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Abstract The neuroelectromagnetic forward model describes the prediction of
measurements from known sources. It includes models for the sources and the
sensors as well as an electromagnetic description of the head as a volume
conductor, which are discussed in this chapter. First we give a general overview on
the forward problem and discuss various simplifications and assumptions that lead
to different analytical and numerical methods. Next, we introduce important
analytical models which assume simple geometries of the head. Then we describe
numerical models accounting for realistic geometries. The most important
numerical methods for head modeling are the boundary element method (BEM)
and the finite element method (FEM). The boundary element method describes the
head by a small number of compartments, each with a homogeneous isotropic
conductivity. In contrast, the finite element method discretizes the 3D distribution
of the anisotropic conductivity tensor with the help of small volume elements.
Subsequently, we discuss in some detail how electrical conductivity information is
measured and how it is used in forward modeling. Finally, we briefly introduce the
lead field concept.
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1 Introduction

A crucial part in any source reconstruction procedure is the computation of the
bioelectromagnetic field generated by known sources. This computation is known
as the forward problem or direct problem and includes the mathematical
description of the sources and sensors, as well as the description of the relationship
between the source parameters and the simulated data at the sensors. The material
(tissue) properties and the distribution of tissues within the volume conductor1 are
highly complex. This complexity makes the transfer function between sources and
measurements non-trivial. Thus, approaches to the forward problem are mainly
characterized by the degree of simplification they apply.

First we consider the description of the sources. Microscopically, currents
across cell membranes are impressed by chemical processes and concentration
gradients. In the pyramidal cells of the cortex, these currents are mainly arranged
in a radially symmetric manner around the axes of the dendrites, which causes a
cancellation of their far field and therefore invisibility to EEG/MEG. These
impressed currents give rise to local ohmic currents inside and outside the cells,
governed by a complex interplay of chemical and electrical processes at the
microscopic level (involving voltage-gated ion channels, second messenger
chains, barriers like cell membranes, etc.). However, these functional and struc-
tural details at the cellular level are usually not taken into account when modeling
EEG/MEG. Instead, the source area is considered as a black box. All currents
within that box, including impressed and passive ohmic currents inside and outside
the cells, are represented by a single primary current, usually modeled by means of
an equivalent current dipole. The far field of this current is probably dominated by
intracellular ohmic currents flowing along the longitudinal axis of the apical
dendrites of the pyramidal cells (i.e., perpendicular to the cortical surface). It is
assumed that at least a few ten thousands of neurons need to be simultaneously
active to produce a measurable effect at the head surface (Murakami and Okada
2006). The extent of the box is implicitly determined by the spatial resolution of
the measurement. More specifically, the primary current is normally described as
point-like. Under this constraint, the extent of that black box must be small
compared to the distance to the sensors. All currents outside the box are defined as
volume currents (secondary currents). Thus, the total current density is the sum of
primary and secondary current densities: ~J ~r

0� � ¼~Jp ~r
0� �þ~Jvð~r0Þ. Since often

multiple source components2 are active at the same time, the measured magnetic
fields and electric potentials represent a superposition of all contributions. Each
source component can be characterized by a set of parameters (see below) and by
the signals it produces at sensor level. These signals are often termed components

1 The term volume conductor denotes the part of the biological tissue, in which the relevant
volume currents are flowing (e.g. the head for MEG).
2 A source component combines primary currents which react to experimental manipulation as
a whole or which depend uniformly on observable environmental variables.
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of the signal (Donchin 1966; Kayser and Tenke 2005). In the literature on source
separation the term ‘‘source’’ is often used synonymously for the signal the source
component is producing, whereas in the literature on source reconstruction it is
used to describe the parameterized source model.

The primary current density~Jpð~r0; tÞ is a spatially continuous function. In order
to describe it with a finite vector of parameters, two approaches exist. The dis-
cretization approach divides the space into sections, within each of which the
current density is replaced by the integral over the volume of that section:

~diðtÞ ¼
Z

Vi

~Jpð~r0; tÞdv ð1Þ

where ~diðtÞ denotes the dipole moment typically given in nanoamperemeters
[nAm]. The discretization approach is based on the topology of the source space.
For example, the entire brain volume can be discretized in hexahedral voxels, or
the cortical sheet can be discretized into prisms (triangles representing the cortical
surface plus a predefined thickness). In each of these elements, the primary current
density is modeled by one current dipole.

In many practical applications the primary current density is relatively focal,
such that it can be satisfactorily described by a few current dipoles at the centers of
activity leading to the multiple dipoles model. The second approach parameterizes
the primary current density with the help of a series expansion. The series can also
describe extended source configurations centered at the expansion point. Often, the
electric potential at the measurement location ~rexpressed by a Taylor series
expansion with the origin at position~r0:

uð~rÞ ¼ 1
4pr

m

~r �~r0j j þ
~dð~r �~r0Þ
~r �~r0j j3

þ 1

~r �~r0j j3
3

~r �~r0j j2
ð~r �~r0ÞT�qð~r �~r0Þ � trð�qÞ

 !

þ � � �
" #

ð2Þ

Here, m is the electric monopole moment, which vanishes due to the charge
conservation law:

m ¼ �
Z

V

r~Jpð~r0Þdv; ð3Þ

~d is the dipole moment according to Eq. (1) and �q is the quadrupole tensor:

�q ¼
Z

V

~Jpð~r0Þ~r0T dv ð4Þ
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A truncation of this series, after the dipole term, results in the equivalent current
dipole model which represents the entire current density as a point-like current
element. Extending this approach to multiple partial volumes yields the same
multiple dipoles model, which was derived from the discretization approach
above.

The sensor model describes how a sensor transforms a physical quantity into an
accessible output. For biomagnetic measurements this typically involves first the
transformation of the magnetic flux density into a magnetic flux by integration
over the area of a pickup coil. Next this magnetic flux is often combined across
several coils in order to suppress far field disturbances. Finally, the magnetic flux
is converted into a voltage. Important parameters of this model are the position,
orientation, geometrical form, and number of windings of the coils. The exact
integration of the flux density over the coil area would be computationally
demanding. Thus, often the flux density at the center point of the coil is assumed to
represent the constant value over the entire coil area. More accurate approaches
involve a weighted average of the flux density at a small number of integration
points within the coil area. Magnetic recordings do not require a reference, which
is an advantage compared to electric recordings.

Next we consider the description of the relationship between source parameters
and the simulated data at the sensors. Maxwell’s equations are the basis for this
transfer function. For most non-invasively measured electric and magnetic bio-
signals, frequencies are below 1,000 Hz and the spatial dimension is below 1 m.
Consequently, the temporal derivatives in the Maxwell equations can be omitted
(Plonsey and Heppner 1967), yielding the quasi-static Maxwell equations that
disregard capacitive and inductive effects (Table 1). The free volume charge
density is not relevant here, since we consider the electric flow field only, which is
uncoupled from the electrostatic field due to the vanishing derivative of D in the
quasistatic approximation of Ampère’s law (Table 1). The only remaining relevant
material parameter is the electrical conductivity.

From the definition of the scalar electric potential ~E ¼ �ru (based on the
quasi-static law of Faraday) and Ohm’s law ~J ¼ �r �~E, one can derive Poisson’s
equation (Eq. 5), while the quasi-static law of Ampère allows (under the

Table 1 Full and quasi-static Maxwell equations

Faraday’s law Amperè’s law Gauß’s law Gauß’s law
for mag.

Material
equations

Full r�~E ¼ � _~B r� ~H ¼~J þ _~D r~D ¼ qf r~B ¼ 0 ~J ¼ �r~E
~D ¼ �e~E
~B ¼ �l~H

Quasi-static r�~E ¼ 0 r� ~H ¼~J r~D ¼ qf r~B ¼ 0

The vectorial state variables comprise the electric field strength ~E, the magnetic field strength ~H,
the electric current density ~J, the magnetic induction ~B and the electric displacement current
density ~D. The material tensorial parameters are the electrical conductivity �r, the permittivity �e
and the permeability �l. The scalar parameter qf denotes the free volume charge density
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assumption of a scalar magnetic permeability �l ¼ l) for computing the magnetic
field from the electric potential (Eq. 6).

r�rru ¼ �r~Jp ð5Þ

r �~B ¼ �l �rruþ~Jp

� �
: ð6Þ

This leads to expressions for the electric potential u and the magnetic induction ~B

at position~r, arising from N dipoles at positions~r0i with moments~di, in an infinite
volume with homogeneous and isotropic conductivity.

~B1ð~rÞ ¼
l

4p

XN

i¼1

~di �
ð~r �~r0iÞ
j~r �~r0ij

3 u1ð~rÞ ¼
1

4pr

XN

i¼1

~di
ð~r �~r0iÞ
j~r �~r0ij

3 ð7Þ

These equations, however, do not provide an acceptable solution for the situation
in real biological tissue as they do not take into account the effects of conductivity
inhomogeneities. If very simplifying assumptions about the distribution of con-
ductivities are made, analytical or semi-analytical solutions can be used. The
human head can be modeled with the help of a series of spherical or ellipsoidal
layers (Cuffin and Cohen 1977; Sarvas 1987; de Munck 1988, 1989; Kariotou
2004; Giapalaki and Kariotou 2006). Such models allow for easy computations,
but can yield significant errors (Cuffin and Cohen 1977).

More realistic conductivity profiles can be modeled using numerical methods.
These methods can be classified into differential and integral methods depending
on whether derivatives or integrals are to be approximated. Additionally, methods
can be classified according to their basic assumptions and simplifications. A
crucial property of the head is the fact that a relatively low-conducting skull
encloses the relatively well-conducting brain. In turn, the skull is surrounded by a
relatively well-conducting remainder of the head (scalp, muscles, eyes, etc.). This
leads to the compartment assumption. Typically, 3 compartments with homoge-
neous and isotropic conductivity are defined: scalp, skull and brain. The brain
compartment subsumes all tissues inside the skull. The skull compartment includes
both compact and spongy bone. The scalp compartment summarizes all tissues
outside the skull. The compartment approach necessitates the use of an integral-
based method.

Alternatively, the compartment assumption can be replaced by a 3D volume
discretization. Here, the volume is divided into small elements. The size and
number of elements governs the achievable accuracy and is limited by computa-
tional resources. Volume discretization approaches are usually treated with dif-
ferential methods.

The boundary element method (BEM) is an integral method based on the
compartment assumption (Barnard et al. 1967a, b; Geselowitz 1967, 1970; Sarvas
1987; Hämäläinen and Sarvas 1989; Stenroos et al. 2007). An alternative approach
is the multiple multipole method (MMP) (Haueisen et al. 1996). Here, multipole
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expansions are used to describe the neuroelectromagnetic field and the expansion
coefficients may be computed based on a matching of the boundary conditions at a
set of boundary points representing the major conductivity jumps. For modeling
the 3D or anisotropic conductivity profile of the head, the finite element method
(FEM) (Witwer et al. 1972; Haueisen et al. 1995; Wolters et al. 2004; Hallez et al.
2005) or the finite difference method (FDM) (Witwer et al. 1972; Haueisen et al.
1995; Wolters et al. 2004; Hallez et al. 2005) can be used. Both are differential
methods. The entire volume is discretized into small elements and each volume
element is assigned a separate conductivity tensor. While FDM is easier to
implement, FEM allows for a smoother geometry description of conductivity
boundaries. For a review including the FEM and FDM see e.g. (Hallez et al. 2007).

In the following, we will treat analytical methods, BEM, and FEM in more
detail, since these methods are most frequently used. Figure 1 shows an example
model for BEM and FEM.

2 Analytical and Semi-Analytical Methods

In order to obtain analytical or semi-analytical formulations of the forward
problem, the geometry of the head and the conductivity distribution have to be
described in terms of simple shapes, such as concentric spherical or ellipsoidal
shells. In the simplest case, the volume conductor is assumed to be a sphere, which
is more or less adapted to the actual head geometry. Under this assumption, for
MEG it can be shown that the predicted magnetic field outside the head depends
solely on the origin of the sphere as well as the positions and orientations of the

Fig. 1 Examples for head models. Left boundary element model with the most important
conductivity boundaries (inner and outer skull surface, outer surface of the head) described by
triangular meshes. Right finite element model built with tetrahedral elements. Colors represent
tissue types
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sources and the sensors. The conductivity profile including the outer radius, as
long as it is spherically symmetric, plays no role. According to Sarvas (1987), the
magnetic induction ~B at sensor position ~r due to N dipoles at positions ~r

0
i with

dipole moments ~qi (i = 1…N) is computed as follows:

~ai ¼~r �~r
0

i ð8Þ

Fi ¼ ~aij j ~rj j~aij j þ ~rj j2�~r0i~r
� �

ð9Þ

rFi ¼ ~rj j�1 ~aij j2þ~aij j�1~ai~r þ 2~ai þ 2~r
� �

~r � ~ai þ 2~r þ ~aij j�1~ai~r
� �

~r
0

i ð10Þ

~B ~rð Þ ¼ l
4p

XN

i¼1

Fi~qi �~r
0
i �~qi �~r

0
i~rrFi

F2
i

ð11Þ

Another important property of this volume conductor model can be seen from
the formula above: a dipole with radial orientation does not contribute to the
measured field. Its effect is completely compensated for by the Ohmic return
currents.

In contrast, the predicted EEG on the surface of a spherical volume conductor
does depend on sources of all orientations, as well as on the conductivities and
radii of the different tissue layers. A semi-analytical solution based on Legendre
polynomials is given by de Munck (1989). It allows for the inclusion of tissue
compartments with different conductivities, bounded by concentric spherical sur-
faces. It even allows for a simple form of tissue anisotropy, namely the distinction
between radial and tangential conductivities.

Although spherical models reflect the basic geometric properties of the head,
such as its round shape and the concentric arrangement of the tissue layers, the
deviations from the real head shape may lead to substantial errors (Cuffin and
Cohen 1977). There are a number of possibilities to improve this situation without
giving up the advantages of an analytical solution. One option is the use of
ellipsoidal instead of spherical shells, as proposed, for example, by Fieseler
(Fieseler 1999) and Kariotou (Kariotou 2004; Giapalaki and Kariotou 2006).

Alternatively, one can use a separate spherical volume conductor model for
each sensor. One way to find these local spheres is to fit them locally to a patch of
the head (or brain) surface near the respective sensor (Ilmoniemi 1985;
Lütkenhöner et al. 1990). This assumes that the description of the tissue bound-
aries in the immediate vicinity of the respective sensor is most crucial for the
accuracy of the forward computation. A more principled, but also computationally
more expensive, way to find the best spherical models on a sensor-to-sensor basis
was proposed by Huang et al. (1999). They first used a realistic 3-shell boundary
element model (see below) to compute solutions in each sensor for a large number
of dipoles located in the entire brain (i.e., a leadfield computation, see below).
Then, for each sensor, the solutions for the same dipoles were computed using a
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spherical head model, and the parameters of that spherical model were optimized
such that the difference between the boundary element method solution and the
spherical solution became minimum. For MEG, a single-compartment boundary
element model can be used alternatively. The resulting spheres can then be used to
calculate forward solutions for arbitrary dipoles. In principle, this method can be
seen as a sophisticated way for interpolating leadfields computed using numerical
methods, such as BEM. For a review and evaluation of different methods using
multiple spheres, see Lalancette et al. (2011).

Finally, Nolte (2003) proposed an approach, where the solution for a spherical
volume conductor is corrected by a superposition of basis functions constructed
from spherical harmonics and fitted to the boundary conditions. It can be shown
that this approach yields good approximations for non-spherical volume conduc-
tors such as the prolate spheroid (Nolte 2003) and even for realistically shaped
volume conductors (Stenroos et al. 2012).

3 Numerical Methods

3.1 Boundary Element Method

The BEM is an important and popular field calculation method used in biomag-
netism. It can describe the head as an isotropic and piecewise homogeneous
volume conductor of realistic shape. In practice, the compartments are designed
such that their boundaries represent the most prominent conductivity jumps in the
head. These are most often the head surface as well as the outer and inner bounds
of the skull. For MEG, the volume currents outside the interior of the skull con-
tribute relatively little to the measurements and therefore the respective com-
partments (skull, scalp) are often neglected (Hämäläinen and Sarvas 1989).
However, it was recently shown that the inclusion of the skull and scalp com-
partments allows for a relevant improvement in accuracy (Stenroos et al. 2012).

Mathematically, the solution is derived from Poisson’s equation (Eq. 5) and the
appropriate Cauchy boundary conditions: (1) the potential has to be continuous
across the boundary: uþ ¼ u�, and (2) the perpendicular component of the current
has to be continuous across the boundary3: rþ r?uð Þþ¼ r� r?uð Þ�, where the
superscripts ()+ and ()- refer to the values on either side of the boundary and r? is
the derivative with respect to the normal direction of the boundary. There are two
different approaches to the solution: direct and indirect BEM. In the direct
approach one sets up and solves an equation system for both the potentials and
their normal derivatives (Boemmel et al. 1993; Fletcher et al. 1995). A specific
variant of direct BEM is the symmetric BEM approach (Kybic et al. 2005). In the

3 Note that for the outer boundary of the head this means that the perpendicular current
component is zero.
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indirect approach the potential function is first derived analytically, before
applying the BEM (Brebbia et al. 1984; Mosher et al. 1999). This leads to the
following expressions for the electric potential and the magnetic induction
(Geselowitz 1967, 1970):

rþk þ r�k
2

u ~rð Þ ¼ rsu1 ~rð Þ �
XN

j¼1

r�j � rþj
4p

Z

Sj

u ~r0ð Þ~n ~r0ð Þ ~r �~r
0

~r �~r0j j3
dS0 ð12Þ

~B ~rð Þ ¼ ~B1 ~rð Þ � l
4p

XN

j¼1

r�j � rþj

� �Z

Sj

u ~r0ð Þ~n ~r0ð Þ � ~r �~r0

~r �~r0j j3
dS0 ð13Þ

Here, rs refers to the conductivity in the source compartment, ~n is the normal
vector of the boundary, ~r and ~r0 denote the positions where the potential is cal-
culated, Sj is the j-th boundary between compartments with different conductivity,
N is the number of compartments, and k is the index of the boundary on which the
potential is calculated. Both, the magnetic induction and the electric potential are
computed as a sum of the respective term for the infinite volume conductor (Eq. 7)
and a correction term accounting for the geometry. For the electric potential,
Eq. (12) is implicit, since the correction term depends on the potential itself.
Equations (12 and 13) can also be interpreted in the following way (Gencer and
Acar 2004): in addition to primary sources, causing the infinite volume potential/
field, so-called secondary sources are placed on the boundaries, their orientations
being perpendicular to the boundaries and their strength being proportional to the
electric potential and the size of the conductivity step.

For the numerical implementation of BEM, the potential has to be approxi-
mated on the realistically shaped compartment boundaries. This leads to the
necessity to discretize these boundaries into small elements and to express the
potential on each element. The elements can have different shapes, the most
common one being the triangle. The potential can be assumed to be constant on
each boundary element or to vary linearly (or, in some cases, quadratically)
between the vertices (basis function). The most basic method for the formulation
of the resulting problem is the collocation method, where the residual is minimized
in all discretization points (i.e., the centroid of elements for constant and the
vertices for linear basis functions). Alternatively, one can use the Galerkin method,
where the integral of the residual over the surface is approximated by means of the
basis functions and then minimized. Numerical simulation with single-shell
models have shown that the Galerkin method using linear basis functions usually
performs better than the collocation method or the Galerkin method with constant
basis functions. However, these differences are generally small (Tissari and Rahola
2003; Stenroos and Haueisen 2008). Although the benefit of the Galerkin is
expected to increase with several and closely spaced surfaces, with nowadays
frequently used higher mesh densities ([4,000 nodes per surface) the numerical
errors due to the use of collocation BEM are smaller than errors due to model
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simplifications or geometrical errors, assuming that the sources are not too close to
the boundary (Mosher et al. 1999; Stenroos and Nenonen 2012).

An important question when practically constructing boundary element models
is the discretization of the boundaries, which was shown to critically influence the
accuracy of the solution (Haueisen et al. 1997). More precisely, it was shown that
when using the collocation method with constant basis functions, the size of
triangular elements should not exceed 10 mm or the minimal distance between
sources and boundary, whichever is the smaller. When using linear basis functions,
the size of the triangles can be up to twice the distance between sources and
boundary. These rules also apply to secondary sources, which account for the
conductivity discontinuities at the boundaries (see above). Thus, the thickness of
tissue layers (e.g., skull compartment) and triangle size is linked in an analogous
way. Due to the fact that the distribution of the secondary sources is fairly smooth,
the consequences are less severe.

The relatively low conductivity of the skull tends to cause the resulting equation
systems to be ill-posed. This is usually ameliorated by the isolated source
approach, which first solves the problem assuming a perfectly insulating skull and
then applies a correction term (Hämäläinen and Sarvas 1989; Stenroos and Sarvas
2012).

3.2 Finite Element Method

In contrast to the BEM, the FEM principally allows for accounting for the full
three-dimensional tensor-valued conductivity function. In practice, of course, this
is limited by the chosen discretization. The discretization means the subdivision of
the volume into small elements, each endowed with a separate conductivity tensor.
Within each element, the electric potential is described by a three-dimensional
parameterized function, the so-called Ansatz function. For each element, a Laplace
equation is approximated by deriving the Ansatz function twice. For those ele-
ments with sources, the Laplace equation turns into a Poisson equation, with an
additional term accounting for the source divergence. Since the sources are usually
modeled as point-like, a numerical singularity arises, which has to be treated
suitably. Finally, the Cauchy boundary conditions between the elements have to be
considered. This all leads to a high-dimensional sparse linear system of equations.
The sparsity of the system allows, in spite of its large size, for a relatively time and
memory efficient solution using dedicated algorithms. Finally, by numerical der-
ivation of the potential, a current is computed, which is then used to compute the
magnetic induction at the sensors using the law of Biot-Savart.

The two main types of discretization elements are tetrahedra and hexahedra.
While hexahedra perfectly match the shape of medical imaging voxels, which
form the main source of information on volume conductor geometry, tetrahedra
are especially versatile when it comes to approximating arbitrarily shaped tissue
boundaries. However, the node shifting technique largely compensates for this
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latter disadvantage of the hexahedra approach (Wolters et al. 2007). The repre-
sentation of the head can be done with uniform elements of the same size (e.g.
1 mm3 voxels) or with elements of varying sizes depending on the segmentation of
the tissues and the expected potential gradient. In addition, it is possible to
adaptively change the discretization depending on metrics which are derived from
intermediate solutions (Schimpf 2007). For example, in hexahedral elements the
potential of one element e is given as:

ue x; y; zð Þ ¼
X8

j¼1

Ne
j ðx; y; zÞuj; ð14Þ

where uj are the potentials of the nodes adjacent to the element e, and Ne
j are the

shape functions describing the parameterized approximation used for each ele-
ment. Most often, tri-linear shape functions are used (first-order FEM). However,
also tri-quadratic functions may be used (second-order FEM). Zhang et al. (2004)
suggest that for a relatively low number of elements (*150,000) and high dipole
eccentricity second-order FEM provides higher accuracy compared to first order
FEM. However, the results of van Uitert et al. (2001) indicate that for small
element sizes (less than 2 mm side length) there is no significant advantage of
second-order FEM.

Source modeling often assumes a point-like dipole. Although this model is an
idealization, it forms the starting point of most source representations in EEG/
MEG volume conductor modeling. However, this idealization poses a problem for
FEM, as it causes a singularity. Three major approaches were put forward to treat
this singularity. First, it is possible to replace the effect of the point-like dipole by
making appropriate assumptions on the voltages and/or currents at the surrounding
nodes of the dipole. This is equivalent to the introduction of Dirichlet and/or
Neumann boundary conditions at nodes in the immediate neighborhood of the
dipole. For example, a current dipole can be represented by a number of current
monopoles in its surrounding. The entire group of methods can be seen as a variant
of Saint-Venant’s principle (blurred dipole representation). In literature, however,
the Saint-Venant’s principle only refers to current monopole representations. The
second principal approach separates the problem into a source-free numerical
problem governed by the Laplace equation and a Poisson problem in the infinite
homogeneous space, for which an analytical solution exists. This approach is often
called subtraction method (van den Broek et al. 1996; Drechsler et al. 2009). In the
third principal approach, the partial integration method, the divergence of the
current is projected onto the Ansatz functions and integrated over the volume. By
making use of the fact that the current perpendicular to the surface is zero, one can
eliminate the derivative of the primary current density and hence the singularity.
Comparisons of two or three of the above dipole modeling approaches are given
e.g. in (Schimpf et al. 2002; Hallez et al. 2007; Wolters et al. 2007). Although
evaluations of all methods in larger studies are still missing, the Saint-Venant’s
principle dipole representation seems a suitable choice especially in high
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resolution FEM models (Haueisen et al. 1995; Schimpf et al. 2002; Wolters et al.
2007). This is supported by the fact that brain activity is characterized by dis-
tributed current sources and sinks. Note that for the validity of the approach it is
necessary that all sources and sinks are actually located within the tissue of the
source areas (e.g. grey matter).

While earlier FEM studies mainly used successive over-relaxation (SOR) and
Jacobi preconditioned conjugate gradient methods (Haueisen et al. 2002), multi-
grid methods nowadays provide a computationally more efficient way of solving
the large system of equations. A recent paper showed that high resolution FEM
models of the human head can also be computed within reasonable time and
memory bounds (Wolters et al. 2007). This makes FEM models suitable for
application in clinical studies.

4 Electric Conductivity

4.1 Introduction

A crucial piece of information for all models described above is the distribution of
the electric conductivity in the head. Therefore, the determination of conductivity
values is of great importance. Electric current flow in the human head is based on
the movement of ions. Thus, the electric conductivity is largely determined by the
concentration of these ions and the anatomical microstructure representing the
restrictions and hindrances to the movement of these ions. Consequently, con-
ductivity is a continuous function of location, i.e. inhomogeneous. Additionally, at
each point the conductivity can be different in different directions (e.g. in white
matter, the conductivity is higher along the fibers and lower across the fibers). This
leads to the concept of anisotropic conductivity, which is mathematically repre-
sented by the conductivity tensor �r. In order to practically handle the tensor-valued
continuous function of conductivity, a discretization is required. Naturally, the
single elements in full 3D methods like FEM provide a discretization. Here, each
element is assigned a value representing the mean conductivity tensor for this
element. The conductivity discretization thus depends on the chosen resolution of
the model. Often, anisotropic conductivity information is not available. In these
cases the tensor is replaced by a scalar conductivity value for each element.
Moreover, elements are grouped together and assigned the same scalar conduc-
tivity value. This leads, in the simplest case, to a compartment style representation
of conductivity in full 3D methods like FEM. Lumped scalar conductivity values
are also assigned to entire compartments, such as the skull, the brain, the cerebro-
spinal fluid (CSF) or the skin, in analytical sphere and ellipsoid models as well as
in BEM models.
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4.2 Measurement of Electric Conductivity

Measurements of in vivo electrical conductivity values are difficult to perform for
any level of discretization needed in the different types of forward models. The
most common direct conductivity measurement approach is the four-electrode
method. Here, two electrodes supply a current yielding a current density distri-
bution in the specimen under investigation. The other two electrodes are used to
measure a voltage drop within the specimen. From the measured voltage and the
given current density, the unknown conductivity can be calculated. Alternatively, a
voltage can be impressed and a current can be measured. Assuming a homoge-
neous specimen, four point-like electrodes can be placed in a row on the specimen,
where the outer two supply the current and the inner two measure the voltage. In
order to increase the accuracy of the model assumptions and to reduce the sen-
sitivity towards local inhomogeneities of the tissue, the two current supplying
electrodes might be extended in two dimensions (e.g. plate electrodes). Sources of
error in such measurements are related to the positioning and the polarization of
the electrodes as well as the violation of the homogeneity assumption for the
specimen. The latter can be partially avoided by using an appropriate model to
describe the inhomogeneous structure of the specimen. Moreover, if electrodes are
put into tissue, damage is unavoidable. Besides other consequences, this leads to
impressed current flow both in the intra- and extracellular space. Thus, the mea-
sured conductivity reflects both parts to a varying degree, referred to as apparent
conductivity (Ranck 1963; Okada 1994). Another source of error lies in the fact
that there is intrinsic electric activity in biological tissue, which interacts with the
applied current. The interplay of these sources of error depends on the type of
tissue under investigation and on the size and spacing of the electrodes.

For practical and ethical reasons, in vivo conductivity measurements on humans
are rarely possible, which leads to the necessity to employ in vitro preparations.
However, the conductivity values differ significantly between in vivo and in vitro
situations depending on the applied preparation protocol (Galeotti 1902; Crile
et al. 1922; Geddes and Baker 1967; Akhtari et al., 2000, 2002). For example, the
selection of the tissue samples, the exposure to air and the temperature control
during the experiment are critical parameters (Hoekema et al. 2003). Moreover,
significant differences in measured conductivity values exist across species
(Geddes and Baker 1967; Gabriel et al., 1996). There is inter- and intra-subject
variability which can be related to age (Wendel et al. 2010), diseases, environ-
mental factors, and personal constitution (Crile et al. 1922). It was argued that
natural heterogeneity and sample–sample variability dominate the measurement
uncertainty (Gabriel et al. 2009).

Alternative conductivity measurement methods impress a current and measure
the induced magnetic field. For example, in magnetic resonance electric imped-
ance tomography (MREIT) electrodes are used to impress currents into the human
body and the induced magnetic flux densities are measured with the help of an
MRI scanner (Seo and Woo 2011). The conductivity values are subsequently
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reconstructed. It is also possible to impress currents with the help of magnetic
fields and measure the resulting magnetic field.

Another class of conductivity estimation techniques uses measured electric and/
or magnetic data during the source localization procedure. For very simple source
configurations, such as the first cortical somatosensory evoked activity, not only
the unknown source parameters are estimated in the inverse procedure but also the
unknown conductivity values. Naturally, this approach can only be applied for
very few unknowns, for example the conductivities of the scalp, skull, and brain
compartments. The advantage of this method lies in the direct estimation of the
relevant model parameters (Fuchs et al. 1998; Goncalves et al. 2003; Baysal and
Haueisen 2004; Gutierrez et al. 2004; Lai et al. 2005). The disadvantage is rooted
in the strong model assumptions, also concerning the source configuration.

The direction dependence of the electric conductivity can be estimated based on
the measurement of direction dependent water diffusion using diffusion weighted
MRI (Basser et al. 1994). With the help of the effective-medium approach, the
tensor of the electric conductivity is estimated from the tensor of the measured
water diffusion (Tuch et al. 2001), which was successfully validated in (Oh et al.
2006; Bangera et al. 2010) and refined in (Wang et al. 2008). However, this
approach is limited due to the complex and unknown relationship between ion
mobility and water diffusion.

In spite of all effort so far, getting exact, detailed and reliable conductivity
information for head models is still a challenge and will require substantial
research effort in the future.

4.3 Conductivity of Single Tissue Types

The following Table 2 gives an account of the conductivity values for single
tissues based on existing literature. Tissue conductivity depends, among other
factors, on frequency and temperature. Thus, only conductivity values measured at
or near body temperature and at low frequencies (d.c. up to 100 kHz) were taken
into account. Among the relevant literature, two reviews are most often cited:
(Geddes and Baker 1967; Gabriel et al. 1996) (and its more recent extension
Gabriel et al. 2009).

4.4 Compartment Conductivities

Since most often three or four compartments are used to describe the volume
conductor, these compartment conductivities of the brain, CSF, skull, and scalp are
most relevant and considered here. Each compartment-conductivity depends on
the complex geometrical arrangement of the tissues determining the compartment.
Furthermore, since the compartment conductivity is merely a model for the real
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conductivity profile, the source configuration also has an influence on the choice of
this value. In principle, there are three ways to estimate a compartment conduc-
tivity: (i) based on the measurement of single tissues an average for a compartment
is computed (either model based or model free); (ii) the conductivity of an entire
compartment is directly measured (bulk conductivity); and (iii) the compartment
model (conductivity as free parameter) is fitted to purposely performed mea-
surements (e.g. EEG, MEG, DTI), see above.

A number of studies report bulk conductivity measurements. Akhtari et al.
(2006) measured freshly excised human neocortex and subcortical white matter in
21 neurosurgical patients and found values of 0.066–0.156 S/m. CSF, as indicated
above, has 1.79 S/m. The conductivity values for the skull compartment show
large variation. Akhtari et al. (2002) found 0.0085–0.0114 S/m bulk conductivity
for live human skull at room temperature, while in an earlier study on a cadaver
skull the values ranged from 0.0023 to 0.00584 S/m (Akhtari et al. 2000).
Hoekema et al. (2003) found values between 0.032 and 0.08 S/m in a very well
controlled study of live human skull in 5 neurosurgical patients. The most com-
prehensive study on 3 layer live human skull at body temperature was performed
by Tang et al. (2008). They demonstrated that the conductivity value largely
depends on the local structure of the skull. They distinguished (besides other
criteria) between normal and thin spongiform layers and found conductivity values
for the 3 layer skull of 0.0126 S/m and 0.00691 S/m, respectively. The standard
deviation was about 20 %. Using electric impedance tomography and the model fit
approach, Gonçalves et al. (2003) estimated the conductivity of the brain and skull
compartment in six subjects to be 0.33 S/m and 0.0082 S/m with a standard
deviation of 13 and 18 %, respectively.

Table 2 Isotropic conductivity values of single tissue types used in human head volume con-
ductor modeling

Tissue Conductivity in
S/m

References

Brain gray matter 0.3 Gabriel et al. (1996, 2009)
Brain white matter 0.2 Gabriel et al. (1996, 2009)
Spinal cord and cerebellum 0.16 Haueisen et al. (1995)
Cerebrospinal fluid 1.79 Baumann et al. (1997)
Hard bone (compact bone) 0.004 Tang et al. (2008)
Soft bone (spongiform

bone)
0.02 Akhtari et al. (2002)

Blood 0.6 Gabriel et al. (2009)
Muscle 0.1 Gabriel et al. (1996, 2009)
Fat 0.08 Gabriel et al. (2009)
Eye 1.6 Pauly and Schwan (1964), Lindenblatt and Silny

(2001)
Scalp 0.43 Geddes and Baker (1967)
Soft tissue 0.17 Haueisen et al. (1995)
Internal air 0.0001 Haueisen et al. (1995)
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For separate EEG or MEG analysis only compartment conductivity ratios are
needed. For the often used 3-compartment model this is the ratio of scalp:skull:-
brain. In the past, the most often used ratio was 1:1/80:1, which was derived from a
study by Rush and Driscoll (1968), who measured the impedance of a dry half-
skull in fluid and proposed values of 0.33, 0.0042 and 0.33 S/m. Recently, this
ratio was questioned by a number of researchers. Oostendorp et al. (2000) per-
formed both measurement on cadaver skull and in vivo on volunteers using electric
stimulation and found a ratio of 1:1/15:1. Baysal and Haueisen (2004) used
combined MEG/EEG measurements and estimated a ratio of 1:1/22:1. Lai et al.
(2005) suggested a ratio of 1:1/25:1. Based on the measurements of Hoekema et al.
(2003), a ratio of 1:1/8:1 can be considered. Zhang et al. (2006) estimated 1:1/20:1
based on measurement in two epilepsy patients. The values of Tang et al. (2008)
indicate approximate ratios between 1:1/25:1 and 1:1/50:1 and the values of
Gonçalves et al. (2003) approximately 1:1/40:1. Dannhauer et al. (2011) report a
ratio of 1:1/25:1 to 1:1/47:1 based on the measurements of Akhtari et al. (2002)
and a model fit. Although the recent studies show some degree variability, they all
agree on the fact that the value of 80 in the long standing ratio of 1:1/80:1 is too
high.

5 Leadfield Concept

Results from the forward calculation can be used in inverse procedures directly
(e.g., in spatio-temporal dipole fitting) or stored in so-called leadfield matrices.
Such matrices represent the forward solutions for sources on a predefined grid. The
term leadfield (originally derived from ‘‘lead’’ that stands for a single EEG
channel) refers to a function describing the sensitivity of the output of one sensor
to the parameters of the source model. For example when using the dipole model,
the leadfield is a function of the position and the orientation of a unit strength
dipole. Usually, the leadfield is discretized, e.g. the dipoles are positioned on the
nodes of a regular grid with canonical orientations (e.g. x, y, z). These leadfield
vectors are combined into a leadfield matrix, describing the influence of each unit
dipole on each sensor. Accordingly, this matrix is also sometimes called influence
matrix or gain matrix. In such a matrix, each row refers to one sensor (one
leadfield) and each column describes the influence of one unit dipole (e.g. one unit
dipole per canonical direction) on the sensor array. In general, the leadfield matrix
is a discretized representation of the forward problem. The discretization has to be
such that it adequately approximates the leadfield. When using dipoles in the brain,
spatial sampling of 3-10 mm is common. Any dipole orientation can be repre-
sented by the superposition of 3 canonical orientations.
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6 Conclusion and Outlook

Source localization is increasingly applied in neuroscientific research and clinical
studies. The accuracy of source reconstruction depends on the accuracy of the
solution of the forward problem. Finite element models are more elaborate com-
pared to boundary element models and can, in principle, account for the aniso-
tropic distribution of connectivity at any level of detail. Until recently, there were
three major obstacles for the use of this kind of forward modeling in source
reconstruction schemes. (1) The computation was computationally too costly to
allow for a repetitive computation of forward solutions as required by inverse
algorithms. (2) The possibility to account for the anisotropic conductivity on a
voxel basis turns from an advantage to a drawback, if reliable information on these
material properties at this level of detail is missing. (3) At the position of the
dipoles, singularities occur, which were difficult to treat numerically. While rea-
sons (1) and (3) can be considered to be mostly solved (Wolters et al. 2004; Lew
et al. 2009), reason (2) still requires substantial research. Especially diffusion
weighted MR imaging promises to offer new ways to estimate material properties
at a fine level of detail (Güllmar et al. 2010; Dannhauer et al., 2011; Sengül and
Baysal 2012). If there is no reliable information on anisotropic volume conduction
BEM can be the method of choice in realistic volume conductor modeling.
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