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Abstract. Most of the work on automatic detection tracking and classification of
unmanned applications over the past twenty years has been focused on ground and
aerial vehicles. Recently, the research has also focused on unmanned surface and
underwater vehicles for autonomous capabilities. The ability to recognize and iden-
tify obstacles becomes more essential with USVs autonomous capabilities, such as
obstacle avoidance, decision modules, and other Artificial Intelligence (Al) abili-
ties using low cost sensors. This paper presents multi-target automatic algorithm
stages to acquire, identify, and track targets from an Unmanned Surface Vehicle
(USV) located in marine environments with LIDAR sensor challenging clutter. We
present several clutter models and formulations to handle clutter phenomena. We
propose the Probability Hypothesis Density (PHD) Bayes filter, challenging clutter
for multi-target tracking.

1 Introduction

One of the most difficult challenges for USV navigation is the recognition of ob-
stacles around the vehicle without human intervention. This task is known as Au-
tomatic Target Detection (ATD). An efficient ATD system should achieve a high
detection percentage for targets while maintaining a minimal false-alarm rate. This
means that it must preserve an optimal balance between a high detection rate and a
low error probability. However, ATD algorithms are very sensitive and unstable re-
garding clutter elements, i.e. elements that are not targets but still part of the scenes
with similar characteristics to the targets. Dealing with clutter in ATD algorithms
and multi-target environments have been extensively studied [ 6, [7, 8, ©]. Com-
mon, well-known methods try to separate between the targets and noises with Blind
Source Separation (BSS) [9} 10, [11].
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Several methods with advanced filter characteristics proposed over the last few
years, such as the Joint Probabilistic Data Association Filter (JPDAF) [3]], Multiple
Hypotheses Tracking (MHT) [6], and the multi-target particle filter [Z,[8] use obser-
vations weighted by their association probabilities. A new and efficient formulation
without an explicit base between measurements and targets is Random Finite Sets
(RFS) [9], demonstrated in [10]. The main idea behind RFS is based on two dif-
ferent kinds of collections. The first consists of the individual targets and is called
the ’set-valued state’, while the second consists of the individual observations and
is called the ’set-valued observation’. This kind of modeling allows allows the es-
timation of the targets in the presence of clutter in a Bayesian filtering framework
(ol [TT]]. Advanced RFS-based filters such as the multi-target Bayes filter, the
Probability Hypothesis Density (PHD) filter [9 (10, [12] and their implementations
[12], have also generated substantial interest.

In our paper we demonstrate tracking and decluttering targets in marine envi-
ronments by using these kinds of filters. One of the key tasks which intelligent
autonomous marine craft have to perform is safe and efficient navigation, which de-
pends directly on the reliable perception of the environment. A high quality sensor
is required for close to mid ranges, as a substantial part of the detection and alert belt
of the USV lies within this range. As with many other sensors, the primary limita-
tions of LIDAR sensors in marine environments are related to clutter. The Velodyne
HDL-64E 3D-LIDAR provides 3D range scans [1]]. Typical data in marine environ-
ments with sea clutter can be seen in Fig. 1. Therefore, it ought to be either filtered,
or the obstacles distinguished by an efficient algorithm using a PHD filter to detect
and track multiple targets.

2 Advanced Clutter Models

Exact knowledge of sea clutter is highly important in target detection and classifica-
tion, and of course permits an efficient tracking. Many algorithms use static clutter
models for target detection; an extensive study can be found in [14]. We introduce
the main concepts of clutter models which aim to predict sea clutter. First, the 1D
Stochastic model, which is an extension of the classical approach. It relies on the
phenomenological model of the dynamics of the sea, as can be seen in Fig. 2. Ba-
sically, two kinds of waves are encountered at the surface of the sea, generated by
two different mechanisms, capillary waves and gravity waves. Capillary waves are
generated by the influence of the wind and express the surface tension of the wa-
ter, while gravity waves are mainly generated by the accumulation of gravitational
forces and are the main energy carrying factor. The combined effects of capillary and
gravity waves over the scattered electromagnetic waves translate into a composite
echo, which is the sum of two components- one having a Gamma PDF (Probability
Density Function), corresponding to a large scale, slow varying physical structure,
and the other having a Rayleigh PDF, corresponding to a small scale, rapid varying
physical structure as can be seen in Fig. 3. The advantage of this model is the com-
patibility with the existing radar processor and detection algorithms [4]. However,
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Fig. 1 Velodyne HDL-64E 3D laser scanner LIDAR in Marine Environment [Velodyne
Records]

this model has been stretched to the limit- it’s quite difficult to obtain a valid set of
parameters for an assumed PDF from recorded sea clutter samples, leading to poor
results. Moreover, it is not logical to describe the sea using one variable. However,
adding more dimensions removes simplicity.

Second, is Texture Realization, which ignores the classic detection algorithms.
A set of real data representing measured sea clutter samples is recorded. Then, this
information is used to extract a “mask” filter of the clutter, which would permit the
reproduction of its stochastic and correlation properties, using a completely new
technique. This approach seems quite promising, even though it depends on the
training performance of neural networks. More work on real data is required before
credibly validating it.

The third is the chaotic model, which assumes that the processes involved in sea
clutter generation are non-random, but purely deterministic phenomena. This ap-
proach also requires a new radar processor paradigm. Results obtained from one
of the prototypes of this model seems are very promising [13], achieving perfect
detection. More real data validation and noise robustness are required for credible
validation. Moreover, this model involves fractals (non-integer dimensions). The
chaotic model is not a trivial one for the standard detection models, due to the sta-
tistical character of the model. The classic chaotic model introduced by [13]] also
known as the Exponential Sensitivity to Initial Condition (ESIC) claims that two
systems governed by similar terms will have divergent evolutions, even in similar
initial conditions. The model can be expressed as an exponential relation. Let ¢(0)
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Fig. 2 The phenomenological model of sea surface and interaction with electromagnetic
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Fig. 3 The compound model of the sea clutter .

be the small separation between the initial condition of the two systems (at time
t = 0). Then, the separation between their states at the time ¢ can be written as:

c(t) = c(0)e (1

where A is a positive quantity known as the Lyapunov exponent.

3 PHD Object Tracker

As aresult of the inefficiency and inaccuracy of all the models above, there is a need
for a different approach to track multi-objects. The objective of the multi-object
tracking problem is to estimate the state of an unknown number of objects, based on
the measurements of the objects corrupted by noise, in the presence of clutter. The
classical approach for solving this problem is to apply a stochastic filter such as the
Kalman filter [2,3]] or its variants to each object, and use a data association technique
such as the Nearest Neighbor to assign the appropriate measurement to each object
and track each object separately. An alternative and a more elegant approach is to
consider the multi-object set as a single meta-object and the measurements received
by the sensor as a single set of measurements, and model them as Random Finite



Tracking Objects Using PHD Filter for USV Autonomous Capabilities

Data Acquisition

Feature Extraction

!

!

Segmentation

PHD Data Update Filter

|

Sea Clutter Model

i

Mean Shift Algorithm &

Time Updated PHD Filter

Estimated Tracked Objects

]

Fig. 4 Block diagram of PHD Tracker Filter

Sets (RFS). This allows multiple objects to be estimated in the presence of clutter,
and any data association uncertainty to be cast in a Bayesian filtering framework.
Optimal Bayesian multi-object tracking is not yet practical due to its computational
complexity. However, a practical alternative to the optimal filter is the Probability
Hypothesis Density (PHD) filter, which propagates the first order statistical moment
of the full multi-object posterior distribution. The original algorithm is intractable,
thus a recursive algorithm which propagates the posterior intensity is employed,
which involves Gaussian mixtures. The different stages of this method are described
in Fig. 4. We tested our algorithm in simulations with recorded data from Velodyne
LIDAR using 1.8GHz Intel Core CPU.

3.1 Stabilized 3D LIDAR

The Velodyne HDL-64E provides 3D range scans by rotating an array of 64 beams
around its vertical axis producing around 1.2 million points per second. Usually,
the sensor is mounted and stabilized on top of the mobile platform providing range
scans with a full FOV in horizontal direction. In case of unstabilized LIDAR, USVs
roll pitch and heave are compensated for using IMU measurements and the GPS
location is part of the Lidar inputs . In the horizontal direction, the array provides
360 degrees field of view (FOV) with an angular resolution of approximately 0.09
degrees. Vertically, the pitch angles range from -24.8 to +2 degrees. The Velodyne
HDL-64E LIDAR can detect a target of one meter in length from a distance of 100
meters. Its range measurement accuracy typically is within 10 cm.
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Fig. 5 The UDP Packets Structure and Axes Parameters [[]]

3.2 Data Acquisition

The 3D point cloud data from each scan is projected onto a cylinder whose axis is
the rotational axis of the LIDAR. This projection yields a range image, whose pixel
intensity values correspond to the distance measurements. This is a standard way to
represent LIDAR data in different terrain, commonly used in applications such as
aerial vehicles for urban terrain modeling [1]]. The LIDAR use UDP structure data
to the main computer, UDP packets structure and axes parameters on the USVs can
be seen in Fig. 5.
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Fig. 6 Mean Shift Algorithm Illustration - Step 1
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Fig. 8 Mean Shift Algorithm Illustration - Step 3, Mean shift vector from center of mass and
center of region

3.3 Segmentation

The range image is segmented using a mean shift segmentation technique. It con-
sist of two steps: mean shift filtering of the original range image data, followed
by clustering of the filtered data points. The centroids of the segmented cluster are
used as measurement z axis values to update the PHD filter prediction. We illus-
trate our mean shift algorithm on a distribution of identical billiard balls, which is
identical to LIDAR 3D range scans. We can see in Fig. 6 the region of interest as
same as the range of the LIDAR in our case, and the center of mass (such as the 3D
range scans). Mean Shift is proportional to the normalized density gradient estimate
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Fig. 9 Mean Shift Algorithm Illustration - Step 4, Mean shift vector from center of mass and
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Fig. 10 Mean Shift Algorithm Illustration - Step 5, Convergence of center of region to center
of mass

obtained with kernel. The mean shift vector is change as can be seen in Fig. 7 -
Fig.9, until convergence can be seen in Fig. 10.

We introduce our initial results of mean shift segmentation implemented on two
test cases. In Fig. 11 and Fig. 12 the noises from the background are cleaned, and
the points related to the object are connected successfully. Our next is to test our
implementation on real records from LIDAR with our mean-shift segmentation.
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Fig. 11 First Test Case Mean Shift Algorithm. The original picture can be seen at the left,
and the one with mean shift algorithm on the right.

Fig. 12 Second Test Case Mean Shift Algorithm. The original picture can be seen at the left,
and the one with mean shift algorithm on the right.

4 Conclusion

This paper presents an initial research direction for tracking multi-targets in marine
environments for USV autonomous capabilities. LIDAR sensors are very precise,
however, they are challenged by clutter and moving platforms for target detection
and tracking in real time. We present several models for clutter formulation as an
options for decluttering LIDAR measurements. Additionally, we propose the PHD
filter, which is an advanced RFS-based filter. We describe the main stages for multi-
object detection and tracking using this filter. We demonstrated our segmentation
and mean-shift implementation on two test cases. Future work will focus on testing
our implementation on sea records and sea experiments with the LIDAR sensor and
PHD filter for testing and validation of our concept testing algorithm efficiency and
power consumption integrated into small USV.
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