the robot is running
with) and the environment on the sensory data. Second, focusing on the ground
discrimination, we demonstrate how explicitly incorporating the action that has
induced a sensory stimulation improves the environment classification. Finally,
we study the effect of longer sensorimotor sequences, testing our hypothesis that
these are required for object categorization, whereby, from the robot’s perspec-
tive, different grounds correspond to different objects in our scenario.

We have collected data from the real (4 x 20 minutes, i.e. 4 x 600 epochs)
and simulated version of the robot (4 x 4 hours, i.e. 4 x 7200 epochs) running
separately on the different substrates. After every epoch a new action was chosen
at random. If the robot tumbled, it was manually (real robot) or automatically
(simulator) returned to an upright position at the same location and two epochs
following this event were discarded. A reflex for backing up from the walls was
built in. Epoches when the robot was backing up (frequent in the real robot)
were not discarded but entered the regular learning process. A näıve Bayes classi-
fier (diagonal covariance matrix estimate, stratified 10-fold cross-validation) was
trained to classify either the action or the ground substrate given the sensory
observations and actions during the previous epochs.

Ground and Gait Discrimination from Sensory Data Only. To assess
the dependencies of the sensory signals from the gait or ground, respectively, we
collapsed the data across gaits (for assessing ground effects) or across grounds
(for assessing gait effects). In the real Puppy, the classifier determined the correct
gait from the sensory data in 72.4% of the cases, and in 81.6% in the simulation.
In contrast, the ground recognition rates were lower, 67.2% for the real Puppy
and 43.1% in the simulation (see also Fig. 2, top-most bars). This shows that
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gaits and grounds have a similarly strong effect on the sensory patterns in the real
robot. In the simulation the different materials induce similar sensory patterns
and hence, are difficult to distinguish. These figures serve as a baseline when we
consider the classification of joint action and sensor information next.

Ground Discrimination Using Action Information. We separated the
data into sets for each gait and classified the grounds on each set individually.
Afterwards we averaged the ground recognition rate over all gaits. In compar-
ison to the ground recognition using a single classifier, the action-dependent
classification schema reaches an improved accuracy of 75.7% for the real robot.
Considering only the gait yielding the best recognition rate, this value increases
to 80.2%. In the simulation this increase is even more pronounced, from 43.1% to
62.9% and 78.3%, respectively (see Fig. 2, second bars from top). This indicates
that taking the action that caused a sensory observation into account is more
specific for the environmental condition than analyzing the sensory data alone.

Ground Discrimination Using Action Sequences. The sensorimotor pat-
terns induced by a single action may often be similar even if the agent interacts
with different objects. As suggested by SMCT, longer sequences of interaction
with an object may be needed in order for the object to leave a unique “foot-
print”. We confirmed this hypothesis by splitting the data further into sets for
specific sequences of 2 or 3 consecutive actions, and averaging again over all se-
quences. The sensory feature vectors from consecutive epochs were concatenated.
For a sequence of two gaits, the ground classification accuracy rises to 84.7% in
the real robot, and to 70.6% in the simulation. Considering a sequence of 3 gaits
further improves accuracy (see Fig. 2). Here, the gait sequence-specific classifier
with the highest accuracy achieves a 100% recognition rate. This means that the
sensorimotor patterns of this action sequence are apt for a reliable recognition
of the different grounds.

Fig. 2. Comparison of the ground classification accuracies when the action context is
taken into account to different degrees. (left) Real robot. (right) Simulated robot.

4.2 Selecting Gaits to Optimize Behavior

Next we want to demonstrate how the better discrimination capabilities that
result when a longer action context is considered can be used by the robot to
improve its behavior. We let the simulated robot run on 4 different grounds,
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Fig. 3. Value (black curve under the abscissa) and gait selection frequencies (above)
over time on 4 ground substrates (data from simulator). All curves have been smoothed
with a weighted linear least squares and a 2nd degree polynomial model in a moving
window of 5.000 samples. To appreciate the time course of the value function, the
initially low values have been clipped. Note the different scale of the value function for
rough styrofoam.

and used the Markov model (Sec. 3.3) to learn eSMCs for the 9 gaits from
its repertoire. Each eSMC had an associated value given by the value function
described in section 3.4.

With progressing sensorimotor knowledge, the robot preferred to choose gaits
that improved its internal value, providing swift, smooth and stable locomotion.
The plots of the value function in Fig. 3 show that a basic set of gaits that “feel
good” to Puppy (i.e. maximize the value function) is found after only about 1.000
epochs (around 8minutes). On cardboard it takesmore than 2.000 epochs to arrive
at a reasonable gait combination. Afterwards the robot tries to further improve its
behavior by selecting from these comfortable gaits with different probabilities. As
one would expect, the optimal gait sequence depends on the material properties
of the grounds. Except for the plastic foil, Puppy prefers a mixture of walking
back and turning left or right. It is most successful in epochs when it reduces the
frequency of turns in favor of walking back. On plastic foil, the most successful
gait is pacing, while turning left seems to be a less favorable gait. On cardboard,
turning left is selectedmore frequently than turning right, though, while on rubber
both turning actions are chosen with about the same frequency.
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On the rough styrofoam, the value function is dominated by frequent tipping
of the robot. Compared to the three flat grounds the value remains at a low
level, and the separation into favorable and unpleasant gaits is less pronounced.
The order of preference seems to be maintained, though.

The improvement of the internal value is not monotonic, but proceeds in a
rather oscillatory manner. Intervals in which the robot had sufficient sensorimo-
tor knowledge to optimize its behavior alternated with epochs in which it learned
new eSMCs. With the sensorimotor knowledge growing, episodes with optimal
behavior become more frequent and last longer. On cardboard, for example, be-
haviors that maximize the value function are found after about 2·104 epochs, and
the increasing width of the peaks in the value function indicate that the robot
spends more and more time in these optimal behaviors. A similar observation
can be made on plastic foil. On rubber, the knowledge about favorable behavior
around 2 · 104 seems to be lost afterwards, but it can be expected that the ex-
ploration process leads to a further improvement beyond the analyzed interval.
Since the value function was designed to never reach zero, corresponding to a
state of perfect harmony, the robot keeps on exploring the potential to further
improve its fitness.

5 Conclusion and Future Work

In this study we have investigated sensorimotor classification of different sub-
strates in a quadruped robot from the perspective of SMCT. First, we have
demonstrated how sensory stimulation patterns critically depend on the actions
the robot is exercising. If the robot wants to recognize the object or environment
it is interacting with, like the terrain type in our case, the action (gait) that gives
rise to the experienced sensory stimulation needs to be considered. In addition
we have shown that deployment of longer action contexts further improves the
discrimination capabilities. Our approach demonstrates that the robot success-
fully engages the acquired sensorimotor knowledge to optimize its behavior by
selecting appropriate gaits on different ground substrates.

Apart from serving as a model of SMCT, our work has also substantial
application potential. Autonomous, perception-based, off-road navigation is a
hot research topic in mobile robotics (e.g., [9]). Unlike traditional approaches
that rely on passive long-distance perception using high resolution sensors, we
have hinted at the potential of a radically different approach: terrain perception
through active generation of sensory stimulation in a multimodal collection of
low-resolution sensors (for learning eSMCs, 1 bit per sensory channel was used).
Taking action-observation sequences into account and exploiting the robot’s rich
body dynamics to simplify the structure of the sensory information, an advan-
tageous transformation of the input space for classification can be achieved.

In the current study we have employed only proprioceptive and contact sen-
sors. These have proven very effective in ground discrimination and, in con-
junction with a simple one-step prediction of the best next action based on the
current sensorimotor context, the robot could optimize its behavior. However,
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these sensors provide little information about the terrain beyond the robot’s cur-
rent location. Distal sensors (like infrared or vision), on the other hand, could
provide information about future events that could likewise be exploited for
perceptual categorization and further improvement of the behavior. A promis-
ing approach in this respect uses internal simulation in sensorimotor space to
find action sequences that optimize the success of the agent with a longer tem-
poral horizon [13,19]. Alternatively, reinforcement learning algorithms could be
employed. Traversability in general may be a suitable touchstone to compare
different approaches to use sensorimotor information for controlling robots. This
will be the direction of our future work.
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Abstract. The emergence of upright locomotion in infants has been
shown to influence and dramatically reorganize a myriad of behaviors.
The change, however, does not always lead to improvements, but can also
cause temporal instability and lost of integrity in many seemingly unre-
lated systems. Our empirical study showed that the onset of walking is
also related to a disruption in infants’ perceived reachability. This paper
investigates the reorganization of the processes responsible for integra-
tion of different visual depth cues at the onset of walking and how such
recalibration influences reaching behavior. A reward-mediated learning
is employed to mimic the development of absolute distance perception
in infants over a short developmental timescale.

Keywords: development of distance perception, locomotion and cogni-
tive development, depth cue integration, infant reaching.

1 Introduction

When infants begin to self-locomote, they experience an extraordinary psycho-
logical reorganization. The onset of walking triggers staggering changes in per-
ception, spatial cognition, and social and emotional development. It has been
shown that independently walking infants have greater memory flexibility [6],
a better understanding of object permanence [2], and enhanced emotional ex-
pressions [3]. Independent walkers spend significantly more time interacting with
toys and with their caregivers, and also make more vocalizations and more di-
rected gestures compared to non-walkers [7]. Although the onset of walking leads
to rapid improvements in many aspects, it also contributes to momentary insta-
bility and lost of integrity in many seemingly unrelated systems. Learning to
walk affects infants’ reaching behavior, as some infants return to two-handed
reaching behavior [8], and also affects infants’ sitting posture by increasing the
magnitude of distance-related sway properties [5].

Our empirical studies showed that 12-month-old infants reach more often
than 9-month-old infants for distant – unreachable – objects [9], and that this
transient disruption in perceived reachability is related to infants’ walking abil-
ity [10]. We suggest that the processes responsible for integration of different

T. Ziemke, C. Balkenius, and J. Hallam (Eds.): SAB 2012, LNAI 7426, pp. 65–74, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



66 B.J. Grzyb, A.P. del Pobil, and L.B. Smith

visual depth cues reorganize themselves at the onset of walking so as to incor-
porate information from self-motion-based depth cues.

Reward-mediated learning has been shown to successfully mimic the develop-
ment of near-optimal integration of visual and auditory cues in children [12,16].
Following this approach, we simulate the developmental process of distance per-
ception for action in older infants. Our results show an increase in near-far space
confusions after the recalibration of distance information in accordance with
new motoric factors, providing further support for our hypothesis that recali-
bration of distance perception can cause distance errors seen in infants during
the transition period to walking.

The paper is structured as follows. The next section provides a brief overview
of our empirical studies with infants, which is followed by the discussion of the
influence of the onset of locomotion on infants’ distance perception. Section 4
provides the details of our model and results of computational simulation. We
conclude the paper with the discussion of results and future work.

2 Observation Data

The main objective of our experiments was to see if, and if so, how infants’
knowledge about their own body capabilities changes over a relatively short
developmental timescale. Reaching provides a good measure of infants’ body
awareness, since to sucessfully reach for an object infants need to know not only
the distance to the object, but also how far they can reach and lean forward
without losing balance. In total, 8 9-month-old and 8 12-month-old infants par-
ticipated in our study.

The procedure of the experiment was as follows. The infant was seated in a
specially adapted car seat with the seatbelts fastened for security reasons. In
order to keep her engaged and attentive during the entire experimental session,
a colorful stimuli display was placed in front of her. The experimenter was sitting
behind the stimuli display and presented a ball on a wooden dowel through the
opening of the frame. The sequence of trials consisted of 9 distances (from 30 cm
up to 70 cm) and begun and ended always with trials at close distances to keep
the infant motivated. The order of distances, apart from the first two and the
last two trials in the sequence was chosen pseudo-randomly. The sequence of
distances was repeated up to three times. There was no explicit reward provided
to the infant after the trial for any tested distance. This helped us to avoid
situations where the infant could learn to make reaching movements just to
communicate her interest in obtaining a reward. The entire experimental session
was recorded with two cameras. These recordings were subsequentially viewed
and infants’ behavior scored.

The results of our first study revealed that 12-month-old infants, but not
9-month-old, continually reached for the unreachable objects. That was quite
surprising as typically we would expect older infants to posses a better knowledge
than younger ones. Since 12 months is the age around when the transition to
walking occurs, we extended our experiment and recruited more infants with
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(b) Walkers with help
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(c) Independent walkers

Fig. 1. Mean percentage of reaches for 12-month-old infants

regard to their walking abilities. Our final sample was composed of 24 infants
categorized into 3 equal-number groups, that is non-walkers, walkers with help,
and independent walkers. Fig. 1 shows the mean percentage of reaches to objects
placed at various distances. As is clearly seen, walkers (with and without help)
reached more for distant distances than non-walkers. It is worth noting here that
only one child was able to touch the ball at 60 cm distance, and none of these
babies was able to make contact at 70 cm.

3 The Onset of Locomotion and Distance Perception

Infants are sensitive to a number of sources of depth information very early
in life [13]. Most of the typical accounts, however, focus on information that
specify only relative depth relations. In order to perceive distance veridically,
however, infants need to perceive absolute distance information [4]. For example,
infants need to know exactly how far to stretch an arm to reach for an object.
Therefore, for absolute distance perception, various sources of relative depth
information must be calibrated by one or another type of metric information.
Motoric factors, and particularily locomotion experience, may be one type of
such metric information.

The prelocomotor infants’ visual system can detect the information for veridi-
cal distance perception, but only within a certain range [4]. At this stage of de-
velopment, infants mainly use static depth cues to direct their gaze and reaching
movements to nearby stimuli. Herein, as static depth cues we assume any depth
cue that does not require any head or body motion. Although the effectiveness
of these cues is limited to near space, such a solution seems to be optimal as
infants’ attention and exploration is also confined to the reachable space. Once
infants are able to walk, other depth-specifying cues have to be used in order to
correctly estimate distance to far objects. Locomotion, and especially walking,
helps infants to calibrate distance information by drawing attention to previously
unattended depth-specifying information. In other words, immobile infants see
the world as “reachers’, their attention and exploration is constrained to near
space, and their actions are driven mainly by static depth cues. While being
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able to locomote they see the world as “walkers’, their attention and exploration
is shifted from near to far space. The processes that integrate different depth
cues begin to reorganize to incorporate also depth information from self-motion-
based cues, such as motion parallax or motion perspective, and to scale the
distance according to new motoric factors. We propose that such a change in dis-
tance perception provokes the momentary disruption in perceived reachability in
infants.

Attention to environment was suggested to be one of the critical mechanisms
by which developmental changes occur [4]. The ability to self-locomote lures at-
tention to far space, especially to the location toward which the infant is moving.
Such a reallocation of attention from near to far space modifies the use of various
sources of depth information, which are related to accurate distance perception.
It also leads to a change in the use of monocular static information specifying
depth relations. Improved distance perception gradually leads to marked im-
provements in size and shape constancy at relatively large distances from the
infant.

Similarly to attention, coupling between visual and vestibular information
may also be considered an important parameter underlying the development of
absolute distance perception. For successfully walking to a target, vestibular and
peripheral optic flow information must be integrated with elaborate co-ordinated
leg movements, together with mechanisms for analysing depth and distance in
a central field, whereas for reaching and grasping the peripheral optic flow and
vestibular information can be largely ignored while using depth and distance
information in nearby space [1]. Vestibular information plays an important role
in the utilization of motion parallax. As visual-vestibular coupling improves fol-
lowing the onset of locomotion, infants attend more to motion parallax. Thus,
locomotor infants can become more aware than prelocomotors of the discrep-
ancy between the depth relations specified by monocular static information and
those specified by motion parallax. This explains a reduction in the tendency to
reach for an apparently nearer of two objects on the basis of monocular static
information in self-locomoting infants [4].

4 Methods

4.1 Task Setup

In our task each trial consists of the presentation of visual stimuli at various
distances. Static depth estimation methods, i.e. stereopsis and familiar size, and
self-motion-based depth cues, i.e. motion parallax, are used to calculate the dis-
tance. We assume that static depth estimation functions give accurate responses
within reachable space, and their effectiveness worsen for distances outside of
this range. Additionally, we assume that motion parallax always gives accurate
distance estimation. Subsequently, a white noise with the standard error devi-
ation σ = 2 and σ = 3 is added for the static depth cues function and for the
self-motion-based cue function, respectively.
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Fig. 2. General scheme of the reward-based learning model. Note that this paper dis-
cusses only the simulation of the model with no actual feedback from the environment.
The model, however, is designed to be implemented on a NAO humanoid robot.

4.2 Reward-Mediated Learning

A three-layer neural network (see Fig. 2) is used to approximate the state-action
mapping function. The input layer consists of i = c ∗ n neurons that encode
the estimates of c different depth cues covering the n discretized distance units.
Each input neuron has a Gaussian receptive field, centered on position zc,n. The
variance of these Gaussian receptive fields is in the order of the noise of the
input stimuli. The input neurons xi are all-to-all connected with weights vi,j to
j neurons in the hidden layer.

A sigmoidal transfer function on the sum of the weighted inputs gives the
outputs yj of the hidden neurons:

yj =
1

1 + e

−
∑
i

vi,jxi
(1)

The hidden neurons are fully connected to output neurons k with weights wj,k.
All weights are drawn from uniform distributions, vi,j between −0.1 and 0.1,
and wj,k between −1 and 1.

Each output unit represents an action. Two types of actions, that is reaching
kr and walking kw, are possible. The action space is discretized with the binning
size equal to 1 cm for reaching and 3 cm for walking action. The activation of
the output neurons zk is given by the weighted sum of the hidden layer activity,
representing an approximation of the appropriate Q-value.

Based on the network’s outputs, one action is chosen according to the softmax
action selection rule [14]:

Pt(k) =
eQt(k)/τ∑n
b=1 e

Qt(b)/τ
(2)
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where Pt(k) is the probability of selecting an action k, Qt(k) is a value function
for an action k, and τ is a positive parameter called temperature that controls
the stochasticity of a decision. A high value of τ allows for more explorative
behavior, whereas a low value of τ favors more exploitative behavior.

After performing the selected action k̂ the true reward r(k̂) is provided. The

reward is maximal when k̂ equals the true object position kt, decaying quadrat-
ically with increasing distance within a surrounding area with radius ρ (in our
case ρ = 4) and zero otherwise.

r(k̂|X) = max(0, (ρ− |k̂ − kt|))2 (3)

To minimize the error between the actual and expected reward, we make use of
the gradient descent method, which is widely used for function approximation,
and is particularly well suited for reinforcement learning [14].

vi,j(t+ 1) = vi,j(t)− ε(rk̂ − zk̂)(−wj,k̂)yj(1− yj)xi (4)

wj,k̂(t+ 1) = wj,k̂(t)− ε(rk̂ − zk̂)(−yj) (5)

It is worth noting, that in the case of the update of weights wj,k only the output

weights connected to the winning output unit k̂ are updated. In our experiments,
the learning rate ε, decreases exponentially, according to the formula ε(t) =

ε0
ceil( t

vε
)
, where ε0 = 0.05, and vε = 100000.

4.3 Learning Sequence

As our goal is to mimic a developmental path for the integration of static and
self-motion-based depth cues over a short developmental timescale, initially the
neural network is trained only with static depth cues (i.e. stereopsis and familiar
size). Additionally, the input space is constrained to the reachable distances, the
infant’s attention is fixed mainly on a near space. The action space is limited to
reaching actions, that is only selection of reaching action kr is possible. We start
with a high temperature parameter τ = τ0, so that the selection of action is only
weakly influenced by the initial reward expectations. In this period, τ decreases

exponentially with time τ(t) = τ
( vτ−t

vτ
)

0 , where τ0 = 10 and vτ = 50000. The
network is trained during 10000 time steps.

The onset of walking is simulated by providing the network with additional
depth cues (i.e. motion parralax) and enabling the selection of walking action
kw. We test here two different scenarios. In the first one, we reset the tempera-
ture parameter τ , so that the selection of action is only weakly influenced by the
initial reward expectations. In the other scenario, we left the parameter τ un-
changed after learning the reaching space, so the selection of action was strongly
influenced by the initial reward expectations. We compare the results obtained
in these different scenarios in the next section.
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(b) High exploration, high τ

Fig. 3. Fraction of near-far confusions (mean over 10 time steps and 100 trained net-
works with different initializations)

5 Results

In order to compare the results of our simulation with the results obtained from
our empirical study with infants, we calculated a number of near-far confusions
during the learning process of far space. Herein, we defined the number of near-
far confusions as a number of incorrect categorizations of far distance as near
and vice versa. Fig. 3 presents mean values of near-far confusions over 100 trials
with different network initializations (randomized weights) after the onset of
walking for different testing scenarios (i.e. high and low level of exploration). As
is noticeable, the number of near-far confusions at the begining is high in both
cases. However, in the case of high value of temperature τ , the period for near-far
confusions is prolonged. Although the network with lower exploration gives less
near-far confusions, and learns far space representation much faster, its estimates
are not as accurate as in the case of the network with higher exploration. The
mean errors over 10 trials and over 100 trained networks are shown in Fig. 4. It
is worth mentioning that the accuracy of the integration of various depth cues is
affected by the binning size, which in our case was 1 cm for reaching and 3 cm
for walking action.

Fig. 5 presents responses of neurons in the hidden layer of the network after
learning of near and far space, respectively. Initially, the action space was limited
and only half of the output neurons was trained. However, no explicit constraints
were put on the hidden neurons. As it can be seen in Fig. 5a only approximatelly
half of neurons in the hidden layer are used for encoding the input space. This
behavior emerges during the training process. Comparing the activities of these
neurons before and after learning of far space (the left side of the figures), it
can be noticeable, that the activity does not change much during the learning
process. Moreover, these neurons seem to be ordered in the order of increasing
distance. That suggests that near-far confusions result from the reorganization
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Fig. 5. Responses of the neurons in the hidden layer of the network

of the network connections from the hidden to the output layer, which in turn
may be thought of as the re-calibration of distance according to the motoric
factors related to reaching and walking actions.

6 Discussion and Future Work

Our empirical findings that new walkers reach for unreachable objects provides
further evidence that development is not necessarily continuous, and that once
established skills are not invulnerable to changes. Our study shows that percep-
tion and cognition may not always guide action appropriately. The change in the
perception of distance was suggested to contribute to the occurence of distance
errors in infants. More specifically, on one hand a shift of attention from near
to far space causes a reorganization of various visual depth-specifying cues, and
on the other, walking promotes re-calibration of distance perception according
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to new motoric metrics. This hypothesis was tested with the reward-mediated
learning model. The results of simulations showed an increase in the near-far
confusions during the learning of far space representation, similarily as in the
case of recent walkers. Thus, the perception of space, not only far space, but also
near space, changes with the onset of locomotion. The newly developing repre-
sentation of far space is being combined with the representation of near space
to constitute a coherent space representation. This new space representation,
however, arises out of high behavioral instability – a notion that is compatible
with dynamical systems theory [15].

The results of simulations raise another important issue that is the role of
commiting the errors during the process of learning. The network in the first
scenario, where the level of exploration was kept low, exhibited a very short
period of near-far confusions and was able to learn much faster the far space
representation. The estimates of distance given by the network, however, were
quite variable and less precise compared to the results given by the network
in the second scenario, where the level of exploration was high at the begining
of learning. Although such a network showed an extended period of near-far
confusions, and learned much slower, it gave much better overall results. Sim-
ilar relation between exploration and learning can be seen in children learning
prospective control of walking. While walking on different grounds, children usu-
ally fall many times. Despite many failures, however, they intend to repeat the
same action. Such repetitions may be helpful in learning of a causal relationship
between falling and different predictive cues [11]. Similarly, in our case many dif-
ferent repetitions (and errors) are needed to efficiently integrate various visual
depth-specifying cues and to calibrate space in reference to new motor metrics.

As in this model we used idealized input data, the most straightforward future
extension of the proposed work is to implement the model on a real humanoid
robot. Herein, our goal is twofold. The first goal is to verify our hypothesis with
real visual data, both static- and self-motion-based depth cues. On the other
hand, such a model for depth cue integration will provide a robot with a a
robust and accurate distance perception for both reaching and walking actions.
The final goal of our work is to provide the robot with a coherent near and
far space representation which should be built in a dynamical way, through the
active interaction with the environment in a similar way as infants do.

7 Conclusions

This paper discussed the phenomenon of distance errors seen in infants during
the transition period to walking. We proposed that these errors result from the
changes in infants’ distance perception. More specifically, the processes respon-
sible for integration of various visual depth cues reorganize so as to incorporate
previously unattended depth-specifying cues and to re-calibrate distance with
the reference to new motoric factors. The results of our simulations showed an
increase in near-far confusions providing further support for our hypothesis.
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Abstract. Behavioral studies on the activation of affordances by un-
derstanding observation and action sentences on graspable objects show
a direct relationship between the canonical orientation of graspable ob-
jects, their dimension and the kind of grip required by those objects
to be grasped. The present work introduces the concepts of Dynamic
Field Theory for modeling the results observed in the behavioral studies
previously mentioned. The model was not only able to replicate qualita-
tively similar results regarding reaction times, but also the identification
of same versus different object and the distinction between observable
versus action sentences. The model shows the potential of dynamic field
theory for the design and implementation of brain inspired cognitive
systems.

Keywords: Neural dynamics, Dynamic Field Theory, affordances,
modelling.

1 Introduction

1.1 Facilitation, Interference and Compatibility Effects

One of the tenets of embodied cognitive science [1] is that sensorimotor aspects
of the brain are not merely purveyor or receiver of data but are actively involved
in cognition. One of the psychological observations that are thought to be a
result of such a direct involvement are for instance facilitation or interference
effects in language [2]. For example in a study [3] participants were given a
sentence describing the execution of an action and had to decide whether the
verb was abstract or concrete, responding with either the hand or the foot if
a presented verb was concrete (and refraining from responding otherwise). It
was found that response times were slower if participants had to respond with
the same effector necessary for executing the action described by the sentence
compared to responding with the other effector. Other studies found facilitatory
effects, e.g. [4,5]. A more thorough discussion, including a model unifying the
apparent conflicting observations, can be found in [2].
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Compatibility effects are a related phenomenon in which response times in
(for instance) classification tasks are modulated by a variable that has no direct
effect on the task itself. In one study [6], participants had to classify objects as
upright or upside down by pressing left and right keys on a keyboard. Response
times were found to be faster if the handle of the object was on the same side as
the correct response key than in the incongruent case, suggesting that the handle
activated parameters related to reaching towards it even though it was irrelevant
to the task. The issue is discussed in more detail, along with reviews of other
studies and models pertaining to affordance-related facilitation, interference or
compatibility effects in [7].

1.2 Understanding Affordance Processing for Artificial Cognitive
Systems

Effects such as the ones discussed in the previous section are valuable insights
since they shed some light on the processing in human cognition. If one sub-
scribes to the idea that “intelligent” artificial cognitive systems should mimic
corresponding human capabilities, then it is equally important to understand
the precise cognitive mechanics underlying these capabilities. Psychological ef-
fects such as the ones discussed above impose constraints onto the system since
they illustrate that apparently separate systems nonetheless appear to be modu-
lated by each other. It is therefore a worthwhile activity to attempt the creation
of computational models aiming at identifying the mechanisms which could give
rise to facilitation, interference or compatibility effects, [2].

In the present paper, we address a multi-modal effect in affordance processing
[8]. Participants were shown a sentence containing either an action (e.g. grasp)
or observation (e.g. look at) verb followed by an object. They then had to decide
whether or not a subsequent picture showed the object from the sentence. Results
showed that response times were affected by verb type, object orientation in the
picture and grip type required to grasp the object. Later work (Marino et al, in
preparation) further shows that response times are affected by whether or not
the size of the displayed object matches its usual size. It therefore appears that
language comprehension forms a “motor prototype” of an object based on its
affordances which is then used in the image identification task.

Affordance processing is, in general terms, highly relevant for artificial cogni-
tive systems which need to interact robustly and autonomously in the real world
(for instance robots, [9,10]). The experiment by [8] is of particular interest since it
combines linguistic comprehension and visual processing, both required features
for future robots. Thework presented here is therefore a first step into the direction
of general multimodal affordance processing models that address effects such as
those discussed previously. Such models are, so far, rather scarce with most efforts
focussed instead on affordance extraction (e.g. [11], see [12,7] for recent reviews).
An exception is the model TRoPICALS [12], which specifically addresses compati-
bility effects in affordance processing. The presentmodel is, in comparison, a more
focussed model addressing more specific issue but that can, due to the modelling
technique used, be extended in the future to integrate more effects.
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1.3 Dynamic Field Theory

Dynamic field theory (DFT) [13] is a mathematical framework based on the con-
cepts of dynamical systems and inspired by neurophysiology [14]. In a nutshell,
fields represent populations of neurons and their activations follow continuous
responses to external stimuli.

Fields are used to represent perceptual features, motion or cognitive decisions,
e.g. position, orientation, color, speed. The dynamics of these fields allow the
creation of peaks which are the units of representation in DFT [13]. Different
configurations of one or more fields are possible and the designer is responsible for
creating a proper connectivity and tuning of parameters. The result of activating
this type of network is a continuously adaptive system that responds dynamically
to any change coming from external stimuli. Dynamic fields have been previously
used in affordance processing models: [15] presents an affordance competition
hypothesis based on dynamic fields while the TRoPICALS model [12] uses them
in some of its subsystems.

2 The Model

In the experiments studied in this work ([8], Marino et al. in preparation), stimuli
are presented in two stages. First, subjects read a sentence on screen which
contains a verb and the name of an object onto which the action represented by
the verb will be performed. Second, the screen shows an image of an object in
one of four combinations of size and orientation:

– RC: Real size and canonical orientation.
– RN: Real size and non-canonical orientation.
– SC: Scaled size and canonical orientation.
– SN: Scaled size and non-canonical orientation.

The real and scaled versions of an object represent a normal/average size of
an object and its over-/under-sized version of it on screen respectively. The
canonical orientation is that at which the presented object is found in normal
situations, whereas the non-canonical orientation shows the object in an “upside-
down” configuration.

The model assumes that a learning process on different objects has been
performed throughout a life-time of experiences. Those previous experiences have
shaped a long-term memory space composed of features such as size, orientation,
color, weight, odor, etc. For the present study, the display gives us information
about size, orientation and color which are the features used in this model.

These features are represented as follows: the size of an object in the screen
is measured as the number of pixels it occupies; the orientation of an object is
measured as the angle of its main axis with respect to the horizontal; finally,
color is used as the third visual dimension in order to disambiguate between
objects of similar size and orientation, e.g. an apple and an orange.
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Groups of three two-dimensional fields are necessary for modelling the re-
sults of these experiments: size-orientation, size-color, and color-orientation. Be-
sides the three two-dimensional fields containing the previous experiences with
specific objects, long-term memory (LTM), it is necessary to work with three
two-dimensional fields that will integrate the activity coming from LTM and
the external stimuli (verbal and visual), see Fig. 1. In contrast to LTM, this
new group of dynamic fields, which from now on will be called working memory
(WM), contains interactions within each field and receives inputs from LTM and
external stimuli.

Verbal Stimulus C

S O
LOOK AT GRASP

S1

Visual
Stimulus C

S O

S2

Long Term
Memory C

S O
LTM

Parietal Cortex

Out

C

S O

WM

x
PEAK

DETECT.
@ VERBAL

TARGET

PEAK
DETECT.

@ VISUAL
TARGET

Σ Feature
extraction

Feature
extraction

Size

Size

Fig. 1. Dynamic field model of affordances activated by verbal and visual stimuli

The dynamics of WM are tuned to work around a self-sustained attraction
point. This means that once the verbal command has dissapeared, a short term
memory persists, holding a peak above threshold level. Once a peak at the field
site of the verbal stimulus is detected in WM, a constant feedback is given to
LTM at the site of the current object. This follows the assumption that our
minds give an extra “focus” to those objects that have called our attention,
momentarily inhibiting other memories.

A visual stimulus adds new activity to the dynamics of a stable peak in WM.
Depending on the position of this new building peak, the visual stimulus will
either compete for the creation of a new peak or help mantain the previous peak.
Detecting the position of this new peak in WM with respect to the position of
the visual stimulus gives enough information to decide weather or not an object
belongs to one of the four possibilities studied here, i.e. RC, RN, SC, SN.

Finally, the size dimension is used for measuring both the time needed to
take a decision. A one-dimensional field is used to integrate both the verbal
and visual stimuli and the activity from WM. This new field, labelled as “Out”,
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contains also internal interactions and take as external inputs the extracted size
dimensions of both the verbal and the visual stimuli. The position and amplitude
of this new peak helps us decide weather the system goes for a precision or a
power grip and also if the verbal object is the same as the visual object.

The mathematical formulation of the different blocks of the previous model
is described at the in end of this document in Appendix A.

3 Results

Plots for two-dimensional fields versus their activations make use of 3 dimensions,
Fig. 2. Groups of 3 countour plots arranged in a cartesian space will be used
throughout this section to show the dynamics of WM.
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Fig. 2. Example of a countour plot (white plane) from the activation of a two-
dimensional field. The zero threshold (green plane) is shown as a reference for the
beginning of local excitation of peaks in the activity fields (blue plane).

As mentioned in the previous section, the model assumes that a long term
memory module has collected the activity and associations of different features
from different objects. In this example we have created a long term memory
space containing two objects each one following a gaussian distribution in all
dimensions, Fig. 3. The first object (Obj.A) was set to have an average size of
25 units, and the second (Obj.B) was set to 80 units; and a similar variance of 10
units. The hue component of their colors was used to set Obj.A at 15 and Obj.B
at 85, and variance 10. Finally, it is assumed that the orientation of the objects
also follows a Gaussian distribution, centred around the orientation where the
object has been experienced most; for Obj.A it was set to 45 and for Obj.B at 30.
The variance for this dimension was set to a large value (30 units) to simulate the
multiple orientations that an object can be found in but considering a preferred
orientation. All memories were normalized to a maximum amplitude of 1 unit.
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Fig. 3. Long term memory (LTM).
Two different objects are defined
within a 3D space at coordi-
nates: Obj.A(S:25,O:45,C:15) and
Obj.B(S:80,O:30,C:85).
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Fig. 4. Verbal stimulus. A peak
is created at the location of
Obj.A(S:25,O:45,C:15). The peak
reaches a stable state over the zero
threshold in all 2D fields.

The verbal stimulus was simulated as a gaussian peak with amplitude of 4
units, and variance of 5 units in all dimensions. The position of Obj.A, i.e. [45
25 15], in the three-dimensional space, i.e. [Size Orientation Color], was chosen
to be the configuration for the verbal stimulus, Fig. 4. This stimulus was added
for 100 timesteps to WM, enough time for the peak to reach a stable state.

Each of the cases studied in this experiment, i.e. RC, RN, SC, and SN, refers to
a specific visual stimulus located in a different position of the three-dimensional
space. Figure 5 collects the activation of all three fields after reaching a stable
state, i.e. a peak has reached it’s maximum. For this case, the peaks are located
in the same or slightly close coordinates of the verbal stimulus since they are the
most probable place where the long term memory has been shaped for Obj.A.

A real-noncanonical stimulus is simulated as a Gaussian input located at
the same size and color coordinates but at a different orientation, Fig 6. The
location of the orientation stimuli was set to 90 degrees more than the canonical
orientation. In a real environment, having a 180 degrees difference between the
canonical and non-canonical orientations would not make much difference in this
model since both the 90 and the 180 distances are not within the variance width
of the original memory.

The scaled-canonical and scaled-noncanonical stimuli follow the same con-
figuration as the previous two cases but with a different position in the size
dimension, Fig. 7, 8.

The model also considers the case in which the object presented in the visual
stimulus is different from the one presented in the verbal stimulus, Fig 9. The
peak created by the verbal stimulus is stable enough to keep its activity above
the zero threshold when a new input, i.e. the visual stimulus, is now part of the
dynamics.
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Fig. 5. A real-canonical (S:25,O:45,
C:15) visual stimulus is presented, the
previous peak created by the verbal
stimulus remains active
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Fig. 6. A real-noncanonical (S:25,
O:135,C:15) visual stimulus is pre-
sented, the previous peak (verbal stimu-
lus) disappears and a new peak emerges
at the location of the visual stimulus
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Fig. 7. A scaled-canonical (S:35,O:45,
C:15) visual stimulus is presented, the
previous peak (verbal stimulus) moves
to the location of the visual stimulus
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Fig. 8. A scaled-noncanonical (S:35,
O:135,C:15) visual stimulus is pre-
sented, the previous peak (verbal stimu-
lus) disappears and a new peak emerges
at the location of the visual stimulus

Finally, Fig. 10 shows the reaction times of the proposed model for all cases
and for two different verbs, ‘look at” and ‘grasp”. As with the human trials, a set
of 24 subjects for each verb, i.e. ‘look at” and “grasp”, was simulated by adding
spatially correlated noise. Compared to the reaction times in human experiments
the current model performs fairly well. The only case where a substantial differ-
ence can be seen is for the real-canonical case. The model shows a faster response
to this kind of stimulus compared to human reaction times.
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Fig. 9. Obj.B (S:80,O:30,C:85) pre-
sented as visual stimulus. The previous
peak (verbal stimulus) remains, the new
input is not strong enough to overcome
the stabilized peak in working memory.
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Fig. 10. Reaction times for size-
orientation combinations of visual stim-
uli when using “look at” and “grasp”
verbs

4 Discussion

The simulation trials presented here generated close results to human trials.
The only case where it is possible to notice a significant difference is for the
real-canonical case in both verbs. The model generates faster responses which,
in other circumstances, could be considered as intuitive. Human trials show only
a significant increase on reaction times when a “grasp” command is issued and
a visual stimulus is presented with scaled-noncanonical object. This effect was
successfully captured by the proposed model. Moreover, the model was able to
detect the inconsistency of a different visual stimulus given a verbal command
on a different object. A one-dimensional field was created as the final block that
integrates the activity of the size dimension in all other fields. The advantage
of using the size dimension is that this feature is directly proportional to the
aperture of a gripper, thus making the whole sensori-motor loop a dynamic
process. Last, but not least, the model was designed to autonomously decide
weather or not to execute a motor action depending on the command that started
the trial.

The integration of sensor modalities, and different features within each modal-
ity, in order to make sense of events around us seems to be a key point in the
development of human cognition. Both short and long term memories play an
important role in the emergence of affordances which, in the end could be seen as
the desired outcome of this integration process. Therefore, finding a good model
that offers scalability for the integration of different types of information is of
utmost importance in the study of cognitive robotics.

The current work proposes a model of affordances activated by nouns of gras-
pable objects. The model is based solely on the concepts of dynamic field theory.
The use of dynamic fields allows us to integrate in a single framework interesting
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properties like the creation of short and long term memories, decision making
processes, competition and collaboration dynamics, etc.

Dynamic field theory offers not only one-dimensional fields as units or mod-
ules of representation for physical and abstract dimensions. The possibility of
having zero-dimensional fields, i.e. a single dynamic neuron, or n-dimensional
fields each one representing low- or high-level features makes of this mathemat-
ical framework a powerful element to be considered in the creation of cognitive
architectures.

5 Conclusions

A three-dimensional space was designed and used as a way of simulate affor-
dances. Three different physical dimensions represent features of objects asso-
ciated dynamically through two-dimensional fields. Size and orientation were
the two main features used in the human trials; color was chosen as the third
feature in order to disambiguate between objects. We argue that this 3D space
is the simplest example of what could be seen as an hyper-space of associations
between a large number of sensor modalities and physical properties.

The model presented here can be adapted to include other physical properties
and simulate the responses from subjects of different ages. Future work includes
the creation of long-term memories to replace the simulated objects used in this
first design.
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Appendix

Verbal and visual stimuli follow a Gaussian distribution with gain Ci = 4 and
standard deviation σi = 5, Eq. 1. Each memory included in LTM follows also a
Gaussian distribution as in Eq. 1 but with Ci = 1 and σO = 30, σS = 10, σC = 5.

Si(x, y) = Ci exp

[
−(x− x′i, y − y′i)

2

2σ2
Si

]
; x, y ∈ {Orientation, Size, Color} (1)

Field “Out” is integrated over a single dimension (Size), Eq. 2a. Verbal and
visual stimuli add their Size component to this field as an external input (S ) if
and only if a peak is detected in all 3 fields of WM at the same time.

τu̇(x, t) = −u(x, t) + h+ S(x, t) +

∫
w(x − x′)f [u(x′, t)]dx′ (2a)

w(x − x′) = Cexc exp

[
−(x− x′)2

2σ2
exc

]
− Cinh exp

[
−(x− x′)2

2σ2
inh

]
− ginh (2b)

Where h = −3 (look-at) and h = −2 (grasp), f(u) represents a sigmoidal func-
tion with steepness β = 4, and w(x) a mexican-hat kernel (Eq. 2b) with zero-
mean, gains Cexc = 12, Cinh = 7, σexc = 4, σinh = 10 and ginh = 0.1.

All three WM fields have similar dynamics as Eq. 2a but in these cases the
integration is over two dimensions instead of one, Eq 3.

τu̇(x, y, t) =− u(x, y, t) + h+ S(x, y, t)

+

∫ ∫
w(x − x′, y − y′)f [u(x′, y′, t)]dx′dy′

(3)

Where the resting level h = −4 and the kernel w(x, y) used the same values as
the 1D case with the exception of the global inhibition which was ginh = 0.025
(look-at) and ginh = 0.04 (grasp).



A Bio-inspired Model Reliably Predicts
the Collision of Approaching Objects

under Different Light Conditions
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Abstract. In this paper, we present a model of the Lobula Giant Move-
ment Detector, which is a part of a visual pathway responsible for trig-
gering collision avoidance manouvres in the locust Locusta Migratoria.
Also based on locust neural adaptation to transitions in light intensities,
the model proposed here integrates a mechanism for light adaptation.
The tests performed with the model demonstrate its ability to repro-
duce several characteristic properties of the LGMD response, including
the firing rate profile for different visual stimuli. Additionally, results ob-
tained for different light conditions show that the increase in the LGMD
model efficiency is provided by the new mechanism of light adaptation.
In here, the LGMD is presented as an ideal model to develop sensors for
automatic collision detection.

Keywords: Bio-inspired model, Lobula Giant Movement Detector neu-
ron, artificial neural networks, collision avoidance, spatiotemporal
summation.

1 Introduction

Real-time collision detection in dynamic scenarios is a hard task if the algo-
rithms used are based on conventional techniques of computer vision, since these
are computationally complex and, consequently, time-consuming. On the other
hand, bio-inspired visual sensors are suitable candidates for mobile robot navi-
gation in unknown environments, due to their computational simplicity. In fact,
some animals have been pressured by natural selection to obtain very complex
behaviours, while maintaining a relatively simple nervous system. Insects are
a perfect example. One advantage of studying the nervous system of insects is
based on the fact that they have fewer neurons than other animals such as ver-
tebrates. In addition, the properties of a single identified neuron can often yield
general properties and mechanisms that are applicable to other systems [1].

One insect in particular, the locust, has evolved a dedicated and well-studied
collision avoidance neural pathway that is responsible for generating collision
avoidance behaviours to avoid predation and continual in-flight collisions with
conspecifics [2]. The visual system of the locust is paramount to its survival, and
acts as a great model system for study.

T. Ziemke, C. Balkenius, and J. Hallam (Eds.): SAB 2012, LNAI 7426, pp. 85–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The Locusta Migratoria possess apposition compound eyes, highly tuned to
activity during day light. However, it is known that locusts perform migration
flights at low level intensities [3]. After a deep research it was found that, in envi-
ronments with low level intensities, locusts improve the photon capture neurally
by summing the outputs of neighbouring visual channels (spatial summation)
and/or by increasing the length of time a sample of photons is counted by the
compound eye (temporal summation). So, using spatiotemporal summation, lo-
custs are able to extend their vision into dim light [4].

It is also known that locusts have a large neuron in their brain called the
Lobula Giant Movement Detector (LGMD), that is tightly tuned to respond
to objects approaching on a direct collision course [5,6,7]. On the other hand,
non-colliding objects do not show the same increase in excitation and, by this
reason, are unlikely to trigger avoidance reactions [2,8,9,10,11]. LGMD spikes are
transferred to the Descending Contralateral Movement Detector (DCMD) which,
subsequently, is connected to flight interneurons and motorneurons within the
thoracic ganglia [2,10]. Therefore looming responses in this pathway may have
consequences for collision avoidance behaviours.

Based on the relatively simple encoding strategy of the LGMD, we concluded
that it is a good candidate as a bio-inspired model for collision detection. Ac-
cording to literature, the first physiological and anatomical bio-inspired model
for the LGMD neuron was developed by Bramwell [12]. The model continued to
evolve [13,14,15,16] and it was used in mobile robots and even in automobiles
for collision detection. However, further work is needed to develop more robust
models that can account for complex aspects of visual motion [10], as well as be
able to work at different light intensities [4]. In this article, we are interested in
integrating two recent LGMD models, [14] and [16], in order to take the advan-
tage of noise immunity proposed in the first and direction sensitivity proposed
in the second. Based on the principles of the locust visual system previously
referred, we subsequently add a capability of light adaptation to the developed
model.

In this article, the proposed model is verified when submitted to artificial vi-
sual stimuli of approaching and receding objects, including images with different
light intensities and noise, and a real video captured by a camera. The results
show that the system avoids approaching obstacles in an effective way despite
these disturbances.

2 The Model

The biologically inspired neural network here proposed is based on previous
models described on [13,14,15,16]. The modified neural network is shown on
figure 1. In this model, we integrate an adaptative spatiotemporal summation
system, which has the capability to adapt the neural network to different light
intensity scenarios.
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Fig. 1. Schematic illustration of the proposed LGMD model

A grayscale image of the camera current field of view, represented has a matrix
of values (from 0 to 255), is the input to a matrix of photoreceptor units (P layer).

This layer calculates the absolute difference between the luminance of the
current and of the previous input images, that is:

Pf (x, y) = |Lf(x, y) − Lf−1(x, y)| , (1)

where Pf (x, y) is the output relative to the cell in the (x, y) position at frame f ,
Lf (x, y) and Lf−1(x, y) are the captured luminance at position (x, y) for frames
f and f − 1, respectively. This layer allows us to detect the object edges. The
output of the P layer is the input of two different layers: the excitatory (E) and
the inhibitory (I) layer. To the excitatory cells of the E layer, the excitation
that comes from the P layer is passed directly to the retinotopic counterpart at
the S layer. And the inhibition layer (or I layer) receives the output of the P
layer and applies a blur effect on it, using:

If (x, y) =
1∑

i=−1

1∑
j=−1

Pf−1(x + i, y + j) · Wl(i, j), i, j �= 0, (2)

where If (x, y) is the inhibition relative to the cell in the (x, y) position at frame
f , Wl(i, j), an empirically set kernel, represents the local inhibition weight. The
inhibition from the (x, y) cell only spreads to the nearest neighbors and does
not inhibits itself. This process is strongly supported by the biological nervous
systems. In biology, an excited neuron does not inhibits itself, it inhibits the
neighboring neurons, with a temporal delay associated to the inhibitory synapses
(and this is the reason why we use the P cell excitement corresponding to the
previous time-step, f −1). Relative to the definition of the values holding by this
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kernel, the inhibition value of a particular cell is given by the distance at which
a neighboring cell is located. The use of such kernel is also based on biological
systems, since distant neurons inhibit a particular neuron with less intensity
than those that are closest to a neuron, due to the decrement of the neuronal
signal with increasing distance. Finally, the excitatory flux from the E cells and
the inhibition that comes from the I cells are summed by the S cells (summing
cells), using the following equation:

Sf (x, y) = Ef (x, y) − wi.If (x, y), Ef (x, y) = Pf (x, y), (3)

where wi (a scalar) represents the inhibition strength. Based on [14], a new
mechanism for the LGMD neural network was added to filter background noise.
This mechanism, implemented in the NR layer, takes clusters of excitation in the
S units to calculate the input to the LGMD membrane potential. These clusters
provide higher individual inputs then the ones of isolated S units. The excitation
that comes from the S layer is then multiplied by a passing coefficient Cef , whose
value depends on the surrounding neighbours of each pixel, calculated as follows:

Cef (x, y) =
1
9

1∑
i=−1

1∑
j=−1

Sf (x + i, y + j) (4)

The final excitation level of each cell in the NR (Noise-Reduction) layer, at
frame f (NRf ), is given by:

NRf (x, y) = |Sf (x, y).Cef (x, y).w−1| (5)
w = max(|Cef |)C−1

w + �c (6)

Cw is set to 4, Δc is a small number (0.01) to prevent w from being zero,
and max(|Cef |) is the largest element in matrix |Cef |. Within the NR layer, a
threshold filters the decayed excitations (isolated excitations), as:

ÑRf (x, y) =

{
NRf (x, y), if NRf (x, y).Cde ≥ Tde

0, if iff (x, y).Cde < Tde

, (7)

where Cde ∈ [0, 1] is the decay coefficient and Tde is the decay threshold (set
to 20). The decay threshold here used was experimentally determined. The NR
layer is able to filter out the background detail that may cause excitation. Hence,
only the main object in the captured scene will cause excitation. The LGMD
potential membrane Kf , at frame f , is summed after the NR layer,

LGMDf = Kf =
n∑

x=1

m∑
y=1

(ÑRf (x, y)), (8)

where n is the number of rows and m is the number of columns of the ma-
trix representing the captured image. The A (Approaching) and R (Receding)
cells (adapted from [16]) are two grouping cells for depth movement direction
recognition. The A cell holds the mean of three samples of the LGMD cell.
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The R cell shares the same structure as the A cell but with a temporal differ-
ence, having one frame delay from A. According to the theory described above,
it can be concluded that if the object is approaching Af > Rf and if the object
is receding, Rf > Af . The D cell or Direction cell (∈ {−1, 0, 1} in case of re-
ceding, no movement and approaching object, respectively) is used to calculate
the direction of movement. This cell exploits the movement direction in depth.
It is based on the fact that a looming object (approaching) gets larger whereas
a receding object gets smaller. In a way to distinguish the movement direction
detected by the D cell, a threshold mechanism was added, TD(0.05 × n × m),
which was experimentally determined.

Df =

⎧⎪⎨
⎪⎩

1, if |Af | − |Rf | ≥ TD

0, if TD < |Af | − |Rf | < TD

−1, if |Af | − |Rf | ≤ TD

(9)

The LGMD membrane potential Kf is then transformed to a spiking output
kf ∈ [0.5, 1] using a sigmoid transformation,

kf = (1 + e−Kf ·ncell−1
)−1, (10)

where ncell is the total number of cells in the NR layer. The collision alarm is
decided by the spiking of the LGMD cell.

A spiking mechanism was implemented using an adaptable threshold. This
threshold starts with a value experimentally determined, Ts (0.88) and it is
updated at each frame, through the following process,

Ts =

⎧⎪⎨
⎪⎩

Ts + �t, if sav > Π and (Ts + �t) ∈ [Tl, Tu]
Ts −�t, if sav < Π and (Ts −�t) ∈ [Tl, Tu]
Ts, others

, (11)

where [Tl, Tu] defines the lower and upper limits for adaptation (Tl is 0.80 and
Tu is 0.90) , Δt = 0.01 is the increasing step, Π = 0.72 is a threshold that limits
the averaged spiking output sav,between frame f − 5 to frame f − 2,

sav = 0.25
5∑

i=2

sf−i. (12)

If the sigmoid membrane potential kf exceeds the threshold Ts a spike is pro-
duced, as follows:

sf =

{
1, if kf ≥ Ts

0, others
(13)

Finally, a collision is detected when there are nsp spikes in nts time steps (nsp ≤
nts), where nsp is 4 and nts is 5 (values experimentally determined).

Cf =

{
1, if

∑f
f−nts

sf ≥ nsp

0, others
(14)
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The escape behavior is initialized when a collision is detected. Besides that, the
spikes can be suppressed by the FFI cell when whole field movement occurs. If
it is not suppressed during the tuning of the robot, for example, the network
may produce spikes and even false collision alerts due to sudden changes in the
visual scenario.

The FFI cell is a cell which is very similar to the LGMD cell but receives the
output from the P layer (and not from the S layer), as follows:

FFIf =

∑m
x=1

∑n
y=1 |Pf−1(x, y)|
ncell

, (15)

where Pf−1 is the output of the P layer at frame f − 1. If FFIf exceeds a
threshold TFFI(experimentally set to 25), the spikes produced by the LGMD cell
are automatically inhibited.

We have introduced a light adaptative system within the S layer, that com-
prises three different states depending on the mean gray scale value of the cap-
tured image: State 1 is activated in the presence of a very low light intensity
scenario (mean gray scale value lower than 50); State 2 is activated in the
presence of a medium light intensity scenario (mean gray scale value lower than
150); and State 3 is activated in the presence of a high light intensity scenario
(mean gray scale value greater than 150).

In State 1 and State 2, a Gaussian spatial kernel (Kk) is chosen, and the
following processment is done within the S layer:

Sf spatial(x, y) =
b∑

i=a

b∑
j=a

Sf(x + i, j + i).Kk, (16)

where Kk (k = State1, State2) is a kernel that allows the spatial summation be-
tween neighboring pixels within the S layer; and a (b) is -2 (2) or -1 (1) depending
whether on State 1 or 2, respectively. The KState1has a gaussian distribution,
with a standard deviation of 1, and a strenght of 20 units. The KState2has a
gaussian distribution, with a standard deviation of 0.5, and a strenght of 4 units.
This kernel allows the spatial summation between neighboring pixels within the
S layer.

Besides this spatial summation, when any of these states is activated, the
model will activate a temporal summation mechanism, that sets the final value
for each pixel of the S layer, as follows:

Sf (x, y) =
f∑

f−c

Sf spatial(x, y), (17)

where c = −3 or −1 whether on State 1 or 2, respectively.
In case State 3, due to the high intensity level, the spatial and temporal

summation are not activated.
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3 Experiments and Results

3.1 Implementation and Analysis of the Proposed LGMD Model

In order to assess the effectiveness of the proposed model, we develop a simulation
environment in MATLAB, using a a Laptop (Toshiba Portegé R830-10R) with 4
GHz CPU and Windows 7 operating system. To test the efficiency of the LGMD
model, different data sets were used. The first experiment was made on a simu-
lated data set, showing a square approaching at different velocities, with a high
noise level (500 pixels of random noise, corresponding to 5 percent of the image
pixels) and with different light conditions. The second experiment was made with
a receding stimuli, showing the same characteristics as previously described for
the approaching stimuli. As previously mentioned, the input of the LGMD model
are images, which represent a 2 dimensional information of light intensity. Lower
intensity is represented by a lower gray scale value within the image. Artificial vi-
sual stimuli, with different mean of background intensity: A)10; B)30; C)50; D)70;
E)90; F)120; G)200; H)255, were used to stimulate the LGMD model.

In our first experiment, we evaluate the LGMD model, by using a looming
stimulus consisting of a solid square, for two different relations between the
object half size (represented by l) and object velocity (represented by v). This
ratio determines the time course of the angular size of the looming stimulus.We
selected these two relations between l and |v| due to their importance on the
stimulation of the locust visual system [17][5].
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Fig. 2. LGMD model response to an approaching object with l/|v| set at 25 milliseconds
(left panel) and l/|v| set at 50 milliseconds (right panel). In all these graphs, the zero
value corresponds to the time of collision.

Figure 2 shows the output from the LGMD model, when using background
H. In this figure, at each time step we can observe the result of different mathe-
matical processing, corresponding to the layers of the proposed model, executed
sequentially, necessary to detect an imminent collision. Observing the top panels
of figure 2, in which it is represented the Spike Rate of the LGMD model (ob-
tained by dividing the Af value for the number of pixels in the captured image)
we observe that the waveform obtained is consistent with the biological data



92 A.C. Silva and C.P. dos Santos

reported to the same visual stimuli [10]. The analysis of these results showed
that the LGMD neural network detected a collision at time -0.07 seconds (for
l/|v|=25ms) and -0.12 seconds (l/|v|=50ms), being the simulated square located
at 14 cm and 12 cm, respectively.

After this test, we decrease the background light intensity, following the order
from G to A. For these tests, we obtained the results resumed in figure 3.
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Fig. 3. LGMD model final output to l/|v|= 25 (dots) and 50 milliseconds (line), when
subjected to visual stimulus with different light intensities

At different mean values of the image gray level and for each l/|v | relation, the
output of the LGMD model relative to the detected collision (figure 3), did not
always happen at the same instant (ranging from -0.07 seconds (or 14cm of dis-
tance) to -0.12 seconds (or 26 cm) for l/|v|=25ms and ranging from -0.12 (or 12 cm)
to -0.15 seconds (or 15 cm) for l/|v |=50ms). Through these results we can verify
that the distance at which the LGMD model detected a collision almost doubled
in some situations. This happened due to the fact that we only have 3 different
states of light adaptation. So, for the highest mean values of the image gray level
within a state, the intensity of the image will be already too high for the size of
the kernel used in the spatial summation processing, as well as for the temporal
integration used. Consequently, the excitation level of the LGMD cell will strongly
increase, leading to the generation of premature “collision detected” spikes. How-
ever, for l/|v|=50 ms, the collisions were detected when the object was located at
12 or 15 cm, depending on the mean value of the image gray level. Based on these
results we can conclude that for high l/|v| values, spatial and temporal summation
has a lower effect on the distance at which the collisions were detected. After this
first set of tests, we repeated the same stimuli but using a receding trajectory. In
all the situations tested no collisions were detected, as expected.

In addition to these simulated visual stimuli, and in order to test the LGMD
model in a real environment, we recorded a real video sequence, using a Sony
Cyber shot digital camera 7.2 megapixels to obtain the video clip (figure 4, left
panel).

The resolution of the video images is 640 by 480 pixels, with 30 frames per
second of acquisition frequency . After the video recording and using a movie
editor, we created two new video recordings, one showing an environment with
high light intensity and other with very low intensity (see figure 4). By using
these three video sequences, we were able to test three different stages of the
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LGMD model light adaptation. Observing the left panel in figure 4, we observe
that, for video sequences with low and medium intensity level, the collisions
were detected at -0.08 seconds, ie, when the ball was at 26 cm relatively to
the camera. However, for high intensity level, the collision was detected later
(-0.04 seconds), ie, when the ball was located at 16 cm to the camera. Despite
this difference, consequence of the distinct processing made in each state, the
obtained results were very satisfatory, since the LGMD model here proposed is
able to: remove the background noise, detect the direction of stimuli movement
as well as auto-adapt to different light intensity scenarios, in a high effective way.
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Fig. 4. LGMD model response to a real video sequence under different light conditions

Based on our results, we conclude that the LGMD model proposed here re-
liably detects collisions of objects of different sizes, different trajectories and
under different light intensities. Our bioinspired model reproduces the response
of the locust LGMD neuron and is able to account for spatiotemporal summation
adaptation in different light conditions.

3.2 Comparative Analysis of Different LGMD Models Responses

As a second goal of the work here described, we evaluate the effectiveness of
the proposed model in relation to others LGMD models proposed in literature
(which for a better understanding we decided to call LGMD model 1 to the
model proposed by [14] and LGMD model 2 to the one proposed by [16]). In
order to accomplish this objective, after the computational implementation and
stimulation of the LGMD model 1 and 2 with the artificial visual stimuli pre-
viously described, with l/|v|=50 ms and using different means of background
intensities, we verify that the collisions were detected, by each LGMD models,
at different time instants and, consequently, at different distances of the object
relatively to the camera. The results obtained can be seen on figure 5. Rela-
tively to the LGMD model 1, we can conclude that this model was only able to
detect collisions for mean value of the image gray level superior than 120. Con-
sequently, the LGMD model 1 will not be able to work at low light conditions.
Since the collisions detected by the LGMD model 1, either with and without
noise, are completely overlapping, we could also conclude that this model has
high immunity to noise presence in the captured images.
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Fig. 5. LGMD model 1[14]and LGMD model 2[16] final output to l/|v|=50 miliseconds,
when subjected to visual stimulus with different light intensities and with/without noise

Taking into account the results obtained with the LGMD model 2 when not
subjected to noise, we can verify that this model is not able to work in very low
ligh conditions (below 30) since, for these light intensity levels, the model was
not able to detect collisions. For medium values, between 50 and 90, the model
was able to detect collisions when the object was located at 8 cm relatively to
the camera. And for higher values of gray level, this model was very stable and
detected all the collisions at a distance of 12 cm. However, the response of the
LGMD model 2 when stimulated with images with 500 pixels of noise, is very
unstable concerning the distance at which it detects collisions. This happens due
to the inability of this model to eliminate noise. Besides that, in this situation,
the model can not detect collision for gray levels below 70.

4 Conclusions

In this paper, we have presented a neural model for obstacle detection and
avoidance based on the percentual strategies used by Locusta Migratoria. The
model reproduces the response of the LGMD neuron and is able to account for
spatiotemporal adaptation in different light conditions. It was also shown that,
unlike the previous LGMD models described in literature, the neural network
here proposed can describe the response of the locust neuron in a wide range of
stimulus conditions. For applications as collision detectors for robots, the model
proposed is able to remove the noise captured by the camera, as well as enhance
its ability to recognize the direction of the object movement and, by this way,
remove the false collision alarms produced by the previous models when a nearby
object is moving away. Furthermore, the model is able to autonomously adjust
to different light conditions.
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Abstract. This paper presents a control architecture for redundant and
compliant robots inspired by the theory of biological motor primitives
which are theorised to be the mechanism employed by the central ner-
vous system in tackling the problem of redundancy in motor control.
In our framework, inspired by self-organisational principles, the simu-
lated robot is first perturbed by a form of spontaneous motor activity
and the resulting state trajectory is utilised to reduce the control dimen-
sionality using proper orthogonal decomposition. Motor primitives are
then computed using a method based on singular value decomposition.
Controllers for generating reduced dimensional commands to reach de-
sired equilibrium positions in Cartesian space are then presented. The
proposed architecture is successfully tested on a simulation of a com-
pliant redundant robotic pendulum platform that uses antagonistically
arranged series-elastic actuation.

1 Introduction

It has been argued that natural systems, in order to cope with uncertain, unstruc-
tured and dynamically changing environments evolve morphologies and material
properties that are physically compliant (adaptable to external influences) and
redundant (versatile in face of constraints), among other features [10]. The flip
side of this argument is that the Central Nervous System (CNS) needs to cope
with the large dimensionality thus induced. Even for simple end-point move-
ments, a large number of muscles are recruited and, thus, have to be supplied
with requisite input commands. Since the number of muscles is much higher than
the number of variables in which the goal is defined, a single movement can be
obtained by many different patterns of muscle activations; this is often referred
to as Bernstein’s degrees of freedom problem [3].
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This problem is also important from the point of view of designing robotic sys-
tems for the real world. The problem of controlling dynamically complex systems
is typically approached by explicitly using the (inverse) kinematic or dynamical
models of the plant. However, the computational complexity drastically increases
with the number of degrees of freedom [6]. Learning and optimisation theory of-
fer an alternative to solving the redundancy problem. However, optimization
algorithms suffer from an exponential increment of the computational complex-
ity as a function of the dimensionality of the search space, the so called “curse of
dimensionality” [12], rendering them intractable. Unsupervised learning meth-
ods [13] have also been proposed in this context, however their scalability to
complex redundant and compliant robotic systems is unknown.

An alternative paradigm would be to look for a reduced dimensional specifica-
tion of the system behaviour; a problem that has been studied in the domain of
Model Order Reduction (MOR). MOR techniques aim at reducing the order of
a dynamical system while preserving the input-output relationship to the extent
possible [1]. The robot control applications of MOR techniques is largely under-
explored, and we could take inspiration from nature in deriving techniques.

In this context, there is significant biological evidence suggesting that a pro-
cess of dimensionality reduction may be occurring in neural control mecha-
nisms [7]. The discovery of spinal Convergent Force Fields (CFFs) and their
linear combinations in frogs [8] provided neurological justification for the pres-
ence of motor primitives, which have been described as fundamental units of
the motor control system, suitable combinations of which enable complex move-
ments to be carried out. Until now, most approaches have aimed to identify and
model primitives from observations of natural movements.

In this paper, we propose a framework for synthesising a motor-primitive in-
spired control architecture for redundant and compliant robots. The architecture
is inspired by recent work in biology [2], which proposed a novel model for the
synthesis of motor primitives of a frog’s leg using MOR and optimisation of a
cost. The work we present adapts and expands their technique to artificial sys-
tems, and as a preliminary result we focus on linear dynamical systems. The
results are demonstrated in a simulated tendon driven robotic pendulum which
uses antagonistically arranged series-elastic actuation.

This paper is organised as follows. The considerations underlying the pro-
posed architecture are presented in Section 2. In Section 3, the algorithm for
extracting motor primitives is described. The experiments and simulated results
are presented in Section 4, followed by the conclusions in Section 5.

2 Proposed Control Architecture - Considerations

Motor primitives have been characterised [2] as spinally stored constraints on
the motor input commands of the form,

u = U∗C, (1)

where, U∗ = u∗1···k is a set denoted as the motor primitives, comprising of k
primitives, and C is the vector of reduced dimensional control inputs, C =
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[C1, . . . , Ck]
T . Each column of U∗ can be thought of as a set of spinally stored

muscle activations, similar to the activations produced by microstimulation of
the frog’s spine. In this formulation, each primitive u∗i , is in the dimension of
total number of muscles present [2], while only k primitives are needed and used
to specify their motion. In this form, the primitives represent the basis vectors
of the desired space of motor commands.

The approach of Berniker [2] to motor primitive synthesis used Balance Trun-
cation [1], a control theoretic model reduction approach, to reduce the dimen-
sionality of the mechanical system; the method relies on knowing the mechanical
plant model. Furthermore, the approach assumes that motor primitives must
be non-negative (real muscles cannot be negatively activated), orthogonal (act
independently) and useful for generating commands (formalised based on math-
ematical properties of the equivalent reduced dimensional system); the primitive
computation is based on optimising a corresponding cost function.

Ideally, in autonomous robots the architecture is synthesised in a self-organised
manner, without knowledge of the full dimensional model in advance, which
requires apriori system identification to be carried out. Also, some of the as-
sumptions underlying the primitive synthesis approach [2] have to be adapted
to comply with artificial actuation mechanisms. The technique proposed in this
paper makes the following assumptions:

1. Spontaneous Motor Activity Is Used to Collect a Dataset: In order
to self-organise a reduced dimensional model of the mechanical plant, spon-
taneous motor activity will be employed to perturb the system and collect a
dataset characterising the behaviour, as described in Section 3.1.

2. Statistical and Data Driven Methods Are Used to Reduce the
Dimensionality: The Oja rule [9] demonstrated the ability of unsupervised
learning in a network of neurons, to perform Principal Component Analysis
(PCA). Hence for dimensionality reduction, a PCA based method, Proper
Orthogonal Decomposition (POD), will be used as described in Section 3.2.

3. Primitives Can Also Be Negative as Motor Commands Can Be
Negative for Artificial Systems: For robotic systems, inputs may be
negative as well, since typically most actuation mechanisms such as DC
motors tend to exhibit bi-directionality at the output and bipolarity at the
input. We address this consideration by proposing a technique for primitive
synthesis using Singular Value Decomposition (SVD) described in Section
3.4.

4. The Reduced Dimensional Model Is Utilised to Generate Control
Inputs to Reach Equilibrium Positions: Motivated by the equilibrium
point hypothesis [7] we propose a reduced dimensional controller that gen-
erates required motor commands to reach Cartesian space equilibrium posi-
tions as described in Section 3.5.

These new assumptions will be utilised in the synthesis of the control architecture
as described subsequently. As a preliminary exploration we shall constraint our
proposal to linear dynamical systems, although it can potentially be adapted to
nonlinear systems as well.
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3 Synthesis Methodology

The proposed reduced dimensional architecture is synthesised using the method-
ology presented in Fig. 1. The various constituent processes are described in this
section.

d d

[Ak, Bk, Ck, Dk]

Fig. 1. Motor primitive-inspired Control Architecture - Synthesis Methodology. First
the Robot is perturbed by Spontaneous Motor Activity u(t) (A) to generate a dataset
ys and subsequently MOR (POD) (B) and Linear System Identification (C) are applied
to yield a reduced order model. Primitives are then synthesised using SVD (D) and are
combined with the reduced model in the equilibrium posture controller (E) to generate
motor commands corresponding to desired behaviour goals in end-effector space.

3.1 Dataset Generation through Spontaneous Motor Activity

In mammals, the process of spontaneous motor activity (SMA) carries out muscle
contractions in the absence of sensory stimulation. This type of motor activity
has been observed during sleep throughout all developmental stages (including
the foetal stage) [5]. One particular type of SMA observed is the Myoclonic twitch
which spontaneously triggers independent contractions of individual muscles.
Inspired by this process, we utilise independent and individual pulse inputs us(t)
(square signals of amplitude 0.01 and duration 2.8s) to perturb the mechanical
system, resulting in a motion output that can be recorded in the form of a
dataset (see block (A) in Fig.1)of snapshots of the dynamical system as χ =
[x(t0), . . . , x(ti)], where χ ∈ R

N×nt and x(ti) is the nt
th snapshot of the system,

where nt is the total number of snapshots in the dataset (or datapoints) and N
is the state dimensionality.

3.2 Reduction Using Proper Orthogonal Decomposition (POD)

The next step is to reduce the dimensionality of the dataset using POD1 as
depicted in block (B) in Fig.1. Consider a linear dynamical system of the form
below,

ẋ = Ax+Bu, y = Cx, (2)

1 Also called PCA, Karhunen-Loeve decomposition or factor analysis.
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where, u ∈ R
I is the input, x ∈ R

N is the state, y ∈ R
O is the output. The

matrices A,B, and C are commonly called as the state, input, and output ma-
trices, respectively. In this case, the reduction aims to find a lower dimensional
representation z such that,

ż = Akz +Bku, y = Ckz +Dku, (3)

where, z ∈ R
k is the state, and D is a feedthrough matrix compensating for

steady state differences. We thus look to replace the N dimensional system by
a nearly-equivalent (similar in behaviour) k dimensional system, where k � N .
From the dataset χ collected in the previous stage, the Singular Value Decom-
position (SVD) then can be used to obtain the best [11] reduced dimensional
approximation χ̂k which minimises the norm ‖ χ− χ̂k ‖2. The SVD renders
χ = UΣV T , where UUT = I, V V T = I, and the singular values are ordered
as σ1 ≥ . . . σk ≥ . . . σn. We can then truncate χ to the first k singular values, by
using the corresponding first Uk singular vectors as a basis of the k-dimensional
subspace we are projecting the dataset to, as z(t) = Ukx(t). The next step is to
obtain the model parameters.

3.3 Identification on the Reduced Dimensional Dataset

To identify the reduced dimensional model, we employ system identification on
the dataset z(t) as depicted in block (C) in Fig.1 . Due to the assumption of
linear dynamics, the dataset z(t) obtained from POD will also be guaranteed to
be linear [1] and linear least squares identification can be employed as,

[ż(t)] = [Ak, Bk][z
T (t), uT (t)]T , [y(t)] = [Ck, Dk][x

T (t), uT (t)]T , (4)

where, z is the new state variable of the dynamical system, Ak, Bk, Ck, and
Dk are the reduced dimensional state, input, output and feedthrough matrices
respectively. Note that u(t) and y(t) have not changed from the original system
in Eq. 2.

3.4 Primitive Synthesis Using SVD

Once the reduced order model is obtained, primitives in the form of Eq. 1 are
computed. An important criterion for the primitives is that ideally the com-
mands generated in the reduced dimensional space are “useful” in the sense of
their effect on the state [2]. This is ensured by allowing the primitives U∗ to be
orthogonal to the nullspace of the reduced dimensional input matrix Bk. More-
over, the primitives are orthogonal to each other (to allow spanning the control
input space). Both these goals are accomplished by finding the singular vectors
of Bk and choosing the last k of these vectors.

Consider the singular value decomposition of a matrix Bk, Bk = UΣV ∗. The
null space of the input matrix Bk has as its basis, the last n− k columns of the
right singular vectors V ∗ of the decomposition [11]. Since the columns of the V ∗
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matrix are orthogonal to each other, the first k columns thus can be chosen as
primitives, since they are both useful and orthogonal.

u∗ = N (Bk)
⊥, u∗ = V ∗

1...k, (5)

where the operator N ()⊥ computes the nullspace complement of a matrix. Due
to the availability of multiple high speed numerical SVD computing algorithms,
primitives computation is faster than methods based numerical optimisation [2].

3.5 Feedforward Equilibrium Posture Controller Design

Once the primitives are computed, a controller can be designed as required.
In [4] and [8], it is suggested that the controller is feedforward in structure and
it generates the necessary commands to affect the equilibrium posture of the
limb. For the obtained system in Eq. 3, the equilibrium state for a given input
corresponds to ż = 0 , which is therefore,

z = −A−1
k Bku, y =

[
−A−1

k Bk +Dk

]
u. (6)

Since the input u is constrained according the motor primitive as in Eq.1, it is
sufficient to compute the required reduced dimensional control inputs Cd for a
desired output yd where Ci ∈ R

k. For this, the pseudo-inverse or the Moore-
Penrose inverse (†) can be used to obtain,

Cd =
[(
−CkA

−1
k Bk +Dk

)
u∗
]†
yd. (7)

Note that if k is chosen to be of same dimensionality of the output y, Eq.7
is computed using a regular inverse instead of the pseudo-inverse and thus the
redundancy problem is directly resolved.

4 Experiments and Results

4.1 Methods: Pendulum Robot and Simulation

The pendulum robot platform is a test setup built to investigate methods and
techniques for developmental robotics. Loosely inspired by the human shoulder
system, it consists of two mechanically independent pendula, each driven by 4
series elastic actuators coupled in an agonist-antagonist configuration, as shown
in Fig.2a. Each muscle system can be actuated independently and includes force
and elongation sensors. A camera is mounted on the base of the pendulum look-
ing upwards to extract end-point position as a 2D position measured in the
camera frame of reference. The dynamics of this robot is be assumed to be lin-
ear under the conditions of bounded amplitude motion due to the relatively long
length of the muscles. Since the platform is driven by 4 motors, the input dimen-
sionality is 4. Thus in order to be interesting, we must synthesise a controller
with k primitives where 1 < k ≤ 4 to perform meaningful tasks in the 2D task
space.
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(a) (b)

Fig. 2. a) Pendulum robot platform and b) Linear System simulation of the Pendulum
robot platform (the mass is that of the end-point bob)

The simulator depicted in Fig.2b uses a linear approximation of the plant. The
nonlinearities due to angles of force application are neglected as a simplification.
The simulation implements the following model,

ẍc = −kxxc − bxẋc +

4∑
i=1

Fmicos(θi),

ÿc = −kyyc − by ẏc +

4∑
i=1

Fmisin(θi),

α̇i = τ(uig − αi), Fmi = kmαi,

(8)

where, kx,y is the stiffness of restoring force to mean position, bx,y, is the damp-
ing of the pendulum bob, i ∈ [1, 4] τ1···4 are the time constants of the muscle
(critically damped), g1···4 are the gains on the input signal, km is the muscle
stiffness proportionality to its activation, and θi is the mounting angle of each of
the spindle motors. Note that, xc and yc in this model are both state variables
and should not be confused with the state x and output y of Eq.2. For this paper,
the simulation constants were fixed as kx,y = 10, bx,y = 5, τ = 1, g = 5, and
km = 5 (currently being validated on the real robot platform). The model has
dimensions 8 on state and 4 on input, corresponding to desired angular positions
on DC motors with controllers of time constants τ and dc gain g1···4. The model
was implemented in GNU Octave and integrated using the ODE45 routine.

4.2 Results - Spontaneous Motor Activity and Dimensionality
Reduction

A unit pulse input applied to each muscle sequentially to replicate the sponta-
neous motor activity in the form of single muscle twitches as shown in Fig.3a.
The various state and output trajectories ys(t) and xs(t) respectively, were
recorded and stored as a dataset and POD was used to reduce the dimensionality.
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(a) (b)

Fig. 3. a) Single Muscle Twitching and output of the simulated robot and b) Principal
components of the dataset (ys(t)) -Scree Plot

The principal components are depicted in the scree plot in Fig.3b. The first k
largest components were chosen to compute controllers with k motor primitives,
where 1 < k ≤ 4, thus giving 3 types of controllers. Linear dynamical models of
dimension k were then obtained by fitting in each case.

4.3 Results - Synthesised Motor Primitives and Task Performance

From the identified reduced dimensional linear state space, the primitives were
synthesised using SVD for the cases of k = 2, 3, and 4 primitives. The computed
primitives in each case are depicted in Table 1. The synthesised primitives are
visualised by locating the resulting equilibrium points (at ẋ = 0) for a unit
inputs applied to each of the reduced dimensional input C individually. Since
the source system is linear, the equilibrium points obtained are unique and in-
dependent of the initial conditions as depicted in Fig. 4. Since any position in
the Cartesian space can be obtained by using the right input C, the knowledge
of these equilibrium points can be used to generalise to new points in the task
space by using linear combinations similar to the biological case [8].

A reaching task was then computed using the controller form of Eq. 7 for a set
of 3 controllers (k = 2, 3, 4), as shown in Fig. 5. In each case small offset errors
result in steady state due to the quality of the obtained reduced dimensional
model. This offset error could potentially be minimised if the model can be
improved through subsequent stages of learning and adaptation. More complex

Table 1. Computed U∗ for the cases of 2, 3, and 4 primitives

k = 2 k = 3 k = 4
-0.53210 -0.49997
0.46796 -0.49313
0.54176 0.41663
-0.45208 0.57730

-0.56734 -0.41926 0.49501
0.56418 -0.56742 -0.34017
0.43817 0.57504 0.48379
-0.40967 0.41423 -0.63655

-0.55065 -0.44407 -0.50324 0.49632
0.57413 -0.53848 0.34869 0.50874
0.40476 0.59823 -0.47541 0.50227
-0.45091 0.39365 0.63178 0.49252
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(a) (b) (c)

Fig. 4. Equilibrium positions of endpoint (red stars) while using (a) k = 2, and indi-
vidual unit inputs in C i.e. C1 = 1, C2 = 0, and vice versa (b) k = 3, and individual
unit inputs in C as before, and (c) k = 4, and individual unit inputs in C as before,
the initial conditions (red circles) are chosen to lie in a circle about the center. The
trajectories of the endpoints are in blue lines. In cases (b) and (c) the latter equilibrium
points are are found to lie nearly at the origin of the workspace.

(a) (b)

Fig. 5. Performance of the 3 controllers, k = 2 (red), k = 3 (green) and, k = 4(black)
relative to an ideal controller (blue), in performing (a) reaching task in Cartesian Space
to the positions (0.1, 0.1), (0,−0.1), and (−0.1,−0.1), (b) continuous tracking task in
Cartesian Space to a circle centered at (0, 0) and diameter 0.15m. The trajectories
obtained in each case are nearly identical.

desired trajectories using multiple waypoints can also be obtained using the
controller as shown in Fig. 5.

5 Conclusions

This paper presented a motor primitive inspired architecture for reduced dimen-
sional control of redundant compliant robots. Based on a biological model of
motor primitives using model order reduction, considerations relevant to artifi-
cial system control were presented. A technique for self-organising a controller
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was presented, inspired by the concept of spontaneous motor activity. A reduced
dimensional representation of the ensuing dataset was then used to synthesise
motor primitives using SVD. The computed primitives were then utilised to
compute the necessary control, across all of the inputs, for reaching fixed points
in space. The proposed framework was tested on simulated version of a compli-
ant redundant tendon driven robot platform. The preliminary simulation based
results are promising and demonstrate the utility of the proposed technique for
application to artificial systems. From an engineering viewpoint an extension of
the work to the nonlinear systems such as kinematic chains is currently being
carried out. An important consequence for biological systems arising as an exten-
sion of this work is an investigation on the relationship between dimensionality
reduction and mechanical properties of biological systems.
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Abstract. Sensorimotor contingency theory holds that the law-like re-
lations between actions and contingent changes in the sensory signals
constitute the basis for sensory experience and awareness in humans.
These Sensory-Motor Contingencies (SMCs) are not only passively ob-
served and recorded by the agent, but are actively exercised and used to
control behavior. We have previously introduced a computational model
of SMCs for robot control that employs a set of Markov models for the
conditional probabilities of making sensory observations given an action.
In this article we extend this model by showing how prediction and eval-
uation of future sensorimotor events can be achieved. We investigate this
prediction and planning method in a scenario where the robot’s actions
do not take immediately effect, so that it has to plan ahead. Exploiting
an action selection method that takes into account previous experiences,
the robot learns to move in an energy-efficient, naturalistic manner and
to avoid known obstacles. We also make a first step towards analyzing
the robot’s behavior in a dynamically changing environment.

1 Introduction

Sensorimotor Contingency Theory (SMCT, [8,6]) is an attractive alternative to
conventional robot control architectures that rely on internal representations of
the environment. It eliminates two of the main problems in current robotics,
namely generating and maintaining internal models of the world. Instead it ac-
knowledges the world as its own external representation, that can be probed
and structured by actions. Sensory experience and perception are constituted by
exercising Sensory-Motor Contingencies (SMCs), comprising previously learned
knowledge of the structure of changes in sensory signals depending on the ex-
ecuted actions. Here the term exercising means that the agent does not only
observe structures of sensorimotor coupling, but that its behavior is governed by
this knowledge.

Recently we have introduced a computational model of SMCs [3]. It considers
SMCs as probability distributions over pairs of actions and associated changes
in sensory signals depending on a history of previous pairs of actions and obser-
vations. This approach can be formalized as a set of Markov models that take

T. Ziemke, C. Balkenius, and J. Hallam (Eds.): SAB 2012, LNAI 7426, pp. 106–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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different history lengths of previous action-observation pairs into account. For
controlling behavior the system keeps a record of the success of different actions
in a given context, and when a similar context is encountered again, it knows
the most appropriate next action or tries a new one.

In this article we would like to go a step beyond the control of the immediate
sensorimotor interaction and introduce a simple method to generate predictions
about sensorimotor events from known SMCs. This is an important function
when the agent should have some form of sensory awareness or perception:

For a creature (or a machine for that matter) to possess visual aware-
ness, what is required is that, in addition to exercising the mastery of
the relevant sensorimotor contingencies, it must make use of this exercise
for the purposes of thought and planning. ([8], p. 944)

The main idea of our prediction method is to record information about the
temporal order of the activation of SMCs, and to maintain it in a network of links
between SMCs. The result is in principle a two-layer structure with sequences
of action-observation pairs constituting SMCs, and sequences of SMCs forming
a network that can be used for predictions.

In [4] we presented an application of our SMC model in a robot that by explo-
ration learned the size of its confinement without using any distance sensors. In
that study locomotion was controlled by setting directly the speed of the motors.
This lead to abrupt, “robot-like” movements. Since the motor commands took
immediate effect, a simple prediction about the best next action was sufficient.
Here we use a motor controller that slowly accelerates the motors to the desired
speed. On one hand this results in smooth and gentle movements, that have close
resemblance with those of animals, and that significantly reduce wear and slip of
the robot’s drive. On the other hand this requires the robot to have the ability
to make predictions about the consequences on a longer term when selecting an
action. To avoid a collision, for example, it would be too late to switch the motor
command one time step before bumping into the object, since deceleration and
acceleration in the opposite direction extend over several time steps. Therefore
the robot needs the capability to plan ahead.

Two aspects of the proposed prediction method will be of interest. First, in
addition to using previously observed SMC sequences, which corresponds to a
mode of “remembering”, it is possible to arrange SMCs in different sequences
that have not been encountered before, but still are compatible with the general
context. This allows the system to exhibit a certain degree of “imagination”.
And second, the accuracy and level of detail do not necessarily decrease with
prediction depth, given that the environment is dynamically stable. At first
glance this may seem to contradict our experience with the weather forecast,
for example. But introspectively we know how it feels driving a Porsche [7] no
matter whether we imagine driving it tomorrow or next week, and there is no
loss of accuracy when we imagine the sequence of all things we will do tomorrow
compared to just imagining a single activity.
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2 Related Work

Compared to the number of robot studies on prediction and action planning
that employ internal representations of the environment like, for example, in
Simultaneous Localization and Mapping (SLAM), only few approaches exist that
consider this problem from a sensorimotor perspective. An interesting model for
learning delayed rewards using the environment as memory has been presented in
[1]. The system described in [5] actively uses SMCs for planning trajectories. The
approach employs artificial neural networks for learning forward and backward
models of changes in the sensory signals depending on the robot’s actions. A
model for goal-oriented action planning based on the function of different brain
areas is introduced in [2]. It recombines SMCs to generate action sequences in a
similar manner like we will describe below.

For an autonomously acting robot it is not sufficient to only have the capability
to entertain predictions about potential action sequences. Alternative courses of
actions have to be evaluated, and an optimal behavior must be selected. In the
field of reinforcement learning a large number of methods for evaluating action
sequences and dealing with the credit assignment problem have been developed.
Probably the most prominent algorithm is Q-learning [10] and its derivates.
Apart from a value for each sensorimotor state, our method makes information
about the observed frequency of this state, the likelihood of its realization, as well
as the reliability of the prediction available. We therefore suggest an alternative
method that takes this information into account.

3 Methods

3.1 A Markov Model of eSMCs

A detailed introduction to the basic idea of our model of SMCs has been given
in [3]. Here we extend this model to facilitates prediction of sensorimotor events
and action planning. While the agent executes an action a, sensory observations
o = [s1s2 . . . sS ] from the S sensory channels are recorded. After each time
step a new action-observation pair ao(t) is available. These action-observation
couplets are linked in a tree structure that reflects a finite history of experienced
sensorimotor events (see Fig. 1). When a new action-observation pair is available,
the respective node is activated. This means that the information stored in this
node, basically a counter n and a value v, is updated, or that a new node is
created. The key of each node is composed by concatenating the vectors encoding
the action and the sensory features. At every time there is one active node at
each level, and all active nodes share the same key given by the most recent
action-observation pair. The active nodes are the roots for updating or creating
the node on the next level upon arrival of a new action-observation pair. This way
the path to each active node reflects histories of previous actions and sensory
observations, with the length of this history corresponding to the level in the
tree.
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a) b)

Fig. 1. Schema of the extended computational model of eSMCs. a)Active nodes (gray)
when the action-observation pair ao1 is encountered after ao2 and ao3. b) When ao3
is encountered next, the corresponding node is activated at level h = 0 because this
event has been seen before. Two new nodes are added (thick circles) representing event
sequences ao1ao3 and ao2ao1ao3. Each node carries information about the respective
sequence, e.g. number of occurrence n and value v (not displayed).

It is easy to see that the probability of making a particular action-observation
combination in the next time step ao(t+1) conditional on a history of previous
actions and observations can be computed at each node. Denoting the sequence
of previous sensorimotor events by context c = [ao(t)ao(t − 1) . . . ao(t − h)],
this conditional probability is given by p(ao(t + 1)|c) = n(aoc)/

∑
i∈R n(ic),

where i runs over all keys of the successors R of the node addressed by path
c at level h in the tree, and n(aoc) is the number that the sequence aoc =
[ao(t + 1)ao(t)ao(t − 1) . . . ao(t− h)] of sensorimotor events has been observed.
Therefore, each node represents the conditional probability distribution P (ao(t+
1)|ao(t), ao(t − 1) . . . ao(t − h)). We consider this probability distribution as an
extended Sensory-Motor Contingency (eSMC) of the agent.

3.2 Generating Sensorimotor Predictions

When a match for the sequence of actions and observations that the agent has
just experienced is found in the tree, the child nodes of the activated node can
be used as a prediction of forthcoming sensorimotor events. Since the agent
has experienced these longer sequences before, we consider this mode as one of
remembering (Fig. 2a).

When no match is found for a given eSMC sequence, no matter if experienced
or predicted, the oldest action-observation pairs are successively dropped until a
match can be established. Since thereby eSMCs can get activated in a sequence
that has never been experienced by the agent, we consider this mode as one of
imagining. Longer predictions are generated by forward chaining, interleaving
the two prediction modes as required.
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Fig. 2. a) Predicting future sensorimotor events by remembering previous sequences
Supposed the agent has experienced the sequence of events ao1ao1. This sequence has a
match at level h = 1. ao1 and ao2 are potential successors. b) Prediction by rearranging
eSMCs in new combinations. For continuing the prediction of the branch ao1ao1ao2, no
match is found in the tree. The oldest events are successively discarded until a match is
found again (ao2). The resulting sequences are ao1ao1ao2ao1ao3 and ao1ao1ao2ao3ao1.

When matching a particular action-observation sequence in the tree of stored
eSMCs, we suggest to search for the longest match, i.e. the one with the longest
history length h. The longer this match is, the more information is used in
identifying the current action context, and the more precise the predictions con-
sequently will be.

3.3 Action Selection

The general idea for finding an optimal behavior is to combine the values asso-
ciated with each action in a predicted sequence, and to select the sequence with
the best value. Various methods for combining the values of future rewards for
selecting optimal actions are used, but we would like to propose an approach
that takes the specific information resulting from the prediction process into
account.

The first information that we consider useful for evaluating action sequences
is the average context size that was taken into account for generating each pre-
diction. Basically this is the sum of the history lengths h(t) of the eSMC used for
generating the prediction for time step t+1. In terms of the eSMC tree this is the
average path length used when iterating predictions. With H as the prediction
depth or planning horizon this value is computed as h̄ =

∑H
t=1 h(t)/H . A large

h̄ indicates that large context sizes have been considered for the respective pre-
diction, and it is regarded as more reliable, therefore. For each action sequence
we keep only those predictions with a maximum h̄.

In the next step the values associated with each predicted action-observation
pair are combined into a single value for the respective sequence i. This is done
by averaging over the values in each prediction step t, v̄i =

∑H
t=1 v(t)/H .
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Now we have a single average value for each predicted sequence that in prin-
ciple could be used to select the optimal behavior. However, since each action
can result in different sensory outcomes, typically several versions for the same
sequence of actions are generated. The last step is, therefore, to combine the
predictions for one action sequence that differ in there course of sensory sig-
nals into an average expected value for this sequence. This is done by looking
at the frequencies of encountering each action-observation pair in the predicted
sequence, n. First we determine the minimum frequency nmin for each version
i of a predicted sequence S of actions, nmin(i) = mint n(t), and use this for
computing a weighted average of individual values v̄i for this sequence:

v̄ =
∑
i∈S

nmin(i)∑
j∈S nmin(j)

v̄i,

where i runs over all versions S of the same action sequence. This has the effect
that versions of an action sequence with more frequently observed concomitant
sensory features are weighted more strongly.

The action sequence with the best average value v̄ is selected as candidate
for execution. Finally we use the properly normalized value as a probability
for executing the candidate action or an alternative. The lower the value of the
candidate action, the more likely the alternative action is executed. This is a sim-
ple method to deal with the exploration-exploitation problem. The alternative
action is the one with the least reliable prediction, i.e. the lowest h̄.

4 Experimental Setting

4.1 Hardware

We implemented the model of eSMCs for controlling the Robotino R© robot (Festo
Didactic, Esslingen, Germany). It is equipped with an omnidirectional (Swedish)
wheel drive, a webcam, 9 distance sensors, and a collision detector. For this study
locomotion was restricted to forward and backward movements. Collisions are
detected by a compressed air tube that is attached around the circular periph-
ery, and that registers pressure changes. It does not yield directional information
about the side of the collision. Readings of the instantaneous current consump-
tion of the motors were used to detect whether the robot pushes against an
obstacle that had not triggered the bumper. A custom-made accelerometer was
attached to the chassis of the robot giving three-dimensional acceleration infor-
mation. Camera and distance sensors were not used.

A major modification compared to the otherwise similar setup described in
[4] is the motor control. Instead of setting the motors to constant speed v or
−v, the motors are updated by v(t + 1) = v(t) + max(v − v(t),±Δvmax) for
v ≶ 0. Here ±v is the forward/backward command output by the model, v(t)
the motor speed in the current time step, and Δvmax is a fixed step size for
increasing or decreasing speed settings. We set Δvmax = v, so it takes two time
steps to reverse the movement direction.
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4.2 Robot Environment

The robot moves on a flat ground back and forth between two parallel walls.
While the wall in the back of the robot triggered the bumper on collisions, the
wall in the front had a protrusion that prevented further forward movement,
but did not trigger the bumper1 (Fig. 3). Consequently the robot could not
rely on the bumper as a single sensory modality that flags collisions, but it had
to learn the interaction between actions, and bumper and current signals to
detect collisions instead. In addition it should learn to respond appropriately to
collisions, and to move in a smooth and energy-efficient way.

forwardbackward

bumper

dynamically placed obstacles

Fig. 3. Profile view of the spatial setup (adapted from [4])

To study the robot’s adaptive behavior when the environment changes dy-
namically, we extended the setup by two obstacles at positions where the robot
could not expect them, approximately 1/4 in front of each wall. When the robot
reversed its movement direction at either wall, the obstacle in front of the oppo-
site wall was pushed in the trajectory of the robot. Since the robot expected the
wall to be further away, it reliably bumped into the obstacle, and the resulting
behavior was analyzed.

4.3 Value System

Defining a value system is a method “to make an agent do something in the
first place” [9]. Together with the eSMCs, their associated values are learned
and used later to select actions that result in beneficial behavior. For each time
step the value of the robot’s current state was computed by a weighted average
of signals from its sensors:

v = −bumper−
∑

motors

0.2motoravg −
∑

motors

0.2motorinc − 0.2max
x,y,z

(|accel|)

1 Both types of collisions had the side-effect of bringing the robot back to a perpen-
dicular orientation between the two walls, that would otherwise be lost after moving
several times back and forth due to the imprecision of the motors and the slip with
the ground.
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The bumper signal is 1 when a collision is detected and 0 otherwise. The motor
current readings are averaged over each time step for each of the three motors
(motoravg). The difference of the average motor current in the last third and the
first third of each time step (motorinc) yields a signal for changing motor load.
Finally, accel = [−2 . . . 2] indicates acceleration peaks, caused by a collision for
example.

5 Results

In the first experiment the robot was free to explore eSMCs, and we were inter-
ested in the developing behavior. Executing the actions from the action selection
schema (see Fig. 4), the robot moved between the endpoints of its confinement.
Actions together with the resulting sensory signals built the eSMC tree struc-
ture, and information about the frequency of activation and the value for the
agent were associated with each eSMC.

1 2 3 4 // 21 22 23 24 25

backward

forward

...

time [min]

Fig. 4. Action sequences when the robot started learning eSMCs (1-4 minutes run
time) and when behavior was guided by knowledge of eSMCs (after 21-25 minutes,
same run)

With progressing knowledge about the sensorimotor laws the robot moved
with straight transitions between the walls, and reversals of movement direc-
tions well before imminent collisions. This behavior minimized motor current
consumption, acceleration peaks, and in particular collisions that triggered the
bumper (see Fig. 5). Note that the robot uses the full extent of the confinement
and not only the central part, since only in this way it can minimize motor
currents and acceleration peaks.

The second experiment aimed at the question how the robot behaves with
respect to unexpected changes in its environment. In continuation of the first
experiment we put a new obstacle in the trajectory of the robot. Interestingly
the behavior for the two collision types was markedly different (see Fig.6). While
on rear collisions the robot simply switched to the opposite movement direction
and silently moved away (left column), it apparently did not know how to handle
front collisions. It kept bumping into the obstacle for some time, occasionally
going back, but then pushing again in the obstacle. The obvious explanation
for this behavioral difference is that during the initial learning period the robot
has made experience with backward movements that triggered the bumper, but
never with forward movements that did the same, since the protrusion in the
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Fig. 5. Time course of the sensory signals in the three modalities that affect the internal
value associated with each eSMC: acceleration, current consumption, and bumper.
The solid line is from a run with the described action selection schema, the dashed
line resulted from randomly switching between forward and backward actions. Turning
probability is not considered for the internal value, but gives an idea how straight the
robot moved (low values). All curves are smoothed with a moving average window of
4 minutes.

front wall spared the bumper. The experience of a bumper signal while moving
forward is a new eSMC, therefore, and the robot starts to explore behavioral
alternatives to deal with this situation.

The curves in Fig. 6 show that in both cases the collision came unexpectedly,
because the history length of previous action-observation pairs that he robot was
able to match with this collision dropped always to zero. For rear collisions, the
eSMCs at the first level in the tree had information about the optimal action
sequence to follow, and the context, or “awareness” of the situation quickly built
up again. In contrast, there were no eSMCs for bumper triggering front collisions
in the tree, and this situation called for exploration.

6 Discussion

The experimental results are interesting in multiple respects. First, the robot is
able to learn how to avoid collisions with static obstacles without using any distal
sensors like distance sensors or the camera. It “knows” that it can safely move
in one direction for a certain number of time steps, but then better turns in the
other direction. This can be interpreted as an understanding of the spatial range
across that the robot acts. We would like to emphasize that this understanding
does not build on an internal representation of this space, but exclusively on
the learned eSMCs. Second, one should remember that an action resulting from
the action selection schema can have very different effects on the sensory signals
and the overt behavior of the robot, depending on the context of the previous
actions. Current consumption and accelerations for the same action differ, for
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Fig. 6. Three examples for the behavior on rear (left column) and front collisions (right
column). The background shade shows for each time step the selected action (backward-
grey, forward-white). Asterisks mark time steps when the bumper was triggered. The
curves display the maximum history length that was used for planning. Note that for
reversing movement direction it takes two time steps for the motor controller until the
robot actually moves into the new direction.

example, when the robot is accelerating, decelerating, or in uniform motion. This
shows that sensorimotor knowledge has to account for the action context, and
the proposed tree structure for eSMCs is a model that reflects this fact.

The second experiment shows that the robot is able to exploit its sensorimotor
knowledge when the environment is changing. It also demonstrates that it au-
tomatically switches into an exploration mode when it encounters new eSMCs.
This is in accordance with our view that there is no strict distinction between
exploration and exploitation phases, as is sometimes found in robotic control
architectures. In our rather cognitive approach the agent is exercising its senso-
rimotor knowledge and acquiring new eSMCs throughout life time.

An interesting question is how the approach presented in this study works
when the agent has a larger action repertoire and lives in more complex envi-
ronments. Then the time to sample the higher-dimensional space of actions and
observations may become very long, and hence the agent may spend excessive
time on exploration before showing reasonable behavior. Clearly a complete ex-
ploration of action-observation space in such scenarios is impossible, but also not
necessary in our view. A small set of sensorimotor knowledge that locally opti-
mizes the behavior of the robot may be sufficient to deploy the robot, and the
proposed action selection schema will extend this knowledge towards the global
optimum by exploring alternative action courses with a probability that is in-
versely proportional to the success of known actions. A second argument against
excessive exploration phases is our observation that the ratio between eSMCs
that an agent actually experiences throughout lifetime and all possible eSMCs
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is typically very small: In [3] the agent experienced only 0.05% of all possible
eSMCs with history length 2, and in this study only about 0.02%. At the next
history level (length 3) with 27 · 106 potential eSMCs, only 293 (≈ 1 · 10−7%)
have been encountered in this study. This shows that the learning process is not
dominated by the sheer size of the state space, but rather by the actual situat-
edness of the agent. This is why we anticipate similar results in more complex
settings, and corresponding experiments are underway.

Technically optimal implementations may be required when extending our
approach to a larger action repertoire of the robot or a more complex environ-
ment, though. For example, value propagation and graph searching techniques
can be used to reduce the time complexity when searching for promising action
sequences. Extending this conceptual study to real-world scenarios will be the
focus of our future work.
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project ’Extending sensorimotor contingencies to cognition - eSMCs’, IST-270212,
esmcs.eu.

References

1. Bovet, S., Pfeifer, R.: Emergence of delayed reward learning from sensorimotor
coordination. In: Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 2272–2277 (August 2005)

2. Duff, A., Sanchez-Fibla, M., Verschure, P.F.M.J.: A biologically based model for the
integration of sensory-motor contingencies in rules and plans: A prefrontal cortex
based extension of the distributed adaptive control architecture. Brain Research
Bulletin 85(5), 289–304 (2011)

3. Maye, A., Engel, A.K.: A discrete computational model of sensorimotor contin-
gencies for object perception and control of behavior. In: 2011 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3810–3815. IEEE (May 2011)

4. Maye, A., Engel, A.K.: Time Scales of Sensorimotor Contingencies. In: Zhang, H.,
Hussain, A., Liu, D., Wang, Z. (eds.) BICS 2012. LNCS (LNAI), vol. 7366, pp.
240–249. Springer, Heidelberg (2012)
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7. O’Regan, J.K., Noë, A.: What it is like to see: A sensorimotor theory of

perceptual experience. Synthese 129(1), 79–103 (2001); ArticleType: research-
article/Issue Title: Perception, Action and Consciousness/Full publication date:
October 2001/Copyright c© 2001 Springer
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Abstract. A control system is presented that integrates bio-inspired
with classical control techniques to govern the forearm joint of a wear-
able haptic interface. The neural circuit is based on the architecture of
the human segmental reflexes, and the neurons are represented by the
combination of a first order linear differential equation and a sigmoid
or a piecewise-linear activation function. Due to a long term adaptive
mechanism that considers the state of the interface and the interaction
force with the user, the stiffness of the joint is regulated according to
the particular motion and task at hand. Experimental results showed
that the proposed control architecture is able to improve the interface
performances in terms of responsiveness, as well as to implement a safety
behavior that intervenes in case of harmful external forces.

Keywords: Bio-inspired Control System, Human-Machine Interaction,
Wearable Exoskeletons, Stiffness Adaptation.

1 Introduction

Human-machine interfaces are becoming more and more important in our soci-
ety. They range from simple graphical menus which mainly involve the vision
system, to more complex ones that consider also haptic feedbacks or even biosig-
nals (e.g. EEG, EMG etc.) in order to control the behavior of the machine. When
the artifact to interact with is represented by a robotics system, special attention
should be paid in order to guarantee the comfort, and even more importantly,
the safety of the human. Although most of the robotic systems do not require a
strong interaction with the operator, which is mainly involved in supervising the
machine, there are different type of robotic devices that are intended to heavily
interact with humans. Among these artificial exoskeletons can be used both to
support/enhance the body during daily activities, or to operate remote robotics
systems.

The control strategies of most of the state-of-the-art haptic interfaces are
based on approaches that were mainly developed for traditional robotic systems.
Widely used are e.g. the admittance and impedance control. In an admittance
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controller the interaction force with the user is measured and indirectly regulated
via a position control loop. In an impedance controller, on the contrary, the
interaction force is directly regulated according to a reference calculated via a
measured position and a defined world model.

Although such control techniques were successfully applied to artificial ex-
oskeletons [9], their capability to adapt to the user’s behavior is rather limited.
Furthermore, due to their artificial nature, the integration of biosignals results
sometimes unintuitive.

In the field of biorobotic a big effort was already dedicated to develop neuro-
controllers based on models [1,3] of the human nervous system. In [2] and [5], e.g.,
physiologically analogous artificial neural networks were applied to control the
motion and the stiffness of anthropomorphic manipulation systems. However,
to the best of the authors knowledge, up to now only little effort was invested
to transfer such control techniques also to wearable exoskeletons. It is in the
authors point of view that a better integration between the interface and the
human can be achieved: Enhancing the information exchange between the two
systems. Reproducing in the machine the same behaviors and control strategies
that are found in the biological nervous system.

The first problem is not directly tackled in this work. However, it is worth
saying that the coupling between the human and the interface can be in general
achieved in two different ways: via direct connections with the nervous system
using surgery implanted electrodes , or with external connections furnished with
superficial electrodes (e.g. EEG, EMG) like in [7] or sensors (e.g. force trans-
ducers, temperature sensors etc.). This work proposes a control approach that
integrates classical and bio-inspired techniques to govern the forearm joint of a
wearable arm exoskeleton. In particular an artificial neural circuit, that partially
resembles the structure of the myotatic and inverse-myotatic segmental reflexes,
is used to modulate the joint stiffness, implement a safety mechanism that limits
the maximum interaction force, and modulate the actuator torque in order to
fastness the joint responses. The paper is structured as follows: Sect. 2 intro-
duces the fundamentals of the human segmental reflexes, Sect. 3 describes the
architecture of the control system, Sect. 4 presents the experimental results, and
finally Sect. 4 draws the conclusions.

2 The Human Segmental Reflexes

Reflexes are involuntary control mechanisms intended to regulate the behavior
of the human muscles and articulations [8]. Although they are able to operate
autonomously, their activity can be modulated by neurons located in the motor
and in the somatosensory cortex. Segmental reflex circuits have efferent connec-
tions that propagate signals toward the motoneurons, and afferent connections
(e.g Ia and Ib afferent) that receive the information from muscles and pain
receptors.
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There are mainly three kinds of segmental reflexes: the myotatic-reflex (or
stretch reflex), the inverse-myotatic reflex (or Golgi tendon organ reflex) and
the flexion-withdrawal reflex (or nociceptive reflex). In this work only the first
two reflexes are considered and therefore briefly introduced in the following.

The Myotatic Reflex coordinates agonist and antagonist muscles in or-
der to compensate for noise forces that alter the position of the joint. In the
neural circuit (Fig. 1 a) Ia afferent fibers (from primary spindles) form excita-
tory synapses with the α-motoneurons that innervate the synergic muscle. The
Ia afferents innervate also inhibitory interneurons whose axons project to γ-
motoneurons that control the antagonist muscle. When the muscle is stretched
Ia afferents are activated and this increases the firing rate of the correspond-
ing α-motoneuron that in turn produces inhibition of motoneurons supplying
antagonist muscle. The myotatic-reflex has an important role in regulating the
normal muscle tone. Gamma motoneurons control intrafusal muscle fibers; con-
traction of these increases the sensitivity of the stretch receptors. This turns into
a stronger response of the Ia afferent fibers to a muscle stretch. Gamma activity
can also be controlled by descending pathways originating from superior neural
centers.

Fig. 1. The natural circuit: a) Myotatic Reflex Circuit; b) Inverse Myotatic Reflex
Circuit

The Inverse Myotatic Reflex has the main function to avoid damages to
muscles and tendons when they are overloaded by unexpected forces. When the
muscle is rapidly stretched, the tension on the Golgi tendon organ increases, and
as well as the Ib afferent fiber activity. Ib afferent fibers, on their turn, innervate
interneurons that inhibit the α-motoneuron and the γ-motoneuron of the syner-
gic muscles (Fig. 1 b) and excite the γ-motoneuron that controls the antagonist
muscles. This coordinated control action decreases rapidly the stiffness of the
joint and lowers, in this way, also the load on tendons and articulations.
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3 The Bio-inspired Control Scheme

The system to be controlled is represented by a wearable exoskeleton intended
to operate remote robotic systems. The interface (see Picture 2) consists of
9DOFs, six of which are hydraulically actuated and two are only measured in
position. Thanks to the presence of three contact points with the limb, namely
shoulder, upper arm, and forearm, the interface is capable of displaying complex
force patterns to the user, and thus enhancing the interaction with the remote
environment(more details in [4]) .

Fig. 2. a) The VI-Bot exoskeleton developed at the Robotics Innovation Center, DFKI
Germany; b) CAD representation of the interface with indicated the position and the
kind of the available degrees of freedom

The present paper particularly deals with the control system that governs the
elbow and forearm joints of the exoskeleton (respectively joints 6 and 7 in Fig.
2b). The proposed control structure is based on a combination of bio-inspired
and classical control techniques. In comparison with [9] and [7] where only clas-
sical force control schemes are used to regulate the exoskeleton’s joints, our
control architecture, by integrating artificial neural circuits, has the potentiality
to better harmonize with the human nervous system enhancing in this way the
performances and the safety features of the interface. The actuation mechanism
is composed of a rotational DOF, in proximity of the user’s elbow, and a pris-
matic one located along the forearm (3). This specific configuration is intended
to compensate the misalignments between the exoskeleton joints and the user’s
articulations and therefore to avoid undesired interaction forces with the user
limb. For simplicity, the parallel kinematic structure here is depicted as a trian-
gle where the vertexes are represented by passive rotational joints. Specifically,
vertexes 1 and 2 identify the hydraulic actuator, and vertexes 2 and 3 constitute
the extremities of the pneumatic spring (pneumatic actuator). The contraction
of the pneumatic spring has the effect to shorten one edge of the triangle and
therefore to decrease the distance between the exoskeleton elbow joint and the
wrist connection. The hydraulic joint is controlled in torque via a classical PID
controller in anti-windup configuration (“Low level Torque Control“ Fig. 3). The
torque reference is settled by a force control module that implements different
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functions, like gravity compensation and force feedback generation. Furthermore
its value can be modulated by biosignals, e.g. EEG and EMG can be used to
predict/detect the arm motion and therefore to prepare/enhance the exoskeleton
movement. The neural circuit is composed by six neurons and is responsible for
actively controlling the stiffness of the pneumatic spring when interacting with
the user. If for some reason, the forearm performs an unexpected movement, a
safety mechanism is activated to avoid dangerous forces applied to the user’s
arm. The inputs of the neural circuit are the signals coming from the sensory
system of the exoskeleton, while the outputs the signals that effect the behavior
of the two actuators. Each neuron in the circuit is represented by a first order

Fig. 3. The implemented control strategy for the parallel forearm structure. Each
neuron has excitatory and/or inhibitory inputs represented in Eq. 1 by the variables
Iexck and Iinhk respectively.

differential equation (Eq. 1) which is based on Grossberg model (a detailed de-
scription of this model together with the conditions for the system stability can
be found in [6]).

T · Ṡj = (A− Sj) ·
n∑

k=1

Wk+ · Iexck − (B + Sj) ·
m∑

k=1

Wk− · Iinhk
− Sj · Fc (1)

In Eq. 1 Sj represents the potential of the neuron, T the time constant that
defines the dynamics of the neuron, Wk+,Wk− ∈ [−1, 1] the kth synapse that
modulates the corresponding input, Fc is a forgetting constant, A and B are
respectively the maximum and the minimum values for the potential, and Iexck
and Iinhk

are the kth excitatory and inhibitory inputs for the neuron, respectively.
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Two kinds of activation functions are used according to the function of the
neuron: a piecewise-linear function or a sigmoid function Eq. 2.

th(x) =

⎧⎪⎨
⎪⎩
x if −1 ≤ x ≤ 1

−1 if x < −1

1 if x > 1

, sig(x) =
1

1 + exp(a− bx)
(2)

The behavior of each neuron’s membrane is shaped by adjusting the time con-
stant T and the forgetting constant Fc. In particular the smaller is T the higher
is the frequency response of the neuron and vice versa. The parameters of the
sigmoid activation function a and b were calculated in order to shape the func-
tion in a way to increase or reduce the distance between the saturation zone and
the region where the input is highly attenuated.

In the bottom part of the artificial neural circuit (Fig. 3) the α-motoneuron is
receiving as excitatory input the force signal produced by the pneumatic spring,
which is calculated by the static model of the device (more details about the
model in [4]) and the measured contraction. The neuron also receives a secondary
inhibitory input signal that is originating from a threshold-neuron. This artificial
cell has the function to monitor the pressure P inside the pneumatic spring and
to increase rapidly its potential when this pressure overcomes a defined threshold.
In a normal working condition the α-motoneuron is effecting the reference torque
calculated by the “Force Control Module“ (which e.g. compensates for gravity,
calculates the proper force feedback, etc.), and its activity is directly related with
the level of compression of the pneumatic spring. This has the effect to enhance
the elbow movement according to the will of the user and therefore to mimic the
behavior of the human muscle-spindle in regulating the contraction of the muscle
according to an external load. In the upper part of the circuit the γ-motoneuron
activity regulates the stiffness of the pneumatic spring. It receives an excitatory
input from the “Stiffness Controller“ and an inhibitory input that is originating
from the threshold-neuron. When the force acting on the forearm is overcoming
a defined limit, the safety mechanism comes into play. The high activity of the
threshold-neuron has the effect to decrease the potential of both gamma and
alpha motoneurons and therefore to reduce the pressure in the pneumatic spring
and to inhibit the effect of torque modulation respectively. The memory-neuron
(in Fig. 3 identified by the letterM), that is located between the threshold-neuron
and the γ-motoneuron, has the function to prolong the interval this inhibition
persists. Furthermore, to avoid a rapid rise of the pressure when the external
force is removed from the pneumatic spring, a damper-neuron with long latency
time (in Fig. 3 identified by the letter D) is located between the memory-neuron
and the α-motoneuron.

3.1 Stiffness Adaptation Mechanism

The stiffness of the human muscular system is mainly regulated by the central
nervous system. According to the task at hand and the past experiences in per-
forming it, by learning, the brain is able to increase the movements’ smoothness
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and at the same time to decrease the muscle stiffness in order to improve the
energy efficiency [8]. In the proposed control scheme it is assumed that a mid-
dle level control strategy is defined to implement this regulation. However, an
additional adaptation mechanism was also implemented in the low level neural
circuit. More specifically the reference stiffness signal is modulated by a synapse
that changes in the range [0 1] (for the pneumatic spring 0 corresponds to zero
stiffness and 1 to the full stiffness set-point furnished by the middle level con-
troller) according to Eq. 3,

Ta · ẇs = η · (PH · PP ) · (1− ws)− Fc · ws (3)

where PH and PP are the position of the hydraulic actuator and the pneumatic
spring respectively, both normalized in the range [0 1] where zero means no
contraction for the pneumatic spring and complete extension for the hydraulic
actuator (elbow complete extended), Fc is a forgetting constant, and η is a learn-
ing constant that modulates the adaptation mechanism, whose value depends on
interaction force F between the exoskeleton and the forearm according to Eq. 4.

η =

{
0 if F ≤ FTh

η if F > FTh

(4)

Due to the proposed mechanism the synapse efficiency increases whenever a rapid
movement occurs that makes the interaction force to overcome the threshold FTh

and at the same time a correlation exists between the movement of the pneumatic
spring and the hydraulic actuator. This, when the reference stiffness is not zero,
has the effect to increase both the pressure in the pneumatic-spring, in order
to make the joint more stiff, and the excitation of the α-motoneuron due to
the same amount of spring compression. In other words, this gives the joint a
lower stiffness, lower precision, and lower reactivity during slow movements, and
a high stiffness, precision and reactivity in the opposite case.

3.2 The Artificial Control Circuit and Analogies with Is Natural
Counterpart

In the natural alpha-gamma loop (Fig. 1) the gamma motoneuron sets an equi-
librium position for the muscle-spindle. Due to the fact that the external fibers
of the muscle-spindle are connected with the muscle’s fibers, a change in the load
will effect both the muscle and muscle-spindle lengths. This in turns will alter
the activity of the α-motoneuron that will change the contraction of the muscle
in order to restore the original equilibrium position.

In our architecture the function of the spindle is replaced by a position sensor
that measures the length of the pneumatic spring and effects the force in the
hydraulic actuator; therefore we have a serial configuration instead of a parallel
one. The sensor that measures the operational pressure of the pneumatic spring
can be related instead to the Golgi tendon organ. This receptor is located in
the terminal part of the muscle, and detects the force the muscle applies via the
tendon to the bone.



124 M. Folgheraiter et al.

Furthermore, the artificial synapse that brings the reference stiffness to the
γ-motoneuron is adaptive. This somehow mimics the behavior that in the human
reflex contracts the muscle spindle to increase or decrease its sensitivity when
discrepancies exist between the intended and actual muscle length.

4 Experimental Results

The control architecture was first implemented and tested in Matlab-Simulink
environment, afterwards compiled using the RapidSTM32 tool-chain, and fi-
nally flashed on a dedicated electronic board equipped with an ARM Cortex
STM32f103VEmicro-controller. The integration of the differential equations rep-
resenting each neuron was carried out in a discrete way with a time step of 10ms
which is a good trade-off between precision and computational workload.

Table 1 reports the chosen parameters for the neurons present in the circuit.
Note that the alpha and gamma motoneurons are characterized by smaller time
constants T allowing these cells to follow the inputs with a faster dynamics than
the other neurons. The M-neuron, in comparisons with the other neurons, has
one-order smaller value for the forgetting constant that lets the artificial cell to
keep its potential for a longer time and therefore ”to remember” its input values.

Table 1. The principal parameters of the neurons present in the circuit. The neurons
that miss the constants a and b have a piecewise-linear activation function instead of
sigmoidal one. Wi+ and Wi− stand for excitatory and inhibitory synapses respectively.

Neuron T Fc a b W1+ W2−
threshold-neuron 0.1 0.1 546 678 0.6 -
α-motoneuron 0.01 0.1 - - 1 1
γ-motoneuron 0.01 0.1 - - 0.6 1
M-neuron 0.1 0.01 341 678 1 -
D-neuron 0.1 0.1 - - 0.9 -

The behavior of the control system was tested directly on the elbow and
forearm joints of the exoskeleton. In order to prove the efficacy of the safety
mechanism an external force was suddenly applied to the pneumatic spring and
the output of the α-motoneuron monitored. Such case represents an exceptional
operative condition for the haptic interface where the compression is generated
by the misalignment between the user’s articulation and the exoskeleton joints.
All the sensory signals were normalized in the range [0 1], this to be compati-
ble with the neurons’ inputs. Figure 4a (first graph) reports the change of the
pressure (9th second) in the pneumatic spring due to the force applied.

How it is possible to notice, when the pressure overcomes a defined threshold,
the threshold-neuron increases rapidly its activity and as a consequence also the
memory-neuron and the damper-neuron potentials increase. Due to the fact that
threshold-neuron output inhibits the γ-motoneuron, the pressure in the pneu-
matic spring decreases along with the interaction force between the exoskeleton
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Fig. 4. a) How the pressure increase activates the safety mechanism; b) How the inhi-
bition mechanism modulates the effect of the α-motoneuron on the joint torque

and the user limb. The same inhibition signal is reaching also the α-motoneuron
thanks to the damper-neuron (Fig. 4b). This is needed to decrease the influ-
ence that the motoneuron has on the reference torque of the hydraulic actuator
and therefore to avoid that an unpredictable movement of the pneumatic spring
generates big forces on the elbow joint of the human limb.

The plots in Fig. 5a show how, in a normal working condition, the α-
motoneuron activity has the effect to increase the reactivity of the joint. How
it is possible to notice, when the α-motoneuron is not inhibited the velocity in
average is increased of 30%.

The synapse modulation, that allows the regulation of the joint’s stiffness, is
presented in Fig. 5b. The parameters chosen for Eq. 3 were Ta = 0.1, η = 0.1,
Fc = 0.005, and FTh = 0.2. The forgetting constant was chosen twenty times
smaller than the learning constant to stabilize the behavior and to limit the
energy consumption needed to change the stiffness.

Fig. 5. a) Increasing of the joint’s velocity (first plot, dashed line) due to the influence
of the α-motoneuron (second plot); b) Synapse adaptation (third plot) due to the
correlation between the position of the pneumatic spring (first plot dashed line) and
the hydraulic actuator (first plot continuous line)
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5 Conclusions

In this paper an hybrid control system that combines bio-inspired and classi-
cal control techniques is presented. In particular a neural circuit based on the
architecture of the human segmental reflexed is integrated to influence directly
the control action of a torque-regulated hydraulic joint. This special architecture
allows to integrate more easily biosignals, and aims at improving the integration
between the machine and the human. The neural controller, thanks to the pres-
ence of specific threshold-neurons, is able to detect when the interaction force
between the user and the interfaces is overcoming dangerous values, and by an
inhibition mechanism to lover the pressure inside the pneumatic spring. The dis-
placement of this actuation element, in normal working condition, has also the
effect to speed up the joint motion, improving in this way the user experience
in interacting with the exoskeleton. Finally an adaptation mechanism was intro-
duce to modulate the joint stiffness and to adjust the behavior of the interface
according to the specific motion and usage.
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Abstract. Weakly electric fish can generate an electric field with their
electric organ (EO). Through 14,000 electroreceptors distributed on their
skin, they can sense the electric field perturbation induced by a nearby
prey or object. Many researchers have studied to reveal the mechanism
of electrolocalization. Simulations are typically based on an analytical
model which represents the EO as a set of charge, or a model based on
finite-element method (FEM) in a 2-dimensional space. In this paper,
we show a 3-dimensional FEM model to test the electric perturbation of
various shapes of objects. Using this model, we show that a measure of
caudal relative slope or tail-side half width at half maximum can estimate
the lateral distance of a target object regardless of its size, shape and
rostrocaudal position.

Keywords: electrolocalization, weakly electric fish, finite element method,
relative slope, THWHM.

1 Introduction

Weakly electric fish are able to detect nearby objects in the dark where visual
cues are absent. They have a special electric organ which can produce electric
potential which are called eletric organ discharge (EOD). Weakly electric fish
are able to measure the perturbation of an electric field caused by an object or a
prey. In order to understand the mechanism of how the electric fish can sense a
target object, an analysis of electric discharge and its effect with a target object
has been done. von der Emde et al. [8] did experiments with a pulse type fish,
Gnathonemus petersii, and has proposed a measure called ‘slope to amplitude
ratio’ that an electric fish might use to measure the distance of a near by object
[8].

Chen et al. [2] showed that the electric field of weakly electric fish could be
modeled with distributed charges. Their model of electric field is close to real
biological data. Electric field perturbation induced by a sphere object near the
electric fish could also be calculated by an analytical equation derived by Rasnow
[4]. The analytic equation can explain many ideas related to the electrolocation
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Fig. 1. FEMmodel (a) electric field generated by an electric fish; the contour lines repre-
sent the equipotential lines of the electric field generated by the electric fish (b) a typical
FEM model designed in 2-dimension slave; there will be 4 resistors surrounding each el-
ement (c) the FEM model designed in 3-dimension space; this is our current model

process of weakly electric fish [5–7]. Through the theoretical model, it is reported
that even tail-bending movements can be involved with electrolocation of a target
object [5]. However, the analytic model of electric field has its limitation on
modelling the field perturbation of multiple objects [7].

The analytical model [2, 4–7] can be applied to a single sphere object. It also
assumes that the electric field passing through a target object is constant [4],
and it has a simple model over the relative resistance on the internal body of
a fish, the skin, and the water. The analytic model can only be applied to a
sphere object, not cubes or other shapes of objects. As an alternative, a finite
element method can be tested over various shapes of objects or multiple objects.
A 2-dimensional FEM model has been used to find the electrosensing property
of weakly electric fish [3], but it is not a realistic model for electric fish.
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In this paper, we test a 3-dimensional FEMmodel of electrolocation procedure
of weakly electric fish. Our model has an advantage over the previous analytical
models; the electric field perturbation can be simulated even for an arbitrary
shape of target objects. As an electrolocation measure, the relative slope or full-
width at half-maximum (FWHM) can be used [1, 2, 6, 7]. We found that the
caudal slope or tail-side half-width at half-maximum (THWHM) in an electric
image provides a cue to estimate the lateral distance of a target object. In this
paper, we will see how much those measures will be robust for sphere or cube
objects at different distances with the 3-dimensional FEM model.

2 Method

2.1 3-Dimensional Model of Electric Fish

The electric organ can be modeled as a set of distributed poles. [2, 6, 7].

V (−→x ) =
m∑
i=1

q/m∣∣−→x −−→x i
p

∣∣ − q

|−→x −−→x n|
(1)

where −→x indicates an arbitrary point in space represented as a vector, q is the
normalization constant of point charge (mV cm), and m is the number of poles
(m=155). In our FEM model, a mesh of resistors are given as shown in Fig 1(b)-
(c). The distributed poles (which represent the electric organ) are represented in
the FEM model as a series of elements which have constant voltage values (volt-
age source). The size of the water tank used for simulation is 40cm×20cm×20cm,
where each size of each gridpoint is 1mm×1mm×1mm (total 16,000,000 elements
are available) .

Using the fact that the total amount of the current that comes in or out from
one element is zero by Kirchhoff’s law, a linear equation is given for each element.
To measure the electric field perturbation caused by an object, the base potential
on the skin is initially calculated without an object, which is only influenced by
electric poles. Then the object perturbation voltage is compared with the base
potential.

By using a set of equations assigned to each element in the FEM model, the
electric field perturbation can be measured at the electroreceptors on the skin.
The transdermal voltage difference forms an electric image.

2.2 Relative Slope and THWHM

Electrolocalization procedure estimates the rostrocaudal distance and the lateral
distance a target object near the electric fish. Many researchers have suggested
electrolocation measures. von der Emde et al. [8] proposed a slope-to-amplitude
ratio in an electric image, and Chen et al. tested a full-width at half-maximum
for the lateral distance [2].
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Fig. 2. Measure used in electric images (a) FWHM and THWHM (b) relative slope
(rostal and caudal side)
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Fig. 3. Transdermal voltages; spherical object diameter: 20mm, lateral distance: 30mm,
rostrocaudal distance: 30, 45, 60, 75mm (a) simulation with analytical model [7] (b)
simulation with the 3-dimensional FEM model

The slope-to-amplitude ratio can be interpreted as the maximum slope of a
normalized electric image which is also called relative slope. von der Emde et al.
used the rostral side of the electric image for the relative slope (in other words,
the image near the head). Sim and Kim (2012) showed that the caudal slope
provides a cue to estimate the lateral distance, regardless of the rostrocaudal
position of a target object [7]. In this paper, we will test a new style of measure
THWHM, tail-side half width at half maximum (caudal slope) and the caudal
relative slope in an electric image. THWHM checks the half-width of the caudal
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Fig. 4. Simulation results with cubes and spheres (a)/(c) is the electric image for the
case of cube/sphere. (b)/(d) shows the normalized electric image where the rostro-
caudal location, when peak value occurs, is set to zero. While the rostal side of the
slopes vary quite severely, the caudal side shows a similar pattern. This means that the
relative slope or THWHM on the caudal side may be used as a measure to estimate
the lateral distance, while the relative slope on the rotral side will probably not.

side at half-maximum of an electric image, rather than the full width – see Fig. 2.
The caudal slope measures the relative slope at caudal side of the electric
image.

3 Experiments

We first tested two methods, analytical model [7] and the FEM model over a
sphere object to validate the FEM model. As expected, the two approaches have
the same style of electric images over varying positions of a target object as
shown in Fig. 3.
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Fig. 5. Comparison cube and sphere with various rostrocaudal distance (a) relative slope
for metal cubes and spheres; even as the rostrocaudal distance of the objects vary, the
relative slopes have relatively small transitions (b) THWHM with the same image
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Fig. 6. A cube or sphere simulated under a fixed rostraocaudal distance; cube is 2cm
in diameter with fixed rostrocaudal distance, 4.5cm. As the cube’s (or sphere’s) lateral
distance varied from 3cm to 6cm (or 3cm to 4cm) with a 0.5cm interval (a) the relative
slope comparison (b) the THWHM comparison.

For our simulation experiments, we placed metal cubes or spheres at a fixed
lateral distance and various rostrocaudal distances, and the electric image is
shown in Fig. 4. As the object gets closer to the tail, the peak value of electric
images increase. This is because the intensity of the electric field is higher in the
region near the tail.

Unlike the analytical model [2, 7], our FEM model can simulate the electric
image for cube objects. The general trend of electric images for cubes and spheres
are similar, but it seems that cube objects make the electric field distorted more
severely. We normalized the electric images into the scale [0,1], and we observed
much variation on the rostral side of the image. In contrast, the caudal side
of the normalized electric image could be a good measure for lateral distance
estimation.
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Fig. 7. Comparison of electric images with varying angles and varying distances of
cubes. Spheres were also simulated at the same lateral distances for comparison (a,b)
figures which represents the voltage perturbation due to a nearby cube. The bar on the
left represents the electric fish head region. The cube is rotated with 0 and 45 degrees.
(c) normalized electric images of a cube with varying rotation angles (d) the relative
slope (on the right side of the image) for cubes varying lateral distance and rotation
angle. For each lateral distance(3cm, 4.5cm), a sphere was placed for simulation.

In Fig. 5, the comparison of electric images for cubes and spheres is shown.
Fig. 5(a) shows the absolute caudal slope and the slopes of cube objects is slightly
larger than those of spheres. The relative slope has a little change for variation
of rostrocaudal positions of a target object. Fig. 5(b) shows the results with the
THWHM measure. A little fluctuation of the measure can be found with the
measure.
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Fig. 8. Electric images and relative slope for cubes with varying sizes and varying
angles (the lateral distance and rostrocaudal distance of the objects were fixed to
4.5cm, but the cube sizes and rotational angles varied) (a) normalized electric images
(only with rotation angle 0 and 45 degrees and cube size 0.5cm, 1cm and 2cm; total 6
cases displayed) (b) relative slope for all cases (12 cases displayed)

As an object gets closer to the electric fish, the electric image has a sharper
curve which means that the relative slope increases and the THWHM decreases.
Interestingly cubes and spheres have different values at the electrolocation mea-
sures. The electric fish may perceive a sphere to be a little further away compared
to the same sized cube, since the relative slope of a cube at a fixed lateral dis-
tance is larger than that of a sphere. This result is consistent with the biological
experiment result by von der Emde et al.[8].

We check how the electric fish senses cubes at different angles. We used a cube
whose side length is 2cm, located at the rostrocaudal position 4.5cm from the
head, and at varying lateral distances, 3cm and 4.5cm . We tested the rotation
angles, 0, 22.5, 45, 67.5 degrees. For comparison, a sphere for each lateral distance
was also simulated. In Fig. 7(a)-(b), the voltage perturbation due to the cube
object is shown (at a lateral distance of 4.5cm). The electric images depending on
rotation angles of cubes are displayed in Fig. 7(c). The rostral side images have
relatively more variation. The caudal side of the electric images are considered
for the lateral distance estimation. Fig. 7(d) shows the results with the caudal
relative slope. The relative slope of the spheres were given as a reference. From
this result, the rotating angle of a cube influences the electric image pattern.
However, the overall pattern clearly shows that the closer the object is, the
larger the relative slope becomes, regardless of the shape or rotation angle. The
fluctuation of relative slope is larger when the object is closer to the electric fish.

Fig. 8 shows another simulation results with varying sizes of cubes. The cube
width is either 0.5cm, 1cm or 2cm. Fig. 8(a) is result of the normalized electric
images, shows the relative slopes with varying sizes of cubes or rotating angles.
The relative slope has only a small change for rotating angles and size variations
of cubes at a far distance.



A Finite Element Method of Electric Image in Weakly Electric Fish 135

4 Conclusion

Our 3-dimensional FEM model shows similar results with the analytical model
[7], and we can test various object shapes or multiple objects. When we inves-
tigated the electric images of cubes or spheres, we confirm that caudal relative
slope can be a cue for the lateral distance of a target object, regardless of the
rostrocaudal position, as Sim and Kim [7] suggested the measure for a sphere ob-
ject. In our simulation experiments, the caudal relative slope or THWHM gives
an approximate estimation of lateral distance even for a cube. The rotation angle
of cubes might influence the electric field perturbation, but it seems that cubes
at relatively large distances may have a minor effect on the perturbation.

Here, we have simulated the electric image for cubes and spheres at varying
distances. To validate our FEM model, physical experiments could be done in
the future. Our FEM model can consider the relative resistivity of fish’s internal
body, fish skin, and water, and so this model has great potential of application.
In this paper, we tested a single object, but we can test multiple objects and
their interference in the electric image for the future works. It might even be
possible to accommodate skin capacitance or object capacitance into the model
and measure phase shift of EOD waveform.We still need further work to improve
our model. As this model could become more accurate, it might give a crucial
key to understanding the mechanism of the electrolocalization. This model could
also help one to develop an artificial sensory system, since it could predict the
electric potential field in more realistic situations.
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Abstract. In the present study, we propose a model of multimodal place
cells merging visual and proprioceptive primitives. First we will briefly
present our previous sensory-motor architecture, highlighting limitations
of a visual-only based system. Then we will introduce a new model of
proprioceptive localization, giving rise to the so-called grid cells, wich
are congruent with neurobiological studies made on rodent.

Finally we will show how a simple conditionning rule between both
modalities can outperform visual-only driven models by producing robust
multimodal place cells. Experiments show that this model enhances robot
localization and also allows to solve some benchmark problems for real
life robotics applications.

Keywords: Grid cells, Bio-inspired robotics, Multimodal integration,
Sensory-motor navigation & mapping, Neural networks.

1 Introduction

Ethological studies of animal navigation show that a wide variety of sensory
modalities can be used by animals to navigate and self localize in an unknown and
complex environment. Since the startling discovery by OKeefe and Dostrovsky
[1] of the spatial correlates of neural activity in the hippocampal system (HS)
of rodents, some work has been done to investigate the neural bases of animals
spatial learning (see [2] for a short review). Originally found in HS, place cells
are pyramidal neurons exhibiting high firing rates at a particular location in
the environment (place field). Cells with similar properties but with larger place
field have also been found in the Enthorinal Cortex (EC). As firing of place cells
persists in the dark it has also been suggested that other senses (proprioception,
touch, smell) might contribute as well [3–8].

Later in 2005, Hafting and Moser discorvered grid cells in the dorso-lateral
band of the medial EC (dMEC) [9]. These cells present spatial firing fields form-
ing regular triangle-pattern (grid) that tiled the environment. They could be the
basis of a cognitive map of Euclidean space. Each grid is defined by 3 parameters:
frequency (distance between two vertex), phase (spatial shift) and orientation.
Grid cell activity does not require visual input, since it remains unchanged in
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absence of any visual cue (dark) even if the bumps of activity tend to spread
due to accumulation of errors by the integration process [9].

Three main classes of models have been proposed: recurrent network models
based on continuous attractor dynamics [10, 11], independent-neuron models
based on oscillatory interference [12] and models using a residue number system
[13].

Following our previous work [14] based on a residue number model, we first
present a robotic implementation of this model able to exhibit grid cells like
firing pattern. Results underline the key role played by visual inputs. We show
that without visual recalibration, grid cells firing seems scrambled, according to
biological results [9]. Next we present a model, based on a pavlovian conditioning
rule, that merges signals coming from visual cells and grid cells into multimodal
place cells. Experiments on a real robot show how grid cells information can be
enough to self-localize in the dark on short distances. We also show how grid
cells activity help to greatly reduce visual ambiguity, giving robust multimodal
place fields. Finally, we will briefly discuss how this model behaves when the
robot is kidnapped and shifted to another location.

2 Modeling Place Cells from Visual Information

In previous works, we developped a model of the hippocampus in order to obtain
visual place cells (VPCs) [15] that allowed controlling mobile robots for visual
navigation tasks [16, 17]. The embedded pan-tilt camera allows the capture of
several images (actually 15) corresponding to a 360 degrees panorama. A gradient
image convolved with a DoG (difference of gaussian) filter allows to highlight a
set of salient points in the scene (curvature points at a low resolution). A log
polar transform of a small circular image centered on each focus point (local
view of 16*16 pixels) is computed in order to improve the pattern recognition
against small rotations and scale variations.

Then, a neural network learns place cells that code information about a con-
stellation of landmarks in the scene (5 landmarks per images) (figure 1). Activi-
ties of the different place cells depend on the recognition level of landmarks. Ro-
bustness comes from the large number of local views extracted (75 per panorama)
and the only use of a competition between place cells (see [18] for detailed pa-
rameters). In our model, local views correspond to the ”what” information coded
in the perirhinal cortex or in other areas of the ventral visual pathway of the
rat temporal cortex [19]. The absolute position of these local views (the ”where”
information) is provided by the parietal cortex through the parahippocampal
region. The merging of ”what” and ”where” information may be performed in
the superficial layer of the enthorinal cortex or in the postrhinal cortex [20, 21].

A neural network learns to associate a particular PCs with an action (a di-
rection to follow in our case). This sensory-motor architecture is named Per-Ac
[22] and allows the robot to learn simple but robust behaviors.

Even if our architecture has been succesfully tested in small sized environ-
ments (typically one room), a visual-only based mechanism shows limitations
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Fig. 1. Sensorimotor model relying on vision. The gradient image is convolved with a
difference of gaussian filter. Local maxima of the resulting image correspond to points
of interest on which the system focuses on to extract local views. A Place Cell (PC)
learns to recognize a specific landmarks-azitmuths constellation. An action is associated
with this PC. This association is learned by a least mean square algorithm (LMS), after
what the system is able to move in the learned direction when the associated PC wins.

when trying to scale to larger and more complex ones (multi-room, outdoors).
First the large number of PCs needed to cover this kind of environment in-
troduces a computational problem that highly decreases the robustness of the
localization. Then a lot of mistakes are due to the ambiguous nature of the
visual modality. Indeed the activity of a PC can highly responds for different
locations with identical visual panorama (corridor for instance). We propose to
overcome these issues by adding a bio-inspired localization mechanism based on
proprioception, following our hypothesis of the way grid cells work.

3 Modeling Grid Cells from Extra Hippocampal Path
Integration

3.1 A Plausible Model of Grid Cells

Here we present a model for generating grid cells from path integration. Our
simplest model of grid cells (GCs) is based on various modulo’s operator applied
on path integration [14] (figure 2). The path integrator is supposed to be stored
outside the hippocampal system. The activity Di of a neuron belonging the path
integration field (associated with direction θi) is discretized over a new field of
neurons Ei

j = round(Di.NE

Dmax
) where Dmax is the maximum value of the distance

that can be computed by the neural field, NE is the number of neurons on each
field used to discretized each analog activity on the path integration field. Then
a modulo operator is used to compress the field Ei

j by projection.

Mn
k =

{
1 if k = ArgMax(Ej) mod λn

0 otherwise
(1)

with λn the value of the modulo used to build grid n.
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Fig. 2. Linear speed and absolute orientation are used to characterize movement unit
and so generate global path integration on a neural field. A recalibration mechanism
associate a VPC with the argmax of the neural field (distance and orientation are
stored). It allows the system to limit cumulative error on this field when it later well
recognizes the corresponding VPC. Path integration field is then used to build grid cell
activity without any cartesian map. Activities of randomly chosen pairs of neurons Di

in that field are discretized on other fields Ej
i . Those fields are compressed by simple

modulo projections Mn
k . The conjonction of 2 codes of 2 projections is sufficient to

obtain grid cells.

A recalibration mechanism, using a Widrow and Hoff learning rule [24, 26], as-
sociate each new VPC with the current path integration field activity (one-shot
learning), so that it can be recalibrated when that VPC is later well recog-
nized, like [10, 27–30] (actually when the winning cell activity reach an absolute
threshold of 0.9 and a difference relative to VPCs mean activity of 0.4).

3.2 Recreating Grid Cells Activity on 3 Experiments with a Real
Robot

Typical experiments made on rodent consist in recording the activity of grid
cells in dMEC while the rat (around 20cm large) freely moves in a circular
enclosure (2m of diameter) during 30 minutes. Our experiments run in almost
similar conditions since a real robot (around 40cm large) randomly moves in an
hexagonal park (4m of diameter) during the same period of time. Position and
simulated grid cells are simultaneously recorded. Ultrasound sensors are used by
the robot to avoid obstacles and stay inside the hexagonal playground.

In a first experiment, no recalibration is allowed. We note a fast drift of
grid cells activity induced by cumulative errors on path integration. All cells
present a blurred activity without grid-like pattern because of a 30 minutes
errors cumulation (figure 3).

In a second experiment, a VPC is learned at the center of the hexagon and
visual calibration is allowed. We obtain coherent grid-like pattern but error re-
mains too high to correctly visualize small grids. Error’s amplitude is directly
linked with the recalibration area (figure 3).

To avoid this problem, we made a third experiment with a touch-like reset
cue at the corner of 2 walls. The origin of the path integration is set in this
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Fig. 3. Experiments made with a real robot (around 40cm large) randomly moving in
an hexagonal enclosure (4m of diameter) during 30 minutes (trajectory in black, neural
activity in red). Left : Experimental setup: for the cue-based calibration experiment,
path integration is set in one corner of the park and an attraction field is learned
around it allowing the robot to autonomously go recalibrate itself every minute.Right :
Results of the third experiment show coherent regular hexagonal pattern of different
phases and modulos. Those patterns are quite similar to thus obtained with rodents.

corner and a visual attraction field is learned around it by a few sensory-motor
associations. It allows the robot to autonomously converges into the reset area
by visual recognition (homing behavior). The reset cue is a red paper sticked on
the floor and a color detector is used by the robot to perceive this goal. A simple
counter triggers a periodic drive allowing an homing behavior every minute. The
drive is reset each time the goal is reached, allowing the robot to switch back
to a random exploration strategy. This solution avoids errors accumulation over
more than one minute and so gives us the precision needed to display small grid.
But it introduces a static error directly linked with the size of the reset field.

Results show well-defined pattern for the different modulo factors. Those grid
activities are congruentwith neurobiological records in rodents EC [9]. Grid shared
the same spacing for the same modulo and the same orientation for the same dis-
cretization factor. Nevertheless, each cell produces a grid of different phase.

4 Building Robust Multimodal Place Cells from Visual
and Grid Cells

4.1 A Pavlovian Model of Merging

In this section, we propose a simple merging mechanism which can take ad-
vantage of allothetic and idiothetic information. This mechanism pops up the
synergy between both modalities.

There are many ways of merging different information sources, and it is known
as a difficult problem, especially when the nature of the sources are highly dif-
ferent. Sensory modalities must be recoded into a common format before they
can be combined. The task is described as the recoding problem by Pouget and
Deneve [23].
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Our model is based on the learning of associations between VPCs and the
whole GCs pattern. The system associates a particular GCs state (conditional
stimulus) with the current winning VPC (inconditional stimulus) by a classical
conditionning rule [24, 26], as for the recalibration mechanism (one-shot learn-
ing), like [27]. We test it with a normalized least mean square algorithm (NLMS)
[25] trying to predict the visual state from GCs activities. A simple weighted sum
allows the merging of VPCs and odometric place cells from GCs.

The activity of a multimodal place cell MPCk is given by a simple linear
combination of V PC and PredV PC activities:

MPCk = α.V PCk + (1− α).P redV PCk

with V PCk the activity of the corresponding visual place cell, PredV PCk the
activity of the corresponding place cell predicted by the grids (NLMS output),
α ε [0;1] a ponderation factor (0.5 in our case) and k ε [0;K] the indice of the
cell.

The activity of a place cell predicted by grid cells is given by:

PredV PCk =
∑K−1

k=0 wk.Gk

where wk is the weight of the synapse coming from the corresponding grid cell
Gk.

4.2 Results Obtained during a Multi-room Indoors Experiment

In order to test the robustness and the generalization capabilities of our architec-
ture, we made several indoor navigation experiments in a 25x15m environment
(our laboratory). For analysis purpose, we supervized the robot learning to rec-
ognize 19 places (each 1.5m) on a multi-room trajectory. The trajectory starts in
one room, pass through a corridor and ends in a second room (mostly similar to
the first one). Next, the robot followed 5 different parallel trajectories, imposed
by a remote control. Visual recalibration is allowed (calibration driven by well
recognized VPCs only, no periodic homing behavior).

Those five trajectories permit to cover a large space near the learned path, in
order to test generalization capability (figure 4).

The visual recognition system allows great generalization capability (large
place field) but present small perception mistakes due to cue redundancy. On
contrary, the proprioceptive recognition system presents well-defined place fields
without any ambiguity, but is subject to the classical cumulative error of odom-
etry. This induces a very precise discrimination for small scales but a shifted lo-
calization for larger one. Results show interesting emergent characteristics since
the merging mechanism keep a correct localization even if errors simultaneously
happen on the 2 modalities. Merging modalities hightlights contingencies and
reduces non-contingent activities. Two low-level activities at the same time are
more coherent than a singural high-leveled one.

Finally, MPCs are robust to ambiguity and keep large generalization prop-
erties. To show the deterministic nature of the results, we repeated the experi-
ment a dozen of times in a changing environment (ambiant light and furnitures
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Fig. 4. Long range navigation in an indoor environment: A - Experimental setup: The
robot learns 19 regularly-spaced places (each 1.5m), starting from a room, passing
through a corridor and ending on a second room. B - Visual recognition obtained
for 5 different trajectories. Each color is associated to one visual place cell. Results
show great generalization capabilities but present ambiguities (dotted circles. Numbers
correspond to perceived places.). C - Grid recognition for the same trajectories. Grid
fields are smaller but without any ambiguities. A place is not recognized if the robot is
too far away from the learned place. D - Multimodal recognition obtained by merging
visual and grid place cells. The synergy of both modalities shows well defined areas
even if the robot is far from the learned trajectory.

changing, persons moving). We also studied what happen when the robot is
lifted, blindfolded, then transported to another place. If this place is already
known and highly recognized, the robot recalibrates its path integration field
to a previously learned value. We made several kidnapping events in order to
test the robustness of this mechanism. Each times, the robot typically runs 5
meters before to recalibrate its odometry. Thanks to the merging mechanism,
the perceived location never stays wrong for more than 2 meters. This recalibra-
tion mechanism allows the robot to always keep consistancy between vision and
proprioception and never getting lost near learned locations.

4.3 Topology Matters : On the Need for Convolving Grid Cells

In our model, all grids present binary fields (activated or not) so that the pattern
generated by the conjunction of 3 grids is a three-steps stair shaped. Moreover
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Fig. 5. Example of the diffusion mechanism used to generates topology. A - Activity
of motor place cell 6 from binary grid cells, in space and time on a multi-room trajec-
tory (before to be convolved). The place field is a thin three-steps stair shaped. B -
Activity of motor place cell 6 from convolved grid cells. The convolution act as a dif-
fusion mechanism spreading activity on neighboring grid cells. Motor place cells show
gaussian shaped activity allowing generalization capabilities. C - Results obtained for
winning motor place cells from binary grid cells (no diffusion) during the previous in-
door experiment. It shows a lot of errors that can be easily removed by adding the
diffusion mechanism.

the 3 differents modulo factors are relatively prime so that the activity of the
conjunction pattern is often completely different of the previous one for only few
movements. Narrow place cells are treated like there is no proximity distance
between them. Each grid cell is considered as an orthogonal input so that grid
networks doesn’t benefit from any topology. That is the reason why we propose to
convolve each grid network with a pyramidal-shaped mask, giving to the system
more generalization capabilities. This technics allows to spread field activities
over neighboring cells by using a natural torus topology [11], and so generates
continuity. In return, it looses the ability to distinguish between 2 near places
if the distance between them is smaller than the mask size (figure 5). We used
this convolution method in the multi-room experiment presented in section 4.2.
Without that convolution, the system can’t work.

Such method confront us with its biological plausibility since experiments
made on rodent only show binary activities. It questions about how is it possible
for mammals to correctly navigate using grid cells binary fields. We argue that
the topology needed can naturally emerge from the large number of grid cells in
rodent’s brain.

5 Discussion

In this incremental design approach, one objective of our robotic experiments is
to show the limitations of models (proof by failure). Hence, highligting the need
to take into account new cerebral structures or interactions between them allows
us to propose a more coherent model for a better understanding of explored brain
structures.

Our experiments emphasized some issues while trying to scale our architec-
tures to larger environment: ambiguities coming from the visual modality have
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been identified as the major problem. Consequently, we extended our architec-
ture by modelling grid cells networks and we presented a robotic experiment that
can account for their firing properties. Then, we present a simple merging mech-
anism exploiting these grid cells to desambiguate visual perception and generate
robust multimodal place cells. We show that it succesfully overcome the per-
ception ambiguity problem and it stay robust even if the system is blindfolded
or kidnapped, then lifted to another place. Moreover, results show an emergent
characteristic hightlighting contingency and reducing singular activities since the
merging mechanism keeps a coherent localization even if errors simultaneously
happen on both modalities.

We also underline the need to spread grid cells binary activity to neighboring
cells to create a topology inducing interesting generalization properties. It ques-
tions about the biological plausibility of such ad-hoc method. We claim that such
topology can naturally emerge from the large number of grid cells in rodent’s
brain.

Our current work focuses on switching navigation strategies according to an
emotional metacontroller based on bayesian inferences. In the same time, we
are performing long range (several kilometers) outdoor navigation experiments
based on these models.

Acknowledgment. We would like to thank AUTO-EVAL and the NEUROBOT
French ANR project.
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Abstract. Animals show remarkable rich motion skills which are still
far from realizable with robots. Inspired by the neural circuits which
generate rhythmic motion patterns in the spinal cord of all vertebrates,
one main research direction points towards the use of central pattern
generators in robots. On of the key advantages of this, is that the dimen-
sionality of the control problem is reduced. In this work we investigate
this further by introducing a multi-timescale control hierarchy with at
its core a hierarchy of recurrent neural networks. By means of some
robot experiments, we demonstrate that this hierarchy can embed any
rhythmic motor signal by imitation learning. Furthermore, the proposed
hierarchy allows the tracking of several high level motion properties (e.g.:
amplitude and offset), which are usually observed at a slower rate than
the generated motion. Although these experiments are preliminary, the
results are promising and have the potential to open the door for rich
motor skills and advanced control.

Keywords: Locomotion Control Hierarchy, Adaptive control, Feedback
control, Central Pattern Generator, Reservoir computing (RC).

1 Introduction

Animals show remarkable rich motion skills, they are able to run and walk over
uneven and difficult terrain without the need to think about breathing, muscle
control or low level sensory feedback processing. Instead, they think on a more
high level such as which obstacles are approaching and how they can avoid them.

According to [1], many aspects of brain functions can be explained by a hi-
erarchy of temporal scales at which representations of the environment evolve.
The higher level encodes slower contextual changes in the environment or body
while at the lower level faster variations due to sensory processing are encoded.

Other biological research suggests that specialized neural circuits, so called
central pattern generators (CPGs), located in the spinal cord are responsible for
generating rhythmic activations needed for body function including the contrac-
tions of a heart or lungs and control of muscles for walking [2]. Implying that
some aspects of brain functions are offloaded to regions outside of the brain. A
lot these findings are based on the study of the locomotion of a lamprey which is
a primitive fish (in [3] an extensive review is presented). For instance, researchers
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discovered [4] after extracting and isolating the spinal cord from the body, that
the spinal cord, when excited with electrical stimulations, will produce fictive
locomotion. This indicates that sensory information is not needed to generate
such rhythmic patterns. However, it plays a crucial role in shaping the generated
pattern to keep the coordination between the CPGs and the body. In [5] they
demonstrated that a mechanically driven treadmill can induce a normal looking
walking gait in a deprecated cat.

These findings suggest that locomotion can be represented by a hierarchy of
modules which interact with each other on different timescales which simplifies
high level control and at the same time allows fast action against perturbations.
For example, slight irregularities in the terrain are compensated very fast by
the morphology of the legs without the need of the brain to intervene. Larger
irregularities are handled by a slower reflex motion of which the runner becomes
finally conscious at the highest but slowest contextual level.

Biological research is often used to improve the abilities of robots. For exam-
ple, in [6] a salamander robot is controlled by a network of CPGs imitating the
spinal cord of a salamander. In this work we investigate a multi-timescale control
hierarchy applied on a robot leg. Each of the layers in the proposed hierarchy
uses a random dynamical system of which only the readout layer is trained (eg.
Reservoir Computing systems [7]). On the lowest level, the fastest timescale, the
passive compliance of the leg interacts with the environment. The leg is driven
by a pattern generator which generates learned rhythmic motor signals and gets
feedback from the rotary encoders in the leg. On the highest level, we use a
controller which reacts to slower contextual changes. This hierarchy separates
the motor commands from the functional control which is done by the high level
controller. Furthermore, by using a Reservoir Computing network on each layer,
we open the door for potentially rich motor skills and advanced control which is
topic for future investigation.

The remainder of this paper is structured in six Sections. In Section 2 we
start by giving a rough overview of the proposed hierarchical control scheme.
Next, in Section 3 we elaborate more deeply on the core technique used to build
our hierarchy. After that, the two main building blocks of our control hierarchy
are discussed in more detail. Afterwards, the hierarchy is validated by means of
three preliminary experiments in Section 6. Finally, we end this paper by giving
our conclusions.

2 Proposed Hierarchy

In all vertebrates, neural circuits located in the spinal cord can be found that
are responsible for generating rhythmic activations used for locomotion. These
neural circuits are called Central Pattern Generators (CPGs) and are currently
modeled by roboticists to control robot locomotion. One of the key advantages
that can be identified is that these CPGs typically have only a few control
parameters and thus reduce the control problem [3].

In this work we propose the use of a hierarchical (artificial) neural system
for adaptive locomotion control. This system, illustrated in Fig. 1(a), consists of
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Fig. 1. (a) We present an overview of the control hierarchy. Our approach uses two
building modules working on different time scales. The first module, the pattern gen-
erator, operates at a fast time scale and gets feedback from fast varying sensors. The
parameters of the pattern generator are adapted by a controller, operating at a slower
time scale, which gets feedback about slowly variating motion properties. The environ-
ment is included to illustrate that very fast perturbations caused by interacting with
the environment are handled by the passive compliance of the leg. (b) Shows the actual
leg of the Oncilla robot build in the AMARSi consortium on which the experiments
were performed.

two building blocks: a pattern generator and a controller. On the lowest level,
a pattern generator operates at a fast time scale and embeds a learned rhyth-
mic pattern which is given to the motors of the robot. The rotary encoders of
the motor system provide the pattern generator with direct feedback. Only en-
vironmental changes which are are unhandleable by the passive compliance of
the leg, will be visible for this encoder. On the highest level, and thus slower
time scale, the controller tunes the parameters of the pattern generator online
in such a way that it keeps track of the slow varying parameters of the result-
ing motor. To achieve this, the sensor information presented to the controller is
preprocessed by calculating for example amplitude and offset. As a result, the
proposed hierarchy operates at multiple time scales which allows the use of a
more advanced controller (which often acts slower) while the pattern generator
can be kept relatively simple and can immediately act on for instance perturba-
tions. In other words, the motor commands generated by the pattern generator
are separated from the functional control which is done on a higher level.

3 Reservoir Computing

The core technique used for each of the building blocks in our hierarchical control
approach is Reservoir Computing (RC). This is a collection of efficient training
methods for random dynamical systems in which only the readout weights are
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trained [7]. In the past, RC has been independently introduced as Echo State
Networks [8] and Liquid State Machines [9]. In previous work, RC has already
proven its capabilities in a broad range of applications including robot localiza-
tion [10], chaotic time series prediction [11] and speech recognition [12]. Addi-
tionally, researchers are making efforts to directly implement such systems on
hardware [13].

The most commonly used flavor of RC is the Echo State Network approach
which uses a random recurrent neural network of sigmoidal neurons. Training
such a system starts by randomly creating the weight matricesWres

res,W
res
inp,W

res
out

and Wres
bias (these weights are usually drawn from a uniform or a normal distri-

bution) which respectively determine reservoir-to-reservoir, input-to-reservoir,
output feedback and bias weights. The reservoir weight matrix Wres

res is typi-
cally scaled such that the spectral radius, e.g. the largest eigenvalue, is smaller
than 1. This guarantees that the entire system is operating at the edge of chaos,
where its computational power is greatest [14]. Some learning paradigms, such
as FORCE learning [15], require that the spectral radius is larger than 1 as long
as additional inputs are able to restrain the system’s dynamics.

After constructing the weight matrices the network can be simulated. There-
fore, every time step, the neuron states are updated using the following equation:

x[k + 1] = (1 − λ)x[k] +

λ tanh
(
Wres

resx[k] +Wres
inpu[k] +Wres

outy[k] +Wres
bias

)
. (1)

The states x[k+ 1] at time step k+ 1 depend on the previous states x[k], input
u[k], a bias and the (optional) output feedback of the system y[k]. By changing
the leak-rate λ, the system’s dynamics can be tuned effectively [8].

For training the output weights Wout
res a learning algorithms is needed that

rapidly reduces the difference between the actual and desired output, and keep
it small while converging to a set of fixed output weights. The resulting weights
maintain a small error without further modification [15]. Recursive Least Squares
(RLS) is one of those learning rules that satisfy all conditions for FORCE learn-
ing. During training, the reservoir states are updated according to equation 1
while at every time step the readout weights Wout

res and the output y[k + 1] are
adjusted according following RLS equations:

y[k + 1] = Wout
res x[k + 1] (2)

e[k + 1] = y[k + 1]− ydesired[k + 1] (3)

P = P− Px[k + 1]xT[k + 1]P

1 + xT[k + 1]Px[k + 1]
(4)

Wres
out = Wres

out − e[k + 1]Px[k + 1]. (5)

Here e[k+1] is the error at time step k+1 and P is an estimation of the inverse
of the correlation matrix. After training, the weightsWres

out are kept fixed and the
system can be used. However, when online adaptation is necessary, it is possible
to train continuously.
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Fig. 2. The two main building blocks of our hierarchical approach. On the left (a) one
can see a schematic overview of a Reservoir Computing based pattern generator. The
rotary encoders in the robot leg are used for feedback. On the right (b) an overview of
the controller we use to modulate the pattern generator (the plant) is shown.

4 Modulatable Pattern Generator (MPG)

As we discussed in Section 2 the robot is controlled directly by a pattern gen-
erator which is able to imitate demonstrated rhythmic motions. The pattern
generator is implemented in a RC-network. In previous work we showed that by
using additional inputs, the generated patterns can be modulated [16]. This work
was extended in [17] by adding the capability to encode discrete and rhythmic
motion patterns into a single recurrent neural network as respectively a limit
cycle and a fixed point attractor. Typical parameters that are used for this
are summarized in Table 1. More recently, in [18] a new method to modulate
the shape of a learned rhythmical pattern was illustrated based on tuning the
bias weights of the neurons instead of using additional inputs. In summary: the
influence of adding a small bias to each neuron is determined after training.
Therefore, each neuron is perturbed separately with a small constant bias. After
perturbing each neuron, one can observe the influence of this on the properties
of the output signal. For each property that one wants to track, a control vector
can be composed which can be used to modulate the output signal. In this work
we will use this modulation approach to change the properties of the generated
signal. We only determine the control vector that influences the signal amplitude
and offset. More complex property transformations will be shown in future work.

5 Controller

In [19] and [20] we introduced a novel feedback controller which learns to control
a plant (dynamical system) by online learning an inverse plant model based on
real-time controlled plant-input/output pairs. In parallel, this preliminary model
is used to actually control the system, producing a new plant-input output pair
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Table 1. Summary of all parameters in a pattern generating RC-network with their
typical values

Parameter Description Value

N number of neurons 100 to 2000
λ leak-rate 0.01 to 1
ρ spectral radius 0.99 to 1.5
β bias weight variance 0 to 1
ω output feedback scale 0 to 10
α learning rate, only FORCE learning case, 0.1

determines initialization of Pinit = I
α

which gradually improves the inverse model. At the core of this feedback con-
troller we use a RC-network to accommodate the inverse model. However, as
described in [20], any dynamical system with a high dimensional state represen-
tation can be used to accommodate such model as well. In this paper we apply
the same feedback controller (shown in Fig. 2(b)) to modify the bias vector to
MPG neurons, which are sensitive to the amplitude and offset of the generated
motion. Although the MPG is fully responsible for the produced motion, the
controller allows the MPG to track a desired amplitude and offset which are
changing more slowly compared to the position of the motor.

As shown in Fig. 2(b), the feedback controller uses two identical RNN of which
only the inputs differ. The output weights of Network A are trained (applying
RLS) by observing plant-input/output pairs ((y(t− δ), y(t)), (x(t− δ))). These
output weights are used by Network B to produce a plant-input x(t) given the
actual and desired plant-output, y(t) and ŷ(t+ δ) respectively.

6 Experiments

In this section we apply the discussed control hierarchy on a prototype robot
leg (of the Oncilla robot platform) which is developed in the AMARSi consor-
tium and shown in Fig. 1(b). This robot leg is controlled by a motor control
board which in turn is driven by a small computer. However, because of the
computational limitations of this onboard computer and to ensure the desired
communication timings, all calculations are offloaded to a much more suited
computational unit. In this work we want to demonstrate the above described
control hierarchy concept on a simple task. Although the control of multiple
servos is possible, we will limit the amount of controlled servos to 1. The robot
leg is controlled by a simple P-controller which converts the positions, generated
by the MPG, to a torque signal. However, to allow for changes in the robot dy-
namics to be visible in its motion, the used P-parameter is smaller than optimal
and the amount of torque is limited. In Table 2 we show the associated parame-
ters concerning the used feedback controller and MPG setup. Additionally, the
different timings are given at which each system is interacting with another sys-
tem. As mentioned before, the used feedback controller is interacting at a much
slower rate compared to the MPG’s control rate.
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Table 2. Summary of all our setup parameters used in the experiments

Parameter Pattern generator Controller

N 500 500
λ 0.14 1.
ρ 1.4 1.
α 0.1 0.01
time scale 20ms 100ms
input scaling 1.0 0.1
β 0.5 0.5
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Fig. 3. (a) Shows two different recorded motions together with the actual reproduction
by the robot leg. (b) Depicts the actual motion during offset control (top) together with
the desired and actual offset (bottom).

6.1 Learning by Imitation

By limiting the servo’s torque the robot leg can be back-driven, allowing the
demonstration of a given motion. In this work we impose a mixed sinusoidal
motion which afterwards is used to train the MPG-network. When training is
completed, the necessary gradient vectors to the MPG-neurons that affect the
amplitude and offset, are computed. In Fig. 3(a) the actual trained leg motion
is shown for two different imposed patterns which are shown as well. The first
pattern is a mixed sine pattern while the second motion is a sinusoidal pattern
with a slower and faster phase. The latter is similar as in a swing/stance phase
gait. Both resulting motions show a phase shift caused by integrating the robot
leg into the feedback loop. A change in the generated pattern has to propagate
through the dynamics of the robot leg, before the correct leg angle is visible for
the leg encoder. Because of the feedback loop, this variating delay eventually
affects the generated pattern. This illustrates that a higher level control is nec-
essary to modulate the pattern generator such that these dynamics are taken
into account.
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Fig. 4. (a) Depicts the actual motion during amplitude control (top) together with
the desired and actual amplitude (bottom). (b) This plot illustrates how the proposed
hierarchy reacts to changes in the dynamics of the robot leg during amplitude control.

6.2 Motion Modulation by Controlling the MPG

After learning the recorded motion, the feedback controller is applied to mod-
ulate the amplitude and offset of the motion, which are only observable on a
slower time scale. As mentioned before, this can be achieved by controlling the
bias of amplitude/offset responsive MPG-neurons. Fig. 3(b) shows the desired
and actual offset which is controlled by the feedback controller. To control the
offset, the highest level of our proposed hierarchy was interacting with the MPG
every 100 ms (5 times slower than the interaction rate of the MPG). Fig. 4(a)
demonstrates a similar experiment but for amplitude control. Additionally, the
actual resulting positions are depicted at the bottom of both Fig. 3(b) and 4(a).

6.3 Adapting to Changes in Robot Dynamics

In the previous experiment we showed that the generated motion can be modu-
lated. However, we want to investigate the capability of the proposed hierarchy
to adapt to changes in the dynamics of the robot or in its environment. In our
experimental setup we are limited in introducing changes to adding weight to the
robot leg. We increase its mass by hanging an extra weight at the tip of the leg.
As a result, the amplitude of the motion will be reduced and the offset will move
closer to the lowest point of the leg. However, this switch in dynamics will cause
the inverse model of the feedback controller to adapt to these changes as well. As
a result, during amplitude control the amplitude will eventually converge again
to its desired value. In Fig 4(b) after 1500 time steps a mass of 100 g is added
to the leg. After adjusting its internal model, the controller start compensating
for the extra weight at time step 3000 by controlling the bias of the MPG.
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7 Conclusions

Roboticists are often inspired by biology to improve the abilities of robots. One
of the main directions is the use of central pattern generators which reduce the
dimensionality of the locomotion control problem. Inspired by this, we proposed
the use of a multi-timescale hierarchical controller that uses random dynamical
systems for each layer. On the lowest level, a pattern generator is able to embed
any rhythmic signal. This pattern generator interacts directly with the motor of
the leg on a fast timescale. On the highest level, and thus slowest time scale, a
controller tunes the parameters of the pattern generator online such that it keeps
track of the slow varying parameters of the resulting motion. To achieve this, the
sensor information presented to the controller is preprocessed by calculating for
example the amplitude and offset. Since the controller acts on a slower timescale,
this controller can be very advanced and might consist of a very large random
dynamical system. On the other hand, the pattern generator is fast enough to
react immediately on small perturbations which can not be compensated by the
morphology of the robot (passive compliance).

By means of three preliminary experiments on the AMARSi Oncilla leg, we
validated the proposed control hierarchy. In a first experiment we showed that the
hierarchy is able to capture a (by hand) shown rhythmic motion pattern which
is embedded by the pattern generator. In the second experiment we illustrate
that the higher level controller is able to track slow varying properties such
as amplitude and offset, by only controlling the bias of the pattern generator.
Finally, in the third experiment, we demonstrated that the control hierarchy is
able to deal with new situations such as changes of the leg weight.

We are now planning to apply the proposed control hierarchy on the in the
AMARSi consortium developed quadruped Oncilla robot. We will mainly try to
tackle two problems: (1) controlling the stability of the robot by considering a
measure of stability as the slow control property to track, and (2) we will embed
multiple gaits for the Oncilla robot.

Acknowledgment. This work was partially funded by a Ph.D. grant of the
Institute for the Promotion of Innovation through Science and Technology in
Flanders (IWT-Vlaanderen) and the FP7 funded AMARSi EU project under
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Modelling Walking Behaviors Based on CPGs:

A Simplified Bio-inspired Architecture
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Abstract. In this article, we use a recurrent neural network including
four-cell core architecture to model the walking gait and implement it
with the simulated and physical NAO robot. Meanwhile, inspired by
the biological CPG models, we propose a simplified CPG model which
comprises motorneurons, interneurons, sensor neurons and the simpli-
fied spinal cord. Within this model, the CPGs do not directly output
trajectories to the servo motors. Instead, they only work to maintain the
phase relation among ipsilateral and contralateral limbs. The final output
is dependent on the integration of CPG signals, outputs of interneurons,
motor neurons and sensor neurons (sensory feedback).

Keywords: CPGs, the NAO robot, Interneuron, Motorneuron.

1 Introduction

Central pattern generators have been investigated in robotics applications for
many years now. Roboticists have proposed many useful but different CPG
models. Generally these CPG models mainly focus on the following three as-
pects: a. integration of Sensory feedback: the famous sensor-driven Runbot[2] is
a very interesting example of this; b. topology of CPG network: this refers to
the number and alignment of different CPG neurons. A good permutation of
CPG neurons not only simplifies the control problems but also guarantees the
stability of the whole network[11]. Using group theory is a very good example
on this; c. the connections of CPG neural networks[15]: the models focusing on
this often use exploration-exploitation algorithms(e.g.reinforcement learning[8],
genetic algorithm[7]) to find out the proper weights within this network. In this
approach, the sensory feedback and even the topology are both considered to be
determined by the algorithm. However, this also involves too many dimensions
so that the convergence of the algorithm becomes uncertain. In order to find a
simplified architecture to contain all the three aspects, we propose a bio-inspired
architecture integrating them. This architecture (Figure.1 ) is inspired by the
findings of Amrollah[1] and the work of Nassour[9].

As a model inspired from the neurophysiological spinal structure of human
beings[4], we simplify the whole structure into a hierarchical model with three
main parts. The core CPG architecture previously used to model crawling and in-
fant early walking behaviors[5,6] is located in the spinal cord, only maintaining
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Fig. 1. The brainstem emits the control signal to adjust the oscillatory patterns of
CPGs located in the spinal cord. The ascending and descending pathways are communi-
cation channels between environment and the robot. Each block including interneurons
(IN) and motorneurons (MN) represents the control flow from IN to MN which inte-
grates sensory feedback in order to reshape the CPG signals. So IN neurons are called
pattern formation neurons as well. The whole architecture is inspired by Amrollah’s
CPG model[1] and human neurophysiology.

phase relations. The CPG signals go through the interneurons (IN) and mo-
torneurons (MN) which integrate two kinds of sensory feedback: proprioceptive
and exteroceptive feedback. Both of these two types of feedback are acquired via
sensors of the robot through sensor neurons. Finally the output to each joint is
entirely reshaped by the IN and MN. From the perspective of neurophysiology,
this model includes two pathways: the ascending pathway and the descending
pathway. Both of these two constitute the interaction between humans and en-
vironment. In the same way, the robot can interact with the sensed world via its
sensors and form stable walking gaits.

In this article, a complete model of CPG is proposed and explained in the
second part. The third part covers the functions of IN and MN and how they
are simply modelled. The implementation on both simulated and physical robots
is analyzed in the fourth part. Finally some conclusions and future work are
proposed.

2 The CPG Neural Network

In this work, the use of CPG neural networks is to maintain phase relations
among all the joints. In our model, a four-cell core architecture is used to produce
a primitively stable anti-phase relation between contralateral limbs (both legs
and arms). Since this four-cell architecture has been proved to be structurally
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stable[11], the phase relation between arms and legs do not change. On the other
hand, even though the four-cell network is simple, it has been sucessfully used to
implement crawling behaviors[6] and our work could be regarded as an extended
or topologically “developed” model of the core architecture. Actually, the main
4-cell architecture is very general in controlling some other four-limb robots, like
the salamander robot[3] and puppy robot[12].

In our model, we use another two pairs of CPGs to control the knee and
ankle parts of the NAO robot. The schema of our extended full architecture
is shown in Figure.2. Each CPG neuron is modelled by a Hopf oscillator (see
equations(1)(2)(3)) with adjustable swing and stance phase.

ẋi = a(m− xi
2 + yi

2)y − wixi (1)

ẏi = a(m− xi
2 + yi

2)x − wiyi +
∑

αijyj (2)

wi = 2 · π( wswing

(1 + e−100yi)
+

wstance

(1 + e100yi)
) (3)

Here x and y are the two dimensions of Hopf oscillator.w is the total frequency
of the oscillator which is controlled by wswing and wstance. wswing and wstance

determine decrease and increase speed of the periodic signal. a is the convergence
rate and m is the amplitude of this oscillator. The advantange of this oscillator
is that the speed of upward and downward wings of the periodic signals can be
changed according to different requirements of locomotions. αij is the connection
weight from neuron i to j.

In the CPG network, the knee and ankle parts are synchronized with the main
joints (hips and arms) of which the anti-phase movement has been developed
during early infancy[14]. According to dynamic systems theory, how each joint
moves in a walking behavior depends on the interaction with the physical body
and the environment. Even though the early infant walking could be modelled
simply based on the signals directly from CPG outputs[5], with the development
of muscle and neural systems, infants start to change their walking patterns with
the maturation of their sensorimotor systems. Therefore, after integration with
sensory feedback, the CPG signals are futher reshaped to be adaptive to the
posture change and environmental alteration.

3 Modelling of Interneurons and Motorneurons and
Sensory Feedback Integration

Interneurons and motorneurons are very helpful on postprocessing CPG sig-
nals and preprocessing sensory feedback. Interneurons, in most vertebrates or
invertebrates, are mainly in charge of reshaping CPG outputs with feedback.
Meanwhile, connected to muscle fibers, motorneurons directly integrate outputs
of all the interneurons (pattern reform neurons) with muscle extremities. Even in
a very primitive mollusc called Clione lamicina with only two main CPGs work-
ing together with interneurons and motorneurons, a swimming behavior can be
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Fig. 2. The CPG neural network used to model the spinal cord part. Each neuron is
an independent oscillator. The upper four neurons form the core four-cell architecture.
Knee and ankle parts are synchronized by two independent pairs of anti-phase oscilla-
tors. The output of each CPG neuron is directly sent to interneuron level to integrate
with sensory feedback. This schema here only depicts the sychronization of all the
pitch joints. There are two kinds of connections in this recurrent neural network. One
is the subtractive connection represented by lines with dot ends. The other is additional
connection represented by arrow lines.

flexibly formed[10]. A generic bio-inspired complete CPG model has been identi-
fied by Rybak[13] and Amrollah[1](see Figure.3 ). Inspired from their work and
investigations, we simplify the model and embed our CPG architecture in it.

In our work, the interneurons and motorneurons are all modelled by sigmoid
functions of which the nonlinearity is extremely useful in reshaping CPG outputs.
The two rythmic generators (Figure.3) are replaced by our two-layer RGs for
each joint (See Figure.4). The sensor neurons are modelled by sigmoid functions
which are used to normalize all the sensor values between 0 and 1. This idea is
inspired by Geng’s work on Runbot[2].

There are two kinds of sensor neurons in this model. One is the proprioceptive
sensor neuron and the other is the exteroceptive sensor neuron. The ES (exten-
sor sensor) and FS (flexor sensor) neuron (equations(4)(5)) are both the ones
acquiring proprioceptive information from each joint. In our work, the inputs of
these neurons are joint values obtained from joint sensors. In our implementa-
tion, we set the θthreshold to 0 since the mutually opposite sigmoid functions limit
the joint motion in a certain scope according to the requirement (See Figure.6).
Actually, in robotic systems, each joint of humanoids has its own extension and
flexion extremities in different behaviors in order to stablize the limit-cycle at-
tractors of the whole body. When a joint is close to the extensor extremity, the
flexor is autonomously activated to pull back the joint.
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Fig. 3. The locomotor CPG consists of a rhythm generator (RG) and pattern formation
(PF) neurons. The RG defines the locomotor rhythm and the durations of flexor and
extensor phases and controls the activity of the PF neurons. The PF neurons represent
the interneurons each of which provides excitation to multiple synergist motoneurons.
Afferent feedback and spontaneous perturbations may affect the CPG either at the
level of the RG, producing alterations (e.g. phase shifting or resetting) of the locomotor
rhythm, or at the level of PF, altering the level of motoneuron activation and/or the
timing of phase transitions without shifting the phase of (or resetting) the locomotor
rhythm generated by the RG[1].

ES = 1 +
1

a(1 + eθthreshold−θinput)
(4)

FS = 1 +
1

a(1 + eθinput−θthreshold)
(5)

The AES (Anterior Extension Sensor), RFC (Rear Foot Contact), FFC (Front
Foot Contact), BAS (Backward Angle Sensor) and FAS (Forward Angle Sensor)
neurons’ activations are all transformed by sigmoid functions with thresholds
but have different use. The AES neuron is used to detect the joint extremity
of the hip during the stance phase. When hip reaches the anterior extremity, it
activates the extensor of knee to make it contract immediately. The AES neuron
has also been proved to be a very necessary sensor neuron in both human and
robotic walking[2]. The RFC and FFC neurons can make the foot contact with
the ground more naturally. In our simulated robot, we find that if the RFC
and FCC neurons are removed from the robot, the heel-strike and heel-raise
behaviors which are considered to be the characteristics of humanoid walking will
disappear. BAS and FAS are sensor neurons getting data from “the vestibular
system” (gyro sensors) in the NAO robot. With these two neurons, the robot
can autonomously change its ankle posture in order to keep the body in balance.
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Fig. 4. The neural-mechanical controller used for each joint specifically. Different joints
have different senory feedback. The arrow line is the additional connection and the dot-
end line is the subtractive connection. The CPG neuron from the spinal cord is further
seprated into two anti-phase rythmic generators. The architecture below the RGs is
inspired by Amrollah’s model[1] and Nassour’s work[9] for adaptive walking.

Finally, the importance of using thresholds in different neurons should be
highly emphasized. The threshold should be carefully tuned according to their
own inputs. Furthermore, the saturation of sigmoid functions should be avoided
in all the abovementioned neurons (see Figure.5). We must tune the change rate
a of the sigmoid function to an appropriate value in order that at least 90% of
the “S” shape can be used.

4 Gait Analysis on the Simulated and Physical Robot

We test the simplified architecture of CPG network on the simulated and physi-
cal robot. The simulator used is the NAO simulator which is specifically designed
for the NAO robot (visit http://www.alderbaran-robotics.com). In order to make
the robot walk, we need to extend the 2D model to 3D walking model by involv-
ing a proper roll motion. For the NAO robot, it has two roll joints for hip and
ankle respectively. We use two approaches to model it: one is the sensor-driven
without RGs and the other is by RGs (See also Figure.7).

4.1 The Two Different Walking Gaits

Firstly, we implement the sensor-driven roll motion and the robot generates one
walking gait (see Figure.8). This walking gait has very interesting properties:
a. when the CPGs are oscillating slowly, the amplitude of each joint should
be increased in order to make the robot be able to walk including pitch and
roll joints. b. when you change the stance and swing durations and keep the
wstance + wswing equal to a constant, the walking gets faster.
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Fig. 6. This figure shows how the ES and FS neurons work together to limit the joint
value when it gets to extremity (here we show the hip neurons as an example). When
the RG signal is supposed to make joint move to its maximum value, the ES or FS
neurons generate maximum value as well to limit this movement. Actually, according
to different applications, the limited distance d could be tuned to different values if the
change rate a of ES and FS neurons is changed.

We could clearly see the roll motion plays a very important role in this walk-
ing behavior. This is the difference between 2D and 3D modelling of walking
behavior. The robot’s center of gravity moves between left and right legs so that
the swing leg is able to swing swiftly. Actually, when we implement this behav-
ior on the physical robot, all the parameters need to be retuned to adapt to the
physical body’s dynamics which is quite distinct from the simulated robot which
can even run in the simulator.

Subsequently, we use the generic roll motion with RGs to replace the sensor-
driven roll motion. Interestingly, a entirely new walking gait emerges (See Fig-
ure.9). The big difference of this gait compared to the previous one is how the
roll motion synchronized with the pitch motion. The former is more similar to
a running gait as when the body dynamics change very fast, the stance leg will
lose contact with the ground ahead of time. However, the latter does not have
this characteristic. Similary, this walking gait also has the same properties (a
and b) as the first one.
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Fig. 7. Left: the sensor-driven roll motion. The two sensor neurons obtain the real-time
values of correspondent pitch joints to form roll motion (hip or ankle). The left and
right roll joint values should be opposite to each other. Right: use two anti-phase RGs
for each roll joint (hip or ankle) and these two RGs are synchronized with the CPG
network of pitch motion. Similarly, the left and right roll’s values are opposite.

How can we change the robot’s walking speed? For both of these two walking
gaits, either change the frequency of the CPGs or change the stance duration.
The higher the CPG frequency is, the faster the walking is. The shorter the
stance duration is, the faster the walking is too. Normally, the frequency is tuned
to a certain value which suits the body dynamics of the robot and the stance
phase is shorten to make the robot walk faster. In all the above implementation,
the stance and swing phase are numerously tuned. The best performance is
wstance = 3wswing.

4.2 The Ankle Joint with Sensor Neurons

As abovementioned in the third part, the FFC and RFC neurons are important
to form nature humanoid walking behaviors. The heel-strike and heel-raise , these
two characteristics of human walking occur if we add a strong sensory feedback
on the ankle from FFC and RFC (Figure.10). In the previous implementation,
decreasing the influence of FFC and RFC on the ankle is necessary because of
the NAO robot’s disproportionately big feet. Therefore, if the heel-strike and
heel-raise are too obvious, it will distablize the walking gait.

We compare the output of MN without any sensory feedback, with sensory
feedback from gyro sensors and with strong sensory feedback from both of gyro
sensors and foot contact sensors and we can clearly see the FFC and RFC can
totally reshape the ankle CPG and make it entirely adaptive to the robot’s body
dynamics (Figure.11).
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Fig. 8. Upper: walking gait of the simulated NAO robot Below: walking gait of the
physical NAO robot. This walking gait is with sensor-driven roll motion.

Fig. 9. Upper: walking gait of the simulated NAO robot Below: walking gait of the
physical NAO robot. This walking gait is performed with a full architecture of roll
motion based on RG-PF-MN mechanism.

Heel raiseHeel raise Heel strikeHeel strike Heel raiseHeel raise

Fig. 10. The walking gait with strong sensory feedback from FFC and RFC and the
appearance of heel-strike and heel-raise behaviors
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Fig. 11. The ankle dynamics during walking: the red line is the output without any
sensory feedback. The blue line (almost overlapped with red line) is the output with
sensory feedback from BAS and FAS (as for the influence of sensory feedback, please
see the zoomed-out snapshot ). The green line is the output totally reshaped by FFC
and RFC neurons after the sensory feedback integration.

5 Conclusions and Future Work

In this work, we propose a relatively complete CPG architecture inspired from
neurophysiological structure. Compared to the previous work on modelling early
infant walking[5], this model provides specific involvement of sensory feedback
which can increase adaptivity of walking. With respect to the walking gait, our
model generates two kinds of walking behaviors based on tuning the parameters
of IN and MN respectively. Both of this two gaits are formed on the basis of two
categories of sensory feedback: proprioceptive and exteroceptive feedback. The
former is about position feedback of each joint and the latter is more focused on
external interaction with the environment. Meanwhile, a very simple mechanism
analogue to the vestibular system is used to adjust the posture of ankle so that
the stable upright posture can be maintained. Based on all these points, our
model captures most of salient sensory information for adaptive walking. Since
the visual system which is also very important for posture and balance control
is not covered in our system, to some extent, adaptivity of our model is limited.

The oscillatory recurrent neural network is used in this model because not
only is it structurally stable but also its synchronization based on group theory
is very useful on different robotic platforms[11,3]. Therefore, this model could
be considered as a generic model. On the other hand, compared to traditional
engineering approaches on modelling humanoid walking, like the ZMP method,
the advantage of our model is its simplicity. However, in our model, we need to
carefully tune a lot of parameters in IN and MN to get nice walking gaits. This
part will be replaced by a learning mechanism in future work. With a learning
system based on a dynamic systems approach, the NAO robot forms its own
walking behaviors based on the sensory feedback and maintains the limit-cycle
attractors of the whole body motion.
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Abstract. Reaching a target object requires accurate estimation of the
object spatial position and its further transformation into a suitable arm-
motor command. In this paper, we propose a framework that provides
a robot with a capacity to represent its reachable space in an adaptive
way. The location of the target is represented implicitly by both the
gaze direction and the angles of arm joints. Two paired neural networks
are used to compute the direct and inverse transformations between the
arm position and the head position. These networks allow reaching the
target either through a ballistic movement or through visually-guided
actions. Thanks to the latter skill, the robot can adapt its sensorimotor
transformations so as to reflect changes in its body configuration. The
proposed framework was implemented on the NAO humanoid robot, and
our experimental results provide evidences for its adaptative capabilities.

1 Introduction

Humans live surrounded by objects. Reaching for an object is one of the most
common tasks in everyday life. As robots are expected to be active participants
in humans’ daily life, they also need to have good reaching skills. Moreover,
the robots need to be able to constantly learn and autonomously improve their
reaching abilities so as to act on unknown objects in new environments or adapt
to the changes in their body configurations.

Reaching a target, however, is not an easy task. It requires estimation of
the spatial position of the target and its transformation into an apropriate arm
motor command. Estimation of the object position is problematic on its own as
a three dimensional object is projected into two dimensional surface of camera
sensor, which in turn causes the distance to the target to be lost. The common
solution is to employ stereopsis to reconstruct the depth of the scene. Human
beings, however, are clearly able to perform reaching actions even with a single
functioning eye and we are interested in replicating this phenomenon.

Another challenge here is the transformation of the object’s spatial location
into the arm position that allows reaching the target. These transformations are
typically computed analytically by using the known geometric properties of the
robotic system provided by the robot’s manufacturer or estimated empirically.

T. Ziemke, C. Balkenius, and J. Hallam (Eds.): SAB 2012, LNAI 7426, pp. 167–176, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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This approach to reaching permits to achieve good performance, but only un-
der the assumption that the parameters of the system are time invariant. In
practice, it is not always the case, and the system needs to be re-calibrated
periodically in order to keep working correctly. Therefore, it is convenient to
develop a framework that continuously adapt the sensorimotor mapping to the
constantly changing robot parameters.

In previous works, we proposed a framework for the implicit sensorimotor
mapping of the peripersonal space that was implemented on a humanoid torso
endowed with a pan-tilt vergence stereo head and two multi-joint arms [3,1].
Instead of using the classical cartesian space, the spatial position of the tar-
get was encoded by the gaze direction and by the angular position of the arm
joints. Indeed, these variables were implicit because they were directly provided
by proprioceptive cues (encoders). This paper presents our reaching framework
extended and adapted to work on a monocular robotic setup.

As our previous framework was based only on the depth information provided
by stereo cameras, the first objective of this work is to modify the network so as it
makes use of distance estimation provided by a monocular camera. Thus, in the
proposed adaptation, the target position is represented by the gaze direction that
allows bringing the target into the fovea together with the distance to the target.
The same position is expressed in terms of the arm posture that allows reaching
the target. The direct and inverse transformations between the two frames of
reference are learned autonomously by the robot during the exploration of the
environment. The results of our computer simulations and robot experiments
show that the robot is able to reach correctly the target both by using direct
transformation and by visually-guided approach.

Moreover, in this paper we investigate the ability of the system to adapt
to the changes in the robot kinematics. Once the robot had been trained to
reach the target, its body configuration was changed, that is the position of its
elbow joint was rotated about 20 degrees. As this position was assumed to be
an invariant configuration of the system, the robot had to autonomously update
its sensorimotor maps to reach correctly the target object. The results obtained
from our experiments with the robot, showed that the system is able to instantly
update its sensorimotor maps to reflect the changes of its body configuration.

The paper is structured as follows. The next section briefly presents the neu-
roscientific findings that inspired our work and compares our approach to the
existing works. The subsequent section describes how the target can be implic-
itly encoded by the robot sensorimotor maps, which is then followed by the
description of the computational model and learning strategies. The next sec-
tion shows our experimental setup and results obtained from both computer
simulations and real robot experiments. We close the paper with the discussion
of the results and future work.

2 Background

Our approach to the sensorimotor transformation problem is inspired by neu-
roscientific findings, mainly concerned with human and primates’ brain. Two
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types of visual processing exist in the brain, that is visual processing to obtain
information about the features of objects such as color, size, shape (“vision for
perception”) in the ventral stream of visual cortex, and visual processing needed
to guide movements such as reaching and grasping (“vision for action”) in the
dorsal stream of visual cortex [9,4]. The main cortical areas related to reaching
actions are V6A and MIP [8,5,2], both located in the parietal lobe. Findings in
V6A neurons showed neurons that encoded the gaze directions and the distance
of the target [6,15]. Moreover, some neurons seemed to be involved in the exe-
cution of reaching movements [8]. These findings indicate that V6A is in charge
of performing the sensorimotor transformations required for reaching a given
target in 3D space.

The radial basis function networks are suitable to model the parietal cor-
tex neurons as they are able to naturally reproduce the gain-field effects often
observed in parietal neurons [20]. Moreover, it was suggested that locations of
objects in the peripersonal space are coded through the activity of parietal neu-
rons that act as basis functions, and any coordinate frame can be read out from
such population coding according to the task requirements [19]. Because of their
biological plausibility, and their ability to approximate any kind of non-linear
function [17], the direct and inverse transformations in our framework are en-
coded by two radial basis function networks (RBFNs).

In robotics, even though extensive literature describes the problem of learn-
ing eye-hand coordination [10,7,16,14,21], to the best of our knowledge only few
papers describes the use of RBF networks [14,21]. Our model differes from these
works in various points. For example, Marjanovic et al. learned the transforma-
tion only on a surface of the space, in such a way that the target distance was not
explicitly taken into account [14]. Sun at al. used a stereo system to compute the
cartesian position of the target, while our system employes implicit variables [21].
Moreover, our model allows to learn directly both the inverse and direct trans-
formations between the arm position and the gaze direction. Finally, neither of
the cited works show how to update on-line the sensorimotor transformations in
a goal-directed behavior.

3 Representation of the Peripersonal Space

In the proposed framework, the spatial position of the target object was main-
tained by two global frames of reference (f.o.r.). One f.o.r. is head-centered and
it consists of a spherical-like coordinate system in which the azimuth and the
inclination angles are replaced by the gaze direction, while the radius is the
estimated distance of the target.

One important remark should be given about the use of the distance in the
RBFN framework. Indeed, the distance is not directly observable by the robot,
that is, it is not an implicit variable. However, primates have access to several cues
that can be used to estimate the distance, such as stereopsis, familiar size, mo-
tion parallax and so on [13]. These cues are implicit and related to the distance,
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Fig. 1. Computational framework of the sensorimotor integration model. Two transfor-
mations allow for converting the head position into arm-motor position and vice-versa.

and could be used in our framework in place of the distance. For example, our
previous work, used vergence alone [3]; however, when multiple cues are avail-
able, it seems more reliable to integrate the cues before calculating the arm
position. Such a computation can be performed by a three layer neural network
with reward-mediated learning similarly to what is done in [11]. Thus, in our
framework, it is possible to replace the distance with the output of another com-
putation as long as it provides neural activation which is correlated with the
distance of the target. In this way, the framework becomes more general and can
be used independently from the cues available to estimate the distance.

The arm position also provides the spatial position of the target when the
robot is touching the object. In this case, the position is described by the joint an-
gle of the arm, provided by the proprioceptive signals. Usually the arm-centered
f.o.r. is redundant in the representation of the position, because many joint
configurations can bring the hand to the same spatial position. The implica-
tion is that the direct mapping (A→H) between the arm-centered f.o.r. and the
head-centered f.o.r. is a single-valued function whereas the inverse one (H→A)
is not.

As the main focus of this work is learning the sensorimotor transformations for
a humanoid robot, the redundancy problem here was bypassed by simplifying our
experimental setup. Therefore, only three joints of the arm, two for the shoulder
and one for the elbow were used. In this way, also the inverse transformation
became a single-valued function.

4 Encoding the Sensorimotor Associations

As introduced in Section 2 , the sensorimotor associations between the A→H
and H→A transformations are maintained by two RBFNs (see Fig. 1).

RBFNs are three-layer feed-forward neural networks whose hidden units(h)
perform a non-linear transformation of the input data(x), whereas the output(y)
is computed as a linear combination of the hidden units:
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y = h(x) ·W (1)

where W is the matrix of the weights.
In this work, the hidden units performs a Gaussian activation which is char-

acterized by their centers ci and their spread Σ:

hi(x) = h(||x− ci||) = e−(x−ci)
TΣ−1(x−ci) (2)

Once the activation of the hidden units is fixed, the learning process can be stated
as finding the weights that best approximate the sensorimotor transformation.
Given a set of m input-output samples of the target function, the weights of the
j-th component of the output can be calculated by minimizing the sum of the
square error. In this work we use the recursive least square (RLS) algorithm, as
proposed in [12].

A new training sample for both maps is obtained when the hand position
and the gaze direction are pointing to the same spatial location. The robot
autonomously verifies such a condition by checking whether the visual position
of the hand is in the center of the visual field (see Fig. 2). If the hand is visible
but it is not in the fovea, the robot can gaze the hand to reinforce the head-arm
association.

The mapping between the distinct sensorimotor modalities is learned during
the interaction with the environment, through gazing and reaching movements.
After each performed movement, visual feedback is used to verify the coordina-
tion of gaze and arm. At the beginning, the system does not have any previous
knowledge of the sensorimotor transformation so random movements are used
to begin the exploration of the environment.

Successively, these random movements are suppressed and the system keeps
adapting during the goal-directed exploration. In this phase, when the robot
fails to reach the target with a ballistic movement (H→A), it starts to use vi-
sion to guide the arm movements. This can be done by locally inverting the
transformation A→H (for the details please refer to [21]) to calculate the incre-
ment of the arm position that is necessary to approximate the target. While the
robot is reaching for the target, it tracts its own hand to update its sensorimotor
transformations.

5 Experimental Framework

5.1 Robotic Setup

Aldebaran’s commercially available humanoid robot NAO was used as platform
for testing the proposed framework. The robot is provided with 25 degrees of
freedom (d.o.f.s) among which two are placed in the head (pan and tilt) and five
in each arm. In this work, we have used three d.o.f.s for the arm and just the
upper camera for the vision system.
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Fig. 2. Association between the oculomotor and arm-motor signals

5.2 Exploration-Based Learning

Learning of the sensorimotor transformations is essentially approximating the
function through training samples of the form (d, θhead, θarm)i = 1, 2, ..., n, where
d is the distance from the camera to the robot’s hand, θhead, θarm are the joint
angles of the head and arm, respectively, and n is the size of the training set. Such
a training set was generated by random movements of the arm, while the robot
was gazing at the hand. Herein, a visual marker (a ball) was used to facilitate
the recognition of the hand in a visual field of view. Subsequently, the visual
position of the hand was converted into a head movement in order to foveate the
hand. The distance to the hand was computed using the familiar size of the ball.
That is, knowing the physical size of an object (Sphysical), its absolute depth
(d) was calculated by using the following equation: d = f × Sphysical/Sobserved

where Sobserved is the size of the object observed in the image, while f is the
focal length. Both Sobserved and f are expressed in terms of pixels.

The structure and parameters of the radial basis function networks were cho-
sen using a heuristic search on a simulated model of the robot. We decided to
employ fixed centers, uniformly distributed on a lattice in the input space. We
employed Gaussian receptive fields, where the matrix Σ was a diagonal matrix
σI. The input space of A→H was the shoulder(1,2)-elbow space normalized be-
tween 0 and 1, the lattice was composed of 7x7x7 neurons and σ was set to 0.3.
The input space of H→A was the pan-tilt-distance space normalized between
0 and 1, the lattice was composed of 7x7x7 neurons and σ was set to 0.28. In
this work weights of each network were learned using the recursive least square
algorithm on the training samples.

After the exploration process, the networks were tested on the acquired sample
points using K-Fold cross validation with K set to 5. The error was calculated
as Euclidean distance in the cartesian space between sampled and computed
values. This was done using the kinematic model of the robot, which was built
using the parameters provided by the manufacturer. The performances of the
networks are reported in Table 1.

The transformation of the head-centered to the arm-centered f.o.r. performed
worse than the other transformation and, in general, seemed more difficult to
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Table 1. Performances of the RBFNs using the K-Fold cross validation (K=5). Mean
error and standard deviation (μ± σ) are expressed in mm in the cartesian space.

Transf. N. points
K=1 K=2 K=3 K=4 K=5
μ± σ μ± σ μ± σ μ± σ μ± σ

A→H 1458 3.8± 2.4 3.9± 2.6 4.2 ± 3.2 3.9± 2.8 4.2 ± 3.2
H→A 1458 5.0± 3.5 5.0± 3.2 5.3 ± 3.9 5.0± 4.3 5.4 ± 4.3

approximate. Nevertheless, in each case, the magnitude of the error was small
enough to allow the robot to grasp the target in most cases (see next session).

5.3 Grasping Task

The performance of the system was tested on a grasping task. The robot had
to localize and to grasp a red ball. The ball was placed on two lattices of 3
by 3 points that covered a region of 5 cm by 8 cm (x,y) on the left side of
the robot (see Fig. 3). The two lattices were placed at different altitudes. Each
movement of the arm was initiated from a safe position that allowed reaching
the ball with a ballistic movement without any collision. During training of the
H↔A transformations, the robot was gazing at the hand, so we expected that a
correct arm movement would bring the center of the hand near the target. For
each location of the ball, the robot had to gaze at it and to calculate the arm
position by means of the H→A transformation. After the training, the robot
grasped correctly the ball for every position on both lattices.

5.4 Goal-Directed Learning

Until now we have demonstrated the capability of the system to encode the
sensorimotor transformations. The next step is to demonstrate the plasticity of
the system for updating its internal representation to the changes of the body
parameters. For this purpose, we changed the body configuration by modifying
the position of the elbow roll motor some 20◦. The position of the motor is not
accesible for the RBFNs, thus the networks require to be adapted to the new
configuration of the joint. Indeed, with this new configuration the robot failed
to grasp the ball in every position, with a mean error of about 3.2cm (see Fig.3).

However, when the robot try to grasp the ball, it can recognize the failure
through its vision, by checking if the hand position and the ball position are the
same. If it is not the case, the system can thus multiply the distance between
the hand and the ball (expressed in the head centered f.o.r.) by the pseudo-
inverse of the jacobian of A→H to obtain an increment of the arm position.
In this way, the robot produces a sequence of visually-guided arm movements
until the target is grasped. At each arm movement, the robot looks at its hand
(using visual feed-back) and updates both the A→H and H→A transformations.
After, three visually-guided executions of the grasping task, the robot was able
to correct its sensorimotor transformations and to perform correctly the ballistic
grasping (see Fig. 3).
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Fig. 3. Experimental setup. After changing the elbow roll position of 20 degrees the
robot was tested in a ballistic grasping task (A→H). The target ball was put on two
lattices at different hight. The figure shows the grasping error without the on-line
adaptation and after one, two and three goal-directed training sessions.

6 Discussion and Future Work

This work was focused on the encoding of the visuomotor transformations for a
reaching behavior. The RBFNs were trained with the real data collected while
the robot was gazing its hand. The real data, however, are usually quite noisy,
which has an impact on the learning process of the neural networks and its
performance afterwards. The overall error of the direct transformation (A→H),
that is a transformation from arm to eye position was much smaller that the
error of the inverse transformation (H→A), that was the transformation from
eye to arm position. This can result from the uniform distribution of the centers
that, for the H→A transformations, is not so efficient as for the A→H ones.
Thus, regularization algorithms [18] that adjust the centers and the spread of
the neural activation can improve the performances of the algorithm.

Experimetal results showed that the robot is able to update its performance
in the goal-directed behavior by explointing visual feedback to correct the tra-
jectory of the arm. It is done by inverting the forward model that converts the
arm position into head position [21].

In the currently implemented framework, the distance was calculated using
the familiar size of the object. Such a distance, however, can be estimated by
other cues, e.g. motion parallax, kinetic depth effect and so on, which can be
combined in the spirit of the Bayesian theorem in order to obtain a reliable
distance estimation. Moreover, more implicit distance observations can be used
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directly as input to our RBFNs. Thus, our future work will focus on the integra-
tion of the proposed sensorimotor framework with another model that implicitly
encodes the perceived distance.

This work is part of a larger framework that is inspired by infant develop-
ment. The final goal is to provide the robot with a coherent near and far space
representation. The visuomotor knowledge of the peripersonal and extrapersonal
space should be built in a dynamical way, through the active interaction with
the environment, in a similar fashion as infants do. Following this approach, the
robot has to be able to keep learning during its normal behavior, by interact-
ing with the world and continually update its representation of the world itself.
Moreover, the learning process should be self-supervised in order to avoid the
need of an external teacher. That is, the robot should be able to improve its
capabilities by observing the outcome of its actions.

7 Conclusions

This paper presented a framework for sensorimotor transformations that is in-
spired by neuroscientific findings. The plausibility of our framework was tested
with the NAO humanoid robot. The proposed representations of the space are
plastic, indeed the robot was able to update and to improve its performance dur-
ing interaction with the environment. Moreover, the adaptation of our framework
on the NAO robot provides further support for the extendability and generality
of our approach.
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Towards Behavioral Consistency

in Neuroevolution

Charles Ollion and Stéphane Doncieux
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Abstract. To survive in its environment, an animat must have a be-
havior that is not too disturbed by noise or any other distractor. Its
behavior is supposed to be relatively unchanged when tested on similar
situations. Evolving controllers that are robust and generalize well over
similar contexts remains a challenge for several reasons. One of them
comes from the evaluation: how to check a controller for such proper-
ties? The fitness may evaluate a distance towards a behavior known to
be robust, but such an example is not always available. An alternative is
to test the behavior in multiple conditions, actually as many as possible,
to avoid overfitting, but this significantly slows down the search pro-
cess. This issue is expected to become even more critical when evolving
behaviors of increasing complexity. To tackle this issue, we propose to
formulate it as a problem of behavioral consistency in different contexts.
We then propose a fitness objective aimed at explicitly rewarding behav-
ioral consistency. Its principle is to define different sets of contexts and
compare the evolved system behavior on each of them. The fitness func-
tion thus defined aims at rewarding individuals that exhibit the expected
consistency. We apply it to the evolution of two simple computational
neuroscience models.

1 Introduction

While the use of evolutionary robotics has generated encouraging results [1],
evolving neural networks for complex tasks still faces evolvability issues [2].
What gradient a fitness function should create? What should a fitness function
reward? As of today, no straightforward methodology may help in designing a
fitness function in a context of neuro-evolution. Several classifications have been
made to take into account the features of a fitness function when comparing re-
sults. Floreano and Urzelai [3] thus proposed the fitness space, a framework for
describing fitness functions in order to qualitatively compare them. Nelson et al
[1] have made a review of the fitness functions used in the context of evolution-
ary robotics and classified them according to the degree of a priori knowledge
that they include. If such work review the fitness functions used up to now, they
are not aimed at proposing a method for fitness design. This question may be,
at least for a part, problem specific, but we hypothesize here that there is a
selection pressure that may be common to a lot of neuro-evolution problems and
we propose a simple method to design it.

T. Ziemke, C. Balkenius, and J. Hallam (Eds.): SAB 2012, LNAI 7426, pp. 177–186, 2012.
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Neuro-evolution methods aim at generating neural networks that will exhibit
a particular behavior in response to the inputs they receive. In the following,
we focus on neural networks aimed at controlling the behavior of an animat
(or subparts of such a controller). Our hypothesis is that a specific feature is
explicitly sought when evolving neural networks in this case: the consistency of
the neural network behavior in different contexts. A context will be refered as
a particular setting, or environment, in which the animat is. Even if the exact
behavior to be generated is not known, the experimenter may know in which
contexts he expects a similar behavior and in which contexts he expects differ-
ent behaviors. An animat moving in its environment should not be too sensitive
to noise or other distractors and should behave the same in similar contexts.
When designing a neural network with evolutionary methods, these properties
are not guaranteed and it is common to observe neural networks that behave
well only on the contexts used for evaluation, leading to a lack of generalization
[4]. Ideally, such a consistency should emerge from the search process without
being explicitly rewarded. However it would require to evaluate the behavior of
the network in many different contexts so that this property has an impact on
the fitness function —even in this case, the consistency is not guaranteed. We
propose a method to design fitness functions that explicitly reward the consis-
tency of neural network behavior. The approach consists in testing the network
behavior in different contexts. The fitness function evaluates then how close or
how different behaviors are, depending on what the experimenter expects.

Two models from computational neuroscience have been considered to test
the approach: an attention selection model and an action selection model. Both
represent functions that are expected to be useful for an animat to survive in
its environment. The motivation behind this choice is the knowledge of one
particular and efficient behavior from the litterature. Results generated with
the consistency objective are thus compared to results generated with a more
classic fitness function that rewards individuals close to this particular behavior.
While requiring a less accurate knowledge, the consistency objective revealed to
generate efficient solutions, some of them being original and different from the
known behavior; all respecting the constraints.

2 Method

The consistency objective is based on an evaluation of behavioral consistency
in different contexts. It relies on simulating one individual on a set S of differ-
ent contexts, as shown on Figure 1. The consistency of the individual is then
evaluated by comparing the behaviors (outputs). We denote oi(t) the simulated
output of context i after t time-steps. Depending on the problem considered,
the experimenter defines different contexts and different consistency constraints
between contexts. Three possible constraints will be used in the following exper-
iments:

– output of context i is exactly the same as output of context j: oi(t) = oj(t)
– output of context i is different from output of context j: oi(t) �= oj(t)
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Fig. 1. One individual is evaluated in three steps: 1) simulation over a set of predefined
contexts. 2) test of user-defined constraints satisfaction. The level of satisfaction of the
constraint is fi. 3) Aggregation of constraints into the fitness of the individual f .

– output of context i has similar properties as context j: oi(t) ∼ oj(t). The
definition of similarity is specific to each experiment, but typically means
equivalent to within a translation.

The constraints are computed in the following way:
– oi(t) �= oj(t): ft = d(oi(t), oj(t))
– oi(t) = oj(t): ft = 1− d(oi(t), oj(t))
– oi(t) ∼ oj(t): ft = 1− ds(oi(t), oj(t))
The normalized distance d denotes the difference between outputs behaviors. ds
is a similarity distance that usually describes how close the shapes of outputs
are. d and ds are specific to the experimental setup.

The final assessment of the quality of an individual is then computed by
aggregating the fitness terms. For the sake of simplicity, the simplest aggregation
is used:

f(x) =
1

T

T∑
t

ft (1)

In short, building the consistency fitness objective involves three steps:

– Defining a collection of different contexts
– Defining constraints between outputs of contexts
– Defining how to compare outputs with distances d and ds

It should be noticed here that although some knowledge is required, the exact
behavior does not need to be known.

3 Attention Selection

3.1 Experimental Setup

The first experiment tackled here is inspired by the work of Quinton [5]. The
goal is to use Continuous Neural Field Theory [6] to model attention selection.
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The model is taken from [7] in which the neural field is known to output a robust
neural activity able to track perceptual information in noisy contexts, even in
the presence of distractors. In Quinton’s work, the parameters of the neural field
are optimized using an evolutionary algorithm.

The neural field is represented by a two dimensional map, and the potential
at position vector x and time t is u(x, t), with x in [−0.5, 0.5]2. The field is
stimulated by perceptual input s(x, t), and lateral connections. The dynamics of
the neural field follows the equation taken from [5]:

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
x′
u(x, t)w(x,x′)dx + s(x, t) + h (2)

h is the resting potential, set to 0 at first. The lateral connection weights follow
the equation:

w(x,x′) = Ae−
|x−x′|2

a2 −Be−
|x−x′|2

b2 (3)

The lateral connection parameters A, B, a and b are evolved, as well as τ the
inertial parameter of the dynamics. As in Quinton’s work, the parameters are
constrained in order to obtain a “mexican hat” like lateral connectivity: A > B
and b > a. In order to simulate the dynamics, the map is discretized onto a grid
of 50 × 50 units. The dynamics of the neural fields are simulated on different
contexts, in which the inputs of the neural field s(x, t) differ, as depicted in
figure 2. The first and second contexts A and B correspond to constant inputs.

Fig. 2. Typical inputs (contexts) from left to right: A: empty B: full C: competition
D: distractors E: noise F: simple

C, D, E are 3 contexts which correspond to Quinton’s scenarios. In context C,
a static input bubble is in competition with a second one of variable intensity.
In contexts D and E, a rotating input bubble must be tracked, in presence of
distractors (D) or noise (E). Finally, context F has a single static input bubble
and no distractors. The details of those contexts can be found in [5].

Control Experiment. The fitness used in the original experiment is used as
a control fitness. It is based on the three contexts C, D and E, and is described
in [5]. It assumes the knowledge of the position and shape of the output at each
time-step.

Context-Based Experiment. In order to measure the bias added by the
choice of contexts, various contexts are used to compute the fitness. The fitness
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Fig. 3. (Left) Two resulting behaviors obtained with the context-based fitness. Left is
the lateral weight profile and right the corresponding output activity. (Right) Influence
of the number of contexts on the context-based fitness with 30 contexts. ∗ represents
parameters obtained with the fitness of the original experiment.

includes up to |S| = 30 contexts. The first two correspond to contexts with
a totally activated/deactivated neural field. The others are chosen randomly
among C, D, E, or F —each run— to reduce any bias in the result statistics.
In contexts C, D, E, or F, the initial position of the input bubble, the number
of distractors or the noise level can vary. Four sets of contexts are defined in
the following way: the first two contexts are in Sconst, all others in Snconst.
Additional contexts derived from D and E have their input moving, therefore
they should not converge towards a fixed output and are then in Snconv. On the
other hand, contexts derived from C and F are in Sconv. From those sets, the
following constraints are defined:

– The output behavior of contexts from Snconst should be different from con-
stant behavior of Sconst contexts: ∀i ∈ Snconst, j ∈ Sconst, oi(t) �= oj(t)

– The output of Snconst should exhibit consistency in time:
∀i ∈ Snconst, ∃εt ∀t, t′ > εt oi(t) ∼ oi(t

′)
– The output of Sconv should stabilize: ∀i ∈ Sconv, ∃εt ∀t, t′ > εt oi(t) = oi(t

′)
– The output of Snconv should be different over time:

∀i ∈ Snconv, ∀t > εt, ∃t′ > t, oi(t) �= oi(t
′)

– The outputs of different contexts of Snconst should be similar:
∀i, j ∈ Snconst, oi(t) ∼ oj(t)

Finally, the distance between behaviors is computed in the following way:

d(oi(t), oj(t)) =

∫
x

||oi(x, t) − oj(x, t)|| (4)

The similarity distance computes the same distance, after aligning the outputs:

ds(oi(t), oj(t)) = min
d

∫
x,x′

||oi(x, t)− oj(x− d, t)|| (5)
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d corresponds to the shift between the center of activities between the two
outputs. Details of this computation can be found in [7]

Each individual is evaluated during 20 time-steps on each context. In order
to avoid initial chaotic dynamics, the first 5 time-steps of the resulting behavior
are discarded. Each experiment —with various numbers of contexts— is run
10 times, with a population size of 20 and the number of generations is 30
(same values as in Quinton’s experiment). The evolutionary algorithm used is
NSGA-II [8].

3.2 Results

The consistency objective with maximum number of contexts provides results
with the expected qualitative behavior, in all 10 runs. This means that the
output signal (a bubble of activity) is quickly able to follow the input with a
signal consistent in time and shape, and is not damaged by noise or distractors.
The evolved systems exhibit then the expected function. Furthermore, different
behaviors have been discovered, as shown in Figure 3, left. This highlights an
interesting property of the proposed method: it looks for behaviors respecting
the given constraints, no matter how they manage to do it.

The number of contexts used greatly influences the effectiveness of the consis-
tency objective. In order to study this influence, the individuals obtained with k
contexts are tested on the fitness based on 30 contexts. Additionally, an individ-
ual obtained with Quinton’s fitness was tested on the 30-context-based fitness.
The graph (Figure 3 right) shows that:

– not surprisingly, individuals obtained with Quinton’s fitness perform well
on the context objective. It should be underlined here that the reverse is
generally not true as Quinton’s fitness looks for a particular shape that is
not the unique solution respecting the constraints as mentioned above;

– the number of contexts needs to be high enough for the objective to be effec-
tive (around 16), but there is little difference in performance if the number of
contexts is over 16 (p > 0.1). The difference between 4, 8, 12 and 16 contexts
is significant (p < 0.01 for each).

4 Action Selection

This section describes the second experiment, based on a neuroevolution exper-
iment on basal ganglia [9]. The goal of this experiment is to evolve a neural
network able to perform action selection, a cognitive function supposed to be
performed by the basal ganglia. The search space is much larger than in the
previous experiment, as the structure and parameters of the neural network are
evolved. Action selection in the brain is the problem of choosing an action, given
external and internal sensory information. The focus is on the process of selec-
tion of a single action among conflicting ones, also known as a winner-takes-all
(WTA) circuit. This section first describes the original experiment and fitness,
and then the definition of contexts to build the new fitness function.
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Fig. 4. Typical contexts from left to right (Input of the action selection model): A:
empty or low noise B: easy selection C: competition

4.1 Experimental Setup

Encoding. In order to build an action selection model that generalizes to dif-
ferent number of action channels, Mouret et al. used a map-based encoding [9]
in which parameters and structure of a neural network are evolved. The neu-
ral network is initially a feed-forward network, and the structure is modified
through evolution by the addition of new neurons or maps of N neurons, and
connections between them. Furthermore, connections between maps of neurons
have additional evolved parameters that determine the nature of a connection:
a 1-1 connection scheme connects each neuron of the input map to a single one
in the output map, while a 1-all connection scheme connects one neuron to all
neurons in the output map.

This experiment uses this map based encoding, with a modification: the con-
nections between maps have an additional evolved parameter: an offset o. For
instance, a 1-1 connection between two maps of sizeN with offset o connects neu-
rons as follows: neuron i of the input map is connected to neuron i+omoduloN
of the output map.

Control Experiment. The authors of the original experiment expect to build
a model that reproduces the functioning of basal ganglia in the brain. The fitness
function assumes full knowledge of the output and is described in [10]. At rest
the output of the basal ganglia is active, and represents inhibition to the target.
The selected action will then be the channel where inhibition is removed. The
neural networks have one input map and one output map of N neurons, N
corresponding to the number of channels. Over a collection of K = 500 random
inputs (inputs range from 0 to 1), the most activated input neuron has to be
selected, which means that the corresponding output should be close to zero
while others should be close to one. It rewards individuals that desinhibit the
selected channel and inhibit all others.

As this setup is more challenging than the previous one due to the complex
search space, a behavioral diversity helper objective is added, in a multi-objective
scheme [9].

Consistency Objective. The goal of the consistency objective is to evolve net-
works that perform action selection in any possible way, not only in a biologically
plausible way.
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Three types of contexts are displayed in Figure 4. Context type A corresponds
to a very weak noise input. Context B corresponds to a very simple action
selection: one channel is set to 1.0 while the others are set to 0 plus a uniform
weak noise. C represents randomly generated contexts with random inputs.

Like in the previous experiment, we define 2 sets of contexts in the following
way: Sconst for context A, Snconst for all others.

– All the outputs should stabilize: ∀i ∈ S, ∃εt ∀t, t′ > εt oi(t) = oi(t
′)

– The output behavior of contexts from Snconst should be different from con-
stant behavior of Sconst contexts: ∀i ∈ Snconst, j ∈ Sconst, oi(t) �= oj(t)

– The outputs of two different contexts of Snconst should have similar behav-
iors: ∀i, j ∈ Snconst, oi(t) ∼ oj(t)

– The outputs of two different contexts in Snconst which select the same chan-
nel should be exactly the same: ∀i, j ∈ Snconst,maxi = maxj ⇒ oi(t) =
oj(t)

– The outputs of two different contexts in Snconst which select different chan-
nels should be different: ∀i, j ∈ Snconst,maxi �= maxj ⇒ oi(t) �= oj(t)

Finally the distances to compute difference and similarity are defined as follows:

d(oi(t), oj(t)) =
∑

k ||oi(k, t)− oj(k, t)||
ds(oi(t), oj(t)) =

∑
k ||oi(k, t)− oj(k − δ, t)||

where δ is the shift between centers of activity of the two outputs, computed in
a similar fashion as in the first experiment.

The population size is 200 and the algorithm stops after 1000 generations.
NSGA-II algorithm is used [8], and the source code is available online at
http://pages.isir.upmc.fr/evorob_db

4.2 Results

Concerning action selection, the consistency objective was able to evolve success-
fully two main categories of solutions. Both of them realize action selection by
outputting a coherent response for any output, and making a single output stand
out from others. The first one (Figure 5, top), realizes the most intuitive action
selection, and its corresponding neural network obtained has two internal maps
of neurons and excitatory recurrent connections. The second category (Figure
5, bottom) of behaviors are similar to the Mouret et al. results, except for a
possible shift in the output channel index. The corresponding neural network
has two internal maps, but more connections, both excitatory and inhibitory.

The number of contexts have exactly the same influence as in the previous
experiment: with a low number of contexts, the performance is not reliable, while
with at least 15 contexts, the performance stabilizes. The difference between 15
and 30 contexts is not statistically significant (p-value > 0.1 Mann-Withney U
test). The solutions obtained with the original fitness perform very well when
evaluated with consistency objective.
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-

Fig. 5. (Left) 2 behaviors generated with the consistency objective. The graphs show
a random input (in), and the output of the evolved model (out). Consistency objec-
tive fitness: 0.94 (top) and 0.96 (bottom). (Right) corresponding neural networks.
Parameters and offsets are not displayed.

5 Conclusion

Properties such as cognitive abilities, robustness to noise, or generalization rarely
emerge with fitness functions that only reward the completion of a task. Many
evaluations over a lot of different contexts are required for those properties to
emerge, and there is no guarantee that such properties actually emerge.

The consistency method can be used to explicitly drive the evolutionary search
to the emergence of such properties. While it requires a priori knowledge on the
expected property, a successful run ensures the emergence of this property, with
a limited number of evaluations. The method is shown to successfully build two
properties: attention selection and action selection.

Furthermore, the consistency method does not drive the evolutionary search
to an explicit behavior. This means that the exact knowledge of a behavior
presenting the desired property is not required. In addition, this does not restrain
the evolutionary search to one particular solution, leading to the emergence of
the property in many different ways.

It is important to note that even if the knowledge of a behavior is not required,
the experimenter includes knowledge in building the different contexts and com-
parison between contexts. While the design of these contexts is straightforward in
simple cases, one can expect more challenges for difficult properties to emerge.

The method is based on selection pressure rather than encoding, thus it
could potentially be applied to any evolutionary algorithm. Future works include
the application of the Consistency objective to the evolution of more complex
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computational neuroscience models. Furthermore, it could be used as a helper
objective in a multi-objective scheme, alongside other objectives, such as a goal
oriented objective, behavioral diversity or novelty objectives.
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Abstract. The search for variants of effective neural behavior is a major
requirement for the identification of novel neuro-dynamical control prin-
ciples. Evolutionary algorithms are successfully used to search for such
controllers. But neuro-evolution tends to find similar, well performing
solutions when run multiple times, instead of many, perhaps also weaker
performing, but neuro-dynamically highly interesting variants. Further-
more, variants only develop by chance, so that a systematic exploration
of different neural control strategies is difficult. With the ICONE method
the search space can be shaped by so-called constraint masks (CM) to
bias the evolving networks towards specific configurations. On the basis
of an animat experiment we demonstrate that the number of evolved
distinct variants can be significantly increased using different CMs.

Keywords: Neuro-Evolution, Search Space Restriction, Variation Ex-
ploration.

1 Introduction

In the field of neurorobotics and evolutionary robotics [3] one of the research
goals is to identify dynamical and organizational principles of neuro-control that
lead to reasonable behaviors of animats [11]. Often, results do not only provide
practical guidelines on how a specific neuro-controller can be realized, but may
also give insights and suggestions for the examination of nervous systems of
living organisms.

To find neuro-controllers that can be analyzed with respect to their interest-
ing dynamical properties, the main approach is neuro-evolution [2], the appli-
cation of evolutionary algorithms to neural networks. This promising approach,
though, only works well for comparably small networks, because with an in-
creasing network size, the search space explodes exponentially. This is called
the scaling problem of neuro-evolution [5]. A second problem of many evolution
experiments is that a small set of possible solutions often dominates other valid
control structures. Such dominating controllers are usually more likely to evolve
or simply perform better, so that weaker performing or less likely controllers
only have a marginal chance to evolve. This is a major obstacle for experiments
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having the goal to find variants of neuro-controllers in order to identify differ-
ent approaches with interesting novel properties to solve a problem, if necessary
also including weaker solutions. So the goal here is primarily the identification
of different neural structures and neuro-dynamical control strategies applicable
to a certain problem domain, in contrast to the usual focus on finding an opti-
mal solution. An experiment in this context is merely a representative sample
for an entire problem domain and not a specific problem that should be solved
optimally. This is why an optimal solution for a particular experimental setting
is not more interesting than other, in that particular setting possibly weaker
performing solution strategies: All identified solutions are essentially interest-
ing because of their potential to be (re-)used in other experiments, in which
the formerly optimal controller may be less capable than some of the identified
alternatives.

Being able to identify as many different solutions as possible on the basis of a
single experimental setting also reduces the effort of the experiment design and
allows less elaborate, simpler experiments to be used.

A number of approaches have been proposed to tackle these problems, includ-
ing new evolution methods for larger networks (e.g. HyperNEAT [1], NEATfields
[7]) and measures to increase the diversity in the population (e.g. niching [10][17],
novelty search [9], behavioral distance [12]). However, these methods focus pri-
marily on the autonomous, random discovery of regularities or differences, which
makes it difficult to systematically search for specific, knowledge-driven variants
of neural control.

In this sense, more control over the evolving networks is given with shaping
approaches [4], in which domain knowledge is usually applied to break down
a difficult task into simpler subtasks and to guide the evolution in incremen-
tal steps by changing the evolution operator settings, the fitness function and
the evaluation method over the course of successive evolutions. This approach
can also be used to search for different solutions, simply by evolving each sin-
gle subtask multiple times with different settings, each time with the potential
of having different dominating solutions to evolve successfully. With this strat-
egy, solutions dominated by stronger solutions in one experiment may become
dominant in others and hence get a chance to evolve.

2 Network Shaping

A related, rarely used approach is search space shaping at the network level. In
this context, we call this approach network shaping. Hereby, the initial network
characteristics are systematically varied between experiments to bias the search
towards different network topologies and parameter domains. This, for instance,
can be done by initially providing structures to start with, by changing the
location of neurons [1][13], by choosing locations for network assembly programs
[8] or by excluding selected network elements from evolution [6].

A method that allows a much stronger and more general definition of the
desired network topologies, and that therefore is optimally suited for the network
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shaping approach, is the ICONE method, presented in the next section. With
this method very complex and specific network topologies can be described and
enforced on the network level in a simple and intuitive way. Accordingly, the
associated search space for a series of otherwise identical experiments can be
biased systematically and with any degree of specificity into different directions,
so that the evolution of different solutions to a problem becomes much more
likely. This focus on certain search spaces may be realized with very specific
settings, merely to confirm assumed solutions, as well as by using quite loose
specifications to allow also surprising, unexpected solutions.

In this contribution, we show how network shaping with the ICONE method
can be used to systematically search for neuro-controller variants, including net-
work configurations that otherwise would have been unlikely to evolve.

3 Interactively Constrained Neuro-Evolution

The Interactively Constrained Neuro-Evolution method (ICONE) [14][15] has
been developed to cope with the larger search spaces of the upcoming class of
animats with a rich sensorimotor equipment. Such animats will have a compara-
bly large number of neurons and synapses, that brings most evolution algorithms
to their limits.

The ICONE method is a universal, flexible technique to restrict and shape
the search space based on domain knowledge. With ICONE, all peculiarities of
an animat and its behavior, that are known in advance, can be used to bias the
search towards very specific, smaller subspaces of the overall search space, in
which evolution is feasible again. In the following, only the basics required for
understanding the network shaping approach are explained here in detail.

The search space restriction of the ICONE method is achieved by providing
so-called constraint masks (CM) that define the valid search space for an ex-
periment. During evolution, only networks within this search space can evolve.
A CM is formed by manually choosing groups of neurons (e.g. neuro-modules)
that correspond to the neurons’ roles, mutual relations, logical aspects or to their
associated location on the animat. Every neuron can belong to multiple groups
simultaneously. In a second step, these groups can be equipped with so-called
functional constraints to define the actual CM. Constraints operate within the
scope of their associated neuron-group and enforce their limitations and require-
ments by actively changing the subnetworks with appropriate operators. So, if
mutations violate constraints, then the constraint operators repair the damage
and make the network compliant with the CM again. Accordingly, functional
constraints induce strong dependencies between parameters in the network, so
the dependent parameters are not part of the search space any more. With these
constraints, any topological and organizational property, limitation or require-
ment can be expressed and enforced, reducing the search space by excluding
all inconsistent network configurations. During evolution, any mutation still can
take place, but due to the repair mechanisms of the functional constraints all
mutations nevertheless lead to valid networks within the defined search space.
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The current reference implementation of ICONE [16] with its graphical tools
provides many standard constraints, like cloning of subnetworks, different kinds
of symmetries, synaptic pathways, connectivity pattern, weight and bias restric-
tions, complex weight dependencies, and many more [14]. Additionally, very spe-
cific custom constraints can be implemented as plug-ins to extend the method
by less common constraints. This allows a simple and powerful description of
the desired network topologies and an intuitive definition of CMs.

A CM, by reducing the search space, also biases evolution towards a specific
network topology. Hereby, more restrictive CMs lead to a stronger guidance and
more predetermined solutions. Therefore, defining a CM is always a trade-off
between the dimensionality of the search space and the degree of indeterminacy
of the solution. The definition of CMs hereby is not a trivial task. Detailed
descriptions of examples can be found in [14][16].

4 Experiment for the Exploration of Controller Variants

To demonstrate the exploration of controller variants with network shaping we
choose an experiment with a non-trivial animat having a sufficiently large num-
ber of sensor and motor neurons to allow many different solutions for behavior
control. This animat consists of a closed chain of connected plates. Each plate
is equipped with a servo motor to control the joint angle towards its successor
plate. The motor provides two motor neurons, one to control the desired angle
and one to specify the maximal torque applicable to reach the desired position
(Fig. 1a). Furthermore, each plate carries a full set of sensors, including an angu-
lar sensor for the joint, a force sensor to detect pressure on the plate, acceleration

Fig. 1. The closed-chain animat and its motor and sensor equipment. All motors and
sensors shown in (a) and (b) are available on every body segment. The animat can be
configured with a variable number of segments with different sizes. The two animat
configurations used in the experiment are shown in (c). (d) shows the minimal network
(80 sensor neurons, 20 motor neurons) for a 10-segment animat with a grouping of the
neurons according to their position on the animat.
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Fig. 2. The closed-chain animat in the obstacle course. The four obstacle zones of the
course are roughly sketched in the lower right figure.

sensors and a gyroscope sensor (Fig. 1b). This closed-chain animat comes in two
versions with differing complexity. Configuration (A) consists of 10 equally sized
plates (Fig. 1c left). Configuration (B) has 15 plates in three different sizes that
divide the animat in 5 equal triplets (Fig. 1c right).

In the experiment the animat has to follow a straight obstacle course (Fig. 2)
by moving forwards over different types of obstacles. For this, it has to develop a
coordinated motion of all body segments. The course (Fig. 2) is bounded by walls
to ensure that the animat cannot topple over or diverge from the path. The path
is separated into four zones. Zone (1) is obstacle free to allow the development
of a forwards locomotion first. Zone (2) comprises some low, horizontal obstacles
that are easy to pass, followed in zone (3) by a sequence of ramps with increasing
steepness. Zone (4) then provides higher, more diverse hurdles.

The experiment, however, aims at finding variants of neuro-controllers for
that task, exploiting different uses of the sensors, motor control approaches and
network organizations. First, each animat configuration is evolved multiple times
with a general CM that constrains the evolution only minimally, so that on one
hand many valid controller variants are possible, and on the other hand the
search space is small enough for the evolution to succeed. Without these minimal
CMs bootstrapping the evolution becomes too difficult, because fitness is only
gained for a coordinated movement of all body parts. The probability to ’freely’
evolve such a coordination is is very low. These results demonstrate the diversity
of the best solutions for these least constrained cases.

In the second step, a series of experiments with more restrictive CMs is per-
formed. Each experiment focuses on different domains of the search space using
specific CMs and is run multiple times to search for controller variants. All hereby
involved search spaces are subspaces of the first two experiments. Therefore, in
principle, all controllers found with the stronger constraints could also emerge in
the two least constrained cases. We then compare the evolved solutions to inves-
tigate whether more restrictive CMs lead to controller variants not appearing in
the results for the minimally restricted cases and whether the identified solutions
also differ for each CM. This would indicate that the successive application of
different CMs on the same experiment generates more controller variants than
the evolution that is applied exclusively on the least constrained search space.
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Fitness Function. In all experiments, the fitness f at time step t is given by

f(t) = (1− δ)g(t) + δ
t−1∑
j=0

g(j) , δ ∈ [0, 1] (1)

g(t) = g(t− 1) +

⎧⎨
⎩

0.1 if maxt > maxt−1

−0.1 if maxt < maxt−1

0.0 else
, g(0) = 0 , (2)

that is, f(t) is the sum of all increments g up to the current step. The ratio
between current increment g(t) and the increment history can be adjusted with
parameter δ; g(t) is based on the positions of the animat’s body parts; maxi
denotes the index of the body part with the largest distance from the origin (in
positive x axis) at time step t. If that index is higher (lower) than the previously
furthest body part, then g(t) is increased (decreased). Hereby, index 0 is consid-
ered to be the valid successor of the highest index, closing the chain. In short,
the faster and further an agent gets, the higher its fitness becomes.

Evolution. The experiments use the physical simulator of the NERD Toolkit [16]
software. During evolution, each neuro-controller is evaluated multiple times
with slightly randomized positions of the animat and the obstacles. The fitness
of a neuro-controller is defined as the mean of all tests performed in this way.
The settings of the evolution operators are similar for all evolution experiments.
Three sets of evolution settings are provided and automatically used at certain
generations. The first set is only used to generate a very large initial generation
with many different individuals. The second set is for the main evolution here-
after. The third set is used starting with the 150th generation to allow more
fine-tuning of weights and less structural changes. The settings of the three sets
are given in figure 3. In the context of this experiment, not all features provided
by the ICONE method – such as the interactivity and the modular crossover
– are used. This avoids that the results are influenced by interventions of the
experimenter. Further comments on the motivation for these parameter settings
and descriptions of the mutation operators can be found in [14].

Fig. 3. The settings of the evolution operators. Parameters of different sets are sep-
arated by a slash. Parameters not specifying a second or third setting keep the last
setting also for the next set(s).
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5 Constraint Masks

General Constraint Masks. The general CMs used for the two first, minimally
constrained evolutions (M1, M2, see table 1) already restrict the search space
significantly to allow successful evolutions at all. In both cases, the networks
are divided into neuron groups, each containing all motor and sensor neurons
of a single body segment (Fig. 1d). In configuration (A), a single group (mas-
ter group) is allowed to evolve freely, whereas all other groups are constrained
with a clone constraint to enforce a structure identical to that of the master.
Configuration (B) uses three master groups that represent the three consecutive
body segments with differing size (the three segment types forming a triplet).
All other groups here also use a clone constraint that enforces the structure to
be identical with that of their corresponding master module, i.e. with the one

Table 1. Descriptions of the CMs for network shaping. The first column specifies the
experiment, the second the used animat configuration (A) or (B), and the third the sen-
sors allowed by the CM. M1 and M2 refer to the minimally constrained evolutions. The
last column gives a description of the additional constraints focusing on the evolution
of specific controller variations (V1 - V8).

E C Sensors Constraint Mask in Addition to Default Mask

M1 A All -

M2 B All -

V1 A Angle Enforces the usage of neighboring groups and prevents the use of the
own sensor. Additionally, the motor angle neuron is fixed and the
behavior has to be realized using the motor torque neuron only.

V2 A Angle Allows only connections between every second neighbor, hereby
defining two neuro-dynamically independent rings of groups.

V3 A Accel. -

V4 B All In addition to the angle sensor, each of the three differently sized
segments uses only one of the other sensors (acceleration, gyroscope,
force). So, each group of a triplet now has a different set of sensors.

V5 B Gyro A single group of each triplet now has a gyroscope sensor. Accord-
ingly, there are only 5 gyroscope sensor sets (x, y, z) to control all 15
segments. A special constraint ensures, that only networks evolve in
which all motor neurons are influenced by (an arbitrarily long chain
of) synapses coming from the gyroscope sensors.

V6 A Angle
Accel.

The master group is forced to use a neural oscillator with frequency
control between the sensors and the motors. Therefore, the oscilla-
tors have to be connected suitably and a strategy for an effective
synchronization has to be found.

V7 A None The network is equipped with a structure that produces an activity
pulse that passes through all groups. The frequency of the pulse can
be evolved, as well as a strategy to use it to generate locomotion.

V8 A Accel. The master group is forced to develop an excitatory feed-forward
structure between the sensors and the motors, whereas signals from
the direct neighbors can influence that structure with inhibition only.
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that has the same segment type. In both configurations, the master groups are
constrained to grow only local synapses within the same group. For connections
between the groups, a connection symmetry constraint is used, that enforces a
rotation symmetry in the ring of groups. So, if a connection from group 1 to 5 is
added in (A), then this constraint adds connections from group 2 to 6, 3 to 7, 4
to 8 and so forth. In (B), it adds connections only for groups of the same type,
so from group 4 to 8, 7 to 11 and 10 to 14. Consequently, all groups (of the same
type) provide identical subnetworks and a rotation symmetric interconnection
pattern. These CMs reduce the search space to the feasible size of a single (or
three in the case of (B)) joint controller(s).

Special Constraint Masks. The used CMs to bias the search space further (V1 -
V8) are described in table 1. They are chosen exemplarily to demonstrate the
various ways the CMs can describe specific approaches. Of course, a systematic
exploration is also possible by systematically enforcing the use of interesting
combinations of sensors, actuators, coordination heuristics and functional struc-
tures. A major impact on the controller strategy certainly has the choice of the
sensors. Here, CMs can not only prevent certain sensors from being used (V3),
but also allow the definition of specific uses of these sensors. Experiment V1, for
instance, only allows the use of sensors of neighboring groups, and V5 enforces
all motor neurons of a group triplet to be influenced by a gyroscope sensor. A
second variation worth looking at are different motor configurations. With CMs,
one type of the motor neurons (angle or torque) may be fixed (as in V1), so
that the behavior has to be realized with the remaining motor neurons. A fixed
torque neuron, for instance, requires a control based on angle settings, whereas
a fixed motor angle neuron requires a control of the torque. In a closed-chain
animat it is also interesting to investigate the role of communication between
the body segments, for instance how different communication pathways change
the control strategy (V1 - V3). And finally, it is interesting to test hypotheses
for control, as is done exemplarily in V6 - V8: the use of oscillators, an activation
pulse and a feed-forward structure with lateral inhibition. This can be achieved
by constraining the networks to use very specific given structures or to organize
in specific ways.

6 Results

Figure 4 shows an overview of the results. The upper line gives the number of iden-
tified distinct solutions evolved during all evolution runs of each experiment. To
classify controllers into solution classes, controllers have been grouped by their
observed behavior, by their internal sensor usage and (where possible) by their
identified underlying neuro-dynamical properties1. The fitness of the best evolved
controller (2nd row) and the average of all runs (3rd row) for each experiment can
be used to compare the performance of controller variants. The fitness has been

1 Due to the sheer mass of controllers, only a limited number of interesting controllers
have been analyzed in detail [14].
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Fig. 4. Results of the evolution experiments, showing the number of distinct variations
per experiment (only identified variants based on a rough analysis; more variants may
be found with a deeper analysis), the best fitness per experiment and the capability
of controllers to overcome the obstacles. The zones of the obstacle course are given as
numbers (1 - 4) next to each column. 0 hereby indicates a total failure and 3* refers to
the third zone excluding the steepest ramp.

normalized by rerunning the best network per experiment to obtain themean of 10
tries with 6000 simulation steps each. A different perspective on the performance
can be read from the columns, which show the capability of the best controller of
each evolution run to overcome the obstacle zones.

Analysis. As a first observation, each experiment provides its own set of solution
variants (including a common, dominant solution and some less likely, differing
solutions) that are in most cases different from the ones found in the other
experiments. Therefore, the number of identified variants is indeed much higher
(≈ 40) compared to the more general search spaces only (M1: ≈ 8 and M2: ≈ 5).
Videos and networks of these controllers can be found at our homepage2.

The high fitness of the evolved controllers in M1 and M2 indicates that with
these configurations highly capable controllers (passing all obstacles very fast)
have been found that presumably dominated other, weaker performing solutions
(slower or incapable of overcoming certain obstacles). This suggests that the
lower performing solutions found in experiments V1 - V8 have been suppressed in
M1 and M2, where they, in principle, are also possible. Furthermore, the variants
evolved with M1 and M2 are very alike: Most solutions rely on the gyroscope and
the force sensors and differ only slightly in their control structure. Controllers
using other sensors became extinct due to the very likely occurrence of that
successful approach. Because these controllers do not require a sophisticated
communication between the segments, only trivial connectivity pattern evolved.

More interesting structures only developed using the stronger CMs. The iden-
tified variants hereby do not only express differences in the observable behavior

2 nerd.x-bot.org/closed-chain-animat
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Fig. 5. Time-series of six examples with considerable behavior differences

(Fig. 5), such as elongated or wheel-shaped rolling, organic looking motions,
behavior switching at obstacles (e.g. leaning forwards, repeated approaching,
backtracking with run-ups), coexisting behaviors (depending on starting condi-
tions), the emergence of ’virtual limbs’ (e.g. to push the agent with a periodically
forming ’tail’) and intermittent forwards-catapulting, to list a few of the more
interesting ones. In addition – and more importantly – the solutions also show
different neuro-dynamical and structural approaches: Controllers evolved com-
plex communication and coordination strategies between the body segments,
various sensor combinations have been successfully used to generate locomotion
and the motors have been controlled with different strategies (e.g. joint control,
stiffness control or both). This also involved different numbers, distributions
and kinds of ’active zones’ over the body, in which the joints are actively driven
(e.g. bent, stretched, positioned), in contrast to ’passive zones’ with a low motor
torque. And also some more ’artificial’ approaches could be successfully tested
with various results, such as driving the locomotion with neural oscillators.

This overview shows that network shaping with CMs is helpful to protect
specific configurations, to increase the number of different solutions and to find
also controllers that otherwise would be suppressed by more dominant solutions.

7 Discussion and Conclusion

We have shown that variations of neuro-controllers can be evolved by biasing the
search space with CMs towards specific solution approaches. The empirical re-
sults show, that the number of variants can be significantly increased compared
to evolutions without such specific masks. Hereby, the CMs can not only be used
to systematically choose combinations of motors and sensors, but also to apply
any kind of domain knowledge to the evolving population, so that even very spe-
cific network organizations and control hypotheses can be explicitly approached.
Although many resulting controllers are not optimal, they often are interesting
because of the (novel) neuro-dynamic control principles they provide. Solutions
with a lower performance are, without other techniques to maintain a strong
diversity in the population (e.g. niching) likely to become extinct early and to
be dominated by better solutions. In such cases and when trying to find network
solutions which are less likely to evolve, network shaping – as has been shown
with the ICONE CMs – is a powerful technique to find suitable controllers.



Evolving Variants of Neuro-Control Using Constraint Masks 197

Acknowledgements. This work was supported by EU-Project ICT – 214856.
We thank Tanya Beck for proof-reading and the reviewers for their advice.

References

1. D’Ambrosio, D.B., Stanley, K.O.: A novel generative encoding for exploiting neu-
ral network sensor and output geometry. In: Lipson, H. (ed.) Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 974–981
(2007)
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Abstract. We have created a model of a hybrid system in which a gene
regulatory network (GRN) controls the search for resources (fuel/food and
water) necessary to allow an artificial metabolic system (simulated mi-
crobial fuel cell) to produce energy. We explore the behaviour of simple
animats in a two-dimensional simulated environment requiring minimal
cognition. In our system control evolves in a biologically-realistic manner
under tight energy constraints. We use a model of GRN in which there
is no limit on the size of the network, and the concentration of regula-
tory substances (transcriptional factors, TFs) change in a continuous fash-
ion. Externally driven concentrations of selected TFs provide the sensory
information to the animat, while the concentration of selected internally
produced TFs is interpreted as the signal for actuators. We use a genetic
algorithm to obtain diverse evolved strategies in ecologically grounded an-
imats withmotivational autonomy, even though they lack a dedicated mo-
tivational circuit. There are three motivations (or drives) in the system:
thirst, hunger, and reproduction. The animats need to search for food and
water, but also to perform work. Because the value of such work is arbi-
trary (in the eye of the beholder), but affects the chances of reproduction,
we suggest that the term beauty is more appropriate, and we name the task
the Search for Beauty. The results obtained provide a step towards real-
izing a biologically realistic system with respect to: the way the control is
exercised, the way it evolves, and the way themetabolism provides energy.

Keywords: minimal cognition, gene regulatory network, chemotaxis,
microbial fuel cell, artificial metabolism, genetic algorithm.

1 Introduction

The importance of bodily variables essential to metabolic functioning and in-
ternal and behavioural homeostatic regulation has been appreciated since the
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cybernetics movement of the 1940-60s (cf. [1]) and has inspired research into
self-sustaining robots required to trade off work with refueling needs [2, 3])
Microbial fuel cells (MFCs) comprise a form of artificial metabolism whose es-
sential metabolic variables consist of chemical energy available to the bacteria
in the anodic chamber and the hydration level of the cathode (Fig. 1,left). Bac-
teria convert the chemical energy into electric energy, which can be then made
available to the animat. Chemical energy is provided in the form of substrate,
which can be refined or unrefined biomass collected from the environment (cf.
[4]). MFCs have already been deployed in the context of energy autonomous
robotic agents ([4]), i.e. agents that are capable of refueling themselves whilst
being flexible regarding the source of fuel (the substrate). Furthermore, work in
simulation has indicated that motivationally autonomous (cf. [2]) robotic agents
(MFC-powered simulated robots with minimal need-constrained action selec-
tion) may be imbued with minimal cognitive capacities such as anticipation and
opportunism (e.g., [5, 6]).

In this paper we create a hybrid system in which artificial metabolism (an
MFC) provides energy to the animats whose behaviour is controlled by a regu-
latory network inspired by the networks which are the basis of the control of all
living cells. Our Artificial Life platform, GReaNs (for Gene Regulatory evolv-
ing artificial Networks) was previously used by two of us to model evolution of
chemotaxis in unicellular animats [7] and evolution of soft-bodied multicellular
animats [8], and was developed originally for research on artificial multicellular
development [9, 10]. The model of a regulatory network in GReaNs is similar to
the models used by Eggenberger Hotz [11] and other researchers (e.g.,[12, 13]) in
the field of Artificial Embryology. We have previously demonstrated high evolv-
abilty of GReaNs in signal processing tasks [14], and the dynamical properties
of other models of gene regulatory networks (GRNs) were investigated by other
authors [15, 16]. We were not the first to use GRNs to control animat behaviour
(e.g., [17–19] considered wall and light following, and obstacle avoidance).

In a previous model of a hybrid (symbiotic) system – robot and MFC – pro-
posed by two of us [20], the generated energy is stored in the capacitor (C; Fig. 1,
right), added externally to the fuel cell in order to comply with the electric con-
straints dictated by physical robots. Functioning of the fuel cell depends on the
balance of the levels of hydration and substrate. Water and substrate need to
be replenished to maintain the electrochemical process, in accordance with ap-
propriate agent behavior. In the work reported here, animat behavior enables
this replenishment, while the functioning of the MFC may mould cognitive-
behavioural capacities at a level of grounding not investigated previously, i.e.
using GRNs. The level of integration between the animat and the environment
that GReaNs promote in combination with the energy constrained dynamics
demonstrated by MFC-powered robots promises much for exploring emergent
cognitive phenomena in animats.

The platform used in this paper has four biologically inspired elements:
metabolism (MFC), control (GRN), evolution (a genetic algorithm), and a model
of a unicellular animatwhich interactswith its environment in a physically-realistic
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Fig. 1. The oxygen-diffusion cathode microbial fuel cell and the wiring diagram of the
animat. See text for details.

fashion. This interaction is governed by simple simulated physics (which includes
Newtonian laws). The way the animat senses chemicals in the environment is
inspired by the mechanisms in unicellular eukaryotic organisms (for a short re-
view, see [21]). Finally, the animats need to trade off work with refueling needs
in order to produce progeny. Because the value of such work is arbitrary (in
the eye of the beholder), we suggest that beauty is more appropriate, and name
the task the Search for Beauty. Another term that might capture the urge to
perform work, with rich bio-philosophical connotations, is striving.

In section 2 (Model), we will first provide a brief description of the elements
of the platform. In section 3 (Results), we will analyse the behaviours of animats
which were evolved to perform a simple cognitive task: search for resources and
beauty. Importantly, the information about the state of the MFC (hydration of
the cathode, amount of substrate in the anodic chamber) is not provided to
the GRN in the simulations described in this paper. Finally, in section 4, we
conclude with some remarks on the implications of our results for the research
in the field of adaptive behaviour.

2 Model

The model for the evolution of the linear genome encoding a GRN used in this
paper is essentially the same as the one used in [7, 8, 10]. The model of the
circular unicellular animat [7] with sensors at the front and two actuators at the
back (Fig. 2) is modified here to include a novel energy source in GReaNs: a
simulated MFC [20]. We provide here a brief description of the whole system.

2.1 Linear Genomes, Artificial Gene Regulatory Networks, and
Gene Regulation

GRNs are specified by linear genomes and have internal and external nodes.
A genome consists of a list of genetic elements (Fig. 2) of three types: E, P ,
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Fig. 2. The animat and its genome. See text for details.

or G. Each element is by itself a list of numbers: type (0 for E, 1 for P , or
2 for G), sign (−1 or 1), and two coordinates (real numbers). The genome is
parsed sequentially to construct a GRN. First, all E elements (for external)
are assigned to external nodes (inputs and outputs), in the order in which they
appear in the genome. After E elements are assigned, each sequential group of
P elements (promoters) followed by a sequential group of G elements (genes,
which code for transcriptional factors, TFs) is interpreted as a regulatory unit.
These units correspond to the internal nodes in the GRN. E elements assigned
to outputs can be seen as promoters hard-wired to a product with a specific
function (controlling an actuator). Elements assigned to inputs can be seen as
coding for TFs whose concentration is determined externally to the cell (e.g., by
the activity of sensors). An important feature of our model is that there is no
limit on the number of genetic elements in the genome, and thus on the number
of nodes in the GRN, and no limit on the number of links between nodes. The
number of E elements is also not limited, but only nine are assigned, two to
outputs (two actuators), seven to inputs (two per each of three resources, one to
a TF whose concentration is kept constant, equal to 1). Superfluous E elements
in the genome are ignored.

A link between the nodes is formed if a TF has affinity to a promoter. Direct
links between external nodes are not permitted. Affinity depends on the coordi-
nates. In this paper, each element has two coordinates and thus corresponds to
a point in an abstract 2D space (not to be confused with the 2D environment
in which animats move). Affinity is determined by Euclidean distance between
points (with a threshold to prevent full connectivity). The concentrations of TFs
(real values in the interval [0, 1]) change in each simulation step. The concentra-
tions of all TFs belonging to one regulatory unit are the same, and depend on
the sum of the activation of the promoters of this unit. Activation of a promoter
is the sum of the concentration of each TF that has affinity to this promoter,
weighted by this affinity, taking the sign of the two elements into considera-
tion (so regulation is inhibitory when the signs differ, and excitatory otherwise).
The sum of the activation is used as an argument of a sigmoid function which
produces values in the interval (−1, 1). The current concentration of the TFs
coded by the unit are subtracted from the value of the sigmoid function, and
this end result is interpreted as the rate of synthesis/degradation to determine
TF concentrations in the next step (using Euler integration). In other words, all
products degrade exponentially over time unless the synthesis rate is above the
intrinsic degradation rate.
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2.2 Animats Powered by the Microbial Fuel Cell and Their
Environment

The energy produced by the MFC and made available to the animat is a func-

tion of the stored electric potential difference across the capacitor (ε =
CV 2

C

2 ).
The voltage across the capacitor is updated with the Euler integration method
in each step of the simulation of GRN activity and animat movement using
the equation dVC

dt = Vo−VC

CRi
(C = 0.0282). Vo, the electromotive force of the

MFC, and Ri, its internal resistance, depend on the level of substrate (s) pro-
vided to the anodic chamber, and on the level of hydration (h) of the cathode:
Vo = Vo,refs + Vo,min(1− s) − Vo,hyd

1−h
1−hlim

, Ri = Ri,refs+Ri,max(1− s)+
Ri,hyd

1−h
1−hlim

(voltages: Vo,ref = 3.2, Vo,min = 2.8, Vo,hyd = 0.18; resistances:
Ri,max = 3200, Ri,ref = 550, Ri,hyd = 600; hlim = 0.19 is the asymptotic
hydration level, see below).

The level of substrate in the anodic chamber changes linearly with time: s =
1 − ts

τs
(ts is the time from the last replenishment with substrate, τs = 6000,

thus the rate of substrate consumption is 10 times higher than in [20]; without
this modification there is no pressure for substrate replenishment). The level of
hydration is modelled as: h = hlim + hpos

1
1+eγpos(th−τpos) − hneg

1
1+eγneg(th−τneg)

(th is the time from the last replenishment with water, hpos = 1.52, hneg = 0.68,
γpos = 0.0055, γneg = 0.031, τneg = 710, τneg = 600).

There are three types of resource particles in the environment: beauty, food,
and water. The number of beauty particles collected determines directly the fit-
ness of the animat, but does not affect the MFC. There is a scalar field of scent for
each resource. The scent coming from all particles of a given resource is summed.
When a particle is consumed by the animat, the corresponding field changes in-
stantaneously. If it is water (or food), th (or ts) is set to 0 thus simulating the
rehydration of the cathode (or the replenishment of the substrate in the anodic
chamber). The scent coming from a given particle decreases with the Euclidean
distance (dEuc) from this particle (as 1

1+0.2dEuc
), and reaches maximum (1) at

zero distance. The activation of the sensor (SL and SR, Fig. 2) is equal to the
value of scent at the sensor’s location. In order to forage efficiently, the animat
has to detect the concentration at a given location and the direction in which it
changes (the gradient). The sensory information is provided to the GRN using
two TFs per resource, encoded by two E genetic elements. The concentration of
one TF depends on the average activation of both sensors ( 2

1+e−γavg(SR+SL) − 1),

and of one TF on the difference in their activation ( 1
1+e−γdif(SR−SL) ). In other

words, the concentration of the latter TF is 0.5 when the activation of the left
and right sensor is the same, and it decreases towards 0 (or increases towards
1) when the right-left difference decreases (or increases). The steepness of the
sigmoid functions is set to amplify small differences or to allow for a dynamic re-
sponse even when the animat is close to several particles (γdif = 10, γavg = 0.5).

The thrust forces (FAL and FAR, Fig. 2) generated by the actuators are pro-
portional to the concentration of a TF associated with the corresponding output.
The directions of the forces are such that when the activations of the actuators
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differ, the animat turns, but even when only one actuator is active, the animat
moves in a loop rather than turning on the spot. When a moving animat deacti-
vates both actuators, the motion continues due to inertia until it is brought to a
stop due to fluid drag (proportional to squared velocity). This drag also imposes
a maximum velocity possible.

Activation of actuators entails draining the MFC capacitor (Fig. 1). When Vc
drops below a certain threshold (2.03), the switch (marked with “σ” in Fig. 1)
opens and the distribution of energy (and thus actuation) stops while the capac-
itor recharges. The switch closes when Vc exceeds the upper threshold (2.90).

2.3 Evolving Efficient Controllers for Foraging in 2D Environment

Each evolutionary runs is 1000 generations of a genetic algorithm with a constant
population size of 100 individuals and binary tournament selection (draw two,
keep the better one). The genomes of the animats in the initial population have
nine E elements and five randomly created regulatory units. Coordinates in
genetic elements are randomized by drawing a random direction and a random
distance from (0, 0) using a uniform distribution. Genetic operators are: changes
of element type, sign, coordinates (so that the associated point in the abstract
2D space is moved in a random direction by a distance drawn from a Gaussian
distribution), and duplications and deletions of a random number of elements
(drawn from a geometric distribution) at random locations in the genome. The
probabilities of deletions and duplications were equal.

Before the trial, 20 beauty, 40 food, and 40 water particles are placed at random
positions in the environment (drawn from a uniform distribution centred on
the initial position of the animat) to create a random map. The space is open
(there are no boundaries). The initial direction of the animat is random. The
coordinates of the animat and food particles are represented as real numbers. The
equations that govern the GRN and MFC are integrated for a specific number
of time steps (7000). The genetic algorithm aims to minimize the average value
of the fitness function over 10 random maps. The fitness function is: ffit =
0.8bdir(1− cbea

20 ), where (cbea) is the amount of beauty particles collected (out of
20 on the map), while the value of bdir is 1 if the animat makes at least one turn
to the right and one to the left during a trial (then ffit is lowered by 20%), or
1.25 otherwise (no reward). This reward promotes escaping a local optimum (a
hill in the fitness landscape) which consists of moving in a loop (finding particles
by chance even without any control, or with control of one actuator to tighten
the loop when the scent increases [7]).

3 Results

We have performed 100 independent evolutionary runs for 1000 generations, and
picked one best individual from each of the 100 final populations thus obtained.
These best individuals were sorted by fitness, and 20 “best-of-the-best” were
chosen for further analysis. We have re-evaluated each of these 20 individuals
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Fig. 3. Diversity of animat strategy in maintaining MFC viability. The location of the
points correspond to the average number of water and food particles during 7000 time
steps on 1000 random maps with 40 particles of water, 40 of food, and 20 of beauty.
The strategy of the red animat has been marked by a triangle, of the fuchsia animat
with a diamond, of the green with a square, and of the maroon with a circle.

Fig. 4. Example trajectories of the evolved animats. The whole area containing par-
ticles is shown for the top two (left: red animat, right: fuchsia), only a fragment for
the bottom two (left: green, right: maroon). The simulation was run until the MFC
stopped its activity due to dehydration and/or lack of substrate. 40 particles of water
(blue circles), 40 of food (maroon circles), and 20 of beauty (red circles) were placed
initially, consumed particles are represented as empty circles.
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Fig. 5. Velocity of the animats. The graphs show the first 8000 simulation time steps
on the same map as in Fig. 4, in the same order: red (top left) and fuchsia (top right),
green (bottom left), maroon (bottom right).

over 1000 random maps (instead of 10 used during the runs). The individuals
collected about the same number of beauty particles in 7000 simulation steps (the
average over 1000 trials ranged from 5.40 to 7.80, out of 20 available), differed
in the strategy used to maintain the viability of the MFC, i.e., in the number
of water and food particles collected (Fig. 3). The reason why this diversity is
possible is that the artificial metabolism model used here (MFC) allows for some
energy production when hydration is low provided the substrate level is high.
Biological metabolism is similar: water is one of the products of the metabolism
of carbohydrates and lipids.

To describe four of these strategies, we will use colour codes for the animats
(as in Fig. 3): red for the animat that collected the most particles of all three
types (beauty: 7.80; water : 10.21, food : 11.58), fuchsia for the second best in
the search for beauty (7.04, water : 3.37, food : 8.75), maroon for the second best
animat in food collected (11.08, water : 1.61), and green for the animat that
collected the smallest average number of all particles over 1000 trials (water :
0.50, food : 6.76, beauty: 5.68).

Although on some maps a particular animat may be unsuccessful (Fig. 4), all
four animats collected a similar average number of beauty particles over 1000
maps when the simulation time was extended to 21000 steps (red animat: 12.86,
fuchsia: 11.95, green: 13.79, maroon: 12.68). Higher consumption of provisional
resources allows the red animat to maintain a higher velocity than fuchsia, and
much higher than green and maroon (Fig. 5), highlighting the fact that although
it is possible to maintain low energy production when the cathode is dehydrated,
this situation has its consequences for viability (moving too fast results in drain-
ing the capacitor and stopping, which may lead to death if energy production
is too low to bring Vc over the upper threshold). It is possible to observe con-
vergent evolution of some elements of the strategies, for example, all animats
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display left-right “sweeping” movements when the scent is high, this prevents
missing the target by a short margin. Moreover, despite differences in strategies,
one can easily observe some similarity in individual trajectories over some maps
(Fig. 4).

4 Conclusions and Future Work

Our results provide a preliminary glimpse on the diversity of behaviours that
evolve in agents endowed with a biologically-inspired control and an artificial
metabolism, and which interact with a simple environment in a physically real-
istic fashion. These behaviours can be viewed as a form ofminimal cognition [22].
The evolved animats can be considered to be energetically autonomous (they can
extract from the environment the resources necessary to maintain their essen-
tial variables), ecologically grounded, and to have evolved limited motivational
autonomy. The set-up explored in this paper is an example of a three resource
problem (an extension of the two resource problem of [2]), in which provisional
resources (here: water and food) are necessary to execute work. Because this
work is not necessary for bare survival, but influences the chance of producing
progeny, we name is beauty.

The environmental set-up for the Search for Beauty used in this paper pro-
vides the possibility for the evolution of three motivations: thirst, hunger, and
reproduction. We use the term motivations in a broad, evolutionary sense, be-
cause we did not provide the animats with any motivational circuit. However,
there are indirect connections between control and metabolism in our system.
On one hand, metabolism imposes constraints on the control, because if there
is not enough energy to allow for movement, the animat stops (and, in princi-
ple, a GRN can detect this state). On the other hand, appropriate behaviour
maintains a stable metabolism. Because the connections in the GRN can be
recurrent, our set-up is open to control that depends on memory rather than
motivation in the strict sense of the word [23]. GReaNs can be used for tasks
which require memory [14]), but the Search for Beauty does not: the animats do
not seem to have stronger preference for food right after collecting water or vice
versa (Fig. 4). Because the Search for Beauty can be nonetheless efficient, it is
doubtful if any significant increase of efficiency in this particular environmental
set-up could come from endowing animats with internal sensors of the hydration
or substrate level in the MFC, or level of stored energy in the capacitor. A more
promising approach is to walk along the line of further ecological grounding, for
example, by introducing an indirect penalty for overconsumption of resources
(perhaps such overeating/drinking could result in increased drag), variability in
the availability of resources, or their patchy distribution [23]. Another possible
means of exploring the complexity and richness of the hybrid system presented
in this paper would be via providing an incentive for higher velocity, perhaps in
a situation of direct competition for resources or in a predator/prey set-up. We
plan to explore these directions in our future work.
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Abstract. In this paper, we study Fractal Gene Regulatory Networks
(FGRNs) evolved as local controllers for a modular robot in snake topol-
ogy that reacts adaptively to environment. The task is to have the robot
moving in a specific direction until it reaches a randomly placed target-
zone and stays there. We point to a characteristic of FGRN model,
namely “state-switching property” and demonstrate it as a beneficial
property in evolving reactive controllers.

Keywords: Gene regulatory network, reactive controller, modular robot.

1 Introduction

A real world task for a robot usually consists of several parts where each part
demands for a specific behavior. The robot needs to sense environment and
react properly by regulating its behavior. In evolutionary robotics, evolvability
for reactive controllers which are able to switch between different behaviors based
on the environmental signals seems to be an important issue to consider. This
paper demonstrates evolvability of Fractal Gene Regulatory Networks (FGRNs)
as decentralized reactive controllers for a modular robot that adaptively reacts to
environment. The paper points to a special characteristic of FGRN we will refer
to as “state-switching property” as a potential strength of the method making
it suitable for evolving reactive controllers.

A modular robot is made up from a number of mechanically coupled modules
where each module is typically controlled by its own local controller. A local
controller can be a computational Gene Regulatory Network (GRN) that is a
network of genes which produce outputs during their interactions. GRN-like sys-
tems are previously used to control different modular robots in relatively limited
tasks [17,14,7]. Each module of the robot is controlled by a single GRN as a
control unit. All the GRN units are genetically identical but runs in parallel
and behave variously based on the signals receiving from local sensors. Models
of GRNs are inspired by interactions happening inside of a biological cell. Un-
like the standard Evolutionary Computational (EC) systems, in a GRN system,
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phenotypes are indirectly generated from genotypes. A mediatory process of de-
velopment is required to generate the phenotype through interactions between
the genes and between the genes and the environment. Based on the inspiration
source of the GRN models the designers anticipate to reach acceptable levels of
evolvability for their systems. Many different variants of GRNs are defined by
researchers in the field, e.g. [13,1,5,4]. Different GRNs are various in defining the
methods of interactions and encoding representations for their genomes which in-
fluence evolvability of the system by affecting the shape of the fitness landscape.
Apart from the explanatory definition of the interactions during developmental
process and representations, a GRN model is eventually a computational net-
work. The model implicitly defines a potentially complex network of nodes and
equations that determine the output of each node. Taking a closer look into a
particular GRN model might be helpful to get a better understanding of it and
identifying the causes of strengths or weaknesses of the model. It may also lead
to design new versions of GRNs with improved capabilities.

FGRN [3] is a variant of computational GRNs. It has been successfully evolved
for different tasks such as producing patterns [3], controlling single robots [2],
motion planning [18], pole-balancing [9], and controling modular robots [17].
Dynamics of an FGRN system can be described as several conditional sets of
differential equations which are implicitly encoded in the genotype [19]. Inter-
estingly, each set is connected to a particular internal state of the system and by
changing the state, a different set of equations is triggered to describe dynamics
of the system. This property is named “state-switching” and we suspect it ben-
eficial in evolving solutions for some types of problems such as reactive tasks,
in contrast with having a single set of differential equations as utilized in other
GRN models.

2 Fractal Gene Regulatory Network

FGRN is inspired by biological cells [10]. In a biological cell, a number of genes
(genome) encode proteins and the conditions of producing them. Proteins are
means of interactions between the genes and also between the genome and the
environment. These lifelong interactions drive the development and behaviors
of the cell. The rate of production of a protein is based on the current protein
content of the cell and environmental stimulants. For a particular gene, if a suf-
ficient amount of specific set of proteins exists, the encoded protein is produced
(or suppressed).

FGRN model is described in detail in [3,18]. Here we give a very short sum-
mary stressing the points which are more important for this paper. An FGRN
system contains “fractal proteins” and a set of genes which encode them. Fractal
proteins are introduced as an abstraction of the interaction substance. A fractal
protein consists of two parts: shape, and concentration level. The protein shape
defines how the protein interacts in the system. The concentration level repre-
sents the current amount of the protein and is between zero and a maximum
value. A level of zero means the protein doesn’t exist at the moment.
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(a) (b)

Fig. 1. An example fractal protein shape (a) and a typical gene (b)

A protein shape is a square window on the Mandelbrot fractal set and is
encoded in a gene by three real values (x, y, z) (see Fig. 1(a)). By changing
these values, the window reaches different locations and scales on the fractal set.

Genes in the FGRN system are of different types: environmental, receptor,
regulatory, and behavioral. The genes belonging to the first three types encode
the shape of proteins of the same type. The production rate of an environmental
protein is determined by an environmental stimulant. This way, environmental
information is brought into the system. Receptor proteins are responsible for
filtering out parts of the environmental proteins. The production rate of reg-
ulatory proteins are regulated by a combination of proteins inside the system,
namely a “protein compound”. The behavioral genes generate outputs of the
FGRN system.

All the environmental and regulatory proteins which are currently present in-
side the system merge together to a protein compound. The protein compound
interacts with the regulatory and behavioral genes and regulates the concentra-
tion level of regulatory proteins and the output of behavioral genes.

A typical gene is a sequence of numbers. It consists of a promoter region, a
coding region, and a set of parameters (Fig. 1(b)). The coding region encodes
the shape of the protein producible by the gene. The promoter region encodes
a protein shape as well. The present protein compound in the system matches
against this shape and together with the parameter set of the gene, a value is
computed. This value is used to determine the new concentration level of the
gene in case of the regulatory genes and the output of the gene in case of the
behavioral genes.

The lifetime of an FGRN system consists of several repetitions of the follow-
ing steps: First, parts of the environmental proteins are filtered out by receptor
proteins and the concentration levels of the rest are updated based on the envi-
ronmental stimulants. Then the protein compound is computed from the present
regulatory and environmental proteins. Then the new concentration levels of the
regulatory proteins and the outputs of the system are produced based on the
protein compound and the corresponding genes.

2.1 State-Switching Property

Here we aim to drive attention to an important characteristic of FGRN model we
call “state-switching property”. In order to do that, we leave the conventional
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descriptive viewpoint of the model as an ongoing interactions between fractal
proteins and genes. Instead, we view the system as several fixed conditional sets
of differential equations (e.g. Table 1).

As mentioned before, a protein compound is a representation for a combina-
tion of the proteins currently present in the system. During lifetime of a system,
the concentration levels of proteins may change. The proteins may vanish (their
concentration reaches zero) or appear anew to the system (their concentration
raises from zero). This means that the set of present proteins may change during
the lifetime and consequently the protein compound can get different shapes.

We consider a set of present proteins as a particular state of the system. Since
every single protein shape is encoded in the genome and doesn’t change during
lifetime, for every particular state of the system there is a fixed shape for the
protein compound and it is computable solely based on the genome.

A new value for concentration level of a regulatory gene (or the output of
a behavioral gene) is computed based on the promoter and parameters of that
gene, and the present protein compound. A matching operation is performed
between the shape of the compound and the protein shape encoded in the pro-
moter region of the gene. From this matching operation, a contribution degree
is computed and assigned to each protein which has participated in forming
the protein compound. This contribution degree is a coefficient in a differential
equation describing the new concentration level or output of the gene in the
current state of the system. Therefore, for every particular state of the system
a set of differential equations are defined. The variables of these equations are
the concentration levels of the present proteins. In every step, the new outputs
and regulatory concentration levels are computed based on the current set of the
differential equations. If a change in the concentration levels leads to switching
between the states of the system, a different set of differential equations is trig-
gered in the next step. Note that these different conditional sets of equations are
implicitly encoded in the FGRN genome and evolve during generations.

A detailed description about extracting the equational representation of the
system from both the genome and definition of interactions in FGRN model
is explained in [19]. An example description of a simple FGRN is represented
in Table 1. The table describes a system with four different states (conditional
statements) where a set of differential equations is associated with each state.

3 Investigated Scenario

In this work, populations of FGRN genomes are evolved as local controllers
for a modular snake robot to perform a reactive locomotion task. The robot is
made up of three homogenous modules and is supposed to locomote in a specific
direction until it reaches a target zone at a random distance. The target zone
is realized by a light source and the sensors of modules perceive the light only
within an area with a threshold distance from the source. This area is considered
the target zone and the controllers should react to that by preventing the robot
from exiting the zone.
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Table 1. An example of a simple FGRN as several conditional sets of differential
equations. This system consists of four states. S represents current state as the set of
present proteins. P1 and P2 correspond to an environmental and a regulatory protein
respectively and p1 and p2 are their corresponding concentration levels. out is the
output of the system.

condition (state) equation set
if S = {P1, P2} p2 ← 0.8p2 − (0.2p1 + 0.5p2) × tanh(0.6p1 + 1.5p2 − 3.6) − 0.2

out ← 0.15p1 + 0.2p2 + 4
if S = {P1} p2 ← 0.4p1 + 0.5

out ← 0.32p1 + 2
if S = {P2} p2 ← 0.8p2 − 0.25p2 × tanh(0.5p2 − 0.4) − 0.2

out ← 0
if S = {} p2 ← 0.4

out ← 0.25

There is no explicit communication between the modules. The modules are
controlled independently by genetically identical controllers. Since local sensors
provide the input values for the modules, the outputs which are generated by
the controllers may differ and lead to various behaviors for different modules.

The experiments are performed in Symbricator3D [16]. Symbricator3D is a
simulator designed for the projects SYMBRION and REPLICATOR [15,12] and
uses the design of the prototype in [8] (Fig. 2 ). It is based on the game engine
Delta-3D and uses the Open Dynamics Engine for the simulation of dynamics.

For the current experiments, three Symbricator3D modules are connected to
each other to form a short snake. Each module is supplied by two proximity
sensors at the front and rear faces which are implemented in the main simulator.
In addition, we utilize an ideal luminance sensor concerning the target zone. The
sensor provides a zero value when the light source is farther than a threshold.
Otherwise the value is inversely proportional to the distance from the source.

Fig. 2. A prototype of the module hardware

Since three sensors are used for a module, four types of environmental genes
are defined, one for each sensor and another one provides a maternal protein
which is always produced. A value received from a sensor is normalized and
determines the concentration of the proteins encoded by the genes of the asso-
ciated type. Every robotic module has an actuator which is a central hinge. All
the behavioral genes are associated with this actuator. The total value produced
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Table 2. Evolutionary settings and the initial number of each type of genes

population size #generations #parents for crossover mutation probability
30 25 12 1%

#receptor-genes #evironmental genes #regulatory genes #behavioral genes
2 4 2 2

by the behavioral genes are considered to be the controller output. The output
is scaled into the appropriate range and fed into the hinge making it to approach
a specific angle.

3.1 Evolving for the Reactive Behavior

A variant of a Genetic Algorithms is used in this experiment (See [3] for details).
The initialization and evolutionary settings are represented in Table 2. A pop-
ulation of 30 randomly generated FGRNs is pre-evolved for locomotion in the
right direction and this population is then evolved for the full behavior.

Fitness is computed based on two independent evaluations of a genome. For
every evaluation, the target is set in a pre-specified distance from the robot. The
two distances are different and fixed. The fitness is computed at the end of each
evaluation period and the total fitness is the minimum of the two.

The reason for having two evaluations for each genome initiates from an evolu-
tionary trap of the task. Having only one evaluation may end up to non-reactive
controllers with high fitness evolved from exploiting the particular evaluation’s
settings, e.g. distance from the target zone and length of the evaluation period.
For example, if a simple non-reactive controller makes locomotion with a par-
ticular speed, the robot happens to be at the target zone at the end of the
evaluation period that leads to a high fitness.

Due to high computational costs in the simulator, the number of evaluations
within reasonable time is limited. We set the number of evaluations of each
genome to two which keeps the computational costs relatively low and still avoids
the evolutionary trap. The fitness function of an evaluation is defined as follows:

fitness =

{
α× dTH

dcurrent
+ g(speedout, speedin) if dcurrent < dTH

g(speedout, speedin) else
(1)

where dcurrent is the current distance from the center of the target zone, dTH

is the threshold distance of visibility, speedout and speedin are the speeds of
locomotion outside and inside the target zone. α is a coefficient, and g is a
function scoring for higher ratio of speeds outside to inside the zone.

3.2 Investigating the State-Switching Property

Two experiments with different FGRN setups are performed. In the first ex-
periment, the standard FGRN setup is implemented. In the second setup, the
state-switching property is suppressed by altering the model such that a sin-
gle state and consequently a single set of equations are always triggered during
runtime. In order to do that, all proteins of the system are counted as present
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Fig. 3. Two consecutive random targets appear and disappear one after the other
(top), and distance of the robot from the existing target during locomotion (bottom)

Table 3. Experimental settings and results

target distances during evolution 9 19
target distances during reactivity evaluation 8 12 16 20 24 (units)

state-switching on
state-switching off

duration of evaluation period
during evolution during reactivity evaluation
600 3000
1450 7000 (ticks)

successful runs
80%
50%

target visibility threshold 4 (units)

proteins which determine the state of the system. Each experiment is repeated
for 10 independent runs evolving for the full behavior in 25 generations. Every
run starts from a population that is pre-evolved for locomotion.

Table 3 represents the settings including the duration of evaluation periods
and the distances of target zones for both setups (state-switching on/off). Due
to the various speeds of locomotion achieved by the pre-evolved populations of
each setup, the durations of evaluation periods are different. The evolutionary
progress of the evaluated fitness of the two setups are represented in Fig. 4
for the 10 independent evolutionary runs. As it is demonstrated in the figure,
the setup with state-switching property (standard FGRN) performs better than
the setup with the suppressed state-switching in terms of the evaluated fitness.
Performing a Wilcoxon rank-sum test showed a difference between the two setups
with a significance of 0.3 for both mean and best fitnesses in the last generation.

In order to evaluate the ability of the evolved controllers to adaptively react to
their environment, the behavior of the robot achieved by the evolved controller
in each run is observed against a set of additional differently-positioned targets.
For each target, the robot starts from its initial position and the behavior is
observed for a sufficiently long evaluation period. The distances of the targets
and durations of evaluation periods are presented in Table 3.

The observations indicate that the robots of all the 10 runs of each setup
react to the target zone by changing their movement when the zone is reached.
For the setup with state-switching, in 8 runs out of the 10, the robot manages
to successfully stay in the zone until the end of the evaluation period for all
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Fig. 4. Progress of the fitness values during evolution

the five different targets. In some cases, the robot stands still at some point of
the target zone, lying down on the ground or bending. In the other cases, the
robot moves slowly back and forth in the way that it stays inside the zone. For
the setup with suppressed state-switching, in 5 runs out of the 10, the robot
manages to stay in the target zone for all the targets. Table 3 summarizes the
settings and the results of the two investigated setups. As it is represented in the
table, the standard FGRN setup shows a higher performance than the setup with
the suppressed state-switching indicating the importance of the state-switching
property in the FGRN system.

3.3 Observing a Typical Evolved Controller

In order to look at the potential behaviors achieved as side-effects of evolution,
a typical controller evolved in the standard FGRN setup is chosen from an
arbitrary run. The behavior of the robot is observed in two observation settings.

In the first setting, two consecutive targets are used (Fig. 3). The first target is
positioned at a random distance from the robot and stays there for a long period
of time (1500 sec). Then the target disappears and a new target appears farther
at another random distance. For the observed controller, the robot reaches the
first target zone and stays there as long as the target exists. Then, it continues
the locomotion and reaches the second target and stays there. When the second
target disappears as well (3000 sec), the robot starts to move again.

In the second observation setting, the robot is initially positioned in the target
zone while the center of the zone is situated behind it. In this case, the robot
moves backwards for a short distance. Then the target starts to move backwards
in a slow speed. As a response to that, the robot also moves slowly backwards
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following the target1. Although these types of behaviors which are considered as
side effects of an evolutionary run might be just random, they are achieved for
free and still seem to be interesting.

4 Conclusion

This paper reported an application of FGRN system in controlling a modu-
lar snake-shaped robot in a reactive task. The task demands for appropriate
changes in the robot behavior in response to particular environmental changes.
In previous reactive controllers for multi-modular robots, e.g. HyperNEAT [6]
and Central Pattern Generators (CPG) [11], or single robots ,e.g. Neural Net-
works (ANN) [20], the proper behavior is achieved by modulating an input part
of an ANN to switch between the ordinary and special behaviors based on en-
vironmental signals. A relatively similar mechanism, namely “state-switching
property”, is highlighted here as a characteristic exclusive for FGRN model
in contrast with other GRN models [13,1,5,4]. As demonstrated in the paper,
this capability of implicitly switching between internal states is beneficial when
FGRNs are evolved for reactive tasks. The FGRN systems were evolved for
several independent evolutionary runs and post-evaluations of the achieved con-
trollers demonstrated successful reactive behaviors for the majority of the runs.
In addition, the behavior of an arbitrary evolved controller was observed in new
environmental settings and interesting behaviors as side-effects of evolutionary
process were detected. The evolvability of the model for adaptive reactions of
higher complexity will be studied in future. In order to investigate the effect of
“state-switching property” of FGRNs in evolving reactive controllers, an altered
version of the model was implemented such that the state-switching property
is suppressed. The altered FGRN was evolved for the same task and the com-
parison of the resulted controllers indicated the significance of “state-switching
property” in achieving the successful solutions for the investigated task. In the
next step of this study, inclusion of this characteristic in other GRN models will
be investigated in order to achieve potential improvements in GRNs.
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Abstract. Artificial life evolutionary systems facilitate addressing lots
of fundamental questions in evolutionary genetics. Behavioral adaptation
requires long term evolution with continuous emergence of new traits,
governed by natural selection. We model organism’s genomes coding for
their behavioral model and represented by fuzzy cognitive maps (FCM),
in an individual-based evolutionary ecosystem simulation (EcoSim). Our
system allows the emergence of new traits and disappearing of others,
throughout a course of evolution. In this paper we show how continuous
adaptation to a changing environment affects genomic structure and ge-
netic diversity. We adopted the notion of Shannon entropy as a measure
of genetic diversity. We emphasized the difference in genetic diversity
between EcoSim and its neutral model (a partially randomized version
of EcoSim). In addition, we studied the effect that genetic diversity has
on species fitness and we showed how they correlate with each other. We
used Random Forest to build a classifier to further validate our findings,
along with some meaningful rule extraction.

Keywords: artificial life modeling, individual-based modeling, genetic
diversity, entropy, fitness.

1 Introduction

Charles Darwin’s theory of adaptation through natural selection came to be
widely seen as the primary explanation of the process of evolution and forms the
basis of modern evolutionary theory. Darwin’s principle of natural selection relies
on a number of propositions. The individuals in a population are not identical
but vary in certain traits. This variation, at least partly, is heritable. Individuals
vary in the number and the quality of their descendants, depending on the
interactions of the individual’s trait and its environment. Populations with these
characteristics may become more adapted to their environment over generations.
The key to adaptation by natural selection is the effect of a multitude of small
but cumulative changes. While most of these changes are random, the majority of
those that are preserved are not damaging to the fitness of individuals. Instead
these variations may turn out to be somehow beneficial to the reproductive
success of their carrier. From a genetic perspective, the combination of mutation
and natural selection, enforce the emergence of new traits and disappearance of
others. These continuous genetic changes help preserve genetic diversity.
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� Springer-Verlag Berlin Heidelberg 2012
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Genetic diversity serves as a way for populations to adapt to changing environ-
ments. With more variations, it is more likely that some individuals in a popula-
tion will possess variations of alleles that are suited for their current environment.
Those individuals are more likely to survive to produce offspring bearing those al-
leles. These alleles will propagate through the population over many generations
because of the success of these individuals. In summary, genetic diversity strength-
ens a population by increasing the likelihood that at least some of the individuals
will be able to survive major disturbances. Many biological studies showed that a
decrease in population genetic diversity can be associated with a decline in popu-
lation fitness [1] [2] [3]. Because overall population diversity seems to affect both
short-term individual fitness and long-term population adaptive capacity, there
is a need to develop an empirical quantitative understanding of the relationship
between population genetic diversity and population viability.

Like in many disciplines; simulation modeling played a great role in studying
evolutionary processes. Many biological studies that require data of hundreds
of years can be obtained by simulation modeling that produces results in a
matter of a few hours or days depending on the computational cost of each
system. In this paper we show how individuals in EcoSim [4], an evolutionary
predator-prey ecosystem simulation, follow the Darwinian evolutionary process
through natural selection. We show how genetic evolution and diversity governs
the adaptation process. We show that EcoSim’s individuals adapt to their chang-
ing environment by comparing their behavior with a neutral model - a partially
randomized version of EcoSim. We use the Shannon entropy, which is a mea-
sure of unpredictability and disorder from Information theory, as a measure of
genetic diversity and present the difference in entropy between EcoSim and the
neutral model to emphasize the adaptive characteristics of EcoSim. Furthermore,
we investigate the relationship between genetic diversity and species fitness and
present the correlations found between these two measures in EcoSim. The rest
of the paper is organized as follows: A brief description of EcoSim and its neu-
tral model is presented in Section 2 and 3 respectively. Section 4 depicts the
details of the entropy as a genetic diversity measure followed by a comparison
between EcoSim and its neutral model, in terms of entropy as a genetic diver-
sity, in 5. The correlation results between entropy and fitness are presented in
Section 6, followed by building a classifier for inference in Section 7. A summed
up conclusion is presented in Section 8.

2 The EcoSim Model

In order to investigate several open theoretical ecology questions we have de-
signed the individual-based evolving predator-prey ecosystem simulation plat-
form EcoSim, introduced by Gras et al. [4] 1. Our objective is to study how
individual and local events can affect high level mechanisms such as community
formation, speciation and evolution. EcoSim uses Fuzzy Cognitive Map as a be-
havior model [5] which allows a combination of compactness with a very low

1 http://sites.google.com/site/ecosimgroup/research/ecosystem-simulation

http://sites.google.com/site/ecosimgroup/research/ecosystem-simulation
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computational requirement while having the capacity to represent complex high
level notions. The complex adaptive agents (or individuals) of this simulation
are either prey or predators which act in a dynamic 2D environment of 1000
x 1000 cells. Each individual possesses several physical characteristics including
age, minimum age for breeding, speed, vision distance, levels of energy, and the
amount of energy transmitted to the offspring. Preys consume grass, and preda-
tors predate on prey individuals. Grass distribution is dynamic, as it diffuses
in the world and disappears when consumed by preys. An individual consumes
some energy each time it performs an action such as evasion, search for food,
eating or breeding. Each individual performs one action during a time step based
on its perception of the environment. Fuzzy Cognitive Map (FCM) [5] is used
to model the individual’s behavior and to compute the next action to be per-
formed. The individual’s FCM is coded in its genome and therefore subjected to
evolution. A typical run lasts tens of thousands of time steps, during which more
than a billion of agents are born and several thousands of species are generated,
allowing evolutionary processes to take place and new behaviors to emerge to
adapt to a constantly changing environment. Our simulation embodies species
as a set of individuals sharing similar genomes [6]. Indeed, every member of a
species has a genome that is within a threshold distance away from the species
genome - an average of the FCMs of its members. To model the process of spe-
ciation, EcoSim allows splitting of a species into two sister species. The splitting
mechanism produces two clusters of individuals with high intra-cluster similar-
ity and strong inter-cluster dissimilarity. It is worth noting that the speciation
mechanism is only a labeling process: the information about species membership
is not used for any purpose during the simulation but only for post-processing
analysis of the results.

Formally an FCM is a graph which contains a set of nodes, each node being a
concept, and a set of edges, each edge representing the influence of one concept
on another. In each FCM, three kinds of concepts are defined: sensitive (such as
distance to foe or food, amount of energy, etc), internal (fear, hunger, curiosity,
satisfaction, etc) and motor (evasion, socialization, exploration, breeding, etc.).
We use a FCM to model an agent’s behavior (structure of the graph) and to
compute the next action of the agent (i.e. through the dynamics of the map). The
FCM serves as a genome for each individual. The genome length is maximum 390
sites, where each site corresponds to an edge between two concepts of the FCM.
The FCM allows the formation of new edges and disappearing of others through
the evolutionary process. During a breeding event the FCMs of two parents are
combined and transmitted to their offspring after the possible addition of some
mutations which is similar to the genetic process of recombination. The behavior
model of each individual is therefore unique.

3 The Neutral Model

In order to study the effect of adaptation on evolution, we built a neutral shadow
[7] of EcoSim. All selection processes and behaviors in the neutral shadow for the
predator/prey are random, which eliminates natural selection from this model.
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In terms of the behavioral model of this version, all the actions such as eating,
hunting (for predators), socializing, searching for food and escaping (for prey)
are removed. The only two actions any individual can take are reproduction and
movement. Unlike in the EcoSim, in the neutral model there is no necessity for
the individuals to have genetic similarity to reproduce. Instead, in the neutral
model the reproduction action is done by randomly choosing any 2 individuals
in the world. The statistics of genetic operations (mutation rates and crossover)
are the same as EcoSim. In EcoSim, individuals choose to reproduce according
to their internal state, suitable environmental conditions and behavior model
but not in the neutral model. To preserve population dynamics in neutral model
similar to that of EcoSim, the Lotka-Volterra computational model [8] is used.
This model controls the number of births and deaths at each time step. In ad-
dition, death of individuals and pairs of parents for reproduction are randomly
selected. In this way a similarity in population sizes between the neutral shadow
and EcoSim is preserved. Finally, the movements in the neutral model are ran-
dom, but the distribution of distances is kept the same as in EcoSim.

The crucial property of EcoSim neutral shadow is that its evolutionary dynam-
ics are identical to EcoSim except that neither the presence not the frequency
of a genotype can be explained by its adaptive significance. This is because all
selection in the neutral model is random, so no genotype has any dominance
over any other. In other words, although gene states are subject to the same
variation as in EcoSim, they have no evolutionary fitness consequences or ef-
fects. In addition, changes in the environment have no effect on individuals in
the neutral model. Consequently, the process of natural selection is considered
to be eliminated in this neutral model.

4 Entropy as a Measure of Genetic Diversity

Depending on the specific problem or representation being used, ranging from
biological domain to genetic programming, numerous diversity measures and
methods exist. Foe example, Sherwin [9] has shown the efficancy of Shannon en-
tropy in measuring diversity in ecological community and genetics. He has also
highlighted the advantages of using entropy based genetic diversity measures,
and surveyed these diversity measures. A close relationship between biological
concepts of Darwinian fitness and information-theoretic measures such as Shan-
non entropy or mutual information, was found [10]. Shannon Information theory
[11] defines uncertainty (entropy) as the number of bits needed to fully specify
a situation, given a set of probabilities. These probabilities can be estimated by
simply counting the abundance of each genotype (site) in the population. The
per-site entropy of an ensemble of sequences X, in which genotype si occurs with
probability pi is calculated as

H(X) = −Σpi log2(pi) (1)

where the sum goes over all different genotypes i in X. Next, the entropy con-
tent of the whole sequence (genome) is approximated by summing the per-site
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entropy over all sites in the sequence. This is only an approximation because
it ignores interactions between sites (i.e. epistasis). We do not have a fixed set
of alleles but they are discreet values that change over time in the simulation.
The lower the entropy, the less diverse are the genomes of a population and
vice versa. There is a limit in the desired values of entropy in EcoSim. When it
approaches its maximum(corresponding to an uniform distribution of all geno-
types) it indicates a completely uniform population close to randomness. On the
other hand very low entropy (close to 0) means that there is too much similarity
between individual genomes, and means that individulas need to diverge more
in order to adapt to a dynamic environment. A good balance between learning
from the environment (low genetic diversity) and increasing the diversity (high
genetic diversity) should be met in order to ensure the well being of species.

5 Evolution in EcoSim verses Neutral Model

The FCM of each individual plays the role of its genome and has a maximum
size of 390 sites. Every site is a real discreet number which measures the level of
influence from one concept to another. Initially all prey and predator individuals
are given the same values for their genome respectively. Time step after another,
as more individuals are created, changes in the FCM occur due to the formation
of new edges, removal of existing ones and changes in the weight associated to
edges. We neglect the first couple of thousand of time steps in our calculations to
overcome any misleading results due to the initial similarity between individual
genomes. In each time step we have a value of entropy of all existing preys species,
along with the entropy of the entire population of prey. We also calculated the
fitness for every species as the average fitness of its individuals. We define fitness
of an individual as the age of death of the individual plus the sum of the age
of death of its entire direct offspring. Accordingly, the fitness value mirrors the
individual’s capability to survive longer and produce high number of strong
adaptive offspring.

The information contained within a genome determines how the organism
behaves in its current environment. Thus, this information determines the capa-
bility of the organism to reproduce and transmit its genome. The environment
changes from one place to another and from one time step to the next. Individ-
uals that evolve in different parts of the world have different information about
the environment they evolve in stored in their genome. Furthermore, as we model
a predator-prey system, we also have co-evolution. The strategies (behavior) of
each kind of individula(predator/prey) are continuously changing as they try to
adapt to the other kind. The more the individuals try to learn the more the
environment changes and the more there is still something different to learn.
This fact drives the individuals to keep learning and continuously try to come
up with survival strategies that helps them adapt to their changing environment.
This is the reason behind the fluctuations we see in the EcoSim entropy curves
see Fig.1. On the other hand the neutral model shows much more steadiness in
the entropy values. Under highly random conditions and when natural selection
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Fig. 1. Global Entropy for 10 different runs of the simulation. Top 5 curves are for
EcoSim and lower 5 for Neutral Model.

is eliminated, the genomic structure shows neither learning nor adaptation to
the surrounding environment. These results show that entropy changes through
the course of evolution. The EcoSim simulation gave us the chance to acquire
data for thousands of generations and to study the performance of entropy as a
genetic diversity measure.

6 Measuring Correlation between Entropy and Fitness

In order to further emphasize the importance of genetic diversity to adaptation
and thus the well being of individuals, we were encouraged to study the effect
that genetic diversity has on fitness. EcoSim gives us the chance to study the
relation between species genetic diversity and species fitness without the limits
in environmental conditions and time scales found in biological studies [2] [3]
[12], but in highly variable environments and across evolutionary time. There
are many factors affecting genetic diversity and fitness, and the correlation be-
tween them. At every time step we calculate the entropy and the fitness for all
existing species. In order to investigate their possible correlations, we first begin
by calculating the Spearman’s cross correlation [13], between entropy and fitness
of all prey species. A perfect Spearman correlation of +1 or -1 is attained when
each of the variables is a perfect monotone function of the other; a value close
to zero means that there is no correlation.

In our evolutionary ecosystem the effect of entropy on fitness is not immediate.
A time shift between the variation in entropy and its effect on fitness is therefore
expected. Also, because we did not determine which attribute is the cause of
the other we calculate the correlation in both shift directions. We computed the
Spearman correlation coefficient, between these two time series for every possible
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Fig. 2. Different species correlation values between entropy and fitness. x-axis repre-
sents the different time shifts. Y-axis represents the correlation values.

shift between -s and +s time steps. Thus, we correlated the entropy at time t
with fitness at time t + S where S ranges from -s to +s. We’ve presented the
cross-correlation charts for some prey species in Fig.2. The x-axis in these charts
represents the different shifts for the time series. The y-axis represents the cross-
correlation value at the corresponding shift. From the figure we see that not only
different species have different cross-correlation values, but also the same species
correlated differently based on the time shift.

It should be noted that the dynamic environment, co-evolution and changing
parameters with time, all affect species behavior. Thus, correlation values for the
same species might vary through the course of evolution. This presents a feasible
problem to study in our model but not in biological experiments. This fact encour-
aged us to add a time frame to the two series and measure correlation within the
specific time frame. Consequently, we split these time series into sliding windows.
Within each window we calculated all possible correlations with different shifts
�s. Then we chose the highest correlation value (whether positive or negative)
and assigned it to the corresponding species instance of the time series.

In order to examine the possible correlation values between species entropy
and fitness at every time step we usde data collected from 5 different runs of
the EcoSim simulation, each running with the same initial conditions. Each
replicate ran for 16,000 time steps and generated 110,000 instances (an instance
corresponding to one given species at give one time step) in average. For each
instance we calculated the Spearman’s cross correlation between entropy and
fitness for the corresponding window. We assigned three different classes to the
correlation values. Correlations with values between -0.5 and 0.5 are class WEAK
CORR which shows the situation where there is either no or weak correlation.
Correlation values above 0.5 are high positive (HIGHP) and correlation values
below -0.5 are high negative (HIGHN) respectively. Different shift values and
sliding windows ranges have been examined and previously presented in [14].
We choose�25 as a shift value based on the analysis of which shift leads to the
highest correlations and a sliding windows of 200. In an average of 5 different runs
of the simulation 26.8% of instances had HIGHP correlation, 38.4% of instances
had HIGHN correlation and 34.7% of instances had WEEK correlation.
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Although there are many factors that might affect fitness besides entropy,
we managed to find strong correlation between entropy and fitness for all prey
species. We observed high values for both negative and positive correlations.
These results support the claim of the great influence the genetic diversity has
on the well being of species. High positive correlation values mean that an in-
crease in the genetic diversity, results in an increase in species fitness. However,
there are many ways to interpret these results. A newly forming species with
a small population would gradually tend to increase its genetic diversity and
will therefore correlate positively with fitness. Also, since individuals in EcoSim
adapt to a constantly changing environment these adaptations could be mirrored
in the increase of individuals’ genome similarity (and thus a decrease in entropy),
as new behaviors diffuse in the population. Conversely negative correlations im-
ply that a species decreases diversity in order to reach stability by learning from
its environment and adapting.

7 Building a Random Forest Classifier for Inference and
Rule Learning

Our motivation to validate these results and further investigate the reason be-
hind these correlation values encouraged us to build a classifier. The purpose of
building this classifier is first to see if some specific species properties can predict
the current evolutionary behavior of the species, that is if it is learning from the
environment or increasing its diversity to be able to react to a future change
in the environment. It can also help to understand what factors and conditions
affect the evolutionary of behavior. The Random Forest [15] technique includes
an ensemble of decision trees and incorporates feature selection and interactions
within the learning process. It is nonparametric, efficient, and has high predic-
tion accuracy for many types of data including high dimensional ones. We chose
features from both individual’s internal and physical concepts, such as average
energy level, reproduction rate, population size, speed of individuals, spatial dis-
persal and others, to predict the class correlation value between genetic diversity
and fitness. All together we chose 15 features that best described internal and
physical properties of any species and verified if they could predict the class cor-
relation variable. To increase the quality of the classifier we used feature selection
[16] in order to extract the most important features from the above list. This
step provided more semantics about which features most influence the value of
correlation. The best chosen features were population size, entropy, fitness, spa-
tial dispersal, average age of the individuals and number of failed reproductions.
We used the Random Forest classifier implemented in the weka environment
[17]. We split instances for every run into two sets: train and test and used 10
fold cross validation. The average of 5 classifiers testing accuracies representing
5 different simulation runs was 96.7%. The high classification accuracy validates
our use of entropy as a measure of genetic diversity and its high correlation
with fitness. It also shows that there exist specific conditions of the species that
lead to a positive or negative correlation between fitness and genetic diversity.
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The model generated by the Random Forest can be challenging to interpret.
To by-pass this limitation we use the JRip rule learner [18] to extract more se-
mantics from the prediction model and gain more insight about the conditions
affecting correlation between genetic diversity and fitness. JRip implements a
propositional rule learner, Repeated Incremental Pruning to Produce Error Re-
duction (RIPPER), which is an optimized version of IREP. Different IF THEN
rules are learned from JRip to predict the three correlation classes. In 5 different
runs 19 rules were discovered in average with average accuracy of 76% using 10
fold cross validation see Table 1. We were mainly interested in studying the rules
that predict the HIGHP and HIGHN classes and we present some of these rules
having the highest number of instances.

Table 1. JRip rule learner accuracies and number of produced rules for five different
runs of the simulation

Run Train Test No. of
accuracy accuracy rules

Run 1 76% 75.6% 24

Run 2 71.7% 72% 23

Run 3 75% 75.8% 24

Run 4 79% 78.8% 7

Run 5 75.5% 76.1% 18

Average 75.4% 76% 19

– IF number of individuals is low, AND fitness is low, AND entropy is low,
AND failed reproduction is high THEN correlation is HIGHP.

– IF number of individulas is low, AND age is high, AND fitness is low, AND
entropy is low THEN correlation is HIGHP.

– IF fitness is low, AND age is medium, AND spatial dispersal is low THEN
correlation is HIGHP.

– IF number of individuals is high, AND age is high, AND entropy is high,
AND spatial dispersal is high THEN correlation is HIGHN.

– IF spatial dispersal is high, AND number of individulas is high, AND age is
medium, AND entropy is medium, AND fitness is high THEN correlation is
HIGHN.

– IF failed reproduction is low, AND entropy is high, AND number of individ-
uals is high THEN correlation is HIGHN.

The other discovered rules were also similar. In general, we found that a low
number of individuals associated with a low entropy, low fitness and low spatial
dispersal led to a high positive correlation between entropy and fitness. Small
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species tended to increase their genetic diversity in order to increase their fit-
ness. On the other hand, a high number of individuals associated with a high
entropy, high fitness and high average age led to high negative correlations be-
tween entropy and fitness. Large species in terms of population size tended to
move towards lower genetic diversity as individuals learned common survival
strategies that tended to increase their fitness.

8 Conclusion

We showed how the evolutionary process implemented in EcoSim affects the be-
havioral model of the individuals as they adapt to a changing environment. To
emphasize the capability of EcoSim to model evolutionary behavioral adapta-
tion we compared it to a partially random version focusing on genetic diversity.
We showed how entropy used to measure genetic diversity, behaves differently in
both systems. The fluctuation in entropy curves for EcoSim showed how individ-
uals try to learn and adapt to their environment. On the other hand the neutral
model showed more steadiness in the curves due to more randomness and elim-
ination of natural selection process. Furthermore, we presented high correlation
values between species fitness and genetic diversity which strongly indicates how
genetic diversity affects the well being of the species. A validation step was per-
formed with the use of machine learning techniques. A random forest classifier
was built to predict the correlation values based on internal and physical prop-
erties of species used as features. The rules discovered from the rule learner,
which seem to be biologically pertinent, gave us more understanding about
the conditions affecting the values of correlation between genetic diversity and
fitness.
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Abstract. The theory of machine self-reproduction formalised by John
von Neumann illustrates the real living organisms’ self-reproduction
equipped with genotype and phenotype. However, within such a simu-
lated world as Avida, this particular style of self-reproduction has not
been previously studied. In an attempt to characterise the von Neumann
style self-reproducer in a computational system, we have implemented
a novel seed program that self-reproduces using von Neumann’s archi-
tecture. We expected that distinctly different evolutionary dynamics of
organisms in the system would be observed, specifically including the
possibility of mutationally altered genotype-phenotype mapping. How-
ever, what we have observed is degenerative displacement by self-copiers,
which are conventional self-reproducers in the system. The mutational
easiness of this degeneration was not anticipated, although we knew the
selective advantage that such self-copiers intrinsically would have in the
system.

Keywords: von Neumann, self-reproduction, Avida, artificial life,
genotype-phenotype mapping, evolutionary growth of complexity.

1 Introduction

1.1 Von Neumann’s Architecture of Self-reproduction

The abstract architecture of machine self-reproduction formalised by von Neu-
mann by around 1948 [9,2], comprises two components characterised by active
and passive roles. The active machinery is subdivided into four conceptually
different components: namely, a general purpose constructor, a tape copier, a
controller, and ancillary machinery. The former three components (i.e., a gen-
eral purpose constructor, a tape copier, and a controller) collaboratively engage
in, and are directly in charge of, creation of an offspring machine; whereas the
ancillary machinery is a part not directly involved in the reproduction process,
but provides functionality not directly associated with reproduction. The pas-
sive machinery is called a description tape, and it carries information which
describes, or encodes, a machine organisation in an arbitrary way.

In this schema, given a machine description, the controller takes the initia-
tive to manoeuvre (i) the constructor to decode the description, according to a
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specific procedure, and to create an “offspring” machine’s active components, as
well as (ii) the copier to copy the description into an offspring machine.

This amounts to machine self-reproduction when the description part de-
scribes the whole machine itself (both active and passive machineries) and suc-
cessfully organises an offspring machine, which has the same organisation as
its parent and is capable of reproducing itself (see Fig. 1). Offspring machines
will repeatedly reproduce themselves in this way, thereby potentially increasing
exponentially in number until some resource limit is encountered.

Fig. 1. Von Neumann Architecture of Machine Self-reproduction

There is an alternative architecture for self-reproduction that relies on self-
inspection and copying, but lacks any such division of reproductive roles into
active or passive components, as opposed to von Neumann’s model of self-
reproduction. Both of these schemas for self-reproduction are non-trivial in
that they potentially support inheritable variation by allowing room for di-
verse and cumulative mutation. They are therefore distinguished from “näıve”
self-reproduction such as growing crystals [10, p. 86], which would not support
inheritable variation.

1.2 Genotype-Phenotype Mapping and Its Evolution

A particular significance of von Neumann’s architecture of self-reproduction
arises where a mutation that occurs in a particular section of the description
which encodes the constructor can breed true [3]. In other words, such a mu-
tation will manifest as an offspring machine’s constructor that is different from
its parent’s (which signifies that the genotype-phenotype mapping is also differ-
ent), and will inherit in the offspring machine’s description accordingly. Thus the
genotype-phenotype mapping, or the relationship between genotype and pheno-
type, may exhibit evolvability, bringing about distinctive mutational pathways
and resulting evolutionary dynamics which otherwise cannot be achieved.
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Behind von Neumann’s theory of self-reproduction, there seems to have been
inspiration drawn from Schrödinger’s “What is Life?” [8], in which the physical
basis of mutation and inheritance in self-reproducers is developed noticeably ear-
lier than the discovery of the double helix structure of DNA. The more insights
were gained through the subsequent discovery of DNA structure and investiga-
tion of genotype-phenotype mapping in living organisms, the further it turned
out that von Neumann’s architecture in fact already illustrated how the genetic
mechanism of decoding and translation is performed in real living organisms.

Whereas, in biology, genotype-phenotype mapping generally refers to the re-
lationship between the genome and its manifestation such as physical or be-
havioural traits, that in computational systems may as well be described as
decoding a sequence of numbers, according to predefined decoding rules, into
another sequence of numbers that harbours particular functions and/or prop-
erties. In other words, the genotype-phenotype mapping in computers signifies
what kind of transformation of numbers is applied to the description.

1.3 The Problem Situation

Epitomised by his series of works centred around Cellular Automata [9,10], von
Neumann has theorised and elaborated the implementation of the particular
universe, which has been typically represented in a two dimensional grid world. It
is noteworthy that von Neumann himself seems to have discounted the possibility
that mutation(s) that have occurred in the constructor component will result
in a viable offspring machine [10, p. 86], ruling out the potential evolution of
genotype-phenotype mapping which such mutation(s) can trigger. While there
have been various forms of implementation of von Neumann’s architecture on
computational systems (see [5] for example), these subsequent attempts have not
specifically considered the possible evolution of genotype-phenotype mapping.

Thus, our long term goal is to investigate the question of whether von Neu-
mann’s mode of self-reproduction, including the specific possibility for evolving
the genotype-phenotype mapping, might ultimately enhance the potential for
spontaneous evolutionary growth of complexity. Especially, the present research
focuses on preliminary characterisation of this evolution of genotype-phenotype
mapping, particularly within a system called Avida.

2 The Avida World

2.1 System Structure

Avida is a computational evolution system that has been in development by
Adami et al. since 1994 [1,4] . Inspired by its predecessors including Coreworld
[6] and Tierra [7], Avida is an abstraction of a typical distributed or cluster com-
puter. Each node comprises a virtual CPU running on memory, and the CPU has
components such as several registers and stacks and various heads to work with.
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In consequence of such a system architecture, Avida makes a model ecosystem,
where digital “organisms” compete with one another for space and CPU time,
exhibiting Darwinian evolution. Due to this fact, as an experimental platform,
it has been widely used for investigation of general properties of spontaneous
evolutionary processes.1

Characteristically, those predecessors, Coreworld and Tierra, consist of a sin-
gle shared memory space for organisms to reside in; however, the Avida world
is represented as a finite two dimensional lattice of compute nodes, each node
denoting a virtual hardware that comprises a memory space possibly occupied
by an executable program with a virtual CPU running on it. In other words, one
of the distinctive features of the Avida world is that an organism has a separate
variable sized memory, unlike its predecessors that adopt a single fixed-sized
memory shared by all organisms.

2.2 Self-reproduction in Avida

A successfully designed organism when seeded into the Avida world (which is
often referred to as an ancestor) can reproduce itself by running its CPU and
executing the program on its memory, the offspring organism replacing another
organism that resides in the neighbourhood. In this manner, the population of
organisms grow, conceivably filling up the finite nodes of the Avida world, in
the way that a colony of bacteria increase in a petri dish; however, unlike such
real living organisms, the organisms in the Avida world principally face no limit
of nutrients, in the sense that the CPU time necessary to run them is given as
much as the experimenter wishes.

During reproduction, the (putative) parent organism allocates memory within
it for creation of its offspring program, and when the creation is done, it divides
off the offspring program, replacing a node in the neighbourhood, with the parent
being reset to a predefined initial setting (i.e., typically, the instruction head
and the other heads will position back to the beginning of the memory and the
registers and the stacks will be set to zeros), and its CPU then continuing to
(re-)run the program. Conventionally, the self-reproduction in the Avida world
is achieved by self-copying based on self-inspection, in particular by using an
h-copy instruction provided in the default instruction set.

The instruction h-copy (with h- denoting “heads” used in this copying pro-
cess, namely, the read head and the write head) is a compound instruction that
both reads an instruction from a source memory location indicated by the read
head, and writes it straight into a destination memory location indicated by the
write head. With regard to this, it is worth mentioning that, by design, accidental
program alterations can occur, and give rise to inheritable mutations. They are
inheritable mutations because, in these standard self-reproducers in the Avida
system, the complete memory image of the parent is copied to the offspring, so

1 In many research works, external fitness is usually applied in order to investigate how
the environmental factors affect the evolutionary process; however, in the present
paper, we do not enable this as it is not relevant to our immediate purpose.
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any change in the memory image of a parent will be copied to the offspring, and
then preserved in subsequent generations. As the evolution proceeds, mutations
will be accumulated, leading to progressive variation among organisms.

3 Implementation Design

3.1 Design of an Ancestor

Based on the scheme of self-reproduction originally presented by von Neu-
mann, we have designed a novel ancestor to seed the Avida world. This is op-
posed to such self-copying architecture as provided in the Avida system that
lacks genotype-phenotype distinction and presumably leaves no room for the
genotype-phenotype mapping to evolve. The novel ancestor may be decomposed
into genome and phenome, corresponding to the passive machinery and the active
machinery of von Neumann’s self-reproductive architecture, respectively. Thus,
phenome supports the active process of decoding and copying of the description
(genome), including allocation of memory in the parental memory where the
memory image of a prospective offspring is created, and also dividing off that
part as an offspring to a neighbouring node. We have included no explicit ancil-
lary machinery in our design of the ancestor, for every instruction of its program
commits to the reproductive process.2

Decoding. Decoding, or translation, is the process of mapping the content of a
memory location that is read from a putative parent organism into the content
of a memory location in the prospective offspring organism. More specifically,
a content of a memory location may be interpreted as an instruction, which is
predefined in the form of an instruction set in the system configuration setting,
or, alternatively, may not be interpreted as an instruction but as uninterpreted
data, usually represented as a distinct integer number.

Importantly, we had to enable two kinds if instructions, namely read and
write instructions, into the default instruction set for the decoding purpose
mentioned above. The reason is because, unlike the h-copy instruction used for
copying, these were not activated by default. The instruction set provides a list of
numbers, each corresponding to a particular instruction. These numbers compose
an organism’s program. The set also implies possible resulting number(s) in
mutational events.3

2 If, through accumulated mutations, there proves to be any part of the program
that does not necessarily engage in the reproductive process, then that part may be
regarded as ancillary machinery in von Neumann’s terms.

3 Note that the instruction set sequentially defines what instruction corresponds to
what (index) number (i.e., 0, 1,... N-1; N is the size of the set) and is therefore fixed
in size; however, this finite set of integers is capable of interpreting any manipulable
numbers (integers) as an instruction, in a certain manner where, in the case of a
number larger than the set size, the modulo of the number is used as an index
number within the set.
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Lookup Table. We have implemented the ancestor so that the decoding is
performed based on a lookup table incorporated in the phenome, on the basis
of mapping one number into another. The initial choice of the mapping is quite
arbitrary, and due to such arbitrariness, there is more to this mapping than ge-
netic coding in real biology (e.g., codons translated into proteins with physical or
chemical constraints). Likewise, the choice of implementation via such a lookup
table is arbitrary. Our lookup table has been designed as a list of numbers the
same size as the instruction set, with each number respectively signifying what
each number in the instruction set translates into.

The decoding mechanism works properly using this lookup table because a
read number can be treated as an index number of the list (or, relative location
within the list) as well as an instruction. For example, if the parent program
reads a number 3 in the genome, it first looks up what is at the index of 3 of
the lookup table, and it then goes on to write the looked-up new number, say,
5, into the offspring organism, meaning that the number 3 is decoded into the
number 5. Importantly, we have chosen the mapping to be invertible, one-to-one,
correspondence, so that with the designed lookup table it is possible to reverse-
engineer the ancestor: we can obtain the genome of the ancestor, when given
the phenotype (incorporating the lookup table), such that the phenome is the
decoded version of the genome, and the genome is the encoded version of the
phenome.

3.2 Self-reproduction of the Novel Ancestor

In brief, a typical self-reproduction of this ancestor will be achieved as follows:
the parental phenome decodes the parental genome based on the lookup ta-
ble into the offspring phenome; then, the parental phenome copies the parental
genome one instruction after another into the offspring genome (see Fig. 2). The
genotype-phenotype mapping of this novel program is analogous to the mapping
from a string of words (i.e. genome) into another string of words (i.e. phenome)
underlain by the mapping between words defined by the lookup table. Therefore,
it is reasonable to expect the genotype-phenotype mapping to be evolvable and
infinite in principle, with the lookup table itself and the usage of it being open
to change evolutionarily. The ancestor obtained in this way is much larger in size
and spends more steps to self-reproduce than the standard shortest (self-copying)
ancestor due not only to the more complex procedure of self-reproduction, but
also to the primitiveness of the instructions that resembles assembly language,
which makes the program structure substantially cumbersome.

Mutation. We selectively allowed only single-point mutation to occur in the
experiment, rather than other types of mutation such as multi-point mutation,
insertion and deletion. This is because, by doing so, the traceability of muta-
tional pathway becomes straightforward. Single-point mutation is an occasional
inheritable change of a memory content in the genome. A change in a memory of
the phenome does not inherit, so it is not mutation. If a default design of ancestor
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in Avida, which is a self-copier, undergoes any changes in its memory image,
the changes will be all inheritable and are thus referred to as mutation. On the
contrary, however, in our implementation of von Neumann’s self-reproduction,
not all changes in the memory image, but those in the “genome” part that is
selectively caused in a process of copying, are inheritable. Note that mutation
in this style of self-reproduction will exhibit delayed manifestation. That is, one
generation is needed for a single-point mutation to occur (this is when a parent
organism reproduces an offspring), and then another generation is needed for it
to get expressed (this is when the offspring reproduces its offspring). This delay,
however, does not apply in the case of the Avida default ancestor because when
a mutation occurs, it is expressed immediately in the offspring.4

With the mutation expressed in the phenome (as opposed to inherited in
the genome), the organism could be viable and fertile. Because all of our novel
ancestor’s phenome is concerned with self-reproduction, the expression of the
mutation is most likely to affect the reproductive process. It is still possible,
however, that somehow the reproductive functions work and succeed to produce
an offspring organism that breeds true (i.e., inheriting the mutation as well as
preserving the self-reproductive functions). What we are particularly interested
in exploring is the possibility that there might occasionally be a viable, fertile,
mutations whose expression affects the “general purpose constructor” part in
the von Neumann architecture.

4 Experimental Results and Discussion

4.1 Behaviour of the Hand-Designed Ancestor

Our näıve expectation was that the novel ancestor would be able to give rise to a
“traditional” Avidian evolutionary process. More specifically, we expected that
the ancestor could reproduce reliably enough to increase in population under
appropriate rates for the stochastic effects, where the total population growth
would be limited by the size of the Avida world. Not only that, mutant organ-
isms capable of breeding true, and still maintaining von Neumann’s architecture,
were expected to emerge, through at least some stochastic effects applied on the
genome, and to undergo selection and evolution accordingly.

When seeded in the Avida world, this novel ancestor turns out to successfully
reproduce itself, indicating the implementation of a von Neumann style ancestor
incorporating genotype-phenotype mapping in this system is realisable. In other
words, the organism decoded and copied its description as designed so as to
reproduce itself.

Moreover, with only single-point mutation enabled, we have run Avida simula-
tions repeatedly and singled out runs where takeover of the dominant organisms

4 Likewise, such a delay does not carry over if there are other ways available to oc-
casionally change the memory content (e.g., “cosmic ray” type of alterations in the
memory image, decoding errors etc.), in which any change made in the phenome
ends up being temporary.
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Fig. 2. Designed Self-reproduction of the Novel Ancestor

is observed. For each of these runs, we have traced mutational changes and
identified the transitional path from the ancestor to the final dominant strain.
Analysis of these established that there are several cases of takeover by self-
copiers. In other words, degeneration from the von Neumann style architecture
to the self-copying architecture has been observed. This marks the loss of the
decomposition into genome and phenome, and also the loss of the mutable or
evolvable genotype-phenotype mapping. That is to say, the von Neumann style
organism becomes a self-copier that no longer has a division of labour between
phenome and genome.

4.2 How the Degeneration Has Occurred

Surprisingly enough, it is found that one step of single-point mutation is suffi-
cient to cause this degenerative transition. These self-copiers self-reproduce only
utilising h-copy. Although there may possibly be self-copiers that are based on
using read or write, the self-copiers we have obtained are found to self-reproduce
without the help of those instructions. The mechanism of the degeneration is as
follows: The previous “decode” loop using read and write is destroyed by a
mutational change and starts to malfunction, but the previous “copy” loop us-
ing h-copy happens to function to overwrite the mistake made by the decode
loop and copy the entire memory image, successfully making both ends meet to
precisely self-produce in an unanticipated way.

Once a self-copying strain arises, it is not at all surprising that it displaces
the von Neumann self-reproducers because it is selectively favoured by the Avida
system due to its high reproduction rate; in this particular case, the self-copier,
being the same length as the hand-designed ancestor, takes less than half of the
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CPU cycles required by that ancestor to self-reproduce.5 A factor underlying the
difference between the necessary CPU cycles is that, for a content to be written
into one memory location of the offspring, the decoding needs to execute more
instructions than the copying. A self-copier is expected to be faster because it
avoids the cost of the decoding.

Regarding other strains, due to the relative largeness of size and complex-
ity of their structures, it is not straightforward to distinguish what style of
self-reproduction a particular organism employs. Determining the style of self-
reproduction an organism does employ can be rather cumbersome because even
when the program of the organism looks the same, the use, or interpretation,
of the numbers in the program can be completely different. Therefore, instead
of scrutinising how each distinctive organism reproduces itself, we examined the
gestation time because, it indicates, even if crudely, the style of self-reproduction.

Out of the organisms obtained throughout the run, there are a number of
offspring that self-reproduce taking approximately half of the gestation time of
the ancestral organism. It is difficult to be certain that we observed no organ-
ism that is viable, self-reproducing, and mutated from the ancestral organism
and still preserves von Neumann style self-reproduction; however, in terms of
gestation time, there seems to be no such organism. Most of the organisms with
genotypic changes have almost half of the gestation time, implying they are not
von Neumann style organisms, but highly likely to be self-copiers.

5 Conclusion and Future Work

In our very initial experiments, we did not observe displacement of our hand-
designed seed von Neumann architecture self-reproducer by any viable self-
reproducer preserving this architecture. More importantly, we certainly did not
observe von Neumann style self-reproducers with an evolved genotype-phenotype
mapping, corresponding to mutations affecting the “general purpose construc-
tor” of von Neumann’s architecture. What surprised us is the remarkably acces-
sible mutational pathway from the ancestral self-reproducer to the self-copier.
It had been expected, however, that such adaptation where the self-copiers are
more likely to become dominant once they appear given the intrinsic advantage
in this particular system.

Further analysis on this mechanism of the degeneration and classification of
possible mutational pathways of our hand-designed organism are ongoing. Not
only this, one of our next important steps is to eliminate the intrinsic advantage
the self-copiers have. Another approach will be to hinder self-copiers to arise in

5 Regarding the length of the von Neumann style organism, note that it needs to be
longer than (at least twice as long as) a corresponding self-copier in the first place.
This is because its phenome is crudely comparable to the entire memory image of
a self-copier, and its genome is as long as the phenome. Moreover, compared to a
(minimal) self-copier, the phenome of the von Neumann style organism needs extra
instructions to conduct the decoding and to manage the more complex reproduction
cycle and to accommodate the lookup table.
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the first place, by re-designing the ancestral organism such that it uses read and
write instructions for both decoding and copying throughout the reproduction,
without using the h-copy instruction that our hand-designed ancestor adopts
for the genome copying purpose. For this approach to observe less degeneration
to self-copiers, it will be necessary to exclude h-copy from the instruction set
so that no mutant organism will be able to employ the instruction. It is likely
that such an ancestor will be even larger in size and will require even longer
gestation time than the current organism. In any case, by offsetting the intrinsic
advantage, we can avoid the degenerative displacement of the von Neumann
style self-reproducers and refocus on our original intention to investigate and
characterise the evolution of genotype-phenotype mapping.

Resources including the ancestral program and the Avida con-
figuration file we used in the experiment can be downloaded at
http://alife.rince.ie/evosym/sab_2012_th.zip.
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Abstract. John von Neumann’s architecture for genetic reproduction
provides an explanation in principle for how arbitrarily complex ma-
chines can construct other (“offspring”) machines of equal or even greater
complexity. We designed a von Neumann style self-reproducing ances-
tor, within the framework of the Tierra platform, which implements a
(mutable) genotype-phenotype mapping during reproduction. However,
we have consistently observed a particular phenomenon where what we
call pathological constructors quickly emerge, which ultimately lead to
catastrophic ecosystem collapse. Pathological constructors are creatures
which rapidly construct multiple short malfunctioning offspring within
their lifetime. Pathological constructors are a hindrance to an ecosystem
because their offspring, although sterile, still occupy both memory space
and CPU time. When several pathological constructors coincide in time,
their production rate can be so high that their non-functional offspring
displace the entire population of functional self-reproducing creatures,
resulting in ecosystem collapse. We investigate the origin of pathologi-
cal constructors, and consider how a more mutational robust architec-
ture which is less susceptible to the emergence of these creatures can be
created.

Keywords: von Neumann, genetic reproduction, Tierra, artificial life,
genotype-phenotype mapping, evolutionary growth of complexity, patho-
logical constructors.

1 Introduction

As early as 1948, John von Neumann had formulated his theory of the evolution-
ary growth of machine complexity [3,2]. This theory provides a proof-of-principle
demonstration that machines can directly, or indirectly, give rise to machines ar-
bitrarily more complex than themselves. This machine architecture is comprised
of two specific parts, the phenotype and the genotype.

The phenotype is the functional, active section of the machine, and the geno-
type is the passive section, committed to information storage. For genetic re-
production, under some arbitrary genotype-phenotype mapping, the genotype
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must contain an encoded description of the phenotype. Conversely, the pheno-
type must include the functionality to both decode the genotype and construct
an offspring phenotype.

Previous work with evolutionary systems, where the agents are responsible
for their own self reproduction, has been based exclusively on machine architec-
tures which reproduce via template-reproduction, where there is no division of
labour between genotype and phenotype. In this case, self reproduction is per-
formed by self inspection, and no explicit, mutable genotype-phenotype mapping
is implemented.

Within the platform of Tierra, we designed an ancestor that reproduces via
genetic reproduction, true to the von Neumann architecture. More importantly,
this design implemented a mutable genotype-phenotype mapping, where the
arbitrary mapping between genotype and phenotype is subject to heritable mu-
tations. We aim to explore if alternative, viable mutational pathways are intro-
duced while implementing this architecture. However, during implementation
within the Tierra platform, several unanticipated phenomena emerged, which
are examined and documented here.

2 The von Neumann Machine Self-reproduction
Architecture

The von Neumann architecture for machine self-reproduction includes a general
constructive automaton A, which can construct an arbitrary machine, X , when
supplied with a description of that machine, φ(X). A general copying automaton
B can read machine descriptions, φ(X), and create copies. A control unit C is
required to govern the automaton (A + B). When supplied with a description
φ(X), the control unit C first commands B to produce a copy of φ(X) itself.
Upon completion of copying φ(X), C commands A to construct the described
machine X . Finally C will attach the new instances of X and φ(X) and sever
them from the parent automaton (A+B +C), after which there exists the new
entity, X + φ(X) [4]. Now consider the case where we let X = (A + B + C).
This system, (A+B+C)+φ(A+B+C) will proceed to construct an offspring
automaton and attach it to the description of itself, (A+B+C)+φ(A+B+C).
The parent and offspring are then identical, hence achieving self-reproduction.

More generally, we can conceive of an arbitrarily complex machine, (A+B+
C+D)+φ(A+B+C+D), whereD is some ancillary machinery (which describes
all non-reproductive functionality of the automaton). By the previous reasoning,
all such machines will also be self-reproductive (with the one restriction that D
must not interfere with the operation of A+B + C).

In biological terminology, the phenotype is responsible for all active be-
haviour of the creature, including the general constructive automaton, the gen-
eral copying automaton, the control mechanism, and the ancillary machinery:
(A+B+C +D). The genotype is a sequence of passive or inert numbers which
are not executed, but which represent an encoded description of the phenotype:
φ(A+B + C +D).
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Should an accidental alteration occur within the description (genotype), which
results in φ(A+B+C+D′), the system (A+B+C+D)+φ(A+B+C+D′) will
produce (A+B+C+D′)+φ(A+B+C+D′), which is again self reproductive, i.e.,
this would be an example of a heritable mutation. We can specifically observe
here that when a mutation occurs during copying of the genotype, it takes one
further generation before this error is expressed within the phenotype [2]. This
generation delay in genotype expression of heritable mutations turns out to be
critical for the particular results we encountered.

3 The Tierra Platform

Tierra is an artificial life platform where a population of reproducing creatures
compete with each other for both CPU time and memory space [5].

Generally, Tierra is used to experimentally explore processes of evolution-
ary and ecological dynamics. Processes such as the dynamics of host-parasite
co-evolution and natural selection are open to investigation within the Tierra
Platform [5]. However, in order to understand the limitations of Tierran crea-
tures, we must first discuss the basic principles of the platform.

The platform contains a circular core memory, or soup, in which the creatures
dwell. For certain purposes, Tierra creatures use a so-called template addressing
mode rather than an absolute or relative numeric address. Templates are com-
plementary patterns of ones and zeros which are positioned at locations within
Tierran creatures, such as boundaries between different functional blocks of the
creature. For example, a jump 101 instruction, will cause the instruction pointer
to jump to the nearest occurrence of the complimentary pattern 010. This frame-
work allows creatures to interact with each other, without the use of absolute
addressing.

The Tierran instruction set consists of 32 assembler language instructions,
each a single word with no arguments. Each memory location within the soup
may contain one instruction. There are many random perturbations which in-
troduce random errors to the system. Cosmic rays (alteration applied to the
contents of a random memory location within the soup), copy errors (an er-
ror occurred when copying the contents of a memory location) and segment
deletions (upon birth, a random creature segment is deleted) are examples of
random perturbations which alter the contents of memory locations within a
creature.

Each creature is assigned a CPU which includes four general purpose regis-
ters, Ax, Bx, Cx and Dx, an instruction pointer and a circular stack. A slicer
allocates CPU time to each living creature within the soup and a reaper limits
the population by reaping old and malfunctioning creatures.

Tierra is distributed in two different packages, Network Tierra and non-
Network Tierra. Network Tierra is described as implementing a network-wide
biodiversity reserve for digital organisms, allowing creatures to migrate between
different nodes connected to the internet. The standard non-network version was
used for our experiments.
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4 Implementation of the von Neumann Architecture for
Machine Self-reproduction within Tierra

Classically, the reproductive mechanism of Tierra creatures relies on self-
copying1, which involves the creature activating a reproduction mechanism,
which incrementally copies the contents of each memory location of the par-
ent creature to an available space in memory which will become the offspring.
There is no distinction between phenotype and genotype for a self-copying crea-
ture, as the entire creature acts as both the template for replication, and the
implementation of the reproduction cycle and all other functionality.

In order to achieve genetic reproduction of creatures within the Tierran plat-
form, we devised a method of implementing a mutable genotype-phenotype map-
ping. The method we chose to implement, involved the inclusion of a look-up table
as part of the general constructor A. The look-up table provides a method of
translating the inert numbers within the memory locations of a parent genotype
to functional instructions which can be executed as part of the offspring pheno-
type. For this particular genotype-phenotype mapping, we chose a 1:1 mapping,
where a single number within the genotype is translated to a single instruc-
tion within the phenotype, therefore, the look-up table consists of 32 memory
locations, each memory location containing a value which corresponds to an
instruction within the Tierran instruction set. The look-up table of the seed
ancestor will represent a random permutation of the all possible instructions.

We have implemented a seed creature based explicitly on the von Neumann
architecture that reproduces via genetic reproduction, Fig. 1. Prior to repro-
duction, this seed creature must first allocate space for an offspring. During
constructing an offspring phenotype, a CPU register, Ax, incrementally steps
through each memory location within the parent genotype, and the number
stored at this address is inspected. A second register, Bx which initially points
to the start of the look-up table, is displaced by the number which was inspected
by Ax. The number within the current Bx memory location (which lies within
the look-up table), is now written to the offspring phenotype, where it will sub-
sequently function as an instruction. This activity facilitates the mapping of
numbers which are stored within the parent genotype, to instructions incorpo-
rated in the offspring phenotype. Furthermore, random perturbations within the
look-up table facilitate the alteration of the genotype-phenotype mapping. This
may have the effect of introducing new mutational pathways for the creature,
which was not possible under the previously unaltered look-up table.

Upon construction of the offspring phenotype, the parent’s genotype is incre-
mentally copied to the offspring space and the connection between parent and
offspring is severed. At this point, the parent loses write access to the offspring’s
memory block, and a new CPU is created and allocated to the offspring. While
copying the genotype, should a genetic error occur which affects the encoded
description of the look-up table (or otherwise modify the decoding process), then

1 Analogous to RNA template replication.



244 D. Baugh and B. McMullin

Fig. 1. Von Neumann style ancestor in Tierra

the creature’s offspring will incorporate a mutated genotype-phenotype mapping.
This is the particular phenomenon which we initially set out to investigate.

5 The Emergence of Pathological Constructors from
Genetic Reproducers

When all random perturbations are disabled, our seed creature reproduces effec-
tively and populates the memory to form a stable ecosystem of identical crea-
tures. However, when all random perturbations are switched on, we immediately
see a large emergence of pathological constructors, which saturate available CPU
time and memory space. Under a series of simulations where each source of
random perturbation was individually disabled, the disabling of the segment
deletions showed an apparent prevention against the emergence of pathological
constructors. When a large segment deletion occurs while copying the geno-
type from parent to offspring, the resultant creature will typically consist of a
functional phenotype, assigned to a partial genotype. This creature continues
to rapidly produce offspring, (due to the short genotype), but these offspring
are non-functional as they consist of a corrupt phenotype, assigned to a cor-
rupt genotype. When several such pathological constructors coincide in time,
their production rate can be so high that their non-functional offspring displace
the entire population of functional self reproducing creatures, i.e., ecosystem
collapse.

For von Neumann style genetic reproducers, all random perturbations which
corrupt the genotype will result in a constructor, which will create at least one
functional or non functional offspring. A genotype which experiences a segment
deletion will result in a pathological constructor, which can construct many non-
functional offspring before it is killed by the reaper.

This analysis concludes that the mechanism which results in ecosystem col-
lapse due to pathological constructors appears to depend critically on both the
one generation delay from when a random perturbation occurs in a genotype
and when it is expressed in the phenotype, and the inclusion of segment dele-
tions. The combination of these factors results in a high level of ease in which
segment deletions can lead to corrupt genotypes, while still leaving a functioning
phenotype.
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By contrast, in order for a pathological constructor to emerge from a self-
copier, relatively much more specific random perturbations must occur upon very
specific locations, which will alter, but not corrupt the reproductive functionality.
This suggests that the probability of emerging pathological constructors within
a population of genetic-reproducers, is much higher than that of a population of
self-copiers.

6 The Heterogeneity of the Tierra Platform

A homogeneous universe is an important factor if we wish to observe an accu-
rate representation of evolution within any system. However, the Tierra virtual
universe is actually heterogeneous, and we aim to point out how this property
can greatly effect the outcome of an evolutionary run, occasionally resulting in
ecosystem collapse.

The Tierra circular memory system incorporates a template addressing mode.
Jump instructions are specified by matching complementary sequences of ones
and zeros. However, each memory location is still assigned an absolute under-
lying, numeric address, and call and return instructions use this absolute ad-
dressing mode to maneuver the instruction pointer throughout memory.

If a CPU executes the call instruction, the instruction pointer’s current
absolute address value is pushed to the stack. When return is executed, the
instruction pointer jumps to the absolute address corresponding to the value
stored in the stack. Upon birth, the stack is initialised with zeros, and a mal-
functioning creature may execute return before pushing a value to the stack.
This will redirect the CPU instruction pointer to the absolute address zero, and
execute the residing creature. This absolute addressing mode, employed by call

and return, introduces a level of heterogeneity to the system, where within an
ecosystem which includes a number of malfunctioning creatures, address zero is
the most profitable location for a creature to exist. In all instances where ecosys-
tem collapse was observed due to the exploitation of pathological constructors,
the creature type dominating the soup immediately prior to collapse, was a re-
sult of a pathological constructor located at address zero. Typically, in order for
pathological constructors to result in ecosystem collapse, a relatively large pop-
ulation of pathological constructors must exist within the soup simultaneously,
and one pathological constructor must be located at address zero. The cumula-
tive effects of multiple malfunctioning creatures throughout the soup, relocating
their CPU to address zero, may result in ecosystem collapse.

Instances have been observed, where a pathological constructor, located at ad-
dress zero, creates offspring which immediately execute return. This causes the
CPU of each offspring it creates to return to the parent, resulting in exponential
growth of the number of CPUs captured by the pathological constructor, and
furthermore, exponential growth in the number or pathological creatures within
the soup. A single instance of such a pathological constructor, located at ad-
dress zero, may have the effect of completely exploiting the system of resources,
quickly resulting in catastrophic ecosystem collapse.
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7 The Emergence of Pathological Constructors from
Self-copiers

Previously, work with Tierra has been performed exclusively using populations
of self-copiers, and the phenomenon of pathological constructors has not been
reported explicitly under these circumstances. However, there is evidence that
they have been observed in previously documented experiments under both the
standard Tierra and Network Tierra distribution.

7.1 Pathological Constructors within Standard Tierra

Simulations experimenting with macro-evolution were performed by Tierra cre-
ator, Tom Ray [5], where the CPU time which is allocated to each creature
increases as a function of creature length2. Upon birth, creatures of greater
length are allocated a greater amount of CPU time, pressuring natural selection
to favour creatures of longer lengths. Self-reproducing creatures with lengths of
up to 10 times that of the standard Tierra ancestor are easily achieved. Under
these circumstances the following has been recorded.

“Two communities have been observed to die after long periods. In one com-
munity, a chaotic period led to a situation where only a few replicating creatures
were left in the soup, and these were producing sterile offspring. When these last
replicating creatures died (presumably from an accumulation of mutations) the
community was dead” [5].

The direct origin and function of these creatures which caused ecosystem
collapse were not investigated and it was simply assumed that “Under these
circumstances it is probably difficult for any genotype to breed true, and the
genotypes may simply have ‘melted”’ [5], however, this description of ecosystem
collapse explicitly correlates to our observations of ecosystem collapse following
the emergence of pathological constructors.

7.2 Pathological Constructors within Network Tierra

The Network Tierra ancestor possesses the ability to migrate between different
nodes connected to the network. The inclusion of this functionality results in a
standard Network Tierra ancestor length of approximately 8 times that of the
standard Tierra ancestor. There appears to have been an emergence of patholog-
ical constructors within this ecosystem, as an emergence of “small fast creatures
that ignore the net” prevented the further evolution of the Network Ancestor [6].
Pathological creatures within this ecosystem would not possess the multi-cellular
sensory functionality of the Network ancestor, and hence not possess the abil-
ity to migrate to neighbouring nodes. The outcome is that their accumulating
non-functional offspring eventually displaces the entire population of functional
creatures at each node, ultimately resulting in ecosystem collapse. This problem

2 Creature length refers to the number of memory locations which a single creature
occupies.
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was solved by introducing an Apocalypse event. This event periodically reaps
all creatures on a node. The annihilated node is then re-populated by migrat-
ing creatures, and hence allowing effective, self-reproducing creatures to thrive,
while reducing the population of defective, non self-reproducing creatures.

While operating Network Tierra upon a single node, the Apocalypse event
must be disabled, as there are no connecting nodes to re-populate the soup. Un-
der these conditions, it was found that if selection is switched in favour of crea-
tures of shorter lengths, which has the effect of decreasing the average creature
length, the probability of ecosystem collapse is reduced, and longer evolutionary
runs were possible.

Assuming that it was indeed pathological constructors which were observed in
these experiments, it has become apparent that they have an increasingly dam-
aging effect on ecosystems with increasingly larger ancestor lengths. As ancestor
length and reproduction time increases, exploitation due to pathological con-
structors becomes increasingly damaging as each pathological constructor can
construct a greater number of pathological offspring before it is reaped.

This observation suggests that within Tierra, there may be a threshold to
the average creature length, above which, the consequences of pathological con-
structors will eventually result in catastrophic ecosystem collapse. The standard
Tierra ancestor is relatively short, so pathological constructors would cause a
negligible burden on system resources. However, for experiments where we see
an increase in ancestor length and reproduction time, we see documented be-
haviour which suggests the emergence of pathological constructors.

7.3 Possible Source of Pathological Constructors from Self-copiers

There are many conceivable evolutionary pathways, in which pathological con-
structors may evolve from a population of self-copiers. For self-copiers, address
templates located at either end of a creature allows the copy function to recog-
nise the start and end of the sequence of instructions which is to be copied. For
example, a self-copier may include a start and end address template, 111 and
110. The copy mechanism will search for the nearest occurrence of 111, and in-
crementally copy the contents of each memory location until it encounters 110. A
random perturbation may occur within the body of the self-copier, where some
pre-existing and unrelated template is converted to 110. The creature will now
construct an incomplete offspring, which has a high probability of being sterile
and toxic.

8 Conclusions and Future Work

The highlighted intricate properties of the von Neumann self reproducing au-
tomata, implemented in Tierra, suggest that this may not be mutationally robust
architecture to support genetic reproduction. A combination of the effects of the
segment deletions and the generation delay in expressing random perturbations,
contribute to the abundant emergence of pathological constructors. The hetero-
geneous nature of the Tierra platform, along with the increase in ancestor length
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and reproduction time, in order to incorporate a genotype-phenotype mapping,
amplify the destructive power of pathological constructors. This increases the
ecosystem’s susceptibility to catastrophic collapse.

It is worth noting that in the typical reproduction cycle of complex (multi-
cellular) biological organisms, most of the decoding of the genotype takes place
as development of the offspring, i.e., it is under the direction of the (embryonic)
offspring phenotype rather than the parental phenotype [1]. If we incorporate this
concept within the von Neumann architecture, where the offspring phenotype is
decoded from the offspring genotype (as opposed to the parent genotype which
is the case with von Neumann’s architecture), then this design may not exhibit
the one generation delay from when a random perturbation occurs in a genotype,
and when it is expressed in the phenotype. A corrupt genotype will immediately
be assigned a corrupt phenotype, and hence will not reproduce. It seems likely
that such an architecture, implemented in Tierra, would be more evolutionary
stable and much less vulnerable to emergence of pathological constructors.
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Appendix 1

Source code to reproduce results in this paper can be accessed at:
http://alife.rince.ie/evosym/sab-2012-db.zip
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Abstract. We present a novel methodology for the synthesis of behav-
ioral control for real robotic hardware. In our approach, neural controllers
decide when different preprogrammed behaviors should be active during
task execution. We evaluate our approach in a double T-maze task car-
ried out by an e-puck robot. We compare results obtained in our setup
with results obtained in a traditional evolutionary robotics setup where
the neural controller has direct control over the robot’s actuators. The
results show that the combination of preprogrammed and evolved control
offers two key benefits over a traditional evolutionary robotics approach:
(i) solutions are synthesized faster and achieve a higher performance,
and (ii) solutions synthesized in simulation maintain their performance
when transferred to real robotic hardware.

1 Introduction

Evolutionary robotics (ER) has been widely researched as a means to synthesize
behavioral control for autonomous robots [6]. Artificial evolution has the poten-
tial to automate the controller design process without the need for manual and
detailed specification of the desired behavior. Artificial neural networks are often
used in ER because of their capacity to generalize and to tolerate noise [11] such
as that introduced by imperfections in sensors and actuators. Two key issues
have prevented evolution from being widely used as an engineering tool for au-
tomatic design of behavioral control: (i) bootstrapping the evolutionary process,
and (ii) crossing the reality gap, that is, transferring behavioral control from
simulation to reality without performance loss. The transition from simulation
to real robotic hardware often results in reduced performance or even complete
failure due to differences between simulation and the real world [5].

In this study, we propose a novel approach to overcome both bootstrapping
issues and to successfully cross the reality gap. We combine artificial evolution
with preprogrammed behaviors in order to ensure successful transfer of evolved
control from simulation to real robots, while at the same time enable the syn-
thesis of behaviors for relatively complex tasks. We experiment with giving evo-
lution access to sets of simple preprogrammed behaviors, such as follow wall,
turn left, and turn right, which can be switched on and off by a neural network
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that controls the robot. In this way, we marry the benefits of ER, namely au-
tomatic synthesis of behavioral control, with the benefits of preprogrammed be-
haviors that can be hand-optimized for specific sub-tasks and for the real robotic
hardware.

We use the double T-maze navigation task [2] and the e-puck robotic plat-
form [16] for our experiments, because both the task and the robotic platform
have been widely studied in the past (see Sect. 2 and Sect. 4 for details). The
double T-maze task is a delayed response task in which a robot receives stimuli
in the form of light flashes and it must respond by making the correct turns in
subsequently encountered T-junctions.

The contributions of this paper are as follows: we propose and study a new
approach to the synthesis of behavioral control for autonomous robots. The ap-
proach is based on a combination of evolutionary computation and (simple)
preprogrammed behaviors. We show that in our approach, solutions are synthe-
sized faster and to a higher quality than solutions evolved using a traditional ER
approach, and that the behaviors synthesized in simulation can be successfully
transferred to real robotic hardware.

2 Background and Related Work

ER emerged as a field in the beginning of the 1990s [18]. Numerous studies
followed which demonstrated robots with evolved control systems solving basic
tasks in surprisingly simple and elegant ways. However, to date, only relatively
simple tasks have been solved using ER such as obstacle avoidance, gait learning,
phototaxis, foraging, and so on [17].

Soon after the research into ER began, two main challenges became clear,
namely, (i) that the number of evaluations required meant that simulation had
to be used extensively, and (ii) that it often is non-trivial to ensure successful
transfer of behavior evolved in simulation to real robots. In [14], three com-
plementary approaches to the evolution of control systems for real robots were
proposed: “(a) an accurate model of a particular robot-environment dynamics
can be built by sampling the real world through the sensors and the actuators of
the robot; (b) the performance gap between the behaviors obtained in simulated
and real environments may be significantly reduced by introducing a ’conserva-
tive’ form of noise; (c) if a decrease in performance is observed when the system
is transferred to a real environment, successful and robust results can be ob-
tained by continuing the evolutionary process in the real environment for a few
generations.”

In 1997, Jakobi [10] advocated the use of minimal simulations to ensure the
transferability of controllers evolved in simulation. A minimal simulator only
implements the specific features of the real world that the experimenter deems
necessary for a robot to complete its task. All other features would either not
be implemented or be hidden by an envelope of noise. A number of other ap-
proaches to overcome the reality gap include performing evolution directly on
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the target hardware instead of in simulation [7], online adaptation through neu-
ral plasticity [8], co-evolution of simulators and controllers [3], and promotion
of transferable controllers though multi-objective optimization [12]. Conducting
evolution on real robotic hardware is, however, tedious and is not always feasible,
especially in complex tasks and/or when many trials are needed to reliably esti-
mate the fitness of an individual. In this paper, we propose a novel approach to
the engineering of control systems in which we combine simple preprogrammed
behaviors with artificially evolved neural networks. Successful transfer of the
control synthesized in simulation to real hardware is guaranteed by specifying a
set of behavior primitives that have been tested on real robots.

The topic of behavior modularity in the field of robotics has been studied
before. Rodney Brooks proposed the subsumption architecture in the 1980’s [4].
Brook’s approach is characterized by the decomposition of complicated intelli-
gent behavior into many simple behavior modules, which are in turn organized
into layers. The layers and ordered in terms of behavioral complexity: the behav-
iors on the bottom layers are simpler and have a higher priority than the ones on
the higher layers. The more complex behaviors can only execute if none of the lay-
ers beneath take control of the robot. The concept of behavioral decomposition
has also been studied in the field of ER. Moioli et al. [15] used a homeostatic-
inspired GasNet with two different behavior controllers (obstacle avoidance and
phototaxis) that were inhibited or activated by the production and secretion of
virtual hormones. In [13], logic decision trees and task decomposition have been
combined with ER techniques. By evolving different sub-behaviors such as “cir-
cle box”, “push box” and “explore”, the authors synthesized a robotic controller
that was able to push a box toward a light source.

We use a double T-maze task [2] for our experiments. An example of a double
T-maze can be seen in Fig. 1. The T-maze contains three T-junctions. At the
start of each experiment, the robot is placed in the “Start zone” and must
navigate towards the first junction. On its way, it passes two rows of lights. In
each row, one of the lights is activated. The activated light flashes as the robot
passes by. The activated light in the first row informs the robot on to which side
it must turn in the first T-junction it encounters, while the activated light in the
second row informs the robot to which side it must turn in the second T-junction
that it encounters. If L1 and R2 are activated, for instance, the robot must make
a left turn in the first T-junction and a right turn in the second T-junction so
that it reaches exit LR (see Fig. 1), and so on.

Variations of the T-maze task have been used extensively in studies of learn-
ing and motivation in animals, neuroscience, and robotics (see [19,20,10] for
examples). In robotics, T-mazes have been used to study different neural net-
work models such as diffusing gas networks [9], the online learning capability of
continuous time recurrent neural networks [2], and the evolution of transferable
controllers [10,12]. However, in the studies where controllers were tested on real
hardware, only a single T-maze was used and the mazes were relatively small
with respect to the robot. In this study, we synthesize controllers in simulation
that enable a real e-puck to solve a relatively large, double T-maze (see Sect. 4).



252 M. Duarte, and S. Oliveira, and A.L. Christensen

R1

Start zone

R2L2

Exits

L1

RRLL

RLLR

Fig. 1. A double T-maze. A robot is placed in the start zone and must navigate to one
of the four exits depending on which lights flash as the robot passes by.

3 Methodology

The main purpose of the proposed methodology is to allow for the synthesis
of behavioral control for real robotic hardware. Whereas Jakobi [10] advocated
the use of minimal simulations to limit the set of environmental features that a
controller can rely on, we suggest limiting the set of actions that a robot can per-
form. We define a set of behavior primitives based on the robot, its task, and the
environment. The behavior primitives are specified in such a way that they have
comparable results and performance when executed in simulation and on the
real robotic hardware. Conservative noise is added in simulation to promote ro-
bustness to the difference that unavoidably exists between the two environments.
In this study, the behavior primitives are simple preprogrammed behaviors (fol-
low wall, turn left, and turn right), but they could be more elaborate and even
previously synthesized behaviors.

As in a traditional ER setup, the robot’s sensory inputs are fed to an artificial
neural network. However, instead of controlling the robot’s actuators directly,
the outputs of the neural network are connected to a “behavior selector” (see
Fig. 2). In this study, each output neuron of the neural network corresponds to
a single behavior primitive and the primitive which has the highest activation
value is executed in a winner-takes-all approach. Some primitives can take more
than one control cycle to complete, such as turning 90◦ left or right. The behav-
ior selector does not execute any other primitive before the previously selected
primitive has completed. Alternative behavior selectors could be implemented
including selectors that allow for multiple primitives to be executed in parallel.
Parallel execution of behavioral primitives could, for instance, allow a robot to
communicate at the same time as it executes motor behaviors.
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Fig. 2. Example of the controller structure: A continuous-time recurrent neural net-
work [1] receives readings from the robot’s sensors. The activation of the neurons in
the output layer are fed to the behavior selector, which executes one of the behavior
primitives based on the activations.

4 Experimental Setup

We used the e-puck [16] for our experiments. The e-puck is a small circular (di-
ameter of 75 mm) mobile robotic platform designed for educational use. For
offline synthesis of behavioral control, we use JBotEvolver, an open source,
multirobot simulator and neuroevolution framework. The simulator is written
in Java and implements 2D differential drive kinematics. Evaluations of con-
trollers can be distributed across multiple computers and different evolution-
ary runs can be conducted in parallel. The simulator can be downloaded from:
http://sourceforge.net/projects/jbotevolver.

We built a double T-maze [2] with a size of 2 m × 2 m (see Fig. 3). In the
real maze, the states of the flashing lights are controlled by a Lego Mindstorms
NXT brick using 4 ultrasonic sensors and 2 motors (see Fig. 3).

We used four of the e-puck’s eight infrared proximity sensors: the two front
sensors and the two lateral sensors. We collected sensor samples from two dif-
ferent robots. Each sensor was sampled for 10 samples collected are available at
http://home/iscte-iul.pt/~alcen/sab2012). At the beginning of every sim-
ulation trial, we randomly mapped one of the eight collected sets of samples to
each of the robot’s proximity sensors. Distance-dependent noise was added to
the sensor readings in simulation corresponding to the amount of noise measured
during the sampling of the sensors. The light sensor was binary: when a light
sensor reading deviated sufficiently from an initial set of readings obtained in
ambient light conditions, the robot perceived a flash. In simulation, we added
Gaussian noise (5%) to the wheel speed.

http://sourceforge.net/projects/jbotevolver
http://home/iscte-iul.pt/~alcen/sab2012
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Fig. 3. T-maze with a total size of 2 m × 2 m. The two rows with the lights are located
in the central corridor. The first row is at 45 cm and the second row at 83 cm from the
start of the maze.

4.1 Controller

The neural controller used in this study is a continuous-time recurrent neural
network [1] (see Fig. 2). The input layer of the ANN is composed of 6 neurons:
one for each of the four infrared proximity sensors, and one for each of the two
light sensors. The readings from the proximity sensors are mapped to distances
and then converted to input neuron activations (interval [0, 1]). The mapping
of readings to distances is done based on the average values for the eight sets
of real robot samples. When a light flash is detected, the corresponding input
neuron is assigned an activation value of 1.0 for a duration of 15 control cycles.

The hidden layer of the ANN is composed of 10 fully connected neurons. The
output layer of the neural network is composed of 3 neurons, one for each of
the 3 preprogrammed behaviors available to the network: turn left, turn right,
and follow wall. The behavior selector compares the activations of the three
output neurons and executes the behavior that corresponds to the neuron with
the highest activation. The two turn behaviors turn the robot 90◦, which takes
on average 40 control cycles. During that time, the behavior selector ignores
the values of the output neurons in order to allow the turn to complete before
executing a new behavior. The follow wall behavior moves the robot forward
along the closest perceived wall. We limited the speed of the robot to 10 cm/s.

4.2 Evolutionary Algorithm

We train controllers with a simple generational evolutionary algorithm. Each
generation is composed of 100 genomes, and each genome corresponds to an
ANN with the topology described above. The fitness of a genome is sampled 40
times and the average fitness is computed. Each sample lasts a maximum of 500
control cycles (equivalent to 50 seconds of simulated time). The starting position
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of the robot is varied up to 5 cm to the left or to the right, and up to 10 cm
forward or backward.

The top 5 genomes are selected to populate the next generation using an
elitist approach. An offspring is created by applying a Gaussian noise to each
gene with a probability of 10%. The 95 mutated offspring and the original 5
genomes constitute the next generation.

The robots are evaluated based on three different outcomes: (i) if they suc-
cessfully navigate to the correct exit, the assigned fitness is f1, (ii) if they choose
an incorrect exit or colide into a wall, the assigned fitness is f2, and (iii) if time
expires, the assigned fitness is 0. Fitness f1 and f2 are defined by:

f1 = 1 +
maxCycles − spentCycles

maxCycles
f2 =

totalDistToExit − distToExit

3 · totalDistToExit

We ran an additional set of experiments in a traditional ER setup in which
the outputs of the neural network controlled the robot’s wheels directly. Aside
from the difference in the interpretation of the networks output, the experi-
mental setup (network topology, inputs, simulation conditions, and evolutionary
parameters) were the same as those described above.

5 Results

We synthesized robotic controllers for a double T-maze task in two different
experimental setups: in experimental setup A (Synthesis with Preprogrammed
Behaviors), the output of the neural networks activates one of the three possible
preprogrammed behaviors, while in experimental setup B (Traditional ER) the
output neurons control the wheels of the robot directly.

We conducted 30 evolutionary runs in each of the two experimental setups.
Each run lasted 1000 generations. We conducted a post-evaluation of the evolved
controllers in which the fitness of every controller was sampled 100 times for
each of the 4 possible light configurations. The results are summarized in Fig-
ure 4. In experimental setup A, the evolved controllers had an average solve
rate of 87%. A solve rate of over 95% was observed in 12 of the 30 controllers.
Some of the trials evolved controllers with good solutions as early as the 150th
generation.

The solutions produced in different evolutionary runs were similar. The robots
learned how to navigate the T-maze correctly, but some of the controllers were
not able to use the information from the light flashes to make the correct deci-
sions at the T-junctions, which caused them to navigate to the wrong
maze exit.

In experimental setup B, the evolved controllers had an average solve rate
of only 42%. The best controller had a solve rate of 88%, and only 12 other
controllers were able to correctly solve the T-maze in more than 50% of the
samples.
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Fig. 4. Summarized results from simulation for setup A and setup B

5.1 Transfer to Real Robotic Hardware

After the evolutionary process had finished, the 5 highest performing controllers
synthesized in setup A, and the 5 highest performing controllers synthesized in
setup B were tested on a real e-puck. Each controller was tested 16 times, 4 for
each light configuration. The results are listed in Table 1.

All of the 5 controllers synthesized based on preprogrammed behaviors were
able to successfully cross the reality gap and solve the real maze consistently.
The controllers synthesized in run A22 and A25 managed to solve all 16 samples.
The remaining 3 controllers sometimes navigated to an incorrect maze exit: A4
and A13 failed 1 out of 16 samples, and A9 failed 2 out of 16 samples.

The controllers from setup B did not display as high a performance as those
synthesized in setup A. Partly, this was because their in simulation perfor-
mance was not as high as the one in experimental setup A. 4 of the 5 con-
trollers transferred correctly, achieving even comparable performance in reality,
but the controller from trial B19 only solved 11 out of 16 samples in the real
robot experiments. Videos of the experiments can be seen at http://home/

iscte-iul.pt/˜alcen/sab2012 .

Table 1. Summary of the real robot results for the five highest performing evolutionary
runs of experimental setup A and experimental setup B

Evolutionary run A22 A9 A25 A13 A4 Average

Solve rate (Simulation) 99% 98% 98% 97% 97% 98%

Solve rate (Real robot) 100% 88% 100% 94% 94% 95%

Evolutionary run B11 B13 B19 B16 B9 Average

Solve rate (Simulation) 88% 86% 79% 70% 70% 79%

Solve rate (Real robot) 100% 100% 56% 75% 75% 81%

http://home/iscte-iul.pt/~alcen/sab2012
http://home/iscte-iul.pt/~alcen/sab2012
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6 Conclusions

In this study, we demonstrated how controllers can be synthesized by combining
artificial evolution with simple preprogrammed behaviors. Our results show that
the proposed approach found good solutions in fewer generations and achieved
higher final fitness scores than in a traditional ER setup in which the neural
controller has direct control over the robot’s actuators. On real robotic hardware,
the performance of the controllers synthesized with our approach was similar to
their performance in simulation.

We gave neural controllers three simple preprogrammed behaviors: follow wall,
turn left, and turn right. If we had used a different set of preprogrammed be-
haviors, we would potentially have seen different solutions. The solution space is
defined by the set of behaviors to which a neural controller has access. This solu-
tion space is smaller than the solution space in a traditional ER setup in which
the neural controller has direct control over the robot’s actuators. The restricted
solution space may exclude the optimal solution(s) for a given robot and task.
In our study, the controllers that had direct access to the actuators were able to
cut corners and continued to move forward while turning in a T-junction. The
controllers synthesized in our approach were limited to the turn left and turn
right behaviors that cause the robot to turn 90◦ on the spot. Consequently, con-
trollers that had direct access to the robot’s actuators were sometimes able to
complete the task faster than the controllers that were restricted to a predefined
set of preprogrammed behaviors.

While the use of a finite set of predefined behaviors may forestall the syn-
thesis of the theoretically optimal controllers, it opens a number of interesting
possibilities. Behaviors can be hand-optimized for a particular robot and for
particular sub-tasks. For some sub-tasks, it may be relatively easy to rely on
artificial evolution to find a good solution, while for others, such as those that
are difficult to simulate with sufficient accuracy, may be more easily solved by
manually programming a behavior. Moreover, the predefined behaviors need not
be limited to simple behavior primitives, but could be controllers that have pre-
viously been synthesized by combining other behaviors and so on. In this way,
our approach potentially allows for an incremental and a hierarchical synthesis
of behavioral control for real robots.
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Abstract. In living organisms, the morphology of sensory organs and
the behavior of a sensor’s host are strongly tied together. For visual or-
gans, this interrelationship is heavily influenced by the spatial topology
of the sensor and how it is moved with respect to an organism’s environ-
ment. Here we present a computational approach to the organization of
spatial layouts of visual sensors according to given sensor-environment
interaction patterns. We propose that prediction and spatiotemporal cor-
relation are key principles for the development of visual sensors well-
adapted to an agent’s interaction with its environment. This proposition
is first motivated by studying the interdependency of morphology and
behavior of a number of visual systems in nature. Subsequently, we en-
code the characteristics observed in living organisms by formulating an
optimization problem which maximizes the average spatiotemporal cor-
relation between actual and predicted stimuli. We demonstrate that the
proposed formulation leads to spatial self-organization of visual recep-
tive fields, and leads to different sensor topologies according to different
sensor displacement patterns. The obtained results demonstrate the ex-
planatory power of our approach with respect to i) the development of
spatially coherent light receptive fields on a visual sensor surface, and ii)
the particular topological organization of receptive fields depending on
sensorimotor activity.

Keywords: visual sensor topology, self-organization, sensorimotor
coupling.

1 Introduction

By simply observing the active behavior and visual organs of different animal
species, important hints can be obtained on how an organism constructs visual
percepts. Primates use a sophisticated oculomotor system to sequentially move
and stabilize their eyes with relation to different target locations [1]. Most air-
borne insects on the other hand, have their eyes rigidly attached to their body
or head; instead of focusing on particular target locations, these animals ana-
lyze how the projection of the environment translates on their sensors during
flight [2]. In general, three interrelated aspects contribute to how biological vi-
sion systems record raw visual stimuli: i) the characteristics of the environment
in which an animal is living, ii) the way a sensor is moved with respect to the
environment, and iii) the physical and morphological design of a visual organ.
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In this work, we consider i) to be a general environment and we investigate a
possible principle how ii) influences iii).

A closer look at the morphology of biological visual sensors reveals profound
differences between different organisms. While all visual organs found in na-
ture record visual stimuli through a number of light sensitive receptors – and
hence always record a spatially discretized stimulus – the spatial density distri-
bution of visual receptors varies greatly between species. Studies measuring the
distribution of retinal ganglion cells in camera-type eyes, or the ommatidia dis-
tribution in compound eyes, suggest that receptor distributions are directly tied
to an animal’s behavior and environment. Most prominently, primates and other
mammalians with binocular vision feature a fovea – a small, high-resolution area
in the center of their retina – and a radially close to logarithmically decreasing
receptor density. In [3], it is pointed out that such a log-polar-like receptor dis-
tribution corresponds to a mapping function which transforms image rotations
and dilations (zoom) into simple coordinate shifts in the log-polar coordinate
system. Thus, if an eye featuring such a receptor distribution is focusing on an
object and that object is rotated or scaled, the projected image is merely shifted
along the log-polar coordinate axes. It was argued that this property results in
an advantage for the human visual cortex, as it could achieve image invariance
for these transformations at a low computational cost by simply shifting the
image. Similar to ganglion cell distributions found in camera-type eyes, the den-
sity of ommatidia in arthropods varies significantly over the spatial extension
of their compound eye. Many flying insects for example have about a two times
higher spatial resolution in the frontal visual eye field than compared to the
lateral part [4]. A possible advantage of such a distribution is discussed in [5].
There, it is demonstrated that high density of light recording receptors in frontal
and caudal regions, and decreasing density in lateral regions, leads to a uniform
translation of projected stimuli on the eye during straight locomotion and can
facilitate visual distance estimation.

Motivated by observations related to the relationship of behavior and mor-
phology in natural visual systems, we explore in this paper the hypothesis that
visual organs develop such as to simplify neural circuitry for predicting on av-
erage experienced stimulus flow patterns. We first propose a criterion based
on spatiotemporal cross-correlation to evaluate such a receptor-to-receptor flow
property, and we subsequently use the introduced criterion as a cost function to
synthesize visual sensor topologies on a given sensor surface using a given set
of stimulus transformations. The obtained results suggest that the introduced
criterion is able to capture important properties of the relationship between the
spatial layout of a visual sensor and the way the sensor is moved with respect
to the environment.

1.1 Related Work

In an inventive work [6], Clippingdale and Wilson present a numerical experi-
ment motivated by the spatial organization of visual sensors in nature. Using an
abstract setup where visual receptors are represented as a set of points on a disk,
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an appealing principle is motivated on how to capture the relationship between
form and behavior. In line with our observations for natural visual systems, the
basic idea is a rule capable of generating sensor layouts which simplify stimulus
transformation patterns under a given behavior: assuming the given points are
transformed by a set of sensor displacement actions, the relative position of each
point is updated such as to reduce the overall motion-prediction error between
points. Interestingly, this update rule leads to foveal point distributions when
considering stimulus transformations plausible e.g. for the mammalian visual
system. Furthermore, using different action probability distributions for hori-
zontal and vertical translations, elliptic (visual streak-like) point layouts can be
obtained. For an illustration see Figure 10 in [6]. Formally, Clippingdale and
Wilson proved the following: a set of points randomly distributed on a disk
converges to a stable configuration given: i) points are conjointly transformed
by rotations, dilations and translations which are applied according to a given
probability distribution; and ii) after a transformation action is applied, each
point is moved towards transformed points which are lying closest to the point
under consideration. It was shown, the final point distribution is the configura-
tion where each point has on average the smallest possible distance to the next
closest transformed point under the given action probability distribution. This
approach is based on two important assumptions: visual receptors have no spa-
tial extension (i.e. are points), and the error between original and transformed
receptors can be measured as an Euclidean distance between spatial locations of
receptors. The first assumption is clearly an abstraction of a real visual sensor.
The second assumption can be further divided into two requirements: the spatial
layout of the visual sensor is known to the algorithm, and the prediction error
of visual stimuli is directly related to spatial distance. While it is arguable if
an agent can have complete knowledge of the spatial layout of its sensor, the
assumption that the prediction error is equivalent to spatial distance is unlikely
to hold for spatially extended visual receptors of different sizes.

Related to the question of how the distance measure underlying the optimiza-
tion proposed by Clippingdale and Wilson could be translated to real visual
sensors, the authors of this paper investigated in previous work how the in-
terrelationship between form and behavior could be quantified for sensors with
spatially extended receptors and unknown topologies [7]. Based on the complex-
ity of the model required to predict stimulus changes, a measure was introduced
which evaluates the coupling between sensor displacements and sensor topolo-
gies. It has been shown that a given sensor topology implicitly defines actions for
which future sensory stimuli can be predicted with less parameters. In this work
we use a similar strategy to optimize the coupling between a sensor’s topology
and executed motor actions.

1.2 Contribution

We develop a computational method for synthesizing visual sensor topologies
according to on average experienced stimulus transformations. To establish a
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relation between a sensor’s spatial layout and experienced stimulus transforma-
tions, we adopt the basic principle proposed in [6]. Though, instead of consider-
ing point-like sensor elements, we simulate a realistic visual sensor which records
stimuli through receptors where each receptor integrates luminance according to
a receptive field. Different from [6], we impose that the algorithm has no ac-
cess to information about the topological layout of the sensor being organized.
This means, the organization of the sensor layout has to be achieved solely by
observing the activation of an orderless array of visual receptors. Hence, the
implementation of a rule similar to the one proposed in [6] becomes consider-
ably more challenging. In particular, the Euclidean distance measure between
transformed and original points has to be replaced with a measure related to
how activation is transported between visual receptors when the recorded stim-
ulus changes. We will address this issue by introducing a criterion based on
spatiotemporal cross-correlation of receptor activation. This criterion allows us
then to implement an optimization which organizes the layout of visual recep-
tors depending on sensorimotor activity. At the same time, we also required the
algorithm to find a suitable shape for the receptive fields (RFs) of the spatially
extended receptors. We show that spatially coherent RFs can evolve driven only
by the low spatial frequency of natural images. By rewarding spatial correla-
tion within RFs, smoothly overlapping clusters organize on the sensor surface
without any further constraint on the spatial shape of a receptor’s integration
area. In practice, receptors can be initialized with a randomly chosen luminance
integration function and eventually develop into compact receptive fields.

The following steps summarize the approach followed in this paper:

1. A system with a given sensor surface, a given motor space and a predefined
number of visual receptive fields is considered.

2. Each visual receptive field is described as a discretized, randomly initialized
function according to which visual input is integrated from the sensor surface.

3. By maximizing spatial correlation of visual stimuli recorded through recep-
tive fields, the development of spatially coherent visual receptors is achieved.

4. By extending spatial correlation to spatiotemporal correlation between visual
stimuli of transformed and original receptors, sensor topologies dependent
on the agent’s motor activity are developed.

2 Approach

An artificial agent with a given sensor surface I ⊂ R
2 and a given number of

motion degrees of freedom is considered. The sensor surface records a projec-
tion of the environment given as a function is : I → R defining a luminance
value for each point on the surface when the agent is in state s. For numerical
purposes, i is sampled at N spatial locations xn as a discrete grayscale image
i = [i(x1) i(x2) . . . i(xN )]�. The topology of the visual sensor is composed of M
visual receptors, where M is a parameter of the proposed method and is much
smaller than N . Each visual receptor m integrates a visual stimulus through
a receptive field (RF). The RF is described as a vector of weights rm defining
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how much each entry in i contributes to receptor m. Note that rm is allowed
to encode any receptive field function and no spatial coherence is assumed. By
assembling weight vectors rm for all M visual receptors as the rows of a matrix
R, a stimulus recorded by the agent in state s can be written as Ris.

After observing state s, the agent can choose to take an action a from a discrete
set of actions A representative of the agent’s behavior. This action induces a
change in the observed grayscale image from i−s to i+s ; here we assume that this
change is predictable.1 As the agent explores its environment, we collect before
and after images for each particular action a in the matrices (I−a , I+

a ), where
samples are arranged in columns. For the whole set of actions A, these matrices
are collected in a dataset D = {(I−a , I+

a ) , a ∈ A}.
With the introduced terminology, we now proceed to develop an optimization

problem which evolves the sensor topology R such that the previously described
properties are induced: i) spatially coherent receptive fields are formed, and ii)
the topological layout of the sensor reflects stimulus translations induced by the
behavior of the host. We propose to find an optimal R as the solution to an
optimization problem:

R∗ = argmax
R∈R

[F (D,R) − G (R)], (1)

where F denotes a function evaluating the spatiotemporal cross-correlation of a
set of samples (I−a , I+

a ), and G represents a cost for growing receptive fields. The
constraint set R is chosen as R = {R : R ≥ 0, R�1 = 1}, such as to guarantee
that the visual receptive fields occupy the whole sensor surface and luminance
cannot be subtracted. In the remainder of this section, we unroll the complete
definition of this optimization problem by developing F and G.

Consider first an immobile agent with a single null action leading to a reduced
data set D̄ = {I−} of stimuli recorded in different states s. In this case, we
consider a reasonable sensor topology R to be one which leads to high correlation
within a batch of recorded stimuli Ris. The rational behind this is that bigger
differences between simultaneous receptive field activations indicate that the
agent is able to pick-up more information from the images is, in an information
theoretic sense. Furthermore, correlation must be normalized with respect to the
size of a receptive field such that different sized receptive fields are comparable.
Implementing these two requests, we propose a first version of F for an immobile
agent to be a size normalized correlation between stimuli is like:

F̄
(D̄,R

)
=

S∑
s=1

(
R̂i−s

)� (
R̂i−s

)
, R̂ =

R√
R11� , (2)

where in R̂ the division and square root operators are applied element wise.
In a second step, an active agent and a full data set D = {(I−a , I+

a )} is con-
sidered. To establish a temporal relationship between receptive fields, we now
1 See also [8], Appendix A for the constraints posed on such actions and how this

situation relates to a physical agent acting in a 3-dimensional world.
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adapt F̄ to compute correlation between pre- and post-action stimuli. We re-
mind the reader that it is a priori unknown how to temporally relate receptive
fields and how stimuli change under an action a. This is naturally solved by
considering a prediction operator which describes a mapping of receptors for
a given action, allowing for comparison of stimuli at different points in time.
In [9] Crapse and Sommer provide an excellent review of the ubiquity of stimu-
lus prediction in living organisms and [8] gives an argument for the use of linear
prediction. Thus, assuming that for an action a we can predict a visual stimulus
as Ri+a = Pa

(R)Ri−a we revise F̄ like

F (D,R) =
∑
a∈A

S∑
s=1

(
R̂i+s,a

)� (
Pa

(R)R̂i−s,a

)
, R̂ =

R√
R11� , (3)

where a prediction operator Pa
(R) is learnt from a batch of samples (I−a , I+

a ). We
request Pa

(R) ≥ 0 and propose Pa
(R) to be the solution to a positive least squares

problem. As demonstrated in [7] this yields a predictor reflecting the complexity
of stimulus flow patterns under actions.

Finally G (R) is chosen in such a way as to impose a cost on the growth of
receptive fields. Choosing G(R) = ω‖R‖2

2 provides control over the smoothness
of the receptive field boundaries. For ω = 0 solutions with hard receptive field
boundaries are obtained.

3 Method

We consider the sensor surface to be a disk, discretized at N = 2877 locations in
a grid-like layout, and being organized into M = 48 receptive fields. The envi-
ronment is given as a plane textured by a very high resolution image depicting
a real world scene. A state s consists of a position of the sensor surface with
respect to this plane. In this paper we assume the sensor surface to be paral-
lel to the plane and each location records luminance over the covered area into
discrete grayscale images i. This sensor interacts with the environment through
four types of actions, translations in x- and y-directions, rotations and changes
in distance to the plane (zoom). An action set A is obtained by sampling a par-
ticular action probability distribution representative of the agent’s behavior. For
the results presented in this paper each behavior is represented with 60 samples
as shown in Fig. 2. For each action a a pair of samples is obtained by positioning
the agent in a random state on the environment and taking the chosen action
a. This process is repeated 68 (> M) times for each a, acquiring the dataset
D = {(I−a , I+

a )}.
To find R∗ we iteratively improve the optimization problem given in Eq. (1)

using a projected gradient descent method [10]. At each iteration we learn predic-
tors Pa

(R) that best satisfy Ri+a = Pa
(R)Ri−a in a positive least squares sense using

the optimization method known from [11]. Note that, even though Pa
(R) cannot

be obtained as a closed form solution, the gradient needed to iterate Eq. (1)
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Fig. 1. Emergent clustering of receptive fields (RFs). Left: A converged but topologi-
cally orderless matrix R as seen by the algorithm; each entry specifies the contribution
of a location on the sensor surface to a receptive field (RF); the sensor surface is dis-
cretized into 2877 pixels (x-axis), and the matrix R codes for 48 RFs. Right: The sensor
surface and the coverage of 7 selected RFs at spatial locations where their contribution
is predominant; this view reveals the implicitly present topological clustering in R.

can still be found in closed form by applying the implicit function theorem to
the Karush-Kuhn-Tucker optimality conditions of the positive least squares op-
timization problem [12]. While it is no problem to find a solution for R with an
online method, convergence is much slower, we therefore choose here the batch
approach for practical reasons. However, we note that under different circum-
stances an online implementation might be preferable, e.g. for a purely biologi-
cally inspired implementation in a robot with stronger memory constraints and
a longer exploration phase.

The experiments presented in Sect. 4 were initialized as follows: the topology
of the sensor R was randomly initialized according to a uniform distribution
between zero and one, and then projected to obey the constraints R. The cost
for growing receptive fields was kept at a constant level ω = 0.3. It is impor-
tant to note that with a randomized initialization, nothing prevents the adap-
tation process from converging to a locally optimal solution. From a biological
point of view, we accept these solutions as possible branches of evolutionary
development.

4 Results

To demonstrate the correlation principle introduced in Eq.(2) we start by show-
ing the results for an immobile agent. This example, although discarding any
meaningful behavior, shows a crucial capability of the proposed method namely
the requested property i) the development of spatially coherent light receptive
fields on a visual sensor surface. Figure 1 highlights the discovery of topological
order from the orderless sampling of the underlying image.
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Fig. 2. Two different behaviors represented as action distributions. Left: uniform 2-
dimensional translations in a given range covering 10 times the distance between dis-
crete sampling locations on the sensor surface in each direction. Shift units are normal-
ized with respect to the environment. Right: independent zoom and rotation actions
distributed uniformly on each axis. Rotations are given in radians and dilations are
given as a scale factor. Both operate with respect to the center of the sensor surface.
Zoom actions range from 0.6 to 1.66 and rotations cover −π to π.

As external observers we have the privilege of knowing the spatial locations
where the sensor surface was sampled and as such we are able to plot the topo-
logical ordering of receptive fields on the sensor surface as shown in Fig. 1(b). In
the two dimensional visualization we choose to show at each discrete sensor sur-
face location the predominant receptor. The clustering property of the receptive
field elements is clearly demonstrated. Since in this case no action is taken, this
clustering is a sole consequence of the interaction between the correlation based
cost function and the low frequency characteristic of the observed environment.
Note that the agent does not have access to the sampling locations of the sensor
surface and is thus unaware of the final topological ordering. The proposed al-
gorithm operates solely on matrix R which is absent of any topological meaning
even in the final converged state, as shown in Fig. 1(a).

For active agents we will now consider two different behaviors as shown in
Fig. 2(a) and Fig. 2(b). The first consists of a uniform action probability dis-
tribution of 2-dimensional translations over the sensor surface in a given range.
This scenario relates to translational unbiased oculomotor control causing ran-
dom stimulus displacements. The second behavior is composed of independent
zoom and rotation actions distributed uniformly on each axis. This mimics the
behavior of an object manipulating agent where the oculomotor system stabilizes
the sensor on target, mechanically compensating for image translations but not
image rotations or scaling. These setups demonstrate that the agent’s behavior
induces different topologies of receptive fields on the sensor surface.

In Fig. 2 the converged layouts for the two considered action distributions
are shown. The nature of the two converged topologies exhibits macroscopic
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(a) Shift (b) Rotation and Zoom

Fig. 3. Sensor topologies obtained under behaviors visualized in Fig. 2(a) and Fig. 2(b)

differences: in the translation only case we can identify a tendency for hexagonal
tiling structures over the entire sensor surface (apart from boundary effects),
whereas in the rotation and zoom case the receptors organize radially in clear
circular rings. Unlike in Fig. 1, the 3-dimensional perspective shows the smooth
overlapping between receptive field elements.

To better comprehend the resulting sensor layouts, we refer back to the work
of Clippingdale and Wilson [6], where the fitness of a layout relates directly to
the distance between predicted and original point locations. In our case, just
as in [6] a perfect sensor layout is one where receptors exactly map one onto
another for every considered action resulting in Pa

(R) matrices where each row
contains exactly one non-zero entry. Any deviation from this case leads to an
increase in prediction error and lowers correlation. This fact allows us to replace
the Euclidean distance as used by Clippingdale and Wilson by one based solely
on correlation between sensory readings disregarding any knowledge about the
sensor topology.

5 Conclusion and Outlook

This paper explored how the behavior of an artificial agent can shape the topol-
ogy of a visual sensor. We proposed that a well suited sensor is one which simplifies
stimulus flow patterns – and hence stimulus prediction – under a given set of ac-
tions. We showed that this quality is captured by spatiotemporal cross-correlation
and can be used to self-organize visual sensor topologies on a given surface. The
method proposed in this work simultaneously develops spatially coherent receptive
fields and organizes their layout according to an executed behavior.

Recognizing the mutual coupling of morphology and active behavior in organ-
isms evolved in nature, we believe that in artificial agents physical structure and
actuation should eventually emerge through a co-developmental process. Work-
ing in this direction, we will investigate in future contributions the reciprocal
influence of physical form on behavior in order to deduce suitable actions from
a given sensor topology.



268 J. Ruesch, R. Ferreira, and A. Bernardino

Acknowledgments. This work was supported by the European Commission
proj. FP7-ICT-248366 RoboSoM, by the Portuguese Government – Fundação
para a Ciência e Tecnologia (FCT) proj. PEst-OE/EEI/LA0009/2011, proj. DC-
CAL PTDC/EEA-CRO/105413/2008, and FCT grant SFRH/BD/44649/2008.

References

1. Hayhoe, M., Ballard, D.: Eye movements in natural behavior. Trends in Cognitive
Sciences 9, 188–194 (2005)

2. Egelhaaf, M., Kern, R., Krapp, H.G., Kretzberg, J., Kurtz, R., Warzecha, A.K.:
Neural enconding of behaviourally relevant visual-motion information in the fly.
Trends in Neurosciences 25, 96–102 (2002)

3. Schwartz, E.L.: Computational anatomy and functional architecture of striate cor-
tex: A spatial mapping approach to perceptual coding. Vision Research 20(1),
645–669 (1980)

4. Petrowitz, R., Dahmen, H., Egelhaaf, M., Krapp, H.G.: Arrangement of optical
axes and spatial resolution in the compound eye of the female blowfly Calliphora.
J. Comp. Physiology A 186, 737–746 (2000)

5. Lichtensteiger, L., Eggenberger, P.: Evolving the morphology of a compound eye
on a robot. In: Proc. 3rd Europ. Worksh. on Adv. Mobile Robots, pp. 127–134
(1999)

6. Clippingdale, S.M., Wilson, R.: Self-similar neural networks based on a kohonen
learning rule. Neural Networks 9(5), 747–763 (1996)

7. Ruesch, J., Ferreira, R., Bernardino, A.: A measure of good motor actions for active
visual perception. In: Proc. Int. Conf. Dev. and Learning, ICDL (2011)

8. Ruesch, J., Ferreira, R., Bernardino, A.: Predicting visual stimuli from self-induced
actions: an adaptive model of a corollary discharge circuit. IEEE Transactions on
Autonomous Mental Development (submitted)

9. Crapse, T.B., Sommer, M.A.: Corollary discharge across the animal kingdom. Nat.
Rev. Neuroscience 9, 587–600 (2008)

10. Absil, P.A., Mahoney, R., Sepulchre, R.: Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press (2008)

11. Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA Journal of
Numerical Analysis 8, 141–148 (1988)

12. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods.
Athena Scientific (1996)



Self-organization of Spinal Reflexes Involving

Homonymous, Antagonist and Synergistic
Interactions

Hugo Gravato Marques1,2, Kristin Völk1, Stefan König1, and Fumiya Iida1

1 ETH,
Dep. of Mechanical and Process Engineering, BIRL,

Zurich 8092, Switzerland
hgmarques@gmail.com
2 University of Zurich,

Institute for Informatics, AI Lab.,
Zurich 8050, Switzerland

Abstract. Recent results in spinal research are challenging the histor-
ical view that the spinal reflexes are mostly hardwired and fixed be-
haviours. In previous work we have shown that three of the simplest
spinal reflexes could be self-organised in an agonist-antagonist pair of
muscles. The simplicity of these reflexes is given from the fact that they
entail at most one interneuron mediating the connectivity between af-
ferent inputs and efferent outputs. These reflexes are: the Myotatic, the
Reciprocal Inibition and the Reverse Myotatic reflexes. In this paper we
apply our framework to a simulated 2D leg model actuated by six mus-
cles (mono- and bi-articular). Our results show that the framework is
successful in learning most of the spinal reflex circuitry as well as the
corresponding behaviour in the more complicated muscle arrangement.

1 Introduction

Historically the spinal cord has been viewed as a rather inflexible system, com-
posed of hardwired reflexes that have very limited degrees of adaptability and
plasticity [9]1. However, recent studies have shown that at least some of these
circuits can be adapted by changing the contingent (i.e. temporally correlated)
sensor and motor information. In Petersson et al. [7] showed that the delivery
of false tactile feedback in response to spontaneous muscle twitches (SMTs) can
systematically modify the response of the spinal withdrawal reflex. One of the
major contributions of this work was the identification of SMTs as a major
driving force in the adaptive process. SMTs consist of involuntary contractions
that can activate muscles independently [1]2. This kind of motor activity can be

1 This research was funded by the Swiss SNF, Grant No. PP00P2123387/1, the Swiss
NCCR Robotics, and the EU’s FP7, Cognitive Systems, Interaction, Robotics no.
207212 – eSMCs.

2 Note that SMTs are not the only mechanism of spontaneous motor activity (see [1]).
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Fig. 1. (a) The framweork proposed; it works as follows: (1) spontaneous motor activity
(SMA) produces contractions of individual muscles (SMTs), (2) the muscle contrac-
tions produce forces which are propagated through the musculoskeletal system (as well
as throughout the environment where it is embedded), (3) the changes produced in
the musculoskeletal system are captured by the different sensors, which (4) convert
them into sensor activity, (5) the correlation between the sensor and motor activity is
used to learn the reflex circuitry between each sensor and motor pair. (b-c) The spinal
circuitry of the three reflexes investigated: b) the Myotatic reflex and the Reciprocal
Inhibition reflex (which are supposed to counteract the effects of external loads), and
c) the Reverse Myotatic reflex (which is supposed to prevent muscles from producing
too high forces). The stars represent α-motoneurons, the large solid circles represent
inhibitory interneurons, semi-circled arcs represent excitatory connections, small solid
circles represent inhibitory connections, the dashed lines represent afferent inputs from
a) Ia fibers and b) Ib fibers, mi indicates an abstract muscle i, and the arrows rep-
resent the flow of information. The spirals in (b) represent the muscle spindles, the
filled triangles in (c) represent the Golgi-tendon organs. The reflex circuitry has been
abstracted from [8, pp.79-86,209-15, 256-60]

observed during active sleep from fetuses to adults, and it has been argued to
contribute strongly to the development of the human motor system.

In previous work we proposed a framework to self-organize spinal reflexes from
the contingent sensor and motor information induced during SMTs (see Fig.1a).
These reflexes were: the Myotatic, the Reciprocal Inhibition and the Revere
Myotatic reflexes (see Fig. 1b-c). These reflexes consist of very small local circuits
(they include at most one interneuron in their reflex arcs) that coordinate muscle
information. They are carried out through two types of afferent inputs: the Ia
and the Ib fibers. The Ia fibers estimate changes in the muscle length as well as
(positional) muscle length [4], and the Ib fibers respond to small variations in
muscle force [5].
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In the human spine the circuitry of these reflexes involve mainly three types of
sensorimotor (muscle) interactions: homonymous (i.e. interactions between the
same muscle), antagonistic (i.e. interaction between muscles that move a joint
in opposing directions), and synergistic (i.e. interaction between muscles that
move a joint in the same direction). In our previous work we have successfully
self-organized the three reflexes in a minimalistic setup involving homonymous
and antagonist interactions using a pair of simulated mono-articular muscles [6].
In this paper, our goal is to test the framework in a more complicated muscle
arrangement which comprises six muscles and includes synergistic interactions
provided by bi-articular muscles.

The remainder of this paper is organized as follows. The second section de-
scribes the implementation of our framework (here we will only provide the
details relevant to understand this paper; more information can be found in [6]).
The third section provides the results obtained. The fourth section discusses the
results. And the fifth section concludes the paper and gives some directions for
future work.

2 Methods: Implementation of Framework Models

Our framework consists of five interacting models: a musculoskeletal model (and
its environment), a peripheral model, a model of spontaneous motor activity
(SMA), a learning model based on the correlations between sensor and motor
activity, and a model of the reflex sensorimotor mapping (see Fig.1). The first
four models are involved in the learning of the reflexes (learning stage) and the
last model is responsible for triggering the reflex activity (testing stage). The
interaction between these models is described in Fig. 1. In this section we will
describe the implementation of each of these models.

reflex learning from

2.1 Implementation of the Musculoskeletal System and the
Environment

Our musculoskeletal system consists of a 2D virtual model of a leg actuated by
six muscles (see Fig. 2a). We have called these muscles: Glutei (G), Iliacus (I),
Rectus Femuris (RF), Long Biceps (LB), Short Biceps (SB), and Vast Group
(VG), which in the human leg produce approximately the same type of (flex-
ion and extension) motions. The muscles LB and RF are bi-articular muscles
(represented as dashed lines in Fig. 2a). The simulation of the leg dynamics
is carried out in SimMechanics/Simulink. The skeleton model consists of three
rigid bodies: the pelvis, the femur and the tibia, which are connected by hinge
joints (hip and knee). In our simulation the pelvis is fixed in space, and only the
femur (mass = 1kg, length = 0.5m) and tibia (mass = 0.5kg, length = 0.5m)
are allowed to move (e.g. due to gravity).

Each muscle is simulated as a straight line between two rigid bodies (see
Fig. 2b). The muscle model used in our investigation is based on a 2-element non-
linear Hill model [3] [10]. The two elements in the model are an active contractile
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Fig. 2. Diagram of the leg model implemented. a) the geometric arrangement of the six
muscles in the leg: the Glutei (G), the Iliacus (I), the Rectus Femuris (RF), the Long
Biceps (LB), the Short Biceps (SB), and the Vast Group (VG); bi-articular muscles
are shown in dashed lines; b) an abstraction of the muscle model used, Mi corresponds
to the motor activity of α-motoneurons of muscle i. The filled circles represent pulleys
which simulate the way muscles wrap around the joints. Each muscle has two sensors,
SL
i and SF

i , which are used to estimate the length and force (respectively) of muscle i.

element in parallel with a passive elastic element. The contractile element models
the active force generated by the muscle fibers. This element includes a damping
mechanism that simulates the force-velocity relation of biological muscles. The
passive elastic element models the muscle fiber’s resistance to deflection.

The force produced by muscle i at its attachment points is given by:

FMi = FCHi + FSHi , FCHi =
Mi

1 + C · l̇i
, FSHi = K ·Δli (1)

where FCHi is the force produced by the Hill contractile element of muscle i
and FSHi is the force produced by the passive spring element of muscle i, C
is a constant damping factor, K is a constant spring factor, Mi is the motor
activation of motor i, l̇i is the rate of change of the muscle length relative to
muscle i,Δli is the passive deformation of muscle i. In biology the force generated
by the passive spring element of the muscle, FSHi , is significantly smaller than
the force generated by the contractile element, FCHi . To achieve these properties
we set K = 10 and C = 0.5. At the beginning of both the learning and testing
stages, the model starts with all muscles relaxed (M = 0). In this condition the
leg falls straight down due to the effect of gravity.

2.2 Implementation of Peripheral System

The peripheral system includes motor and sensing elements. The sensor ele-
ments consist of analogues to α-motoneurons the activity of which determines
the muscle contraction,Mi. On the sensing side we simulate two types of sensors
(see Fig. 2b): one that measures the length of the muscle, SL

i (i.e. the distance
between the two attachment points), and one that measures the force at the at-
tachment points, SF

i ; when referring to sensors indiscriminately we will simply
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use the symbol S. In our simulation the sensor activity consists of the derivatives
of these sensor inputs (ṠL

i and ṠF
i ), which provide qualitative analogues of the

Ia and Ib afferent fibers.

2.3 Implementation of Correlation-Based Learning

This process identifies the reflex circuitry based on the correlation between sensor
and motor activity. All possible pairs of sensor and motor elements are consid-
ered. We use the method of motor-directed somatosensory imprinting (MDSI),
which has been used to explain the self-organization of the withdrawal reflex
[7]. This method uses the anti-Hebbian rule [2] which is given by the additive
inverse of the temporal correlation between the sensor and motor activity. It is
important to mention here that despite the fact that the anti-Hebbian rule has
been used to justify plastic phenomena in the spinal cord [7], such a rule (to our
knowledge) has not yet been explicitly identified. The reflex connectivity, Q, is
then given by:

Qi,j = −ηij
T∑

t=1

Mi,t · Ṡj,t, ηij =

[
max(Ṡj)

T∑
t=1

Mi,t

]−1

(2)

where ηij is a normalization factor, Mi,t is the motor activity of motor i at

timestep t, Ṡi,t is the sensor activity of sensor j at timestep t, and T is the
number of timesteps taken by the learning process. Excitatory connections are
characterized by positive values and inhibitory connections by negative values.
The strength of each connection is given the magnitude, |Q|.

2.4 Implementation of Spontaneous Motor Activity

During the learning stage the generation of single muscle twitches is done by
sequentially contracting one muscle after the other, generating a total of six
SMTs. Each twitch consists of a short rectangular pulse of amplitude 1mu (motor
units) and duration of 1s. The time between twitches is set to a value large
enough to allow the system to stop oscillating.

2.5 Implementation of Sensorimotor Mapping

The testing of the reflex behaviours is carried out exclusively by the sensorimo-
tor mapping model. The testing consists of applying an external force, D at the
bottom of the tibia (D = 1N applied in the x direction). This causes both the
femur and the tibia to rotate counterclockwise (see Fig. 2b), which causes the
length of the muscles G, LB and SB to increase and the length of the muscles I,
RF and VG to decrease. The reflex behavior, Mi, is then triggered by the mea-
sured sensor stimulation at each sensor Sj weighted by the respective connection
Qi,j :

Mi,t = G ·
m∑
j=1

Ai,j,t, Ai,j,t = Qi,j
Ṡj,t

max(Ṡj,t)
(3)
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where G is a dimensionless value with the reflex gain, m is the number of motors
in the system, t is time, and Ai,j is the output of the inhibitory or excitatory
connection. In biology the positive or negative effect of a connection on a given
neuron is defined by the nature of the connection (excitatory and inhibitory
respectively); negative connections can only decrease the activity of afferent
neurons, and excitatory connections can only increase the activity of afferent
neurons. To ensure these effects in our simulation, we add a condition where
we define that inhibitory connections (i,e. those where Qi,j < 0) can only have
a negative impact on the motor activity; and that excitatory connections (i,e.
those where Qi,j > 0) can only have a positive impact on the motor activity.

This is achieved by setting Ai,j = 0 whenever Ṡj,t < 0.

3 Results

Figure 3 shows the sensory activity induced in response to SMTs in different
muscles. The muscles shown include the three types of muscle interactions in-
vestigated here (i.e. homonymous, antagonistic and synergistic). Figure 3a-c il-
lustrates the reaction of the length sensors to the contraction of one muscle
induced by a SMT in this muscle. Figure 3d-e shows the reaction of the force
sensors to the same SMTs. As can be seen, all the SMTs induce causal infor-
mation in all the length sensors of each muscle, whereas the force sensors are
affected only by contractions of the homonymous muscle. This is because when
a muscle is relaxed the only force in the muscle is due to the passive spring
element which has a negligible magnitude when compared with the active force
that can be produced by the contractile element of the muscle.

The data shown in Fig. 3 suggest causal relations between force sensors and
homonymous muscles, and between length sensors and homonymous, antago-
nistic and synergistic muscles. The learned connectivity matrix, Q, is shown in
Fig. 4a. In relation to the force sensors we obtain inhibitory connections with the
homonymous muscles only (e.g. between ṠF

G and MG); all the other connections
obtained have negligible magnitudes (≤ 0.001). This connectivity corresponds to
that of the Reverse Myotatic reflex for homonymous muscles. In comparison to
the analogue biological circuitry (see Fig. 1c) we fail to obtain inhibitory connec-
tions between force sensors and synergistic muscles (see Sect. 4 for discussion).

In relation to the length sensors we obtain excitatory connections with
homonymous muscles (e.g. between ṠL

G and MG) as well as with synergistic
muscles (e.g. between ṠL

LB and MG). This connectivity pattern is in line with
the connectivity of the Myotatic as shown in Fig. 1b. The only exception to this
rule is observed between ṠL

VG and MRF where we obtain an inhibitory connec-
tion. This connection is caused by the fact that the twitches are performed with
the leg hanging down in a straight line due to gravity. In this position the con-
traction of the RF muscle leads to a flexion of the hip, which causes the Tibia
to swing slightly backwards due to gravity; this in turn causes a knee flexion
instead of the knee extension that would typically be observed when the RF
contracts.
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Fig. 3. (a)-(c): The changes in muscle length of the Short Biceps (green), the Long
Biceps (blue) and the Rectus Femoris (magenta) in response to a SMT (red) carried
out by a) the Short Biceps, b) the Long Biceps and c) the Rectus Femoris. (d)-(f):
The changes in muscle force of the Short Biceps (green), the Long Biceps (blue) and
the Rectus Femoris (magenta) in response to a SMT (red) carried out by d) the Short
Biceps, e) the Long Biceps and f) the Rectus Femoris.

In addition we obtain inhibitory connections between the length sensors and
antagonist muscles (e.g. between ṠL

RF and MG), which is consistent with the
connectivity observed in relation to the Reciprocal Inhibition reflex (see Fig. 1b).
Figure 4b provides a more clear representation of the connectivity of the length
sensors with the homonymous, antagonist and synergistic muscles.

Connections can also be found between muscles in distal joints, (e.g. the exci-
tatory connection between ṠL

I and MSB). This connectivity is present because a
movement produced at a given joint can induce movement in other joints (e.g. due
to gravity or inertia). Connections betweenmuscles at distal joints are also present
in the human spinal cord but they will not be analysed here. Connections between
length sensors and motor elements not shown in the Q-matrix of Fig. 4a have very
small magnitudes (≤ 0.006) and do not have any behavioral relevance.

The resulting reflex behavior is shown in Fig. 5. The figure shows the response
of the six muscles to the external perturbation (see Sect. 2.5), in three different
conditions: using no reflexes (G = 0), using the non-modulated Qmatrix (G = 1)
and using a modulation gain of G = 3. By comparing the angles of the knee and
hip joint at reflex application to those without reflexes, it can be seen that the
action of the reflexes has the effect of dampening the system, similar to the
function of a proportional controller. Higher gains cause a higher dampening of
the system and result in an increase of the overall motor activity. Additionally the
muscle activations for agonist-antagonist pairs tend to be opposite (e.g. between
RF and LB, or between G and I). Synergistic muscles on the other hand tend
to be recruited at the same time (e.g. LB and SB, or RF and I).
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Fig. 4. The reflex circuitry obtained using our framework a) in a matrix and b) in a
graph representations. Filled squares and circles represent inhibitory connections and
empty squares and circles represent excitatory connections. In a) the strength of each
connection is given by the square size; all the sizes have been normalized by the weight
of the highest connection. In b) are shown only the interactions of length sensors with
homonymous, antagonist and synergistic muscles.

Fig. 5. Muscle-related activity generated by the reflex circuitry in reaction to an ex-
ternal disturbance of 1N in the x-direction imposed on the endpoint of the Tibia. Left
side from top to bottom: 1) the external disturbance, 2) angle of the hip joint, and 3)
angle of the knee joint. In the middle from top to bottom, activations of: 1) Glutei ,
2) Long Biceps, and 3) Short Biceps (mu stands for motor units). Right side from top
to bottom, activations of: 1) 1) Iliacus, 2) Rectus Femoris, 3) Vast Group. Each line in
the figure shows three experimental conditions: blue, no reflex activity, G = 0; green,
non-modulated reflex activity G = 1, and red, modulated reflex activity G = 5.
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Fig. 6. The Reverse Myotatic reflex. Same elements as Fig. 5, but the three conditions
shown are: blue, no reflex activity, G = 0; green, non-modulated reflex activity G = 1,
and red, dual-gain condition (see text).

The muscle activity produced by the Myotatic and the Reciprocal Inhibition
reflexes is shown in Fig. 5. In relation to the Myotatic reflex it can be observed
that the increase in the length of the muscles G, LB and SB (imposed by the
external perturbation) results in an increase of motor activity in these muscles3.
In relation to the Reciprocal Inhibition reflex it can be observed that the decrease
in the length of the muscles I, RF and VG (imposed by the external perturbation)
results in a decrease of motor activity in these muscles (see also footnote).

The activity of the Reciprocal Inhibition reflex is slightly more complicated to
visualize since in the range of forces we use the force component contributes very
little to the overall muscle activity. To give expression to the force component we
set a higher gain (GF = 50) to the force elements in the matrix Q, while keeping
the gains of the length elements (GL = 1); we call this condition dual-gain. In
this condition the effects of the Myotatic reflex alternate constantly with those of
the Reverse Myotatic reflex, leading to peaks that alternate between positive and
negative muscle activity. To show the overall muscle activity in this condition we
filter all the muscle responses (in the three conditions) with a Savitzky-Golay
filter of order 3 and window size of 51 (sgolayfilt function in Matlab). Fig. 6
shows the muscle activity in the dual-gain condition in comparison with that
in G = 0 (no reflex activity) and G = 1 (non-modulated reflex activity). As
can be seen in the dual-gain condition the Myotatic reflex leads to a generalized
decrease of muscle activity in all the active muscles (Mi > 0). This is due to the
inhibitory nature of the Reverse Myotatic reflex circuitry. In addition, it can be

3 The length increase of the SB muscle, as well as the length decrease of the VG
muscle, can only be observed immediately after the disturbance is applied; the small
oscillations that are observed afterwards are due to the impact of gravity in the
vertical alignment of the leg mentioned above.
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seen from the joint angles that the system gets less damped than in the G = 1
condition, which is due to the overall decrease of muscle activity.

4 Discussion and Conclusions

Our results show that most of the circuitry and the behavior obtained are con-
sistent with human data. Relative to the Myotatic reflex we obtain, excitatory
connections between length sensors and motor elements of homonymous and syn-
ergistic muscles. Relative to the Reciprocal Inhibition reflex we obtain inhibitory
connections between length sensors and motor elements of antagonist muscles.
And relative to the Reverse Myotatic reflex we obtain inhibitory connections
between the force sensors and motor elements of the homonymous muscles. The
only circuits that are systematically absent in our results (and are present in
humans) are those involving connections between force sensors of a muscle and
motor elements of the synergistic muscles (see Fig.1b-c).

In reality the contraction of one muscle should not induce force information on
any other muscle. Our hypothesis is that the connectivity between force sensors
and motor elements of synergistic muscles is accidental; it is formed because
synergistic muscles are often recruited at the same time, which prevents casual
sensorimotor relations from being fully disambiguated. We are currently working
ways of exploiting synchronous muscle activations during SMA.
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Abstract. It has been shown that the action of serotonin on the orbito-
frontal cortex (OFC) is crucial for the inhibition phase of reversal learn-
ing. Serotonin has also been shown to facilitate the induction of LTD
throughout the prefrontal cortex. We present a biologically realistic, sys-
tems level model which proposes a mechanism for the release of serotonin
in response to the omission of an expected reward. Serotonin release, as a
result of the combination of excitation of the dorsal raphé nucleus (DRN)
pathway and the lack of inhibition of the DRN from the lateral habenula,
leads to LTD in the OFC and suppression of excitation of the nucleus
accumbens shell due to reward predicting sensory stimuli. Behavioural
inhibition is controlled via the shell-ventral pallido-mediodorsal path-
way, which serves as a feed forward switching mechanism and enables
the behavioural inhibition required to achieve reversal learning.

1 Introduction

There is much evidence to support the involvement of serotonin in a wide range
of affective processes, however despite this little is known about the specific
computational role of serotonin in any of them [7]. Of particular interest from
the perspective of adaptive behaviour is the process of reversal learning. During
the process of reversal learning it is necessary for an agent to inhibit it’s approach
of a previously rewarded stimulus. Multiple studies have shown that serotonin
depletion disrupts this process both in marmosets [3,4,5] and rats [9]. Not only
does a more general depletion of serotonin produce these results, but so does
depletion specific to the orbito-frontal cortex [5].

Here we present a biologically inspired, systems level model which combines
the action of both serotonin and dopamine to achieve learning and reversal learn-
ing in a simulated food seeking task. Stimulus-reward associations made during
the acquisition phase are realised in the same manner as that of the Thomp-
son model [20]. The release of phasic dopamine from the ventral tegmental area
(VTA) in response to a reward results in long term potentiation (LTP) of active
pathways in the nucleus accumbens and the OFC. Reversal learning is achieved
through the action of serotonin which causes long term depression (LTD) in the
OFC [22]. Depletion of serotonin within the model leads to substantially more
preservative errors being made during reversal learning.

T. Ziemke, C. Balkenius, and J. Hallam (Eds.): SAB 2012, LNAI 7426, pp. 279–288, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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2 Task and Simulated Agent

The model is tested on a food seeking task based on the experiment conducted by
Lapiz-Bluhm [9]. A simple reversal learning paradigm is used where a rat has to
locate a reward buried in one of two pots. The rat learns to discriminate between
the rewarded pots using either a different scent which has been applied to each
pot or a different digging material used within them. Once the rat has made the
correct stimulus-reward association and completes six consecutive correct trails,
the stimuli are reversed (ie the odour or the digging materials are switched)
and the total number of trials for the rat to complete another six consecutive
correct trials is measured. Similarly, in our simulated food seeking task (shown
in Fig. 1A), the simulated agent must learn to associate one of two markers with
the reward. The agent must again complete six consecutive trials for both the
acquisition and reversal stages. For simplicity the markers are represented as
being of two colours, red and blue.
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Fig. 1. A. Overview of the simulation environment. The arena has two markers, labelled
R and B (red and blue), within one of which lies a reward which the agent cannot sense
directly. The agent receives a distal signal from each marker, which indicates how far
away the marker is. The agent is required to learn to associate the distal signal with any
reward it predicts. Additionally, the agent receives a proximal signal when it nears the
marker. This causes it to approach the marker unconditionally and represents a natural
curiosity in the marker. B. Overview of the connections in the model, the bottom half of
the figure shows the connections necessary to create a serotonin signal coding omission.
Also shown is the shell-VP-MD-dmPFC pathway necessary for behavioural inhibition.
A detailed view of the NAc core circuitry is shown in Fig. 2. Abbreviations: dmPFC -
dorsal medial prefrontal cortex, OFC - orbito-frontal cortex, VP - ventral palladium,
MD - mediodorsal nucleus of the thalamus, VTA - ventral tegmental area, LH - lateral
hypothalamus, LHb - lateral habenula, DRN - dorsal raphé nucleus, 5-HT - serotonin,
DA - dopamine.
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The simulated agent moves continuously within the environment and is pro-
grammed with two basic behaviours. The first is simply to explore the environ-
ment in a random fashion, which is the default. The second is to approach one
of the markers if the learning model determines that it is appropriate for it to
do so. Approach behaviour is modelled on the action of a Braitenberg vehicle,
where the differential between two detectors controls the steering.

3 Model Description

3.1 Acquisition

Neuroplasticity, modulated by the action of phasic dopamine, in the NAc core is
primarily responsible for acquisition, where the simulated agent learns to asso-
ciate a marker with a reward. This is achieved by having separate core units for
the approach of each marker (Fig. 2). Inputs to the NAc core are represented as
coming from the dorsal medial prefrontal cortex (dmPFC) (Fig. 1B). They are
modelled as the lowpass filtered average of each of the agent’s sensor outputs
which provide distal signals indicating the distance to each marker (Fig. 1A).
This data provides a separate conditional stimulus (CS) input to each core unit
for each available environmental stimulus. Also feeding into each core unit is an
unconditional stimulus (US) for the activity of the unit (Fig. 2). A US signal is
activated when the agent enters the close proximity of a marker and simulates
a natural curiosity for the object (Fig. 1A). This reduces the initial time spent
exploring the environment when reward associations have yet to be made. In
contrast to the NAc core, the NAc shell receives sensory input from the OFC.
Phasic dopamine is also modelled as causing LTP in the OFC which leads to ac-
tivation of the NAc core inputs via the shell-VP-MD-dmPFC pathway (Fig. 1B)
in response to the appropriate distal signal.

Primary reward information is modelled as originating from the lateral hy-
pothalamus (LH) [2]. Simulated rewards lead to sudden bursts of VTA activity
leading to phasic dopamine activity (the LH and the VTA are shown near the
bottom of Fig. 1B). These are thought to cause to LTP in the NAc, strength-
ening stimulus/action associations [17]. The dopamine is modelled as providing
the third factor in ISO-3 learning [14] where synaptic weights associated with
each CS input active at the time of the burst are increased.

The output of each core unit is the sum of each weighted CS and the US.
Additionally, each core unit is allowed to laterally inhibit the other in order
to achieve a ‘winner takes all’ mechanism (Fig. 2). To select the action which
the agent engages, the outputs of each core unit are compared and the action
associated with the unit with the largest output is taken provided the output
is above a threshold. If all outputs are below this threshold, the agent simply
engages in exploratory behaviour.

Initially the learning weights will be zero meaning that the distal signals from
the environmental stimuli will be effectively ignored by the agent and it will
simply explore the environment in a random manner. When the agent nears one
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Behavior
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dmPFC

Fig. 2. Circuit diagram of the core unit which switches the approach behaviour for
the red marker. When the output is above the threshold, the agent approaches the
marker. The left side of the diagram shows the two conditional stimuli (RCS and BCS ,
related to the red and blue proximal inputs respectively) and single unconditional
stimulus (RUS) inputs along with the enabling input from the mediodorsal nucleus of
the thalamus (MD). The core uses the ISO-3 learning rule [14], where phasic dopamine
(DA) bursts are used as a third factor and the ρ variables represent the learning weights.
The bottom right shows the input from and output to the core unit used to switch the
approach behaviour for the blue marker. These connections enable the winner takes all
lateral inhibition mechanism, where λ is a fixed parameter controlling the gain. Similar
to the ‘red core,’ the ‘blue core’ has the same circuit, except that it receives the blue
US (RUS).

of the markers, the appropriate US input to the model is activated which in
turn pushes the output of the appropriate core unit above the threshold value,
causing the agent to make a decision to approach the marker. If the marker is
rewarded, contact with it will cause the LH to be activated which will cause a
burst of phasic dopamine to be released from the VTA. The synaptic weights
associated with the distal inputs to the model which are active at the time of
the dopamine burst are then strengthened. The agent is then returned to its
starting position.

Over the course of multiple contacts, the weights will increase until the activity
of the distal signal alone is enough to push the output of the core above the
threshold value. From then, the approach behaviour will be activated by sight
of the marker from progressively further distances until the approach behaviour
may be instigated from any point in the arena (from the first moment that the
marker activates the agent’s sensor).



A Computational Model of the Role of Serotonin in Reversal Learning 283

3.2 Extinction

Extinction, the inhibition of previously learned behaviour, is regulated by the
action of the neurotransmitter serotonin. Release of serotonin is modelled as
leading to LTD in the OFC. The subsequent lack of input to the NAc shell in-
fluences the NAc core through the ventral pallido-mediodorsal pathway, causing
the behavioural inhibition.

A signal which codes omission is created by comparing the activity in the
LH with the activity of neurons in the OFC which fire both in anticipation
of and during reward delivery [16]. The OFC exerts an excitatory influence on
the DRN while the LH exerts an inhibitory influence via the Lateral Habenula
(LHb) [1,18]. In response to an expected reward, the excitatory effect of the OFC
is cancelled by the inhibitory effect of the LH (Fig. 3). In the case of an omitted
reward, an increase in neuronal activity is seen due to the lack of LH activity
(Fig. 4). The connections are shown in the bottom half of Fig. 1B. Equation (13)
shows how DRN activity is calculated, this signal is then lowpass filtered to give
the serotonin release.
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Fig. 3. Stylised plots showing the response of the lateral hypothalamus (LH), the
orbito-frontal cortex (OFC) and the resulting response of the dorsal raphé nucleus
(DRN) to an expected reward

Behavioural inhibition results from a shutdown of NAc core inputs via the
shell-VP-MD-dmPFC pathway (Fig. 1B, equations (8), (9) and (10)). A key part
of this mechanism is the ventral palladium (VP) which receives a GABAergic,
inhibitory projection from the NAc shell [8]. Without input, the VP inhibits
the mediodorsal nucleus of the thalamus (MD) [21]. This circuitry is shown in
Fig. 1B. Without MD activity, dmPFC inputs to the NAc core are modelled to be
inactivated. Prior to the reversal, sensory stimulation from the rewarded marker
excites the OFC and, in turn, the NAc shell leading to activation of the dmPFC-
core pathway. As the reversal learning proceeds and LTD results in the OFC, the
dmPFC-core pathway becomes progressively less active in response to sensory
stimulation from the (now unrewarded) marker. This will continue until the agent
no longer approaches the marker and returns to exploring the environment for
new rewards, allowing new acquisition to begin when the rewarded marker is
discovered.
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Fig. 4. Stylised plots showing the response of the lateral hypothalamus (LH), the
orbito-frontal cortex (OFC) and the resulting response of the dorsal raphé nucleus
(DRN) to a reward omission

4 Results

Simulations were run comparing a 60% serotonin depleted version of the model
with the non-depleted model as a control. A total of fifty acquisition-reversal
runs were made for each. Figure 5 shows the total number of trials required to
reach the criterion of six consecutive correct trials for each stage of each run.
Figure 6 shows the mean number of trials to the criterion for each stage on each
version of the model. The depleted model takes an average of 125.8 trials to reach
the criterion, compared to 28.42 trial for the control. A Hotelling t2 test was run
on the two sets of reversal data, giving a p < 0.001. Thus, we have demonstrated
a model that, while acquisition is still achieved through the action of dopamine,
behavioural inhibition can be successfully modelled by introducing LTD in the
OFC in response to serotonin release after a reward omission.

5 Discussion

Standard models of learning and extinction are inspired by reinforcement learn-
ing theory where the neuromodulator dopamine causes weight growth and decay
during acquisition and extinction respectively [12,6]. However, this implies that
a similar rate to relearn the association is required when the rewarded stimu-
lus is reintroduced. While such a model is elegant in terms of the underlying
theory [19], experimental results show that reacquisition is much quicker than
the original acquisition [13,11]. In contrast to previous work we present a model
based on serotonergic action which inhibits actions rather than removing unnec-
essary learned behaviour so that, when contingencies change and the previously
irrelevant behaviour becomes useful again, it is no longer suppressed and can
very quickly be reinstated.

Central to our model is the interplay of the dopaminergic system with the
sertonergic system. This interplay is not completely symmetrical but differs in
terms of target areas. Dopamine activity is essential for mediating plasticity in
the NAc and has been implemented as an error signal in numerous computa-
tional models. In previous models [12,6], the error is calculated in the VTA and
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the run number for each trial, while the horizontal lines show the mean of the control
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Fig. 6. Mean number of trials taken to reach the criterion of each stage on each model.
*The result of a Hotelling t2 test on the two sets of reversal data gave p < 0.001.

delivered globally so that weights increase or decrease in an identical manner de-
pending on its value. As mentioned before this would imply that initial learning
and re-learning had the same learning speed. To avoid this problem we use only
the positive prediction error, namely dopamine elevation to drive LTP (with the
option to also to code motivation) in all target areas.

In contrast to dopamine, serotonin is responsible for LTD however not in all
target areas so that learned behaviour can be preserved but at the same time
suppressed. Serotonin causes LTD only in the OFC but not in the dmPFC or
NAc core.

The mechanism for suppression of behaviour in response to reward omission is
based on our ‘value control’ model [20]. Classical reinforcement learning consists
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of a critic and an actor. The critic usually causes changes in the actor by either
activating or removing actions. In our value control model, the critic does not
remove actions but rather suppresses them by a gating mechanism. Central to
the critic is the generation of the value of an action which we identify with the
NAc shell and OFC whereas the action system is represented by the dorsal parts
of the striatum starting from the NAc core to the basal ganglia. Here simply use
the NAc core for generating actions but the concept could be extended to the
basal ganglia, since this is also modulated by the same shell-VP-MD-dmPFC-
core pathway [21].

In our model we consider plasticity in the OFC, where neural activity is
correlated with choice activity [15]. An extended model would also consider the
role of the amygdala where activity also reflects contingencies [15] and which
has been modelled as interacting with the OFC [10]. Table 1 summarises the
functional regions of our system. The first column shows the regions in the limbic
system namely NAc core/dmPFC and NAc shell/OFC. The second column show
the corresponding computational roles namely action and value. The value is
then used to generate the prediction error by taking the positive part of its
derivative and the actor the enables actions. The last column then shows the
actions of dopamine and serotonin on the target structures. While dopamine
can cause LTP in all target areas, serotonin causes only LTD in the OFC.

Table 1. The action of dopamine and serotonin in different brain regions

Brain Region System DA 5HT

OFC/NAc shell value LTP LTD
dmPFC/NAc core action LTP –

6 Model Equations

The following equations show how the US and CS signals are defined from the
proximal and distal signals from the environment and how these are used to
define basic OFC functionality. fstimulus is lowpass filter tuned to remove sharp
transitions in the raw signals.

XUS = fstimulus(X-proximal) (1)

XCS =MD · fstimulus(X-distal) (2)

LH = fstimulus(reward) (3)

OFC-shellx = αx · fstimulus(X-distal) (4)

OFC-DRN = αred ·R3
US + αblueB

3
US (5)

The following equations define the activity of the other brain regions within the
model. The ρ and ω variables represent synaptic weights and are initially set
to zero. Set parameters are: ζ = 2, κ = 6.325, ν = 2.45, η = 0.1, ψ = 3, θMD =
2, λ = 0.5, o = 3.
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corered = RUS + (RCS · ρred,red) + (BCS · ρred,blue)− λ · coreblue (6)

coreblue = BUS + (RCS · ρblue,red) + (BCS · ρblue,blue)− λ · corered (7)

shell = LH +OFC-shellred +OFC-shellblue (8)

V P =
1

1 + ζ · shell (9)

MD = θMD(1− V P ) (10)

LHb = ψ · LH (11)

V TA =
κ · LH

1 + ν · V P + η · shell −
κ

1 + ν
(11)1

DRN =
o · OFC-DRN

1 + LHb
(12)

The next set of equations define the dopamine burst and serotonin signals. Set
parameters: χburst = 1, γ = −50. The depletion factor was 0.6 for the depleted
model and 1 otherwise. Finally, at the end of each time step within the simula-
tion the synaptic weights are updated according to the following equations. Set
parameters: μcore = 3, μOFC = 6,2ε = 1.3 ·10−2, limitcore = 0.85, limitOFC = 1.

DA-burst = χburst · (1 − eγ·V TA′′
) (13)

serotonin = depletion · fserotonin(DRN) (14)

ρx,x := ρx,x + μcore ·XCS · corex′ ·DA-burst · (limitcore − ρx,x) (15)

αx := αx + μOFC ·XUS ·XUS
′ ·DA-burst · (limitOFC − αx)

− ε ·XUS · serotonin (16)
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Abstract. The activity of dopaminergic (DA) neurons has been hypoth-
esized to encode a reward prediction error (RPE) which corresponds to
the error signal in Temporal Difference (TD) learning algorithms. This
hypothesis has been reinforced by numerous studies showing the rele-
vance of TD learning algorithms to describe the role of basal ganglia
in classical conditioning. However, recent recordings of DA neurons dur-
ing multi-choice tasks raised contradictory interpretations on whether
DA’s RPE signal is action dependent or not. Thus the precise TD algo-
rithm (i.e. Actor-Critic, Q-learning or SARSA) that best describes DA
signals remains unknown. Here we simulate and precisely analyze these
TD algorithms on a multi-choice task performed by rats. We find that
DA activity previously reported in this task is best fitted by a TD error
which has not fully converged, and which converged faster than observed
behavioral adaptation.

Keywords: dopamine, reinforcement learning, reward prediction error,
behavioral adaptation, instrumental conditioning.

1 Introduction

The work of Wolfram Schultz and colleagues during the 90s has highlighted
the link between the information carried by the activity of dopaminergic (DA)
neurons and the error signal computed by Temporal Difference (TD) learning
algorithms [1,2,3]. However, most experiments involved Pavlovian conditioning,
where the animal remains passive during the 2 seconds delay between the stim-
ulus and the reward. In contrast, several different TD learning algorithms have
been proposed with a different way of encoding the choice of actions (i.e. Actor-
Critic, Q-learning, SARSA) and which cannot be discriminated based on these
data [4].

More recent studies have focused on DA activity during multi-choice tasks,
where animals learn to perform the right actions in order to obtain reward
[5,6]. This enables to investigate whether the RPE signal in DA neurons is
action-dependent or only depends on the conditioned stimuli. With these recent
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protocols, one can compare the ability of different TD learning algorithms to
reproduce the activity patterns of DA neurons. However, these studies convey
contradictory conclusions.

In [5], monkeys had to choose among two conditioned stimuli presented on
a screen, each stimulus being associated to reward with a different probability.
This time, the RPE carried by recorded DA neurons appeared to depend on the
action the animal would subsequently perform. This RPE signal appeared to be
consistent with the SARSA algorithm.

In [6], rats had to choose between two wells delivering two different rewards
(large versus small reward; or delayed versus immediate reward). In each trial,
an odor (conditioned stimulus) was presented, carrying the information enabling
to identify which reward was available in each well. The progressive learning
of stimulus-reward associations and changes in these associations enabled to
analyze the type of RPE that was encoded by DA neurons during the task. The
authors found that DA neurons are encoding an error depending on the value of
the current best option, not matter whether the rat would subsequently perform
that option or select the wrong option. Such type of RPE is compatible with the
Q-learning algorithm.

Thus, the conclusions of both studies are inconsistent. But none of them did
attempt to compare DA activity with empirical simulations of the algorithms.
Here, we simulate diverse basic TD learning algorithms in order to determine
which of them best reproduces the results obtained by [6]. We first describe the
model used to simulate the multi-choice task studied in [6] and the TD learning
algorithms. Then we focus on reproducing the behavioral data and the dopamine
activity depending on the meta-parameters of the algorithms.

2 Material and Methods: Computational Model

In this section, we first describe the computational model used to simulate the
task of [6]. Then we present the three TD learning algorithms introduced in [4].

2.1 Modelling the Blocks

We have modelled the experiments of [6] with a Markov Decision Process (MDP)
(see Fig.1): in a given block of trials one well (right or left) delivers the best
reward, the other contains the worst one (big vs small in the size condition;
immediate versus delayed in the delay condition). After nosepoking, the animal
receives one of three odors: odor 1 informs it that only the left well delivers
reward; with odor 2 only the right well is rewarding; odor 3 indicates a free-
choice trial where the animal is rewarded everywhere but needs to find the best
reward.

At each block change, there is a shift in the well that delivers the best reward
and the animal learns the new place-reward association. In this work, we only
present simulations of free-choice trials (where odor 3 is presented) which are
crucial to discriminate between the competing algorithms.
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Fig. 1. Modelling the state of the task used in [6]. Left: Markov Decision Process used
to model the task; RL31, Reward Left following odor 3; RR31, Reward Right following
odor 3. The other states represent the delay. Right: State decomposition illustrated on
DA activity reported by Roesch. We use the RPE calculated by the different algorithms
at the three different states : ’nosepoke’, ’odor3’ and ’RL31’ or ’RR31’ (depending on
the choice of the algorithm) to fit the DA activity extracted from the right graph.

The DA activity in Fig. 1 Right was obtained in this task by averaging the
DA activity over all trials once the performance of rats went above 50%. The
high response to the odor cue, independent from the future choice, is interpreted
by the authors as consistent with a TD error calculated by Q-learning [6].
However, since the behavioral performance converge quickly, the RPE should
also have converged towards 0 at the time of the reward, as observed in Schultz’s
work [1]. This is not the case of this DA activity. It rather looks like an error that
has not converged yet. Thus we simulate here the three concurrent TD-learning
algorithms to empirically evaluate the nature of the RPE signal encoded by this
DA activity.

2.2 Studied Algorithms

Our study of the performance of all algorithms is focused on the match between
the evolution of the TD error and the DA activity. We compare three algorithms:
Q-learning, Sarsa and Actor-Critic. Q-learning and Sarsa are based
on the same principles. They update for each (s, a) pair a Q-table that stores
the utility expectation for performing action a in state s. The Actor-Critic
architecture contains a critic, i.e. a model of the value function V that stores the
utility expectation from each state s, and an actor, the policy P which associates
to any (s, a) pair the probability of choosing action a in state s (i.e. P (a|s)).

These value functions are updated from the TD error δ using ∀fε{Q, V, P}
ft+1 = ft + αδt. But the computation of the TD error differs depending on the
algorithm. The update rule is:



292 J. Bellot, O. Sigaud, and M. Khamassi

– Q-learning: δt = rt+1 + γmax
a

(Q(st+1, a))−Q(st, at)

– Sarsa: δt = rt+1 + γQ(st+1, at+1)−Q(st, at)
– Actor-Critic: δt = rt+1 + γV (st+1)− V (st)

For action selection, we use a softMax policy which chooses an action with a

probability proportional to the value of this action: P (a|st) = exp(βQ(st,a))∑

b

exp(βQ(st,b))
.

3 Reproduction of Behavioral Results

With the model described above we first fit the behavioral data from [6] to
determine which set of parameters can better reproduce the learning dynamics
of the rats.

3.1 Methods

In order to reproduce the behavioral results of [6], the simulated agent learns
during 30 trials of a block where the best reward is on the left (block 1 or 4)
using the above algorithms. From these trials, the agent learns the block (it
goes more often to the best reward). After this initial learning stage, a block
change occurs where the side of the best reward is reversed (right instead of
left). The behavior of the agent is compared to that of the animals from 15 trials
before the block change to 30 trials after. The performance is computed as the
number of left choices. It is averaged over 100 simulated agents.We test different
meta-parameter sets of the algorithms:

– max iter: 100
– α: from 0.1 to 0.9 with 0.1 steps,
– β: from 0.1 to 0.9 with 0.1 steps,
– γ: ε[0.6, 0.7, 0.8, 0.9].
– After empirical tuning, we set the reward value to 5.

The obtained results are compared to those of [6] (see Fig. 2) by minimizing the
squared error between a set of points over the curves. The points are extracted
from the curves of [6] in the size case and the delay case. Then we look for the
set of meta-parameters that optimize the match in both cases (see Fig. 2 for the
delay case).

3.2 Results

Figure 2 Left shows the reproduction of the behavior with Q-learning, Sarsa
and Actor-Critic. We obtain the following optimal meta-parameter sets for
the different algorithms:

– Q-learning: α = 0.3, β = 0.3, γ = 0.7
– Sarsa: α = 0.3, β = 0.3, γ = 0.7
– Actor-Critic: α = 0.7, β = 0.8, γ = 0.7
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Fig. 2. Reproducing the behavior of the rat for the delay case withQ-learning, Sarsa
and Actor-Critic. Left: reproduction of the behavior using the parameters obtained
from the best fit with the behavioral data of Roesch et al. Right: squared error as a
function of α, β and γ illustrated for the case of Q-learning.

Figure 2 Right shows the squared error as a function of α, β and γ for the
delay case (size case not shown). One can see that Qlearning and Sarsa show a
similar sensitivity to the parameters. The error is lower for α and β close to 0.3.
Actor-Critic requires a larger α and β. As can be seen on Fig 2 , the smallest
error for Actor-Critic is obtained for a β value near the tested limit (0.9).
Thus we additionally test higher β values for Actor-Critic (1, 1.5 and 2). This
does not change the results: the same parameter set enables the Actor-Critic
model to give the best compromise between fitting the behavior during the delay
condition and fitting the behavior during the size condition (α = 0.7, β = 0.8
and γ = 0.7).

4 Comparing DA Activity with TD Error

In this section, we describe how we compare the DA activity to the TD error
depending on the algorithms’ meta-parameters.

4.1 Methods

Based on the parameters obtained from the behavioral results, we then investi-
gate whether the TD error computed in simulation can match the DA activity
observed in rats. The idea is that, if DA activity reflects the RPE signal of
the learning algorithm by which rats learn the task, algorithms tuned to fit
the behavior should display the same pattern of activity as responses of DA
neurons.

Thus we compare the reported DA activity with the TD error computed by
the different algorithms. We fit three states of our MDP with three points of
the experimental curve (see Fig. 1 Right), corresponding to moments where the
rat: (1) touches the port, nosepokes ; (2) receives an odor, odor ; (3) receives the
reward, reward.
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The DA activity and the TD error do not share a common scale. Thus, we
minimize with least square the difference ||(aδs + b) − Rs||2 where Rs is the
experimental DA activity in state s and δs is the average TD error computed
in s over the different trials. Thus we have: δs = 1

nΣ
n
e=0δs(e), where n is the

number of considered trials and δs(e) is the TD error computed from the eth

trial in s. The (a, b) pair is determined with the least square method.

4.2 Results

The curves in [6] are obtained by averaging the DA activity over all trials once
the performance of rats is over 50%. In the delay case, this happens after the
fifth trial after the block changed (see Fig. 2 Left). The TD error should have
converged towards 0 over learning. This is not the case of the DA activity in
[6]. It rather looks like an error that has not converged yet because the reported
response of DA neurons to rewards does not vanish with learning. Thus we look
for a temporal window where the TD error may behave like the DA activity
recorded in [6]. More precisely, we vary the number of trials considered in our
average on δs so as to match the DA activity as well as we can. Fig. 3 Left shows
the squared error as a function of this number of trials with Q-learning.

Fig. 3. Left: Evolution of the error obtained when fitting DA activity with the TD
error in function of the number of trials taken into account in the calculation of the
averaged RPE. Right: Best fit of the DA activity recorded in [6] during the delay case,
from the TD error computed with the Q-learning algorithm and averaged over the
first 9 trials (minimizing the error as shown in Left).

The results are consistent with the conclusions of [6], since they show that, in
the delay case, Q-learning is the algorithm that best matches the DA activity.
However, this is the case only if we just consider the 9 first trials after the
performance got over 50%. When we take all the 20 free-choice trials used in [6],
the error is much larger. The same applies to Sarsa. But Sarsa has different
errors for the two odors, which is not observed in DA activity.

In the Actor-Critic case, the high fitting error is mainly due to the mis-
match at the nosepoke state. Like other algorithms, the Actor-Critic’s RPE
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signal which best fits DA activity is produced by a learning process that has
already converged (even more strongly converged due to the high α, see Fig. 2).
Thus the RPE signal is almost flat and requires a high amplification factor a
to be compared to DA activity. This high a amplifies the noise at the nosepoke
state.

In Table 1, we report the error of each algorithm as well as the optimal number
of trials n to be considered when computing the average TD error. In the size
case, none of the algorithms obtains a low error. Thus this case is reproduced
worse than the delay case.

Table 1. Squared error (e2) and percentage of error (e%) obtained with the different
algorithms with respect to the value in [6]. This latter value is computed as e% =
1
n
Σi

|di−si|
di

where di is the value on [6]’s curve at instant i, si is the value obtained in
simulation and n is the number of points.

size delay

Algorithm n e2 e% n e2 e%

Qlearning 4 8.2 14.6% 9 3.8 10.7%

Sarsa 3 8.2 14.5% 3 9 16.9%

Actor-Critic 1 10.1 15.5% 41 8.3 16%

In summary, the results show that although Q-learning obtains better re-
sults, as expected by [6], the three algorithms, when fitted on the rat’s behavior,
have too much converged to reproduce the observed pattern of responses of DA
neurons. This suggests that the rate with which behavior is adapted may be
different from the rate with which the RPE signal encoded by DA neurons is
learned, as if their responses were not tightly linked to the behavior. To as-
sess this simple interpretation, we next test the algorithms after releasing the
constraint on the fit with the behavior.

4.3 Optimization of Parameters over DA Activity Only

So far, we have used the same parameters for reproducing behavioral results
and DA activity, considering that the behavior of the rat was directly driven
by the TD error. This assumption was consistent with other studies in the lit-
erature [7,8]. Nevertheless, from Fig. 2, it is clear that the DA activity cannot
be fitted with a TD error that has converged, whereas the behavior itself has
converged.

In order to test the assumption that DA activity may reflect a learning dy-
namics slower than the one reflected in behavior, we now fit this activity with
the model without constraining the meta-parameters on the behavioral data.
However, we restrict the matching process to the trials where the behavior of
the rat is above 50% of correct choice. Thus we cannot avoid at least a minor
influence of the behavior in this fitting process.
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Fig. 4. Squared error as a function of the number of trials, between the DA activity
from [6] and the TD error computed from different algorithms with free parameters.
Left: Q-learning, Middle: Sarsa, Right: Actor-Critic.

Under this new condition, we obtain a better fit than previously (see Fig.4).
These results show a large difference between the algorithms, in terms of their
capability to reproduce the DA activity as a function of the parameters. As
previously, Q-learning can fit DA data. Sarsa cannot do so as well as Q-
learning. Finally, Actor-Critic obtains a better performance than for pre-
vious results, performing comparably with Q-learning. Indeed, if we only
consider the 20 first trials (corresponding to the number of free-choice used
in [6]), then the error and the corresponding meta-parameters are given in
Table 2.

Table 2. Meta-parameters when fitting only with DA activity

Qlearning Sarsa Actor-Critic

α β γ error α β γ error α β γ error

size 0.8 0.9 0.6 7.2 0.1 0.1 0.9 8.1 0.2 0.9 0.7 9.6

delay 0.1 0.6 0.9 2.0 0.1 0.5 0.9 9.5 0.1 0.1 0.9 3.4

Globally, one can see that to get a minimal error with respect to DA activity
with the three algorithms in this task, the meta-parameters have to differ from
the ones used to match behavioral results. In particular, the learning rate must
be lower so that the value does not converge too quickly. One can conclude that
the DA activity is compatible with a TD error computed by Q-learning or
Actor-Critic in the delay case. Sarsa is a much less likely candidate algorithm
with these data. In the size case, the three algorithms still cannot reproduce DA
activity satisfyingly (see Table 2) which are discussed below.

5 Discussion

In this work, we have tried to fit DA activity observed during a multi-choice
task with various RL algorithms. The starting hypothesis, initially resulting
from DA recordings in passive monkeys, was that the response of these neurons
would encode an RPE similar to the error signal used in RL [1].
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Here we studied the link between the information carried by DA neurons
recorded by [6] and the error computed by Q-learning, Sarsa and Actor-
Critic algorithms in a task where animals are to perform active action selection.
We found that none of these algorithms could satisfyingly reproduce the observed
patterns of responses when keeping the behavioral parameters. However, when
the learning rate of behavioral adaptation and the learning rate of the adap-
tation of the expected value were dissociated, we found that Q-learning and
Actor-Critic could both reproduce DA activity during the delay condition
while Sarsa could not.

The size condition remains problematic because after a block change, DA
activity reported by [6] does not reflect the reversal of the contingencies: instead
of displaying a negative RPE when the reward is worst than previously expected,
the response of DA neurons to the small reward remains high. This pattern
prevents the standard RL algorithms from reproducing neural activity.

Another important issue is the global increase of DA activity along the trial,
getting higher when time gets close to reward delivery (see Fig. 6 in [6]). At first
glance, this could look like a learned value function instead of an RPE. This
possible confusion between value and RPE is reflected by the frequent usage of
the term ”value” instead of ”RPE” in the original article [6]. It could be inter-
esting to see whether the simulated value function of the tested algorithm can
contribute to the reproduction of DA activity in this task. However, this would
be inconsistent with the now well established theory that the phasic responses
of DA neurons encode an RPE [1,9,10,11,12,13].

The alternative interpretation that we propose and whose plausibility is con-
firmed by our empirical simulations is that the DA signal recorded by [6] may
correspond to an RPE that has not yet fully converged while the animals behav-
ior has already converged. In our simulations, Q-learning and Actor-Critic
algorithms could fit DA activity during the delay condition when the simulated
error signal was averaged only during early learning trials. The fact that we can-
not fit DA activity when considering all post-learning trials seems to reveal that
the observed choice behavior of the animal has a different dynamics of adapta-
tion than the learning process encoded by DA neurons. First, this suggests that
instead of only reporting the averaged post learning DA activity, showing the
trial-by-trial evolution of DA’s response accross learning may be more informa-
tive, and may lead to different conclusions on which algorithm among Actor-
Critic, Q-learning and SARSA best describes the activity. Second, this suggests
that the observed behavior is not the direct consequence of a unique learning
system that we suppose relies on the recorded DA activity. This could indicate
the presence of a second parallel decision system which speeds up the behavioral
adaptation: the behavior would result from the influence of a cortically-driven
fast learning process while the slower habitual learning subserved via DA neu-
rons in the striatum would take more time to converge. This idea would be
consistent with the proposal of dual decision-making systems subserving paral-
lel learning processes for goal-directed behaviors and habits in mammals [8,14]:
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a fast model-based RL system combined with a slower model-free system such
as TD-learning algorithms studied here.

In future work, it would be interesting to test the ability of such dual system
model to explain both behavioral adaptation and DA activity reported in [6]. A
simpler alternative explanation that we could compare would be that the Actor
and the Critic underlying behavioral adaptation in this task may have different
learning rates.
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in a Reinforcement Learning Robot
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Abstract. The term “nexting” has been used by psychologists to refer
to the propensity of people and many other animals to continually pre-
dict what will happen next in an immediate, local, and personal sense.
The ability to “next” constitutes a basic kind of awareness and knowl-
edge of one’s environment. In this paper we present results with a robot
that learns to next in real time, predicting thousands of features of the
world’s state, including all sensory inputs, at timescales from 0.1 to 8 sec-
onds. This was achieved by treating each state feature as a reward-like
target and applying temporal-difference methods to learn a correspond-
ing value function with a discount rate corresponding to the timescale.
We show that two thousand predictions, each dependent on six thousand
state features, can be learned and updated online at better than 10Hz
on a laptop computer, using the standard TD(λ) algorithm with linear
function approximation. We show that this approach is efficient enough
to be practical, with most of the learning complete within 30 minutes. We
also show that a single tile-coded feature representation suffices to accu-
rately predict many different signals at a significant range of timescales.
Finally, we show that the accuracy of our learned predictions compares
favorably with the optimal off-line solution.

1 Multi-timescale Nexting

Psychologists have noted that people and other animals seem to continually
make large numbers of short-term predictions about their sensory input (e.g.,
see Gilbert 2006, Brogden 1939, Pezzulo 2008, Carlsson et al. 2000). When we
hear a melody we predict what the next note will be or when the next downbeat
will occur, and are surprised and interested (or annoyed) when our predictions
are disconfirmed (Huron 2006, Levitin 2006). When we see a bird in flight, hear
our own footsteps, or handle an object, we continually make and confirm multiple
predictions about our sensory input. When we ride a bike, ski, or rollerblade, we
have finely tuned moment-by-moment predictions of whether we will fall, and of
how our trajectory will change in a turn. In all these examples, we continually
predict what will happen to us next. Making predictions of this simple, personal,
short-term kind has been called nexting (Gilbert, 2006).

Nexting predictions are specific to one individual and to their personal, im-
mediate sensory signals or state variables. A special name for these predictions
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seems appropriate because they are unlike predictions of the stock market, of
political events, or of fashion trends. Predictions of such public events seem to
involve more cognition and deliberation, and are fewer in number. In nexting
we envision that one individual may be continually making massive numbers of
small predictions in parallel. Moreover, nexting predictions seem to be made si-
multaneously at multiple time scales. When we read, for example, it seems likely
that we next at the letter, word, and sentence levels, each involving substantially
different time scales.

The ability to predict and anticipate has often been proposed as a key part of
intelligence (e.g., see Tolman 1951, Hawkins & Blakeslee 2004, Butz et al. 2003,
Wolpert et al. 1995, Clark in press). Nexting can be seen as the most basic kind
of prediction, preceding and possibly underlying all the others. That people and
a wide variety of animals learn and make simple predictions at a range of short
time scales in conditioning experiments was established so long ago that it is
known as classical conditioning (Pavlov 1927). Predictions of upcoming shock
to a paw may reveal themselves in limb-retraction attempts a fraction of a second
before the shock, and as increases in heart rate 30 seconds prior. In other ex-
periments, for example those known as sensory preconditioning (Brogden 1939,
Rescorla 1980), it has been clearly shown that animals learn predictive relation-
ships between stimuli even when none of them are inherently good or bad (like
food and shock) or connected to an innate response. In this case the predictions
are made, but not expressed in behaviour until some later experimental manip-
ulation connects them to a response. Animals seem to just be wired to learn the
many predictive relationships in their world.

To be able to next is to have a basic kind of knowledge about how the world
works in interaction with one’s body. It is to have a limited form of forward model
of the world’s dynamics. To be able to learn to next—to notice any disconfirmed
predictions and continually adjust your nexting—is to be aware of one’s world
in a significant way. Thus, to build a robot that can do both of these things is a
natural goal for artificial intelligence. Prior attempts to achieve artificial nexting
can be grouped in two approaches.

The first approach is to build amyopic forward model of the world’s dynamics,
either in terms of differential equations or state-transition probabilities (e.g.,
Wolpert et al. 1995, Grush 2004, Sutton 1990). In this approach a small number
of carefully chosen predictions are made of selected state variables with a public
meaning. The model is myopic in that the predictions are only short term, either
infinitesimally short in the case of differential equations, or maximally short
in the case of the one-step predictions of Markov models. In these ways, this
approach has ended up in practice being very different from nexting.

The second approach, which we follow here, is to use temporal-difference (TD)
methods to learn long-term predictions directly. The prior work pursuing this
approach has almost all been in simulation, and has used table-lookup represen-
tations and a small number of predictions (e.g., Sutton 1995, Kaelbling 1993,
Singh 1992, Sutton, Precup & Singh 1999, Dayan and Hinton 1993). Sutton et
al. (2011) showed real-time learning of TD predictions on a robot, but did not
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demonstrate the ability to learn many predictions in real time or with a single
feature representation.

2 Nexting as Multiple Value Functions

We take a reinforcement-learning approach to achieving nexting. In reinforce-
ment learning it is commonplace to learn long-term predictions of reward, called
value functions, and to learn these using temporal-difference (TD) methods such
as TD(λ) (Sutton 1988). However, TD(λ) has also been used as a model of clas-
sical conditioning, where the predictions are shorter term and where more than
one signal might be viewed as a reward (Sutton & Barto, 1990). Our approach to
nexting can be seen as taking this latter approach to the extreme of predicting
massive numbers of target signals of all kinds at multiple time scales.

We use a notation for our multiple predictions that mirrors—or rather
multiplies—that used for conventional value functions. Time is taken to be dis-
crete, t = 1, 2, 3, . . ., with each time step corresponding to approximately 0.1
seconds of real time. Our ith prediction at time t, denoted vit, is meant to antic-
ipate the future values of the ith prediction’s target signal, rit, over a designated
time scale given by the discount-rate parameter γi. In our experiments, the
target signal rit was either a raw sensory signal or else a component of a state-
feature vector (that we will introduce shortly), and the discount-rate parameter
was one of four fixed values. The goal of learning is for each prediction to ap-
proximately equal the correspondingly discounted sum of the future values of
the corresponding target signal:

vit ≈
∞∑
k=0

(γi)krit+k+1
def
= Gi

t. (1)

The random quantity Gi
t is known as the return.

We use linear function approximation to form each prediction. That is, we
assume that the state of the world at time t is characterized by the feature
vector φt ∈ R

n, and that all the predictions vit are formed as inner products of
φt with the corresponding weight vectors θit:

vit = φ�t θ
i
t

def
=

∑
j

φt(j)θ
i
t(j), (2)

where φ�t denotes the transpose of φt (all vectors are column vectors unless
transposed) and φt(j) denotes its jth component. The predictions at each time
are thus determined by the weight vectors θit. One natural algorithm for learning
the weight vectors is linear TD(λ):

θit+1 = θit + α
(
rit+1 + γiφ�t+1θ

i
t − φ�t θ

i
t

)
eit (3)

where α > 0 is a step-size parameter and eit ∈ R
n is an eligibility trace vector,

initially set to zero and then updated on each step by

eit = γiλeit−1 + φt, (4)

where λ ∈ [0, 1] is a trace-decay parameter.
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Under common assumptions and a decreasing step-size parameter, TD(λ) with
λ = 1 converges asymptotically to the weight vector that minimizes the mean
squared error between the prediction and its return. In practice, smaller values
of λ ∈ [0, 1) are almost always used because they can result in significantly faster
learning (e.g., see Sutton & Barto 1998), but the λ = 1 case still provides an
important theoretical touchstone. In this case we can define an optimal weight
value θi∗ that minimizes the squared error from the return over the first N
predictions:

θi∗ = argmin
θ

N∑
t=1

(
φ�t θ −Gi

t

)2
. (5)

This value can be computed offline by standard algorithms for solving large least-
squares regression problems, and the performance of this offline-optimal value
can be compared with that of the weight vectors found online by TD(λ). The
offline algorithm is O(n3) in computation and O(n2) in memory, and thus is just
barely tractable for the cases we consider here, in which n = 6065. Nevertheless,
θi∗ provides an important performance standard in that it provides an upper
limit on one measure of the quality of the predictions found by learning. This
upper limit is determined not by any learning algorithm, but by the feature
representation. As we will see, even the predictions due to θi∗ will have residual
error. Thus, this analysis provides a method for determining when performance
can be improved with more experience and when performance improvements
require a better representation. Note that this technique is applicable even when
experience is gathered from the physical world, where no formal notion of state
is available.

3 Experimental Setup

We investigated the practicality of nexting on the Critterbot, a custom-designed
robust and sensor-rich mobile robot platform (Figure 1, left). The robot has a
diverse set of sensors and has holonomic motion provided by three omni-wheels.
Sensors attached to the motors report the electrical current, the input motor
voltage, motor temperature, wheel rotational velocities, and an overheating flag,
providing substantial observability of the internal physical state of the robot.
Other sensors collect information from the external environment. Passive sen-
sors detect ambient light in several directions from the top of the robot in the
visible and infrared spectrum. Active sensors emit infrared light and measure
the reflectance, providing information about the distance to nearby obstacles.
Other sensors report acceleration, rotation, and the magnetic field. In total, we
consider 53 different sensor readings, all normalized to values between 0 and 1
based on sensor limits.

For our experiments, the agent’s state representation was a binary vector,
φt ∈ {0, 1}n, with a constant number of 1 features, constructed by tile coding
(see Sutton & Barto 1998). The features provided no history and performed no
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Fig. 1. Left: The Critterbot, a custom mobile robot with multiple sensors. Right: The
Critterbot gathering experience while wall-following in its pen. This experience contains
observations of both stochastic events (such as ambient light variations from the sun)
and regular events (such as passing a lamp on the lower-left side of the pen).

averaging of sensor values. The sensory signals were partitioned based on sensor
modalities. Within each sensor modality, each individual sensor (e.g., Light0) has
multiple overlapping tilings at random offsets (up to 8 tilings), where each tiling
splits the sensor range into disjoint intervals of fixed width (up to 8 intervals).
Additionally, pairs of sensors within a sensor modality were tiled together using
multiple two-dimensional overlapping grids. Pairs of sensors were jointly tiled if
they were spatially adjacent on the robot (e.g., IRLight0 with IRLight1) or if
there was a single sensor in between them (e.g., IRDistance1 with IRDistance3,
IRDistance2 with IRDistance4, etc.). All in all, this tiling scheme produced a
feature vector with n = 6065 components, most of which were 0s, but exactly
457 of which were 1s, including one bias feature that was always 1.

The robot experiment was conducted in a square wooden pen, approximately
two meters on a side, with a lamp on one edge (see Figure 1). The robot’s
actions were selected according to a fixed stochastic wall-following policy. This
policy moved forward by default, slid left or right to keep a side IRDistance
sensor within a bounded range (50-200), and drove backward while turning when
the front IRDistance sensor reported a nearby obstacle. The robot completed
a loop of the pen approximately once every 40 seconds. Due to overheating
protection, the motors would stop to cool down at approximately 14 minute
intervals. To increase the diversity of the data, the policy selected an action at
random with a probability p = 0.05. At every time step (approximately 100ms),
sensory data was gathered and an action performed. This simple policy was
sufficient for the robot to reliably follow the wall for hours, even with overheating
interruptions.

The wall-following policy, tile-coding, and the TD(λ) learning algorithm were
all implemented in Java and run on a laptop connected to the robot by a dedi-
cated wireless link. The laptop used an Intel Core 2 Duo processor with a 2.4GHz
clock cycle, 3MB of shared L3 cache, and 4GB DDR3 RAM. The system garbage
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collector was called on every time step to reduce variability. Four threads were
used for the learning code. For offline analysis, data was also logged to disk for
120000 time steps (3 hours and 20 minutes).

4 Results

We applied TD(λ) to learn 2160 predictions in parallel. The first 212 predictions
had the target signal, rit, set to the sensor reading of one of the 53 sensors and the
discount rate, γi, set to one of four timescales; the remaining 1948 predictions
had the target signal set to one of 487 randomly selected components of the
feature vector and the discount rate set to one of four timescales. The discount
rates were one of the four values in {0, 0.8, 0.95, 0.9875}, corresponding to time
scales of approximately 0.1, 0.5, 2, and 8 seconds respectively. The learning
parameters were λ = 0.9 and α = 0.1/457(= # of active features). The initial
weight vector was set to zero.

Our initial performance question was scalability, in particular, whether so
many predictions could be made and learned in real time. We found that the
total computation time for a cycle under our conditions was 55ms, well within the
100ms duty cycle of the robot. The total memory consumption was 400MB. Note
that with faster computers the number of predictions or the size of the weight
and feature vectors could be increased at least proportionally. This strategy
for nexting should be easily scalable to millions of predictions with foreseeable
increases in parallel computing power over the next decade.
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Fig. 2. Nexting is demonstrated in these graphs with predictions that rise and fall prior
to the increase and decrease of a sensory signal. Comparison of ideal (left) and learned
(right) predictions of one of the light sensors for three trips around the pen after 2.5
hours of experience. On each trip, the sensor value saturates at 1.0. The returns for
the 2 and 8-second predictions, shown on the left, rise in anticipation of the high value,
and then fall in anticipation of the low value. The 8-second predictions in the second
panel of the offline-optimal weights (dotted blue line) and the TD(λ)-learned weights
(solid red line) behave similarly both to each other and to the returns (albeit with
more noise).
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For an initial assesment of accuracy, let us take a close look at one of the
predictions, in particular, at the prediction for one of the light sensors. Notice
that there is a bright lamp in the lower left corner of the pen in Figure 1 (right).
On each trip around the pen, the light sensor increases to its maximal level and
then falls back to a low level, as shown by the black line in Figure 2. If the state
features are sufficiently informative, then the robot may be able to anticipate
the rising and falling of this sensor value. The ideal prediction is the return Gi

t,
shown on the left in the colored lines in Figure 2 for two time scales (two seconds
and eight seconds). Of course, to determine these lines, we had to use the future
values of the light sensor; the idea here is to approximate these ideal predictions
(as in Equation 5) using only the sensory information available to the robot in its
feature vector. The second panel of the figure shows the predictions due to the
weight vector adapted online by TD(λ) and due to the optimal weight vector,
θi∗, computed offline (both for the 8-second time scale). The key result is that
the robot has learned to anticipate both the rise and fall of the light. Both the
learned prediction and the optimal offline prediction match the return closely,
though with substantial noisy perturbations.
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Fig. 3. An average of 100 cycles like the
three shown in Figure 2 (right panel),
aligned on the onset of sensor saturation.
Error bars are slightly wider than the lines
themselves and overlap substantially, so are
omitted for clarity

Figure 3 is a still closer look at
this same prediction, obtained by av-
eraging over 100 circuits around the
pen, aligning each circuit’s data so
that the time of initial saturation of
the light sensor is the same. We can
now see very clearly how the pre-
dictions and returns anticipate both
the rise and fall of the sensor value,
and that both the TD(λ) prediction
and the optimal prediction, when av-
eraged, closely match the return.

Having demonstrated that accurate
prediction is possible, we now consider
the rate of learning in Figure 4. The
graphs shows that learning is fast in
terms of data (despite the large num-
ber of features), converging to solu-
tions with low error in the familiar exponential way. This result is important as
is demonstrates that learning online in real time is possible on robots with a few
hours of experience, even with a large distributed representation. For contrast,
we also show the learning curve for a trivial representation consisting only of a
bias unit (the single feature that is always 1). The comparison serves to high-
light that large informative feature sets are beneficial. The comparison to the
predictive performance of the offline-optimal solution shows a vanishing perfor-
mance gap by the end of the experiment. The second panel of the figure shows
a similar pattern of decreasing errors for a sample of the 2160 TD(λ) predic-
tions, showing that learning many predictions in parallel yields similar results.



306 J. Modayil, A. White, and R.S. Sutton

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 30 60 90 120 150 180

N
or

m
al

iz
ed

 R
M

SE

Minutes

Bias
TD(λ)

Offline optimal TD(1)

TD(0)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 30 60 90 120 150 180

N
or

m
al

iz
ed

 R
M

SE

Minutes

Tile 73 (IRDistance) Gamma=0.9875
Tile 2590 (IRLight) Gamma=0.9875

Tile 5356 (MotorSpeed) Gamma=0.9875
MotorSpeed0 Gamma = 0.0
MotorSpeed0 Gamma = 0.8

MotorSpeed0 Gamma = 0.95
MotorSpeed0 Gamma = 0.9875

Light3 Gamma = 0.0
Light3 Gamma = 0.8

Light3 Gamma = 0.95
Light3 Gamma = 0.9857

MagX Gamma = 0.0
MagX Gamma = 0.8

MagX Gamma = 0.95
MagX Gamma = 0.9857

IRDistance0 Gamma = 0.0
IRDistance0 Gamma = 0.8

IRDistance0 Gamma = 0.95
IRDistance0 Gamma = 0.9875

MotorTemperature0 Gamma = 0.0
MotorTemperature0 Gamma = 0.8

MotorTemperature0 Gamma = 0.95
MotorTemperature0 Gamma = 0.9875

IRDistance[5] Gamma=0.9875
MotorCurrent[0] Gamma=0.9875

Minutes

N
or

m
al

iz
ed

 R
M

SE

0                30               60               90              120             150             180

1

0.8

0.6

0.4

0.2

0

Fig. 4. Nexting learning curves for the 8-second light sensor predictions (left) and for
a representative sample of the TD(λ) predictions (right). Predictions at different time
scales have had their root mean squared error (RMSE) normalized by 1

1−γi . The graph
on the left is a comparison of different learning algorithms. The jog in the middle of
the first graph occurs when the robot stops by the light to cool off its motors, causing
the online learners to start making poor predictions. In spite of the unusual event, the
TD(λ) solution still approaches the offline-optimal solution. TD(λ) performs similarly
to a supervised learner TD(1), and they both slightly outperform TD(0). The curve
for the bias unit shows the poor performance of a learner with a trivial representation.
The graph on the right shows that seemingly all the TD(λ) predictions are learning
well with a single feature representation and a single set of learning parameters.

A noteworthy result is that the same learning parameters and representation
suffice for learning answers to a wide variety of nexting predictions without any
convergence problems. Although the answers continue to improve over time, the
most dramatic gains were achieved after 30 minutes of real time.

5 Discussion

These results provide evidence that online learning of thousands of nexting pre-
dictions on a robot in parallel is possible, practical, and accurate. Moreover, the
predictive accuracy is reasonable with just a few hours of robot experience, no
tuning of algorithm parameters, and using a single feature representation for all
predictions. The parallel scalability of knowledge-acquisition in this approach
is substantially novel when compared with the predominately sequential exist-
ing approaches common for robot learning. These results also show that online
methods can be competitive in accuracy with an offline optimization of mean
squared error.

The ease with which a simple reinforcement learning algorithm enables nex-
ting on a robot is somewhat surprising. Although the formal theories of re-
inforcement learning sometimes give mathematical guarantees of convergence,
there is little guidance for the choice of features for a task, for selecting learn-
ing parameters across a range of tasks, or for how much experience is required
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before a reinforcement learning system will approach convergence. The experi-
ments show that we can use the same features across a range of tasks, anticipate
events before they occur, and achieve predictive accuracy approaching that of
an offline-optimal solution with a limited amount of robot experience.

6 More General Nexting

The exponentially discounted predictions that we have focused on in this paper
constitute the simplest kind of nexting. They are a natural first kind of predictive
knowledge to be learned. Online TD-style algorithms can be extended to handle
a much broader set of predictions, including time-varying choices of γ, time-
varying λ, and even off-policy prediction (Maei & Sutton 2010). It has even
been proposed that all world knowledge can be represented by a sufficiently
large and diverse set of predictions (Sutton 2009).
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Fig. 5. Nexting can be extended, for exam-
ple to consider time-varying gamma to pre-
dict of the amount of power that the robot
will expend before a probabilistic pseudo-
termination with a 2-second time horizon
or a saturation event on the light sensor

As one example of such an exten-
sion, consider allowing the discount
rate γi to vary as a function of the
agent’s state. The algorithmic modifi-
cations required are straightforward.
In the definition of the return in
Equation 1, (γi)k is replaced with
Πk

j=0γ
i
t+j . In Equation 3, γi is re-

placed with γit+1 and finally, in Equa-
tion 4, γi is replaced with γit . Using
the modified definitions, the robot can
predict how much motor power it will
consume until either the light sensor
is saturated or approximately two sec-
onds elapse. This prediction can be
formalized by setting the prediction’s
target signal to be the sum of instan-
taneous power consumption of each
wheel, (r =

∑3
i=1 MotorVoltagei ×

MotorCurrenti) and throttling gamma when the light sensor is saturated (γit =
0.1 when the light sensor is saturated and 0.95 otherwise). The plots in Figure 5
shows that the robot has learned to anticipate how much power will be expended
prior to reach the light or spontaneously terminating.

7 Conclusions

We have demonstrated multi-timescale nexting on a physical robot; thousands
of anticipatory predictions at various time-scales can be learned in parallel on
a physical robot in real-time using a reinforcement learning methodology. This
approach uses a large feature representation with an online learning algorithm
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to provide an efficient means for making parallel predictions. The algorithms are
capable of making real-time predictions about the future of the robot’s sensors
at multiple time-scales using the computational horsepower of a laptop. Finally,
and key to the practical application of our approach, we have shown that a single
feature representation and a single set of learning parameters are sufficient for
learning many diverse predictions. A natural direction for future work would be
to extend these results to more general predictions and to control.
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Abstract. This paper presents a developmental reinforcement learn-
ing framework aimed at exploring rich, complex and large sensorimotor
spaces. The core of this architecture is made of a function approximator
based on a Dynamic Self-Organizing Map (DSOM). The life-long online
learning property of the DSOM allows us to take a developmental ap-
proach to learning a robotic task: the perception and motor skills of the
robot can grow in richness and complexity during learning. This architec-
ture is tested on a robotic task that looks simple but is still challenging
for reinforcement learning.

1 Overview

The framework of reinforcement learning [1] is particularly attractive because it
enables an artificial agent to learn an action plan to solve a problem that may be
unfamiliar or uncertain while only using a scalar signal to distinguish between
good and bad situations. Learning is not supervised and does not require an
expert or an oracle. Moreover, Markov Decision Processes (MDP) [2] provide a
formal background for analyzing theoretical properties of many algorithms, en-
suring, for example, the existence of an optimal solution to the learning problem
and convergence to this optimal solution.

Although reinforcement learning led to some successful applications, the prac-
tical use of reinforcement learning for realistic problems is not easy. Difficulties
usually arise from the size of the problems to be solved that can only be de-
scribed through a very large number of states, making them computationally
intractable for reinforcement learning algorithms searching an exact solution.
Algorithms providing approximate solutions do exist (approximate value itera-
tion, LSPI, direct policy search through gradient ascent, etc., see Chap. 3,4 of
[3],[4]), but they are far from providing answers to all problems encountered in
practice.

We are particularly interested in the use of reinforcement learning in the con-
text of autonomous robotics. Several difficulties reduce the applicability of the
learning algorithms. The sensor data are continuous in value, often noisy, expen-
sive to obtain (in time and energy) and very (too) rich in information (e.g. in the
case of a video stream). Our main concern is for the agent to be able to explore
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efficiently these rich and complex environments. We propose a developmental
approach where the agent starts with crude actions and perceptions that gradu-
ally get more complex. Thus, starting from a smaller and simpler sensorimotor
space, the agent should be able to learn simple tasks and, building over acquired
behaviors, learn more complex tasks as its sensorimotor world gets richer. This
developmental learning is made possible by using a self-organizing adaptive map
architecture for function approximation in a reinforcement learning framework.

This paper first quickly presents the reinforcement learning framework used
and original architecture for a developmental approach (Sections 2 and 3). Then,
the experimental setting is detailed and results are given (Sections 4 and 5).
Section 6 discusses the our work, pointing out some limitations and offering
perspectives for future work.

2 Principles and Motivations

Our approach of developmental reinforcement learning is largely based on the
Q-learning algorithm [5] and therefore relies on estimating the optimal value
function Q∗ in the sensorimotor space S ×A. The principle of the algorithm is
to use each training sample (st, at, st+1, rt) provided at time t through an inter-
action between the agent and its environment (the agent perceives st, chooses
action at that changes the environment now perceived as st+1, and gets a reward
rt) to update the estimate of the value function Q∗ for the pair (st, at) as follows:

Q∗
t+1(st, at) ←− Q∗

t (st, at) +

Δ︷ ︸︸ ︷
α

(
r + γmax

a′∈A
Q∗

t (st+1, a
′)−Q∗

t (st, at)

)
, (1)

where α is a learning coefficient, which may depend on s, a and t.
A major limitation to the practical use of reinforcement learning methods is

related to the complexity of algorithms. Theoretically, to guarantee the conver-
gence of reinforcement learning algorithms to an optimal solution one requires
that each (s, a) pair is visited an infinite number of times. Even with only a
very large number of visits, this constraint is one of the main limitations to the
practical use of reinforcement learning techniques, and particularly in the con-
text of robotics, and the only way to learn good behavior would be to explore
intelligently and efficiently the environment.

The sensorimotor space of a robot is rich, continuous and complicated, fur-
thermore it can be time and energy consuming to get a new training sample,
and also risky (like bumping in a wall). As a result, an efficient and complete
exploration of the unknown environment is very unlikely. The main idea of our
developmental reinforcement learning framework is to ease the exploration by
starting with a very small and limited sensorimotor space and gradually in-
creasing it when the robot learned performances improve. Here, this support to
the agent mainly takes the form of a gradual increase of perceptions richness
and potential actions of the agent as its performance in the learning task is
improving.
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From this perspective, several problems arise. First, the learning architecture
chosen must allow to progressively increase the sensorimotor space of the agent
and the difficulty of the task. Second, we want the agent to rely on what he has
already learned to learn in a richer environment. This last issue is particularly
delicate, it is similar to the problem of knowledge transfer, a research field still
wide open [6]. Within the framework of reinforcement learning, a central element
of learning is the estimation of the value function of the sensorimotor space. The
problems we have mentioned are related to estimating a function: how to take
advantage of the current estimate of a function to extend it to a modified input
space (when sensorimotor space is enriched).

3 Architecture for Developmental Learning

The core of our architecture is an adaptive function approximation to learn the
Q-value function in a continuous sensorimotor space. The principle of our archi-
tecture is depicted in Fig. 1. Perceptions of the robot (we give more details on
these perceptions in Section 4), denoted s, feed a Dynamic Self-Organizing Map
(DSOM) [7]. The activity of this self-organizing map is the input of a perceptron
with one layer of neurons that has as many outputs as possible actions. Thus,
the output neuron associated with the action a learns the value function Q(s, a)
in a supervised way using the Q-learning update equation (1) a linear regression
pattern, by modifying its weights ω using: ω ← ω − εLΔ. The DSOM map uses
unsupervised learning to adapt to the perceptual inputs received.

Although we have not used a more conventional architecture like LSTD or
LSQ [8,4], our system is actually quite close. One can consider that the use
of a DSOM map projects the perceptions on basis function Φ(s) that evolve
over time, and that the linear regression estimates the value function as a linear
combination wTΦ(s) of these basis functions. The search for optimal coefficients
of this linear combination is made by a stochastic gradient descent and the basis
functions being adaptable, our algorithm does not guarantee convergence.

The neuronal learning architecture is well adapted to the developmental ap-
proach that we want to experience. The action space is discrete, its richness is
closely tied to its cardinality. Increasing the richness of the action space can
be dealt with by adding neurons to the output layer. These new neurons take
advantage of the already adapted DSOM map. The learning of the coefficients
of the linear combination of a new output neuron can be accelerated by initialis-
ing these coefficients using the coefficient of neurons coding “semantically” close
actions. In the example that we present below (see Section 4), a new neuron con-
nected with action turn-right-slowly will be initialized with the coefficients
related to the neuron for the action turn-right.

For the continuous state space, the richness comes in part from to the dimen-
sion of this space. Increasing the size of the input space is not as simple as for the
output space. One solution is to increase the size of all vectors of input weight
without changing their projection on the previous perceptual space. Another so-
lution that we would like to test is to provide the architecture with input weight
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Fig. 1. Learning architecture. Robot perceptions s are the input of a dynamic self-
organizing map. A linear output layer with one neuron for each actiona learns Q(s, a).

of the maximum dimension of the input space and, while the current perceptual
vector has dimension less than this maximum, to artificially increase its size by
cloning a few of these values to the extra dimensions. The latter approach seems
better adapted to transfer what is learned in small size to larger tasks.

4 Experimental Platform

Our experiments are performed on a KheperaIII robot of K-Team company1.
Although this robot embarks a processor, we chose to deport processing and
computation on an external computer, communication between this computer
and the robot is done by wifi.

The robot moves using two drive wheels which allow it to turn on the spot.
The robot can use discrete actions, such as moving forward or backward a certain
distance (on average, as the actions of the robots are noisy) or turn right or left
for a given angle. We use discrete actions because we want to explore a framework
based on Q -Learning and estimating a value function for continuous actions is
still largely an open problem. The robot’s action space is a discrete space and
its richness is characterized by the number of available actions.

The main sensor we use is a wireless camera placed above the robot which
captures a 320x200 bitmap color image, the image is then processed to provide
sensory information in a lower dimensional space. Through a logical sensor we
call “retina”, the robot is provided with perceptions made of a vector of dimen-
sion dimper where each coefficient of the vector, between 0 and 1, is the ratio
of a particular hue computed on a vertical strip of the image. The number and
positions of the vertical stripes are customizable and can evolve during the ex-
periments. On the example of the right side of Fig. 2, the robot is facing a blue
diamond on a red background, the retina is configured to show the ratio of blue
vertical stripes - named B1, B2 and B3 - positioned at the abscissa 80, 160 and

1 See http://www.k-team.com
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Fig. 2. Left: the robot in its environment. Right: the perception given by the retina

of the robot. For every vertical stripe, positioned at (80, 160, 240), the ratio of blue is
computed, here [0, 42; 0, 67; 0, 33].

240 of the image. Perceptions of the robot in this case are [0.42, 0.67, 0.33]. The
state space of the robot is a continuous space with a richness measured by the
dimension of this space (that is to say the number of vertical stripes).

Given our experimental platform, the tasks we want to teach our robot are
navigation tasks in mazes with visual cues. Our idea is to set visual cues in the
environment to guide the robot, e.g. arrows that tell in which direction to head
in order to reach the exit. If the robot needs a fine perception to distinguish and
recognize the arrows, it does not need this degree of perception in order to be
“attracted” by the highly contrasted symbols. In addition, the robot can learn
“satisfactory” behaviors with only crude actions. Then, these behaviors can be
refined and precised as actions and perceptions become richer. We believe that
this kind of scenario, which can be broken down into sub-tasks of varying com-
plexity, is well suited to the experimentation of the concepts of developmental
reinforcement learning.

5 Experimental Results

The learning architecture proposed is tested in a very simple testbed. This ex-
periment, which only involves an increase in the richness of the action space of
the robot, is only a preliminary to other experiments. Increase in perceptions
space and in the complexity of the task are scheduled.

In this experiment, the robot is positioned in a closed environment. The sur-
rounding walls are red and a blue diamond (the target) is set on one of the walls.
The robot must choose between 5 discrete actions: turn-right and turn-left

(about 34 degree turn), stop, turn-right-slowly and turn-left-slowly (about 20

degree). These action are noisy by nature because of the imprecision in the robot
command. The perceptual space is made of 3 vertical stripes that return the
ratio of blue. These stripes, called B1, B2 and B3 are respectively set to the
extreme left, at the middle and at the extreme right of the image given by the
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camera of the robot, their relative angle to the front of the robot are −16, 0 and
16 degree. The robot has to learn to face the target and it receives a reward if it
stops while the target is in front of it. If 0.7B1+B2+0.7B3 > 1.4 and the robot
stops, then it gets a reward of +1, otherwise the reward is zero. After getting
a non-zero reward, of after 12 moves without success, the robot is repositioned
randomly.

Learning samples come from real movements and perceptions on the robotic
platform but our learning algorithm needs too many iterations and the sample
set is not enough for that. As explained later, 10, 000 to 15, 000 iterations are
needed for the algorithm to learn. Thus, we use, and more importantly reuse,
the same set of 2, 000 samples generated on the robot. Each iteration of the
algorithm is done with one sample randomly chosen from the sample set, with
respect to the learning scenario (e.g., a sample must use one of the actions
currently allowed to the robot).

Three different learning scenarii are tested. In the first one, the robot can only
use 3 actions turn-left, turn-left and stop. In the second scenario, the robot
can choose among the 5 different actions. In the “developmental” scenario, the
robot starts learning with 3 actions during NB iterations then it can also use
the 2 other actions, with some optional adaptation of learning parameters.

Results presented were obtained using the following parameters: 64 neurons for
the DSOM map, with a “small world” neighborhood and at least on neighbor for
every neuron (nbneur = 64, nblink = 1) ; εD = 0.5 and η = 1 are the learning
parameters of the DSOM map; α = 0.1 and γ = 0.9 are parameters for the re-
inforcement learning framework; the exploration policy used is an epsilon-greedy

turn-right

turn-left

stop

turn-right-slowly

turn-left-slowly

Fig. 3. Representation of a policy learned with 5 actions in the sensorimotor space
(the coordinate B1, B2 and B3 are the dimension of the perceptual space). The agent
stops when facing the target (toward the (1,1,1) vertex) and uses big turns when the
target is far from the center (weak values for B1 or B3).
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policy, with επ = 0.25. The learning parameter εL of the linear regressor varies
with the experiments (usually between 0.001 and 0.5). This parameter seems to
have a more important influence on the quality of the results and on the speed
with which performances are reached. These parameters have been set by hand,
they give good results, as suggested by the learned policy depicted on Fig. 3.

For every experiment, the quality of learning is evaluated every 1, 000 itera-
tions by testing the greedy policy on a fixed set of starting positions. The set
of positions is defined so as to discriminate as much as possible the different
policies. These positions are given by the following angles: 0, 2, 4, 6, 8, 10, 12,
14, 16, 18, 20, 22, 24, 25, 30, 35, 40, 45, 50, 90, 180 and their symmetric. The
mean of the reward received from these positions is a measure of the quality of
a policy, and thus of the learning. The best hand-made policy using 3 actions
has a performance of 0.138 and, with 5 actions, one can reach a performance
of 0.39.

Fig. 4. Learning with 3 and 5 actions, points depict the performances every 100 iter-
ations, for 10 different trajectories. Each trajectory is smoothed and represented by a
line.

Fig. 4 shows the performance reached by the algorithm as a function of the
number of iterations when using 3 or 5 actions, with εL = 0.05 and εL = 0.1.
Each graph is made of 10 learning trajectories. The points are the performances
measured and the line are sliding mean of these trajectories. For this set of
parameters, as for most of the other settings tested, one can notice a large
variability in the performance of the algorithm along a trajectory. The variability
can be limited by using very low εL value.

We want to point out that the learning speed is largely increased with the
DSOM based architecture. In a previous work using a multi-layer perceptron
and eligibility traces [9], 100, 000 iterations were needed before reaching good
performances, whereas here only 5, 000 to 15, 000 are required.
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The main focus of the experiments is the exploration of the developmental
scenario. Fig. 5 compares the performances of the algorithm when using directly
5 actions with performances obtained with the developmental scenario (3 then 5
actions). The direct learning is quicker but the developmental learning can rather
quickly (around 10, 000 iterations) reach better performances. To reach these
performances, the learning parameter εL of the linear regressor must be adapted
during the developmental scenario: starting at a value of 0.1, it is reduced to
0.01 when adding the two new actions. If this parameter is kept at 0.1, the
performance are reduced (red curve in figure 5, right).

Fig. 5. Developmental learning. Left: The direct (5 actions) and developmental
learning (3 actions, then 2 more after NB = 5000 iterations, εL goes from 0.1 to
0.01) are compared. The curve show the mean and variance for 10 trajectories. Right:
Developmental learning with various delay before using the full action set (εL = 0.1,
NB = {5000, 10000, 15000}.

Fig. 5:right shows that, in a developmental scenario, the number if iterations
before adding the last 2 actions does not influence the reached performance. For
this set of parameters (εL = 0.1 and επ = 0.25), as for many others, perfor-
mances tend to decrease after 20, 000 iterations. This fact, combined with the
large variability within a learning trajectory, may suggest that the task to learn
is not that simple. This may be related to the difficulties of using non-linear
approximators in a reinforcement learning framework [10,11].

6 Discussion

Results presented here are still preliminary and are part of a work in progress.
Many parameters influence the learning algorithm and these parameters should
be more systematically explored. Some of these parameters seem to balance
each other, like, for example, the number of neurons in the DSOM map and its
learning parameters: with a large number of neurons, the DSOM map does not
need to be very adaptive and εD can be low.
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The intrinsic properties of DSOMmap, like the capacity to adapt continuously
to the input while not being oversensible to the distribution of the input, seem
particularly interesting when the perceptual space of the agent will change with
time. We want to test this, by increasing the perceptions space (add more stripes
to the retina) but also by moving these stripes or making them more noisy.

Learning performances are very unstable. In only 100 iterations, the per-
formance of the learned policy can change a lot. Even when the DSOM map
is stabilized, which happens very quickly in our experiments as the perceptual
space is stable and “small”, performances are still unstable, even for low learning
parameters of the linear regressor. We would like to study more systematically
how the various parameters could be tuned to decrease this variability while
preserving both the level of performance and the learning speed, but these cri-
teria are qualitatively assessed right now. We lack an automated procedure for
comparing the overall performance (speed, stability, level) of different parameter
settings. This kind of automated overall performance evaluation could also be
used to guide and control the increase of the richness of the sensorimotor space
of the agent. Thus, using original developmental path, it could be possible to
link the increase in performance and the “maturation” process of the agent, as
done in [12] for example.

7 Conclusion

In this paper, we have presented the principles of a developmental reinforce-
ment learning architecture in order to ease the exploration of large and com-
plicated sensorimotor spaces. At the heart of this architecture lies a dynamic
self-organizing map that participates in learning an approximation of the value
function of the sensorimotor space. Thus, our learning algorithm is a kind of
developmental neuro Q-Learning algorithm.

Experiments conducted so far on a simple robotic task are quite promising
but far from complete, a lot of testing is still needed. When increasing the action
space, the learning architecture learns more quickly than previous architectures
[9,13]. Furthermore, even on this simple task, the developmental scenario tested
brings better results than a direct approach. This work opens a lot of perspective
and future work, in particular a more systematic study of the parameters, the
testing of evolving perceptual spaces and more complex tasks.
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Abstract. Approximating adaptive dynamic programming has been studied ex-
tensively in recent years for its potential scalability to solve problems involv-
ing continuous state and action spaces. The framework of adaptive critic design
(ACD) addresses this issue and has been demonstrated in several case studies.
The present paper proposes an implementation of ACD using an echo state net-
work as the critic. The ESN is trained online to estimate the utility function and
adapt the control policy of an embodied agent. In addition to its simple training
algorithm, the ESN structure facilitates backpropagation of derivatives needed for
adapting the controller. Experimental results using a mobile robot are provided to
validate the proposed learning architecture.

1 Introduction

Dynamic programming [1] is one of the most general approaches to obtain optimal
control policies for autonomous systems. Unfortunately, it has often been dismissed
because of the commonly known “curse of dimensionality” problem, i.e. computa-
tional complexity increases exponentially with dimensionality of the application [2].
The framework of adaptive critic design (ACD) adresses this problem by approximat-
ing the cost-to-go function J in dynamic programming [3]. Three basic approaches
are proposed for implementing ACDs: Heuristic Dynamic Programming (HDP) which
trains the critic to approximate J [4], the Dual Heuristic Programming (DHP) which
adapts the critic to estimate the derivatives of J [5] and Globalized Dual Heuristic Pro-
gramming (GDHP) which combines the best of HDP and DHP, i.e. minimizing error
prediction of both J and its derivatives [6]. A detailed description of these structures and
their action-dependent versions can be found in [7]. Although ACDs have been mathe-
matically well formalized from the adaptive control theory point of view [8][9][10], the
challenge to convert existing theory to real practical applications exists, mainly due to
its increased computational demands. As any adaptive approach, the success of ACD
implementation depends on the efficiency of the online training algorithm used. Im-
plementing ACDs using recurrent neural networks (RNNs) emerges as one possible
and very promising approach. RNNs are universal approximators of dynamical systems
[11] and can, indeed, be trained to estimate the value function in a continuous space.
Although training algorithms for RNNs exist and have shown some success, such as the
backpropagation through time [12], some problems like high computational costs and
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slow convergence remain unresolved preventing RNNs to be applied for a wider class
of problems [13].

Reservoir computing networks have recently gained wide attention, due to their new
architectures and efficient training methods. Maybe the most prominent network is the
echo state network (ESN) [14] which has been successfully implemented in several real
world application and performed exceptionally well. Its general idea consists of using
a large RNN as a “pool” of excitable complex neural dynamics, from which readout
neurons can learn to extract the current state of the network. This reduces the complex-
ity of training to simple linear regression while preserving the recurrent property of the
network. In a recent work [15] [16], we implemented ACD using ESN as the critic. The
preliminary results show that we can benefit significantly from the proposed ESN-ACD
architecture to solve a variety of problems. In this paper, we go further in our investiga-
tion by testing how well the ESN critic can adapt in a changing environment. The ESN
is trained online to learn a control policy that acquires reward and avoids punishment
regions in a real environment. At unpredictable time the experimenter changes the en-
vironment by interchanging reward and punishment regions, and the ESN must adapt
the previously learned policy to the new situation.

The remaining of this paper is divided as follows. Section 2 explains the learning
design. Section 3 presents the implementation of the approach and shows the obtained
results. Finally, this work is discussed and concluded in Section 4.

2 Learning Framework

We assume that the world (agent-environment) is described by a dynamical system

s(k + 1) = F [s(k), a(k)] (1)

where s ∈ �n represents the state vector, k discrete time, a ∈ �m denotes the control
action, and F is the system function. The environment includes contextual stimuli and
the agent body (robot). Suppose that one associates with this system the performance
index

J [s(i)] =

∞∑
k=i

γk−iU [s(i), a(i)], (2)

where U is the utility function (reward), and γ is a discount factor with 0 < γ < 1. The
goal is to obtain optimal action sequences a(k) that maximizes J . The key idea is that
any action sequences a(k) that maximizes J in the short term will also maximize the
sum of U over all future times [5].

2.1 The Critic

The mission of the ESN is to deliver Ĵ , an estimation of J , according to the heuris-
tic dynamic programming [4]. An ESN is formed by a so-called ”dynamic reservoir”,
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which contains a large number of sparsely interconnected neurons with non-trainable
weights. The activation of internal neurons is updated according to

X(k + 1) = f(WinU(k + 1) +WX(k) +WbackY (k + 1)) (3)

and the outputs are calculated as

Y (k + 1) = fout(Wout(U(k + 1), X(k + 1), Y (k))) (4)

An essential condition for successful using of ESN is the “echo state” property.
It is a property of the network prior to training, related to the weight matrices
(W in,W,W back). A network (Win,W,Wback) has echo states with respect to the com-
pact intervals U andD, if the network state X(n) is uniquely determined by the history
of the input-output data. In practice it was found that when the spectral radius of the
internal matrix |λmax| < 1, we do have an echo state network. The following procedure
seems to give a practical solution to guaranty echo state property [14]:

1. The order of input and output neurons should be stated according to the task at hand.
2. Generate randomly the input weights Win and output backpropagated weights
Wback.

3. Generate randomly an internal weight matrix W0.
4. Normalize W0 with its spectral radius λmax and put it in W1 :W1 = 1

|λmax|W0.
5. Scale W1 with a factor 0 < α < 1 and put the new internal matrix W = αW1 (in

the remaining of this paper α is called the spectral radius).

If this condition is met, only weights connections from the internal neurons to the out-
put (Wout) are to be adjusted using any linear training method, such as least squares
method. In this work, the output weights Wout are adjusted recursively using the tem-
poral difference (TD) learning algorithm [17], by minimizing the following error

‖E‖ =
∑
k

Ek =
∑
k

[Ĵ(k)− U(k)− γJ(k + 1)]2 (5)

where Ĵ(k) = Ĵ [s(k), a(k), k, θc] and θc represents the parameters of the ESN (Fig.
1). After each adjustment of Wout the ESN’s internal state is updated according to

X(k) = f(WinS(k) +WX(k − 1)) (6)

and its output Ĵ is computed as

Ĵ(k) = fout(Wout(k)X(k)) (7)

where f = tanh(), and fout is chosen as a linear activation function (identity).

2.2 The Actor

The role of the actor is to generate control actions that maximize J in the short term.
Since in this approach we don’t train an action network, we use a control law that
decreases the gradient of the predicted Ĵ . At each time step the control action is
calculated as
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Fig. 1. The ESN critic in two consecutive time steps. Dashed lines represent the information flow
of parameter updating for the critic and the actor.

a(k + 1) = a(k)− δ
∂Ĵ(k)

∂a(k)
(8)

where δ is the learning rate.
The gradient of Ĵ with respect to a(k) can be computed using the chaine rule

∂Ĵ(k)

∂a(k)
=
∂Ĵ(k)

∂S(k)

∂S(k)

∂a(k)
(9)

The term
∂S(k)

∂a(k)
represents the agent-environment interaction model (1), and

∂Ĵ(k)

∂S(k)
is

computed as follows
∂Ĵ(k)

∂S(k)
=
∂Ĵ(k)

∂X(k)

∂X(k)

∂S(k)
(10)

where
∂Ĵ(k)

∂X(k)
=Wout (11)

To compute the term
∂X(k)

∂S(k)
we proceed as follows. We put

ξ =WinS(k) +WX(k − 1) (12)

and using the chaine rule again we obtain

∂X(k)

∂S(k)
=
∂f(ξ)

∂ξ

∂ξ

∂S(k)
=
(
1−X2(n)

)
WT

in (13)

where I denotes the column vector of 1.
From (11) and (13) we obtain

∂Ĵ(k)

∂S(k)
=Wout(I −X2(k))WT

in (14)
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Equation (14) shows that the partial derivative of Ĵ with respect to S depends only on
the input and output weights and on the current reservoir state. In contrast to a typical
layered neural networks the backpropagation of derivatives is then simplified because
of the ESN structure that separates the dynamic reservoir from the input and output
units.

3 Implementation and Results

Fig. 2 illustrates a scenario of a robot that explores an environment containing positive
and negative reward regions represented by the green point and the red point, respec-
tively. The objective is to learn a control policy that acquires rewards and avoid punish-
ments, i.e. navigating from a given starting state to the green region, and avoid the red
region. At unpredictable time, the experimenter changes the environmental state, by in-
terchanging reward and punishment regions, and the previously learned policy must be
adapted to this new situation. In this task, the ESN critic is asked to consider continuous
state space, deal with uncertainties in sensory data, adapt to changes in the environment
and be computationally cheap.

Fig. 2. Scenario for adaptive behavior in ESN-ACD. The robot has to learn a control policy to
acquire rewards (green point) and avoid punishments (red point), and revise the learned policy
whenever the reward and punishment regions are relocated. Virtual lines (in black) show the
distribution of the utility value on the environment.

The robot has a differential-drive, and its geometric configuration is described by
q = [x, y, φ]T where (x, y) are its coordinates, and φ its heading angle relative to the
local coordinate system. We consider a continuous state space S(k) = {x(k), y(k)},
and continuous action space in a form of desired heading a(k) = φd(k). At each time
a new state S(k) is measured, the utility function U(k) is provided as

U(k) =
2

(1 + dr
2)

− 2

(1 + dp
2)

(15)

where dr and dp define the distance between S(k) and the reward and punishment
regions, respectively. The characteristics of the ESN are described by a set of 5 pa-
rameters: α (spectral radius),N (number of neurons in the reservoir), cdr (connectivity
of the internal weight matrice W ), ci (connectivity of the input weight matrice Win),
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. The behavior of the learning robot in a sequence of training episodes. Plots on the
right side show the received and predicted Utility from ESN-Critic (dashed lines), and those on
the left side show the 2d path of the robot. a) and b) show that after 3 trial episodes the ESN-Critic
approximately predicts the true utility value, and the robot successfully applies a correct control
action leading to the reward area. In (c) and (d) the reward/punishment areas are relocated, but
the robot keeps the same control policy and moves into the punishment region. During the next
three episodes the robot leaves the borders of the environment, and the episodes were stopped. In
episode 9 ((e) and (f)) the robot has recognised that its current policy must be changed. After one
more episode, it learns a new policy that avoids the punishment area and acquires the new reward
region.
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and r (amplitude of the interval distribution where the internal synaptic connections
weights are randomly initialized). No back-connection Wback from the output to the
reservoir, and no synaptic weight connections from the input directly to the output are
used. The training is performed in a sequence of episodes. After completion of one
episode, the robot is automatically transferred to the start position for the next one. We
set α = 0.8, N = 400, r = 4, cdr = 30% and ci = 20%, and we start the experiment
with an untrained ESN. After the first 3 trial episodes the agent has successfully learned
a correct policy leading to the reward region (Fig. 3. a.). This is also confirmed by the
convergence of ESN-Critic to a maximum of the utility value (Fig. 3. b.). The robot
now knows a path to the goal, and with continuing learning time (episodes 4 and 5),
no significant refinment were noticed. After 5 episodes we changed the environmental
state, and started the 6th episode. The robot keeps the same control policy and moves
into the punishment region (Fig. 3. c.). At that moment and after receiving punishment
signals, it recognised that the current policy is no longer correct (Fig. 3. d.). After two
more episodes, the ESN critic provides new reinforcement signals to adjust the learned
policy, and the robot generates a new behavior that avoids the punishment area, maxi-
mize again the expected rewards (Fig. 3. f.), and moves to the new reward region (Fig.
3. e.). Fig. 4 illustrates a global view of the utility distribution seen by the ESN critic
throughout the episodes. This could also be considered as an internal representation of
the environment. Finally, Fig.5 shows how output weights of the ESN critic are adjusted
over all episodes.

(a) (b) (c)

(d) (e) (f)

Fig. 4. (a), (b) and (c) are photos from video sequences of the robot behavior at some time steps in
episodes 2, 6 and 9 respectively. The graphs (d), (e) and (f) show the utility distribution estimated
by the ESN critic at the same time steps. They were obtained by simulating how would be the
utility prediction if the robot visits all possible positions on the environment. The lowest utility
estimation is represented by the color red, and the highest one by the color blue.
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(a) adaptation during one episode (3rd). (b) the average changes over all episodes

Fig. 5. Adaptation of Wout. (a) shows that the learning process starts with higher adaptation of
reward expectations, and it decreases when the robot starts converging toward to a local rewarded
region. As expected, we can see in (b) that the adaptation curve decreases with increasing the
episodes (from 1st to 4th episode). Immediately after relocating the reward/punishment areas, at
episode 5, the changes of weights go higher, which reflects an exploratory behavior of the agent
in order to update the control policy. Updating the control policy to the novel environment has
the effect to reduce again the changes of learning weights.

4 Conclusion

The main contribution of the paper is the implementation of an ESN within the heuristic
dynamic programming. The ESN is trained online to estimate the utility function in a
continuous space of states and actions, and to adapt the agents’ control policy accord-
ingly. The high speed of convergence, which is a consequence of the ESN’s training
algorithm and of the simple calculation of derivatives that are needed to update the ac-
tor, provides the proposed ESN-HDP approach the capability to tackle adaptive control
tasks in real time. The experimental results are very promising, and pave the way for
further tests. Our next step is to increase the complexity of the environment by adding
several regions with different reward levels, and to extend the learning algorithm to
non-episodic continuous tasks.

At the design level there are many issues that need further investigation. We repeated
the previous experiment with different ESN parameter settings (the results will be pre-
sented in a extended version), but we admit that their influence on the performance is
still not well understood. The constraint imposed on the spectral radius and the random
initialisation of the reservoir prevented us to find out what ESN properties are strongly
involved in this task. There are many extensions of the standard ESN, e.g. intrinsic
plasticity [18], transfer entropy [19] and others [20][21][22], which could provide bet-
ter understanding of phenomena governing the reservoir dynamics. One possibility for
future work is to implement the topology templates proposed in [22] that may simplify
the reservoir analysis, and to optimise the information transfer at each internal unit with
respect to the learning task [19]. These modifications could provide a clear insight into
the reservoir dynamics organization.

At the application level there is an important issue which concerns the character-
isation of the agent-environment interaction. In this work, no explicit model of the
environment was built, instead, the ESN estimates future rewards directly from the ac-
tual state of the agent. The utility distribution over the whole environment illustrated in
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Fig. 4 could also be seen as a world-model whose input represents the current state/reward
situation, and the output correspond to the expected reward associated with the other
possible states of the agent. These estimates can then be used for example in multiple-
choice tasks. A multiple-choice task (also called multi-objective problem [23]) could
have several possible solutions, and the difficulty is that most often no one can be con-
sidered to be better than any others with respect to all objectives. A future work could
be, first, the utilization of the reservoir as a source of these solutions. Then, the choice
of one solutions among the others will depend on the previously experienced situations.
It is maybe premature to go further now in this issue, but our efforts along this line of
research are in progress.
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Abstract. This article studies how a robot can learn nouns and ad-
jectives in language. Towards this end, we extended a framework that
enabled robots to learn affordances from its sensorimotor interactions,
to learn nouns and adjectives using labeling from humans. Specifically,
an iCub humanoid robot interacted with a set of objects (each labeled
with a set of adjectives and a noun) and learned to predict the effects (as
labeled with a set of verbs) it can generate on them with its behaviors.
Different from appearance-based studies that directly link the appear-
ances of objects to nouns and adjectives, we first predict the affordances
of an object through a set of Support Vector Machine classifiers which
provided a functional view of the object. Then, we learned the mapping
between these predicted affordance values and nouns and adjectives. We
evaluated and compared a number of different approaches towards the
learning of nouns and adjectives on a small set of novel objects.

The results show that the proposed method provides better generaliza-
tion than the appearance-based approaches towards learning adjectives
whereas, for nouns, the reverse is the case. We conclude that affordances
of objects can be more informative for (a subset of) adjectives describing
objects in language.

Keywords: affordances, nouns, adjectives.

1 Introduction

Humanoid robots are expected to be part of our daily life and to communi-
cate with humans using natural language. In order to accomplish this long-term
goal, such agents should have the capability to perceive, to generalize and also
to communicate about what they perceive and cognize. To have the human-
like perceptual and cognitive abilities, an agent should be able (i) to relate its
symbols or symbolic representations to its internal and external sensorimotor
data/experiences, which is mostly called the symbol grounding problem [1] and
(ii) to conceptualize over raw sensorimotor experiences towards abstract, com-
pact and general representations. Problems (i) and (ii) are two challenges an
embodied agent faces and in this article, we focus on problem (i).
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The term concept is defined by psychologists [2] as the information associated
with its referent and what the referrer knows about it. For example, the concept
of an apple is all the information that we know about apples. This concept
includes not only how an apple looks like but also how it tastes, how it feels
etc. The appearance related aspects of objects correspond to a subset of noun
concepts whereas the ones related to their affordances (e.g., edible, small, round)
correspond to a subset of adjective concepts.

Affordances, a concept introduced by J. J. Gibson [3], offers a promising so-
lution towards symbol grounding since it ties perception, action and language
naturally. J. J. Gibson defined affordances as the action possibilities offered by
objects to an agent: Firstly, he argued that organisms infer possible actions that
can be applied on a certain object directly and without any mental calculation.
In addition, he stated that, while organisms process such possible actions, they
only take into account relevant perceptual data, which is called as perceptual
economy. Finally, Gibson indicated that affordances are relative, and it is neither
defined by the habitat nor by the organism alone but through their interactions
with the habitat.

In our previous studies [4,5], we proposed methods for linking affordances to
object concepts and verb concepts. In this article, we extend these to learn nouns
and adjectives from the affordances of objects.

Using a set of Support Vector Machines, our humanoid robot, iCub, learns the
affordances of objects in the environment by interacting with them. After these
interactions, iCub learns nouns and adjectives either (i) by directly linking ap-
pearance to noun and adjective labels, or (ii) by linking the affordances of objects
to noun and adjective labels. In other words, we have two different approaches
(appearance-based and affordance-based models) for learning nouns and adjec-
tives, which we compare and evaluate. Later, when shown a novel object, iCub
can recognize the noun and adjectives describing the object.

2 Related Studies

The symbol grounding problem in the scope of noun learning has been studied by
many. For example, Yu and Ballard [6] proposed a system that collects sequences
of images alongside speech. After speech processing and object detection, objects
and nouns inside the given speech are related using a generative correspondence
model. Carbonetto et al. [7] presented a system that splits a given image into
regions and finds a proper mapping between regions and nouns inside the given
dictionary using a probabilistic translation mode similar to a machine translation
problem. On another side, Saunders et al. [8] suggested an interactive approach
to learn lexical semantics by demonstrating how an agent can use heuristics to
learn simple shapes which are presented by a tutor with unrestricted speech.
Their method matches perceptual changes in robot’s sensors with the spoken
words and trains k-nearest neighbor algorithm in order to learn the names of
shapes. In similar studies, Cangelosi et al. [9,10] use neural networks to link
words with behaviours of robots and the extracted visual features.
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Based on Gibson’s ideas and observations, Şahin et al. [11] formalized affor-
dances as a triplet (see, e.g., [12,13,14] for similar formalizations):

(o, b, f), (1)

where f is the effect of applying behaviour b on object o. As an example, a
behaviour blift that produces an effect flifted on an object ocup forms an affor-
dance relation (ocup, blift, flifted). Note that an agent would require more of such
relations on different objects and behaviours to learn more general affordance
relations and to conceptualize over its sensorimotor experiences.

During the last decade, similar formalizations of affordances proved to be very
practical with successful applications to domains such as navigation [15], ma-
nipulation [16,17,18,19,20], conceptualization and language [5,4], planning [18],
imitation and emulation [12,18,4], tool use [21,22,13] and vision [4]. A notable
one with a notion of affordances similar to ours is presented by Montesano et
al. [23,24]. Using the data obtained from the interactions with the environment,
they construct a Bayesian network where the correlations between actions, enti-
ties and effects are probabilistically mapped. Such an architecture allows action,
entity and effect information to be separately queried (given the other two in-
formation) and used in various tasks, such as goal emulation.

In this article, our focus is linking affordances with nouns and adjectives. In
addition to directly linking the appearance of objects with nouns and adjectives,
we learn them from the affordances of objects and compare the two approaches.

3 Methodology

3.1 Setup and Perception

We use the humanoid robot iCub to demonstrate and assess the performance of
the models we develop.

iCub perceives the environment with a Kinect sensor and a motion capture
system (VisualEyez VZ2). In order to simplify perceptual processing, we assumed
that iCub’s interaction workspace is dominated by an interaction table. We use
PCL[25] to process raw sensory data. The table is assumed to be planar and is
segmented out as background. After segmentation, the point cloud is clustered
into objects and the following features extracted from the point cloud represent
an object o (Eq. 1):

– Surface features: surface normals (azimuth and zenith angles), principal cur-
vatures (min and max), and shape index. They are represented as a 20-bin
histogram in addition to the minimum, maximum, mean, standard deviation
and variance information.

– Spatial features: bounding box pose (x, y, z, theta), bounding box dimensions
(x, y, z), and object presence.
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Fig. 1. Overview of the system. iCub perceives the environment and learnes the affor-
dances. From either the perceptual data or the affordances, it learns different models
for learning nouns and affordances.

3.2 Data Collection

(a) cups (b) boxes

(c) balls (d) cylin-
ders

Fig. 2. The objects in our
dataset

The robot interacted with a set of 35 objects of vari-
able shapes and sizes, which are assigned the nouns
“cylinder”, “ball”, “cup”, “box” (Fig. 2).

The robot’s behaviour repertoire B contains six be-
haviors (b1, ..., b6 - Eq. 1): push-left, push-right, push-
forward, pull, top-grasp, side-grasp. iCub applies each
behaviour bj on each object oi and observes an effect

f
bj
oi = o′i − oi, where o

′
i is the set of features extracted

from the object after behaviour bj is applied. After
each interaction epoch, we give an appropriate effect

label Ek ∈ E to the observed effect f
bj
oi , where E can

take values moved-left, moved-right, moved-forward,
moved-backward, grasped, knocked, disappeared, no-

change1. Thus, we have a collection of {oi, bj, Ebj
oi },

including an effect label E
bj
oi for the effect of applying

each behaviour bj to each object oi.

3.3 Learning Affordances

Using the effect labels E ∈ E , we train a Support Vector Machine (SVM) clas-
sifier for each behavior bi to learn a mapping Mbi : O → E from the initial

1 The no-change label means that the applied behavior could not generate any notable
change on the object. For example, iCub cannot properly grasp objects larger than
its hand, hence, the grasp behaviour on large objects do not generate any change.
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representation of the objects (i.e., O) to the effect labels (E). The trained SVMs
can be then used to predict the effect (label) Ebk

ol
of a behavior bk on a novel

object ol using the trained mapping Mbk . Before training SVMs, we use Re-
liefF feature selection algorithm [26] and only use the features with important
contribution (weight > 0) to training.

3.4 Adjectives

We train SVMs for learning the adjectives of objects from their affordances (see
Fig. 1). We have six adjectives, i.e., A = {‘edgy’-‘round ’, ‘short ’-‘tall ’, ‘thin’-
‘thick ’}, for which we require three SVMs (one for each pair). We have the
following three adjective learning models:

– Adjective learning with explicit behavior information (A48-AL):
In the first adjective learning model, for learning adjectives a ∈ A, we use
the trained SVMs for affordances (i.e., Mb in Sect. 3.3) to acquire a 48-

dimensional space, V1 = (Êb1
1 , ..., Ê

b1
8 , ..., Ê

b6
1 , ..., Ê

b6
8 ), where Ê

bj
i is the

confidence of behaviour bj producing effect Ei on the object o. We train an
SVM for learning the mapping M1

a : V1 → A.
– Adjective learning without explicit behavior information (A8-AL):

In the second adjective learning model, for learning adjectives a ∈ A, we use
the trained SVMs for affordances to acquire an 8-dimensional affordance
vector, V2 = (p(E1), ..., p(E8)), where p(Ei) is the maximum SVM confidence
of a behaviour bj leading to the effect Ei on object o. From V2, we train an
SVM for learning the mapping M2

a : V2 → A.
– Simple adjective learning (SAL):

In the third adjective learning model, we learn M3
a : O → A directly from

the appearance of the objects.

After learning, iCub can predict the noun and adjective labels for a novel object
(Fig. 3).

3.5 Nouns

We train one SVM for nouns N = {‘ball’, ‘cylinder’, ‘box’, ‘cup’}, for which
we have 413 instances.

Similar to adjectives, we have three models:

– Noun learning with explicit behavior information (A48-NL):
Similar to A48-AL, we train an SVM for learning the mappingM1

n : V1 → N .
– Noun learning without explicit behavior information (A8-NL):

Similar to A8-AL, we train an SVM for learning the mapping M2
n : V2 → N .

– Simple noun learning (SNL):
Similar to SAL, we train an SVM for learning the mapping M3

n : O → N
directly from the appearance of the objects.
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Fig. 3. After learning nouns and adjectives, iCub can refer to an object with its higher
level representations or understand what is meant if such representations are used by
a human

4 Results

The prediction accuracy of the trained SVMs that map each behaviour bi on an
object to an effect label (i.e., Mbi : O → E)

is as follows: 90% for top-grasp, 100% for side-grasp, 96% for pull, 100% for
push-forward, 92% for push-left and 96% for push-right.

4.1 Results on Adjectives

Using Robust Growing Neural Gas [27], we clustered the types of dependence
between each adjective and the effects of the behaviours into Consistently Small
(-), Consistently Large (+) and Highly Variant (*). These dependencies allow
iCub to relate adjectives with what it can and cannot do with them. Table 1
shows these dependencies for the model A48-AL (M1

a) introduced in Sect. 3.4.
We see from the table what behaviours can consistently generate which effects

on which types of objects (specified with their adjectives). For example, with a

Table 1. The dependence between adjectives and affordances for the model A48-AL
(M1

a). TG: Top Grasp, SG: Side Grasp, PR: Push Right, PL: Push Left, PF: Push
Forward, PB: Pull. For each behavior, there are eight effect categories: a: Moved Right,
b: Moved Left, c: Moved Forward, d: Pulled, e: Knocked, f : No Change g: Grasped, h:
Disappeared.

Adjective TG SG PR PL PF PB
abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh

Edgy -----+-- -----**- *---**-+ -*--**-+ ---***-+ ---*++-+

Round -----**- -----+-- *---+*-+ -*--+*-+ ---**+-* ---**+-*

Short -----**- -----+-- +---**-+ -+--**-+ ---+**-+ ---+*+-+

Tall -----**- -----**- *---+*-+ -*--+*-+ ---*++-* ---*++-*

Thin -----**- -----**- *---+*-+ -*--+*-+ ---*+*-+ ----++-+

Thick -----+-- -----**- *---**-* -*--**-* ---**+-* ---+*+-*
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consistently large probability, the robot would generate no change effect on edgy
or thick objects when top grasp behavior was applied. Furthermore, the short
and tall objects show a clear distinction in response to pushing behaviors (tall
objects have a high probability to be knocked while short objects simply get
pushed).

Table 2. The dependence between adjec-
tives and affordances for the model A8-
AL (M2

a). MR: Moved Right, ML: Moved
Left, MF: Moved Forward, P: Pulled, K:
Knocked, NC: No Change, G: Grasped, D:
Disappeared.

Adjective MR ML MF P K NC G D

Edgy ∗ ∗ ∗ ∗ + + ∗ ∗
Round ∗ ∗ ∗ ∗ ∗ + + +
Short ∗ ∗ ∗ ∗ ∗ + + +
Tall − − − − + + + +
Thin ∗ + + + + + + +
Thick ∗ ∗ ∗ ∗ ∗ ∗ + +

The dependencies for the no-
explicit-behavior model A8-AL (M2

a)
is in Table 2. We see from the ta-
ble that round objects have a con-
sistently high probability to generate
disappeared effect, whereas edgy ob-
jects do not have such consistency.
Furthermore, tall objects have consis-
tently low probabilities in obtaining
moved-left, -right, -forward or pulled
effects. Almost all effects can be gen-
erated on thin objects with consis-
tently high probability.

The comparison between the dif-
ferent adjective learning methods is
displayed in Table 3, which displays
the average 5-fold cross-validation accuracies. We see that the explicit-behavior
model (A48-AL) performs better than A8-AL and SAL models. The reason that
A8-AL is worse than the other methods is eminent in Table 2, where we see
that different adjective categories end up with similar descriptor vectors, losing
distinctiveness. On the other hand, the A48-AL model that has learned adjec-
tives from the affordances of objects performs better than directly learning SAL
model.

Table 3. Avg. prediction results for the
three adjective models in Sect. 3.4

A48-AL A8-AL SAL
M1

a M2
a M3

a

Edgy-Round 87% 72% 89%
Short-Tall 93% 95% 89%
Thin-Thick 95% 72% 91%

An important point is whether ad-
jectives should include explicit be-
haviour information (i.e., A48-AL
vs. A8-AL). Theoretically, the per-
formance of these models should
converge while one-to-one, unique
behavior-to-effect relations dominate
the set of known affordances. In such
cases, the behavior information would
be redundant. On the other hand, with a behavior repertoire that may pose
many-to-one-effect mappings, behavior information must be taken into account
to obtain more distinguishable adjectives.

Results on Adjectives of Novel Objects. Table 4 shows the predicted ad-
jectives from the different models on novel objects. We see that, for adjectives,
M1

a is better in naming adjectives than M2
a. For example, M2

a mis-classifies
object-5 as edgy, object-7 as thin and object-1 as thick whereas M1

a correctly
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Table 4. Predicted adjectives for novel objects using 3 different models (bold labels
denote correct classifications)

ID Object A48-AL A8-AL SAL
M1

a M2
a M3

a

1
edgy (54 %) edgy (89 %) edgy (89 %)
short (97 %) short (91 %) short (55 %)
thin (59 %) thick (52 %) thin (52 %)

2
round (77 %) round (90 %) edgy (79 %)
short (77 %) short (91 %) short (58 %)
thin (89 %) thin (67 %) thin 67 %

3
edgy (63 %) round (72 %) edgy (64 %)
short (94 %) short (92 %) tall (67 %)
thin (96 %) thin (72 %) thin 84 %

4
round (84 %) edgy (%94) round (77 %)
short (98 %) short (% 87) short (68%)
thick (91 %) thin (% 68) thin ( 62 %)

5
round (84 %) edgy (% 81) round (89 %)
short (97 %) short (% 93) short (67 %)
thick (95 %) thick (% 59) thick (58 %)

6
edgy (84 %) edgy (79 %) edgy (79 %)
short (98 %) short (80 %) tall (55 %)
thin (92 %) thin (79 %) thick (62 %)

7
edgy (62 %) edgy (52 %) round ( 84 %)
short (98 %) short (93 %) short (54 %)
thick (78 %) thin ( 53 % ) thick (68 %)

8
round (72 %) round (69 %) edgy (89 %)
short (98 %) short (95 %) short (67 %)
thick (79 %) thick (64 %) thick (52 %)

names them. On some objects (e.g., object-3), where there are disagreements be-
tween the models, correctness cannot be evaluated due to the complexity of the
object. If we look at the direct mapping from objects’ appearance to adjectives
(M3

a), we see that it misclassifies object-7 as round, object-6 as tall and objects
2 and 8 as edgy.

4.2 Results on Nouns

For the three models trained on nouns (Sect. 3.5), we get the following 5-fold
cross-validation accuracies: A48-NL: 87.5%, A8-NL: 78.1% and SNL: 94%. We see
that, unlike the case in adjectives, directly learning the mapping from appearance
to nouns performs better than using the affordances of objects. This suggests
that the affordances of the objects (used in our experiments) are less descriptive
for the noun labels we have used. The dependency results for nouns (similar to
the ones in adjectives shown in Tables 1 and 2) are not provided for the sake of
space.
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Results on Nouns of Novel Objects. Table 5 shows the results obtained on
novel objects. Unlike the case in adjectives, the simple learner (SNL) significantly
outperforms the A48-NL and A8-NL models. Hence, we conclude that the set of
nouns (cup, cylinder, box, ball) we have are more of appearance-based.

5 Conclusion Table 5. Noun prediction for novel objects using
3 different models (see Table 4 for pictures of the
objects)

ID A48-NL A8-NL SNL

1 box (74 %) cylinder (42 %) box (97 %)

2 ball (83 %) ball (44 %) ball (97 %)

3 cylinder (87 %) cylinder (39 %) cylinder (95 %)

4 box (94 %) cylinder (38 %) cylinder (86 %)

5 box (89 %) cylinder (35 %) box (94 %)

6 cup (89 %) cylinder (44 %) box (46 %)

7 box (89 %) box (32 %) box (93 %)

8 cup (89 %) cylinder (44 %) cup (98 %)

We proposed linking affor-
dances with nouns and ad-
jectives. Using its interac-
tions with the objects, iCub
learned the affordances of
the objects and from these,
built different types of SVM
models for predicting the
nouns and the adjectives for
the objects. We compared
the results of learning nouns
and adjectives with classifiers
that directly try to link nouns and adjectives with the appearances of objects.

We showed that, by using learned affordances, iCub can predict adjectives
with more accuracy than the direct mode. However, for the nouns, direct meth-
ods are better. This suggests that a subset of adjectives describing objects in a
language can be learned from the affordances of objects. We also demonstrated
that explicit behavior information in learning adjectives can provide better rep-
resentations. It is important to note that these findings are subject to the sen-
sorimotor limitations of the robot, which are maintained by the number and
the quality of the behaviors and the properties of the perceptual system. For
example, had we included a behavior to try to fill objects with some liquid, the
cups concept would be much easier to be formed and predicted. A sample video
footage can be viewed at http://youtu.be/DxLFZseasYA
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Abstract. This paper focuses on learning and adaptation of sensorimotor con-
tingencies. As a specific case, we investigate the application of prism glasses,
which change visual-motor contingencies. After an initial disruption of sensori-
motor coordination, humans quickly adapt. However, scope and generalization of
that adaptation is highly dependent on the type of feedback and exhibits markedly
different degrees of generalization. We apply a model with a specific interaction
of forward and inverse models to a robotic setup and subject it to the identical
experiments that have been used on previous human psychophysical studies. Our
model demonstrates both locally specific adaptation and global generalization in
accordance with the psychophysical experiments. These results emphasize the
role of the motor system for sensory processes and open an avenue to improve on
sensorimotor processing.

Keywords: Sensorimotor contingencies, prism-adaptation, motor learning/
adaptation, body maps, inverse kinematics.

1 Introduction

Humans adapt easily to changes in sensorimotor coordination during development and
adulthood. A remarkable demonstration is adaptation to prism glasses that displace the
visual field horizontally by a constant angle. Despite such drastic changes of a sensori-
motor relationship, eye-hand coordination quickly adapts [6].

This is, however, not a passive process but requires active exploration [4, 5]. Prism
adaptation is specific to the involved body parts [7, 15] and actions [1, 7, 16]. The
adaptation to changed sensorimotor dependencies therefore appears to crucially de-
pend on the ability to relate one’s own motor actions to their observed sensory conse-
quences. This bears a striking resemblance to the concept of sensorimotor contingencies
(SMC) [11], which also stresses the importance of action for perception [3]. The case

T. Ziemke, C. Balkenius, and J. Hallam (Eds.): SAB 2012, LNAI 7426, pp. 341–350, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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of prism adaptation is well investigated and therefore may serve as a prime example for
investigating how the brain achieves “mastery of a sensorimotor contingency” [11].

When prisms are donned, subject’s pointing movements are offset due to the visual
displacement. However, with repeated movements this offset diminishes and original
performance restores. When subsequently the prisms are removed, pointing movements
are offset in the opposite direction. This aftereffect, i.e. the difference in pointing be-
tween pre- and post-exposure, is a convenient measure of the degree of adaptation.

The adaptation is thought to combine two separate processes: Recalibration and re-
alignment [15]. Recalibration is believed to utilize a cognitive learning strategy that
quickly reduces pointing errors. The effects of recalibration are local to specific actions.
Recalibration is quantified by the aftereffect measured with the identical movement
that was carried out during the prism exposure phase [15]. Realignment, in contrast,
is thought to be an automatic process that aligns, for example, visual and propriocep-
tive maps. It reveals a global generalization of adaptation to new pointing targets and
actions. Realignment is measured by actions not practiced during prism exposure.

Redding and Wallace observe that the realignment effect is modulated by differ-
ent kinds of feedback during exposure. When participants could see their own hand-
movement (concurrent feedback) during exposure, Redding and Wallace [15] observed
a small shift of “visual straight ahead” and a large shift of “proprioceptive straight
ahead”. This pattern was reversed when participants could only see the end-position of
their hand (terminal feedback) during exposure. Related to this, Redding and Wallace
found that the aftereffect generalized differently to targets not shown during exposure.
Specifically, concurrent feedback produced aftereffects that increased for targets in the
direction of the prismatic shift, whereas they decreased for terminal feedback. Both re-
sults are explained by two different references: During concurrent feedback the visual
system acts as a reference and the proprioceptive system is aligned to it and during
terminal feedback the situation is reversed.

In this paper, we investigate properties of recalibration and realignment and their
dependence on different types of feedback. For this purpose, a computational model
of prism adaptation is developed for the control of a simulated robotic arm and sub-
jected to the identical experiments focused on eye-hand coordination of the previous
psychophysical study [15]. Specifically, we test the hypothesis that the different forms
of adaptation aftereffects can be described in a unified approach based on the concept of
sensorimotor contingencies. We take as our starting point that adaptive agents have to
relate changes in perception to their own actions. At the same time we strive for a com-
putational description of recalibration and realignment to foster our understanding of
sensorimotor adaption and for facilitating the development of versatile robotic agents.
The ability to quickly learn eye-hand coordination from own experience makes manual
calibrations redundant, which is interesting, for instance, for robotic grasping [12].

2 Computational Model of Prism Adaptation

The contingency between sensory and motor signals involved in pointing movements
is captured by forward and inverse-kinematic models. The forward model defines the
position of the effector, e.g. the hand, based on the joint angles of the arm. The inverse-
kinematic model provides the joint configuration of the arm necessary to reach a
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Fig. 1. Theoretical model, including three sub-modules: the visual shift, the forward model, and
the inverse model. Based on visual and proprioceptive observations, the model estimates the
action to get the end effector to the target pose. All three sub-modules learn on-line using the
sensory consequences of the executed action as observed by the system itself. Information flow
for control is indicated by solid arrows, and the flow for learning by dashed arrows. The variables
are explained in the text.

specific target, and thereby allows direct control of a robot. Motivated by [2, 10] and
in accordance with the SMC theory [11] we use a differential inverse-kinematic model
that generates the action necessary to reach a desired change in visual position of the
end-effector. Given a current joint configuration, q, and a desired change in pose of the
end effector, ẋ, the necessary change in joint angles, q̇, is determined by the model, ex-
pressed by the mapping (q, ẋ) �→ q̇. For small enough changes, the optimal gradient
q̇ for any given state q is well defined and resolves ambiguities inherent in inverse-
kinematics.

When the robotic system is subject to changes, for instance, due to mechanical wear
or damage or adaptation to prisms, the forward and inverse mappings are not fixed, but
changes over time. This calls for adaptive systems that can learn and adapt the inverse-
kinematics model from own experience [9]. Others have used, for instance, locally-
weighted projection regression [2, 17], Gaussian-process regression (GPR) [13], and lo-
cal Gaussian-process regression [10]. Here we use Gaussian-process regression (GPR)
to learn the inverse kinematics, since it has the best reported performance [10, 13] at
the cost of higher computational load. But note, that the GPR can be easily substituted
by other regression methods, if real-time performance is more of an issue.

In total, our model consists of three sub-modules: the forward model, the inverse
model, and the visual-shift model (see Figure 1). In the following, we give the model
details of all components in turn.

2.1 Forward Model and Inverse Model

Based on the proprioceptive information pt, the forward model gives an estimation
of the pose of the end effector in visual coordinates xt at time t (see Figure 1). This
estimation is used when the end effector cannot be observed visually. The inverse model
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provides an estimate of the necessary action, at, for instance a change in joint angles,
based on pt and the desired change in pose, ẋd

t , which is determined based on the
difference between the target and the end effector, ẋd

t = τt − xt (see Figure 1).
Using GPR, an estimation is made of the functions at = f(pt, ẋ

d
t ) for the inverse

and xt = g(pt) for the forward model, based on a set of training examples, which
the system acquires from own experience. GPR has a few hyperparameters, including
{λ21, . . . , λ2D}, which are the characteristic length-scales of the different dimensions of
the squared-exponential kernel, where D is the dimensionality of the input to the GPR.
The hyperparameters are learned from data by maximizing the marginal likelihood. For
details on GPR, we refer to [13].

Recency Effect. A problem with a standard GPR implementation of the forward and
inverse models is that adaptation to changed SMCs is slow. When prism glasses are
donned, the old training samples contribute as strong to the estimation as the new sam-
ples, which results in a rather slow adaptation. To increase speed of adaptation and to
intensify the aftereffect, we include a forgetting mechanism using a recency effect, such
that more recent training data make a stronger contribution to the estimation. Specif-
ically, we add a time dimension to the input, resulting in input zi = {p, ẋ, t} for the
inverse, and zf = {p, t} for the forward model, both with a time constant λT . This
characteristic length-scale parameter is not included in the optimizing of the hyperpa-
rameters, but instead used as a free parameter to control the recency effect, which is
strong for low values of λT , whereas for λT → ∞, the effect is absent.

Execution and On-Line Learning. The Gaussian process regressors that implement
the inverse and forward models are continuously updated while the robot performs its
task, thus on-line learning the eye-hand coordination. In execution, the GPRs are used
to predict the output of the models based on the SMC experience, resulting in an ac-
tion. When the robot executes this action, it results in a movement of the arm. The
system then observes the visual and proprioceptive consequences of that action and
uses the observation of these new SMCs as training samples. In case of the forward
model, the training data is {pt+1,xt+1, t}. The training data for the inverse model is
{pt, ẋ

o
t , at, t}, where ẋo

t = xt+1 − xt is the observed change in end effector.

2.2 Visual-Shift Model

The visual system provides information about the pose of the end effector and the target
in visual coordinates. The visual-shift model applies a transformation,T , to these visual
observations, so that the retinotopic (or camera) coordinate system is transformed into
an internal visual coordinate system: x = T (xr) and τ = T (τ r), where xr

t is the pose of
the end effector and τ rt the pose of the target, both in the retinotopic coordinate system.

The transformation T is updated based on the visually observed error in pointing,
which is caused by the error of the model in predicting the effects of the applied action.
T needs to counterbalance the visual transformation caused by the prism glasses. This
can be done in different ways, but since in our experimental setup (see Section 3.1),
the prism effect causes a rotation of visual observations, we chose to implement T as
a rotation of the visual coordinates as well: x = T (xr) = Rθ · xr, where the rotation
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matrix Rθ applies a rotation over θ. The rotation angle θ is updated by the system
at the end of each movement by θt+1 = θt + η · ε, where ε is the visually-observed
terminal error. This error is based on the angular difference between the desired pose
of the end effector at the end of the trajectory, τM , and the actual pose observed by the
system after movement, xM+1: ε = ∠τM − ∠xM+1, where M is the last time step in
the action sequence. η ∈ [0, 1] is the transformation learning rate, which determines the
influence of the visual-shift model in the complete adaptation system.

2.3 Concurrent and Terminal Feedback

As in [15], we distinguish two different types of feedback: concurrent and terminal. In
the first case, the end effector is continuously observed visually to obtain the internal
pose xt, which is used by the inverse model to determine the action. This forms a visual
closed-loop control system, where the effect of the action is visually observed and used
in the next iteration. In the terminal-feedback condition, there is no visual closed-loop
control, since the internal pose of the end effector is estimated based on proprioceptive
information using the forward model. As a results, there will be a difference in terminal
pointing error in the two conditions when SMCs are altered through prism exposure.

Another consequence of the feedback condition is the available data to train the
inverse and forward model. In case of concurrent feedback, the new SMCs can reliably
be observed over the complete trajectory. However, in the terminal condition, the SMCs
related to the individual actions need to be estimated from the terminal feedback and
will be incorrect due to the non-linear relations involved. We generate training data
in the terminal-feedback condition by interpolating the internal visual pose of the end
effector based on the visually observed end pose and the start pose estimated by the
forward model.

3 Experiments

3.1 Simulation and Model Setup

We use a 2D simulated robotic setup to test our computational model of prism adap-
tation, see Figure 2a-c. The setup consists of a two degrees-of-freedom arm, a vision
sensor observing the 2D position of the end effector, xt = {xxt , x

y
t }, and the target,

τt = {τxt , τ
y
t }, and proprioceptive sensors in each of the joints, pt = {p1t , p2t} giving

information about the joint angles. In this setup, an action is a change in joint angles,
at = q̇t. The visual observations are made from the bird’s-eye perspective. In the ex-
periment, pointing is done at two different heights, high and low, causing different arm
poses during pointing. To experiment with the similarity of different poses, we add an
arm-pose dimension to the input of the GPRs, with an associated length-scale parameter
λP, which is by default set to 2.0 unless stated otherwise.

In a pointing trial, a target is positioned at a specific angle with respect to the
robot. The system observes the target’s position, g, and then plans a target trajectory,
{τ1, . . . , τM}, whereM = 5 is the number of actions involved in the pointing trajectory
(see Figure 2d). The prism glasses are implemented as a rotation of the visual coordi-
nates, so that yr = Rγ ·yt, where yt is the true position, yr is the position in retinotopic
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Fig. 2. Experimental setup. a) The robot has joint angles qt, the end effector is at true pose xt
t,

and the target at true pose τ t
t . However, this information is not known to the system. Instead, the

system observes (dotted lines) the proprioceptive signals pt, and the retinotopic coordinates of
the end effector xr

t and the target τ r
t . The model will suggest an action, which will change the

joint angles. b) At first, the SMCs will not be correctly learned, and the action will result in an
incorrect movement of the arm. c) After some time, the model will correctly estimate the action,
so that xt+1 ≡ τt. d) Based on the visual target at position g, the system plans a target trajectory
giving a set of intermediate targets {τ1, . . . , τM}.

coordinates, and Rγ is a rotation matrix applying deviation angle γ. The application of
the virtual prism glasses effects all visual observations, that is the observation of the
end effector and the target.

We set the recency effect used in the forward and inverse models to λT = 1000,
and the transformation learning rate to η = 0.35. These parameters change the slopes
of the learning curves and the influence of the forward and inverse models versus the
visual-shift model. The general results are robust to small changes in these values.

3.2 Experimental Setup

To compare the performance of our model to psychophysical data, we adopt the exper-
iments performed by Redding and Wallace [15]. The task of the system is to point to
visual targets. In the experiment, two different starting positions are used. In the proxi-
mal starting position, the end effector starts at the origin, and with a low arm pose. The
distal starting position is halfway to the target, and with a high arm pose.

When the system has been initialized, as described below, we perform two sets of
pre-tests, one for realignment and one for recalibration, to measure the performance
before prism exposure. The prisms are then turned on in the simulation by rotating the
visual observations over the origin with an angle of 11.4o. Under prism exposure, the
system performs 12 consecutive pointing movements from the distal starting position
with either concurrent or terminal feedback. After that, the prisms are switched off, and
the recalibration and realignment tests are performed again as post-tests. No adaptation
learning is going on during the pre- and post-tests.

The realignment tests consist of a visual-shift test, a proprioceptive-shift test and a
total-shift test, and are all done from the proximal starting position, i.e., different from
the starting position during prism exposure. In the visual-shift test we measure subjec-
tive straight-ahead, by reading out −θ, the negative value of the applied transformation
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in the visual-shift model. The proprioceptive-shift test measures proprioceptive straight
ahead by having the system point without a visual target. To do so, the system sets a
virtual target at 0o in internal coordinates. Finally, during the total-shift test, a visual
target is presented at different angles {−20o,−15o, . . . , 20o}, and the system points to
the targets. Pointing is always done without visual feedback.

The recalibration test is similar to the total-shift test, but the system is tested with
the distal starting position, i.e., similar to the starting position during prism exposure.
Moreover, we perform the test using different values for λP, to change the level of
similarity in arm pose between distal and proximal starting conditions.

An experimental trial starts by initializing the system. The robot initiates 300 random
movements in different parts of the work space and using the two different arm poses.
Next, the system specializes on the pointing task by performing 24 pointing movements
of M = 5 actions, using three different target positions (at -15o, 0o and 15o) and
two different arm poses. Since this initialization is a noisy process and influences the
performance of the system during the experiment, we repeat the experiment 20 times
and report the mean values and 95% confidence intervals.

4 Results

Adaptation of pointing during prism exposure for the concurrent and terminal feedback
condition is shown in Figure 3. In both conditions, the system quickly adapts to the
prism effect, demonstrating accurate pointing behavior after 8 pointing trials. The error
in the terminal condition is considerably larger than in the concurrent condition, which
is expected, since the trajectory can be adjusted during pointing in the concurrent case.
Negative error values can be observed in later pointing trials, showing overcompensa-
tion by the model, which is due to the collaboration of the forward and inverse models
with the visual-shift model. These results correspond well with the psychophysical re-
sults observed by Redding and Wallace [15].

The size of the realignment aftereffect is shown in Figure 4. There is a clear dif-
ference in visual shift and proprioceptive shift between the concurrent and terminal
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condition, matching the psychophysical results [14, 15]. The visual shift is small in the
concurrent condition and large in the terminal condition. In the proprioceptive test, the
aftereffects are reversed, with a large effect in the concurrent and a small effect in the
terminal condition. The total aftereffects are approximately the sum of the visual- and
proprioceptive aftereffects.

To investigate the generalization over space, we next investigate the total-shift (re-
alignment) aftereffects as a function of target position for concurrent and terminal feed-
back (see Figure 5). With concurrent feedback, the aftereffect shows a positive slope
towards the prismatic shift (11.4o), whereas with terminal feedback, the curve shows a
slight negative slope. This matches the psychophysical results [15].

Generalization over different actions is investigated by the aftereffects for the to-
tal shift and recalibration tests with proximal and distal starting position as shown in
Figure 6. We use four different levels of similarity between the arm pose at those two
starting positions, λP = {4.0, 2.0, 1.0, 0.5}, where a higher value is a higher level of
similarity. The results for the concurrent and terminal feedback condition are combined,
as was done in [15]. The aftereffect is largest when the starting position is identical to
the exposure phase, that is, the distal position. The curves for the distal position show
a local generalization effect, with lower values for target positions that have not been
used during prism exposure. This can be explained by the local learning in GPR used
in forward and inverse model. The curves for the proximal position are more flat, indi-
cating a more global generalization effect caused by the visual-shift model. Reducing
the similarity in arm pose between exposure condition (distal) and the proximal con-
dition during recalibration testing, i.e., lower values of λP, results in lower and more
flat curves, indicating that aftereffects are weaker and mainly dominated by the global
effect. These results correspond with psychophysical observations [1, 15].

5 Discussion

We presented a computational model capable of learning the sensorimotor contingen-
cies involved in pointing, and of adapting to changes in these contingencies. Moreover,
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it accounts for the observations made in human prism-adaptation studies [1, 14, 15],
i.e. adaptation is achieved jointly through a specific local and a general global effect.
Whereas local adaptation, or recalibration, is specific for the sensorimotor contingen-
cies involved in the trained action, realignment, shows a global effect and generalizes
to different actions

Using two feedback conditions, the realignment shows fundamentally different af-
tereffects for visual and proprioceptive tests. Where the visual shift is small and the
proprioceptive shift is large for concurrent feedback, the reverse is true for terminal
feedback. In our model, the visual shift is larger during terminal feedback because the
observed pointing error at the end of the terminal feedback trials is larger compared to
concurrent feedback trials. During concurrent feedback the end effector is continuously
observed and the pointing error can be reduced while the movement is executed. In
contrast, the results for the proprioceptive test are explained by the forward and inverse
models. Since the sensory consequences of actions are directly observable in the con-
current condition, low-error training data is available which leads to quick adaptation
of the inverse model and thus a large proprioceptive after effect. In the terminal condi-
tion, these training data need to be estimated based on the terminal observation, causing
them to be less correct.

Our model gives a different explanation of prism adaptation compared to Redding
and Wallace [15]. Where they consider recalibration to be a cognitive learning strat-
egy and realignment to be an automatic process aligning different spatial maps, our
model solely consists of automatic and low-level processes. Although cognitive strate-
gies are an equally valid explanation, our model shows that similar effects can be
reached with a simpler mechanism. Furthermore, in our case, the model does not in-
clude an explicit proprioceptive-shift model. Instead the results for the proprioceptive-
shift test can be explained by adaptation of the forward and inverse models to changed
SMCs. The presented model offers a potential system implementation for learning
sensorimotor contingencies and emphasize the importance of the motor system for
perception [8].

Currently, we assume a setup with a fixed eye-head system. However, in humans,
both eye-head and head-hand systems are involved. The presented work is a first step
towards modeling both systems. The current model is not able to learn multiple senso-
rimotor mappings. To account for dual adaptation effects observed in alternating prism-
exposure experiments [18], future additions to the model will be necessary.

The model presented is directed at fostering our understanding of human adaptation
as well as to improve on the current state of robotic systems. Inverse-kinematics learn-
ing with regression models has already been addressed by others, see e.g., [2, 9], but
the addition of a recency effect and the synergy with the visual-shift model results in a
fast adaptation to changes in sensorimotor contingencies.

Acknowledgments. This work was supported by the EU through the project eSMCs
(FP7-IST-270212), and by the Swedish Foundation for Strategic Research.
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dimension. The American Journal of Psychology 72(4), 603–605 (1959)

[6] Kornheiser, A.: Adaptation to laterally displaced vision: A review. Psychological Bul-
letin 83(5), 783–816 (1976)

[7] Martin, T., Keating, J., Goodkin, H., Bastian, A., Thach, W.: Throwing while looking
through prisms. ii. Specificity and storage of multiple gaze-throw calibrations. Brain 119(4),
1199–1212 (1996)
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Abstract. In this paper we present a developmental framework to carry
out goal-oriented learning in a low-dimensional space. The framework
uses two stages of learning: one to synthesise a set of motor synergies
and reduce the dimensionality of the control space in an unsupervised
manner, and another to carry out supervised learning in the reduced
control space. We test our framework in a reaching task carried out on a
(real) tendon-driven robot actuated by four artificial muscles. Our results
show that the robot is capable of learning to reach using a reduced control
space using no prior information about its body apart from that inherent
to the unsupervised and supervised learning rules.

1 Introduction

Current theories of biological motor control in mammals feature almost invari-
ably some kind of hierarchical and modular architecture, where low-level motor
primitives (also called stored motor programs, motor units, or muscle synergies),
are combined by higher-level mechanisms to produce coordinated behaviour [4]1.
In this context, one of the most prominent areas of research is the identification
of motor primitives. This process typically entails some form of factor analysis
(e.g. PCA) applied on sensory and motor data collected during behaviour, the
outcome of which results on a small number of abstract control units which can
explain the behavior of the animal in statistical terms. However, the presence
of this statistical units in the animal is difficult to justify or validate, and many
open questions remain of whether motor primitives are innate or can emerge
from experience [10], [7].

1 The research leading to these results has received funding from the European Com-
munity’s 7th Framework Programme FP7 Cognitive Systems, Interaction, Robotics -
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the robot platform used in our experiments.
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This question is paramount in artificial systems which make use of hierarchi-
cal motor architectures to solve issues of redundancy [11]. In artificial systems
motor primitives are typically enforced based on the designer’s intuition, and
established independently of mechanical considerations, to fulfill a certain func-
tional role (as in variants of the subsumption architecture [2]). But this solution
is neither convenient (as primitives are synthesised without following any general
principle), nor adaptive (as small unpredictable changes in the system dynamics,
or in its environment, might render the primitives useless). In principle, a motor
primitive should somehow reflect the regularities and the contingencies of the
system to be controlled, rather then being designed independently of the body
dynamics [8],[11], which is an argument often used in the field of developmental
robotics [1],[5].

In this work we will favour the term “motor synergies” over that of “motor
primitives” as the former highlights the co-activation of muscles required to
achieve a given task. We present a developmental framework that synthesises
a set of motor synergies guided by a self-exploration process. The number of
synergies obtained is directly given by the task dimensionality which is lower
than the number of actuated muscles. A supervised learning strategy is then
used to find the appropriate combination of these synergies and to achieve a
desired goal. Our framework has been tested successfully on a (real) tendon-
driven pendulum robot actuated by four artificial muscles, where the goal of the
robot is to reach to different targets in 2D space.

The reminder of this paper is organised as follows. The second section de-
scribes our developmental framework. The third section provides the implemen-
tation details of each mechanism in the framework. The fourth section describes
the experimental results. The fifth section concludes the paper and provides the
outlook of our research.

2 Framework Description

The schematic diagram of the framework proposed in this paper is shown in
Figure 1. The framework entails two stages of learning: one carried out by an
unsupervised learning process (ULP), and the other by a supervised learning
process (SLP). The former synthesises the motor synergies based on Hebbian
learning, while the latter uses the synthesised synergies to carry out goal-oriented
learning in the resulting reduced control space.

The ULP consists of four interacting mechanisms: a musculoskeletal system
(and its environment), a peripheral system, a mechanism capable of triggering
spontaneous muscle twitches (SMTs), and a Hebbian-learning mechanism. It
works as follows. First, SMTs produce spontaneous and independent contrac-
tions in individual muscles. Second, each of these contractions produces forces
which are propagated through the musculoskeletal system (as well as through
the environment where it is embedded). Third, the changes produced in the mus-
culoskeletal system are captured by the various sensor modalities, which (fourth)
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Fig. 1. The proposed developmental framework. The framework entails two processes
(divided by a dashed line): a unsupervised learning process (ULP) and a supervised
learning process (SLP); the former is shown in gray and the latter is shown in color
and it is enclosed by the dashed rectangle. The sequence of events in each process is
given by Ui for the ULP and Si for the SLP (see text).

convert them into sensor activity. Fifth, the correlation between the sensor and
motor activity is used to synthesise the motor synergies. We have used elsewhere
a variant of this scheme to self-organise spinal reflexes [7].

Once the motor synergies are synthesised they are used in the SLP. The SLP
consists of an iterative process which aims to identify the appropriate modula-
tion gains required to achieve a given goal. This process entails six mechanisms: a
peripheral and a musculoskeletal mechanisms (which are shared with the ULP),
a goal mechanism, a mechanism that processes the motor synergies, a modula-
tion mechanism, and an evaluation mechanism. It works as follows. First, a goal
is set in the system. Second, the parameters of the goal signals are modulated
(i.e. scaled). Third, the modulated signals activate the motor synergies, which
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Fig. 2. The experimental pendulum platform (a) and its schematic diagram (b)

combine the control of the individual muscles. Fourth the actuation of the dif-
ferent motors cause the musculoskeleton to move, which (fifth) induces sensory
stimulation (as in the ULP). Sixth, the novel sensor activity is evaluated with
respect to the goal. And seventh, the modulation gains are changed and the
process is repeated iteratively.

3 Implementation

3.1 Musculoskeletal System and Environment

Our musculoskeletal system consists of a single-joint pendulum actuated by four
artificial muscles (see Fig. 2). A camera placed at the bottom tracks the position
and velocity of the pendulum. Each muscle consists of a DC Motor a cable and
an elastic shock cord arranged in series (see [3],[6]). When the motor is actuated
in one direction it reels the cable and creates an analogue to a muscle contrac-
tion; when it is actuated in the opposite direction it allows for the muscle to
extend. Like their biological counterparts, the artificial muscles have asymmetri-
cal conditioning, i.e. they can only produce force when contracting but not when
extending. But unlike biological muscles, our muscles offer a strong resistance
to passive extension (i.e. when they are OFF). To overcome this difference we
implemented a force controller for each muscle which keeps it (actively) at a
minimum tension value when the muscle is supposed to be relaxed.

In both the ULP and the SLP the system starts with all the muscles re-
laxed, i.e. in minimum tension mode. In this condition the pendulum moves to
its resting position due to the effects of gravity. It is noteworthy that the us-
age of non-standard motors (the motors used are taken from cheap screw-drivers)
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combined with the minimum tension procedure introduces variances in the rest-
ing position of the pendulum. Nonetheless our architecture is robust to these
issues as demonstrated by the results described in Sec. 4.

3.2 Peripheral System

The peripheral system provides the interface between the physical system and
the neural (or computational) apparatus; it includes the sensory as well as the
motor elements. In our platform, the sensory signal is a 2-element row vector
which contains the velocity of the pendulum (obtained from the camera) in
the two axes, Ṡ = {ẋ, ẏ}. The derivatives have been filtered using the Savitzky-
Golay-filter of 3rd order using a window size of 51. The motor system is 4-element
row vector which defines the activity, Mi, of each muscle.

3.3 Unsupervised Learning Process

The single muscle twitches (SMTs) consist of short and spontaneous contrac-
tions of single muscles. In mammals this type of motor activity has been ob-
served before birth as well as after birth, during sleep [9]. In our experiments
the generation of SMTs is done by sequentially twitching one muscle after the
other (each muscle is twitched 20 times). Each twitch consists of a square signal
of amplitude Mi = 4V and duration 0.5s. We have tested different combinations
of amplitude and duration and no qualitative impact has been observed on the
results presented here.

The Hebbian learning mechanism allows to identify the motor synergies based
on the correlation between sensor and motor signals during the SMTs . All
possible combinations between sensor and motor elements are considered. The
motor synergies are described by a single matrix P :

Pi,j = ηij

T∑
t=1

Mi,t · Ṡj,t+L, ηi,j = M̄i

[
max(Ṡ)

T∑
t=1

Mi,t

]−1

(1)

where, P is a 4 × 2 matrix containing information about which motors can be
recruited to produce a given sensor activation (positive or negative), ηij is a
scaling factor, T is the number of time samples, Mi,t is the value of the motor
signal M at time sample t, M̄i is the maximum twitch amplitude of muscle i,
Ṡj,t is the value of the sensor signal j at time sample t, and L is the lag between
sensor and motor activity (obtained a priori through direct measurements).

3.4 Supervised Learning Process

In our platform a controller without motor synergies would require a four control
signals (one for each motor); the use of muscle synergies reduces the number of
controlled variables to only two. This paper investigates a reaching task, where
the goal consists of a 2-element row vector, S∗ which is defined by S∗ = Sd−S0,
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Fig. 3. The raw sensor data collected during the ULP. The data is shown for the x
(a-d) and y (e-h) sensor values for SMTs carried out in M1 (a,e), M2 (b,f), M3 (c, g),
and M4 (d,h). Each plot shows the mean and standard deviation of the sensor data for
20 SMTs triggered by the respective muscle. The filled rectangle shows the duration
of the twitch.

where Sd is the desired target position of the pendulum, and S0 is the position
of the pendulum at the beginning of each iteration.

The role of the modulation mechanism is to scale the goal signal. Intuitively,
a simple multiplication between the goal signal, S∗, and the motor synergies P
will move the pendulum in the direction of the goal (see next section). The mod-
ulation mechanism allows the amplitude of the movement in the target direction.
The modulation mechanism is then given by:

φ = α⊗ S∗ (2)

where φ is 2-element row vector containing the the modulated goal signals, α is
a 2-element row vector containing the modulation gains, and ⊗ is the operator
for element-wise multiplication.

The motor synergies are responsible to transform the modulated goal signal
into individual motor activity. This is done by:

M = Pφ (3)

The motor signals obtained are activated for a fixed period of time. Here, we used
the same time as that used for the twitch duration, i.e. 0.5s. At the end of each
iteration the evaluation mechanism is used to measure the error, e, obtained
between the goal vector, S∗, and the movement vector, S′

k, achieved by the
pendulum at the end of each iteration. This is given by S′

k = Sk − S0, where Sk

is the final position at the end of iteration k. The error in each sensor signal, S,
is used to modify the gain parameters according to a gradient descent scheme:

αk+1 = αk − τ · e, e = (S∗ − S′)⊗ S∗ � |S∗| (4)
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Fig. 4. The filtered and derived sensor data collected during the ULP. The data is
shown for the Ṡx (a-d) and Ṡy (e-h) sensor values for SMTs carried out in M1 (a,e),
M2 (b,f), M3 (c, g), and M4 (d,h). Each plot shows the mean and standard deviation
of the filtered and derived sensor data for 10 SMTs triggered by the respective muscle.
The filled rectangle shows the duration of the twitch.

where αk is the gain vector at iteration k, τ is the learning rate (set to 0.15
in our experiments), e is the estimated error in the two dimensions (x and y),
� is the operator for element-wise division, and |S∗| is the absolute value of
the elements in vector S∗. The error is calculated as the difference between the
desired movement vector, S∗, and the vector achieved S′

k; the division between
S∗ and |S∗| enforces the pendulum to move in the same direction as the target.
Note that the only parameters that are being modified during the SLP are the
scaling factors, αk, the dimensionality of which is the same as that of the goal
S∗ and it is independent of the number of muscles needed to achieve the task.

4 Results

The raw sensor signals S, collected during the ULP are shown in Fig. 3. Each
plot shows the mean and the standard deviation of x and y sensor values for
a total of 20 SMTs carried out in each muscle. As can be seen SMTs carried
out by M1 increase both the x and y positions of pendulum with respect to
the camera. In contrast, SMTs carried out by M2 increase the x position of the
pendulum and decrease the y value. The filtered and derived sensor signals Ṡ
are shown in Fig. 4. As can be observed the profiles match those in Fig. 3; the
activation ofM1 produces a positive velocity in both the x and y axes, while the
activation of M2 produces a positive velocity in x and a negative velocity in y.
It can also be observed that the relative sensor change is different for each muscle;
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Fig. 5. The motor synergies synthesised during the ULP (a) and the reaching error
obtained for the SLP (b-c). a) filled squares represent positive connections and empty
squares represent negative connections. The strength of each connection is represented
by the size of the respective square, b) the error (mean and standard deviation) ob-
tained for each iteration of the SLP, c) the interpolated error as function of the target
position.

for example, SMTs produced by M1 reach x velocities with smaller amplitudes
than those produced by M2 in the same axis. This is relevant because these
amplitudes ultimately affect the weights, Pi.j which define the motor synergies.

Matrix P is shown in Fig. 5a (depicted transposed). The resulting connectivity
obtained is consistent with the Hebbian learning rule applied to the data in
Fig. 4, both qualitatively and quantitatively. From the qualitative point of view,
we obtain positive connections between M1 and both Ṡx and Ṡy signals; this
is consistent with the positive velocities reached in both x and y during SMTs
produced by M1. Negative connections can be seen for example between M2

and Ṡy; this is consistent with the negative y velocity achieved during SMTs
produced by M2.

From the quantitative point of view, the connectivity strength is consistent
with the signal amplitudes shown in Fig. 4; for example, the connection between
M2 and Ṡx is stronger than that between M1 and Ṡx, which is consistent with
the observation that SMTs carried out by M2 reach higher amplitudes in Ṡx

than those carried out by M1.
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Fig. 6. The motor recruitment as a function of the target position in polar coordinates

Once identified the sensor and motor connectivity using the ULP, we test
the SLP by setting a grid of 25 target points and allow the system to make 20
attempts towards each target (each attempt is an iteration in the SLP). The
targets are disposed in a grid which tries to maximize the real workspace of the
pendulum. At the end of each iteration all the muscles are reset to the minimum
tension value to allow the pendulum to move back to its resting position.

Figure 5b shows the mean and the standard deviation of the error achieved
when reaching the 25 targets as a function of the iteration step, k. The results
show that average of the error decreases rather steadily, although a few error
increases can be observed (e.g at iteration 17). These can be explained from 1) the
uncertainties of our DC motors, and 2) the fact that the starting position of the
pendulum is different at each iteration step (see Section 3.1). The distribution of
final error achieved for each target over the entire workspace is shown in Fig. 5c.
The smaller errors at the extremities of the workspace can be attributed to the
higher precision of the motors when larger voltages are applied.

Figure 6 shows the recruitment of each artificial muscle as a function of the
target angle and the target distance. As can be seen the recruitment of each
muscle is consistent with its direction of applied force. For example, motor M1,
which pulls in the positive x and y directions (see Figs. 4a,d) is mostly active for
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targets located at 45◦. In addition, all the motors are mostly active for targets
which are farther away, which is in fact expected. Conversely, all the motors
are mostly inhibited for targets aligned with the direction of force but located
contralaterally to the muscle (e.g. the inhibition of M1 at 210◦).

5 Conclusion

In this paper we have presented a developmental framework to carry out goal-
oriented learning in a reduced dimensional space. Our framework was tested in
a 2D reaching task carried out by a tendon-driven pendulum robot actuated
by four artificial muscles. Our results show that our framework is capable of
synthesising a set of motor synergies in an unsupervised manner and combined
them effectively to accomplish the proposed reaching task. At the moment we are
investigating the use of interpolation methods to generalise the target positions
in the task space.
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Abstract. Autonomy and adaptability are key features in the design
and construction of a robotic system capable of carrying out tasks in
an unstructured and not predefined environment. Such adaptability is
generally observed in animals, biological systems that often serve as in-
spiration models to the design of robots. The autonomy and adaptability
of these systems partially arises from their ability to learn.

This work proposes a mechanism to enable a quadruped robot to
detect and avoid an obstacle in its path. The detection is based on a
Forward Internal Model trained in real-time to create estimations about
the robot’s perceptive information. In order to avoid tripping on an ob-
stacle, the detections are used to create a map of responses that will
change the locomotion according to previous experience.

Both learning tasks occur in real time and are combined together,
defining a Sensorimotor Map that enables the robot to learn to avoid an
obstacle.

Keywords: Adaptive robot controller, Autonomy in robotics,
Quadruped locomotion, Learning, Forward Internal Model, Biological
inspiration, Sensorimotor Map.

1 Introduction

Autonomy in a robotic system requires the adaptation to unexpected situations
without the need of recalibration or specific configuration of the surrounding
environment. In biological systems autonomy partially arises from their ability
to learn and adapt to the environment. Likewise, the construction of robotic sys-
tems may take advantage from these characteristics in order to produce adaptive
behaviors, allowing the robot to fulfill its task in a dynamical environment. In
fact, the design of robotic systems is often inspired in biology, both in terms
of mechanical features (quadruped, biped and hexapod robots), as in terms of
control concepts and structures (Central Pattern Generators, reflexes and neural
networks).

Robotic legged locomotion is also an intensive focus of investigation, namely
the generation of adaptive locomotion. The autonomy and adaptability associ-
ated with the advantages of legged robotic locomotion, as the ability to move in
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human environments, uneven terrain and overcome obstacles; could create ideal
robotic systems able to move and act in a dynamic environment.

Reflexes are a common way to seek adaptability when conceiving a legged
locomotion controller. Such type of approach usually does not rely in environ-
mental models, but in adapting to the necessary conditions of the environment.

Fukuoka and colleagues in [1] proposed a quadruped robot controller that uses
a neural controller composed of a Central Pattern Generator (CPG) and reflexes.
The system seeks to grant stability and energy consumption optimization. Later,
this work was extended to enable locomotion in natural ground by defining
additional reflexes to maintain the same level of stability. A similar approach to
the control that relies in CPG and reflexes is presented in [2], in which locomotion
is generated by the interaction of three different layers that operate at joint,
intra-leg and inter-leg coordination. The controller uses reinforcement learning
to trigger the reflexes in the quadruped robot BISAM.

Other works that address the generation of quadruped adaptive locomotion,
seek the coupling between the locomotion generator and the mechanical sys-
tem through sensory feedback. In [3] the cyclic sensory input defines a master-
oscillator-base CPG that drives the different joints, and in [4] an adaptive con-
troller tracks the resonant frequency of a quadruped robot with compliant knees.

In [5] the little dog is able to detect and select the best possible foot positions
of a rough terrain, using a classifier based on Support Vector Machines (SVM)
and Ada Boost, trained off-line. A different approach applied to the same robot
is presented in [6], addressing the problem of crossing a terrain with a high
level of roughness by breaking the problem down into simpler ones and solving
each at a time. Although efficient and with good results, both methods rely on
pre-processed information about the environment.

A Forward Internal Model (FIM) ([7]) translates the robot’s motor commands
into the consequent sensory changes. This enables the robot to evaluate its own
movements and state, as well as to perceive external disturbances in the envi-
ronment.

A FIM is also used in [8] to detect changes in the ground’s slope and enable
a tethered biped robot to stabilize itself by shifting its COM through an upper
body component. In [9] authors propose a control model based on Unit CPGs,
that enables a quadruped robot to quickly learn a stable locomotion. These are
simple reflexs and adaptive models that together control the robot’s movements;
a FIM is used to estimate the sensory inputs according to the motor commands,
thus enabling the robot to evaluate itself.

Obstacle avoidance is achieved in [10] by employing a FIM. A tethered biped
robot estimates disparity information using its own state during the locomotion
cycle and is able to discern the presence of the obstacle. A related work, [11],
learns the alterations to the locomotion that are necessary to enable a similar
robot to step over an obstacle.

Similarly to these works, we propose an adaptive controller for a legged robot,
that enables a robot to move and act in the environment with some level of
autonomy. However, we seek a specific goal: the robot has to learn to detect and
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Fig. 1. Mechanism architecture. The attention mechanism yields obstacle detections
and the adaptation mechanism learns to change the locomotion during the approach
to the obstacle.

to avoid an obstacle in its path. Furthermore, unlike most of the previous works
where the adaptation relies in off-line methods or predetermined reactions to
specific situations, one of our main concern was to achieve run-time learning of
the perception and actuation tasks.

The proposed system is partly inspired in [10, 11], and extends the authors
current work [12] in generating quadruped locomotion with a CPG controller. It
enables a quadruped robot to autonomously learn in real-time to detect obstacles
in its path through an array of range sensors and proprioceptive information, and
avoid stumbling on the obstacle by adapting its stride length when approaching
it. The detection is based on estimations about the range sensors, which are
computed by a FIM. In order to adapt the locomotion, the mechanism learns
the necessary alterations to the stride length. The learning relies on the obstacle
detections and the failed attempts to step over the obstacle. The output contin-
uously modulates the CPG’s amplitude, which results in changes in the stride
length during the approach to the obstacle.

2 Architecture Overview

The proposed architecture (fig. 1) is divided into two main mechanisms: i) the
attention and ii) the adaptation mechanism.

The attention mechanism is responsible for detecting the obstacles in the
robot’s path, and is composed by three layers as follows:

Raw. The Raw Layer receives the continuous inputs from the ns range sensors
and the nf proprioceptive information features (joint angles and foot sen-
sors), and divides both inputs, first according to each stride (n) and then
according to the np stride phases. This process yields two matrices: Rns×np ,
which correlates the distances scanned by each sensor i and moments of
the stride j (rij); and Pnf×np , which columns are defined by the vectors pj
(length nf ), referrent to the stride phases j. We want to stress the concept of
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a cell as an explicit relation between a distance sensed by one of the robot’s
sensors (i), and a moment of the stride (j). Here we define rij ∈ R as a cell,
and the same concept is present throughout the whole Mechanism, always
as a part of a matrix of dimensions ns×np. At each stride phase j this layer
outputs the range sensors values rj , and the proprioceptive information pj .

Prevision. In the Prevision Layer an estimation hij ∈ Hns × np is created for
each rij ∈ Rns × np, generating a difference value, dij ∈ Dns × np. These
matrices follow the structure defined before: each of its cells relates a distance
sensor (i) to a moment of the stride (j). If the difference (dij) between an
observed distance (rij) and the estimated value (hij) is high, then, something
changed in the environment (or eventually in the robot) that caused such
difference. There is a Least Mean Square (LMS) rule to compute each hij ,
which works as a Forward Internal Model (FIM), exploiting the movements
generated by the locomotion at every stride to estimate the changes in the
robot’s perception. The Prevision Layer outputs the difference for all sensors,
dj , during each stride phase j.

Novelty. The Novelty Layer evaluates each difference value dij ∈ Dnf×np ac-
cording to the reliability of the estimations (hij), and generates the obstacle
detection signals oij ∈ Onf×np accordingly. A threshold and a reliability
variable gij ∈ Gnf×np are used for that purpose. gij enhances the difference
value if the correspondent cell usually produces good estimations, or reduces
it otherwise. Thus, an obstacle is detected at by a sensor i durring the stride
phase j if oij �= 0. The reliability variables are updated according to the
difference value of its correspondent cell by a feedback mechanism, which
evaluates the performance and maintains gij within ]0, 1.2]. The resulting
obstacle detections oj are produced every stride phase j.

The adaptation mechanism acquires experience during the attempts to step over
the obstacle, addressing such situations in the future. This experience is built
based on the obstacle detection output by the attention mechanism, and the
triggering of learning signals, as follows:

Short Term Memory. The Short Term Memory cells (XSTM
nf×np

) are activated
taking into account the obstacle detections Onf×np , that is, if oij is activated,
so will xSTM

ij . The activated STM cells hold their values through time as a
register of an obstacle detected at a certain distance i and moment of the
stride j. This enables the relation of two different moments in time: the
detection and the encounter with the obstacle. The value of xSTM

ij decreases
exponentially with time, thus, the sooner an encounter occurs, the stronger
the signal in xSTM

ij will be.
Learning Signals. When the robot stumbles on the obstacle, a learning signal

δ is triggered, which indicates how the locomotion should be changed in the
future. Therefore, enabling such situation to be avoided. The type of response
depends on the moment of the stride in which the signal is triggered: if it is
during the paw extension phase (fig. 2:1), δ = −1, the stride length must be
reduced. If otherwise it happens during the paw placement phase (fig. 2:2),
δ = 1, the stride length should be increased.
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Weights. The weights wij ∈ Wnf×np hold the alterations to the stride length
and are computed when a learning signal δ is triggered. When the robot
detects the obstacle with the sensor i during the moment of the stride j, the
alteration to the locomotion, wij , is defined according to the magnitude of
the remains in xSTM

ij and the signal of δ. These weights belong to [−1, 1], and
their values are normalized so that their sum over all the ns range sensors
is ||wj || = 1.

Burst Length Neuron. The CPG’s amplitude is continuously modulated by
bl. This value is updated every stride phase j according to the experience
acquired so far in W for that stride phase wj , and the obstacle detection
signals oj . When an obstacle is detected by a distance sensor i and moment
of stride j, a synapse sij occurs between oij and wij , which indicates the
necessary alteration to the locomotion. At each stride phase j the synapses
of all sensors, sj , are used to update bl. After enough iterations, these changes
grant the robot the ability to avoid stumbling on the obstacle.

The equations that implement each of the described components are presented
in the appendix.

3 Results

The proposed architecture was evaluated in simulation using a quadruped robot
BioloidQuad with 3 DOFs in each leg. The BioloidQuad is equipped with a
set of 10 range sensors arranged in order to detect the obstacle ahead, as well
as touch sensors in the paws, in the front and back sides, and in the bottom
(fig. 2, respectively). The robot’s knee and hip-swing joints are driven by the
CPG presented in [12]. The hip-swing joints and the bottom touch sensors on
the paws define the proprioceptive information, which is used to indicate the
state of the robot’s locomotion cycle.

3.1 Simulation Setup

Results were obtained through a series of simulations that consist of several
trials. At each trial the robot starts walking at a determined distance from the
obstacle, located ahead to the right, obstructing the right foreleg. As the robot
walks, the obstacle is detected by the infra-red range sensors, up until the point
that the robot reaches the obstacle 0.85 cm tall and 0.3 cm wide. The goal is to
show that both the detection and the adjustments to the locomotion happen as
expected, as well as the ability for the whole system to achieve the desired goal,
that is to step over the obstacle without stumbling.

3.2 Adaptive Locomotion Evaluation

A typical simulation is depicted in fig. 2, with the robot executing several trials
walking towards an obstacle. In fig. 2:1 the robot faces the obstacle for the first
time and stumbles with the front of the paw. In the second trial (fig. 2:2) despite
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1 2 3

Fig. 2. In the first trial the robot tries to step over too close to the obstacle, so it
stumbles on it. On the second trial with the prior experience, it starts too far away
and collides with the obstacle after stepping over the obstacle. After the third trial,
with enough experience, the robot succeeds in stepping over the obstacle without any
collision.

the adjustment influenced by the previous trial, the robot still touches the obstacle
but nowwith the back of the paw.At the third trial the robot steps over the obstacle
without touching it. From the previous two trials, it has learnt how to adjust the
stride length in order to correctly approach and step over the obstacle.

Fig. 3 shows the values of a single cell throughout the different layers of the
proposed system. In this simulation the robot learns to avoid the obstacle after
three trials. Shaded areas separate the trials.

The raw data and the estimated values for each stride of that specific cell
are depicted in fig. 3:a (dashed blue and solid red, respectively). The visible
difference defines a candidate obstacle detection in the novelty layer (fig. 3:b,
solid blue) and will be evaluated according to the cell’s reliability value and filter
threshold. As cell previsions improve, these differences are accepted as obstacle
detections and output from the novelty layer (fig. 3:b, red dots). At each trial
the robot detects the obstacle at sensibly the same distance, observable by the
activations in fig. 3:b periodically in the shaded areas . These obstacles detections
are temporarily stored in the STM cells (fig. 3:c, blue dashed).

At the end of each trial the robot reaches the obstacle and a previously de-
fined mechanism for overcoming it is elicited. If the approach to the obstacle is
appropriate, the robot can overcome the obstacle without any collision. In this
simulation the robot collides with the obstacle three times, triggering three paw
extension learning signals (fig. 3:c, blue columns). Each triggered learning sig-
nal combined with the recent obstacle detection adjusts the corresponding cell’s
weight (fig. 3:d).

The modulation signal output by the mechanism in fig. 3:e is adjusted contin-
uously throughout the trial, resulting in different stride lengths (fig. 3:f). Positive
spikes at the end of each trial correspond to elicited step over. It is observable
that after a weight adjustment, the output modulation signal of the subsequent
trial changes. After the first weight adjustment, the mechanism produces an in-
creased negative modulation signal, which is fed to the CPG and reduces the
stride length during the approach to the obstacle. However that change is not
enough, and the robot still stumbled on the obstacle, triggering another learning
signal and altering the weights even further. The output signal becomes stronger
and the changes in the stride length become more pronounced.
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Fig. 3. Value of a single cell throughout the different components. Shaded areas sep-
arate the several trials. Raw data and prevision layer (a). Difference values and the
novelty signal (b). Short Term Memory and learning signals (c). Weight (d). Output
of the burst length neuron (e). Measured stride length (f).

3.3 Reacting to Activation Patterns by Experience

During the approach to the obstacle a specific set of cells is activated, as each
sensor detects the obstacle at a particular moment of the stride. If we consider
the aforementioned matrix structure, the activated cells form a specific pattern,
which we call an Activation Pattern (AP). The AP depends on the trial situation,
which is defined by the starting distance to the obstacle of each trial.

Fig. 4:left shows the triggered learning signals when the robot is faced with
two distinct APs, starting the approach to the obstacle at two distinct distances.
The mechanism learns to respond to the first AP (strides 0-200) and the second
as well (strides 200-325) - we can see the different responses in the output. After
this, the robot is able to avoid the obstacle in both situations regardless of the
AP the mechanism is being faced with (strides 320-600).

If in two trial situations, the obstacle distance differ in a multiple of the
nominal stride length, the resulting APs will be similar because the robot’s
locomotion is periodic. Therefore the approach conditions are the same, only
one stride length closer or further away. We demonstrate this feature in fig. 4,
right, where learning signals are only triggered in the first five trials, and the
learned adaptations are valid for both trial situations, switched alternatively
at stride 200, 320 and 450. As shown, the output signal is similar for the two
situations.
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Fig. 5. Learning signals concerning several possible APs. With 6, 7, 8 and 9, respec-
tively (a), (b), (c) and (d), and with 14 and 16 APs, respectively (e) and (f).

Further tests were made in order to evaluate the mechanism’s ability to re-
spond to several APs. As an AP is repeated according to the locomotion cycle,
the starting distances are randomly varied from within a stride’s length, plus a
base distance of 1 meter.

Fig. 5 presents the results using different possible starting positions. The
decreasing frequency of the activated learning signals demonstrates the learning
convergence. As visible in fig. 5, less APs means a quicker convergence and a
more robust learning process. When using 6 and 7 APs (respectively, 5:a and b),
the convergence is faster and the performance is maintained afterwards, since
the learning signals stopped. In the worse case, when using 14 and 16 APs
(respectively, fig. 5:e and f), despite an initial reduction in the learning signals,
the system appears not to be able to deal with this many possible conditions.
When faced with 8 or 9 (respectively, fig. 5:c and d) the mechanism is able to
achieve a good performance. However, it seems that the mechanism requires
sparse learning signals to keep avoiding the obstacle, nevertheless, it maintains
an acceptable level of performance.
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4 Conclusion and Discussion

The proposed architecture is able to successfully achieve real-time learning of ob-
stacle detection and obstacle approach to prevent stumbling. The robot is able
to discern the obstacles ahead resorting to the Forward Internal Model (FIM)
in the attention mechanism. Further, using these obstacle detections, the mech-
anism is able to gain experience from failed attempts to step over the obstacle,
and then use this experience to avoid those same situations. Both tasks were car-
ried out in real-time and kept active, enabling continuous adaptation. The robot
learns to detect and avoid obstacles in its path without explicit specification of
the obstacles, simply reacting to undesirable stimulus.

However, further tests indicated that there is a limit to the number of APs the
mechanism can deal with. Further and deeper knowledge about the relation that
should exist between the scanned distances and the stride division, as well as the
one that exists between the mechanism’s output and the actual alterations to
the stride length would give us better understanding to overcome this limitation.
Further work will also include the application of the proposed mechanism to a
real quadruped robot.
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Appendix: Mechanism Summary

Raw Layer Prevision Layer

Proprioceptive information divided into np

phases (P (n)). Perception raw data di-
vided into np and composed of ns elements
(R(n)). n is stride number.

D(n) = R(n)− L (P (n)).

L(P (n)) computes H(n) using a Least
Mean Square (LMS) rule.

Novelty Layer Short Term Memory

O(n) = (G(n)D(n))|th
G(n) = G(n− 1) + F (D(n))G(n− 1)αgf

Feedback mechanism F updatesG through
a gaussian function. αgf is rate of change.
th is threshold.

τSTMΔXSTM = −XSTM (n) +O(n)

τSTM = 1 + 2
1+el

l = XSTM (n) −O(n)

Weights Update Burst Length Neuron

ΔW = δXSTM (n) (|W (n)|+ c)αSTM

δ =

{
1 if paw placement,

−1 if paw extension.

c is a small constant that starts up
the learning task and αSTM is the rate of
learning.

τ bl dbl
dt

blj = −bl +
∑ns

i=1 sij

sij = wij(n)|xSTM
ij (n)|

Synapse sj is computed at evert stride
phase j. bl is the output to the CPG.
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Abstract. Reinforcement learning is typically used to model and opti-
mize action selection strategies, in this work we deploy it to optimize at-
tentional allocation strategies while action selection is obtained as a side
effect. We present a reinforcement learning approach to attentional allo-
cation and action selection in a behavior-based robotic systems. We de-
tail our attentional allocation mechanisms describing the reinforcement
learning problem and analysing its performance in a survival domain.

Keywords: attention allocation, reinforcement learning, action
selection.

1 Introduction

Beyond their role in perception orientation and filtering, attentional mechanisms
are considered as key mechanisms in sensorimotor coordination and action con-
trol. Indeed, in biological systems, executive attention and attention allocation
strategies are strictly connected with action selection and execution [5,7,10]. In
this work we explore this connection in a robotic setting deploying a reinforce-
ment learning framework. More specifically, we propose a reinforcement learning
approach to attention allocation and action selection in behavior-based robotic
system. Reinforcement learning (RL) is typically used to model and optimize
action selection strategies both in artificial [12] and biological systems [6,4,8].
In contrast, in this work we deploy RL to learn attention allocation strategies,
while action selection is obtained as a side effect of the resulting attentional
behavior. RL models for attention allocation have been mainly proposed for vi-
sual attentions and gaze control [1,9], here we apply an analogous approach to
executive attention considering the problem of a supervisory attentional system
[7] suitable for monitoring and coordinating multiple parallel behaviors. Our at-
tentional system is obtained as a reactive, behavior-based system, endowed with
simple, bottom-up, attentional mechanisms capable of monitoring multiple con-
current tasks. We assume a frequency-based model of attention allocation [11].
Specifically, we introduce simple attentional mechanisms regulating sensors sam-
pling rates and action activations [2,3]: the higher the attention the higher the
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resolution at which a process is monitored and controlled. In this framework, re-
inforcement learning is used to select the best regulations for these mechanisms.
We detail the approach describing the reinforcement learning problem and an-
alyzing its performance in a simulated survival domain. The collected results
show that the approach is feasible and effective in different settings. That is,
reinforcement learning applied to attentional allocation allows not only to re-
duce and focus sensor processing, but also to significantly improve sensorimotor
coordination and action selection.

2 Background and Model

2.1 Attentional System

Our attentional system is obtained as a reactive behavior-based system where
each behavior is endowed with an attentional mechanism represented by an
internal adaptive clock [2].

Fig. 1. Schema theory representation of an attentional behavior

In Figure 1 we show a schema theory representation of an attentional behav-
ior. This is characterized by a Perceptual Schema (PS), which elaborates sensor
data, a Motor Schema (MS), producing the pattern of motor actions, a Releaser
working as a trigger for the MS activation and an attention control mechanism,
called Adaptive Innate Releasing Mechanism (AIRM), based on a Clock regu-
lating sensors’ sampling rate and behaviors’ activations (if enabled). The clock
regulation mechanism represents our frequency-based attentional mechanism: it
regulates the resolution/frequency at which a behavior is monitored and con-
trolled, moreover, it provides a simple prioritization criterion. This attentional
mechanism is characterized by:

– An activation period pb ranging in an interval [pbmin, p
b
max], where b is the

behavior’s identifier. It represents the sensors sampling rate (i.e. how long
the sensors are not processed before the next reading).

– An monitoring function f(σb(t), pbt−1) : Rn → R that adjusts the current
clock period pbt , according to the internal state of the behavior and to the
environmental changes.

– A trigger function ρ(t, pbt), assuming a 0/1 value, which enables/disables the
data flow σb(t) from sensors to PS at each pbt time unit.

– Finally, a normalization function φ(f(σb(t), pbt−1)) : R → N that maps the
values returned by f into the allowed range [pbmin, p

b
max].
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The clock period at time t is regulated as follows:

pbt = ρ(t, pbt−1)× φ(f(σb(t), pbt−1) + (1− ρ(t, pbt−1))× pbt−1 (1)

That is, if the behavior is disabled, the clock period remains unchanged, i.e.
pbt−1. Otherwise, when the trigger function is 1, the behavior is activated and
the clock period changes according to the φ(f).

2.2 Reinforcement Learning for Attentional Action Selection

Given the attention mechanisms introduced above, our aim is to exploit a Rein-
forcement Learning (RL) [12] technique to regulate the monitoring functions.

Q-learning for attentional regulation. Our approach exploits Q-learning [14]
(QL) to produce a policy for attentional allocation. In this context the learning
problem can be cast as follows. For each behavior, we introduce a suitable space
state S while the action space A represents a set of possible regulations for its
clock. In this paper, we assume that this set spans a discretized set of possible
allowed periods P = {p1, . . . , pn}, i.e. A coincides with P . Since the current state
s ∈ S should track both the attentional state (clock period) and the perceptive
state (i.e. internal and external perceived status), this will be represented by a
pair s = (p, x), where p ∈ P is the current clock period and x ∈ X is for the cur-
rent perceived status. Then, an attentional allocation policy π : S → P defines a
mapping between the current state s and the next attentional period p. Given a
reward function R for each behavior, the QL task is to find the optimal attention
allocation policy π: for each state s ∈ S we have to find the activation period
p ∈ P that maximizes the behavior’s expected reward. Notice that each behavior
concurrently runs its own QL algorithm as an independent agent (independent
versus cooperative RL is discussed in [13]). We can rely on this model because
here the attentional mechanisms are not mutually dependent (only stigmergic
interactions). Therefore, for each behavior, for each clock activation pt leading
from the state st to the state st+1, the agent receives a reward rt+1, and the
Q-value is updated as follows:

Q(st, pt) ← (1− αt) ·Q(st, pt) + αt(Rt+1 + γ ·maxpt+1∈AQ(st+1, pt+1)),

where γ is the discount factor (which determines the importance of future re-
wards) and α is the learning rate (a factor of 0 will make the agent not learn
anything, while a factor of 1 would make the agent consider only the most recent
information). QL requires clever exploration mechanisms, we will refer to soft-
max that uses a Boltzmann distribution [12]. We also tested our system using the
ε-greedy exploration policy, but in our case we obtained better results adopting
the softmax technique because it allows to balance exploration and exploitation
by means of the temperature value: the higher the temperature, the closer to a
random policy (exploration), the lower the closer to Q(s, p) maximization (ex-
ploitation). Namely, we experimentally set a temperature value that allows us
to prefer actions with high reward, in so producing a convergence which is faster
than the one obtained with the ε-greedy policy.
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3 Case Study

In order to test our approach we consider a Survival Problem: the robot must
survive for a predefined amount of time within an environment (Fig. 2) avoid-
ing obstacles (objects, walls, etc.), escaping from possible sources of danger (red
objects) and recharging its batteries when necessary. We consider simulated en-

(1) (2) (3) (4)

Fig. 2. Testing Environments

vironments of area 16m2. Obstacles, dangerous, and recharge locations are cubes
of size 0.5m × 0.5m × 0.5m respectively of black, red, and green color (Fig.2).
An experiment ends in a positive way if the robot is able to survive till the end
of the test, while it fails in three cases: the robot collides with an obstacle, the
recharge value goes under the minimum value; the robot goes very close to a
source of danger. We tested our approach using a simulated Pioneer3-DX mo-
bile robot (using the Player/Stage tool), endowed with a blob camera and 16
sonar sensors.

3.1 Attentional Architecture

In Fig. 3 we illustrate the attentional control system designed for the survival
domain. It combines three behaviors: Avoid, Recharge, and Escape, each endowed
with its releaser and adaptive clock. In the following we detail these behaviors.

Avoid manages obstacle avoidance, its input signal σa(t) is the distance vector
generated by the 8 frontal sonar sensors; its motor schema controls the robot
velocity and angular velocity (v(t), ω(t)) (for this reason its motor schema always
produce a pattern of motor action) eventually generating a movement away from
an obstacle, when detected. The obstacle avoidance is obtained as follows: v(t)

is proportional to the obstacle proximity, i.e. v(t) = vmax × min(σa(t))
max sonar , where

vmax, min(σ
a(t)) and max sonar, are respectively the maximum velocity, the

minimum distance from the obstacle and the maximum sonar range; ω(t) is
obtained as weighted sum of the angular velocities generated by the active sonars,
i.e. ω(t) =

∑
i∈A(t) rotmax × wi, where A(t) is the set of active sonars detecting

an obstacle at time t, rotmax is the maximal rotation, wi is a suitable weight
depending on the sonar position (frontal higher, lateral lower).

Recharge monitors an internal function σr(t) representing the energy sta-
tus. At each execution cycle the energy decreases of a unit of charge and 1

3
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Fig. 3. Attentional Architecture Overview

(where 3 is the number of behaviors) of the unit of charge for each active behav-
ior. Therefore, Recharge is active when σr(t) goes below a suitable threshold.
When enabled, if a green blob (representing the energy source) is detected by
the camera, the motor schema generates a movement towards it, otherwise it
starts looking around for the green, generating a random direction.

Escape monitors a function σe(t) that represents fear and considers the height
(pixels in FOV) of a detected red object in the environment as an indirect mea-
sure of the distance from the object. The motor schema is enabled whenever the
σe(t) is greater then a suitable threshold and generates a movement away from
the red object. In this case, the red object is avoided with an angular velocity
proportional to the fear, i.e. ω(t) = α× σe(t).

For each behavior, the clock regulation depends on an monitoring function
that should be learned at run-time.

3.2 Reinforcement Learning and Attention Allocation

In the following we formulate the RL problem in the case study. We start for-
malizing the action space and the state space.

Action Space. In the attentional allocation problem, for each behavior, the
action space is represented by a set of possible periods {p1, . . . , pn} for the
adaptive clock. In the case study, assuming the minimum clock period as 1
machine cycle, the possible periods’ set for Avoid, Recharge and Escape is:
P a, P r, P e = {1, 4, 8, 12}.

State Space. We recall that for a generic behavior, the state s is determined by
a pair (p, x), where p represents the current clock period and x is the current
perceptive state. For each behavior, we obtain the perceptive state by partition-
ing the total perceptive domain in equidimensional intervals (i.e. each perceptive
state is a subrange of the input signal). The domain for Avoid spans the interval
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[0,max sonar]; the domain of Recharge is [0,max charge], where max charge
represents the maximum battery charge; the Escape domain is in [0,max fear],
where max fear is the maximum height (in pixel) of a red object in the FOV.
We tested our system discretizing the perceptive state at different granularities.

Reward function. We assume the reward always negative, with a strong penalty
(rmax) if the system cannot survive. For the other cases the penalty is as follows.
Concerning Avoid, each activation is penalized proportional to the distance from
the obstacle (Ra

t = rmax if xt < th crash and −xt

max sonar otherwise). As for
Recharge, for each activation the penalty is inversely proportional to the current

charge (Rr
t = rmax if xt < th charge and (xt−max charge)

max charge otherwise). Finally
each activation of Escape is penalized proportionally to the current amount of
fear (Re

t = rmax for xt < th fear and −xt

max fear otherwise). For our experiments
we adopt the following settings:

– r max: maximum penalty (−3000 units of penalties), where 3000 is the
medium number of cycles for episode multiplied by the number of behaviors;

– max time: maximum time allowed to accomplish the task (180 seconds);
– max sonar: maximum sonar range (1 meter);
– th crash: minimum distance under which the robot stops (0.4 meters);
– max charge: maximum value for the charge (150 units of charge);
– th charge: minimum value of the charge under which the robot needs to

recharge (140 units of charge);
– max fear: maximum height of a red blob (dangerous object) perceived by

the camera (30 pixels);
– th fear: minimum height of a red blob beyond which the robot does not

work (23 pixels);

Setting the state space. First of all, we carried out some tests evaluating the
convergence of the Q-learning process, while changing granularity and dimen-
sion of the state space. Each test consists of 5 experiments, each subdivided into
1000 episodes. We evaluated the system performance in 4 different representa-
tions of the state space. Namely, for each behavior, we considered 20, 24, 28,
and 32 states, obtained by changing the size of the intervals used to partition
the perceptive domain, while we use a fixed discretization of clock periods for
each test. We set the discount factor γ at 0.9 and we tested the system using
different values for the learning rate. In the following we report the performance
obtained with α = 0.8 (selected setting). In Fig.4-(a) we illustrate the variation
of the fitness value with respect to the state representation. The fitness function
evaluates the success percentage, i.e. the number of positive endings. We observe
that for all the state representations we get a good percentage of success (up
98% of positive endings) after 200 episodes. However, the one with 24 states
converges faster reaching 100% positive endings after 300 episodes. In Fig.4-(b),
we show the accumulated rewards for each representation. Also in this case, we
obtain the best regulation with the 24 states setting, therefore, we decided to
employ this representation for our experiments.
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Fig. 4. (a) Fitness convergence and (b) Average Reward varying the states space rep-
resentation

Setting the learning rate. Learning rate α is a crucial parameter that strongly af-
fects Q-learning velocity and convergence. We tested 4 different settings, namely,
0.2, 0.4, 0.6, 0.8. In Fig. 5-(a) and (b) we compare, respectively, the convergence
curves and the reward values in the case of 24 states. Analogous tests have
been carried out with other state spaces, the best regulation was obtained with
α = 0.8.

4 Experiments and Results

We tested the attentional system in 4 environments (see Fig. 2) with different
complexity in the number and disposition of the objects (red, green, and black
cubes). Each experiment starts with initial values set to 0 in the Q-tables. In
Fig. 6, we show the success rate for each environment. Here, the learning curve
always converges to 100%. i.e. during the episodes the system is effective in
learning the attention allocation strategies used to select the suitable actions
for survival. Furthermore, we analized the reliability, efficiency, and effective-
ness of the learned attentional strategies (RL-AIRM) comparing them with re-
spect to the results obtained with manually tuned attentional strategies (AIRM).
We tested these two architectures in the 4 environments collecting means and
standard deviation on 100 tests. In Fig. 7 we can see that in almost all the
environments RL-AIRM shows a higher success rate and lesser cost (less cost



378 D. Di Nocera et al.

Fig. 5. (a) Fitness convergence and (b) Average Rewards relative to different values
of the learning rate

Fig. 6. Success rate in the survival domain

means better performance). The AIRM’s large STD deviations are associated
with failures which are not produced in the RL-AIRM settings. Note that these
results are obtained despite the AIRM works with a more refined state space
(we used updating functions spanning continuous values). Concerning efficiency,
in Table 1 we can observe that both RL-AIRM and AIRM are able to reduce
and focus the behaviors’ activations (i.e. the total number of cycles these be-
haviors are activated). AIRM seems more efficient, but it is also less reliable
and effective (as shown in Fig. 7), hence RL-AIRM seems to provide a better
balance of efficiency (minimum activations), reliability (maximum success rate),
and effectiveness (minimum cost).
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Fig. 7. Evaluation of the RL-AIRM and AIRM architectures in terms of Success rates
and Costs

Table 1. Means and variances of performance measures collected on 100 validation
tests

RL-AIRM AIRM

Data Env1 Env2 Env3 Env4 Env1 Env2 Env3 Env4

Rewards -386�7 -492�6 -408�23 -329�28 -350�12 -797�584 -1462�1271 -412�28
Avoid 404�9 404�9 404�10 406�10 320�10 355�20 312�76 394�23

Recharge 224�27 266�43 339�73 270�42 217�45 235�69 252�97 198�24
Escape 192�14 199�37 272�35 234�29 95�1 98�3 90�17 104�3
Survival 180 180 180 180 180 179�4 160�30 180
Failures 0% 0% 0% 0% 0% 6% 28% 0%
Cycles 1135�1 1135�1 1135�1 1135�1 1135�1 1130�20 1000�200 1135�1

Overall, reinforcement learning seems effective in regulating attention allo-
cation strategies and behaviors’ activations. The combined use of attentional
mechanisms and learning strategies permits good performance in terms of relia-
bility, adaptivity, effectiveness, and efficiency.

5 Conclusions

We presented a RL approach to attentional action selection in a robotic setting.
Differently from classical RL models for action selection, where actions are chosen
according to the operative/perceptive contexts, in our case the action selection
is mediated by the attentional status of the behavior. In our setting, the learn-
ing process adapts and modulates attentional allocation strategies while action
selection is obtained as a consequence. We discussed the approach considering
learning and executive performance in a survival domain. The collected results
show that RL is effective in regulating simple attention allocation mechanisms
and the associated behaviors’ activations strategies.
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Abstract. Evolutionary robotics can be a powerful tool in studies on
the evolutionary origins of self-organising behaviours in biological sys-
tems. However, these studies are viable only when the behaviour of the
evolved artificial system closely corresponds to the one observed in bi-
ology, as described by available models. In this paper, we compare the
behaviour evolved in a robotic system with the collegial decision making
displayed by cockroaches in selecting a resting shelter. We show that ar-
tificial evolution can synthesise a simple self-organising behaviour for a
swarm of robots, which presents dynamics that are comparable with the
cockroaches behaviour.

1 Introduction

In recent studies, evolutionary robotics (ER, see [1]) has been used as an instru-
ment to investigate the evolutionary conditions for the emergence of adaptive
behaviour in groups of interacting agents. The main motivation behind these
studies is that the evolution of certain adaptive traits and behavioural responses
is tightly linked to ecological and social conditions. These conditions are ex-
tremely difficult or impossible to be controlled and replicated with empirical
studies [2], while they can be completely managed in ER studies. The use of
ER to analyse adaptive behaviours has been demonstrated in several occasions.
For instance, the effects of genetic relatedness on the evolution of cooperative
communication strategies can be investigated by systematically varying the com-
position of interacting groups [3,4]. Similarly, thanks to a simple ER experiment,
it has been shown that the effect of stochastic variations in the evolutionary his-
tory could be at the basis of the emergence of diverse signalling strategies [5].

At the same time, ER represents a powerful design tool for the synthesis
of collective, self-organising behaviours in swarms of robots [6]. It provides an
automatic design methodology to synthesise the individual mechanisms leading
to an optimal group response, according to a user-defined performance metric.
Additionally, ER can shed light on the evolutionary pressures leading to the
emergence of observed collective behaviours. However, it is necessary to under-
stand whether or not the target behaviour can be evolved in the artificial system,
and whether it displays dynamics comparable with the natural counterpart.

T. Ziemke, C. Balkenius, and J. Hallam (Eds.): SAB 2012, LNAI 7426, pp. 381–390, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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In this paper, we perform this first step, that is, the validation of an ER
system with respect to collegial decision making by cockroaches in selecting a
resting shelter [7]. Cockroaches (Blattella germanica) are gregarious insects that
manifest cooperative behaviour in selecting a resting site: whenever more than
one site is present, the insects collectively choose to aggregate in one single
place (provided that it is large enough to host them all). Experimental studies
allowed to determine which are the social influences that lead to such a collegial
decision-making process, and a dynamical model has been developed (see [7] and
Section 3.1 for more details). The identified mechanisms have been successfully
exploited for designing collective aggregation and decision-making behaviours
in swarms of robots [8,9,10], allowing also mixed insect-robot experiments [11].
However, to the best of our knowledge, there has been no attempt to study
the evolution of a similar decision-making behaviour in swarms of robots. In
this paper, we demonstrate that similar collegial decisions can be evolved in an
artificial system. Our goal is to (i) verify the evolvability of the collegial decision
making in the artificial system, and (ii) determine whether the dynamics of the
system correspond qualitatively and quantitatively to the ones predicted by the
biological model [7]. This will allow us to determine whether or not evolutionary
robotics is suitable for formulating hypotheses about the evolutionary pressures
that resulted in collective decision-making in cockroaches.

The paper is organised as follows. In Section 2, we describe in detail the
experimental setup for the ER experiments. In Section 3, we discuss the results
obtained from the evolutionary experiments with respect to the evolvability of
the decision-making behaviour in a robotic system. In Section 3.1, we present the
dynamical model proposed in [7], and we discuss the methodology that leads us
to fit the evolved behaviour to the model. In Section 3.2, we present a comparison
of the dynamics of the evolved behaviour with the ones predicted by the model.
Section 4 concludes the paper with some final remarks.

2 Experimental Setup

We study the evolution of collegial decision making in a swarm of robots that
have to aggregate in one of two areas within the experimental arena. Our ex-
perimental setup is based on the one used in Amé et al. [7]. The robots operate
in a dodecagonal arena (Figure 1 left) of area 4.91m2 surrounded by walls. The
floor of the arena is white with two black circular areas having the same radius
(ra = rb = 35 cm) and centred at 67 cm from the walls. In the following, we refer
to the two black areas as area a and b, and the remaining white area as c.

The experiments are carried out in simulation using ARGoS [12], a multi-
engine simulator of swarm robotics systems. The robots and the environment
are modelled using a 2D dynamic physics engine. We use a simulated model of
the e-puck robot (Figure 1 right), a small wheeled robot designed for research and
education [13]. In our experimental setup, each robot can perceive walls and other
robots through eight infrared proximity sensors placed all around its chassis. It
can sense the colour of the floor using three ground sensors placed under its front.
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Fig. 1. Left: the simulated experimental arena used for the experiments. Right: the
e-puck robot, used for the simulated evolutionary experiments presented in this paper.

Additionally, each robot features another sensor called range and bearing [14].
This sensor allows the robot to communicate locally with other robots by sending
and receiving messages. In our experiments, the robot uses such a sensor only
to perceive the number of other robots within a 70 cm range. To normalise the
output of the sensor, we use the preprocessing function z(n) = 1−( 2

1+en ), where
n is the number of robots perceived at any given moment. Since the real e-puck
can perceive no more than 5 robots at a given time, z(n) saturates to 1 for n > 5.

The controller that governs each robot is an artificial neural network. We
assume that robots can achieve aggregation using a memoryless behaviour, that
is, the behaviour of each robot depends only on the present values of sensors
without any kind of internal state. For this reason, we use as controller a fully
connected, feed-forward neural network. This neural network has 12 inputs, one
for each sensor (8 infrared proximity, 3 ground sensors, 1 from the range and
bearing), 2 outputs, one for each wheel, and no hidden units. The input values
are linearly scaled in [0,1] when necessary. The activation of the output neurons is
computed as the weighted sum of all input units plus a bias term, filtered through
a standard logistic function. The two output neurons control the speed of the two
wheels, by scaling their activation in the range [−vm, vm], with vm = 16 cm/s.

We use a simple evolutionary algorithm to set the parameters of the neural
network. Each parameter is represented in the genotype by a real number in the
range [-5,5]. The evolutionary algorithm works on a population of 100 genotypes,
evolved for 200 generations. The population of the first generation is randomly
generated. Subsequent generations are created using a selection and reproduction
process that involves elitism and mutation. The 20 best genotypes—i.e., the
elite—are included unchanged in the next generation. The remaining genotypes
of the population are generated by mutation of the genotypes of the elite. The
mutation is done by adding a random value to each element of the genotype. The
random value is drawn from a normal distribution with mean 0 and variance 1.

The genotype is mapped into a controller that is instantiated in all the robots
of the group (N = 10). To evaluate the performance, 10 trials of T = 250
seconds are run. The evaluation of the performance of the genotype is based on
the function f(t):
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f(t) =
|xa(t)− xb(t)|

N
∈ [0, 1] (1)

where xi(t) is the number of robots in area i ∈ {a, b} at time t and N is the
total number of robots. The function f(t) is equal to zero when a and b contain
the same number of robots. On the contrary, f(t) is equal to 1 when all the
robots aggregate on the same area. Fluctuations of f(t) are smoothed through
an exponential moving average with time constant α = 0.9:

G(t) = αG(t− 1) + (1− α)f(t) ∈ [0, 1] (2)

where G(0) = 0. Finally, the fitness F of the genotype is the average of G(T )
over all the 10 trials.

3 Results

We performed 20 evolutionary runs starting from different randomly generated
populations. For each run, we selected the best controller within the final pop-
ulation: we evaluated the performance of every controller of the last generation
for K = 200 trials, and we selected the one with the highest average fitness. All
the evolutionary runs were able to produce controllers with high performance
(data available as supplementary material in [15]).

A qualitative analysis of the obtained controllers reveals that the evolved
behaviours are quite similar one to the other. In general, the robots act differently
according to their position in the arena. When a robot is in the white area c, it
explores the arena following a wide curved trajectory. If the robot reaches the
external wall of the arena, it starts to follow it. The robot motion is influenced
by the presence of other robots: curves become sharper when other robots are
nearby. Such a perturbation makes the robot leave the border of the arena and
eventually enter in one of the two black areas. When the robot is in one black
area it follows a circular trajectory. The radius of the trajectory decreases as
the number of robots in the area increases. In this way, if the area is empty
the robot follows a wide trajectory and eventually leaves. On the contrary if the
area is crowded the robot almost rotates on its axis. If the robot goes out of the
black area it starts again to explore the arena. Example videos of the obtained
controller are available as supplementary material [15].

There are qualitative similarities between the evolved behaviour just described
and the self-organizing aggregation behaviour observed in groups of cockroaches.
In particular, we observed that the probability that a robot leaves an area is
inversely proportional to the number of the robots located in the area itself.
To determine whether or not the evolved behaviour presents dynamics quanti-
tatively similar to the biological system, we check the adherence of the evolved
robotic behaviour1 with the model introduced in [7]. In Section 3.1, we introduce
the model and the methodology we used to estimate its parameters. In Section
3.2, we compare the dynamics of the evolved behaviour with the predictions of
the mathematical model.
1 To this aim, we select the best obtained controller among all evolutionary runs.
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3.1 Model

In Amé et al.’s model [7], the behaviour of each individual insect is characterised
by Ji, its probability to join area i, and Li, its probability to leave area i. Both
probabilities depend on xi, the number of insects located in area i, and on S, the
carrying capacity, that is, the maximum number of insects that can be hosted
in a single area.

The joining probability Ji decreases slightly with the number of insects in
area i because of crowding effects. This accounts for the observation that it is
less probable to join an area that is already densely populated. Amé et al. define
Ji as:

Ji = μ
(
1− xi

S

)
, i = [a, b]; (3)

where μ represents the area quality, that is, the probability that an individual
joins the area without social influences, xi is the number of insects already in
area i, and S is the carrying capacity.

Similarly, the leaving probability Li is inversely proportional to the number
of individuals in area i. This accounts for social influences among individuals,
which tend to stay close together. Li is low when the area is densely populated
and high when it is sparsely populated. Amé et al. define Li as:

Li =
θ

1 + ρ
(xi
S

)2 , i = [a, b]; (4)

where θ depends on the quality of the area, and ρ is a reference surface ratio
related to the area carrying capacity. Using Ji and Li it is possible to describe
the time evolution of the number of individuals in the different areas through a
system of differential equations:

dxi
dt

= Jixc − Lixi = μxc

(
1− xi

S

)
− θxi

1 + ρ
(xi
S

)2 , i = [a, b] (5)

N = xc + xa + xb (6)

where N is the total number of individuals and xc is the number of individuals in
c, that is, the individuals outside the black areas. This model therefore describes
the dynamics of the aggregation behaviour in terms of the number of individuals
present in the different areas of the arena (see [7] for details).

To evaluate the correspondence of the evolved behaviour with the model, we
estimated the model parameters from the results of simulated experiments.

To estimate the parameters of Ji and Li, we gathered the empirical prob-
abilities by performing 200 simulated experiments in the same conditions as
presented in Section 2 (N = 10, r = 0.35 cm, S = 29). We separately fitted the
parameters for Ji and Li to our data using the non-linear least squares method.
The obtained parameters are: μ = 0.008, θ = 0.008 and ρ = 138.574. We mea-
sured the quality of the fitting by computing the coefficient of determination R2.
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Fig. 2. The bifurcation diagram of our model for different values of d = S
N
. The

percentage of robots in area a and area c.

While the fitting on Li is excellent (R
2 = 0.979, p-val< 0.001), the fitting on Ji

is not as good (R2 = 0.560, p-val= 0.148). This is due to the fact that in our
robotic system, Ji appears to be non-linear, differently from Amé et al.’s model.
Even though the fitting is not good, we decided to be consistent with Amé et
al.’s model and not change Ji. A discussion of the possible effects of this decision
is presented in Section 4.

Following the analysis presented in [7], we studied the system behaviour de-
scribed by eq. (5) and (6) for different values of d = S

N . In Fig. 2, it is possible
to see the bifurcation diagram of the model. Four different situations can be
observed: (i) For d lower than 0.5, the areas are too small to host all the robots;
the robots fill completely the areas and some remain in c. (ii) For 0.5 ≤ d < 1,
a single area is too small to host all the robots, so the areas are filled equally.
However, in this second case, since there is enough space on the areas for all the
robots, only few robots are on c. (iii) For 1 < d ≤ 4.2 the areas are big enough
for aggregation to happen. Two stable solutions are found, corresponding to area
a or area b hosting the majority of the robots. Additionally an unstable solution
is found, corresponding to both areas filled equally. (iv) For d greater than 4.2
the areas are too big and the robots are less likely to perceive the presence of
other robots in the same area. Thus, the stable solution corresponds to both
areas filled equally.

The number of robots present in c described by eq. (6) also varies with d.
Two different situations can be observed: For d lower than 0.5, xc/N decreases
sharply: as areas a and b get bigger, more space is available and the areas can
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host more and more robots; For d greater than 0.5, the population fraction
on c increases steadily. This is due to the fact that, as S becomes bigger, the
probabilities Ji and Li increase, resulting in a system less likely to converge on
a state in which all robots are in areas a or b.

We consider that a collective decision has occurred when xa/N > 0.8. In
the bifurcation diagram in Fig. 2 this happens only for d between 1 and 2.8.
For d between 2.8 and 4.2 the model predicts a more variable condition with a
still unbalanced distribution of robots among the two areas, and an increasing
number of robots that move from one area to the other. In the following, we
verify these model predictions with respect to the experimental data, presenting
a comparison between the results obtained in simulation and those obtained with
the model.

3.2 Dynamics of Robotics and Model Simulations

We compared the results obtained from simulated robotics experiments and
Monte Carlo experiments for different values of d = S/N . We carried out two
different analyses. In the first one, the different values of d are obtained by
keeping the number of robots fixed to N = 10 and varying the carrying capacity
S, by changing ri. In the second, we keep ri = 35 cm (which corresponds to
S = 29) and we vary the number of robots. For each value of d, we run 1000
trials of T = 500 seconds, both for the robotic and the Monte Carlo simulations.
For each trial, we collected the final group distribution xi over the different areas.

Figures 3 and 4 show the obtained results. For each value of d, one bar for
each area of the arena is reported. The colours in the stacked bars show the
frequency of individual distributions. We divided the distributions in five classes
(0-20%, 20-40%, 40-60%, 60-80%, 80-100%), giving each class a different colour.
The size of each class in the figures is proportional to its frequency. If the robots
are able to perform a collegial decision and aggregate in one single area most
frequently, the bars of the areas a and b are mostly dark blue, corresponding to
a bimodal distribution with peaks in 0-20% and 80-100%. On the contrary, if
the group splits by aggregating in both areas, the bars of the areas a and b are
mostly white, corresponding to a unimodal distribution centred in 40-60%. Area
c is depicted in dark red when empty (0-20%) and white when full (80-100%).

Figure 3 shows the comparison between robotics and model simulations when
the number of robots is fixed to N = 10. Apart from low values of S, there is a
good correspondence between the model and the evolved behaviour. Moreover,
the evolved behaviour looks more stable for d > 2.9, indicating that the robots
have a better tendency to perform collegial decision than predicted by the model.
For S = {5, 11}—corresponding to ri = {15, 20} cm—the robots find the areas
with difficulty due to the small radius and aggregates are less stable.

Figure 4 shows the results when the carrying capacity S is fixed to 29. The
evolved behaviour presents a smoother transition from equally occupying the
areas at low d to collegial decisions at high d. For 8 < N < 12 there is a good
correspondence, as the robotic system is close to the evolutionary conditions.
Differently, for N ≥ 13 robots split more frequently than aggregating, while the
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Fig. 3. Comparison between the behaviour of the simulated experiments and the Monte
Carlo experiments keeping the number of robots fixed to N = 10, and varying the size
of the black areas from ri = 15 cm to ri = 50 cm
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model predicts splitting only when one area is saturated. Overall, we observe
a good qualitative correspondence between robotics simulations and the model,
but mostly within the range of parameters used to evolve the robotics behaviour.
A more detailed discussion about these discrepancies follows in the next section.

4 Conclusions

In this paper, we demonstrated that evolutionary robotics techniques can be used
to synthesise a collegial decision making behaviour similar to the one observed in
cockroaches. This is an important result, especially considering that the robotic
controllers are simple feed-forward neural networks without internal states. That
is, also in a robotic system collegial decisions can emerge solely from simple
individual behaviours modulated by social interactions.

We compared the dynamics of the evolved robotic behaviour with the pre-
dictions of the model proposed in [7], finding some qualitative correspondence.
However, quantitative comparisons revealed similar dynamics mostly for a small
parameter range around the evolutionary conditions (N = 10, S = 29). We
identify two reasons for these discrepancies: (i) the evolved system exploits geo-
metric regularities, such as the arena dimension and the positioning of the areas;
(ii) the sensing radius for the robots (75 cm) is quite large with respect to the
arena dimensions. Both these issues have a bearing on the probability of joining
an area, which also explains the non perfect fit of the model parameters observed
in Section 3.1. In practice, we observe that the evolved behaviour depends on
both S and N , and not only on the their ratio d, as predicted by the model.
In future work, by removing geometric regularities from the evolutionary setup,
we hope to obtain a better quantitative matching with the model predictions. If
successful, we plan to exploit this artificial experimental setup to investigate the
optimality of the evolved behaviour with respect to different selective pressures,
genetic relatedness among individuals in the group, and variable ecological con-
ditions. We believe this can be useful to better understand the evolutionary path
leading to collegial decision making.
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Abstract. This study compares two different evolutionary approaches
to the design of homogeneous multi-robot teams in a task that requires
the agents to specialise in different roles. Our results diverge from what
illustrated in a previous similar comparative study, which advocates for
the superiority of the aclonal versus the clonal approach. We question
this argument in view of new empirical evidence showing that the two
approaches perform equally well in generating homogeneous teams.

Keywords: Swarm Robotics, Evolutionary Robotics.

1 Introduction

Homogeneous multi-robot systems are a class of autonomous multi-agent sys-
tems in which all robots of a team have identical physical structure and iden-
tical decentralised control system. Like social insects, homogeneous robots are
generally required to coordinate their actions in order to maximise the efficiency
of the team. If there are various tasks that need to be performed than a dy-
namic task allocation phase should assign agents to different tasks in order to
optimise the system level performance [1,10]. The synthesis of controllers for
homogeneous multi-robot teams is a complex problem that has been faced with
a large number of different techniques [7]. Among the various possibilities, Evo-
lutionary Robotics represents a viable approach for the automatic synthesis of
robot controllers requiring little a priori knowledge about the solution of a given
problem [6]. In recent years, a number of studies have investigated the dynamics
underlying the evolution of multi-robot systems in order to develop a principled
understanding of how to guide self-organisation [8,3,11,9]

One of the first papers to focus on this issue is the study described in [8], in
which the author compares the clonal and the aclonal approach for the design of
homogeneous controllers for teams of two agents required to move in a coordi-
nated way by remaining within sensor range. The clonal approach refers to the
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use of a single genotype to generate a homogeneous team. The aclonal approach
uses different genotypes from the same evolving population to generate teams
in which the agents have different controllers (i.e., heterogeneous teams). The
study shows that, regardless of the theoretical disadvantages clearly listed and
discussed in the paper, the aclonal approach can be a more efficient way than
the clonal approach to generate homogeneous systems in which the team mem-
bers have to autonomously specialise for the benefit of the team. To account for
these counter-intuitive results, the author formulates a hypothesis according to
which the aclonal approach takes advantages of specific evolutionary dynamics
that are precluded to the clonal approach. In particular, in the aclonal approach
behavioural roles can be developed and refined in genetically specialised agents,
prior to the evolution of generalist solutions, in which roles are dynamically al-
located between the agents during life-time. In the clonal approach, this gradual
evolution from genetically specialised to generalist solutions is not possible, be-
cause, given that the agents are clones, the adoption of complementary roles
necessarily requires the existence of some dynamic role allocation mechanisms.
Thus, behavioural roles and the mechanisms to allocate them have to (labori-
ously) evolve simultaneously.

This study provides further comparisons between clonal and aclonal ap-
proaches for the evolution of homogeneous multi-robot teams for tasks that
require individuals to take specific roles. We are moved by the hypothesis that
the results shown in [8], concerning the superiority of the aclonal versus the clonal
approach, may have been affected by task-specific features, such as: a) the fact
that functional differentiation between the roles may not be a prerequisite to
perform the task; and b) the use of an evaluation function composed of team-
based metrics (e.g., the position of the team given by the centre-point between
the robots). Point (a) calls into question the causal relationship between the
supposed nature of the task and the evolutionary dynamics observed. Point (b)
calls into question the strong constraints that the evaluation function may have
imposed to the evolutionary dynamics of the clonal approach. Contrary to what
shown in [8], in our scenario, the roles are clearly different, and the evaluation
function is made of robot-based (instead of team-based) factors. We show that
in these conditions the clonal and aclonal approaches perform equally well in
generating homogeneous teams. Our results indicate that the argument formu-
lated in [8] concerning the superiority of the aclonal versus the clonal approach
is based on an interpretation of the data that would require further empirical
support to be validated. This is because we reproduced those data showing that
they are open to alternative interpretations, not considered in [8].

2 Methods

2.1 The Task and the Simulation Environment

Teams comprising two simulated Khepera mini-robots are evaluated in the con-
text of a dynamic role-allocation task. By taking inspiration from the behaviour
of social insects, the roles are nest patrolling and foraging (hereafter, we refer to
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Fig. 1. a) Kheperas’ body-plan. The black circles refer to the position of infra-red
(IR), ambient-light (AL), and floor sensors (F ). The dotted lines indicated view with
the camera’s sectors. α and β are the parameters defining the set of 15 different initial
team positions. The grey circle is the light. b) The neural network.

them as role P, and role F, respectively). Roughly speaking, role P requires a
robot to remain within the nest (i.e., an area in which the colour of the floor is
in shades of grey). Role F requires a robot to move back and forth between the
nest and any of the two foraging sites located in the environment. The robots are
required to execute both roles simultaneously. Therefore, they should go through
a role-allocation phase in which they autonomously decide who is doing what,
and then execute their role1.

The environment is a boundless arena with a light bulb positioned 6cm above
the floor, and two red cylindrical objects (2.7cm radius, and 10cm height) posi-
tioned at 40cm on the left and on the right of the light, respectively, and referred
to as L-Site, and R-Site. The colour of the arena floor is white except for a cir-
cular area (15cm radius), centred around the lamp, within which the floor is in
shades of grey. The inner part of the circular area (up to 5cm to the light) is
black, the middle part (from 5cm to 10cm from the light) is dark grey, and the
outer part (from 10cm to 15cm to the light) is light grey. The area in shades of
grey represents the nest. The cylindrical objects represent the foraging sites.

The robots kinematics are simulated using a modified version of the “minimal
simulation” technique described by Jakobi in [4]. Our simulation models a Khep-
era robot, a 2.7cm radius cylindrical robot. It is provided with eight infra-red
sensors (IRi with i = {0, .., 7}), which give the robot a noisy and non-linear in-
dication of the proximity of an obstacle (in this task, an obstacle can be another
robot or a foraging site); four ambient light (ALi with i = {0, .., 3}) sensors to
detect light; a linear camera; and a floor sensor (F ) positioned facing downward
on the underside of the robot (see Fig. 1a). The IR and AL sensor values are

1 See also http://users.aber.ac.uk/elt7/suppPagn/sab2012/suppMat.html for fur-
ther methodological details, pictures, and movies of best teams.

http://users.aber.ac.uk/elt7/suppPagn/sab2012/suppMat.html
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extrapolated from look-up tables provided with the Evorobot simulator (see [5]).
The F sensor can be conceived of as a IR sensor capable of detecting the level of
grey of the floor. It returns 0 if the robot is on white floor, 0.5 if is on light grey
floor, 0.75 if is on dark grey floor, and 1 if is on black floor. The robots camera
has a receptive field of 30◦, divided in three equal sectors, each of which has three
binary sensors (CB

i for blue, CG
i for green, and CR

i for red, with i = {1, 2, 3}
indicating the sector). Each sensor returns a value in between [0, 1]. The cam-
era can detect coloured objects up to a distance of 60cm. The robots can not
see each other through the camera. The robot has left and right motors which
can be independently driven forward or reverse, allowing it to turn fully in any
direction. The robot maximum speed is 8cm/s.

2.2 Robot Controllers and the Evolutionary Algorithm

The robot controller is composed of a continuous time recurrent neural network
(CTRNN) of 10 sensor neurons, 6 inter-neurons, and 4 motor neurons (see [2]).
The structure of the network is shown in Fig. 1b. The states of the motor neurons
are used to control the speed of the left and right wheels as explained later. The
sensor neurons are simply relay units. The states of inter and motor neurons are
updated using the following equations:

τiẏi = −yi +
10∑
j=1

ωjiσ(gIj + βj) +
16∑

j=11

ωjiσ(yj + βj); for i = {11, .., 16}; (1)

Δyi = −yi +
16∑

j=11

ωjiσ(yj + βj); for i = {17, .., 20}; (2)

with σ(x) = (1+e−x)−1. In these equations, using terms derived from an analogy
with real neurons, yi represents the cell potential, τi the decay constant, g is a
gain factor, Ii with i = {1, .., 10} is the activation of the ith sensor neuron
(see Fig. 1b for the correspondence between robot’s sensors and sensor neuron),
ωji the strength of the synaptic connection from neuron j to neuron i, βj the
bias term, σ(yj + βj) the firing rate (hereafter, fi). All sensory neurons share
the same bias (βI), and the same holds for all motor neurons (βO). τi and βi
with i = {11, .., 16}, βI , βO, all the network connection weights ωij , and g are
genetically specified networks’ parameters. At each time step, the output of the
left motor is ML = f17 − f18, and the right motor is MR = f19 − f20, with
ML,MR ∈ [−1, 1]. Cell potentials are set to 0 when the network is initialised
or reset, and equation 1 is integrated using the forward Euler method with an
integration time step ΔT = 0.1.

A simple evolutionary algorithm using linear ranking is employed to set the
parameters of the networks. The population contains 100 genotypes. Generations
following the first one are produced by a combination of selection with elitism,
and mutation. For each new generation, the three highest scoring individuals
(“the elite”) from the previous generation are retained unchanged. The remain-
der of the new population is generated by fitness-proportional selection from the
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70 best individuals of the old population. Each genotype is a vector comprising
135 real values (120 connections, 6 decay constants, 8 bias terms, and a gain fac-
tor). Initially, a random population of vectors is generated by initialising each
component of each genotype to values chosen uniformly random from the range
[0,1]. New genotypes, except “the elite”, are produced by applying mutation,
which entails that a random Gaussian offset is applied to each real-valued vector
component encoded in the genotype, with a probability of 0.07. The mean of
the Gaussian is 0, and its standard deviation is 0.1. During evolution, all vector
component values are constrained to remain within the range [0,1].

2.3 Evaluation and Fitness Function

At the beginning of each evaluation trial, the robots are placed in the nest,
located symmetrically on the left and on the right of the light, at 1.8cm away from
each other. Their controllers are reset. The initial relative orientation of the two
robots is sufficiently described by a vector of two variables (α, β, see Fig. 1a). A
sample set of starting configuration is chosen such that α, β ∈ (0, 2π5 ,

4π
5 ,

6π
5 ,

8π
5 ).

From these combinations, 10 have been removed because they are rotational
duplicates. This leaves the set of 15 team starting relative orientations that have
been used. Each trial differs from the others in the initialisation of the random
number generator, which influences the robots’ initial distance and orientation,
and the noise added to motors and sensors (see [4] for further details on sensors
and motor noise). Within a trial, the team life-span is 40s (T=400 simulation
cycles). Trials are terminated earlier if either one of the robot exceeds the arena
limits (i.e., a circle of 120cm radius, centred on the light), or the team exceeds
the maximum number of collisions (i.e., 10), or a robot completes two foraging
trips (i.e., twice the journey to any of the food sites and back to the nest).

The evaluation procedure for what concerns the clonal and aclonal runs sub-
stantially matches the one described in [8]. In clonal runs, the fitness of a geno-
type is its average team evaluation score after it has been assessed twice for
each of the 15 starting configurations, for a total of E = 30 trials. The fitness
of a genotype in an aclonal run is the average evaluation score of the team in
which it participates. In aclonal runs, a genotype is evaluated four times for each
starting configuration, twice from each of the robots positions (i.e., position A
and position B, see Fig. 1a) comprising each configuration, for a total of E = 60
trials. Each one of an aclonal individual 60’s trails is undertaken with a different,
randomly chosen, partner.

In each trial e, the team is rewarded by an evaluation function Fe which
corresponds to the product of the following components: Fe = max(Crole P

1 ×
Crole F

2 ;Crole F
1 ×Crole P

2 )×P a×P b. Crole P
r ∈ [0, 1] rewards a robot r = {1, 2}

for staying in the nest; Crole F
r ∈ [0, 4] rewards a robot r for travelling twice the

distance from the nest and to any of the two food sites; the team collision penalty
P a is inversely proportional to the number of collisions, with P a = 1 with no
collisions, and P a = 0 with 10 collisions in a team; P b is the team penalty for
exceeding the arena’s limits, with P b = 1 if none of the robots exceeds the limits,
P b = 0.3 otherwise. The average team evaluation score is F = 1

E

∑E
e=1 Fe.
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mean
ranking median

mean
(s.d.)

clonal 22.9 96.21
81.50

(25.73)

aclonal 18.1 78.59
74.66

(24.54)

Fig. 2. The histogram shows the distributions of the highest average re-evaluation
scores achieved by each run of the clonal (black bars) and aclonal approach (grey
bars). Values represent percentage of the theoretical optimum average evaluation score
F . The Table on the right shows, for clonal and aclonal approach, mean ranking,
median, mean and standard deviation of the scores mentioned above.

3 Results

20 evolutionary runs, each using a different random initialisation, were carried
out for each of the two approaches (i.e., clonal and aclonal). Each run lasted
2500 generations. Recall that our objective is to compare the performances of the
clonal and aclonal approach for the evolution of homogeneous team of two robots
capable of dynamically allocating and simultaneously executing role P (i.e., nest
patrolling) and role F (i.e., foraging). Following the procedure illustrated in [8], at
the end of the evolutionary phase, we run a first set of re-evaluations consisting of
60 trials per team (i.e., 4 times for each of the 15 starting orientation mentioned
in Sec. 2.3). In these tests, the 10 fittest genotypes of each generation of both
clonal and aclonal runs are re-evaluated in a homogeneous setup. The average
re-evaluation score of each genotype is measured using the metrics F illustrated
in Sec. 2.3. The highest average re-evaluation score recorded during a given run
is assumed to be an adequate measure of the success of that run.

Contrary to what illustrated in [8], the results of our re-evaluations show no
significant difference between the performances of homogeneous teams generated
clonally and aclonally. 11 runs of the clonal approach produced high-scoring
teams exceeding 95% of the optimal score, with 5 of them 100% successful (see
Fig. 2, black bars). In contrast, only 5 out of 20 of the aclonal runs generated
a homogeneous team that exceeds 95% of the optimal score, with 2 of them
capable of completing the 60 re-evaluation trials with the highest score. The
Table on the right of Fig. 2 shows a comparisons of mean and median scores
and the mean ranking of both approaches. The difference between the two set
of results is not significant (Mann-Whitney U test, p > 0.1);

From a statistical point of view, there is not enough evidence to prefer one
approach over the other for the evolution of homogeneous multi-robot teams en-
gaged in a dynamic task allocation scenario. From the point of view of
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(a) (b)

(c)

Fig. 3. a) The evolutionary history of the fitness components of the best genotypes of

one of the best clonal run. At each generation, Ĉrole P , Ĉrole F , P̂ a, and P̂ b are the
mean values of Crole P

e , Crole F
e , P a

e , and P b
e , respectively, over 60 trials. b) Average

evaluation score (F) of best heterogeneous combination of genotypes (continuous line),
and best homogeneous team (dashed line), computed during a set of re-evaluation
tests on the 10 fittest genotypes of the best aclonal run. c) Level of specialisation (S)
in the best heterogeneous combination of genotypes that contributed to the fitness
curve (continuous line) shown in (b).

generating optimal controllers, the clonal approach does better than the aclonal
one (i.e., 5 teams with a 100% success rate generated with the clonal approach,
see Fig. 2, black bars, versus 2 teams with the aclonal approach, see Fig. 2, grey
bars). This evidence not only diverges from what shown in [8], but also ques-
tions the argument, put forward in Quinn’s paper, concerning the superiority
of the aclonal approach. Recall that, according to Quinn, the aclonal approach
takes advantage of the fact that roles can be evolved and refined prior to the
evolution of any dynamical allocation mechanism. This is assumed not possible
in the clonal approach for which the roles and the allocation mechanisms have
to evolve simultaneously. Our results do not fit into the explanatory framework
proposed by Quinn. To account for this divergence, we question the simultane-
ity argument. Should we always assume that in the clonal approach, behavioural
roles and mechanisms to allocate them have to evolve simultaneously?

To answer this question, we analyse the evolutionary trajectory of the best
clonal runs looking for the emergence of roles. In our scenario, the clonal
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approach generated optimal (in term of fitness) solutions by avoiding the si-
multaneous appearance of behavioural roles and role-allocation mechanisms. All
the best clonal runs follow a very similar evolutionary trajectory. Fig. 3a shows
the evolutionary history of the fitness components of the best genotypes of one
of the best clonal run. The graph shows that early generation teams are very
good in role P (see Ĉrole P in Fig 3a), and very bad in role F (see Ĉrole F in
Fig 3a). After some generations, in which no progress can be observed, the fit-
ness starts to increase owe to the evolution of the behavioural skills required
to perform role F. By visual inspection of the team behaviour, we noticed that
foraging behaviour appears first in a limited number of trials. These trials are
those in which the robots, due to their initial relative orientations, experience
different perceptual states which break the team symmetry and facilitate the
role-allocation process. In following generations, we observe that robots perform
foraging behaviour in a larger set of trials, and the role-allocation process be-
comes less dependent on the robots’ initial perceptual states. Eventually, the
robots acquire the skills to negotiate their role regardless of their initial percep-
tual states and become capable of performing the task in all the experienced
initial conditions.

In Sec. 4, we will come back to the issue of simultaneity with further specu-
lations. In what remains of this section, we focus on another important aspect
of the Quinn’s argument, the specialisation in heterogeneous teams generated
aclonally. We run a second set of re-evaluation tests identical to the one used
in [8] to investigate whether in the aclonal approach specialisation appears be-
fore the role allocation ability. In these tests, the 10 fittest genotypes from every
generation of the best aclonal run are taken and retested in a heterogeneous
setup. That is, each genotype is re-evaluated in combination with every other
fittest genotypes of its generation, for 60 trials per combination. As in [8], for
each generation, we selected the highest average score F among those produced
by each combination, and we compared them with the highest average scores
F obtained by these genotypes when re-evaluated in a homogeneous setup (i.e.,
during the first set of re-evaluation tests). The continuous line in Fig 3b refers
to the average re-evaluation score (F) of the best heterogeneous combinations;
the dashed line refers to the average score of the best homogeneous team.

As in [8], we also have, for significant period of this aclonal run, a certain dispar-
ity between the fitness of heterogeneous and homogeneous teams. This disparity
appears to be more prominent right after generation 750, when the fitness of het-
erogeneous teams oscillates around the optimum, while the fitness of homogeneous
teams is lower. In [8], this disparity is accounted to by the existence of genetic spe-
cialisation in aclonally generated heterogeneous teams. The logic is rather simple.
If robots are genetically predisposed to play either one or the other role, they get
high fitness (F) when they are evaluated in combination with a partner that is
specialised to play the complementary role, and low or lower fitness when they are
evaluated with their clones. In [8], evolutionary dynamics driven by the “special-
isation factor” represent the basis of the superiority of the aclonal over the clonal
approach. Contrary to clonal runs, aclonal runs can partition the task allocation
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scenario in two successive phases: a first one, in which evolution generates geneti-
cally specialised behavioural roles; a second one, in which evolution finds the way
to move from specialised to generalist solutions (i.e., a single genotype that gener-
ates agents capable of dynamic allocation and execution of the roles of the task).

In order to deepen our understanding on the causal relationship between spe-
cialisation and the fitness disparity observed in Fig 3b, we measured the level
of specialisation (S) of the best heterogeneous combinations that contributed
to the generation of the fitness curve in Fig 3b, continuous line. In particular,
we looked at the number of times, in each combination, the robots play each
role during the 60 re-evaluation trials. The role that a robot plays in a trial is
determined by how it contributes to the team fitness in that trial. For example,
robot 1 plays role P and robot 2 plays role F if Crole P

0 ×Crole F
1 is bigger than

Crole F
0 × Crole P

1 , and vice versa. For each combination, S = |N role P−N role F |
60 ,

with N role P and N role F being the number of times in 60 trials in which one
of the robot plays role P and role F, respectively. S = 1 means that robots are
highly specialised; S = 0 no specialisation at all. Results are show in Fig 3c.

By comparing the graph in Fig 3b, continuous line, with the graph in Fig 3c,
in particular focusing on the performances after generation 750, we clearly see
that not all the best combinations are highly specialised. While specialisation
rises and falls, the best average score of these heterogeneous combinations only
slightly fluctuates around the optimal score. This indicates that both specialisa-
tion and a certain level of generalist solutions are simultaneously present in the
aclonal population. As far as it concerns the argument formulated in [8], it seems
that the disparity between the scores of heterogeneous and homogeneous teams
is not necessarily a sign of specialisation among the individuals of an aclonal
population, as mentioned in [8]. To conclude, in our dynamic task allocation
scenario, the aclonal population dynamics appear to be more articulated than
what described in [8]. Specialisation did not turn out to be completely alternative
and antecedent to generalist solutions. We believe that this evidence points at
interesting evolutionary dynamics, not considered in [8], which suggests that the
argument concerning the superiority of the aclonal versus the clonal approach
in task-allocation scenario needs to be revisited.

4 Conclusions

This study aimed at testing the hypothesis that the results shown in [8], concern-
ing the superiority of the aclonal versus the clonal approach, have been affected
by task-specific features. We designed a similar task-allocation scenario which
mainly differs from what shown in [8] for the nature of the behavioural roles.
Basically, in our task the roles are clearly distinct, whereas in [8] the roles are
rather similar. Contrary to what illustrated in [8], we found no significant differ-
ence between the aclonal and clonal approach. The analysis of the evolutionary
trajectories of clonal and aclonal runs produced evidence that did not support
the reasoning put forward in [8], to account for his results. First, we showed
that, in a scenario in which the differences between the roles is captured by an
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evaluation function that multiply robot-based (instead of team-based) factors,
the clonal approach can rely on a broader range of evolutionary trajectories not
necessarily limited by the simultaneity argument formulated in [8]. In the clonal
approach, the fitness landscape can be successfully explored by capitalising on
gradual improvements on the execution of single behavioural roles, and on the
appearance of allocation mechanisms (initially) bounded to specific ecological
conditions. Second, we showed that the author in [8] drew conclusions on the
presence of role specialisation among the individuals generated aclonally from
empirical evidence (i.e., the fitness disparity shown in Fig. 3b) that do not seem
to be uniquely produced by genetically specialised individuals. We showed that
in the aclonal approach, specialised and generalist solutions can live together in
the same populations, with role allocation mechanisms evolving together with,
and not necessarily after, genetic specialisation. In conclusion, the evolutionary
dynamics of both clonal and aclonal approaches seem to be richer then what
assumed in [8]. Although further investigation is required, in view of this, we
speculate that the argument formulated in [8] applies to a rather restricted set
of task-allocation scenarios, in which the selective pressures limit the possible
successful evolutionary trajectories in the clonal approach.
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Abstract. A common behavior in animals or human beings is deception. We 
focus on deceptive behavior in robotics because the appropriate use of 
deception is beneficial in several domains ranging from the military to a more 
everyday context. In this research, novel algorithms are developed for the 
deceptive behavior of a robot, inspired by the observed deceptive behavior of 
squirrels for cache protection strategies, evaluating the results via simulation 
studies.  

1 Introduction 

A common and essential behavior for survival in a variety of intelligent systems 
ranging from insects to human beings is deception. Many biologists and psychologists 
define deception in various ways. According to Vrij [1], deception is “A successful or 
unsuccessful deliberate attempt, without forewarning, to create in another a belief that 
the communicator considers to be untrue in order to increase the communicators’ 
payoff at the expense of the other side." Da Waal argued that “Deception can be 
defined as the projection, to one's own advantage, of an inaccurate or false image of 
knowledge, intentions, or motivations" in his paper [4]. We can find a simpler 
definition of deceptive behavior from a paper by Bond and Robinson [2] who defined 
it as “a false communication that tends to benefit the communicator."  We have used 
this straightforward definition in earlier research in our laboratory on deceptive 
behavior for robots [19] and we continue to do so here. 

In other words, animals act deceptively to gain benefits from others. Biological and 
psychological findings show that deception plays an important role not only in 
providing an evolutionary advantage [2].  It appears also in higher-level primates to 
involve the theory of mind mechanism [3]. We argue that robots can also potentially 
gain advantage over adversaries by possessing deceptive behaviors. For example, it is 
obvious that the use of deception is important with respect to the military context 
[10]. We further posit that to achieve more socially intelligent robots operating in the 
presence of humans, we must develop robots that interpret, generate, and respond to 
deceptive behavior. Therefore, we investigate deception in robotics using approaches 
inspired by biological findings [19,21].  
                                                           
*  This work was supported in part by the Office of Naval Research under MURI Grant # 

N00014-08-1-0696. 
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In this paper, we present a novel approach for 
deceptive behavior by a robot, inspired by 
observations of squirrels (fig 1.) in cache 
protection strategies [15]. Section 2 reviews 
relevant animal deceptive behaviors and 
existing research in robotic deception. In 
Section 3, deceptive behaviors in food 
hoarding and protection strategies of squirrels 
are introduced. In Section 4, a computational 
model enabling robots to emulate deception 
behaviors of squirrels is integrated into 

MissionLab, and results discussed in Section 5. Section 6 concludes the paper. We 
note that we are well aware of the ethical implications associated with robotic 
deception and our perspective on this subject is discussed elsewhere [22]. 

2 Related Work 

Animal Deception 
Animals use various forms of misinformation. These deception mechanisms, achieved 
by sending false signals either intentionally or unintentionally, are essential for 
animals' survival. For example, camouflage and mimicry are well known in many 
species. By resembling other animal species or inanimate objects, animals transmit 
misinformation to others so that they can avoid detection by both predators and their 
prey. While camouflage or mimicry are examples of unknowingly deceiving, a 
deceptive behavior can include seemingly more intentional misinformation. 

Many deceptive behaviors are observed from different animals ranging from 
insects to primates. The spider genus Portia, which preys primarily on other spiders, 
deceives their prey by vibrating the web in ways that resemble a small insect getting 
ensnared. When the web’s resident spider comes to investigate the insects, Portia 
preys on it [19]. 

According to Ristau's experiment [13], another interesting deceptive behavior 
appears in piping plovers. These birds exhibit a “broken-wing display'' deceptive 
behavior. By feigning an injured wing and hopping farther and farther from the nest, 
birds lead the predator away from their young, thus protecting them. 

Primates are the species most commonly ascribed with the ability to deceive [3,6]. 
For example, chimpanzees have multiple deceptive behaviors with several different 
objectives. When chimpanzees find fruit, they do not move directly so that they do 
not give any indication to the competitors that they have noticed the location of the 
foods. This food protective strategy is not that dissimilar to the one we discuss in 
squirrels later in the paper. Deceptive behavior of chimpanzees is also observed 
during interactions with humans. According to one observation, a chimpanzee feigned 
having his arm stuck in the bars of his cage in order to lure a zookeeper nearby. As 
soon as the human entered to help free his arm, he leaped onto the zookeeper [4]. 

Fig. 1. Black Eastern gray squirrel
moving peanuts [29] 
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Another relevant class of deceptive behavior occurs in the food hoarding strategies 
of animals. Food hoarding (caching) is an important type of animal behavior needed 
for their survival through periods when nourishment is not readily available. In 
particular, these caching behaviors are commonly observed in rodents such as 
hamsters or squirrels [8].  

This caching behavior is of particular interest as it can also be useful in the robot 
context. In this paper we investigate caching and protecting resources for application 
as a resource protection strategy.  In the military domain, robots might face this 
situation, where it is important to discourage an adversary from discovering a 
protected site, so the application of these bio-inspired animal food protection 
behaviors can be particularly beneficial. 

In this paper, we focus specifically on the observed deceptive behavior of squirrels 
while they protect cached food acquired during hoarding [15].  Recent research in the 
field of biorobotics suggested the robotic squirrel models [28]. According to this 
study, robosquirrel are successfully used for long-term studies on rattlesnake 
behavior after squirrel encounters. Even though this research showed a good model of 
squirrel’s behavior in robotics, it does not include squirrel’s deceptive behaviors, 
which are potentially useful in several contexts. Different from this work, our 
research focuses on employing squirrel’s deceptive behaviors to robot systems. 
Section 3 describes this set of behaviors in more detail. 

Robot Deception 
Endowing robots with the capacity for deception has significant potential utility [18], 
similar to its use in animals. Clearly, deception behaviors are useful in the military 
domain [7,10]. Sun Tzu stated in The Art of War, “All warfare is based on deception”. 
Military robots capable of deception could mislead opponents in a variety of ways. As 
both individual and teams of robots become more prevalent in the military’s future, 
[23] robotic deception can provide new advantages apart from the more traditional 
one of force multiplication.  In other areas, such as search and or healthcare, deceptive 
robots might also add value, for example, for calming victims or patients when 
required for their own protection. Conceivably even in the field of educational robots, 
the deceptive behavior of a robot teacher may potentially play a role in improving 
human learning efficiency. 

Despite its ubiquity in nature and its potential benefits, very few studies have been 
done on deceptive behaviors in robotics to date. Floreano’s research group [20] 
demonstrated robots evolving deceptive strategies in an evolutionary manner, learning 
to protect energy sources. Their work illustrates the ties between biology, evolution, 
and signal communication and does so on a robotic platform. They showed that 
cooperative communication evolves when robot colonies consists of genetically 
similar individuals. In contrast, when the robot colonies were dissimilar the robots 
evolved deceptive communication signals. 

Wagner and Arkin [18] used interdependence theory and game theory to develop 
algorithms that allow a robot to determine both when and how it should deceive 
others. More recent work at Georgia Tech is exploring the role of deception according 
to Grafen’s dishonesty model [24] in the context of bird mobbing behavior [21]. 
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Terada and Ito [16] demonstrated that a robot is able to deceive a human by 
producing a deceptive behavior contrary to the human subject’s prediction. These 
results illustrated that an unexpected change of the robot’s behavior gave rise to an 
impression in the human of being deceived by the robot.  

Other research shows that robot deception behavior can increase users' engagement 
in robotic game domains. Work at Yale University [14] illustrated increased 
engagement with a cheating robot in the context of a rock-paper-scissor game. They 
proved greater attributions of mental state to the robot by the human players, when 
participants played against the cheating robots.  At Carnegie Mellon University [17] a 
study showed an increase of user's engagement and enjoyment in a multi-player 
robotic game in the presence of a deceptive referee. By declaring false information to 
game players about how much players win or lose, they observed whether this 
behavior affects a human's general motivation and interest based on frequency of 
winning, duration of playing, and so on. These results indicate that deceptive 
behaviors are potentially beneficial not only in the military domain but also in a 
human's more everyday context. 

3 Deceptive Behaviors in Food Hoarding 

In this paper, we focus on the deception behavior of squirrels in terms of their food 
hoarding strategies. Food hoarding is an important behavior for many animal species, 
such as birds and rodents. Food-hoarding strategies are mainly comprised of two 
parts: caching and protecting the food. The deceptive component falls in the food  
protection phase. 

Cache Formation 
Food caching activity ranges widely from highly dispersed (scatter hoards) to highly 
clumped (larder hoards). Scatter hoarders cache a few items in many small/scattered 
caches. On the other hand, larder hoarders place most of the food in one or a few 
central locations referred to as middens. The evolution of the particular hoarding 
strategy for a species depends on the abilities of individuals to defend their caches 
against pilfering [5]. According to observation, animals use a larder hoarding cache 
strategy when their competitors are conspecifics or they are weaker than themselves; 
however, when potential competitors are heterospecific or stronger adversaries, 
animals tend to use a scatter hoarding strategy [5]. 

Cache Protection 
After hoarding food items, animals begin to protect their resources from pilfering by 
patrolling the caches. First, animals move around the caching areas and check 
whether the cached food items are safe. However, animals generally change their 
behavior after they experienced pilfering.  

For example, one general food protecting behavior of animals is changing the 
locations of its food items. According to Preston's experiments [11,12], after kangaroo 
rats experienced pilfering from conspecific or heterospecific competitors, they moved 
the location of their food items.  
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Of particular use in this study is an interesting deceptive behavior observed in the 
food protection strategy of certain squirrels [15]. Social context (i.e., presence or 
absence of competitors) appears to be pivotal to the expression of cache protection 
behaviors. Deceptive behavior in the tree squirrel has been observed with respect to 
food protection [15]. While patrolling, tree squirrels visit the cache locations and 
check on their food. However, if potential competitors are present nearby, tree 
squirrels visit several empty cache locations. This deceptive behavior attempts to 
confuse competitors about the food's location, so that they can protect against the loss 
of their hoarded food. After the potential competitors leave the territory, the tree 
squirrels move the location of their stored food items, if pilfering has occurred.  

4 Computational Model and Implementation 

A model of a bio-inspired behavior-based model [25] of squirrel caching and protecting 
behaviors for application to robotic systems is now presented. Simulations studies were 
performed in MissionLab1, a software 
package developed by the Mobile 
Robotics laboratory at Georgia Tech 
[9]. MissionLab provides a graphical 
user interface that enables users to 
specify behavioral states and the control 
transitions between states easily, 
yielding a finite state acceptor (FSA), 
which can then be compiled down to 
executable code for both simulations 
and robots. The caching behaviors 
created for this project are combined 
with pre-existing behaviors such as 
avoiding obstacles, moving toward an 
object, or injecting randomness (noise). 

In this section, the computational 
model is described that determines 
how robots behave in resource caching 
and protecting scenarios inspired by squirrel's behaviors earlier. Like the squirrel's 
behavior, the model consists of two main parts - caching behavior and patrolling 
(protecting) behavior.  The simulation is based on interactions between two robotic 
agents: a squirrel robot (resource storer) and a competitor robot (resource pilferer). 

 
Caching Strategy 
Many groups, including ours [27], have studied foraging behavior in robotics. In the 
caching simulation, one robot is required to store the scattered resources in safe  
 

                                                           
1  MissionLab is freely available for research and educational purposes at: 
http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/ 

Table 1. States and Triggers  

State/Trigger Description 

Caching Find and pickup food items and store 
them in safe caching locations 

True 
Patrolling 

Move around true caching locations 
and stay for a finite time based on the 
amount of food cached 

False 
Patrolling 

Move around empty caching locations 
and stay for a finite time based on the 
inverted probabilities of true patrol 

Enough food 
cached 

Activate when the number of items in 
a caching location is over the threshold 

Select true 
place 

The robot is probabilistically likely to 
move to a selected TRUE caching place 

Select false 
place 

The robot is probabilistically likely to 
move to a selected FALSE caching place 
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Fig. 3. (a) Example FSA of protecting strategy with three true caching places and three 
deceptive caching places, (b) number of items in each true caching location, (c) transition 
probability between true location i and j, (d) transition probability between false location i and j 

R = random number between 0 and 1 

 

 
Figure 3 shows an example of the robot’s patrolling strategy when it includes three 
true and three false caching locations. In figure 3(a), the robot moves between the 
caching locations. The robot determines the transition among the true caching places 
based on the transition probabilities in figure 3(c). These transition probabilities 
among the true locations are calculated by equation (1) based on the number of items 
in each place as shown in figure 3(b). 

When the squirrel robot detects the presence of competitor, deceptive behavior is 
triggered and the squirrel robot patrols the false (empty) caching locations to deceive 
the competitor. The selection of deceptive locations is also calculated by transition 
probabilities. Here, the transition probabilities among the false locations are set as 
uniform distributions (fig. 3(d)). These are not based on ethological observations as 
they were in the wolf pack case [26], as that data is unfortunately not available.  

In each patrolling state in figure 3(a), the robot goes to the cache and remains there 
for a finite amount of time. The time spent at the cache is determined by the number 
of food items in that place. If a place contains n food items, the robot stays there for n 
seconds. At the end of the waiting phase, the robot selects the next patrolling 
locations based on equation (2) and goes to the next patrolling state. 

Competitor Robot Behavior  
A competitor robot has a simple mechanism in the current scenario (fig. 3). The 
competitor robot simply wanders around the map to try to find the squirrel robot. 

              
               (a) 

Trigger Deceptive (False) Behavior   
  Trigger Original (True) Behavior                             
  Triggered based on the transition probabilities 

 Loc 1 Loc 2 Loc 3 

# items 10 1 1 

 Loc 1 Loc 2 Loc 3 
Loc 1  0.5 0.5 
Loc 2 0.9  0.1 
Loc 3 0.9 0.1  
Stop 0.8 0.1 0.1 

(c) Among true locations 

 Loc 1 Loc 2 Loc 3 
Loc 1  0.5 0.5 
Loc 2 0.5  0.5 
Loc 3 0.5 0.5  

Stop 0.33 0.33 0.33

(d) Among false locations 

NextLocationi =

Location1 , R < Pi1
Location2 , R < Pi1 + Pi2

⎧

⎨
⎪

⎩
⎪
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Adding deceptive behaviors to robots leads to ethical questions, such as whether it 
is ethical for robots to deceive humans for any purpose. This requires considerable 
discuss in a broader community, which we actively encourage. 
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Abstract. Previous studies on control of self-reconfiguring modular robots have 
shown how complex group behavior can be obtained from simple low level 
interactions. In this study we explore the power of Genetic Algorithms and 
NEAT to automatically produce group behavior such as locomotion with 
obstacles. We study the invariance of resulting rule set controllers with respect 
to different scenarios, scales, and initial robot configurations. Resulting GA 
controllers performed 17.88% better than NEAT controllers. The use of 
sequential mode of cell activation was critical for the evolvability of robot 
controllers. 

Keywords: NEAT, Genetic Algorithm, Self-Reconfiguring Modular Robots, 
Programmable Matter. 

1 Introduction 

Self-reconfigurable modular robotic systems have the potential of being more versa-
tile and robust than current robots. A group of modules may reconfigure itself into a 
tool shape, suitable to accomplish an unforeseen task. Eventually, members of the 
same group may replace damaged or lost components, giving the overall system the 
capability of self-repair [9].   

Achieving unsupervised adaptive self-organization is fundamental on a wide varie-
ty of applications, and this type of systems promises to bring new light into the field 
of robotics and automation.  However, there are a number of problems that must be 
addressed in the way of producing practical low cost modular self-reconfiguring ma-
chines.  

Planning and control have been recognized amid the great challenges in modular 
self-reconfigurable robotics [9]. There is a need of algorithms for locomotion of mod-
ular systems under environments with obstacles.  The later is of utmost relevance, 
since locomotion is a sub-task of reconfiguration and self-repair.  

Various studies on generic locomotion algorithms for self-reconfigurable robots 
have been carried by Rus and colleagues [1,2].  They focused on methods inspired by 
cellular automata. The idea is that a set of geometric rules is used to control module 
actions by looking at their neighborhood. Modules operate in a lattice environment 
composed either by free space, obstacles or other modules.  They are assumed to be 
able to sense the type of elements on their surroundings, and thus, they can decide 
where to move by applying a shared geometric rule set.  
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Although the rule set only defines low level interactions, it has been shown how 
complex global behavior arises as a consequence of these local interactions [5]. Un-
fortunately, there is no clear model of how local rules can be designed or tuned in 
order to achieve a desired high level behavior. So far, researchers have concentrated 
on testing manually designed rule sets with a potential for solving locomotion or self-
repair tasks. 

In [1] rule sets for locomotion with and without obstacles were analyzed. Tests 
were performed on a 2D lattice simulation environment. A set of five rules was suffi-
cient to achieve locomotion without obstacles. Locomotion over certain type of ob-
stacles was achieved with a set of eight rules. Three different rule evaluation models 
were tested.  

At first, cells were evaluated in a cyclical order (D0 model). Then, cells were eva-
luated at random, without allowing for repetition along an evaluation cycle (D1 mod-
el). Finally, cells were evaluated completely at random, allowing for repetition of 
activation on a single cycle (D∞ model). They observed how the later, most flexible 
model, requires more complex rule sets, although it allows for more variability and 
potential use on distributed systems.  

Despite of their success at generating basic locomotion controllers, it was clear that 
the manual generation of such rules is an increasingly difficult task, especially as the 
complexity of environment increases and more challenging sophisticated behaviors 
are required. This encourages the development of automated methods to generate rule 
sets for self-reconfigurable modular robots. 

Stoy [8] also uses cellular automation to guide the reconfiguration of a modular en-
semble so as to reach a desired geometrical configuration in three dimensions. The 
local behavior is automatically generated over the basis of a gradient function con-
structed with a CAD model of the target geometrical shape. He provides successful 
examples on the autonomous construction of a configuration resembling a chair. 

Promising results on evolving cellular automata rules were obtained by Koza and 
colleagues in another context [3]. Their rules were evolved for solving the Majority 
Problem, and achieved a performance better than the best known human-written solu-
tion (Gacs-Kurdyumov-Levin rule).  

Our present work focuses on the automatic generation of rule sets for the locomo-
tion of self-reconfigurable modular robots. We will explore the use of Genetic Algo-
rithms (GA) [4] and Neuroevolution of Augmenting Topologies (NEAT) [7].  

The remainder of this paper is as follows: In section 2 we present our experimental 
setup. Results of the adaptation process are shown on section 3. In sections 4 and 5 
we explore the robustness of our solutions by varying the initial robot shape and scale 
of simulation. Finally, in section 6 we present the conclusions of our work. 

2 Experimental Setup 

2.1 Simulation 

We used a matrix representation of a 2D lattice environment containing robot cells, 
background and obstacles. Figure 1 shows various elements of our simulation. An 
example of a robot and environment is shown in (a). A mask of identifiers centered on 
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an activated cell is shown in (b). A rule input condition is shown in (c). Possible dis-
placements are presented in (d). An example of an entire simulation is presented in 
(e). Obstacles are represented by “2”, background by “1” and robot cells by numbers 
greater or equal to “3”. A neural network used as an alternative mapping between 
geometric conditions and cell displacement is shown in (f).   

 

Fig. 1. a. Example of a robot (white) moving on an environment containing obstacles (grey) 
and free space (black). The red square represents a mask centered on an activated cell. b. The 
mask is used to evaluate if a rule input condition is satisfied. c. Example of a rule input condi-
tion where robot cells (“3”) and background elements (“1”) are relevant. In this example the 
input condition is met and a displacement is triggered. d. Eight possible displacements are 
represented by numbers (0-7). e. Matrix representation of a small simulation environment. 
Obstacles are represented by “2”, background by “1” and robot cells by numbers greater or 
equal to “3”. f. Neural network used as an alternative mapping between geometric condition 
and displacement.  

2.2 Training and Test Environments 

We produced complex training and test scenarios by segmenting natural images. Fig-
ure 2 shows our training (a) and test scenario (b). The later scenario is particularly 
challenging, since it usually forces a moving robot to split in two pieces. Simulation 
environments of different sizes were produced out of these images.  

The idea was to test the robustness of resulting behaviors to changes in the scale of 
simulation. The complete learning process was carried on the training scenario, while 
the final experiments were done in both training and testing scenarios.  

 
 

a b c d

e f
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Fig. 2. Training and test scenarios used for our experiments. The darker area represents the 
background, while the gray area represents the obstacles. a. Training scenario. b. Test scenario. 

2.3 Encoding 

In the case of GA, we represented a locomotion controller by an individual binary 
string genome. The genome is implemented as a string containing pairs of input rule 
geometric conditions and action displacements. Each rule was represented by a total 
of 21 bits, where 18 bits are used encoding the input rule and 3 bits are used for 
representing the displacement. We considered a total of 30 rules for our  
representation.  

In the case of NEAT, we used the numerical representation provided by the simula-
tion itself. The eight outer values of the cell centered mask were fed into a neural 
network, as shown in Figure 1f.  The four output neurons were considered as binary 
values and paired to represent the horizontal and vertical displacement separately.  

2.4 Objective Function 

The objective function was designed to maximize overall robot locomotion toward the 
right most portions of the scenarios while maintaining, at the same time, the connec-
tivity of the robot. We defined the travelled distance d as the averaged position of 
each robot cell at the end of the simulation. We also defined the connectivity c as the 
(normalized) size of the largest 4-connected cell group averaged through every simu-
lation step. Both quantities were bounded in the interval [0,1]. Then the fitness f for 
each candidate individual was defined as ·  (1)

2.5 Testing Parameters 

The training was executed with robots of 4 by 4 cells size. The training scenario was 
chosen to be 30 (height) by 50 (width) cells. Five learning trials were performed for 
GA and NEAT. The best performing individual was selected for further characteriza-
tion on each method. 

a b
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Further tests consisted on studying the invariance of resulting controllers with re-
spect to changes on robot’s initial shape and scale of the simulation. These tests were 
executed on both, training and test scenarios. Table 1 defines the configurations for 
initial shape invariance study and Table 2 defines the settings for simulation scale 
invariance analysis. 

Table 1. Initial shape invariance settings. The scenario size was fixed in 30x50 cells. 

 

Table 2. Scale invariance settings. Each case corresponds to 1x, 2x, 5x and 10x the size of the 
initial learning configuration. 

 

3 Results 

Figure 3 shows the learning curves for Sequential GA, Random GA and NEAT in 
terms of number of evaluations. We can observe that Random GA shows signs of 
premature converegence. NEAT shows the smaller standar deviation. Despite of this, 
its final fitness is lower than that reached by GA. 

The final average fitness is 0.862 for sequential GA, 0.860 for random GA and 
0.709 for NEAT. The overall standar deviation is 0.179 for sequential GA, 0.118 for 
random GA and 0.019 for NEAT. Averages were taken by considering five 
independent learning trials. 

 

Shape Index Robot Height Robot Width 
I 4 4
II 3 5
III 5 3
IV 2 8
V 8 2

Scale Scenario Scenario Robot Robot   
Index Height Width Height Width

I 30 50 4 4
II 60 100 8 8
III 150 250 20 20
IV 300 500 40 40
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The maximum fitness obtained with GA was 0.936. On the other hand, the best 
NEAT individual‘s fitness reached 0.73. These were the individuals selected for 
further characterization. 

 

Fig. 3. Resulting learning curves obtained for sequential GA, random GA and NEAT. The final 
average fitness is 0.862 for sequential GA, 0.860 for random GA and 0.709 for NEAT. The 
overall standar deviation is 0.179 for sequential GA, 0.118 for random GA and 0.019 for 
NEAT. Averages were taken by considering five independent learning trials. 

4 Initial Shape Invariance 

Figure 4 shows the results obtained when varying the initial robot shape. For the case 
of GA, the fitness obtained was close to the one obtained during training, for all initial 
configurations and scenarios. On the other hand, the results shown for NEAT didn‘t 
show a clear relationship between initial shape and fitness. 

5 Scale Invariance 

Figure 5 shows the fitness obtained with different methods and scenarios while 
varying the simulation scale. The resulting NEAT behavior showed a higher invariace 
between scenarios than those obtained with GA, although they don’t show a clear 
relation between configurations. In the GA case, it can be seen an inverse relationship 
between the fitness obtained and the simulation scale. This might be due to the 
number of simulation steps required to cross the scenario. The later implies a 
disconnected locomotion to reconnect at the end of the scenario (See Figure 6). 
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Fig. 4. Summary of fitness values obtained for different methods, scenarios and initial robot 
shape. Black and red dots are representing the level of fitness obtained when using Sequential 
GA.  There is a clear similarity of results obtained under test and training scenarios. Results 
show how Random GA always gives lower results under testing, even during training 
configuration. 

 

Fig. 5. Fitness values obtained with each evolutionary method in both scenarios and while 
varying the simulation scale index 
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Fig. 6. Snapshots of the best performing individual generated with sequential GA in the 
training scenario. The gray zone corresponds to the obstacles while white dots are robot cells. 

6 Conclusions 

We have studied three methodologies to generate decentralized controllers to achieve 
locomotion of self-reconfigurable modular robots. We have tested the resulting 
controllers by varying the initial robot’s shape and the simulation scale, using 
different scenarios. 

We have observed the convenience of using secuential module activation, so each 
individual evolved could be characterized by one fitness value. In other hand, random 
activation resulted in noisy learning curves, where the resulting fitness were not even 
close to those resulting during the learning process. 

Sequential GA results showed invariance to the initial shape and an inverse relation 
to the scale of simulation. This behavior seems to be independent of the simulation 
scenario. It was also observed that GA generated controllers with slight better 
performance in vertical initial robot shapes. On the other hand, NEAT showed no 
clear relationship through the configurations being tested. 

The cellular automata representation used with GA is able to condense several 
situations into a single rule, while the neural network treats every local scenario as 
unique. This is true unless some operator is introduced to disable input nodes on the 
neural network, whereby a more global behavior could be achieved. 
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The amount of simulation steps explains the decrease in fitness shown on the scale 
invariance experiments. This variable was somehow uncontrollable, since there was 
no clear way to stablish stangnation due to the small local movements that disabled 
the connectivity in the fitness function. Robots were able to increase their scored 
connectivity index by travelling with a slight separation from each other, but 
gathering closely at the end.   

We note that for all experiments, the desired direction of locomotion was achieved. 
This raises GA and NEAT as tools to synthesize decentralized controllers in even 
more complex tasks than those developed so far (including native 3D displacements 
and reconfigurations). 

In a future work we plan to provide comparisons with previous hand made 
controllers. A fair direct comparison is not yet possible, since this entails adapting the 
rule domain to the exact settings used on other studies.  
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Abstract. This paper presents a framework for modelling group struc-
tures and dynamics in both artificial societies and human-populated vir-
tual environments such as computer games. The group modelling (GM)
framework proposed focuses on the detection of existing, pre-defined
group structures and is composed of a reinforcement learning method
that infers collaboration values from the society’s local interactions and
a clustering algorithm that detects group identities based on the learned
collaboration values. An empirical evaluation of the framework in the
social ultimatum bargain game shows that the GM method proposed is
robust independently of the size of the society and the locality of the
interactions.

Keywords: Group Identity Detection, Reinforcement Learning, Hierar-
chical Clustering, Artificial Societies, Complex Adaptive Systems, Com-
plexity.

1 Introduction

The interactions among a population of social individuals (such as humans or
simulated agents) — due to factors such as the agents’ attitude, personality,
cultural biases and stereotypes, and history of past interactions [7] — yield
complex dynamics which lead to the formation of global patterns, intended as
the behaviour of the system as a whole [7]. Global patterns, such as group
identities (i.e. the ability of an individual to identify himself or herself with his
or her group [3]) and norms, influence the behaviour of the individuals in an
indirect feedback fashion [7], with the potential of generating and aggravating
social conflicts, such as social discriminations and other forms of inequalities.
A way to effectively detect group formations is through modelling the local-
to-global transition (i.e. from agent interactions to group identities). However,
doing so is not a trivial task due to the recurrent influence of the global structure
in the society-system1.

The focus of this study is the real-time detection of consolidated group iden-
tities in a society of believable, human-like artificial agents. We hereby assume

1 Sometimes it is referred to as emergence of complexity [7]
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that the group structures have reached an equilibrium, i.e. no further group
formation dynamics occur. Following the findings of Dawes and Messick [3], we
aim to identify group identity structures by measuring and processing the levels
of collaboration among agents. The overview of the proposed group modelling
(GM) approach, as depicted in Figure 1, is composed of three key phases. The
first phase regards the classification of the interactions occurring between the
agents into two values, namely in-group and out-group — i.e. interacting agents
do or do not belong to the same group, respectively [3]. In the second phase a
reinforcement learning update rule [15] approximates values of cooperative inter-
action between the agents based on the in/out-group values obtained from phase
1; collaboration values [2] are then retrieved by calculating the agents’ reciprocal
altruistic level of cooperation [7]. Finally, in the third phase, a clustering algo-
rithm [17] determines the number of group identities existing in the society and
their corresponding agents.

In this paper we have conducted experiments based on simulations of societies
of complex social agents of variant sizes. Social complex and believable agents
interact with each other by playing the social ultimatum bargain game [1] and
are constrained by local interactions which allow them to interact only with a
subset of the society. Results demonstrate that probabilistic in/out-group group
classification functions that approximate the level of favourability the provider
agent shows with respect to each receiver agent it interacts with can detect
consolidated, pre-defined group identities with high accuracy even in the most
complex agent society.

This study is novel as, to the authors’ best knowledge, there has not been any
attempt to real-time detect group identities in artificial societies based on the sole
observation of agents interactions. We argue that our real-time GM framework
is applicable to multi-agent scenarios such as artificial societies or multiplayer
games, with an emphasis on adaptive multiplayer games [19] in which the social
interactions among the individuals are complex [20] and beyond the resource
exchange interactions of the social ultimatum game covered in this paper.

2 Related Work

There is a number of studies investigating groups of agents and their behaviours
In both artificial societies and virtual environments such as multiplayer games.

Nowak et al. [13], among others, focus on the evolution of collaboration by
evolving the policies of artificial agents. The approach, however, neglects the
impact of collaboration on group formation. Similar work was conducted by
Hammond and Axelrod [6], though it was focused on the evolution of ethno-
centrism. Among the studies on collective behaviour, Lerman and Galstyan [8]
create mathematical models, through differential equations, of the collective be-
haviour of simple multi-agent systems, such as social insects. Their approach
differs from ours in that they aim to build a generic model of an agent, based on
observations, and then devise a mathematical model of it. Martinez et al. [10]
investigated the use of rule-learning algorithms to predict group behaviours in
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Fig. 1. Overview of the group modelling framework. The figure depicts an example
society (ellipse) of 7 agents and their interactions (circles and arrows respectively) and
the presence of three group identities (i.e. cross, circle and square) the 7 agents are
labelled with.

artificial societies. Their method is based on historical data and even though we
share a common goal (i.e. modelling of group dynamics), that study does not
aim to model group identities in real time.

For what it concerns virtual environments, instead, Vogiazou and Eisen-
stadt [16] studied the influence of communication to the emergence of group
behaviours; their qualitative findings, however, were not backed-up empirically.
Ducheneaut et al. [4] analysed gameplay data from the popular massively mul-
tiplayer online game World of Warcraft (Blizzard Entertainment, 2004) in order
to understand the relationships occurring between players grouping together in
order to solve common guilds. Their work does not focus on the creation of spon-
taneous groups but rather examines pre-determined groups. El Nasr et al. [12]
defined metrics of collaboration for collaborative games. Their approach involves
expert knowledge and is based on well established console games such as Guitar
Hero (Activision, 2006). Once again, the study does not focus on the formation
of groups, although it provides metrics which could be adopted as interaction
classifiers in our framework.

3 Social Ultimatum Bargain Game and Agent Policies

The test-bed game used for the interaction of agents involves a scenario S,
composed of T episodes, in which a population P of n agents a1, . . . an interact
with each other by means of the social ultimatum bargain game [1]. At each
episode, the population P is randomly divided into m partitions of equal size P
(depending on the n and m values, the partition sizes might differ by 1 agent).
A fixed amount of money, M , is assigned to each partition. Then, all agents
will play the social ultimatum bargain game [1], hereby described for a single
partition size, P . An agent ai is randomly selected to become the provider agent
and the remaining P − 1 agents become the receiver agents. The provider agent
ai will bargain an equal endowment, e = M/(P − 1), with all receiver agents.
In particular, the provider agent will propose to each receiver agent aj an offer
0 ≤ oi,j ≤ e; as a response to the offer, rj,i, the aj agent may accept or refuse
the offer. At the end of each episode t, the gain for ai is the sum of all accepted
offers, gi,t =

∑P−1
j=1 (e− oi,j), whilst the gain for each receiver agent aj is either

oi,j (if rj,i is accept) or 0 (if rj,i is refuse).
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Although in this study we assume consolidated groups and therefore no agent
adaptation, we still aim to study believable agents with social preferences sim-
ulating human-like behaviours. The agents’ social preferences are driven by the
findings of Marzo et al. [11]: (1) the provider agent should always aim to max-
imise its own gain; (2) the provider’s offer should tend to be more generous when
it is interacting with a friend; (3) there should not be any apparent influence of
the relationship types on the response of the receiver agents. The agents we have
implemented follow the human-like, adaptive agent model of Chang et al. [1] for
the social ultimatum game. Furthermore, in order to fulfil Marzo et al.’s second
finding, three relationship types were defined, namely friendship, acquaintance-
ship and strangeness. On average, the highest offers will occur between friendly
agents; moderate offers are expected in an acquaintanceship between two agents;
and the lowest offers are expected between stranger agents.

4 Method: Group Identity Detection

For our group modelling (GM) framework (see Figure 1), we assume that the
agent policies have the Markov property — i.e. the agents perform actions based
only on their current internal state (e.g. cultural biases, aggressiveness, relation-
ship values). As a consequence, we assume that the whole society has the Markov
property. With respect to the canonical reinforcement learning terminology, our
GM framework aims to learn the collaboration-function values, C�, of the whole
society P ; the society’s state is represented by the pairs (ai, aj) , ∀i, j ∈ [1, n]
and the actions are represented by the pairs (oi,j , rj,i)∀i, j ∈ [1, n].

4.1 Phase 1: In/out-group Interaction Classification

Following the findings of Dawes and Messick [3] with respect to the social ultima-
tum bargain game presented in Section 3, each interaction feeds an Interaction
Classifier, I, which returns either an in-group or an out-group value for the in-
teraction (oi,j , rj,i). In this study, we consider five possible classifiers. The first
two are deterministic:

– IRB is the receiver behaviour classifier: in-group is returned if rj,i is accept,
out-group is returned if rj,i is refuse.

– IPB is the provider behaviour classifier: it maintains the average offer pro-
posed by ai throughout the whole experiment, ôi(t). This classifier returns
in-group if oi,j(t) > ôi(t − 1) at episode t whereas it returns out-group if
oi,j(t) < ôi(t− 1). If oi,j = ôi,t−1, in-group or out-group are picked randomly
following a binomial distribution.

The remaining three classifiers are non-deterministic and based on all the P − 1
offers, Oi, = {oi,1, . . . oi,i−1, oi,i+1, . . . oi,P } made by the provider agent to all
receiver agents in the partition. These interaction classifiers return in-group with
probability p(aj in-group ai) and out-group with probability 1−p(aj in-group ai)
for each receiver agent aj . The interaction classifiers and their corresponding
probability functions are as follows:
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– IH is the entropy classifier based on the probability function pH which is
defined as the normalised Shannon’s entropy and represents uniformity of
offers [18]:

pH(aj in-group ai) = − 1

log(P − 1)

P−1∑
j=1

oi,j
Oi

log

(
oi,j
Oi

)
(1)

– IAP is the agent preference classifier based on the probability function
pAP (aj in-group ai) which is calculated as the following min-max normali-
sation:

pAP (aj in-group ai) =
oi,j −min (Oi)

max (Oi)−min (Oi)
(2)

– IHAP is the entropy-agent preference classifier based on the probability func-
tion pHAP which is calculated as the following linear combination:

pHAP (aj in-group ai) = pAP (aj in-group ai) · pH(aj in-group ai) (3)

The probability function pH was selected as it represents the fairness of the
offers Oi made — on average — by the provider agent ai in its partition. In
an unfair offer distribution situation (i.e. there is a disparity of treatment made
by the provider agent towards the receiver agents — the provider is favouring a
subset of the agents in P ), the resulting pH is low, meaning that — on average
— the interactions will be likely to be classified as out-group. On the other hand,
in a fair distribution situation (i.e. there is equality of treatment made by the
provider agent towards the receiver agents — the provider is not favouring any
subset of agents in P ), the resulting pH is high, meaning that — on average
— the interactions will be likely to be classified as in-group. Further discussion
about the selection of these probability functions is provided in Section 6.

4.2 Phase 2: Collaboration Learning

The second phase of our GM framework follows two steps. First, it interprets the
in/out-group values of the interaction classifier as an immediate reward function
that is used to approximate cooperation values in the society. The result is a
cooperation matrix C, of size n × n, in which the value Ci,j(t) represents the
up-to-date cooperation value between agents ai (provider) and aj (receiver) at
the t-th episode. In this paper we consider the constant-α Monte Carlo update
rule for non-stationary environments [15]:

Ci,j(t) = Ci,j(t− 1) + α [I(t)− Ci,j(t− 1)] (4)

where I(t) is the immediate reward (interaction classifier), for the t-th interaction
between ai and aj and α is a constant step-size parameter. The update rule just
defined encompasses well the notion of past interactions [7] which influence agent
behaviours, it allows the estimation of up-to-date levels of cooperation between
agents and, finally, it maintains a distinction about the directionality of the
interactions (i.e. from the provider agent to the receiver agent).
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The second step of this phase regards the retrieval of collaboration values
from the learnt cooperation matrix; this is achieved by considering collaboration
as reciprocal altruism [7]. The result is a (triangular) collaboration matrix, C�,
in which the collaboration value, at episode t, between ai and aj is calculated

as C�
i,j(t) =

1
2 [Ci,j(t) + Cj,i(t)].

4.3 Phase 3: Clustering for Group Identification

The final phase of our GM framework interprets C� as a dissimilarity/distance
matrix and uses it in order to assign group identities to agents. The clustering
method we adopt in this paper is the agglomerative complete-link algorithm
with the elbow-rule as stopping criterion [17].

5 Results

We have tested the performance of our GM framework against three different
society sizes (n = 10, n = 50 and 100), both in absence (m = 1) and in presence of
agent interaction locality constrained by a number of population partitions (m =
3,m = 5 and m = 10 for each society size, respectively). Algorithm performance
is measured as the ability of our GM framework to detect consolidated pre-
defined group identities. In addition, we test the GM framework across all five
interaction classifiers (see Section 4.1) and compare the results.

At the beginning of each experimental setup, true group identities are ran-
domly generated within the population satisfying a number of constraints: (1)
there must exist at least 2 group identities; (2) each group identity must have at
least size of 2; and (3) agents belonging to the same group identity are friends
whereas agents belonging to different group identities have a 50% chance to be
either acquaintances or strangers. At the end of each episode, two integer vec-
tors of length n — one for the true and one for the GM’s group identities —
are retrieved and the performance (error) of the GM framework is calculated
through the normalised edit distance [9] between the two vectors.

In order to grasp the generic performance of the GM framework and reduce
the non-deterministic nature of the interactions, we repeat the execution of each
experimental setup 10 times. For each setup we set α to 0.1. The number of
episodes T are set to 1000 when n = 10 and n = 50, whilst T = 5000 when n =
100. Furthermore, to smooth the noise of random fluctuations, Figure 2 depicts
the performance of our GM framework based on a moving average window of
10 episodes. For the n = 10 case (see Figures 2(a) and 2(b)), the interaction
classifiers are tested against a baseline random interaction classifier, IRND, which
returns either in-group or out-group with probability 0.5. Note that IRND, IRB

and IH depict similar performance in all agent scenarios but are not represented
in the figures of the n = 50 (Figures 2(c) and 2(d)) and the n = 100 (Figures 2(e)
and 2(f)) scenarios for illustration purposes.

Results show that when IAP and IHAP are used, our GM framework manages
to detect the true group structures in all 6 scenarios. All probabilistic interaction
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(a) n = 10, m = 1
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(b) n = 10, m = 3
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(c) n = 50, m = 1

0 200 400 600 800 1000

0
0.
2

0.
4

0.
6

0.
8

1

Episode

N
or

m
al

is
ed

 E
di

t D
is

ta
nc

e

AP
HAP
PB

(d) n = 50, m = 5
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(e) n = 100, m = 1
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(f) n = 100, m = 10

Fig. 2. Performance of the GM Framework with respect to population size (n) and
number of partitions (m) based on different reward functions (I): agent preference
(AP), entropy-agent preference (HAP), provider behaviour (PB), random (RND), re-
sponder behaviour (RB), entropy (H).



428 C. Grappiolo and G.N. Yannakakis

classifiers, excluding IH , are robust with respect to n and m. The IH interac-
tion classifier does not allow to detect the true group identities because the
pH(aj in-group ai) values are equal for all receivers agents in the partition (see
Equation 1): even if the normalised entropy detects fair/unfair scenarios, the
classifier is not able to detect the agents which receive a more altruistic offer.
IAP and IHAP yield similar results (i.e. no significant difference) in the first
5 scenarios (see Figures 2(a). . . 2(d)). For the n = 100,m = 10 scenario (see
Figure 2(f)), instead, IAP outperforms IHAP ; a t-test on this scenario shows a
significant difference between the two (t-stat = 4.0705; p-value < 0.0001). Com-
paring the two with respect to their convergence speed, IAP appears to converge
to zero error quicker than IHAP in the n = 10,m = 3 case (see Figure 2(b))
whilst the opposite result is obtained when n = 50,m = 1 (see Figure 2(c)).
Despite the difference in performance in the n = 100,m = 10 scenario, an
explanation can be hardly found by focusing solely on the interaction classi-
fiers. Since pHAP ≤ pAP for all interactions (pHAP is a linear combination of
pAP ≤ 1 and pH ≤ 1), this implies that pHAP is more robust with larger (fairly
diluted) partitions, and therefore could explain why IHAP outperforms IAP in
the n = 50,m = 1 setup (see Figure 2(c)). However, the same effect does not
occur that clearly in the n = 100,m = 1 case as the two interaction classifiers
perform almost equally. Moreover, in small partition size setups (P is 10 in the
n = 50,m = 5 and the n = 100,m = 10 setups) we observe the inverse picture.
The differences in performance might be explained by the size of the coopera-
tion martix, C (see Section 4.2), and the number of updates it requires in order
to converge. More importantly, the elbow rule criterion appears to be sensitive
with respect to small changes in the C values (i.e. the number of groups detected,
between two consecutive episodes, was often fluctuating between n and g � n),
as we have observed in many of the experimental runs we have conducted.

The IPB interaction classifier manages to detect the exact group identities
on small societies but it performs poorly on larger societies, not only with re-
spect to the final average errors obtained but also with respect to the speed of
convergence. Finally, IRB performs as poorly as the random baseline interaction
classifier (IRND), which is evidence that the agent policies of our society reflect
well the social preference findings of Marzo et al. [11].

6 Discussion and Conclusions

The key findings of this paper suggest that the probabilistic agent-to-agents
interaction classifiers proposed (based on both indicators of preference for par-
ticular agents and the general fairness of offer distribution) allow the detection
of group identities under a group modelling (GM) framework which is robust
independently of the size of an artificial society of human-like, believable, agents
and the locality of interactions.

The GM approach proposed aims to learn a collaboration matrix which grows
quadratically with respect to the society size, O(n2). This key limitation is al-
ready shown by the GM performance decrease observed in larger society sizes;
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one would, therefore, expect that the GM framework would not be able to scale
to very large societies composed by thousands of agents. A solution could be
the reduction of the size of the collaboration matrix. For instance, one could use
the group structures inferred by the framework up to the previous episode in a
feedback loop and learn collaboration values among groups rather than agents.
In this way, the new group-based cooperation matrix would have the size of
O(g ≤ n), where g is the number of groups detected. On that basis, ongoing
research on the definition of a group-based metric of fairness is being conducted.
As fairness of offer distribution is a subjective and ambiguous term we designed
several ad-hoc metrics of fairness based on key and generic elements of fair offers,
such as the amount of the offer and the need of the receivers. We then tested
those against human notions of fairness, by running a crowdsourcing experiment
in which participants were asked to compare levels of fairness of dissimilar offer
distribution scenarios in a resource management game environment [5]. Prelim-
inary results suggest that some of our fairness metrics, such as the entropy of
distributed offers (as used in this study) appears to be highly correlated with
the human notion of fairness and suggests that such a metric is robust for group
identification (as seen in the results of this paper).

The complete-link clustering algorithm used is conceptually sound: grouping
agents by maximum C� values and calculating between-group distances by min-
imum C� values aligns well with the in/out-group concepts [3]. However, we be-
lieve that the use of more advanced validity methods rather than the elbow-rule
will most likely lead to faster algorithm convergence.

As a direct consequence of the findings of our study, the GM framework
can easily be extended to model group identities in human-based collaborative
(virtual) environments, such as multiplayer games; moreover, due to its effec-
tiveness to model identities in small-to-mid societies, the framework is ideal for
collaborative serious games targeting small communities such as classrooms [20].
Furthermore, the interaction classifier is the only component of the framework
which requires context-based information (i.e. the offers in our social ultimatum
bargain game scenario). Nonetheless, by maintaining the concepts of general fair-
ness and agent favourability (similarly to IAP and IHAP ), the framework can be
extended to scenarios which are not merely based on the exchange of resources.

Future work will consider three main directions: we will consider more com-
plex societies of agents which not only showcase adaptive behaviours but are
also driven by their own emotions and the emotional states of others [14]; we
will augment our GM framework by modelling group dynamics and group inter-
nal structures (e.g. agent leaderships); finally, we will approach the subsequent
phase of providing influencing methods which would affect the global-to-local
indirect influence in order to reach global-level goals, such as maximisation of
collaboration for the agent society as a whole.

Acknowledgments. This work has been supported, in part, by the FP7 ICT
project SIREN (project no: 258453).
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Cost, Precision, and Task Structure

in Aggression-Based Arbitration for Minimalist
Robot Cooperation
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Abstract. This paper reexamines a multi-robot transportation task,
introduced and studied by Vaughan and his collaborators, in which con-
strained space induces inter-agent interference. Previous research demon-
strated the effectiveness of an arbitration mechanism inspired by biolog-
ical signaling where the level of aggression displayed by each agent effec-
tively prioritizes the limited resources. This paper shows that apart from
determining the correct fitness of an individual several other factors, such
as signaling cost, precision of the outcome and properties of the resource
and task are key to determine an effective arbitration technique. Based
on these factors we present a taxonomy of the arbitration mechanisms.

The large signalling costs incurred by our simple robots using mini-
mal set of sensors permit us to identify scenarios in which a dominance
hierarchy outperforms, not only to no arbitration, but also aggression-
based mechanisms. We identify how memory of past interactions can be
used to the advantage of an agent, albeit with a trade-off between cost
and outcome accuracy. We also show that the importance of a particu-
lar aggressive interaction to long-term task performance is not trivial to
determine and depends on the task structure. Results help us identify in-
stances where agents may manipulate interactions to alter the frequency
and duration of aggressive encounters, affecting the overall task perfor-
mance.

1 Introduction

Spatial interference is a common and important phenomenon in navigation tasks
involving multiple robots; it is a particular instance of the general problem of
resource competition amongst agents attempting to achieve their own ends while
interacting with others. When autonomous agents have an incentive to cooper-
ate, a worthwhile question is how best to mitigate the negative effects of re-
source contention. Motivated by the methods which animals employ to contest
resources, Vaughan and his collaborators (cf. [5], [1], and [6]) have shown how
displays of stylized aggression can effectively resolve resource conflicts in a multi-
robot transportation task. That line of work has produced increasingly effective
methods for assessing the level of aggression that an individual agent should
exhibit in order to prioritize the limited resource effectively.

T. Ziemke, C. Balkenius, and J. Hallam (Eds.): SAB 2012, LNAI 7426, pp. 431–441, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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This paper shows that determining the correct fitness of an individual at
a particular time is only one of several aspects of effective conflict resolution.
An important consideration is the cost of the aggressive signaling. In fact, the
analogous biological mechanism is directly concerned with the interplay of signal
precision and cost: aggressive displays allow animal to assess the strength of their
resource competitors before they decide to engage in a costly fight [2]. Animals,
after all, organize themselves into a dominance hierarchy which they can use to
resolve future resource competition [4] in an inexpensive albeit static way.

In this paper, we examine the multi-robot transportation task domain that
Vaughan and his collaborators have studied. Specifically, we study a two robot
interference scenario, the goal of which is to cooperatively perform the max-
imum number of collective transportation tasks in a given time. We present a
taxonomy of arbitration mechanisms for two-agent spatial interference, including
a characterization of conflict resolution models, introduce a notion of outcome
accuracy and explicitly consider interaction cost. Results from physical robot
experiments and data-driven simulations led to following contributions:–

1. We show that there exist similar problem instances in which either dynamic
aggression or a static dominance hierarchy are advantageous.

2. We also demonstrate how memory of past interactions with respect to the
task structure and properties of the resource can result in improved future
task performance.

3. The paper shows that varying the properties of assigned task, the frequency of
spatial interference and the cost incurred in its resolution varies significantly.

4. A new “minimalist” resource arbitration method is introduced which pro-
duces dynamic outcomes—albeit with comparatively high costs—suitable for
simpler robots (with fewer sensors) than heretofore known.

5. We identify how agents may manipulate interactions to alter the frequency
and duration of aggressive encounters, affecting the overall task performance
in repetitive tasks.

We begin by giving a brief overview of previous research of interference in multi-
robot systems. Next, in Section 3 we propose a taxonomy of arbitration mecha-
nisms for two-agent spatial interference. In Section 4, we provide a comparative
study of the various arbitration models. Results of the study are based on phys-
ical robot experiments. Finally in Section 5, we designed a custom simulator
based on our physical robot data from previous section and anlyzed interference
under systemic variation of environment.

2 Related Work

Goldberg and Matarić [3] have suggested using interference as a tool for eval-
uating multi-robot controllers, viz. identifying trade-off between performance
time and interference. Vaughan et al. [5] compared a dominance hierarchy to
the aggression-based strategy in a multi-robot transportation task in a simu-
lated environment. Our data below show that one strategy can be preferable
to the other, but exactly which depends on the shared resource and also on
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the individual task dynamics. Brown et al. [1] introduced the concept of ratio-
nal aggression where the level of aggression is determined by the investment
made by Zuluaga and Vaughan [6] further improved on Brown et al.’s per-
formance by basing the level of aggression on the investment in the shared
resource. Details on the relevant strategies compared in this work are below.

Fig. 1. The task involves
robots navigating their re-
spective regions (around
blue and green walls, re-
spectively) but also having
to resolve a conflict in the
shared space (between the
“white strips”).

Brown et al. [1] introduced the concept of ratio-
nal aggression where the level of aggression is de-
termined by the investment made by Zuluaga and
Vaughan [6] further improved on Brown et al.’s per-
formance by basing the level of aggression on the
investment in the shared resource. Details on the
relevant strategies compared in this work are below.

This paper uses the same controlled scenario (de-
picted in Fig. 1) as this previous line of research.
Two robots perform repetitive transportation tasks
by moving around cycles in the environment (shown
as blue and green walls they must follow). Competi-
tion for space occurs at a narrow shared region, the
girdle, where only one robot traverse at a time; dif-
ferent arbitration models determine who gives way.

Additionally, in [3] the authors suggested that
changing the environment could play a role in alter-
ing interference properties. This manifest itself in [1],
where changes in the (simulated) environment pro-
duced large standard deviations in their results. Part
of our work is an attempt to analyze and mitigate
interference under systematic variation of the envi-
ronment.

2.1 Arbitration Models

A resource arbitration model determines which of the two robots should have
access to the shared resource. In aggression based models each robot determines
a quantity, their level of aggression, and engages in a dynamic behavior involving
giving or taking way in the shared space.

Vaughan’s random aggression: Each agent picks a random aggression at each
encounter, resulting in a random outcome; i.e., the resource is gained by a
random agent.

Vaughan’s personal space method: The level of aggression is determined by the
amount of free space visible behind the robot in the event of interference.

Rational aggression based on local task investment: This is modeled after [6],
aggressive interaction based on local task investment, where the robot “dis-
plays its aggression” by moving backward a distance inversely proportional
to the distance traveled so far in the constrained region, and then moving
forward until it bumps again. The robot’s controller is shown in Figure 2(a).
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(a) Aggression-based arbitration. (b) Fixed dominance hierarchy.

(c) Cutting one’s losses. (d) Random walk arbitration.

Fig. 2. Details for four different arbitration mechanisms

Linear dominance hierarchy: A fixed dominance is assigned to each robot be-
fore they start their spatial navigation and each one follows this at every
encounter to determine who gets right-of-way. Figure 2(b) shows this.

Cutting your Losses: Some memory of local task performance is added to the
rational aggression method. When a robot meets an opponent inside the
girdle, it displays its level of aggression for at most φ attempts. At the
same time it measures and remembers the cost it incurs in this display, by
measuring the lose or gain in the shared space distance from the time it
starts its aggressive display. Figure 2(c) gives this mechanism.

Random walk: As soon as a robot encounters an opponent, it backs a random
distance. It then moves forward and if the opponent is still in the girdle, it
again moves back by a random distance. The opponent also follows the same
protocol. Eventually one of the robots is pushed out of the girdle. Figure 2(d)
illustrates this mechanism.

3 Taxonomy of Spatial Conflict Resolution Models

We propose a taxonomy of conflict resolution models with the following axes:–

• Dynamic vs. static: An arbitration method is static if and only if it does not employ
information about a particular encounter to resolve that conflict.

• Deterministic (DET) vs. Probabilistic (PROB): A method is deterministic if and
only if, given the same scenario, the resource is always awarded to the same agent.

• High (HOA) vs. Low outcome accuracy (LOA): The former has higher probability
of selecting the rational winner. The robot with the greatest local investment should
gain the resource in rational interactions.

• Costly (HIGHCOST) vs. cheap (LOWCOST): Time, energy and other resources
may be involved in an arbitration mechanism. Their utility depends on the com-
parative saving and/or trade-off of these costs.
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Fig. 3. An example of a robot giving way. After bumping each other, both robots move
back and one exits the girdle to make room.

Different arbitration models can be denoted by a quadruplet:

Model Classification

Linear dominance hierarchy static det loa lowcost
Vaughan’s random aggression static prob loa lowcost
Random walk dynamic prob loa lowcost
Vaughan’s Personal space dynamic det hoa highcost
Rational aggression dynamic prob hoa highcost
Cutting your losses dynamic prob hoa lowcost

4 Comparative Study

4.1 Implementation Details

We imposed spatial interference on physical robots by making them navigate
through an environment as shown in Figure 1. Interference occurs when two
iRobot Creates ’s RA and RB, 33cm in diameter attempt to cross a girdle ∼53cm
wide from opposite directions as shown by the arrows in Figure 1. RB’s trans-
portation task length is almost half that of RA. RA does 10 traversals, while
RB covers 20. We assigned these numbers so as to avoid situations where the
robot performing the shorter task finishes all its trips while the other one keeps
traversing an encounter-free region.

4.2 Aggressive Interaction and Linear Dominance

Both these models were executed in environments with different girdle lengths.
The aim is to assess the role the shared resource plays on arbitration outcomes.

Varying Girdle Length: The utility of aggressive interaction is reduced when
both robots have large, almost equal aggression levels, a phenomenon which
happens when encounters are at the center of a large enough girdle. This can
be observed in Figure 4, as the aggression strategy performs increasingly poorly
with increasing girdle length. A dominance hierarchy, despite it not necessarily
resolving the conflict toward the agent with the greater investment, proves to be
a better arbitration method in such cases.

However for encounters at the ends of the girdle, the short aggressive inter-
actions coupled with the ability to produce a rational winner makes aggression
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0 5 10 15 20

Task Iterations

0

200

400

600

800

T
im

e
(s

)

RB Dominates RA
RA Dominates RB
Aggression

(c) RB ,GL=3.35

0 5 10 15 20

Task Iterations

0

200

400

600

800

T
im

e
(s

)

RB Dominates RA
RA Dominates RB
Aggression

(d) RB ,GL=4.7

Fig. 4. Average task times of RA and RB with varying girdle lengths (GL) in meters,
fixed task ratio 25:38. (Results are from three experiments averaged for each of the
three strategies, for each of the three cases. We show 2 cases for space constraints.)

based arbitration beneficial over dominance. Vaughan et al. [5] provide an in-
stance where choice of aggression level proves no better than random selection
of aggression (Vaughan’s random aggression). In fact, the outcome of such a
random mechanism is an average drawn from the outcomes of following either
extremes of the linear dominance hierarchy. In the data above the advantage of
such a mechanism can be seen.

An important question is “how precisely can the outcome of the arbitration be
predicted given the initial position of encounter?” When the robots have approxi-
mately equal local task investment, as in the setup above, the noise in the robot’s
interactions breaks the symmetry. In Figure 5 the mixed red and blue region near
the center of the girdle (girdle proportion ∼0.5) shows that there are situations
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Fig. 5. Time to resolve an aggressive inter-
action of two physically grounded robots.
The horizontal bar shows the robot which
gets right of way when the point of en-
counter inside the girdle (length normal-
ized) varies, red being robot RA and blue
RB

when RA’s local investment is less
than RB, but RA wins or vice-versa.
These are the few instances when the
outcome of the aggressive encounter is
neither particularly accurate nor ra-
tional and there is high cost involved,
decreasing their utility in such situ-
ations. Moreover, in instances where
encounters occur at girdle ends, the
inaccuracy of dominance hurts only
when the less dominant robot has
higher local investment and still re-
treats. If the task ratios are appropri-
ate, then such scenarios may occur only rarely, making dominance arbitration
the superior arbitration model for such environments.

Varying Task Ratio: We examined how the properties of the task assigned to
each agent influence aggressive encounters. This factor dictates the time when
a robot starts its journey inside the girdle relative to the other and, thus, the
initial position where they end up meeting. There is also the chance that they
do not meet at all. The variation of the duration of aggressive interactions as
shown in Figure 6 indicates the importance of task structure in aggression based
arbitration. Task structure is reexamined through exhaustive simulation below.
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Fig. 6. The duration of aggressive interaction of two physically grounded robots
changes as we vary task ratio, suggesting the importance of task structure in spa-
tial interference. These experiments were performed on physical robots. We reexamine
effects of task structure in spatial interference through exhaustive simulation in the
next section.
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Fig. 7. The intuition behind the “cutting your losses” strategy is illustrated via an
example of the aggression-based interaction. The sign of the single-time gain (denoted
Δ in the graphs) indicates a likely win or loss. Waiting longer before measuring sgn(Δ)
reduces the estimate error due to the “escalation” dynamics. The results are from
physical robot experiments.

Cutting your Losses: The utility of aggressive encounters can be improved
by adding memory of recent performance. The robot measures and remembers
the loss or gain in the shared space distance from the time it starts its ag-
gressive display. If it repetitively loses distance, then it is unlikely to win the
whole interaction. In such a situation it is beneficial to retreat. The greater the
number of confirmations about the gain/loss in distance, the more accurate its
decision. Figure 7 shows this decrease in error with an increase in the number
of confirmations. The tradeoff here is whether to take an early

Random Walk: The attraction of random walk arbitration is its minimalism
compared to other arbitration methods: robots do not need to sense or estimate
their positions, since the position the bump takes place implicitly encodes the
dynamic variable. It is perhaps somewhat surprising that a dynamic arbitration
mechanism is possible despite neither of the robots having the means to record
their investment in the task.
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(c) Laps completed by RB

Fig. 8. Dominance for girdle length = 30m, RA is dominator. The x-axis shows RA’s
task length, y-axis that of RB. (a)Color bars shows the relative number of encoun-
ters,(b), (c) Color bar shows the relative number of laps finished when at least one of
the robots completes 150 laps. Points A to F are detailed in Figure 9.

5 Task Ratio—A Macroscopic Study

Designed a custom simulator that uses physical robot data to model dominance
and aggressive robot interactions for different girdle lengths across a range of
task ratios. We ran the simulator, varying girdle lengths (GL) from 10m to 150m
and, for each girdle length, task lengths varied from 15m to 150m. The results
represent complementary foci: either minimizing absolute signal cost via a static
arbitration, or incurring whatever cost to ensure a dynamic arbitration.

Dominance Model: Figure 8 shows the performance in a girdle length of 30m
when RA is the dominator. Interesting regions from these plots were selected to
investigate the interaction dynamics for the first 20,000 seconds (long enough
to show long-term behavior). These are marked with A—F in Figure 9, and
described in detail in that caption.

Aggression Model: The model was run to compare with the dominance
method.

Collective best performance across varying girdle length: Certain combinations
of task lengths takes significantly longer to complete 100 tasks (Figure omitted
due to space restrictions). One might think that this is due to severe interference
for these task ratios. However, plotting the interference count we find that this
is not always true. The following considers one fixed girdle length.

Collective vs. individual best performance for fixed girdle length: There are re-
gions of high interference corresponding to regions of low task completion time
(Figure omitted due to space restrictions). These are the instances where the
robots met often but engaged in less costly aggressive interactions. On the other
hand, there also exist regions of low interference but with high task times. These
regions involve high cost aggressive interactions.

We further investigate as to what happens for certain combinations of task
lengths, similar to what we did for dominance model. Positions of first encounter
for every task iteration completed in the first 20,000s are shown (Figure 10).
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[F] TA=120 TB=80

Fig. 9. Dominance for girdle length = 30m, RA is dominator. The girdle proportions
are with respect to the position of robot RA. TA corresponds to the task length of RA,
and TB to that of RB. Results presented are based on simulation experiments. We
observe the following at each point:

A & B— Every time RB makes an attempt to cross the girdle, it meets the dominator
RA and is pushed out of the girdle, making no progress whereas RA finishes
more than 15 laps during the alloted time. This is clearly a model of resource
starvation.

E— In this case, RA and RB meet frequently and with RA being the domina-
tor, RB is able to complete fewer trips than RA with such frequent spatial
interference.

C— The encounter position is close to RB’s girdle entry point, so even if RB

retreats (RA being the dominator) the local investment made by RB is less.
RA is the rational winner with aggression but at the cost of aggressive inter-
action time. Also they do not encounter one another every time RB enters
the girdle. But RB’s shorter task allows it to complete more trips than RA.

F & D— The number of task iterations completed by both robots are almost equal.

D belongs to the region where the number of encounters are less frequent

(Figure 8(a)) and, if they occur at all, they are at the girdle end when RA

is about to exit (see Figure 9[D]). In such a situation RA is the rational

winner and the dominance hierarchy (with dominator RA) is the best model

to follow.
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Fig. 10. Aggression GL30. The girdle proportion are w.r.t. the position of robot RA.

A— RA and RB meet frequently. The position of encounter inside the girdle results
in costly interactionsi.The number of task iterations completed by RA and RB is
almost equal for the first 20,000 seconds of simulation and every time a rational
winner is chosen. Compare this with how RB performs when RA is the dominator
(Fig. 9[A] and 9[B]). RB did not make any progress during the time allotted. Here
the trade-off is to, either to engage in costly aggressive interactions obtaining a
rational winner, giving a fair chance of winning to each robot or to resort to
(cheap) dominance and bias towards one agent.

B— RA and RB do not meet as frequently here, but whenever they do, long aggressive
interactions result: RB is the rational winner in all cases. Compare this with
Figure 9[B] where RB hardly made any progress. The best resolution mechanism
would be with RB as dominator so that no aggression cost need be paid.

C— This is the reciprocal of case B and our earlier conclusion (but for RA) holds
true.

D— The number of task iterations completed by RA and RB are almost equal. We
notice that D belongs to the region where the number of encounters are less
frequent and they occur at the ends of the girdle when RA is about to exit
(Figure 9[D]). We had earlier concluded that, in such a situation RA is the
rational winner and the dominance hierarchy (with RA being the dominator) is
the best interference model to follow. We see that aggressive arbitration is also
a reasonable interference resolution mechanism. The reason being that these
regions have cheap interactions.

E— Compare Figure 10[E] with Figure 9[E]. The number of laps which RB completes

with aggressive signaling doubles compared with when it is dominated. However,

the decrease in the number of laps of RA is not that significant in both these

modes of arbitration. We do see more frequent encounters in case of aggressive

interactions, but all of these take place at the very ends of the girdle resulting

in cheap arbitration, making it beneficial.
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6 Conclusion

Several factors contribute to conflict resolution and its effectiveness:

Cost vs. precision of the arbitration mechanism—Time and energy cost are in-
curred in resolving resource conflicts. This influences the utility of aggressive
displays in the first place.

Properties of the shared resource for which the agents are competing—This
affects, among other things, the cost of communicating its aggression and
what constitutes a worthwhile investment.

The task which each agent is assigned to perform—This can be coupled through
the shared resource. This coupling, effects individual and collective dynamics.

The inherent noise in the “communication” channel—Noise plays a role in dy-
namic arbitration mechanisms: it can be beneficial in breaking symmetry, a
situation which occurs when agents have identical aggression.

From all these facts we can conclude that there cannot be just one single best
arbitration mechanism catering to all situations. We have also shown instances
where a small variation of task ratio may cause a significant change in the task
dynamics. With a prior knowledge of this entire task performance space, a single
unfavorable interaction can be predicted beforehand, and by adding a wait to its
task navigation, the robot can shift its performance to a more favorable region.
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Abstract. Flocking is an archetype emergent behavior that is displayed
by a wide variety of groups and has been extensively studied in both bi-
ological and robotic communities. Still today, the exact requirements
on the detail and type of information required for the production of
flocking motion is unclear; moreover, these requirements have large po-
tential impacts on biological plausibility and robotic implementations.
This work implements a previously published flocking algorithm (Local
Crowed Horizon) on a robotic platform and in computer simulations to
explore the effects that the type and detail of information have on the
produced motions. Specifically, we investigate the level of detail needed
for the observation of flock members and study the differences between
the use of pose and bearing information. Surprisingly, the results show
that there is no significant difference in the motions produce by any ob-
servation detail or type of information. From the results, we introduce
and define information-abstracted flocking algorithms, which are struc-
tured in such a way that the rule is agnostic to the observation detail
and/or type of information given as input. Moreover, we believe our im-
plementation of the Local Crowded Horizon flocking algorithm produces
motions that require the least and most simplistic type of information
(bearing only) which has been validated on robotic hardware to date.

1 Introduction

Flocking is a collective spatial behavior displayed by a wide variety of groups and
has been studied in several research communities including biology, physics, and
robotics. As an archetype emergent behavior, gaining an understanding of what
the individual flock members observe and compute presents several challenges;
one critical challenge is identifying how much detail is required when observing
other flock members. It remains unclear how detailed the observations of other
flock members need to be in order to produce flocking motion. For example, do in-
dividuals form a cohesive flock even if sub-groups or local densities (group-centric
information) are observed rather than clearly discernible/identifiable individuals
(member-centric information)? The results in this work prove that it is possible
to produce flocking motion through the use of group-centric information.

The use of group-centric information shows that flock members do not need to
detect individual flock members, which is difficult and error prone; instead, flock

T. Ziemke, C. Balkenius, and J. Hallam (Eds.): SAB 2012, LNAI 7426, pp. 442–452, 2012.
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members need only detect groups of flock members. One conceivable implementa-
tion of a group-centric flocking algorithm is to design an agent which only detects
objects that have a particular image-size. This would suggest that groups further
away could still influence the flock members motions similar to the way a nearby
flock member would. By reducing the complexity of the required sensing, a flock-
ing algorithm can be implemented on a more simplistic agent (e.g., doing some of
the processing via an attentional mechanism), which makes the algorithm more
biologically plausible and easier to successfully implement on a robotic system.

Another challenge in studying flocking, is understanding what type of infor-
mation (e.g., pose, bearing, velocity) must be gathered/sensed from the obser-
vations, and what implications the chosen information may have on biological
plausibility and/or robotic implementations. The vast majority of the litera-
ture uses pose information (at least) to produce flocking motion [3,8,10,1], with
relatively few works using only bearing information [9,6]1. The bearing only al-
gorithm studied here is not the first example of flocking motion produced by
only using bearing information, but it is the first example of an algorithm that
produces flocking motion which is equivalent when using either bearing or pose
information. For the first time, we are able to compare the effects that differ-
ent types of information have on the produced flocking motions through the
implementation of a single algorithm.

To investigate the effects of the level of observation detail and the type of in-
formation sensed, we implemented the Local Crowded Horizon (LCH) rule [10]
on a mobile robotic platform. The LCH was chosen for two reasons; (1) the rule
has a unique structure that affords the ability to study the two aforementioned
questions (level of observation detail and type of information) without modify-
ing the algorithm and (2) Viscido et al. [10] shows the LCH produces flocking
motions that are observed in biological flocks. In addition to the robotic imple-
mentation proof of concept, we implemented a computer simulation in order to
better study the information requirements for flocking motion.

From the results of the robotic implementation and the computer simulations,
we identify the notion of information-abstracted flocking, which refers to
flocking algorithms that are structured in such a way that the resulting motion
is agnostic to the detail of the observation and/or to the type of information
sensed. In other words, if the motions produced by a flocking algorithm are
equivalent under different types of information (e.g., pose, bearing), then the
algorithm is considered to be information-abstracted on type. The concept of
information-abstracted flocking algorithms is rooted from the work of generic
programming [7], where a single implementation of an algorithm can be instan-
tiated with different data representations, an idea analogous to abstraction in
abstract algebra. Information-abstraction is actually stronger, as it actually pro-
duces comparable emergent behavior despite being instantiated with different
data representations.

1 The model presented in [9] requires velocity; however, the velocity parameter is con-
stant for the simulations; it cancels out leaving only the use of bearing information.
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Additionally, the results in this work support the following claims:

– Some flocking algorithms may be structured so that the resulting behaviors
are independent to the detail of the observation or the type of information
given to the algorithm.

– Comparison of one flocking algorithm with another purely on the basis of
the motion they produce is inadequate. This is especially the case when one
is trying to make a claim about biological behavior on the basis of similar
behavior generated through some computational means. The existence of
information-abstracted flocking rules imply that, despite the output motion
appearing equivalent, major pieces of the puzzle could remain underspecified.

– The vast majority of the literature assumes pose information is required to
produce flocking behaviors, we further support the suggestion that biological
flocking motion is possible using bearing information only.

Furthermore, we believe that our implementation of the LCH using only bearing
information is the simplest biologically plausible, flocking algorithm to date.

2 Local Crowded Horizon

The LCH was presented by Viscido et al. [10] as a biologically plausible explana-
tion for flocking motion exhibited in the presence of a predator. In the original
work there is a discrepancy between the theoretical design and the simulated
version of the LCH. The authors describe the LCH by stating “[Flock members]
use the density of the entire [flock] to determine their [next pose]”; however, their
implementation has flock members “move toward the average [pose] of [all of the
detected flock members.]” This discrepancy leaves the LCH with at least four
different variations in regards to the information requirements; (1) group-centric
pose, (2) group-centric bearing, (3) member-centric pose, and (4) member-centric
bearing. The two group-centric variations use a subset of the detected flock
members where the twomember-centric variations use all of the detected flock
members to compute the next pose. Figure 1 is a pictorial and prose description
of the four different variations.

Both member-centric variations follow the same structure for the production
of flocking motion. The member-centric variations take a set of all the detected
flock members (I) and moves one unit (d) towards the average of the feature
vectors in I. A feature vector contains all of the sensed information required
for the computation of the next pose (e.g., pose, bearing, velocity) for each flock
member in I. The only difference between the two member-centric variations is
in how the averaging of the feature vectors are handled.

In the member-centric variation using pose (see algorithm named Variation 2)
the function AveragePose(I) calculates the average pose of the set I. To correctly
average the flock member bearings (algorithm in full omitted, due to space),
AverageBearing(I) replaces AveragePose(I) in variation 2 and calculates the
bearing from the average unit vector from the flock member and all members in
the set I, i.e. 2-dimensional pose information is not required, only 1-dimensional
bearing information.
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The group-centric variations are identical to the member-centric variations,
except that the motion command that is computed depends on only a sub-
set (I′) of the set I. This models the idea that the motions follow some strict
prioritization where attention need only be paid to some salient (or dense, or
tightly-clustered) individuals. In both group-centric variations, the flock member
computes the set I′ based on density (I′ contains all flock members that exist in
the highest density cluster) and moves one unit towards the average of the fea-
ture vectors in the set I′. Analogous to the case described above, different density
selection functions are needed to handle the differences in the feature vectors. In
our implementation of the group-centric variations, member-centric information
is used to calculate the group-centric information to utilize the same detection
process for all parameterizations. Of course, group-centric pose computations
are only permitted to use group-centric information.

(a) The sensing flock member chooses
the largest subset of the detected
flock members and moves towards that
group’s average pose.

(b) The sensing flock member moves to-
wards the average pose of all the de-
tected flock members.

(c) The sensing flock member chooses
the largest subset of the detected flock
members and sets its new heading to
the average bearing to the selected flock
members.

(d) The sensing flock member’s new
heading is the average of bearings to
each of the detected flock members.

Fig. 1. The four variations of the LCH flocking algorithm used in this study. Varia-
tions 1a and 1b require pose information where 1c and 1d use bearing information.
Variations 1b and 1d utilize all of the detected flock members where 1a and 1c only
use a subset of the detected flock members.
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LCH Variation 1: Member-centric

LCH Pose (Corresp. to Fig. 1(b))

Input: Set of detected flock members
(I) in egocentric coordinate frame.

Parameters:
d =̇ distance to travel
ri =̇ current pose

Output: Desired pose in a member-
centric coordinate frame.

1: if |I| = 0 then
2: return [0, 0]
3: else
4: v ← AveragePose(I)
5: return[

rix +
(

v
||v|| ∗ d

)
, riy +

(
v

||v|| ∗ d
)]

LCH Variation 2: Group-centric LCH

Bearing (Corresp. to Fig. 1(c))

Input: Set of detected flock members
(I) in egocentric coordinate frame.

Parameters:
st =̇ splitting threshold (angle)
d =̇ distance to travel
ri =̇ current pose

Output: Desired pose in a member-
centric coordinate frame.

1: if |I| = 0 then
2: return [0, 0]
3: else
4: CC ← ConnComponents(I, st),

where CC ≥ 1
5: I′ ← MaxConnComponent(CC)
6: θ ← AverageBearing(I′)
7: return

[rix + (cos(θ) ∗ d) , riy + (sin(θ) ∗ d)]

In both group-centric variations, the flock member groups the detected mem-
bers based on a threshold (st) in the set CC (st could either be a distance
or angular based threshold). The algorithm then selects the largest group from
the set CC to compute the next pose. The function MaxConnComponent(CC)
takes CC and returns the largest group of flock members. The details of the
group-centric variation using bearing information can be seen in Variation 2
(the group-centric variation using pose is not shown here due to space).

3 Robotic Implementation

Each robot (flock member) is an iRobot Create [5] equipped with a ASUS Eee
PC and a Hokuyo URG-04LX-UG01 [4] laser range-finder; see Figure 2a. The
robots are wrapped in a highly reflective material and each robot has a modified
Gearbox 9.07 driver [2] that allows for the detection of other robots. The trials
conducted for this study consider four robots in the single-group starting forma-
tion (Figure 2b) in a obstacle free space that can be considered infinite for the
presented trials.

We conducted several trials for each of the four LCH variations mentioned
earlier; Figure 3 shows time series from a few of these trials. There is no signifi-
cant difference observed in the motions produced by the four different variations
of the LCH. We do observe that the motions produced by our robotic imple-
mentation do not collapse into a single group, as observed in the simulations of
Viscido et al. [10]. However, the robots do indeed collapse into a single group,
but because of the robot’s limited field of view (FOV), the flock exhibits direc-
tional motion. This directional motion occurs when one or more robots do not
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(a) (b)

Fig. 2. Figure 2a shows a single iRobot Create with a Hokuyo laser and a ASUS Eee
PC wrapped in high reflectance material for robot detection. Figure 2b shows the two
starting formations used in this study. The exact poses of the flock members, within
the formation, were chosen at random for each run.

observe other robots in the flock, therefore they continue moving in their current
direction; see Figure 4a. We show, through computer simulations, that the FOV
limitations of the robots is the primary cause of the motion differences.

We should note that Figure 3 does not show any results from trials using
the group-centric variation because the size of our system is not large enough
to show the desired motions. When the there is only one robot in the selected
group, the robots will exhibit motions that can best be described as a follow the
leader behavior. Figure 4b is a pictorial representation showing how the follow
the leader motions are generated.

3.1 The Effect of a Limited Field of View

Using MatLab (version R2011b) we implemented all four variations of the LCH
similar to the implementation in [10]. Each flock member has access to the global
information for every other flock member but each member is only able to detect
flock members within the sensing radius (r). Each flock member will calculate
their next pose (ri) according to the given LCH variation. Additionally, we
included the flock members FOV into our implementation in order to account
for the limited FOV of our robots.

Figure 5a shows the simulated motions of 50 flock members for the member-
centric variation using pose with no limitations on their FOV. These motions
reveal that our implementation of the LCH is similar to the LCH implementa-
tion in [10]. Furthermore, the motions in Figure 5b show the simulated motions
for the 50 flock members with a limited FOV similar to the FOV of the robots.
Comparing the motions in Figure 5b and Figure 3 we notice our simulation, with
a limited FOV, can produce equivalent motion to the robotic implementation.
Since our implementation can produce the motions of the original motivating
work and the motions produced by a robotic implementation we feel the simu-
lation is adequate for further investigation of information (type and detail) on
flocking.
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(a) Single robot trial with four robots running the member-centric pose variation.

(b) Single robot trial with four robots running the member-centric pose variation.

(c) Single robot trial with four robots running the member-centric theta variation.

(d) Single robot trial with four robots running the member-centric theta variation.

Fig. 3. Each time series shows the motions of our robotic system running one of the
four LCH variations

(a) (b)

Fig. 4. Figure 4a shows that a flock member will continue in the same direction when
no other flock members are observed. This behavior causes the resulting motion of the
flock to be more directional than the computer simulations in [10]. Figure 4b shows
how the follow the leader behavior is generated when there are only a few detected
neighbors.
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Fig. 5. These two motion plots were generated from 50 simulated flock members using
the member-centric pose variation of the LCH. The blue squares represents the start-
ing formation, which was randomly generated within a squared region, and the green
squares represent the ending formation of the flock members.

4 Information-Abstracted Flocking

To investigate the existence of information-abstracted flocking algorithms, we
conducted computer simulations for each of the 16 different parameterizations
of sensing range (30002 and 3 units), starting formation (single-group and split-
group), type of information (pose and bearing), and observation detail (member-
centric and group-centric). For each parameterization we conducted ten trials,
each with random starting positions for the flock members, resulting in a total
of 160 simulations of 75 iterations for 50 flock members. To aid in the study of
the underlying motions produced by the chosen variations, we do not limit the
flock members’ FOV.

Using motion equivalence to compare the results in Figure 6, we see very
little difference in the simulated motions. Even when we look at the worst case,
Figures 6c and 6g, there are no real differences in the resultant motion. Even
though the motions are not identical, they still resemble the motions of the
motivating biological flocks as presented in [10].

In addition to motion equivalence, Viscido et al. [10] proposed the use of mean
median distance (MMD) from the center of the flock as a metric to describe the
motions of a flock that compresses during a predator attack. To supplement the
observations of motion equivalence made form the motion plots in Figure 6, we
calculated the MMD for all of the parameterizations over all trials. The computed
MMDs for the trials that used a sensing range of 3 units are not significantly
different from the trials that used a sensing range of 3000 units, therefore we
only report the MMDs from the trials that used a sensing range of 3 units; see
Table 1.

When the flock starts in a single-group, Table 1 shows that there is no differ-
ence in the flock’s MMD for any of the 16 parameterization.When the flock starts

2 For these results 3000 units can be considered infinite.
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Fig. 6. These motion plots are typical results of simulations conducted for this study.
Each trial simulates 50 flock members over 75 iterations (only plotting every third
pose per flock member), where stdistance is set to 0.5 units and stangular is set to 10
degrees. The top row of motion plots (plots 6a,6b, 6c, and 6d) where generated using
group-centric information and the bottom row of plots (plots 6e, 6f, 6g, and 6h) where
generated using member-centric information. The blue squares represent the starting
positions of the flock members, and the green squares represent the end positions of the
flock members. Motion plots 6e, 6f, 6a, and 6b were simulated with the single-group
starting formation and a sensing range of 3000 units, where plots 6g, 6h, 6c, and 6d
were simulated using the split-group starting formation and a sensing range of 3 units.

Table 1. The MMD (in units) from all of the simulations that had a sensing range of 3
units. For each simulation, the median distance from the center of all 50 flock members
is calculated from the ending formation. The medians from all ten trials were averaged
to yield the MMD for the given parameterization.

Single-group Split-group
Pose Bearing Pose Bearing

Group-centric 0.05 0.05 Group-centric 3.23 4.94

Member-centric 0.05 0.05 Member-centric 4.95 4.94



Examining the Information Requirements for Flocking Motion 451

in two separate groups, there is a slight difference in the computed MMDs. As we
would expect from the motions reported in Figure 6, there is a slight difference
between the MMDs of the group-centric pose and member-centric pose trials
when the flock started in two groups. These results not only show that flocking
motions are possible using group-centric information, but since the group-centric
variation produces a smaller MMD, this suggests that group-centric information
may be preferred in certain situations.

5 Conclusion

The preceding results show that the information available to a flock member,
while very important from an implementation and biological modeling point of
view, are not necessarily distinguishable in terms of the flocking motion they
produce. Additional thought is required if one is to understand what individual
flock members are sensing or computing. At least two distinct aspects are worthy
of consideration: the detail involved in the observation and the type of informa-
tion extracted from that observation. Moreover, metrics that are intended to
evaluate the flock’s motion (e.g., MMD) are also insufficient in and of them-
selves. Therefore, future work may need to focus less on metrics designed to
study the resulting group motion, and instead on the impact that the requisite
information has on the biological plausibility, or the ability to implement the
given algorithm on a robotic system, or both.

The ability to produce biologically motivated flocking motions using either
group-centric or member-centric information suggests that flocking motions may
be possible using a combination of the two. In other words, the flock member may
observe individual flock members when they are nearby, but may still observe
groups that are further away. Furthermore, if we consider the case when flock
members only make observations based on image-size, it is plausible that the
flock member may not be aware of the differences between the two types of
information. If this holds true, this may offer an explanation to how multiple
flocks merge an split over time as occurs in large flocks of birds.
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