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Abstract Interactions between functionally specialized brain regions are crucial
for normal brain function. Magnetoencephalography (MEG) is suited to capture
these interactions because it provides whole head measurements of brain activity
with temporal resolution in the millisecond range. Many different measures of
connectivity exist and in order to take the connectivity analysis results at face
value one should be aware of the strengths and weaknesses of these measures.
Next to this, an important challenge in MEG connectivity analysis lies in the fact
that more than one sensor picks up the activity of any underlying source. This field
spread severely limits the utility of connectivity measures computed directly
between sensor recordings. As a consequence, neuronal interactions should be
ideally studied on the level of the reconstructed sources. MEG is well suited for
this purpose, since its signal properties and high spatial sampling allows for rel-
atively accurate unmixing of the sensor recordings. This chapter provides some
necessary background on connectivity analysis in general, and proceeds by
describing the challenges that are associated with the analysis of MEG-based
connectivity at the sensor level. Source level approaches are described and some
recent advances with respect to MEG-based connectivity during the resting state
and graph theoretic approaches are described.
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1 Introduction

Magnetoencephalography (MEG) as a technique is ideally suited to study activity
of the human brain on the time scale of cognitive and behaviorial processes. It
provides measurement of brain activity by covering the whole head with a high
number of sensors, and is increasingly used to study networks of interacting brain
regions. The purpose of this chapter is to provide some background on connec-
tivity analysis with MEG and to highlight some recent methodological develop-
ments, which enable researchers to study the interaction between brain regions
based on these non-invasively obtained electrophysiological measures of neuronal
activity.

The structure of this chapter is as follows: first we review some of the measures
that are commonly used to analyze connectivity. Then we will discuss the prob-
lems related to electromagnetic field spread in the context of connectivity analysis
at the MEG sensor level. Next we will describe approaches that analyze connec-
tivity in source space. Following this, we will discuss the emerging fields of
studying connectivity in the brain at rest with MEG and graph theoretic analysis of
MEG-based connectivity metrics.

2 Measures of Connectivity

When faced with the possibility to analyse connectivity in MEG, the researcher
can employ a vast number of different measures and analysis approaches to
quantify this. Each of the different measures of connectivity has its merits and
disadvantages with respect to what can be interpreted from those measures, and the
ease with which they can be computed. This section provides an overview of the
measures most commonly used, without having the intention to be comprehensive.
The different metrics that are mentioned are shown in Table 1.

2.1 Connectivity Measures can be Grouped Along Different
Dimensions

It may be useful to group the different connectivity measures along several dif-
ferent dimensions. One key distinction which is often made is that of functional
versus effective connectivity (Friston 1994). Measures of functional connectivity
(undirected interaction measures) quantify statistical dependencies between neu-
ronal signals, without explicitly addressing directed interactions. On the other
hand, measures of effective connectivity (or directed interaction measures)
quantify the directed influence of one neuronal system over another. This dis-
tinction has its implications for the interpretation of the analysis results. Per
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definition, undirected interaction measures do not allow for an interpretation of
causality.

Another important distinction is that between time and frequency domain
measures of connectivity. This directly refers to the underlying physiological
mechanisms by means of which neuronal interactions are thought to occur. One
view, which has gained a lot of interest in the past few decades, is that neural
interactions are reflected in changes in the synchronization of rhythmic activity
between brain regions (Fries 2005). In light of this proposed mechanism of
interaction, it makes sense to use connectivity measures that are defined in the
frequency domain, and where an estimate of the phase difference is used to
compute the connectivity.

Yet another distinction pertains to whether the connectivity measure is a
bivariate or a multivariate one. Although typically connectivity measures are
estimated between pairs of signals, some measures account for the influence of
‘third party signals’ on the connection under consideration, yielding a potentially
clearer interpretation of the interaction being direct or indirect (e.g. due to com-
mon input from a third source of activity).

Some connectivity measures assume the interaction between signals to be linear
and/or use linear estimation techniques. Other measures don’t rely on these

Table 1 Overview of different connectivity measures and their main characteristics

Directed
interactions

Freq/time
domain

Multi/
bivariate

Linear Sensitive to field
spread

Amplitude envelope
correlation

– f b + +

Coherence – f b + +
Cross-correlation

function
+ t b + +

Cross-frequency
interactions

– f b – +

Directed transfer
function

+ t m + +

Dynamic causal
modelling

+ t/f m – +

Granger causality + t/f b + +
Imaginary part of

coherency
+ f m – –

Mutual information – t/f b – +
Partial directed

coherence
+ f m + +

Phase lag index + f b – –
Phase locking value – f b – +
Phase slope index + f b – –
Synchronization

likelihood
+ t b – –

Transfer entropy + t/f b – –
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assumptions. This constrains the interpretation of the estimated connectivity
results. Also, in general non-linear measures are often based on estimates of
probability distributions and require more computing time, and also more data to
be computed reliably.

Finally, in the context of MEG, it is crucial to consider whether the connectivity
measure is sensitive to the effects of electromagnetic field spread. This will be
outlined and discussed in more detail in Sect. 3.

2.2 Frequency Domain Measures of Undirected Interactions

Amplitude envelope correlation refers to the correlation coefficient between
amplitude envelope time courses, which are typically computed on bandpass-
filtered data, and as such this measure classifies as a frequency domain connec-
tivity measure.

Coherence (Gross et al. 2001) is the frequency domain analogue of the cross-
correlation coefficient, and is usually computed using non-parametric spectral
estimation techniques, such as the Fourier transform, or a wavelet transform. As
such coherence confounds the estimated consistency of a fixed phase difference
with the correlation of the signals’ amplitudes. It’s a very popular measure,
because it’s easy to compute and it has a straightforward interpretation in terms of
frequency-resolved linear predictions.

Amplitude effects can be disentangled from the consistency of the phase dif-
ference by means of the phase locking value (PLV). This measure can be obtained
by normalising the complex-valued frequency domain single trial values with
respect to their amplitudes, prior to estimating the interaction between the signals
(Lachaux et al. 1999). This phase synchronisation analysis has been used in source
connectivity analysis to complement traditional coherence analysis (Jerbi et al.
2007). Both coherence and PLV are symmetric measures and do not allow direct
inference about directionality of information flow between areas. However, time
delays can be estimated from the slope of the cross-spectral densities between time
series under favourable conditions (Nolte et al. 2008).

Recent years have seen an increased interest in cross-frequency interactions,
inspired by the notion that neuronal signals typically show rhythmic activity in
several distinct frequency bands, and that neuronal interactions thus may also be
reflected in statistical dependencies between these frequency bands (Jensen and
Colgin 2007). Several types of interactions can be considered here, e.g. amplitude-
amplitude coupling (where there is a correlation across observations of the
amplitude envelopes of different frequency bands) or phase-amplitude coupling
(where the phase of a slow oscillation systematically modulates the amplitude of a
fast oscillation).
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2.3 Measures of Directed Interactions

Directed interactions can be inferred in one of the following conceptually different
ways. The simplest concept is based on estimating the time lag between events
occurring in a pair of signals (Nolte et al. 2008; Gross et al. 2000). This is linked to
the principle that a cause must precede its effect, but it should be noted that
temporal precedence does not provide direct evidence for causal interactions
(Atukeren 2008). In the time domain, the cross correlation function can be used to
estimate time lags between signals. However, this technique is hardly used in
MEG-research. It is more common to explore the time lag in the frequency
domain, where one can exploit the principle that a fixed time delay translates into
linearly increasing phase differences with increasing frequency. Hence, the slope
of the phase difference spectrum is a direct estimate of this time-delay. The phase
slope index (Nolte et al. 2008; Haufe et al. 2013) is a measure that is based on this
principle. The phase lag index (PLI) (Stam et al. 2007) quantifies the deviation of
the phase difference distribution from 0, thus allowing for the inference of one
signal leading (or lagging) the other.

Related to the concept of temporal precedence is the concept of Wiener-
Granger causality (Bressler and Seth 2011), which is based on the prediction of a
signal (let’s call this signal A for the time being) based on the past values of itself,
and based on the past values of another signal (signal B). If the quality of the
prediction of signal A is substantially improved when past values of B are taken
into account, signal B is said to cause signal A. This principle has been originally
formulated by Wiener (1956), and is operationalized in the measure of Granger
causality (Granger 1969). Granger causality in its original formulation is defined in
the time domain. It is usually implemented by means of fitting a series of multi-
variate autoregressive models (MVAR-models) (Schloegl et al. 2006) and by
exploring the residuals of the model fit. Based on work by Geweke, frequency-
resolved Granger causality can also be computed, and from the Fourier transform
of the autoregressive model coefficients a series of related measures can be derived
such as the directed transfer function (DTF) (Kaminski and Liang 2005) and
partial directed coherence (PDC) (Baccala and Sameshima 2001). Common to
these measures is that they assume that the interaction is linear. Transfer entropy
(TE Schreiber (2000)) is an implementation of Wiener’s principle of causality that
is free of an explicit model of the signals and their interaction. A non-linear
formulation of Granger causality also exists (Marinazzo et al. 2011).

Finally, rather than using a data-driven approach, one can try and create gen-
erative model of the measured data, where the model entails not only the activation
patterns of the underlying neural sources, but also their interactions. This approach
is implemented in Dynamic Causal Modelling (DCM) (Moran et al. 2007; Kiebel
et al. 2008; David and Friston 2003). The generative model specifies how input
activates a system of pre-specified interconnected neuronal populations, leading to
the measured signal. As such DCM provides an estimate of coupling parameters
and source parameters in a single step (Kiebel et al. 2008). DCM had originally
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been devised for the analysis of evoked responses (Garrido et al. 2007). Recent
developments have extended the functionality of this promising technique to
induced responses (Chen et al. 2008), steady state responses (Moran et al. 2007)
and phase-coupling (Penny et al. 2009).

3 MEG Sensor Level Connectivity Analysis

A central issue in the interpretation of MEG data is the problem of electromagnetic
field spread. Although it is a well-known problem and described elsewhere (Winter
et al. 2007), it merits discussion in the context of connectivity analysis because it
severely confounds many connectivity measures and therefore complicates the
correct interpretation of the results. In the following sections we will outline this
problem in the context of connectivity analysis, and describe two strategies, which
attempt to diminish this problem: the analysis of experimental contrasts, and the
use of connectivity measures that are less sensitive to electromagnetic field spread.

3.1 Electromagnetic Field Spread

Field spread refers to the phenomenon that the magnetic fields that are associated
with electrical currents (of neural and non-neural origin) are not confined to the
vicinity of the current generators, but are measurable far away from their source.
For any neuronal source this leads to a widespread representation at the level of the
sensor array. As a matter of fact, thanks to this feature, it is possible in the first place
to measure MEG extracranially and to build models of the underlying neural
sources. Yet, electromagnetic field spread also has important consequences for the
interpretability of connectivity measures estimated between pairs or sensors. The
reason for this is that any single source of neural (or non-neural) electric activity is
visible to many sensors at once. This is illustrated by Fig. 1a. The spatial topog-
raphy shows the correlation between one channel and the rest, from simulated data
containing one single dipole plus uncorrelated sensor noise. Obviously, MEG
sensor recordings represent the superposition of the activity of multiple sources,
which are either or not functionally connected. Also with multiple sources present,
even if the underlying sources are ‘unconnected’, many connectivity measures
estimated between pairs of sensors will yield spurious estimates due to the
instantaneous mixing process. To illustrate this we simulated the activity of 821
temporally uncorrelated dipoles, with an orientation parallel to the axis between the
nasion and the midpoint of the interauricular line, and that were randomly dis-
tributed on the cortical sheet. Clearly, the orientations chosen are physiologically
not meaningful, but are appropriate to demonstrate the effect of field spread on
connectivity analysis. Using FieldTrip (Oostenveld et al. 2011), we simulated 50 s
of data for a 275-channel CTF axial gradiometer system, by using a single shell
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volume conductor model (Nolte 2003) and uncorrelated sensor noise. Figure 1b
shows the absolute value of the correlation coefficient between all MEG sensor
pairs as a function of their distance. Even though the underlying source activities
are temporally uncorrelated, many sensor pairs show high values of correlation.

3.2 Addressing Electromagnetic Field Spread with Statistics

In order to reduce the interpretational difficulties caused by field spread, one
potential strategy could be to analyze changes in connectivity caused by an
experimental manipulation, rather than the strength of the connectivity as such.
The rationale for using experimental contrasts in this context is based on the
assumption that the effects of electromagnetic field spread are identical across the
experimental conditions and therefore subtract out. Unfortunately, the spatial
structure of field spread is highly dependent on changes in the signals, and on
changes in the noise. As a consequence, estimated modulations in connectivity do
not necessarily always reflect modulations in actual connectivity between relevant
neuronal sources. Experimental manipulations will most likely always lead to
changes in activity of the underlying sources, or in the activation of different
sources. Also, in studies that involve the comparison between different groups of
subjects (e.g. patients versus controls), it is not unlikely that difference in the
distribution and activity of the underlying sources exist. These potential confounds
in the interpretation of estimated differences in connectivity should therefore
always be taken into account. This is illustrated in Fig. 2. Here, we simulated two
dipoles oscillating at 20 Hz in left and right ‘motor cortex’, at a phase difference of
90�, against a background of 821 uncorrelated dipoles evenly distributed across the
cortical sheet. We generated 2 conditions of data where the amplitude of the motor

Fig. 1 The effects of field spread confound sensor level estimates of connectivity measures.
a Sensor-level connectivity between a seed sensor and the rest of the sensor array in the presence
of a single underlying source. b The absolute value of the correlation coefficient between all pairs
of measured signals as a function of sensor distance, where the underlying 821 sources were
uncorrelated
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cortex dipoles was twice as large in condition 1 compared to condition 2 (Fig. 2a).
We computed coherence and the imaginary part of coherency (see Sect. 3.3)
across all channel pairs and display the sensor pairs in which the difference in
connectivity across the conditions exceeded a certain threshold. Clearly there is
interesting spatial structure in the differential coherence and imaginary coherency
maps, that cannot be accounted for by a change in actual connectivity (which as a
matter of fact in both conditions was simulated to be equal to 1).

For the reasons outlined above, field spread is problematic in the interpretation of
sensor-level connectivity estimates, and an important motivation to perform the
connectivity analysis at the source level. Also, contrasting connectivity between two
experimental conditions in sensor space will likely reduce (but not abolish) negative
effects offield spread (Schoffelen and Gross 2009). In addition to this, there are other
important motivations to perform the analysis on the source level. First of all, there
is a more direct indication of the anatomical location of the interacting brain regions.
Secondly, source level analysis facilitates subsequent group analysis because the
data can be averaged in a meaningful standardized space.

(a)

(b)

Fig. 2 Changes in source strength yield widespread changes in sensor-level connectivity.
a spatial topography of simulated activity with 821 randomly distributed, uncorrelated dipoles,
and 2 strong, highly correlated dipoles in approximately left and right motor regions. The
amplitude of the ‘motor’ sources is two times higher in the left panel than in the right panel.
b Thresholded differential connectivity patterns (high amplitude condition minus low amplitude
condition), where each line represents a sensor pair where the differential connectivity exceeded a
threshold of 0.2. Two different connectivity metrices were used: coherence (left panel) and the
imaginary part of coherency (right panel)
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3.3 Addressing Electromagnetic Field Spread with Clever
Measures of Connectivity

Another strategy to address interpretation problems associated with electromag-
netic field spread is to use connectivity measures that are insensitive to this effect.
In general, this type of measure can be divided into two categories. The first
category consists of measures that are derived from conventional linear measures.
The imaginary part of coherency (Nolte et al. 2004) is a well-known example of
this type of measure. Another example is amplitude-envelope correlation with the
zero time-lag correlation removed (Hipp et al. 2012) (see Sect. 5). The other
category consists of measures that are derived from the non-linear dynamics
framework. This type of measure includes the phase lag index (Stam et al. 2007)
synchronization likelihood (Stam and Van Dijk 2002) and transfer entropy
(Vicente et al. 2011).

Measures that are insensitive to field spread usually exploit the fact that field
spread caused by point sources has an instantaneous effect on the sensors. In other
words, field spread causes cross-correlation effects between sensors at a time lag of
0 ms, or equivalently at a phase difference of 0 or 180�. Explicitly removing the
zero ms time lag contribution to the estimate of connectivity reduces the risk of
falsely interpreting the estimate as true interaction. In the case of the imaginary
part of coherency the removal of the 0� phase difference contribution is achieved
by projection of the vector representation of the complex-valued coherency onto
the imaginary axis.

An important caveat needs to be raised here, which is related to the fact that
spurious connectivity is addressed only when contributing sources can be modeled
as single point sources (equivalent current dipoles). This is illustrated in Fig. 3
where we present results of an analysis of the weighted phase lag index (WPLI) at
10 Hz (Vinck et al. 2011). For each channel, we computed the average WPLI
between that channel and the rest of the channels and represented this in a spatial
topography (panel A). Red here means that the underlying channels on average
have a positive phase difference with the other channels, blue means that the
underlying channels on average have a negative phase difference with the other
channels. Thus the picture suggests a fronto-occipital gradient of time-lagged
neural oscillations at 10 Hz, where the frontal channels ‘lead’ the occipital
channels. However, the data that was used to generate this topography was con-
structed by back-projecting two independent components that were estimated from
a few minutes of resting state MEG data. The time course of these components and
their corresponding spatial topographies are shown in panel B. Clearly, these two
components mainly represent cardiac activity. The slight time lag between the
individual components in combination with the different topographies leads to a
non-trivial mixing with significant interaction at non-zero time lag.

For the reasons outlined above it is increasingly acknowledged that the func-
tional interactions should be studied at the level of the neuronal sources.
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4 MEG Source Level Connectivity Analysis

In this section we will provide an overview of the main methods that have been
suggested for MEG source connectivity analysis. Most methods essentially adopt a
two-step procedure. Firstly, an estimate of the activity of the neuronal sources is
obtained by applying an inverse method (for a review, see Baillet et al. (2001)).
Secondly, an analysis of connectivity is performed, in which researchers usually
restrict themselves to a set of pre-specified seed regions-of-interest (ROIs).
A notable exception to this two-step approach is Dynamic Causal Modelling,
which will be described below. It is beyond the scope of this chapter to present in a
comprehensive discussion the advantages and disadvantages of all connectivity
measures and inverse methods; thus we will focus on some applications of con-
nectivity measures in source space.

Typically, MEG source connectivity analysis is performed on the basis of a few
selected regions of interest (ROIs). Connectivity measures are computed between
all combinations of ROIs or ROIs are used as seeds to compute connectivity
between activity at the seed location and all other voxels. Several strategies for the
selection of ROIs exist:

A priori selection. A priori knowledge from previous functional imaging studies
can be used to select ROIs (Astolfi et al. 2005). These areas can be identified in the
individual anatomical MRI or coordinates in Talairach-MNI space can be trans-
formed into individual coordinates. A related approach has been proposed by
Haerle et al. (2004). Minimum norm source estimates were computed for 350

(a)

(b)

Fig. 3 Sources that cannot be described as a single equivalent dipole yield non-zero phase-
lagged connectivity estimates. a Spatial topography displaying for each sensor the average of the
weighted-phase lag index between that sensor, and the rest of the sensor-array, yielding a distinct
pattern of ‘information flow’ from frontal to posterior sensors. b Fragment of the time courses and
spatial topographies of the independent components underlying the data that was used to generate
the topography in panel (a)
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voxels to study steady-state auditory responses. Subsequently, coherence was
computed between all pairs of voxels.

Cortico-peripheral coherence. In this approach an external signal serves as a
reference signal. This can be a kinematic or electromyographic recording or even a
continuous stimulus signal (such as speech). Coherence is computed between the
reference signal and brain activity reconstructed at a discretized grid. This method
allows the identification of brain areas where the activity is modulated by rhythmic
processes in the peripheral signal. This strategy has been used successfully for
oscillatory components in movements as recorded with electromyography and
movement tracking devices (Gross et al. 2001, 2002; Schoffelen et al. 2008), and
for localizing activity in auditory cortex using the speech signal as reference signal
(Peelle et al. 2012). The local maxima in the cortical coherence map can be used as
seed voxels for the analysis of cerebro-cerebral connectivity.

Power maps. Possibly the most widely used strategy is a selection of ROIs
based on maps of neural activation or the statistical contrast in activation between
experimental conditions. This approach has been successfully applied in a number
of studies (David et al. 2002, 2003; Jerbi et al. 2007; Hipp et al. 2011).

Connectivity-based methods. Recently, several studies have performed the
computation of connectivity between all pairs of voxels. Palva et al. (2010)
computed phase locking on MEG minimum norm estimates to identify networks in
a working memory task (see also Sect. 6). Hipp et al. (2011) developed a
6-dimensional cluster method to identify coherent networks from beamformer-
localised EEG data. Kujala and co-workers suggested a technique that identifies
highly connected areas by computing the connection density throughout the brain
(Kujala et al. 2007). These ‘hubs’ can then be used as ROIs for a more detailed
analysis of connectivity.

Source level connectivity analysis has become a powerful tool to identify
networks of interacting brain regions and to study task-related changes in these
networks. Several consistent findings seem to emerge from these studies. Network
interactions seem to be highly specific regarding the frequency band and have
modulatory effects on behavioural performance. Phase synchronization in the beta
frequency band engaging a fronto-parietal network has been related to successful
target detection (Gross et al. 2004). Interestingly, this study also demonstrated that
desynchronisation in the network after target detection is important to facilitate
detection of a subsequent target. Another study showed beta synchronization in a
similar fronto-parietal network related to the perception of ambiguous audiovisual
stimuli (Hipp et al. 2011). Again, beta synchronization distinguished between
different percepts of the same stimuli. These results are consistent with the
involvement of beta band synchronisation in top-down processes.

Another study nicely demonstrates that connectivity between brain areas is task-
dependent. Siegel and colleagues studied connectivity between visual, parietal and
frontal brain areas in both hemispheres during a visuospatial attention task (Siegel
et al. 2008). Interestingly, shifting visuospatial attention to one hemifield (while
maintaining central fixation) leads to increased gamma synchronisation between
visual, parietal and frontal areas specifically in the contralateral hemisphere. These

Studying Dynamic Neural Interactions with MEG 415



findings generalise beyond cognitive processes related to attention and perception.
Palva et al. (2010) have studied phase synchronisation in a working memory task.
They reported frequency-specific networks with low-frequency phase synchroni-
sation predicting task performance.

5 Resting-State Connectivity

Human electrophysiological brain activity during rest has been studied since 1929,
when Hans Berger performed the first human EEG recordings (Berger 1929). He
discovered prominent rhythmic fluctuations in the signal at a rate of about 10/s.
We now know that this so-called alpha oscillation dominates resting state activity,
is strongest over occipital brain areas, and it reflects excitability changes in the
generating neuronal populations (Niedermeyer and Silva 2004; Romei et al. 2008).

A vast number of MEG/EEG studies have been performed to study resting state
activity in healthy participants and patients. In recent years functional connectivity
has been studied in the resting state with MEG/EEG (Stam and van Straaten 2012;
Stam 2010). Here, we focus on research that studies resting-state connectivity in
source space. First, we present the commonly used methods to study resting-state
connectivity and then we proceed to a discussion of the main findings.

5.1 Methodological Overview

It seems surprising that specific methods have been developed to study resting-
state connectivity since the overall aim of this analysis is similar to the connec-
tivity analysis for other types of data—namely the identification of significant
functional interactions between the time series of different brain areas. However,
connectivity analysis in cognitive studies generally relies on the statistical com-
parison of two conditions, or an ‘active’ period of time and a baseline—a pro-
cedure that is known to reduce (but not abolish) the effect of field spread (see
Sect. 3.2). No such comparison is available for resting state data (although sur-
rogate data can be used (Ghuman et al. 2011)). Therefore, researchers have
focused on methods that are more robust against contamination by field spread—
mostly relying on amplitude correlations.

Most resting state connectivity methods rely on independent component anal-
ysis (ICA), albeit at different stages in the processing pipeline. One method has
been proposed by Brookes et al. (2011). Beamforming is used to compute time
series of activation for individual voxels from bandpass filtered resting-state data
(Fig. 4a). ICA is performed on the amplitude envelopes of the band-limited voxel
time series to identify independent temporal components with corresponding
spatial maps.
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In a recently proposed method (de Pasquale et al. 2010; Mantini et al. 2011)
ICA is used as a first step to decompose the signal into statistically independent
components that often correspond to different types of artefacts (e.g. eye blinks
and cardiac artefacts) and different activated brain areas (Makeig et al. 2002). In a
second step neural generators of non-artifactual components are localised using
standard source localisation techniques such as minimum norm or beamforming
methods (Fig. 4b). The time series at any voxel in the brain is then computed from
the summation of IC timecourses weighted by the amplitude of their source
reconstruction at that voxel. A bandpass filter is then applied and the amplitude
envelope is computed as the absolute value of the hilbert transform of the filtered
signal. Amplitude correlations are computed between a seed voxel and all other
voxels.

A promising extension of the seed-based approach has been presented by Hipp
et al. (2012). Similar to the approach by Brookes et al. bandpass-filtered data is
subjected to beamformer analysis to derive a time series for individual voxels.
However, each pair of time series (corresponding to seed voxel and target voxel)
was first orthogonalised to remove common components with zero delay—the
hallmark of components related to field spread (see Sect. 3).These resting-state
methods typically use amplitude correlations based on downsampled amplitude
envelopes. The optimal integration window seems to be in the order of 1–4 s
(Luckhoo et al. 2012).

Gomez-Herrero et al. combined ICA with multivariate autoregressive (MVAR)
models to study directionality in resting-state data (Gomez-Herrero et al. 2008),
see also (Haufe et al. 2010). The analysis pipeline (see also Sect. 4) consisted of
PCA for dimensionality reduction, followed by estimation of a MVAR model.
Residuals of the model were then subjected to ICA decomposition to estimate
cortical generators with a source reconstruction method. ICA components were
then combined with the coefficients of the MVAR model to compute measures of
directed interactions (in this case directed transfer function) in source space.

Alternative approaches have been introduced that do not rely on ICA. Hille-
brand et al. (2012) proposed to use beamforming to estimate time series of

DAN 

DMN 

Fig. 4 Schematic illustration
of two resting-state networks.
DAN Dorsal Attention
Network, DMN Default Mode
Network. Locations are taken
from (de Pasquale et al. 2010;
Brookes et al. 2011)
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activation for regions of interest (ROIs) derived from an anatomical atlas. Spatial
normalisation of individual MRIs is used to identify corresponding atlas-based
ROIs in the individual brain. The study demonstrated that problems associated
with field spread are reduced by using the Phase-Lag Index (Stam et al. 2007). A
similar approach was used to study resting-state connectivity based on imaginary
coherence in stroke patients (Guggisberg et al. 2008; Westlake et al. 2012).

5.2 Functional Connectivity in Resting-State Networks

The analysis of resting state connectivity in functional MRI has recently attracted
significant interest (Beckmann et al. 2005; Deco and Corbetta 2011). This is at
least partly due to the seminal study by Biswal and colleagues who demonstrated
spatially specific correlations in the temporal activation of brain areas during rest
(Biswal et al. 1995). These correlations are driven by slow temporal fluctuations
with frequencies around or below 0.1 Hz. However, until recently is has been
unclear if and how these correlation patterns are represented in electrophysio-
logical recordings. Recent developments in data analysis methods (reviewed in the
previous section) have facilitated the identification of similar spatio-temporal
correlation pattern in MEG/EEG signals of the resting brain. Due to their excellent
temporal resolution MEG/EEG contribute complementary information to the
fMRI-studies of human resting-state connectivity.

De Pasquale and colleagues used a seed-based correlation approach (see pre-
vious section) to identify the default mode network (DMN) and the dorsal attention
network (DAN) from MEG data (Fig. 5). Both networks showed high spatial
overlap with the corresponding networks identified in fMRI data. Interestingly, the
high temporal resolution of MEG recordings afforded the investigation of this
correlation structure in different frequency bands. DMN and DAN showed strongest
amplitude correlations in the alpha (8–13 Hz) and beta (14–25 Hz) frequency
bands with correlations that changed significantly over time. These temporal
changes were further investigated in a subsequent study by the same authors (de
Pasquale et al. 2012). Here, the DMN emerged as the network with strongest cross-
network interactions with the posterior cingulate cortex as the most important node
in the DMN. The DMN preferentially engages with nodes of another network when
the within-network interactions of this other network are low.

Using a data-driven approach that is not based on seed voxels Brookes and
colleagues largely corroborated these results by identifying several resting-state
networks (including DMN and DAN) with dominant interactions in the beta band
(Brookes et al. 2011). The frequency-specific nature of correlations in these (and
other) studies convincingly implicates brain oscillations as the basis for these
network interactions.

The orthogonalisation introduced by Hipp et al. (2012) improved spatial res-
olution of correlation maps with interesting results. Significant interhemispheric
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amplitude correlations emerged in the beta frequency band between homologous
sensory (auditory, somatosensory, visual) areas.

In summary, recent MEG resting-state connectivity studies in source space
independently confirm the existence of resting-state networks previously discov-
ered in fMRI data. Interestingly, MEG studies demonstrate that the correlation
pattern in these networks is mediated by brain oscillations (predominantly in the
alpha and beta frequency band) and that these correlations show strong temporal
modulations that coincide with state transitions of between-network interactions.

6 Graph Theory

Although Graph Theory has been developed decades ago (Erdoes and Renyi 1959)
it has only recently found a widespread use in the investigation of brain networks.
This interest likely originates from a challenge that researchers face when they
investigate anatomical or functional brain connectivity—namely its complexity.
Human brain connectivity studies typically work with anatomical or functional
data at a spatial resolution of 1–10 mm, leading to thousands of voxels. Each voxel
can have anatomical or functional connections to many other voxels. In addition,
functional connections are often evaluated in different frequency bands, experi-
mental conditions, and may change over time. A meaningful low-dimensional
characterization of this complex, high-dimensional data would greatly facilitate
the identification of systematic differences between experimental conditions, or

Bandpass filter MEG data Decompose MEG data with ICA

Reconstruct voxel time
series

Decompose voxel time
series using ICA

Compute downsampled
amplitude

Remove artifact components

Localize ICA components

Reconstruct voxel time series

Compute downsampled
amplitude

(a) (b)

Fig. 5 Two analysis pipelines for resting state MEG data. a Analysis approach used by Brookes
et al. 2011). b Analysis approach used by de Pasquale et al. (2010), (Mantini et al. 2011)
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patients and healthy controls and could lead to a better understanding of the
aspects of these complex networks that are essential for the functioning of the
human brain. We will first introduce basic concepts of Graph theory, then present
applications for MEG connectivity studies and, finally, discuss some limitations.

Networks of interacting brain areas can be represented by graphs. Graphs
consist of nodes (or vertices) representing the brain areas, and connections (or
edges) that represent the interactions between pairs of brain areas. Furthermore,
information about directed information flow can be represented in directed graphs
and information about connection strength can be represented in weighted graphs.

The topology of graphs can be characterized in a meaningful way by a number
of measures that characterize different aspects of the graph. Here, we describe
three important measures and refer the interested reader to more comprehensive
material (Sporns 2011; Stam and van Straaten 2012; Ioannides 2007; Bullmore and
Basset 2011).

Characteristic path length This is the average number of nodes on the shortest
path between two nodes

Degree distribution The degree of a node is the number of connected
nodes. The distribution of degree across all nodes of
a graph is the degree distribution

Clustering coefficient For a given node the clustering coefficient is the ratio
of the number of existing to the number of possible
connections between all neighbours of the node

Other measures such as modularity or efficiency have been introduced to
characterise brain networks (Bullmore and Bassett 2011) with the aim to capture
basic network characteristics that relate in a meaningful way to aspects of brain
function or dysfunction.

Bassett and colleagues have used this approach successfully (Bassett et al.
2009). They demonstrated a positive correlation between performance in a
working memory task and cost efficiency of network nodes. Consistent with the
majority of MEG/EEG studies in this field individual sensors were taken as nodes.
Various connectivity measures (see Sect. 2) can be used to quantify interactions
between the signals of sensor pairs. Here, authors used mutual information in
different frequency bands ranging from 1–60 Hz. Mutual information between all
pairs of sensors signals results in a symmetric connectivity matrix. This matrix
(that can also be computed from other connectivity measures such as coherence or
phase synchronisation) is then converted into a graph. This conversion involves a
thresholding and binarization of the matrix. The binarization sets every element
with a value below threshold to zero and every element with a value above
threshold to 1. The graph measure used by the authors was cost efficiency, which is
inversely related to minimum path length computed at different thresholds. The
authors observed significant correlation between cost efficiency and behavioral
performance over left temporal and parietal areas and over midline frontal areas.
This correlation was strongest in the beta band (12–30 Hz).
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The possibility to describe topological aspects of a complex network with a few
measures is particularly attractive for clinical studies since some of these measures
could potentially be used as biomarkers for pathological changes associated with
specific brain dysfunctions. Stam and colleagues have used Synchronization
Likelihood (SL), a nonlinear measure of statistical interdependency, to study
disease-related changes in functional brain networks. Again, SL values between
pairs of MEG signals are used to build an association matrix that is converted into
a graph before graph measures are computed. This approach has been used to
uncover changes in network topology in different disorders such as Parkinson’s
and Alzheimer disease and is reviewed in (Stam 2010).

One of the most consistent findings emerging from these studies is that the
functional network architecture of the human brain shows small-world properties
(Stam 2004; Bassett et al. 2006). Small-worldness refers to networks that are
characterised by high clustering but small path length. This is achieved by adding a
few long-range connections to networks with predominantly short-range
connections.

A limitation of these studies is that they use MEG sensors as graph nodes. This
is problematic for at least two reasons (Schoffelen and Gross 2009). First, it is
difficult to infer the involvement of specific brain areas from the location of MEG
sensors. Second, the signal recorded by any given MEG sensor is typically a linear
combination of the activity of several brain areas. Consequently, the topology of
graphs constructed from sensor signals can be significantly affected by the sen-
sitivity profile of the MEG sensor type and the specific configuration of active
brain areas. Only few studies have addressed this problem by computing graphs
from MEG data after source localization. Palva and colleagues studied functional
connectivity in source space during visual working memory (Palva et al. 2010) and
used graph theory to characterize the network. They localized bandpass filtered
single-trial data using cortically constrained minimum-norm estimates. Phase-
locking value was computed between pairs of cortical patches to build the asso-
ciation matrix. After thresholding based on group statistics, they used the node
degree and related measures to identify hubs in frequency-dependent networks.
The alpha-band network showed a hub in frontal cortex whereas for the beta-band
hubs emerged in parieto-occipital cortex. Major hubs in the gamma-band were
intraparietal sulcus (IPS) and superior parietal gyrus. Phase synchronization
between brain areas was shown to correlate with behavioral performance. IPS was
again the major hub in these performance-related networks.

This study nicely demonstrates the benefit of performing MEG connectivity
analysis together with graph theory at the level of brain areas (as opposed to MEG
sensor signals). Since here the graph nodes corresponded to anatomical brain areas
results inferred from the functional data increase our understanding of specific
brain networks and results can be related to findings from fMRI studies.

Although Graph Theory is a promising approach for the characterization of
complex brain networks it has limitations. One main limitation is the loss of
information during the computation of graphs (see Fig. 6). Following connectivity
analysis the association matrix contains information about the strength of
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interactions between all pairs of nodes (where nodes could be brain areas or MEG
sensors). In addition, some connectivity measures provide information about the
direction of information flow (e.g. Granger causality or transfer entropy) leading to
a non-symmetric association matrix (different values for the connection from node
x-y compared to y-x). Most connectivity studies using graph theory measures
however use undirected, unweighted graphs. Converting the association matrix
into an undirected, unweighted graph involves thresholding. In most cases there is
no objective way for selecting the threshold so one or several arbitrary thresholds
are often used. This is problematic since the choice of threshold can affect the
results. It is also unclear if different thresholds should be used (e.g. with respect to
the distribution of values in the association matrix) when two or more experi-
mental groups are compared.

7 Conclusion and Outlook

MEG connectivity analysis aims to understand the mechanisms underlying
information processing in the complex human brain network. This poses a for-
midable challenge for a number of reasons. Although the location of specialised
anatomical areas does not change over time, studies investigating neural plasticity
demonstrate that their anatomical and functional properties and their interactions
with other brain areas change at different time scales. In addition, connectivity
studies have to account for the highly dynamic nature of interactions between
brain areas that quickly adapt to changes in incoming sensory information or task

Fig. 6 Typical pipeline for
applying Graph Theory to
MEG connectivity results
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demands. As discussed in this chapter, there is now compelling evidence that
functional brain connectivity has to be studied in different frequency bands to
account for the potentially different functional roles of these different frequency
bands in neural communication. To further add to the complexity, different cou-
pling mechanisms exist both, within and between different frequency bands and
may involve phase and/or amplitude dynamics (Jensen and Colgin 2007). Further
complications arise from the difficulty in distinguishing real interactions between
brain areas from artifacts due to field spread (see Sect. 3).

Despite these challenges, MEG connectivity analysis is a highly active, suc-
cessful and promising area of research (Palva and Palva 2012; Siegel et al. 2012;
Schnitzler and Gross 2005). Significant progress has been made along different
dimensions. First, methods have been developed that are more robust against or
aim to circumvent the effects of field spread. Second, the development and
application of biophysically meaningful generative models such as DCM provide a
promising way to model dynamic interactions in brain areas. Third, recent
advances of analysing resting-state connectivity with MEG have been able to
identify networks that are consistent with results from fMRI studies. Here, MEG
can contribute temporally and spectrally resolved information about these net-
works at a resolution that cannot be achieved with fMRI. Fourth, graph theory has
become an increasingly useful tool to characterise the topology of complex ana-
tomical or functional brain networks. This progress has significantly improved our
understanding of functional connectivity in the human brain.
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