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Abstract In this chapter we begin by introducing the basic idea of Granger
causality and discussing its applications to local field potential data. We then
proceed to comment on recent results of applying Granger causality to MEG data.
Recognizing that Granger causality is frequently used to examine neural activity
recorded during stimulus processing, we point out the adverse effects of the
inevitable trial-to-trial variability of stimulus-evoked responses on Granger cau-
sality estimation. We end the chapter by discussing the future prospects of using
Granger causality in basic and clinical neuroscience research.
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1 Introduction

Cognitive functions are achieved through cooperative neural computation. Multis-
ensor recording and functional imaging afford us the opportunity to study brain
mechanisms of cognition from a network perspective. Analytically, cross correla-
tion and ordinary coherence have been the main statistics for assessing the functional
connectivity among the monitored nodes of a neuronal network. In the case of MEG,
these nodes could be defined either in sensor space or in source space. These
measures have the drawback that they do not provide information on the direction of
information flow. As neural interactions are mediated by synaptic transmissions
which are inherently directional, and the hypotheses concerning the role of network
operations in cognitive paradigms become more elaborate, being able to assess the
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direction of information flow between neuronal ensembles is becoming increasingly
important to better understand the organization and function of complex neural
networks. Granger causality has emerged in recent years as a statistically principled
way to furnish this capability. The goal of this chapter is to introduce the basic idea
of Granger causality and discuss its various applications to local field potential
(LFP) and MEG data. Important insights generated by this method are highlighted
and a potential issue pointed out.

2 Granger Causality: Basic Idea and Applications
to LFP Data

The basic idea of Granger causality can be traced back to Wiener (1956). He
proposed that, for two simultaneously measured time series, one series can be
called causal to the other if we can better predict the second series by incorporating
past knowledge of the first one. This concept was later adopted and formalized by
Granger (1969) in the context of linear regression models of stochastic processes.
Specifically, if the variance of the prediction error for the second time series at the
present time is reduced by including past measurements from the first time series
in the linear regression model, then the first time series can be said to have a causal
(directional or driving) influence on the second time series. One repeats the pro-
cess to address the question of driving in the opposite direction by reversing the
roles of the two time series. From this definition, it is clear that the flow of time
plays an essential role in allowing inferences to be made about directions of causal
influences from time series data.

Mathematically, the above idea can be further illustrated as follows. Let the two
time series be denoted as x1; x2; . . .; xn; . . . and y1; y2; . . .; yn; . . .. Suppose that one
wants to predict the value of xn from the linear combination of m previous values of
the x-series: a1xn�1 þ a2xn�2 þ � � � þ amxn�m. Because the time series came from a
stochastic process, xn can be written as xn ¼ a1xn�1 þ a2xn�2 þ � � � þ amxn�m þ en,
where en is the prediction error. This is nothing but a single variable autoregressive
(AR) model. The variance of the error series en is a gauge of the prediction accu-
racy. Now consider the prediction of xn by including the previous values of both x-
series and y-series, namely, xn ¼ b1xn�1 þ b2xn�2 þ � � � þ bmxn�m þ c1yn�1þ
c2yn�2 þ � � � þ cmyn�m þ gn. The variance of the error series gn is a gauge of the
prediction accuracy of the new expanded predictor. If varðgnÞ=varðenÞ is less than
one in some suitable statistical sense, meaning that the prediction of xn is improved
by incorporating the past knowledge of the y-series, then we say the y-series has a
causal influence on the x-series. The role of the x and y series can be reversed to
address the influence from x to y.

A comprehensive statistical framework has been developed to estimate Granger
causality from experimental data in both the time and frequency domain (Geweke
1982; Ding et al. 2006). A key question is whether Granger causality, a statistically
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estimated measure of information flow, reflects physiological information flow
mediated by action potential transmission. This question was considered by
Bollimunta et al. (2008) in the context of alpha rhythm (8–12 Hz) generation.
Alpha oscillations were discovered in the 1920s (Berger 1929). Prior to the 1970s,
the thalamus was thought to be the generator of cortical alpha (Andersen and
Andersson 1968). More recent studies using in vitro preparations have discovered
the role of deep layer pyramidal cells in alpha pacemaking in cortical slice
preparations (Silva et al. 1991). We took this finding as the ‘‘ground truth’’ for
testing the validity of Granger causality and predicted that if multiple electrodes
are placed simultaneously in different layers of the cortical column, because alpha
activity measured at middle (layer 4) and superficial layers stems from synaptic
transmission of alpha signals from deep layers, one should observe Granger causal
influences from deep to middle and superficial layers in the alpha frequency band.
Bollimunta et al. (2008) confirmed this prediction by analyzing laminar recordings
from V2 and V4 in two awake-behaving monkeys and thereby established the
basis for interpreting Granger causality in terms of neuronal information flow. See
Fig. 1a.

The crucial role of directional information provided by Granger causality in the
formulation of scientific hypotheses was considered in another series of studies in
awake-behaving monkeys where local field potentials were recorded simulta-
neously from multiple sites in the sensorimotor system (Brovelli et al. 2004; Chen
et al. 2006; Ding et al. 2006). From power spectral and coherence analysis, it was
found that during the prestimulus period in which the monkey anticipated the
stimulus onset by attending the computer monitor while holding steady a
depressed mechanical lever, there are synchronized beta oscillations in three
recording sites: primary motor (M1), primary somatosensory (S1), and posterior
parietal area 7b. However, based on power and coherence alone, the functional
significance of this oscillation network remains difficult to ascertain. The evalu-
ation of Granger causality, yielding the pattern of causal interactions: (1) S ? M1
(2) S1 ? 7b, and (3) 7b ? M1, shown in Fig. 1b, overcame the problem. The
following three reasons led to the hypothesis that the beta oscillation network may
exist to support the steady pressure maintenance of the depressed lever. First,
steady pressure maintenance is akin to closed loop control and, as such, sensory
feedback is expected to provide the input needed for cortical assessment of the
current state of behavior. It is well known that the maintenance of sustained motor
output is severely impaired when somatosensory input is lacking (Rothwell et al.
1982). This notion is consistent with our observation that S1 serves as the dom-
inant source of causal influence to other areas in the network. Second, posterior
parietal area 7b is known to be involved in the control of non-visually guided
movement and, as a higher-order association area, it maintains representations
pertaining to the current goals of the motor system (Rushworth et al. 1997). This
would imply that area 7b receives sensory updates from area S1 and outputs
correctional signals to the motor cortex (M1). This conceptualization is consistent
with the causality pattern in Fig. 1b. Third, previous data from M1 have already
implicated beta range oscillations as a neural correlate of isometric pressure

Analyzing MEG Data with Granger Causality 311



maintenance (Baker et al. 2003). By including S1 and 7b, the relation between M1
and the post-central areas is further clarified. Clearly, in the formulation of the
above hypothesis, the vivid computational picture in Fig. 1b derived from Granger
causality played a crucial role.

3 Applications to MEG Data

Granger causality is increasingly applied to MEG data. With very few exceptions
the analysis is done in the source space. Three examples are considered here to
illustrate the diversity of paradigms where this technique has been used to generate
insights.

Moratti et al. (2011) analyzed MEG data recorded during the viewing of
affective pictures with the goal to study the functional network organization
associated with the generation of the magnetic homolog of the emotion-induced
late positive potential (mLPP). The research question concerns whether the
affective modulation of the mLPP is an automatic bottom-up response to moti-
vationally salient stimuli or a response that reflects both bottom-up and top-down
effects. To address this question requires the decomposition of neural interactions
into their directional components. Reconstructing the source space time series of
cortical activity by using the beamformer technique and computing time-domain
Granger causality among predefined regions of interest (ROIs), they found that
bidirectional influences between frontal and occipitoparietal cortex were stronger
for emotional relative to neutral pictures, lending support to the hypothesis that
mLPP reflects a combination of both bottom-up and top-down mechanisms.

Ploner et al. (2009) applied frequency-domain Granger causality to investigate
functional integration among pain-related cortical regions. They conducted an
MEG study using a simple reaction time paradigm in which painful and nonpainful
stimuli were randomly applied to the right hand. Primary (S1) and secondary (S2)

Fig. 1 a Granger causality graph for laminar alpha generation. b Granger causality graph for
sensorimotor beta network
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somatosensory cortices as well as primary motor cortex (M1) were source local-
ized from evoked responses by a spatiotemporal source model (Hämäläinen et al.
1993) and were selected as ROIs. Time-courses were computed using a linearly
constrained minimum variance beamformer applied to the source locations. The
Granger causality analysis revealed that there are causal influences from S1 to S2
during the processing of nonpainful stimuli but such influences are absent in the
processing of painful stimuli. These results are taken to be in support of
the proposition that there is a partially parallel organization of pain processing in
the human brain.

Gow et al. (2008) applied Granger causality to simultaneously recorded MEG
and EEG data to study whether the influence of lexical knowledge on speech
perception takes the form of direct top-down influences on perceptual processing
or it mainly involves feedforward convergence during decision making. In their
analyses, the minimum-norm estimate (MNE) and the noise-normalized MNE
called dynamic statistical parametric mapping (dSPM) (Dale et al. 2000) were
applied to estimate the time-courses of activation across the cerebral cortex. MNE
is an estimate of the actual activation time-courses whereas the dSPM provides a
statistical measure that indicates regions where the estimated activity exceeds the
estimated noise level. Therefore, dSPM was applied for identifying ROIs, but for
analysis within and across ROIs, the MNE values were used. In their ROI iden-
tification, the 40 Hz gamma band phase synchrony was considered as a mechanism
for binding neural populations into transient cell assemblies. Thus a network of
ROIs was identified based on the 40 Hz phase locking values across the cortical
surface to a reference region. The reference region, consisting primarily of the left
posterior superior temporal gyrus (pSTG), was selected as the first area of
increased cortical activity after stimulus onset. Within the identified network, the
results of Granger causality analysis showed that the left supramarginal gyrus
(SMG), known to be associated with wordform representation, influences phonetic
processing in the left pSTG during a period of time associated with lexical pro-
cessing. This finding provided evidence that lexical processes exert top-down
influences on lower level phonetic perception.

4 Impact of Stimulus-Evoked Responses on Granger
Causality Estimation

The LFP studies reviewed above mainly focus on ongoing neural activity in the
absence of a transient sensory stimulus. The three MEG studies reviewed above,
however, share a common feature in that they all focus on neural activity in the
time period following the presentation of a transient sensory stimulus. Post-
stimulus neural activity can be written as the superposition of stimulus-evoked
responses, which vary from trial to trial in both amplitude and latency, and
ongoing activity which is assumed to be zero-mean (Xu et al. 2009). To estimate
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Granger causality from the ongoing activity a common approach is to remove the
average stimulus-evoked response from single trial data. Past work has shown that
this approach leaves traces of stimulus-evoked response in the ongoing activity
which can adversely impact Granger causality estimation (Wang et al. 2008).
Without being cognizant of such adverse effects Granger causality analysis can be
misconstrued.

Granger causality analysis begins with the fitting of an autoregressive model to
data (Ding et al. 2006). The common AR model formulation assumes that the input
time series come from a zero-mean stationary stochastic process. To meet the zero-
mean requirement one typically computes the average event-related potential
(ERP)/event-related field (ERF) and removes it from single trial data. Inherent in
this practice is the assumption that ERP/ERF is invariant across trials. It is now
clear that this assumption is overly simplistic and trial-to-trial variability of ERP/
ERF is substantial (Wang et al. 2008; Liu et al. 2012). This means that removing
the average ERP/ERF from single trial data will leave traces of stimulus-evoked
response in the residual, which, as the following conceptual model illustrates, can
significantly impact Granger causality analysis. A more thorough analysis of this
problem can be found in Wang et al. (2008).

Consider two recording channels where ERP/ERFs are represented by sinusoids
in Fig. 2a, b. ERP/ERF 2 (channel 2) (Fig. 2b) is 20 ms behind ERP/ERF 1
(channel 1) (Fig. 2a). The amplitude of the evoked response varies from trial to
trial and these variations are assumed to be correlated between the two recording
sites. Physiologically, one may view ERP/ERF 1 as arising from a primary sensory
area while ERP/ERF 2 from an association area. To calculate Granger causality
between the two channels, we follow the traditional approach by first obtaining the
average ERP/ERF and then subtracting the average from each trial to produce the
residual data (Fig. 2c, d), which are then subjected to a sliding window analysis.
For the 50 ms window between the two solid lines, the strong activity in channel 1
temporally precedes that in channel 2. Since these activities are correlated, by the
definition of Granger causality, we will see a causal influence from channel 1 to
channel 2. As the window is moved between the dashed lines, the opposite occurs.
Specifically, the temporal precedence of strong activity in channel 2 over that in
channel 1 will result in a causal influence from channel 2 to channel 1. In general,
as the analysis window is moved through the entire trial, one may observe multiple
episodes of causal influence reversals, depending on the morphology of the ERP/
ERFs. Such intricate temporal patterns of Granger causality modulations are
clearly artifactual and are the result of three factors. First, the event-related
responses from two different channels are of a similar shape and have different
temporal onsets. Second, the two event-related responses have correlated trial-to-
trial variability. Third, the time-frequency analysis of Granger causality is carried
out by employing a small moving window. It is worth noting that an analysis with
a long time window extending over the entire evoked response will result in a
predominantly unidirectional driving from channel 1 to channel 2.
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5 Concluding Remarks

Multivariate neural recordings promise unparalleled insights into how different
areas of the brain work together to achieve thought and behavior, and how such
coordinated brain activity breaks down in disease. While the accumulation of data

Fig. 2 A conceptual model illustrating the impact of trial-to-trial variability of stimulus-evoked
response on Granger causality estimation. a and b 500 trials of simulated data from channel 1 and
2, respectively. c and d residuals after subtracting the ensemble averages. Two analysis windows
are delineated by the interval between the two solid lines and that between the two dashed lines.
Vertical axis: arbitrary unit. From Wang et al. (2008)

Analyzing MEG Data with Granger Causality 315



continues at an astonishing rate, how to effectively analyze these data to extract
information about the workings of the brain remains a key challenge. Work over
the past decade has established the importance of Granger causality in dissecting
the directional interaction patterns in neuronal networks. As a tool for exploratory
analysis, Granger causality is shown to be able to generate physiologically
meaningful hypotheses, which can then be tested with further analysis and
experimentation (Brovelli et al. 2004; Ding et al. 2006), while as a tool for con-
firmatory analysis, Granger causality can be used to test physiological hypotheses
that are formulated according to consideration and knowledge existing outside the
Granger causality analysis framework (Bollimunta et al. 2008).

Despite these promises there are also potential pitfalls associated with the
application of Granger causality to MEG/EEG data. Discussions above pointed out
the negative impact of the trial-to-trial variability of stimulus-evoked response on
Granger causality estimation (Wang et al. 2008). One possible remedy for this
problem is to remove evoked responses on a single trial basis (Wang and Ding
2011). Another problem, which is more of a concern in electrophysiological
recordings such as LFP, EEG and ECOG, has to do with the negative impact of
common reference and volume conduction on connectivity measures. The possible
remedy in this case is to perform the analysis in source space or after local
referencing such as bipolar derivation to remove or attenuate the effect of common
reference and volume conduction (Bollimunta et al. 2009).

These concerns notwithstanding, evidence so far suggests that Granger cau-
sality has a useful role to play in both basic and clinical neuroscience, comple-
menting other methods. For many problems the framework for initiating and
interpreting a Granger causality analysis is already established by the knowledge
accumulated by years of research. For example, the neural substrate of a given
behavior is often encapsulated in a network flow diagram with arrows connecting
different structures emphasizing their respective roles and their interrelations with
one another. An example derived from the literature on sensorimotor control is
shown in Fig. 3a (Gazzaniga et al. 2002). Likewise, many neurological and psy-
chiatric disorders involve abnormal cortical and subcortical circuit dynamics. The
network mechanisms of these disorders are also expressed in diagrams similar to
Fig. 3a. In the case of drug addiction, it has been shown that the nucleus ac-
cumbens, amygdala, and hippocampus comprise the mesolimbic system that is
important in the reinforcing effects of drugs, whereas the prefrontal cortex,
orbitofrontal cortex, and anterior cingulate comprise the mesocortical circuit
known to mediate the conscious experience of drug intoxication. These brain areas
are hypothesized to interact as illustrated in Fig. 3b (Goldstein and Volkow 2002).
These diagrams are compiled from many studies using diverse techniques and
could be used to formulate initial hypotheses for a Granger causality analysis and
constrain the subsequent interpretation.

As the contributions in this volume demonstrates, MEG, offering superior
temporal resolution over fMRI and superior spatial resolution over EEG, can be
used to address many basic and clinical neuroscience questions. Because Granger
causality can be applied to either sensor or source space MEG has a significant role
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to play in quantifying the strength of interaction between different brain areas in
normal and diseased circuits. It is expected that, with proper care and precaution,
principled applications of Granger causality to MEG data will continue to grow,
generating insights into the collective computation in the brain not possible with
other methods.
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