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Abstract MEG is a noninvasive measure of electrophysiological brain activity
which provides excellent temporal and high spatial resolution. Because of its uniquely
high temporal resolution relative to the more commonly used hemodynamic-based
measures (fMRI, PET), the usefulness of MEG as a complementary neuroimaging
method is becoming more widely recognized, particularly in the investigation of
functional connectivity within and between large-scale brain networks. However, the
available analysis methods for solving the inverse problem for MEG have yet to
be compared and standardized. A comparison of analysis methods is further com-
plicated by the fact that the different MEG systems have different data formats, noise
cancellation methods, and sensor configurations. In order to facilitate this process,
we established a website containing an extensive series of realistic simulated data for
testing purposes (http://cobre.mrn.org/megsim/). In addition, we assert the useful-
ness of these datasets for training purposes, as they will provide an unambiguous
answer to whether a trainee is correctly carrying out analyses. Here we present a
brief rationale and description of the testbed created, including cases emphasizing
functional connectivity (e.g., oscillatory activity) and the Default Mode Network
(DMN). They are suitable for use with a wide assortment of analyses including
equivalent current dipole (ECD), minimum norm, beamformers, independent
component analysis (ICA), Granger causality/directed transfer function, and
single-trial methods.
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1 Introduction

MEG has the ability to provide information about the temporal activity of brain
signaling with excellent temporal resolution (ms), and good spatial resolution (mm
range for single source localization and cm range for source discrimination (Supek
and Aine 1993, 1997)), and therefore has a unique potential as a tool to investigate
brain activity. Furthermore, since MEG offers the capability of providing com-
prehensive information concerning brain signaling it can also be used for char-
acterizing the fine temporal dynamics of signals underlying cognitive deficits in
clinical populations. However, to date, there has been a lack of accepted standards
within the MEG community as to what types of analyses are optimal for which
types of studies. It is understood that with a given set of assumptions and
parameters, the analysis methods each have unique strengths and weaknesses,
depending on how they are used (for some examples see (Liljestrom et al. 2005)).
Yet a systematic understanding of these methods remains limited. This is in part
due to the mathematically ill-posed nature of the inverse problem for source
reconstruction of MEG data (i.e., the reconstruction of the current distribution
inside the brain based on measurements made outside the head). To solve the
inverse problem, constraints need to be applied to obtain a unique solution (Baillet
et al. 2001). These constraints vary between analysis methods (Hämäläinen et al.
1993), thereby making certain analysis techniques more appropriate for particular
research questions, and making it challenging to choose one or a few analysis
methods as ‘‘best’’ in most cases as has occurred in other neuroimaging fields (e.g.
fMRI, PET). To further complicate the standardization of MEG data analysis
techniques, the various MEG systems have different types of sensor pick-up coils,
different number of sensors, and a variety of filtering methods and analysis soft-
ware, much of which is proprietary.

Of the four broad categories of inverse procedures: equivalent current dipole
(ECD), minimum norm (L1 and L2 norms), beamformer, and Bayesian, each has
limitations associated with it as discussed below. Critics of the earlier dipole mod-
eling approaches emphasize the difficulties in: (1) accurately localizing more than
one or a few point current dipoles; (2) using point current dipoles to localize extended
sources; and (3) determining the number of sources to be included in the search a
priori (Liu et al. 1998; Fuchs et al. 1999; Uutela et al. 1999; Huang et al. 1998, 2006;
Lin et al. 2006; Mattout et al. 2006, Mosher et al. 1992). Our greatest concern for
the multidipole, spatiotemporal modeling methods is that under-estimation of the
number of true sources can compromise location and timecourse accuracy for
the identified sources (Supek and Aine 1997; Greenblatt et al. 2005). This is because
multidipole modeling methods attempt to account for the entire measured signal via
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a set number of sources, and the omission of one source will generally change
the position and/or magnitude of other sources to account for the signal from the
omitted source. This is not true for the minimum norm, beamformer, or Bayesian
methods. We later discuss a CSST dipole modeling technique, and show how it
can accurately localize (mm spatial resolution) simple and complex source
configurations.

In contrast, critics of the minimum norm-based (Hämäläinen et al. 1994)
approaches state that: (1) the results often appear smeared, even for point current
sources and at times may become split across lobes which produce spurious or ghost
sources leading to imprecise estimated dynamics (David et al. 2002; Michel et al.
2004; Lin et al. 2006); (2) the solution is biased toward superficial source locations
leading to the application of depth weightings by some groups (Ioannides et al. 1990;
Lin et al. 2006); (3) the smeared or broadened effect becomes more pronounced
with a decrease in signal-to-noise, potentially leading to false positive sources
(Wischmann et al. 1995); and (4) it is severely under-determined thereby requiring
the use of regularization methods to restrict the range of possible solutions.

Although the linearly-constrained minimum variance (LCMV) beamformer
(Vrba and Robinson 2000) has higher spatial resolution than minimum norm-based
methods when cortical sources are focal, the underlying assumption is that neural
sources are incoherent. Coherent signals will cause the beamformer to fail in
finding locations of other coherent sources due to partial cancellation (Hui et al.
2010) which is a potential problem for cognitive data where coherence typically
abounds. For example, in working memory studies, activity tends to synchronize
across many widespread brain regions for seconds (Aine et al. 2003). Fortunately,
several groups have recently introduced variants of the beamformer that can
reportedly deal with coherent sources, with some restrictions [e.g. Dalal et al.
(2006); Brookes et al. (2007, 2011); Diwakar et al. (2011); Moiseev et al.
(2011)visual and auditory studies]. However both beamformer and minimum norm
techniques have some difficulty in examining functional connectivity or cortical
interactions, given the robust cross-talk present in the data (Hui and Leahy 2006;
Hui et al. 2010). But, the general advantages of minimum norm and beamformer
methods are that they require less analysis time making them quicker to use.

Finally, there are Bayesian methods (Jun et al. 2005; Schmidt et al. 1999; Wipf
et al. 2010). The current drawback of these methods is that they have not yet been
widely applied to empirical data. In part this may be due to a need for large
computational resources since some versions utilize a Markov Chain Monte Carlo
approach to generate sets of activity parameters that are distributed according to
the posterior distribution (Schmidt et al. 1999). However proponents of this
method state that the Bayesian method combats the issue of ill-posedness by
offering a general formulation of regularization constraints. In addition, the
Bayesian approach provides statistical performance tools. These tools include the
estimation error covariance and the marginal probability density of the measure-
ments (Brooks et al. 2005).

Recently, the strong interest in functional connectivity that has arisen in the
MEG field has investigators combining some of the above mentioned localization
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methods with other types of analyses to determine which and how sources of
activity are temporally related. Functional connectivity has historically been
assessed in sensor space (e.g. de Pasquale et al. 2010), but new methods are being
developed to determine functional connectivity in source space. For example,
Brookes et al. (2011) have used a beamformer localization method, along with a
Hilbert transform to derive the analytic signal, to which independent component
analysis (ICA) is applied, in order to identify the functional networks of activity.
The oscillatory and DMN simulations that have been created and described in
Sect. 2.6 could be used to further characterize the strengths of such an analysis
procedure.

Given the above, we have established the MEG-SIM website containing both a
series of realistic simulated data sets and empirical data sets for testing purposes
(http://cobre.mrn.org/megsim/). Through a partnership formed between the Mind
Research Network (MRN), Massachusetts General Hospital, University of
Minnesota/Veterans Affairs in Minneapolis, University of New Mexico, and Los
Alamos National Laboratory, we acquired MEG data using three different MEG
systems (VSM MedTech 275, Elekta-Neuromag 306, 4-D Neuroimaging 3,600)
and three different sensory paradigms (visual, auditory and somatosensory) for
each of 9 participants. A grant from NIMH (R21MH080141) then allowed us to
create realistic simulated data derived from the real noise contained in the col-
lected empirical data. A web portal was established so others can access both the
simulated and empirical datasets with the hope of furthering algorithm perfor-
mance assessment and development through the MEG-SIM website. We refer to
the testbed as ‘realistic’ simulated data because: (1) colored noise is used in most
examples (i.e., simulations are embedded in spontaneous data containing corre-
lated noise); (2) the simulated timecourses and source locations are based on
findings from empirical data; (3) focal and extended cortical patches are created
from MRIs of individual participants (i.e., the SNR and orientation of sources
differ across participants); and (4) in some cases each of the unique single trials
and continuous data, mimicking actual data acquisition, are provided.

We assert that if an algorithm fails to identify the simulated sources and
timecourses under realistic conditions (e.g., similar SNR as empirical data with
real artifacts occurring at random intervals), then one cannot realistically expect to
obtain correct results in empirical data. If an algorithm provides reasonable
solutions to simulations then it is standard practice to next apply the algorithm to
simple sensory empirical data where the literature provides information on the
expected locations and timecourses of sources (e.g., non-human primate studies)
before attempting analysis of cognitive datasets, where the literature is not yet well
established. We have designed the simulated datasets to provide a wide range of
realistic examples emulating brain activity. We specifically tried to design these
simulations such that one analysis approach would not be favored. We hope
developers will utilize these data to further develop and refine MEG analysis
methods. Similarly, we hope that users of the algorithms will compare and contrast
their favored approaches with others. Because we are avid users of a semi-
automated, multidipole, spatiotemporal approach [Calibrated Start Spatio-Temporal
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or CSST; (Ranken et al. 2002, 2004)], many of the solutions shown herein are
from the CSST algorithm to demonstrate the efficacy of these simulations. Because
the empirical datasets were covered in depth in Aine et al. (2012), we only briefly
describe those that are available at the MEG-SIM website in Sect. 3 of this chapter.

2 Simulated Datasets

2.1 Software

The simulated data were primarily created using MRIVIEW and MEGAN software,
both of which are made available at the MEG-SIM website. MRIVIEW (Ranken
and George 1993; Ranken et al. 2002) is a software tool for integrating volumetric
MRI head data with functional information (e.g., EEG, MEG, fMRI—see chapter in
this volume by Ranken for further details on MRIVIEW). A Forward Simulator is
included in MRIVIEW for creating multiple focal or distributed-source regions of
arbitrary size and orientation, allowing users to create a vast array of simulated
datasets. We have used these tools previously for simulating epileptic spikes that
were then embedded in spontaneous activity from patients (Stephen et al. 2003a,
2005).

MEGAN (E. Best) organizes the data from the different MEG systems into a
consistent data format, netMEG, a self-documenting and highly portable file,
written using netCDF format. This netCDF file is imported into MRIVIEW. The
simulated sensor measurements are obtained by summing the forward fields from
all of the simulated sources. White noise, simulated noise or real noise from MEG
acquisitions can then be added to the calculated forwards to generate simulations
of empirical MEG data. More information about MEGAN can be found in Aine
et al. (2012).

CSST (Calibrated Start Spatio-Temporal) is a multidipole, spatiotemporal
modeling approach to source localization that has been automated, i.e., it takes the
traditional starting parameter guess(es) out of the hands of the investigator. CSST
uses the Nelder-Mead non-linear downhill simplex procedure to perform a spatial
search (Nelder and Mead 1965) and utilizes information based on a singular value
decomposition (SVD) of the data matrix for determining an approximate number of
sources to be localized (a range of source models is then chosen by the investi-
gator). CSST runs multiple instances of the downhill simplex search from random
combinations of MR-derived starting locations from within the head volume on a
Linux PC cluster. CSST has been used extensively with both Neuromag 122 and
CTF 275 MEG systems (Stephen et al. 2003a, b, 2005, 2006; Aine et al. 2000, 2010)
as well as the Neuromag Vectorview 306-system (Stephen et al. 2012; Susac et al.
2010, 2011; Golubic et al. 2011). CSST has also been thoroughly tested on EEG
data.
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2.2 Physiologically Plausible Simulations

The initial simulated datasets were constructed using two different-sized patches of
cortex determined via MRI (*4 and *20 mm2) and two different source
strengths (30 and 50 nAm). We used these values because our previous empirical
results suggest that those current strengths are typical of what is encountered in
visual and auditory studies [e.g. Table 2 in Aine et al. (2006) and Fig. 4 and
Table 3 in (Aine et al. (2005)]. In addition, the empirical visual paradigm used to
acquire data at each MRN partner site utilized small and large stimuli (1.0� and
5.0� visual angle) designed to activate *4 mm2 of tissue and *20 mm2 of tissue
in primary visual cortex, according to the cortical magnification factors presented
in Rovamo and Virsu (1979). We attempted to equate the simulated and empirical
parameters since the goal was to produce both focal and extended activity. This is
necessary to evaluate analysis methods where source extent is believed to be dealt
with less effectively (e.g. dipole modeling). The somatosensory study used elec-
trical stimulation of the index finger and median nerve, to produce focal versus
extended sources. The auditory study used individual pure tones and bursts of
white noise to evoke focal versus extended activity. Additional justification for
parameter choices can be found in Aine et al. (2012).

2.3 Simulated Visual Data

The locations, timing, and extent of the simulated sources (see Table 1 for Sets
1–5) were generated based on our previous basic visual (Stephen et al. 2002) and
visual working memory studies (Aine et al. 2006). Set 3 differs from Set 1 in
having synchronous late activity. Set 1.B and 3.B differ from 1.A and 3.A in dipole
strengths (i.e., larger cortical patches). Note, these latencies are modeled after
empirical visual studies but they were embedded in the noise file so that *200 ms
was treated as prestimulus baseline. DLPFC (dorsolateral prefrontal cortex) and
AC (anterior cingulate) were treated as ramping activity peaking later in time.
Definitions of areas are: V1 = visual area 1; V2 = visual area 2; V3 = visual area
3; I. LOG = inferior lateral occipital gyrus; IPS = intraparietal sulcus; S.
LOG = superior lateral occipital gyrus; RHC = right hippocampus. We varied the
synchronicity of sources to allow developers to determine an algorithm’s sensi-
tivity to fine temporal changes. Parameters that vary within and across datasets
include: number of sources, focal versus extended sources, source strengths,
degree of synchrony of sources, and noise level or type of noise (white noise or
spontaneous noise). The first 5 sets were produced for 5 participants using indi-
vidual cortical geometries, different SNRs, and empirical noise data from both the
CTF Omega 275 and Neuromag Vectorview 306 MEG systems. Although it was a
goal to simulate these cases for the 4-D Neuroimaging Magnus 3,600 system as
well, funds for this project ended before we could do so. Timecourses were usually
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modeled using 3 Gaussians (e.g., early spike-like activity followed by later slow-
wave activity) as typically found in many visual and auditory MEG studies (Portin
et al. 1999; Aine et al. 2003, 2005, 2012; Vanni et al. 2004; Kovacevic et al. 2005).

In the simulated example shown in Fig. 1, a Freesurfer-segmented gray matter/
white matter boundary for the simulations was imported into MRIVIEW (Fig. 1a),
although the segmentation may also be accomplished within MRIVIEW. The
simulated activation timecourses (signal) are shown Fig. 1b. In each case, 100
single trials of real spontaneous background activity were averaged together as the
noise trial for each of the 5 participants and for each of the MEG systems (Fig. 1c).
Then the signal was embedded within the averaged noise file (Fig. 1d). For all
simulated datasets on the web portal, a spherical head model was used for the
simulations and modeled data; however, a boundary element model (BEM) is also
available in MRIVIEW.

Table 2 shows actual source locations, CSST estimated source locations, and
errors when either noise was absent (no-noise) or empirical noise was present for
visual simulated data Set 4. CTF head-centered coordinate system is used, where
-x points out the back of the head, +y points out the left ear, and +z points out the
top of the head. Average error across the 6 sources was 0.1 mm for the no-noise
condition and 6.8 mm for the real noise condition. Standard deviation (SDev) is
shown for estimated solutions for real-noise simulated data. This table demon-
strates that the presence of real noise significantly affects source localization
accuracy; however, our CSST solution for the real noise condition was still good
for this complicated dataset, and inconsistent with previous critiques of dipole-
modeling approaches that state dipole methods cannot accurately localize more
than a few point sources of activity. Further, Table 3 lists CSST output when

Table 1 Onset latencies and amplitudes of sources in different visual areas used for each sim-
ulated dataset. Reprinted from Aine et al. (2012) with permission from Springer

VI V2/V3 I. LOG IPS S.LOG DLPFC AC RHC

Set 1.A 80 ms 90 ms 100 ms
30 nAm 30 nAm 30 nAm

1.B 80 ms 90 ms 100 ms
50 nAm 50 nAm 50 nAm

Set 2 90 ms 90 ms 100 ms
15 nAm 30 nAm 30 nAm

Set 3.A 80 ms 90 ms 100 ms
30 nAm 30 nAm 30 nAm

3.B 80 ms 90 ms 100 ms
50 nAm 50 nAm 50 nAm

Set 4 90 ms 90 ms 100 ms 100 ms 300 ms* 400 ms*
15 nAm 30 nAm 20 nAm 30 nAm 20 nAm 30 nAm

Set 5 90 ms 90 ms 100 ms 100 ms 300 ms* 400 ms* 80 ms
15 nAm 30 nAm 20 nAm 30 nAm 20 nAm 30 nAm 51 nAm

* DLPFC and AC were treated as ramping activity peaking later in time
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Fig. 1 A Freesurfer-segmented gray matter/white matter boundary for the simulations (shown in
red) was imported into MRIVIEW from which patches (a) of simulated activity (b) were
generated. 100 passes of spontaneous activity or noise (c) were identified using CTF software
(Data Editor) and averaged together using MEGAN. The simulated activity was embedded within
the averaged noise file (d) and saved in netCDF format (i.e., a netMEG file in MEGAN).
Reprinted from Aine et al. (2012) with permission from Springer

Table 2 Actual and CSST estimated (‘‘no-noise’’ and ‘‘real-noise’’) locations for a 6-source,
realistic simulation

SET 4 6
sources

Source V3 Error
(mm)

Source I. LOG Error
(mm)

Source IPS Error
(nm)

X Y Z X Y Z X Y Z

Actual -70.0 5.9 75.8 -59.7 33.2 42.9 -22.1 38.3 82.6
No noise -69.7 6.0 75.9 0.3 -59.8 33.3 42.9 0.1 -22.1 38.2 82.7 0.1
Real noise -61.3 4.3 74.1 9.0 -55.6 31.7 44.5 4.6 -18.7 28.7 71.8 14.8
SDev

(Real)
0.3 2.3 1.6 1.6 0.3 0.4 1.5 1.7 0.9

Source R. frontal Source AC Source S. LOG

X Y Z X Y Z X Y Z

Actual 58.1 -41.5 46.2 74.1 -7.0 47.8 -31.3 -40.7 60.3
No noise 58.1 -41.7 46.2 0.1 74.0 -7.1 47.6 0.2 -31.4 -40.8 60.3 0.1
Real noise 58.5 -43.2 44.0 2.8 72.6 -9.9 46.7 3.4 -27.5 -36.1 59.1 6.1
SDev (Real) 0.1 0.1 0.4 0.5 0.3 0.2 0.5 0.6 0.6
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varying the model order (i.e. number of fitted dipoles) for a 3-dipole simulated
dataset. The solutions (1–4 Dipoles) shown are for real spontaneous noise.
Timecourses (shown as absolute values, bottom) are from the 4-dipole fit to
3-source data. In Table 3 the entries P1, P2, and P3 correspond to the Pk 1, Pk 2,
Pk 3 timecourses. Notice that the noise timecourse is low-amplitude and without
structure. As this table shows, under-modeling (1- and 2-dipoles) results in large
localization errors. In contrast, localization errors are often reduced when over-
modeling by 1 dipole (i.e., 4-dipoles for this 3-source dataset). Fortunately, noise
sources are often easy to identify by a lack of timecourse structure and low
amplitude (lower right panel).

Set 6 (remaining sets are not shown in Table 1) includes late activity (e.g.,
400–600 ms) that was synchronous across four cortical sites (V1, I. LOG, IPS, and
DLPFC), as is seen in working memory studies (Aine et al. 2006). The upper left
panel of Fig. 2 displays the locations of the cortical patches (cortical patches are
located at the cross-hairs) while the timecourses assigned to the cortical patches
are shown beneath the MRIs. The averaged waveforms (128 trials with signals
embedded in real spontaneous noise) seen across the 275 channels of the CTF
MEG system are shown in the middle left column. CSST source locations are
shown in the upper right panel (see tabled values). The table shows the coordinates
of the actual sources, the estimated source locations, and the errors using
Euclidean distance. Net source orientation errors were 42.0� for V1, 58.2� for I.
LOG, 20.9� for IPS and 48.0� for the DLPFC sources. However, summarizing
absolute orientation error is challenging since the original sources consisted of

Table 3 Sample output from an automated routine for determining best-fits to 3-source simu-
lated data

Source
location

Loc error mm
(STD)

Peak amplitude
error nAm

Peak latency
error ms

Avg Loc
error mm

Pk
1

Pk
2

Pk
3

Pk
1

Pk
2

Pk
3

Real
spontaneous
noise

1 Dip-V3 17.5 (0.15) 12.4 42.5 19.6 3.0 1.0 18.0 17.5
2 Dip-Vl 9.25 (0.11) 1.6 4.7 1.0 4.0 2.0 2.0
2 Dip-IPS 7.22 (0.08) 5.1 21.5 11.0 7.0 4.0 18.0 8.23
3 Dip-V1 4.93 (0.13) 1.1 0.45 2.2 5.0 2.0 1.0
3 Dip-V3 4.98 (0.12) 1.9 7.1 4.1 13.0 0.0 25.0
3 Dip-IPS 2.32 (0.05) 1.3 4.6 2.8 6.0 2.0 15.0 4.08
4 Dip-V1 3.11 (0.14) 0.03 3.6 0.80 4.0 2.0 6.0
4 Dip-V3 3.51 (0.14) 3.2 5.1 2.5 1.0 1.0 29.0
4 Dip-IPS 1.56 (0.05) 1.4 5.6 3.6 5.0 2.0 18.0 2.73
4-Dip-N Noise – – – – – –
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patches of cortex with the orientation of the patch activity conforming to the
cortical folds. The middle right panel shows the estimated timecourses and source
locations. The average localization error across all 4 sources was 6.7 mm with the
greatest error for the I. LOG source. The cross-correlations between timecourses
are shown in the bottom row of Fig. 2. We examined early activity first
(200–350 ms–bottom left panel) which shows that V1 activity correlated highly
with I. LOG, regions showing the initial spike-like activity (*280 ms). IPS and
DLPF cross-correlations were also highly correlated with near zero-lag. The
maximal correlation coefficients of the other pairs of sources were lower in value

Fig. 2 Simulation results for a 4-source model (Set 6) where all sources became synchronous
during the later interval (see upper left panels for source locations (cross-hairs) and timecourses
of the sources). Amplitudes and peak latencies were jittered across each of 128 single trials. The
averaged waveforms seen at the sensor level for the CTF system are shown beneath the input
timecourses. Upper right table shows CSST actual locations and errors associated with modeled
source locations. The middle panel shows location and timecourse plots of the CSST solutions.
Bottom row shows cross-correlations between source timecourses for an early interval (left) when
there was some asynchrony across sources and a later interval (right) when all sources became
synchronous. Adapted from Fig. 5 Aine et al. (2012) with permission from Springer
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and were not near zero-lag. In contrast, the late activity (350–600 ms—bottom
right panel) shows higher zero-lag correlation coefficients for activity between the
4 brain regions (i.e., late activity was synchronous across brain regions) with IPS
and DLPFC revealing the highest correlation coefficient. This dataset is also
suitable for examining coherence either between sensors or between reconstructed
sources.

Next, single-trial datasets were created with and without oscillatory activity,
with some reflecting functional connectivity in a working memory task, which are
suitable for additional types of analyses (i.e., time-frequency analyses, Granger
Causality, etc.). In this case, sources embedded within 128 single trials of noise
were jittered about their mean latency and amplitude. This dataset (Set 7) is similar
to Set 6 (VSM-CTF MEG System). Again, the four cortical sites were: (1) primary
visual cortex (V1); (2) inferior lateral occipital gyrus (I.LOG); (3) intraparietal
sulcus (IPS); and (4) dorsolateral prefrontal cortex (DLPFC). The cortical patch
current strengths were initially assigned values similar to those we observe in our
visual working memory studies (30–50 nAm peaks) using the MRIVIEW Forward
Simulator (Ranken and George 1993; Ranken et al. 2002) but were then randomly
jittered about those values by up to ±50 % across the single trials. Peak latencies
were also jittered across each trial by a randomly selected value up to ±FWHM/2.
To allow for source analysis of averaged evoked responses, the 128 single trials
were then averaged together and written out to the netCDF file format. Therefore
each of the 128 single trials plus the averaged file is available at the MEG-SIM
website, in netCDF format.

In Set 8, oscillatory activity was added to Set 7 timecourses (Fig. 3). For the
time-locked oscillatory activity, V1, I. LOG, and IPS oscillated between 30 and
60 Hz (gamma band) across the 128 trials while IPS and DLPFC oscillated
between 14 and 28 Hz (beta band). Oscillatory activity for DLPFC was delayed by
20 ms relative to IPS, and IPS gamma activity was delayed by 10 ms relative to
IPS beta activity (see schematic in Fig. 3a). The delays were meant to reflect
normal time delays between visual areas (Stephen et al. 2002). Gamma activity
mimicked local circuitry activity between V1, I. LOG, and IPS while beta activity
mimicked long-range connections between IPS and DLPFC. For both beta and
gamma oscillations, the amplitudes were set at 10 nAm and were then jittered
between 5 and 15 nAm across the 128 trials. Note that the latencies, and therefore
the phase of the oscillations, were kept constant between brain regions, and also
between trials. As with the other simulated data sets, the timecourses were con-
structed within MRIVIEW, however, they had to be constructed independently;
i.e., one timecourse contained the evoked response plus real noise while the other
timecourse contained the oscillations without noise. The two timecourses were
then added together using a Matlab script. Again, to allow for source analysis of
the averaged responses, the 128 single trials were averaged together to create a
single averaged dataset, and were written out to a netCDF file (datasets for two
subjects were created).

Figure 3b shows the input signal at the sensor level across sources before
oscillatory activity or noise was added. Sample single trials are shown where peak
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amplitudes (of both the evoked and oscillatory activity), peak latencies (of the
evoked activity only), and frequency of the oscillatory activity were jittered across
trials so each single trial is unique. The average of the 128 single trials is shown
beneath. Figure 3c and 3d show the output of the CSST algorithm. CSST provides
both the locations of the dipoles and the reconstructed timecourses of activity.
Table 4 contains the results of this analysis for the two visual/working memory
datasets that were created for the first subject (i.e., single trials averaged with and
without oscillatory activity). Our results show that CSST can accurately recon-
struct both temporal and spatial characteristics of the simulated datasets, even with
noisy and oscillating sources. Time-frequency plots are shown in Fig. 3e for

Fig. 3 Simulated visual working memory with long-range beta band and short-range gamma
band oscillatory activity (see (a) schematic). DLPFC and IPS oscillated at 15–20 Hz while IPS, I.
LOG, and V1 oscillated at 30–80 Hz. IPS generated both beta and gamma band oscillations.
a The averaged input signal without noise is shown followed by sample single-trials and the
averaged data as seen at the sensors of the CTF system. c CSST location estimates and their
associated timecourses (d) are shown. e Time-frequency representations using Morlet wavelets
for the CSST solutions shown above. Frequency was normalized to the Nyquist frequency = �*
sampling frequency (600 Hz). Oscillatory activity was given 10 nAm on average across trials.
Reproduced from Aine et al. (2012), with permission from Springer

296 L. Sanfratello et al.



gamma and beta bands. Gamma band activity is primarily seen in dipoles located
in V1, I.LOG and IPS, which is consistent with the simulated data. No gamma
activity was provided to DLPFC and correspondingly, gamma activity during this
interval of time is essentially non-existent. It appears that the initial spike-like
activity in the timecourse has a predominantly beta component to it as seen in the
V1 and I.LOG beta band plots. IPS and DLPFC, in contrast, reveal beta band
activity throughout the interval, which is consistent with the simulated data. This
shows how our realistic simulated oscillatory activity datasets can be used for
testing various frequency analyses and inverse procedures. Again, these data also
come with all 128 unique individual trials for investigators wishing to apply single
trial analysis methods.

Many MEG/EEG investigators are familiar with more traditional analyses of
functional connectivity such as that provided by coherence analysis. Here we show
that coherence analysis can be conducted both at the sensor and the source level
using our simulated datasets. For example, a sensor near V1 which showed a large
evoked response was chosen as the sensor of interest (see Fig. 4a, sensor #273
encircled by a green ring). Next the averaged simulation file (Set 7) was imported
into Matlab where ‘‘mscohere’’ was used to determine the coherence of sensor 273
with every other sensor in the MEG array for the frequency range 30–60 Hz. This
coherence analysis was repeated for the simulation in which oscillations had been
added to the sources as described above (Set 8). Results show a clear increase in
coherence between sensors which had gamma band oscillations added to nearby
sources. Coherence analyses were also carried out at the source level for Set 8
(Fig. 4b). In this example, coherence in the beta band was examined between
sources (i.e., output from CSST). Beta oscillatory activity was added to DLPF and
IPS sources and the bottom figure of Fig. 4b shows the resulting coherence
between these two sources (IPS is the reference source shown in white and its
coherence (normalized magnitude) with DLPF is represented by red color). It turns
out that the initial spike-like activity of the timecourses also has a beta band
component as indicated by the coherence between reference source V1 (shown in
white in the upper Fig. 4b) and I.LOG. Recall that the time-frequency plots shown
in Fig. 3e also revealed this information (see Beta activity for V1 and I.LOG).

Table 4 CSST results for
simulated datasets with 4
visual sources based on
averaged waveforms without
oscillatory activity (top) and
with oscillatory activity
(bottom) for Subject #1

Source Loc. error (mm) Lat. error (ms) Amp. error (nAm)

Single trials (Set 7):
VI 1.5 6 2.5
I.LOG 9.4 4 3.2
IPS 3.7 3 7.9
DLPF 8.9 13 6.8
Single trials with oscillations (Set 8):
VI 4.7 6 9.8
I.LOG 9.7 1 4.8
IPS 7.0 1 11.2
DLPF 4.9 16 2.4
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For the final visual simulated dataset (Set 9), the same data as Set 8 was created
for the Neuromag 306 system with different noise trials and sensor configuration
relative to the CTF 275 system. In this case, a Matlab program utilized the netCDF

Fig. 4 a Sensor level coherence analysis with no oscillatory activity applied to underlying
sources (top) and with oscillatory activity applied to underlying sources (bottom). b Source level
coherence analysis relative to the white source (V1 Top, IPS Bottom) of Beta band activity. Level
of coherence is indicated by the colorbar

Table 5 CSST results for
Subject #2 for both CTF (Set
8) and Neuromag (Set 9)
MEG systems

Source CTF Neuromag

Single trials and oscillations Loc. error (mm) Loc. error (mm)
VI not found 9.9
I. LOG 7.5 3.7
IPS 4.2 2.8
DLPF 2.1 4.7
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toolbox for manipulating the opening and closing of the netCDF files containing
the individual evoked waveforms and the individual oscillatory waveforms, which
were created at cortical locations as similar as possible to Set 7. The simulated data
were again created using MRIVIEW and MEGAN. Matlab was used to import the
timecourses of the individual areas of evoked activity which were then jittered (in
the same way as discussed above) and combined with randomly selected instances
of Neuromag 306 noise which was read into Matlab using Fieldtrip functions
(http://fieldtrip.fcdonders.nl/). One hundred single trials were created containing
evoked and oscillatory activity. This was automated by the process of generating
single trials described previously for Set 8. The 100 single trials were then aver-
aged together and saved to a netCDF file, to be used with CSST analyses, and to a
Neuromag 306 FIF file to be used with Curry, a commercial software package
(Compumedics Neuroscan, Charlotte, NC http://www.neuroscan.com/) for the
sLORETA and SWARM analyses (Wagner et al. 2007) discussed below.

2.4 Preliminary Examples of Analysis Algorithm Output
for Visual Simulated Data

First, for comparison, multidipole, spatiotemporal source localization was con-
ducted for Subject #2 using the CSST algorithm for simulated data Sets 8 and 9
(CTF and Neuromag systems, respectively). Table 5 shows the results from these
analyses. Location was considered ‘‘not found’’ if it was C50.0 mm from the true
source. Once again CSST determines the locations of the active cortical areas with
a good degree of accuracy. We do find obvious differences between the results for
the CSST dipole fits for the two different subjects (compare Tables 4 and 5) and
between the same subject and the two MEG systems (Table 5). This was not
surprising since the simulations were (1) created using each subjects’ MRI,
therefore, the exact location of the cortical patch differs somewhat between sub-
jects which will result in different waveform distributions at the sensor level for the
different MEG systems; and (2) the V1 source was given a smaller initial
amplitude (30 vs. 50 nAm) in Subject #2, making it more difficult to identify.
Furthermore, there is also a slight variation in the noise trials chosen since the
noise trials were taken from the empirical datasets (therefore noise varied across
the MEG systems).

We next report the results of two L2 minimum norm-based current distribution
analyses, sLORETA and SWARM, available in Curry for the datasets made for
Subject #2. In current distribution models, the cortex is divided up into a large
number of elements, which form the solution space. Since the primary source of
the MEG signal is assumed to be associated with postsynaptic currents, a current
dipole is assigned to each of the many tens of thousands of tessellation elements
(user chooses exact number depending upon desired resolution). Additionally,
since the problem is under-determined (i.e. there are fewer equations than
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unknowns), the weighted least-squares criterion requiring that the prediction error
is minimized must be augmented with an additional constraint to select the best
current distribution among those capable of explaining the data. In the case of the
basic L2 minimum norm approach, the mathematical criterion is the solution that
minimizes the power (L2-norm) of the dipole moment. After adding noise nor-
malization, statistical significance of current estimates relative to the level of noise
can be determined using ‘‘dynamic statistical parametric’’ maps; sLORETA is a
variation of this approach (Pascual-Marqui et al. 1994, 1999; Dale et al. 2000;
Pascual-Marqui 2002; Wagner et al. 2004, 2008), while SWARM (Wagner et al.
2007, 2008) is an sLORETA-based method that provides current estimates instead
of probabilities. Simulated data was read into the Curry software package using
either DS files (for the CTF simulations) or FIF files (for the Neuromag simula-
tions). This allowed Curry to assign the correct coordinate system when importing
the data and provided access to the digitized fiducials in the files to be used for
accurate alignment with the subjects MRI, which was also imported into Curry.

Figure 5 shows preliminary results of the sLORETA and SWARM analyses
carried out using the Curry software package. The CTF simulations show results
that are more distributed in the IPS/I.LOG/V1 areas in both sLORETA and
SWARM in comparison to the simulations made with the Neuromag system,
which shows more focal solutions. This is not particularly surprising based on the
fact that planar gradiometers are more sensitive to signals directly below the
sensors. We additionally provide the results at two different thresholds, to show
that some activation may not be seen if the threshold is too high, e.g. compare the
CTF sLORETA results in Fig. 5, where the DLPFC area of activity is lost at the
higher cutoff. Figure 5 also shows that sLORETA was unable to find DLPFC
activity at either cutoff in the Neuromag data. In addition, it is possible to extract

Fig. 5 a sLORETA results using Curry at two different cutoff values (30 and 50 %) for the same
active cortical areas mixed with spontaneous noise files from the CTF and Neuromag systems.
b SWARM results using Curry at two cutoff values for the same active cortical areas and noise
files used in (a). c Timecourse reconstructions from SWARM using simulated datasets in
(b) (both CTF and Neuromag). Reproduced from Aine et al. (2012), with permission from
Springer
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timecourse activation from the SWARM analysis. Although Curry software pro-
vides timecourse extraction via ‘‘CDR dipoles’’, an ECD method, it also contains
the functionality to save the SWARM results into a Matlab file format for further
investigation. We utilized the latter method. As a first step to show how time-
courses can be extracted from the SWARM data we chose to identify areas of
activation as simply as possible. To this end we used Matlab to identify the areas
of highest activation from the SWARM data that Curry created, after importing the
Curry output into Matlab. We then plotted the timecourses at those locations (right
portion of Fig. 5); the only constraint was that the independent sources be greater
than 2.0 cm apart, which we empirically chose such that different sources were
resolvable at this separation. Note that the added oscillations (e.g., beta and
gamma band activity) can be easily identified. We have less experience with these
two L2 minimum norm-based analyses, therefore they should be considered pre-
liminary and no tables of error values are offered. We present a preliminary report
here hoping to encourage others to investigate these analyses further using the
same simulations. It is clear however that these simulated datasets are already
providing a reasonable challenge for a variety of analysis methods.

2.5 Simulated Somatosensory and Auditory Datasets

Simulated somatosensory and auditory datasets are also available at the web
portal. Simulating median nerve stimulation provides one of our simplest cases.
This activity consists of contralateral primary somatosensory (SIcontra), contra-
lateral secondary somatosensory (SIIcontra), and ipsilateral secondary somato-
sensory cortex activity (SIIipsi). In addition, an auditory dataset provides a simple
example of initial synchronous, bilateral activity in auditory cortex. This set also
includes asynchronous activation of the temporo-parietal junction and cingulate
cortex (4 cortical sources). For additional details on these datasets please refer to
Aine et al. (2012).

2.6 Preliminary Work on a Default Mode Network Dataset

Our newest and most preliminary simulation focuses on resting state data; that is,
we have developed a simulated default mode network (DMN) based on what is
typically found in the MEG/EEG and fMRI literature. For example we used a low
alpha oscillation, and the approximate locations for simulated activity included
prefrontal cortex (PFC)/medial prefrontal cortex, posterior cingulate cortex (PCC),
and right and left anterior parietal lobes (Brookes et al. 2011; Allen et al. 2014).
This first attempt exaggerates the probable size of some of the nodes for initial
testing purposes, and may underestimate others. Four 20 mm diameter patches
(approximately spherical) were located as shown in Fig. 6a within MRIVIEW.
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Each was given a 10 Hz oscillation, with, at this time, no relative phase lag.
Simulations with oscillation amplitudes of 20, 100, and 200nAm were created and
combined with resting state data from the Neuromag 306 MEG system. The
simulations were saved as both continuous files and averaged files, in both netCDF
and FIF formats. The simulation with the 100nAm oscillations was then analyzed
with three different methods, CSST and SWARM (from within Curry software)
which have been discussed previously, and ICA. For the ICA analysis EEGlab
(Delorme and Makeig 2004; http://sccn.ucsd.edu/eeglab/) was used to separate the
data into 102 independent components (ICs), using only the Neuromag magne-
tometer data from simulations, due to current capabilities of the EEGlab software.
Next, the 5 largest alpha band contributors were determined by the EEGlab
software and combined, as shown in the output, Fig. 6b. This is a typical EEG/
MEG DMN pattern, as expected (Hui et al. 2010; Brookes et al. 2011).

In addition, as seen in Fig. 6c, SWARM accurately reconstructs the DMN
pattern, with some additional sources of activation. And CSST, with a 6 dipole fit,
does a good job of accurately locating these distributed sources, although the
anterior parietal lobe sources are skewed medially, possibly due to the influence of
the large PCC source. SWARM and CSST analyses were conducted on averaged
data. As mentioned previously, this simulation and analysis is preliminary.

3 Empirical Datasets

Empirical MEG/MRI data were acquired for 9 participants at MRN, Massachusetts
General Hospital and University of Minnesota/Veterans Affairs in Minneapolis.
Data from 5 of the participants are available on the MEG-SIM website. Data were
acquired using the VSM MedTech 275, Elekta-Neuromag 306, 4-D Neuroimaging
3600 systems and 3 different sensory paradigms (visual, auditory and somato-
sensory) for each participant. Most participants had repeat testing conducted the
following day, which are also available. General characteristics of the sensory
studies were mentioned in Sect. 2.2 while detailed information is presented in
Aine et al. (2012).

4 Discussion

One objective of the MEG-SIM portal is to offer developers of MEG methods an
extensive testbed of realistic simulated and empirical data, established for the
purpose of quantifying the strengths and limitations of each analysis method for
the purposes of method standardization. This will aid in the refinement and further
development of algorithms. Second, we are all aware that some analysis proce-
dures are better-suited for certain types of studies while other analysis procedures
are better-suited for other studies. This set of realistic simulated data provided at
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the web portal (http://cobre.mrn.org/megsim/) includes sample datasets emulating
sensory and working memory-related processes across visual, auditory, and
somatosensory modalities. Users of MEG analysis procedures should be able to
make informed decisions as to which analysis tools are best-suited for their
research goals by working with these datasets.

The recent creation of continuous and single trial simulated datasets permit
testing of a wider variety of MEG analysis tools. Construction of continuous data
that mimic the differences between epochs of real data allow the use of analysis
techniques such as ICA to be used individually or in conjunction with various

Fig. 6 a Distributed source locations created within MRIVIEW to simulate DMN activity. Each
was given a 10 Hz oscillation, with a 100 nAm amplitude. b ICA analysis showing pattern of
activity similar to that seem in the literature for DMN. c SWARM analysis using Curry software.
d CSST analysis
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source modeling techniques to identify functional networks. These results can then
be compared with traditional source analysis conducted on averaged data, both at
the source and sensor levels. With the addition of oscillations to the simulated
datasets the accuracy of functional connectivity measures between various brain
areas using different analysis methods can also be investigated. Due to requests,
system-specific formats have been added, with identical cortical areas and
strengths of activation. For example, some of the simulated datasets described here
are now available in a variety of file formats, including netCDF, Neuromag FIF,
CTF DS and Curry (Compumedics, Neuroscan). Hopefully, the creation of these
new datasets and formats, including novel continuous and DMN simulations, will
foster algorithm performance comparisons and facilitate cross-site collaborations.
We hope that these examples provide sufficient evidence of the flexibility of the
simulations we created and we encourage others not only to use the simulations
that are currently available but also to suggest additional simulations that may
have widespread interest within the community.
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