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Abstract Different imaging modalities are sensitive to different aspects of brain
activity, and integrating information from multiple modalities can provide an
improved picture of brain dynamics. Electroencephalography (EEG) and func-
tional Magnetic Resonance Imaging (fMRI) are often integrated since they make
up for each other’s limitations. FMRI can reveal localized intrinsic networks
whose BOLD signals have periods from 100 s to about 10 s. EEG recordings, in
contrast, reflect cortical electrical fluctuations with periods up to 20 ms or higher.
The following chapter surveys the physiological differences between EEG and
fMRI recordings and the implications and results of their integration. EEG-fMRI
findings are reviewed in cases where individuals do not participate in an explicit
task (e.g. during ‘‘rest’’). The results are discussed in the context of different
methodological approaches to EEG-fMRI integration, including correlation and
GLM-based analysis, and ICA decomposition of group EEG-fMRI datasets. The
resulting EEG-fMRI networks capture a broader range of brain dynamics com-
pared to EEG or fMRI alone, and can serve as a reference for studies integrating
MEG and fMRI.
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1 Introduction and Motivation

Brain networks operate over a broad range of spatial and temporal scales. Our
ability to capture brain network activity is limited by the spatial and temporal
resolution of the tools that are available. The most common non-invasive imaging
modalities are blood oxygenation level dependent (BOLD) functional magnetic
resonance imaging (fMRI), magnetoencephalography (MEG), and electroen-
cephalography (EEG). Each of these modalities provide a distinct, but limited,
window onto brain network activity. Researchers are therefore interested in inte-
grating information obtained from these different modalities in order to obtain a
more detailed picture of true underlying brain dynamics.

The following chapter addresses some of the motivations, methodology, diffi-
culties, and results of integrating EEG and fMRI. EEG and fMRI are widely used
for multimodal integration since they make up for each other’s spatial and tem-
poral limitations. EEG is sensitive to temporal dynamics on the millisecond
timescale, but has very limited spatial resolution. FMRI, in contrast, is sensitive to
spatial differences on the order of millimeters, but can only capture temporal
changes on the order of seconds. MEG provides comparable spatial and temporal
resolution to EEG with the additional advantage that magnetic source activity is
not spatially filtered by the volume conduction properties of the scalp, skull and
brain. In addition, EEG and MEG are each sensitive to activity at comparable
spatial scales, or volumes of cortex. However, MEG, due to the direction of
magnetic field lines, is preferentially sensitive to cortical activity oriented tan-
gential (or sulcal) to the scalp, while EEG is preferentially sensitive to radial (or
gyral) activity (Cohen and Cuffin 1983). EEG and MEG each provide relatively
distinct measures of cortical source activity. This motivates methodological
approaches that can integrate information both between EEG-fMRI and between
MEG-fMRI.

In addition to their complementary spatial and temporal sensitivities, fMRI and
EEG differ in terms of the aspects of neural activity that they are most sensitive.
EEG is sensitive to synchronous neural electrical potentials primarily along cor-
tical gyri (Cohen and Cuffin 1983). BOLD fMRI, in contrast, is sensitive to neural
metabolic processes via its coupling with changes in local blood oxygenation.
EEG therefore provides a measure of neural activity directly along the cortical
surface while fMRI provides an indirect measure of neural activity throughout the
entire brain.

The different spatiotemporal and neural sensitivities of fMRI and EEG raise
caution in assuming a direct one to one correspondence between the two. It is a
strong assumption that fMRI responses represent the spatial location of the
observed EEG directly, or that EEG responses directly reflect the temporal
dynamics of responsive fMRI spatial locations. Instead EEG and fMRI are sen-
sitive to the different aspects of neural activity that operate over their respective
temporal and spatial scales. EEG may reflect the activity within only a subset of
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activated voxels, or EEG may reflect the activity within brain networks that covary
in a complex manner with fMRI networks.

Different analysis approaches impose different assumptions on the relationship
between EEG and fMRI. One line of research assumes a direct relationship
between them, for example, by constraining EEG sources or inverse solutions to
BOLD fMRI activations or structural MRI locations within radially oriented
cortical gyri (e.g. Ahlfors and Simpson 2004; Lin et al. 2005). Alternatively,
another line of research focuses on common temporal modulations within each
modality irrespective of their spatial overlap. In this instance, fMRI voxels may be
associated with EEG responses measured anywhere over the scalp, and vice versa.
The linked EEG-fMRI responses reveal brain networks that overlap after incor-
porating the broader range of spatial and temporal scales available within each
modality (Siegel et al. 2012).

2 Physiological Considerations in EEG-fMRI

The sections below provide a broad overview of the physiology underlying EEG
and BOLD fMRI responses. These physiological differences are an important
consideration in EEG-fMRI study design and in the subsequent approach to EEG-
fMRI analysis. The differences also provide important context for interpretation of
the EEG-fMRI findings reviewed in the sections of the chapter that follow.

2.1 The Neural Basis of EEG

The first human EEG recordings were reported by Berger (1929) in his seminal
paper. His initial observations were met with skepticism within the scientific
community, and even Berger himself was wary of the findings. The initial skep-
ticism was rightfully warranted, as it is difficult to imagine that small changes in
brain activity would propagate through the head, generating measurable electrical
potentials on the surface of the scalp.

EEG measures micro-volt differences in scalp electric potentials that emerge
from the aggregate activity of a large number of cortical pyramidal neurons.
Synaptic inputs to pyramidal cells generate small sources and sinks along the cell
membrane. These sources and sinks are space averaged over cortical areas that
approximate the size of cortical columns. Pyramidal neurons are aligned parallel to
each other along the cortex, forming a patch of neural tissue that approximates a
dipole moment vector or more realistically, a dipole layer. Scalp EEG is thought to
reflect the average extracellular current generated from these pyramidal synaptic
potentials. In order for the current to propagate to the scalp the net charge of an
individual patch of tissue must be oriented perpendicular to the scalp, and must not
be completely canceled out by opposing charges within neighboring tissues.
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A single EEG electrode reflects dynamic fluctuations in neural activity over an at
least cm2 sized patch of cortex.1 EEG responses can be distinguished as ‘‘local’’ or
‘‘global’’ by comparing the raw cortical potential with its spatially filtered repre-
sentation (e.g. with surface Laplacian or current source density (CSD) analysis).
Local sources are located underneath the electrode and are consistent with the
assumption of a single dipole source. Global sources are present over many
electrodes, correspond to either large areas of cortical activation or deep sources,
and are inconsistent with the dipole assumptions of source localization (Nunez
2000; Srinivasan 2005).

Currents move in opposite directions at any given moment along certain
locations of the scalp, forming sources and sinks. The overall current moving
perpendicular in one direction along the scalp equals the current moving in the
other direction. The movement of currents, and the spatial location of source and
sinks, depends on the skull conductivity. Skull conductivity differs across the head
due to differences in skull thickness and the nature of the bone tissue. Thus, scalp
sources and sinks are more likely to appear over the locations with increased skull
conductivity (Chauveau et al. 2004; Cuffin 1993; Nunez and Srinivasan 2006).
These locations may not directly overlap with the location of cortical activity.

EEG responses reflect cortical potentials conducted through cerebrospinal fluid
(CSF), the skull, and the scalp. The resistivity of these tissues contributes to the
volume conduction properties of the head, effectively forming a head transfer
function (Nunez and Srinivasan 2006). Theoretical studies suggest that these
volume conduction properties emphasize large dipole layers over small dipole
layers (Srinivasan et al. 1996). This low-pass spatial filtering property of the head
effectively acts as a low-pass temporal filter as well, since larger areas of activation
are associated with greater transmission delays and increased transmission delays
render it difficult to sustain high frequency oscillations (e.g. within gamma band
responses appearing at 40 Hz and above). Thus, low frequency EEG responses
between 1–12 Hz (e.g. incorporating the delta, theta, and alpha bands) are often
global or widespread (Nunez and Srinivasan 2006).

In summary, it should be clear that there are a number of nuances to consider
along with the statement that ‘‘EEG reflects synchronous cortical electrical fluc-
tuations’’. Notable nuances include the orientation of the cortical source, the
degree in which cortical sources are cancelled out by neighboring tissues, the
distance between the cortex and the electrode, and the choice of reference. In
addition, the spatial location of EEG is influenced by differences in electrical
conductivity over the skull, and the observed potentials reflect a low-pass spatially
(and temporal) filtered representation of the underlying cortical sources. Some of
these issues with EEG are absent in MEG recordings, and are thus an important
consideration when comparing findings from EEG-fMRI and MEG-fMRI.

1 Note that the voltage at a single electrode reflects the difference in potential between that
electrode and a reference electrode. The electrode is commonly re-referenced to the average of all
electrodes.
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2.2 The Neural Basis of BOLD fMRI

Increases in neural activity within a particular brain area result in increased blood
flow to that same area. For example, tapping your finger for a few seconds will
result in increased blood volume within vessels that supply the motor cortex. The
enhanced blood flow response carries oxygen to the activated neural tissue,
although the amount of oxygen available to the tissues exceeds the tissues needs. It
has been said that the excessive increase in blood volume is akin to a gardener
‘‘watering the entire garden for the sake of one thirsty flower’’ (Malonek and
Grinvald 1996).

The mechanism and function of the large increase in blood flow is a topic of
ongoing research. One hypothesis is that the large increase in blood flow may help
maintain a constant tissue oxygen pressure (pO2) (Buxton 2010). This hypothesis
emphasizes the importance of pO2 in oxygen metabolism, which is interesting in
light of the observation that tissue pO2 appears to approximate the level of pO2 in
the atmosphere when oxygen metabolism first arose on earth. Regardless of the
functional role, however, there is no debate that the large increase in blood flow is
fortuitous, since it is a phenomenon on which the majority of functional neuro-
imaging studies are based.

Blood oxygenation levels serve as a proxy for underlying changes in neural
activity. The relationship between neural activity and blood oxygenation is com-
plex and indirect. Neural activity leads to an increase in cerebral oxygen metab-
olism (CMRO2) and an increase in cerebral blood flow (CBF). These two effects
contribute to the measured fMRI response in opposite ways. A sudden increase in
oxygen metabolism leads to a decrease in oxygenated hemoglobin, which, due to
its magnetic properties, disrupts the magnetic field and reduces the BOLD fMRI
response. The increase in CBF replaces deoxygenated hemoglobin with oxygen-
ated hemoglobin, which reduces the magnetic field distortion and contributes to
increased fMRI responses.2 The neural mechanisms that lead to decreased CMRO2

may differ somewhat from the mechanisms that lead to increased CBF. Relatedly,
the ratio of CMRO2 and CBF changes can differ within the same brain area across
subjects, across brain areas within a single subject, and even within the same brain
area in response to different stimuli. This means that the observed percent signal
change can differ in situations where neural activity is the same (for a review see
Buxton 2010).

The BOLD response is most sensitive to aspects of neural activity that are
associated with increased aerobic metabolism. Attwell and Laughlin (2001) esti-
mate that the majority of the brain’s energy is devoted to restoring postsynaptic ion
gradients. This supports the notion that BOLD fMRI more closely reflects synaptic
integration than neural spike rate, as demonstrated empirically by stronger cor-
relations between BOLD fMRI and the local field potential (LFP) than with

2 The term ‘‘BOLD’’ is not technically accurate since the response depends upon deoxygenated
hemoglobin.
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microelectrode measures of spiking activity (Logothetis et al. 2001) (for excep-
tions see Ekstrom 2010). The sensitivity to synaptic integration means that the
BOLD signal is sensitive to inputs to a particular area, without directly depending
upon whether or not those inputs were effective at generating spikes (i.e. outputs)
to other areas.

In addition, the observed BOLD response can be conceptualized as the neural
metabolic process convolved with a hemodynamic response function (HRF). The
HRF filter peaks about *6 s following the onset of the initial neural/metabolic
event. The *6 s delay accounts for the sluggishness of blood flow changes in
response to neural activity. It is this delay, and the limited sampling rate of fMRI,
that contribute to the reduced temporal resolution of fMRI recordings.

2.3 Physiological Overlap Between EEG-fMRI

The finding that EEG and fMRI are sensitive to different aspects of neural activity
does not make EEG-fMRI integration a futile endeavor. Instead, if EEG and fMRI
completely overlapped in their neural and spatiotemporal sensitivities then their
integration would be redundant and pointless. Instead, linking the two provides an
improved window onto the brain’s spatiotemporal dynamics by incorporating their
non-overlapping range of spatial and temporal sensitivities. The resulting EEG-
fMRI networks indicate that synaptic activity changes (coupled with metabolism
and blood flow) at fMRI spatial locations are related to synchronous cortical
potentials (from pyramidal cells) at certain EEG frequencies.

EEG and fMRI have many important commonalities. The sensitivity of fMRI to
synaptic metabolism overlaps well with the sensitivity of EEG to synchronous
cortical potentials. For example, both EEG and fMRI appear to overlap more with
the low frequency spectrum of multi-unit activity (e.g. up to 250 Hz) compared to
the high frequency spectrum (e.g. from 500–1,000 Hz). The low frequency
spectrum (i.e. the local field potential or LFP) is thought to represent integrative
perisynaptic processes, while the high frequency spectrum reflects ‘‘multi-unit’’
spiking activity. The processes generating LFP’s thus overlap with the processes
generating EEG and the metabolic processes thought to drive BOLD fMRI (for
reviews see Heeger and Ress 2002; Logothetis 2008) (for exceptions see Ekstrom
2010). However, the direct relation between fMRI and LFP’s is less straightfor-
ward since spiking activity is often correlated with both fMRI and LFP’s. This
association is strengthened by cases where correspondence is observed between
fMRI and LFP in the absence of spiking activity. Similar correspondence (e.g.
between spiking activity and fMRI in the absence of LFP’s) is rarely observed
(Goense and Logothetis 2008; Logothetis et al. 2001). With regards to EEG, the
physiologically interesting frequencies observed in LFP’s overlap reasonably well
with the frequencies commonly studied in EEG. For example, the characteristics of
the alpha frequency band (e.g. 8–12 Hz) have also been examined in visual LFP
recordings (Bollimunta et al. 2011; Mo et al. 2011).
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An additional similarity between EEG and fMRI is that they are sensitive to
responses that occur over similar volumes of brain tissue. It has been estimated
that at least a cm2 cortex must be synchronously active to generate electrical
activity observable on the scalp (Nunez and Srinivasan 2006). This volume of
cortex overlaps pretty well with the size of fMRI voxels, which typically range
from about 27 to 64 mm3. The voxels are subsequently smoothed with their
neighbors in order to enhance the signal to noise ratio (SNR) of fMRI responses.
This smoothing also brings a closer correspondence between the effective volume
of fMRI voxels and the minimum volume of cortex for EEG. In either case
however, EEG and fMRI each represent an aggregate measure of activity from the
collective dynamics that emerge from millions of neurons (Fig. 1).

The aggregate window on brain activity provided by EEG and fMRI likely
contributes to their utility in understanding cognition and perception. For example,
cognition and perception are thought to emerge from the dynamic interactions
between multiple brain areas (Siegel et al. 2012; Varela et al. 2001). These
dynamic interactions likely overlap within the timescales of EEG, in the sense that
the timescale of changes in our perceptual experience overlaps well with the
timescales of fluctuations in EEG. EEG, for example, can separate the early visual
response to sensory inputs from the subsequent visual response to the same input
following reciprocal interactions with other brain areas (Lamme and Roelfsema
2000). FMRI provides a limited picture of these aspects of neural dynamics.
However, fMRI is capable of measuring neural responses throughout the whole
brain, providing a window on the brain areas that integrate together over second-
by-second time scales.

Synchronization directly contributes to EEG and likely comprises synaptic
integration processes that contribute to fMRI. The sensitivity of each measure to

Fig. 1 EEG and fMRI are each primarily sensitive to synaptic activity. The factors that
contribute to the non-overlap between EEG and fMRI are listed on top
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synaptic integration suggests that they also provide an aggregate measure of neural
excitability, since neural excitability appears to coincide with the phase of syn-
chronous activity (Klimesch et al. 2007). These coordinated bursts of activity help
ensure that neurons influence other brain areas in a coordinated, efficient manner.
Thus, the spatiotemporal scales and neural sensitivities of EEG and fMRI appear
relevant to understand the brain’s integrative processes guiding cognition and
perception.

3 Approaches to EEG-fMRI Integration

We now turn our focus to different approaches that have been utilized to integrate
EEG and fMRI, and review the findings revealed through each approach. Asso-
ciations between the two modalities time courses are considered, as examined by
correlation or general linear modeling (GLM) of the time courses, by deconvo-
lution of the EEG and fMRI time courses, or by independent component analysis
(ICA) of multi-subject EEG and fMRI datasets. These approaches are insensitive
to whether there is a direct causal relationship between EEG and fMRI. Thus, there
is no implicit assumption that EEG reflects a measure of the neural activity that
contributes directly to the BOLD fMRI response.

3.1 Overview of Correlation and GLM Based Findings

The most straightforward approach to integrating concurrent EEG and fMRI is by
either correlating the time courses or by including the EEG time course as a
predictor in a general linear model (GLM) analysis. In either case, the EEG time
course is divided into non-overlapping epochs and converted to its frequency
representation (e.g. by Fourier analysis), returning complex valued coefficients for
each frequency and epoch. The coefficients are absolute valued, returning the
amplitude of each frequency within a given epoch. The EEG epochs are chosen
such that each amplitude value (within a given frequency) corresponds in time to a
concurrently recorded fMRI acquisition. Broadly, this approach examines whether
fluctuations within a given EEG frequency are related to fluctuations within a
given fMRI voxel.

Temporal delays between the EEG and fMRI time courses are not directly
accounted for in traditional correlation or general linear model (GLM) analysis,
since they focus on the instantaneous relationship between variables. Therefore,
the delay in the hemodynamic response must be accounted for prior to analysis.
The characteristics of the hemodynamic delay are well described by the hemo-
dynamic response function (HRF) (for review see Buxton et al. 2004). The
assumption is that the BOLD fMRI response reflects a low-pass delayed repre-
sentation of the underlying neural activity. The characteristics of the filter are
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incorporated within the HRF shape. For example, the HRF peaks at a delay of
*6 s, which reflects the delayed increase in blood oxygenation following neural/
metabolic events. The low-pass characteristic of the filter incorporates the tem-
poral smearing that results from sluggish hemodynamics. These properties are
accounted for by either convolving the EEG time course with the canonical HRF,
or by deconvolving the fMRI time course with the canonical HRF.

The initial EEG-fMRI studies focused on correlations between individual fMRI
voxel time courses and the amplitude time course of EEG frequencies. This
approach can generate an unmanageable number of statistical comparisons if
univariate tests are conducted separately for each of thousands of fMRI voxels and
for dozens of EEG electrodes and frequency bands. The number of statistical
comparisons is typically reduced by focusing a priori on a subset of EEG fre-
quency bands and/or on a subset of fMRI regions of interest (i.e. ROIs). Data
decomposition approaches have also been quite successful at reducing the data to a
few underlying sources (Eichele et al. 2009).

Initial EEG-fMRI studies focused on fMRI responses associated with the EEG
alpha band (e.g. 8–12 Hz). The emphasis on the alpha band was motivated by its
robust presence in individual recordings; alpha activity can be observed by an
untrained experimenter in unprocessed EEG. The robust presence of alpha activity
is particularly important in concurrent EEG-fMRI since the scanner environment
introduces substantial artifacts in the EEG (for review see Ritter and Villringer
2006). The salience of alpha activity in EEG recordings likely contributes to their
‘‘salience’’ in the EEG literature, as decades of research have been conducted on
the generators and characteristics of the EEG alpha rhythm. It was appropriate that
the first EEG-fMRI studies focused on the alpha band as well.

Alpha oscillations appear predominantly over occipital electrodes and dem-
onstrate a robust increase when individuals close their eyes, are drowsy, or engage
in mental arithmetic (Klimesch et al. 2007). These tasks involve a lesser degree of
visual cortical activity, thus, increased occipital alpha activity is thought to reflect
cortical inactivity. This inactivity reduces the ability of visual areas to influence
areas of the brain that support current cognitions or tasks. For example, increases
in alpha activity are associated with reduced resting-state connectivity between
early visual areas and the rest of the brain (Scheeringa et al. 2012). Increased
visual inactivity is also synonymous with increased synchrony across visual areas,
increased dependence across areas, and an overall reduction in visual complexity
(Edelman and Tononi 2000). These processes are also likely associated with
reduced cortical metabolism, and the sensitivity of BOLD fMRI to metabolic
processes allowed the unique ability to test this theory.

Early EEG-fMRI studies have indeed demonstrated negative relationships
between alpha activity and occipital, parietal, temporal, and fontal fMRI responses
(Bridwell et al. 2013; de Munck et al. 2009; Goldman et al. 2002; Laufs et al.
2003; Sadaghiani et al. 2010; Scheeringa et al. 2011), and positive relationships
between alpha and the thalamus (Bridwell et al. 2013; de Munck et al. 2009;
Goldman et al. 2002). The negative correlation is consistent with the idea that
increased alpha activity reflects reduced cortical metabolism and a subsequent
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reduction in the BOLD fMRI response. Equivalently, increased metabolism is
associated with increased fMRI responses and a reduction in alpha. This inter-
pretation was further supported by Moosmann et al. (2003) by demonstrating a
negative relationship between changes in deoxy hemoglobin (measured by near-
infrared spectroscopy (NIRS)) and alpha EEG. The main findings from selected
‘‘resting-state’’ EEG-fMRI studies are demonstrated in Table 1. The majority of
studies demonstrate a negative relationship between fMRI and EEG alpha activity.
Thus, this finding is one of the most consistent and reproduced findings in the
EEG-fMRI literature. It can serve as a useful ‘‘sanity check’’ in EEG-fMRI.

Table 1 Main findings from select EEG-fMRI studies

Study Rest Frequencies
examined (Hz)

Source
separation

Main findings

Goldman et al.
(2002)

Yes (EC: eyes
closed)

Alpha (8–12) No (fMRI) - with alpha (occipital,
temporal, frontal)

No (EEG) + with alpha (thalamus)
Laufs et al.

(2003)
Yes (EC) Alpha (8–12) No (fMRI) - with alpha (parietal and

frontal)
Beta (17–23) No (EEG) + with beta

Mantini et al.
(2007)

Yes (EC) Delta (1–4) Yes (fMRI) + with multiple frequencies

Theta (4–8) No (EEG)
Alpha (8–13)
Beta (13–30)
Gamma (30–50)

Sammer et al.
(2007)

No (mental
arithmetic)

Theta (3.5–7.5) No (fMRI) + with theta

Yes (EEG)
Scheeringa et al.

(2008)
Yes (EO: eyes

open)
Delta No (fMRI) - with delta/theta (‘‘resting

state networks’’)
Theta Yes (EEG)

de Munck et al.
(2009)

Yes (EC) Delta (0.1–4) No (fMRI) - with alpha (occipital,
parietal)

Theta (4.5–8) No (EEG) + with alpha (thalamic)
Alpha (8.5–12)
Beta (12.5–36)
Gamma (36.5–100)

Sadaghiani et al.
(2010)

Yes All (1–30) No (fMRI) - with alpha1 and beta1
(dorsal attn. network)

No (EEG) + with alpha2 and beta2
(alertness network)

Scheeringa et al.
(2011)

No (attention
task)

All (2.5–120) No (fMRI) - with alpha and beta

Yes (EEG) + With gamma
Bridwell et al.

(2013)
Yes (EO+EC) All (1–35) Yes (fMRI) - with alpha3, alpha4, beta1

Yes (EEG) + with delta, theta, beta2,
gamma
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3.2 Background and Advantages of ICA in EEG-fMRI

One of the most difficult challenges in multimodal integration is extracting
meaningful information from high dimensional datasets. BOLD fMRI responses
are obtained within tens of thousands of voxels and each EEG epoch contains
information within multiple frequency bands over dozens of electrodes. Integrating
the EEG channel by frequency information with the fMRI voxel information with
the traditional correlation or GLM approach ignores the rich structure within each
dataset, is computationally demanding, and generates an unmanageable number of
statistical comparisons. These limitations can be alleviated with blind source
separation (BSS) approaches such as spectral ICA (Bridwell et al. 2013; Wu et al.
2010), principle component analysis (PCA), and temporal ICA (for a review see
Makeig et al. 2004), as well as semi-BSS approaches such as functional source
separation (FSS) (Porcaro et al. 2010, 2011). These approaches decompose each
observation as the linear sum of a small number of underlying sources.

Among the data decomposition techniques described above, spatial ICA has
demonstrated to be particularly informative and useful in fMRI analysis. For
example, ICA (implemented with the Infomax algorithm) can emphasize sparse
independent spatial fMRI maps, which aligns with the assumption that cognitive
activation is sparse and distributed, and with the sparse and spatially specific
nature of cardiac and motion artifacts (McKeown et al. 1998). Temporal ICA is
commonly utilized for EEG data, and the assumptions for temporal ICA align well
with the theoretical generation of EEG. For example, the decomposition of a time
course as a linear sum of independent temporal sources aligns well with the
assumption that the response at a single electrode reflects a linear mixture of
independent scalp sources3 (for review see Makeig et al. 2004). ICA can also be
conducted on EEG spectra, revealing spectral sources that peak within charac-
teristic EEG frequency bands (Bridwell et al. 2013).

BSS approaches are particularly advantageous when EEG and/or fMRI are
measured in the absence of an explicit task. For example, BSS algorithms such as
ICA utilize the inherent structure in the data to extract underlying spatiotemporal
activity patterns. These coherent patterns of activity likely result from activity
within somewhat distinct brain modes or sources. The coherent nature of unique
modes or sources suggests that they may also be described as distinct brain
networks. The unique networks observed with ICA may demonstrate functionally
distinct properties. For example, ‘‘resting-state’’ ICA can reveal sources which
overlap with brain areas with greater activation during ‘‘internal’’ mental states
(e.g. the so-called ‘‘default mode’’ areas). Other sources overlap with brain areas
with greater activation during ‘‘external’’ attentive states (Corbetta et al. 2008). Of
course, it is difficult or impossible to infer the functional role of networks that are

3 ‘‘Sources’’ here refers to the independent sources estimated through ICA. These sources are
different from the cortical ‘‘equivalent dipole sources’’ thought to generate EEG.
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present in the absence of explicit tasks since the individuals’ cognitions are
unknown to the experimenter.

ICA is routinely used to extract independent spatial fMRI sources to link with
concurrent EEG (for a review see Eichele et al. 2009). EEG is then associated with
temporal fluctuations in fMRI spatial sources, rather than individual voxels or
clusters. This is advantageous since it separates the voxel response at each point in
time by the separate contribution of multiple independent sources. However, only
a few EEG-fMRI studies have additionally conducted ICA on the EEG (Bridwell
et al. 2013; Eichele et al. 2009; Wu et al. 2010). Thus, BOLD fMRI sources are
often linked with EEG spectral information that potentially contains the combined
contribution of multiple sources with overlapping frequency bands and spatial
locations. A spectral EEG decomposition (with ICA) may reveal sources with
distinct peaks that correspond to the traditional EEG frequency bands. This data-
driven approach can validate the presence of distinct EEG frequency bands,
improving the ability to link fMRI with EEG activity within each band.

It can be particularly important to decompose EEG spectra within the alpha
band, as previous studies demonstrate that it contains the combined contribution of
multiple distinct networks which may overlap spectrally and/or spatially. The
8–12 Hz alpha band has been subdivided by its upper and lower frequencies, and
overlaps in frequency with the central mu rhythm. These different alpha sources
demonstrate distinct spatial topographies, spectral peaks, and/or sensitivities to
experimental manipulation (Niedermeyer 1997; Nunez et al. 2001), and the
average 8–12 Hz activity represents the combined contribution of these multiple
independent sources. The presence of multiple sources with overlapping spectral
characteristics is also suggested by the difficulty indentifying the boundaries
between EEG frequency bands within the average EEG spectrum and the presence
of high correlations between the different frequency bands (de Munck et al. 2009;
Mantini et al. 2007).

Conducting an independent group ICA within each modality can provide an
improved measure of fMRI or EEG network activity while also helping to
incorporate as much information as possible within each modality. The approach
reduces the need to restrict the analysis to only a subset of fMRI networks (e.g. the
default mode), or to restrict analysis to a subset of EEG electrodes or frequencies.
An important consequence of this restriction is that it helps guarantee the fre-
quency specificity of the results. Consider the negative relationship between alpha
EEG and fMRI as an example. The demonstration of this relationship can be
strengthened by demonstrating that similar relationships do not exist for other EEG
frequency bands. For example, fluctuations in the alpha band likely reflect both
broad fluctuations in the EEG spectral baseline, as well as fluctuations specific to
the alpha band. This possibility can be directly addressed by including additional
frequencies as covariates in a GLM (de Munck et al. 2009) or multiple linear
regression (e.g. PPI) (Scheeringa et al. 2012), by reporting results obtained sep-
arately for multiple frequencies, and/or by extracting frequency specific sources
with blind source separation (Bridwell et al. 2013; Scheeringa et al. 2008, 2011).
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In either case, considering multiple frequency bands helps acknowledge the full
constellation of fMRI and EEG networks that may be present at any given moment
(Mantini et al. 2007; Siegel et al. 2012).

3.3 Multi-subject Extensions of ICA

ICA can extract spatiotemporal patterns within EEG or fMRI data when indi-
viduals are not engaged in an explicit task (i.e. ‘‘during rest’’). Generalization of
these results across subjects can be more challenging with ICA than a traditional
GLM analysis. For example, GLM analysis can be conducted on fMRI data for
each individual subject and the beta weight associated with the experimental time
course is utilized as an independent observation in the second level group analysis.
Generalization across subjects is straightforward since beta weights can corre-
spond to the same experimental condition across all subjects. ICA decomposes the
multivariate fMRI data into a set of independent spatial sources and their asso-
ciated time courses. Thus, ICA essentially estimates the unknown time courses of
functionally distinct spatial maps (in accordance with the assumptions of the ICA
algorithm) (Fig. 2). Researchers are then faced with the challenge of pairing up
common sources across individuals. This problem can be addressed by incorpo-
rating information from multiple subjects within a single ICA decomposition, and
then examining the subject specific parts (Beckmann and Smith 2005; Calhoun
et al. 2001; Esposito et al. 2005; Guo and Pagnoni 2008; Schmithorst and Holland

Fig. 2 Comparing the GLM and ICA for fMRI. The GLM estimates the contribution of each

modeled time course to the observed data by deriving beta (b̂), the ‘‘activation map’’. ICA models
the observed data as a linear mixture of underlying spatially independent sources S (Adapted from
Calhoun et al. 2009)
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2004). We focus here on the group ICA technique implemented in Calhoun et al.
(2001) and in the GIFT software package (http://mialab.mrn.org/software/gift/).

The typical ICA model assumes that each observation can be described as a
linear mixture of independent sources. This can be demonstrated in an example
with two observations represented by X ¼ x1; x2ð ÞT , begin generated from the
following model:

X ¼ AS:

S ¼ s1; s2ð ÞT is the estimated sources and A is the estimated mixing matrix. The
mixing matrix describes the contribution of each source at each observation. ICA
estimates the matrix inverse of A, which is denoted as the unmixing matrix W. The
unmixing matrix applies a spatial transformation of the observations to arrive at
the estimated sources:

Y ¼ WX;

which approximates the ‘true’ sources S. ICA algorithms can emphasize the
normality, independence, and complexity of the derived sources when estimating
the unmixing matrix. For example, the infomax ICA algorithm iteratively changes
the unmixing matrix in order to maximize the entropy of the estimated sources,
which also maximizes their independence (Bell and Sejnowski 1995). Further
details on ICA algorithms can be found in Stone (2004) and Hyvarinen et al.
(2001).

Group ICA extends the ICA implementation described above in order to
decompose data from multiple subjects. Group ICA estimates group sources based
upon the aggregate group data and enables evaluation of individual subject dif-
ferences via individual back-reconstructed components (Beckmann and Smith
2005; Calhoun et al. 2001; Erhardt et al. 2011). The individual data Xi is first
compressed through principle components analysis (PCA), as expressed by:

Yi ¼ F�1
i Xi:

F�1
i is the reducing matrix derived from PCA for subject i. The reduced data from

M subjects is concatenated in order to form an aggregate group matrix which, in
the case of fMRI, is time�M½ � by voxels½ �. The aggregate group matrix is com-
pressed with PCA into the number of desired group components:

Y ¼ G�1
F�1

1 X1

. . .
F�1

M X

2
4

3
5:

The reducing matrix G�1 is a components by time�M½ �½ � matrix derived from
PCA. The resulting matrix Y is decomposed through ICA (e.g. Y ¼ ÂŜ) in order to
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derive the component by voxel½ � matrix of group sources Ŝ. The individual subject
loadings (i.e. time courses for spatial ICA) are derived by matrix multiplication of
the individual partition of the PCA reducing matrix Fi by the individual partition
of the aggregate reducing matrix Gi and Â (Calhoun and Adali 2012; Calhoun et al.
2001; Erhardt et al. 2011).

The group ICA steps described above implement ICA on a data matrix con-
taining the aggregate data from all of the subjects. Spatial group ICA is commonly
applied to fMRI data. In this instance the data are concatenated temporally such
that each column corresponds to the same spatial location across subjects. This
approach assumes common aggregate spatial maps across subjects while allowing
flexibility in the estimated time courses for each subject.

3.4 Group ICA Applied to EEG and fMRI

Spatial group ICA has been particularly effective with fMRI data collected in the
absence of tasks (for review see Calhoun et al. 2009), or in cases where the
experimental models may not necessarily be known in advance (Calhoun et al.
2002). Group ICA has recently been extended to time-locked EEG (i.e. event-
related potentials (ERPs)) analysis during tasks (Eichele et al. 2011) and spatio-
spectral EEG during rest. For example, Bridwell et al. (2013) decomposed 2D
frequency by channel spectral maps into a set of group frequency by channel
sources. The incorporation of frequency and channel information ensures that the
decomposition utilizes as much of the data as possible, without restricting analysis
to a single frequency band or electrode. The group sources correspond well with
the characteristic frequency bands in EEG, and the temporal modulation of the
group source is conceptually similar to the envelope of the response within the
particular frequency band.

Group ICA can be conducted independently on EEG data and fMRI data col-
lected concurrently. The data matrices are constructed so that the temporal mod-
ulations of the fMRI sources correspond in time with the temporal modulations of
the concurrent EEG sources. EEG and fMRI can then be linked by focusing on
relationships between the modulations within the two time courses. For example,
the time courses may be correlated with each other after convolving the EEG time
course with the canonical HRF or deconvolving the fMRI time course with a
canonical HRF. This approach is less than optimal, however, as deviations in the
assumption of a fixed HRF can reduce the sensitivity to instantaneous covariations
between each modality. These assumptions can be relaxed by deconvolving the
fMRI time course against the EEG time course, generating an estimated impulse
response function (IRF). This approach treats the fMRI response as the output of
the EEG response convolved with the unknown estimated filter (de Munck et al.
2009). If the neural activity measured with EEG overlaps with the neural activity
that contributes to fMRI, then the estimated IRF will likely resemble the HRF.
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Estimation of the IRF from the data directly can account for the variation in HRF
shape observed across individuals and over different brain regions (Aguirre et al.
1998; Handwerker et al. 2004; Steffener et al. 2010).

An advantage of applying group ICA independently to fMRI and EEG is that
the number of possible statistical tests reduces from voxels� electrodes�
frequencies� to ½fMRI sources� EEG sources�. Figure 3 indicates 56 group fMRI
sources (in a) and 10 group EEG sources (in b). The results from all 560 com-
parisons are indicated in the ½56� 10� matrix in c. Positive associations (indicated
by significant deviations in the estimated IRF) are indicated in white and negative
associations are indicated in black. In general the majority of positive associations
are present within the lower (e.g. delta and theta) and upper (e.g. high beta and low
gamma) EEG frequencies, while the negative associations were primarily
restricted to two of the five alpha components.

The widespread nature of the findings in Fig. 3 may be related to improved
measurements of frequency specific activity by decomposing underlying EEG
sources at the group level and by relaxing the assumption of a fixed relationship
(e.g. the assumption of a canonical HRF) between EEG and fMRI (as in de Munck
et al. 2007, 2009). This is particularly applicable for the theta band, since esti-
mated theta IRFs less clearly resemble the canonical HRF (de Munck et al. 2007)
and theta IRFs tend to be more variable across subjects compared to the alpha band
(de Munck et al. 2009).

Variability in the IRF can contribute to the variability of results observed in the
literature. For example, the relationship between fMRI and theta EEG is less
consistent than the relationship with the alpha band. Scheeringa et al. (2008)
indicates that frontal theta activity is negatively correlated with many fMRI
regions during rest, including inferior frontal, medial frontal, inferior parietal, and
medial temporal areas. The negative correlation with theta and medial frontal areas
is also supported by (Mizuhara et al. 2004). Figure 3 primarily indicates positive
associations between theta and fMRI, which agrees with positive associations that
have been reported while individuals perform mental arithmetic tasks (Mizuhara
et al. 2004; Sammer et al. 2007).

4 Further Considerations

4.1 The Importance of Concurrent Recording

The fMRI environment introduces substantial artifacts within EEG recordings. The
fluctuating magnetic field induces electric current in EEG, which appears as EPI
artifacts. Current is also induced by movement of EEG wires within the static
magnetic field with each heart beat (i.e. the ballistocardiogram artifact). The EEG
can also introduce artifacts within MRI (Luo and Glover 2012). Researchers must
therefore consider whether the benefits of concurrent recordings outweigh the
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Fig. 3 Spatial fMRI components and their relationship to concurrent frequency by spatial EEG.
56 BOLD fMRI components are z-scored, thresholded and displayed in (a). The spectrum and
topography of the 2D EEG sources are indicated in (b). The relationship between the sources are
indicated by the fMRI source � EEG source½ � matrix in (c). Significant positive associations are
indicated along the white grayscale axis and significant negative associations are indicated along
the black grayscale axis (Adapted from Bridwell et al. 2013)
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costs associated with these artifacts. It may sometimes be the case that concurrent
recordings are not necessary. For example, EEG responses are often averaged
together after time-locking to an external event (i.e. with ERP analysis). This
approach discards the trial-by-trial fluctuations within each EEG epoch, which
strongly reduces the need to measure fMRI concurrently. Instead, ERPs can be
measured outside of the scanner environment, and fluctuations within ERPs across
subjects can be related to fluctuations in fMRI maps across subjects (Calhoun et al.
2006). Fluctuations in ERP and fMRI maps across subjects may be directly
compared with results from MEG, which can further improve the ability to spa-
tiotemporally characterize brain activity (Plis et al. 2010).

Concurrent recordings are particularly advantageous when examining the
epoch-by-epoch fluctuations within each modality. For example, this approach
demonstrates that fluctuations within a particular EEG frequency are associated
with fluctuations within a particular fMRI spatial location. Concurrent recordings
are important in this instance, since they can reveal the characteristics in which the
brain dynamically integrates distant spatial locations in cognition and behavior
(Debener et al. 2006).

4.2 Intrinsic Connectivity Networks

The spatiotemporal patterns that emerge from EEG or fMRI data are thought to
reflect the brain’s inherent structure or intrinsic connectivity. One might imagine
that these networks describe a particular brain state, and that this particular state is
involved in an aspect of cognition such that fluctuations within that state are
associated with fluctuations in that cognition. These networks can be identified in
the absence of explicit tasks (e.g. during ‘‘rest’’), and research is beginning to
focus on how the networks identified during rest can potentially inform individ-
uals’ ability to perform tasks (Carter et al. 2010; Deco et al. 2011).

The idea that ‘‘resting state’’ networks can predict performance is reasonable,
since the cognitions that individuals experience during ‘‘rest’’ likely overlap with
cognitions experienced during tasks. For example, attention is likely facilitated by
enhanced activity within a subset of networks and suppressed activity within
another subset. Tasks can promote attention, which promotes the ability to identify
the subset of networks that facilitate attention. These same networks are likely
present during ‘‘rest’’ since overlapping attentional processes likely occur during
the ‘‘resting state’’.

Thus, the ‘‘resting state’’ should not be thought of as inherently distinct from
tasks. Instead, it simply reflects the broad range of cognitions that can emerge
when individuals are unconstrained by an explicit task. Broadly, this supports the
idea that the intrinsic connectivity networks identified during rest might inform the
degree in which individuals utilize attention and memory processes that underlie
tasks.
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An additional implication, however, it that the relationship between EEG-fMRI
networks observed during rest may overlap closely with the relationship between
EEG-fMRI networks identified during tasks. This brings up a distinction between
the extent in which an area is activated, and the coupling of that area with other
areas or modalities (O’Reilly et al. 2012). Consider the negative correlation
between occipital fMRI voxels and EEG alpha. Individuals may perform tasks
which suppress EEG alpha activity (e.g. reduces its extent), but the relationship
between EEG alpha and occipital fMRI voxels would likely remain intact. In this
instance, one would anticipate an overall reduction in EEG alpha and an overall
increase in occipital fMRI responses. However, the relationship between alpha
activity and occipital responses may remain the same, such that the two measures
maintain the same correlation, and the estimated IRFs do not differ across the two
conditions. This type of scenario is expected if the EEG-fMRI networks reflect the
intrinsic structure of brain activity. Cognitive processes may modulate the extent
in which a particular area is activated, but the inherent intrinsic structure would
likely remain intact.

5 Summary

Combining the spatial information of fMRI and the spectral information of EEG
can provide an improved picture of brain dynamics. These EEG-fMRI networks
can be revealed even though each modality is sensitive to unique aspects of neural
activity. The initial EEG-fMRI integration studies focused largely on fMRI
responses associated with the EEG alpha band, and utilized correlation and GLM-
based approaches. Decomposing the information within each modality (e.g. with
ICA) can provide an improved ability to isolate distinct networks, which can
facilitate subsequent EEG-fMRI or MEG-fMRI integration. Within this context, it
can be particularly important to account for differences in the hemodynamic
response across individuals and across brain areas. The resulting EEG-fMRI
networks can supplement findings in MEG-fMRI. Overall, combining information
within each modality provides an improved ability to isolate brain networks, which
may help clarify their potentially distinct roles in cognition and behavior.
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