MEG and Multimodal Integration

Seppo P. Ahlfors

Abstract Functional brain imaging methods provide measures of various physi-
ological processes with a range of spatial and temporal scales. Because the sen-
sitivity properties of the imaging modalities differ, combining multimodal data is
expected to provide more information about the brain activity than is available by
a single method. In direct data fusion, multimodal data can be described as
complementary or supportive. Complementary modalities have the same type of
sources, such as electroencephalography (EEG) and magnetoencephalography
(MEG), which are both generated by cortical primary currents, but with different
sensitivity characteristics. Combination of EEG and MEG data can resolve
ambiguities in data from only one of the modalities. In a supportive role data from
one imaging modality guides the analysis and interpretation of another modality.
Structural magnetic resonance imaging (MRI) provides supportive data for MEG
source estimation, e.g., by indicating allowable locations and orientations of MEG
source currents. Functional MRI (fMRI) can be used in a supportive role to suggest
a likely source distribution for MEG among multiple alternatives. MEG and fMRI
can also be considered complementary if the different source types, i.e., primary
currents for MEG and blood oxygenation level dependent (BOLD) contrast for
fMRI, are both derived from a common physiological model.

Keywords Magnetoencephalography (MEG) - Electroencephalography (EEG) -
Functional magnetic resonance imaging (fMRI) - Multimodal - Data fusion

S. P. Ahlfors (X))

Department of Radiology, MGH/HST Athinoula A. Martinos Center for Biomedical
Imaging, Massachusetts General Hospital, 149, 13th Street,

Mail Code 149-2301, Charlestown, MA 02129, USA

e-mail: seppo@nmr.mgh.harvard.edu

S. P. Ahlfors
Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA

S. Supek and C. J. Aine (eds.), Magnetoencephalography, 183
DOI: 10.1007/978-3-642-33045-2_7, © Springer-Verlag Berlin Heidelberg 2014



184 S. P. Ahlfors

1 Introduction

Different functional neuroimaging methods, often called imaging modalities,
provide information about a variety of physiological processes related to brain
activity, and have a range of spatial and temporal sensitivity characteristics (He
and Liu 2008). Magnetoencephalography (MEG) and electroencephalography
(EEG) detect electrical activity in the brain with millisecond temporal spatial
resolution, but the inverse problem of determining the spatial distribution of the
activity is challenging, and the accuracy depends among other things on the overall
pattern of activity (Michel et al. 2009; Hansen et al. 2010). Functional magnetic
resonance imaging (fMRI), positron emission tomography (PET), single-photon
emission computed tomography (SPECT), and optical near infrared spectroscopy
(NIRS) detect hemodynamic phenomena; the time-resolution of these methods is
limited by the relatively slow hemodynamic response. However, fMRI can provide
millimeter-scale spatial resolution across the whole brain, without the kind of
ambiguities inherent in the MEG and EEG source localization. The different
sensitivity properties of the imaging modalities suggest that multimodal imaging
can provide more information about brain function than is attainable by any single
method alone.

In MEG, superconducting quantum interference device (SQUID) sensors are
used to measure extracranial magnetic fields generated by neuroelectric currents in
the brain (Cohen 1972). The main sources of the MEG signals are post-synaptic
dendritic currents in cortical pyramidal cells (Lopes da Silva 2010). From the
measured spatial pattern for the magnetic field outside the head, the spatiotemporal
pattern of sources within the brain can be estimated (Ahlfors and Himéldinen
2012). Both MEG and EEG originate from the same type of physiological sources,
described as primary currents (Tripp 1983). The spatial sensitivity patterns to the
primary currents are different for MEG and EEG, allowing them to provide
complementary information about the same type of sources. In contrast, the
physiological sources of fMRI (commonly the blood oxygenation level depend or
BOLD contrast) and other hemodynamic signals are of a different type from those
of MEG and EEG, thereby presenting various opportunities and challenges for
multimodal imaging.

According to Horwitz and Poeppel (2002), three main approaches to combining
data from multiple neuroimaging modalities are: converging evidence, direct data
fusion, and computational neural modeling. Comparison of separately obtained
results from different modalities to establish converging spatial or temporal patterns
of brain activation is useful for the assessment of the obtained results, e.g., in clinical
pre-surgical mapping studies. Many studies have examined the convergence of
MEG and fMRI results, including (Beisteiner et al. 1995; Morioka et al. 1995;
Sanders et al. 1996; Stippich et al. 1998; Inoue et al. 1999; Woldorff et al. 1999; Del
Gratta et al. 2002; Mathiak et al. 2002; Singh et al. 2002; Moradi et al. 2003;
Tuunanen et al. 2003; Rossini et al. 2004; Vartiainen et al. 2011; Swettenham et al.
2013); see also the reviews (Mathiak and Fallgatter 2005; Poline et al. 2010).
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Fig. 1 Schematic diagram of stages involved in the construction of functional brain images.
Biophysical modeling can be used to relate the physical and physiological neural processes
associated with brain activation to the underlying sources of the brain imaging signals. Forward
modeling describes the signal patterns generated by a given source distribution. Inverse modeling
involves the estimation of the source distribution on the basis of the recorded signals. MEG and
EEG record “complementary” (yellow circle) information about the same sources, i.e., primary
currents. Functional MRI can be used in a “supportive” role (blue) in MEG source analysis.
MEG/EEG and fMRI can also be considered complementary (green) since the sources of both
signals originate from common neural processes

In direct fusion, data from different modalities are combined mathematically to
estimate the sources of the measured signals (George et al. 1995; Dale and Halgren
2001). In computational neural modeling, different functional imaging modalities
can be modeled within a common framework and the experimental multimodal data
can be used to determine parameters of the computation model of the brain networks
underlying cognitive tasks (Horwitz et al. 1999; David and Friston 2003; Riera et al.
2005; Babajani and Soltanian-Zadeh 2006; Valdes-Sosa et al. 2009; Plis et al. 2010;
Bojak et al. 2011). Here we focus on the combination of MEG with EEG, anatomical
MRI, and fMRI, mainly from the point of view of direct data fusion.

We suggest that in the direct data fusion approach, imaging modalities can be
conceptually described as “complementary” or “supportive”, depending on the
nature of the signal sources and the role of the modalities in the interpretation of the
multimodal data (Fig. 1). Complementary modalities provide information about the
same type of sources. EEG and MEG are complementary modalities, which both
detect the primary current distribution related to neural activity. A common source
model greatly facilitates the fusion of complementary multimodal data. In a sup-
portive role, data from one modality is used to guide and influence the analysis of
the data from another modality. In the analysis of MEG (and/or EEG) signals,
anatomical MRI provides important supportive data to constrain the allowable
MEG source space. Functional MRI data can be combined with MEG in both
supportive and complementary way. In a supportive role fMRI activation can be
used, e.g., to constrain the locations of the MEG sources. However, special
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considerations are necessary when the sources of signals are of different type. Since
both fMRI and MEG signals ultimately have their origin in brain activity, linked via
neurovascular coupling, they can also be treated as complementary modalities.

2 MEG and EEG

Since the physiological sources underlying both MEG and EEG are of the same
type, the benefits of combining MEG and EEG are based on the different sensi-
tivity properties of these modalities. The spatial sensitivity patterns of MEG and
EEG sensors are called lead fields. The set of lead fields is one way to express the
forward model, which incorporates the available physical and structural infor-
mation about the head and the instrumentation to establish the signal patterns that
primary currents generate in a sensor array. The structure of the lead fields forms
the basis on which source estimates (inverse solution) are constructed. The lead
fields of MEG and EEG sensors differ in a non-trivial way from each other,
thereby providing complementary information about the underlying primary cur-
rent distribution in the brain (Cuffin and Cohen 1979; Cohen and Cuffin 1983;
Malmivuo and Plonsey 1995; Mosher et al. 1999; Riera et al. 2006). The com-
plementary properties of MEG and EEG can enhance the detection, dissociation,
and localization of the neural sources of interest (Wood et al. 1985).

Two major differences between MEG and EEG lead fields are related to the
orientation and the depth of the sources (Cuffin and Cohen 1979). Regarding the
source orientation, MEG sensors are insensitive to radial source currents, whereas
EEG sensors are sensitive to both radial and tangential sources. In the spherical
head model, the sensitivity of MEG to radially oriented sources is zero (Baule and
McFee 1965; Grynszpan and Geselowitz 1973). The insensitivity of MEG to one
source orientation occurs also for realistic, non-spherical head models (Melcher
and Cohen 1988; Haueisen et al. 1995; Ahlfors et al. 2010a). In a simulation study
using a boundary element model for the head, the median value over cortical
locations for the relative signal magnitude for the source orientation with the
lowest versus the highest sensitivity was found to be 0.06 for MEG and 0.6 for
EEG (Ahlfors et al. 2010a). The selective sensitivity of MEG to tangential source
components can be helpful for the dissociation of multiple time-varying sources.

Regarding the source depth, both MEG and EEG are generally more sensitive to
superficially located sources than to deep sources. However, the relative sensitivity
of MEG diminishes faster as a function of depth than that of EEG (Cuffin and Cohen
1979; Hillebrand and Barnes 2002). In the spherical head model, the sensitivity of
MEG is zero at the center of the sphere, whereas EEG signal can be generated by
sources at any location. Assuming the primary currents are oriented perpendicular
to the cortical surface, only very narrow strips at the crest of gyri are expected to
have the radial orientation that the MEG cannot detect; therefore, the depth-
dependency appears more important in the comparison of sensitivity patterns of
MEG and EEG than the orientation dependence (Hillebrand and Barnes 2002).
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Fig. 2 An example of complementary properties of MEG and EEG signals that can, in
combination, help disambiguate the source distribution. The quadrupolar pattern of the
extracranial magnetic fields (MEG) (a) could be generated either by two near-midline dipoles
in the parietal and occipital regions (b, fop) or by two bilaterally located occipital dipoles (b,
bottom). However, the corresponding topography of scalp potentials (EEG) would be quite
different for these two configurations; here the EEG pattern for the two occipital bilateral dipoles
is illustrated (c). Thus, the combination of MEG and EEG can resolve source configurations that
can be ambiguous in one of the modalities. Analogous examples can be easily constructed in
which MEG resolves source patterns that are ambiguous on the basis of EEG topography only.
Adapted from (Ahlfors et al. 2010b)

Selective cancellation of signals from tangential source components on opposite
walls of a sulcus or a gyrus tends to make extended source patches look radial
(Eulitz et al. 1997; Freeman et al. 2009; Ahlfors et al. 2010b), with potentially
important implications to the relative signal-to-noise ratio (SNR) of MEG and EEG
and the detectability of e.g., epileptic activity (Goldenholz et al. 2009; Ebersole and
Ebersole 2010).

Several studies have demonstrated complementary properties of EEG and MEG
in detecting epileptic discharges, such that some are detectable in EEG only or in
MEG only, but not necessarily in both (Sutherling et al. 1991; Yoshinaga et al.
2002; Zijlmans et al. 2002; Lin et al. 2003; Rodin et al. 2004; Knake et al. 2006;
Ramantani et al. 2006; Ossenblok et al. 2007). Differences in source detectability
can be understood in terms of the expected SNR for different sources, which
depends on the sensor lead fields, signal noise, the source magnitude, and the
background brain activity (de Jongh et al. 2005; Goldenholz et al. 2009; Huiskamp
et al. 2010). Prominent differences between MEG and EEG have also been
demonstrated, for example, in sleep data (Dehghani et al. 2010).

Combining MEG and EEG data can sometimes be useful for resolving source
configurations that are ambiguous on the basis of the signal topography in a single
modality. Figure 2 shows simulated MEG data from a bilateral pair of occipital
current dipoles. In this case, the quadrupolar MEG topography (Fig. 2a) is consis-
tent in the presence of uncertainty due to measurement noise with two very different
two-dipole models, either laterally located horizontal dipoles or medially located
vertical dipoles (Fig. 2b). The EEG topography, however, would be very different
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for these two scenarios: the EEG map shown in Fig. 2c suggests horizontally ori-
ented dipoles. Bilateral activation of auditory cortices is a well-know example of
topographies that can be potentially ambiguous in terms of source areas: two tan-
gential supra-temporal lobe dipoles typically generate a large mid-frontal maximum
in EEG that could be mis-interpreted as being due to a radial frontal source
(Vaughan 1982), whereas in MEG the two auditory cortex sources are typically
readily dissociable (Mikeld et al. 1993); however, these sources may also generate a
dipolar looking MEG signal pattern over the parietal lobe (Haméldinen et al. 1995).

Combined MEG and EEG inverse modeling is facilitated by the common
source model. Indeed, incorporating signals from both EEG and MEG sensors is
not different, in principle, from incorporating different types of MEG sensors, such
as gradiometers and magnetometers. An important practical issue is how to adjust
the relative weighting of the different sensors in the source estimation procedures
to take into account the expected SNR for each sensor (Fuchs et al. 1998; Baillet
et al. 1999). Determining the SNR is challenging, however, because of the various
types of uncertainties that should be incorporated, such as those related to co-
registration, head model, sensor calibration, and background physiological noise.
Enhanced source estimation results obtained by combining EEG and MEG data
have been demonstrated in several studies of experimental and simulated data
(Stok et al. 1990; Mosher et al. 1993; Phillips et al. 1997; Fuchs et al. 1998;
Muravchik et al. 2000; Pflieger et al. 2000; Babiloni et al. 2001; Liu et al. 2002;
Sharon et al. 2007; Molins et al. 2008).

3 MEG and Structural MRI

MEG source estimates are commonly visualized by superimposing them on high-
resolution structural MRI, thereby relating the MEG results to brain anatomy.
Structural MRI also provides essential supportive information for the inverse
modeling of MEG signals. Anatomical information from MRI can be used to
determine the permissible MEG source locations (often called the source space) to be
within the cranial volume or the cortical gray matter (George et al. 1991; Dale and
Sereno 1993). In addition, the source orientation can be constrained to be strictly or
nearly perpendicular to the cortical surface (Dale and Sereno 1993; Lin et al. 2006;
Chang et al. 2013). Typically, anatomical constraints are imposed on the individual
subject level, but atlas-based approaches are possible as well (Hillebrand et al. 2012).

4 MEG and Functional MRI

Functional MRI and other hemodynamic imaging data can be used in a supportive
role in MEG (and EEG) data analysis to suggest a likely spatial distribution for the
sources of MEG signals (George et al. 1995; Simpson et al. 1995; Dale and
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Halgren 2001). One possibility is to place equivalent dipoles at the locations of
foci of fMRI activation (Heinze et al. 1994; Ahlfors et al. 1999; Korvenoja et al.
1999; Torquati et al. 2005). A powerful application of fMRI-guided MEG source
estimation is to use information from fMRI-based mapping of the retinotopic
representation of the visual field to constrain the locations of equivalent dipoles in
multiple visual areas (Hagler et al. 2009). For distributed MEG source models,
such as the minimum-norm estimate (MNE) (Hdmildinen and Ilmoniemi 1994),
fMRI can be used as an a priori weighting for the inverse solution (Liu et al. 1998;
Dale et al. 2000). This is implemented by adjusting the diagonal elements of the
source covariance matrix (Liu et al. 1998).

Because of the different physiological nature of the origin of fMRI and MEG
signals, it is important to minimize potential adverse effects from a mismatch
between the locations of activity seen in fMRI and the actual source locations of
the MEG signals (Dale and Halgren 2001). “False positive” fMRI locations refer
to cases in which activation in fMRI does not correspond to an MEG source,
whereas “false negative” fMRI refers to the lack of fMRI activity at the location of
a true MEG source (Liu et al. 1998; Ahlfors and Simpson 2004; Im et al. 2005; Im
and Lee 2006; Liu et al. 2006). In general, both of these types of mismatches can
be due to the differing physiological properties of the signal generation in the two
modalities. There is encouraging experimental evidence of the BOLD contrast
typically observed in fMRI being closely correlated with post-synaptic currents
(Logothetis et al. 2001). However, it is likely that details of the local neural
circuitry and the neural and vascular morphology can result in differences in the
properties of the signals in the different imaging modalities. Mismatches may also
be caused by differences in the experimental design in fMRI and MEG data
acquisition and analysis. Event-related fMRI paradigms make it possible to use
similar cognitive task designs that are commonly used in MEG (Rosen et al. 1998).
However, it is important to critically evaluate the similarity of the baseline con-
ditions and design contrasts used in each modality. In addition, false negative
fMRI locations can result from susceptibility artifacts or partial-only coverage of
the head in the fMRI data. False positive fMRI can occur when MEG is insensitive
to some activity, e.g., when the corresponding primary currents are radially ori-
ented or located deep in the brain. Furthermore, false positive fMRI is bound to
happen in the analysis of individual time points of the MEG data: because of the
slow time course of the hemodynamic response, a single fMRI map usually shows
areas whose activity in the millisecond time scale may only partially overlap in
time, and therefore only a subset of the activated areas in fMRI is expected to
contribute to the MEG signal at any given time instant.

Ideally, an approach for incorporating a priori constraints from a supportive
modality would give improved source estimates when the a priori information is
compatible with the actual source distribution, while also being insensitive to
incompatible priors (Liu et al. 1998; Vauhkonen et al. 1998; Ahlfors and Simpson
2004). False positive fMRI constraints in MEG source modeling are typically well-
behaving, i.e., the contribution to the MEG inverse estimates is usually small for
the false positive fMRI locations, especially if the true and false locations are far
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apart from each other (Liu et al. 1998; Fujimaki et al. 2002). False negative fMRI
constraints are expected to be more problematic than false positive ones (Liu et al.
1998; Ahlfors and Simpson 2004; Im et al. 2005), although simple false negative
fMRI may actually have only little effect (Babiloni et al. 2003). In particular, if the
assumed MEG sources are strictly restricted at the locations of fMRI activation
only, MEG signals originating from other locations may be erroneously assigned
to the assumed source locations (Liu et al. 1998; Ahlfors and Simpson 2004).
Therefore, it is important that the source estimation algorithm allows the MEG
sources to be also at non-fMRI locations.

The possibility of a mismatch in the spatial distribution of activation detected
by MEG and fMRI raises a dilemma concerning the use of fMRI in a supportive
role to guide the MEG source estimation. On the one hand, if we cannot be certain
that the underlying patterns of activity are the same, the fMRI may provide an
erroneous bias to the MEG source estimate. On the other hand, if the source
analysis of MEG without the fMRI constraint indicates that the source locations of
a particular set of MEG data indeed are identical to those seen in the corresponding
fMRI, then there would be no need for the fMRI constraint. In other words,
converging evidence of source locations from the comparison of MEG and fMRI
data is useful in confirming MEG source localization results, but once this has
been established, fMRI does not provide additional information for the supportive
data fusion. The suggested resolution to this dilemma is that fMRI data should be
used to indicate likely solutions among the set of all possible solutions allowed by
the non-uniqueness of the inverse problem. The Bayesian approach provides a
general formalism for these types of problems (Baillet and Garnero 1997; Friston
et al. 2002; Jun et al. 2008; Auranen et al. 2009; Wipf and Nagarajan 2009;
Henson et al. 2010). The principle can also be expressed geometrically in the
source space (Ahlfors and Simpson 2004), leading to the same weighted MNE
solution in which fMRI information is incorporated in the diagonal elements of the
a priori source covariance matrix (Liu et al. 1998).

Figure 3 illustrates an example of visual motion related activity in which fMRI
data suggested a likely solution among two possible ones for an ambiguous MEG
topography (Ahlfors et al. 1999). The averaged visual evoked MEG signal showed a
spatial pattern with four extremes (Fig. 3a). This topography suggests at least two
sources, one occipitotemporal and one frontal (Fig. 3b, top). However, the dipolar
pattern formed by the pair of extremes in the middle raises the question whether a
third source, located in between the other two contributed to these MEG data
(Fig. 3b, bottom). The fMRI data obtained using a similar stimulus paradigm indeed
showed activity in the posterior part of the superior temporal sulcus, in accordance
with the location of the putative third source (Fig. 3c). Thus, the fMRI suggests that
a three-source model may be more likely here for the MEG than the two-source
model. However, it is important to acknowledge that both solutions are consistent
with the observed experimental MEG data. Note the difference between the case of
combining EEG and MEG in Fig. 2, where the complementary data about the same
type of sources was able to disambiguate between the two possible models for the
MEG-only data because the EEG data was inconsistent with one of the models.



MEG and Multimodal Integration 191

(a) (b) ()

MEG @ A MR
S \ &540)
P

S s

Fig. 3 An example of how fMRI data can suggest a likely MEG inverse solution among possible
solutions. Averaged visual evoked MEG response at the latency of 170 ms after the reversal of
the direction of the motion of concentric circles showed an ambiguous topography with four local
extremes (a). This topography suggest two underlying dipole sources (black arrows), one at the
visual motion sensitive middle temporal area and one near the frontal eye field (b, fop). However,
the measured topography would also be consistent with a third source in between the other two,
contributing to the dipolar pattern of the two extremes in the middle of the topography (b,
bottom). FMRI data recorded on the same subject indicated activation in posterior superior
temporal sulcus (red circle) that matches the hypothesized third source location for the MEG (c).
Thus, the fMRI suggested that the three-dipole model may be more likely that the two-dipole
model; however, both models are possible solutions for the observed MEG topography. Adapted
from (Ahlfors et al. 1999)

Examples of specific situations in which combining fMRI and MEG could
provide helpful qualitative information about the neural activation patterns are
illustrated in Fig. 4. The source currents of MEG and EEG are vector quantities,
whose orientation and direction, in addition to the magnitude, can provide useful
information that is not obtainable by fMRI. MEG is well suited to detect accurately
the physical orientation of the tangential component of a source, because the whole
topographic map of the extracranial signal will rotate if the source rotates tan-
gentially. A change in the source orientation indicates that the neural sources
contributing to the measured signals are not constant over time. This property may
be useful for the detection of the presence of more than one neural population,
even if the fMRI shows only a single extended focus of activity (Fig. 4a).

Since the primary currents generating the MEG signals are expected to be
oriented locally perpendicular to the cortical surface, the physiological direction of
the source can be described as inward (towards the white matter) or outward
(Lopes da Silva 2010). However, the physical orientation, as detected by MEG and
EEG, can be highly variable for a source within the convoluted cerebral cortex. In
determining the physiological direction of the source current, fMRI can be par-
ticularly helpful in suggesting from which side of a sulcus or a gyrus the source is
located. Figure 4b depicts a case in which uncertainty in the MEG source local-
ization allows both walls of a sulcus as possible sites of the source. MEG can
reliably determine the physical direction of the source, but the physiological
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Fig. 4 Schematic illustration of helpful information that can be obtained by combining MEG
and fMRI data. a A change in the MEG source orientation over time (from “A” to “B”) reveals
the presence of more than one neural population contributing to the activity, even when the
spatial resolution of MEG as such may not be high enough to dissociate the locations of the
source components, and the fMRI may show a single extended region of activation (gray region).
b Uncertainty in the exact location of the source of the MEG signals can result in erroneous
physiological interpretation of the source current direction if the source is mis-localized into the
opposite wall of a sulcus. Using fMRI to identify the location of activity within the sulcus can
help to determine the physiological direction of the MEG source. Here, the physical direction of
both “A” and “C” is the same; however, the physiological direction is inward for “A” but
outward for “C” with respect to the cortical surface

direction (outward vs. inward) depends on which side of the sulcus the source is
located. Thus, using fMRI information to identify the likely location of the source
will also help to determine the physiological direction of the source.

MEG and fMRI can also be considered complementary modalities, if the
sources of both types of signals are taken to be related to a common pattern of
neural activation. In this case, computational neural modeling is essential to relate
the pattern of activity within brain networks capable of performing the cognitive
task under study, as well as of generating the multimodal neuroimaging signals
(Horwitz et al. 1999; David and Friston 2003; Riera et al. 2005; Babajani and
Soltanian-Zadeh 2006; Daunizeau et al. 2007; Valdes-Sosa et al. 2009; Plis et al.
2010; Bojak et al. 2011).

5 Summary and Future Prospects

Multimodal data can provide information about brain activation patterns that is not
attainable by a single method alone. In the analysis of MEG data, the role of other
imaging modalities in the direct data fusion approach can be described as com-
plementary or supportive, depending on whether the sources of the signals in the
different modalities can be considered to be of the same type or not. This
framework can encompass also other existing and emerging imaging modalities.
Simultaneous acquisition of multimodal data has obvious advantages over
sequential recordings, e.g., by ensuring that the state of the brain was the same for
each modality, and enabling multimodal recording of events that are difficult to
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repeat in a controlled way, such as epileptic activity. MEG and scalp EEG are
commonly recorded simultaneously. Because EEG is better suited than MEG for
simultaneous data acquisition with hemodynamic imaging modalities, the simi-
larity of the state of the brain during sequential recordings of MEG and other
modalities can be evaluated by examining the concomitantly recorded EEG data.
Promising prospects for multimodal integration in the future are expected from
further developments in computational neural modeling of the brain processes that
underlie the signals of all the imaging modalities.
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