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Preface

Magnetoencephalography (MEG), an invaluable functional brain imaging
technique, provides direct, real-time monitoring of neuronal activity which is
necessary for gaining insight into dynamic cortical networks. One distinct
advantage of measuring weak extracranial neuromagnetic fields is that there is
little attenuation in amplitude and/or smearing of the signals since they are pri-
marily generated by primary current sources and are minimally perturbed by the
intervening tissues of brain, skull, and scalp. MEG permits spatiotemporal tracking
of cortical pathways with sub-millisecond temporal resolution. Over the last four
decades families of analysis approaches have been developed and, to various
degrees, evaluated for their accuracy and effectiveness while corroboration of
results from independent methods such as intracranial recordings or combined
fMRI/EEG confirms that MEG is able to provide novel insights and details of
mechanisms mediating the functional organization of the human brain.

The field of MEG resulted from a merger of two lines of curiosity-driven
research in physics and biophysics. One aimed to explore quantum phenomena
related to low-temperature superconductivity which led to the development of the
most sensitive magnetic field sensors, Superconducting Quantum Interference
Devices (SQUIDs). The other aimed to understand physiological processes by
measuring the weak magnetic fields they generate. This merger was driven by
physicist David Cohen and electrical engineer/physicist James E. Zimmerman,
respectively. The fortuitous timing of their research programs was capitalized on
by Edgar Edelsack from the Office of Naval Research. By funding both of their
projects he brought them together which resulted in the first measurements of
biomagnetic signals generated by the human heart in the MIT shielded room. Their
joint paper published on April 1, 1970 suggested “medical uses of SQUIDs” and
marked the beginning of the field of biomagnetism. Only two years later (1972),
David Cohen published the first MEG paper and since then the field of neuro-
magnetism has been growing steadily. The excitement of being able to reliably
measure weak magnetic signals generated by the human brain led to intensive
instrumentation development for two decades, with a goal of capturing the entire
extracranial distribution of neuromagnetic fields via whole-head systems with
hundreds of sensors. Hardware development was accompanied by algorithm
development with the goal to identify the neuronal substrates of human perceptual
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and cognitive processes as well as the functional connectivity between brain
regions.

Although MEG developed in the laboratories of physicists and biomedical
engineers it quickly spread to include researchers with varied backgrounds
including those interested in imaging brains in health and disease. The range of
both basic and clinical applications of MEG is impressive and growing expo-
nentially; this book provides many examples of these research achievements. The
pace of acceptance of MEG methods was stymied some by the realization of the
need to apply inverse procedures to the field measurements. However, in actuality
all noninvasive methods apply reconstruction algorithms to the signals measured.
In contrast with other noninvasive functional imaging methods, the signals mea-
sured in MEG are direct measures of neural activity, not a correlate of it.
Hemodynamic measures, for example, will always be limited in temporal reso-
lution due to the sluggishness of the hemodynamic response itself (e.g., seconds
for fMRI and tens of seconds for PET). Additional advantages of MEG are:
(1) single subject analyses are conducted which are necessary for clinical appli-
cations while averaging of data across subjects can also be accomplished if
desired; (2) subtraction techniques between experimental conditions is not nec-
essary; (3) excellent spatiotemporal resolution can be achieved without the burden
of using complex head models as in EEG; and (4) it is an absolute measure and
thus does not require a reference as in EEG.

Our intentions for this book are to cover the richness and transdisciplinary nature
of the MEG field, make it more accessible to newcomers and experienced
researchers, and to stimulate growth in the MEG area. The book presents a com-
prehensive overview of MEG basics and the latest developments in methodological,
empirical, and clinical research, and is directed toward master and doctoral stu-
dents, as well as senior researchers. There are three levels of contributions:
(1) tutorials on instrumentation, measurements, modeling, and experimental
design; (2) topical reviews providing extensive coverage of relevant research
topics; and (3) short contributions on open, challenging issues, future develop-
ments, and novel applications. The topics range from neuromagnetic measure-
ments, signal processing, and source localization techniques to dynamic functional
networks underlying perception and cognition in both health and disease. Topical
reviews cover, among others: development on SQUID-based and novel sensors,
multi-modal integration (low field MRI and MEG; EEG and fMRI), Bayesian
approaches to multi-modal integration, direct neuronal imaging, novel noise
reduction methods, source-space functional analysis, decoding of brain states,
dynamic brain connectivity, sensory-motor integration, MEG studies on perception
and cognition, thalamocortical oscillations, fetal and neonatal MEG, pediatric MEG
studies, cognitive development, clinical applications of MEG in epilepsy, pre-
surgical mapping, stroke, schizophrenia, stuttering, traumatic brain injury, post-
traumatic stress disorder, depression, autism, cognitive neuropharmacology, aging
and neurodegeneration, and an overview of the major open-source analysis tools.

The book is divided into six parts. Part I includes tutorials on MEG measure-
ments, physical and physiological foundations of MEG, and experimental design.
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The remaining parts include topical review chapters and short contributions written
by leading MEG researchers. They are grouped around important MEG thrust areas
on source analysis and multi-modal integration, functional connectivity and
oscillatory activity, neurodevelopment across lifespan, and basic and clinical
studies. The book concludes with a range of emerging technologies which offer a
bright future for the field of neuromagnetism including combining MEG with ultra-
low field MRI, a prospect for direct neuronal current imaging, exciting develop-
ments in magnetic relaxometry, and advances in a new generation of sensors.
While we aimed to combine didactic and academic elements in this book, a
systematic synthesis was beyond our scope. The authors were asked to introduce
particular topics, including an extensive review of the relevant research area, and
to inject their own insights into their selected topic. All chapters were reviewed by
the two editors. However, no effort was made to achieve strict standardization of
symbols across contributions. There is some degree of overlap between certain
chapters, left intentionally for the benefit of the reader, which present aspects of a
given topic from differing viewpoints or by authors of differing backgrounds.

We hope that this book will be useful as a textbook for advanced master and
doctoral students as well as a valuable resource for new and experienced
researchers and practitioners. Since in quite a few chapters MEG is discussed in
the context of other major functional brain imaging methods and multi-modal
integration, the book may be of interest to researchers currently outside of MEG
research as well. The general aim of the book was to foster the development of the
MEG field by introducing most of the relevant concepts and topics, bringing the
latest cutting-edge MEG research results to the forefront as well as passing on our
enthusiasm and excitement for this field which is steadily advancing and growing
in relevance and applicability.

We had a great time interacting with so many friends and colleagues that we
have known for years, including pioneers in this field. This experience was most
pleasant, gratifying, and inspiring. We appreciate their support of this book project
and we are thankful for their contributions. Collaboration with Springer editor
Dr. Christoph Baumann was both pleasant and constructive. We appreciate his
guidance and assistance as well as the support of all the staff at Springer-Verlag
that made this project a pleasurable experience. We also acknowledge several
grants that supported our efforts on working on the book: a bilateral agreement
between the University Zagreb and University of New Mexico, the Croatian
Ministry of Science, Education, and Sport (grant 199-1081870-1252), NIH grants
from the National Institute on Aging (ROl AG029495), and the National Institute
of General Medical Sciences (8P20 GM103472-06). Regarding NIH support, the
content is solely the responsibility of the editors and chapter authors and does not
necessarily represent the official view of the National Institutes of Health.

May 2014 Selma Supek
Cheryl J. Aine
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Instrumentation for Measuring MEG
Signals

Yong-Ho Lee and Kiwoong Kim

Abstract To measure weak magnetoencephalography (MEG) signals, two basic
technical requirements are sensitive magnetic sensors and reduction of environ-
mental noises. Until now, magnetic field sensors based on superconducting
quantum interference devices (SQUIDs) made from low-temperature supercon-
ductors are the main sensors used for measuring MEG signals. For effective
reduction of strong environmental magnetic noise, combination of magnetic
shielding and gradiometers (hardware and/or software) are typically used. Since
SQUIDs are very sensitive devices, care should be taken in handling them and in
using them for multichannel MEG sensor arrays. Electrostatic shocks or strong
magnetic fields can damage the normal operation of SQUIDs. Cooling of the
SQUIDs needs a helmet-shape dewar which should provide reliable operation for
longer than 1 year in vacuum tightness, and boil-off of the liquid He should be
optimized to have refill interval longer than 1 week. For economic MEG systems,
the SQUID array should be simple in the manufacturing process, and the structure
of the sensor array should be compact. For the MEG system to be operated easily,
the process for signal acquisition and signal processing devices needs to be simple,
using a single personal computer. A magnetically shielded room (MSR) is man-
datory for urban hospitals or downtown laboratory environments. Considering the
high cost of magnetic alloy used in the construction of a MSR, optimization and
cost-effective construction is needed. Even if the MEG measurements are done in a
quiet or well-shielded environment, the signal-to-noise ratio of MEG signals are
not sufficiently high, and signal processing is needed to remove some artifacts
generated from the human body. This chapter presents basic technical issues for
MEG instrumentation, especially in fabricating and operating economic MEG
systems. In the later part of this chapter, atomic magnetometers for future non-
cryogenic MEG systems, and brain magnetic resonance based on low-field nuclear
magnetic resonance for visualizing brain functional activity are described.
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Keywords MEG - SQUID - Magnetometer - Flux-locked loop - Analog signal
processing - Data acquisition - Cooling - Dewar - Magnetically shielded room -
Nonmagnetic stimuli - Digital signal processing - Low-field MRI - Atomic
magnetometer + Cryocooler - High-temperature SQUID

1 Introduction

Measuring weak MEG signals in the background of strong environmental noise,
having a noise level of several orders of magnitude larger than the MEG signals, is
a challenging task. Since typical amplitudes of MEG signals are less than 1 pT,
sensitive magnetometers using SQUIDs are presently used. By using a helmet
shaped MEG system, mapping of neural currents with high temporal and spatial
accuracy can be done (Haméldinen et al. 1993; Del Gratta et al. 2001; Knuutila
2007). Up to now, several types of MEG systems having different SQUID sensor
types were developed and have been used in the hospitals or brain research
institutes. To collect the weak brain magnetic signals from the presence of strong
environmental noise, effective combination of MSR and SQUID pickup coils is
needed. A standard MEG system consists of helmet-type sensor array inside a
liquid He dewar, MSR, readout and control electronics, acquisition, stimulus
devices, signal processing and analysis computer. Figure 1 shows a typical block
diagram for the components of MEG systems.

Considering the high price of Ni-alloy materials used for the magnetic
shielding, it is desirable to use gradiometers than magnetometers to reduce the
amount of Ni-alloy. Currently two types of hardware gradiometers are used, that
is, axial or planar gradiometer, either in wire-wound or thin film structure.
Alternatively, software gradiometers having reference sensors located at some
distance from the signal sensors and software optimization to have best signal-to-
noise ratio can be used.

A SQUID is basically a converter from magnetic flux to voltage. However,
amplitudes of SQUID voltage output are quite small for typical input range of
MEG signals, requiring a low-noise preamplifier to readout the SQUID output.
To simplify the readout electronics of a multichannel SQUID system, the SQUID
output voltage should be large enough, otherwise a rather complex readout scheme
is needed (Drung 1996; Pizzella et al. 2001).

To increase the field detection area of a SQUID magnetometer or gradiometer,
flux transformer is used where a larger pickup coil, typically about 20 mm
diameter, picks up the magnetic field and converts it into flux through the input
coil. The intrinsic flux noise of SQUID increases with the increase of SQUID
inductance, thus the loop size of SQUID needs to be minimized. However, for
effective coupling of magnetic flux with the input coil, the SQUID loop size has a
certain practical limit, typically about 100 pm.
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Fig. 1 Block diagram of MEG measurement system

2 SQUID Sensors
2.1 SQUID as a Magnetic Field Sensor

In the operation of a SQUID, four basic superconducting phenomena are used: (i)
complete loss of electric resistance at temperatures below the critical tempera-
ture, (ii) perfect diamagnetism having no magnetic flux inside the supercon-
ductor, (iii) quantization of magnetic flux in a superconducting ring, (iv)
Josephson effect. Most of the present MEG systems use low-temperature
Nb-based SQUIDs. Nb has a superconductive transition temperature of about
9.2 K, and is a refractory and reliable material against repeated thermal cycling
between 4.2 K and room temperature. And the noise characteristics of SQUIDs
made from Nb/AlO,/Nb Josephson junction show low leakage current in the low
frequency range, which is an important requirement for measuring low-noise
MEG measurement. The fabrication technology of Nb SQUID sensors is now
well established and fabrication of many sensors on Si-wafers can be done (Lee
et al. 1999). The typical size of the SQUID chip is about 10 mm?, including pads
for wire bonding (Al and Nb).

Figure 2 shows the principle of measuring an MEG signal using a SQUID. For
the effective pickup of magnetic field signal, a superconductive flux transformer is
used, consisting of a pickup coil of a much larger diameter than the SQUID loop
and a multi-turn input coil integrated directly on the SQUID loop. When a mag-
netic field is applied to the pickup coil, a screening current is generated in the
superconductive flux transformer circuit, and this current is converted into mag-
netic flux through the input coil and magnetic coupling with the SQUID loop. In a
typical design of flux transformer and SQUID, about 0.5 nT of magnetic field in
the pickup coil corresponds to flux transfer of 1 @, into the SQUID loop.
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Fig. 2 Principle of measuring MEG signal using SQUID
2.2 Pickup Coil

Typical dimensions of SQUID loops are about 0.1 mm. Thus, to increase the
detection efficiency, pickup coils of a diameter larger than 10 mm is usually
needed. Among various types of pickup coils, magnetometers or hardware first-
order gradiometers are now used in present MEG systems. Figure 3 shows
examples of pickup coils.

Magnetometers have the best sensitivity to both deep and shallow sources.
At the same time, however, it is more vulnerable to external noises. The optimum
choice of a pickup coil depends on the details of the measurement condition;
thickness of the MSR, strength of environmental noises, and signals to be mea-
sured. Inside a thick MSR or in a quiet location, magnetometers as the sensing
element are preferable. In urban clinics or laboratories, there is often a limitation in
the thickness or weight of the MSR. Thus, moderate or medium-thickness MSRs,
in combination with gradiometers, is the best combination. Generally speaking,
axial gradiometers have longer baselines than planar gradiometers, so that it has
better sensitivity to deep sources than planar gradiometers. For shallow sources,
planar gradiometers have better sensitivity when the axis of current dipole (y-axis
in Fig. 3c) is perpendicular to the field derivative direction of the gradiometers
(x-axis in Fig. 3c).

A planar gradiometer can be made on a single wafer, that is, the planar pickup
coil can be integrated on the same wafer as the SQUID loop. For example, in the
Neuromag system, 2 perpendicular planar gradiometers and magnetometer are
integrated on the same element (wafer) (Parkkonen 2010).

A possible disadvantage of the axial gradiometer is the relative complex pro-
cess in assembling the axial gradiometer, and it needs superconductive connection
(bonding) between pickup coil wires and input coil pads. For the superconductive
connection between the pickup coil and the input coil, usually superconducting Nb
blocks or strips with screw terminals are used. To eliminate pickup area of the
magnetic field due to the superconducting connection structure, Nb blocks are
sometimes shielded using a superconducting tube (Ketchen 1987; ter Brake et al.
1992; Dossel et al. 1993). Since this superconducting block and tube introduces
distortion of magnetic fields, and they are installed at a sufficiently large distance
from the compensation coil of the gradiometer to maintain the balancing of the
gradiometer against the external fields, as shown in Fig. 4a. Increased length of the
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Fig. 4 Structure of axial gradiometer. a Conventional axial gradiometer having Nb block and
screw inside a superconducting shield. b Simplified axial gradiometer structure with direct
bonding between pickup coil and input coil

gradiometer requires higher level of liquid He to keep both SQUID and pickup coil
superconducting. In order to increase the refill interval of liquid He, it is desirable
to position the SQUIDs as close as possible to the gradiometers. Recently, some
improvements were made to remove the shielding tube, so that the SQUID is
positioned at about 20 mm from the compensation coil. But, the stray pickup area
due to the superconducting connection structure generates imbalance of roughly
few percent. A novel method to simplify the superconductive connection method
and to reduce the stray pickup area is direct bonding of Nb wire between pickup
coil wires and input coil pads. Thus, the fabrication process of the gradiometer
became simpler and the total length of the gradiometer can be shortened (Lee et al.
2009). Considering that the residual fields inside the MSR are not highly
homogenous, the intrinsic balancing of the gradiometers needs to be as large as
possible with simple fabrication process.
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Fig. 5 Response curve of the SQUID to magnetic flux. a SQUID output voltage as a function of
flux signal. b Principle of flux-locked loop operation. Change of signal flux (®s) is compensated
by a negative feedback flux (®rg) applied to the SQUID loop. @, is the flux quantum
(=2.07 x 10" Wb)

3 SQUID Electronics
3.1 Flux-Locked Loop Electronics

The voltage output of a SQUID is periodic like a sinusoidal function and nonlinear
with respect to the input flux as shown in Fig. 5a. To get a linear response against
the input flux signal, a special operation scheme, called flux-locked loop (FLL), is
used. In the FLL operation (Fig. 5b), the flux in the SQUID loop is locked at
a constant point using a negative feedback circuit, and the feedback voltage
(or feedback flux through the feedback coil) is measured as the final output.
Figure 6 shows a schematic circuit diagram of standard-type FLL operation. Since
the amplitude of SQUID output against input MEG signals is small, care should be
taken in detecting the SQUID output. For example, a typical MEG signal, say,
100 T corresponds to about 0.2 m®, in the SQUID loop, which generates a voltage
signal of 20 nV (for a typical flux-to-voltage transfer of 100 pV/®y). To detect this
level of voltage signal, careful design of a room-temperature preamplifier is needed.
For economic operation of multi-channel SQUIDs for MEG systems, simple and
compact room-temperature readout electronics are required. For the simple struc-
ture of the FLL circuits, output voltages and flux-to-voltage transfers of the
SQUIDs should be large enough so that the contribution of preamplifier input noise
is negligible in direct readout mode (Drung 1996; Drung and Miick 2004). A double
relaxation oscillation SQUID (DROS), based on the relaxation oscillation of a
hysteretic SQUID and a reference junction, provides large flux-modulated voltage
output and a steep flux-voltage transfer coefficient (Adelerhof et al. 1994; Lee et al.
1999; 2005). One example of a DROS design is shown in Fig. 7, which enables
direct measurement of SQUID output using room-temperature preamplifiers, and
makes the FLL circuits compact using DC bias current. In the FLL or internal
feedback scheme, there is crosstalk between adjacent pickup coils. Induced current
in the flux transformer generates a magnetic field, which can be picked up by nearby
pickup coils. This stray coupling can be eliminated by using the feedback scheme
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called external feedback or current feedback loop, in which the current in the flux
transfer circuit is kept constant (ter Brake et al. 1986).

Superconductivity is maintained under critical condition, that is, below critical
temperature, critical current, and critical field. If the SQUID is exposed to high
magnetic field or transient electric pulses, magnetic flux can be trapped in the thin
film SQUID. Trapped flux can deteriorate the performance of the SQUID or even
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make normal SQUID operation difficult. Trapped fluxes can be removed by
applying a current pulse of about 1 W, typically 0.1 ~ 1 s duration, to the
SQUID. The heater is placed close to the SQUID loop. During heating, the tem-
perature of SQUID temporarily rises to just above its superconductive transition
temperature, at the expense of temporary slight evaporation of liquid He.

3.2 Analog Signal Processing

The voltage output of a FLL circuit is too small to be measured directly by analog-
to-digital converter using a computer. Thus, intermediate amplifier and filters are
used which consist of high pass, low pass, power-line elimination filter and
amplifier. Typical cutoff frequencies for high and low pass filters are 0.01 ~ 0.1
and 100 Hz, respectively. Amplification is 100 or 1,000 times. Use of analog filters
makes acquisition easier and real-time monitoring of the acquisition process
easier. However, analog filters can change the shape of the signal waveforms and
introduce phase distortions. In addition to the separate space needed to house the
analog signal processing (ASP) circuits, an ASP usually consumes more electrical
power than the FLL circuit does. Recent MEG systems digitize the output of FLL
directly, and measure signals through optical fibers. Advantages of using optical
readout are (i) reduced power consumption, (ii) compact electronics and reduced
installation space by eliminating the ASP box, (iii) elimination of electric inter-
ference from outside of MSR, and (iv) increased dynamic range of FLL output.
Figure 8 shows the comparison of SQUID output measurement systems with
conventional ASP circuits (Fig. 8a) and ASP-free readout system (Fig. 8b).

4 Dewar

Modern MEG systems have helmet-shaped dewars covering the whole head.
Depending on the populations to be measured, there is slight variation in the shape
of the helmet. For example, a dewar for Caucasian people has a longer dimension
along the frontal-occipital direction than the dewars for Asian population. The size
of the dewar should be large enough to accommodate most of the population, but
too large of a helmet size increases the distance between the sensor surface
(measurement points) and the head surface at room temperature (Vrba et al. 2002).
This distance is about 20 mm or less. SQUID sensors can be installed either in the
liquid He reservoir or the vacuum space with tight thermal contact with the He
reservoir (coil-in-vacuum).

He dewar is made of fiberglass reinforced plastic, which is non-magnetic and
mechanically strong with low thermal expansion coefficient. Between the inner
and outer vessel, multiple (around 50) layers of superinsulation (SI) and vapor-
cooled thermal shields are installed. The SI is made from thin aluminum film
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Fig. 8 Schematic diagrams of the SQUID output measurement systems. a Conventional type
with ASP circuit and analog-to-digital converters. b ASP-free readout with signal transmission
using optical cables

deposited on flexible insulating substrate. To minimize the thermal magnetic noise
induced from the metallic film, the surface area of the aluminum is reduced by
dividing it into an island structure or by crinkling it. The thermal shield also should
be made to minimize the thermal noise. It is made of copper coil foil, which is a
woven fabric, made of thin enameled copper wires. Improper installation of SI and
the thermal shield at the helmet can increase the white noise of the SQUID system.
The white noise of the modern dewars is in the range of 1 ~ 2 fT rms/\/ Hz. Further
reduction of dewar thermal noise can be done with smaller sized aluminum islands
or thinner metallic layers at the expense of slight increase of boil-off rate. Figure 9
shows the structure of a typical dewar.

5 Magnetically Shielded Room

Depending on the noise conditions of the MEG site, an optimum combination of
magnetically shielded room (MSR) and pickup coil is needed. In rural or mag-
netically quiet sites, the requirement for MSR is lowered. In a usual urban hospital
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or laboratory environment, reliable reduction of environmental noise is a key step
for successful acquisition of MEG signals. The most effective and reliable method
of reducing environmental noise is magnetic shielding (Nowak 1998; Kelhi et al.
1982). Typical environmental noise spectrum in an urban site is shown in Fig. 10.
In an ordinary laboratory environment, low-frequency drift of the earth’s magnetic
field is in the range of 100 ~ 1,000 nT, with variation frequency of about 0.1 Hz.
Main sources of this low-frequency drift are operation (DC power supplied or
movement) of subway (tram), public transportation and elevators, etc. By using
high-pass filtering, this low-frequency drift does not affect the signal quality of
MEQG. But, if this drift is too large, the dynamic range of FLL could be reached,
resulting in saturation of the FLL output.

The amplitude of power line noise is in the range of 10 ~ 100 nT. Use of a
notch filter can reduce the noise peak at power line frequency, at the expense of
phase distortion near the elimination frequency. Some subways use a power sys-
tem generating strong 16.67 Hz noise peak (sub-harmonic of 50 Hz).

Mechanical vibrations of the building, MSR, gantry, and vibration of the sensor
insert inside the boiling liquid He dewar, etc., generate noise peaks in the fre-
quency range of 5 ~ 20 Hz, which overlaps with the frequency band of MEG
signals.

The MSR uses a combination of ferromagnetic shielding and eddy-current
shielding. For ferromagnetic shielding, high-permeability Ni-alloy, called
Mumetal or Permalloy, is used. Since the permeability of Ni-alloy is sensitive to
stress, care should be taken in handling the material, and the material has to be
hydrogen-annealed before assembling. The magnitude of residual DC fields inside
common MSRs for MEG measurements are about 10 nT. This DC field level
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Fig. 10 Environmental noise and shielding factor of MSR. a Typical noise spectra of
environmental noise. b Shielding factors as a function of frequency in moderately and heavily
shielded room, respectively, used for MEG measurements

increases with time due to accumulation of stress or gradual magnetization of the
soft ferromagnetic material. Thus, regular degaussing is needed to reduce the DC
field, by applying a magnetic field to the ferromagnetic material with a field
intensity much larger than the coercive force of the ferromagnetic material.

If the shielded room was assumed to be a cubic structure of side length L, the
shielding factors of the ferromagnetic material is

S=140.75ut/L,

where u, and ¢ are the relative permeability and thickness of the magnetic layer,
respectively. With a single layer, there is limitation in providing sufficient
shielding factor. Thus, a multiple-layer structure is preferred, with separation
between the layers.
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In a 2-layer cubic structure, the shielding factor is
S=1+8+8+88{1- (/L))

where S; (L;) and S, (L,) are the shielding factor (side length) of the inner and
outer layer, respectively. Typically, the separation between inner and outer layer is
about 20 cm, and then the term S;5,{ 1—(L]/L2)3} dominates in the above equation.
In 3-layer structure, even high shielding factors can be obtained,

S=1+58+8+8 +51S2{1 - (L]/L2)3} +S]S3{1 - (L]/L3)3} +S233{1 - (L2/L3)3}

81283 {1 = (La/22)" {1 - (Lo/12)'}

where S; (L;), S» (L,) and S; (L3) are the shielding factor (side length) of the inner,
middle and outer layer, respectively.

When the drift of the DC field is large, for example, at a measurement site near
the subway, expensive ferromagnetic shielding alone does not provide sufficient
shielding effect at low frequency, and an active compensation method is needed.
For eddy-current shielding, effective at a frequency above 1 Hz, high-electrical-
conductivity aluminum or copper plates are used (Erné 1983). Since electric
conductors generate thermal magnetic noise, the inner-most part of the MSR has a
ferromagnetic layer to shield the eddy-current noise from the conductive layer.

In eddy current shielding, an important parameter is skin depth ¢ given by

8= (p/mpef)",

where p is the resistivity, L, is the permeability in free space, and f'is frequency of
the noise wave. Typically the eddy current shielding effect is effective at about
1 Hz and above, and it increases exponentially with frequency, as given by

S = {(L/0)(1/(4y/2)}e!?,

where ¢ is the thickness of the conducting plate (Sullivan et al. 1989). The total
shielding factor of MSR made of ferromagnetic material and conducting material
is the product of those for ferromagnetic and conducting material.

Depending on the pickup coil type, thickness of the MSR can be different.
Shielding factors of typical MSRs used in MEG measurements are shown in
Fig. 10. Attenuation of the DC field is in the range of 1,000 ~ 10,000 times,
depending on the thickness and layers of ferromagnetic plates. A heavily shielded
room is used for a magnetometer array, or for gradiometers in a very noisy envi-
ronment. In addition to the cost for a heavily shielded room, weight of the heavily
shielded room limits the installation site to ground or basement floors. Considering
both the cost and weight of the MSR, a first-order gradiometer array in combination
with a moderately shielded room would be a good economic choice.
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Fig. 11 A picture of a MEG system installed in a hospital. Helmet-shaped liquid He dewar
mounted on a nonmagnetic gantry and inside a magnetically shielded room (MSR). Stimulation
devices, acquisition, and analysis devices are outside MSR

In addition to shielding factors, homogeneity of the residual field inside the
MSR is also important. If the spatial variation of field or field gradient is large,
vibration of the sensor array generates noise, making the well balanced gradi-
ometers ineffective. Thus, minimization of residual fields inside the MSR is
needed, by careful installation of ferromagnetic plates and degaussing afterward.

Figure 11 shows an MEG system with a moderately shielded room installed in a
downtown hospital. For easy walk-in, the doorsill of the MSR needs to be of equal
height as the office floor.

6 Basic Signal Processing Methods
for Magnetoencephalography

MEG signals can be easily contaminated by noises from outside of the shielded
room or from the human body, such as movements of the body and heart beats
(magneto-cardiograms). The outputs of flux-locked loop circuits are passed though
analog filtering, and some digital filtering, such as baseline correction, and through
band-pass filtering. Besides the basic band-pass analog and digital filtering, more
sophisticated signal processing methods are required to improve the signal to noise
ratio of the MEG recordings (Vrba et al. 2001). We can categorize such processing
methods into two groups; software noise shielding and artifact rejection.

6.1 Software Noise Shielding

The software shielding includes an adaptive gradiometry with reference channels,
signal space projection (SSP), signal space separation (SSS), etc. (Uusitalo and
IImoniemi 1997; Taulu et al. 2004).
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The gradiometry can be understood as spatial filtering since homogeneous
magnetic fields from far-away sources are cancelled and inhomogeneous magnetic
fields from near-by sources are detected. Generally, a gradiometer consists of a
detection pickup coil close to the source and a reference pickup coil away from the
source. The pickup coils can be replaced by separate SQUID magnetometers.
Especially, the direction of a reference field component can be arbitrarily chosen
by using an orthogonal three-channel vector magnetometer. By subtracting a
composite reference field component of the same orientation to the detection
magnetometer from the signal of the detection magnetometer, we can eliminate
noise from far-away sources in a software manner; we call this method synthetic
gradiometry. Here, the distance between the detection sensor and the reference
sensors is called the baseline. The baseline approximately limits the spatial pass-
band. By placing more reference sensors at different positions, we could form a
higher-order gradiometer, which provides a sharper cut-off shoulder in the shape of
the spatial pass-band.

In construction of a synthetic gradiometer, adaptive filtering can be adopted.
The adaptive filtering is to find a best fitting function for the signal waveform from
a linear combination of the reference waveforms. The linear combination coeffi-
cients (adaptive coefficients) can be calculated by means of linear regression
methods, either in an online or in an offline manner. The adaptive coefficients
correspond to a modified orientation of the reference vector magnetometer by
adjusting the component gains.

We can also apply the adaptive filtering in the frequency domain. Some noise
like mechanical vibration has its own characteristic frequency components;
mechanical vibration of sensor mounts under the magnetic field gradient formed
by magnetized walls generates magnetic vibration noise. In this case, the fre-
quency-domain adaptive filtering is more effective. To find the frequency spec-
trum, short-time Fourier transforms with an adequate window are performed.
Then, the same linear regression fitting process is conducted to match the linear
combination of reference frequency-domain spectra to the signal spectrum.

Usually, such synthetic and adaptive filtering are quite effective to eliminate
external magnetic noise; especially when the passive magnetic shielding is not
sufficient. However, if your system is equipped with a high shielding factor
magnetically shielded room (MSR), the performance of such software methods
would have a limitation. The limitation mainly comes from the intrinsic noise of
each sensor. Since the intrinsic noises of the detection sensor and reference sensors
are not correlated, numerical subtraction always result in total addition of the RMS
noise level of each sensor. To reduce such an effect, we suggested a compensated
adaptive filtering technique which consists of a random sensor noise remover and
adaptive filter. To construct the sensor noise remover, we use factor analysis (FA).
The basic compensated adaptive filtering situation is illustrated in Fig. 12. The
most important feature of the system is to eliminate the reference sensor’s own
noise. To reject the sensor noise, we utilize FA. The background noise source
vector s and observations at the reference sensors x have the following linear
relation,
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Fig. 12 Conceptual diagram of the compensated adaptive filtering system

X =As+n, (1)
where A is a linear mixing matrix and n is a real-valued sensor noise vector.
We can assume that the sensor noise is random and has no correlation with other
channel noises (mutually independent). Thatisn ~ N(0, Z), where E is a diagonal
variance matrix. In order to extract the feature of the background noise sources
from the sensor-noise-additive observation, we have to apply a general principal
component analysis (PCA) to the covariance matrix of xx* but the noise variance
should be taken into account. The difference between the general PCA and the FA
that we have adopted is to fit only off-diagonal components of the covariance

matrix. The result of the FA process, y, can be denoted by
y =Rx, 2)

where R is the minimum norm generalized inverse,

; 3)

which can be calculated from the estimated values A and = of the unweighted least
square method. Note that E[yy"] = A + RERT, where A is a diagonal matrix
having the covariance eigenvalues of the pure background noise components.
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Fig. 13 Magnetic
background spectra and the
noise rejection effect by
applying the five listed
filtering methods. The thick
light grey line is the original
observation, the thick black
line is the result of the
compensated adaptive
filtering, and the other thin
lines are results of the
conventional methods
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The sensor-noise-extracted features in y can be projected to the observation space
of x. Then, we apply a standard adaptive filtering process to the signal sensor input
with the result of the FA.

Figure 13 shows the background noise spectra for a single detection sensor after
applying the conventional methods—synthetic gradiometer, time-domain adaptive
filtering, frequency-domain adaptive filtering—and the compensated adaptive fil-
tering in the frequency range from 0.1 to 100 Hz. The baseline between the signal
and the reference is more than 76 mm. The measurements are conducted in a
magnetically shielded room having a shielding factor of about 200 at 0.01 Hz. In
conventional methods, the noise rejection factor is about 3—15 for a low frequency
environmental noise (1.8 Hz peak) and about 8-150 for the 60 Hz line-noise.
In the other frequency regions, the conventional processing makes matters worse.
We can see that the noise levels of conventionally processed results are even
higher than that of the magnetometer in the frequency above 2 Hz. It results from
adding up the reference sensor’s own noise. Figure 13 also shows that the com-
pensated adaptive filtering is helpful to lower the noise level by adding no extra
reference sensor noise.

SSP is a method to separate the signal eigenspace and the noise eigenspace. The
spatiotemporal recordings of a multichannel MEG system can be characterized
into representative eigenvectors based on their covariance between different
channel recordings so that each eigenvector (basis) describes a characteristic
magnetic field distribution pattern. Once such basis eigenvectors are determined,
we are able to find a projection component to the eigenvector. Generally, in order
to apply SSP, we measure an environmental noise without a subject and find
dominant eigenvectors which describe the external noise; that is the noise space.
Afterward, in a real measurement, we calculate the projection component to the
pre-acquisition noise space. By subtracting the projection component from the
original MEG measurement, we can eliminate the dominant background noise
components from the obtained recordings. This method is quite effective because it



Instrumentation for Measuring MEG Signals 19

& ANALYSIS

File Seurce FisldMapSudace Savelmage Help

FIE |F5W5 (00
-200.0 |-200.0' [~40.0
200D —A000 |00

Fig. 14 Magnetic noise from a vibrating ferromagnetic particle in a cryostat. At the left frontal
region, a strong magnetic oscillation has been observed, which remained strong after averaging
100 epochs for observing an auditory evoked field pattern

can be applied in real-time once the noise space matrix has been found. One
interesting example is shown in Fig. 14. In this case, a tiny ferromagnetic particle
was accidentally remained inside the vacuum area of the liquid helium dewar. The
particle generated quite a strong magnetic vibration noise on the nearby SQUID
channels. Because the location of the particle is fixed, we can expect that the
spatial vibration pattern is always the same. So we could apply SSP to eliminate
the artifact. Figure 15 shows the real-time rejection performance of the SSP based
artifact rejection.

SSS is another spatial filtering technique based on orthogonal eigenvector basis
decomposition. In SSS, spherical harmonics are used as the bases. Due to the
radial dependency of each spherical harmonics function, we can categorize the
field potential bases into field components from sources placed inside and field
components from sources placed outside. Therefore, after separating those two
categories, we can eliminate noise fields from outside sources by rejecting the
outside basis components. So we could call this technique software shielding.

In practice, the number of bases is limited by the number of channels and the
order of spherical harmonics is not enough to describe the signal magnetic field
pattern or the noise magnetic field pattern in some cases. Another important point
for the application of SSS is the shape of the sensor array. Because we have to
distinguish the radial potential aspects of the eigenfunctions, if the sensors are
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Fig. 15 a Magnetic noise from a vibrating ferromagnetic particle in a cryostat. b The noise can
be eliminated by using a pre-calculated projection matrix in realtime acquisition
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placed on a perfect sphere, the method will fail. A helmet type arrangement of the
sensor array can give an affirmative result to a certain extent but a double-layer
detection or more, gradiometer configuration, is desirable.

First, we examine a case of spherical arrangement of the magnetic field sensors.
The sensors are assumed to be placed on a perfect sphere of 100 mm radius as in
Fig. 16. A current dipole source of (100, 100, 0)(nAm) is located at (x, y, z) =
(=30, 10, 60)(mm) inside of the sphere and a strong noise-generating current
dipole source of (0, 0, 1)(mAm) is located at (—20, 3000, 0)(mm) outside of the
sphere. In this condition, the signal source, noise source, and magnetic field sensor
distributions on the sphere are depicted in Fig. 16. The result of software magnetic
shielding implemented by using SSS is shown in Fig. 17. In the simulation,
the number of the internal bases was nine and the number of the external bases
was Six.

At a spherical surface of the same radius, the same signal space will be shared
by inner bases and outer bases, and consequently they cannot be distinguished.
Therefore, as shown in Fig. 17d, the decomposition between the signal and noise
will fail.
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Fig. 17 a magnetic field pattern of the signal current source, b magnetic field pattern of the noise
current source, ¢ magnetic field pattern of the signal and noise current sources together, d the SSS
noise reduction result in a spherical sensor array

Fig. 18 Aspherical double- Sensor
layered sensor arrangement surface
(baseline: 20 mm)

As suggested in Fig. 18, we assume a double-layered arrangement of sensors
on a pumpkin-like helmet plane which has an increasing radius as a function of
the polar angle. The baseline, a gap between the inner and outer sensor planes, is
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() (b)

Fig. 19 a Signal current source b noise source ¢ map of magnetic field formed by signal + noise
source d Results of SSS on aspheric double-layered sensor arrangement

20 mm. A weak current dipole source of (100, 100, 0)(nAm) is located at
(X, y, z) = (=30, 10, 60)(mm) inside of the sphere and a strong noise-generating
current dipole source of (0, 0, 1)(mAm) is located at (—20, 3000, 0)(mm) in the
external space of the sphere. In this condition, the signal source, noise source,
and magnetic field sensor distribution on the modified double-layered sphere are
depicted in Fig. 18.

The results of software magnetic shielding with SSS are presented in Fig. 19.
In the simulation, the number of the internal bases was nine, the number of the
external bases was six as assumed in the above simulations. In this case, since
the inner and outer spherical harmonics bases are clearly distinguished due to the
gradiometric structure of the sensor array, clear separation of the internal source
signal is possible in spite of the strong external magnetic noise interference.
Therefore, as shown in Fig. 19d, the decomposition between the signal and noise
was performed well enough.
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6.2 Artifact Rejection

Depending on the artifacts to be eliminated, different artifact rejection method can
be applied; e.g., principal component analysis (PCA), factor analysis, independent
component analysis (ICA), state space filtering, and morphological filter, etc.

PCA finds dominant eigenvectors to decorrelate the covariance matrix. By
doing that we get dominant waveforms based on their signal variances. This
method is quite effective when the magnitude of the artifact is strong enough and
shows a large variance. The power line noise is a good target for the PCA-based
artifact rejection method. However, PCA cannot guarantee perfect decorrelation or
orthogonality between the components. Therefore, sometimes, a signal component
could be mixed up with the noise component in the process to find the principal
components. Then, we must use an incorrect waveform when we try to eliminate
the artifacts, which results in signal baseline distortion and incorrect localization
results. To reduce this risk we could use a time-delayed decorrelation method
(Kim et al. 2004).

ICA finds statistically independent components and their mixing matrix. There
are many kinds of ICA, mostly they separate an independent waveform based on
higher-order statistics like kurtosis; the decorrelation is based on the second-order
statistics. Most of ICA sequences go through a pre-whitening process and mutual
information minimization process. So the ICA components are irrelevant to the
magnitude of source components and have permutation uncertainty. Currently, the
predominant ICA method is FastICA since its calculation speed is relatively fast
and the pre-built function is equipped with a widely-used matrix calculation
package. However, many authors prefer a joint approximate diagonalization of
eigen-matrices (JADE) algorithm (Cardoso 1999) since JADE can deal with
complex number data. For separation of spike-like components, FastICA or other
methods are all satisfactory, for separation of periodic signals, however, JADE
showed a more robust performance.

Target artifacts which should be rejected in MEG analysis are eye movements
(Fig. 20) and heart signal (Fig. 21). Due to the permutation uncertainty of the ICA
algorithm, such artifacts are basically selected visually among the separated
independent components, which is a time-consuming job. For a practical use,
we can utilize an expected spatial field distribution of the artifact component.
For example, the power of magneto-oculogram from eye movements would be
prominent on the forehead channels. The power of magnetocardiography from
heart beats would be prominent on lower sensors of the helmet. Based on such
power distribution, we can automatically select the independent components
corresponding to the noise artifacts and we can eliminate the projection of the
artifact components.

State space filtering is useful for periodic data reconstruction under low signal
to noise ratio. In practice, time-series embedding is popular. According to Taken’s
embedding theorem, M-dimensional dynamic system can be embedded in R?M+!,
For m = 2M + 1, we can conduct time-series embedding by using equi-interval
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Fig. 20 Rejection of magnetooculogram (MOG) signals by using ICA. Top the original data,
middle selected MOG component, bottom MOG removed signal

Cardiac artifacts

Epileptic spike

Time (s)

Independent Components

Fig. 21 Rejection of magnetocardiogram (MCG) signals by using ICA. The data were recorded from
an epilepsy patient. Epileptic spikes, slow wave, and the MCG artifact are successfully separated

Magnetic Field (fT)

Fig. 22 State space time-series embedding of an MCG waveform. Here, the embedding space
dimension is 3 and the dimension of the dynamic system is 1

time-delayed signal vector X, = (X, X4—c, "=, Xy—(m—1)c). Figure 22 shows an
example of the time-series embedding. An MCG waveform has been embedded in
a state space and it forms an attractor. The embedding time interval should be



Instrumentation for Measuring MEG Signals 25

Fig. 23 Trace contraction
in state space. The main axis
in neighboring points is
calculated by PCA and the
trace is contracted to the
principal orientation

Fig. 24 Noise rejection 30000
results of adaptive filtering
and state space filtering,
respectively. Here, the
reference sensing channel has
a non-linear gain
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determined carefully; if the interval is too short, then there will be a diagonally
stretched attractor while when the interval is too long then there will be an attractor
with no correlation. Usually, if the time series has a band-limited spectrum, the
time interval can be determined as follows. mt ~ 1* = %, where w* is the cutoff
frequency of the spectrum.

The simplest noise reduction method in state space is to take the mean value of
neighbors within a constant radius, but this is merely equivalent to triggered time-
averaging. The next is trace contraction, which calculates the covariance matrix
of a constant number of neighbors. Once a principle axis is determined, the
orthogonal error axis components should be suppressed (Fig. 23). The other
method is to use Wiener filtering, which averages neighborhoods in the Fourier
space.

One good aspect of state space filtering is that we can apply this method to a
data set recorded with a reference sensor of different sensitivity (even for a
non-linear gain). Figure 24 shows the results of state-space filtering and adaptive
filtering, respectively, for simulated MCG signals contaminated by 60 Hz power
line noise. Here, the detection channel has a linear gain, but the reference channel
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has a non-linear gain; a distortion in 60 Hz waveform in the reference channel.
The noisy component remained in the adaptive filtering result primarily due to
waveform distortion. However, the state-space filtering shows good performance.

A morphological filter is generally used for eliminating the signal baseline.
Basic operators include erosion, dilation, opening, and closing. Depending on the
composition and the order of applying the operators, we could make various kinds
of filter characteristics. The morphological filter operation is usually adjusted by
trial and error.

7 Magnetoencephalography Based on Atomic
Magnetometer

MEG has been proven to be a useful brain research tool not only for clinical
diagnosis but also for higher cognition studies. However, the distribution of MEG
systems into the practical measurement field is not so popular. One of the reasons
could be the fact that MEG systems need to be cooled down to the supercon-
ducting temperature and they consume liquid helium. In some conditions, the
supply of liquid helium is burdening. Recently, optically pumped atomic mag-
netometer sensors are beginning to attract people’s attention because they are
expected to be operated in a room temperature. The basic principle of an atomic
magnetometer is depicted in Fig. 25. Alkali metal vapor in a glass cell becomes
polarized when the cell is illuminated by circularly-polarized light. When there is
an external magnetic field, the polarization begins to tilt. The tilting changes the
energy population to the probe beam direction which provides different refraction
indexes for the left-circularly polarized light and right circularly polarized light,
respectively. Finally, it rotates the polarization angle of the linearly polarized
probe beam. By measuring the polarization angle rotation we can detect the
magnetic field strength.

The sensitivity of an atomic magnetometer mainly depends on the spin relax-
ation or spin destruction caused by spin-spin collision or spin-wall collision,
respectively. However, in a condition where the external magnetic field is very
weak and the atomic density is very high at a high temperature, the spin collision
happens more often than the Larmor precession. The population density of each
magnetic sublevel is determined by the spin temperature and total angular
momentum F,. The slow-downed precession frequency is proportional to the
torque < S, >/< F, > and the external magnetic field. The expectation value
of < S, > and < F, > can be calculated from the population density distribution.
By assuming that the atoms have nonzero average orientation and the spin
temperature is high, we can simply approximate the population density of M,
magnetic quantum number, as 1 + Mg/T. The calculation shows that the slow
down factor is not so significant and the direction of precession is the same as that
of aF =1 + 1/2 free atom since the state dominates in the average spin precession
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Fig. 25 Optically pumped polarization in alkali metal vapor rotates the polarization angle
of linearly polarized probe light and the rotation angle is proportional to the external field
strength

due to having more Zeeman sublevels. Anyway, with this scheme, there is
effectively no spin exchange from the spin-spin collision, which provides a long
spin coherence time and a sharp linewidth, hence the high sensitivity. By using this
scheme, we could reach several fT sensitivity with an atomic magnetometer and
succeed in measuring auditory evoked magnetic fields (AEF) from a human brain.
The atomic magnetometer system was developed at Princeton University and
Fig. 26 shows the apparatus and measurement condition for a human.

The system has 256 sensing channels and the detection area is about
3 x 3 cm’

Figure 27 shows the measurement result. For comparison, we put the same AEF
experimental result with a homemade partial-coverage SQUID MEG system
having 37-channel magnetometers in Fig. 27b. The signal to noise ratio is com-
parable to each other. However the recording of the atomic magnetometer shows
only a single polarity while the SQUID MEG system shows the bipolar aspect.
This result was caused by insufficient detection area of the atomic magnetometer
sensor system.

Later, a wide detection area system was developed (Kim et al. 2008). The
system was equipped with a wide rectangular cell, retro-reflect scheme, orthogonal
tangential field component measurement, and detuned balanced pumping for the
purpose of source localization (Fig. 28). The system gets rid of a blind direction in
the probe beam and achieves more balanced pumping in the wide cell.

In conclusion, the atomic-magnetometer-based MEG system shows great
potential as an alternative tool to a SQUID-based MEG system. As for now, there
are still several practical problems that need to be solved; absolute field zeroing,
compromise between sensitivity and bandwidth, phase delayed response depend-
ing on its pumping rate, etc.
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Fig. 26 Auditory evoked field measurement with the atomic brain magnetometer system.
The potassium cell and a human subject are placed in a three-layered cylindrical Mu-metal shield.
To block heat from the oven containing the cell, cooling water is circulating through a water bag
between the head and the oven. Tone stimuli are applied to an ear through a non-magnetic
pneumatic earphone (picture courtesy of K. Kim et al. in Neurolmage journal)
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Fig. 27 a Auditory evoked field traces for all atomic magnetometer channels. The typical
N100 m peak appears 100 ms after the sound stimulus. b AEF traces measured by a 37-channel
SQUID MEG system (picture courtesy of K. Kim et al. in Neurolmage journal)
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Fig. 29 A micro-Tesla
NMR/MRI system. The
measurement is conducted
under a micro-Tesla magnetic
field. All the detection and
coil systems are placed in a
magnetically shielded room

8 Brain Magnetic Resonance: A Novel Modality
for Visualizing Brain Functional Connectivity

Micro-Tesla nuclear magnetic resonance (NMR) technique is one of the most
challenging applications based on SQUID technology. In the technique, the
external magnetic field is the order of micro-Tesla and all the apparatuses
including a pre-polarized sample, an imaging gradient field coil system, a low-
noise SQUID detection system are placed in a magnetically shielded room
(Fig. 29).

The frequency independent, high sensitivity of the SQUID magnetometer
enables the measurement of weak NMR signals even for the low Larmor frequency
at a micro-Tesla static field, which could provide a new application such as direct
measurements of low frequency electrophysiological activity.
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We suggest the new research field of SQUID NMR, be referred to as bio-
magnetic resonance techniques (Kim et al. 2012a). The concept of biomagnetic
resonance is to conduct a direct detection of coherent bioelectric oscillation
(Fig. 30).

For this purpose, we make resonance between the precession frequency of the
nearby protons and the frequency of electrophysiological oscillation. The fre-
quency range of the electrophysiological oscillation is about 1 Hz ~ 1 kHz.
As examples for the biomagnetic resonance techniques, we can think of heart
magnetic resonance (HMR) and brain magnetic resonance (BMR).

HMR could be applied for development of a medical instrument localizing an
abnormal myocardial excitation in hearts. In arrhythmia like atrial fibrillation or
flutter, the excitation has rhythmic activity with its own characteristic frequency.
The main idea of HMR is to match the NMR frequency to the specific frequency of
the abnormal heart activity so that we could find the position of the reentry current
generation by using the conventional magnetic resonance imaging (MRI) tech-
nique (Kim 2012).

In BMR, matching the NMR frequency to the frequency of a periodic neural
oscillation like alpha- or gamma-band waves enables direct visualization of the
brain functional connectivity by MRI. Especially, BMR enables localization of
multiple correlated sources which has been challenging in the MEG/EEG source
reconstruction.

We demonstrated the feasibility of these new ideas by conducting numerical
simulations and phantom experiments with a SQUID-based micro-Tesla NMR
equipment (Kim 2012c). We introduced an experimental trick named K-step, a
non-adiabatic change of the external field, to decouple the NMR signal from the
direct measurement of the biomagnetic fields, as well.
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In the future, we expect the BMR technique could provide valuable information
on neurocomputational analysis underlying higher cognitive functions of the
human brain.

9 Conclusion

The technology of modern MEG systems is matured enough to measure MEG
signals with sufficient signal-to-noise ratios. MEG systems using high-sensitivity
SQUID sensors, either magnetometer or gradiometer (axial or planar), have system
sensitivity about 3 fT/\/Hz in the white frequency range. Liquid Helium dewars
and MSRs are well-matured in terms of performance, but some improvements are
needed to further reduce fabrication and operation costs.

Considering that liquid He is becoming more difficult to acquire, radical
improvements in cooling concepts or sensor technology is needed, which do not
rely on liquid He, or cooling with very-little use of liquid He. For example,
cryocooler operation of low-T. SQUID system (Sata et al. 1999), use of low-noise
high-T. SQUIDs (Faley et al. 2013) or low-noise atomic magnetometers (Sander
et al. 2012) could be considered. However, cryocooler operation generates
vibration noise peaks in the measurement frequency region, while mass fabrication
of reliable high-sensitivity high-T, SQUID is still an unsolved task, and the atomic
magnetometer still has a technical difficulty of eliminating absolute field in the
atomic vapor cells. Though the development speed of these liquid-He-free sensors
is rather slow, it is worthy of watching their progress.
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Novel Noise Reduction Methods

Samu Taulu, Juha Simola, Jukka Nenonen and Lauri Parkkonen

Abstract Magnetoencephalography (MEG) is a non-invasive neuroimaging tool
that offers a combination of excellent temporal and good spatial resolution, pro-
vided that the acquired signals have a high enough signal-to-noise ratio. This
requirement is often compromised as MEG signals are very weak and often
masked by interfering signals from environmental noise sources present at most
MEG sites. Even more challenging interference is encountered if the subject
carries any magnetic material attached to the body, which is sometimes inevitable
in clinical settings, e.g., due to therapeutic stimulators. Therefore, to enable reli-
able data analysis, it is very important to reduce the contribution of noise in MEG
signals as efficiently as possible. In this chapter, we review the basic characteristics
of MEG signals, give a short review on traditional approaches to suppress noise,
and describe some examples of modern noise reduction methods. Specifically, we
emphasize the usefulness of advanced mathematical algorithms applied on the
multichannel MEG data.
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1 Introduction to Noise Reduction
1.1 Characteristics of MEG Signals and Interference

In MEG, we make inferences about neural processes based on the magnetic field
produced by the associated neural currents (see, e.g., Himéildinen et al. 1993). This
magnetic field is detected outside of the head with sensors that are sensitive
enough to capture those very weak signals, typically on the order of 10-1,000 T at
the usual measurement distance from the brain tissue. To date, the only technically
practical and sufficiently sensitive sensor for MEG is the superconducting quantum
interference device (SQUID) (see, e.g., Wikswo 2004; Clarke and Braginski 2006)
although other potentially promising sensor types have also been introduced, such
as atomic, or optical, magnetometers (Kominis et al. 2003) and GMR-based
“mixed sensors” (Pannetier et al. 2004). Regardless of the sensor type, estimation
of the neural sources underlying the MEG signals is compromised by inaccuracies
posed by the MEG hardware itself and, more importantly, by magnetic interfer-
ence from sources external to the brain. Due to the weakness of the brain signals,
interference quite often dominates the measured MEG data and should therefore be
identified and suppressed as accurately as possible. Thus, it is important to model
the interference in MEG data even more precisely than the brain signal contri-
bution. When successful, this modeling enables accurate extraction and suppres-
sion of the interference and thus facilitates reliable source analysis. However, it is
quite common that source reconstruction algorithms are applied on acquired sig-
nals with the assumption of ideal hardware and ideal measurement conditions. If
these assumptions were true, then one could directly fit forward models derived
from Maxwell’s equations to the measured data, and find the most plausible source
configuration among all possible source distributions. This inverse problem, which
inherently does not have a unique solution (Helmholtz 1853), only requires
information about the source geometry with respect to the detected magnetic field.
Yet, to obtain most accurate and reliable results, the compliance of the recorded
signals with Maxwell’s equations must be verified. Furthermore, the contribution
of magnetic signals from sources outside of the brain should be suppressed.
Before we discuss the different types of interference that can distort the MEG
signal and the approaches that can be used to suppress them, let us first review
some of the basic concepts and characteristics of MEG signals. Each SQUID
sensor is coupled to a pick-up loop that measures the flux of the magnetic
induction field B through the loop. Specifically, the flux can be expressed as the
surface integral of the field B over the area of the pick-up loop: ¢ = [B - ds.
The first MEG measurements were performed with only one sensor (Cohen
1968, 1972). The number of sensors simultaneously detecting the flux at distinct
locations was small until the 1980s when the size of the sensor array started to
grow rapidly. Today, modern MEG systems contain hundreds of sensors (e.g.
Clarke and Braginski 2006, Chap. 11). The multichannel output of these systems
can be expressed as a time-varying vector in the signal space, a concept introduced
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in the 1980s (Ilmoniemi 1981; Ilmoniemi and Williamson 1987; Ilmoniemi et al.
1987). Sampling theory (Ahonen et al. 1993) is crucial for the design of sensor
arrays as well as for understanding the physical aspects of the multichannel sig-
nals, especially their spatial complexity and information content.

Various system issues in multichannel MEG systems complicate the interfer-
ence suppression and signal analysis (Clarke and Braginski 2006, Chap. 7).
Sensors packed close to each other in a multichannel array always suffer from
crosstalk phenomena to some extent. These couplings, of the order of 1 %,
typically arise from inductive coupling between the pick-up coils and feedback
currents of the neighbouring MEG channels. Such cross-talk between the channels
distorts the signals even in the absence of any external interference or hardware
calibration errors. Therefore, cross-talk should be computationally or experimen-
tally determined and compensated for to get an estimate of the cross-talk-free
signal. Alternatively, the signals could be compensated for cross-talk in the for-
ward model. Another major concern possibly violating our assumption of the
direct applicability of Maxwell’s equations on measured signals are the calibration
errors. For example, the electronic components used to transform the actual
magnetic flux to a voltage may contain gain errors distorting the measurement.
Manufacturing of the sensors is not infinitely accurate; there may be slight
variations in the surface areas of the pick-up loops, locations and orientations of
the sensor may deviate from the nominal ones, and the gradiometers may exhibit
small imbalances. Therefore, it is important to calibrate the system as accurately as
possible before estimating any source parameters from the data with mathematical
models.

In this chapter, we concentrate on interference suppression methods operating
at the sensor level of a multichannel MEG system. We do not assume any specific
neural source model although some source modeling approaches, such as the
beamformer, may also efficiently suppress interfering signals. We will mainly
describe approaches for processing of the sensor-level data that can subsequently
be used for analysis with any desired source modeling method. Regarding
nomenclature, although “noise” is a commonly used general term to describe all
kinds of magnetic disturbance fields and artifacts, we prefer to classify different
types of MEG disturbance as follows: our use of “interference” will refer to non-
physiological sources that are clearly unrelated to the MEG sensor array whereas
our use of “noise” will refer to sensor or radiation-shield noise caused by random
processes.

1.2 Sampling of the Neuromagnetic Field

All interference suppression methods make assumptions about the separability and
detectability of interference and signals of interest. Such assumptions may include
a priori information about the spatial, temporal, or spectral features characteristic
to the different signal components. One of the fundamental questions is whether
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we can decompose the multichannel measurements into unique subsets of basic
components, some containing only interference and others only neural signals.

In the spatial domain, the number of degrees of freedom, or the effective rank of
the neuromagnetic data, has been extensively studied in the past (Ahonen et al.
1993). This spatial sampling theory for MEG is based on the fact that a multi-
channel MEG measurement can be considered as spatial sampling of the contin-
uous neuromagnetic field. The theory shows that the measurable MEG signals are
limited to the low end of the spatial-frequency spectrum. As a practical conse-
quence, there is an upper limit to the number of sensors and a lower limit to the
minimum distance between adjacent sensors. Specifically, it has been shown that
for MEG signals measured at the minimum distance d, the contribution of spatial
frequencies higher than 1/(2d) is below the sensor noise and therefore insignifi-
cant. Thus, the part containing biomagnetic information in the measured signals is
limited in spatial complexity, which also means that the number of degrees of
freedom of MEG data is limited. Although this reduces the effective rank of the
data to about 100, hundreds of MEG channels are needed to reliably estimate the
basis components spanning all detectable signals (e.g. Nenonen et al. 2004; Taulu
and Kajola 2005).

1.3 Challenges Specific to MEG

The basic challenge of MEG stems from the fact that the neural currents are weak
and aligned coherently in the brain only over a short distance, and the associated
magnetic field is measured by sensors outside of the head. Additionally, with
SQUID-based detectors, the sensor-to-source distance is further increased by the
necessary thermal insulation layer of the helium dewar, about 20 mm. Conse-
quently, the amplitude of the neuromagnetic signal detected in MEG is in the range
from 10 to 1,000 fT.

The weakness of the signal can be overcome by increasing the sensitivity of the
sensors; however, sensors that are more sensitive are also more susceptible to
ambient interference fields, which may eventually exceed the dynamic range of the
sensors. Clinical environments are often magnetically noisy, with a variety of
electrical equipment radiating magnetic interference not only at the power line
frequency and its harmonics, but also across a wide frequency range reaching from
near DC up to several GHz. Interference at the lower end of the frequency range is
usually due to traffic (cars, trains, trams) and large moving objects inside the
building (e.g. elevators). The typical low-frequency peak-to-peak variation of the
magnetic field in such an environment is a couple of uT.

To measure 10-fT signals of interest on top of 1-uT interference, one would
need a sensor with a dynamic range exceeding 8 orders of magnitude. To date, no
magnetic sensor exists with a linear response over such a wide dynamic range. The
linearity of the sensors, on the other hand, is a necessary prerequisite for successful
signal processing and source analysis. Therefore, an efficient means to reduce the
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actual physical magnetic interference is necessary for feasible MEG recordings
and analysis, especially in a clinical environment. When hardware-based magnetic
shielding is sufficient to keep the sensors within their linear operating range, the
remaining interference can be further reduced by multichannel signal processing
methods, such as spatial and temporal filtering.

Another challenge specific to MEG is the possible movement of the subject’s
head during recording. The physical sensor array of the MEG system is stationary.
Movement-related distortion of the signal biases source localization and is more
challenging with MEG than with the EEG method where the electrodes are
attached on the scalp and do not move with respect to brain. To fully benefit from
the MEG method’s better source localization capability, one must ensure that the
accurate location of the head relative to the sensor array is known at all times
during the MEG recording.

1.4 Sources of Interference and Noise

The largest-amplitude ambient magnetic fields usually arise from traffic outside of
the building. Elevators and MRI magnets operated close to MEG, and even doors
made of magnetic material are potential sources of magnetic interference inside of
the building. In urban environments, cars on nearby streets, trains and metros
cause low-frequency peak-to-peak variations of magnetic field which are typically
in the range 1-3uT.

When a vehicle moves at a distance of D with velocity v, the frequency range of
the resulting interference is around v/D. For example, cars driving at 50 km/h at a
distance of 30 m or a train passing by at 200 km/h at a distance of 100 m result in
low-frequency field variations at around 0.5 Hz.

In this frequency range the shielding factor of a typical magnetically shielded
room (MSR) is rather low, about 100 (40 dB). Therefore, operating magnetometer
sensors in an MSR with 1-uT ambient interference from traffic requires sensors
with higher than 10-nT dynamic range, if no other means of interference rejection
is used.

Because the shielding factor of an MSR rises steeply with increasing frequency,
the low-frequency interference present in the environment will typically dictate the
required hardware shielding performance at a specific MEG site. For example,
interference at powerline frequencies 50/60 Hz seldom exceeds 1uT in clinical
environments, and is thus sufficiently dampened by a typical MSR which easily
attains a shielding factor in the range of 10° (100 dB) at these frequencies. An
example of low- and line-frequency interference inside a magnetically shielded
room is shown in Fig. 1.

At radio frequencies up to several GHz, an MSR should maintain a shielding
factor of about 10° or higher. Although these frequencies are much higher than any
brain signals and thus irrelevant for MEG, the shielding is still required because the
functioning of DC SQUIDs involves intrinsic frequencies in the GHz range, related
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Fig. 1 a An example of a single magnetometer (over the occipital region) signal recorded
without a subject in the magnetically shielded room. The inset shows a 1-s epoch of the data
which reveals the line-frequency contamination. b Spatial distribution at the time of the largest
amplitude of the signal shows a homogeneous field distribution. The view is from the top of the
sensor array, and the circles indicate the locations of the 102 magnetometers of the Elekta
Neuromag MEG system. Blue and red lines indicate magnetic field flux into and out of the array
surface, respectively. The step between adjacent contour lines is 20 pT

to the superconducting tunnel junctions whose so-called Josephson frequency is at
4.8 GHz for a bias voltage of 10 pV (see, e.g., Clarke and Braginski 2006). Modern
digital equipment may cause strong electromagnetic radiation in this frequency
range, and would severely disturb unshielded SQUID-based sensors.

The sources of interference and noise mentioned above are related to the
installation site of the MEG device. In addition, there are numerous interference
sources that are related to the MEG technology itself. Some of them cannot be
compensated for by the MSR because they stem from the MSR itself or from
sources inside of the MSR. For example, the walls of the MSR are made of
conductive and magnetic material, which may result in magnetic interference by
two mechanisms. The thermal currents in the walls of a typical MSR generate a

magnetic field noise density of about 2 {T /v/Hz (Nenonen et al. 1996). Also, small
vibrations of the walls result in magnetic interference typically seen as 10-30-pT
peaks in the frequency band 13-30 Hz. These peaks result from the high-Q-value
eigenmodes of the MSR walls and ceiling that are driven by the vibration of the
building and the infrasound due to forced ventilation.

Another vibration-related artifact in MEG signals arises from the mechanical
movement of the MEG device itself in the remanence field inside of the MSR. The
maximal amplitude of this type of artifact in magnetometer sensors can be esti-
mated by multiplying the remanence field by the vibration-related rotation angle.
The remanence field in a typical MSR is 100 nT. Assuming the vibrational rotation
to be a 10-um movement of the sensor helmet around an axis one meter away from
the helmet, we observe 1 pT magnetic signal due to this vibration.

All metal, magnetic or conductive, components of the MEG device are potential
sources of magnetic interference. Most of these sources can be eliminated by
proper design of the equipment. After careful design, the dominant device-related
source of magnetic interference is typically the thermal insulation (super
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insulation) covering the sensor area of the dewar, which is necessary to keep the
liquid helium boil-off rate below 10 1 per day. In modern MEG devices this noise
contribution is below 3 fT/\/E. Any auxiliary devices such as stimulators,
cameras, speakers or microphones used inside of the MSR are also potential
sources of severe interference. The compatibility of these devices with the MEG
method must be carefully verified case by case.

Finally, the recorded MEG signals contain sensor noise related to the SQUIDs
and their readout electronics. The pick-up antennas in a modern MEG device,
having about 300 sensors in total, are relatively small. Therefore, to achieve
adequate field sensitivity, it is necessary to minimize the electronics-related noise
contribution. This can be done, for example, by applying pre-amplifier noise
cancellation based on positive feedback (Kiviranta and Seppd 1995). In this way,
the noise in individual MEG channels can be kept at the level of 3—4 T/ \/}ﬂ in
the white noise range and at about (6/f) fT/v/Hz at low frequencies (1/fnoise).
There are also other device-related non-idealities that manifest as distortion and
bias in the recorded data. Such factors include, for example, errors in calibration,
location, and orientation of individual sensors, as well as imbalance of
gradiometers and cross-talk between the channels. Most of these non-idealities,
often seen as a kind of “DC-interference”, can be well characterized and com-
pensated for by modern software methods that are discussed in detail in Sect. 3.

In addition to the ambient and device-related noise and interference mecha-
nisms described above, the subject studied—or patient in case of clinical MEG—
may also be a source of severe interference. This applies especially in clinical
work where patients may often have dental braces, therapeutic stimulators, or
magnetic residue from prior surgical operations on or inside the skull. Prior to the
invention of advanced software-based methods for interference rejection, such
magnetic components in the body were considered a contraindication for a
meaningful MEG study. The software methods to suppress disturbances caused by
magnetism in patients are discussed in detail in Sect. 3.

2 Conventional Interference Reduction Methods
2.1 Magnetic Shielding

As mentioned in the previous section, the basic method of interference reduction
that has been in use since the very beginning of neuromagnetic studies (Cohen
1970) is to use a magnetically shielded room (MSR). Figure 2 illustrates the
principle of magnetic shielding and shows a commercial three-layer room. MSR is
a room-size metal enclosure constructed using layers of both highly conductive
metal, usually aluminum or copper, and metal with high permeability (see e.g.
Kelhd et al. 1982). Mu-metal is a commercial name for a variety of nickel-iron
alloys having a dynamic (initial) relative permeability as high as 50,000.
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Fig. 2 a Principle of magnetic shielding. Layers of aluminum and mu-metal provide a path for
magnetic field lines around the enclosure. b A three-layer magnetically shielded room (Imedco
AG, Hégendorf, Switzerland) at the O.V. Lounasmaa Laboratory of Aalto University (Espoo,
Finland)

The shielding performance of a MSR is usually described by a frequency-
dependent shielding factor which is the ratio between the external interference
field Bex(f) and the corresponding value of field inside of the shield B, (f), that is,
S(f) = Bext(f)/Bin(f). The shielding effect of a metallic magnetic shield made of
conducting and high-permeability material is based on two mechanisms: polari-
zation of the high-permeability metal, and eddy currents induced by varying
magnetic field. These mechanisms are demonstrated in Fig. 3 where the shielding
performances of different wall compositions, with equal proportions of mu-metal
and aluminum, are compared.

At frequencies below 0.1 Hz, where induction is negligible, the polarization of
the high-permeability material is the only mechanism providing magnetic
shielding. When the frequency increases, the induction mechanism starts to have
an effect on the shielding. In this frequency range, additional shielding is provided
by the “global” eddy currents induced to run in the conducting walls around the
entire room. This additional shielding effect sets in at the frequency determined by
the resistance of the conductive wall and the inductance related to these “global”
currents. The related shielding effect grows proportional to the frequency, as
shown by the lowermost S(f)-curve in Fig. 3. When the frequency is further
increased, the induced currents on the outer surface of the wall start to shield the
inner parts of the wall, and the shielding starts to grow exponentially with
increasing frequency. This is the well-known skin effect, with a skin depth given
by 6 = 1/+/nfuc. Here ¢ and u are the conductivity and permeability of the wall.

Since the construction of the first room-size magnetic shield in 1962 (Patton
and Fitch 1962), a variety of different multilayer MSRs have been manufactured
for biomagnetic purposes. To obtain increasingly better magnetic shielding per-
formance, the amount of metal and the number of metal layers has been increased
up to the record number of eight (Bork et al. 2001). Such a huge MSR with
6 x 6 x 6 m> external dimensions and a total of 24.3 tons of mu-metal provides
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Fig. 3 Optimization of aluminum/mumetal-based MSR wall structure. Estimated shielding
factors of four different Al/mu-sandwich structures are shown. The scattering matrix model for
concentric spherical shells (e.g., Kelhd et al. 1982) with inside radius 1.9 m is used in the
calculation. The layers in the 2-, 3-, 4-, and 8-layer sandwiches are in surface-to-surface contact,
and the amount of metal is kept constant in all four structures; 2 mm of mu-metal and 12 mm of
aluminum in total. For the electrical conductivity of aluminum and mu-metal, and for the relative
permeability of mu-metal we have used 3.57 x 107(Qm)~", 1.82 x 106(Qm)~", and 16,000,
respectively. For reference, the S(f)-curves of 12 mm of mere aluminum, and 2 mm of mere mu-
metal are shown by the two lowermost curves. For mere aluminum, the shielding is negligible
below 0.1 Hz, and above that grows proportional to f due to induced global eddy currents. The
skin depth of aluminum is so long that no skin effect, that is, exponential growth of S(f), is
evident even at 100 Hz. This is because of the low relative permeability of aluminum. The second
lowest curve is for 2-mm mu-metal showing a 20-dB shielding down to DC but no global current
shielding regime, because of low electrical conductivity of mu-metal. Instead, a skin effect
regime with exponential growth of S(f) is starting to show up above 10 Hz. Keeping the total
amount of metal constant, but increasing the number of layers in the al/mu-sandwich reduces the
skin depth and the frequency at which the skin effect sets in. With an increasing number of layers
in the sandwich, the shielding factor at a given frequency between 0.5 and 100 Hz increases and
the S(f)-curves asymptotically approach the uppermost curve showing the shielding obtained
with an “infinite number” of layers, that is, a 2-mm thick shell made of fictive “Al/mu-alloy”
having the electrical conductivity of a 12-mm thick aluminum plate, and the relative permeability
of mu-metal. The saturation of S(f) at 115 dB is due to the openings in the MSR wall

excellent magnetic shielding even at very low frequencies. While this type of
shielding is extremely useful in scientific research requiring magnetically distur-
bance free environments, it is not practical for clinical MEG use.

As a solution for the need of compact and lightweight MSRs for clinical MEG
applications, designs with a total MSR weight below 5 tons and external dimen-
sions of 3 x 4 x 2.5 m’> have been developed during the past ten years (for
performance evaluations, see Parkkonen et al. (2006) and de Tiege et al. (2008)).
To ensure sufficient shielding performance of these light MSRs with reduced
amount of mu-metal, special attention has been paid to the joints between the
metal wall elements to guarantee optimal electric and magnetic conductance
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across the joints (Simola et al. 2005). Also, several conductive aluminum layers
and high-permeability mu-metal layers have been interleaved to reduce the
effective skin depth of the wall structure (Simola 2003). This lowers the frequency
at which the skin effect and the related exponential growth of the shielding factor
S(f) with increasing frequency sets in, thus increasing the shielding performance at
frequencies above 0.5 Hz; see Fig. 3.

To support the magnetic shielding provided by a MSR, several active shielding
concepts have been proposed and realized. The simplest method to actively
counteract ambient magnetic interference consists of a magnetic sensor—a three-
axis fluxgate, for example—located in the vicinity of the MSR, and three
orthogonal sets of coils wound on the outside of the MSR. The fluxgate records the
variations of the ambient field and controls a current supply that feeds the coil sets
to produce a field that counteracts the ambient field variations at the location of the
MSR. This method is called feedforward active compensation. In this arrangement
the fluxgate has to be located far from any local sources within the building, and at
a sufficient distance from the compensation coils. The feedforward system works
well against distant interference sources that produce a nearly uniform field. With
this method a typical achievable shielding factor against such interference is in the
range 10-50 (20-35 dB).

If the fluxgate is moved closer to or within the coil system, the arrangement
turns into a feedback system that keeps the magnetic field constant at the location
of the fluxgate, providing an alternative approach to construct an active com-
pensation system. The fluxgate cannot be located inside the MSR because the
inductive time constant of the MSR leads to a relatively long time delay between
Bexi(t) and B, (1), typically 2-3 s. A novel feedback active compensation method
based on the MEG sensors and compensation coils inside the MSR will be
described below in Sect. 3.5.5.

2.2 Gradiometrization

Another hardware-related interference rejection method, which has been utilized
since the early days of biomagnetism, is the use of gradiometers instead of simple
magnetometers. Zimmerman and Frederick (1971) used an axial gradiometer
consisting of two oppositely wound co-axial coils, while Cohen (1979) utilized a
planar gradiometer where the coils are on the same plane (see Fig. 4).

A first-order gradiometer has a pick-up antenna consisting of two loops that are
planar, parallel, and usually identical in size and shape. The loops are oppositely
wound and located in space so that one loop is translated from the other by a vector
h. The length & is called the baseline of the gradiometer. If h is parallel to the
common normal n of the loops, the gradiometer is called axial. In the case of a
planar gradiometer, h is orthogonal to n. In principle, h and n could be at any
angle relative to each other but axial and planar are the two gradiometer types most
commonly used.
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(a) (b) (0

Fig. 4 Some pick-up coil geometries: a magnetometer, b co-axial first-order gradiometer, and
¢ planar first-order gradiometer. The leadfield, or sensitivity, patterns of d magnetometer and
axial gradiometer measuring B,, e planar gradiometer measuring dB/dx, and f planar
gradiometer measuring dB,/dy

The signal of a gradiometer MEG channel is proportional to the net magnetic
flux through the pick-up antenna. If the field contains gradients up to second order
only and the gradiometer is ideal this flux is given by

0B,/0x 0B,/0y 0B,/0z
¢g=An"| 0B,/ox 0B,/dy 0B,/dz |h (1)
0B,/0x 0B./0y 0B./0z

where A is the area of one gradiometer loop.

For geometrical reasons, gradiometer antennas composed of identical
oppositely-wound loops are totally insensitive to a uniform field of any direction.
Consequently, they rather effectively reject interference from any sources far away
from the MEG device. In practice, the interference rejection ratio of gradiometers
is limited by the fact that a typical interference field is not exactly uniform, and
that the geometry of the gradiometer is not ideal. The geometric non-ideality of a
gradiometer is called imbalance. The signals from near-by sources, the brain
signals, are highly non-uniform and therefore attenuated only slightly. Typically,
for a gradiometer in a MSR, the signal-to-interference ratio for ambient interfer-
ence is approximately by a factor of 100 higher than for simple magnetometers.

The interference signal in ideal gradiometers, related to relatively smooth
interference fields, is well described by Eq. (1). When dealing with the signals of
interest in MEG, which are related to neural current distributions, the signal in a
MEG channel is better described by using the concept of a lead field L(r), defined
by the expression



46 S. Taulu et al.

be = / L(r) - J(c)av )

where the output of channel k, by, is obtained as the projection of the current
distribution J(r’) on the lead field, or sensitivity pattern, L (r’).

The two types of gradiometers, axial and planar, have different sensitivity pat-
terns (Fig. 4). An axial gradiometer has a similar lead field as a magnetometer: zero
for sources directly under the sensor, otherwise wide circular pattern with the
maximum sensitivity some distance sideways. Thus, a single axial gradiometer can
detect neuromagnetic signals from a wide region in the brain, but is also sensitive to
interference caused by sources near to the sensor. Planar gradiometers in turn have
very compact lead fields, which exhibit the maximum directly under the sensor.

2.3 From Single-Channel to Multichannel MEG

In the early days of biomagnetism, MEG devices were comprised of one sensor
channel only. Any feature in the signal could be from the brain, environment, or
electronics. Instrumentation developed during the years, and the number and size
of the sensor arrays increased gradually. Figure 5 illustrates the evolution of
multichannel MEG sensor array from a small-size four-channel axial gradiometer
to 306-channel whole-head system combining magnetometers and planar gradi-
ometers. Modern whole-head MEG arrays have facilitated development of effec-
tive multichannel signal processing and analysis methods, which are discussed in
Sect. 3. Design of multichannel sensor arrays involves several parameters, such as
the number of channels, geometry of the pick-up coils, internal noise level of the
sensors and so on. Detailed comparisons of the advantages and disadvantages of
the arrays of axial and planar sensor types have been presented in the literature
(Ahonen et al. 1993; Vrba and Robinson 2002; Nenonen et al. 2004).

2.4 Reference Sensors

A method distantly related to the gradiometer concept is the use of reference
sensors, which consists of an array of extra magnetic sensors located typically
20 cm above the MEG sensor helmet. The idea is that the reference sensors are so
far from the source of interesting signals that they only detect interference. This
measured interference can be modeled, either by a physical model or statistically,
and then subtracted with proper weighting coefficients from the signals of the
MEG channels. Because of the required extra hardware and the modeling and
subtraction, the reference sensor method can be considered a combined hardware/
software method.
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Fig. 5 Evolution of MEG devices: a 4-channel axial gradiometer system, b 7-channel axial
gradiometer system, ¢ 24-channel planar gradiometer array, d 122-channel planar gradiometer
helmet, e 306-channel whole-head system combining 102 magnetometers and 204 planar
gradiometers. (a—d: Courtesy of Dr Jukka Knuutila, Elekta Oy; e: Courtesy of Dr Mika Sepp4,
0O.V. Lounasmaa Laboratory, Aalto University)

In the reference-sensor method the interference contribution at the primary MEG
sensors is extrapolated from the signals in the reference sensors by expanding the
magnetic field into a Taylor series about the origin at the primary sensor. Synthetic
first-, second- and third-order gradiometers can be formed in this manner (Vrba and
Robinson 2001). Magnetometers and gradiometers can serve both as primary and as
reference sensors. Synthetic third-order gradiometers reduce the environmental
interference substantially. In order to avoid increasing the sensor noise, the refer-
ence sensors should have a higher gain than the primary sensors. Synthetic gradi-
ometers have been demonstrated to operate even without a magnetically shielded
room in an environment with low magnetic interference level.

2.5 Limitations

All the traditional interference rejection methods described above are in use at
many MEG sites and have proven to work and to be sufficient in most cases to
enable proper functioning of the MEG device. The main problem with the passive
shielding method is the large size, heavy weight and high price of the MSR. Also,
the need to isolate the patient behind a closed door may hamper clinical work.
Lighter passive magnetic shields would boost the clinical use of MEG.

A relatively simple way to assist passive shielding is to use feedforward active
compensation. The basic problem with this method of active compensation is
related to the local sources in the vicinity of the MSR and the fluxgate sensor. If
there are many such sources, it is impossible to set the system up properly and the
arrangement may even amplify the interference from sources close to the fluxgate.

The basic shortcoming of the reference sensor method is related to the fact that
the interference inside of the MSR may still be 1,000 times higher than the brain
signals. Therefore, to be able to properly subtract the interference, one should
know it at the location of each sensor with an accuracy better than one per mille
(0.001). This is not possible when the interference needs to be extrapolated from
the signals of only 10-30 reference sensors located at a 20-cm distance from the
primary MEG sensors.
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The conclusion is that improved interference rejection methods are needed,
specifically to develop MEG towards clinical use. For clinical installations, it is not
always possible to select the magnetically most silent location in the hospital. Also,
clinical patients cannot be chosen for subjects as freely as in basic neuroscientific
research. Patients may also have therapeutic stimulators that are magnetic or there
may be magnetic residue from previous surgery in their body. In addition, patients
and healthy volunteers often show interference from biological sources such as the
eyes and cardiac muscle; see Parkkonen and Salmelin (2010) for typical examples.
None of the methods described above are useful against such interference.

3 Modern Approaches to Noise Reduction

3.1 Mathematical Representation of Multichannel
MEG Signals

We will concentrate on mathematical noise reduction methods and start from the
basic principles of computational signal representation. These basic concepts are a
necessary prerequisite for the understanding of novel algorithms used in MEG
today.

As explained above, a common way to express the signals of individual MEG
channels is the leadfield representation of Eq. (2), which shows how the output of
channel k, by, is obtained from the current distribution J(r’) as the projection of the
current distribution to the lead field, or sensitivity pattern, L (r'). MEG sensors are
sensitive to both neural currents and currents related to interference but usually the
lead fields are computed for neural currents only with the assumption that the
measured data are sufficiently clean. Figure 4 shows examples of lead fields of
magnetometer and gradiometer channels. The wide-spread sensitivity pattern of
the magnetometer indicates that the magnetometer picks up signal from a large
portion of the source volume, including deep structures in the brain. Similarly,
magnetometers are also quite sensitive to external interference signals, which are
spatially relatively uniform. On the other hand, the gradiometer channels are very
focal and most sensitive to the superficial parts of the brain and insensitive to
homogeneous interference fields.

Modern MEG devices contain hundreds of channels and the whole sensor array
discretizes the continuous field distribution into a signal vector s(¢) =
[s1(7) s2(2). . .sy(2)] at any given time ¢. This N-dimensional vector representation
allows us to utilize linear algebra in the signal processing of MEG. From now on,
we will call the set of measurable signal vectors the signal space of MEG and
show that different subspaces can be distinguished in the signal space. The concept
of signal space was first introduced in MEG already in the 1980s (Ilmoniemi 1981;
IImoniemi and Williamson 1987; Ilmoniemi et al. 1987) and it has thereafter been
the basis of several efficient signal processing algorithms.
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3.2 Common Distortion Mechanisms of MEG Signals

The basis of any model applied to a multichannel MEG recording is the
assumption that the sensors can be considered independent. For example,
according to this assumption, a particular forward model can be computed by
evaluating the magnetic flux at individual sensors merely based on the geometry of
the associated source model and the sensor itself without considering the signals of
other sensors. In reality, however, sensors always have some degree of coupling
between each other. Therefore, instead of measuring the pure magnetic flux ¢;,

channel i detects the distorted signal d); due to the coupling of all other channels
through the so-called cross-talk coefficients k;, i.e.,

N
b =i+ > kit (3)
j=1

where k; = 0. Cross-talk arises e.g. from mutual inductance between sensors or
electronics-based couplings. An efficient way to reduce cross-talk is to keep the
current of the pick-up coils at zero by feedback, which eliminates the inductive
coupling between the pick-up coils. Some cross-talk, however, always exists and it
is important to estimate the coefficients k;; either computationally or to measure
them directly by sequentially feeding a current to each sensor and detecting the
response of other channels to this test current (Taulu 2000). Computational means
include a model for the mutual inductance between sensors, which can be based,
e.g., on analytical formulae between wire elements of the flux transformers. Once
the coefficients k;; have been determined, the above equation can be written in the
matrix form

b =9+Kd (4)
from which the cross-talk-corrected estimate can be computed as

$=(-K). (5)

In addition to the cross-talk, hardware-originating signal distortion arises due to
errors in the calibration coefficients and geometrical imprecision, such as position
and orientation errors of the sensors, and imbalance of gradiometers. If the
expected field-to-voltage calibration coefficient of channel i is ¢; and it deviates
from the true calibration cy; as co; = cgc;, then the corrected signals can be
computed as

$.=Cp=C(I-K), (6)
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where C is a diagonal matrix containing the estimated relative calibration
coefficients:

C =diag(ce1 ¢ --- Cen)- (7)

Thus, the hardware-based distortions such as cross-talk and scalar calibration
errors can be compensated for by simple linear operations. The geometric cor-
rections mentioned above have to be incorporated into more complex models that
are applied to the acquired and compensated data ¢.. Several calibration algo-
rithms have been introduced in MEG (Hall Barbosa et al. 1999; Ornelas et al.
2003; Chella et al. 2012). State-of-the-art calibration accuracy ensures a good
match between the measured data and the models, such as the forward fields
corresponding to neural currents or models used in interference suppression
algorithms.

The distortion mechanisms described above are always present in MEG
recordings, even in an ideal environment with no actual interference or noise. In
addition, MEG signals always contain random sensor noise or radiation-shield
noise, and almost always contain external interference. Quite often disturbances
related to the subject or patient are embedded within the signal as well. In the
following, we divide the interference and noise of MEG into three groups:

1. Interference from far-away sources; spatially smooth field patterns corre-
sponding to sources relatively far from the sensor array. In an empty MSR,
these sources contain currents on the walls of the MSR induced by external
interference fields.

2. Interference from near-by sources; spatially complex field patterns due to the
proximity of the sources.

3. Random noise intrinsic to the MEG device itself, i.e., sensor noise and sensor
artifacts.

In addition to the spatial categories above, different interference types may also
have specific time—frequency characteristics that can be utilized in the interference
suppression approaches. MSR only attenuates interference of category 1 and
therefore MEG measurements have traditionally been conducted only with co-
operative subjects who are able to stay still and who have no magnetic material in
their body. In clinical settings, however, it is not practical to request or rely on
complete immobility of the patient. Even the slightest movements due to respi-
ration or heart beat can cause severe movement artifacts in the presence of
magnetized material related to, e.g., dental braces, tiny magnetic residues in the
body, or therapeutic stimulators. Thus, signal processing methods are needed to
compensate for category 2 interference. Intrinsic sensor noise (category 3) is
always present in any MEG recording and its contribution is typically taken into
account in the source modelling phase in the form of a covariance matrix but
recently new pre-processing methods to reduce sensor noise have also been
proposed.
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3.3 Physics- and Statistics-Based Detection of Interference

Many interference suppression methods are based on physical or statistical models
of the measured signals. The former methods typically utilize a model that aims to
explain the signals in physical terms such as sources while the latter methods often
consist of finding some statistical features from actual data recorded with the MEG
system. In the following, we will use two signal space methods as examples of the
statistical and physical approaches and explain their benefits and drawbacks.

The Signal Space Projection (SSP) (Uusitalo and Ilmoniemi 1997) and Signal
Space Separation (SSS) (Taulu et al. 2004) methods utilize the ample spatial
oversampling of the neuromagnetic field in a modern MEG device with hundreds
of channels. At a typical brain-to-sensor distance in MEG (~ 3 cm), the magnetic
field from neural sources has less than 100 degrees of freedom (independent
geometric shapes) that can be resolved above the sensor noise.

The SSP method is based on statistical analysis of the recorded interference
signal. The interference is recorded with no subject in the MEG device. A prin-
cipal component analysis is made on this “empty-room recording” containing only
interference and sensor noise.

In the SSP method, the signal recorded by an N-channel device from the subject
is projected on the (N — n)-dimensional subspace that is orthogonal to the first n
principal components—those with the largest eigenvalues—of the empty-room
recording. Assuming that the ambient interference is a result from a reasonably
stable statistical process this projection leaves us with relatively interference free
(N — n)-dimensional MEG data. The brain signal is also slightly distorted by the
projection operation but this can be taken into account in a simple manner in the
subsequent signal analysis (Uusitalo and Ilmoniemi 1997).

SSP is a purely statistical method and therefore does not suffer from any cali-
bration inaccuracy in the sensor array, as long as the calibration of the sensors and the
geometry of the sensor array stays constant. Being an orthogonal projection method
SSP does not increase the individual sensor noise (rather it decreases the noise
slightly) but causes some distortion of the spatial pattern of the signal. Specifically,
signals from very deep sources are reduced in amplitude as they have a significant
projection on to typical ambient interference directions in the signal space.

Contrary to the SSP method, which is statistical, the SSS method is based on the
physics of magnetic fields, i.e., Maxwell’s equations (Taulu et al. 2004). In this
method, the signal space is provided with a basis that encompasses all physically
possible magnetic field distributions (solutions of Maxwell’s equations in a space free
of magnetic material). The measured signals can be uniquely represented in this basis.
By simple physical arguments the field shapes can be classified into two groups: field
shapes corresponding to sources inside of the sensor array, and those corresponding to
sources outside of the array. In this way, two linear subspaces of the signal space can
be defined: Sj, for inside sources and Sy, for outside sources. The external inter-
ference can now be removed from the signals by simply estimating the contributions
of Si, and S,y and subsequently leaving out the signal components in Sy.



52 S. Taulu et al.

The advantage of SSS over SSP is its generic nature as it is based on the physics
of the magnetic field rather that statistics of the recorded interference. Because of
this, SSS is universal and can handle also such new interference sources that we
have no prior statistics on. SSS is not an orthogonal projection, and therefore it
does not change the spatial patterns of the neuromagnetic signal. On the other
hand, because SSS is based on a computational model, it is rather sensitive to the
calibration accuracy of the MEG system (Nurminen et al. 2008).

3.4 Noise Reduction in the Spatial, Temporal,
and Spectral Domains

3.4.1 Decomposition of MEG Signals

The data acquired with N, channels over a period of time consisting of N, samples
can be represented as an N. x N;-dimensional matrix ®. Modern mathematical
noise reduction methods are based on a decomposition of the high-dimensional
data into some basis components that can be used in processing the data to sup-
press the contribution of unwanted interference signals. We can classify the basic
decomposition approaches as follows:
1. Spatial decomposition: ® — X

N XN, nxN,

2. Spectral decomposition: ® — F
Ne XNy N xXNp

3. Temporal decomposition: ® — F
N XNy N.XNp Np XN,

4. Combination of the above: for example, ® — X — F — F Y

Ne XNy nxN, nxNp nxNp NpxN,
In the following, we will describe the general mathematical models and the
consequences of these operations. We will also give some examples of methods
belonging to the different categories. A more detailed description of these methods
will be given in Sect. 3.5.

3.4.2 Benefits and Drawbacks of the Decomposition Methods

1. In the spatial decomposition, some spatial model is applied to the data in order
to extract features of interest and to suppress the contribution of interference
signals. This leads to a representation X , which contains the time series of the

nxN;
n spatially relevant features with typically n < N.. The decomposition may be
performed through a matrix operation

X = A®, (8)
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where A is an n X N.-dimensional spatial filter matrix that may be, e.g., in the
form of an orthogonal or an oblique projection matrix. In the former case, one
rotates the data in the signal space into a subspace free of interfering signals
(Uusitalo and Ilmoniemi 1997; Parkkonen et al. 1999a). The latter case may be
used to extract the interesting from interfering signals in a mathematically
unique fashion, e.g., by the SSS method. The benefit of the spatial decompo-
sition is that it preserves the temporal information of the signals and may
generally allow a robust classification of signals into interesting and interfering
contributions. The drawback is that spatial operations, if not specified properly,
may lead to spatial bias of the interesting signal, and measurement errors not
modeled by A may spread into the decomposed result X. An example of a
measurement error is a malfunctioning sensor. Methods belonging to this cat-
egory include, e.g., SSP and SSS, some ICA applications, and beamformer. The
last method, however, involves a specific neural source model when con-
structing the spatial filter matrix A.

2. In the spectral decomposition, the data are transformed into the Fourier or some
other relevant temporal components by the matrix operation

F = @B, )

where B is an N; x Np-dimensional matrix that performs the Fourier transform
for each channel separately. The benefit of the spectral decomposition is that
the spatial pattern is preserved and no localization bias is thus introduced. The
drawback is that the signals of interest and the interference are often in the same
frequency range, mixed in such a way that their reliable separation is not
possible. A traditional way to use the spectral decomposition is visual inves-
tigation of the spectra of individual sensors, the rows of matrix F, and sub-
sequent notch filtering. An example of a mathematically more advanced method
is the S3P (Ramirez et al. 2011) algorithm that builds a spatial orthogonal
projection matrix based on the spectral decomposition of sensor-level data.

3. In the temporal decomposition, the sensor-level signals are re-calculated from
the spectral components. This is done by reconstructing the time courses from
the decomposed spectral components and the corresponding temporal basis
functions as

d=F, (10)

where F' is derived from F, e.g., by leaving out spectral components expected to
correspond to interference, and Y contains the corresponding temporal patterns
of these selected frequency components. The benefits and drawbacks of this
approach are the same as in the case of spectral decomposition. An example of
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spectrum-based temporal decomposition is simple temporal filtering (low-pass,
high-pass, or band-pass). However, the decomposition does not have to be based
on Fourier components but it could also be derived through a direct temporal
extraction such as independent component analysis (ICA).

4. The above basic formalisms can be modified and combined in several ways. An
example is the spatiotemporal signal space separation method (tSSS) that uti-
lizes both the spatial filtering properties and temporal analysis to extract and
suppress interference-related temporal forms. Combinations of ICA with short-
time Fourier transforms have also been proposed to decompose MEG data into
neurophysiologically relevant components (Hyvirinen et al. 2010; Ramkumar
et al. 2012).

3.5 Review of Selected Novel Methods

In the following, we introduce a subset of various methods that can be used for
interference suppression in multichannel MEG. This list of methods is not com-
prehensive but it rather shows examples on what the methods are typically based
on. For guidelines on recommended practical use of interference and noise sup-
pression methods, see, e.g., the guidelines publication by Gross and colleagues
(2013) and the book chapter by Parkkonen and Salmelin (2010). Below, as
examples of physical and statistical methods we describe the SSS and SSP
methods in more detail.

3.5.1 Multichannel MEG

The signal space in single-channel MEG devices was trivial, one-dimensional, and
spatial filtering was impossible. Any feature in the signal could be from the brain,
environment, or electronics. The first step taken toward spatial filtering was the
adoption of gradiometric sensors described in Sect. 2.2. Instead of measuring one
field component at one point in space the field is measured also at an adjacent
location. By subtracting the two measurements one reduces the interference signal
from distant sources by a large factor, typically 100, but the reduction in the bio-
magnetic signal is relatively small if a proper base length is chosen for the gradi-
ometer. The use of a gradiometer is an elementary signal space method. The two
recordings made by the two pick-up loops of the gradiometer are two measurements,
subtracted from each other to reject the common mode, which is dominantly due to
ambient interference. This operation could be done by software but doing it by
hardware, that is, by wiring a single gradiometer pick-up coil, gives the sensor a lot
of extra dynamic range against uniform interference fields. The price paid is that the
dimensionality of the signal space is reduced from two (the two loops) to one.
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The possibility for actual spatial filtering opened up with the first multichannel
devices. Already a two-gradiometer system helps one to further resolve biomag-
netic signals and possible device-based artifacts. With an increasing number of
channels the estimation and rejection of both ambient and device-based interfer-
ence became easier.

However, the geometric complexity of the magnetic interference field over a
volume as large as a typical MEG sensor array is potentially so high that actual
spatial filtering used to recognize and remove ambient interference from the sig-
nals can be efficiently realized only when the number of channels is relatively
high. This is because the magnetic field is a vector field in three dimensional space
with three independent uniform components, five independent first derivatives,
seven second derivatives etc. To determine interference fields up to second
derivatives thus requires independent measurements done with 15 sensors. So,
spatial filtering by gradiometrization up to second order derivatives would cut the
signal space dimensions available for the actual brain signals in a 24 channel MEG
device, say, down to 24 — 15 = 9.

This is why efficient spatial filtering in MEG data processing has become
available only when the number of channels has grown upward to several hun-
dreds. On the other hand, when such a high number of channels is available, signal
space methods based on linear algebra are a better way for interference rejection
than, for example, reference sensor systems, for the following reason. The inter-
ference field is usually much higher in amplitude than the neuromagnetic signal.
Therefore, it must be determined with the best possible accuracy. The optimal way
to do this is to use the entire set of sensors instead of the relatively few reference
sensors, to record the interference. A further advantage in this approach is that the
interference is now recorded at the very locations where we want to know it. No
spatial extrapolation is needed, which improves accuracy of the interference
estimate. In the signal space approach both interference and the biomagnetic signal
are mixed up in the signals from the same set of channels but they can still be
separated with appropriate signal space methods.

3.5.2 The SSP Method

The signal space projection method is set up for suppressing ambient magnetic
interference by recording MEG data without a subject for a few minutes. In this
situation it is certain that all recorded signal is interference. This multichannel
signal is then statistically analyzed by using principal component analysis (PCA).
The dominant n PCA-components give the signal space directions containing the
largest-variance magnetic interference field patterns. These orthonormal signal
vectors are then organized as an N x n-dimensional matrix E,, and the orthogonal
projection operator is formed as:



56 S. Taulu et al.

Pown = I — E,ET, (11)

where [ is an N x N-dimensional identity matrix. Then, the recorded N-channel
MEG signal is projected on the (N-n)-dimensional signal subspace that is
orthogonal to all the directions corresponding to the n» dominant PCA components:

¢orth = Porth¢ (12)

Experience on using the SSP method at several MEG sites over 15 years has
shown that the ambient interference field patterns are relatively stable over several
years. SSP projection operator (with n = 8) determined from one 2-min recording
is typically able to reduce interference amplitude in magnetometer sensors by a
factor of about 300-1,000 (50-60 dB) when applied to the 2-min recording itself.
In MEG recordings made at the same site even several years later, the same
projection operation still suppresses interference by a factor of 100 at least.

This surprising stability of the interference patterns is partly due to the MSR.
The strongest interference usually comes from distant sources which expose the
MSR to relatively uniform magnetic fields. The MSR transforms these uniform
fields into field patterns inside the MSR, which are not necessarily uniform but
rather represent a kind of fingerprint characteristic for each room. Any new far-
away source will cause a new, nearly uniform ambient field, which very closely
resembles some linear combination of the interference fields due to earlier far-
away sources, and thus produces a field pattern inside the MSR that approximately
falls into the same interference subspace that is spanned by the dominant PCA-
components in the earlier empty-room recording. We tested this MSR effect by
introducing a novel interference source (an oscillating magnetic dipole 8 m from
the center of the MSR) and applied the previously-determined SSP operator to
suppress it; the shielding factor against this novel source was still more than 100
(40 dB) for the tested frequencies of 0.5-30 Hz (Parkkonen et al. 1999b).

SSP can be characterized as a software-based “gradiometrization” method that
transforms the sensor array into a generalized gradiometer which is insensitive to
those field shapes that are recognized as dominant PCA-components in a recording of
ambient interference. A recently developed variant of the SSP method is the S3P
algorithm (Ramirez et al. 2011) that builds the orthogonal projection operator through
a spectral decomposition. This is beneficial especially for suppressing artifacts with
distinct frequency characteristics; the algorithm has been shown to be useful, e.g., in
the suppression of the high-frequency artifact of the deep brain stimulator (DBS).

3.5.3 The Signal Space Separation Method (SSS)

Another example of spatial filtering is the signal space separation method (SSS)
that utilizes quasistatic Maxwell’s equations combined with the sampling theory
and geometry of the MEG array (Taulu 2008). The idea is to create a basis that



Novel Noise Reduction Methods 57

allows a device-independent representation of the data, which is capable of sig-
nificantly suppressing the distortions typical to MEG, and also compensating for
head movements.

At any sensor location r on the sensor array, the magnetic field caused by any
distribution of sources is given by a series expansion

m (0,
= —ﬂoz Z %_MOZ Z Bt 0 (0, ), (13)

=1 m=—I =1 m=—1

where v, (0,0) = /(I + 1)1+ 1)V, (0,0) and  ,(0,0) = /I21+ 1)

W,.(0, @) with V and W bemg the vector spherical harmonic functions (VSH)
defined by Hill (Hill 1954; Arfken 1985). Here the monopole term (I = 0) is left
out due to relation V -B = 0 being valid everywhere according to the present
theory of electromagnetic fields (see, e.g., Jackson 1999). In principle, an MEG
device, with its data analyzed by a model including / = 0, could be used as a
magnetic monopole detector by including / = 0 and estimating its contribution in
the measured signal.

The infinite series of Eq. (13) is the general solution for the magnetic field in
free space, expressed in the spherical coordinate system. Similar expansions based
on other coordinate systems can also be used, but because of the nearly spherical
shape of the sensor array it is advantageous to use this expansion for the physically
possible field shapes. Using the two indices, [ and m, labeling the spherical har-
monics, the field shapes can be ordered according to increasing spatial complexity.

The coefficients oy, and f,, are called multipole moments. This expansion
compactly represents the contribution of all sources generating a magnetic field.
The two different parts of the expansion having different r-dependencies cover the
convergence and divergence requirements of the fields produced by sources in
different volumes of the physical space. Let us set the origin of the expansion
somewhere in the middle of the brain volume and let r,;, and ry.x be the distances
of the closest and most distant sensor, respectively, from this origin (see Fig. 6).
The field from a source in the volume containing the origin (r’ < Fmin) Must be non-
singular when r > Foin. Similarly, the field generated by a source in the outside
volume (r' > Imax) MUst converge when r < rmax- Consequently, the first sum in
Eq. (13) is sufficient to describe fields generated by sources with r < Fmin, and
similarly, the second sum is all that is needed for fields from sources with
F > rmax. As can be seen from Fig. 6, by selecting the expansion origin in a
suitable way, typically at the center of the volume enclosed by the sensor array, the
contributions of the brain and interference sources are separated into the first and
second sum of the expansion, respectively. Here we assume that there are no
sources in the volume defined by 7y, <F <Fmax-

The truncation of the expansion has been investigated theoretically in (Taulu
and Kajola 2005) and experimentally in (Taulu et al. 2005; Nenonen et al. 2007).
The truncation of the two expansions in Eq. (13) with/ = L;; = 8 and [ = Loy = 3
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Fig. 6 Geometry of the
signal space separation
method

was found to be sufficient to ensure a negligible residual. Even in the case of 100
simultaneous current dipoles, Li, = 8 is enough to reconstruct the brain signal with
an insignificant residual compared to sensor noise.

The basis vectors corresponding to each of the VSH functions are calculated by
Eq. (13) giving us signal vectors ay, and by, corresponding to the basis functions
—uor~ vy, and —por' 'y, respectively. Thus, our linear model for any
momentary signal vector ¢, based on these basis vectors, is

¢ = Sx, (14)

where the SSS basis S = [Sin Sout| separates the internal and external contributions
as

Sin = |:Cl_171 apo (,117] aLimLm] (15)
and
Sout = [b-1,1 bro biy .. bryro]- (16)

The total number of spherical harmonics used in Sj, and S, must be smaller
than the total number of channels. Otherwise the linear problem related to the
coordinate representation in signal space becomes singular. The greater the margin
(spatial oversampling) the more stable the solution of this linear problem becomes.

Since it is known that the number of measurable degrees of freedom in the
neuromagnetic field—those exceeding the sensor noise—is below 100, it is usually
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sufficient to map this field using spherical harmonics up to order Lj, = 8. In most
cases the field from external sources is sufficiently described by harmonic func-
tions up to order Ly, = 3. This corresponds to “gradiometrizing” the sensor array
up to second-order derivatives of the interference field.

These relatively low expansion orders are sufficient because of the quite large
distance between the sensors and sources of magnetic field in MEG. This applies
to both the interesting and interfering sources. Because the series representing
neural sources converges fast as a function of distance, fields with the highest
spatial frequencies, corresponding to high /, are attenuated below sensor noise at
the distance of the sensors when the sensor noise level of the present SQUID
technology, about 3 fT/+v/Hz, is assumed.

In practice, modern multichannel MEG devices have a non-singular SSS basis
since the sensors are located on a non-spherical surface and they are not strictly
radial or tangential (Taulu 2008). Thus, we get a unique estimate for the device-
independent coordinates in the form

2osTg= [f } (17)

Xout

where ST is the pseudoinverse of S and the interference-suppressed estimate for the
MEG signal can be calculated as

Bin = Re(Sin%in)- (18)

By comparing Eqgs. (8) and (17), we can see that SSS is a spatial filter with the

model matrix A = ST

Although the subspaces Si, and Sy, are not orthogonal to each other, the
contributions of the internal and external signals are not mixed in our estimated
separation result, provided that our assumptions regarding sufficient values for Lj,
and L, are correct and the system is calibrated accurately enough. The expla-
nation for this is simple. Based on the theory of harmonic functions, the signal of a
source in the volume r’ <ry;, can be fully represented with the above expansion
having non-zero oy, coefficients and f,,, = 0. Similarly, for sources in the volume
¥ > rmin, the signal can be expressed with oy, = 0 and all 8, being non-zero. On
the other hand, the SSS basis S is linearly independent, which indicates that this
obvious solution is also the only possible solution in the signal space.

Given a perfect calibration accuracy of the sensors and adequate spatial sam-
pling, there is no mixing between the internal and external contributions because
of the linear independence of the SSS basis vectors. Even with realistic calibration
accuracy, this mixing is negligible if the expansion orders are sufficient.

All real measurements contain sensor noise. In MEG measurements, it is
usually assumed that this noise is normally distributed and uncorrelated among the
sensors, resulting in a diagonal covariance matrix. Application of SSS changes the
sensor noise covariance C which can be taken into account if needed as shown in
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(Taulu and Kajola 2005). The brain noise, which dominates over the sensor noise
especially below 60 Hz, is not affected by SSS since it is produced by currents in
the internal volume shown in Fig. 6.

The condition number, defined as the ratio of the largest and smallest singular
value of the SSS basis, is apparently very high due to the highly different scales of
the different basis functions leading to a large range of norms of the SSS basis
vectors. The basis can be stabilized simply by normalizing S, which usually gives a
reasonable condition number, as discussed in (Taulu et al. 2005). Further stabil-
ization can be achieved by selecting only the basis functions that have strong
enough coupling to the sensor array to exceed sensor noise (Nenonen et al. 2007).
When using a normalized S, the estimated coordinates X;, ,, can be transformed to
ST units by dividing them with the norms ||a;,|| of the non-normalized basis.

It should be noted that the numerical stability of the coordinate transformation
from the recorded multichannel signal to the SSS basis depends on the degree of
spatial oversampling. The noise in the SSS coordinates increases when the margin
between the number of channels and the number of SSS coordinates becomes
narrower. In case the values L;;, = 8 and L,,; = 3 are chosen, the total number of

basis vectors in the SSS basis would be (Lin 4 1)* + (Low + 1) — 2 = 95 < 300.
This amount of spatial oversampling has turned out to be sufficient to prevent any
significant rise in sensor noise.

As a method based on physics, SSS is sensitive to all kinds of calibration errors
and cross talk between the MEG channels. For inteference sources more than
1.5 m away, the shielding performance of SSS is limited by the calibration
accuracy. This effect can be utilized in the calibration of a MEG device: the
orientation, sensitivity, and imbalance of gradiometers is fine-tuned by simply
requiring that there is no signal left in Sj, when SSS is applied to an empty-room
recording. After fine-calibration by this method the asymptotic shielding factor
against distant interference sources can be brought up to 200-300 (Taulu et al.
2005). In addition to external interference suppression and calibration adjustments,
the SSS method has several important applications, such as standardization of the
head position and different sensor configurations (Taulu 2008), head movement
correction (Nenonen et al. 2012), and enhanced magnetic source imaging (Vrba
et al. 2010). An example of the interference suppression by the SSP and SSS
methods is presented in Fig. 7.

3.5.4 The Spatiotemporal Signal Space Separation Method (tSSS)

The spatial SSS performs in a satisfactory manner in typical MEG measurements.
A good estimate X is guaranteed when deviations ¢, of the signal from the model
in Eq. (14) are insignificant. Taking the deviations into account, the model is of the
form
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Fig. 7 Comparison of SSP and SSS with experimental data from an array with 102
magnetometers and 204 planar gradiometers. Black curves: raw data of a single magnetometer
sensor above the occipital region recorded in an empty magnetically shielded room. a SSP: 5
generic SSP vectors (in red) and 8 SSP vectors computed from the same recording (in blue).
b SSS: after SSS but without fine-calibration adjustment (in red) and after SSS and fine-
calibration adjustment (in blue). The software shielding factor at the peak of the largest
disturbance is 500. The bottom insets show a one-second epoch of the curves

¢ =Sx+¢, (19)

In addition to random sensor noise, such deviations can be produced by insuffi-
cient calibration accuracy of the sensor array causing erroneous elements in the basis
matrix S. An additional source of deviation is the presence of sources that produce
detectable magnetic fields with spatial frequencies higher than those included in the
basis S, rendering the dimension of the basis matrix too small to correctly describe
these fields. Such sources are typically artifactual sources in the immediate vicinity
of the sensors, e.g., magnetized EEG electrodes close to the head.

From Eq. (19) we get the estimate

X= S¢ - STSX + STd)L =X —|—x£, where Xeg = |:Xin.e :| (20)

Xout &

Thus, the model misfit ¢, leaks into the internal and external signal contribution
estimated by SSS. This leakage can, however, be utilized in removing its contri-
bution. Temporally, xj,; and X, contain equivalent temporal waveforms that
were originally present in the signal deviation ¢,. Assuming that the brain signals
and external interference signals, both correctly modelled by the spatial SSS, are
temporally uncorrelated, the only possible cause for temporal correlation between
Xin and xqy is the above leakage phenomenon.

Removal of the contribution of ¢, was developed and applied by Taulu and
Simola (2006). First, the intersecting temporal waveforms are identified by a
singular value decomposition (SVD)-based subspace intersection estimation
method. Then, the intersecting waveforms are projected out in the time domain
from the SSS estimate of the internal signal. Consequently, the recognized signal
deviations, usually caused by nearby artifacts, are suppressed below the noise level
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Fig. 8 An example of tSSS and movement correction. a Left: Five seconds of original raw data
on six gradiometer channels above the right somatosensory cortex. The head began continuous
movement approximately 3 s after the beginning of the data traces and the added magnetized
piece above the somatosensory cortex emanated a very strong artifact. Right: The spatial MEG
pattern at the N30m peak response from averaged somatosensory evoked fields (SEF). b The
same raw data and MEG pattern after tSSS and head movement correction were employed. The
arrows indicate single SEF responses

of the sensors. The tSSS method has been shown to work in a satisfactory manner
against several different kinds of artifacts induced by magnetized pieces on the
scalp (Taulu and Hari 2009), head movements (Nenonen et al. 2012), dental work
(Hillebrand et al. 2013), and implanted stimulators such as DBS (Airaksinen et al.
2011) and VNS (Carrette et al. 2011; Kakisaka et al. 2012; Tanaka et al. 2009). A
quite similar method utilizing reference sensors instead of SSS as the original
separation method has been proposed by de Cheveigné and Simon (2007). An
example of tSSS interference suppression is shown in Fig. 8 for disturbances
caused by magnetized material on the scalp and head movement.

3.5.5 Feedback Active Compensation

In the feedback active compensation method, we use magnetometer sensors on the
MEG helmet as null detectors in a negative feedback loop that controls currents in
coils on the inside walls of the MSR. The magnetic fields from these coils
counteract the ambient interference and keep the field constant at the locations of
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the zero detectors. This helps keep the interference field within the dynamic range
of the sensors in the entire MEG helmet. Interference rejection performance
provided by this method is limited by geometry: the magnetic field is kept strictly
constant at the location of the zero-detector magnetometers only. Because the
counteracting field shapes obtained from the coils on the walls differ from the
interference field shapes, it is not possible to exactly cancel the field in all MEG
magnetometers distributed over the relatively large volume in the sensor helmet.
Typically using six coils—a “Helmholz-pair” in all three principal directions of
the MSR—an interference rejection ratio of about 10 can be achieved over the
entire sensor array. A method to get around this geometric limitation in shielding
performance and to achieve a higher shielding factor by this feedback active
compensation has been described in a patent application (Simola and Taulu 2011).

An active compensation arranged in this way naturally distorts the spatial
pattern of the biomagnetic signals. The method keeps also the biomagnetic signal
at zero in the null-detector channels. The compensation coils, however, are simply
sources of external interference and any method appropriately compensating for
such interference also restores the unbiased brain signals in all sensors, including
the zero-detector channels. In the present implementation of active compensation,
the SSS method is used for this purpose.

3.5.6 Principal and Independent Component Analysis

Principal component analysis (PCA) decomposes data into orthogonal component
vectors via a singular value decomposition of the covariance matrix. PCA is
applied to compose the vectors spanning the interference subspace, typically from
MEG data recorded in an empty magnetically shielded room as described in
Sect. 3.5.2. PCA can also be applied to subject-based interference such as fields
due to eye blinks and heartbeat. Data from a large enough number of such dis-
turbances are extracted and few most prominent PCA vectors are selected to
represent the subject interference, to be projected out from the MEG and EEG data
after the recording.

Independent component analysis (ICA) is a newer technique which aims at
separation of unknown sources whose unknown mixture is measured by the sensors:

b(1) = As(1), (21)

where ¢(t) is the signal vector at time 7, s(¢) represents the instantaneous source
activity, and matrix A represents the mixing. The ICA procedure provides an
estimate of the unmixing matrix B so that the estimated source activity becomes

§(1) = Bo(1). (22)

ICA belongs to the family of blind source separation methods, because the source
signals are not directly observed and nothing is known about their mixture; the only
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assumption is that the sources s(¢) are statistically independent. The separation is
obtained by optimizing a contrast function of some distributional property of the
output §. The contrast functions are based on entropy, mutual independence, high-
order decorrelations, etc. (see, e.g., Cardoso 1998; Hyvirinen 1999).

ICA has been applied to MEG and EEG to mainly remove artifacts (e.g.,
Vigario et al. 2000). ICA has also been used to decompose MEG/EEG data into
separate components (e.g., Tang et al. 2002). However, the underlying assumption
of statistical independence between the activations of the different neural sources
may not be valid for a physiologically plausible separation of distinct neural
processes or sources. Nevertheless, applying ICA to a suitable sparsifying trans-
formation of the MEG data may help extract relevant brain activity patterns
(Hyvirinen et al. 2010; Ramkumar et al. 2012).

3.5.7 Sensor Noise Suppression

By sensor noise we mean random noise signals that are inherent to the MEG
sensors and independent from other sensors. Such a noise component does not
have a unique overall field pattern that could be modeled and subtracted from all
sensors simultaneously. Therefore, the traditional way of addressing sensor noise
is by statistical means, e.g., by estimating the noise covariance matrix of the
sensors and taking it into account in source modeling.

Recently de Cheveigné and Simon (2008) proposed a sensor noise reduction
approach that is based on the assumption that sensor noise is uncorrelated with
brain activity and uncorrelated between sensors. In their method, PCA is applied
iteratively by omitting one channel at a time. The data of the omitted channel is
replaced by its regression on the subspace formed by the other channels. Compu-
tation time is saved by orthogonalizing a subset of channels selected on the basis of
correlation with the omitted channel data. Even more recently, a similar approach
has been proposed (Taulu et al. 2012) with the difference that the model for the
spatially correlated part of the sensor signals is estimated with a physical model
based on SSS instead of using statistics such as PCA. Both of the above methods
decrease the random sensor noise significantly and improve the signal-to-noise ratio
of the brain signals. The SSS based method was recently demonstrated to reduce the
overall sensor noise level in the frequency band of 400-800 Hz by factors of 4.5
and 2.1 for gradiometers and magnetometers, respectively (Helle et al. 2012).

Denoising source separation, DSS (Séreld and Valpola 2005) is yet another way
to suppress noise contributions from the sensors and background brain activity.
DSS is an iterative method that refines a template filter, often seeded by ICA,
applied on whitened data. The method has been demonstrated on single-trial MEG
data (Karp et al. 2009). DSS was utilized also by de Cheveigné (2010) for con-
structing a spatiotemporal filter to partition the recorded data into signal and noise
components. Time-shifted signals and PCA are utilized to construct special FIR
filters, and averaged evoked responses are utilized as a contrast function to
emphasize the brain activity.
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3.5.8 Spatial Filtering Combined with Source Modeling

Spatial filtering methods, such as beamforming, aim at finding and characterizing
the neural current sources in the brain (Vrba and Robinson 2001). A spatial filter is
constructed so that it passes the activity at the target location with unit gain while
suppressing the contribution from other sources. Spatial filtering can thus suppress
unwanted interference, provided that the low-rank interference has spatially and
temporally distinctly different characteristic from the brain signals (Sekihara et al.
2004). Typically such interference originates outside of the magnetically shielded
room, but the beamformer technique has been demonstrated to successfully sup-
press nearby interference from a pain stimulator (Adjamian et al. 2009). However,
the basic assumptions are not valid in cases where the patient-induced artifacts, e.g.
due to dental braces, are huge compared to the brain signals (Hillebrand et al. 2013).

Another approach to combine source imaging and interference suppression was
suggested by Mosher et al. (2009). They placed a grid of dipoles inside the MEG
helmet and used their lead fields to compose the basis of the signal subspace. Its null
space was then used to construct a blocking operator for removing all neural
activity components from the measured data. Projection of unwanted interference
waveforms is basically similar to the temporal SSS presented above, but the method
can produce current source estimates for the analysis without a separate step.

3.5.9 Physiological Artifacts

While SSS can geometrically separate the brain from external interference sources
by the concentric inner and outer spheres, the method does not suppress signals
from physiological sources in the inner volume or the space between the spheres.
Such physiological artifacts include signals from head muscles, eyes (blinks and
saccades), or cardiac signals due to cardiac volume currents and pulsating blood
flow within this intermediate space. If strong cardiac or eye-blink artifacts are
present, a further post-processing to suppress them can be performed with the
signal space projection method (Uusitalo and Ilmoniemi 1997). In this case,
instead of applying PCA directly on the continuous signals, it is often beneficial to
average with respect to these stereotypical artifacts to boost them relative to brain
signals and then perform PCA on the average. Identification and suppression of the
neck muscle artifacts could be performed utilizing methods such as independent
component analysis (Vigario et al. 2000). Generally, individual variations exist
between subjects with respect to the heartbeat-related residual after SSS.

4 Future Prospects

The adoption of modern signal processing methods to multi-channel MEG data has
advanced the MEG interference suppression rapidly during the last few years. In
addition, solely hardware-based magnetic shielding has shifted towards active
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shielding methods, which are less expensive and lighter-weight than conventional
passive means and thus allow more flexibility in planning the location of an MEG
laboratory. These trends are likely to continue in the future to support wider
adoption of MEG, not only through cost reduction but also by allowing MEG to be
applied to patients with magnetic material in their body. In the following, we try to
highlight some of the future opportunities and challenges of interference sup-
pression in MEG.

4.1 MEG Without a Shielded Room

As an ultimate goal for interference suppression, one could envision an MEG
system without a magnetically shielded room. Since the room constitutes roughly
20 % of the total cost of a MEG set-up, replacing the expensive passive shield
altogether with an active system is tempting. However, operating an MEG system
in a magnetically harsh, or even average, environment without any passive
shielding is challenging for the following reasons: (i) the combination of the
sensors, the active compensation system and the software-based interference
suppression method should have a very large dynamic range (in excess of 140 dB)
in order to cope with the largest interference signals while not elevating the sensor
noise floor, (ii) the compensation system should be able to deal with the high-order
field gradients due to near-by interference sources, (iii) Earth’s static magnetic
field (500-1,000 times stronger than the remanent field in a typical MSR) polarizes
paramagnetic objects which cause additional interference when moving or
vibrating within or in the vicinity of the sensor helmet, (iv) SQUIDs must be
shielded against radio-frequency interference (see Sect. 1.4); a passive magneti-
cally shielded room acts as an RF shield as well and thus a system without such a
room may still require an RF-shield around it for reliable operation if the sensor
elements cannot be RF-shielded locally. Despite these problems, proof-of-concept
MEG measurements without a shielded room have been performed in magnetically
quiet environments. However, reliable unshielded MEG operation in typical
environments will become possible only after considerable advances regarding the
above challenges.

4.2 Novel Sensor Technologies

Low-Tc SQUIDs have so far been the sensor of choice for serious MEG instru-
mentation due to their excellent noise performance and stability; however, these
sensors require expensive liquid-helium cooling, and the large temperature gra-
dient necessitates elaborate thermal insulation which introduces a considerable gap
from the scalp to the sensors. New sensor technologies that may alleviate these
problems have emerged recently. High-Tc SQUIDs (see the work by Oisjoen and
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colleagues (2012) for a recent MEG application) and “mixed sensors” (Pannetier
et al. 2004; Pannetier-Lecoeur et al. 2011) can be operated in liquid nitrogen,
avoiding much of cryogenics-related costs, and brought closer to the scalp. Atomic
magnetometers are based on optical detection of magnetic-field-induced light
polarization changes in alkali-metal vapors; these sensor operate at +120 to
+150 C and they can also be located within a few mm from the scalp. Atomic
magnetometers allow a non-rigid sensor helmet that can be adapted to the head
size and shape of individual subjects. Devices using liquid nitrogen may also allow
some degree of geometric adaptability if the sensor array is split into multiple
small dewars.

These considerable improvements in MEG instrumentation will have implica-
tions for interference suppression. Bringing the sensors closer to the scalp implies
that higher spatial frequencies can be measured, which improves source recon-
struction accuracy but also requires that the physics-based interference suppression
methods, such as SSS, have to be adapted accordingly to work efficiently. On the
other hand, an adaptable snugly-fitting sensor array is likely to deviate from a
sphere more than the current fixed array, which makes the SSS transform
numerically more stable and may provide a higher shielding factor. However, the
adaptability of the array calls for very accurate yet quick means to determine the
locations and orientations of the sensors in order to efficiently use these physics-
based methods for decomposing the data to neural signals and interference. On the
contrary, statistics-based adaptive methods, such as SSP, would not need the
geometric information but would lack the generic nature of SSS.

4.3 Hybrid Instrumentation

Very recently, large-scale MEG has been successfully combined with ultra-low-
field (ULF) MRI in the same system (Vesanen et al. 2012). This combination is
attractive since the SQUID sensor array can be efficiently used for both MEG and
ULF-MRI signal acquisition. However, for a decent signal-to-noise ratio in ULF-
MRI, the low measurement field (~ 100 puT) has to be accompanied with a
stronger pre-polarization field (typically 10—100 mT) that is switched on briefly
before collecting the data. The SQUID sensors should be highly resistant to flux
traps so that they can recover within few milliseconds from the pre-polarization
field. Such field tolerance of the sensors would be beneficial also for MEG when
operating the system in a very light shield or completely without a shielded room.

Similarly to MEG, the MRI mode of the hybrid MEG-MRI system benefits
from efficient interference suppression. Although the MRI signals are in the kHz
range where environmental interference is usually not of concern, reduction of the
intrinsic sensor noise, as outlined in Sect. 3.5.7, could considerably improve image
quality. In addition, noise of the MRI gradient amplifiers may propagate to the
sensors via the gradient coils. Since the field pattern of such interference is con-
stant, projection methods such as SSP should work efficiently.
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5 Conclusion

The MEG measurement technology has taken huge steps forward since the early
days when the number of recording channels was one or only a few. Novel
interference and noise suppression methods have emerged as a kind of byproduct
of the significant increase in the number of recording channels. Because at present
the number of detectable degrees of freedom in the magnetic brain signal is known
to be around 80 only, modern devices containing over 300 independent channels
oversample the actual neuromagnetic field. This fact has enabled efficient general-
purpose interference and noise reduction methods such as signal space projection
(SSP) and signal space separation (SSS).

Because interfering magnetic fields—even when MEG is performed in a
magnetically shielded room—may exceed the strength of the neuromagnetic signal
by about a factor of thousand, it is actually necessary to record the interference
with a better relative accuracy than the neuromagnetic signal itself; Only this
enables sufficiently precise subtraction of the interference from the recorded raw
signal. To achieve such an accuracy, it is necessary to use the entire set of MEG
channels for this purpose, not only a limited set of reference channels as was done
in the early 1990s. Thanks to the ample oversampling of the magnetic field, signal
space methods can then be used to determine and subtract the interference signal
from the recorded raw signal.

With the help of such effective “software magnetic shielding” the required
hardware shielding, magnetically shielded room, can be made lighter and cheaper.
This may be an effective booster for the adoption of MEG in hospitals.
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Electric and Magnetic Fields of the Brain

Leon Heller and Petr Volegov

Abstract Electroencephalography (EEG) and Magnetoencephalography (MEG)
provide two noninvasive methods to learn about the spatial and temporal behavior
of neuronal currents. In this tutorial chapter we present the physics and mathe-
matics needed to interpret such measurements. The frequencies present in neuronal
activity are sufficiently low that Maxwell’s equations for electromagnetism can be
approximated by omitting the terms involving time derivatives. In this ‘quasistatic’
approximation the electric and magnetic fields follow the time dependence of the
neuronal current. The “Forward Problem” consists of solving for these fields on
the surface of the scalp and just outside the head, for any assumed neuronal current
distribution. It requires a knowledge of the ‘head model’, namely the shapes and
electrical conductivities of the main head compartments, i.e., the brain, skull, and
scalp, and possibly the cerebrospinal fluid. Analytical and numerical methods for
doing this are discussed. In the “Inverse Problem” one tries to deduce the neuronal
current distribution from EEG and/or MEG measurements on human subjects. The
factors that contribute to the non-uniqueness of the solution are discussed, and the
methods that are actually employed to obtain current distributions are described.
The standard procedure is to assume one or more current distributions, solve the
forward problem for each one, and compare them with the data. Various criteria
for calculating how well they agree are discussed.
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1 Introduction

Electrical currents play a variety of roles in living tissue. In this tutorial chapter,
intended for graduate students and researchers entering the field, we will be
concerned with currents in the brain that flow inside neurons and across their
boundaries into the extracellular medium. These currents produce an electric
potential that can be detected noninvasively on the surface of the scalp, and a
magnetic field that can be measured outside the head. These modalities are called
electroencephalography (EEG) and magnetoencephalography (MEG). Throughout
the chapter we emphasize the basic physics and the associated mathematics needed
to interpret experimental data obtained in MEG and EEG experiments.

Here is an outline of the material. In Sect. 2 we show how Maxwell’s equations
simplify for the low frequencies associated with neuronal activity. This is called
the Quasistatic Approximation. Another approximation is based on the fact that the
electrical conductivity of the brain is not known in any spatial detail, hence a
single average value is commonly used. The same is true for each of the other
major compartments of the head: cerebrospinal fluid, skull, and scalp, each with its
own average value. This is discussed in Sect. 2.1.

Section 3 begins one of the two major subdivisions of the entire chapter, called
the Forward Problem. In it one calculates the electric potential and the magnetic
field produced by an assumed neuronal current. Further, the notion of a “current
dipole” is introduced as the spatially simplest possible current; any more general
current can be obtained as a (possibly continuous) sum of current dipoles. This is
useful because Maxwell’s equations are linear in the source currents, and the fields
produced by a more general source can be obtained as a linear sum of the fields
produced by the individual sources. This property is used a number of times in the
development.

The other major subdivision of the chapter is found in Sect. 4, called the
Inverse Problem. Here one tries to deduce, from experimentally measured values
of the electric potential and/or the magnetic field on the head, the locations,
strengths, and time courses of the electrical currents that produced those mea-
surements. That there is no unique solution of this problem is pointed out in the
Forward Problem section.

As generally used, the Inverse Problem consists of solving the Forward Problem
for the electric potential and the magnetic field produced by an assumed neuronal
current, and varying that current to find the best match, in a sense to be discussed,
with the data. Noise in the data must be taken into account. As will be seen, even if
one is only interested in magnetic field data, it is still generally necessary to solve
for the electric potential.

The frequencies that are associated with neuronal activity are in the range
1-1,000 Hz, and in the next section we show how Maxwell’s equations for the
electric and magnetic fields simplify as a result. A review of this field as of 1993 is
found in (Hamélédinen et al. 1993).
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2 Low Frequency (Quasistatic) Approximation

The total electric current within the head has been written as the sum of two terms
of distinctly different nature in (Geselowitz 1967), and (Barnard et al. 1967). One,
called the primary current, J?, is the current that flows within neurons and across
their membranes, and is the quantity of interest in neuroscience. Because the cells
are embedded in an electrically conducting medium, the extracellular current—
also called the the “return” current—follows a path that depends upon the con-
ductivity profile of the extracellular medium. The return current J¥ is taken to be
the product of the local conductivity ¢ and the electric field intensity E, i.e., it is
ohmic current. The complete current becomes

J=1J"+0E. (1)

Electric current either flows in closed circuits or else, if it starts or stops
somewhere, electric charge builds up (or declines) at such locations. This is
embedded in the fundamental principle of ‘charge conservation’, the mathematical
statement of which is the continuity equation

op
V- —=0, 2
I+, (2)
where p is the charge density. Equations (1) and (2) together with the Maxwell

equation that embodies Gauss’s Law, V - E = p/ég, lead to

0
V-JP+VJ~E+w0p+a—f:O, (3)
where the characteristic frequency wy = o/¢&y. Even for the skull, which is the part
of the head with the smallest conductivity, wq is approximately 10° Hz. This is
orders of magnitude greater than the frequencies of neuronal activity, which are in
the range 1-1,000 Hz.

2.1 Regions of Constant Conductivity

It requires many thousands of nearby neurons acting in near synchrony to produce
a signal strong enough to be detected by EEG or MEG. Since the electrical
conductivities of the various compartments of the head are not known in any
spatial detail, it is common to assign an average value to the brain, one to the
cerebrospinal fluid, one to the skull and one to the scalp.
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2.1.1 The Electric Field

In any region of constant conductivity a number of conclusions follow from
Eq. (3), where the term Vo drops out.

(i) Away from primary current any electric charge must fall off with time as
exp(—wot).

(i) As mentioned above the frequencies of neuronal activity are smaller than
by many orders of magnitude in all the compartments of the head. Hence the
term Op/0t is negligible compared to wgp in Eq.(3).

(iii) At the site of primary current charge can persist for the duration of the
current, and then falls off as in (i).

(iv) Electric charge can also appear at the boundary between regions of different

conductivity. This will be discussed later.

With the term Op/0f gone Eq. (3) can be rewritten as
V- () +E)=0. (4)

A further approximation for E will follow after consideration of the magnetic field.

2.1.2 The Magnetic Field

From the Maxwell equation V - B = 0, which says that there are no magnetic
monopoles, it follows that B can be written as B =V x A, where A is called the
vector potential. This makes use of the vector identity V - Vx = 0.

From Faraday’s Law comes the Maxwell equation V x E = —0B/0z, which
means that the electric field can be written in terms of the scalar potential V and
the vector potential as

E=-VV—-—. 5
o (5)
The proof follows by taking the curl of both sides of Eq. (5) since V x V = 0.
Any electric current gives rise to a magnetic field, and this is embodied in the
fourth Maxwell equation

1 OE
V xB = -
X ,U()J + C2 ot (6)

The final term in Eq. (6) is called the Displacement Current, and c is the speed of
light. Putting that term there was Maxwell’s great achievement to insure that
charge is conserved, as can be checked by taking the divergence of both sides of
the equation.
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Since the magnetic field arises from the current, A and B follow the time
dependence of JP. This places an approximate limit on the magnitude of the time
derivative terms in Egs. (5) and (6) since the maximum frequency of the neuronal
activity of interest is w =~ 1 kHz.

For Eq. (6) the return current dE makes the first term on the right hand side
larger than the second term by the ratio wg/w, which is many orders of magnitude.
For Eq. (5) it takes more work to show that the magnitude of 0A /0t is negligible
compared to VV. After seeing what follows by neglecting that term, one can go
back and verify that the neglect was justified. Combining Eq. (4) with E = —VV
gives

V-J —aV?V =0, (7)

which represents the quasistatic approximation for the electric potential in any
region of constant conductivity.

The electric potential is that solution of Eq. (7) which satisfies the boundary
conditions that the electric potential is continuous and the normal component of
the return current is continuous on the boundary separating regions with con-
ductivities ¢’ and ¢”. While there may be electric charges on the boundary, con-
tinuity of the potential assumes there are no electric dipoles. And continuity of the
normal component of the return current assumes there is no source of primary
current right on the boundary.

V' =V" ¢'n-V'V=¢n-V"V. (8)

The solution of Eq. (6) without the time derivative term is given by the Biot-
Savart Law

B(r) —@/J(r’) ML “O/J(r’) V' (9)

An P r—r|

To verify that Eq. (9) satisfies Eq. (6) (without the displacement current) requires
some algebra which is best handled using component notation. It is correct only if
the current J is conserved, i.e., it must be the complete current, satisfying
V -J =0. Of course the two contributions to B coming from the primary and
return currents can be evaluated separately, but only the sum of the two is phys-
ically meaningful. They are designated as B”(r) and BX(r).

Equations (7), (8) and (9) together constitute the quasistatic approximation to
Maxwell’s equations. An essential property of Maxwell’s equations is that they are
linear in the source charges and currents. This means that the solution of the
equations, for the electric field and the magnetic field, for the sum of two sources is
the sum of the solutions for the individual sources. Naturally this property also
holds for the quasistatic approximation to the equations, and will be used
throughout the chapter.
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3 The Forward Problem

A head model consists of a specification of the geometry and conductivity of the
various compartments of the head, e.g., brain, cerebrospinal fluid, skull and scalp.
For any assumed primary current distribution J¥(r) the ‘Forward Problem’ for
EEG and MEG solves Egs. (7) and (8) for the electric potential, and Eq. (9) for the
magnetic field on the surface of the head and outside.

There are other applications of electromagnetic theory to the brain besides EEG
and MEG. For example, if one were interested in the effect of current in the brain
on MRI, which is called ‘direct neural imaging’, then one would need the magnetic
field inside the brain. For a uniform sphere the solution is given in (Heller et al.
2004). In addition, brain stimulation by an external current source (known as
Transcranial Magnetic Stimulation (TMS)) makes use of the electric field induced
inside the brain.

3.1 A Current Dipole

Suppose that the primary current occupies a quite localized region, e.g., a few
millimeters in size. Then for positions r that are not too close to that current the
primary current contribution to the integral in Eq. (9), can be approximated as

r—ry
|r—r0|3 (10)

where
p= /JP(r/)d3r/. (11)

This approximation amounts to concentrating all the primary current at a single
position, where ry is somewhere inside current. One writes J*(r) = pd® (r — ry),
where 0 is the Dirac delta function. p is called the current dipole moment. Note
that any current whatsoever, no matter how spread out it may be, can be written as
a linear combination of current dipoles. Since Maxwell’s equations are linear in
the sources, the solution for the fields becomes a linear sum of the solutions for the
individual dipoles. In applications to experimental data it is common to represent
the source as the sum of a small number of current dipoles.

3.2 Special Solutions

To solve Egs. (7), (8) and (9) for the electric potential and the magnetic field for a
general head model requires a numerical solution first for V(r) and then for B(r)
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since the return current contribution to B needs VV. But for certain special
geometries analytic solutions are available, and the most important one is a
spherical geometry in which the electrical conductivity ¢ is assumed to depend
only on the distance from the origin. Although the human head is not a sphere it is
not vastly different, and one can get a fair approximation to V and B by treating the
brain, skull and scalp as concentric spherical regions. This solution is also useful
for checking the accuracy of computer programs written for more general
geometries.

3.2.1 The Magnetic Field

For the magnetic field outside the head, where there is no electric current, from
Eq. (6) (neglecting the time derivative term) V x B = 0 and therefore B can be
obtained as the gradient of a scalar potential, (Bronzan 1971). With ¢ a function of
r it was shown in (Grynszpan and Geselowitz 1973; Cuffin and Cohen 1977,
Ilmoniemi et al. 1985; Sarvas 1987) that the complete magnetic field due to a point
current dipole with moment p at position ry is

Ko

B(r) = AnF? [Fpxrg— (p X9 T)VF| (12)

where
F=a(r-a+ra) (13)
and
a=r-—ry. (14)

Written in this form Eq. (12) is called the ‘Sarvas formula’ (Sarvas 1987). Note
that it is completely independent of the conductivity function, provided that it
depends only on the radial distance from the origin!

Another consequence of considerable importance can be read off Eq. (12). If
the dipole moment p points in the same radial direction as its position ry, then
p x ro = 0, and hence there is no magnetic field outside the head. Such a ‘radial
dipole’ is the simplest example of what is called a “magnetically silent source”,
i.e., an electric current that produces no magnetic field outside the head. A radial
dipole does produce a non-zero magnetic field inside the head, however (Heller
et al. 2004).

The existence of silent sources poses a difficulty for the Inverse Problem, which
is discussed in Sect. 4. It consists of trying to deduce the electric currents in the
brain that produce an experimentally observed magnetic field and/or electric
potential. While an actual current dipole might have both radial and tangential
components only the tangential component can be determined. Even though the
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head is not a sphere a considerable remnant of this uncertainty persists in a realistic
head model.

3.2.2 The Electric Potential

Unlike the magnetic field case, the electric potential in a spherical geometry does
depend on the values of the conductivity in each concentric region, (Rush and
Driscoll 1969). For a uniform sphere an analytic formula for the potential V(r) due
to a current dipole moment p located at position r; is given in (Heller and van
Hulsteyn 1992):

V(r)=p-ViH(r,r)
(15)

H(r,ri) = - {Irfm — L rlenrienl) (> R,y <R)
where R is radius of the sphere. This difference between the two modalities MEG
and EEG, has the following consequence. Suppose the skull, which has a small
electrical conductivity, did not conduct current at all. Then there would be no such
thing as EEG because no current, and hence no electric field or potential, would be
present at the scalp. The magnetic field, on the other hand, penetrates through
regions that have no electrical conductivity.

3.3 Realistic Head Models

We now discuss how to solve for the electric potential and the magnetic field in a
realistic head model obtained from magnetic resonance imaging of an actual head,
together with the assumed conductivity values for the various compartments of the head.

3.3.1 The Electric Potential

The most useful method to solve Eq. (7) for the electric potential in a realistic head
model, subject to the boundary conditions in Eq. (8), was given by (Geselowitz
1967). It consists of converting the linear partial differential Eq. (7) to a linear
integral equation on the boundaries that separate regions of different conductivity.
As shown below, it has the advantage that the boundary conditions are built right
in! The starting point is an identity

1
v —r|

1 1

VPV
[r—r| |r—r| (),

(16)

v (V(r’)V' ﬁv’wr')) — V)V
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Fig. 1 A schematic diagram
showing three head regions
with their respective volumes
V;, surfaces, S, and normal
vectors n. In the literature the
conductivities of the
respective regions are called
Jj’., and a second set of labels,
designated ¢} is introduced
for notational reasons. They
are related as follows.

o] = a); o) = d}; and o},
being the conductivity of the
space surrounding the head, is
zero

which is then integrated throughout the entire volume of the head model, one
conductivity region at a time. Vector r is a position anywhere inside the head
model. On the left side of Eq. (16) one makes use of the divergence theorem,
which says that the integral of the divergence of a vector throughout a volume V is
equal to the integral over the surface S of that volume of the component of the
vector along the direction of the outward pointing normal vector. On the right hand
side of Eq. (16) one can make use of Eq. (7) to replace V2V =V - J?/qg. Also,
V3 /|r —¥'| = —4nd(r — 1').

Figure 1 shows the notation for the case of three regions, brain, skull, and scalp.
The normal vector on each surface is chosen to point outward from that region. It
is straightforward to apply Eq. (16) to the innermost (brain) region with volume
Vi, surface S, and conductivity ¢} (see Fig. 1). Multiplying Eq. (16) by ¢/ and
integrating it throughout region 1 yields

1 1
/dS’ln(r')- <0’1V1(r’)V’— —— 0\ V1V, (r’))

[r —r/| B Ir —r/|
M

(17)

=— / &7 |4na| V(X)o(r — ') + VI ()

Vi

r—r|

In this equation the normal vector n(r’) points outward from the region with
conductivity ¢}. Furthermore, the quantities V;(r’) and V|V, (r’) are the values of
those quantities as S; is approached from the interior of volume V;.
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When Eq. (16) is integrated throughout region V, with conductivity o, there
are two surfaces that contribute to the left side of the equation, S; and S,.
The contribution from surface S, looks just like the left side of Eq. (17) with the
subscript 1 replaced everywhere with 2. But because we have already chosen the
normal vector on S; to point outward from region 1, which makes it inward
pointing to region 2, the contribution of S to the left side of the equation requires
an overall minus sign.

When the equations for conductivity regions 1 and 2 are summed over the
contribution from S§; contains (¢} Vi(r') — a4Vo(r')) and (o)V|Vi(Y) — o)
V5V, (r')). Applying the boundary conditions Eq. (8) on Sj, Vi (r') = V,(r') and
n- () ViVi(r') — 6, V,Va(r')) = 0. This confirms the statement earlier that the
integral equation has the advantage over the differential equation that the boundary
conditions are built in.

After integrating Eq. (16) over the complete volume of the head the result is,
(Geselowitz 1967)

1 r—r 1 r—r
a(r)V(r) = ﬂzj(a/f _ J{/)/ds;n(r’) A v(r) +E/d3r/Jp(l") o
5 v
(18)

In Eq. (18) the position r is anywhere in the volume, and o(r) is the value of the
conductivity in the head compartment containing that position. The final integral
on the right side is obtained by once again using the divergence theorem on
V- (JP(r))/|r — r'|) and noting that there is no contribution from the surface
integral on the surface of the head because there is no primary current there.

Equation (18) determines the value of the potentlal at position r only if one
already knows its values on all the surfaces of discontinuity of the conductivity. To
obtain those values let the point r approach a position ry on one of the surfaces, Sy.
Care must be taken because the denominator of the surface integral vanishes there.

There is a geometric meaning of the integrand which reveals the problem and
points to the solution. Apart from the function V(r’) the rest of the integrand in the
surface integral in Eq. (18) is just the element of solid angle d€'(r,r’) subtended
at the position r by an element of surface area dS’ at position r’, i.e.,

r —r

dQY (r,r') = dS'n(r') - (19)

o — x|

Now the total solid angle subtended at any position r inside a closed surface (with
outward pointing normal) is 4m; if r is outside the surface the total is zero, and if r
is on the surface the total is 2. It is a discontinuous function. It is equally true with
any function V(r) in Eq. (18) that the limit of the surface integral as r approaches
a position ri on the surface is not equal to the value of the integral with r = ry;
there is an extra term (Vladimirov 1971)
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For the final step, in Eq. (18) let r approach ry from the o}, side, and replace the
limit of the surface integral on surface Sy according to Eq. (20). Then there will
be an additional term on the right side of (1/4n)(g}, — a])(2nV(rg)). When this
term is brought over to the left side of the equation, which consists of aiV(rk), and
the two terms combined, the result is, (Sarvas 1987)

O./ + (7” 1 /
k ) k V(I‘k) = EZ/(O-J, — GJ,-/) / dSJ/-n(r’)

Sj

r

_ o
Ik V(r’)+i/d3r’Jp(r’). g —r

. \r’—rk|3 4 |rk—r’|3
14
(21)

The reader can check that it does not matter if the point r approaches ri from the
o}, side or the o/ side; Eq. (21) results either way. [Recall that the normal vector on
the ¢ side has the opposite sign.]

Equation (21) is a set of coupled linear integral equations for the electric
potential, one equation for each surface. A standard method for numerically
solving Eq. (21) for the electric potential on those surfaces is to approximate each
surface separating different conductivity regions by a set of small triangles, noting
that there is an analytic formula for the solid angle subtended by a triangle at an
arbitrary position, (van Oosterom and Strackee 1983). Some treatments choose the
vertices of the triangles as the locations for evaluating the potential, and some
choose the centers of the triangles. See, for example, (Schlitt et al. 1995). When this
is done the continuous integral equation is replaced by a set of ordinary coupled
linear algebraic equations, which are solved by standard matrix techniques.
Figure 2 shows a mesh of triangles on the brain-skull interface, and the outlines of
the skull-scalp interface and the scalp-air interface, used for solving Eq. (21).

When doing this it is important to make sure numerically that the total solid
angle subtended by all the triangles on a given surface at an interior point is 4,
and zero at an exterior point. And if the point in question is on one of those
triangles the total is 2n. Consequently, since a flat triangle subtends zero solid
angle at any point on itself, all the other triangles on that same surface must
subtend a total of 27 at any point located on a triangle.

As mentioned above, once the potential has been found on the surfaces of
discontinuity, it can then be evaluated at any other position using Eq. (18).

3.3.2 The Magnetic Field

The starting point for evaluating the magnetic field in a realistic head model is
Eq. (9), the Biot-Savart Law. For the primary current contribution simply insert J°
into that equation,
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Fig. 2 A mesh of triangles
on the brain-skull interface
used to numerically solve
Eq. (21) for the electric
potential. There are similar
meshes on the skull-scalp
interface and the scalp-air
interface, which are not
shown. The values of the
potential at every triangle
vertex are the unknowns
being solved for, given an
assumed primary current

&, (22)

1
v —r|

where V is the complete volume of the head.
For the return current one must have already solved for electric potential V(r).
Since JR = —¢VV, its contribution to the magnetic field is

I 1
Bf(r) = —ﬁz(ri / V'V({I')x V' = r’|d3rl’ (23)
v

where the sum is over all compartments of the head. Here one makes use of the
identity VV x V(1/|[r —r'|) =V x [VV(1/|r —r|)], together with Stokes’s
theorem. It says that the integral of the curl of a vector N throughout a volume is
equal to the integral over the surface of that volume of n x N, where n is the
outward pointing normal vector. In the present case N is chosen to be
V)V (1/Ir - ).

Just as in the case of the electric potential the contributions from the two
compartments that share surface S; will contribute with opposite signs because the
normal vector is chosen to point from the region with conductivity a]’. into the
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region with conductivity a}’ . The final result for the return current contribution to
the magnetic field is, (Geselowitz 1970).

1

r—r|

BY(r) = - 2050/ — o) / dsi(r') x V(r')V' (24)

4r
Sj

Since all the equations above for the electric potential and the magnetic field are
linear, their solutions for an arbitrary primary current, say a sum of point current
dipoles, are just the sum of the solutions for the individual dipoles.

3.3.3 Conductivity Values

In order to actually solve Eq. (21) for the electric potential in a given head model it
is necessary to know the actual values of the conductivity in each compartment of
the head. These measurements are made in a number of ways. In one, current is
injected into the head and the resulting potential distribution on the scalp is
measured; a best fit of assumed conductivity values to the data is then made. Here,
the injected current plays the role of the primary current J¥ in Eq. (21). With
patients about to undergo surgery, e.g., for epilepsy, electrodes can be placed right
on the surface of the brain, both to inject current and detect the resulting potential.

Since the assumption of a constant isotropic conductivity in each head region is
somewhat crude, it is not surprising that there is considerable variation from person
to person when these measurements are made. Some approximate values obtained
are as follows. ¢ (skull) = 0.015 S/m; and ¢ (brain):o(skull):a(scalp) = 1:1/15:1,
(Oostendorp et al. 2000). This value for the skull conductivity is much larger than
that found in older literature. A separate measurement of the conductivity of human
cerebrospinal fluid gives the value 1.79 S/m at body temperature and a somewhat
smaller value at room temperature, (Baumann et al. 1997).

4 Inverse Problem

An inverse problem is generally understood as methods or techniques used to
obtain information about a physical object or system using indirect measurements.
In the context of EEG/MEG the inverse problem deals with reconstructing current
sources, i.e. current distribution J’(r), using measured magnetic fields and/or
electric potentials generated by those currents. We will start to discuss the inverse
problem considering only MEG sensors. Given that we have a number of MEG
sensors we can write the MEG inverse problem in general as a set of integral
equations:
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fi(t) = /Mi(r') DB 4+ E(n),i=1,..,N (25)

\4

Here f;(7) is the signal recorded in the i-th sensor, &;(¢) is noise present in the i-th
channel, N is number of the sensors, and the integration is over the volume
occupied by neuronal currents. Vector function M;(r), called “lead field”,
describes a response of the i-th sensor to a unit current dipole at position r.
Specifically (M;(r)), is magnetic field flux through the pick-up coil of i-th sensor
generated by a unit current dipole aligned along x-axis, correspondingly (M;(r)),.
(M;(r)), are magnetic field flux due to dipoles aligned along y- and z- axis. It is
important to note that lead field function M;(r) describes effects of both the
primary and return currents. In order to obtain lead field function one first must
compute the magnetic field due to primary current consisting of a unit current
dipole, see Eq. (22, and the magnetic field due to the return current associated with
this dipole (Eq. (24)). For the latter one must have first solved for electrical
potential according to Egs. (18) and (21). Then the total magnetic field is inte-
grated over the area of a sensor pick-up coil to compute the magnetic field flux.
Often times in practice the lead field function is approximated by sampling the
field at several points over the area of a sensor pick-up coil:

Ny

Z{(Bx(rk, I‘) . ﬁk)/e\x —+ (By(l'k, I‘) . ﬁk)/e\y —|— (Bz(rk, I‘) . ﬁk)/éZ}ASk
k=1

1
M(r) ~ N
P

(26)

Here N, is number of the sampling points, ASy and ny are respectively the area of a
pick-up coil and the unit vector normal to a pick-up coil associated with a sam-
pling point r, B,(r, r), is magnetic field at the sampling point r; generated by
total current associated with a unit current dipole positioned at r and aligned along
x-axis, correspondingly B, (ry,r) and B, (ry,r) are fields generated by dipoles
aligned along y- and z-axis.

Equation (25) being Fredholm integral equations of the first kind for the current
J?, constitute a notoriously ill-posed problem. The term “ill-posed” in the context
of the inverse problem points to the presence of one of the following three
problems: (a) the solution may not exist, i.e. that there is no current distribution
J?(r) which corresponds to the measured data, (b) the solution is not unique,
meaning that there are several different current distributions J°(r) which give the
same observed data, and, finally, (c) the solution changes dramatically with slight
changes in the measured data.

An EEG/MEG inverse problem demonstrates all of the three aforementioned
conditions. First due to corruption of the measurements by omnipresent noise it is
quite possible that no current distribution can explain the observed data. Second, as
early as in 1853 it was shown by Helmholtz (1853) that a current distribution
inside a conducting body can not be uniquely reconstructed knowing only the
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electromagnetic field outside this body. There are possible current distributions
inside a conductor which produce no magnetic field outside the conductor, or
produce no electrical potentials on the surface of the conductor. Such current
distributions are called magnetically silent and electrically silent, respectively. An
example of magnetically silent current is a current dipole placed inside a con-
ducting sphere and aligned along the radius. Due to symmetry of the problem, see
Eq. (12), the field outside of the sphere is identically zero. An example of an
electrically silent current is a loop current inside a conductor, which produces a
magnetic field outside the conductor, but does not contribute to the electrical
potential on the surface of the conductor. There are also current distributions
which produce no magnetic field outside the conductor nor electrical potentials on
the surface of the conductor. Finally if the current is limited to an area located far
from the surface of the conductor, then quite different current distributions inside
this area will result in about the same magnetic and electrical field outside the
conductor, thus giving the possibility that a solution will change drastically with a
slight change in the measured data.

This suggests that special attention should be paid to how we define a solution
of an EEG/MEG problem and how we obtain it.

4.1 Formulation of the Problem

The first step in estimating neuronal currents is to somehow describe it in terms of
known sources. This can be done in many ways, provided that the selected sources
can represent the function J”(r) reasonably well, but for the purposes of this book
we assume that the primary current J’(r) can be represented by a finite sum of
current dipoles:

Z (r—r;) (27)

where p; and r; define direction and position of the j-th dipole. Substituting this
last formula into Eq. (25) we obtain a set of equation for the unknown parameters
of dipoles:

iM, 0+ &(t),i=1,..,N (28)

j=1

Here Mi(rj), which is the lead field function of the i-th sensor, represents the
response of the i-th MEG sensor to a unit current dipole at position r;. In this last
equation position of the dipoles, i.e. r;, could be defined from anatomical MRI
data, or left undefined. In the first case, we only need to find dipole vectors p; by
solving a system of linear equations, but in the second case we also need to find the
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positions of the dipoles r; along with their vectors p; to specify the current source,
which makes the problem non-linear. One must remember not to include silent
current dipoles, such as, for example, a radial dipole inside a conducting sphere,
because there is no way we can attribute strength to such a dipole.

Here it is convenient to introduce matrix notation which is ubiquitous in the
literature, both textbooks and research, dedicated to MEG/EEG. Using matrix
notation equation (28) can be written as:

f=Kq+¢ (29)
where the measured data are represented by column vectors: f = (fi,.. ., fN)T,
E=(¢&,. .., iN)T (here and later the superscript 7' denotes a transposed matrix/

vector), column vector q comprises components of the all dipole vectors p;:

q= ((P) (pl)ya (P1), (P2)ys (Pz)y (P2) 5 -+ -5 (Pag)vs (pM)yv (PM)Z)T (30)

and components of the lead field functions M;(r;) form matrix K usually called a
“gain” matrix:

Mi(r1)), (Mi(r1)), Mi(r1)) Mi(ru)),  (Mi(rar)),  (Mi(ru))
K = K(ry, 12, . 1y) = Ma(r1)),  (Mz(r1)), (Ma(ry)) (Ma(ry)),  (Ma(ry)), (Ma(ry))
My(r1)), (Mn(r1)), (My(r1)), ... (My(rm)), My(ran)), Mn(ru)),

(31)

Recalling the rules of matrix multiplication it is easy to see that the matrix Eq. (29)
constitutes exactly the set of Eq. (28).

So far we have only discussed MEG data, but without changing anything we
can add measured EEG data to the data vector f and “gain” matrix of the EEG
channels, i.e. matrix elements which describe responses of a EEG channels to a
unit current dipole, to the matrix K, thus consider Eq. (29) describing the complete
EEG/MEG problem.

Now we can formulate the MEG/EEG inverse problem as follows: estimate
current source parameters @ = {p;,r;}, given a MEG/EEG data set f measured
with some statistical errors &. This is obviously a parameter estimation problem.

4.2 Maximum Likelihood Approach

A very common method of estimating the parameters of a statistical model is
maximum-likelihood estimation (MLE). In general the method gives the model
parameters ® which give the observed data f the greatest probability:
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Oure = arg ngx(p(ﬂ@)) (32)

Here p(f|®) is the probability density, i.e. p(f|®)Af is the probability to measure
MEG/EEG signals in the interval (f,f + Af), provided the actual source was
defined by parameters @, and @ g, called a maximum likelihood estimation, is
that value of ® which maximize p(f|®) considered as a function of ®. The
probability density function considered as a function of the ® instead of f is called
the likelihood function: L(®) = p(f|®). Usually it is more convenient to maxi-
mize the logarithm of the likelihood function:

where /(@) = In(L(0®)) = In(p(f|®)) is called a log-likelihood function.

Naturally, the MLE approach requires knowing the statistical properties of the
noise. One simple, but plausible, assumption is that the noise £; obeys the Gaussian
distribution with zero mean. In this case for each measurement channel we can
write the probability density to observe value x, which can be a magnetic field or
electric potential, in a measurement channel:

1 a=f)?
pi(x|@®) = e i (34)

\/2no?

where p;(x|®) is the conditional probability density for the i-th measurement
channel, i.e. p;(x|®)Ax is the probability to observe signal in the i-th channel in the
interval (x,x + Ax), provided the current source was defined by parameters O,

JN‘Z- = Zj‘i , Ki;q; is the expected value for model parameters @, and 7 is the noise
variance for the i-th measurement channel respectively. Further assuming that the
noise in the different channels is independent, i.e. the combined probability for all
the measurement channels is a product of probabilities of the individual channels:
p(f1, - fn|1®) = p1(f11O)p2(2|O). . .o (fv|®), we will get the likelihood func-
tion for this noise model:

1 ,(/f—/N;)Z

L(@):g We (35)

Taking the logarithm of this last expression we will get a log-likelihood function,
i.e. the function we seek to minimize to find the current distribution most con-
sistent with the measurements, in the case of uncorrelated Gaussian noise:

N 2
[(®) = —;Z;(f';zf’) + const (36)
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It should be noted that in practice the noise in different channels is more often
correlated, than not, because it is caused by common ambient noise sources. Still
assuming that the noise obeys a Gaussian distribution we can generalize formula
(36) as:

1(©) = —%(f “HC(E =) + const (37)

where f = Kq is the vector of expected values of the measured signals for the
model parameters @, C = [C;;] is the covariance matrix of noise in the mea-
surement channels, and C~' denotes the inverse of this matrix, ie. C~'C =
cCc!' = I, where I is an identity matrix. By definition elements of a covariance
matrix C;; are expectation values of product of noise signals in the different
channels:

Cij=E{(&—&)(&— &)} (38)

Here E{...} denotes the expectation value of an expression in the brackets, &; is
noise present in the channel i, the bar over a quantity, to shorten the notation, also
denotes the expectation value of quantity, i.e. & = E{¢&;} is the mean value of
noise in i-th channel. Note that Eq. (38) can be written in matrix notation as:

C=E{(¢-9(¢E-d"} (39)

In the case of uncorrelated noise considered above, see Eq. (36), all non-
diagonal elements of the correlation matrix are equal to zero, and the diagonal
elements, i.e. C;;, are simply variance of the measurement channels.

i 0 0 ... O
0 63 0 ... 0
C= (40)
0 ... 0 o4, O
0 ... 0 0 o

Respectively the inverse matrix of this diagonal matrix is also a diagonal matrix,
the diagonal elements are the inverse variance of the corresponding measurement
channels:

/a2 0 0 0
0 1/63 0 0
c'= (41)
0 0 1/e3, O
0 0 0 1/d%

It is easy to see that by substituting (41) into (37) we will get exactly formula (36).
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4.3 Chi-Square Criteria

Before we proceed to describe techniques for finding solutions according to (33),
let us qualitatively analyze the properties of the MLE.

First, by solving the problem (29) in some sense we estimate both the source
parameters ® and the noise £. Second, if the problem (29) has an exact solution,
i.e. if O exists such that Kq = f, where f is the measured data, then this solution is
a MLE solution. This means that in this case the estimated noise is identically zero,
which is very hard to believe. This leads to a paradox: the better we fit the data f by
adjusting the source parameters ®, the higher the probability that the source
generates the data, but if we fit the data too well it becomes very unlikely that the
data are generated by the source. This situation is usually referenced to as
“overfitting” the data.

These considerations lead us to the necessity to characterize somehow the

difference between the measured data and the model, i.e. between f and f= Kq.
This difference describes how well the model describes the data. If the variance of
the noise is known this difference can be characterized by a quantity denoted as 32
and defined by the following equation:

= XN:(’C;—ZF)ZE -0zt -1) (42)

where elements of the diagonal matrix X! are the inverse variance of the cor-
responding measurement channels (compare with Eq. (41)). From the definition
(42) it is obvious that if the parameters of a true model are somehow known, the
expectation value of 2 is equal to the number of the measurement channels N. In
the case the noise in different measurement channels is uncorrelated and normally
distributed with zero mean, the quantity y* defined according to (42) obeys a
probability distribution known as “chi-square” distribution (hence the notation)
with v degrees of freedom. This distribution has the expectation equal to the
number of degrees of freedom v and the variance twice this number 2v. In the
limiting case v — oo chi-square distribution converges to a normal distribution.
The notion of “number of degrees of freedom” deserves some explanation.
Usually it is assumed that v = N — M, where N is the dimension of the data vector,
i.e. the number of measurement channels, and M is the number of model
parameters. This reflects the fact that if we estimate M model parameters mini-
mizing (42) and using N measurements, then we can expect that on average the
value of y? will be about N — M with the variance twice this number, provided our
model allows for the exact solution of the model equation (Eq. (29) in our case). In
the limiting case when the number of the estimated model parameters (including
the ones estimated implicitly) is equal to the number of available data points, then
we can expect the difference y? is identically zero. This approach helps to answer
the questions about fidelity of the model: “can it describe the data set?”, “are M



92 L. Heller and P. Volegov

parameters enough to account for the complexity of the data?”, “do we have any
redundant model parameters?”. However if we formulate the question as “is it
plausible that the model in question generated the observed data set?” then we
need to assume that the number of degrees of freedom is equal to the number of the
data points: v = N.

In practice it is convenient to use the normalized chi-square (or reduced chi-
square) criteria—y2, which is x> per degree of freedom:

=7/ (43)

Obviously the expectation value of y2 is always 1, and the variance is 2/v,
which makes it easy to interpret: if Xﬁ is about 1 within, say, a variance, then our
model is consistent with the data, if X% < <1, then our model captures not only the
signal but also the noise (or the noise is overestimated), and finally if Xﬁ > > 1,
then our model is not adequate to describe the signal (or the noise is underesti-
mated). Naturally, one must not forget that in order to apply these rules the
variance of the noise should be very reliably estimated.

These simple rules may be formalized by introducing P- and Q-values. Given a
particular value we can calculate the probabilities obtaining an experimental value
of y? that is less (P-value) and greater (Q-Value) than this value. The most widely
accepted critical value is 0=0.05, meaning that only in 5 % of trials the higher
value of y*> would be observed if the model under consideration is true. In MEG
sometimes a solution is considered to be acceptable if its Q-value is greater than
0.001.

Similar to (37) definition of the x> (42) can be generalized using a complete
covariance matrix C, which in the general case is not a diagonal:

F=0Ff-0'c (-1 (44)

Here if the matrix C has full rank, then the 3> defined according to (44) is chi-
squared distributed.

Concluding the discussion of characterizing the difference between the model
and the measurement we would like to reiterate that characterizing the validity of
the model and the validity of the solution of the inverse problem in MEG/EGG is
of paramount importance.

4.4 Imaging Versus Localization

Now let us proceed to find estimations of the current sources according to Eq. (33).
It is generally accepted, see for example (Baillet et al. 2001), that depending on
how we select the current dipoles in the decomposition (27) the estimation of
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current sources can be broadly divided into two classes: (1) “localization” and
(2) “imaging”.

In the first case we assume that the current source under study is limited to a
few small areas. Naturally here the basis sources are selected to be a few current
dipoles, positions and magnitudes of which are considered to be unknown
parameters of the model to be estimated by fitting the model to the data.

In the second case the current source is assumed to be of distributed nature. In
this case the basis functions typically constitute a large number of current dipoles
distributed according to some rule over the target surface or volume. The positions
and orientations of those dipoles are assumed to be known, and the amplitudes of
the dipoles are considered to be the model parameters to be estimated.

In addition to the two classes described above one can also distinguish
“beamforming” techniques, which are somewhat intermediate between the
localization and imaging techniques. The main idea of this approach is to design a
filter, which being applied to the data vector f emphasize the signals resulting from
some selected spatial area, while suppressing the signals from the rest of the target
volume.

4.4.1 Single/Multiple Dipole Localization

Early studies of the fields generated by evoked somatosensory responses (Brenner
et al. 1978) revealed a dipolar character of both the magnetic field around a head
and the electrical potential on head surface. An example of such fields is shown in
Fig. 3 where the dipolar and complementary nature of the MEG/EEG signals is
clearly visible. This leads to the simplest model of neuronal current source as an
equivalent current dipole (ECD): J¥(r) = p,d° (r — ry).

It is straightforward to find parameters of the dipole, i.e. its position r; and
vector p,, by maximizing log-likelihood function (37), or, which is equivalent,
minimizing y? (44), with respect to r; and p, using the following relation for the
model f:

f =K(r,)p, (45)

with an iterative optimization procedure. The most popular techniques for this
problem are Levenberg-Marquart (Levenberg 1944; Marquardt 1963) and Nelder-
Mead downhill simplex (Nelder and Mead 1965). It should be noted that as a rule
iterative optimization techniques require specifying an initial guess of what the
solution may be. In our case that means one needs to specify the initial position of
the dipole.

As the number of parameters of this model is small, i.e. 3 for dipole position
and 3 for the dipole vector, compared to the number of data channels, typically
modern EEG/MEG systems have a few hundred measurement channels, the risk of
overfitting the data is practically non-existent. However due to non-linearity of the
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Fig. 3 An example of combined MEG/EEG data for median nerve stimulation experiment.
MEG/EEG sensors were positioned at the vertices of the corresponding meshes, and then the data
were interpolated to the corresponding surface to enhance visualization (the MEG surface is
shifted relative to the EEG surface to provide a better view of the EEG data). MEG data were
obtained using 149 channel LANL SIS system (Kraus et al. 2002) and EEG data were collected
with a 128 channel Geodesic Sensor Net (Tucker 1993)

problem, even in this simplest model, there is a possibility, albeit small, that the
optimization algorithm will converge to a local, but not to the global extremum of
the likelihood function. To avoid being trapped at the local extremum, the
localization procedure it typically repeated several times each time using a dif-
ferent starting point (i.e. the initial position of a dipole) and selecting the solution
giving the best fit.

Let us illustrate this approach using MEG data obtained during a simple median
nerve stimulation experiment. Under the protocol of the median nerve test, see for
example (Huang et al. 2004), the left or/and right median nerves are stimulated by
application of electrical current strong enough to cause robust twitches of a thumb,
and magnetic fields generated by neuronal currents associated with such stimu-
lation are recorded by a MEG acquisition system. Figure 4 shows a typical pattern
of the recorded signals due to right hand stimulation, where the left panel shows
the time course of magnetic field for all the MEG channels and right panel shows
spatial pattern of the evoked response field at 33.5 ms after application of
the stimulus. The magnitude of the fields is about 200 fT. The dipolar nature of the
evoked response is obvious, so we can try to use an equivalent current dipole
model to fit the obtained measurements. To obtain the location and the strength of
the ECD which describes best the measurements, we need to specify the head
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Fig. 4 Evoked somatosensory response field after electrical stimulation of the right median
nerve

model, i.e. the way we compute the return currents. In this example we will use the
simplest model—a conducting sphere. The conductivity of the sphere, as follows
from the Eq. (12), has no effect of the magnetic fields generated by return currents,
so to use this model we only need to specify the center of the sphere and its size
which can be done by fitting the sphere to the inner scull surface obtained from
anatomical MRI data. It is important to note that when considering a spherical
head model, a current dipole aligned along a radius of the sphere—a “radial”
dipole—produces no magnetic field outside the sphere, i.e. such a dipole is
magnetically silent. Since we are using only MEG data to locate the ECD in the
current, we need to exclude such radial current dipoles from the solution. To do
this we need to impose the condition (p, - ry) = 0 for dipole parameters ry and p,
while searching for the best fit. This can be done by decomposing a dipole vector
p, into two tangential components at the dipole position r,:

Py = €1(ra)p1 + € (ra)p2 = R(ra)p, (46)

where unit vectors €;(r,;) and €,(r,) are defined by conditions (€;(rs) - rs) = 0.
Equation (45) needs to be accordingly modified:

(ra)p.

f K.
K. (r) = K(r,)R(x,) (47)

where R(r;) = [€(ry) €(ry)],and p, = (pi1,p,)". Note that excluding radial
dipoles from the solution resulted in the reduction of unknown parameters.
Figure 5 summarizes results of this exercise, where the top-left panel shows the
measured field and the top-right panel shows the best fit, i.e. the field generated by
an equivalent current dipole which is closest to the measured data in the maximum
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likelihood sense. The position of the dipole, mapped on anatomical MRI data, is
shown in the bottom-left panel of Fig. 5. The strength of the dipole was found to
be 31.3 nAm. The bottom-right panel in Fig. 5 shows the difference between the
measured data and the model data, which is about 20 fT.

As we can see from this example even the simplest head model gives rather
good agreement with the experimental data. However it is important to estimate
what possible localization errors associated with this simple approximation. This
problem was exhaustively studied (see for example Cohen and Cuffin 1991;
Hamalainen and Sarvas 1989; Tomita et al. 1996; Huang et al. 1999). The general
consensus is that the spherical model is more accurate for the MEG than for EEG.
In the case of MEG using a simplistic head model instead of a realistic boundary
element model (BEM) could result in dipole localization errors from a few mil-
limeters if a dipole is close to the head surface, up to 10 mm if a dipole is located
deep inside the head.

Finding parameters of the model is only part of the solution, next we need to
estimate confidence intervals of the solution. Once again, the non-linear nature of
the problem complicates the task. The straightforward approach is to employ a
Monte-Carlo type technique (e.g. Medvick et al. 1989): starting with the localized
dipole {r,, p,} to generate the model data, i.e. vector f, then add some noise to this
vector using a plausible noise model, and finally find new dipole parameters
{r/;,p,;} using this new synthetic dataset. After repeating this procedure several
times we can estimate the spread of the parameters of the dipole.

Another approach is based on the assumption that the localization error is not
too large, so that the gain matrix can be approximated in the vicinity of the dipole
parameters {r,, p,} using only the first terms in Taylor decomposition:

K(r)p ~ K(rs)p, + K(ra)Ap + (Ar - V)K(r)|,_, Py (48)

where Ar =r — ry, Ap = p — p, are localization errors, and differential operator
(Ar-V) = AxS + Ay S + Az is applied to each element of the matrix K(r).
Now Eq. (29) can be written in the linear form with respect to the localization
errors Ar and Ap:

f = K(rq)p, + G(rs)A® + ¢ (49)

Here A® = (Ax, Ay, Az, Ap,, Apy, Apz)T is a vector of the localization error, and G
is the matrix of the derivatives of the gain matrix K which can be explicitly written
as:
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Fig. 5 Localization of an equivalent current dipole in a right median nerve stimulation
experiment. Top row left—measured data, middle—model fit, right—residual. Bottom row
position of the localized dipole (green marker), mapped on anatomical MRI data
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(50)

where matrix elements are evaluated at r = r,.
Solving Eq. (49) in the maximum likelihood sense, i.e. minimizing expression
(37), we will get the following formula for the localization errors:
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AG = (G'C'G)'GTCc ¢ (51)

Here A® is a random vector of the localization errors which we would like to
characterize by the corresponding correlation matrix:

Cro = E{(A® — A®)(AQ — AO)"} (52)

Recall that ¢ is a random variable described by the correlation matrix C, so
substituting (51) into (52) and carrying out matrix multiplications will finally result
in a simple expression for the correlation matrix of localization errors:

Cho = (G'C'G)™! (53)

It should be noted that formula (53) is actually a lower bound for localization
errors. According to the Cramer-Rao inequality theorem (Rao 1945; Cramer 1946)

the covariance matrix of the errors between the true ¥/ and estimated z} parameters
is bounded from below by the inverse of the Fisher information matrix:

Cyy = E{ —h)(y =)'} 2 F (54)

where the Fisher information matrix is defined as

F= E{[ lnp(fll//)][dw Inp(fl)]"} (55)
Here ﬁln p(f|Y) denotes a column vector of partial derivatives of log-likelihood
function:
L inp(ty) = (=0 p{E), . oo plE10)” (56)
ay " agy Ty

Using Egs. (37) and (45) to compute Fisher information matrix for a single dipole
model we will get:

=G'C’'G (57)

where again the matrix G is defined by Eq. (50) and matrix C is the correlation
matrix according to (39). From this last formula it is easy to see that estimation of
the localization errors (53) is indeed the Cramer-Rao lower bound (CRLB).
Analysis of the localization errors using CRLB approach, see for example
(Mosher et al. 1992, Plis et al. 2007), reveals that even when using quite favorable
assumptions about the noise level the localization errors are quite large reaching
~ 1 cm for dipoles located just a few centimeters below a head surface (see
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Fig. 6 Average error lower bound for a single dipole. Left panel EEG, right panel MEG.
(Mosher et al. 1992)

Fig. 6), thus emphasizing the inherent ill-posed nature of a MEG/EEG inverse
problem.

A single equivalent current dipole model considered so far nicely illustrates the
methods used to find a dipole location. However, in practice this simple model
may not be adequate to describe a more complicated current source. An example
of such a situation is shown in Fig. 7. It is obvious that the pattern can not be fitted
with a single dipole model, so it is quite natural to expand the model to assume that
the current source contains several equivalent current dipoles.

The first question here one must ask is “how many dipoles?”. The straight-
forward approach to answer this question is a systematic search across increasing
number of dipoles (Supek and Aine 1993). The main idea is starting with a model
consisting of one ECD or some small number of dipoles and conduct a search
across model orders by increasing the number of dipoles to determine if the model
adequately describes the observed data using, say, y> criteria. The model which
adequately describes the observed data using minimal number of dipoles is con-
sidered to be the answer.

Another approach to estimate the number of dipoles is based on the assumption
that dipoles are not correlated in time, i.e. the time courses of dipoles are linearly
independent. To outline this approach let us write the recorded data as a matrix:

filt)  filt) .. filtm)
p= |20 fAln) . filtn) (58)

() fn(2) oo fultu)
where f;(1;) is the signal in the i-th sensor at time f;, so each row of the matrix D
constitutes recorded time signal of the corresponding sensor. If we assume that
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Fig. 7 Auditory evoked
response demonstrating
2-dipole like features of the
MEG signals
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these signals are generated by a certain number of linearly independent sources,
the number of linearly independent rows is equal to the number of these sources.
So to estimate the number of dipoles we need to estimate the number of linearly
independent rows in the matrix D, which can be done using a singular value
decomposition (SVD) of this matrix (see Chen et al. 1991 for details). It should be
noted that this approach gives a minimum number of dipoles, because, as it is easy
to see, if some current sources are active synchronously, then under this approach,
they will be counted as one source even if they are spatially distinct.

As we have mentioned before, parameters of the dipoles are obtained by
maximizing the likelihood function. However for a model consisting of multiple
current dipoles one is likely to encounter difficulties in finding the global extre-
mum. As it was shown in a number of publications, see for example (Achim et al.
1991; Supek and Aine 1993), if the number of dipoles is greater than one, the
result strongly depends on the initial guess of the dipoles’ positions. This is due to
the very high probability that the optimization procedure will converge to a local
extremum. A way to overcome this is to repeat the procedure several time each
time using different initial guess of the dipoles’ positions. As the number of
dipoles grows, selecting initial parameters of dipoles becomes tedious and time
consuming, so there is a need to automate this step. One straightforward approach
is randomly select initial positions of dipoles inside the head volume, and then
select the solution giving the best fit. It was shown (Huang et al. 1998) that this
approach in combination with the downhill simplex method is effective in finding
the global extremum within a reasonable computation time. Subsequent approa-
ches were developed to further optimize the computation time by: (1) using a two-
stage simplex procedure to first rule out sub-optimal solutions (i.e., it uses a coarse
convergence criterion in the simplex procedure) and then refines the remaining
solutions using a fine convergence setting; and (2) using a MUSIC-seeded
approach (Ranken et al. 2002, 2004).
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4.4.2 Imaging Techniques

In this case we assume that locations of the current dipoles—and usually orien-
tations—are fixed and known. Typically it is assumed that the dipoles are dis-
tributed over the cortex surface and their orientations are orthogonal to this
surface. As for the positions of current dipoles, Eq. (29) is reduced to a linear
equation with respect to unknown dipole vectors, which can be solved using a
maximum likelihood approach.

If the number of unknowns is less than the number of linearly independent rows
in K, i.e. the number of independent equations in (28), then the MLE solution
according to formula (33) is unique and is given by:

q=(K'C'K) "(KTCHf = (KTK)—IKT‘E (59)

Here, to shorten the notation, we introduced so the called “whitened” data and
gain matrices:

f=C V¢
60
K=C"'2K (60

where C™'2C™12 = C'. 1t is easy to see that the noise covariance matrix of the

“whitened” data—C—is an identity matrix:

C=E{(f - f)(f - 1)}
=E{CT2(t-F)(t—)'C?} =CV2E{(f - D)t - D) }C2=C2cCP =1

(61)

where I denotes an identity matrix.

In the opposite case which is more likely to be encountered in practice, the
number of unknowns is greater than the number of independent equations and the
MLE solution is not unique. This means that there are an infinite number of
different vectors q, i.e. sets of dipole victors p;, which deliver a maximum to the
likelihood function (37). In this case we need to make an additional assumption
about the solution to select one set, which we consider to be a plausible solution.
The simplest, and the most widely used, approach to achieve this is to require that
the sum of the squares of the current dipole magnitudes be minimal. As it turns
out, a solution in such sense, which called a minimum norm solution, is unique.
This solution can be written in a closed form as:

q=K (KK )'f (62)
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Here it is very important to realize that the solution obtained by straightforward
application of this last formula will almost certainly result in unacceptable noisy
images due to magnification of the noise present in the experimental data. This
noise magnification is inherent to the MEG/EEG inverse problem due to properties
of the gain matrix K. So to get a meaningful solution we need somehow to limit
this noise propagation. One way to do this is to use a Tikhonov regularization
(Tikhonov and Arsenin 1977). Under this approach the formula (62) is modified as
following:

T __T — _
q=K (KK +/21)"'f = Wf (63)

_ T __T
where A% is a regularization parameter, and W = K (KK + }Vzl)fl. The correct
scale of this regularization parameter can be estimated using the following
formula:

— T
trace(KK )/N

;\4 ~J
SNR

(64)
where N is the number of measurement channels, and SNR is signal to noise ratio.
As we mentioned before it is very important to estimate errors of the solution.

The measurement data f contains random noise, that means the solution (63) also
exhibits stochastic behavior, which can be characterized by a covariance matrix
Cq:

q

Co=FE{la—a)a—q"} =WW (65)

This last equation is easy to obtain recalling that the covariance matrix of whitened
data is an identity matrix (see Eq. (61)).

Let us again illustrate this approach using MEG data obtained during a median
nerve stimulation experiment. We use the same data set we used to demonstrate an
equivalent dipole localization technique, see top-left panel on Fig. 5. We started
with extracting cortex surface from the volume MRI data using MRIView tool
(Ranken and George 1993). This resulting tesselated cortical surface is shown in
the top left panel of Fig. 8. The mesh constituting the cortical surface consists of
about 90,000 triangular faces. Next the gain matrix was computed according to
Eq. (31) using unit current dipoles placed in the centers of the triangular faces, and
the dipole vector were computed according to formula (63). The results are shown
in Fig. 8. The focal character of the neuronal activity is evident. The residuals, i.e.
the difference between the measured data and the model, shown in bottom-right
panel in Fig. 8 demonstrated good agreement of the model with the measurements
across almost the whole sensor array. A few sensors placed directly above the
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Fig. 8 A minimum-norm solution. Top-left Tesselated cortical surface, red arrows represent unit
current dipoles placed at the centers of mesh triangles and orthogonal to the surface. Bottom-left
amplitude of the dipoles. Top-right model fit. Bottom-right residual

focus of neural activity exhibit relatively high residuals, 30 fT. This is explained
by the fact that in this model the current dipoles’ positions are fixed, and it happens
that there are no dipole placed close enough to the true position of the actual
evoked neuronal current dipole.

Acknowledgments Authors (L. H. and P. V.) thank D. M. Ranken for Fig. 2, extraction of the
cortical surface from the MRI data and fruitful discussions with respect to multiple dipole
localization techniques.
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Forward Modeling and Tissue
Conductivities

Jens Haueisen and Thomas R. Knosche

Abstract The neuroelectromagnetic forward model describes the prediction of
measurements from known sources. It includes models for the sources and the
sensors as well as an electromagnetic description of the head as a volume
conductor, which are discussed in this chapter. First we give a general overview on
the forward problem and discuss various simplifications and assumptions that lead
to different analytical and numerical methods. Next, we introduce important
analytical models which assume simple geometries of the head. Then we describe
numerical models accounting for realistic geometries. The most important
numerical methods for head modeling are the boundary element method (BEM)
and the finite element method (FEM). The boundary element method describes the
head by a small number of compartments, each with a homogeneous isotropic
conductivity. In contrast, the finite element method discretizes the 3D distribution
of the anisotropic conductivity tensor with the help of small volume elements.
Subsequently, we discuss in some detail how electrical conductivity information is
measured and how it is used in forward modeling. Finally, we briefly introduce the
lead field concept.
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1 Introduction

A crucial part in any source reconstruction procedure is the computation of the
bioelectromagnetic field generated by known sources. This computation is known
as the forward problem or direct problem and includes the mathematical
description of the sources and sensors, as well as the description of the relationship
between the source parameters and the simulated data at the sensors. The material
(tissue) properties and the distribution of tissues within the volume conductor' are
highly complex. This complexity makes the transfer function between sources and
measurements non-trivial. Thus, approaches to the forward problem are mainly
characterized by the degree of simplification they apply.

First we consider the description of the sources. Microscopically, currents
across cell membranes are impressed by chemical processes and concentration
gradients. In the pyramidal cells of the cortex, these currents are mainly arranged
in a radially symmetric manner around the axes of the dendrites, which causes a
cancellation of their far field and therefore invisibility to EEG/MEG. These
impressed currents give rise to local ohmic currents inside and outside the cells,
governed by a complex interplay of chemical and electrical processes at the
microscopic level (involving voltage-gated ion channels, second messenger
chains, barriers like cell membranes, etc.). However, these functional and struc-
tural details at the cellular level are usually not taken into account when modeling
EEG/MEG. Instead, the source area is considered as a black box. All currents
within that box, including impressed and passive ohmic currents inside and outside
the cells, are represented by a single primary current, usually modeled by means of
an equivalent current dipole. The far field of this current is probably dominated by
intracellular ohmic currents flowing along the longitudinal axis of the apical
dendrites of the pyramidal cells (i.e., perpendicular to the cortical surface). It is
assumed that at least a few ten thousands of neurons need to be simultaneously
active to produce a measurable effect at the head surface (Murakami and Okada
2006). The extent of the box is implicitly determined by the spatial resolution of
the measurement. More specifically, the primary current is normally described as
point-like. Under this constraint, the extent of that black box must be small
compared to the distance to the sensors. All currents outside the box are defined as
volume currents (secondary currents). Thus, the total current density is the sum of
primary and secondary current densities: J (?J) = 7p (?/) + fv(?’). Since often
multiple source components® are active at the same time, the measured magnetic
fields and electric potentials represent a superposition of all contributions. Each
source component can be characterized by a set of parameters (see below) and by
the signals it produces at sensor level. These signals are often termed components

! The term volume conductor denotes the part of the biological tissue, in which the relevant
volume currents are flowing (e.g. the head for MEG).

2 A source component combines primary currents which react to experimental manipulation as
a whole or which depend uniformly on observable environmental variables.



Forward Modeling and Tissue Conductivities 109

of the signal (Donchin 1966; Kayser and Tenke 2005). In the literature on source
separation the term “source” is often used synonymously for the signal the source
component is producing, whereas in the literature on source reconstruction it is
used to describe the parameterized source model.

The primary current density fp(?" ,t) is a spatially continuous function. In order
to describe it with a finite vector of parameters, two approaches exist. The dis-
cretization approach divides the space into sections, within each of which the
current density is replaced by the integral over the volume of that section:

di(r) = /7,,(;“,;)@ (1)

where EI}(t) denotes the dipole moment typically given in nanoamperemeters
[nAm]. The discretization approach is based on the topology of the source space.
For example, the entire brain volume can be discretized in hexahedral voxels, or
the cortical sheet can be discretized into prisms (triangles representing the cortical
surface plus a predefined thickness). In each of these elements, the primary current
density is modeled by one current dipole.

In many practical applications the primary current density is relatively focal,
such that it can be satisfactorily described by a few current dipoles at the centers of
activity leading to the multiple dipoles model. The second approach parameterizes
the primary current density with the help of a series expansion. The series can also
describe extended source configurations centered at the expansion point. Often, the
electric potential at the measurement location Fexpressed by a Taylor series
expansion with the origin at position 7

. 1 m H(?f?’) 1 3 T ~
- _ _ —t
@(7) amo 7= 7] + T + 7 |2(r 7)Y gF-7)—t(g) | +

-7 -7

Here, m is the electric monopole moment, which vanishes due to the charge
conservation law:

m= —/Vjp(?')dv, (3)
Vv

d is the dipole moment according to Eq. (1) and g is the quadrupole tensor:

g= / J,(@ 7P dv (4)

14
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Table 1 Full and quasi-static Maxwell equations

Faraday’s law Ampere’s law Gauf’s law  GauB’s law Material
for mag. equations
Full VxE=-B VxH=Ji+D VD=p  VB=0 7 = ok
Quasi-static YV x E =0 VxH=7 Vf):pf VB =0 9:a€
B=nH

The vectorial state variables comprise the electric field strength E, the magnetic field strength H,
the electric current density J, the magnetic induction B and the electric displacement current
density D. The material tensorial parameters are the electrical conductivity &, the permittivity &
and the permeability zi. The scalar parameter p; denotes the free volume charge density

A truncation of this series, after the dipole term, results in the equivalent current
dipole model which represents the entire current density as a point-like current
element. Extending this approach to multiple partial volumes yields the same
multiple dipoles model, which was derived from the discretization approach
above.

The sensor model describes how a sensor transforms a physical quantity into an
accessible output. For biomagnetic measurements this typically involves first the
transformation of the magnetic flux density into a magnetic flux by integration
over the area of a pickup coil. Next this magnetic flux is often combined across
several coils in order to suppress far field disturbances. Finally, the magnetic flux
is converted into a voltage. Important parameters of this model are the position,
orientation, geometrical form, and number of windings of the coils. The exact
integration of the flux density over the coil area would be computationally
demanding. Thus, often the flux density at the center point of the coil is assumed to
represent the constant value over the entire coil area. More accurate approaches
involve a weighted average of the flux density at a small number of integration
points within the coil area. Magnetic recordings do not require a reference, which
is an advantage compared to electric recordings.

Next we consider the description of the relationship between source parameters
and the simulated data at the sensors. Maxwell’s equations are the basis for this
transfer function. For most non-invasively measured electric and magnetic bio-
signals, frequencies are below 1,000 Hz and the spatial dimension is below 1 m.
Consequently, the temporal derivatives in the Maxwell equations can be omitted
(Plonsey and Heppner 1967), yielding the quasi-static Maxwell equations that
disregard capacitive and inductive effects (Table 1). The free volume charge
density is not relevant here, since we consider the electric flow field only, which is
uncoupled from the electrostatic field due to the vanishing derivative of D in the
quasistatic approximation of Ampere’s law (Table 1). The only remaining relevant
material parameter is the electrical conductivity.

From the definition of the scalar electric potential E = —V¢ (based on the

quasi-static law of Faraday) and Ohm’s law J = -E, one can derive Poisson’s
equation (Eq. 5), while the quasi-static law of Ampere allows (under the
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assumption of a scalar magnetic permeability g = u) for computing the magnetic
field from the electric potential (Eq. 6).

VeV = —VJ, (5)
VxB=—uaVe+7,). (6)

This leads to expressions for the electric potential ¢ and the magnetic induction B

at position 7, arising from N dipoles at positions 7 with moments d;, in an infinite
volume with homogeneous and isotropic conductivity.

=t —7) B Ly g =)
*T;’X TZ 1

‘fl
\
5&

(7)

Q
‘l
)

N‘i

These equations, however, do not provide an acceptable solution for the situation
in real biological tissue as they do not take into account the effects of conductivity
inhomogeneities. If very simplifying assumptions about the distribution of con-
ductivities are made, analytical or semi-analytical solutions can be used. The
human head can be modeled with the help of a series of spherical or ellipsoidal
layers (Cuffin and Cohen 1977; Sarvas 1987; de Munck 1988, 1989; Kariotou
2004; Giapalaki and Kariotou 2006). Such models allow for easy computations,
but can yield significant errors (Cuffin and Cohen 1977).

More realistic conductivity profiles can be modeled using numerical methods.
These methods can be classified into differential and integral methods depending
on whether derivatives or integrals are to be approximated. Additionally, methods
can be classified according to their basic assumptions and simplifications. A
crucial property of the head is the fact that a relatively low-conducting skull
encloses the relatively well-conducting brain. In turn, the skull is surrounded by a
relatively well-conducting remainder of the head (scalp, muscles, eyes, etc.). This
leads to the compartment assumption. Typically, 3 compartments with homoge-
neous and isotropic conductivity are defined: scalp, skull and brain. The brain
compartment subsumes all tissues inside the skull. The skull compartment includes
both compact and spongy bone. The scalp compartment summarizes all tissues
outside the skull. The compartment approach necessitates the use of an integral-
based method.

Alternatively, the compartment assumption can be replaced by a 3D volume
discretization. Here, the volume is divided into small elements. The size and
number of elements governs the achievable accuracy and is limited by computa-
tional resources. Volume discretization approaches are usually treated with dif-
ferential methods.

The boundary element method (BEM) is an integral method based on the
compartment assumption (Barnard et al. 1967a, b; Geselowitz 1967, 1970; Sarvas
1987; Hiamildinen and Sarvas 1989; Stenroos et al. 2007). An alternative approach
is the multiple multipole method (MMP) (Haueisen et al. 1996). Here, multipole
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Fig. 1 Examples for head models. Left boundary element model with the most important
conductivity boundaries (inner and outer skull surface, outer surface of the head) described by
triangular meshes. Right finite element model built with tetrahedral elements. Colors represent
tissue types

expansions are used to describe the neuroelectromagnetic field and the expansion
coefficients may be computed based on a matching of the boundary conditions at a
set of boundary points representing the major conductivity jumps. For modeling
the 3D or anisotropic conductivity profile of the head, the finite element method
(FEM) (Witwer et al. 1972; Haueisen et al. 1995; Wolters et al. 2004; Hallez et al.
2005) or the finite difference method (FDM) (Witwer et al. 1972; Haueisen et al.
1995; Wolters et al. 2004; Hallez et al. 2005) can be used. Both are differential
methods. The entire volume is discretized into small elements and each volume
element is assigned a separate conductivity tensor. While FDM is easier to
implement, FEM allows for a smoother geometry description of conductivity
boundaries. For a review including the FEM and FDM see e.g. (Hallez et al. 2007).

In the following, we will treat analytical methods, BEM, and FEM in more
detail, since these methods are most frequently used. Figure 1 shows an example
model for BEM and FEM.

2 Analytical and Semi-Analytical Methods

In order to obtain analytical or semi-analytical formulations of the forward
problem, the geometry of the head and the conductivity distribution have to be
described in terms of simple shapes, such as concentric spherical or ellipsoidal
shells. In the simplest case, the volume conductor is assumed to be a sphere, which
is more or less adapted to the actual head geometry. Under this assumption, for
MEQG it can be shown that the predicted magnetic field outside the head depends
solely on the origin of the sphere as well as the positions and orientations of the
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sources and the sensors. The conductivity profile including the outer radius, as
long as it is spherically symmetric, plays no role. According to Sarvas (1987), the
magnetic induction B at sensor position 7 due to N dipoles at positions ?Jl with
dipole moments ¢; (i = 1...N) is computed as follows:

G-, )
Fi = @il (IFlal + 7P ~77) 9)

VF = (7 @+ @l a7 + 26 + 27)7 - (G + 27 + @il 'a7)7 (10)

(11)

Another important property of this volume conductor model can be seen from
the formula above: a dipole with radial orientation does not contribute to the
measured field. Its effect is completely compensated for by the Ohmic return
currents.

In contrast, the predicted EEG on the surface of a spherical volume conductor
does depend on sources of all orientations, as well as on the conductivities and
radii of the different tissue layers. A semi-analytical solution based on Legendre
polynomials is given by de Munck (1989). It allows for the inclusion of tissue
compartments with different conductivities, bounded by concentric spherical sur-
faces. It even allows for a simple form of tissue anisotropy, namely the distinction
between radial and tangential conductivities.

Although spherical models reflect the basic geometric properties of the head,
such as its round shape and the concentric arrangement of the tissue layers, the
deviations from the real head shape may lead to substantial errors (Cuffin and
Cohen 1977). There are a number of possibilities to improve this situation without
giving up the advantages of an analytical solution. One option is the use of
ellipsoidal instead of spherical shells, as proposed, for example, by Fieseler
(Fieseler 1999) and Kariotou (Kariotou 2004; Giapalaki and Kariotou 2006).

Alternatively, one can use a separate spherical volume conductor model for
each sensor. One way to find these local spheres is to fit them locally to a patch of
the head (or brain) surface near the respective sensor (Ilmoniemi 1985;
Liitkenhoner et al. 1990). This assumes that the description of the tissue bound-
aries in the immediate vicinity of the respective sensor is most crucial for the
accuracy of the forward computation. A more principled, but also computationally
more expensive, way to find the best spherical models on a sensor-to-sensor basis
was proposed by Huang et al. (1999). They first used a realistic 3-shell boundary
element model (see below) to compute solutions in each sensor for a large number
of dipoles located in the entire brain (i.e., a leadfield computation, see below).
Then, for each sensor, the solutions for the same dipoles were computed using a
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spherical head model, and the parameters of that spherical model were optimized
such that the difference between the boundary element method solution and the
spherical solution became minimum. For MEG, a single-compartment boundary
element model can be used alternatively. The resulting spheres can then be used to
calculate forward solutions for arbitrary dipoles. In principle, this method can be
seen as a sophisticated way for interpolating leadfields computed using numerical
methods, such as BEM. For a review and evaluation of different methods using
multiple spheres, see Lalancette et al. (2011).

Finally, Nolte (2003) proposed an approach, where the solution for a spherical
volume conductor is corrected by a superposition of basis functions constructed
from spherical harmonics and fitted to the boundary conditions. It can be shown
that this approach yields good approximations for non-spherical volume conduc-
tors such as the prolate spheroid (Nolte 2003) and even for realistically shaped
volume conductors (Stenroos et al. 2012).

3 Numerical Methods

3.1 Boundary Element Method

The BEM is an important and popular field calculation method used in biomag-
netism. It can describe the head as an isotropic and piecewise homogeneous
volume conductor of realistic shape. In practice, the compartments are designed
such that their boundaries represent the most prominent conductivity jumps in the
head. These are most often the head surface as well as the outer and inner bounds
of the skull. For MEG, the volume currents outside the interior of the skull con-
tribute relatively little to the measurements and therefore the respective com-
partments (skull, scalp) are often neglected (Hiaméldinen and Sarvas 1989).
However, it was recently shown that the inclusion of the skull and scalp com-
partments allows for a relevant improvement in accuracy (Stenroos et al. 2012).

Mathematically, the solution is derived from Poisson’s equation (Eq. 5) and the
appropriate Cauchy boundary conditions: (1) the potential has to be continuous
across the boundary: @™ = ¢, and (2) the perpendicular component of the current
has to be continuous across the boundary®: ¢ (V)" =6~ (V.¢)", where the
superscripts ()" and ()~ refer to the values on either side of the boundary and V| is
the derivative with respect to the normal direction of the boundary. There are two
different approaches to the solution: direct and indirect BEM. In the direct
approach one sets up and solves an equation system for both the potentials and
their normal derivatives (Boemmel et al. 1993; Fletcher et al. 1995). A specific
variant of direct BEM is the symmetric BEM approach (Kybic et al. 2005). In the

3 Note that for the outer boundary of the head this means that the perpendicular current
component is zero.
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indirect approach the potential function is first derived analytically, before
applying the BEM (Brebbia et al. 1984; Mosher et al. 1999). This leads to the
following expressions for the electric potential and the magnetic induction
(Geselowitz 1967, 1970):

ol +o; o; —J . F—7
B0 = epn® ST [ o) TS (12

Jj=1 J
B(r) = fi( )L¢(V)ﬁ(?)x%ds’ (13)

Here, o, refers to the conductivity in the source compartment, 7 is the normal
vector of the boundary, 7 and ¥ denote the positions where the potential is cal-
culated, S; is the j-th boundary between compartments with different conductivity,
N is the number of compartments, and k is the index of the boundary on which the
potential is calculated. Both, the magnetic induction and the electric potential are
computed as a sum of the respective term for the infinite volume conductor (Eq. 7)
and a correction term accounting for the geometry. For the electric potential,
Eq. (12) is implicit, since the correction term depends on the potential itself.
Equations (12 and 13) can also be interpreted in the following way (Gencer and
Acar 2004): in addition to primary sources, causing the infinite volume potential/
field, so-called secondary sources are placed on the boundaries, their orientations
being perpendicular to the boundaries and their strength being proportional to the
electric potential and the size of the conductivity step.

For the numerical implementation of BEM, the potential has to be approxi-
mated on the realistically shaped compartment boundaries. This leads to the
necessity to discretize these boundaries into small elements and to express the
potential on each element. The elements can have different shapes, the most
common one being the triangle. The potential can be assumed to be constant on
each boundary element or to vary linearly (or, in some cases, quadratically)
between the vertices (basis function). The most basic method for the formulation
of the resulting problem is the collocation method, where the residual is minimized
in all discretization points (i.e., the centroid of elements for constant and the
vertices for linear basis functions). Alternatively, one can use the Galerkin method,
where the integral of the residual over the surface is approximated by means of the
basis functions and then minimized. Numerical simulation with single-shell
models have shown that the Galerkin method using linear basis functions usually
performs better than the collocation method or the Galerkin method with constant
basis functions. However, these differences are generally small (Tissari and Rahola
2003; Stenroos and Haueisen 2008). Although the benefit of the Galerkin is
expected to increase with several and closely spaced surfaces, with nowadays
frequently used higher mesh densities (>4,000 nodes per surface) the numerical
errors due to the use of collocation BEM are smaller than errors due to model



116 J. Haueisen and T. R. Knosche

simplifications or geometrical errors, assuming that the sources are not too close to
the boundary (Mosher et al. 1999; Stenroos and Nenonen 2012).

An important question when practically constructing boundary element models
is the discretization of the boundaries, which was shown to critically influence the
accuracy of the solution (Haueisen et al. 1997). More precisely, it was shown that
when using the collocation method with constant basis functions, the size of
triangular elements should not exceed 10 mm or the minimal distance between
sources and boundary, whichever is the smaller. When using linear basis functions,
the size of the triangles can be up to twice the distance between sources and
boundary. These rules also apply to secondary sources, which account for the
conductivity discontinuities at the boundaries (see above). Thus, the thickness of
tissue layers (e.g., skull compartment) and triangle size is linked in an analogous
way. Due to the fact that the distribution of the secondary sources is fairly smooth,
the consequences are less severe.

The relatively low conductivity of the skull tends to cause the resulting equation
systems to be ill-posed. This is usually ameliorated by the isolated source
approach, which first solves the problem assuming a perfectly insulating skull and
then applies a correction term (Hidmildinen and Sarvas 1989; Stenroos and Sarvas
2012).

3.2 Finite Element Method

In contrast to the BEM, the FEM principally allows for accounting for the full
three-dimensional tensor-valued conductivity function. In practice, of course, this
is limited by the chosen discretization. The discretization means the subdivision of
the volume into small elements, each endowed with a separate conductivity tensor.
Within each element, the electric potential is described by a three-dimensional
parameterized function, the so-called Ansatz function. For each element, a Laplace
equation is approximated by deriving the Ansatz function twice. For those ele-
ments with sources, the Laplace equation turns into a Poisson equation, with an
additional term accounting for the source divergence. Since the sources are usually
modeled as point-like, a numerical singularity arises, which has to be treated
suitably. Finally, the Cauchy boundary conditions between the elements have to be
considered. This all leads to a high-dimensional sparse linear system of equations.
The sparsity of the system allows, in spite of its large size, for a relatively time and
memory efficient solution using dedicated algorithms. Finally, by numerical der-
ivation of the potential, a current is computed, which is then used to compute the
magnetic induction at the sensors using the law of Biot-Savart.

The two main types of discretization elements are tetrahedra and hexahedra.
While hexahedra perfectly match the shape of medical imaging voxels, which
form the main source of information on volume conductor geometry, tetrahedra
are especially versatile when it comes to approximating arbitrarily shaped tissue
boundaries. However, the node shifting technique largely compensates for this
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latter disadvantage of the hexahedra approach (Wolters et al. 2007). The repre-
sentation of the head can be done with uniform elements of the same size (e.g.
1 mm® voxels) or with elements of varying sizes depending on the segmentation of
the tissues and the expected potential gradient. In addition, it is possible to
adaptively change the discretization depending on metrics which are derived from
intermediate solutions (Schimpf 2007). For example, in hexahedral elements the
potential of one element e is given as:

8
X ya Z X Y» 90]7 (14)

where ¢; are the potentials of the nodes adjacent to the element e, and N} are the

shape functions describing the parameterized approximation used for each ele-
ment. Most often, tri-linear shape functions are used (first-order FEM). However,
also tri-quadratic functions may be used (second-order FEM). Zhang et al. (2004)
suggest that for a relatively low number of elements (~ 150,000) and high dipole
eccentricity second-order FEM provides higher accuracy compared to first order
FEM. However, the results of van Uitert et al. (2001) indicate that for small
element sizes (less than 2 mm side length) there is no significant advantage of
second-order FEM.

Source modeling often assumes a point-like dipole. Although this model is an
idealization, it forms the starting point of most source representations in EEG/
MEG volume conductor modeling. However, this idealization poses a problem for
FEM, as it causes a singularity. Three major approaches were put forward to treat
this singularity. First, it is possible to replace the effect of the point-like dipole by
making appropriate assumptions on the voltages and/or currents at the surrounding
nodes of the dipole. This is equivalent to the introduction of Dirichlet and/or
Neumann boundary conditions at nodes in the immediate neighborhood of the
dipole. For example, a current dipole can be represented by a number of current
monopoles in its surrounding. The entire group of methods can be seen as a variant
of Saint-Venant’s principle (blurred dipole representation). In literature, however,
the Saint-Venant’s principle only refers to current monopole representations. The
second principal approach separates the problem into a source-free numerical
problem governed by the Laplace equation and a Poisson problem in the infinite
homogeneous space, for which an analytical solution exists. This approach is often
called subtraction method (van den Broek et al. 1996; Drechsler et al. 2009). In the
third principal approach, the partial integration method, the divergence of the
current is projected onto the Ansatz functions and integrated over the volume. By
making use of the fact that the current perpendicular to the surface is zero, one can
eliminate the derivative of the primary current density and hence the singularity.
Comparisons of two or three of the above dipole modeling approaches are given
e.g. in (Schimpf et al. 2002; Hallez et al. 2007; Wolters et al. 2007). Although
evaluations of all methods in larger studies are still missing, the Saint-Venant’s
principle dipole representation seems a suitable choice especially in high
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resolution FEM models (Haueisen et al. 1995; Schimpf et al. 2002; Wolters et al.
2007). This is supported by the fact that brain activity is characterized by dis-
tributed current sources and sinks. Note that for the validity of the approach it is
necessary that all sources and sinks are actually located within the tissue of the
source areas (e.g. grey matter).

While earlier FEM studies mainly used successive over-relaxation (SOR) and
Jacobi preconditioned conjugate gradient methods (Haueisen et al. 2002), multi-
grid methods nowadays provide a computationally more efficient way of solving
the large system of equations. A recent paper showed that high resolution FEM
models of the human head can also be computed within reasonable time and
memory bounds (Wolters et al. 2007). This makes FEM models suitable for
application in clinical studies.

4 Electric Conductivity
4.1 Introduction

A crucial piece of information for all models described above is the distribution of
the electric conductivity in the head. Therefore, the determination of conductivity
values is of great importance. Electric current flow in the human head is based on
the movement of ions. Thus, the electric conductivity is largely determined by the
concentration of these ions and the anatomical microstructure representing the
restrictions and hindrances to the movement of these ions. Consequently, con-
ductivity is a continuous function of location, i.e. inhomogeneous. Additionally, at
each point the conductivity can be different in different directions (e.g. in white
matter, the conductivity is higher along the fibers and lower across the fibers). This
leads to the concept of anisotropic conductivity, which is mathematically repre-
sented by the conductivity tensor a. In order to practically handle the tensor-valued
continuous function of conductivity, a discretization is required. Naturally, the
single elements in full 3D methods like FEM provide a discretization. Here, each
element is assigned a value representing the mean conductivity tensor for this
element. The conductivity discretization thus depends on the chosen resolution of
the model. Often, anisotropic conductivity information is not available. In these
cases the tensor is replaced by a scalar conductivity value for each element.
Moreover, elements are grouped together and assigned the same scalar conduc-
tivity value. This leads, in the simplest case, to a compartment style representation
of conductivity in full 3D methods like FEM. Lumped scalar conductivity values
are also assigned to entire compartments, such as the skull, the brain, the cerebro-
spinal fluid (CSF) or the skin, in analytical sphere and ellipsoid models as well as
in BEM models.
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4.2 Measurement of Electric Conductivity

Measurements of in vivo electrical conductivity values are difficult to perform for
any level of discretization needed in the different types of forward models. The
most common direct conductivity measurement approach is the four-electrode
method. Here, two electrodes supply a current yielding a current density distri-
bution in the specimen under investigation. The other two electrodes are used to
measure a voltage drop within the specimen. From the measured voltage and the
given current density, the unknown conductivity can be calculated. Alternatively, a
voltage can be impressed and a current can be measured. Assuming a homoge-
neous specimen, four point-like electrodes can be placed in a row on the specimen,
where the outer two supply the current and the inner two measure the voltage. In
order to increase the accuracy of the model assumptions and to reduce the sen-
sitivity towards local inhomogeneities of the tissue, the two current supplying
electrodes might be extended in two dimensions (e.g. plate electrodes). Sources of
error in such measurements are related to the positioning and the polarization of
the electrodes as well as the violation of the homogeneity assumption for the
specimen. The latter can be partially avoided by using an appropriate model to
describe the inhomogeneous structure of the specimen. Moreover, if electrodes are
put into tissue, damage is unavoidable. Besides other consequences, this leads to
impressed current flow both in the intra- and extracellular space. Thus, the mea-
sured conductivity reflects both parts to a varying degree, referred to as apparent
conductivity (Ranck 1963; Okada 1994). Another source of error lies in the fact
that there is intrinsic electric activity in biological tissue, which interacts with the
applied current. The interplay of these sources of error depends on the type of
tissue under investigation and on the size and spacing of the electrodes.

For practical and ethical reasons, in vivo conductivity measurements on humans
are rarely possible, which leads to the necessity to employ in vitro preparations.
However, the conductivity values differ significantly between in vivo and in vitro
situations depending on the applied preparation protocol (Galeotti 1902; Crile
et al. 1922; Geddes and Baker 1967; Akhtari et al., 2000, 2002). For example, the
selection of the tissue samples, the exposure to air and the temperature control
during the experiment are critical parameters (Hoekema et al. 2003). Moreover,
significant differences in measured conductivity values exist across species
(Geddes and Baker 1967; Gabriel et al., 1996). There is inter- and intra-subject
variability which can be related to age (Wendel et al. 2010), diseases, environ-
mental factors, and personal constitution (Crile et al. 1922). It was argued that
natural heterogeneity and sample—sample variability dominate the measurement
uncertainty (Gabriel et al. 2009).

Alternative conductivity measurement methods impress a current and measure
the induced magnetic field. For example, in magnetic resonance electric imped-
ance tomography (MREIT) electrodes are used to impress currents into the human
body and the induced magnetic flux densities are measured with the help of an
MRI scanner (Seo and Woo 2011). The conductivity values are subsequently



120 J. Haueisen and T. R. Knosche

reconstructed. It is also possible to impress currents with the help of magnetic
fields and measure the resulting magnetic field.

Another class of conductivity estimation techniques uses measured electric and/
or magnetic data during the source localization procedure. For very simple source
configurations, such as the first cortical somatosensory evoked activity, not only
the unknown source parameters are estimated in the inverse procedure but also the
unknown conductivity values. Naturally, this approach can only be applied for
very few unknowns, for example the conductivities of the scalp, skull, and brain
compartments. The advantage of this method lies in the direct estimation of the
relevant model parameters (Fuchs et al. 1998; Goncalves et al. 2003; Baysal and
Haueisen 2004; Gutierrez et al. 2004; Lai et al. 2005). The disadvantage is rooted
in the strong model assumptions, also concerning the source configuration.

The direction dependence of the electric conductivity can be estimated based on
the measurement of direction dependent water diffusion using diffusion weighted
MRI (Basser et al. 1994). With the help of the effective-medium approach, the
tensor of the electric conductivity is estimated from the tensor of the measured
water diffusion (Tuch et al. 2001), which was successfully validated in (Oh et al.
2006; Bangera et al. 2010) and refined in (Wang et al. 2008). However, this
approach is limited due to the complex and unknown relationship between ion
mobility and water diffusion.

In spite of all effort so far, getting exact, detailed and reliable conductivity
information for head models is still a challenge and will require substantial
research effort in the future.

4.3 Conductivity of Single Tissue Types

The following Table 2 gives an account of the conductivity values for single
tissues based on existing literature. Tissue conductivity depends, among other
factors, on frequency and temperature. Thus, only conductivity values measured at
or near body temperature and at low frequencies (d.c. up to 100 kHz) were taken
into account. Among the relevant literature, two reviews are most often cited:
(Geddes and Baker 1967; Gabriel et al. 1996) (and its more recent extension
Gabriel et al. 2009).

4.4 Compartment Conductivities

Since most often three or four compartments are used to describe the volume
conductor, these compartment conductivities of the brain, CSF, skull, and scalp are
most relevant and considered here. Each compartment-conductivity depends on
the complex geometrical arrangement of the tissues determining the compartment.
Furthermore, since the compartment conductivity is merely a model for the real
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Table 2 Isotropic conductivity values of single tissue types used in human head volume con-
ductor modeling

Tissue Conductivity in  References
S/m
Brain gray matter 0.3 Gabriel et al. (1996, 2009)
Brain white matter 0.2 Gabriel et al. (1996, 2009)
Spinal cord and cerebellum 0.16 Haueisen et al. (1995)
Cerebrospinal fluid 1.79 Baumann et al. (1997)
Hard bone (compact bone) 0.004 Tang et al. (2008)
Soft bone (spongiform 0.02 Akhtari et al. (2002)
bone)

Blood 0.6 Gabriel et al. (2009)
Muscle 0.1 Gabriel et al. (1996, 2009)
Fat 0.08 Gabriel et al. (2009)
Eye 1.6 Pauly and Schwan (1964), Lindenblatt and Silny

(2001)
Scalp 0.43 Geddes and Baker (1967)
Soft tissue 0.17 Haueisen et al. (1995)
Internal air 0.0001 Haueisen et al. (1995)

conductivity profile, the source configuration also has an influence on the choice of
this value. In principle, there are three ways to estimate a compartment conduc-
tivity: (i) based on the measurement of single tissues an average for a compartment
is computed (either model based or model free); (ii) the conductivity of an entire
compartment is directly measured (bulk conductivity); and (iii) the compartment
model (conductivity as free parameter) is fitted to purposely performed mea-
surements (e.g. EEG, MEG, DTI), see above.

A number of studies report bulk conductivity measurements. Akhtari et al.
(2006) measured freshly excised human neocortex and subcortical white matter in
21 neurosurgical patients and found values of 0.066—0.156 S/m. CSF, as indicated
above, has 1.79 S/m. The conductivity values for the skull compartment show
large variation. Akhtari et al. (2002) found 0.0085-0.0114 S/m bulk conductivity
for live human skull at room temperature, while in an earlier study on a cadaver
skull the values ranged from 0.0023 to 0.00584 S/m (Akhtari et al. 2000).
Hoekema et al. (2003) found values between 0.032 and 0.08 S/m in a very well
controlled study of live human skull in 5 neurosurgical patients. The most com-
prehensive study on 3 layer live human skull at body temperature was performed
by Tang et al. (2008). They demonstrated that the conductivity value largely
depends on the local structure of the skull. They distinguished (besides other
criteria) between normal and thin spongiform layers and found conductivity values
for the 3 layer skull of 0.0126 S/m and 0.00691 S/m, respectively. The standard
deviation was about 20 %. Using electric impedance tomography and the model fit
approach, Gongalves et al. (2003) estimated the conductivity of the brain and skull
compartment in six subjects to be 0.33 S/m and 0.0082 S/m with a standard
deviation of 13 and 18 %, respectively.
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For separate EEG or MEG analysis only compartment conductivity ratios are
needed. For the often used 3-compartment model this is the ratio of scalp:skull:-
brain. In the past, the most often used ratio was 1:1/80:1, which was derived from a
study by Rush and Driscoll (1968), who measured the impedance of a dry half-
skull in fluid and proposed values of 0.33, 0.0042 and 0.33 S/m. Recently, this
ratio was questioned by a number of researchers. Oostendorp et al. (2000) per-
formed both measurement on cadaver skull and in vivo on volunteers using electric
stimulation and found a ratio of 1:1/15:1. Baysal and Haueisen (2004) used
combined MEG/EEG measurements and estimated a ratio of 1:1/22:1. Lai et al.
(2005) suggested a ratio of 1:1/25:1. Based on the measurements of Hoekema et al.
(2003), a ratio of 1:1/8:1 can be considered. Zhang et al. (2006) estimated 1:1/20:1
based on measurement in two epilepsy patients. The values of Tang et al. (2008)
indicate approximate ratios between 1:1/25:1 and 1:1/50:1 and the values of
Gongalves et al. (2003) approximately 1:1/40:1. Dannhauer et al. (2011) report a
ratio of 1:1/25:1 to 1:1/47:1 based on the measurements of Akhtari et al. (2002)
and a model fit. Although the recent studies show some degree variability, they all
agree on the fact that the value of 80 in the long standing ratio of 1:1/80:1 is too
high.

5 Leadfield Concept

Results from the forward calculation can be used in inverse procedures directly
(e.g., in spatio-temporal dipole fitting) or stored in so-called leadfield matrices.
Such matrices represent the forward solutions for sources on a predefined grid. The
term leadfield (originally derived from “lead” that stands for a single EEG
channel) refers to a function describing the sensitivity of the output of one sensor
to the parameters of the source model. For example when using the dipole model,
the leadfield is a function of the position and the orientation of a unit strength
dipole. Usually, the leadfield is discretized, e.g. the dipoles are positioned on the
nodes of a regular grid with canonical orientations (e.g. X, y, z). These leadfield
vectors are combined into a leadfield matrix, describing the influence of each unit
dipole on each sensor. Accordingly, this matrix is also sometimes called influence
matrix or gain matrix. In such a matrix, each row refers to one sensor (one
leadfield) and each column describes the influence of one unit dipole (e.g. one unit
dipole per canonical direction) on the sensor array. In general, the leadfield matrix
is a discretized representation of the forward problem. The discretization has to be
such that it adequately approximates the leadfield. When using dipoles in the brain,
spatial sampling of 3-10 mm is common. Any dipole orientation can be repre-
sented by the superposition of 3 canonical orientations.
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6 Conclusion and Outlook

Source localization is increasingly applied in neuroscientific research and clinical
studies. The accuracy of source reconstruction depends on the accuracy of the
solution of the forward problem. Finite element models are more elaborate com-
pared to boundary element models and can, in principle, account for the aniso-
tropic distribution of connectivity at any level of detail. Until recently, there were
three major obstacles for the use of this kind of forward modeling in source
reconstruction schemes. (1) The computation was computationally too costly to
allow for a repetitive computation of forward solutions as required by inverse
algorithms. (2) The possibility to account for the anisotropic conductivity on a
voxel basis turns from an advantage to a drawback, if reliable information on these
material properties at this level of detail is missing. (3) At the position of the
dipoles, singularities occur, which were difficult to treat numerically. While rea-
sons (1) and (3) can be considered to be mostly solved (Wolters et al. 2004; Lew
et al. 2009), reason (2) still requires substantial research. Especially diffusion
weighted MR imaging promises to offer new ways to estimate material properties
at a fine level of detail (Giillmar et al. 2010; Dannhauer et al., 2011; Sengiil and
Baysal 2012). If there is no reliable information on anisotropic volume conduction
BEM can be the method of choice in realistic volume conductor modeling.
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Designing MEG Experiments

Julia M. Stephen

Abstract With well-designed experiments, the exquisite temporal resolution of
MEQG allows investigators to track the temporal progression of cortical activity
throughout the brain during sensory and cognitive tasks and further allows
investigators to capture the interplay between the nodes of the cortical network
activity underlying brain function. Because of this high temporal resolution, a
number of considerations must be considered to obtain good quality MEG data.
These considerations include: recording parameters, participant considerations,
stimulus equipment and timing reliability, stimulus parameters and temporal
sensitivity of the response. This chapter reviews the common instrumentation
parameters, peripheral equipment that provides the precise timing needed for MEG
experiments, and participant-monitoring equipment that provides complementary
information for data quality and data interpretation purposes. Modality-specific
(auditory, visual, tactile and motor) factors to consider during data collection are
also discussed.

Keywords Magnetoencephalography (MEG) - Experimental design - Visual -
Auditory - Somatosensory « Motor « Timing parameters - Peripheral equipment

1 Introduction

The goal of this chapter is to provide an overview of the parameters that should be
considered when setting up and conducting MEG experiments. MEG provides an
incredibly rich dataset from which to study brain function and dysfunction. In
particular, MEG provides high temporal resolution at the time resolution that brain
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activity occurs (Kandel et al. 2000). In addition, MEG signals are not distorted by
the skull, providing improved spatial resolution relative to EEG (Flemming et al.
2005). Therefore, one can obtain exquisite sensitivity to cortical network oscil-
lations and the interplay between different cortical areas. However, this richness
comes with multiple challenges. One of the biggest challenges of MEG is to
identify task related activity in the presence of background brain activity. Resting
brain activity, including resting brain rhythms such as occipital alpha and senso-
rimotor mu rhythms are 10-100 times greater in amplitude than evoked responses
(e.g. the magnetic field generated by the presentation of an auditory stimulus).
That is, the signal to noise ratio for a single presentation of a stimulus is <I.
Therefore, a common method to identify stimulus related activity is to present
multiple trials of the same stimulus to allow for signal averaging in the time,
frequency or time/frequency domain. Further challenges include minimizing
magnetic artifact from both internal and external sources of magnetic fields and
capturing complementary data that can better guide interpretation of the results.
MEG experimental design is therefore focused on optimizing all parameters to
ensure that the high temporal resolution is maintained and signal to noise is
optimized despite the challenges of background brain activity and other artifacts.

2 Instrumentation
2.1 Recording Parameters

The magnetic fields that are generated by the brain oscillate with the onset and
offset of local brain activity (Hamalainen et al. 1993). Based on in vivo and in vitro
characterization of neuronal activity, we know that the temporal profile of brain
activity that generates these magnetic fields changes on the order of milliseconds
(Kandel et al. 2000). This suggests that in order to properly capture the rapid
changes in magnetic field associated with brain activity; data must be sampled at
or around one sample per ms or 1,000 Hz. Furthermore, to capture the ongoing
network interactions, it is important to capture this activity synchronously from
around the head to allow investigators to characterize the interplay of cortical
activity during task performance or during rest.

Therefore, current MEG systems record data synchronously from hundreds of
MEG channels at digitization rates of between 100-5,000 Hz. This provides a
temporal resolution of between 10 and 0.2 ms, respectively. This high sampling
rate and the rapid neuronal response underlie the high temporal resolution of
MEQG. Table 1 shows the parameters that one must choose before beginning data
collection on a standard MEG system. The choice of sampling rate depends on the
required temporal resolution and spectral content of the data of interest. There are
trade-offs between high and low sampling rates. While a high sampling rate may
always appear to be better, long experiments may lead to prohibitively large data
sets (a 10 min continuous dataset including 306 sensors sampled at 1,000 Hz is
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Table 1 Recording Channels to record MEG, EEG, A/D channels,
parameters trigger channels
Digitization rate 100-5,000 Hz
Online filter settings High pass filter, anti-aliasing
filter < samp[[ng{requency

Trigger settings Choose triggers, averaging epoch for
online averaging display

approximately 1 GB in size). The typical sampling rate for visual, auditory and
cognitive studies is between 300-1,000 Hz. A sampling rate of 300400 Hz is
often sufficient for averaged evoked responses for cognitive studies, where most of
the spectral content in an averaged response is less than 60 Hz. However, median
nerve stimulation requires a sampling rate of at least 1,000 Hz to capture the
temporal profile of the M20 response. Also, recent interest in high frequency
activity, which has been found in the somatosensory modality (Curio et al. 1997),
during cognitive tasks (Uhlhaas et al. 2011) and in patients with epilepsy (Engel
et al. 2009), may require a sampling rate or >2,000 Hz. Some systems allow for
higher data acquisition rates when subsets of channels are chosen.

In conjunction with the sampling rate, an online anti-aliasing filter must be
applied to ensure that higher frequency signals do not appear as an aliased low
frequency signal. The anti-aliasing filter should be set at a frequency less than the
sampling frequency/2. That is, if your sampling frequency is 300 Hz the online
low-pass filter should be less than 150 Hz. In addition to the anti-aliasing filter,
one can also choose a high pass filter setting on most MEG systems. This choice is
left to the discretion of the investigator. The relevant question is whether there is
any low frequency activity that might be relevant to the study. If one is interested
in delta wave activity, it is best to choose the lowest cutoff option (generally 0.01
or 0.03 Hz). On the other hand, if the system is located in an environment with
considerable low frequency noise, it may be desirable to eliminate low-frequency
noise at the point of data collection.

2.2 Other Recording Channels

MEG systems also have additional channels that are recorded simultaneously with
the MEG data. This option for simultaneous recording is critical to ensure that
peripheral devices are truly synchronized with the MEG data. Trigger channels are
supplementary channels that allow one to simultaneously record the timing of
stimulus presentations. These channels accept transistor-transistor logic (TTL)
pulses, which are standard binary pulses denoting on/off status. The width of the
TTL pulse should be brief to allow for multiple triggers in short periods of time
and it must be long enough that the sampling rate can sufficiently capture the onset
and offset of the TTL pulse. Within these constraints the normal duration is
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Table 2 Other recording

Trigger channels  Collect TTL pulse triggers (5-10 ms) from
channels

stimulus computer/equipment
Referenced EEG  Collect 1-128 channels of referenced EEG

Bipolar EEG Electro-oculogram (EOG), electromyogram
(EMG), electrocardiogram (ECG)
A/D channels Allows collection of miscellaneous +10 V

analog signal

between 5 and 10 ms. These TTL trigger pulses can be generated by stimulus
delivery software (e.g. NBS Presentation, Neuroscan Stimll, Eprime) or by cus-
tom-built equipment. Additionally, some MEG systems provide an option to set
periodic internal triggers (independent of external stimuli) to allow for epoching of
the data (breaking the data into equal sized bins) if no stimulus triggers are present.
These are often used to generate averaged spectra for noise runs or spectral
analysis of resting-state MEG data.

Current MEG systems offer at least 64-channel referenced EEG capabilities
allowing for simultaneous MEG/EEG recordings. In addition, at least 4 bipolar
EEG channels are available for recording eye blinks and muscle movement. Our
standard adult studies use two bipolar EEG channels to capture horizontal and
vertical eye movements, respectively and one bipolar channel to collect ECG.

Finally, A/D channels accept any type of analog data generally within a 10 V
range. This allows one to collect any type of supplementary continuous data that is
within the appropriate amplitude range. Examples of analog data that we have
collected in MEG studies include: pressure transducer amplitude from a squeeze
device to evaluate the strength of the squeeze (Berchicci et al. 2011), eye position
and pupilometry data obtained from an MEG compatible eye-tracking system
(Coffman et al. 2013), and voice recordings during task completion. A BNC
connector is generally required to interface with the MEG electronics (Table 2).

2.3 Peripheral Devices

Since the high temporal resolution (~ 1 ms) of MEG is one of its strengths, it is
critical that temporal resolution is not compromised due to peripheral equipment.
Most off-the-shelf equipment (e.g. computer sound cards, visual projectors or
computer screens) is not tested for millisecond timing accuracy. Therefore, when
choosing new equipment it is recommended to contact other MEG labs or the
MEG manufacturer to obtain information about recommended devices. While
MRI-compatible equipment available for fMRI studies is useful to control mag-
netic artifacts from peripheral devices, these devices are not always tested for high
temporal resolution due to the lower temporal resolution of fMRI. In addition, it is
recommended that you work with a representative of the company who has suf-
ficient technical expertise of the peripheral equipment to determine the temporal
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characteristics. In some cases, the companies are willing and able to allow on-site
demonstration of the equipment. In this case it is recommended that you measure
the temporal characteristics directly. Finally, it is important to test the timing of the
final setup to ensure that the timing of the complete setup is accounted for (e.g.
stimulus computer, amplifiers, peripheral equipment).

In accounting for timing, it is important to understand what factors may or may
not introduce delays. Any signal that is transmitted at the speed of light is effec-
tively transmitted instantaneously over the distances considered for MEG data
collection. That is, signal is transferred along a 5 m long cable in ~0.00001 ms at
the speed of light leading to no measurable delay. However, electronic equipment
(sound cards, electronic circuits, etc.) can introduce delays in the transfer of signal
and should be tested. Furthermore, the speed of sound is considerably slower than
the speed of light and any distance from the generation of the sound wave to the
participants’ ears should be accounted for in the delay calculation. The delay can
be calculated based on the speed of sound in air (~ 0.344 m/ms). So for every 1/3
of a meter traveled in air, sound is delayed by 1 ms. All other signals need to be
tested empirically.

Generally, the trigger is sent from the stimulus computer to the MEG elec-
tronics at the same time that the signal is sent to the peripheral equipment (see
Fig. 1a). Therefore, the parameters to be tested are the delay of the peripheral
device (defined as the time from when the signal was sent to the peripheral device
to the time the stimulus reaches the participant) and the variability in this transfer
time (jitter). If there is variability in the presentation time of the peripheral device,
meaning that one presentation may occur 5 ms after the projector received the
signal and a second presentation may occur 50 ms after the projector received the
signal, this will not be captured by the trigger sent in parallel to the MEG
acquisition computer. A delay in the peripheral equipment can be measured and
accounted for in post-processing steps, however, jitter cannot easily be addressed
based on triggers alone. The variability in the onset times can be large depending
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on the equipment. This introduces a significant shift in latencies across trials
thereby blurring the temporal resolution of the measured cortical response (leading
to peak broadening and/or reduced amplitude due to cancellation across trials).
Therefore, the optimal jitter is <1 ms. In some cases, one can still account for jitter
(described in more detail below). However, experiments that require precise
timing between stimuli (e.g. testing the ability to predict the next stimulus) or
experiments that require multiple stimuli to be presented synchronously (e.g.
multisensory integration studies) require consistent timing (jitter <1 ms) across
trials to provide the required timing between stimuli.

The other significant challenge with peripheral equipment is identifying equip-
ment that does not introduce artifact (strong magnetic fields) during data collection.
This is often addressed by placing electrical equipment outside of the magnetically
shielded room (MSR) and passing the signal/stimulus into the room through non-
magnetic stimulus delivery systems. These can include shielded and properly
grounded wires and fiber optic cables. Fiber optic cables are ideal for two primary
reasons. First the signal travels at the speed of light, introducing no measurable
delay in transfer of the signal. Second, the fiber optic cables are made of non-
ferromagnetic materials (plastic sheathing and glass), thereby introducing no
magnetic artifacts into the MSR. All other peripheral equipment including screens,
response buttons, etc. should be built with non-ferromagnetic materials which
include plastic, wood and brass. The prevalence of fMRI has made acquisition of
non-ferromagnetic stimulus equipment more readily available. However, as men-
tioned throughout this chapter, not all MRI-safe equipment is suitable for MEG.

2.3.1 Bipolar EEG Channels

Bipolar EEG channels are used to monitor muscle activity. The most common use
is to monitor eye blinks. It is important to have a set policy for eye blinks when
providing your participant with instructions prior to beginning data collection for
the MEG study. This however, can be difficult. If too much emphasis is placed on
not blinking, the participants will almost invariably blink more (e.g., their eyes
become dry which causes involuntary blinking). It is generally recommended that
you tell the participants when they can blink rather than informing them that they
cannot blink. “When you need to blink please blink after you’ve responded or
blink between the stimuli.” Some studies (e.g. Tesche and Karhu 2000) have
explicitly set aside a blink period between stimuli.

Regardless, it is important to use eye blink detection channels in most if not all
MEG experiments. The magnetic fields generated by the muscles around the eyes
are significantly larger than the magnetic fields of interest. This leads to two
problems. First, eye blinks can completely swamp any signal that you are inter-
ested in measuring. Second, eye blinks are large amplitude events with a consistent
field pattern so that there is very little chance that they will average out across
trials. It is also the case that many subjects will blink in response to a stimulus
(partially time-synched), making it even more likely that you will obtain a large
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amplitude eye blink artifact. There are a number of different configurations that
can be used to monitor eye blinks and eye movement. It is generally best to
incorporate a setup that can monitor both vertical and horizontal eye movements.
With two sets of electrooculogram (EOG) electrodes it is best to place one set of
electrodes on the superior and inferior orbital ridges of one eye to monitor eye
blinks and vertical eye movement and the second set of electrodes on the left and
right outer canthi to monitor horizontal eye movements. With one set of EOG
electrodes, one electrode can be placed on the superior orbital ridge of one eye and
the other on the outer canthi of the other eye to incorporate both horizontal and
vertical eye movements into one EOG channel.

Bipolar EEG channels are also useful for monitoring heartbeat. While it is highly
recommended to monitor heart beat in clinical cases, it is not as critical to monitor
in basic research studies. However, there are some subjects that exhibit significant
heart beat artifact in their MEG. By recording the electrocardiogram (ECG), it is
much easier to confirm and eliminate heart beat artifact from the MEG signal than if
the data are simply not acquired. A standard placement of two EEG leads just below
the left and right clavicle generally provides a good ECG recording. Heart beat
artifact can be removed from the signal using projection methods described in
Sect. 4.1.

Another common use of bipolar EEG channels is to monitor other muscle
movement. These can be used with standard electromyogram (EMG) placements
to monitor specific muscle activity to confirm or disprove mirror movements that
may occur in cases of brain injury such as Cerebral Palsy or Stroke (Grosse et al.
2002). EMG channels have now been widely used to quantify coherence of brain
oscillations with oscillations measured in the EMG to better understand the
mechanisms associated with Parkinson’s Disease (Timmermann et al. 2003, 2004).

2.3.2 Visual Equipment

Currently, projectors are the standard equipment used to present visual stimuli
(often with the projector located outside the MSR such that it can project onto a
rear-projection screen located within the MSR). Most off-the-shelf projectors do
not provide reliable timing. The timing profile of a projector can be tested by
collecting MEG data with the visual stimulus trigger and a photosensor attached to
the screen. The photosensor signal should be routed to one of the analog-to-digital
(A/D) channels and timing of the photosensor signal relative to the visual triggers
can then be measured (see Fig. 2). Depending on the type of projector, timing may
also vary across the screen (e.g. cathode ray tube (CRT) monitors) so timing
parameters should be tested at the location of the visual stimuli. To test the timing
parameters, a separate visual stimulus at the desired screen location should be used
such that the stimulus changes from black to white (or vice versa) at the onset of
the stimulus to provide a clear change in photo luminance for the photosensor.
Collect approximately 30 trials to determine the variability in this timing mea-
surement. If the maximum variability of this timing is low (~3 ms or less), then
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Fig. 2 Photo diode recording on an A/D channel. Time 0 is the time the trigger pulse reached the
MEG data acquisition system. Time 20 ms is the onset of the photodiode response. This 20 ms
delay denotes the delay from when the projector was signaled to present the stimulus to the time
the stimulus was actually presented. Three trials are overlaid showing no difference in timing and
represents <1 ms jitter. When jitter is present the onset of the individual trials is variable relative
to time O

one can record the absolute timing difference (delay) and use this as a correction
factor for the timing of the visual response after data processing. If the variability
is high, then one should incorporate the photo-diode in your studies and use the
photo-diode signal as the visual stimulus onset trigger for averaging across trials.
Variability in visual stimulus presentation can also be minimized by optimizing
the timing of stimulus presentation relative to the projector refresh rate. The
stimulus onset for visual studies should be a multiple of the refresh rate of your
projector so that the signal is received by the projector at the same phase in the
refresh cycle (e.g. a 60 Hz refresh rate means stimuli should be presented at
multiples of 16 ms). This is also relevant if you are trying to present carefully
timed stimuli such as characterizing the frequency response of the visual system.
Again, it is best to confirm the actual projector oscillation rate with a photo-diode.

There are two primary types of projectors that are currently being used for
MEG studies, liquid-crystal display (LCD) and digital light processing (DLP)
projectors. DLP projectors have the best temporal characteristics for MEG studies
(low variability (<1 ms), and synchronous color presentation for 3-chip DLP
projectors). However, the price of these projectors is often prohibitive. Some LCD
projectors also have low variability in stimulus onset from trial-to-trial. Both of
these projectors often have a 20-40 ms delay from the time the projector receives
the signal to the time the stimulus is presented. A few MEG systems are com-
patible with using monitors for displaying visual stimuli directly. However, LCD
monitors have not been well characterized in terms of timing parameters. Some
measurements from our lab suggest that timing jitter can be high in LCD monitors
and should be carefully tested.

Another important projector variable to consider is brightness. Many commer-
cially available projectors are designed to project tens to hundreds of feet. The path
length from the projector to the screenis ~3 m for MEG rooms. This leads to intense
lighting for visual studies which can produce significant eye strain. The projector
menu may allow for brightness control. An additional option is to buy a neutral
density filter that reduces the brightness across all projector settings. While one of the
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motivations behind reducing eye strain is to make the experience comfortable for the
participants, reducing eye strain also reduces eye movement artifacts and tearing
during task performance.

2.3.3 Auditory Equipment

Ear Inserts: MEG labs often use foam ear inserts connected by tubing to Etymotic
sound transducers placed between 0.5 and 3 m from the MEG helmet. These sound
transducers can be placed within the MSR and generate minimal noise. One
advantage of these devices is that the signal is transferred at the speed of light until it
reaches the sound transducer. The slower speed of sound (~0.344 m/ms) will
introduce delays in the auditory signal, which need to be accounted for based on the
distance to the participant once the signal is converted into a sound wave (length of
the tubing from transducer to participant). Other delays and jitter in the auditory
stimulus timing can arise from the stimulus computer sound card or speaker elec-
tronics. Another consideration with presenting sounds via tubing is that the manu-
facturer characterizes the sound quality for a specified tube length (the sound will be
attenuated with longer tube lengths). Tubing also acts as a filter, thereby limiting the
frequency range of the stimuli that can be presented through this setup. Etymotic
sound transducers are supplied with a frequency response curve that is calibrated to a
recommended tube length and tube characteristic. If different lengths, diameter or
rigidity of the tubing are employed additional sound characteristic testing would be
required. Unfortunately, MRI-compatible headphones are not feasible for MEG
systems because headphones generally do not fit within the MEG helmet.
Speakers: Standard speakers are used in some MEG studies, e.g. (Stephen et al.
2012). However, sound is generated from standard speakers through movement of
magnets, therefore, they are not artifact free. Some flat panel speakers generate
minimal artifact relative to traditional speakers and maximizing the distance
between the speakers and the MEG helmet also reduces the amplitude of the noise.
With significant artifact it is important to recognize that speakers are active for the
full duration of the auditory stimulus, therefore, it is important to ensure that one
can eliminate speaker-generated artifact from MEG data through data processing if
the stimuli will be longer than ~ 50 ms. Finally, speakers within a closed room do
not provide the same characteristics as open field sound sources. Sound dampening
material on the walls can improve sound characteristics within the confined space.

2.3.4 Somatosensory Equipment

Electrical Stimulation: Direct electrical stimulation of a nerve (e.g. median or
tibial nerves) provides temporally precise somatosensory stimulation. Timing of the
system can be tested by recording the electrical output used to stimulate the nerves
relative to the stimulus trigger. However, electrical stimulation can introduce
artifacts. Twisting the wires that travel from the stimulator to the nerve helps to
minimize artifact from signal traveling through the wires. Despite these artifacts,
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stimulation of nerves provides a reliable stimulus and a very short duration pulse
(0.5 ms) can be used to obtain a robust cortical response. Therefore, artifact is
limited to a brief period before cortical activation. Finally it is important to rec-
ognize that the distance traveled along the peripheral nerve (from the location that
the nerve is stimulated to the brain) will induce delays in cortical activation. Unlike
auditory and visual systems where differences in the length of the peripheral nerves
are, negligible, there is considerable variation in height across participants with
systematic differences in height by gender leading to potential group differences.
Therefore, recording height from study participants is useful to ensure height dif-
ferences do not account for group latency differences.

Vibration Stimuli: Tactile devices can be driven with an oscillatory electrical
signal to generate a vibration stimulus when placed directly on the skin. This
stimulus can provide precise timing for the somatosensory stimulus since the
electrical signal is converted directly to vibratory motion. However, these devices
generally require that the electrical motor be located close to the skin, again
causing varying levels of artifact from the device.

Pneumatic Stimuli: Pneumatic stimuli are often generated by an air puff pre-
sented directly to the skin to activate hair sensory receptors or a puff of air filling a
balloon to generate a pressure stimulus. The pneumatic stimulus provides a non-
threatening somatosensory stimulus for pediatric populations and is artifact-free, if
the air regulating device is located outside of the MSR. However a pressure stimulus
introduces a significant time delay based on the time that it takes for a pressure
stimulus to travel along the plastic tubing from the external air regulator to the
participant (approximately the speed of sound). This requires that a pressure trans-
ducer be available to assess the time delay of the stimulus relative to the trigger. Also,
rigid tubing is essential to preserve the pressure profile across the 3—5 m distance.

2.3.5 Motor Equipment

Equipment used to assess motor function is primarily designed to capture the onset
of motor activation. The different types of equipment used in motor paradigms are
described below.

Finger lift device (Fig. 3): A finger lift device is often comprised of fiber optic
tubing connected to a light source at one end and a photo diode at the other with a
break in the middle. Both the light source and the photo diode are located outside
the MSR. The trigger is generated either when the light beam is broken or when
the light beam is allowed to pass to the photo diode. In any case, breaking or
connecting the light beam provides a rapid transition that the photodiode registers
and is then converted to a TTL pulse acting as a stimulus trigger. Many systems
are designed to trigger either at the time the light beam is interrupted or at the time
the light beam passes through unimpeded.

Squeeze ball: A squeeze ball has been used to obtain a larger motor response
than the finger lift task and it allows certain patients to perform a motor task who
may not have sufficient manual dexterity to perform the finger lift task (e.g. patients
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Fig. 3 Example Fiber Optic Motor Apparatus. The light source and electronics that identify
triggers are located outside the MSR. The light source is connected to one side of the fiber optic
cable loop and the light is delivered back to the electronics through the other side. The hand rests
on the motor pad (grey platform) and the finger is aligned such that it interrupts the light beam
when it is lowered to the motor pad. The electronics can be set to trigger based on the interruption
or completion of the light beam across the space on the motor pad

who have suffered a stroke). Onset of motor function in this case, is registered when
the ball is squeezed. Release of air or water from the squeeze ball can push an object
that in turn breaks a beam of light (e.g. fiber optic cable) or through a sudden change
in pressure registered by a pressure transducer (generally located outside the MSR).
However, the delay in registering the squeeze can be quite long if the signal is
measured by a pressure transducer at the end of the tube located outside the MSR
due to the slow speed of a pressure stimulus traveling along a tube. Furthermore, the
pressure profile can be quite variable depending on the strength of the squeeze,
thereby making it challenging to define a trigger with low jitter.

EMG signal: As mentioned above, bipolar EEG channels can be used to collect
EMG signals by placing them on the muscle group of interest (with an appropriate
reference location for the second electrode) to capture onset of muscle movement.
EMG signal that is recorded simultaneously with the MEG data provides signal
with no equipment induced delay or jitter. However, EMG signal can be con-
taminated by muscle activity that is not of primary interest to the specified task, if
the electrodes are not placed correctly or if the participant cannot isolate the
movement for task purposes only. Furthermore, the EMG signal needs to be
converted to a trigger signal using post-processing methods to indicate movement
onset. Varying levels of movement quality (slow vs. fast onset) may also lead to
ambiguous movement onset for trigger creation.

Response Devices: MEG systems are generally equipped with artifact-free
response devices that record the participant’s response during cognitive tasks to
collect behavioral reaction times and accuracy. These devices can also be used to
signify onset of motion in a finger lift task. See Sect. 2.3.6.
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2.3.6 Behavioral Response Devices

It is important to have some type of behavioral response device which is compatible
with the MEG system. This allows one to not only obtain behavioral information
about how individual participants performed the task, but also provides some
confidence that the participants are performing the task, as instructed. While many
of the MEG manufacturers provide four button response pads, it is often useful to
develop a reaction time device that allows for responses from all fingers. One
example of this type of device has been developed by Michael Doty at the Mind
Research Network (http://www.mrn.org/collaborate/imaging-equipment/). This is a
fully optical system with non-metallic buttons and is also fully compatible with
MRI. One particular challenge in developing a noise free response device is finding
reliable response buttons that do not have ferromagnetic springs. Yet, it is critically
important to ensure that response pads do not generate any noise due to the vari-
ability in responses that can and will generate artifacts throughout much of your data
set. Also, there should be no significant delay between when the response button is
pressed and when the information is registered to the stimulus or acquisition
computer. It is also useful to have an ergonomically comfortable device to ensure
that participants do not tense their shoulders or become uncomfortable, leading to
potential muscle artifacts in the MEG data.

3 Experimental Design Considerations
3.1 Interstimulus Interval (ISI)

One of the important factors to consider when designing an MEG study is
determining the rate at which stimuli will be presented. The interstimulus interval
(ISI) defines the time between stimuli. This timing parameter must be balanced
between keeping the interval between stimuli short to decrease overall task
duration and minimize participant fatigue, while optimizing the cortical response
for the proposed task. Numerous studies have described the impact of different ISIs
on brain function. Rapid ISIs tend to decrease secondary and higher order brain
activity and emphasize primary sensory activity (Wikstrom et al. 1996). However,
primary sensory activity also decreases with rapid presentation of repetitive stimuli
(Hari et al. 1982). In contrast, designing experiments with long ISIs will increase
the overall duration of data collection, thereby contributing to participant fatigue.
Therefore, a number of factors should be considered when choosing ISI.

1. It is important that stimuli are sufficiently separated in time such that the
cortical processing associated with the previous stimulus has ended prior to the
presentation of the next trial. For example, the cortical response to median
nerve stimulation is complete by ~400 ms after stimulus onset (see Fig. 4).
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Magnetic Field (fT)

Time (ms)

Fig. 4 Somatosensory response to median nerve stimulation. The median nerve stimulation was
presented at time (t = O ms). The MEG channels are overlaid to show the response across the
MEG array. A baseline time interval (—100, 0) is shown prior to stimulus presentation. The
response has returned to baseline levels by 400 ms post-stimulus

Therefore, stimuli can be presented every 0.5 s. On the other hand, language
stimuli for example evoke a more protracted cortical response (Aine et al.
2005) requiring that the time between stimuli be longer. Therefore, ISI should
be determined based on the previous literature or empirical testing of the
response across a range of ISIs.

2. The ISI must also include sufficient time to provide a baseline time interval
between the offset of the cortical response to the previous stimulus and the
onset of the stimulus for the following trial. Due to the natural drift in MEG
channel amplitude over time, most MEG studies employ baseline correction
during data processing. Therefore, the ISI should be chosen such that the
interstimulus interval is greater than the (baseline time interval) + (duration of
the cortical response). The duration of the baseline time interval varies
depending on the paradigm and the analysis to be performed. Following the
example provided in Fig. 4, the baseline time interval chosen for median nerve
stimulation is often 100 ms.

3. The duration of stimuli is an important consideration when determining ISI. If a
visual stimulus is presented for 1 second, the onset of subsequent visual stimuli
must be separated by approximately 1.5 s. This provides sufficient time for
the visual off-response and a baseline time interval between stimuli prior to the
onset of the next visual stimulus.

4. Varying ISI across trials also helps eliminate anticipatory responses such as the
contingent negative variation (CNV) response first identified in EEG studies
(Rohrbaugh et al. 1986). Furthermore, introducing variability in the ISI also
helps to limit anticipatory behavioral responses during repetitive tasks (par-
ticipants may respond with a button press prior to stimulus presentation).
However, some paradigms require a constant ISI (e.g. studies that specifically
focus on understanding the ability to predict stimulus timing). Finally, by
varying the ISI, one may help reduce habituation of responses (i.e., a reduction
in amplitude across time to a repetitive stimulus presented at a constant ISI).
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5. During cognitive tasks it is also important to take reaction times into consid-
eration when determining ISI. It is important to provide sufficient time for the
participant to respond prior to the onset of the next trial so that brain activity in
the following trial is not contaminated by motor responses from the previous
trial. Slower reaction times often associated with patient populations should
also be considered. One approach is to allow for dynamic changes in ISI by
initiating the next trial as soon as a response is made. However, this may
introduce systematic group differences in ISI if a patient group is consistently
slower than the control group, leading to an experimental confound as
described above.

6. Finally, the number of trials per condition is also a consideration when
determining ISI. As described in the signal averaging section below, most
stimuli in MEG studies are presented 10-100 s of times to allow for noise
reduction through signal averaging. However, the number of trials per condi-
tion and the ISI interact to determine the duration of the task. For example, a
study with 2 conditions with 100 trials per condition and an average ISI of 1 s
will take 3.3 min. If the ISI is doubled, the data collection time will also double
(6.6 min). Balancing the number of trials with the ISI helps to optimize signal
quality and task duration to ensure participants can provide good quality data
and attentive responses throughout data collection.

In summary, it is important to balance timing parameters with other consid-
erations such as participant fatigue and task complexity to obtain high quality
MEG data based on the constraints of the experimental paradigm.

3.2 Training the Participant

It is important to allow time for the participant to practice the task for a number of
reasons. Once data collection has begun, it is important that the participant feel
comfortable with task instructions to minimize the likelihood that data collection
needs to be stopped due to confusion over the task. Starting and stopping data
collection is problematic and can lead to participant fatigue and frustration as well
as introducing variability in data acquisition time across participants. Therefore, it
is best to get the participant comfortable with the setup and the stimuli and the
required responses prior to data collection. If the experiment is incorporating a
behavioral task, one might set a percent correct criterion during the practice ses-
sion to decide how long the subject practices the task. Depending on access to the
machine, practice can occur in the MSR or at a practice computer.
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3.3 Habituation

It is also useful to randomize different conditions within an experiment for a
number of reasons. First, cortical responses are largest in response to changing
stimuli. Using visual stimuli for demonstration purposes, if a participant is
expected to look at the exact same visual stimulus over a long period of time, the
salience of the stimulus will fade due to the physiology of the visual system.
Therefore, if you are testing both left and right visual fields it is best to randomize
the left and right stimuli within blocks. This randomization also helps to prevent a
shift in gaze away from the fixation point. While it is most common to place a
small cross-hair at the location that the participant is supposed to maintain visual
fixation, if all of the stimuli are below the visual fixation, for example, participant
gaze will tend to shift below the intended fixation point. Randomizing stimuli,
such that the average location is at the fixation point, helps to minimize fixation
drift. If the experimental design does not allow for full randomization of the
location of the stimuli, then it is best to block the stimuli in relatively small blocks
and present different locations in blocks of ~30 stimuli per location, while pre-
senting as many blocks in a randomized fashion to allow for the desired number of
averages. Randomizing the conditions across the entire data collection period also
helps to ensure that differences in responses between conditions are not simply due
to changes in attention across time. Similar habituation considerations are
important for auditory, somatosensory, motor and cognitive paradigms.

3.4 Subject Positioning

It is important to consider the primary areas of interest when positioning the
participant in the MEG dewar. For participants with large heads, placement within
the dewar will not be a consideration. However, a large number of subjects have
significant room to move their head both front and back and side-to-side in the
current MEG helmets. It is generally best to try to center the head as much as
possible from left to right, unless your hypothesis focuses specifically on a well-
documented lateralized response. However, for a basic visual study, you should
encourage the participant to move their head back as far as possible and perhaps
tilt the head forward a bit to provide additional coverage below the occipital
cortex. On the other hand, if you want to focus on orbital frontal cortex, moving
the head forward and tilting the head back would be most ideal for optimal
coverage of the area of interest.

Furthermore, when the subject has sufficient room in the helmet to move their
head around, it is important to provide some mechanism to help maintain head
position within the dewar. Placing covered foam pieces on either side of the head
near the cheekbones generally works well both in providing the subject with tactile
feedback while also maintaining head position. Another alternative for head
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stabilization sometimes provided by the MEG manufacturer is an inflatable
bladder placed around the head where different sections may be independently
inflated. These systems sometimes make the participant hot or uncomfortable.

3.5 Artifact Prevention

Artifacts are one of the most challenging aspects of collecting good quality MEG
data. The sources of artifacts include both external and internal factors. External
factors include any large ferromagnetic object that moves close (up to 0.5 km
away) to the MEG system. That is, elevators, cars, gurneys, chairs, etc. can all
generate noise in the MEG system. Fortunately, the noise generated by these
examples is very low frequency. This type of noise is problematic if the MEG
amplifiers become saturated and leads to data loss. Identification of these artifacts
is generally performed by working as a team to monitor MEG activity while
another individual observes external activity.

There are also a large number of artifacts that can be associated with the
participant. Clearly, it is important that the participant remove all electronic
devices before entering the MSR, including cell phones, pagers, watches, etc. The
largest problem is with dental work. Permanent bridges are almost invariably too
noisy for good quality data. Unfortunately, the frequency range of noise generated
from dental work directly overlaps with physiological signal. Therefore, it is
challenging to eliminate this noise from the signal without also losing signal of
interest. It is also heterogeneous across data collection, making projection tech-
niques such as that used for eyeblinks and heart beat artifact unusable. It is
important to ask the participant to take out all removable dental work. Sometimes
de-gaussing will work in removing magnetization from permanent dental work. If
the participant is a member of a difficult-to-recruit study group, it is important to
attempt de-gaussing at least a couple of times. While participants with removable
dentures may seem to be ideal subjects, the absence of dentures may lead to more
mouth movement and muscle artifact.

Muscle artifact is the next largest contaminant to MEG data. Both eye and
mouth movements affect the MEG signal. In general, the magnetic fields generated
by muscle movement are much larger than the magnetic fields generated by brain
activity. Therefore, necessary muscle movements, such as eye blinks, present a
constant problem for MEG. The participant may also have habits that lead to
artifacts that include muscle movement such as tensing the jaw or shoulders.
Mouth movements can be particularly difficult for MEG since the jaw muscles
extend posteriorly across much of the head. This artifact is best identified by
asking the subject to consciously tense their jaw or shoulders and then asking the
subject to consciously relax while one is observing the continuous MEG signal.
Some subjects are tense when they first start a study, but relax once the study
begins. If this is a possibility, it is useful to let the subject practice the task to help
them settle into the environment.



Designing MEG Experiments 145

The other main source of artifacts originates from participant clothing and other
accessories. All piercings should be removed prior to data collection unless it is
known that the piercing is non-ferromagnetic. Some mascara, makeup, hair dye
and finger nail polish can have metallic ingredients. Mascara can generate
amplified eye blink artifacts. Breathing artifacts can be seen from a number of
different sources. (1) T-shirts with metallic ink in the silk screen; (2) underwire
bras; (3) clothes with metallic dyes; and (4) belts. While it is best to encourage
participants to come dressed in plain metal-free clothes, an alternative is to provide
metal free clothes (e.g. medical scrubs) to participants.

4 Data Preprocessing
4.1 Artifact Removal

The first priority with MEG artifacts is to minimize the contribution of artifacts that
contaminate MEG data. As mentioned above, a number of sources of artifacts can be
eliminated prior to data collection. However, there are a number of artifacts that
cannot be eliminated entirely (e.g. flux jumps, eye blinks, movement artifact, etc.).
For the artifacts that remain, there are two competing goals when removing artifacts
from data. If the artifact is a large amplitude, rare event, then it is necessary to
eliminate it from the signal by removing the trial, since it is very unlikely to be
reduced by signal averaging. On the other hand, it is important to maintain as many
trials for each condition so that one gains the advantage of signal averaging for low
amplitude noise.

The most reliable method for eliminating artifacts (i.e., guarantees that the
artifact will be removed without removing any signal of interest) is to eliminate any
trials that contain artifacts. If you are able to collect more trials than needed, then
trial removal can be performed either using automated or manual methods. For
example, eye-blink rejection is often performed by eliminating any trials that
contain a signal that exceeds 75 pV in the EOG channel. Additional criteria may be
included which only eliminate blinks in the eye channel within a certain time
range relative to the stimulus trigger (e.g. eye blinks that occur after the signal of
interest). This approach can also be used for large movement artifacts (e.g. cough or
shifting position). Often these trials are identified by setting an upper bound on the
magnetic field strength (~ 2,000 fT) and eliminating trials that exceed that value.
However, if one channel is noisy throughout the entire recording, then it is rec-
ommended that the channel not be used (turned off/marked bad) for the analysis
rather than eliminating bad trials based on this channel.

Additional methods for artifact rejection provide mathematical solutions to
artifact rejection. However, these techniques run the risk of eliminating signal as
well as noise in the artifact removal process. For example, eye blinks can be
identified by using an eye blink template. Whenever a sufficient match is made
with the template the magnetic field associated with the template eye blink is
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projected out of the data (Uusitalo and Ilmoniemi 1997). This technique can be
very useful when eye blinks are relatively homogeneous to maximize the number
of trials retained in the average.

Independent components analysis (ICA) has also been used to eliminate arti-
facts from MEG data. The advantage of ICA is that artifacts should be independent
of the brain signal of interest. Therefore the underlying assumption of the method
is valid. This technique has been used by many MEG groups (e.g. Vigario et al.
2000; Iwaki et al. 2004; Mantini et al. 2007). However, there are a number of
different forms of ICA. Some of the ICA programs separate the data into many
components as decided upon by the user. Others separate the data into the same
number of components as number of input channels. Either way the actual
assignment to any particular independent component is random. Therefore, it is
necessary for the investigator to determine a method that identifies artifact versus
signal components. Depending on the artifact, this may or may not be obvious.

4.2 Removal of Bad Channels

The choice to remove bad channels is based on two factors. If the channel is bad
because of technical difficulties with the SQUID, the noise is clearly not physio-
logical with multiple square wave jumps throughout the dataset. These channels
should be eliminated since they do not provide any useful information regarding
brain activity and yet can dramatically bias source modeling. The other factor is
physiologic noise. Sometimes eye blinks can be found throughout the entire dataset.
If none of the above artifact removal options appear to solve the problem, it may be
more useful to delete channels that are largely affected by eye blinks. This is done,
for example, if you are not interested in activity in brain areas near the eyes. Most, if
not all, MEG analysis programs allow you to toggle bad channels on and off. So the
data is not deleted, it is just not marked for display and analysis purposes. Again, it is
important to balance the two factors of retaining as much information as possible,
while also eliminating as much noise from the signal as possible.

4.3 Filtering

The choice of filter settings should be carefully considered. Historically, ERP
recording equipment limited the dynamic range of the signal leading to narrow filter
settings. Some MEG studies have followed these filter settings since this facilitates
direct comparisons with previous ERP work. However, the acquisition equipment
for both EEG and MEG is far advanced at this time. Filter settings can be adjusted
during post-processing steps and it is recommended that acquisition filters be set as
wide as possible. Due to these early filtering restrictions, both slow wave activity
and high frequency gamma were not initially reported in ERPs (filtering was often
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set with a bandpass of 5-30 Hz). Our results have described the importance of slow
wave activity in cognitive tasks (Aine et al. 2003, 2005). Recent EEG and MEG
studies have also identified the role of high gamma oscillations in cognitive tasks
(Engel et al. 2009; Uhlhaas et al. 2011).

4.4 Averaging

Signal averaging is still the norm for obtaining reliable evoked responses in MEG
studies. This requires a trigger from which to average the signals. As described
above, these triggers can either be generated by a program that delivers the stimuli
to the subject (e.g. trigger pulse sent from Presentation program) or by a device
that measures when the stimulus is presented to the subject (e.g. photo-diode).
After eliminating any noise sources from individual trials, the trials for
each condition are then averaged together. This allows for an increase in signal to

noise ratio (SNR) that is approximately equal to v/N where N is the number of
trials. This relationship is exact in the case of truly Gaussian white noise. It is only
approximate in cases where the noise is not truly random as is the case with brain
noise. Therefore, if there is a consistent noise source that is time-locked to the
stimulus (e.g. the participant always blinks with the presentation of a visual
stimulus or artifact from a stimulation device), the signal will not average out.

It is important to check various factors when performing signal averaging. For
example, it is useful to compare the averages between the 1st and 2nd half of the
recording session or the average of the even versus odd trials. This can be easily
automated. It ensures that the average is not biased by the presentation of the first
few trials (as in the case of habituation) or by a random noise event that was not
eliminated using other artifact removal techniques. It is also important to define a
unique trigger for each stimulus condition. It is easy to automate averaging across
conditions. However, it is not easy to separate out different conditions after data
acquisition, if one does not provide unique triggers for these conditions at the
outset. The generally accepted number of averages that are needed to obtain good
SNR in most MEG studies is a minimum of 100 trials/condition. This number may
be larger or smaller based on the amplitude of the signal of interest. For example
the high frequency activity reported by Curio et al. (1997) required thousands of
trials to obtain the necessary SNR. On the other hand, inter-ictal epileptic spike
activity provides sufficient SNR for single trial analysis in many cases.

Signal averaging has some disadvantages because it assumes that the signal of
interest is exactly time-locked to the stimulus and identical on each trial. If these
assumptions are not true, the variability from trial to trial will be lost in the aver-
aging process. Time-frequency analysis has provided an additional means to look at
activity that is related to the signal and yet not perfectly time-locked with the
stimulus (Tallon-Baudry et al. 1996). This method of analysis is especially relevant
for high frequency signals such as gamma activity (>30 Hz), since without perfect
time-locking this activity will average out based on the rapid oscillation rate.
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5 Visual Experiments
5.1 Stimulus Parameters

Stimulus parameters for visual experiments are discussed in more detail in the
chapter describing visual studies (Aine et al. this volume). These parameters
include but are not limited to: visual stimulus characteristics such as visual contrast,
luminance, spatial frequency, size and timing. Below we describe the parameters
that one must consider with respect to designing a visual study to provide consistent
visual stimulus presentation across participants.

5.2 Ambient Lighting

During visual experiments it is important to maintain similar ambient lighting
conditions across participants. Most MSRs include a dialed light switch that allows
one to choose a consistent setting across participants for each experiment. The
difference in ambient light is important since it changes perceived contrast levels.
Differences in contrast cause differences in onset latencies with higher contrast
visual stimuli leading to shorter onset latencies (Robson 1966; Campbell and
Kulikowski 1972; Okada et al. 1982). It is also important to consider ambient light
with regards to stimulus brightness. If the background lighting is turned down,
then the perceived brightness will be greater.

5.3 Calculating the Visual Angle

The visual angle of a stimulus can be calculated by measuring the size of the
stimulus (size) and the distance from the stimulus to the participant’s eyes (dist).
Generally, one can use the distance from the stimulus to the participant’s nasion as
a good approximation. It is important to use identical units when measuring size
and distance as well as being aware of whether the output of the inverse tangent
function is reported in radians or degrees. Use the following equation for the

calculation:
size
0=2-tan"'
an <2-dist)
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5.4 Calculating the Cortical Magnification Factor

In order to activate similar amounts of primary visual cortex across different
eccentricities, it is important to apply the cortical magnification correction factor.
More cortical cells are devoted to the central visual field than to the peripheral
visual field. Therefore, to activate equivalent patches of cortex, the peripheral
visual stimuli need to be larger than the central visual stimuli. The human cortical
magnification factor was most precisely mapped out by Rovamo and Virsu (1979).
They provided a cortical magnification factor for stimuli in peripheral field in the
nasal, superior, temporal, and inferior directions. They suggest linear interpolation
between these four equations when trying to equate activation along other merid-
ians. Horton and Hoyt (1991) derived an equation based on fMRI and occipital
lesion studies in humans that provides an approximation for all directions:

17.3

Miinear = m ’

where, E is the eccentricity in degrees and M is the linear correction factor in
mm/degree. This equation agrees well with the dimensions determined for non-
human primates while accounting for the larger size of the visual cortex in humans.
Horton and Hoyt also provide an areal correction with the assumption that the
cortical magnification is isotropic. While this deviates from the results of Rovamo
and Virsu, it is perhaps a reasonable approximation for neuroimaging studies as
suggested by the agreement of these results with PET and phosphene mapping.

5.5 Measuring Luminance

Matching luminance of the stimuli and background is important to ensure that
differences in responses are not generated based on simple luminance changes
throughout the experiment. Luminance measures are performed using a light meter
and are a measure of the total light output for a part of a stimulus for a given period
of time. A full description of how one measures luminance and mean luminance for
complex stimuli such as visual gratings is described in detail by Brigell et al. (1998).

5.6 Vision Correction

It is important to have a method to correct for differences in visual acuity across
participants since blurred images tend to produce lower amplitude responses and
differences in the ability to see the stimuli will lead to differences in task difficulty.



150 J. M. Stephen

Although vision correction is generally only considered when performing visual
studies, it is also advisable to offer vision correction during a nonvisual MEG scan
since some individuals get a headache without their glasses. Vision correction can
be a challenge in MEG because in adults eyeglass frames do not fit in the MEG
dewar and most eyeglasses contain ferrous screws, including glasses with titanium
frames. Unless an individual has MRI-safe glasses, wearing glasses will likely cause
artifacts. If the participant needs vision correction there are three standard options.

Contact lenses. One option is for the individual to wear contact lenses.
However, many individuals blink more frequently with their contact lenses in
place. Therefore, it is advisable to have other vision correction options.

Pinhole glasses. A simple option for vision correction is pinhole glasses. If the
individual only needs to fixate on a chosen point throughout the task, a single
pinhole, in a piece of paper for each eye can be created. This approach addresses
difficulties with nearsightedness, farsightedness and astigmatisms. Despite its
wide-ranging use, the challenge of attaching the pieces of paper to the participant
in such a way that the pinhole remains in place throughout the experiment remains.
Often tape is the best option. The drawbacks of this approach are that it can be
annoying to participants since it severely limits their field of view and it may be
viewed by participants as a low-tech approach to vision correction.

Optical lenses. A complete set of optical corrective lenses can be purchased.
These sets include lenses to help account for myopia, hyperopia and astigmatism.
The lenses can either be taped to the subject or a device compatible with the MEG
system can be designed to hold the lenses in front of the subject. These corrective
lenses are also compatible with MRI systems. MRI compatible glasses with
interchangeable lenses are also an option; however, they should be tested prior to
purchase due to the space limitations of the MEG dewar. The clear advantage of
these lenses is that one can match the individual’s eyeglass prescription.

5.7 Eye-Tracking

MEG compatible eye-tracking systems are now available commercially. These
systems can be an important complement to MEG data collection by providing
confirmation of experimental compliance (participant fixates as instructed), testing
emotional responses to stimuli by capturing the pupillary diameter, analyzing the
participant’s eye-movements throughout a task (e.g. quantifying eye-position
during a face processing task), or for understanding the eye-control network
(saccades). It is important to acquire an MEG-compatible eye-tracker since stan-
dard eye-tracking systems use a head-mounted device that does not fit within the
MEG helmet. The MEG-compatible systems perform eye-tracking through a
remote camera. A couple of factors to consider while designing a study with an
eye-tracking system are:
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(1) These systems currently require that head position relative to the eye-tracker
camera remain constant. These systems require highly restricted head move-
ment similar to MEG systems that do not have head movement compensation.

(2) Vision correction options (e.g. contact lenses) generally eliminate the ability
to perform eye-tracking experiments since the corneal reflection is used to
quantify the eye-movements and additional reflections interfer with capturing
the corneal reflection.

(3) Eye-tracking will fail in a certain number of participants due to a number of
factors that inhibit the ability to capture the corneal reflection (e.g. droopy
eyelid, amblyopia, etc.).

Therefore, careful selection of participant group and task design is important prior
to requiring eye-tracking for a study.

6 Auditory Experiments
6.1 Stimulus Parameters

All auditory parameters can be manipulated using currently available software. In
light of the fast temporal processing that occurs in the auditory system including at
the cochlear, brainstem and cortical levels, it is important to understand the
characteristics of the stimuli that are being presented. Simple tones represent one
frequency and can easily be generated in Matlab. However, any sudden onset of a
sound represents a square-wave transition and thereby activates frequencies across
the frequency spectrum. Therefore, when testing tonotopy or simply reporting that
a simple tone was presented, it is important to increase the volume gradually over
a short period of time to reduce the ‘click’ associated with a sudden onset/offset of
a sound. This is commonly performed by applying a 10-20 ms amplitude taper to
the onset and offset of the tone (e.g. Hanning window). More complex auditory
stimuli can also be characterized through a spectrogram to characterize the con-
tribution of an array of frequencies to the sound. To ensure good matching of
stimuli across conditions, it is good to match stimuli on the basis of duration, mean
amplitude and frequency content.

6.2 Auditory Threshold Testing

Auditory threshold testing should be performed to account for differential hearing
loss across participants. This can vary widely in participants at all ages. The testing
should be performed at frequencies that characterize the auditory stimuli in the
study. If you are using auditory inserts for presenting auditory stimuli, these should
be inserted just prior to data collection and auditory thresholding should be per-
formed with the ear inserts in place. The placement of the ear inserts influences the
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perceived volume and auditory threshold testing is sensitive to minor adjustments
to this placement. If there is a large difference in auditory threshold between ears,
it may be related to poor placement in one of the ears. Repositioning and retesting
of the auditory threshold is recommended in this case. With a speaker setup,
auditory threshold testing can occur at a prior visit, assuming that the volume can
be carefully controlled from one visit to the next. The general approach for
auditory threshold testing is to present volumes that are well above and well below
threshold and have the participant respond to every sound they hear. This requires
an adaptive program that continually decreases the interval between the above and
below threshold sounds. Randomly presenting tones of different volumes and
randomizing the time between stimuli, while working toward the ultimate goal of
identifying the threshold helps to eliminate the possibility of false reports.

6.3 Volume Assessment

Volume can be measured using a sound meter. Volume should also be tested with
the stimulus program and any sound equipment used, to determine if the actual
sound volume is consistent with the expected volume output. For example, the
volume increases/decreases by a specified dB level based on programming
parameters in the Neurobehavioral systems Presentation software. We have found
our system to track well with the expected increases and decreases in sound
volume, although the absolute volume is larger than reported. Furthermore, the
length of the tubing from the sound transducers/distance from speakers will change
the volume level accordingly. The volume should be measured to emulate the
conditions of the stimulus. Therefore, if sounds are being presented through ear
inserts, the ear inserts should be connected to the sound meter with a piece of
tubing at a distance approximately equivalent to the distance to the tympanic
membrane. The volume from speakers should be measured with open air access to
the sound meter sensor at the approximate location of the participant.

7 Somatosensory Experiments
7.1 Stimulus Parameters

There are three different types of somatosensory stimulation that have been
employed in MEG studies: direct nerve stimulation with electric pulse, pressure
stimulus generated by a balloon, and vibration stimuli. There are six different
tactile receptors in the skin and each of them responds to different types of tactile
stimuli (Kandel et al., 2000). Vibration stimuli primarily activate Pacinian cor-
puscles, whereas multiple receptors likely respond to a pressure stimulus such as a
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balloon inflating next to the skin, e.g. Ruffini corpuscles and Merkel receptors,
which respond to skin stretch and pressure, respectively.

7.1.1 Direct Nerve Stimulation

Direct nerve stimulation requires that one ensure that the nerve is properly acti-
vated by the electrical pulse. Due to differences in skin conductance and other
factors, the most common method to ensure proper electrode placement is to
position the electrodes and increase the voltage until a known reflex to nerve
stimulation occurs (e.g. median nerve stimulation evokes a natural thumb twitch).
Some median nerve studies choose a voltage setting relative to the onset of the
thumb twitch, whereas other studies simply increase the voltage until the current is
first perceived by the participant. The interstimulus interval can be very brief with
median nerve stimulation (down to 0.5 s) although shorter ISIs decrease the
strength of the later components and longer ISIs lead to a larger contribution from
secondary somatosensory cortex (Wikstrom et al. 1996).

7.1.2 Tactile Stimulation

Tactile stimulation is most commonly performed with an air puff achieved by
filling an air bladder that is placed directly on the skin. The compressed air must be
connected to a device that can control the duration and pressure of the stimulus.
There are two parameters that must be considered when designing a tactile
experiment: pressure and duration. The pressure is often set around 40 PSI with
duration of 20-50 ms to provide time for the balloon to inflate, provide a pressure
stimulus, and deflate again (Lauronen et al. 2006). Activation of the somatosen-
sory system through a pressure stimulus takes longer than direct nerve stimulation.
Therefore, longer ISIs are recommended (>1 s).

7.1.3 Vibration Stimulation

Vibration stimuli require a longer duration stimulus and are often used in a pseudo-
steady-state design. This is related to the natural oscillatory nature of the stimulus
requiring that a sufficient number of cycles are presented to provide a robust
response. Rate of oscillation is another variable to consider to ensure that the
stimulus is comfortable for the participant.
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7.2 Paradigms

Most somatosensory paradigms include simple sensory designs. However, it is
good to alternate left and right median nerve stimulation to reduce habituation
effects. Additional studies have explored the utility of MEG for further under-
standing somatosensory processing including: mapping somatotopy (Inoue et al.
2013; Jamali and Ross 2013), understanding the interaction between sensory and
motor functioning (Cheyne 2013; Piitulainen et al. 2013), linking pain perception
with somatosensory processing (May et al. 2012; Rossiter et al. 2013) and
exploring cognitive aspects to somatosensory processing (Moseley et al. 2013; Sun
et al. 2013).

8 Motor Assessment
8.1 Stimulus Parameters

An important consideration when designing motor experiments is minimizing
motor related artifact. Tasks as simple as pressing a button with an index finger
activate a complex set of muscles that can introduce significant stimulus-locked
muscle artifact in the MEG dataset. Furthermore, muscle tension from holding the
hand or arm in position for movement can lead to muscle tension related artifact. It
is advisable to achieve ergonomic positions for the participant to reduce muscle
tension during data collection. It is also advisable to ask the participant to remain
relaxed throughout data collection. A common approach to identify shoulder
tension is to ask the participant to raise their shoulders into a shrug and then relax.

8.2 Paradigms

Motor paradigms focus on capturing the onset of motion with the goal of capturing
the activity that initiates the movement. In many cases, it is advisable to cue the
participant to initiate movement (e.g. every time the circle appears on the screen,
lift your right index finger). Without pacing provided by external stimuli, partic-
ipants tend to decrease the ISI over time and may decrease it to the point that the
motor activity is not easily distinguishable across trials. It is also important to
provide concise instructions and allow the participant to practice. Better syn-
chronization across trials is obtained with a precise and rapid finger lift as opposed
to slowly lifting the finger. However, other motor tasks may introduce too much
muscle artifact and head motion with rapid onset movement. Pilot testing helps to
provide guidance on developing novel motor paradigms.



Designing MEG Experiments 155

9 Cognitive Paradigms

Due to the large number of cognitive paradigms employed in MEG studies, specific
paradigms are not discussed here. However, there are common considerations to
keep in mind when developing cognitive paradigms that are described below.

First, it is important to match sensory properties across cognitive conditions to
allow one to properly assess cognitive function independent of stimulus parameter
differences (as discussed in the chapter by Aine et al. in this volume). For example,
in Aine et al. (2006) we performed a passive viewing task and a spatial working
memory task using Walsh stimuli. Although the visual stimuli were complex and
changed in complexity across trials, the presentation of these stimuli during a
passive viewing task allowed us to identify the visual processing components that
were independent of the spatial working memory task. Maintaining stimulus
characteristics ensures that contrasts between the control and the cognitive con-
dition are not simply related to sensory differences.

Second, cognitive tasks generally require confirmation that the participant is
performing the task to a specified accuracy level. Therefore, it is important to find
a way to assess whether the participant is performing the task, as instructed. Many
investigators require some type of response using a button press, for example. This
provides a behavioral correlate (reaction time and percent correct) to the neuro-
physiological response as well as allowing the investigator to assess whether the
participant understands the task and is performing the task throughout data col-
lection. If a behavioral response confounds the task, one strategy is to perform a
pre-scan training session and a post-scan questionnaire to determine task com-
pliance. Another strategy is to require the participant to count the number of target
stimuli (rare stimuli designed to test compliance).

Third, the timing of the stimuli and the likely variability of the response must be
considered, to determine if the cognitive process that one is most interested in
studying can be assessed using an MEG study. For example, sentence compre-
hension occurs over a prolonged time window and comprehension may not occur
at the same time relative to the onset of the sentence. One strategy that has been
employed is to complete the sentence with a coherent or nonsense word and trigger
off of the final word of the sentence (e.g. Maess et al. 2006). This helps to
minimize the variability of the cortical response across time, trial and participants.

Finally, a number of strategies have been employed to reduce artifacts that may
contaminate the brain response of interest. For example, Tesche and Karhu (2000)
employed a fixed temporal pattern during a working memory task. Included in the
experimental design was a ‘blink’ command to ensure participant did not con-
taminate the remainder of the trial with eye blinks. Other strategies include
imposing a delayed response to ensure that motor responses do not contaminate
cognitive responses to different stimuli. In that case, it is also important to rec-
ognize that imposing a delayed response (respond when you hear the ‘beep’ cue)
also introduces additional cognitive load into the experiment.
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In summary, high temporal resolution provides an exquisite view into the
cortical dynamics underlying brain function. However, the variability in cortical
response during cognitive tasks can inhibit interpretation. Careful design of the
experiment is important to capitalize on the strengths of MEG.

10 Good Practices

There are a number of good practices outlined below that will facilitate good quality
data collection. Before beginning a study it is important to pilot test the paradigm to
ensure that the behavioral results are as expected. Behavioral testing in a small
group of participants is inexpensive and increases the likelihood that the MEG
results will be meaningful. The question to be answered is whether the patient group
or age group can perform the task to the desired accuracy level. Once the paradigm is
established and the stimulus computer has been programmed to present the desired
task, stimulus timing evaluation should be performed. Empty room MEG data
collection can be performed to test the relative timing of triggers, to verify the
number of triggers/condition is correct and to establish the timing of all peripheral
devices. One should also check that data is being collected for all relevant channels
(including MEG, EEG, bipolar EEG, trigger, and A/D channels), the correct sam-
pling rate is being used, and the correct filter settings are chosen. This is a necessary
step that will help prevent the loss of data due to incorrect settings. Finally, it is
important to run one or a few pilot test participants to ensure that the expected
evoked responses are attained with the paradigm (e.g. auditory M100 is observed
when an auditory stimulus is presented, etc.). Once the paradigm is established, it is
important to maintain identical stimulus parameters across participants to ensure
that sufficiently powered statistical comparisons can be performed at the end of the
study. It is also recommended that a naming convention be established at the
beginning of the study to ensure consistency across subjects. Our current naming
convention includes the SubjectNumber_studyName_Run#_visit#_cont/ave, where
studyName is a descriptive name of the paradigm (e.g. audMMN, visP300, spat-
wm), Run# is the number of a series of runs with the same stimulus conditions if the
study population requires breaks during data collection, visit# accounts for longi-
tudinal studies where the same paradigm is collected over multiple time points and
cont/ave refers to either a continuous data file or the online average data file.
Consistency facilitates auto-analysis pipelines and compilation of data across
studies. Finally, record all stimulus settings and data acquisition parameters to
ensure that the same conditions can be replicated across participants. This is par-
ticularly important in labs where multiple study teams use the same equipment.
Prior to each data collection session it is important to perform a simple test to
ensure that the equipment is in the same state as recorded above. For example,
confirm stimuli are being presented as expected (you can hear the sound through
the auditory inserts, the visual system is functional, etc.). Also, test triggers in the
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MEG data to ensure the program is sending triggers through to the data acquisition
system. Finally, check the participant response device and confirm that the signals
are being received by the stimulus presentation computer and the MEG data
acquisition computer.

11 Summary

There are a number of critical factors to consider in properly designing and
implementing MEG studies to produce high quality data and to eliminate artifacts
that can mislead the interpretation of the results or mask the signal(s) of interest.
Identifying sources of artifact and confounding factors prior to data collection can
simplify post-processing thereby reducing the number of processing steps needed
to obtain good SNR. Being able to reliably identify when stimuli are presented or
when events of interest occurred and characterizing confounding activity provides
the best means to understand the cortical networks involved in brain function.
Finally, establishing good data acquisition procedures to ensure reliable and
consistent data collection across participants is imperative to developing gener-
alizable knowledge. With proper experimental design and participant monitoring
novel MEG analysis techniques will continue to be developed to capitalize on the
rich spatio-temporal datasets obtained with MEG.
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Magnetoencephalographic Imaging

Srikantan Nagarajan and Kensuke Sekihara

Abstract Non-invasive and dynamic imaging of brain activity in the sub-
millisecond time-scale is enabled by measurements on or near the scalp surface
using an array of sensors that measure magnetic fields (magnetoencephalography
(MEG)) or electric potentials (electroencephalography (EEG)). Algorithmic
reconstruction of brain activity from MEG data is referred to as magnetoen-
cephalographic imaging (MEGI). Reconstructing the actual brain response to
external events and distinguishing unrelated brain activity has been a challenge for
many existing algorithms in this field. Furthermore, even under conditions where
there is very little interference, accurately determining the spatial locations and
timing of brain sources from MEG data is a challenging problem because it
involves solving for unknown brain activity across thousands of voxels from just a
few sensors (~300). In recent years, our research group has developed a suite of
novel and powerful algorithms for MEGI that we have shown to be considerably
superior to existing benchmark algorithms. Specifically, these algorithms can solve
for many brain sources, including sources located far from the sensors, in the
presence of large interference from unrelated brain sources. Our algorithms effi-
ciently model interference contributions to sensors, accurately estimate sparse
brain source activity using fast and robust probabilistic inference techniques. Here,
we review some of these algorithms and illustrate their performance in simulations
and real MEG/EEG data. We also briefly how functional connectivity approaches
have evolved and are being applied in conjunction with MEG imaging.
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1 Introduction

Multiple modalities of non-invasive functional brain imaging have made a
tremendous impact in improving our understanding of human auditory cortex.
Ever since its advent in 1991, functional magnetic resonance imaging (fMRI) has
emerged as the predominant modality for imaging of the functioning brain, for
several reasons (Belliveau et al. 1992; Ogawa et al. 1992; Tank et al. 1992). fMRI
uses MRI to measure changes in blood oxygenation level-dependent (BOLD)
signals due to neuronal activation. It is a safe, non-invasive method that allows for
whole-brain coverage, including the ability to examine activity in deep brain
structures. Importantly, the widespread availability of commercial and open-
source tools for analysis of fMRI data has enabled many researchers to easily
embrace this technology. However, since the BOLD signal is only an indirect
measure of neural activity and is fundamentally limited by the rate of oxygen
consumption and subsequent blood flow mechanism, fMRI lacks the temporal
resolution required to image the dynamic and oscillatory spatiotemporal patterns
that are associated with cognitive processes. The temporal resolution limitations of
fMRI particularly constrain auditory studies because auditory stimuli and
responses have inherently fast dynamics that cannot be readily assessed with
fMRI. Furthermore, since the BOLD signal is only an approximate, indirect
measure of neural activity, it might not accurately reflect true neuronal processes
especially in regions of altered vasculature. In fact the exact frequency-band of
neuronal processes that corresponds to the BOLD signal is still being actively
debated (Logothetis et al. 2001; Niessing et al. 2005). Finally, in the context of
auditory studies of speech and language, because fMRI measurements involve
loud scans, caused by fast forces on MR gradient coils, the scans themselves will
invoke auditory responses that have to be deconvolved from the signals in order to
examine external stimulus related activity. Hence, to non-invasively image brain
activity on a neurophysiologically relevant timescale and to observe neurophysi-
ological processes more directly, silent imaging techniques are needed that have
both high temporal and adequate spatial resolution.

Temporal changes can be non-invasively measured using methods with high
(e.g. millisecond) temporal resolution, namely magnetoencephalography (MEG)
and electroencephalography (EEG). MEG measures tiny magnetic fields outside of
the head that are generated by neural activity. EEG is the measurement of electric
potentials generated by neural activity using an electrode array placed directly on
the scalp. In contrast to fMRI, both MEG and EEG directly measure electro-
magnetic (EM) fields emanating from the brain with excellent temporal resolution
(<1 ms) and allow the study of neural oscillatory processes over a wide frequency
range (at least 1-600 Hz). MEG and EEG also provide complementary informa-
tion about brain activity because of their differing sensitivity to current sources
within the brain. While MEG is primarily sensitive to tangential currents in the
brain closer to the surface and insensitive to poor conductive properties of the
skull, EEG is primarily sensitive to radial sources while being highly sensitive to
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the conductive properties of the brain, skull, and scalp. Since bioelectric currents
produced by neurons also generate magnetic fields, which are not distorted by the
heterogeneous environment, measurements of these magnetic fields using MEG
can be considered to give rise to an undistorted signature of underlying cortical
activity. Therefore, MEG and EEG can be viewed as being complementary in
terms of the sensitivity to underlying neural activity. In this chapter, a review is
initially presented on how brain activity can be reconstructed from MEG mea-
surements with implications for spatial and temporal resolution of such
reconstructions.

2 Sensing the Brain’s Magnetic Fields

Biomagnetic fields detected by MEG are extremely small, in the tens-to-hundreds
of femto-Tesla (fT) range—seven orders of magnitude smaller than the earth’s
magnetic field, and as a result, appropriate data collection necessitates a mag-
netically shielded room and highly sensitive detectors—Superconducting quantum
interference devices (SQUIDs). The fortuitous anatomical arrangement of cortical
pyramidal cells allows the noninvasive detection of their activity by MEG. The
long apical dendrites of these cells are arranged perpendicularly to the cortical
surface and parallel to each other, allowing their electromagnetic fields to often
sum up to magnitudes large enough to detect at the scalp. Synchronously fluctu-
ating dendritic currents result in electric and magnetic dipoles that produce these
electromagnetic fields (Nunez and Srinivasan 2006). These dendritic currents from
the brain are typically sensed using detection coils called flux transformers or
magnetometers, which are positioned closely to the scalp and connected to
SQUIDS. SQUIDS act as a magnetic-field-to-voltage converter, and its typically
non-linear response is linearized by flux-locked loop electronic circuits, and have a
sensitivity of ~ 10 femto-Tesla per square root of Hz which is adequate for
detection of brain’s magnetic fields (Vrba and Robinson 2002).

MEG sensors are often configured for differential magnetic field measurements
to reduce ambient noise in measurements—which are also referred to as gradi-
ometers, although some MEG systems are also built out of magnetometers and rely
on magnetic shielding and clever electronics for noise cancellation. The two
commonly used gradiometer configurations are axial and planar gradiometers.
Axial gradiometers consist of two coils that share an axis, whereas planar gradi-
ometers measure gradients (or differences) of magnetic fields in a given plane. The
sensitivity profile of planar gradiometer sensors is somewhat similar to EEG,
whereby a sensor is maximally sensitive to a source closest to it on the cortical
surface In contrast however, the sensitivity profile of an axial gradiometer can be
somewhat counterintuitive because it is not maximally sensitive to sources closest
to the sensors. Both planar and axial gradiometers are sensitive to the orientation
of the sources in a counterintuitive manner, similar to EEG sensors.
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Modern MEG systems often consist of simultaneous recordings from many
differential sensors that cover the whole head, and the total number of sensors
varies from 100-300. The advent of such array systems has significantly advanced
MEG studies. Typical MEG systems have sensors that are spaced approximately
2.2-3.6 cm apart. Although the maximum sampling rate for many MEG systems is
approximately 12 kHz, most MEG data is usually recorded at about 1,000 Hz,
thereby still providing excellent temporal resolution for measuring the dynamics of
cortical neuronal activity at the millisecond level.

There are many reasons why neuroscientists have embraced MEG. First, MEG
setup time is very short and convenient for both experimenters and subjects. A
participant or patient can be in the scanner within 10-15 min from entering the
laboratory because—unlike EEG—the lengthy time necessary to apply and check
electrodes is obviated. Second, the anatomical location of large parts of primary
sensory cortices in sulci makes MEG ideally suited for electrophysiological studies
in audition. Furthermore, with whole-head sensor arrays, MEG is also well-suited
to investigate hemispheric lateralization effects based on sensor waveforms. In
contrast to evoked responses measured with EEG, which are maximal at midline
electrodes making hemispheric effects difficult to characterize, MEG responses are
well lateralized. Distinct groups of MEG sensors are sensitive to lateralized
temporal lobe activity that allows for hemisphere-specific assessments.

3 From Sensing to Imaging: The Prerequisites

MEG sensor data analysis only provides qualitative information about underlying
brain regions whose activity is observed on the sensor array based on experienced
users’ intuitions about the sensitivity profile of the sensors. To more precisely
interpret observed sensor data in terms of the underlying brain activity, it is
possible to reconstruct brain activity from MEG data. Reconstruction of brain
activity from MEG data typically involves two major components—a forward
model and an inverse model.

3.1 Forward Models Describing Brain Activity
and Measurements

The forward model consists of three sub-components—a source model, a volume
conductor, and a measurement model. Typical source models assume that the
MEG measurements outside the head are generated primarily by electric current
dipoles located in the brain. This model is consistent with available measurements
of coherent synaptic and intracellular currents in cortical columns that are thought
to be major contributors to MEG and EEG signals. Although several more
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complex source models have been proposed recently, the equivalent current dipole
is still the dominant source model in the literature (Jerbi et al. 2002; Mosher et al.
1999b; Nolte and Curio 2000; von Ellenrieder et al. 2005). Given the distance
between the sources in the brain and the sensors outside the head, the dipole is still
a reasonable approximation of the sources.

Volume conductor models refer to the equations that govern the relation
between the source model and the sensor measurements—i.e. the electric poten-
tials or the magnetic fields. These surface integral equations, obtained by solving
Maxwell’s equations under quasi-static conditions, can be solved analytically for
special geometries of the volume conductor, such as a sphere and ellipsoids. For
realistic volume conductors, various numerical techniques such as finite-element
and boundary-element methods are employed. These methods are very time
consuming and their use may appear impractical in many settings because of the
lack of knowledge about specific parameters used in these models (Mosher et al.
1999b).

Measurement models refer to the specific measurement systems used in EEG
and MEG including the position of the sensors relative to the head. For instance,
different MEG systems measure axial versus planar gradients of the magnetic
fields with respect to different locations of reference sensors. The measurement
model incorporates such information about the type of measurement and the
geometry of the reference sensors. Since MEG sensor arrays are fixed relative to
the head of a subject, it is necessary to measure the position of head relative to the
sensor array. Typically this is accomplished by attaching head-localization coils to
fiducial landmarks on the scalp, passing current through these coils, measuring the
magnetic field created by the currents passed, and triangulating to locate the head-
position relative to the sensor array. In many MEG systems, head localization is
accomplished every 5-10 min because it disrupts normal data collection. Within a
block of 10 min, with subjects in a supine position with their heads securely
positioned in the array, typically head-movements are found to be less than 5 mm.
However, more modern systems are sometimes equipped with continuous head-
localization procedures that enable constant updating of sensor locations relative to
the head and also correction for subjects’ head movements.

The source, volume conductor and measurement models are typically combined
and embodied in the idea called the “forward-field” that describes a linear rela-
tionship between sources and the measurements. Usually, we assume that the
forward-field matrix is known. We can easily calculate the forward field for
equivalent electric current dipoles in a spherical volume conductor model for a
whole-head axial gradiometer MEG system. In this model, MEG is sensitive only
to the tangential component of the primary current dipoles, whereas EEG is sen-
sitive to all components but sensitive to uncertainties in the head model. Simul-
taneous MEG and EEG can be acquired in most modern MEG systems and require
some modification to the forward-field matrix for combined MEG/EEG mea-
surements especially for more realistic source, volume conductor and measure-
ment models.
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Co-registration is an integral part of forward model construction. Co-registration
involves defining three fiducial points on an individual subject’s head surface, which
creates a coordinate system that includes the brain and the position of the MEG
sensors relative to it. Based on these fiducial landmarks, a transformation matrix is
obtained that enables co-registration with the subjects MRI. This allows for the
source locations and sensors to be defined in MRI coordinates and enables inter-
pretation of inverse model reconstructions in terms of the underlying brain anatomy
provided by MRIL.

3.2 Identifying and Reducing Influences from Sources
of Noise in MEG

An enduring problem in MEG-based imaging is that the brain responses to sensory
or cognitive events is small when compared to the large number of sources of noise,
artifacts (biological and non-biological) and interference from spontaneous brain
activity unrelated to the sensory or cognitive task of interest. All existing methods
for brain source localization are hampered by these many sources of noise present in
MEG data. For example, the magnitude of the stimulus-evoked auditory cortical
sources are on the order of noise on a single trial, and so typically 75-200 averaged
trials are at least needed in order to clearly distinguish the sources above noise. This
limits the type of questions that can be asked, and is prohibitive for examining
processes such as learning that can occur over just one or several trials. Averaging
across trials is time-consuming and therefore difficult for a subject or patient to hold
still or pay attention through the duration of the experiment. Gaussian thermal noise
or Gaussian electrical noise is also present at the MEG or EEG sensors themselves.
Background room interference from power lines and electronic equipment, for
example, can be problematic. Biological noise such as heartbeat, eye blink or other
muscle artifact can also be present. Ongoing brain activity itself, including the
drowsy-state alpha (~ 10 Hz) rhythm can drown out evoked brain sources.

Noise in MEG and EEG data is typically reduced by a variety of preprocessing
algorithms before being used by source localization algorithms. Simple forms of
preprocessing include filtering out frequency bands not containing a brain signal of
interest. Additionally and more recently, Independent Component Analysis (ICA)
(Delorme and Makeig 2004; Makeig et al. 1997) as well as other blind source
separate methods (Parra et al. 2002, 2005; Tang et al. 2002a, b) have been used to
remove artifactual components, such as eye blinks. More sophisticated techniques
have also recently been developed using graphical models for preprocessing prior
to source localization (Nagarajan et al. 2006, 2007). Therefore, algorithms for
source localization from MEG and EEG data typically use a two-stage proce-
dure—the first for noise/interference removal and the second for source locali-
zation. However, more recent algorithms that integrate interference suppression
with source reconstructions have also been proposed and provide for robust source
reconstruction (Wipf et al. 2010; Zumer et al. 2007).
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4 Inverse Algorithms for Magnetoencephalographic
Imaging

Inverse algorithms are used to solve the bioelectromagnetic inverse problem i.e.
estimating neural source model parameters from MEG and EEG measurements
obtained outside the human head. In general, there are no unique solutions to the
inverse problem because there are many source configurations that could result in
the sensor observations, even in the absence of noise and infinite spatial or tem-
poral sampling. This non-uniqueness is referred to as the ill-posed nature of the
inverse problem. Nevertheless, to get around this non-uniqueness, various esti-
mation procedures incorporate prior knowledge and constraints about source
characteristics such as possible source locations, the source spatial extent, the total
number of sources or the source frequency/time-frequency characteristics.

Inverse algorithms can be broadly classified into two categories—parametric
dipole fitting and non-parametric whole-brain imaging methods. Parametric dipole
fitting methods assume that a small set of current dipoles (usually 2-5) can ade-
quately represent some unknown source distribution. In this case, the dipole
locations and moments form a set of unknown parameters which are typically
found using either a non-linear least square fit or multiple signal classification
algorithms (MUSIC) or maximum likelihood estimation methods (Mosher et al.
1999a). Parametric dipole fitting has been successfully used clinically for locali-
zation of early sensory responses in somatosensory and auditory cortices. Figure 1
shows an example of parametric dipole localization in the context of somatosen-
sory evoked responses, and shows that responses to early somatosensory peaks can
often be localized to activity arising from primary somatosensory cortex located in
the central sulcus.

Two major problems exist in dipole fitting procedures. First, due to non-linear
optimization there are problems of local minima when more than two dipole
parameters are estimated and this is usually manifested by sensitivity to initiali-
zation (Huang et al. 1998). Brute-force search methods have a huge computational
burden—exponential in the number of parameters (Mosher et al. 1992, 1993). A
second, more difficult problem in parametric methods is that often these methods
require a priori knowledge of the number of dipoles. Often, such information about
model order is not known a priori, especially for complex brain mapping condi-
tions, and the resulting localization of higher-order cortical functions can some-
times be unreliable. Although information theoretic or Bayesian estimation criteria
have been proposed to address this problem, the success of these approaches is less
clear as these are not widely used (Campi et al. 2011; Kiebel et al. 2008; Sor-
rentino et al. 2009; Wolters et al. 1999). Nevertheless, many basic neuroscience
and clinical studies to date have successfully used dipole-fitting procedures to gain
important insights (Aine et al. 2010; Salmelin et al. 1994; Susac et al. 2009).

Non-parametric whole brain imaging is an alternative approach to estimate the
inverse problem. The relevant localization problem can be posed as follows. The
measured signal is a d, x n matrix B, where d,, equals the number of sensors and
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Magnetic Field Response to a Tactile Stimulus Dipole Source on MRI
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Fig. 1 Example case of parametric dipole localization of separate somatosensory stimulation of
the right lip (RLip) and right index finger (RD2). Multiple stimulus trials are performed for each
skin stimulation site during MEG recordings. The trials are averaged and a single dipole is
reconstructed for each site using the non-linear fit method. The resulting dipoles are then
displayed on a co-registered, T1-weighted post-gadolinium coronal MR slice

n is the number of time points at which measurements are made and the unknown
sources are given by a d; X n matrix S which is the (discretized) amplitude of the
source activity at d, candidate locations obtained from the forward model calcu-
lations. In this case, B and S are related by the generative model

B=LS+E

where L is the composite forward-field matrix that captures the relationship
between unit sources all over the brain and the expected pattern of magnetic field
measurement on the sensor array. The number of candidate source locations is
much larger than the number of sensors (d; >> d,). Therefore, the problem
reduces to estimation of the activity in each source regions, which are reflected by
the non-zero rows of the source estimate matrix S. E is a noise or interference term
discussed earlier.

Many whole-brain imaging algorithms impose constraints on source locations
i.e. the candidate locations for sources based on anatomical and functional
information obtained from other brain imaging modalities. Such constraints within
a Bayesian framework are embedded in a prior distribution p(S) either implicitly or
explicitly. If under a given experimental or clinical paradigm this p(S) were
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somehow known exactly, then the posterior distribution can be computed via
Bayes rule:

p(S|B) = p(B|S)p(S)/p(B).

This distribution contains all possible information about the unknown S condi-
tioned on the observed data B. Two fundamental problems prevent using p(SIB) for
source localization. First, for most priors p(S), the normalization distribution
p(B) given by

p(B) = / P(BIS)p(S)ds

cannot be computed analytically. If only a point estimate for S is desired, rather
than a full distribution, then this normalizing distribution may not be needed. For
example, a popular estimator is the minimum-norm estimator which involves
finding the value of S by assuming that prior p(S) has a Gaussian distribution with
a single scalar variance term. This variance is related to the regularization constant
in many implementations of the minimum-norm estimator and can be obtained by
maximizing the posterior distribution (a.k.a. the MAP estimate) of p(S|B) which is
invariant to p(B). Second, and more importantly, we do not actually know the prior
p(S) and so some appropriate distribution must be assumed, perhaps based on
neurophysiological constraints or computational considerations. In fact, it is this
choice, whether implicitly or explicitly specified, that differentiates a wide variety
of localization methods (Phillips et al. 1997; Wipf and Nagarajan 2009).

While seemingly quite different in many respects, we recently presented a
generalized framework that encompasses different whole-brain imaging methods
for source localization and points to intimate connections between algorithms. We
showed that many seemingly disparate algorithms for source imaging can be uni-
fied using a hierarchical Bayesian modeling framework with a general form of prior
distribution, called Gaussian scale mixture, with flexible covariance components,
and two different types of inferential procedures. The wide variety of Bayesian
source localization methods that fall under this framework can be differentiated by
the following factors: (1) selection of covariance component regularization terms;
(2) choice of initial covariance component set; (3) optimization method/update
rules; and (4) approximation to the lower bound on the marginal likelihood of the
data. Bayesian source localization methods demonstrate a number of surprising
similarities or out-right equivalences between what might otherwise appear to be
very different algorithms. Specifically, from the vantage point of a simple Gaussian
scale mixture model with flexible covariance components, our initial work in this
area analyzed and extended several broad categories of Bayesian inference directly
applicable to source localization including empirical Bayesian approaches, stan-
dard MAP estimation, and variational Bayesian (VB) approximations. This per-
spective leads to explicit connections between many established algorithms and
suggests natural extensions for handling unknown dipole orientations, extended
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source configurations, correlated sources, temporal smoothness, and computational
expediency. Specific imaging methods elucidated under this paradigm include
weighted minimum L2-norm, FOCUSS, minimum-L1 norm (also called minimum-
current estimation (MCE)), VESTAL, sLORETA, ReML and covariance compo-
nent estimation, beamforming, Variational Bayes, and Automatic relevance
determination (ARD) with multiple sparse priors (MSP). Perhaps surprisingly, all
of these methods can be formulated as particular cases of covariance component
estimation using different concave regularization terms and optimization rules,
making general theoretical analyses and algorithmic extensions/improvements
particularly relevant.

These ideas help to bring an insightful perspective to Bayesian source imaging
methods, reduce confusion about how different techniques relate to one another,
and expand the range of feasible applications. Additionally, there are numerous
promising directions for future research, including time-frequency extensions,
alternative covariance component parameterizations, and integration with robust
interference suppression. These insights allow for continued development of novel
algorithms for whole-brain imaging in relation to prior efforts in this enterprise.
Figure 2 shows performance in simulations using one such novel algorithm, called
Champagne, as well as reconstructions from popular benchmark algorithms for
comparisons that highlight their poorer spatial resolution and sensitivity to cor-
related sources and noise (Owen et al. 2012; Wipf et al. 2010). When compared to
ground-truth it can be seen that Champagne is the algorithm that is able to
reconstruct the source configuration. Figure 3 shows source reconstructions of
auditory evoked responses using called Champagne, and benchmarks algorithms.
Auditory evoked responses are challenging datasets because of high degree of
correlations between bilateral auditory cortices. In these real datasets from three
different subjects, it can also be seen that Champagne is the only algorithm able to
reliably reconstruct bilateral auditory cortical activity.

Instead of simultaneous estimation of all sources a popular alternative is to scan
the brain and estimate source amplitude at each source location independently. It
can be shown that such scanning methods are closely related to whole-brain
imaging methods, and the most popular scanning algorithms are adaptive spatial
filtering techniques, more commonly referred to as “adaptive beamformers” or
just “beamformers” (Sekihara and Nagarajan 2008). Adaptive beamformers have
been shown to be quite simple to implement and are powerful techniques for
characterizing cortical oscillations and are closely related to other whole-brain
imaging methods. However, one major problem with adaptive beamformers is that
they are extremely sensitive to the presence of strongly correlated sources.
Although they are robust to moderate correlations, in the case of auditory studies,
since auditory cortices are largely synchronous in their activity across the two
hemisphere, these algorithms tend to perform poor for auditory evoked datasets
without workarounds), and many modifications have been proposed for reducing
the influence of correlated sources (Dalal et al. 2006). The simplest such work-
around is to use half the sensors corresponding to each hemisphere separately, and
this approach works surprisingly well for cross-hemispheric interactions. Other
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Fig. 2 Localization SNIR=10dB
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project the source power to
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modifications to the original algorithms have been proposed in the literature that
require some knowledge about the location of the correlated source region (Dalal
et al. 2006; Quraan and Cheyne 2010). Recently, we have shown that significant
improvements in performance can be achieved by modern Bayesian inference
algorithms that are closely related to minimum-variance adaptative beamformers
and these extensions allow for accurate reconstructions of a large number of
sources from typical configurations of MEG sensors (Wipf et al. 2010; Zumer et al.
2007, 2008).

5 Temporal and Spatial Resolution of MEG Imaging

Since MEG data can be acquired at sub-millisecond time-scale, temporal resolu-
tion of MEG imaging is only limited by the sampling rate, typically ~ 1 kHz, and
in principle, cortical oscillations can be observed up to 500 Hz. In contrast to its
temporal resolution, determining the spatial resolution of MEG imaging is chal-
lenging because it is highly dependent on the reconstruction algorithm chosen, as
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Fig. 3 Auditory evoked field results for 3 subjects for four different benchmark algorithms.
Champagne is able to reliably reconstruct bilateral auditory cortex activity in all subjects.
SLORETA is only able to do so in two of the three subjects. MVAB fails because of the high-
degree of correlations between the two sources. MCE is another sparse reconstruct algorithm that
only finds auditory cortex in one hemisphere in each subject

well as a variety of factors such as signal-to-noise and interference-ratio, model
formulation, forward-model accuracy, co-registration errors and accuracy of priors
(Owen et al. 2012; Wipf et al. 2010). In general, it can be easily shown that the
spatial resolution of MEG reconstruction is not limited by sensor spacing, because
many adaptive methods can perform better than estimates based on spatial sam-
pling criteria. For instance, while sensor spacing in many axial gradiometer sys-
tems is 2.2 cm, reconstruction accuracy can in some cases be as small as 3 mm! In
general, co-registration errors alone can be on the order of 3 mm (Roberts et al.
2000). While whole-brain imaging algorithms, such as minimum-norm methods,
have poor spatial resolution on the order of a few centimeters, the spatial reso-
lution of adaptive spatial filtering methods, and more recent whole-brain recon-
struction methods based on machine learning techniques, are difficult to generally
compute because these estimates depend on the data and factors contributing to
data quality etc. As a rule of thumb, for typical datasets, these newer methods can
reconstruct tens-to-hundreds of sources about 0.5 cm apart (assuming time-fre-
quency separation and detectability) and this can be considered an approximate
spatial resolution for MEG, keeping in mind that under certain circumstances the
spatial resolution can be even greater (Owen et al. 2012; Wipf et al. 2010).

A common myth, related to the spatial resolution of MEG, is its lack of sen-
sitivity to gyral crown activity and relative insensitivity to deep sources. While it is
a fact that for single spherical volume conductor models MEG sensors are
insensitive to radially pointing dipoles, this does not necessarily translate to gyral
sources. It has been shown that, using realistic volume conductor models (such as
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boundary element methods or multiple local-sphere models), some sensitivity to
radial sources can be recovered, and that there is no predominant loss of sensitivity
to gyral sources (Hillebrand and Barnes 2002). Furthermore, while there is a
significant drop in sensitivity to deeper sources because their contributions will fall
by approximately the square of the distance to the sensors, recovery of deep
sources is an issue of the signal to noise ratio. In general, if high signal-to-noise
ratio data are recorded, there is no inherent problem in recovery of deep sources
with some of the newer Bayesian reconstruction methods. However, mid-brain
sources have two additional problems. First, they may not have dipolar organi-
zation due to the architectures and second, the uncertainties in the lead-field
increases for deep brain sources, thereby making them more difficult to
reconstruct.

6 From Single Subject Reconstructions to Group Level
Inference

While the power of MEG imaging is its ability to reconstruct the timing of activation
across different frequency bands in single subjects, inferences across subjects
require group level statistical analyses (Dalal et al. 2008). The most ubiquitous form
of group analysis of MEG studies of auditory cortex are based on parameters,
obtained from dipole fitting of typical component peaks in the response, such as
timing, amplitude, location and sometimes orientation. For the less common whole-
brain imaging and scanning based algorithms, group analysis of data across subjects
have typically paralleled similar procedures for whole-brain analysis based on fMRI
and PET studies (Singh et al. 2003, 2002). These procedures include spatial nor-
malization to template brains, general-linear modeling of experimental effects,
parametric and non-parametric inference procedures, and corrections for multiple
comparisons. It is to be noted that group level statistical corrections for multiple
comparisons are not yet as well developed for MEG imaging studies as they are for
fMRI, and fMRI correction procedures such as family wise error FWE can some-
times be too conservative for MEG reconstructions for a variety of reasons,
including the fact that spatial correlations in reconstructed images are higher than in
fMRI (Dalal et al. 2008; Darvas et al. 2004; Owen et al. 2012).

7 From Source Activity Imaging to Functional
Connectivity Imaging

It is now well recognized in systems and cognitive neuroscience that it is necessary
to examine not only activity within an area during an active or inactive state, but
also how the brain integrates information across multiple regions. The term
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functional connectivity essentially defines the complex functional interaction
between local and more remote brain areas. Although a common approach is to
examine functional connectivity by using hemodynamic measures of brain activity
(such as fMRI), MEG directly measures changes in the magnetic field induced by
underlying neuronal currents, and is better suited for modeling these types of
interactions. Decomposition of information across, space, time, and oscillatory
domains yields complex information about how sources in the brain interact across
many levels.

Despite the advantage of MEG (and EEG) in the temporal domain over fMRI,
there have been relatively few publications that assess event-related or resting-
state functional connectivity using MEG or EEG as compared to fMRI. There are
two genres of metrics used in MEG functional connectivity: bivariate quantities
are calculated in a pair-wise fashion between pairs of voxels and multivariate
techniques model the interactions between several regions of interest. Likewise,
functional connectivity metrics in MEG data analyses can be applied either in
sensor-space or in source-space. Although many metrics have been proposed for
functional connectivity in MEG, no careful comparisons have been made for the
same dataset across bivariate and multivariate metrics.

7.1 Bivariate Metrics of Functional Connectivity in MEGI

Bivariate metrics can be applied to MEG/EEG data in two ways. Since these metrics
are computed between two time courses, they can either be computed between target
sensors/voxels or they can be computed between all sensors/voxels and then an
average connectivity value can be calculated for every sensor/voxel. The first of
these methods is used when there is knowledge about the areas involved and can be
considered a “hypothesis-driven” approach. The second, in contrast, can be
described as a “data-driven” approach and is applicable when there is not a priori
knowledge about which areas should exhibit high or changed connectivity. Corre-
lation and its frequency domain analog, coherence, are the two most commonly used
bivariate metrics in the literature (Nunez et al. 1997). An extension of using
coherence on sensor time courses, a source localization algorithm called DICS, is
particularly designed to construct coherent activity by estimating time course and
calculating magnitude coherence (Gross et al. 2001). There are also phase differ-
ence-based bivariate metrics that can be applied in similar fashion to the metrics
described above. The difference in instantaneous phase between two time courses
can be calculated using the Hilbert transform. There are different subsequent cal-
culations that can be performed with the phase difference, e.g. phase coherence (PC),
phase synchronization, index of synchronization.

All types of bivariate metrics are susceptible to spurious interactions that arise
from volume conduction artifacts in MEG and EEG recordings. The magnetic field
or electric potential generated by a single neuronal source is picked up by not only
the nearest sensor to the source, but the neighboring sensors also pick up the signal
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with a zero-time lag. This creates instantaneous blurring across the sensors. As
such, the time courses of many sensors can contain overlapping information due to
this electromagnetic phenomenon, which can produce spurious interactions. Some
bivariate metrics used for MEG and EEG functional connectivity analyses have
been designed to overcome this blurring by isolating the non-zero-time-lag
interactions from the zero-time-lag interactions, namely imaginary coherence (IC)
and phase lag index (PLI). Both metrics are designed to assess only non-zero time
lagged interactions in source or sensor data in order to cancel out the effects of
cross-talk across the detection sensors.

Imaginary coherence is calculated by only considering the imaginary compo-
nent of the complex-valued coherence. The imaginary part of the coherence is
produced by non-instantaneous interactions between waveforms. It was found to
be a better measure of coupling than the magnitude of coherence in an EEG
experiment of voluntary finger movement (Nolte et al. 2004). PLI is similar to IC
in that it includes only information that is transmitted at a non-zero time lag; any
two signals that are instantaneously coupled and therefore have a phase difference
of zero, are not included in the calculation of PLI. PLI and PC of EEG and MEG
data were more sensitive than IC to increasing levels of true synchronization in the
simulated data, but IC and PLI were less susceptible to spurious correlations in the
data due to common sources (Stam et al. 2007). In addition, PLI and IC were better
able to detect beta band connectivity and uncovered a different spatial pattern of
connectivity in the MEG data. IC has also revealed significant changes in the over
all resting-state connectivity induced by brain lesions (de Pasquale et al. 2010,
2012; Guggisberg et al. 2007; Martino et al. 2011; Marzetti et al. 2013; Tarapore
et al. 2012; Hipp et al. 2011, 2012) (Fig. 4).

7.2 Multivariate Connectivity Metrics in MEG

In contrast to bivariate metrics, which compute relationships between elements in
a pair-wise fashion, multivariate metrics are able to model interactions between
multiple areas in a single model (Astolfi et al. 2005). While powerful, computa-
tional complexity is an issue when performing a multivariate analysis. While all
areas can be modeled simultaneously, the limitation of these methods lies in
maintaining the necessary condition that the number of parameters fit in the model
does not exceed the number of time points. This is done by considering fewer areas
or voxels or by limiting the number of lags the model will analyze. Multivariate
autoregressive models (MVAR) can be applied in the time domain, or in the
frequency domain, as is the case with partial directed coherence and direct transfer
function methods. Although some of these methods have been demonstrated to be
powerful in determining neural networks associated with basic sensory processing
(Porcaro et al. 2009). Future studies will determine how these metrics can be
extended to examinations of impairments in cognitive function in a variety of
clinical populations.
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Fig. 4 Activation and Functional Connectivity in Stroke. a Activation of motor cortex and its
associated time-frequency plot of the voxel of maximal power change in the beta frequency band
during affected finger button press. b Results of the correlation analysis between baseline resting
MEGI functional connectivity and recovery scores. Gold indicates the location of the lesion and
activated motor cortex. Blue indicates negative correlations. Red indicates positive correlations.
Strong ipsilesional connectivity predicts recovery (Westlake et al. 2012)

Nevertheless, already in these early days of functional connectivity analyses, it
has been shown to have profound clinical significance as disturbances in networks
as manifested as abnormalities in functional connecting even during resting state.
Recent studies have shown this to be the case in many clinical conditions such as
brain tumor, schizophrenia, stroke, and developmental disorders (Bartolomei et al.
2006a, b; Bosma et al. 2008a, b). For example, neurocognitive effects are corre-
lated with functional connectivity changes in brain tumor patients, especially in
patients with low-grade gliomas (Douw et al. 2008, 2009, 2010; van Dellen et al.
2012). Similarly, combining activation mapping and resting-state functional con-
nectivity can help predict functional recovery in stroke. Therefore, mapping
functional connectivity and combining this information with brain activation
studies may be an important component in surgical planning and clinical diagnosis
in a variety of disorders (Martino et al. 2011; Tarapore et al. 2012).

8 Conclusions

Great strides have occurred in the development of novel and powerful algorithms
for MEG imaging. These algorithmic approaches not only enable more accurate
reconstruction of brain activity, their time courses and spectral power fluctuations,
but also enable us to examine functional connectivity between different brain
regions from MEG data. These efforts pave the way novel and powerful appli-
cations for MEG imaging in many basic and clinical neuroscience studies of neural
oscillations in the human brain.
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MEG and Multimodal Integration

Seppo P. Ahlfors

Abstract Functional brain imaging methods provide measures of various physi-
ological processes with a range of spatial and temporal scales. Because the sen-
sitivity properties of the imaging modalities differ, combining multimodal data is
expected to provide more information about the brain activity than is available by
a single method. In direct data fusion, multimodal data can be described as
complementary or supportive. Complementary modalities have the same type of
sources, such as electroencephalography (EEG) and magnetoencephalography
(MEG), which are both generated by cortical primary currents, but with different
sensitivity characteristics. Combination of EEG and MEG data can resolve
ambiguities in data from only one of the modalities. In a supportive role data from
one imaging modality guides the analysis and interpretation of another modality.
Structural magnetic resonance imaging (MRI) provides supportive data for MEG
source estimation, e.g., by indicating allowable locations and orientations of MEG
source currents. Functional MRI (fMRI) can be used in a supportive role to suggest
a likely source distribution for MEG among multiple alternatives. MEG and fMRI
can also be considered complementary if the different source types, i.e., primary
currents for MEG and blood oxygenation level dependent (BOLD) contrast for
fMRI, are both derived from a common physiological model.
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1 Introduction

Different functional neuroimaging methods, often called imaging modalities,
provide information about a variety of physiological processes related to brain
activity, and have a range of spatial and temporal sensitivity characteristics (He
and Liu 2008). Magnetoencephalography (MEG) and electroencephalography
(EEG) detect electrical activity in the brain with millisecond temporal spatial
resolution, but the inverse problem of determining the spatial distribution of the
activity is challenging, and the accuracy depends among other things on the overall
pattern of activity (Michel et al. 2009; Hansen et al. 2010). Functional magnetic
resonance imaging (fMRI), positron emission tomography (PET), single-photon
emission computed tomography (SPECT), and optical near infrared spectroscopy
(NIRS) detect hemodynamic phenomena; the time-resolution of these methods is
limited by the relatively slow hemodynamic response. However, fMRI can provide
millimeter-scale spatial resolution across the whole brain, without the kind of
ambiguities inherent in the MEG and EEG source localization. The different
sensitivity properties of the imaging modalities suggest that multimodal imaging
can provide more information about brain function than is attainable by any single
method alone.

In MEG, superconducting quantum interference device (SQUID) sensors are
used to measure extracranial magnetic fields generated by neuroelectric currents in
the brain (Cohen 1972). The main sources of the MEG signals are post-synaptic
dendritic currents in cortical pyramidal cells (Lopes da Silva 2010). From the
measured spatial pattern for the magnetic field outside the head, the spatiotemporal
pattern of sources within the brain can be estimated (Ahlfors and Himéldinen
2012). Both MEG and EEG originate from the same type of physiological sources,
described as primary currents (Tripp 1983). The spatial sensitivity patterns to the
primary currents are different for MEG and EEG, allowing them to provide
complementary information about the same type of sources. In contrast, the
physiological sources of fMRI (commonly the blood oxygenation level depend or
BOLD contrast) and other hemodynamic signals are of a different type from those
of MEG and EEG, thereby presenting various opportunities and challenges for
multimodal imaging.

According to Horwitz and Poeppel (2002), three main approaches to combining
data from multiple neuroimaging modalities are: converging evidence, direct data
fusion, and computational neural modeling. Comparison of separately obtained
results from different modalities to establish converging spatial or temporal patterns
of brain activation is useful for the assessment of the obtained results, e.g., in clinical
pre-surgical mapping studies. Many studies have examined the convergence of
MEG and fMRI results, including (Beisteiner et al. 1995; Morioka et al. 1995;
Sanders et al. 1996; Stippich et al. 1998; Inoue et al. 1999; Woldorff et al. 1999; Del
Gratta et al. 2002; Mathiak et al. 2002; Singh et al. 2002; Moradi et al. 2003;
Tuunanen et al. 2003; Rossini et al. 2004; Vartiainen et al. 2011; Swettenham et al.
2013); see also the reviews (Mathiak and Fallgatter 2005; Poline et al. 2010).
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Fig. 1 Schematic diagram of stages involved in the construction of functional brain images.
Biophysical modeling can be used to relate the physical and physiological neural processes
associated with brain activation to the underlying sources of the brain imaging signals. Forward
modeling describes the signal patterns generated by a given source distribution. Inverse modeling
involves the estimation of the source distribution on the basis of the recorded signals. MEG and
EEG record “complementary” (yellow circle) information about the same sources, i.e., primary
currents. Functional MRI can be used in a “supportive” role (blue) in MEG source analysis.
MEG/EEG and fMRI can also be considered complementary (green) since the sources of both
signals originate from common neural processes

In direct fusion, data from different modalities are combined mathematically to
estimate the sources of the measured signals (George et al. 1995; Dale and Halgren
2001). In computational neural modeling, different functional imaging modalities
can be modeled within a common framework and the experimental multimodal data
can be used to determine parameters of the computation model of the brain networks
underlying cognitive tasks (Horwitz et al. 1999; David and Friston 2003; Riera et al.
2005; Babajani and Soltanian-Zadeh 2006; Valdes-Sosa et al. 2009; Plis et al. 2010;
Bojak et al. 2011). Here we focus on the combination of MEG with EEG, anatomical
MRI, and fMRI, mainly from the point of view of direct data fusion.

We suggest that in the direct data fusion approach, imaging modalities can be
conceptually described as “complementary” or “supportive”, depending on the
nature of the signal sources and the role of the modalities in the interpretation of the
multimodal data (Fig. 1). Complementary modalities provide information about the
same type of sources. EEG and MEG are complementary modalities, which both
detect the primary current distribution related to neural activity. A common source
model greatly facilitates the fusion of complementary multimodal data. In a sup-
portive role, data from one modality is used to guide and influence the analysis of
the data from another modality. In the analysis of MEG (and/or EEG) signals,
anatomical MRI provides important supportive data to constrain the allowable
MEG source space. Functional MRI data can be combined with MEG in both
supportive and complementary way. In a supportive role fMRI activation can be
used, e.g., to constrain the locations of the MEG sources. However, special
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considerations are necessary when the sources of signals are of different type. Since
both fMRI and MEG signals ultimately have their origin in brain activity, linked via
neurovascular coupling, they can also be treated as complementary modalities.

2 MEG and EEG

Since the physiological sources underlying both MEG and EEG are of the same
type, the benefits of combining MEG and EEG are based on the different sensi-
tivity properties of these modalities. The spatial sensitivity patterns of MEG and
EEG sensors are called lead fields. The set of lead fields is one way to express the
forward model, which incorporates the available physical and structural infor-
mation about the head and the instrumentation to establish the signal patterns that
primary currents generate in a sensor array. The structure of the lead fields forms
the basis on which source estimates (inverse solution) are constructed. The lead
fields of MEG and EEG sensors differ in a non-trivial way from each other,
thereby providing complementary information about the underlying primary cur-
rent distribution in the brain (Cuffin and Cohen 1979; Cohen and Cuffin 1983;
Malmivuo and Plonsey 1995; Mosher et al. 1999; Riera et al. 2006). The com-
plementary properties of MEG and EEG can enhance the detection, dissociation,
and localization of the neural sources of interest (Wood et al. 1985).

Two major differences between MEG and EEG lead fields are related to the
orientation and the depth of the sources (Cuffin and Cohen 1979). Regarding the
source orientation, MEG sensors are insensitive to radial source currents, whereas
EEG sensors are sensitive to both radial and tangential sources. In the spherical
head model, the sensitivity of MEG to radially oriented sources is zero (Baule and
McFee 1965; Grynszpan and Geselowitz 1973). The insensitivity of MEG to one
source orientation occurs also for realistic, non-spherical head models (Melcher
and Cohen 1988; Haueisen et al. 1995; Ahlfors et al. 2010a). In a simulation study
using a boundary element model for the head, the median value over cortical
locations for the relative signal magnitude for the source orientation with the
lowest versus the highest sensitivity was found to be 0.06 for MEG and 0.6 for
EEG (Ahlfors et al. 2010a). The selective sensitivity of MEG to tangential source
components can be helpful for the dissociation of multiple time-varying sources.

Regarding the source depth, both MEG and EEG are generally more sensitive to
superficially located sources than to deep sources. However, the relative sensitivity
of MEG diminishes faster as a function of depth than that of EEG (Cuffin and Cohen
1979; Hillebrand and Barnes 2002). In the spherical head model, the sensitivity of
MEG is zero at the center of the sphere, whereas EEG signal can be generated by
sources at any location. Assuming the primary currents are oriented perpendicular
to the cortical surface, only very narrow strips at the crest of gyri are expected to
have the radial orientation that the MEG cannot detect; therefore, the depth-
dependency appears more important in the comparison of sensitivity patterns of
MEG and EEG than the orientation dependence (Hillebrand and Barnes 2002).
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(a)

MEG () (c) EEG

Fig. 2 An example of complementary properties of MEG and EEG signals that can, in
combination, help disambiguate the source distribution. The quadrupolar pattern of the
extracranial magnetic fields (MEG) (a) could be generated either by two near-midline dipoles
in the parietal and occipital regions (b, fop) or by two bilaterally located occipital dipoles (b,
bottom). However, the corresponding topography of scalp potentials (EEG) would be quite
different for these two configurations; here the EEG pattern for the two occipital bilateral dipoles
is illustrated (c). Thus, the combination of MEG and EEG can resolve source configurations that
can be ambiguous in one of the modalities. Analogous examples can be easily constructed in
which MEG resolves source patterns that are ambiguous on the basis of EEG topography only.
Adapted from (Ahlfors et al. 2010b)

Selective cancellation of signals from tangential source components on opposite
walls of a sulcus or a gyrus tends to make extended source patches look radial
(Eulitz et al. 1997; Freeman et al. 2009; Ahlfors et al. 2010b), with potentially
important implications to the relative signal-to-noise ratio (SNR) of MEG and EEG
and the detectability of e.g., epileptic activity (Goldenholz et al. 2009; Ebersole and
Ebersole 2010).

Several studies have demonstrated complementary properties of EEG and MEG
in detecting epileptic discharges, such that some are detectable in EEG only or in
MEG only, but not necessarily in both (Sutherling et al. 1991; Yoshinaga et al.
2002; Zijlmans et al. 2002; Lin et al. 2003; Rodin et al. 2004; Knake et al. 2006;
Ramantani et al. 2006; Ossenblok et al. 2007). Differences in source detectability
can be understood in terms of the expected SNR for different sources, which
depends on the sensor lead fields, signal noise, the source magnitude, and the
background brain activity (de Jongh et al. 2005; Goldenholz et al. 2009; Huiskamp
et al. 2010). Prominent differences between MEG and EEG have also been
demonstrated, for example, in sleep data (Dehghani et al. 2010).

Combining MEG and EEG data can sometimes be useful for resolving source
configurations that are ambiguous on the basis of the signal topography in a single
modality. Figure 2 shows simulated MEG data from a bilateral pair of occipital
current dipoles. In this case, the quadrupolar MEG topography (Fig. 2a) is consis-
tent in the presence of uncertainty due to measurement noise with two very different
two-dipole models, either laterally located horizontal dipoles or medially located
vertical dipoles (Fig. 2b). The EEG topography, however, would be very different
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for these two scenarios: the EEG map shown in Fig. 2c suggests horizontally ori-
ented dipoles. Bilateral activation of auditory cortices is a well-know example of
topographies that can be potentially ambiguous in terms of source areas: two tan-
gential supra-temporal lobe dipoles typically generate a large mid-frontal maximum
in EEG that could be mis-interpreted as being due to a radial frontal source
(Vaughan 1982), whereas in MEG the two auditory cortex sources are typically
readily dissociable (Mikeld et al. 1993); however, these sources may also generate a
dipolar looking MEG signal pattern over the parietal lobe (Haméldinen et al. 1995).

Combined MEG and EEG inverse modeling is facilitated by the common
source model. Indeed, incorporating signals from both EEG and MEG sensors is
not different, in principle, from incorporating different types of MEG sensors, such
as gradiometers and magnetometers. An important practical issue is how to adjust
the relative weighting of the different sensors in the source estimation procedures
to take into account the expected SNR for each sensor (Fuchs et al. 1998; Baillet
et al. 1999). Determining the SNR is challenging, however, because of the various
types of uncertainties that should be incorporated, such as those related to co-
registration, head model, sensor calibration, and background physiological noise.
Enhanced source estimation results obtained by combining EEG and MEG data
have been demonstrated in several studies of experimental and simulated data
(Stok et al. 1990; Mosher et al. 1993; Phillips et al. 1997; Fuchs et al. 1998;
Muravchik et al. 2000; Pflieger et al. 2000; Babiloni et al. 2001; Liu et al. 2002;
Sharon et al. 2007; Molins et al. 2008).

3 MEG and Structural MRI

MEG source estimates are commonly visualized by superimposing them on high-
resolution structural MRI, thereby relating the MEG results to brain anatomy.
Structural MRI also provides essential supportive information for the inverse
modeling of MEG signals. Anatomical information from MRI can be used to
determine the permissible MEG source locations (often called the source space) to be
within the cranial volume or the cortical gray matter (George et al. 1991; Dale and
Sereno 1993). In addition, the source orientation can be constrained to be strictly or
nearly perpendicular to the cortical surface (Dale and Sereno 1993; Lin et al. 2006;
Chang et al. 2013). Typically, anatomical constraints are imposed on the individual
subject level, but atlas-based approaches are possible as well (Hillebrand et al. 2012).

4 MEG and Functional MRI

Functional MRI and other hemodynamic imaging data can be used in a supportive
role in MEG (and EEG) data analysis to suggest a likely spatial distribution for the
sources of MEG signals (George et al. 1995; Simpson et al. 1995; Dale and
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Halgren 2001). One possibility is to place equivalent dipoles at the locations of
foci of fMRI activation (Heinze et al. 1994; Ahlfors et al. 1999; Korvenoja et al.
1999; Torquati et al. 2005). A powerful application of fMRI-guided MEG source
estimation is to use information from fMRI-based mapping of the retinotopic
representation of the visual field to constrain the locations of equivalent dipoles in
multiple visual areas (Hagler et al. 2009). For distributed MEG source models,
such as the minimum-norm estimate (MNE) (Hdmildinen and Ilmoniemi 1994),
fMRI can be used as an a priori weighting for the inverse solution (Liu et al. 1998;
Dale et al. 2000). This is implemented by adjusting the diagonal elements of the
source covariance matrix (Liu et al. 1998).

Because of the different physiological nature of the origin of fMRI and MEG
signals, it is important to minimize potential adverse effects from a mismatch
between the locations of activity seen in fMRI and the actual source locations of
the MEG signals (Dale and Halgren 2001). “False positive” fMRI locations refer
to cases in which activation in fMRI does not correspond to an MEG source,
whereas “false negative” fMRI refers to the lack of fMRI activity at the location of
a true MEG source (Liu et al. 1998; Ahlfors and Simpson 2004; Im et al. 2005; Im
and Lee 2006; Liu et al. 2006). In general, both of these types of mismatches can
be due to the differing physiological properties of the signal generation in the two
modalities. There is encouraging experimental evidence of the BOLD contrast
typically observed in fMRI being closely correlated with post-synaptic currents
(Logothetis et al. 2001). However, it is likely that details of the local neural
circuitry and the neural and vascular morphology can result in differences in the
properties of the signals in the different imaging modalities. Mismatches may also
be caused by differences in the experimental design in fMRI and MEG data
acquisition and analysis. Event-related fMRI paradigms make it possible to use
similar cognitive task designs that are commonly used in MEG (Rosen et al. 1998).
However, it is important to critically evaluate the similarity of the baseline con-
ditions and design contrasts used in each modality. In addition, false negative
fMRI locations can result from susceptibility artifacts or partial-only coverage of
the head in the fMRI data. False positive fMRI can occur when MEG is insensitive
to some activity, e.g., when the corresponding primary currents are radially ori-
ented or located deep in the brain. Furthermore, false positive fMRI is bound to
happen in the analysis of individual time points of the MEG data: because of the
slow time course of the hemodynamic response, a single fMRI map usually shows
areas whose activity in the millisecond time scale may only partially overlap in
time, and therefore only a subset of the activated areas in fMRI is expected to
contribute to the MEG signal at any given time instant.

Ideally, an approach for incorporating a priori constraints from a supportive
modality would give improved source estimates when the a priori information is
compatible with the actual source distribution, while also being insensitive to
incompatible priors (Liu et al. 1998; Vauhkonen et al. 1998; Ahlfors and Simpson
2004). False positive fMRI constraints in MEG source modeling are typically well-
behaving, i.e., the contribution to the MEG inverse estimates is usually small for
the false positive fMRI locations, especially if the true and false locations are far
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apart from each other (Liu et al. 1998; Fujimaki et al. 2002). False negative fMRI
constraints are expected to be more problematic than false positive ones (Liu et al.
1998; Ahlfors and Simpson 2004; Im et al. 2005), although simple false negative
fMRI may actually have only little effect (Babiloni et al. 2003). In particular, if the
assumed MEG sources are strictly restricted at the locations of fMRI activation
only, MEG signals originating from other locations may be erroneously assigned
to the assumed source locations (Liu et al. 1998; Ahlfors and Simpson 2004).
Therefore, it is important that the source estimation algorithm allows the MEG
sources to be also at non-fMRI locations.

The possibility of a mismatch in the spatial distribution of activation detected
by MEG and fMRI raises a dilemma concerning the use of fMRI in a supportive
role to guide the MEG source estimation. On the one hand, if we cannot be certain
that the underlying patterns of activity are the same, the fMRI may provide an
erroneous bias to the MEG source estimate. On the other hand, if the source
analysis of MEG without the fMRI constraint indicates that the source locations of
a particular set of MEG data indeed are identical to those seen in the corresponding
fMRI, then there would be no need for the fMRI constraint. In other words,
converging evidence of source locations from the comparison of MEG and fMRI
data is useful in confirming MEG source localization results, but once this has
been established, fMRI does not provide additional information for the supportive
data fusion. The suggested resolution to this dilemma is that fMRI data should be
used to indicate likely solutions among the set of all possible solutions allowed by
the non-uniqueness of the inverse problem. The Bayesian approach provides a
general formalism for these types of problems (Baillet and Garnero 1997; Friston
et al. 2002; Jun et al. 2008; Auranen et al. 2009; Wipf and Nagarajan 2009;
Henson et al. 2010). The principle can also be expressed geometrically in the
source space (Ahlfors and Simpson 2004), leading to the same weighted MNE
solution in which fMRI information is incorporated in the diagonal elements of the
a priori source covariance matrix (Liu et al. 1998).

Figure 3 illustrates an example of visual motion related activity in which fMRI
data suggested a likely solution among two possible ones for an ambiguous MEG
topography (Ahlfors et al. 1999). The averaged visual evoked MEG signal showed a
spatial pattern with four extremes (Fig. 3a). This topography suggests at least two
sources, one occipitotemporal and one frontal (Fig. 3b, top). However, the dipolar
pattern formed by the pair of extremes in the middle raises the question whether a
third source, located in between the other two contributed to these MEG data
(Fig. 3b, bottom). The fMRI data obtained using a similar stimulus paradigm indeed
showed activity in the posterior part of the superior temporal sulcus, in accordance
with the location of the putative third source (Fig. 3c). Thus, the fMRI suggests that
a three-source model may be more likely here for the MEG than the two-source
model. However, it is important to acknowledge that both solutions are consistent
with the observed experimental MEG data. Note the difference between the case of
combining EEG and MEG in Fig. 2, where the complementary data about the same
type of sources was able to disambiguate between the two possible models for the
MEG-only data because the EEG data was inconsistent with one of the models.
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Fig. 3 An example of how fMRI data can suggest a likely MEG inverse solution among possible
solutions. Averaged visual evoked MEG response at the latency of 170 ms after the reversal of
the direction of the motion of concentric circles showed an ambiguous topography with four local
extremes (a). This topography suggest two underlying dipole sources (black arrows), one at the
visual motion sensitive middle temporal area and one near the frontal eye field (b, fop). However,
the measured topography would also be consistent with a third source in between the other two,
contributing to the dipolar pattern of the two extremes in the middle of the topography (b,
bottom). FMRI data recorded on the same subject indicated activation in posterior superior
temporal sulcus (red circle) that matches the hypothesized third source location for the MEG (c).
Thus, the fMRI suggested that the three-dipole model may be more likely that the two-dipole
model; however, both models are possible solutions for the observed MEG topography. Adapted
from (Ahlfors et al. 1999)

Examples of specific situations in which combining fMRI and MEG could
provide helpful qualitative information about the neural activation patterns are
illustrated in Fig. 4. The source currents of MEG and EEG are vector quantities,
whose orientation and direction, in addition to the magnitude, can provide useful
information that is not obtainable by fMRI. MEG is well suited to detect accurately
the physical orientation of the tangential component of a source, because the whole
topographic map of the extracranial signal will rotate if the source rotates tan-
gentially. A change in the source orientation indicates that the neural sources
contributing to the measured signals are not constant over time. This property may
be useful for the detection of the presence of more than one neural population,
even if the fMRI shows only a single extended focus of activity (Fig. 4a).

Since the primary currents generating the MEG signals are expected to be
oriented locally perpendicular to the cortical surface, the physiological direction of
the source can be described as inward (towards the white matter) or outward
(Lopes da Silva 2010). However, the physical orientation, as detected by MEG and
EEG, can be highly variable for a source within the convoluted cerebral cortex. In
determining the physiological direction of the source current, fMRI can be par-
ticularly helpful in suggesting from which side of a sulcus or a gyrus the source is
located. Figure 4b depicts a case in which uncertainty in the MEG source local-
ization allows both walls of a sulcus as possible sites of the source. MEG can
reliably determine the physical direction of the source, but the physiological
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(a) (b)

Fig. 4 Schematic illustration of helpful information that can be obtained by combining MEG
and fMRI data. a A change in the MEG source orientation over time (from “A” to “B”) reveals
the presence of more than one neural population contributing to the activity, even when the
spatial resolution of MEG as such may not be high enough to dissociate the locations of the
source components, and the fMRI may show a single extended region of activation (gray region).
b Uncertainty in the exact location of the source of the MEG signals can result in erroneous
physiological interpretation of the source current direction if the source is mis-localized into the
opposite wall of a sulcus. Using fMRI to identify the location of activity within the sulcus can
help to determine the physiological direction of the MEG source. Here, the physical direction of
both “A” and “C” is the same; however, the physiological direction is inward for “A” but
outward for “C” with respect to the cortical surface

direction (outward vs. inward) depends on which side of the sulcus the source is
located. Thus, using fMRI information to identify the likely location of the source
will also help to determine the physiological direction of the source.

MEG and fMRI can also be considered complementary modalities, if the
sources of both types of signals are taken to be related to a common pattern of
neural activation. In this case, computational neural modeling is essential to relate
the pattern of activity within brain networks capable of performing the cognitive
task under study, as well as of generating the multimodal neuroimaging signals
(Horwitz et al. 1999; David and Friston 2003; Riera et al. 2005; Babajani and
Soltanian-Zadeh 2006; Daunizeau et al. 2007; Valdes-Sosa et al. 2009; Plis et al.
2010; Bojak et al. 2011).

5 Summary and Future Prospects

Multimodal data can provide information about brain activation patterns that is not
attainable by a single method alone. In the analysis of MEG data, the role of other
imaging modalities in the direct data fusion approach can be described as com-
plementary or supportive, depending on whether the sources of the signals in the
different modalities can be considered to be of the same type or not. This
framework can encompass also other existing and emerging imaging modalities.
Simultaneous acquisition of multimodal data has obvious advantages over
sequential recordings, e.g., by ensuring that the state of the brain was the same for
each modality, and enabling multimodal recording of events that are difficult to
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repeat in a controlled way, such as epileptic activity. MEG and scalp EEG are
commonly recorded simultaneously. Because EEG is better suited than MEG for
simultaneous data acquisition with hemodynamic imaging modalities, the simi-
larity of the state of the brain during sequential recordings of MEG and other
modalities can be evaluated by examining the concomitantly recorded EEG data.
Promising prospects for multimodal integration in the future are expected from
further developments in computational neural modeling of the brain processes that
underlie the signals of all the imaging modalities.
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MEG/EEG Data Analysis Using EEGLAB

John R. Iversen and Scott Makeig

Abstract EEGLAB (sccn.ucsc.edu/eeglab) is an easily extensible, highly
evolved, and widely used open source environment for signal processing and
visualization of electroencephalographic data running on MATLAB (The Math-
works, Inc.). Methods central to EEGLAB include time- and time-frequency
analysis and visualization of individual datasets and complete studies, independent
component analysis (ICA), and rich tools for connectivity analysis, brain computer
interface (BCI) development, and tools for fusion and joint analysis of simulta-
neously recorded motion-capture and brain data. We introduce a new MEEG plug-
in that enables MEG and simultaneously recorded MEG/EEG (MEEG) data to be
readily analyzed using EEGLAB. Its use is demonstrated by the analysis of an
MEEG dataset. Here we show a first ICA decomposition of an MEEG data set and
use MEEG plotting tools to localize and evaluate maximally independent joint
MEG/EEG component processes in the data. The analysis naturally recovers a
range of artifact sources, as well as brain sources common to MEG and EEG, as
well as sources primarily visible only to EEG.

Keywords MEG - EEG - MEEG - Independent component analysis (ICA) -
EEGLAB - Localization - Radial - Tangential - Dipole - AMICA

1 Introduction

EEGLAB (sccn.ucsd.edu/eeglab) (Delorme and Makeig 2004) evolved from an
ICA Toolbox for Electrophysiological Data Analysis released by Makeig and
colleagues at The Salk Institute (La Jolla CA) in 1997. Currently EEGLAB is a

J. R. Iversen (X)) - S. Makeig

Swartz Center for Computational Neuroscience, Institute for Neural Computation,
University of California San Diego, La Jolla, CA 92093-0559, USA

e-mail: jiversen@ucsd.edu

S. Supek and C. J. Aine (eds.), Magnetoencephalography, 199
DOI: 10.1007/978-3-642-33045-2_8, © Springer-Verlag Berlin Heidelberg 2014



200 J. R. Iversen and S. Makeig

XDF _— LSL |— SNAP
|

MoBILAB — EEGLAB HeadIT
AsEae l . Lawica | | ower | [ heo |[ ess |
f [ ~et || wmer |
| [ e o

| st | | saias |

| MEEG | | REGERPI

Fig. 1 The EEGLAB environment for electrophysiological signal processing is the center of a
growing framework of tools developed and released by researchers at the Swartz Center for
Computational Neuroscience (SCCN) at UCSD. These include software for synchronized
multimodal recording (SNAP, LSL, XDF), MoBILAB, an object-oriented toolbox for analysis
and visualization of multimodal data, the HeadIT data and tools resource with its associated tools
(HED, ESS, etc.), and a growing set of toolboxes that operate as EEGLAB plug-ins (AMICA,
DIPFIT, NFT, MPT, SIFT, BCILAB, etc.). MEEG is a new plug-in developed by the authors for
analysis of MEG and MEEG (synchronized MEG plus EEG) data

mature, actively evolving open-source software environment for electrophysio-
logical data analysis running on MATLAB (The Mathworks, Inc.) that makes
freely available a range of state-of-the-art approaches to describe brain dynamics
of effective cortical and non-brain EEG sources at both the individual and group
levels (Delorme and Makeig 2004; Makeig et al. 2004). By a 2011 survey (Hanke
and Halchenko 2011), EEGLAB may currently be the most widely used open-
source toolbox for EEG analysis. EEGLAB functions comprise a broad core range
of functionality accessible either through its graphic user interface (GUI) and/or
directly from the MATLAB command line, plus plug-in tools and toolboxes that
implement a wide range of advanced analysis and visualization methods.

User interface. EEGLAB can be controlled through its GUI (Fig. 1 lower left,
panel), or more directly through MATLAB scripts and command line calls. Use of
the GUI is highly convenient for data exploration. The GUI also accumulates a
history of the commands to EEGLAB functions it issues, enabling processing
pipelines developed using the GUI to be easily turned into a MATLAB script.
Already many students (worldwide) have learned to write MATLAB data analysis
scripts by combining the EEGLAB history mechanism with the extensive
EEGLAB function and wiki documentation (sccn.ucsd.edu/wiki/eeglab).

Other tools. EEGLAB is the center of a growing ecosystem of open source
software tools (Fig. 1) that have been released by researchers at the Swartz Center
for Computational Neuroscience at UCSD (sccn.ucsd.edu). These include the
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Human Electrophysiology, Anatomic Data, and Integrated tools (HeadIT) data
archive and resource (headit.org), with its system for tagging uploaded studies
(Experimental Study Schema (ESS) (Bigdely-Shamlo et al. 2013a), Hierarchical
Events Descriptors (HED) (Bigdely-Shamlo et al. 2013b) and a cross-platform
system for synchronized collection of data from EEG and many other devices (Lab
Streaming Layer (LSL), code.google.com/p/labstreaminglayer) plus an extensible,
XML-based data format (Extensible Data format, XDF; code.google.com/p/XDF)
and a Python-language scripting framework for controlling simple or very com-
plex experimental paradigms (SNAP).

MOoBILAB. An object-oriented environment for analysis of multimodal data
collected under the mobile brain/body imaging (MoBI) paradigm, MoBILAB
(scen.ucsd.edu/wiki/Mobilab_software) can export EEG data to EEGLAB for
further analysis, and may in the future become our primary platform for devel-
oping and sharing multimodal data analysis methods, since the EEGLAB EEG
data structure has limited support for different channel types and assumes all data
to be recorded at the same sampling rate. For MEG/EEG data recorded at the same
rate this is not much of an inconvenience, as EEGLAB provides a channel type
variable that allows functions to perform EEG analysis and/or MEG analysis of the
respective data channel subsets based on their specified channel types.

EEGLAB plug-ins. The growing range of EEGLAB plug-ins have been pre-
viously described (Delorme et al. 2011). Plug-ins released by SCCN itself include
advanced Adaptive Mixture ICA (AMICA) for identification of maximally inde-
pendent brain sources with artifact rejection (Delorme et al. 2012; Palmer 2006),
the DIPFIT toolbox implementing source dipole fitting tools by Robert Oostenveld
from Fieldtrip (fieldtrip.fcdonders.nl), the Neuroelectromagnetic Forward Head
Modeling Toolbox (NFT) for creating detailed boundary element model (BEM) or
finite element model (FEM) head models (Akalin Acar and Makeig 2010), the
Measure Projection Toolbox (MPT) for cross-subject source-level analysis using
measure projection (Bigdely-Shamlo et al. 2013c), the Source Information Flow
Toolbox (SIFT) for calculation and visualization of multivariate causal source
dynamics in both event-related and continuous data (Delorme et al. 2011), and
BCILAB, a complete toolbox for building, running, and statistically evaluating
brain-computer interface (BCI) models (Kothe and Makeig 2010). At least 20
other plug-in tools and toolboxes have been released by other research groups;
these are listed on a wiki page (sccn.ucsd.edu/wiki/EEGLAB_Plugins). A facility
for automated updating of listed plug-ins to new versions from within EEGLAB is
planned for EEGLAB v13.

The MEEG plug-in. EEGLAB now includes an MEEG plug-in (sccn.ucsd.edu/
wiki/MEEG) that expands the ability of EEGLAB users to import and analyze
MEG and dual-modality MEEG (concurrent MEG and EEG) datasets, thereby
opening a range of novel data analysis techniques for use by the MEG community.
MEEG data handling within EEGLAB is tightly coupled to Fieldtrip, allowing the
EEGLAB data structures to be readily imported from and exported to Fieldtrip.
Both the EEGLAB environment and the MEEG plug-ins are ongoing efforts that
we hope other MEG users and methods developers will contribute to. The MEEG
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developers remain open to partnering with other methods developers to share
capabilities between MEEG and other MEG toolboxes.

Data and experiment types supported. In addition to standard EEG data
types, EEGLAB now supports the loading of MEG and MEEG data through its
integration of the Fieldtrip fileio module. Individual data files can be imported as
individual EEGLAB data sets, or multiple runs can be combined into a single
dataset using realignment to a common sensor orientation. In addition, the new
MEEG plug-in enables EEGLAB to import and export a range of Fieldtrip data
structures, including raw and epoched data, as well as independent component
analyses, so that EEGLAB processing can begin after partial analysis in Fieldtrip,
or can be exported, allowing Fieldtrip to be used for additional processing. EEG
recording systems provide a single scalar value per sensor location, in contrast to
the wider variety of MEG sensor types. The scalar model easily accommodates
magnetometer and radial gradiometer systems, but requires either magnetometers
or the magnitude of the planar gradient to be chosen (e.g., for Yokogawa system
data sets).

Source localization. ICA decomposition enables the profitable use of dipole-
based inverse methods because of the characteristic resemblance of many MEG,
EEG, or also MEEG independent component scalp maps to the projection of a
single equivalent dipole, allowing them to be well-fit by a single equivalent dipole
model (or, in some cases, to a dual-dipole model with symmetric location con-
straints) (Delorme et al. 2012). The DIPFIT toolbox in EEGLAB implements
equivalent dipole model fitting tools by Robert Oostenveld from Fieldtrip (field-
trip.fedonders.nl). Dipole fitting tools have been integrated in the Neuroelectro-
magnetic Forward head modeling Toolbox (NFT) (Akalin Acar and Makeig 2010).
These plus some novel distributed source localization methods will be put into a
toolbox paralleling NFT, to be called the Neuroelectromagnetic Inverse Source
modeling Toolbox (NIST).

Processing data from multiple subjects or sessions. EEGLAB supports
across-subject analysis via a STUDY structure that points to a set of similar EEG
datasets forming an experimental study. Currently, these datasets are typically
epoched datasets (sets of data epochs similarly time locked to one or more sets of
experimental events). EEGLAB Study software can prepare and store a user-
specified set of continuous (power spectrum) and event-related (ERP, ERSP, ITC,
etc.) measures for each dataset and help the user to separate these measures into
conditions, sessions, and/or subject groups. Typically, each dataset is associated
with an ICA decomposition and a list of ‘brain’ components to study, each with an
equivalent dipole model. The Study functions can then prepare a pair-wise distance
measure between components based on component dipole (and/or scalp map) and
specified measure distances. Users then can cluster the components using at least
three clustering methods, and can compute statistical contrasts across subjects/
sessions using either parametric (Gaussian) or non-parametric (bootstrap) statistical
methods. Clustering scalp channel signals, though less advised, is also supported.

Currently, users can create and process one or more 1 x N or N x M statistical
designs for a given Study. Thus, for example, given 5 different event-related
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measures for each subject in an experiment, the user can specify Conditions 1-4 as
forming a 2 x 2 design, and/or can also compare Conditions 2 versus 5 in another
design, without needing to duplicate the STUDY structure and its associated
measure files. Both within-subject and across-subject variable types are supported.

As in practice the range of experimental designs is much wider (than NxM),
EEGLAB and some EEGLAB toolbox developers are now working with Cyril
Pernet of the University of Glasgow to incorporate his LIMO toolbox into the core
of EEGLAB study processing. It supports parametric and non-parametric statistics
for a much wider range of designs (gforge.dcn.ed.ac.uk/gf/project/limo_eeg)
(Pernet et al. 2011).

Measure projection. An alternate approach to component clustering is taken in
the Measure Projection Toolbox (MPT) (Bigdely-Shamlo et al. 2013c). This
toolbox focuses on comparing component source dynamics for a single measure at
a time (for example, ERPs) based on the location of the equivalent source dipole in
a template brain. Each component dipole location is replaced by a 3-D Gaussian
blur (representing location probability) and, after populating the template brain
with source dipoles across a potentially large number of subjects, two operations
are applied voxel-wise (that is, template brain voxel-by-voxel). First, brain regions
in which local dipole measures agree are identified, forming a measure consistency
subspace. Next, voxels in this subspace are clustered using affinity clustering to
form voxel domains with distinct measure time courses. Here the concept of
measure domains in the template brain volume replaces the discrete component
clusters produced by the default EEGLAB study processing. Users may choose
either or both paths to use to characterize their study data.

CSA clustering. Arthur Tsai of Academica Sinica, Taiwan, has recently
developed an advanced approach to study source clustering (Tsai et al. 2013). This
applies spatiotemporal ICA decomposition using EMSICA (Tsai et al. 2006) to
EEG (or as readily, MEG) data from its projection back onto to the oriented
subject cortex, modeled from a subject MR head image. The cortical surface
models are then inflated and co-registered using tools available in Freesurfer
(Fischl et al. 1999). Finally, source clustering across subjects is performed in the
2-D cortical surface-aligned space rather than in 3-D template brain space (as in
MPT and EEGLAB Study functions). A CSA (Cortical Surface Alignment)
EEGLAB plug-in is envisaged that will allow users to perform this potentially
more accurate analysis when MR head images are available for the individual
subjects in an EEG or MEG study.

2 MEEG Data Decomposition: An Empirical Data
Example

For example purposes, we will illustrate the capabilities of the MEEG plug-in and
other EEGLAB features using a simultaneously recorded multimodal (MEEG)
MEG plus EEG dataset (Bledowski et al. 2012) that is jointly decomposed, in a
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single AMICA decomposition, to extract independent components accounting for
both MEG and EEG data streams. The validity of the decomposition is based on
the assumed linearity of the underlying electric and magnetic components of the
electromagnetic field generated by the effective generators of the scalp-recorded
(EEG) potentials and (MEG) flux. We use the NFT toolbox to create an EEG and
MEG head model and use it to fit equivalent dipole models to the resulting
independent component (IC) scalp maps. We focus here on describing the relations
between MEG signal and EEG signal projections of the resulting ICs, including a
first statistical examination using ICA of the degree to which radial EEG sources
(as determined by an equivalent dipole model) are also visible in MEG.

Data loading and preprocessing. The epoched CTF dataset included time
series data from 269 radial gradiometers (3rd-order synthetic) plus 56 EEG
channels. Five separate runs from the same recording session were imported and
merged into a single EEGLAB dataset of size 325 channels by 580 k time points.
The MEEG toolbox enabled the selection of alignment across runs of the MEG
data (e.g., projection onto the average across-run gradiometer locations using
Fieldtrip ft_megrealign) as well as the choice (when appropriate) of synthetic
gradiometer order. Field contributions from external sources were removed by
computation of third order gradients using contributions from reference sensors
(Fife 1999). The resulting EEGLAB dataset included 324 channels and 136 6-s
data epochs. These data were down sampled from 1200 to 600 Hz, and the EEG
channels were average referenced. One EEG channel was dropped following these
procedures to keep the data full rank.

Artifact detection and rejection. A range of artifact rejection options are
available in EEGLAB, both automated and interactive data rejection or cleaning,
as well as ICA-based artifact rejection. For the dataset used here, epochs con-
taining large artifacts had previously been rejected based on visual inspection.

Independent Component Analysis. The MEEG data were analyzed using
AMICA to find independent components across the modalities. ICA in general
proceeds from the observation that the signal measured at any sensor is a linear
mixture of multiple sources within the brain (Makeig et al. 1996). The goal of the
algorithm is to learn an unmixing matrix across all channels that results in a
complete decomposition of the data into maximally independent components
(ICs). In single-modality MEG or EEG data, many ICs have dipolar patterns of
projection onto the sensors (Delorme et al. 2012). In MEEG data decompositions,
both the associated MEG and EEG scalp projection maps in clearly defined
components may be dipolar. In such cases, the maps are near-orthogonal and the
implied equivalent dipole locations and orientations near-identical (Liu et al.
1998), showing that ICA has identified the joint electromagnetic field associated
with a single source process that may be located using its well-defined MEG and
EEG projection patterns also returned by ICA. The AMICA (Adaptive Mixture
ICA; (Palmer et al. 2007); sccn.ucsd.edu/ ~ jason/amica_web.html) algorithm used
here is the blind source separation method that performed best in a recent com-
parative test of 22 linear decomposition algorithms—by both producing the
greatest reduction of the strong mutual information present in the channel data, and
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by finding the largest number of component processes with ‘dipolar’ scalp maps
compatible with the projection of a single cortical area or patch (Delorme et al.
2012).

The joint analysis of MEG and EEG data using independent component anal-
ysis is novel; to our knowledge it has not been previously reported. ICA itself, as a
purely statistical method, has no notion of the type of signal it is decomposing or
of the types of signal sources contributing independent information to the recorded
source mixtures. Thus, to perform ICA decomposition of MEEG data, the MEG
and EEG channel signals are simply concatenated into a dataset (here of 324
channels). The MEG and EEG portions of the data were individually sphered (a
standard procedure to remove correlations and scale from data) before decom-
position (Tukey and Tukey 1981). Sphering serves both to make the MEG and
EEG signals numerically identical in size (avoiding pV versus fT scaling issues),
and to remove correlations between sensors (a standard step prior to ICA that
speeds the convergence of the algorithm). The result of the joint decomposition is
a collection of maximally independent components, each with a pair of spatial
topographies (scalp maps) representing the spatial projections of the source onto
the MEG and EEG sensors, respectively, and a joint MEG/EEG time course of
activation across the trials.

Forward and inverse source modeling. The NFT toolbox was used to warp an
MNI template 4-layer BEM model to the individual head shape defined by the
EEG electrode locations. The EEG head model used the full BEM model, with
forward solutions solved with METU-BEM (Akalin Acar and Gencer 2004). The
MEG head model used the inner skull surface mesh of the BEM model to define a
single-shell BEM model (Himéldinen and Sarvas 1989). When individual ana-
tomical MRIs are available, the NFT toolbox can use them to segment and create
individual electrical and magnetic forward head models. NFT also generates lead
field matrices for 3-D grid (FEM) source space or for a cortically constrained
(BEM) source-space, e.g. constructed wusing the Freesurfer toolbox
(surfer.nmr.mgh.harvard.edu). The head models and lead fields generated by the
NFT toolkit can likewise be used for volumetric or cortically constrained inverse
solutions in other data analysis packages. Dipoles were fit to all components
automatically, with a separate dipole fit for the MEG and EEG IC topography.
Each fit was characterized by its residual variance, as well as its direction with
respect to the radial direction (as defined in relation to a best-fit sphere, fit to the
scalp surface).

3 Results: ICA Analysis of MEEG Data

Figure 2 shows ‘ERP image’ plots of trial-by-trial activities of four functionally
distinct ICs from this data set. Each panel shows the IC topography for EEG and
MEQG in the upper left. The erpimage function produces a raster image generated by
stacking event-related trials (in any specified order) as horizontal colored lines,
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«Fig. 2 Four ‘ERP image’ panels showing trial-by-trial activities of four MEEG independent
components. The experiment trial design is depicted above panel 1: in each trial, a target array of
colored squares that are to be memorized is briefly presented, then replaced by a fixation dot
during a retention interval. A single colored probe square is then presented; the participant had to
respond whether or not it was present in the initial color array. In each erpimage panel, vertical
dashed black lines indicate the onset of each visual stimulus (heavier lines for target and probe
stimuli; lighter lines for onsets of fixation dots). The large color image within each panel
represents a raster image of all 136 individual trials, with IC activation coded by color. Activation
units are proportional to projected rms EEG pV and MEG fT. The trials are sorted in order of
descending reaction time, so the trace of button press moments (dark solid trace) forms a diagonal
arc. In the erpimage panels, the trial activations have been (vertically) smoothed with a 10-trial
moving window. Below each erpimage panel is the standard trial average activation ERP. EEG
and MEG IC topographies are shown in the upper left of each panel. a A visual (occipital) IC
(with clear, near-orthogonal EEG and MEG topographies) showing consistent evoked responses
time-locked to presentations of visual stimuli. b A somatomotor IC (again with clear, near-
orthogonal EEG and MEG projections) whose evoked responses are time locked primarily to
button presses. ¢ A near-radial right frontal theta band dominant component with weak and less
clearly defined MEG projection. Response to target and probe stimuli can be modeled as a theta
band burst superimposed on a lower-frequency response, and d an eye blink IC (with clearly
defined, near-orthogonal MEG and EEG projections; 2 trial smoothing window). Separation of
the signals into maximally independent component processes separates out processes that are
maximally functionally distinct as well

where color represents signal value. Consistent evoked response activity across
trials time locked to events with consistent trial latencies appears as vertical bands
of color. Smoothing (vertically) lightly across trials can highlight these regularities.
Here, the dashed black lines show the onset of visual stimulus presentations, and the
trials are sorted in order of increasing participant reaction time to the cue stimulus
(the curving black trace indicating the moment of the button press in each trial).

In Fig. 2, evoked responses of four components demonstrate ICAs tendency to
isolate functionally distinct brain responses from the recorded mixture, and that this
naturally generalizes to multimodal recordings. A visual cortex IC (a) follows
onsets of visual stimuli. Note the associated dipolar and near-orthogonal MEG and
EEG scalp maps. The evoked response of a somatomotor cortex IC (b) is primarily
time locked to (before and after) participant button presses, and again has near-
orthogonal MEG and EEG scalp maps. A right frontal-cortex IC (c), whose spec-
trum had a broad peak in the theta band (not shown), produces increased theta band
power (not shown here) during presentation of memorandum (1st) stimuli and
subsequent (3rd) probe stimuli. Some of this theta burst energy was phase locked
across trials; thus, the evoked response of this IC to the memoranda (1st stimuli)
resembles a theta burst superimposed on a slower ERP base. Note the near-radial
scalp pattern of the EEG scalp map, and the corresponding lack of definition of the
(weak) MEG IC projection (discussed further below). The ERP image plot for an IC
accounting for eye blinks (d) shows that the participant blinked consistently during
fixation intervals. Again, the MEG and EEG projections are well defined, consistent
with sources in the eyes themselves, and are near orthogonal.

Figure 3 shows a more complete set of IC MEG and EEG topographies for
(brain and non-brain process) ICs accounting for the most signal variance among
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the 324 ICs returned by AMICA (pvaf = percent variance accounted for; the
leftmost number above each topography). Each IC is represented as a vertical pair
of head cartoons depicting the spatial projection of the IC onto the EEG (top) and
MEG (bottom) sensor arrays. As usual, the ICs accounting for the most signal
variance in each modality are artifactual (top row): an IC accounting for eye blinks
(accounting for 12.6 % of EEG signal variance), and another accounting for
cardiographic contributions (in these data accounting for 21.7 % of MEG signal
variance). The relative sensitivity of each modality to different artifact types is
apparent in the pvaf values: Eye blinks and muscles account for proportionally
more EEG then MEG variance, while for heart-related and line-noise artifacts the
reverse holds. Many of the maps show dipole-like (‘dipolar’) topographies.
AMICA analysis produced a pair of spatially near-orthogonal topographies for the
MEG and EEG projections of the identified joint electromagnetic source processes,
consistent with an origin in a single cortical patch or non-brain generator. Non-
brain components (top two rows) were so classified on the basis of having iden-
tifiable non-brain time courses (Eye & EKG components) or a large high-fre-
quency spectrum consistent with myographic (or line noise) activity together with
equivalent dipole localized to outside the brain volume (myographic or line noise
sources). Identified Brain components have equivalent dipoles (indicated in black)
located within the brain volume (here with residual variance of the dipole
fit <= 20 %). Dipole localization is discussed further below.

As is well known, MEG is less sensitive to the radial component of brain
current sources. In joint MEEG data ICA decompositions, this relationship falls
out naturally: sources with a strong radial orientation have weak and usually less
well-defined MEG projections. For example, the four brain components in the
bottom row of Fig. 3 have large EEG projections, accounting for between 3.5 and
0.9 % of total signal variance (3.5 % was the largest pvaf value of any brain
component). Low residual-variance dipole fits to the IC EEG scalp map return a
near radial equivalent dipole (e.g. in 3 of these 4, with radial angle defined relative
to a best-fit spherical head model). In contrast, the associated MEG scalp maps for
these ICs have quite low pvaf (<0.2 %) and are not dipolar (residual variances,
25-70 %). To check for the presence of this pattern overall in the decomposition,
in Fig. 4 we plot, for each dipolar, brain-based IC, the ratio of variance accounted
for in the whole EEG and MEG signals (EEG pvaf /MEG pvaf) as a function of the
angle from radial of the EEG equivalent dipole. Relative variance explained by the
MEG portion of ICs is reduced 20-fold as the best fit dipole angle approaches a
radial direction, and is close to 1:1 for tangential dipoles, in accordance with
general expectations, and more specifically with expectations that the MEG
component of a radial source dipole in a real head should be about 5-10 % of that
to a tangential source dipole (Ahlfors et al. 2010; Menninghaus and Liitkenhoner
1995).
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Fig. 3 Results of the MEEG data joint independent component decomposition. Joint independent
component (IC) topographies representing the projection patterns of individual ICs to the EEG
(upper map) and MEG (lower map) sensor arrays as viewed from above the head. Each IC is
represented by a vertical pair of EEG and MEG topographies. Numbers above each sensor map
indicate percentage of (EEG or MEG) data variance explained (pvaf, percent variance accounted
for); in brackets, the residual variance of the equivalent dipole fit to the scalp map (shown as a
black dot and line on the maps), and the angle (relative to radial of a best-fit sphere) of the
equivalent dipole. Depicted non-brain (fop two rows of four ICs) and brain (bottom two rows) ICs
are the 16 (of 324) accounting for most signal variance in each category. The non-brain component
processes account for eye blinks, cardiographic sources (50-Hz) line noise, and scalp muscle
activity, as labeled. The pair of MEG and EEG scalp maps for most components are near
orthogonal, consistent with a single cortical or non-brain source. This holds for brain ICs having
more tangential EEG topographies and equivalent dipoles, while (as expected) dipoles with a near-
radial EEG maps and equivalent dipoles have weak (low-pvaf), and less dipolar MEG projections
(i.e., single equivalent dipole model for these MEG scalp maps have higher residual variance)
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Fig. 4 Ratios of relative EEG/MEG strengths (as ratio of the percentages of MEG and EEG
signal variance accounted for, on a log scale) for returned independent MEEG components with
near-dipolar scalp maps (less than 20 % residual variance of the single equivalent dipole model in
at least one of the modalities), as a function of the deviation of the angle from radial of the EEG-
map equivalent dipole. Note the expected dominance of the EEG current projections, relative to
the MEG field projections, of the ICA identified near-radial sources. Best fit line (R* = 0.31) has
an EEG /MEG ratio of 18.2 for a radial source, and 1.06 for a tangential source

4 Conclusions

For EEG (Makeig et al. 1996), fMRI (McKeown et al. 1998), MEG (Ikeda and
Toyama 2000), ECoG (Whitmer et al. 2010), and other biomedical data modali-
ties, ICA has become a widely accepted approach that provides a powerful method
for identifying and separating out separate information sources in multichannel
data each of whose channel signals sums activity from more than one (often, not
directly recorded) source.

Here we have demonstrated that ICA may at least complement other methods
for jointly analyzing simultaneously recorded EEG and MEG data (Dale and
Sereno 1993; Fuchs et al. 1998; Huang et al. 2007; Takada et al. 2000; Trujillo-
Barreto et al. 2008). Its benefits may include improved source localization due to
the recovery of dipole-like components with small source projections. Near-radial
sources appear as those with poorly defined MEG projections, and may be better
located by inverting their simultaneously recorded and subsequently ICA-recov-
ered electrical correlate. In addition, MEEG decomposition by ICA gives direct
information on the relative scaling of MEG and EEG signals projected by cortical
(and other) data sources. ICA decomposition of MEEG data should also allow
principled examination of claims that MEG and EEG sources may sometimes have
different spatial distributions. If and when this were the case, some class or classes
of independent component processes returned by ICA applied to MEEG data
should have very little EEG or MEG power. Here we showed that in our sample
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data set the latter was the case for EEG processes with a net radial orientation, as
expected from theory.

We believe the EEGLAB environment, now augmented with the MEEG plug-in
incorporating several data loading and handling functions from Fieldtrip, as well
as custom handling of the MEEG data within EEGLAB, is suitable for performing
a range of custom MEG data analyses using available EEGLAB tools and its
growing family of plug-in toolboxes. For students and researchers exploring new
data sets, the EEGLAB GUI and palette of data visualization methods offers a
ready way to explore data features and data quality, while its core support for data
decomposition by advanced ICA methods including AMICA, and further analyses
using the IC component basis, provide a powerful platform for information- and
biophysics-based data modeling and statistical testing of experimental hypotheses.
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Fusing Concurrent EEG and fMRI
Intrinsic Networks

David Bridwell and Vince Calhoun

Abstract Different imaging modalities are sensitive to different aspects of brain
activity, and integrating information from multiple modalities can provide an
improved picture of brain dynamics. Electroencephalography (EEG) and func-
tional Magnetic Resonance Imaging (fMRI) are often integrated since they make
up for each other’s limitations. FMRI can reveal localized intrinsic networks
whose BOLD signals have periods from 100 s to about 10 s. EEG recordings, in
contrast, reflect cortical electrical fluctuations with periods up to 2