
Feasibility of Basic Visual Navigation
for Small Robotic Sailboats

Tobias Neumann and Alexander Schlaefer

Abstract. Image based navigation is a key research focus for many robotic ap-
plications. One complication for small sailing robots is their limited buoyancy and
rather rapid motion. We studied whether it would still be feasible to use video data
for basic navigation in an inshore race course scenario. Particularly, we considered
methods for detecting the horizon and buoys, as well as estimating rotations via
optical flow. All methods have been tested on a set of manually annotated scenes
representing different sailing and lighting conditions. The results show that detec-
tion rates of more than 80% for the horizon and more than 94% for buoys can be
achieved. Moreover, a comparison of the average optical flow with compass data
indicates that rotations of the boat can be estimated. Hence, the methods should be
considered in addition to other sensors.

1 Introduction

Keeping a constant lookout at all times is part of the traditional navigation approach,
e.g., to avoid collisions. While communication based systems like the Automatic
Identification System (AIS) are potentially simpler and more robust, vision based
methods may be more versatile and a number of approaches have been proposed
[3, 7, 4]. Building a general purpose system to understand images in maritime en-
vironments is a challenging task, and we consider a more limited scenario with
small sailing robots [8]. Our boats have limited buoyancy and allow for only very
small and lightweight cameras to be installed. They are also moving substantially,
even in very small waves. While we typically use an onshore server to communicate
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Fig. 1 A small 15g GUNCAM mounted to the bow of an rrMM boat (a). Before sailing, the
camera is calibrated (b).

position data [1], one advantage of a vision based approach could be a better ability
to detect near field collisions and to augment sensor data with information obtained
from images. We present methods for detection of horizon and buoys and we pro-
pose to augment sensor data, e.g., from compass, accelerometer, or gyroscope, with
motion information obtained from the images.

2 Material and Methods

We obtained test data from a small camera (GUNCAM, www.guncam.de) with a
weight of only 15g mounted to the bow of a robotic racing Micro Magic (rrMM)
sailing robot (Fig. 1). The camera has an image resolution of 720 x 480 pixels and
a frame rate of 30fps. All video data is directly recorded to a microSD card, which
in our setup can store approximately 1h of data.

So far, three different objectives have been considered: the detection of the
horizon, the detection of buoys, and the estimation of the optical flow.

2.1 Horizon Detection

Finding the horizon is a typical task in maritime scene analysis. We consider an
inshore setting where the horizon is typically defined by the shoreline. While this
avoids sea and sky being indistinguishable, new issues arise, e.g., due to reflections.
Initially, we used the following steps to find candidate lines in the images. First,
the images are filtered with a 9x9 Gaussian kernel and a Canny edge detector [2]
was applied. Second, a Hough transform was used to detect lines in the preprocessed
images. The resulting set of lines C is ordered by descending length, i.e., the first line
returned by the algorithm contains the largest number of edge pixels. We call C the
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candidate set. Obviously, if the horizon goes through the whole images, it is likely
to be among the long lines. However, given possible reflections and small waves,
other lines can actually be longer. To reduce the likelihood of misclassification, we
considered the following additional assumptions:

1. The horizon remains relatively stable over time

2. The line representing the horizon is similar in two consecutive frames

3. The horizon runs typically close to the image center for our camera setup

Each line in C is represented by a point P and an angle m between the line and
the x-axes. Consider two lines l1 and l2 represented by P1,m1 and P2,m2. Then we
define the dissimilarity h between the two lines as

h(l1, l2) = α ‖P1 −P2‖+ |m1 −m2| (1)

where α is typically 0.5 and denotes the relative importance of a difference in the
points and in the angle. Note that the points returned by the method are unique for
the same line.

We now consider k consecutive video frames such that Ck is the set of candidate
lines for the current frame. Moreover, we restrict |Ci| to be at most n, i.e., only
the n longest candidates in Ci are retained. For c ∈ Ck we sort

⋃
Ci|i = 1,2, ...k− 1

according to h, i.e., such that the most similar lines come first. We then compute the
mean dissimilarity for c and the first m items of the resulting set. The candidate c
from the current frame with minimal mean dissimilarity is considered the horizon,
as similar long lines have frequently occurred in the previous frames. To account
for the observation that the horizon is typically a line close to the image center, we
additionally consider the distance to center when evaluating the candidates.

In case no line is detected in the current video frame or if the dissimilarity of
all candidates exceeds a threshold, the horizon line from the last frame is added to
the candidate set and returned. Figure 2 illustrates the assumptions underlying the
approach, i.e., that the horizon is typically close to the image center and more stable
than, e.g., lines induced by waves.

2.2 Buoy Detection

Typically, buoys have a distinctive shape and color to be easily detectable. Our main
purpose is the detection of marks when following a race course. Hence, we can as-
sume that the colors are exceptionally bright, e.g., yellow, orange, or red. To use
color for object detection, we first convert the images to the hue-saturation-value
(HSV) color space. We then applied a threshold and a morphological closing oper-
ation for cleaning contours and used OpenCV to label each object in the resulting
image. Subsequently a minimally enclosing ellipse was determined for each poten-
tial object, which in case of a buoy allows to estimate the center point and the radius.



16 T. Neumann and A. Schlaefer

(a) (b)

Fig. 2 Typically the horizon is close to the image center (a). The image in (b) shows a set of
candidates from 30 consecutive frames, illustrating that the actual horizon is fairly stable.

(a) (b)

Fig. 3 An example for detecting a red and yellow buoy (a). Reflections can substantially
complicate the detection (b). Note that bright sunshine and calm would lead to even more
reflections.

Figure 3 illustrates the method and also highlights that reflections can cause sub-
stantial problems. Again, we can argue that reflections due to waves change over
time. Using an approach similar to that used for the horizon, we consider a num-
ber of consecutive frames to identify stable objects. All objects are represented by
the center point and radius of the respective ellipse. Clearly, as the boat can be
very close to the buoy, the change in its position can be rapid. Hence we use a
dissimilarity function that weights the position with 0.1 and the radius with 0.9.

2.3 Rotation Detection

To detect rotations of the boat we computed the optical flow using the Lucas-Kanade
method [6]. First, we used the horizon to partition the image. We only considered
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features above the horizon in order to avoid artifacts from waves. For every two
consecutive frames the mean flow over all features detected in both images was
computed and stored.

2.4 Incorporating Sensor Data

Obviously, it is interesting to study how information from image data and the sensor
data available onboard can be considered jointly, e.g., to compute the expected po-
sition of horizon and buoys in subsequent image frames or to improve navigation by
estimating the boat’s motion from the image data. Our current design is limited in
that the onboard computing power is not sufficient for video processing or storage.
While we are working to integrate more powerful hardware, our current experimen-
tal setup was based on independent recordings with the GUNCAM. To synchronize
camera and sensor data, a small LED was mounted in front of the camera. It was
switched on via the onboard control unit following a Fibonacci sequence and its sta-
tus was recorded with the log-data. During offline processing, the state of the LED
was automatically detected in the video data, and the frames were labeled accord-
ingly. Video and sensor data were then combined by correlating the state of the LED
in the two data sets. Figure 4 illustrates the setup, how a certain subset of pixels was
used to detect the state of the LED, and how sensor and image data were correlated.

2.5 Data

We collected 6h of video data on 11 different days and in different weather and light
conditions. From this data set we extracted five scenarios of 11s to 16s length repre-
senting different conditions (Fig. 5). The actual weather conditions and the lengths
of the video sequences are summarized in Table 1. Each of the video frames was
manually annotated, i.e., from the horizon or buoy candidates the correct one was
identified and stored. This data was then used to run tests quantifying the detection
rate for horizon, buoys and rotation.

Table 1 Summary of length and wind and weather conditions for the five test scenes.

scene weather wind (kn) length (s) total number of frames

1 sunny 2-3 16 480
2 cloudy 6-12 14 440
3 cloudy 4-8 13 394
4 rainy 8-12 11 341
5 cloudy 6-10 13 409
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Fig. 4 The camera with LED (a), examples for images with LED switched off (b) and on (c),
and the log and video data before and after correlation, respectively (d,e). For the latter two,
blue indicates log data while the dotted green lines indicate video data.

(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5

Fig. 5 Randomly chosen images from the five scenes we analyzed. Note another rrMM boat
in scene 2. More details on the weather conditions are summarized in Table 1.
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3 Results

The actual images were processed offline using OpenCV on a computer with an
Intel Q6600 2.40GHz processor and 4GB memory running a 64 bit Fedora-Linux.

3.1 Horizon Detection

Table 2 summarizes the performance of horizon detection using k = 16, n = 3, and
m = 5. All scenes resulted in candidate lines for each frame, except for scene 1,
where only 61% of all frames yielded at least one candidate line. Taking the frames
with at least one candidate line as the basis, the detection rate for the horizon ranged
from 81% for scene 4 to 90% for scene 1. The mean runtime ranged from 24ms to
46ms.

Table 2 Results of the horizon detection tests including the total number of frames, the num-
ber of frames for which at least one line was detected, the number of correctly identified
horizon lines, and the runtime.

scene total frames with lines with correct hori-
zon

runtime (ms)

1 480 293 265 23.95
2 440 440 376 43.75
3 394 394 337 20.60
4 341 341 277 33.05
5 409 409 343 39.49

3.2 Buoy Detection

Only scenes 3, 4, and 5 contained buoys, with scenes 3 and 4 each containing two.
Hence, Table 3 summarizes results for five tests with red and yellow buoys in dis-
tances ranging from approximately 5m to more than 100m. Candidate objects were
visible in slightly more than 50% for scene 4, and in more than 80% of the frames
for scenes 3 and 5. The yellow buoy for scene 3 was detected in 78% of the frames
actually containing it, while all the other buoys were detected in more than 94% of
the frames. Between 36% and 68% of the frames resulted in a stable detection of
the correct buoy, i.e., the buoy was correctly labeled in subsequent frames. However,
for the red buoy in scene 3, an irrelevant object was incorrectly identified as a stable
buoy in 6% of the frames.
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Table 3 Results of the buoy detection tests including the scene, the object to detect, the ap-
proximate distance, the total number of frames, the number of frames with the object visible,
the number of frames where the object was detected as a candidate, the number of frames
where the object was correctly / wrongly classified as stable, and the runtime.

scene buoy distance
(m)

total
frames

visible candidate stable wrong runtime
(ms)

3 red 5-10 394 326 326 212 20 45.69
3 yellow 100 394 333 259 126 0 43.25
4 red (1) 50 341 178 175 64 0 44.87
4 red (2) 50 341 199 195 82 0 43.46
5 yellow 100 409 355 333 242 0 43.96

Fig. 6 The plots show the mean optical flow vs. the logged compass data for scene 1.

3.3 Rotation Detection

Figure 6 illustrates the results of the optical flow experiments for scene 1. Clearly,
flow and compass values are not the same. However, the trend, i.e., turning port or
starboard, is similar and a further calibration may lead to better agreement of the
magnitude of change.

4 Discussion

We considered basic visual information for navigating small sailing robots in in-
shore race scenarios. More than 80% accuracy in detecting the correct horizon is
far from perfect but still illustrates that a fairly simple approach yields good results.
Moreover, adapting the preprocessing of the images – particularly the Gaussian filter
– to the sailing conditions could further improve the performance. While one could
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argue that technically we identify the shoreline, we would hold that for a small boat
with the camera mounted a few centimeters above the water, this close to the actual
horizon. A more obvious limitation is the dependency on the illumination, which
will require more tests in sunny conditions. However, at least in our home area in
northern Germany good sailing conditions often coincide with cloudy weather.

Clearly, illumination also effects the buoy detection. Another problem is the cor-
rect labeling of the detected objects over multiple frames, which only worked for two
out of five scenes. Note that part of this issue is related to the buoy leaving and enter-
ing the image, and a better integration with the boats’ sensors may be used to compute
the expected position of the buoy. For example, in scene 4 the buoys were frequently
out of sight, which relates to the poor performance in stable detection. However, an
important goal of buoy detection in our scenario is the rounding of marks, and it is
promising that the test scene with a close proximity to the mark resulted in a larger
number of consecutive frames where the buoy was correctly detected. Further work
will consider the actual size of the buoy for this particular scenario.

The proposed methods allow estimating basic information about changes in the
robot’s pose. It is straightforward to get the approximate heeling angle from the
detected horizon. Likewise, the detected rotation can indicate course changes. While
the current results are preliminary and require further calibration, a visual compass
has been considered before and presents a promising approach [5]. Particularly as
the motions of a small sailing robot are characterized by substantial pitching and
rolling even in small waves, which can compromise the compass readings. A further
possible use of visual information is estimating the distance to buoy, if their size is
known. In fact, we consider the methods most useful in the proximity of buoys,
where their estimates may be more accurate than, e.g., GPS data. For example, a
close rounding of a mark could be based on image data rather than GPS.

Considering the runtime, horizon and buoy detection could be performed at a rate
of 20Hz to 45Hz. Although the computations were done offline and separately on a
rather powerful computer, we believe that further optimization of the code and more
powerful microprocessors will allow for sufficiently fast onboard online processing.

5 Conclusion

Rapid motion and limited buoyancy complicate image guided navigation for small
robotic boats. However, our results indicate that basic information can be derived,
which is sufficiently robust to augment other sensors. The heeling of the boat and
rotations can be estimated and the horizon and buoys can be detected. Further work
should address the robustness and runtime of the proposed methods.
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