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Preface

Magnetoencephalography (MEG), an invaluable functional brain imaging
technique, provides direct, real-time monitoring of neuronal activity which is
necessary for gaining insight into dynamic cortical networks. One distinct
advantage of measuring weak extracranial neuromagnetic fields is that there is
little attenuation in amplitude and/or smearing of the signals since they are pri-
marily generated by primary current sources and are minimally perturbed by the
intervening tissues of brain, skull, and scalp. MEG permits spatiotemporal tracking
of cortical pathways with sub-millisecond temporal resolution. Over the last four
decades families of analysis approaches have been developed and, to various
degrees, evaluated for their accuracy and effectiveness while corroboration of
results from independent methods such as intracranial recordings or combined
fMRI/EEG confirms that MEG is able to provide novel insights and details of
mechanisms mediating the functional organization of the human brain.

The field of MEG resulted from a merger of two lines of curiosity-driven
research in physics and biophysics. One aimed to explore quantum phenomena
related to low-temperature superconductivity which led to the development of the
most sensitive magnetic field sensors, Superconducting Quantum Interference
Devices (SQUIDs). The other aimed to understand physiological processes by
measuring the weak magnetic fields they generate. This merger was driven by
physicist David Cohen and electrical engineer/physicist James E. Zimmerman,
respectively. The fortuitous timing of their research programs was capitalized on
by Edgar Edelsack from the Office of Naval Research. By funding both of their
projects he brought them together which resulted in the first measurements of
biomagnetic signals generated by the human heart in the MIT shielded room. Their
joint paper published on April 1, 1970 suggested ‘‘medical uses of SQUIDs’’ and
marked the beginning of the field of biomagnetism. Only two years later (1972),
David Cohen published the first MEG paper and since then the field of neuro-
magnetism has been growing steadily. The excitement of being able to reliably
measure weak magnetic signals generated by the human brain led to intensive
instrumentation development for two decades, with a goal of capturing the entire
extracranial distribution of neuromagnetic fields via whole-head systems with
hundreds of sensors. Hardware development was accompanied by algorithm
development with the goal to identify the neuronal substrates of human perceptual

v



and cognitive processes as well as the functional connectivity between brain
regions.

Although MEG developed in the laboratories of physicists and biomedical
engineers it quickly spread to include researchers with varied backgrounds
including those interested in imaging brains in health and disease. The range of
both basic and clinical applications of MEG is impressive and growing expo-
nentially; this book provides many examples of these research achievements. The
pace of acceptance of MEG methods was stymied some by the realization of the
need to apply inverse procedures to the field measurements. However, in actuality
all noninvasive methods apply reconstruction algorithms to the signals measured.
In contrast with other noninvasive functional imaging methods, the signals mea-
sured in MEG are direct measures of neural activity, not a correlate of it.
Hemodynamic measures, for example, will always be limited in temporal reso-
lution due to the sluggishness of the hemodynamic response itself (e.g., seconds
for fMRI and tens of seconds for PET). Additional advantages of MEG are:
(1) single subject analyses are conducted which are necessary for clinical appli-
cations while averaging of data across subjects can also be accomplished if
desired; (2) subtraction techniques between experimental conditions is not nec-
essary; (3) excellent spatiotemporal resolution can be achieved without the burden
of using complex head models as in EEG; and (4) it is an absolute measure and
thus does not require a reference as in EEG.

Our intentions for this book are to cover the richness and transdisciplinary nature
of the MEG field, make it more accessible to newcomers and experienced
researchers, and to stimulate growth in the MEG area. The book presents a com-
prehensive overview of MEG basics and the latest developments in methodological,
empirical, and clinical research, and is directed toward master and doctoral stu-
dents, as well as senior researchers. There are three levels of contributions:
(1) tutorials on instrumentation, measurements, modeling, and experimental
design; (2) topical reviews providing extensive coverage of relevant research
topics; and (3) short contributions on open, challenging issues, future develop-
ments, and novel applications. The topics range from neuromagnetic measure-
ments, signal processing, and source localization techniques to dynamic functional
networks underlying perception and cognition in both health and disease. Topical
reviews cover, among others: development on SQUID-based and novel sensors,
multi-modal integration (low field MRI and MEG; EEG and fMRI), Bayesian
approaches to multi-modal integration, direct neuronal imaging, novel noise
reduction methods, source-space functional analysis, decoding of brain states,
dynamic brain connectivity, sensory-motor integration, MEG studies on perception
and cognition, thalamocortical oscillations, fetal and neonatal MEG, pediatric MEG
studies, cognitive development, clinical applications of MEG in epilepsy, pre-
surgical mapping, stroke, schizophrenia, stuttering, traumatic brain injury, post-
traumatic stress disorder, depression, autism, cognitive neuropharmacology, aging
and neurodegeneration, and an overview of the major open-source analysis tools.

The book is divided into six parts. Part I includes tutorials on MEG measure-
ments, physical and physiological foundations of MEG, and experimental design.
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The remaining parts include topical review chapters and short contributions written
by leading MEG researchers. They are grouped around important MEG thrust areas
on source analysis and multi-modal integration, functional connectivity and
oscillatory activity, neurodevelopment across lifespan, and basic and clinical
studies. The book concludes with a range of emerging technologies which offer a
bright future for the field of neuromagnetism including combining MEG with ultra-
low field MRI, a prospect for direct neuronal current imaging, exciting develop-
ments in magnetic relaxometry, and advances in a new generation of sensors.

While we aimed to combine didactic and academic elements in this book, a
systematic synthesis was beyond our scope. The authors were asked to introduce
particular topics, including an extensive review of the relevant research area, and
to inject their own insights into their selected topic. All chapters were reviewed by
the two editors. However, no effort was made to achieve strict standardization of
symbols across contributions. There is some degree of overlap between certain
chapters, left intentionally for the benefit of the reader, which present aspects of a
given topic from differing viewpoints or by authors of differing backgrounds.

We hope that this book will be useful as a textbook for advanced master and
doctoral students as well as a valuable resource for new and experienced
researchers and practitioners. Since in quite a few chapters MEG is discussed in
the context of other major functional brain imaging methods and multi-modal
integration, the book may be of interest to researchers currently outside of MEG
research as well. The general aim of the book was to foster the development of the
MEG field by introducing most of the relevant concepts and topics, bringing the
latest cutting-edge MEG research results to the forefront as well as passing on our
enthusiasm and excitement for this field which is steadily advancing and growing
in relevance and applicability.

We had a great time interacting with so many friends and colleagues that we
have known for years, including pioneers in this field. This experience was most
pleasant, gratifying, and inspiring. We appreciate their support of this book project
and we are thankful for their contributions. Collaboration with Springer editor
Dr. Christoph Baumann was both pleasant and constructive. We appreciate his
guidance and assistance as well as the support of all the staff at Springer-Verlag
that made this project a pleasurable experience. We also acknowledge several
grants that supported our efforts on working on the book: a bilateral agreement
between the University Zagreb and University of New Mexico, the Croatian
Ministry of Science, Education, and Sport (grant 199-1081870-1252), NIH grants
from the National Institute on Aging (R01 AG029495), and the National Institute
of General Medical Sciences (8P20 GM103472-06). Regarding NIH support, the
content is solely the responsibility of the editors and chapter authors and does not
necessarily represent the official view of the National Institutes of Health.

May 2014 Selma Supek
Cheryl J. Aine
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Instrumentation for Measuring MEG
Signals

Yong-Ho Lee and Kiwoong Kim

Abstract To measure weak magnetoencephalography (MEG) signals, two basic
technical requirements are sensitive magnetic sensors and reduction of environ-
mental noises. Until now, magnetic field sensors based on superconducting
quantum interference devices (SQUIDs) made from low-temperature supercon-
ductors are the main sensors used for measuring MEG signals. For effective
reduction of strong environmental magnetic noise, combination of magnetic
shielding and gradiometers (hardware and/or software) are typically used. Since
SQUIDs are very sensitive devices, care should be taken in handling them and in
using them for multichannel MEG sensor arrays. Electrostatic shocks or strong
magnetic fields can damage the normal operation of SQUIDs. Cooling of the
SQUIDs needs a helmet-shape dewar which should provide reliable operation for
longer than 1 year in vacuum tightness, and boil-off of the liquid He should be
optimized to have refill interval longer than 1 week. For economic MEG systems,
the SQUID array should be simple in the manufacturing process, and the structure
of the sensor array should be compact. For the MEG system to be operated easily,
the process for signal acquisition and signal processing devices needs to be simple,
using a single personal computer. A magnetically shielded room (MSR) is man-
datory for urban hospitals or downtown laboratory environments. Considering the
high cost of magnetic alloy used in the construction of a MSR, optimization and
cost-effective construction is needed. Even if the MEG measurements are done in a
quiet or well-shielded environment, the signal-to-noise ratio of MEG signals are
not sufficiently high, and signal processing is needed to remove some artifacts
generated from the human body. This chapter presents basic technical issues for
MEG instrumentation, especially in fabricating and operating economic MEG
systems. In the later part of this chapter, atomic magnetometers for future non-
cryogenic MEG systems, and brain magnetic resonance based on low-field nuclear
magnetic resonance for visualizing brain functional activity are described.

Y.-H. Lee (&) � K. Kim
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S. Supek and C. J. Aine (eds.), Magnetoencephalography,
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3



Keywords MEG � SQUID � Magnetometer � Flux-locked loop � Analog signal
processing � Data acquisition � Cooling � Dewar � Magnetically shielded room �
Nonmagnetic stimuli � Digital signal processing � Low-field MRI � Atomic
magnetometer � Cryocooler � High-temperature SQUID

1 Introduction

Measuring weak MEG signals in the background of strong environmental noise,
having a noise level of several orders of magnitude larger than the MEG signals, is
a challenging task. Since typical amplitudes of MEG signals are less than 1 pT,
sensitive magnetometers using SQUIDs are presently used. By using a helmet
shaped MEG system, mapping of neural currents with high temporal and spatial
accuracy can be done (Hämäläinen et al. 1993; Del Gratta et al. 2001; Knuutila
2007). Up to now, several types of MEG systems having different SQUID sensor
types were developed and have been used in the hospitals or brain research
institutes. To collect the weak brain magnetic signals from the presence of strong
environmental noise, effective combination of MSR and SQUID pickup coils is
needed. A standard MEG system consists of helmet-type sensor array inside a
liquid He dewar, MSR, readout and control electronics, acquisition, stimulus
devices, signal processing and analysis computer. Figure 1 shows a typical block
diagram for the components of MEG systems.

Considering the high price of Ni-alloy materials used for the magnetic
shielding, it is desirable to use gradiometers than magnetometers to reduce the
amount of Ni-alloy. Currently two types of hardware gradiometers are used, that
is, axial or planar gradiometer, either in wire-wound or thin film structure.
Alternatively, software gradiometers having reference sensors located at some
distance from the signal sensors and software optimization to have best signal-to-
noise ratio can be used.

A SQUID is basically a converter from magnetic flux to voltage. However,
amplitudes of SQUID voltage output are quite small for typical input range of
MEG signals, requiring a low-noise preamplifier to readout the SQUID output.
To simplify the readout electronics of a multichannel SQUID system, the SQUID
output voltage should be large enough, otherwise a rather complex readout scheme
is needed (Drung 1996; Pizzella et al. 2001).

To increase the field detection area of a SQUID magnetometer or gradiometer,
flux transformer is used where a larger pickup coil, typically about 20 mm
diameter, picks up the magnetic field and converts it into flux through the input
coil. The intrinsic flux noise of SQUID increases with the increase of SQUID
inductance, thus the loop size of SQUID needs to be minimized. However, for
effective coupling of magnetic flux with the input coil, the SQUID loop size has a
certain practical limit, typically about 100 lm.
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2 SQUID Sensors

2.1 SQUID as a Magnetic Field Sensor

In the operation of a SQUID, four basic superconducting phenomena are used: (i)
complete loss of electric resistance at temperatures below the critical tempera-
ture, (ii) perfect diamagnetism having no magnetic flux inside the supercon-
ductor, (iii) quantization of magnetic flux in a superconducting ring, (iv)
Josephson effect. Most of the present MEG systems use low-temperature
Nb-based SQUIDs. Nb has a superconductive transition temperature of about
9.2 K, and is a refractory and reliable material against repeated thermal cycling
between 4.2 K and room temperature. And the noise characteristics of SQUIDs
made from Nb/AlOx/Nb Josephson junction show low leakage current in the low
frequency range, which is an important requirement for measuring low-noise
MEG measurement. The fabrication technology of Nb SQUID sensors is now
well established and fabrication of many sensors on Si-wafers can be done (Lee
et al. 1999). The typical size of the SQUID chip is about 10 mm2, including pads
for wire bonding (Al and Nb).

Figure 2 shows the principle of measuring an MEG signal using a SQUID. For
the effective pickup of magnetic field signal, a superconductive flux transformer is
used, consisting of a pickup coil of a much larger diameter than the SQUID loop
and a multi-turn input coil integrated directly on the SQUID loop. When a mag-
netic field is applied to the pickup coil, a screening current is generated in the
superconductive flux transformer circuit, and this current is converted into mag-
netic flux through the input coil and magnetic coupling with the SQUID loop. In a
typical design of flux transformer and SQUID, about 0.5 nT of magnetic field in
the pickup coil corresponds to flux transfer of 1 U0 into the SQUID loop.

Fig. 1 Block diagram of MEG measurement system
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2.2 Pickup Coil

Typical dimensions of SQUID loops are about 0.1 mm. Thus, to increase the
detection efficiency, pickup coils of a diameter larger than 10 mm is usually
needed. Among various types of pickup coils, magnetometers or hardware first-
order gradiometers are now used in present MEG systems. Figure 3 shows
examples of pickup coils.

Magnetometers have the best sensitivity to both deep and shallow sources.
At the same time, however, it is more vulnerable to external noises. The optimum
choice of a pickup coil depends on the details of the measurement condition;
thickness of the MSR, strength of environmental noises, and signals to be mea-
sured. Inside a thick MSR or in a quiet location, magnetometers as the sensing
element are preferable. In urban clinics or laboratories, there is often a limitation in
the thickness or weight of the MSR. Thus, moderate or medium-thickness MSRs,
in combination with gradiometers, is the best combination. Generally speaking,
axial gradiometers have longer baselines than planar gradiometers, so that it has
better sensitivity to deep sources than planar gradiometers. For shallow sources,
planar gradiometers have better sensitivity when the axis of current dipole (y-axis
in Fig. 3c) is perpendicular to the field derivative direction of the gradiometers
(x-axis in Fig. 3c).

A planar gradiometer can be made on a single wafer, that is, the planar pickup
coil can be integrated on the same wafer as the SQUID loop. For example, in the
Neuromag system, 2 perpendicular planar gradiometers and magnetometer are
integrated on the same element (wafer) (Parkkonen 2010).

A possible disadvantage of the axial gradiometer is the relative complex pro-
cess in assembling the axial gradiometer, and it needs superconductive connection
(bonding) between pickup coil wires and input coil pads. For the superconductive
connection between the pickup coil and the input coil, usually superconducting Nb
blocks or strips with screw terminals are used. To eliminate pickup area of the
magnetic field due to the superconducting connection structure, Nb blocks are
sometimes shielded using a superconducting tube (Ketchen 1987; ter Brake et al.
1992; Dössel et al. 1993). Since this superconducting block and tube introduces
distortion of magnetic fields, and they are installed at a sufficiently large distance
from the compensation coil of the gradiometer to maintain the balancing of the
gradiometer against the external fields, as shown in Fig. 4a. Increased length of the

Fig. 2 Principle of measuring MEG signal using SQUID
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gradiometer requires higher level of liquid He to keep both SQUID and pickup coil
superconducting. In order to increase the refill interval of liquid He, it is desirable
to position the SQUIDs as close as possible to the gradiometers. Recently, some
improvements were made to remove the shielding tube, so that the SQUID is
positioned at about 20 mm from the compensation coil. But, the stray pickup area
due to the superconducting connection structure generates imbalance of roughly
few percent. A novel method to simplify the superconductive connection method
and to reduce the stray pickup area is direct bonding of Nb wire between pickup
coil wires and input coil pads. Thus, the fabrication process of the gradiometer
became simpler and the total length of the gradiometer can be shortened (Lee et al.
2009). Considering that the residual fields inside the MSR are not highly
homogenous, the intrinsic balancing of the gradiometers needs to be as large as
possible with simple fabrication process.

Fig. 3 Typical pickup coils used in MEG measurements. a Magnetometer, b axial first-order
gradiometer, and c planar first-order gradiometer

Fig. 4 Structure of axial gradiometer. a Conventional axial gradiometer having Nb block and
screw inside a superconducting shield. b Simplified axial gradiometer structure with direct
bonding between pickup coil and input coil
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3 SQUID Electronics

3.1 Flux-Locked Loop Electronics

The voltage output of a SQUID is periodic like a sinusoidal function and nonlinear
with respect to the input flux as shown in Fig. 5a. To get a linear response against
the input flux signal, a special operation scheme, called flux-locked loop (FLL), is
used. In the FLL operation (Fig. 5b), the flux in the SQUID loop is locked at
a constant point using a negative feedback circuit, and the feedback voltage
(or feedback flux through the feedback coil) is measured as the final output.
Figure 6 shows a schematic circuit diagram of standard-type FLL operation. Since
the amplitude of SQUID output against input MEG signals is small, care should be
taken in detecting the SQUID output. For example, a typical MEG signal, say,
100 fT corresponds to about 0.2 mU0 in the SQUID loop, which generates a voltage
signal of 20 nV (for a typical flux-to-voltage transfer of 100 lV/U0). To detect this
level of voltage signal, careful design of a room-temperature preamplifier is needed.
For economic operation of multi-channel SQUIDs for MEG systems, simple and
compact room-temperature readout electronics are required. For the simple struc-
ture of the FLL circuits, output voltages and flux-to-voltage transfers of the
SQUIDs should be large enough so that the contribution of preamplifier input noise
is negligible in direct readout mode (Drung 1996; Drung and Mück 2004). A double
relaxation oscillation SQUID (DROS), based on the relaxation oscillation of a
hysteretic SQUID and a reference junction, provides large flux-modulated voltage
output and a steep flux-voltage transfer coefficient (Adelerhof et al. 1994; Lee et al.
1999; 2005). One example of a DROS design is shown in Fig. 7, which enables
direct measurement of SQUID output using room-temperature preamplifiers, and
makes the FLL circuits compact using DC bias current. In the FLL or internal
feedback scheme, there is crosstalk between adjacent pickup coils. Induced current
in the flux transformer generates a magnetic field, which can be picked up by nearby
pickup coils. This stray coupling can be eliminated by using the feedback scheme

Fig. 5 Response curve of the SQUID to magnetic flux. a SQUID output voltage as a function of
flux signal. b Principle of flux-locked loop operation. Change of signal flux (US) is compensated
by a negative feedback flux (UFB) applied to the SQUID loop. U0 is the flux quantum
(=2.07 9 10-15 Wb)
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called external feedback or current feedback loop, in which the current in the flux
transfer circuit is kept constant (ter Brake et al. 1986).

Superconductivity is maintained under critical condition, that is, below critical
temperature, critical current, and critical field. If the SQUID is exposed to high
magnetic field or transient electric pulses, magnetic flux can be trapped in the thin
film SQUID. Trapped flux can deteriorate the performance of the SQUID or even

Fig. 6 Schematic diagram of the standard flux-locked loop circuit. When the feedback current is
applied to the flux transformer circuit, the total flux in it is maintained constant

Fig. 7 Design of double
relaxation oscillation SQUID
(DROS). a Schematic circuit
diagram of DROS. b Design
layout of DROS in the
SQUID loop area
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make normal SQUID operation difficult. Trapped fluxes can be removed by
applying a current pulse of about 1 W, typically 0.1 * 1 s duration, to the
SQUID. The heater is placed close to the SQUID loop. During heating, the tem-
perature of SQUID temporarily rises to just above its superconductive transition
temperature, at the expense of temporary slight evaporation of liquid He.

3.2 Analog Signal Processing

The voltage output of a FLL circuit is too small to be measured directly by analog-
to-digital converter using a computer. Thus, intermediate amplifier and filters are
used which consist of high pass, low pass, power-line elimination filter and
amplifier. Typical cutoff frequencies for high and low pass filters are 0.01 * 0.1
and 100 Hz, respectively. Amplification is 100 or 1,000 times. Use of analog filters
makes acquisition easier and real-time monitoring of the acquisition process
easier. However, analog filters can change the shape of the signal waveforms and
introduce phase distortions. In addition to the separate space needed to house the
analog signal processing (ASP) circuits, an ASP usually consumes more electrical
power than the FLL circuit does. Recent MEG systems digitize the output of FLL
directly, and measure signals through optical fibers. Advantages of using optical
readout are (i) reduced power consumption, (ii) compact electronics and reduced
installation space by eliminating the ASP box, (iii) elimination of electric inter-
ference from outside of MSR, and (iv) increased dynamic range of FLL output.
Figure 8 shows the comparison of SQUID output measurement systems with
conventional ASP circuits (Fig. 8a) and ASP-free readout system (Fig. 8b).

4 Dewar

Modern MEG systems have helmet-shaped dewars covering the whole head.
Depending on the populations to be measured, there is slight variation in the shape
of the helmet. For example, a dewar for Caucasian people has a longer dimension
along the frontal-occipital direction than the dewars for Asian population. The size
of the dewar should be large enough to accommodate most of the population, but
too large of a helmet size increases the distance between the sensor surface
(measurement points) and the head surface at room temperature (Vrba et al. 2002).
This distance is about 20 mm or less. SQUID sensors can be installed either in the
liquid He reservoir or the vacuum space with tight thermal contact with the He
reservoir (coil-in-vacuum).

He dewar is made of fiberglass reinforced plastic, which is non-magnetic and
mechanically strong with low thermal expansion coefficient. Between the inner
and outer vessel, multiple (around 50) layers of superinsulation (SI) and vapor-
cooled thermal shields are installed. The SI is made from thin aluminum film
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deposited on flexible insulating substrate. To minimize the thermal magnetic noise
induced from the metallic film, the surface area of the aluminum is reduced by
dividing it into an island structure or by crinkling it. The thermal shield also should
be made to minimize the thermal noise. It is made of copper coil foil, which is a
woven fabric, made of thin enameled copper wires. Improper installation of SI and
the thermal shield at the helmet can increase the white noise of the SQUID system.
The white noise of the modern dewars is in the range of 1 * 2 fTrms/HHz. Further
reduction of dewar thermal noise can be done with smaller sized aluminum islands
or thinner metallic layers at the expense of slight increase of boil-off rate. Figure 9
shows the structure of a typical dewar.

5 Magnetically Shielded Room

Depending on the noise conditions of the MEG site, an optimum combination of
magnetically shielded room (MSR) and pickup coil is needed. In rural or mag-
netically quiet sites, the requirement for MSR is lowered. In a usual urban hospital

Fig. 8 Schematic diagrams of the SQUID output measurement systems. a Conventional type
with ASP circuit and analog-to-digital converters. b ASP-free readout with signal transmission
using optical cables
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or laboratory environment, reliable reduction of environmental noise is a key step
for successful acquisition of MEG signals. The most effective and reliable method
of reducing environmental noise is magnetic shielding (Nowak 1998; Kelhä et al.
1982). Typical environmental noise spectrum in an urban site is shown in Fig. 10.
In an ordinary laboratory environment, low-frequency drift of the earth’s magnetic
field is in the range of 100 * 1,000 nT, with variation frequency of about 0.1 Hz.
Main sources of this low-frequency drift are operation (DC power supplied or
movement) of subway (tram), public transportation and elevators, etc. By using
high-pass filtering, this low-frequency drift does not affect the signal quality of
MEG. But, if this drift is too large, the dynamic range of FLL could be reached,
resulting in saturation of the FLL output.

The amplitude of power line noise is in the range of 10 * 100 nT. Use of a
notch filter can reduce the noise peak at power line frequency, at the expense of
phase distortion near the elimination frequency. Some subways use a power sys-
tem generating strong 16.67 Hz noise peak (sub-harmonic of 50 Hz).

Mechanical vibrations of the building, MSR, gantry, and vibration of the sensor
insert inside the boiling liquid He dewar, etc., generate noise peaks in the fre-
quency range of 5 * 20 Hz, which overlaps with the frequency band of MEG
signals.

The MSR uses a combination of ferromagnetic shielding and eddy-current
shielding. For ferromagnetic shielding, high-permeability Ni-alloy, called
Mumetal or Permalloy, is used. Since the permeability of Ni-alloy is sensitive to
stress, care should be taken in handling the material, and the material has to be
hydrogen-annealed before assembling. The magnitude of residual DC fields inside
common MSRs for MEG measurements are about 10 nT. This DC field level

Fig. 9 Schematic structure
of a helmet-shape liquid-He
dewar
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increases with time due to accumulation of stress or gradual magnetization of the
soft ferromagnetic material. Thus, regular degaussing is needed to reduce the DC
field, by applying a magnetic field to the ferromagnetic material with a field
intensity much larger than the coercive force of the ferromagnetic material.

If the shielded room was assumed to be a cubic structure of side length L, the
shielding factors of the ferromagnetic material is

S ¼ 1þ 0:75lrt=L;

where lr and t are the relative permeability and thickness of the magnetic layer,
respectively. With a single layer, there is limitation in providing sufficient
shielding factor. Thus, a multiple-layer structure is preferred, with separation
between the layers.

Fig. 10 Environmental noise and shielding factor of MSR. a Typical noise spectra of
environmental noise. b Shielding factors as a function of frequency in moderately and heavily
shielded room, respectively, used for MEG measurements
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In a 2-layer cubic structure, the shielding factor is

S ¼ 1þ S1 þ S2 þ S1S2 1� L1=L2ð Þ3
n o

;

where S1 (L1) and S2 (L2) are the shielding factor (side length) of the inner and
outer layer, respectively. Typically, the separation between inner and outer layer is
about 20 cm, and then the term S1S2{1-(L1/L2)3} dominates in the above equation.
In 3-layer structure, even high shielding factors can be obtained,

S ¼ 1þ S1 þ S2 þ S3 þ S1S2 1� L1=L2ð Þ3
n o

þ S1S3 1� L1=L3ð Þ3
n o

þ S2S3 1� L2=L3ð Þ3
n o

þ S1S2S3 1� L1=L2ð Þ3
n o

1� L2=L3ð Þ3
n o

where S1 (L1), S2 (L2) and S3 (L3) are the shielding factor (side length) of the inner,
middle and outer layer, respectively.

When the drift of the DC field is large, for example, at a measurement site near
the subway, expensive ferromagnetic shielding alone does not provide sufficient
shielding effect at low frequency, and an active compensation method is needed.
For eddy-current shielding, effective at a frequency above 1 Hz, high-electrical-
conductivity aluminum or copper plates are used (Erné 1983). Since electric
conductors generate thermal magnetic noise, the inner-most part of the MSR has a
ferromagnetic layer to shield the eddy-current noise from the conductive layer.

In eddy current shielding, an important parameter is skin depth d given by

d ¼ q=pl0fð Þ0:5;

where q is the resistivity, l0 is the permeability in free space, and f is frequency of
the noise wave. Typically the eddy current shielding effect is effective at about
1 Hz and above, and it increases exponentially with frequency, as given by

S ¼ L=dð Þð1= 4
p

2ð Þf geðt= dÞ;

where t is the thickness of the conducting plate (Sullivan et al. 1989). The total
shielding factor of MSR made of ferromagnetic material and conducting material
is the product of those for ferromagnetic and conducting material.

Depending on the pickup coil type, thickness of the MSR can be different.
Shielding factors of typical MSRs used in MEG measurements are shown in
Fig. 10. Attenuation of the DC field is in the range of 1,000 * 10,000 times,
depending on the thickness and layers of ferromagnetic plates. A heavily shielded
room is used for a magnetometer array, or for gradiometers in a very noisy envi-
ronment. In addition to the cost for a heavily shielded room, weight of the heavily
shielded room limits the installation site to ground or basement floors. Considering
both the cost and weight of the MSR, a first-order gradiometer array in combination
with a moderately shielded room would be a good economic choice.
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In addition to shielding factors, homogeneity of the residual field inside the
MSR is also important. If the spatial variation of field or field gradient is large,
vibration of the sensor array generates noise, making the well balanced gradi-
ometers ineffective. Thus, minimization of residual fields inside the MSR is
needed, by careful installation of ferromagnetic plates and degaussing afterward.

Figure 11 shows an MEG system with a moderately shielded room installed in a
downtown hospital. For easy walk-in, the doorsill of the MSR needs to be of equal
height as the office floor.

6 Basic Signal Processing Methods
for Magnetoencephalography

MEG signals can be easily contaminated by noises from outside of the shielded
room or from the human body, such as movements of the body and heart beats
(magneto-cardiograms). The outputs of flux-locked loop circuits are passed though
analog filtering, and some digital filtering, such as baseline correction, and through
band-pass filtering. Besides the basic band-pass analog and digital filtering, more
sophisticated signal processing methods are required to improve the signal to noise
ratio of the MEG recordings (Vrba et al. 2001). We can categorize such processing
methods into two groups; software noise shielding and artifact rejection.

6.1 Software Noise Shielding

The software shielding includes an adaptive gradiometry with reference channels,
signal space projection (SSP), signal space separation (SSS), etc. (Uusitalo and
Ilmoniemi 1997; Taulu et al. 2004).

Fig. 11 A picture of a MEG system installed in a hospital. Helmet-shaped liquid He dewar
mounted on a nonmagnetic gantry and inside a magnetically shielded room (MSR). Stimulation
devices, acquisition, and analysis devices are outside MSR
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The gradiometry can be understood as spatial filtering since homogeneous
magnetic fields from far-away sources are cancelled and inhomogeneous magnetic
fields from near-by sources are detected. Generally, a gradiometer consists of a
detection pickup coil close to the source and a reference pickup coil away from the
source. The pickup coils can be replaced by separate SQUID magnetometers.
Especially, the direction of a reference field component can be arbitrarily chosen
by using an orthogonal three-channel vector magnetometer. By subtracting a
composite reference field component of the same orientation to the detection
magnetometer from the signal of the detection magnetometer, we can eliminate
noise from far-away sources in a software manner; we call this method synthetic
gradiometry. Here, the distance between the detection sensor and the reference
sensors is called the baseline. The baseline approximately limits the spatial pass-
band. By placing more reference sensors at different positions, we could form a
higher-order gradiometer, which provides a sharper cut-off shoulder in the shape of
the spatial pass-band.

In construction of a synthetic gradiometer, adaptive filtering can be adopted.
The adaptive filtering is to find a best fitting function for the signal waveform from
a linear combination of the reference waveforms. The linear combination coeffi-
cients (adaptive coefficients) can be calculated by means of linear regression
methods, either in an online or in an offline manner. The adaptive coefficients
correspond to a modified orientation of the reference vector magnetometer by
adjusting the component gains.

We can also apply the adaptive filtering in the frequency domain. Some noise
like mechanical vibration has its own characteristic frequency components;
mechanical vibration of sensor mounts under the magnetic field gradient formed
by magnetized walls generates magnetic vibration noise. In this case, the fre-
quency-domain adaptive filtering is more effective. To find the frequency spec-
trum, short-time Fourier transforms with an adequate window are performed.
Then, the same linear regression fitting process is conducted to match the linear
combination of reference frequency-domain spectra to the signal spectrum.

Usually, such synthetic and adaptive filtering are quite effective to eliminate
external magnetic noise; especially when the passive magnetic shielding is not
sufficient. However, if your system is equipped with a high shielding factor
magnetically shielded room (MSR), the performance of such software methods
would have a limitation. The limitation mainly comes from the intrinsic noise of
each sensor. Since the intrinsic noises of the detection sensor and reference sensors
are not correlated, numerical subtraction always result in total addition of the RMS
noise level of each sensor. To reduce such an effect, we suggested a compensated
adaptive filtering technique which consists of a random sensor noise remover and
adaptive filter. To construct the sensor noise remover, we use factor analysis (FA).
The basic compensated adaptive filtering situation is illustrated in Fig. 12. The
most important feature of the system is to eliminate the reference sensor’s own
noise. To reject the sensor noise, we utilize FA. The background noise source
vector s and observations at the reference sensors x have the following linear
relation,
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x ¼ Asþ n; ð1Þ

where A is a linear mixing matrix and n is a real-valued sensor noise vector.
We can assume that the sensor noise is random and has no correlation with other
channel noises (mutually independent). That is n * N(0, N), where N is a diagonal
variance matrix. In order to extract the feature of the background noise sources
from the sensor-noise-additive observation, we have to apply a general principal
component analysis (PCA) to the covariance matrix of xxT but the noise variance
should be taken into account. The difference between the general PCA and the FA
that we have adopted is to fit only off-diagonal components of the covariance
matrix. The result of the FA process, y, can be denoted by

y ¼ Rx; ð2Þ

where R is the minimum norm generalized inverse,

R ¼ ðÂT
N̂
�1

ÂÞ�1
Â

T
N̂
�1
; ð3Þ

which can be calculated from the estimated values Â and N̂ of the unweighted least
square method. Note that E½yyT� ¼ Kþ RNRT, where K is a diagonal matrix
having the covariance eigenvalues of the pure background noise components.

Fig. 12 Conceptual diagram of the compensated adaptive filtering system
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The sensor-noise-extracted features in y can be projected to the observation space
of x. Then, we apply a standard adaptive filtering process to the signal sensor input
with the result of the FA.

Figure 13 shows the background noise spectra for a single detection sensor after
applying the conventional methods—synthetic gradiometer, time-domain adaptive
filtering, frequency-domain adaptive filtering—and the compensated adaptive fil-
tering in the frequency range from 0.1 to 100 Hz. The baseline between the signal
and the reference is more than 76 mm. The measurements are conducted in a
magnetically shielded room having a shielding factor of about 200 at 0.01 Hz. In
conventional methods, the noise rejection factor is about 3–15 for a low frequency
environmental noise (1.8 Hz peak) and about 8–150 for the 60 Hz line-noise.
In the other frequency regions, the conventional processing makes matters worse.
We can see that the noise levels of conventionally processed results are even
higher than that of the magnetometer in the frequency above 2 Hz. It results from
adding up the reference sensor’s own noise. Figure 13 also shows that the com-
pensated adaptive filtering is helpful to lower the noise level by adding no extra
reference sensor noise.

SSP is a method to separate the signal eigenspace and the noise eigenspace. The
spatiotemporal recordings of a multichannel MEG system can be characterized
into representative eigenvectors based on their covariance between different
channel recordings so that each eigenvector (basis) describes a characteristic
magnetic field distribution pattern. Once such basis eigenvectors are determined,
we are able to find a projection component to the eigenvector. Generally, in order
to apply SSP, we measure an environmental noise without a subject and find
dominant eigenvectors which describe the external noise; that is the noise space.
Afterward, in a real measurement, we calculate the projection component to the
pre-acquisition noise space. By subtracting the projection component from the
original MEG measurement, we can eliminate the dominant background noise
components from the obtained recordings. This method is quite effective because it

Fig. 13 Magnetic
background spectra and the
noise rejection effect by
applying the five listed
filtering methods. The thick
light grey line is the original
observation, the thick black
line is the result of the
compensated adaptive
filtering, and the other thin
lines are results of the
conventional methods
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can be applied in real-time once the noise space matrix has been found. One
interesting example is shown in Fig. 14. In this case, a tiny ferromagnetic particle
was accidentally remained inside the vacuum area of the liquid helium dewar. The
particle generated quite a strong magnetic vibration noise on the nearby SQUID
channels. Because the location of the particle is fixed, we can expect that the
spatial vibration pattern is always the same. So we could apply SSP to eliminate
the artifact. Figure 15 shows the real-time rejection performance of the SSP based
artifact rejection.

SSS is another spatial filtering technique based on orthogonal eigenvector basis
decomposition. In SSS, spherical harmonics are used as the bases. Due to the
radial dependency of each spherical harmonics function, we can categorize the
field potential bases into field components from sources placed inside and field
components from sources placed outside. Therefore, after separating those two
categories, we can eliminate noise fields from outside sources by rejecting the
outside basis components. So we could call this technique software shielding.

In practice, the number of bases is limited by the number of channels and the
order of spherical harmonics is not enough to describe the signal magnetic field
pattern or the noise magnetic field pattern in some cases. Another important point
for the application of SSS is the shape of the sensor array. Because we have to
distinguish the radial potential aspects of the eigenfunctions, if the sensors are

Fig. 14 Magnetic noise from a vibrating ferromagnetic particle in a cryostat. At the left frontal
region, a strong magnetic oscillation has been observed, which remained strong after averaging
100 epochs for observing an auditory evoked field pattern
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placed on a perfect sphere, the method will fail. A helmet type arrangement of the
sensor array can give an affirmative result to a certain extent but a double-layer
detection or more, gradiometer configuration, is desirable.

First, we examine a case of spherical arrangement of the magnetic field sensors.
The sensors are assumed to be placed on a perfect sphere of 100 mm radius as in
Fig. 16. A current dipole source of (100, 100, 0)(nAm) is located at (x, y, z) =
(-30, 10, 60)(mm) inside of the sphere and a strong noise-generating current
dipole source of (0, 0, 1)(mAm) is located at (-20, 3000, 0)(mm) outside of the
sphere. In this condition, the signal source, noise source, and magnetic field sensor
distributions on the sphere are depicted in Fig. 16. The result of software magnetic
shielding implemented by using SSS is shown in Fig. 17. In the simulation,
the number of the internal bases was nine and the number of the external bases
was six.

At a spherical surface of the same radius, the same signal space will be shared
by inner bases and outer bases, and consequently they cannot be distinguished.
Therefore, as shown in Fig. 17d, the decomposition between the signal and noise
will fail.

Fig. 15 a Magnetic noise from a vibrating ferromagnetic particle in a cryostat. b The noise can
be eliminated by using a pre-calculated projection matrix in realtime acquisition

R=100 mm
Small signal

Sensor
surface

Fig. 16 Sensors placed on a
spherical surface
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As suggested in Fig. 18, we assume a double-layered arrangement of sensors
on a pumpkin-like helmet plane which has an increasing radius as a function of
the polar angle. The baseline, a gap between the inner and outer sensor planes, is

Fig. 17 a magnetic field pattern of the signal current source, b magnetic field pattern of the noise
current source, c magnetic field pattern of the signal and noise current sources together, d the SSS
noise reduction result in a spherical sensor array

Sensor
surface

θ R’=100 mm

R=R ’+θ
Small signal

Fig. 18 Aspherical double-
layered sensor arrangement
(baseline: 20 mm)
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20 mm. A weak current dipole source of (100, 100, 0)(nAm) is located at
(x, y, z) = (-30, 10, 60)(mm) inside of the sphere and a strong noise-generating
current dipole source of (0, 0, 1)(mAm) is located at (-20, 3000, 0)(mm) in the
external space of the sphere. In this condition, the signal source, noise source,
and magnetic field sensor distribution on the modified double-layered sphere are
depicted in Fig. 18.

The results of software magnetic shielding with SSS are presented in Fig. 19.
In the simulation, the number of the internal bases was nine, the number of the
external bases was six as assumed in the above simulations. In this case, since
the inner and outer spherical harmonics bases are clearly distinguished due to the
gradiometric structure of the sensor array, clear separation of the internal source
signal is possible in spite of the strong external magnetic noise interference.
Therefore, as shown in Fig. 19d, the decomposition between the signal and noise
was performed well enough.

Fig. 19 a Signal current source b noise source c map of magnetic field formed by signal + noise
source d Results of SSS on aspheric double-layered sensor arrangement
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6.2 Artifact Rejection

Depending on the artifacts to be eliminated, different artifact rejection method can
be applied; e.g., principal component analysis (PCA), factor analysis, independent
component analysis (ICA), state space filtering, and morphological filter, etc.

PCA finds dominant eigenvectors to decorrelate the covariance matrix. By
doing that we get dominant waveforms based on their signal variances. This
method is quite effective when the magnitude of the artifact is strong enough and
shows a large variance. The power line noise is a good target for the PCA-based
artifact rejection method. However, PCA cannot guarantee perfect decorrelation or
orthogonality between the components. Therefore, sometimes, a signal component
could be mixed up with the noise component in the process to find the principal
components. Then, we must use an incorrect waveform when we try to eliminate
the artifacts, which results in signal baseline distortion and incorrect localization
results. To reduce this risk we could use a time-delayed decorrelation method
(Kim et al. 2004).

ICA finds statistically independent components and their mixing matrix. There
are many kinds of ICA, mostly they separate an independent waveform based on
higher-order statistics like kurtosis; the decorrelation is based on the second-order
statistics. Most of ICA sequences go through a pre-whitening process and mutual
information minimization process. So the ICA components are irrelevant to the
magnitude of source components and have permutation uncertainty. Currently, the
predominant ICA method is FastICA since its calculation speed is relatively fast
and the pre-built function is equipped with a widely-used matrix calculation
package. However, many authors prefer a joint approximate diagonalization of
eigen-matrices (JADE) algorithm (Cardoso 1999) since JADE can deal with
complex number data. For separation of spike-like components, FastICA or other
methods are all satisfactory, for separation of periodic signals, however, JADE
showed a more robust performance.

Target artifacts which should be rejected in MEG analysis are eye movements
(Fig. 20) and heart signal (Fig. 21). Due to the permutation uncertainty of the ICA
algorithm, such artifacts are basically selected visually among the separated
independent components, which is a time-consuming job. For a practical use,
we can utilize an expected spatial field distribution of the artifact component.
For example, the power of magneto-oculogram from eye movements would be
prominent on the forehead channels. The power of magnetocardiography from
heart beats would be prominent on lower sensors of the helmet. Based on such
power distribution, we can automatically select the independent components
corresponding to the noise artifacts and we can eliminate the projection of the
artifact components.

State space filtering is useful for periodic data reconstruction under low signal
to noise ratio. In practice, time-series embedding is popular. According to Taken’s
embedding theorem, M-dimensional dynamic system can be embedded in <2Mþ1.
For m = 2M + 1, we can conduct time-series embedding by using equi-interval
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time-delayed signal vector ~xn ¼ ðxn; xn�s; � � � ; xn�ðm�1ÞsÞ. Figure 22 shows an
example of the time-series embedding. An MCG waveform has been embedded in
a state space and it forms an attractor. The embedding time interval should be

Fig. 20 Rejection of magnetooculogram (MOG) signals by using ICA. Top the original data,
middle selected MOG component, bottom MOG removed signal
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Fig. 21 Rejection of magnetocardiogram (MCG) signals by using ICA. The data were recorded from
an epilepsy patient. Epileptic spikes, slow wave, and the MCG artifact are successfully separated

Fig. 22 State space time-series embedding of an MCG waveform. Here, the embedding space
dimension is 3 and the dimension of the dynamic system is 1
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determined carefully; if the interval is too short, then there will be a diagonally
stretched attractor while when the interval is too long then there will be an attractor
with no correlation. Usually, if the time series has a band-limited spectrum, the
time interval can be determined as follows. ms � s� ¼ 2p

x�, where x� is the cutoff
frequency of the spectrum.

The simplest noise reduction method in state space is to take the mean value of
neighbors within a constant radius, but this is merely equivalent to triggered time-
averaging. The next is trace contraction, which calculates the covariance matrix
of a constant number of neighbors. Once a principle axis is determined, the
orthogonal error axis components should be suppressed (Fig. 23). The other
method is to use Wiener filtering, which averages neighborhoods in the Fourier
space.

One good aspect of state space filtering is that we can apply this method to a
data set recorded with a reference sensor of different sensitivity (even for a
non-linear gain). Figure 24 shows the results of state-space filtering and adaptive
filtering, respectively, for simulated MCG signals contaminated by 60 Hz power
line noise. Here, the detection channel has a linear gain, but the reference channel

Fig. 23 Trace contraction
in state space. The main axis
in neighboring points is
calculated by PCA and the
trace is contracted to the
principal orientation

Fig. 24 Noise rejection
results of adaptive filtering
and state space filtering,
respectively. Here, the
reference sensing channel has
a non-linear gain
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has a non-linear gain; a distortion in 60 Hz waveform in the reference channel.
The noisy component remained in the adaptive filtering result primarily due to
waveform distortion. However, the state-space filtering shows good performance.

A morphological filter is generally used for eliminating the signal baseline.
Basic operators include erosion, dilation, opening, and closing. Depending on the
composition and the order of applying the operators, we could make various kinds
of filter characteristics. The morphological filter operation is usually adjusted by
trial and error.

7 Magnetoencephalography Based on Atomic
Magnetometer

MEG has been proven to be a useful brain research tool not only for clinical
diagnosis but also for higher cognition studies. However, the distribution of MEG
systems into the practical measurement field is not so popular. One of the reasons
could be the fact that MEG systems need to be cooled down to the supercon-
ducting temperature and they consume liquid helium. In some conditions, the
supply of liquid helium is burdening. Recently, optically pumped atomic mag-
netometer sensors are beginning to attract people’s attention because they are
expected to be operated in a room temperature. The basic principle of an atomic
magnetometer is depicted in Fig. 25. Alkali metal vapor in a glass cell becomes
polarized when the cell is illuminated by circularly-polarized light. When there is
an external magnetic field, the polarization begins to tilt. The tilting changes the
energy population to the probe beam direction which provides different refraction
indexes for the left-circularly polarized light and right circularly polarized light,
respectively. Finally, it rotates the polarization angle of the linearly polarized
probe beam. By measuring the polarization angle rotation we can detect the
magnetic field strength.

The sensitivity of an atomic magnetometer mainly depends on the spin relax-
ation or spin destruction caused by spin-spin collision or spin-wall collision,
respectively. However, in a condition where the external magnetic field is very
weak and the atomic density is very high at a high temperature, the spin collision
happens more often than the Larmor precession. The population density of each
magnetic sublevel is determined by the spin temperature and total angular
momentum Fz. The slow-downed precession frequency is proportional to the
torque \ Sz [/\ Fz [ and the external magnetic field. The expectation value
of \ Sz [ and \ Fz [ can be calculated from the population density distribution.
By assuming that the atoms have nonzero average orientation and the spin
temperature is high, we can simply approximate the population density of MF,
magnetic quantum number, as 1 + MF/T. The calculation shows that the slow
down factor is not so significant and the direction of precession is the same as that
of a F = I + 1/2 free atom since the state dominates in the average spin precession
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due to having more Zeeman sublevels. Anyway, with this scheme, there is
effectively no spin exchange from the spin-spin collision, which provides a long
spin coherence time and a sharp linewidth, hence the high sensitivity. By using this
scheme, we could reach several fT sensitivity with an atomic magnetometer and
succeed in measuring auditory evoked magnetic fields (AEF) from a human brain.
The atomic magnetometer system was developed at Princeton University and
Fig. 26 shows the apparatus and measurement condition for a human.

The system has 256 sensing channels and the detection area is about
3 9 3 cm2.

Figure 27 shows the measurement result. For comparison, we put the same AEF
experimental result with a homemade partial-coverage SQUID MEG system
having 37-channel magnetometers in Fig. 27b. The signal to noise ratio is com-
parable to each other. However the recording of the atomic magnetometer shows
only a single polarity while the SQUID MEG system shows the bipolar aspect.
This result was caused by insufficient detection area of the atomic magnetometer
sensor system.

Later, a wide detection area system was developed (Kim et al. 2008). The
system was equipped with a wide rectangular cell, retro-reflect scheme, orthogonal
tangential field component measurement, and detuned balanced pumping for the
purpose of source localization (Fig. 28). The system gets rid of a blind direction in
the probe beam and achieves more balanced pumping in the wide cell.

In conclusion, the atomic-magnetometer-based MEG system shows great
potential as an alternative tool to a SQUID-based MEG system. As for now, there
are still several practical problems that need to be solved; absolute field zeroing,
compromise between sensitivity and bandwidth, phase delayed response depend-
ing on its pumping rate, etc.

Fig. 25 Optically pumped polarization in alkali metal vapor rotates the polarization angle
of linearly polarized probe light and the rotation angle is proportional to the external field
strength
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Fig. 26 Auditory evoked field measurement with the atomic brain magnetometer system.
The potassium cell and a human subject are placed in a three-layered cylindrical Mu-metal shield.
To block heat from the oven containing the cell, cooling water is circulating through a water bag
between the head and the oven. Tone stimuli are applied to an ear through a non-magnetic
pneumatic earphone (picture courtesy of K. Kim et al. in NeuroImage journal)

Fig. 27 a Auditory evoked field traces for all atomic magnetometer channels. The typical
N100 m peak appears 100 ms after the sound stimulus. b AEF traces measured by a 37-channel
SQUID MEG system (picture courtesy of K. Kim et al. in NeuroImage journal)
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8 Brain Magnetic Resonance: A Novel Modality
for Visualizing Brain Functional Connectivity

Micro-Tesla nuclear magnetic resonance (NMR) technique is one of the most
challenging applications based on SQUID technology. In the technique, the
external magnetic field is the order of micro-Tesla and all the apparatuses
including a pre-polarized sample, an imaging gradient field coil system, a low-
noise SQUID detection system are placed in a magnetically shielded room
(Fig. 29).

The frequency independent, high sensitivity of the SQUID magnetometer
enables the measurement of weak NMR signals even for the low Larmor frequency
at a micro-Tesla static field, which could provide a new application such as direct
measurements of low frequency electrophysiological activity.

Fig. 28 A wide cell atomic brain magnetometer system for the purpose of source localization

Fig. 29 A micro-Tesla
NMR/MRI system. The
measurement is conducted
under a micro-Tesla magnetic
field. All the detection and
coil systems are placed in a
magnetically shielded room
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We suggest the new research field of SQUID NMR, be referred to as bio-
magnetic resonance techniques (Kim et al. 2012a). The concept of biomagnetic
resonance is to conduct a direct detection of coherent bioelectric oscillation
(Fig. 30).

For this purpose, we make resonance between the precession frequency of the
nearby protons and the frequency of electrophysiological oscillation. The fre-
quency range of the electrophysiological oscillation is about 1 Hz * 1 kHz.
As examples for the biomagnetic resonance techniques, we can think of heart
magnetic resonance (HMR) and brain magnetic resonance (BMR).

HMR could be applied for development of a medical instrument localizing an
abnormal myocardial excitation in hearts. In arrhythmia like atrial fibrillation or
flutter, the excitation has rhythmic activity with its own characteristic frequency.
The main idea of HMR is to match the NMR frequency to the specific frequency of
the abnormal heart activity so that we could find the position of the reentry current
generation by using the conventional magnetic resonance imaging (MRI) tech-
nique (Kim 2012).

In BMR, matching the NMR frequency to the frequency of a periodic neural
oscillation like alpha- or gamma-band waves enables direct visualization of the
brain functional connectivity by MRI. Especially, BMR enables localization of
multiple correlated sources which has been challenging in the MEG/EEG source
reconstruction.

We demonstrated the feasibility of these new ideas by conducting numerical
simulations and phantom experiments with a SQUID-based micro-Tesla NMR
equipment (Kim 2012c). We introduced an experimental trick named K-step, a
non-adiabatic change of the external field, to decouple the NMR signal from the
direct measurement of the biomagnetic fields, as well.

Fig. 30 The concept of biomagnetic resonance. A periodic electrophysiological oscillation can
resonate nearby protons when the Larmor frequency of the external field is matched with the
frequency of the electrophysiological oscillation
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In the future, we expect the BMR technique could provide valuable information
on neurocomputational analysis underlying higher cognitive functions of the
human brain.

9 Conclusion

The technology of modern MEG systems is matured enough to measure MEG
signals with sufficient signal-to-noise ratios. MEG systems using high-sensitivity
SQUID sensors, either magnetometer or gradiometer (axial or planar), have system
sensitivity about 3 fT/HHz in the white frequency range. Liquid Helium dewars
and MSRs are well-matured in terms of performance, but some improvements are
needed to further reduce fabrication and operation costs.

Considering that liquid He is becoming more difficult to acquire, radical
improvements in cooling concepts or sensor technology is needed, which do not
rely on liquid He, or cooling with very-little use of liquid He. For example,
cryocooler operation of low-Tc SQUID system (Sata et al. 1999), use of low-noise
high-Tc SQUIDs (Faley et al. 2013) or low-noise atomic magnetometers (Sander
et al. 2012) could be considered. However, cryocooler operation generates
vibration noise peaks in the measurement frequency region, while mass fabrication
of reliable high-sensitivity high-Tc SQUID is still an unsolved task, and the atomic
magnetometer still has a technical difficulty of eliminating absolute field in the
atomic vapor cells. Though the development speed of these liquid-He-free sensors
is rather slow, it is worthy of watching their progress.
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Novel Noise Reduction Methods
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Abstract Magnetoencephalography (MEG) is a non-invasive neuroimaging tool
that offers a combination of excellent temporal and good spatial resolution, pro-
vided that the acquired signals have a high enough signal-to-noise ratio. This
requirement is often compromised as MEG signals are very weak and often
masked by interfering signals from environmental noise sources present at most
MEG sites. Even more challenging interference is encountered if the subject
carries any magnetic material attached to the body, which is sometimes inevitable
in clinical settings, e.g., due to therapeutic stimulators. Therefore, to enable reli-
able data analysis, it is very important to reduce the contribution of noise in MEG
signals as efficiently as possible. In this chapter, we review the basic characteristics
of MEG signals, give a short review on traditional approaches to suppress noise,
and describe some examples of modern noise reduction methods. Specifically, we
emphasize the usefulness of advanced mathematical algorithms applied on the
multichannel MEG data.
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1 Introduction to Noise Reduction

1.1 Characteristics of MEG Signals and Interference

In MEG, we make inferences about neural processes based on the magnetic field
produced by the associated neural currents (see, e.g., Hämäläinen et al. 1993). This
magnetic field is detected outside of the head with sensors that are sensitive
enough to capture those very weak signals, typically on the order of 10–1,000 fT at
the usual measurement distance from the brain tissue. To date, the only technically
practical and sufficiently sensitive sensor for MEG is the superconducting quantum
interference device (SQUID) (see, e.g., Wikswo 2004; Clarke and Braginski 2006)
although other potentially promising sensor types have also been introduced, such
as atomic, or optical, magnetometers (Kominis et al. 2003) and GMR-based
‘‘mixed sensors’’ (Pannetier et al. 2004). Regardless of the sensor type, estimation
of the neural sources underlying the MEG signals is compromised by inaccuracies
posed by the MEG hardware itself and, more importantly, by magnetic interfer-
ence from sources external to the brain. Due to the weakness of the brain signals,
interference quite often dominates the measured MEG data and should therefore be
identified and suppressed as accurately as possible. Thus, it is important to model
the interference in MEG data even more precisely than the brain signal contri-
bution. When successful, this modeling enables accurate extraction and suppres-
sion of the interference and thus facilitates reliable source analysis. However, it is
quite common that source reconstruction algorithms are applied on acquired sig-
nals with the assumption of ideal hardware and ideal measurement conditions. If
these assumptions were true, then one could directly fit forward models derived
from Maxwell’s equations to the measured data, and find the most plausible source
configuration among all possible source distributions. This inverse problem, which
inherently does not have a unique solution (Helmholtz 1853), only requires
information about the source geometry with respect to the detected magnetic field.
Yet, to obtain most accurate and reliable results, the compliance of the recorded
signals with Maxwell’s equations must be verified. Furthermore, the contribution
of magnetic signals from sources outside of the brain should be suppressed.

Before we discuss the different types of interference that can distort the MEG
signal and the approaches that can be used to suppress them, let us first review
some of the basic concepts and characteristics of MEG signals. Each SQUID
sensor is coupled to a pick-up loop that measures the flux of the magnetic
induction field B through the loop. Specifically, the flux can be expressed as the
surface integral of the field B over the area of the pick-up loop: / ¼

R
B � ds.

The first MEG measurements were performed with only one sensor (Cohen
1968, 1972). The number of sensors simultaneously detecting the flux at distinct
locations was small until the 1980s when the size of the sensor array started to
grow rapidly. Today, modern MEG systems contain hundreds of sensors (e.g.
Clarke and Braginski 2006, Chap. 11). The multichannel output of these systems
can be expressed as a time-varying vector in the signal space, a concept introduced
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in the 1980s (Ilmoniemi 1981; Ilmoniemi and Williamson 1987; Ilmoniemi et al.
1987). Sampling theory (Ahonen et al. 1993) is crucial for the design of sensor
arrays as well as for understanding the physical aspects of the multichannel sig-
nals, especially their spatial complexity and information content.

Various system issues in multichannel MEG systems complicate the interfer-
ence suppression and signal analysis (Clarke and Braginski 2006, Chap. 7).
Sensors packed close to each other in a multichannel array always suffer from
crosstalk phenomena to some extent. These couplings, of the order of 1 %,
typically arise from inductive coupling between the pick-up coils and feedback
currents of the neighbouring MEG channels. Such cross-talk between the channels
distorts the signals even in the absence of any external interference or hardware
calibration errors. Therefore, cross-talk should be computationally or experimen-
tally determined and compensated for to get an estimate of the cross-talk-free
signal. Alternatively, the signals could be compensated for cross-talk in the for-
ward model. Another major concern possibly violating our assumption of the
direct applicability of Maxwell’s equations on measured signals are the calibration
errors. For example, the electronic components used to transform the actual
magnetic flux to a voltage may contain gain errors distorting the measurement.
Manufacturing of the sensors is not infinitely accurate; there may be slight
variations in the surface areas of the pick-up loops, locations and orientations of
the sensor may deviate from the nominal ones, and the gradiometers may exhibit
small imbalances. Therefore, it is important to calibrate the system as accurately as
possible before estimating any source parameters from the data with mathematical
models.

In this chapter, we concentrate on interference suppression methods operating
at the sensor level of a multichannel MEG system. We do not assume any specific
neural source model although some source modeling approaches, such as the
beamformer, may also efficiently suppress interfering signals. We will mainly
describe approaches for processing of the sensor-level data that can subsequently
be used for analysis with any desired source modeling method. Regarding
nomenclature, although ‘‘noise’’ is a commonly used general term to describe all
kinds of magnetic disturbance fields and artifacts, we prefer to classify different
types of MEG disturbance as follows: our use of ‘‘interference’’ will refer to non-
physiological sources that are clearly unrelated to the MEG sensor array whereas
our use of ‘‘noise’’ will refer to sensor or radiation-shield noise caused by random
processes.

1.2 Sampling of the Neuromagnetic Field

All interference suppression methods make assumptions about the separability and
detectability of interference and signals of interest. Such assumptions may include
a priori information about the spatial, temporal, or spectral features characteristic
to the different signal components. One of the fundamental questions is whether
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we can decompose the multichannel measurements into unique subsets of basic
components, some containing only interference and others only neural signals.

In the spatial domain, the number of degrees of freedom, or the effective rank of
the neuromagnetic data, has been extensively studied in the past (Ahonen et al.
1993). This spatial sampling theory for MEG is based on the fact that a multi-
channel MEG measurement can be considered as spatial sampling of the contin-
uous neuromagnetic field. The theory shows that the measurable MEG signals are
limited to the low end of the spatial-frequency spectrum. As a practical conse-
quence, there is an upper limit to the number of sensors and a lower limit to the
minimum distance between adjacent sensors. Specifically, it has been shown that
for MEG signals measured at the minimum distance d, the contribution of spatial
frequencies higher than 1=ð2dÞ is below the sensor noise and therefore insignifi-
cant. Thus, the part containing biomagnetic information in the measured signals is
limited in spatial complexity, which also means that the number of degrees of
freedom of MEG data is limited. Although this reduces the effective rank of the
data to about 100, hundreds of MEG channels are needed to reliably estimate the
basis components spanning all detectable signals (e.g. Nenonen et al. 2004; Taulu
and Kajola 2005).

1.3 Challenges Specific to MEG

The basic challenge of MEG stems from the fact that the neural currents are weak
and aligned coherently in the brain only over a short distance, and the associated
magnetic field is measured by sensors outside of the head. Additionally, with
SQUID-based detectors, the sensor-to-source distance is further increased by the
necessary thermal insulation layer of the helium dewar, about 20 mm. Conse-
quently, the amplitude of the neuromagnetic signal detected in MEG is in the range
from 10 to 1,000 fT.

The weakness of the signal can be overcome by increasing the sensitivity of the
sensors; however, sensors that are more sensitive are also more susceptible to
ambient interference fields, which may eventually exceed the dynamic range of the
sensors. Clinical environments are often magnetically noisy, with a variety of
electrical equipment radiating magnetic interference not only at the power line
frequency and its harmonics, but also across a wide frequency range reaching from
near DC up to several GHz. Interference at the lower end of the frequency range is
usually due to traffic (cars, trains, trams) and large moving objects inside the
building (e.g. elevators). The typical low-frequency peak-to-peak variation of the
magnetic field in such an environment is a couple of lT.

To measure 10-fT signals of interest on top of 1-lT interference, one would
need a sensor with a dynamic range exceeding 8 orders of magnitude. To date, no
magnetic sensor exists with a linear response over such a wide dynamic range. The
linearity of the sensors, on the other hand, is a necessary prerequisite for successful
signal processing and source analysis. Therefore, an efficient means to reduce the
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actual physical magnetic interference is necessary for feasible MEG recordings
and analysis, especially in a clinical environment. When hardware-based magnetic
shielding is sufficient to keep the sensors within their linear operating range, the
remaining interference can be further reduced by multichannel signal processing
methods, such as spatial and temporal filtering.

Another challenge specific to MEG is the possible movement of the subject’s
head during recording. The physical sensor array of the MEG system is stationary.
Movement-related distortion of the signal biases source localization and is more
challenging with MEG than with the EEG method where the electrodes are
attached on the scalp and do not move with respect to brain. To fully benefit from
the MEG method’s better source localization capability, one must ensure that the
accurate location of the head relative to the sensor array is known at all times
during the MEG recording.

1.4 Sources of Interference and Noise

The largest-amplitude ambient magnetic fields usually arise from traffic outside of
the building. Elevators and MRI magnets operated close to MEG, and even doors
made of magnetic material are potential sources of magnetic interference inside of
the building. In urban environments, cars on nearby streets, trains and metros
cause low-frequency peak-to-peak variations of magnetic field which are typically
in the range 1–3lT.

When a vehicle moves at a distance of D with velocity v, the frequency range of
the resulting interference is around v=D. For example, cars driving at 50 km/h at a
distance of 30 m or a train passing by at 200 km/h at a distance of 100 m result in
low-frequency field variations at around 0.5 Hz.

In this frequency range the shielding factor of a typical magnetically shielded
room (MSR) is rather low, about 100 (40 dB). Therefore, operating magnetometer
sensors in an MSR with 1-lT ambient interference from traffic requires sensors
with higher than 10-nT dynamic range, if no other means of interference rejection
is used.

Because the shielding factor of an MSR rises steeply with increasing frequency,
the low-frequency interference present in the environment will typically dictate the
required hardware shielding performance at a specific MEG site. For example,
interference at powerline frequencies 50/60 Hz seldom exceeds 1lT in clinical
environments, and is thus sufficiently dampened by a typical MSR which easily
attains a shielding factor in the range of 105 (100 dB) at these frequencies. An
example of low- and line-frequency interference inside a magnetically shielded
room is shown in Fig. 1.

At radio frequencies up to several GHz, an MSR should maintain a shielding
factor of about 105 or higher. Although these frequencies are much higher than any
brain signals and thus irrelevant for MEG, the shielding is still required because the
functioning of DC SQUIDs involves intrinsic frequencies in the GHz range, related
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to the superconducting tunnel junctions whose so-called Josephson frequency is at
4.8 GHz for a bias voltage of 10 lV (see, e.g., Clarke and Braginski 2006). Modern
digital equipment may cause strong electromagnetic radiation in this frequency
range, and would severely disturb unshielded SQUID-based sensors.

The sources of interference and noise mentioned above are related to the
installation site of the MEG device. In addition, there are numerous interference
sources that are related to the MEG technology itself. Some of them cannot be
compensated for by the MSR because they stem from the MSR itself or from
sources inside of the MSR. For example, the walls of the MSR are made of
conductive and magnetic material, which may result in magnetic interference by
two mechanisms. The thermal currents in the walls of a typical MSR generate a
magnetic field noise density of about 2 fT/

ffiffiffiffiffiffi
Hz
p

(Nenonen et al. 1996). Also, small
vibrations of the walls result in magnetic interference typically seen as 10–30-pT
peaks in the frequency band 13–30 Hz. These peaks result from the high-Q-value
eigenmodes of the MSR walls and ceiling that are driven by the vibration of the
building and the infrasound due to forced ventilation.

Another vibration-related artifact in MEG signals arises from the mechanical
movement of the MEG device itself in the remanence field inside of the MSR. The
maximal amplitude of this type of artifact in magnetometer sensors can be esti-
mated by multiplying the remanence field by the vibration-related rotation angle.
The remanence field in a typical MSR is 100 nT. Assuming the vibrational rotation
to be a 10-lm movement of the sensor helmet around an axis one meter away from
the helmet, we observe 1 pT magnetic signal due to this vibration.

All metal, magnetic or conductive, components of the MEG device are potential
sources of magnetic interference. Most of these sources can be eliminated by
proper design of the equipment. After careful design, the dominant device-related
source of magnetic interference is typically the thermal insulation (super

10 s

0.5 s

(a) (b)

20 pT

Fig. 1 a An example of a single magnetometer (over the occipital region) signal recorded
without a subject in the magnetically shielded room. The inset shows a 1-s epoch of the data
which reveals the line-frequency contamination. b Spatial distribution at the time of the largest
amplitude of the signal shows a homogeneous field distribution. The view is from the top of the
sensor array, and the circles indicate the locations of the 102 magnetometers of the Elekta
Neuromag MEG system. Blue and red lines indicate magnetic field flux into and out of the array
surface, respectively. The step between adjacent contour lines is 20 pT
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insulation) covering the sensor area of the dewar, which is necessary to keep the
liquid helium boil-off rate below 10 l per day. In modern MEG devices this noise
contribution is below 3 fT/

ffiffiffiffiffiffi
Hz
p

. Any auxiliary devices such as stimulators,
cameras, speakers or microphones used inside of the MSR are also potential
sources of severe interference. The compatibility of these devices with the MEG
method must be carefully verified case by case.

Finally, the recorded MEG signals contain sensor noise related to the SQUIDs
and their readout electronics. The pick-up antennas in a modern MEG device,
having about 300 sensors in total, are relatively small. Therefore, to achieve
adequate field sensitivity, it is necessary to minimize the electronics-related noise
contribution. This can be done, for example, by applying pre-amplifier noise
cancellation based on positive feedback (Kiviranta and Seppä 1995). In this way,
the noise in individual MEG channels can be kept at the level of 3–4 fT/

ffiffiffiffiffiffi
Hz
p

in
the white noise range and at about (6/f) fT/

ffiffiffiffiffiffi
Hz
p

at low frequencies (1/f-noise).
There are also other device-related non-idealities that manifest as distortion and
bias in the recorded data. Such factors include, for example, errors in calibration,
location, and orientation of individual sensors, as well as imbalance of
gradiometers and cross-talk between the channels. Most of these non-idealities,
often seen as a kind of ‘‘DC-interference’’, can be well characterized and com-
pensated for by modern software methods that are discussed in detail in Sect. 3.

In addition to the ambient and device-related noise and interference mecha-
nisms described above, the subject studied—or patient in case of clinical MEG—
may also be a source of severe interference. This applies especially in clinical
work where patients may often have dental braces, therapeutic stimulators, or
magnetic residue from prior surgical operations on or inside the skull. Prior to the
invention of advanced software-based methods for interference rejection, such
magnetic components in the body were considered a contraindication for a
meaningful MEG study. The software methods to suppress disturbances caused by
magnetism in patients are discussed in detail in Sect. 3.

2 Conventional Interference Reduction Methods

2.1 Magnetic Shielding

As mentioned in the previous section, the basic method of interference reduction
that has been in use since the very beginning of neuromagnetic studies (Cohen
1970) is to use a magnetically shielded room (MSR). Figure 2 illustrates the
principle of magnetic shielding and shows a commercial three-layer room. MSR is
a room-size metal enclosure constructed using layers of both highly conductive
metal, usually aluminum or copper, and metal with high permeability (see e.g.
Kelhä et al. 1982). Mu-metal is a commercial name for a variety of nickel-iron
alloys having a dynamic (initial) relative permeability as high as 50,000.
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The shielding performance of a MSR is usually described by a frequency-
dependent shielding factor which is the ratio between the external interference
field Bextðf Þ and the corresponding value of field inside of the shield Binðf Þ, that is,
Sðf Þ ¼ Bextðf Þ=Binðf Þ. The shielding effect of a metallic magnetic shield made of
conducting and high-permeability material is based on two mechanisms: polari-
zation of the high-permeability metal, and eddy currents induced by varying
magnetic field. These mechanisms are demonstrated in Fig. 3 where the shielding
performances of different wall compositions, with equal proportions of mu-metal
and aluminum, are compared.

At frequencies below 0.1 Hz, where induction is negligible, the polarization of
the high-permeability material is the only mechanism providing magnetic
shielding. When the frequency increases, the induction mechanism starts to have
an effect on the shielding. In this frequency range, additional shielding is provided
by the ‘‘global’’ eddy currents induced to run in the conducting walls around the
entire room. This additional shielding effect sets in at the frequency determined by
the resistance of the conductive wall and the inductance related to these ‘‘global’’
currents. The related shielding effect grows proportional to the frequency, as
shown by the lowermost Sðf Þ-curve in Fig. 3. When the frequency is further
increased, the induced currents on the outer surface of the wall start to shield the
inner parts of the wall, and the shielding starts to grow exponentially with
increasing frequency. This is the well-known skin effect, with a skin depth given
by d ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
pf lr
p

. Here r and l are the conductivity and permeability of the wall.
Since the construction of the first room-size magnetic shield in 1962 (Patton

and Fitch 1962), a variety of different multilayer MSRs have been manufactured
for biomagnetic purposes. To obtain increasingly better magnetic shielding per-
formance, the amount of metal and the number of metal layers has been increased
up to the record number of eight (Bork et al. 2001). Such a huge MSR with
6 9 6 9 6 m3 external dimensions and a total of 24.3 tons of mu-metal provides

Fig. 2 a Principle of magnetic shielding. Layers of aluminum and mu-metal provide a path for
magnetic field lines around the enclosure. b A three-layer magnetically shielded room (Imedco
AG, Hägendorf, Switzerland) at the O.V. Lounasmaa Laboratory of Aalto University (Espoo,
Finland)
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excellent magnetic shielding even at very low frequencies. While this type of
shielding is extremely useful in scientific research requiring magnetically distur-
bance free environments, it is not practical for clinical MEG use.

As a solution for the need of compact and lightweight MSRs for clinical MEG
applications, designs with a total MSR weight below 5 tons and external dimen-
sions of 3 9 4 9 2.5 m3 have been developed during the past ten years (for
performance evaluations, see Parkkonen et al. (2006) and de Tiège et al. (2008)).
To ensure sufficient shielding performance of these light MSRs with reduced
amount of mu-metal, special attention has been paid to the joints between the
metal wall elements to guarantee optimal electric and magnetic conductance
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Fig. 3 Optimization of aluminum/mumetal-based MSR wall structure. Estimated shielding
factors of four different Al/mu-sandwich structures are shown. The scattering matrix model for
concentric spherical shells (e.g., Kelhä et al. 1982) with inside radius 1.9 m is used in the
calculation. The layers in the 2-, 3-, 4-, and 8-layer sandwiches are in surface-to-surface contact,
and the amount of metal is kept constant in all four structures; 2 mm of mu-metal and 12 mm of
aluminum in total. For the electrical conductivity of aluminum and mu-metal, and for the relative
permeability of mu-metal we have used 3:57� 107ðXmÞ�1, 1:82� 106ðXmÞ�1, and 16,000,
respectively. For reference, the Sðf Þ-curves of 12 mm of mere aluminum, and 2 mm of mere mu-
metal are shown by the two lowermost curves. For mere aluminum, the shielding is negligible
below 0.1 Hz, and above that grows proportional to f due to induced global eddy currents. The
skin depth of aluminum is so long that no skin effect, that is, exponential growth of Sðf Þ, is
evident even at 100 Hz. This is because of the low relative permeability of aluminum. The second
lowest curve is for 2-mm mu-metal showing a 20-dB shielding down to DC but no global current
shielding regime, because of low electrical conductivity of mu-metal. Instead, a skin effect
regime with exponential growth of Sðf Þ is starting to show up above 10 Hz. Keeping the total
amount of metal constant, but increasing the number of layers in the al/mu-sandwich reduces the
skin depth and the frequency at which the skin effect sets in. With an increasing number of layers
in the sandwich, the shielding factor at a given frequency between 0.5 and 100 Hz increases and
the Sðf Þ-curves asymptotically approach the uppermost curve showing the shielding obtained
with an ‘‘infinite number’’ of layers, that is, a 2-mm thick shell made of fictive ‘‘Al/mu-alloy’’
having the electrical conductivity of a 12-mm thick aluminum plate, and the relative permeability
of mu-metal. The saturation of Sðf Þ at 115 dB is due to the openings in the MSR wall
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across the joints (Simola et al. 2005). Also, several conductive aluminum layers
and high-permeability mu-metal layers have been interleaved to reduce the
effective skin depth of the wall structure (Simola 2003). This lowers the frequency
at which the skin effect and the related exponential growth of the shielding factor
Sðf Þ with increasing frequency sets in, thus increasing the shielding performance at
frequencies above 0.5 Hz; see Fig. 3.

To support the magnetic shielding provided by a MSR, several active shielding
concepts have been proposed and realized. The simplest method to actively
counteract ambient magnetic interference consists of a magnetic sensor—a three-
axis fluxgate, for example—located in the vicinity of the MSR, and three
orthogonal sets of coils wound on the outside of the MSR. The fluxgate records the
variations of the ambient field and controls a current supply that feeds the coil sets
to produce a field that counteracts the ambient field variations at the location of the
MSR. This method is called feedforward active compensation. In this arrangement
the fluxgate has to be located far from any local sources within the building, and at
a sufficient distance from the compensation coils. The feedforward system works
well against distant interference sources that produce a nearly uniform field. With
this method a typical achievable shielding factor against such interference is in the
range 10–50 (20–35 dB).

If the fluxgate is moved closer to or within the coil system, the arrangement
turns into a feedback system that keeps the magnetic field constant at the location
of the fluxgate, providing an alternative approach to construct an active com-
pensation system. The fluxgate cannot be located inside the MSR because the
inductive time constant of the MSR leads to a relatively long time delay between
BextðtÞ and BinðtÞ, typically 2–3 s. A novel feedback active compensation method
based on the MEG sensors and compensation coils inside the MSR will be
described below in Sect. 3.5.5.

2.2 Gradiometrization

Another hardware-related interference rejection method, which has been utilized
since the early days of biomagnetism, is the use of gradiometers instead of simple
magnetometers. Zimmerman and Frederick (1971) used an axial gradiometer
consisting of two oppositely wound co-axial coils, while Cohen (1979) utilized a
planar gradiometer where the coils are on the same plane (see Fig. 4).

A first-order gradiometer has a pick-up antenna consisting of two loops that are
planar, parallel, and usually identical in size and shape. The loops are oppositely
wound and located in space so that one loop is translated from the other by a vector
h. The length h is called the baseline of the gradiometer. If h is parallel to the
common normal n of the loops, the gradiometer is called axial. In the case of a
planar gradiometer, h is orthogonal to n. In principle, h and n could be at any
angle relative to each other but axial and planar are the two gradiometer types most
commonly used.
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The signal of a gradiometer MEG channel is proportional to the net magnetic
flux through the pick-up antenna. If the field contains gradients up to second order
only and the gradiometer is ideal this flux is given by

g ¼ AnT
oBx=ox oBx=oy oBx=oz
oBy=ox oBy=oy oBy=oz
oBz=ox oBz=oy oBz=oz

0
@

1
Ah ð1Þ

where A is the area of one gradiometer loop.
For geometrical reasons, gradiometer antennas composed of identical

oppositely-wound loops are totally insensitive to a uniform field of any direction.
Consequently, they rather effectively reject interference from any sources far away
from the MEG device. In practice, the interference rejection ratio of gradiometers
is limited by the fact that a typical interference field is not exactly uniform, and
that the geometry of the gradiometer is not ideal. The geometric non-ideality of a
gradiometer is called imbalance. The signals from near-by sources, the brain
signals, are highly non-uniform and therefore attenuated only slightly. Typically,
for a gradiometer in a MSR, the signal-to-interference ratio for ambient interfer-
ence is approximately by a factor of 100 higher than for simple magnetometers.

The interference signal in ideal gradiometers, related to relatively smooth
interference fields, is well described by Eq. (1). When dealing with the signals of
interest in MEG, which are related to neural current distributions, the signal in a
MEG channel is better described by using the concept of a lead field LðrÞ, defined
by the expression

(a) (b) (c)

(d) (e) (f)

Fig. 4 Some pick-up coil geometries: a magnetometer, b co-axial first-order gradiometer, and
c planar first-order gradiometer. The leadfield, or sensitivity, patterns of d magnetometer and
axial gradiometer measuring Bz, e planar gradiometer measuring dBz=dx, and f planar
gradiometer measuring dBz=dy
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bk ¼
Z

v0
Lkðr0Þ � Jðr0Þdv0 ð2Þ

where the output of channel k, bk, is obtained as the projection of the current
distribution Jðr0Þ on the lead field, or sensitivity pattern, Lkðr0Þ.

The two types of gradiometers, axial and planar, have different sensitivity pat-
terns (Fig. 4). An axial gradiometer has a similar lead field as a magnetometer: zero
for sources directly under the sensor, otherwise wide circular pattern with the
maximum sensitivity some distance sideways. Thus, a single axial gradiometer can
detect neuromagnetic signals from a wide region in the brain, but is also sensitive to
interference caused by sources near to the sensor. Planar gradiometers in turn have
very compact lead fields, which exhibit the maximum directly under the sensor.

2.3 From Single-Channel to Multichannel MEG

In the early days of biomagnetism, MEG devices were comprised of one sensor
channel only. Any feature in the signal could be from the brain, environment, or
electronics. Instrumentation developed during the years, and the number and size
of the sensor arrays increased gradually. Figure 5 illustrates the evolution of
multichannel MEG sensor array from a small-size four-channel axial gradiometer
to 306-channel whole-head system combining magnetometers and planar gradi-
ometers. Modern whole-head MEG arrays have facilitated development of effec-
tive multichannel signal processing and analysis methods, which are discussed in
Sect. 3. Design of multichannel sensor arrays involves several parameters, such as
the number of channels, geometry of the pick-up coils, internal noise level of the
sensors and so on. Detailed comparisons of the advantages and disadvantages of
the arrays of axial and planar sensor types have been presented in the literature
(Ahonen et al. 1993; Vrba and Robinson 2002; Nenonen et al. 2004).

2.4 Reference Sensors

A method distantly related to the gradiometer concept is the use of reference
sensors, which consists of an array of extra magnetic sensors located typically
20 cm above the MEG sensor helmet. The idea is that the reference sensors are so
far from the source of interesting signals that they only detect interference. This
measured interference can be modeled, either by a physical model or statistically,
and then subtracted with proper weighting coefficients from the signals of the
MEG channels. Because of the required extra hardware and the modeling and
subtraction, the reference sensor method can be considered a combined hardware/
software method.
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In the reference-sensor method the interference contribution at the primary MEG
sensors is extrapolated from the signals in the reference sensors by expanding the
magnetic field into a Taylor series about the origin at the primary sensor. Synthetic
first-, second- and third-order gradiometers can be formed in this manner (Vrba and
Robinson 2001). Magnetometers and gradiometers can serve both as primary and as
reference sensors. Synthetic third-order gradiometers reduce the environmental
interference substantially. In order to avoid increasing the sensor noise, the refer-
ence sensors should have a higher gain than the primary sensors. Synthetic gradi-
ometers have been demonstrated to operate even without a magnetically shielded
room in an environment with low magnetic interference level.

2.5 Limitations

All the traditional interference rejection methods described above are in use at
many MEG sites and have proven to work and to be sufficient in most cases to
enable proper functioning of the MEG device. The main problem with the passive
shielding method is the large size, heavy weight and high price of the MSR. Also,
the need to isolate the patient behind a closed door may hamper clinical work.
Lighter passive magnetic shields would boost the clinical use of MEG.

A relatively simple way to assist passive shielding is to use feedforward active
compensation. The basic problem with this method of active compensation is
related to the local sources in the vicinity of the MSR and the fluxgate sensor. If
there are many such sources, it is impossible to set the system up properly and the
arrangement may even amplify the interference from sources close to the fluxgate.

The basic shortcoming of the reference sensor method is related to the fact that
the interference inside of the MSR may still be 1,000 times higher than the brain
signals. Therefore, to be able to properly subtract the interference, one should
know it at the location of each sensor with an accuracy better than one per mille
(0.001). This is not possible when the interference needs to be extrapolated from
the signals of only 10–30 reference sensors located at a 20-cm distance from the
primary MEG sensors.

Fig. 5 Evolution of MEG devices: a 4-channel axial gradiometer system, b 7-channel axial
gradiometer system, c 24-channel planar gradiometer array, d 122-channel planar gradiometer
helmet, e 306-channel whole-head system combining 102 magnetometers and 204 planar
gradiometers. (a–d: Courtesy of Dr Jukka Knuutila, Elekta Oy; e: Courtesy of Dr Mika Seppä,
O.V. Lounasmaa Laboratory, Aalto University)
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The conclusion is that improved interference rejection methods are needed,
specifically to develop MEG towards clinical use. For clinical installations, it is not
always possible to select the magnetically most silent location in the hospital. Also,
clinical patients cannot be chosen for subjects as freely as in basic neuroscientific
research. Patients may also have therapeutic stimulators that are magnetic or there
may be magnetic residue from previous surgery in their body. In addition, patients
and healthy volunteers often show interference from biological sources such as the
eyes and cardiac muscle; see Parkkonen and Salmelin (2010) for typical examples.
None of the methods described above are useful against such interference.

3 Modern Approaches to Noise Reduction

3.1 Mathematical Representation of Multichannel
MEG Signals

We will concentrate on mathematical noise reduction methods and start from the
basic principles of computational signal representation. These basic concepts are a
necessary prerequisite for the understanding of novel algorithms used in MEG
today.

As explained above, a common way to express the signals of individual MEG
channels is the leadfield representation of Eq. (2), which shows how the output of
channel k, bk, is obtained from the current distribution Jðr0Þ as the projection of the
current distribution to the lead field, or sensitivity pattern, Lkðr0Þ. MEG sensors are
sensitive to both neural currents and currents related to interference but usually the
lead fields are computed for neural currents only with the assumption that the
measured data are sufficiently clean. Figure 4 shows examples of lead fields of
magnetometer and gradiometer channels. The wide-spread sensitivity pattern of
the magnetometer indicates that the magnetometer picks up signal from a large
portion of the source volume, including deep structures in the brain. Similarly,
magnetometers are also quite sensitive to external interference signals, which are
spatially relatively uniform. On the other hand, the gradiometer channels are very
focal and most sensitive to the superficial parts of the brain and insensitive to
homogeneous interference fields.

Modern MEG devices contain hundreds of channels and the whole sensor array
discretizes the continuous field distribution into a signal vector sðtÞ ¼
½s1ðtÞ s2ðtÞ. . .sNðtÞ� at any given time t. This N-dimensional vector representation
allows us to utilize linear algebra in the signal processing of MEG. From now on,
we will call the set of measurable signal vectors the signal space of MEG and
show that different subspaces can be distinguished in the signal space. The concept
of signal space was first introduced in MEG already in the 1980s (Ilmoniemi 1981;
Ilmoniemi and Williamson 1987; Ilmoniemi et al. 1987) and it has thereafter been
the basis of several efficient signal processing algorithms.
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3.2 Common Distortion Mechanisms of MEG Signals

The basis of any model applied to a multichannel MEG recording is the
assumption that the sensors can be considered independent. For example,
according to this assumption, a particular forward model can be computed by
evaluating the magnetic flux at individual sensors merely based on the geometry of
the associated source model and the sensor itself without considering the signals of
other sensors. In reality, however, sensors always have some degree of coupling
between each other. Therefore, instead of measuring the pure magnetic flux /i,

channel i detects the distorted signal /
0

i due to the coupling of all other channels
through the so-called cross-talk coefficients kij, i.e.,

/
0

i ¼ /i þ
XN

j¼1

kij/
0

j; ð3Þ

where kii ¼ 0: Cross-talk arises e.g. from mutual inductance between sensors or
electronics-based couplings. An efficient way to reduce cross-talk is to keep the
current of the pick-up coils at zero by feedback, which eliminates the inductive
coupling between the pick-up coils. Some cross-talk, however, always exists and it
is important to estimate the coefficients kij either computationally or to measure
them directly by sequentially feeding a current to each sensor and detecting the
response of other channels to this test current (Taulu 2000). Computational means
include a model for the mutual inductance between sensors, which can be based,
e.g., on analytical formulae between wire elements of the flux transformers. Once
the coefficients kij have been determined, the above equation can be written in the
matrix form

/
0 ¼ /þ K/

0 ð4Þ

from which the cross-talk-corrected estimate can be computed as

/ ¼ I � Kð Þ/0 : ð5Þ

In addition to the cross-talk, hardware-originating signal distortion arises due to
errors in the calibration coefficients and geometrical imprecision, such as position
and orientation errors of the sensors, and imbalance of gradiometers. If the
expected field-to-voltage calibration coefficient of channel i is ci and it deviates
from the true calibration c0i as c0i ¼ ceici, then the corrected signals can be
computed as

/c ¼ C/ ¼ C I � Kð Þ/0 ; ð6Þ
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where C is a diagonal matrix containing the estimated relative calibration
coefficients:

C ¼ diag ce1 ce2 . . . ceNð Þ: ð7Þ

Thus, the hardware-based distortions such as cross-talk and scalar calibration
errors can be compensated for by simple linear operations. The geometric cor-
rections mentioned above have to be incorporated into more complex models that
are applied to the acquired and compensated data /c. Several calibration algo-
rithms have been introduced in MEG (Hall Barbosa et al. 1999; Ornelas et al.
2003; Chella et al. 2012). State-of-the-art calibration accuracy ensures a good
match between the measured data and the models, such as the forward fields
corresponding to neural currents or models used in interference suppression
algorithms.

The distortion mechanisms described above are always present in MEG
recordings, even in an ideal environment with no actual interference or noise. In
addition, MEG signals always contain random sensor noise or radiation-shield
noise, and almost always contain external interference. Quite often disturbances
related to the subject or patient are embedded within the signal as well. In the
following, we divide the interference and noise of MEG into three groups:

1. Interference from far-away sources; spatially smooth field patterns corre-
sponding to sources relatively far from the sensor array. In an empty MSR,
these sources contain currents on the walls of the MSR induced by external
interference fields.

2. Interference from near-by sources; spatially complex field patterns due to the
proximity of the sources.

3. Random noise intrinsic to the MEG device itself, i.e., sensor noise and sensor
artifacts.

In addition to the spatial categories above, different interference types may also
have specific time–frequency characteristics that can be utilized in the interference
suppression approaches. MSR only attenuates interference of category 1 and
therefore MEG measurements have traditionally been conducted only with co-
operative subjects who are able to stay still and who have no magnetic material in
their body. In clinical settings, however, it is not practical to request or rely on
complete immobility of the patient. Even the slightest movements due to respi-
ration or heart beat can cause severe movement artifacts in the presence of
magnetized material related to, e.g., dental braces, tiny magnetic residues in the
body, or therapeutic stimulators. Thus, signal processing methods are needed to
compensate for category 2 interference. Intrinsic sensor noise (category 3) is
always present in any MEG recording and its contribution is typically taken into
account in the source modelling phase in the form of a covariance matrix but
recently new pre-processing methods to reduce sensor noise have also been
proposed.
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3.3 Physics- and Statistics-Based Detection of Interference

Many interference suppression methods are based on physical or statistical models
of the measured signals. The former methods typically utilize a model that aims to
explain the signals in physical terms such as sources while the latter methods often
consist of finding some statistical features from actual data recorded with the MEG
system. In the following, we will use two signal space methods as examples of the
statistical and physical approaches and explain their benefits and drawbacks.

The Signal Space Projection (SSP) (Uusitalo and Ilmoniemi 1997) and Signal
Space Separation (SSS) (Taulu et al. 2004) methods utilize the ample spatial
oversampling of the neuromagnetic field in a modern MEG device with hundreds
of channels. At a typical brain-to-sensor distance in MEG (*3 cm), the magnetic
field from neural sources has less than 100 degrees of freedom (independent
geometric shapes) that can be resolved above the sensor noise.

The SSP method is based on statistical analysis of the recorded interference
signal. The interference is recorded with no subject in the MEG device. A prin-
cipal component analysis is made on this ‘‘empty-room recording’’ containing only
interference and sensor noise.

In the SSP method, the signal recorded by an N-channel device from the subject
is projected on the (N � n)-dimensional subspace that is orthogonal to the first n
principal components—those with the largest eigenvalues—of the empty-room
recording. Assuming that the ambient interference is a result from a reasonably
stable statistical process this projection leaves us with relatively interference free
ðN � nÞ-dimensional MEG data. The brain signal is also slightly distorted by the
projection operation but this can be taken into account in a simple manner in the
subsequent signal analysis (Uusitalo and Ilmoniemi 1997).

SSP is a purely statistical method and therefore does not suffer from any cali-
bration inaccuracy in the sensor array, as long as the calibration of the sensors and the
geometry of the sensor array stays constant. Being an orthogonal projection method
SSP does not increase the individual sensor noise (rather it decreases the noise
slightly) but causes some distortion of the spatial pattern of the signal. Specifically,
signals from very deep sources are reduced in amplitude as they have a significant
projection on to typical ambient interference directions in the signal space.

Contrary to the SSP method, which is statistical, the SSS method is based on the
physics of magnetic fields, i.e., Maxwell’s equations (Taulu et al. 2004). In this
method, the signal space is provided with a basis that encompasses all physically
possible magnetic field distributions (solutions of Maxwell’s equations in a space free
of magnetic material). The measured signals can be uniquely represented in this basis.
By simple physical arguments the field shapes can be classified into two groups: field
shapes corresponding to sources inside of the sensor array, and those corresponding to
sources outside of the array. In this way, two linear subspaces of the signal space can
be defined: Sin for inside sources and Sout for outside sources. The external inter-
ference can now be removed from the signals by simply estimating the contributions
of Sin and Sout and subsequently leaving out the signal components in Sout.
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The advantage of SSS over SSP is its generic nature as it is based on the physics
of the magnetic field rather that statistics of the recorded interference. Because of
this, SSS is universal and can handle also such new interference sources that we
have no prior statistics on. SSS is not an orthogonal projection, and therefore it
does not change the spatial patterns of the neuromagnetic signal. On the other
hand, because SSS is based on a computational model, it is rather sensitive to the
calibration accuracy of the MEG system (Nurminen et al. 2008).

3.4 Noise Reduction in the Spatial, Temporal,
and Spectral Domains

3.4.1 Decomposition of MEG Signals

The data acquired with Nc channels over a period of time consisting of Nt samples
can be represented as an Nc � Nt-dimensional matrix U. Modern mathematical
noise reduction methods are based on a decomposition of the high-dimensional
data into some basis components that can be used in processing the data to sup-
press the contribution of unwanted interference signals. We can classify the basic
decomposition approaches as follows:

1. Spatial decomposition: U
Nc�Nt

! X
n�Nt

2. Spectral decomposition: U
Nc�Nt

! F
Nc�NF

3. Temporal decomposition: U
Nc�Nt

! F
Nc�NF

Y
NF�Nt

4. Combination of the above: for example, U
Nc�Nt

! X
n�Nt

! F
n�NF

! F
n�NF

Y
NF�Nt

In the following, we will describe the general mathematical models and the
consequences of these operations. We will also give some examples of methods
belonging to the different categories. A more detailed description of these methods
will be given in Sect. 3.5.

3.4.2 Benefits and Drawbacks of the Decomposition Methods

1. In the spatial decomposition, some spatial model is applied to the data in order
to extract features of interest and to suppress the contribution of interference
signals. This leads to a representation X

n�Nt

, which contains the time series of the

n spatially relevant features with typically n�Nc: The decomposition may be
performed through a matrix operation

X ¼ AU; ð8Þ
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where A is an n� Nc-dimensional spatial filter matrix that may be, e.g., in the
form of an orthogonal or an oblique projection matrix. In the former case, one
rotates the data in the signal space into a subspace free of interfering signals
(Uusitalo and Ilmoniemi 1997; Parkkonen et al. 1999a). The latter case may be
used to extract the interesting from interfering signals in a mathematically
unique fashion, e.g., by the SSS method. The benefit of the spatial decompo-
sition is that it preserves the temporal information of the signals and may
generally allow a robust classification of signals into interesting and interfering
contributions. The drawback is that spatial operations, if not specified properly,
may lead to spatial bias of the interesting signal, and measurement errors not
modeled by A may spread into the decomposed result X. An example of a
measurement error is a malfunctioning sensor. Methods belonging to this cat-
egory include, e.g., SSP and SSS, some ICA applications, and beamformer. The
last method, however, involves a specific neural source model when con-
structing the spatial filter matrix A.

2. In the spectral decomposition, the data are transformed into the Fourier or some
other relevant temporal components by the matrix operation

F ¼ UB; ð9Þ

where B is an Nt � NF-dimensional matrix that performs the Fourier transform
for each channel separately. The benefit of the spectral decomposition is that
the spatial pattern is preserved and no localization bias is thus introduced. The
drawback is that the signals of interest and the interference are often in the same
frequency range, mixed in such a way that their reliable separation is not
possible. A traditional way to use the spectral decomposition is visual inves-
tigation of the spectra of individual sensors, the rows of matrix F, and sub-
sequent notch filtering. An example of a mathematically more advanced method
is the S3P (Ramirez et al. 2011) algorithm that builds a spatial orthogonal
projection matrix based on the spectral decomposition of sensor-level data.

3. In the temporal decomposition, the sensor-level signals are re-calculated from
the spectral components. This is done by reconstructing the time courses from
the decomposed spectral components and the corresponding temporal basis
functions as

U ¼ F
0
Y; ð10Þ

where F
0
is derived from F, e.g., by leaving out spectral components expected to

correspond to interference, and Y contains the corresponding temporal patterns
of these selected frequency components. The benefits and drawbacks of this
approach are the same as in the case of spectral decomposition. An example of
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spectrum-based temporal decomposition is simple temporal filtering (low-pass,
high-pass, or band-pass). However, the decomposition does not have to be based
on Fourier components but it could also be derived through a direct temporal
extraction such as independent component analysis (ICA).

4. The above basic formalisms can be modified and combined in several ways. An
example is the spatiotemporal signal space separation method (tSSS) that uti-
lizes both the spatial filtering properties and temporal analysis to extract and
suppress interference-related temporal forms. Combinations of ICA with short-
time Fourier transforms have also been proposed to decompose MEG data into
neurophysiologically relevant components (Hyvärinen et al. 2010; Ramkumar
et al. 2012).

3.5 Review of Selected Novel Methods

In the following, we introduce a subset of various methods that can be used for
interference suppression in multichannel MEG. This list of methods is not com-
prehensive but it rather shows examples on what the methods are typically based
on. For guidelines on recommended practical use of interference and noise sup-
pression methods, see, e.g., the guidelines publication by Gross and colleagues
(2013) and the book chapter by Parkkonen and Salmelin (2010). Below, as
examples of physical and statistical methods we describe the SSS and SSP
methods in more detail.

3.5.1 Multichannel MEG

The signal space in single-channel MEG devices was trivial, one-dimensional, and
spatial filtering was impossible. Any feature in the signal could be from the brain,
environment, or electronics. The first step taken toward spatial filtering was the
adoption of gradiometric sensors described in Sect. 2.2. Instead of measuring one
field component at one point in space the field is measured also at an adjacent
location. By subtracting the two measurements one reduces the interference signal
from distant sources by a large factor, typically 100, but the reduction in the bio-
magnetic signal is relatively small if a proper base length is chosen for the gradi-
ometer. The use of a gradiometer is an elementary signal space method. The two
recordings made by the two pick-up loops of the gradiometer are two measurements,
subtracted from each other to reject the common mode, which is dominantly due to
ambient interference. This operation could be done by software but doing it by
hardware, that is, by wiring a single gradiometer pick-up coil, gives the sensor a lot
of extra dynamic range against uniform interference fields. The price paid is that the
dimensionality of the signal space is reduced from two (the two loops) to one.
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The possibility for actual spatial filtering opened up with the first multichannel
devices. Already a two-gradiometer system helps one to further resolve biomag-
netic signals and possible device-based artifacts. With an increasing number of
channels the estimation and rejection of both ambient and device-based interfer-
ence became easier.

However, the geometric complexity of the magnetic interference field over a
volume as large as a typical MEG sensor array is potentially so high that actual
spatial filtering used to recognize and remove ambient interference from the sig-
nals can be efficiently realized only when the number of channels is relatively
high. This is because the magnetic field is a vector field in three dimensional space
with three independent uniform components, five independent first derivatives,
seven second derivatives etc. To determine interference fields up to second
derivatives thus requires independent measurements done with 15 sensors. So,
spatial filtering by gradiometrization up to second order derivatives would cut the
signal space dimensions available for the actual brain signals in a 24 channel MEG
device, say, down to 24 - 15 = 9.

This is why efficient spatial filtering in MEG data processing has become
available only when the number of channels has grown upward to several hun-
dreds. On the other hand, when such a high number of channels is available, signal
space methods based on linear algebra are a better way for interference rejection
than, for example, reference sensor systems, for the following reason. The inter-
ference field is usually much higher in amplitude than the neuromagnetic signal.
Therefore, it must be determined with the best possible accuracy. The optimal way
to do this is to use the entire set of sensors instead of the relatively few reference
sensors, to record the interference. A further advantage in this approach is that the
interference is now recorded at the very locations where we want to know it. No
spatial extrapolation is needed, which improves accuracy of the interference
estimate. In the signal space approach both interference and the biomagnetic signal
are mixed up in the signals from the same set of channels but they can still be
separated with appropriate signal space methods.

3.5.2 The SSP Method

The signal space projection method is set up for suppressing ambient magnetic
interference by recording MEG data without a subject for a few minutes. In this
situation it is certain that all recorded signal is interference. This multichannel
signal is then statistically analyzed by using principal component analysis (PCA).
The dominant n PCA-components give the signal space directions containing the
largest-variance magnetic interference field patterns. These orthonormal signal
vectors are then organized as an N � n-dimensional matrix En and the orthogonal
projection operator is formed as:
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Porth ¼ I � EnET
n ; ð11Þ

where I is an N � N-dimensional identity matrix. Then, the recorded N-channel
MEG signal is projected on the (N–n)-dimensional signal subspace that is
orthogonal to all the directions corresponding to the n dominant PCA components:

/orth ¼ Porth/ ð12Þ

Experience on using the SSP method at several MEG sites over 15 years has
shown that the ambient interference field patterns are relatively stable over several
years. SSP projection operator (with n ¼ 8) determined from one 2-min recording
is typically able to reduce interference amplitude in magnetometer sensors by a
factor of about 300–1,000 (50–60 dB) when applied to the 2-min recording itself.
In MEG recordings made at the same site even several years later, the same
projection operation still suppresses interference by a factor of 100 at least.

This surprising stability of the interference patterns is partly due to the MSR.
The strongest interference usually comes from distant sources which expose the
MSR to relatively uniform magnetic fields. The MSR transforms these uniform
fields into field patterns inside the MSR, which are not necessarily uniform but
rather represent a kind of fingerprint characteristic for each room. Any new far-
away source will cause a new, nearly uniform ambient field, which very closely
resembles some linear combination of the interference fields due to earlier far-
away sources, and thus produces a field pattern inside the MSR that approximately
falls into the same interference subspace that is spanned by the dominant PCA-
components in the earlier empty-room recording. We tested this MSR effect by
introducing a novel interference source (an oscillating magnetic dipole 8 m from
the center of the MSR) and applied the previously-determined SSP operator to
suppress it; the shielding factor against this novel source was still more than 100
(40 dB) for the tested frequencies of 0.5–30 Hz (Parkkonen et al. 1999b).

SSP can be characterized as a software-based ‘‘gradiometrization’’ method that
transforms the sensor array into a generalized gradiometer which is insensitive to
those field shapes that are recognized as dominant PCA-components in a recording of
ambient interference. A recently developed variant of the SSP method is the S3P
algorithm (Ramirez et al. 2011) that builds the orthogonal projection operator through
a spectral decomposition. This is beneficial especially for suppressing artifacts with
distinct frequency characteristics; the algorithm has been shown to be useful, e.g., in
the suppression of the high-frequency artifact of the deep brain stimulator (DBS).

3.5.3 The Signal Space Separation Method (SSS)

Another example of spatial filtering is the signal space separation method (SSS)
that utilizes quasistatic Maxwell’s equations combined with the sampling theory
and geometry of the MEG array (Taulu 2008). The idea is to create a basis that

56 S. Taulu et al.



allows a device-independent representation of the data, which is capable of sig-
nificantly suppressing the distortions typical to MEG, and also compensating for
head movements.

At any sensor location r on the sensor array, the magnetic field caused by any
distribution of sources is given by a series expansion

BðrÞ ¼ �l0

X1
l¼1

Xl

m¼�l

alm
mlm h;uð Þ

rlþ2
� l0

X1
l¼1

Xl

m¼�l

blmrl�1xlm h;uð Þ; ð13Þ

where mlm h;uð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þð2lþ 1Þ

p
Vlm h;uð Þ and xlm h;uð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2lþ 1ð Þ

p
Wlm h;uð Þ with V and W being the vector spherical harmonic functions (VSH)
defined by Hill (Hill 1954; Arfken 1985). Here the monopole term l ¼ 0ð Þ is left
out due to relation r � B ¼ 0 being valid everywhere according to the present
theory of electromagnetic fields (see, e.g., Jackson 1999). In principle, an MEG
device, with its data analyzed by a model including l ¼ 0 ; could be used as a
magnetic monopole detector by including l ¼ 0 and estimating its contribution in
the measured signal.

The infinite series of Eq. (13) is the general solution for the magnetic field in
free space, expressed in the spherical coordinate system. Similar expansions based
on other coordinate systems can also be used, but because of the nearly spherical
shape of the sensor array it is advantageous to use this expansion for the physically
possible field shapes. Using the two indices, l and m, labeling the spherical har-
monics, the field shapes can be ordered according to increasing spatial complexity.

The coefficients alm and blm are called multipole moments. This expansion
compactly represents the contribution of all sources generating a magnetic field.
The two different parts of the expansion having different r-dependencies cover the
convergence and divergence requirements of the fields produced by sources in
different volumes of the physical space. Let us set the origin of the expansion
somewhere in the middle of the brain volume and let rmin and rmax be the distances
of the closest and most distant sensor, respectively, from this origin (see Fig. 6).
The field from a source in the volume containing the origin (r

0
\rmin) must be non-

singular when r
0
[ rmin. Similarly, the field generated by a source in the outside

volume (r
0
[ rmax) must converge when r

0
\rmax. Consequently, the first sum in

Eq. (13) is sufficient to describe fields generated by sources with r
0
\rmin, and

similarly, the second sum is all that is needed for fields from sources with
r
0
[ rmax. As can be seen from Fig. 6, by selecting the expansion origin in a

suitable way, typically at the center of the volume enclosed by the sensor array, the
contributions of the brain and interference sources are separated into the first and
second sum of the expansion, respectively. Here we assume that there are no
sources in the volume defined by rmin\r

0
\rmax.

The truncation of the expansion has been investigated theoretically in (Taulu
and Kajola 2005) and experimentally in (Taulu et al. 2005; Nenonen et al. 2007).
The truncation of the two expansions in Eq. (13) with l ¼ Lin ¼ 8 and l ¼ Lout ¼ 3
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was found to be sufficient to ensure a negligible residual. Even in the case of 100
simultaneous current dipoles, Lin ¼ 8 is enough to reconstruct the brain signal with
an insignificant residual compared to sensor noise.

The basis vectors corresponding to each of the VSH functions are calculated by
Eq. (13) giving us signal vectors alm and blm corresponding to the basis functions
�l0r�ðlþ2Þmlm and �l0rl�1xlm, respectively. Thus, our linear model for any
momentary signal vector /, based on these basis vectors, is

/ ¼ Sx; ð14Þ

where the SSS basis S ¼ Sin Sout½ � separates the internal and external contributions
as

Sin ¼ a�1;1 a1;0 a1;1 . . . aLin;Lin

� �
ð15Þ

and

Sout ¼ b�1;1 b1;0 b1;1 . . . bLout;Lout

� �
: ð16Þ

The total number of spherical harmonics used in Sin and Sout must be smaller
than the total number of channels. Otherwise the linear problem related to the
coordinate representation in signal space becomes singular. The greater the margin
(spatial oversampling) the more stable the solution of this linear problem becomes.

Since it is known that the number of measurable degrees of freedom in the
neuromagnetic field—those exceeding the sensor noise—is below 100, it is usually

rmin

rmax

Fig. 6 Geometry of the
signal space separation
method
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sufficient to map this field using spherical harmonics up to order Lin = 8. In most
cases the field from external sources is sufficiently described by harmonic func-
tions up to order Lout = 3. This corresponds to ‘‘gradiometrizing’’ the sensor array
up to second-order derivatives of the interference field.

These relatively low expansion orders are sufficient because of the quite large
distance between the sensors and sources of magnetic field in MEG. This applies
to both the interesting and interfering sources. Because the series representing
neural sources converges fast as a function of distance, fields with the highest
spatial frequencies, corresponding to high l, are attenuated below sensor noise at
the distance of the sensors when the sensor noise level of the present SQUID
technology, about 3 fT/

ffiffiffiffiffiffi
Hz
p

, is assumed.
In practice, modern multichannel MEG devices have a non-singular SSS basis

since the sensors are located on a non-spherical surface and they are not strictly
radial or tangential (Taulu 2008). Thus, we get a unique estimate for the device-
independent coordinates in the form

bx ¼ Sy/ ¼ bxin

bxout

� �
; ð17Þ

where Sy is the pseudoinverse of S and the interference-suppressed estimate for the
MEG signal can be calculated as

b/in ¼ ReðSinbxinÞ: ð18Þ

By comparing Eqs. (8) and (17), we can see that SSS is a spatial filter with the

model matrix A ¼ Sy.
Although the subspaces Sin and Sout are not orthogonal to each other, the

contributions of the internal and external signals are not mixed in our estimated
separation result, provided that our assumptions regarding sufficient values for Lin

and Lout are correct and the system is calibrated accurately enough. The expla-
nation for this is simple. Based on the theory of harmonic functions, the signal of a
source in the volume r0\rmin can be fully represented with the above expansion
having non-zero alm coefficients and blm ¼ 0. Similarly, for sources in the volume
r0[ rmin, the signal can be expressed with alm ¼ 0 and all blm being non-zero. On
the other hand, the SSS basis S is linearly independent, which indicates that this
obvious solution is also the only possible solution in the signal space.

Given a perfect calibration accuracy of the sensors and adequate spatial sam-
pling, there is no mixing between the internal and external contributions because
of the linear independence of the SSS basis vectors. Even with realistic calibration
accuracy, this mixing is negligible if the expansion orders are sufficient.

All real measurements contain sensor noise. In MEG measurements, it is
usually assumed that this noise is normally distributed and uncorrelated among the
sensors, resulting in a diagonal covariance matrix. Application of SSS changes the
sensor noise covariance C which can be taken into account if needed as shown in
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(Taulu and Kajola 2005). The brain noise, which dominates over the sensor noise
especially below 60 Hz, is not affected by SSS since it is produced by currents in
the internal volume shown in Fig. 6.

The condition number, defined as the ratio of the largest and smallest singular
value of the SSS basis, is apparently very high due to the highly different scales of
the different basis functions leading to a large range of norms of the SSS basis
vectors. The basis can be stabilized simply by normalizing S, which usually gives a
reasonable condition number, as discussed in (Taulu et al. 2005). Further stabil-
ization can be achieved by selecting only the basis functions that have strong
enough coupling to the sensor array to exceed sensor noise (Nenonen et al. 2007).
When using a normalized S, the estimated coordinates bxin;lm can be transformed to
SI units by dividing them with the norms jjalmjj of the non-normalized basis.

It should be noted that the numerical stability of the coordinate transformation
from the recorded multichannel signal to the SSS basis depends on the degree of
spatial oversampling. The noise in the SSS coordinates increases when the margin
between the number of channels and the number of SSS coordinates becomes
narrower. In case the values Lin ¼ 8 and Lout ¼ 3 are chosen, the total number of

basis vectors in the SSS basis would be ðLin þ 1Þ2 þ ðLout þ 1Þ2 � 2 ¼ 95� 300.
This amount of spatial oversampling has turned out to be sufficient to prevent any
significant rise in sensor noise.

As a method based on physics, SSS is sensitive to all kinds of calibration errors
and cross talk between the MEG channels. For inteference sources more than
1.5 m away, the shielding performance of SSS is limited by the calibration
accuracy. This effect can be utilized in the calibration of a MEG device: the
orientation, sensitivity, and imbalance of gradiometers is fine-tuned by simply
requiring that there is no signal left in Sin when SSS is applied to an empty-room
recording. After fine-calibration by this method the asymptotic shielding factor
against distant interference sources can be brought up to 200–300 (Taulu et al.
2005). In addition to external interference suppression and calibration adjustments,
the SSS method has several important applications, such as standardization of the
head position and different sensor configurations (Taulu 2008), head movement
correction (Nenonen et al. 2012), and enhanced magnetic source imaging (Vrba
et al. 2010). An example of the interference suppression by the SSP and SSS
methods is presented in Fig. 7.

3.5.4 The Spatiotemporal Signal Space Separation Method (tSSS)

The spatial SSS performs in a satisfactory manner in typical MEG measurements.
A good estimate bx is guaranteed when deviations /e of the signal from the model
in Eq. (14) are insignificant. Taking the deviations into account, the model is of the
form
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/ ¼ Sxþ /e ð19Þ

In addition to random sensor noise, such deviations can be produced by insuffi-
cient calibration accuracy of the sensor array causing erroneous elements in the basis
matrix S. An additional source of deviation is the presence of sources that produce
detectable magnetic fields with spatial frequencies higher than those included in the
basis S, rendering the dimension of the basis matrix too small to correctly describe
these fields. Such sources are typically artifactual sources in the immediate vicinity
of the sensors, e.g., magnetized EEG electrodes close to the head.

From Eq. (19) we get the estimate

x̂ ¼ S/ ¼ SySxþ Sy/e � xþ xe; where xe ¼
xin;e

xout;e

� �
ð20Þ

Thus, the model misfit /e leaks into the internal and external signal contribution
estimated by SSS. This leakage can, however, be utilized in removing its contri-
bution. Temporally, xin;e and xout;e contain equivalent temporal waveforms that
were originally present in the signal deviation /e. Assuming that the brain signals
and external interference signals, both correctly modelled by the spatial SSS, are
temporally uncorrelated, the only possible cause for temporal correlation between
xin and xout is the above leakage phenomenon.

Removal of the contribution of /e was developed and applied by Taulu and
Simola (2006). First, the intersecting temporal waveforms are identified by a
singular value decomposition (SVD)-based subspace intersection estimation
method. Then, the intersecting waveforms are projected out in the time domain
from the SSS estimate of the internal signal. Consequently, the recognized signal
deviations, usually caused by nearby artifacts, are suppressed below the noise level

10 s
20 pT

2 pT

0.5 s

(a) SSP (b) SSS

Fig. 7 Comparison of SSP and SSS with experimental data from an array with 102
magnetometers and 204 planar gradiometers. Black curves: raw data of a single magnetometer
sensor above the occipital region recorded in an empty magnetically shielded room. a SSP: 5
generic SSP vectors (in red) and 8 SSP vectors computed from the same recording (in blue).
b SSS: after SSS but without fine-calibration adjustment (in red) and after SSS and fine-
calibration adjustment (in blue). The software shielding factor at the peak of the largest
disturbance is 500. The bottom insets show a one-second epoch of the curves
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of the sensors. The tSSS method has been shown to work in a satisfactory manner
against several different kinds of artifacts induced by magnetized pieces on the
scalp (Taulu and Hari 2009), head movements (Nenonen et al. 2012), dental work
(Hillebrand et al. 2013), and implanted stimulators such as DBS (Airaksinen et al.
2011) and VNS (Carrette et al. 2011; Kakisaka et al. 2012; Tanaka et al. 2009). A
quite similar method utilizing reference sensors instead of SSS as the original
separation method has been proposed by de Cheveigné and Simon (2007). An
example of tSSS interference suppression is shown in Fig. 8 for disturbances
caused by magnetized material on the scalp and head movement.

3.5.5 Feedback Active Compensation

In the feedback active compensation method, we use magnetometer sensors on the
MEG helmet as null detectors in a negative feedback loop that controls currents in
coils on the inside walls of the MSR. The magnetic fields from these coils
counteract the ambient interference and keep the field constant at the locations of

500 fT/cm

(a)

(b)

1 s

Fig. 8 An example of tSSS and movement correction. a Left: Five seconds of original raw data
on six gradiometer channels above the right somatosensory cortex. The head began continuous
movement approximately 3 s after the beginning of the data traces and the added magnetized
piece above the somatosensory cortex emanated a very strong artifact. Right: The spatial MEG
pattern at the N30m peak response from averaged somatosensory evoked fields (SEF). b The
same raw data and MEG pattern after tSSS and head movement correction were employed. The
arrows indicate single SEF responses
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the zero detectors. This helps keep the interference field within the dynamic range
of the sensors in the entire MEG helmet. Interference rejection performance
provided by this method is limited by geometry: the magnetic field is kept strictly
constant at the location of the zero-detector magnetometers only. Because the
counteracting field shapes obtained from the coils on the walls differ from the
interference field shapes, it is not possible to exactly cancel the field in all MEG
magnetometers distributed over the relatively large volume in the sensor helmet.
Typically using six coils—a ‘‘Helmholz-pair’’ in all three principal directions of
the MSR—an interference rejection ratio of about 10 can be achieved over the
entire sensor array. A method to get around this geometric limitation in shielding
performance and to achieve a higher shielding factor by this feedback active
compensation has been described in a patent application (Simola and Taulu 2011).

An active compensation arranged in this way naturally distorts the spatial
pattern of the biomagnetic signals. The method keeps also the biomagnetic signal
at zero in the null-detector channels. The compensation coils, however, are simply
sources of external interference and any method appropriately compensating for
such interference also restores the unbiased brain signals in all sensors, including
the zero-detector channels. In the present implementation of active compensation,
the SSS method is used for this purpose.

3.5.6 Principal and Independent Component Analysis

Principal component analysis (PCA) decomposes data into orthogonal component
vectors via a singular value decomposition of the covariance matrix. PCA is
applied to compose the vectors spanning the interference subspace, typically from
MEG data recorded in an empty magnetically shielded room as described in
Sect. 3.5.2. PCA can also be applied to subject-based interference such as fields
due to eye blinks and heartbeat. Data from a large enough number of such dis-
turbances are extracted and few most prominent PCA vectors are selected to
represent the subject interference, to be projected out from the MEG and EEG data
after the recording.

Independent component analysis (ICA) is a newer technique which aims at
separation of unknown sources whose unknown mixture is measured by the sensors:

/ðtÞ ¼ AsðtÞ; ð21Þ

where /ðtÞ is the signal vector at time t, sðtÞ represents the instantaneous source
activity, and matrix A represents the mixing. The ICA procedure provides an
estimate of the unmixing matrix B so that the estimated source activity becomes

ŝðtÞ ¼ B/ðtÞ: ð22Þ

ICA belongs to the family of blind source separation methods, because the source
signals are not directly observed and nothing is known about their mixture; the only
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assumption is that the sources sðtÞ are statistically independent. The separation is
obtained by optimizing a contrast function of some distributional property of the
output ŝ. The contrast functions are based on entropy, mutual independence, high-
order decorrelations, etc. (see, e.g., Cardoso 1998; Hyvärinen 1999).

ICA has been applied to MEG and EEG to mainly remove artifacts (e.g.,
Vigario et al. 2000). ICA has also been used to decompose MEG/EEG data into
separate components (e.g., Tang et al. 2002). However, the underlying assumption
of statistical independence between the activations of the different neural sources
may not be valid for a physiologically plausible separation of distinct neural
processes or sources. Nevertheless, applying ICA to a suitable sparsifying trans-
formation of the MEG data may help extract relevant brain activity patterns
(Hyvärinen et al. 2010; Ramkumar et al. 2012).

3.5.7 Sensor Noise Suppression

By sensor noise we mean random noise signals that are inherent to the MEG
sensors and independent from other sensors. Such a noise component does not
have a unique overall field pattern that could be modeled and subtracted from all
sensors simultaneously. Therefore, the traditional way of addressing sensor noise
is by statistical means, e.g., by estimating the noise covariance matrix of the
sensors and taking it into account in source modeling.

Recently de Cheveigné and Simon (2008) proposed a sensor noise reduction
approach that is based on the assumption that sensor noise is uncorrelated with
brain activity and uncorrelated between sensors. In their method, PCA is applied
iteratively by omitting one channel at a time. The data of the omitted channel is
replaced by its regression on the subspace formed by the other channels. Compu-
tation time is saved by orthogonalizing a subset of channels selected on the basis of
correlation with the omitted channel data. Even more recently, a similar approach
has been proposed (Taulu et al. 2012) with the difference that the model for the
spatially correlated part of the sensor signals is estimated with a physical model
based on SSS instead of using statistics such as PCA. Both of the above methods
decrease the random sensor noise significantly and improve the signal-to-noise ratio
of the brain signals. The SSS based method was recently demonstrated to reduce the
overall sensor noise level in the frequency band of 400–800 Hz by factors of 4.5
and 2.1 for gradiometers and magnetometers, respectively (Helle et al. 2012).

Denoising source separation, DSS (Särelä and Valpola 2005) is yet another way
to suppress noise contributions from the sensors and background brain activity.
DSS is an iterative method that refines a template filter, often seeded by ICA,
applied on whitened data. The method has been demonstrated on single-trial MEG
data (Karp et al. 2009). DSS was utilized also by de Cheveigné (2010) for con-
structing a spatiotemporal filter to partition the recorded data into signal and noise
components. Time-shifted signals and PCA are utilized to construct special FIR
filters, and averaged evoked responses are utilized as a contrast function to
emphasize the brain activity.
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3.5.8 Spatial Filtering Combined with Source Modeling

Spatial filtering methods, such as beamforming, aim at finding and characterizing
the neural current sources in the brain (Vrba and Robinson 2001). A spatial filter is
constructed so that it passes the activity at the target location with unit gain while
suppressing the contribution from other sources. Spatial filtering can thus suppress
unwanted interference, provided that the low-rank interference has spatially and
temporally distinctly different characteristic from the brain signals (Sekihara et al.
2004). Typically such interference originates outside of the magnetically shielded
room, but the beamformer technique has been demonstrated to successfully sup-
press nearby interference from a pain stimulator (Adjamian et al. 2009). However,
the basic assumptions are not valid in cases where the patient-induced artifacts, e.g.
due to dental braces, are huge compared to the brain signals (Hillebrand et al. 2013).

Another approach to combine source imaging and interference suppression was
suggested by Mosher et al. (2009). They placed a grid of dipoles inside the MEG
helmet and used their lead fields to compose the basis of the signal subspace. Its null
space was then used to construct a blocking operator for removing all neural
activity components from the measured data. Projection of unwanted interference
waveforms is basically similar to the temporal SSS presented above, but the method
can produce current source estimates for the analysis without a separate step.

3.5.9 Physiological Artifacts

While SSS can geometrically separate the brain from external interference sources
by the concentric inner and outer spheres, the method does not suppress signals
from physiological sources in the inner volume or the space between the spheres.
Such physiological artifacts include signals from head muscles, eyes (blinks and
saccades), or cardiac signals due to cardiac volume currents and pulsating blood
flow within this intermediate space. If strong cardiac or eye-blink artifacts are
present, a further post-processing to suppress them can be performed with the
signal space projection method (Uusitalo and Ilmoniemi 1997). In this case,
instead of applying PCA directly on the continuous signals, it is often beneficial to
average with respect to these stereotypical artifacts to boost them relative to brain
signals and then perform PCA on the average. Identification and suppression of the
neck muscle artifacts could be performed utilizing methods such as independent
component analysis (Vigario et al. 2000). Generally, individual variations exist
between subjects with respect to the heartbeat-related residual after SSS.

4 Future Prospects

The adoption of modern signal processing methods to multi-channel MEG data has
advanced the MEG interference suppression rapidly during the last few years. In
addition, solely hardware-based magnetic shielding has shifted towards active
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shielding methods, which are less expensive and lighter-weight than conventional
passive means and thus allow more flexibility in planning the location of an MEG
laboratory. These trends are likely to continue in the future to support wider
adoption of MEG, not only through cost reduction but also by allowing MEG to be
applied to patients with magnetic material in their body. In the following, we try to
highlight some of the future opportunities and challenges of interference sup-
pression in MEG.

4.1 MEG Without a Shielded Room

As an ultimate goal for interference suppression, one could envision an MEG
system without a magnetically shielded room. Since the room constitutes roughly
20 % of the total cost of a MEG set-up, replacing the expensive passive shield
altogether with an active system is tempting. However, operating an MEG system
in a magnetically harsh, or even average, environment without any passive
shielding is challenging for the following reasons: (i) the combination of the
sensors, the active compensation system and the software-based interference
suppression method should have a very large dynamic range (in excess of 140 dB)
in order to cope with the largest interference signals while not elevating the sensor
noise floor, (ii) the compensation system should be able to deal with the high-order
field gradients due to near-by interference sources, (iii) Earth’s static magnetic
field (500–1,000 times stronger than the remanent field in a typical MSR) polarizes
paramagnetic objects which cause additional interference when moving or
vibrating within or in the vicinity of the sensor helmet, (iv) SQUIDs must be
shielded against radio-frequency interference (see Sect. 1.4); a passive magneti-
cally shielded room acts as an RF shield as well and thus a system without such a
room may still require an RF-shield around it for reliable operation if the sensor
elements cannot be RF-shielded locally. Despite these problems, proof-of-concept
MEG measurements without a shielded room have been performed in magnetically
quiet environments. However, reliable unshielded MEG operation in typical
environments will become possible only after considerable advances regarding the
above challenges.

4.2 Novel Sensor Technologies

Low-Tc SQUIDs have so far been the sensor of choice for serious MEG instru-
mentation due to their excellent noise performance and stability; however, these
sensors require expensive liquid-helium cooling, and the large temperature gra-
dient necessitates elaborate thermal insulation which introduces a considerable gap
from the scalp to the sensors. New sensor technologies that may alleviate these
problems have emerged recently. High-Tc SQUIDs (see the work by Öisjöen and
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colleagues (2012) for a recent MEG application) and ‘‘mixed sensors’’ (Pannetier
et al. 2004; Pannetier-Lecoeur et al. 2011) can be operated in liquid nitrogen,
avoiding much of cryogenics-related costs, and brought closer to the scalp. Atomic
magnetometers are based on optical detection of magnetic-field-induced light
polarization changes in alkali-metal vapors; these sensor operate at +120 to
+150 C and they can also be located within a few mm from the scalp. Atomic
magnetometers allow a non-rigid sensor helmet that can be adapted to the head
size and shape of individual subjects. Devices using liquid nitrogen may also allow
some degree of geometric adaptability if the sensor array is split into multiple
small dewars.

These considerable improvements in MEG instrumentation will have implica-
tions for interference suppression. Bringing the sensors closer to the scalp implies
that higher spatial frequencies can be measured, which improves source recon-
struction accuracy but also requires that the physics-based interference suppression
methods, such as SSS, have to be adapted accordingly to work efficiently. On the
other hand, an adaptable snugly-fitting sensor array is likely to deviate from a
sphere more than the current fixed array, which makes the SSS transform
numerically more stable and may provide a higher shielding factor. However, the
adaptability of the array calls for very accurate yet quick means to determine the
locations and orientations of the sensors in order to efficiently use these physics-
based methods for decomposing the data to neural signals and interference. On the
contrary, statistics-based adaptive methods, such as SSP, would not need the
geometric information but would lack the generic nature of SSS.

4.3 Hybrid Instrumentation

Very recently, large-scale MEG has been successfully combined with ultra-low-
field (ULF) MRI in the same system (Vesanen et al. 2012). This combination is
attractive since the SQUID sensor array can be efficiently used for both MEG and
ULF-MRI signal acquisition. However, for a decent signal-to-noise ratio in ULF-
MRI, the low measurement field (*100 lT) has to be accompanied with a
stronger pre-polarization field (typically 10–100 mT) that is switched on briefly
before collecting the data. The SQUID sensors should be highly resistant to flux
traps so that they can recover within few milliseconds from the pre-polarization
field. Such field tolerance of the sensors would be beneficial also for MEG when
operating the system in a very light shield or completely without a shielded room.

Similarly to MEG, the MRI mode of the hybrid MEG–MRI system benefits
from efficient interference suppression. Although the MRI signals are in the kHz
range where environmental interference is usually not of concern, reduction of the
intrinsic sensor noise, as outlined in Sect. 3.5.7, could considerably improve image
quality. In addition, noise of the MRI gradient amplifiers may propagate to the
sensors via the gradient coils. Since the field pattern of such interference is con-
stant, projection methods such as SSP should work efficiently.
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5 Conclusion

The MEG measurement technology has taken huge steps forward since the early
days when the number of recording channels was one or only a few. Novel
interference and noise suppression methods have emerged as a kind of byproduct
of the significant increase in the number of recording channels. Because at present
the number of detectable degrees of freedom in the magnetic brain signal is known
to be around 80 only, modern devices containing over 300 independent channels
oversample the actual neuromagnetic field. This fact has enabled efficient general-
purpose interference and noise reduction methods such as signal space projection
(SSP) and signal space separation (SSS).

Because interfering magnetic fields—even when MEG is performed in a
magnetically shielded room—may exceed the strength of the neuromagnetic signal
by about a factor of thousand, it is actually necessary to record the interference
with a better relative accuracy than the neuromagnetic signal itself; Only this
enables sufficiently precise subtraction of the interference from the recorded raw
signal. To achieve such an accuracy, it is necessary to use the entire set of MEG
channels for this purpose, not only a limited set of reference channels as was done
in the early 1990s. Thanks to the ample oversampling of the magnetic field, signal
space methods can then be used to determine and subtract the interference signal
from the recorded raw signal.

With the help of such effective ‘‘software magnetic shielding’’ the required
hardware shielding, magnetically shielded room, can be made lighter and cheaper.
This may be an effective booster for the adoption of MEG in hospitals.
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Electric and Magnetic Fields of the Brain

Leon Heller and Petr Volegov

Abstract Electroencephalography (EEG) and Magnetoencephalography (MEG)
provide two noninvasive methods to learn about the spatial and temporal behavior
of neuronal currents. In this tutorial chapter we present the physics and mathe-
matics needed to interpret such measurements. The frequencies present in neuronal
activity are sufficiently low that Maxwell’s equations for electromagnetism can be
approximated by omitting the terms involving time derivatives. In this ‘quasistatic’
approximation the electric and magnetic fields follow the time dependence of the
neuronal current. The ‘‘Forward Problem’’ consists of solving for these fields on
the surface of the scalp and just outside the head, for any assumed neuronal current
distribution. It requires a knowledge of the ‘head model’, namely the shapes and
electrical conductivities of the main head compartments, i.e., the brain, skull, and
scalp, and possibly the cerebrospinal fluid. Analytical and numerical methods for
doing this are discussed. In the ‘‘Inverse Problem’’ one tries to deduce the neuronal
current distribution from EEG and/or MEG measurements on human subjects. The
factors that contribute to the non-uniqueness of the solution are discussed, and the
methods that are actually employed to obtain current distributions are described.
The standard procedure is to assume one or more current distributions, solve the
forward problem for each one, and compare them with the data. Various criteria
for calculating how well they agree are discussed.
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1 Introduction

Electrical currents play a variety of roles in living tissue. In this tutorial chapter,
intended for graduate students and researchers entering the field, we will be
concerned with currents in the brain that flow inside neurons and across their
boundaries into the extracellular medium. These currents produce an electric
potential that can be detected noninvasively on the surface of the scalp, and a
magnetic field that can be measured outside the head. These modalities are called
electroencephalography (EEG) and magnetoencephalography (MEG). Throughout
the chapter we emphasize the basic physics and the associated mathematics needed
to interpret experimental data obtained in MEG and EEG experiments.

Here is an outline of the material. In Sect. 2 we show how Maxwell’s equations
simplify for the low frequencies associated with neuronal activity. This is called
the Quasistatic Approximation. Another approximation is based on the fact that the
electrical conductivity of the brain is not known in any spatial detail, hence a
single average value is commonly used. The same is true for each of the other
major compartments of the head: cerebrospinal fluid, skull, and scalp, each with its
own average value. This is discussed in Sect. 2.1.

Section 3 begins one of the two major subdivisions of the entire chapter, called
the Forward Problem. In it one calculates the electric potential and the magnetic
field produced by an assumed neuronal current. Further, the notion of a ‘‘current
dipole’’ is introduced as the spatially simplest possible current; any more general
current can be obtained as a (possibly continuous) sum of current dipoles. This is
useful because Maxwell’s equations are linear in the source currents, and the fields
produced by a more general source can be obtained as a linear sum of the fields
produced by the individual sources. This property is used a number of times in the
development.

The other major subdivision of the chapter is found in Sect. 4, called the
Inverse Problem. Here one tries to deduce, from experimentally measured values
of the electric potential and/or the magnetic field on the head, the locations,
strengths, and time courses of the electrical currents that produced those mea-
surements. That there is no unique solution of this problem is pointed out in the
Forward Problem section.

As generally used, the Inverse Problem consists of solving the Forward Problem
for the electric potential and the magnetic field produced by an assumed neuronal
current, and varying that current to find the best match, in a sense to be discussed,
with the data. Noise in the data must be taken into account. As will be seen, even if
one is only interested in magnetic field data, it is still generally necessary to solve
for the electric potential.

The frequencies that are associated with neuronal activity are in the range
1–1,000 Hz, and in the next section we show how Maxwell’s equations for the
electric and magnetic fields simplify as a result. A review of this field as of 1993 is
found in (Hämäläinen et al. 1993).
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2 Low Frequency (Quasistatic) Approximation

The total electric current within the head has been written as the sum of two terms
of distinctly different nature in (Geselowitz 1967), and (Barnard et al. 1967). One,
called the primary current, Jp, is the current that flows within neurons and across
their membranes, and is the quantity of interest in neuroscience. Because the cells
are embedded in an electrically conducting medium, the extracellular current—
also called the the ‘‘return’’ current—follows a path that depends upon the con-
ductivity profile of the extracellular medium. The return current JR is taken to be
the product of the local conductivity r and the electric field intensity E, i.e., it is
ohmic current. The complete current becomes

J ¼ Jp þ rE: ð1Þ

Electric current either flows in closed circuits or else, if it starts or stops
somewhere, electric charge builds up (or declines) at such locations. This is
embedded in the fundamental principle of ‘charge conservation’, the mathematical
statement of which is the continuity equation

r � Jþ oq
ot
¼ 0; ð2Þ

where q is the charge density. Equations (1) and (2) together with the Maxwell
equation that embodies Gauss’s Law, r � E ¼ q=e0, lead to

r � Jp þrr � Eþ x0qþ
oq
ot
¼ 0; ð3Þ

where the characteristic frequency x0 ¼ r=e0. Even for the skull, which is the part
of the head with the smallest conductivity, x0 is approximately 109 Hz. This is
orders of magnitude greater than the frequencies of neuronal activity, which are in
the range 1–1,000 Hz.

2.1 Regions of Constant Conductivity

It requires many thousands of nearby neurons acting in near synchrony to produce
a signal strong enough to be detected by EEG or MEG. Since the electrical
conductivities of the various compartments of the head are not known in any
spatial detail, it is common to assign an average value to the brain, one to the
cerebrospinal fluid, one to the skull and one to the scalp.
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2.1.1 The Electric Field

In any region of constant conductivity a number of conclusions follow from
Eq. (3), where the term rr drops out.

(i) Away from primary current any electric charge must fall off with time as
expð�x0tÞ.

(ii) As mentioned above the frequencies of neuronal activity are smaller than x0

by many orders of magnitude in all the compartments of the head. Hence the
term oq=ot is negligible compared to x0q in Eq.(3).

(iii) At the site of primary current charge can persist for the duration of the
current, and then falls off as in (i).

(iv) Electric charge can also appear at the boundary between regions of different
conductivity. This will be discussed later.

With the term oq=ot gone Eq. (3) can be rewritten as

r � ðJp þ rEÞ ¼ 0: ð4Þ

A further approximation for E will follow after consideration of the magnetic field.

2.1.2 The Magnetic Field

From the Maxwell equation r � B ¼ 0, which says that there are no magnetic
monopoles, it follows that B can be written as B ¼ r� A, where A is called the
vector potential. This makes use of the vector identity r � r� ¼ 0.

From Faraday’s Law comes the Maxwell equation r� E ¼ �oB=ot, which
means that the electric field can be written in terms of the scalar potential V and
the vector potential as

E ¼ �rV � oA

ot
: ð5Þ

The proof follows by taking the curl of both sides of Eq. (5) since r�r ¼ 0.
Any electric current gives rise to a magnetic field, and this is embodied in the

fourth Maxwell equation

r� B ¼ l0Jþ 1
c2

oE

ot
ð6Þ

The final term in Eq. (6) is called the Displacement Current, and c is the speed of
light. Putting that term there was Maxwell’s great achievement to insure that
charge is conserved, as can be checked by taking the divergence of both sides of
the equation.
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Since the magnetic field arises from the current, A and B follow the time
dependence of Jp. This places an approximate limit on the magnitude of the time
derivative terms in Eqs. (5) and (6) since the maximum frequency of the neuronal
activity of interest is x � 1 kHz.

For Eq. (6) the return current rE makes the first term on the right hand side
larger than the second term by the ratio x0=x, which is many orders of magnitude.
For Eq. (5) it takes more work to show that the magnitude of oA=ot is negligible
compared to rV . After seeing what follows by neglecting that term, one can go
back and verify that the neglect was justified. Combining Eq. (4) with E ¼ �rV
gives

r � Jp � rr2V ¼ 0; ð7Þ

which represents the quasistatic approximation for the electric potential in any
region of constant conductivity.

The electric potential is that solution of Eq. (7) which satisfies the boundary
conditions that the electric potential is continuous and the normal component of
the return current is continuous on the boundary separating regions with con-
ductivities r0 and r00. While there may be electric charges on the boundary, con-
tinuity of the potential assumes there are no electric dipoles. And continuity of the
normal component of the return current assumes there is no source of primary
current right on the boundary.

V 0 ¼ V 00; r0n � r0V ¼ r00n � r00V : ð8Þ

The solution of Eq. (6) without the time derivative term is given by the Biot-
Savart Law

BðrÞ ¼ l0

4p

Z
Jðr0Þ � r� r0

jr� r0j3
d3r0 ¼ l0

4p

Z
Jðr0Þ � r0 1

jr� r0j d
3r0: ð9Þ

To verify that Eq. (9) satisfies Eq. (6) (without the displacement current) requires
some algebra which is best handled using component notation. It is correct only if
the current J is conserved, i.e., it must be the complete current, satisfying
r � J ¼ 0. Of course the two contributions to B coming from the primary and
return currents can be evaluated separately, but only the sum of the two is phys-
ically meaningful. They are designated as BpðrÞ and BRðrÞ.

Equations (7), (8) and (9) together constitute the quasistatic approximation to
Maxwell’s equations. An essential property of Maxwell’s equations is that they are
linear in the source charges and currents. This means that the solution of the
equations, for the electric field and the magnetic field, for the sum of two sources is
the sum of the solutions for the individual sources. Naturally this property also
holds for the quasistatic approximation to the equations, and will be used
throughout the chapter.
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3 The Forward Problem

A head model consists of a specification of the geometry and conductivity of the
various compartments of the head, e.g., brain, cerebrospinal fluid, skull and scalp.
For any assumed primary current distribution JpðrÞ the ‘Forward Problem’ for
EEG and MEG solves Eqs. (7) and (8) for the electric potential, and Eq. (9) for the
magnetic field on the surface of the head and outside.

There are other applications of electromagnetic theory to the brain besides EEG
and MEG. For example, if one were interested in the effect of current in the brain
on MRI, which is called ‘direct neural imaging’, then one would need the magnetic
field inside the brain. For a uniform sphere the solution is given in (Heller et al.
2004). In addition, brain stimulation by an external current source (known as
Transcranial Magnetic Stimulation (TMS)) makes use of the electric field induced
inside the brain.

3.1 A Current Dipole

Suppose that the primary current occupies a quite localized region, e.g., a few
millimeters in size. Then for positions r that are not too close to that current the
primary current contribution to the integral in Eq. (9), can be approximated as

p� r� r0

jr� r0j3
ð10Þ

where

p ¼
Z

Jpðr0Þd3r0: ð11Þ

This approximation amounts to concentrating all the primary current at a single

position, where r0 is somewhere inside current. One writes JpðrÞ ¼ pdð3Þðr� r0Þ,
where d is the Dirac delta function. p is called the current dipole moment. Note
that any current whatsoever, no matter how spread out it may be, can be written as
a linear combination of current dipoles. Since Maxwell’s equations are linear in
the sources, the solution for the fields becomes a linear sum of the solutions for the
individual dipoles. In applications to experimental data it is common to represent
the source as the sum of a small number of current dipoles.

3.2 Special Solutions

To solve Eqs. (7), (8) and (9) for the electric potential and the magnetic field for a
general head model requires a numerical solution first for VðrÞ and then for BðrÞ
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since the return current contribution to B needs rV . But for certain special
geometries analytic solutions are available, and the most important one is a
spherical geometry in which the electrical conductivity r is assumed to depend
only on the distance from the origin. Although the human head is not a sphere it is
not vastly different, and one can get a fair approximation to V and B by treating the
brain, skull and scalp as concentric spherical regions. This solution is also useful
for checking the accuracy of computer programs written for more general
geometries.

3.2.1 The Magnetic Field

For the magnetic field outside the head, where there is no electric current, from
Eq. (6) (neglecting the time derivative term) r� B ¼ 0 and therefore B can be
obtained as the gradient of a scalar potential, (Bronzan 1971). With r a function of
r it was shown in (Grynszpan and Geselowitz 1973; Cuffin and Cohen 1977;
Ilmoniemi et al. 1985; Sarvas 1987) that the complete magnetic field due to a point
current dipole with moment p at position r0 is

BðrÞ ¼ l0

4pF2
½Fp� r0 � ðp� r0 � rÞrF� ð12Þ

where

F ¼ aðr � aþ raÞ ð13Þ

and

a ¼ r� r0: ð14Þ

Written in this form Eq. (12) is called the ‘Sarvas formula’ (Sarvas 1987). Note
that it is completely independent of the conductivity function, provided that it
depends only on the radial distance from the origin!

Another consequence of considerable importance can be read off Eq. (12). If
the dipole moment p points in the same radial direction as its position r0, then
p� r0 ¼ 0, and hence there is no magnetic field outside the head. Such a ‘radial
dipole’ is the simplest example of what is called a ‘‘magnetically silent source’’,
i.e., an electric current that produces no magnetic field outside the head. A radial
dipole does produce a non-zero magnetic field inside the head, however (Heller
et al. 2004).

The existence of silent sources poses a difficulty for the Inverse Problem, which
is discussed in Sect. 4. It consists of trying to deduce the electric currents in the
brain that produce an experimentally observed magnetic field and/or electric
potential. While an actual current dipole might have both radial and tangential
components only the tangential component can be determined. Even though the
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head is not a sphere a considerable remnant of this uncertainty persists in a realistic
head model.

3.2.2 The Electric Potential

Unlike the magnetic field case, the electric potential in a spherical geometry does
depend on the values of the conductivity in each concentric region, (Rush and
Driscoll 1969). For a uniform sphere an analytic formula for the potential VðrÞ due
to a current dipole moment p located at position r1 is given in (Heller and van
Hulsteyn 1992):

VðrÞ ¼ p � r1Hðr; r1Þ

Hðr; r1Þ ¼ 1
4pr

2
jr�r1j �

1
r ln

r�ðr�r1Þþrjr�r1j
2r2

h i
; ðr�R; r1�RÞ

ð15Þ

where R is radius of the sphere. This difference between the two modalities MEG
and EEG, has the following consequence. Suppose the skull, which has a small
electrical conductivity, did not conduct current at all. Then there would be no such
thing as EEG because no current, and hence no electric field or potential, would be
present at the scalp. The magnetic field, on the other hand, penetrates through
regions that have no electrical conductivity.

3.3 Realistic Head Models

We now discuss how to solve for the electric potential and the magnetic field in a
realistic head model obtained from magnetic resonance imaging of an actual head,
together with the assumed conductivity values for the various compartments of thehead.

3.3.1 The Electric Potential

The most useful method to solve Eq. (7) for the electric potential in a realistic head
model, subject to the boundary conditions in Eq. (8), was given by (Geselowitz
1967). It consists of converting the linear partial differential Eq. (7) to a linear
integral equation on the boundaries that separate regions of different conductivity.
As shown below, it has the advantage that the boundary conditions are built right
in! The starting point is an identity

r0 � Vðr0Þr0 1
jr� r0j �

1
jr� r0j r

0Vðr0Þ
� �

¼ Vðr0Þr20 1
jr� r0j �

1
jr� r0j r

20Vðr0Þ;

ð16Þ
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which is then integrated throughout the entire volume of the head model, one
conductivity region at a time. Vector r is a position anywhere inside the head
model. On the left side of Eq. (16) one makes use of the divergence theorem,
which says that the integral of the divergence of a vector throughout a volume V is
equal to the integral over the surface S of that volume of the component of the
vector along the direction of the outward pointing normal vector. On the right hand
side of Eq. (16) one can make use of Eq. (7) to replace r2V ¼ r � Jp=r. Also,
r21=jr� r0j ¼ �4pdðr� r0Þ.

Figure 1 shows the notation for the case of three regions, brain, skull, and scalp.
The normal vector on each surface is chosen to point outward from that region. It
is straightforward to apply Eq. (16) to the innermost (brain) region with volume
V1, surface S1, and conductivity r01 (see Fig. 1). Multiplying Eq. (16) by r01 and
integrating it throughout region 1 yields

Z

S1

dS01nðr0Þ � r01V1ðr0Þr0
1

jr� r0j �
1

jr� r0j r
0
1r01V1ðr0Þ

� �

¼ �
Z

V1

d3r0
"

4pr01Vðr0Þdðr� r0Þ þ 1
jr� r0j r

0 � Jpðr0Þ
# ð17Þ

In this equation the normal vector nðr0Þ points outward from the region with
conductivity r01. Furthermore, the quantities V1ðr0Þ and r01V1ðr0Þ are the values of
those quantities as S1 is approached from the interior of volume V1.

Fig. 1 A schematic diagram
showing three head regions
with their respective volumes
Vj, surfaces, Sj, and normal
vectors n. In the literature the
conductivities of the
respective regions are called
r0j, and a second set of labels,
designated r00j is introduced
for notational reasons. They
are related as follows.
r001 ¼ r02; r002 ¼ r03; and r003 ,
being the conductivity of the
space surrounding the head, is
zero
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When Eq. (16) is integrated throughout region V2 with conductivity r02, there
are two surfaces that contribute to the left side of the equation, S1 and S2.
The contribution from surface S2 looks just like the left side of Eq. (17) with the
subscript 1 replaced everywhere with 2. But because we have already chosen the
normal vector on S1 to point outward from region 1, which makes it inward
pointing to region 2, the contribution of S1 to the left side of the equation requires
an overall minus sign.

When the equations for conductivity regions 1 and 2 are summed over the
contribution from S1 contains ðr01V1ðr0Þ � r02V2ðr0ÞÞ and ðr01r01V1ðr0Þ � r02
r02V2ðr0ÞÞ. Applying the boundary conditions Eq. (8) on S1, V1ðr0Þ ¼ V2ðr0Þ and
n � ðr01r01V1ðr0Þ � r02r02V2ðr0ÞÞ ¼ 0. This confirms the statement earlier that the
integral equation has the advantage over the differential equation that the boundary
conditions are built in.

After integrating Eq. (16) over the complete volume of the head the result is,
(Geselowitz 1967)

rðrÞVðrÞ ¼ 1
4p

Rjðr0J � r00j Þ
Z

Sj

dS0jnðr0Þ �
r0 � r

jr0 � rj3
Vðr0Þ þ 1

4p

Z

V

d3r0Jpðr0Þ � r� r0

jr0 � rj3
:

ð18Þ

In Eq. (18) the position r is anywhere in the volume, and rðrÞ is the value of the
conductivity in the head compartment containing that position. The final integral
on the right side is obtained by once again using the divergence theorem on
r � ðJpðr0Þ=jr� r0jÞ and noting that there is no contribution from the surface
integral on the surface of the head because there is no primary current there.

Equation (18) determines the value of the potentlal at position r only if one
already knows its values on all the surfaces of discontinuity of the conductivity. To
obtain those values let the point r approach a position rk on one of the surfaces, Sk.
Care must be taken because the denominator of the surface integral vanishes there.

There is a geometric meaning of the integrand which reveals the problem and
points to the solution. Apart from the function Vðr0Þ the rest of the integrand in the
surface integral in Eq. (18) is just the element of solid angle dX0ðr; r0Þ subtended
at the position r by an element of surface area dS0 at position r0, i.e.,

dX0ðr; r0Þ ¼ dS0nðr0Þ � r0 � r

jr0 � rj3
: ð19Þ

Now the total solid angle subtended at any position r inside a closed surface (with
outward pointing normal) is 4p; if r is outside the surface the total is zero, and if r
is on the surface the total is 2p. It is a discontinuous function. It is equally true with
any function VðrÞ in Eq. (18) that the limit of the surface integral as r approaches
a position rk on the surface is not equal to the value of the integral with r ¼ rk;
there is an extra term (Vladimirov 1971)
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lim
r!rk

Z

Sk

dS0knðr0Þ � r0 � r

jr0 � rj3
Vðr0Þ ¼

Z

Sk

dS0knðr0Þ � r0 � rk

jr0 � rkj3
Vðr0Þ þ 2pVðrkÞ: ð20Þ

For the final step, in Eq. (18) let r approach rk from the r0k side, and replace the
limit of the surface integral on surface Sk according to Eq. (20). Then there will
be an additional term on the right side of ð1=4pÞðr0k � r00kÞð2pVðrkÞÞ. When this
term is brought over to the left side of the equation, which consists of r0kVðrkÞ, and
the two terms combined, the result is, (Sarvas 1987)

r0k þ r00k
2

VðrkÞ ¼
1

4p
Rjðr0j � r00j Þ

Z

Sj

dS0jnðr0Þ �
r0 � rk

jr0 � rkj3
Vðr0Þ þ 1

4p

Z

V

d3r0Jpðr0Þ � rk � r0

jrk � r0j3

ð21Þ

The reader can check that it does not matter if the point r approaches rk from the
r0k side or the r00k side; Eq. (21) results either way. [Recall that the normal vector on
the r00 side has the opposite sign.]

Equation (21) is a set of coupled linear integral equations for the electric
potential, one equation for each surface. A standard method for numerically
solving Eq. (21) for the electric potential on those surfaces is to approximate each
surface separating different conductivity regions by a set of small triangles, noting
that there is an analytic formula for the solid angle subtended by a triangle at an
arbitrary position, (van Oosterom and Strackee 1983). Some treatments choose the
vertices of the triangles as the locations for evaluating the potential, and some
choose the centers of the triangles. See, for example, (Schlitt et al. 1995). When this
is done the continuous integral equation is replaced by a set of ordinary coupled
linear algebraic equations, which are solved by standard matrix techniques.
Figure 2 shows a mesh of triangles on the brain-skull interface, and the outlines of
the skull-scalp interface and the scalp-air interface, used for solving Eq. (21).

When doing this it is important to make sure numerically that the total solid
angle subtended by all the triangles on a given surface at an interior point is 4p,
and zero at an exterior point. And if the point in question is on one of those
triangles the total is 2p. Consequently, since a flat triangle subtends zero solid
angle at any point on itself, all the other triangles on that same surface must
subtend a total of 2p at any point located on a triangle.

As mentioned above, once the potential has been found on the surfaces of
discontinuity, it can then be evaluated at any other position using Eq. (18).

3.3.2 The Magnetic Field

The starting point for evaluating the magnetic field in a realistic head model is
Eq. (9), the Biot-Savart Law. For the primary current contribution simply insert Jp

into that equation,
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BpðrÞ ¼ l0

4p

Z

V

Jpðr0Þ � r0 1
jr� r0j d

3r0; ð22Þ

where V is the complete volume of the head.
For the return current one must have already solved for electric potential VðrÞ.

Since JR ¼ �rrV , its contribution to the magnetic field is

BRðrÞ ¼ � l0

4p

X
i

ri

Z

Vi

r0Vðr0Þ � r0 1
jr� r0j d

3r0; ð23Þ

where the sum is over all compartments of the head. Here one makes use of the
identity rV �rð1=jr� r0jÞ ¼ r � ½Vrð1=jr� r0jÞ�, together with Stokes’s
theorem. It says that the integral of the curl of a vector N throughout a volume is
equal to the integral over the surface of that volume of n� N, where n is the
outward pointing normal vector. In the present case N is chosen to be
½Vðr0Þr0ð1=jr� r0jÞ�.

Just as in the case of the electric potential the contributions from the two
compartments that share surface Sj will contribute with opposite signs because the
normal vector is chosen to point from the region with conductivity r0j into the

Fig. 2 A mesh of triangles
on the brain-skull interface
used to numerically solve
Eq. (21) for the electric
potential. There are similar
meshes on the skull-scalp
interface and the scalp-air
interface, which are not
shown. The values of the
potential at every triangle
vertex are the unknowns
being solved for, given an
assumed primary current
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region with conductivity r00j . The final result for the return current contribution to
the magnetic field is, (Geselowitz 1970).

BRðrÞ ¼ � l0

4p
Rjðr0j � r00j Þ

Z

Sj

dS0jnðr0Þ � Vðr0Þr0 1
jr� r0j : ð24Þ

Since all the equations above for the electric potential and the magnetic field are
linear, their solutions for an arbitrary primary current, say a sum of point current
dipoles, are just the sum of the solutions for the individual dipoles.

3.3.3 Conductivity Values

In order to actually solve Eq. (21) for the electric potential in a given head model it
is necessary to know the actual values of the conductivity in each compartment of
the head. These measurements are made in a number of ways. In one, current is
injected into the head and the resulting potential distribution on the scalp is
measured; a best fit of assumed conductivity values to the data is then made. Here,
the injected current plays the role of the primary current Jp in Eq. (21). With
patients about to undergo surgery, e.g., for epilepsy, electrodes can be placed right
on the surface of the brain, both to inject current and detect the resulting potential.

Since the assumption of a constant isotropic conductivity in each head region is
somewhat crude, it is not surprising that there is considerable variation from person
to person when these measurements are made. Some approximate values obtained
are as follows. r (skull) = 0.015 S/m; and r (brain):r(skull):r(scalp) = 1:1/15:1,
(Oostendorp et al. 2000). This value for the skull conductivity is much larger than
that found in older literature. A separate measurement of the conductivity of human
cerebrospinal fluid gives the value 1.79 S/m at body temperature and a somewhat
smaller value at room temperature, (Baumann et al. 1997).

4 Inverse Problem

An inverse problem is generally understood as methods or techniques used to
obtain information about a physical object or system using indirect measurements.
In the context of EEG/MEG the inverse problem deals with reconstructing current
sources, i.e. current distribution JpðrÞ, using measured magnetic fields and/or
electric potentials generated by those currents. We will start to discuss the inverse
problem considering only MEG sensors. Given that we have a number of MEG
sensors we can write the MEG inverse problem in general as a set of integral
equations:
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fiðtÞ ¼
Z

V

Miðr0Þ � Jpðr0; tÞd3r0 þ niðtÞ; i ¼ 1; ::;N ð25Þ

Here fiðtÞ is the signal recorded in the i-th sensor, niðtÞ is noise present in the i-th
channel, N is number of the sensors, and the integration is over the volume
occupied by neuronal currents. Vector function MiðrÞ, called ‘‘lead field’’,
describes a response of the i-th sensor to a unit current dipole at position r.
Specifically ðMiðrÞÞx is magnetic field flux through the pick-up coil of i-th sensor
generated by a unit current dipole aligned along x-axis, correspondingly ðMiðrÞÞy,
ðMiðrÞÞz are magnetic field flux due to dipoles aligned along y- and z- axis. It is
important to note that lead field function MiðrÞ describes effects of both the
primary and return currents. In order to obtain lead field function one first must
compute the magnetic field due to primary current consisting of a unit current
dipole, see Eq. (22, and the magnetic field due to the return current associated with
this dipole (Eq. (24)). For the latter one must have first solved for electrical
potential according to Eqs. (18) and (21). Then the total magnetic field is inte-
grated over the area of a sensor pick-up coil to compute the magnetic field flux.
Often times in practice the lead field function is approximated by sampling the
field at several points over the area of a sensor pick-up coil:

MðrÞ � 1
Np

XNp

k¼1

fðBxðrk; rÞ � bnkÞbex þ ðByðrk; rÞ � bnkÞbey þ ðBzðrk; rÞ � bnkÞbezgDSk

ð26Þ

Here Np is number of the sampling points, DSk and bnk are respectively the area of a
pick-up coil and the unit vector normal to a pick-up coil associated with a sam-
pling point rk, Bxðrk; rÞ, is magnetic field at the sampling point rk generated by
total current associated with a unit current dipole positioned at r and aligned along
x-axis, correspondingly Byðrk; rÞ and Bzðrk; rÞ are fields generated by dipoles
aligned along y- and z-axis.

Equation (25) being Fredholm integral equations of the first kind for the current
Jp, constitute a notoriously ill-posed problem. The term ‘‘ill-posed’’ in the context
of the inverse problem points to the presence of one of the following three
problems: (a) the solution may not exist, i.e. that there is no current distribution
JpðrÞ which corresponds to the measured data, (b) the solution is not unique,
meaning that there are several different current distributions JpðrÞ which give the
same observed data, and, finally, (c) the solution changes dramatically with slight
changes in the measured data.

An EEG/MEG inverse problem demonstrates all of the three aforementioned
conditions. First due to corruption of the measurements by omnipresent noise it is
quite possible that no current distribution can explain the observed data. Second, as
early as in 1853 it was shown by Helmholtz (1853) that a current distribution
inside a conducting body can not be uniquely reconstructed knowing only the
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electromagnetic field outside this body. There are possible current distributions
inside a conductor which produce no magnetic field outside the conductor, or
produce no electrical potentials on the surface of the conductor. Such current
distributions are called magnetically silent and electrically silent, respectively. An
example of magnetically silent current is a current dipole placed inside a con-
ducting sphere and aligned along the radius. Due to symmetry of the problem, see
Eq. (12), the field outside of the sphere is identically zero. An example of an
electrically silent current is a loop current inside a conductor, which produces a
magnetic field outside the conductor, but does not contribute to the electrical
potential on the surface of the conductor. There are also current distributions
which produce no magnetic field outside the conductor nor electrical potentials on
the surface of the conductor. Finally if the current is limited to an area located far
from the surface of the conductor, then quite different current distributions inside
this area will result in about the same magnetic and electrical field outside the
conductor, thus giving the possibility that a solution will change drastically with a
slight change in the measured data.

This suggests that special attention should be paid to how we define a solution
of an EEG/MEG problem and how we obtain it.

4.1 Formulation of the Problem

The first step in estimating neuronal currents is to somehow describe it in terms of
known sources. This can be done in many ways, provided that the selected sources
can represent the function JpðrÞ reasonably well, but for the purposes of this book
we assume that the primary current JpðrÞ can be represented by a finite sum of
current dipoles:

JpðrÞ ¼
XM

j¼1

pjd
3ðr� rjÞ ð27Þ

where pj and rj define direction and position of the j-th dipole. Substituting this
last formula into Eq. (25) we obtain a set of equation for the unknown parameters
of dipoles:

fiðtÞ ¼
XM

j¼1

MiðrjÞ � pjðtÞ þ niðtÞ; i ¼ 1; ::;N ð28Þ

Here MiðrjÞ, which is the lead field function of the i-th sensor, represents the
response of the i-th MEG sensor to a unit current dipole at position rj. In this last
equation position of the dipoles, i.e. rj, could be defined from anatomical MRI
data, or left undefined. In the first case, we only need to find dipole vectors pj by
solving a system of linear equations, but in the second case we also need to find the
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positions of the dipoles rj along with their vectors pj to specify the current source,
which makes the problem non-linear. One must remember not to include silent
current dipoles, such as, for example, a radial dipole inside a conducting sphere,
because there is no way we can attribute strength to such a dipole.

Here it is convenient to introduce matrix notation which is ubiquitous in the
literature, both textbooks and research, dedicated to MEG/EEG. Using matrix
notation equation (28) can be written as:

f ¼ Kqþ n ð29Þ

where the measured data are represented by column vectors: f 	 ðf1; . . .; fNÞT ,

n 	 ðn1; . . .; nNÞT (here and later the superscript T denotes a transposed matrix/
vector), column vector q comprises components of the all dipole vectors pj:

q 	 ððp1Þx; ðp1Þy; ðp1Þz; ðp2Þx; ðp2Þy; ðp2Þz; . . .; ðpMÞx; ðpMÞy; ðpMÞzÞ
T ð30Þ

and components of the lead field functions MiðrjÞ form matrix K usually called a
‘‘gain’’ matrix:

K 	 Kðr1; r2; . . .; rMÞ 	

ðM1ðr1ÞÞx ðM1ðr1ÞÞy ðM1ðr1ÞÞz . . . ðM1ðrMÞÞx ðM1ðrMÞÞy ðM1ðrMÞÞz
ðM2ðr1ÞÞx ðM2ðr1ÞÞy ðM2ðr1ÞÞz . . . ðM2ðrMÞÞx ðM2ðrMÞÞy ðM2ðrMÞÞz

. . . . . . . . . . . . . . . . . . . . .

ðMNðr1ÞÞx ðMNðr1ÞÞy ðMNðr1ÞÞz . . . ðMNðrMÞÞx ðMNðrMÞÞy ðMNðrMÞÞz

2
6664

3
7775

ð31Þ

Recalling the rules of matrix multiplication it is easy to see that the matrix Eq. (29)
constitutes exactly the set of Eq. (28).

So far we have only discussed MEG data, but without changing anything we
can add measured EEG data to the data vector f and ‘‘gain’’ matrix of the EEG
channels, i.e. matrix elements which describe responses of a EEG channels to a
unit current dipole, to the matrix K, thus consider Eq. (29) describing the complete
EEG/MEG problem.

Now we can formulate the MEG/EEG inverse problem as follows: estimate
current source parameters H 	 fpj; rjg, given a MEG/EEG data set f measured
with some statistical errors n. This is obviously a parameter estimation problem.

4.2 Maximum Likelihood Approach

A very common method of estimating the parameters of a statistical model is
maximum-likelihood estimation (MLE). In general the method gives the model
parameters H which give the observed data f the greatest probability:
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HMLE ¼ arg max
H
ðpðfjHÞÞ ð32Þ

Here pðfjHÞ is the probability density, i.e. pðfjHÞDf is the probability to measure
MEG/EEG signals in the interval ðf; f þ DfÞ, provided the actual source was
defined by parameters H, and HMLE, called a maximum likelihood estimation, is
that value of H which maximize pðfjHÞ considered as a function of H. The
probability density function considered as a function of the H instead of f is called
the likelihood function: LðHÞ 	 pðfjHÞ. Usually it is more convenient to maxi-
mize the logarithm of the likelihood function:

HMLE ¼ arg max
H
ðlðHÞÞ ð33Þ

where lðHÞ 	 lnðLðHÞÞ 	 lnðpðfjHÞÞ is called a log-likelihood function.
Naturally, the MLE approach requires knowing the statistical properties of the

noise. One simple, but plausible, assumption is that the noise ni obeys the Gaussian
distribution with zero mean. In this case for each measurement channel we can
write the probability density to observe value x, which can be a magnetic field or
electric potential, in a measurement channel:

piðxjHÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2pr2
i

p e
�ðx�
ef iÞ2

2r2
i ð34Þ

where piðxjHÞ is the conditional probability density for the i-th measurement
channel, i.e. piðxjHÞDx is the probability to observe signal in the i-th channel in the
interval ðx; xþ DxÞ, provided the current source was defined by parameters H,
efi 	

PM
j¼1 Ki;jqj is the expected value for model parameters H, and r2

i is the noise
variance for the i-th measurement channel respectively. Further assuming that the
noise in the different channels is independent, i.e. the combined probability for all
the measurement channels is a product of probabilities of the individual channels:
pðf1; . . .; fN jHÞ ¼ p1ðf1jHÞp2ðf2jHÞ. . .pNðfN jHÞ, we will get the likelihood func-
tion for this noise model:

LðHÞ ¼
YM
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2pr2

i

p e
�ðfi�
ef iÞ2

2r2
i ð35Þ

Taking the logarithm of this last expression we will get a log-likelihood function,
i.e. the function we seek to minimize to find the current distribution most con-
sistent with the measurements, in the case of uncorrelated Gaussian noise:

lðHÞ ¼ � 1
2

XN

i¼1

ðfi � efiÞ2

r2
i

þ const ð36Þ
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It should be noted that in practice the noise in different channels is more often
correlated, than not, because it is caused by common ambient noise sources. Still
assuming that the noise obeys a Gaussian distribution we can generalize formula
(36) as:

lðHÞ ¼ � 1
2
ðf � ef ÞT C�1ðf � ef Þ þ const ð37Þ

where ef ¼ Kq is the vector of expected values of the measured signals for the
model parameters H, C 	 ½Ci;j� is the covariance matrix of noise in the mea-
surement channels, and C�1 denotes the inverse of this matrix, i.e. C�1C ¼
CC�1 ¼ I, where I is an identity matrix. By definition elements of a covariance
matrix Ci;j are expectation values of product of noise signals in the different
channels:

Ci;j ¼ Efðni � niÞðnj � njÞg ð38Þ

Here Ef. . .g denotes the expectation value of an expression in the brackets, ni is
noise present in the channel i, the bar over a quantity, to shorten the notation, also
denotes the expectation value of quantity, i.e. ni 	 Efnig is the mean value of
noise in i-th channel. Note that Eq. (38) can be written in matrix notation as:

C ¼ Efðn� nÞðn� nÞTg ð39Þ

In the case of uncorrelated noise considered above, see Eq. (36), all non-
diagonal elements of the correlation matrix are equal to zero, and the diagonal
elements, i.e. Ci;i, are simply variance of the measurement channels.

C ¼

r2
1 0 0 . . . 0

0 r2
2 0 . . . 0

. . .
0 . . . 0 r2

N�1 0
0 . . . 0 0 r2

N

2
66664

3
77775

ð40Þ

Respectively the inverse matrix of this diagonal matrix is also a diagonal matrix,
the diagonal elements are the inverse variance of the corresponding measurement
channels:

C�1 ¼

1=r2
1 0 0 . . . 0

0 1=r2
2 0 . . . 0

. . .
0 . . . 0 1=r2

N�1 0
0 . . . 0 0 1=r2

N

2
66664

3
77775

ð41Þ

It is easy to see that by substituting (41) into (37) we will get exactly formula (36).
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4.3 Chi-Square Criteria

Before we proceed to describe techniques for finding solutions according to (33),
let us qualitatively analyze the properties of the MLE.

First, by solving the problem (29) in some sense we estimate both the source
parameters H and the noise n. Second, if the problem (29) has an exact solution,
i.e. if H exists such that Kq ¼ f, where f is the measured data, then this solution is
a MLE solution. This means that in this case the estimated noise is identically zero,
which is very hard to believe. This leads to a paradox: the better we fit the data f by
adjusting the source parameters H, the higher the probability that the source
generates the data, but if we fit the data too well it becomes very unlikely that the
data are generated by the source. This situation is usually referenced to as
‘‘overfitting’’ the data.

These considerations lead us to the necessity to characterize somehow the

difference between the measured data and the model, i.e. between f and ef 	 Kq.
This difference describes how well the model describes the data. If the variance of
the noise is known this difference can be characterized by a quantity denoted as v2

and defined by the following equation:

v2 ¼
XN

i¼1

ðfi � efiÞ2

r2
i

	 ðf � efÞTR�1ðf � efÞ ð42Þ

where elements of the diagonal matrix R�1 are the inverse variance of the cor-
responding measurement channels (compare with Eq. (41)). From the definition
(42) it is obvious that if the parameters of a true model are somehow known, the
expectation value of v2 is equal to the number of the measurement channels N. In
the case the noise in different measurement channels is uncorrelated and normally
distributed with zero mean, the quantity v2 defined according to (42) obeys a
probability distribution known as ‘‘chi-square’’ distribution (hence the notation)
with m degrees of freedom. This distribution has the expectation equal to the
number of degrees of freedom m and the variance twice this number 2m. In the
limiting case m!1 chi-square distribution converges to a normal distribution.

The notion of ‘‘number of degrees of freedom’’ deserves some explanation.
Usually it is assumed that m ¼ N �M, where N is the dimension of the data vector,
i.e. the number of measurement channels, and M is the number of model
parameters. This reflects the fact that if we estimate M model parameters mini-
mizing (42) and using N measurements, then we can expect that on average the
value of v2 will be about N �M with the variance twice this number, provided our
model allows for the exact solution of the model equation (Eq. (29) in our case). In
the limiting case when the number of the estimated model parameters (including
the ones estimated implicitly) is equal to the number of available data points, then
we can expect the difference v2 is identically zero. This approach helps to answer
the questions about fidelity of the model: ‘‘can it describe the data set?’’, ‘‘are M
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parameters enough to account for the complexity of the data?’’, ‘‘do we have any
redundant model parameters?’’. However if we formulate the question as ‘‘is it
plausible that the model in question generated the observed data set?’’ then we
need to assume that the number of degrees of freedom is equal to the number of the
data points: m ¼ N.

In practice it is convenient to use the normalized chi-square (or reduced chi-
square) criteria—v2

n, which is v2 per degree of freedom:

v2
n ¼ v2=m ð43Þ

Obviously the expectation value of v2
n is always 1, and the variance is 2=m,

which makes it easy to interpret: if v2
n is about 1 within, say, a variance, then our

model is consistent with the data, if v2
n\\1, then our model captures not only the

signal but also the noise (or the noise is overestimated), and finally if v2
n [ [ 1,

then our model is not adequate to describe the signal (or the noise is underesti-
mated). Naturally, one must not forget that in order to apply these rules the
variance of the noise should be very reliably estimated.

These simple rules may be formalized by introducing P- and Q-values. Given a
particular value we can calculate the probabilities obtaining an experimental value
of v2 that is less (P-value) and greater (Q-Value) than this value. The most widely
accepted critical value is Q=0.05, meaning that only in 5 % of trials the higher
value of v2 would be observed if the model under consideration is true. In MEG
sometimes a solution is considered to be acceptable if its Q-value is greater than
0.001.

Similar to (37) definition of the v2 (42) can be generalized using a complete
covariance matrix C, which in the general case is not a diagonal:

v2 ¼ ðf � ef ÞT C�1ðf � ef Þ ð44Þ

Here if the matrix C has full rank, then the v2 defined according to (44) is chi-
squared distributed.

Concluding the discussion of characterizing the difference between the model
and the measurement we would like to reiterate that characterizing the validity of
the model and the validity of the solution of the inverse problem in MEG/EGG is
of paramount importance.

4.4 Imaging Versus Localization

Now let us proceed to find estimations of the current sources according to Eq. (33).
It is generally accepted, see for example (Baillet et al. 2001), that depending on
how we select the current dipoles in the decomposition (27) the estimation of
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current sources can be broadly divided into two classes: (1) ‘‘localization’’ and
(2) ‘‘imaging’’.

In the first case we assume that the current source under study is limited to a
few small areas. Naturally here the basis sources are selected to be a few current
dipoles, positions and magnitudes of which are considered to be unknown
parameters of the model to be estimated by fitting the model to the data.

In the second case the current source is assumed to be of distributed nature. In
this case the basis functions typically constitute a large number of current dipoles
distributed according to some rule over the target surface or volume. The positions
and orientations of those dipoles are assumed to be known, and the amplitudes of
the dipoles are considered to be the model parameters to be estimated.

In addition to the two classes described above one can also distinguish
‘‘beamforming’’ techniques, which are somewhat intermediate between the
localization and imaging techniques. The main idea of this approach is to design a
filter, which being applied to the data vector f emphasize the signals resulting from
some selected spatial area, while suppressing the signals from the rest of the target
volume.

4.4.1 Single/Multiple Dipole Localization

Early studies of the fields generated by evoked somatosensory responses (Brenner
et al. 1978) revealed a dipolar character of both the magnetic field around a head
and the electrical potential on head surface. An example of such fields is shown in
Fig. 3 where the dipolar and complementary nature of the MEG/EEG signals is
clearly visible. This leads to the simplest model of neuronal current source as an
equivalent current dipole (ECD): JpðrÞ ¼ pdd

3ðr� rdÞ.
It is straightforward to find parameters of the dipole, i.e. its position rd and

vector pd, by maximizing log-likelihood function (37), or, which is equivalent,
minimizing v2 (44), with respect to rd and pd using the following relation for the

model ef :

ef ¼ KðrdÞpd ð45Þ

with an iterative optimization procedure. The most popular techniques for this
problem are Levenberg-Marquart (Levenberg 1944; Marquardt 1963) and Nelder-
Mead downhill simplex (Nelder and Mead 1965). It should be noted that as a rule
iterative optimization techniques require specifying an initial guess of what the
solution may be. In our case that means one needs to specify the initial position of
the dipole.

As the number of parameters of this model is small, i.e. 3 for dipole position
and 3 for the dipole vector, compared to the number of data channels, typically
modern EEG/MEG systems have a few hundred measurement channels, the risk of
overfitting the data is practically non-existent. However due to non-linearity of the
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problem, even in this simplest model, there is a possibility, albeit small, that the
optimization algorithm will converge to a local, but not to the global extremum of
the likelihood function. To avoid being trapped at the local extremum, the
localization procedure it typically repeated several times each time using a dif-
ferent starting point (i.e. the initial position of a dipole) and selecting the solution
giving the best fit.

Let us illustrate this approach using MEG data obtained during a simple median
nerve stimulation experiment. Under the protocol of the median nerve test, see for
example (Huang et al. 2004), the left or/and right median nerves are stimulated by
application of electrical current strong enough to cause robust twitches of a thumb,
and magnetic fields generated by neuronal currents associated with such stimu-
lation are recorded by a MEG acquisition system. Figure 4 shows a typical pattern
of the recorded signals due to right hand stimulation, where the left panel shows
the time course of magnetic field for all the MEG channels and right panel shows
spatial pattern of the evoked response field at 33.5 ms after application of
the stimulus. The magnitude of the fields is about 200 fT. The dipolar nature of the
evoked response is obvious, so we can try to use an equivalent current dipole
model to fit the obtained measurements. To obtain the location and the strength of
the ECD which describes best the measurements, we need to specify the head

Fig. 3 An example of combined MEG/EEG data for median nerve stimulation experiment.
MEG/EEG sensors were positioned at the vertices of the corresponding meshes, and then the data
were interpolated to the corresponding surface to enhance visualization (the MEG surface is
shifted relative to the EEG surface to provide a better view of the EEG data). MEG data were
obtained using 149 channel LANL SIS system (Kraus et al. 2002) and EEG data were collected
with a 128 channel Geodesic Sensor Net (Tucker 1993)
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model, i.e. the way we compute the return currents. In this example we will use the
simplest model—a conducting sphere. The conductivity of the sphere, as follows
from the Eq. (12), has no effect of the magnetic fields generated by return currents,
so to use this model we only need to specify the center of the sphere and its size
which can be done by fitting the sphere to the inner scull surface obtained from
anatomical MRI data. It is important to note that when considering a spherical
head model, a current dipole aligned along a radius of the sphere—a ‘‘radial’’
dipole—produces no magnetic field outside the sphere, i.e. such a dipole is
magnetically silent. Since we are using only MEG data to locate the ECD in the
current, we need to exclude such radial current dipoles from the solution. To do
this we need to impose the condition ðpd � rdÞ ¼ 0 for dipole parameters rd and pd

while searching for the best fit. This can be done by decomposing a dipole vector
pd into two tangential components at the dipole position rd:

pd ¼ be1ðrdÞp1 þ be2ðrdÞp2 	 RðrdÞp? ð46Þ

where unit vectors be1ðrdÞ and be2ðrdÞ are defined by conditions ðbe1;2ðrdÞ � rdÞ ¼ 0.
Equation (45) needs to be accordingly modified:

ef ¼ K?ðrdÞp?
K?ðrdÞ ¼ KðrdÞRðrdÞ ð47Þ

where RðrdÞ 	 be1ðrdÞ be2ðrdÞ½ �, and p? 	 ðp11; p2ÞT . Note that excluding radial
dipoles from the solution resulted in the reduction of unknown parameters.

Figure 5 summarizes results of this exercise, where the top-left panel shows the
measured field and the top-right panel shows the best fit, i.e. the field generated by
an equivalent current dipole which is closest to the measured data in the maximum

Fig. 4 Evoked somatosensory response field after electrical stimulation of the right median
nerve
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likelihood sense. The position of the dipole, mapped on anatomical MRI data, is
shown in the bottom-left panel of Fig. 5. The strength of the dipole was found to
be 31.3 nAm. The bottom-right panel in Fig. 5 shows the difference between the
measured data and the model data, which is about 20 fT.

As we can see from this example even the simplest head model gives rather
good agreement with the experimental data. However it is important to estimate
what possible localization errors associated with this simple approximation. This
problem was exhaustively studied (see for example Cohen and Cuffin 1991;
Hamalainen and Sarvas 1989; Tomita et al. 1996; Huang et al. 1999). The general
consensus is that the spherical model is more accurate for the MEG than for EEG.
In the case of MEG using a simplistic head model instead of a realistic boundary
element model (BEM) could result in dipole localization errors from a few mil-
limeters if a dipole is close to the head surface, up to 10 mm if a dipole is located
deep inside the head.

Finding parameters of the model is only part of the solution, next we need to
estimate confidence intervals of the solution. Once again, the non-linear nature of
the problem complicates the task. The straightforward approach is to employ a
Monte-Carlo type technique (e.g. Medvick et al. 1989): starting with the localized
dipole frd; pdg to generate the model data, i.e. vector f, then add some noise to this
vector using a plausible noise model, and finally find new dipole parameters
fr0d; p0dg using this new synthetic dataset. After repeating this procedure several
times we can estimate the spread of the parameters of the dipole.

Another approach is based on the assumption that the localization error is not
too large, so that the gain matrix can be approximated in the vicinity of the dipole
parameters frd; pdg using only the first terms in Taylor decomposition:

KðrÞp � KðrdÞpd þKðrdÞDpþ ðDr � rÞKðrÞjr¼rd
pd ð48Þ

where Dr 	 r� rd, Dp 	 p� pd are localization errors, and differential operator
ðDr � rÞ 	 Dx o

oxþ Dy o
oyþ Dz o

oz is applied to each element of the matrix KðrÞ.
Now Eq. (29) can be written in the linear form with respect to the localization
errors Dr and Dp:

f ¼ KðrdÞpd þGðrdÞDHþ n ð49Þ

Here DH ¼ ðDx;Dy;Dz;Dpx;Dpy;DpzÞT is a vector of the localization error, and G
is the matrix of the derivatives of the gain matrix K which can be explicitly written
as:
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GðrdÞ ¼

o
ox ðM1pdÞ o

oy ðM1pdÞ o
oz ðM1pdÞ ðM1Þx ðM1Þy ðM1Þz

o
ox ðM2pdÞ o

oy ðM2pdÞ o
oz ðM2pdÞ ðM2Þx ðM2Þy ðM2Þz

. . . . . . . . . . . . . . . . . .
o
ox ðMNpdÞ o

oy ðMNpdÞ o
oz ðMNpdÞ ðMNÞx ðMNÞy ðMNÞz

2
6664

3
7775

ð50Þ

where matrix elements are evaluated at r ¼ rd.
Solving Eq. (49) in the maximum likelihood sense, i.e. minimizing expression

(37), we will get the following formula for the localization errors:

Fig. 5 Localization of an equivalent current dipole in a right median nerve stimulation
experiment. Top row left—measured data, middle—model fit, right—residual. Bottom row
position of the localized dipole (green marker), mapped on anatomical MRI data
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DH ¼ ðGT C�1GÞ�1GT C�1n ð51Þ

Here DH is a random vector of the localization errors which we would like to
characterize by the corresponding correlation matrix:

CDH ¼ EfðDH� DHÞðDQ� DHÞTg ð52Þ

Recall that n is a random variable described by the correlation matrix C, so
substituting (51) into (52) and carrying out matrix multiplications will finally result
in a simple expression for the correlation matrix of localization errors:

CDH ¼ ðGT C�1GÞ�1 ð53Þ

It should be noted that formula (53) is actually a lower bound for localization
errors. According to the Cramer-Rao inequality theorem (Rao 1945; Cramer 1946)

the covariance matrix of the errors between the true w and estimated ~w parameters
is bounded from below by the inverse of the Fisher information matrix:

Cww 	 Efðw� ~wÞðw� ~wÞTg�F�1 ð54Þ

where the Fisher information matrix is defined as

F ¼ Ef½ d

dw
ln pðfjwÞ�½ d

dw
ln pðfjwÞ�Tg ð55Þ

Here d
dw ln pðfjwÞ denotes a column vector of partial derivatives of log-likelihood

function:

d

dw
ln pðfjwÞ 	 ð o

ow1
ln pðfjwÞ; . . .;

o

owk
ln pðfjwÞÞT ð56Þ

Using Eqs. (37) and (45) to compute Fisher information matrix for a single dipole
model we will get:

F ¼ GT C�1G ð57Þ

where again the matrix G is defined by Eq. (50) and matrix C is the correlation
matrix according to (39). From this last formula it is easy to see that estimation of
the localization errors (53) is indeed the Cramer-Rao lower bound (CRLB).

Analysis of the localization errors using CRLB approach, see for example
(Mosher et al. 1992, Plis et al. 2007), reveals that even when using quite favorable
assumptions about the noise level the localization errors are quite large reaching

 1 cm for dipoles located just a few centimeters below a head surface (see
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Fig. 6), thus emphasizing the inherent ill-posed nature of a MEG/EEG inverse
problem.

A single equivalent current dipole model considered so far nicely illustrates the
methods used to find a dipole location. However, in practice this simple model
may not be adequate to describe a more complicated current source. An example
of such a situation is shown in Fig. 7. It is obvious that the pattern can not be fitted
with a single dipole model, so it is quite natural to expand the model to assume that
the current source contains several equivalent current dipoles.

The first question here one must ask is ‘‘how many dipoles?’’. The straight-
forward approach to answer this question is a systematic search across increasing
number of dipoles (Supek and Aine 1993). The main idea is starting with a model
consisting of one ECD or some small number of dipoles and conduct a search
across model orders by increasing the number of dipoles to determine if the model
adequately describes the observed data using, say, v2 criteria. The model which
adequately describes the observed data using minimal number of dipoles is con-
sidered to be the answer.

Another approach to estimate the number of dipoles is based on the assumption
that dipoles are not correlated in time, i.e. the time courses of dipoles are linearly
independent. To outline this approach let us write the recorded data as a matrix:

D 	

f1ðt1Þ f1ðt2Þ . . . f1ðtMÞ
f2ðt1Þ f2ðt2Þ . . . f2ðtMÞ
. . . . . . . . . . . .

fNðt1Þ fNðt2Þ . . . fNðtMÞ

2
664

3
775 ð58Þ

where fiðtjÞ is the signal in the i-th sensor at time tj, so each row of the matrix D
constitutes recorded time signal of the corresponding sensor. If we assume that

Fig. 6 Average error lower bound for a single dipole. Left panel EEG, right panel MEG.
(Mosher et al. 1992)
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these signals are generated by a certain number of linearly independent sources,
the number of linearly independent rows is equal to the number of these sources.
So to estimate the number of dipoles we need to estimate the number of linearly
independent rows in the matrix D, which can be done using a singular value
decomposition (SVD) of this matrix (see Chen et al. 1991 for details). It should be
noted that this approach gives a minimum number of dipoles, because, as it is easy
to see, if some current sources are active synchronously, then under this approach,
they will be counted as one source even if they are spatially distinct.

As we have mentioned before, parameters of the dipoles are obtained by
maximizing the likelihood function. However for a model consisting of multiple
current dipoles one is likely to encounter difficulties in finding the global extre-
mum. As it was shown in a number of publications, see for example (Achim et al.
1991; Supek and Aine 1993), if the number of dipoles is greater than one, the
result strongly depends on the initial guess of the dipoles’ positions. This is due to
the very high probability that the optimization procedure will converge to a local
extremum. A way to overcome this is to repeat the procedure several time each
time using different initial guess of the dipoles’ positions. As the number of
dipoles grows, selecting initial parameters of dipoles becomes tedious and time
consuming, so there is a need to automate this step. One straightforward approach
is randomly select initial positions of dipoles inside the head volume, and then
select the solution giving the best fit. It was shown (Huang et al. 1998) that this
approach in combination with the downhill simplex method is effective in finding
the global extremum within a reasonable computation time. Subsequent approa-
ches were developed to further optimize the computation time by: (1) using a two-
stage simplex procedure to first rule out sub-optimal solutions (i.e., it uses a coarse
convergence criterion in the simplex procedure) and then refines the remaining
solutions using a fine convergence setting; and (2) using a MUSIC-seeded
approach (Ranken et al. 2002, 2004).

Fig. 7 Auditory evoked
response demonstrating
2-dipole like features of the
MEG signals
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4.4.2 Imaging Techniques

In this case we assume that locations of the current dipoles—and usually orien-
tations—are fixed and known. Typically it is assumed that the dipoles are dis-
tributed over the cortex surface and their orientations are orthogonal to this
surface. As for the positions of current dipoles, Eq. (29) is reduced to a linear
equation with respect to unknown dipole vectors, which can be solved using a
maximum likelihood approach.

If the number of unknowns is less than the number of linearly independent rows
in K, i.e. the number of independent equations in (28), then the MLE solution
according to formula (33) is unique and is given by:

q ¼ ðKT C�1KÞ�1ðKT C�1Þf 	 ðK
^ T

K
^

Þ�1K
^ T

f
^

ð59Þ

Here, to shorten the notation, we introduced so the called ‘‘whitened’’ data and
gain matrices:

f
^

	 C�1=2f

K
^

	 C�1=2K
ð60Þ

where C�1=2C�1=2 ¼ C�1. It is easy to see that the noise covariance matrix of the

‘‘whitened’’ data—C
^

—is an identity matrix:

C
^

	Efðf
^

� f
^

Þðf
^

� f
^

ÞTg
¼EfC�1=2ðf � fÞðf � fÞT C�1=2g ¼ C�1=2Efðf � fÞðf � fÞTgC�1=2 ¼ C�1=2CC�1=2 	 I

ð61Þ

where I denotes an identity matrix.
In the opposite case which is more likely to be encountered in practice, the

number of unknowns is greater than the number of independent equations and the
MLE solution is not unique. This means that there are an infinite number of
different vectors q, i.e. sets of dipole victors pi, which deliver a maximum to the
likelihood function (37). In this case we need to make an additional assumption
about the solution to select one set, which we consider to be a plausible solution.
The simplest, and the most widely used, approach to achieve this is to require that
the sum of the squares of the current dipole magnitudes be minimal. As it turns
out, a solution in such sense, which called a minimum norm solution, is unique.
This solution can be written in a closed form as:

q ¼ K
^ T
ðK
^

K
^ T
Þ�1f

^

ð62Þ
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Here it is very important to realize that the solution obtained by straightforward
application of this last formula will almost certainly result in unacceptable noisy
images due to magnification of the noise present in the experimental data. This
noise magnification is inherent to the MEG/EEG inverse problem due to properties
of the gain matrix K. So to get a meaningful solution we need somehow to limit
this noise propagation. One way to do this is to use a Tikhonov regularization
(Tikhonov and Arsenin 1977). Under this approach the formula (62) is modified as
following:

q ¼ K
^ T
ðK
^

K
^ T
þ k2IÞ�1 f

^

	W
^

f
^

ð63Þ

where k2 is a regularization parameter, and W
^

	 K
^ T
ðK
^

K
^ T
þ k2IÞ�1. The correct

scale of this regularization parameter can be estimated using the following
formula:

k


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðK

^

K
^ T
Þ=N

q

SNR
ð64Þ

where N is the number of measurement channels, and SNR is signal to noise ratio.
As we mentioned before it is very important to estimate errors of the solution.

The measurement data f
^

contains random noise, that means the solution (63) also
exhibits stochastic behavior, which can be characterized by a covariance matrix
Cq:

Cq 	 Efðq� qÞðq� qÞTg ¼W
^

W
^ T

ð65Þ

This last equation is easy to obtain recalling that the covariance matrix of whitened
data is an identity matrix (see Eq. (61)).

Let us again illustrate this approach using MEG data obtained during a median
nerve stimulation experiment. We use the same data set we used to demonstrate an
equivalent dipole localization technique, see top-left panel on Fig. 5. We started
with extracting cortex surface from the volume MRI data using MRIView tool
(Ranken and George 1993). This resulting tesselated cortical surface is shown in
the top left panel of Fig. 8. The mesh constituting the cortical surface consists of
about 90,000 triangular faces. Next the gain matrix was computed according to
Eq. (31) using unit current dipoles placed in the centers of the triangular faces, and
the dipole vector were computed according to formula (63). The results are shown
in Fig. 8. The focal character of the neuronal activity is evident. The residuals, i.e.
the difference between the measured data and the model, shown in bottom-right
panel in Fig. 8 demonstrated good agreement of the model with the measurements
across almost the whole sensor array. A few sensors placed directly above the
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focus of neural activity exhibit relatively high residuals, ±30 fT. This is explained
by the fact that in this model the current dipoles’ positions are fixed, and it happens
that there are no dipole placed close enough to the true position of the actual
evoked neuronal current dipole.

Acknowledgments Authors (L. H. and P. V.) thank D. M. Ranken for Fig. 2, extraction of the
cortical surface from the MRI data and fruitful discussions with respect to multiple dipole
localization techniques.

Fig. 8 A minimum-norm solution. Top-left Tesselated cortical surface, red arrows represent unit
current dipoles placed at the centers of mesh triangles and orthogonal to the surface. Bottom-left
amplitude of the dipoles. Top-right model fit. Bottom-right residual
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Forward Modeling and Tissue
Conductivities

Jens Haueisen and Thomas R. Knösche

Abstract The neuroelectromagnetic forward model describes the prediction of
measurements from known sources. It includes models for the sources and the
sensors as well as an electromagnetic description of the head as a volume
conductor, which are discussed in this chapter. First we give a general overview on
the forward problem and discuss various simplifications and assumptions that lead
to different analytical and numerical methods. Next, we introduce important
analytical models which assume simple geometries of the head. Then we describe
numerical models accounting for realistic geometries. The most important
numerical methods for head modeling are the boundary element method (BEM)
and the finite element method (FEM). The boundary element method describes the
head by a small number of compartments, each with a homogeneous isotropic
conductivity. In contrast, the finite element method discretizes the 3D distribution
of the anisotropic conductivity tensor with the help of small volume elements.
Subsequently, we discuss in some detail how electrical conductivity information is
measured and how it is used in forward modeling. Finally, we briefly introduce the
lead field concept.
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1 Introduction

A crucial part in any source reconstruction procedure is the computation of the
bioelectromagnetic field generated by known sources. This computation is known
as the forward problem or direct problem and includes the mathematical
description of the sources and sensors, as well as the description of the relationship
between the source parameters and the simulated data at the sensors. The material
(tissue) properties and the distribution of tissues within the volume conductor1 are
highly complex. This complexity makes the transfer function between sources and
measurements non-trivial. Thus, approaches to the forward problem are mainly
characterized by the degree of simplification they apply.

First we consider the description of the sources. Microscopically, currents
across cell membranes are impressed by chemical processes and concentration
gradients. In the pyramidal cells of the cortex, these currents are mainly arranged
in a radially symmetric manner around the axes of the dendrites, which causes a
cancellation of their far field and therefore invisibility to EEG/MEG. These
impressed currents give rise to local ohmic currents inside and outside the cells,
governed by a complex interplay of chemical and electrical processes at the
microscopic level (involving voltage-gated ion channels, second messenger
chains, barriers like cell membranes, etc.). However, these functional and struc-
tural details at the cellular level are usually not taken into account when modeling
EEG/MEG. Instead, the source area is considered as a black box. All currents
within that box, including impressed and passive ohmic currents inside and outside
the cells, are represented by a single primary current, usually modeled by means of
an equivalent current dipole. The far field of this current is probably dominated by
intracellular ohmic currents flowing along the longitudinal axis of the apical
dendrites of the pyramidal cells (i.e., perpendicular to the cortical surface). It is
assumed that at least a few ten thousands of neurons need to be simultaneously
active to produce a measurable effect at the head surface (Murakami and Okada
2006). The extent of the box is implicitly determined by the spatial resolution of
the measurement. More specifically, the primary current is normally described as
point-like. Under this constraint, the extent of that black box must be small
compared to the distance to the sensors. All currents outside the box are defined as
volume currents (secondary currents). Thus, the total current density is the sum of
primary and secondary current densities: ~J ~r

0� � ¼~Jp ~r
0� �þ~Jvð~r0Þ. Since often

multiple source components2 are active at the same time, the measured magnetic
fields and electric potentials represent a superposition of all contributions. Each
source component can be characterized by a set of parameters (see below) and by
the signals it produces at sensor level. These signals are often termed components

1 The term volume conductor denotes the part of the biological tissue, in which the relevant
volume currents are flowing (e.g. the head for MEG).
2 A source component combines primary currents which react to experimental manipulation as
a whole or which depend uniformly on observable environmental variables.
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of the signal (Donchin 1966; Kayser and Tenke 2005). In the literature on source
separation the term ‘‘source’’ is often used synonymously for the signal the source
component is producing, whereas in the literature on source reconstruction it is
used to describe the parameterized source model.

The primary current density~Jpð~r0; tÞ is a spatially continuous function. In order
to describe it with a finite vector of parameters, two approaches exist. The dis-
cretization approach divides the space into sections, within each of which the
current density is replaced by the integral over the volume of that section:

~diðtÞ ¼
Z

Vi

~Jpð~r0; tÞdv ð1Þ

where ~diðtÞ denotes the dipole moment typically given in nanoamperemeters
[nAm]. The discretization approach is based on the topology of the source space.
For example, the entire brain volume can be discretized in hexahedral voxels, or
the cortical sheet can be discretized into prisms (triangles representing the cortical
surface plus a predefined thickness). In each of these elements, the primary current
density is modeled by one current dipole.

In many practical applications the primary current density is relatively focal,
such that it can be satisfactorily described by a few current dipoles at the centers of
activity leading to the multiple dipoles model. The second approach parameterizes
the primary current density with the help of a series expansion. The series can also
describe extended source configurations centered at the expansion point. Often, the
electric potential at the measurement location ~rexpressed by a Taylor series
expansion with the origin at position~r0:

uð~rÞ ¼ 1
4pr

m

~r �~r0j j þ
~dð~r �~r0Þ
~r �~r0j j3

þ 1

~r �~r0j j3
3

~r �~r0j j2
ð~r �~r0ÞT�qð~r �~r0Þ � trð�qÞ

 !
þ � � �

" #

ð2Þ

Here, m is the electric monopole moment, which vanishes due to the charge
conservation law:

m ¼ �
Z

V

r~Jpð~r0Þdv; ð3Þ

~d is the dipole moment according to Eq. (1) and �q is the quadrupole tensor:

�q ¼
Z

V

~Jpð~r0Þ~r0T dv ð4Þ
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A truncation of this series, after the dipole term, results in the equivalent current
dipole model which represents the entire current density as a point-like current
element. Extending this approach to multiple partial volumes yields the same
multiple dipoles model, which was derived from the discretization approach
above.

The sensor model describes how a sensor transforms a physical quantity into an
accessible output. For biomagnetic measurements this typically involves first the
transformation of the magnetic flux density into a magnetic flux by integration
over the area of a pickup coil. Next this magnetic flux is often combined across
several coils in order to suppress far field disturbances. Finally, the magnetic flux
is converted into a voltage. Important parameters of this model are the position,
orientation, geometrical form, and number of windings of the coils. The exact
integration of the flux density over the coil area would be computationally
demanding. Thus, often the flux density at the center point of the coil is assumed to
represent the constant value over the entire coil area. More accurate approaches
involve a weighted average of the flux density at a small number of integration
points within the coil area. Magnetic recordings do not require a reference, which
is an advantage compared to electric recordings.

Next we consider the description of the relationship between source parameters
and the simulated data at the sensors. Maxwell’s equations are the basis for this
transfer function. For most non-invasively measured electric and magnetic bio-
signals, frequencies are below 1,000 Hz and the spatial dimension is below 1 m.
Consequently, the temporal derivatives in the Maxwell equations can be omitted
(Plonsey and Heppner 1967), yielding the quasi-static Maxwell equations that
disregard capacitive and inductive effects (Table 1). The free volume charge
density is not relevant here, since we consider the electric flow field only, which is
uncoupled from the electrostatic field due to the vanishing derivative of D in the
quasistatic approximation of Ampère’s law (Table 1). The only remaining relevant
material parameter is the electrical conductivity.

From the definition of the scalar electric potential ~E ¼ �ru (based on the
quasi-static law of Faraday) and Ohm’s law ~J ¼ �r �~E, one can derive Poisson’s
equation (Eq. 5), while the quasi-static law of Ampère allows (under the

Table 1 Full and quasi-static Maxwell equations

Faraday’s law Amperè’s law Gauß’s law Gauß’s law
for mag.

Material
equations

Full r�~E ¼ � _~B r� ~H ¼~J þ _~D r~D ¼ qf r~B ¼ 0 ~J ¼ �r~E
~D ¼ �e~E
~B ¼ �l~H

Quasi-static r�~E ¼ 0 r� ~H ¼~J r~D ¼ qf r~B ¼ 0

The vectorial state variables comprise the electric field strength ~E, the magnetic field strength ~H,
the electric current density ~J, the magnetic induction ~B and the electric displacement current
density ~D. The material tensorial parameters are the electrical conductivity �r, the permittivity �e
and the permeability �l. The scalar parameter qf denotes the free volume charge density
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assumption of a scalar magnetic permeability �l ¼ l) for computing the magnetic
field from the electric potential (Eq. 6).

r�rru ¼ �r~Jp ð5Þ

r �~B ¼ �l �rruþ~Jp

� �
: ð6Þ

This leads to expressions for the electric potential u and the magnetic induction ~B

at position~r, arising from N dipoles at positions~r0i with moments~di, in an infinite
volume with homogeneous and isotropic conductivity.

~B1ð~rÞ ¼
l

4p

XN

i¼1

~di �
ð~r �~r0iÞ
j~r �~r0ij

3 u1ð~rÞ ¼
1

4pr

XN

i¼1

~di
ð~r �~r0iÞ
j~r �~r0ij

3 ð7Þ

These equations, however, do not provide an acceptable solution for the situation
in real biological tissue as they do not take into account the effects of conductivity
inhomogeneities. If very simplifying assumptions about the distribution of con-
ductivities are made, analytical or semi-analytical solutions can be used. The
human head can be modeled with the help of a series of spherical or ellipsoidal
layers (Cuffin and Cohen 1977; Sarvas 1987; de Munck 1988, 1989; Kariotou
2004; Giapalaki and Kariotou 2006). Such models allow for easy computations,
but can yield significant errors (Cuffin and Cohen 1977).

More realistic conductivity profiles can be modeled using numerical methods.
These methods can be classified into differential and integral methods depending
on whether derivatives or integrals are to be approximated. Additionally, methods
can be classified according to their basic assumptions and simplifications. A
crucial property of the head is the fact that a relatively low-conducting skull
encloses the relatively well-conducting brain. In turn, the skull is surrounded by a
relatively well-conducting remainder of the head (scalp, muscles, eyes, etc.). This
leads to the compartment assumption. Typically, 3 compartments with homoge-
neous and isotropic conductivity are defined: scalp, skull and brain. The brain
compartment subsumes all tissues inside the skull. The skull compartment includes
both compact and spongy bone. The scalp compartment summarizes all tissues
outside the skull. The compartment approach necessitates the use of an integral-
based method.

Alternatively, the compartment assumption can be replaced by a 3D volume
discretization. Here, the volume is divided into small elements. The size and
number of elements governs the achievable accuracy and is limited by computa-
tional resources. Volume discretization approaches are usually treated with dif-
ferential methods.

The boundary element method (BEM) is an integral method based on the
compartment assumption (Barnard et al. 1967a, b; Geselowitz 1967, 1970; Sarvas
1987; Hämäläinen and Sarvas 1989; Stenroos et al. 2007). An alternative approach
is the multiple multipole method (MMP) (Haueisen et al. 1996). Here, multipole
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expansions are used to describe the neuroelectromagnetic field and the expansion
coefficients may be computed based on a matching of the boundary conditions at a
set of boundary points representing the major conductivity jumps. For modeling
the 3D or anisotropic conductivity profile of the head, the finite element method
(FEM) (Witwer et al. 1972; Haueisen et al. 1995; Wolters et al. 2004; Hallez et al.
2005) or the finite difference method (FDM) (Witwer et al. 1972; Haueisen et al.
1995; Wolters et al. 2004; Hallez et al. 2005) can be used. Both are differential
methods. The entire volume is discretized into small elements and each volume
element is assigned a separate conductivity tensor. While FDM is easier to
implement, FEM allows for a smoother geometry description of conductivity
boundaries. For a review including the FEM and FDM see e.g. (Hallez et al. 2007).

In the following, we will treat analytical methods, BEM, and FEM in more
detail, since these methods are most frequently used. Figure 1 shows an example
model for BEM and FEM.

2 Analytical and Semi-Analytical Methods

In order to obtain analytical or semi-analytical formulations of the forward
problem, the geometry of the head and the conductivity distribution have to be
described in terms of simple shapes, such as concentric spherical or ellipsoidal
shells. In the simplest case, the volume conductor is assumed to be a sphere, which
is more or less adapted to the actual head geometry. Under this assumption, for
MEG it can be shown that the predicted magnetic field outside the head depends
solely on the origin of the sphere as well as the positions and orientations of the

Fig. 1 Examples for head models. Left boundary element model with the most important
conductivity boundaries (inner and outer skull surface, outer surface of the head) described by
triangular meshes. Right finite element model built with tetrahedral elements. Colors represent
tissue types
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sources and the sensors. The conductivity profile including the outer radius, as
long as it is spherically symmetric, plays no role. According to Sarvas (1987), the
magnetic induction ~B at sensor position ~r due to N dipoles at positions ~r

0
i with

dipole moments ~qi (i = 1…N) is computed as follows:

~ai ¼~r �~r
0

i ð8Þ

Fi ¼ ~aij j ~rj j~aij j þ ~rj j2�~r0i~r
� �

ð9Þ

rFi ¼ ~rj j�1 ~aij j2þ~aij j�1~ai~r þ 2~ai þ 2~r
� �

~r � ~ai þ 2~r þ ~aij j�1~ai~r
� �

~r
0

i ð10Þ

~B ~rð Þ ¼ l
4p

XN

i¼1

Fi~qi �~r
0
i �~qi �~r

0
i~rrFi

F2
i

ð11Þ

Another important property of this volume conductor model can be seen from
the formula above: a dipole with radial orientation does not contribute to the
measured field. Its effect is completely compensated for by the Ohmic return
currents.

In contrast, the predicted EEG on the surface of a spherical volume conductor
does depend on sources of all orientations, as well as on the conductivities and
radii of the different tissue layers. A semi-analytical solution based on Legendre
polynomials is given by de Munck (1989). It allows for the inclusion of tissue
compartments with different conductivities, bounded by concentric spherical sur-
faces. It even allows for a simple form of tissue anisotropy, namely the distinction
between radial and tangential conductivities.

Although spherical models reflect the basic geometric properties of the head,
such as its round shape and the concentric arrangement of the tissue layers, the
deviations from the real head shape may lead to substantial errors (Cuffin and
Cohen 1977). There are a number of possibilities to improve this situation without
giving up the advantages of an analytical solution. One option is the use of
ellipsoidal instead of spherical shells, as proposed, for example, by Fieseler
(Fieseler 1999) and Kariotou (Kariotou 2004; Giapalaki and Kariotou 2006).

Alternatively, one can use a separate spherical volume conductor model for
each sensor. One way to find these local spheres is to fit them locally to a patch of
the head (or brain) surface near the respective sensor (Ilmoniemi 1985;
Lütkenhöner et al. 1990). This assumes that the description of the tissue bound-
aries in the immediate vicinity of the respective sensor is most crucial for the
accuracy of the forward computation. A more principled, but also computationally
more expensive, way to find the best spherical models on a sensor-to-sensor basis
was proposed by Huang et al. (1999). They first used a realistic 3-shell boundary
element model (see below) to compute solutions in each sensor for a large number
of dipoles located in the entire brain (i.e., a leadfield computation, see below).
Then, for each sensor, the solutions for the same dipoles were computed using a
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spherical head model, and the parameters of that spherical model were optimized
such that the difference between the boundary element method solution and the
spherical solution became minimum. For MEG, a single-compartment boundary
element model can be used alternatively. The resulting spheres can then be used to
calculate forward solutions for arbitrary dipoles. In principle, this method can be
seen as a sophisticated way for interpolating leadfields computed using numerical
methods, such as BEM. For a review and evaluation of different methods using
multiple spheres, see Lalancette et al. (2011).

Finally, Nolte (2003) proposed an approach, where the solution for a spherical
volume conductor is corrected by a superposition of basis functions constructed
from spherical harmonics and fitted to the boundary conditions. It can be shown
that this approach yields good approximations for non-spherical volume conduc-
tors such as the prolate spheroid (Nolte 2003) and even for realistically shaped
volume conductors (Stenroos et al. 2012).

3 Numerical Methods

3.1 Boundary Element Method

The BEM is an important and popular field calculation method used in biomag-
netism. It can describe the head as an isotropic and piecewise homogeneous
volume conductor of realistic shape. In practice, the compartments are designed
such that their boundaries represent the most prominent conductivity jumps in the
head. These are most often the head surface as well as the outer and inner bounds
of the skull. For MEG, the volume currents outside the interior of the skull con-
tribute relatively little to the measurements and therefore the respective com-
partments (skull, scalp) are often neglected (Hämäläinen and Sarvas 1989).
However, it was recently shown that the inclusion of the skull and scalp com-
partments allows for a relevant improvement in accuracy (Stenroos et al. 2012).

Mathematically, the solution is derived from Poisson’s equation (Eq. 5) and the
appropriate Cauchy boundary conditions: (1) the potential has to be continuous
across the boundary: uþ ¼ u�, and (2) the perpendicular component of the current
has to be continuous across the boundary3: rþ r?uð Þþ¼ r� r?uð Þ�, where the
superscripts ()+ and ()- refer to the values on either side of the boundary and r? is
the derivative with respect to the normal direction of the boundary. There are two
different approaches to the solution: direct and indirect BEM. In the direct
approach one sets up and solves an equation system for both the potentials and
their normal derivatives (Boemmel et al. 1993; Fletcher et al. 1995). A specific
variant of direct BEM is the symmetric BEM approach (Kybic et al. 2005). In the

3 Note that for the outer boundary of the head this means that the perpendicular current
component is zero.
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indirect approach the potential function is first derived analytically, before
applying the BEM (Brebbia et al. 1984; Mosher et al. 1999). This leads to the
following expressions for the electric potential and the magnetic induction
(Geselowitz 1967, 1970):

rþk þ r�k
2

u ~rð Þ ¼ rsu1 ~rð Þ �
XN

j¼1

r�j � rþj
4p

Z

Sj

u ~r0ð Þ~n ~r0ð Þ ~r �~r
0

~r �~r0j j3
dS0 ð12Þ

~B ~rð Þ ¼ ~B1 ~rð Þ � l
4p

XN

j¼1

r�j � rþj

� �Z

Sj

u ~r0ð Þ~n ~r0ð Þ � ~r �~r0

~r �~r0j j3
dS0 ð13Þ

Here, rs refers to the conductivity in the source compartment, ~n is the normal
vector of the boundary, ~r and ~r0 denote the positions where the potential is cal-
culated, Sj is the j-th boundary between compartments with different conductivity,
N is the number of compartments, and k is the index of the boundary on which the
potential is calculated. Both, the magnetic induction and the electric potential are
computed as a sum of the respective term for the infinite volume conductor (Eq. 7)
and a correction term accounting for the geometry. For the electric potential,
Eq. (12) is implicit, since the correction term depends on the potential itself.
Equations (12 and 13) can also be interpreted in the following way (Gencer and
Acar 2004): in addition to primary sources, causing the infinite volume potential/
field, so-called secondary sources are placed on the boundaries, their orientations
being perpendicular to the boundaries and their strength being proportional to the
electric potential and the size of the conductivity step.

For the numerical implementation of BEM, the potential has to be approxi-
mated on the realistically shaped compartment boundaries. This leads to the
necessity to discretize these boundaries into small elements and to express the
potential on each element. The elements can have different shapes, the most
common one being the triangle. The potential can be assumed to be constant on
each boundary element or to vary linearly (or, in some cases, quadratically)
between the vertices (basis function). The most basic method for the formulation
of the resulting problem is the collocation method, where the residual is minimized
in all discretization points (i.e., the centroid of elements for constant and the
vertices for linear basis functions). Alternatively, one can use the Galerkin method,
where the integral of the residual over the surface is approximated by means of the
basis functions and then minimized. Numerical simulation with single-shell
models have shown that the Galerkin method using linear basis functions usually
performs better than the collocation method or the Galerkin method with constant
basis functions. However, these differences are generally small (Tissari and Rahola
2003; Stenroos and Haueisen 2008). Although the benefit of the Galerkin is
expected to increase with several and closely spaced surfaces, with nowadays
frequently used higher mesh densities ([4,000 nodes per surface) the numerical
errors due to the use of collocation BEM are smaller than errors due to model
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simplifications or geometrical errors, assuming that the sources are not too close to
the boundary (Mosher et al. 1999; Stenroos and Nenonen 2012).

An important question when practically constructing boundary element models
is the discretization of the boundaries, which was shown to critically influence the
accuracy of the solution (Haueisen et al. 1997). More precisely, it was shown that
when using the collocation method with constant basis functions, the size of
triangular elements should not exceed 10 mm or the minimal distance between
sources and boundary, whichever is the smaller. When using linear basis functions,
the size of the triangles can be up to twice the distance between sources and
boundary. These rules also apply to secondary sources, which account for the
conductivity discontinuities at the boundaries (see above). Thus, the thickness of
tissue layers (e.g., skull compartment) and triangle size is linked in an analogous
way. Due to the fact that the distribution of the secondary sources is fairly smooth,
the consequences are less severe.

The relatively low conductivity of the skull tends to cause the resulting equation
systems to be ill-posed. This is usually ameliorated by the isolated source
approach, which first solves the problem assuming a perfectly insulating skull and
then applies a correction term (Hämäläinen and Sarvas 1989; Stenroos and Sarvas
2012).

3.2 Finite Element Method

In contrast to the BEM, the FEM principally allows for accounting for the full
three-dimensional tensor-valued conductivity function. In practice, of course, this
is limited by the chosen discretization. The discretization means the subdivision of
the volume into small elements, each endowed with a separate conductivity tensor.
Within each element, the electric potential is described by a three-dimensional
parameterized function, the so-called Ansatz function. For each element, a Laplace
equation is approximated by deriving the Ansatz function twice. For those ele-
ments with sources, the Laplace equation turns into a Poisson equation, with an
additional term accounting for the source divergence. Since the sources are usually
modeled as point-like, a numerical singularity arises, which has to be treated
suitably. Finally, the Cauchy boundary conditions between the elements have to be
considered. This all leads to a high-dimensional sparse linear system of equations.
The sparsity of the system allows, in spite of its large size, for a relatively time and
memory efficient solution using dedicated algorithms. Finally, by numerical der-
ivation of the potential, a current is computed, which is then used to compute the
magnetic induction at the sensors using the law of Biot-Savart.

The two main types of discretization elements are tetrahedra and hexahedra.
While hexahedra perfectly match the shape of medical imaging voxels, which
form the main source of information on volume conductor geometry, tetrahedra
are especially versatile when it comes to approximating arbitrarily shaped tissue
boundaries. However, the node shifting technique largely compensates for this
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latter disadvantage of the hexahedra approach (Wolters et al. 2007). The repre-
sentation of the head can be done with uniform elements of the same size (e.g.
1 mm3 voxels) or with elements of varying sizes depending on the segmentation of
the tissues and the expected potential gradient. In addition, it is possible to
adaptively change the discretization depending on metrics which are derived from
intermediate solutions (Schimpf 2007). For example, in hexahedral elements the
potential of one element e is given as:

ue x; y; zð Þ ¼
X8

j¼1

Ne
j ðx; y; zÞuj; ð14Þ

where uj are the potentials of the nodes adjacent to the element e, and Ne
j are the

shape functions describing the parameterized approximation used for each ele-
ment. Most often, tri-linear shape functions are used (first-order FEM). However,
also tri-quadratic functions may be used (second-order FEM). Zhang et al. (2004)
suggest that for a relatively low number of elements (*150,000) and high dipole
eccentricity second-order FEM provides higher accuracy compared to first order
FEM. However, the results of van Uitert et al. (2001) indicate that for small
element sizes (less than 2 mm side length) there is no significant advantage of
second-order FEM.

Source modeling often assumes a point-like dipole. Although this model is an
idealization, it forms the starting point of most source representations in EEG/
MEG volume conductor modeling. However, this idealization poses a problem for
FEM, as it causes a singularity. Three major approaches were put forward to treat
this singularity. First, it is possible to replace the effect of the point-like dipole by
making appropriate assumptions on the voltages and/or currents at the surrounding
nodes of the dipole. This is equivalent to the introduction of Dirichlet and/or
Neumann boundary conditions at nodes in the immediate neighborhood of the
dipole. For example, a current dipole can be represented by a number of current
monopoles in its surrounding. The entire group of methods can be seen as a variant
of Saint-Venant’s principle (blurred dipole representation). In literature, however,
the Saint-Venant’s principle only refers to current monopole representations. The
second principal approach separates the problem into a source-free numerical
problem governed by the Laplace equation and a Poisson problem in the infinite
homogeneous space, for which an analytical solution exists. This approach is often
called subtraction method (van den Broek et al. 1996; Drechsler et al. 2009). In the
third principal approach, the partial integration method, the divergence of the
current is projected onto the Ansatz functions and integrated over the volume. By
making use of the fact that the current perpendicular to the surface is zero, one can
eliminate the derivative of the primary current density and hence the singularity.
Comparisons of two or three of the above dipole modeling approaches are given
e.g. in (Schimpf et al. 2002; Hallez et al. 2007; Wolters et al. 2007). Although
evaluations of all methods in larger studies are still missing, the Saint-Venant’s
principle dipole representation seems a suitable choice especially in high
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resolution FEM models (Haueisen et al. 1995; Schimpf et al. 2002; Wolters et al.
2007). This is supported by the fact that brain activity is characterized by dis-
tributed current sources and sinks. Note that for the validity of the approach it is
necessary that all sources and sinks are actually located within the tissue of the
source areas (e.g. grey matter).

While earlier FEM studies mainly used successive over-relaxation (SOR) and
Jacobi preconditioned conjugate gradient methods (Haueisen et al. 2002), multi-
grid methods nowadays provide a computationally more efficient way of solving
the large system of equations. A recent paper showed that high resolution FEM
models of the human head can also be computed within reasonable time and
memory bounds (Wolters et al. 2007). This makes FEM models suitable for
application in clinical studies.

4 Electric Conductivity

4.1 Introduction

A crucial piece of information for all models described above is the distribution of
the electric conductivity in the head. Therefore, the determination of conductivity
values is of great importance. Electric current flow in the human head is based on
the movement of ions. Thus, the electric conductivity is largely determined by the
concentration of these ions and the anatomical microstructure representing the
restrictions and hindrances to the movement of these ions. Consequently, con-
ductivity is a continuous function of location, i.e. inhomogeneous. Additionally, at
each point the conductivity can be different in different directions (e.g. in white
matter, the conductivity is higher along the fibers and lower across the fibers). This
leads to the concept of anisotropic conductivity, which is mathematically repre-
sented by the conductivity tensor �r. In order to practically handle the tensor-valued
continuous function of conductivity, a discretization is required. Naturally, the
single elements in full 3D methods like FEM provide a discretization. Here, each
element is assigned a value representing the mean conductivity tensor for this
element. The conductivity discretization thus depends on the chosen resolution of
the model. Often, anisotropic conductivity information is not available. In these
cases the tensor is replaced by a scalar conductivity value for each element.
Moreover, elements are grouped together and assigned the same scalar conduc-
tivity value. This leads, in the simplest case, to a compartment style representation
of conductivity in full 3D methods like FEM. Lumped scalar conductivity values
are also assigned to entire compartments, such as the skull, the brain, the cerebro-
spinal fluid (CSF) or the skin, in analytical sphere and ellipsoid models as well as
in BEM models.
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4.2 Measurement of Electric Conductivity

Measurements of in vivo electrical conductivity values are difficult to perform for
any level of discretization needed in the different types of forward models. The
most common direct conductivity measurement approach is the four-electrode
method. Here, two electrodes supply a current yielding a current density distri-
bution in the specimen under investigation. The other two electrodes are used to
measure a voltage drop within the specimen. From the measured voltage and the
given current density, the unknown conductivity can be calculated. Alternatively, a
voltage can be impressed and a current can be measured. Assuming a homoge-
neous specimen, four point-like electrodes can be placed in a row on the specimen,
where the outer two supply the current and the inner two measure the voltage. In
order to increase the accuracy of the model assumptions and to reduce the sen-
sitivity towards local inhomogeneities of the tissue, the two current supplying
electrodes might be extended in two dimensions (e.g. plate electrodes). Sources of
error in such measurements are related to the positioning and the polarization of
the electrodes as well as the violation of the homogeneity assumption for the
specimen. The latter can be partially avoided by using an appropriate model to
describe the inhomogeneous structure of the specimen. Moreover, if electrodes are
put into tissue, damage is unavoidable. Besides other consequences, this leads to
impressed current flow both in the intra- and extracellular space. Thus, the mea-
sured conductivity reflects both parts to a varying degree, referred to as apparent
conductivity (Ranck 1963; Okada 1994). Another source of error lies in the fact
that there is intrinsic electric activity in biological tissue, which interacts with the
applied current. The interplay of these sources of error depends on the type of
tissue under investigation and on the size and spacing of the electrodes.

For practical and ethical reasons, in vivo conductivity measurements on humans
are rarely possible, which leads to the necessity to employ in vitro preparations.
However, the conductivity values differ significantly between in vivo and in vitro
situations depending on the applied preparation protocol (Galeotti 1902; Crile
et al. 1922; Geddes and Baker 1967; Akhtari et al., 2000, 2002). For example, the
selection of the tissue samples, the exposure to air and the temperature control
during the experiment are critical parameters (Hoekema et al. 2003). Moreover,
significant differences in measured conductivity values exist across species
(Geddes and Baker 1967; Gabriel et al., 1996). There is inter- and intra-subject
variability which can be related to age (Wendel et al. 2010), diseases, environ-
mental factors, and personal constitution (Crile et al. 1922). It was argued that
natural heterogeneity and sample–sample variability dominate the measurement
uncertainty (Gabriel et al. 2009).

Alternative conductivity measurement methods impress a current and measure
the induced magnetic field. For example, in magnetic resonance electric imped-
ance tomography (MREIT) electrodes are used to impress currents into the human
body and the induced magnetic flux densities are measured with the help of an
MRI scanner (Seo and Woo 2011). The conductivity values are subsequently
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reconstructed. It is also possible to impress currents with the help of magnetic
fields and measure the resulting magnetic field.

Another class of conductivity estimation techniques uses measured electric and/
or magnetic data during the source localization procedure. For very simple source
configurations, such as the first cortical somatosensory evoked activity, not only
the unknown source parameters are estimated in the inverse procedure but also the
unknown conductivity values. Naturally, this approach can only be applied for
very few unknowns, for example the conductivities of the scalp, skull, and brain
compartments. The advantage of this method lies in the direct estimation of the
relevant model parameters (Fuchs et al. 1998; Goncalves et al. 2003; Baysal and
Haueisen 2004; Gutierrez et al. 2004; Lai et al. 2005). The disadvantage is rooted
in the strong model assumptions, also concerning the source configuration.

The direction dependence of the electric conductivity can be estimated based on
the measurement of direction dependent water diffusion using diffusion weighted
MRI (Basser et al. 1994). With the help of the effective-medium approach, the
tensor of the electric conductivity is estimated from the tensor of the measured
water diffusion (Tuch et al. 2001), which was successfully validated in (Oh et al.
2006; Bangera et al. 2010) and refined in (Wang et al. 2008). However, this
approach is limited due to the complex and unknown relationship between ion
mobility and water diffusion.

In spite of all effort so far, getting exact, detailed and reliable conductivity
information for head models is still a challenge and will require substantial
research effort in the future.

4.3 Conductivity of Single Tissue Types

The following Table 2 gives an account of the conductivity values for single
tissues based on existing literature. Tissue conductivity depends, among other
factors, on frequency and temperature. Thus, only conductivity values measured at
or near body temperature and at low frequencies (d.c. up to 100 kHz) were taken
into account. Among the relevant literature, two reviews are most often cited:
(Geddes and Baker 1967; Gabriel et al. 1996) (and its more recent extension
Gabriel et al. 2009).

4.4 Compartment Conductivities

Since most often three or four compartments are used to describe the volume
conductor, these compartment conductivities of the brain, CSF, skull, and scalp are
most relevant and considered here. Each compartment-conductivity depends on
the complex geometrical arrangement of the tissues determining the compartment.
Furthermore, since the compartment conductivity is merely a model for the real
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conductivity profile, the source configuration also has an influence on the choice of
this value. In principle, there are three ways to estimate a compartment conduc-
tivity: (i) based on the measurement of single tissues an average for a compartment
is computed (either model based or model free); (ii) the conductivity of an entire
compartment is directly measured (bulk conductivity); and (iii) the compartment
model (conductivity as free parameter) is fitted to purposely performed mea-
surements (e.g. EEG, MEG, DTI), see above.

A number of studies report bulk conductivity measurements. Akhtari et al.
(2006) measured freshly excised human neocortex and subcortical white matter in
21 neurosurgical patients and found values of 0.066–0.156 S/m. CSF, as indicated
above, has 1.79 S/m. The conductivity values for the skull compartment show
large variation. Akhtari et al. (2002) found 0.0085–0.0114 S/m bulk conductivity
for live human skull at room temperature, while in an earlier study on a cadaver
skull the values ranged from 0.0023 to 0.00584 S/m (Akhtari et al. 2000).
Hoekema et al. (2003) found values between 0.032 and 0.08 S/m in a very well
controlled study of live human skull in 5 neurosurgical patients. The most com-
prehensive study on 3 layer live human skull at body temperature was performed
by Tang et al. (2008). They demonstrated that the conductivity value largely
depends on the local structure of the skull. They distinguished (besides other
criteria) between normal and thin spongiform layers and found conductivity values
for the 3 layer skull of 0.0126 S/m and 0.00691 S/m, respectively. The standard
deviation was about 20 %. Using electric impedance tomography and the model fit
approach, Gonçalves et al. (2003) estimated the conductivity of the brain and skull
compartment in six subjects to be 0.33 S/m and 0.0082 S/m with a standard
deviation of 13 and 18 %, respectively.

Table 2 Isotropic conductivity values of single tissue types used in human head volume con-
ductor modeling

Tissue Conductivity in
S/m

References

Brain gray matter 0.3 Gabriel et al. (1996, 2009)
Brain white matter 0.2 Gabriel et al. (1996, 2009)
Spinal cord and cerebellum 0.16 Haueisen et al. (1995)
Cerebrospinal fluid 1.79 Baumann et al. (1997)
Hard bone (compact bone) 0.004 Tang et al. (2008)
Soft bone (spongiform

bone)
0.02 Akhtari et al. (2002)

Blood 0.6 Gabriel et al. (2009)
Muscle 0.1 Gabriel et al. (1996, 2009)
Fat 0.08 Gabriel et al. (2009)
Eye 1.6 Pauly and Schwan (1964), Lindenblatt and Silny

(2001)
Scalp 0.43 Geddes and Baker (1967)
Soft tissue 0.17 Haueisen et al. (1995)
Internal air 0.0001 Haueisen et al. (1995)
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For separate EEG or MEG analysis only compartment conductivity ratios are
needed. For the often used 3-compartment model this is the ratio of scalp:skull:-
brain. In the past, the most often used ratio was 1:1/80:1, which was derived from a
study by Rush and Driscoll (1968), who measured the impedance of a dry half-
skull in fluid and proposed values of 0.33, 0.0042 and 0.33 S/m. Recently, this
ratio was questioned by a number of researchers. Oostendorp et al. (2000) per-
formed both measurement on cadaver skull and in vivo on volunteers using electric
stimulation and found a ratio of 1:1/15:1. Baysal and Haueisen (2004) used
combined MEG/EEG measurements and estimated a ratio of 1:1/22:1. Lai et al.
(2005) suggested a ratio of 1:1/25:1. Based on the measurements of Hoekema et al.
(2003), a ratio of 1:1/8:1 can be considered. Zhang et al. (2006) estimated 1:1/20:1
based on measurement in two epilepsy patients. The values of Tang et al. (2008)
indicate approximate ratios between 1:1/25:1 and 1:1/50:1 and the values of
Gonçalves et al. (2003) approximately 1:1/40:1. Dannhauer et al. (2011) report a
ratio of 1:1/25:1 to 1:1/47:1 based on the measurements of Akhtari et al. (2002)
and a model fit. Although the recent studies show some degree variability, they all
agree on the fact that the value of 80 in the long standing ratio of 1:1/80:1 is too
high.

5 Leadfield Concept

Results from the forward calculation can be used in inverse procedures directly
(e.g., in spatio-temporal dipole fitting) or stored in so-called leadfield matrices.
Such matrices represent the forward solutions for sources on a predefined grid. The
term leadfield (originally derived from ‘‘lead’’ that stands for a single EEG
channel) refers to a function describing the sensitivity of the output of one sensor
to the parameters of the source model. For example when using the dipole model,
the leadfield is a function of the position and the orientation of a unit strength
dipole. Usually, the leadfield is discretized, e.g. the dipoles are positioned on the
nodes of a regular grid with canonical orientations (e.g. x, y, z). These leadfield
vectors are combined into a leadfield matrix, describing the influence of each unit
dipole on each sensor. Accordingly, this matrix is also sometimes called influence
matrix or gain matrix. In such a matrix, each row refers to one sensor (one
leadfield) and each column describes the influence of one unit dipole (e.g. one unit
dipole per canonical direction) on the sensor array. In general, the leadfield matrix
is a discretized representation of the forward problem. The discretization has to be
such that it adequately approximates the leadfield. When using dipoles in the brain,
spatial sampling of 3-10 mm is common. Any dipole orientation can be repre-
sented by the superposition of 3 canonical orientations.
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6 Conclusion and Outlook

Source localization is increasingly applied in neuroscientific research and clinical
studies. The accuracy of source reconstruction depends on the accuracy of the
solution of the forward problem. Finite element models are more elaborate com-
pared to boundary element models and can, in principle, account for the aniso-
tropic distribution of connectivity at any level of detail. Until recently, there were
three major obstacles for the use of this kind of forward modeling in source
reconstruction schemes. (1) The computation was computationally too costly to
allow for a repetitive computation of forward solutions as required by inverse
algorithms. (2) The possibility to account for the anisotropic conductivity on a
voxel basis turns from an advantage to a drawback, if reliable information on these
material properties at this level of detail is missing. (3) At the position of the
dipoles, singularities occur, which were difficult to treat numerically. While rea-
sons (1) and (3) can be considered to be mostly solved (Wolters et al. 2004; Lew
et al. 2009), reason (2) still requires substantial research. Especially diffusion
weighted MR imaging promises to offer new ways to estimate material properties
at a fine level of detail (Güllmar et al. 2010; Dannhauer et al., 2011; Sengül and
Baysal 2012). If there is no reliable information on anisotropic volume conduction
BEM can be the method of choice in realistic volume conductor modeling.
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Designing MEG Experiments

Julia M. Stephen

Abstract With well-designed experiments, the exquisite temporal resolution of
MEG allows investigators to track the temporal progression of cortical activity
throughout the brain during sensory and cognitive tasks and further allows
investigators to capture the interplay between the nodes of the cortical network
activity underlying brain function. Because of this high temporal resolution, a
number of considerations must be considered to obtain good quality MEG data.
These considerations include: recording parameters, participant considerations,
stimulus equipment and timing reliability, stimulus parameters and temporal
sensitivity of the response. This chapter reviews the common instrumentation
parameters, peripheral equipment that provides the precise timing needed for MEG
experiments, and participant-monitoring equipment that provides complementary
information for data quality and data interpretation purposes. Modality-specific
(auditory, visual, tactile and motor) factors to consider during data collection are
also discussed.

Keywords Magnetoencephalography (MEG) � Experimental design � Visual �
Auditory � Somatosensory � Motor � Timing parameters � Peripheral equipment

1 Introduction

The goal of this chapter is to provide an overview of the parameters that should be
considered when setting up and conducting MEG experiments. MEG provides an
incredibly rich dataset from which to study brain function and dysfunction. In
particular, MEG provides high temporal resolution at the time resolution that brain
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activity occurs (Kandel et al. 2000). In addition, MEG signals are not distorted by
the skull, providing improved spatial resolution relative to EEG (Flemming et al.
2005). Therefore, one can obtain exquisite sensitivity to cortical network oscil-
lations and the interplay between different cortical areas. However, this richness
comes with multiple challenges. One of the biggest challenges of MEG is to
identify task related activity in the presence of background brain activity. Resting
brain activity, including resting brain rhythms such as occipital alpha and senso-
rimotor mu rhythms are 10–100 times greater in amplitude than evoked responses
(e.g. the magnetic field generated by the presentation of an auditory stimulus).
That is, the signal to noise ratio for a single presentation of a stimulus is \1.
Therefore, a common method to identify stimulus related activity is to present
multiple trials of the same stimulus to allow for signal averaging in the time,
frequency or time/frequency domain. Further challenges include minimizing
magnetic artifact from both internal and external sources of magnetic fields and
capturing complementary data that can better guide interpretation of the results.
MEG experimental design is therefore focused on optimizing all parameters to
ensure that the high temporal resolution is maintained and signal to noise is
optimized despite the challenges of background brain activity and other artifacts.

2 Instrumentation

2.1 Recording Parameters

The magnetic fields that are generated by the brain oscillate with the onset and
offset of local brain activity (Hamalainen et al. 1993). Based on in vivo and in vitro
characterization of neuronal activity, we know that the temporal profile of brain
activity that generates these magnetic fields changes on the order of milliseconds
(Kandel et al. 2000). This suggests that in order to properly capture the rapid
changes in magnetic field associated with brain activity; data must be sampled at
or around one sample per ms or 1,000 Hz. Furthermore, to capture the ongoing
network interactions, it is important to capture this activity synchronously from
around the head to allow investigators to characterize the interplay of cortical
activity during task performance or during rest.

Therefore, current MEG systems record data synchronously from hundreds of
MEG channels at digitization rates of between 100–5,000 Hz. This provides a
temporal resolution of between 10 and 0.2 ms, respectively. This high sampling
rate and the rapid neuronal response underlie the high temporal resolution of
MEG. Table 1 shows the parameters that one must choose before beginning data
collection on a standard MEG system. The choice of sampling rate depends on the
required temporal resolution and spectral content of the data of interest. There are
trade-offs between high and low sampling rates. While a high sampling rate may
always appear to be better, long experiments may lead to prohibitively large data
sets (a 10 min continuous dataset including 306 sensors sampled at 1,000 Hz is
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approximately 1 GB in size). The typical sampling rate for visual, auditory and
cognitive studies is between 300–1,000 Hz. A sampling rate of 300–400 Hz is
often sufficient for averaged evoked responses for cognitive studies, where most of
the spectral content in an averaged response is less than 60 Hz. However, median
nerve stimulation requires a sampling rate of at least 1,000 Hz to capture the
temporal profile of the M20 response. Also, recent interest in high frequency
activity, which has been found in the somatosensory modality (Curio et al. 1997),
during cognitive tasks (Uhlhaas et al. 2011) and in patients with epilepsy (Engel
et al. 2009), may require a sampling rate or C2,000 Hz. Some systems allow for
higher data acquisition rates when subsets of channels are chosen.

In conjunction with the sampling rate, an online anti-aliasing filter must be
applied to ensure that higher frequency signals do not appear as an aliased low
frequency signal. The anti-aliasing filter should be set at a frequency less than the
sampling frequency/2. That is, if your sampling frequency is 300 Hz the online
low-pass filter should be less than 150 Hz. In addition to the anti-aliasing filter,
one can also choose a high pass filter setting on most MEG systems. This choice is
left to the discretion of the investigator. The relevant question is whether there is
any low frequency activity that might be relevant to the study. If one is interested
in delta wave activity, it is best to choose the lowest cutoff option (generally 0.01
or 0.03 Hz). On the other hand, if the system is located in an environment with
considerable low frequency noise, it may be desirable to eliminate low-frequency
noise at the point of data collection.

2.2 Other Recording Channels

MEG systems also have additional channels that are recorded simultaneously with
the MEG data. This option for simultaneous recording is critical to ensure that
peripheral devices are truly synchronized with the MEG data. Trigger channels are
supplementary channels that allow one to simultaneously record the timing of
stimulus presentations. These channels accept transistor-transistor logic (TTL)
pulses, which are standard binary pulses denoting on/off status. The width of the
TTL pulse should be brief to allow for multiple triggers in short periods of time
and it must be long enough that the sampling rate can sufficiently capture the onset
and offset of the TTL pulse. Within these constraints the normal duration is

Table 1 Recording
parameters

Channels to record MEG, EEG, A/D channels,
trigger channels

Digitization rate 100–5,000 Hz
Online filter settings High pass filter, anti-aliasing

filter \ sampling frequency
2

Trigger settings Choose triggers, averaging epoch for
online averaging display
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between 5 and 10 ms. These TTL trigger pulses can be generated by stimulus
delivery software (e.g. NBS Presentation, Neuroscan StimII, Eprime) or by cus-
tom-built equipment. Additionally, some MEG systems provide an option to set
periodic internal triggers (independent of external stimuli) to allow for epoching of
the data (breaking the data into equal sized bins) if no stimulus triggers are present.
These are often used to generate averaged spectra for noise runs or spectral
analysis of resting-state MEG data.

Current MEG systems offer at least 64-channel referenced EEG capabilities
allowing for simultaneous MEG/EEG recordings. In addition, at least 4 bipolar
EEG channels are available for recording eye blinks and muscle movement. Our
standard adult studies use two bipolar EEG channels to capture horizontal and
vertical eye movements, respectively and one bipolar channel to collect ECG.

Finally, A/D channels accept any type of analog data generally within a ±10 V
range. This allows one to collect any type of supplementary continuous data that is
within the appropriate amplitude range. Examples of analog data that we have
collected in MEG studies include: pressure transducer amplitude from a squeeze
device to evaluate the strength of the squeeze (Berchicci et al. 2011), eye position
and pupilometry data obtained from an MEG compatible eye-tracking system
(Coffman et al. 2013), and voice recordings during task completion. A BNC
connector is generally required to interface with the MEG electronics (Table 2).

2.3 Peripheral Devices

Since the high temporal resolution (*1 ms) of MEG is one of its strengths, it is
critical that temporal resolution is not compromised due to peripheral equipment.
Most off-the-shelf equipment (e.g. computer sound cards, visual projectors or
computer screens) is not tested for millisecond timing accuracy. Therefore, when
choosing new equipment it is recommended to contact other MEG labs or the
MEG manufacturer to obtain information about recommended devices. While
MRI-compatible equipment available for fMRI studies is useful to control mag-
netic artifacts from peripheral devices, these devices are not always tested for high
temporal resolution due to the lower temporal resolution of fMRI. In addition, it is
recommended that you work with a representative of the company who has suf-
ficient technical expertise of the peripheral equipment to determine the temporal

Table 2 Other recording
channels

Trigger channels Collect TTL pulse triggers (5–10 ms) from
stimulus computer/equipment

Referenced EEG Collect 1–128 channels of referenced EEG
Bipolar EEG Electro-oculogram (EOG), electromyogram

(EMG), electrocardiogram (ECG)
A/D channels Allows collection of miscellaneous ±10 V

analog signal
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characteristics. In some cases, the companies are willing and able to allow on-site
demonstration of the equipment. In this case it is recommended that you measure
the temporal characteristics directly. Finally, it is important to test the timing of the
final setup to ensure that the timing of the complete setup is accounted for (e.g.
stimulus computer, amplifiers, peripheral equipment).

In accounting for timing, it is important to understand what factors may or may
not introduce delays. Any signal that is transmitted at the speed of light is effec-
tively transmitted instantaneously over the distances considered for MEG data
collection. That is, signal is transferred along a 5 m long cable in *0.00001 ms at
the speed of light leading to no measurable delay. However, electronic equipment
(sound cards, electronic circuits, etc.) can introduce delays in the transfer of signal
and should be tested. Furthermore, the speed of sound is considerably slower than
the speed of light and any distance from the generation of the sound wave to the
participants’ ears should be accounted for in the delay calculation. The delay can
be calculated based on the speed of sound in air (*0.344 m/ms). So for every 1/3
of a meter traveled in air, sound is delayed by 1 ms. All other signals need to be
tested empirically.

Generally, the trigger is sent from the stimulus computer to the MEG elec-
tronics at the same time that the signal is sent to the peripheral equipment (see
Fig. 1a). Therefore, the parameters to be tested are the delay of the peripheral
device (defined as the time from when the signal was sent to the peripheral device
to the time the stimulus reaches the participant) and the variability in this transfer
time (jitter). If there is variability in the presentation time of the peripheral device,
meaning that one presentation may occur 5 ms after the projector received the
signal and a second presentation may occur 50 ms after the projector received the
signal, this will not be captured by the trigger sent in parallel to the MEG
acquisition computer. A delay in the peripheral equipment can be measured and
accounted for in post-processing steps, however, jitter cannot easily be addressed
based on triggers alone. The variability in the onset times can be large depending

Fig. 1 a Basic visual setup.
b Schematic of different
timing parameters for
evaluating an MEG visual
setup
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on the equipment. This introduces a significant shift in latencies across trials
thereby blurring the temporal resolution of the measured cortical response (leading
to peak broadening and/or reduced amplitude due to cancellation across trials).
Therefore, the optimal jitter is\1 ms. In some cases, one can still account for jitter
(described in more detail below). However, experiments that require precise
timing between stimuli (e.g. testing the ability to predict the next stimulus) or
experiments that require multiple stimuli to be presented synchronously (e.g.
multisensory integration studies) require consistent timing (jitter \1 ms) across
trials to provide the required timing between stimuli.

The other significant challenge with peripheral equipment is identifying equip-
ment that does not introduce artifact (strong magnetic fields) during data collection.
This is often addressed by placing electrical equipment outside of the magnetically
shielded room (MSR) and passing the signal/stimulus into the room through non-
magnetic stimulus delivery systems. These can include shielded and properly
grounded wires and fiber optic cables. Fiber optic cables are ideal for two primary
reasons. First the signal travels at the speed of light, introducing no measurable
delay in transfer of the signal. Second, the fiber optic cables are made of non-
ferromagnetic materials (plastic sheathing and glass), thereby introducing no
magnetic artifacts into the MSR. All other peripheral equipment including screens,
response buttons, etc. should be built with non-ferromagnetic materials which
include plastic, wood and brass. The prevalence of fMRI has made acquisition of
non-ferromagnetic stimulus equipment more readily available. However, as men-
tioned throughout this chapter, not all MRI-safe equipment is suitable for MEG.

2.3.1 Bipolar EEG Channels

Bipolar EEG channels are used to monitor muscle activity. The most common use
is to monitor eye blinks. It is important to have a set policy for eye blinks when
providing your participant with instructions prior to beginning data collection for
the MEG study. This however, can be difficult. If too much emphasis is placed on
not blinking, the participants will almost invariably blink more (e.g., their eyes
become dry which causes involuntary blinking). It is generally recommended that
you tell the participants when they can blink rather than informing them that they
cannot blink. ‘‘When you need to blink please blink after you’ve responded or
blink between the stimuli.’’ Some studies (e.g. Tesche and Karhu 2000) have
explicitly set aside a blink period between stimuli.

Regardless, it is important to use eye blink detection channels in most if not all
MEG experiments. The magnetic fields generated by the muscles around the eyes
are significantly larger than the magnetic fields of interest. This leads to two
problems. First, eye blinks can completely swamp any signal that you are inter-
ested in measuring. Second, eye blinks are large amplitude events with a consistent
field pattern so that there is very little chance that they will average out across
trials. It is also the case that many subjects will blink in response to a stimulus
(partially time-synched), making it even more likely that you will obtain a large
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amplitude eye blink artifact. There are a number of different configurations that
can be used to monitor eye blinks and eye movement. It is generally best to
incorporate a setup that can monitor both vertical and horizontal eye movements.
With two sets of electrooculogram (EOG) electrodes it is best to place one set of
electrodes on the superior and inferior orbital ridges of one eye to monitor eye
blinks and vertical eye movement and the second set of electrodes on the left and
right outer canthi to monitor horizontal eye movements. With one set of EOG
electrodes, one electrode can be placed on the superior orbital ridge of one eye and
the other on the outer canthi of the other eye to incorporate both horizontal and
vertical eye movements into one EOG channel.

Bipolar EEG channels are also useful for monitoring heartbeat. While it is highly
recommended to monitor heart beat in clinical cases, it is not as critical to monitor
in basic research studies. However, there are some subjects that exhibit significant
heart beat artifact in their MEG. By recording the electrocardiogram (ECG), it is
much easier to confirm and eliminate heart beat artifact from the MEG signal than if
the data are simply not acquired. A standard placement of two EEG leads just below
the left and right clavicle generally provides a good ECG recording. Heart beat
artifact can be removed from the signal using projection methods described in
Sect. 4.1.

Another common use of bipolar EEG channels is to monitor other muscle
movement. These can be used with standard electromyogram (EMG) placements
to monitor specific muscle activity to confirm or disprove mirror movements that
may occur in cases of brain injury such as Cerebral Palsy or Stroke (Grosse et al.
2002). EMG channels have now been widely used to quantify coherence of brain
oscillations with oscillations measured in the EMG to better understand the
mechanisms associated with Parkinson’s Disease (Timmermann et al. 2003, 2004).

2.3.2 Visual Equipment

Currently, projectors are the standard equipment used to present visual stimuli
(often with the projector located outside the MSR such that it can project onto a
rear-projection screen located within the MSR). Most off-the-shelf projectors do
not provide reliable timing. The timing profile of a projector can be tested by
collecting MEG data with the visual stimulus trigger and a photosensor attached to
the screen. The photosensor signal should be routed to one of the analog-to-digital
(A/D) channels and timing of the photosensor signal relative to the visual triggers
can then be measured (see Fig. 2). Depending on the type of projector, timing may
also vary across the screen (e.g. cathode ray tube (CRT) monitors) so timing
parameters should be tested at the location of the visual stimuli. To test the timing
parameters, a separate visual stimulus at the desired screen location should be used
such that the stimulus changes from black to white (or vice versa) at the onset of
the stimulus to provide a clear change in photo luminance for the photosensor.
Collect approximately 30 trials to determine the variability in this timing mea-
surement. If the maximum variability of this timing is low (*3 ms or less), then
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one can record the absolute timing difference (delay) and use this as a correction
factor for the timing of the visual response after data processing. If the variability
is high, then one should incorporate the photo-diode in your studies and use the
photo-diode signal as the visual stimulus onset trigger for averaging across trials.
Variability in visual stimulus presentation can also be minimized by optimizing
the timing of stimulus presentation relative to the projector refresh rate. The
stimulus onset for visual studies should be a multiple of the refresh rate of your
projector so that the signal is received by the projector at the same phase in the
refresh cycle (e.g. a 60 Hz refresh rate means stimuli should be presented at
multiples of 16 ms). This is also relevant if you are trying to present carefully
timed stimuli such as characterizing the frequency response of the visual system.
Again, it is best to confirm the actual projector oscillation rate with a photo-diode.

There are two primary types of projectors that are currently being used for
MEG studies, liquid-crystal display (LCD) and digital light processing (DLP)
projectors. DLP projectors have the best temporal characteristics for MEG studies
(low variability (\1 ms), and synchronous color presentation for 3-chip DLP
projectors). However, the price of these projectors is often prohibitive. Some LCD
projectors also have low variability in stimulus onset from trial-to-trial. Both of
these projectors often have a 20–40 ms delay from the time the projector receives
the signal to the time the stimulus is presented. A few MEG systems are com-
patible with using monitors for displaying visual stimuli directly. However, LCD
monitors have not been well characterized in terms of timing parameters. Some
measurements from our lab suggest that timing jitter can be high in LCD monitors
and should be carefully tested.

Another important projector variable to consider is brightness. Many commer-
cially available projectors are designed to project tens to hundreds of feet. The path
length from the projector to the screen is*3 m for MEG rooms. This leads to intense
lighting for visual studies which can produce significant eye strain. The projector
menu may allow for brightness control. An additional option is to buy a neutral
density filter that reduces the brightness across all projector settings. While one of the
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Fig. 2 Photo diode recording on an A/D channel. Time 0 is the time the trigger pulse reached the
MEG data acquisition system. Time 20 ms is the onset of the photodiode response. This 20 ms
delay denotes the delay from when the projector was signaled to present the stimulus to the time
the stimulus was actually presented. Three trials are overlaid showing no difference in timing and
represents\1 ms jitter. When jitter is present the onset of the individual trials is variable relative
to time 0
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motivations behind reducing eye strain is to make the experience comfortable for the
participants, reducing eye strain also reduces eye movement artifacts and tearing
during task performance.

2.3.3 Auditory Equipment

Ear Inserts: MEG labs often use foam ear inserts connected by tubing to Etymotic
sound transducers placed between 0.5 and 3 m from the MEG helmet. These sound
transducers can be placed within the MSR and generate minimal noise. One
advantage of these devices is that the signal is transferred at the speed of light until it
reaches the sound transducer. The slower speed of sound (*0.344 m/ms) will
introduce delays in the auditory signal, which need to be accounted for based on the
distance to the participant once the signal is converted into a sound wave (length of
the tubing from transducer to participant). Other delays and jitter in the auditory
stimulus timing can arise from the stimulus computer sound card or speaker elec-
tronics. Another consideration with presenting sounds via tubing is that the manu-
facturer characterizes the sound quality for a specified tube length (the sound will be
attenuated with longer tube lengths). Tubing also acts as a filter, thereby limiting the
frequency range of the stimuli that can be presented through this setup. Etymotic
sound transducers are supplied with a frequency response curve that is calibrated to a
recommended tube length and tube characteristic. If different lengths, diameter or
rigidity of the tubing are employed additional sound characteristic testing would be
required. Unfortunately, MRI-compatible headphones are not feasible for MEG
systems because headphones generally do not fit within the MEG helmet.

Speakers: Standard speakers are used in some MEG studies, e.g. (Stephen et al.
2012). However, sound is generated from standard speakers through movement of
magnets, therefore, they are not artifact free. Some flat panel speakers generate
minimal artifact relative to traditional speakers and maximizing the distance
between the speakers and the MEG helmet also reduces the amplitude of the noise.
With significant artifact it is important to recognize that speakers are active for the
full duration of the auditory stimulus, therefore, it is important to ensure that one
can eliminate speaker-generated artifact from MEG data through data processing if
the stimuli will be longer than *50 ms. Finally, speakers within a closed room do
not provide the same characteristics as open field sound sources. Sound dampening
material on the walls can improve sound characteristics within the confined space.

2.3.4 Somatosensory Equipment

Electrical Stimulation: Direct electrical stimulation of a nerve (e.g. median or
tibial nerves) provides temporally precise somatosensory stimulation. Timing of the
system can be tested by recording the electrical output used to stimulate the nerves
relative to the stimulus trigger. However, electrical stimulation can introduce
artifacts. Twisting the wires that travel from the stimulator to the nerve helps to
minimize artifact from signal traveling through the wires. Despite these artifacts,
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stimulation of nerves provides a reliable stimulus and a very short duration pulse
(0.5 ms) can be used to obtain a robust cortical response. Therefore, artifact is
limited to a brief period before cortical activation. Finally it is important to rec-
ognize that the distance traveled along the peripheral nerve (from the location that
the nerve is stimulated to the brain) will induce delays in cortical activation. Unlike
auditory and visual systems where differences in the length of the peripheral nerves
are, negligible, there is considerable variation in height across participants with
systematic differences in height by gender leading to potential group differences.
Therefore, recording height from study participants is useful to ensure height dif-
ferences do not account for group latency differences.

Vibration Stimuli: Tactile devices can be driven with an oscillatory electrical
signal to generate a vibration stimulus when placed directly on the skin. This
stimulus can provide precise timing for the somatosensory stimulus since the
electrical signal is converted directly to vibratory motion. However, these devices
generally require that the electrical motor be located close to the skin, again
causing varying levels of artifact from the device.

Pneumatic Stimuli: Pneumatic stimuli are often generated by an air puff pre-
sented directly to the skin to activate hair sensory receptors or a puff of air filling a
balloon to generate a pressure stimulus. The pneumatic stimulus provides a non-
threatening somatosensory stimulus for pediatric populations and is artifact-free, if
the air regulating device is located outside of the MSR. However a pressure stimulus
introduces a significant time delay based on the time that it takes for a pressure
stimulus to travel along the plastic tubing from the external air regulator to the
participant (approximately the speed of sound). This requires that a pressure trans-
ducer be available to assess the time delay of the stimulus relative to the trigger. Also,
rigid tubing is essential to preserve the pressure profile across the 3–5 m distance.

2.3.5 Motor Equipment

Equipment used to assess motor function is primarily designed to capture the onset
of motor activation. The different types of equipment used in motor paradigms are
described below.

Finger lift device (Fig. 3): A finger lift device is often comprised of fiber optic
tubing connected to a light source at one end and a photo diode at the other with a
break in the middle. Both the light source and the photo diode are located outside
the MSR. The trigger is generated either when the light beam is broken or when
the light beam is allowed to pass to the photo diode. In any case, breaking or
connecting the light beam provides a rapid transition that the photodiode registers
and is then converted to a TTL pulse acting as a stimulus trigger. Many systems
are designed to trigger either at the time the light beam is interrupted or at the time
the light beam passes through unimpeded.

Squeeze ball: A squeeze ball has been used to obtain a larger motor response
than the finger lift task and it allows certain patients to perform a motor task who
may not have sufficient manual dexterity to perform the finger lift task (e.g. patients
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who have suffered a stroke). Onset of motor function in this case, is registered when
the ball is squeezed. Release of air or water from the squeeze ball can push an object
that in turn breaks a beam of light (e.g. fiber optic cable) or through a sudden change
in pressure registered by a pressure transducer (generally located outside the MSR).
However, the delay in registering the squeeze can be quite long if the signal is
measured by a pressure transducer at the end of the tube located outside the MSR
due to the slow speed of a pressure stimulus traveling along a tube. Furthermore, the
pressure profile can be quite variable depending on the strength of the squeeze,
thereby making it challenging to define a trigger with low jitter.

EMG signal: As mentioned above, bipolar EEG channels can be used to collect
EMG signals by placing them on the muscle group of interest (with an appropriate
reference location for the second electrode) to capture onset of muscle movement.
EMG signal that is recorded simultaneously with the MEG data provides signal
with no equipment induced delay or jitter. However, EMG signal can be con-
taminated by muscle activity that is not of primary interest to the specified task, if
the electrodes are not placed correctly or if the participant cannot isolate the
movement for task purposes only. Furthermore, the EMG signal needs to be
converted to a trigger signal using post-processing methods to indicate movement
onset. Varying levels of movement quality (slow vs. fast onset) may also lead to
ambiguous movement onset for trigger creation.

Response Devices: MEG systems are generally equipped with artifact-free
response devices that record the participant’s response during cognitive tasks to
collect behavioral reaction times and accuracy. These devices can also be used to
signify onset of motion in a finger lift task. See Sect. 2.3.6.

Fig. 3 Example Fiber Optic Motor Apparatus. The light source and electronics that identify
triggers are located outside the MSR. The light source is connected to one side of the fiber optic
cable loop and the light is delivered back to the electronics through the other side. The hand rests
on the motor pad (grey platform) and the finger is aligned such that it interrupts the light beam
when it is lowered to the motor pad. The electronics can be set to trigger based on the interruption
or completion of the light beam across the space on the motor pad
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2.3.6 Behavioral Response Devices

It is important to have some type of behavioral response device which is compatible
with the MEG system. This allows one to not only obtain behavioral information
about how individual participants performed the task, but also provides some
confidence that the participants are performing the task, as instructed. While many
of the MEG manufacturers provide four button response pads, it is often useful to
develop a reaction time device that allows for responses from all fingers. One
example of this type of device has been developed by Michael Doty at the Mind
Research Network (http://www.mrn.org/collaborate/imaging-equipment/). This is a
fully optical system with non-metallic buttons and is also fully compatible with
MRI. One particular challenge in developing a noise free response device is finding
reliable response buttons that do not have ferromagnetic springs. Yet, it is critically
important to ensure that response pads do not generate any noise due to the vari-
ability in responses that can and will generate artifacts throughout much of your data
set. Also, there should be no significant delay between when the response button is
pressed and when the information is registered to the stimulus or acquisition
computer. It is also useful to have an ergonomically comfortable device to ensure
that participants do not tense their shoulders or become uncomfortable, leading to
potential muscle artifacts in the MEG data.

3 Experimental Design Considerations

3.1 Interstimulus Interval (ISI)

One of the important factors to consider when designing an MEG study is
determining the rate at which stimuli will be presented. The interstimulus interval
(ISI) defines the time between stimuli. This timing parameter must be balanced
between keeping the interval between stimuli short to decrease overall task
duration and minimize participant fatigue, while optimizing the cortical response
for the proposed task. Numerous studies have described the impact of different ISIs
on brain function. Rapid ISIs tend to decrease secondary and higher order brain
activity and emphasize primary sensory activity (Wikstrom et al. 1996). However,
primary sensory activity also decreases with rapid presentation of repetitive stimuli
(Hari et al. 1982). In contrast, designing experiments with long ISIs will increase
the overall duration of data collection, thereby contributing to participant fatigue.
Therefore, a number of factors should be considered when choosing ISI.

1. It is important that stimuli are sufficiently separated in time such that the
cortical processing associated with the previous stimulus has ended prior to the
presentation of the next trial. For example, the cortical response to median
nerve stimulation is complete by *400 ms after stimulus onset (see Fig. 4).
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Therefore, stimuli can be presented every 0.5 s. On the other hand, language
stimuli for example evoke a more protracted cortical response (Aine et al.
2005) requiring that the time between stimuli be longer. Therefore, ISI should
be determined based on the previous literature or empirical testing of the
response across a range of ISIs.

2. The ISI must also include sufficient time to provide a baseline time interval
between the offset of the cortical response to the previous stimulus and the
onset of the stimulus for the following trial. Due to the natural drift in MEG
channel amplitude over time, most MEG studies employ baseline correction
during data processing. Therefore, the ISI should be chosen such that the
interstimulus interval is greater than the (baseline time interval) + (duration of
the cortical response). The duration of the baseline time interval varies
depending on the paradigm and the analysis to be performed. Following the
example provided in Fig. 4, the baseline time interval chosen for median nerve
stimulation is often 100 ms.

3. The duration of stimuli is an important consideration when determining ISI. If a
visual stimulus is presented for 1 second, the onset of subsequent visual stimuli
must be separated by approximately 1.5 s. This provides sufficient time for
the visual off-response and a baseline time interval between stimuli prior to the
onset of the next visual stimulus.

4. Varying ISI across trials also helps eliminate anticipatory responses such as the
contingent negative variation (CNV) response first identified in EEG studies
(Rohrbaugh et al. 1986). Furthermore, introducing variability in the ISI also
helps to limit anticipatory behavioral responses during repetitive tasks (par-
ticipants may respond with a button press prior to stimulus presentation).
However, some paradigms require a constant ISI (e.g. studies that specifically
focus on understanding the ability to predict stimulus timing). Finally, by
varying the ISI, one may help reduce habituation of responses (i.e., a reduction
in amplitude across time to a repetitive stimulus presented at a constant ISI).

Fig. 4 Somatosensory response to median nerve stimulation. The median nerve stimulation was
presented at time (t = 0 ms). The MEG channels are overlaid to show the response across the
MEG array. A baseline time interval (-100, 0) is shown prior to stimulus presentation. The
response has returned to baseline levels by 400 ms post-stimulus
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5. During cognitive tasks it is also important to take reaction times into consid-
eration when determining ISI. It is important to provide sufficient time for the
participant to respond prior to the onset of the next trial so that brain activity in
the following trial is not contaminated by motor responses from the previous
trial. Slower reaction times often associated with patient populations should
also be considered. One approach is to allow for dynamic changes in ISI by
initiating the next trial as soon as a response is made. However, this may
introduce systematic group differences in ISI if a patient group is consistently
slower than the control group, leading to an experimental confound as
described above.

6. Finally, the number of trials per condition is also a consideration when
determining ISI. As described in the signal averaging section below, most
stimuli in MEG studies are presented 10–100 s of times to allow for noise
reduction through signal averaging. However, the number of trials per condi-
tion and the ISI interact to determine the duration of the task. For example, a
study with 2 conditions with 100 trials per condition and an average ISI of 1 s
will take 3.3 min. If the ISI is doubled, the data collection time will also double
(6.6 min). Balancing the number of trials with the ISI helps to optimize signal
quality and task duration to ensure participants can provide good quality data
and attentive responses throughout data collection.

In summary, it is important to balance timing parameters with other consid-
erations such as participant fatigue and task complexity to obtain high quality
MEG data based on the constraints of the experimental paradigm.

3.2 Training the Participant

It is important to allow time for the participant to practice the task for a number of
reasons. Once data collection has begun, it is important that the participant feel
comfortable with task instructions to minimize the likelihood that data collection
needs to be stopped due to confusion over the task. Starting and stopping data
collection is problematic and can lead to participant fatigue and frustration as well
as introducing variability in data acquisition time across participants. Therefore, it
is best to get the participant comfortable with the setup and the stimuli and the
required responses prior to data collection. If the experiment is incorporating a
behavioral task, one might set a percent correct criterion during the practice ses-
sion to decide how long the subject practices the task. Depending on access to the
machine, practice can occur in the MSR or at a practice computer.
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3.3 Habituation

It is also useful to randomize different conditions within an experiment for a
number of reasons. First, cortical responses are largest in response to changing
stimuli. Using visual stimuli for demonstration purposes, if a participant is
expected to look at the exact same visual stimulus over a long period of time, the
salience of the stimulus will fade due to the physiology of the visual system.
Therefore, if you are testing both left and right visual fields it is best to randomize
the left and right stimuli within blocks. This randomization also helps to prevent a
shift in gaze away from the fixation point. While it is most common to place a
small cross-hair at the location that the participant is supposed to maintain visual
fixation, if all of the stimuli are below the visual fixation, for example, participant
gaze will tend to shift below the intended fixation point. Randomizing stimuli,
such that the average location is at the fixation point, helps to minimize fixation
drift. If the experimental design does not allow for full randomization of the
location of the stimuli, then it is best to block the stimuli in relatively small blocks
and present different locations in blocks of *30 stimuli per location, while pre-
senting as many blocks in a randomized fashion to allow for the desired number of
averages. Randomizing the conditions across the entire data collection period also
helps to ensure that differences in responses between conditions are not simply due
to changes in attention across time. Similar habituation considerations are
important for auditory, somatosensory, motor and cognitive paradigms.

3.4 Subject Positioning

It is important to consider the primary areas of interest when positioning the
participant in the MEG dewar. For participants with large heads, placement within
the dewar will not be a consideration. However, a large number of subjects have
significant room to move their head both front and back and side-to-side in the
current MEG helmets. It is generally best to try to center the head as much as
possible from left to right, unless your hypothesis focuses specifically on a well-
documented lateralized response. However, for a basic visual study, you should
encourage the participant to move their head back as far as possible and perhaps
tilt the head forward a bit to provide additional coverage below the occipital
cortex. On the other hand, if you want to focus on orbital frontal cortex, moving
the head forward and tilting the head back would be most ideal for optimal
coverage of the area of interest.

Furthermore, when the subject has sufficient room in the helmet to move their
head around, it is important to provide some mechanism to help maintain head
position within the dewar. Placing covered foam pieces on either side of the head
near the cheekbones generally works well both in providing the subject with tactile
feedback while also maintaining head position. Another alternative for head
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stabilization sometimes provided by the MEG manufacturer is an inflatable
bladder placed around the head where different sections may be independently
inflated. These systems sometimes make the participant hot or uncomfortable.

3.5 Artifact Prevention

Artifacts are one of the most challenging aspects of collecting good quality MEG
data. The sources of artifacts include both external and internal factors. External
factors include any large ferromagnetic object that moves close (up to 0.5 km
away) to the MEG system. That is, elevators, cars, gurneys, chairs, etc. can all
generate noise in the MEG system. Fortunately, the noise generated by these
examples is very low frequency. This type of noise is problematic if the MEG
amplifiers become saturated and leads to data loss. Identification of these artifacts
is generally performed by working as a team to monitor MEG activity while
another individual observes external activity.

There are also a large number of artifacts that can be associated with the
participant. Clearly, it is important that the participant remove all electronic
devices before entering the MSR, including cell phones, pagers, watches, etc. The
largest problem is with dental work. Permanent bridges are almost invariably too
noisy for good quality data. Unfortunately, the frequency range of noise generated
from dental work directly overlaps with physiological signal. Therefore, it is
challenging to eliminate this noise from the signal without also losing signal of
interest. It is also heterogeneous across data collection, making projection tech-
niques such as that used for eyeblinks and heart beat artifact unusable. It is
important to ask the participant to take out all removable dental work. Sometimes
de-gaussing will work in removing magnetization from permanent dental work. If
the participant is a member of a difficult-to-recruit study group, it is important to
attempt de-gaussing at least a couple of times. While participants with removable
dentures may seem to be ideal subjects, the absence of dentures may lead to more
mouth movement and muscle artifact.

Muscle artifact is the next largest contaminant to MEG data. Both eye and
mouth movements affect the MEG signal. In general, the magnetic fields generated
by muscle movement are much larger than the magnetic fields generated by brain
activity. Therefore, necessary muscle movements, such as eye blinks, present a
constant problem for MEG. The participant may also have habits that lead to
artifacts that include muscle movement such as tensing the jaw or shoulders.
Mouth movements can be particularly difficult for MEG since the jaw muscles
extend posteriorly across much of the head. This artifact is best identified by
asking the subject to consciously tense their jaw or shoulders and then asking the
subject to consciously relax while one is observing the continuous MEG signal.
Some subjects are tense when they first start a study, but relax once the study
begins. If this is a possibility, it is useful to let the subject practice the task to help
them settle into the environment.
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The other main source of artifacts originates from participant clothing and other
accessories. All piercings should be removed prior to data collection unless it is
known that the piercing is non-ferromagnetic. Some mascara, makeup, hair dye
and finger nail polish can have metallic ingredients. Mascara can generate
amplified eye blink artifacts. Breathing artifacts can be seen from a number of
different sources. (1) T-shirts with metallic ink in the silk screen; (2) underwire
bras; (3) clothes with metallic dyes; and (4) belts. While it is best to encourage
participants to come dressed in plain metal-free clothes, an alternative is to provide
metal free clothes (e.g. medical scrubs) to participants.

4 Data Preprocessing

4.1 Artifact Removal

The first priority with MEG artifacts is to minimize the contribution of artifacts that
contaminate MEG data. As mentioned above, a number of sources of artifacts can be
eliminated prior to data collection. However, there are a number of artifacts that
cannot be eliminated entirely (e.g. flux jumps, eye blinks, movement artifact, etc.).
For the artifacts that remain, there are two competing goals when removing artifacts
from data. If the artifact is a large amplitude, rare event, then it is necessary to
eliminate it from the signal by removing the trial, since it is very unlikely to be
reduced by signal averaging. On the other hand, it is important to maintain as many
trials for each condition so that one gains the advantage of signal averaging for low
amplitude noise.

The most reliable method for eliminating artifacts (i.e., guarantees that the
artifact will be removed without removing any signal of interest) is to eliminate any
trials that contain artifacts. If you are able to collect more trials than needed, then
trial removal can be performed either using automated or manual methods. For
example, eye-blink rejection is often performed by eliminating any trials that
contain a signal that exceeds 75 lV in the EOG channel. Additional criteria may be
included which only eliminate blinks in the eye channel within a certain time
range relative to the stimulus trigger (e.g. eye blinks that occur after the signal of
interest). This approach can also be used for large movement artifacts (e.g. cough or
shifting position). Often these trials are identified by setting an upper bound on the
magnetic field strength (*2,000 fT) and eliminating trials that exceed that value.
However, if one channel is noisy throughout the entire recording, then it is rec-
ommended that the channel not be used (turned off/marked bad) for the analysis
rather than eliminating bad trials based on this channel.

Additional methods for artifact rejection provide mathematical solutions to
artifact rejection. However, these techniques run the risk of eliminating signal as
well as noise in the artifact removal process. For example, eye blinks can be
identified by using an eye blink template. Whenever a sufficient match is made
with the template the magnetic field associated with the template eye blink is
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projected out of the data (Uusitalo and Ilmoniemi 1997). This technique can be
very useful when eye blinks are relatively homogeneous to maximize the number
of trials retained in the average.

Independent components analysis (ICA) has also been used to eliminate arti-
facts from MEG data. The advantage of ICA is that artifacts should be independent
of the brain signal of interest. Therefore the underlying assumption of the method
is valid. This technique has been used by many MEG groups (e.g. Vigario et al.
2000; Iwaki et al. 2004; Mantini et al. 2007). However, there are a number of
different forms of ICA. Some of the ICA programs separate the data into many
components as decided upon by the user. Others separate the data into the same
number of components as number of input channels. Either way the actual
assignment to any particular independent component is random. Therefore, it is
necessary for the investigator to determine a method that identifies artifact versus
signal components. Depending on the artifact, this may or may not be obvious.

4.2 Removal of Bad Channels

The choice to remove bad channels is based on two factors. If the channel is bad
because of technical difficulties with the SQUID, the noise is clearly not physio-
logical with multiple square wave jumps throughout the dataset. These channels
should be eliminated since they do not provide any useful information regarding
brain activity and yet can dramatically bias source modeling. The other factor is
physiologic noise. Sometimes eye blinks can be found throughout the entire dataset.
If none of the above artifact removal options appear to solve the problem, it may be
more useful to delete channels that are largely affected by eye blinks. This is done,
for example, if you are not interested in activity in brain areas near the eyes. Most, if
not all, MEG analysis programs allow you to toggle bad channels on and off. So the
data is not deleted, it is just not marked for display and analysis purposes. Again, it is
important to balance the two factors of retaining as much information as possible,
while also eliminating as much noise from the signal as possible.

4.3 Filtering

The choice of filter settings should be carefully considered. Historically, ERP
recording equipment limited the dynamic range of the signal leading to narrow filter
settings. Some MEG studies have followed these filter settings since this facilitates
direct comparisons with previous ERP work. However, the acquisition equipment
for both EEG and MEG is far advanced at this time. Filter settings can be adjusted
during post-processing steps and it is recommended that acquisition filters be set as
wide as possible. Due to these early filtering restrictions, both slow wave activity
and high frequency gamma were not initially reported in ERPs (filtering was often
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set with a bandpass of 5–30 Hz). Our results have described the importance of slow
wave activity in cognitive tasks (Aine et al. 2003, 2005). Recent EEG and MEG
studies have also identified the role of high gamma oscillations in cognitive tasks
(Engel et al. 2009; Uhlhaas et al. 2011).

4.4 Averaging

Signal averaging is still the norm for obtaining reliable evoked responses in MEG
studies. This requires a trigger from which to average the signals. As described
above, these triggers can either be generated by a program that delivers the stimuli
to the subject (e.g. trigger pulse sent from Presentation program) or by a device
that measures when the stimulus is presented to the subject (e.g. photo-diode).
After eliminating any noise sources from individual trials, the trials for
each condition are then averaged together. This allows for an increase in signal to
noise ratio (SNR) that is approximately equal to

ffiffiffiffi
N
p

where N is the number of
trials. This relationship is exact in the case of truly Gaussian white noise. It is only
approximate in cases where the noise is not truly random as is the case with brain
noise. Therefore, if there is a consistent noise source that is time-locked to the
stimulus (e.g. the participant always blinks with the presentation of a visual
stimulus or artifact from a stimulation device), the signal will not average out.

It is important to check various factors when performing signal averaging. For
example, it is useful to compare the averages between the 1st and 2nd half of the
recording session or the average of the even versus odd trials. This can be easily
automated. It ensures that the average is not biased by the presentation of the first
few trials (as in the case of habituation) or by a random noise event that was not
eliminated using other artifact removal techniques. It is also important to define a
unique trigger for each stimulus condition. It is easy to automate averaging across
conditions. However, it is not easy to separate out different conditions after data
acquisition, if one does not provide unique triggers for these conditions at the
outset. The generally accepted number of averages that are needed to obtain good
SNR in most MEG studies is a minimum of 100 trials/condition. This number may
be larger or smaller based on the amplitude of the signal of interest. For example
the high frequency activity reported by Curio et al. (1997) required thousands of
trials to obtain the necessary SNR. On the other hand, inter-ictal epileptic spike
activity provides sufficient SNR for single trial analysis in many cases.

Signal averaging has some disadvantages because it assumes that the signal of
interest is exactly time-locked to the stimulus and identical on each trial. If these
assumptions are not true, the variability from trial to trial will be lost in the aver-
aging process. Time-frequency analysis has provided an additional means to look at
activity that is related to the signal and yet not perfectly time-locked with the
stimulus (Tallon-Baudry et al. 1996). This method of analysis is especially relevant
for high frequency signals such as gamma activity ([30 Hz), since without perfect
time-locking this activity will average out based on the rapid oscillation rate.
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5 Visual Experiments

5.1 Stimulus Parameters

Stimulus parameters for visual experiments are discussed in more detail in the
chapter describing visual studies (Aine et al. this volume). These parameters
include but are not limited to: visual stimulus characteristics such as visual contrast,
luminance, spatial frequency, size and timing. Below we describe the parameters
that one must consider with respect to designing a visual study to provide consistent
visual stimulus presentation across participants.

5.2 Ambient Lighting

During visual experiments it is important to maintain similar ambient lighting
conditions across participants. Most MSRs include a dialed light switch that allows
one to choose a consistent setting across participants for each experiment. The
difference in ambient light is important since it changes perceived contrast levels.
Differences in contrast cause differences in onset latencies with higher contrast
visual stimuli leading to shorter onset latencies (Robson 1966; Campbell and
Kulikowski 1972; Okada et al. 1982). It is also important to consider ambient light
with regards to stimulus brightness. If the background lighting is turned down,
then the perceived brightness will be greater.

5.3 Calculating the Visual Angle

The visual angle of a stimulus can be calculated by measuring the size of the
stimulus (size) and the distance from the stimulus to the participant’s eyes (dist).
Generally, one can use the distance from the stimulus to the participant’s nasion as
a good approximation. It is important to use identical units when measuring size
and distance as well as being aware of whether the output of the inverse tangent
function is reported in radians or degrees. Use the following equation for the
calculation:

h ¼ 2 � tan�1 size

2 � dist

� �
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5.4 Calculating the Cortical Magnification Factor

In order to activate similar amounts of primary visual cortex across different
eccentricities, it is important to apply the cortical magnification correction factor.
More cortical cells are devoted to the central visual field than to the peripheral
visual field. Therefore, to activate equivalent patches of cortex, the peripheral
visual stimuli need to be larger than the central visual stimuli. The human cortical
magnification factor was most precisely mapped out by Rovamo and Virsu (1979).
They provided a cortical magnification factor for stimuli in peripheral field in the
nasal, superior, temporal, and inferior directions. They suggest linear interpolation
between these four equations when trying to equate activation along other merid-
ians. Horton and Hoyt (1991) derived an equation based on fMRI and occipital
lesion studies in humans that provides an approximation for all directions:

Mlinear ¼
17:3

Eþ 0:75
;

where, E is the eccentricity in degrees and M is the linear correction factor in
mm/degree. This equation agrees well with the dimensions determined for non-
human primates while accounting for the larger size of the visual cortex in humans.
Horton and Hoyt also provide an areal correction with the assumption that the
cortical magnification is isotropic. While this deviates from the results of Rovamo
and Virsu, it is perhaps a reasonable approximation for neuroimaging studies as
suggested by the agreement of these results with PET and phosphene mapping.

5.5 Measuring Luminance

Matching luminance of the stimuli and background is important to ensure that
differences in responses are not generated based on simple luminance changes
throughout the experiment. Luminance measures are performed using a light meter
and are a measure of the total light output for a part of a stimulus for a given period
of time. A full description of how one measures luminance and mean luminance for
complex stimuli such as visual gratings is described in detail by Brigell et al. (1998).

5.6 Vision Correction

It is important to have a method to correct for differences in visual acuity across
participants since blurred images tend to produce lower amplitude responses and
differences in the ability to see the stimuli will lead to differences in task difficulty.
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Although vision correction is generally only considered when performing visual
studies, it is also advisable to offer vision correction during a nonvisual MEG scan
since some individuals get a headache without their glasses. Vision correction can
be a challenge in MEG because in adults eyeglass frames do not fit in the MEG
dewar and most eyeglasses contain ferrous screws, including glasses with titanium
frames. Unless an individual has MRI-safe glasses, wearing glasses will likely cause
artifacts. If the participant needs vision correction there are three standard options.

Contact lenses. One option is for the individual to wear contact lenses.
However, many individuals blink more frequently with their contact lenses in
place. Therefore, it is advisable to have other vision correction options.

Pinhole glasses. A simple option for vision correction is pinhole glasses. If the
individual only needs to fixate on a chosen point throughout the task, a single
pinhole, in a piece of paper for each eye can be created. This approach addresses
difficulties with nearsightedness, farsightedness and astigmatisms. Despite its
wide-ranging use, the challenge of attaching the pieces of paper to the participant
in such a way that the pinhole remains in place throughout the experiment remains.
Often tape is the best option. The drawbacks of this approach are that it can be
annoying to participants since it severely limits their field of view and it may be
viewed by participants as a low-tech approach to vision correction.

Optical lenses. A complete set of optical corrective lenses can be purchased.
These sets include lenses to help account for myopia, hyperopia and astigmatism.
The lenses can either be taped to the subject or a device compatible with the MEG
system can be designed to hold the lenses in front of the subject. These corrective
lenses are also compatible with MRI systems. MRI compatible glasses with
interchangeable lenses are also an option; however, they should be tested prior to
purchase due to the space limitations of the MEG dewar. The clear advantage of
these lenses is that one can match the individual’s eyeglass prescription.

5.7 Eye-Tracking

MEG compatible eye-tracking systems are now available commercially. These
systems can be an important complement to MEG data collection by providing
confirmation of experimental compliance (participant fixates as instructed), testing
emotional responses to stimuli by capturing the pupillary diameter, analyzing the
participant’s eye-movements throughout a task (e.g. quantifying eye-position
during a face processing task), or for understanding the eye-control network
(saccades). It is important to acquire an MEG-compatible eye-tracker since stan-
dard eye-tracking systems use a head-mounted device that does not fit within the
MEG helmet. The MEG-compatible systems perform eye-tracking through a
remote camera. A couple of factors to consider while designing a study with an
eye-tracking system are:
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(1) These systems currently require that head position relative to the eye-tracker
camera remain constant. These systems require highly restricted head move-
ment similar to MEG systems that do not have head movement compensation.

(2) Vision correction options (e.g. contact lenses) generally eliminate the ability
to perform eye-tracking experiments since the corneal reflection is used to
quantify the eye-movements and additional reflections interfer with capturing
the corneal reflection.

(3) Eye-tracking will fail in a certain number of participants due to a number of
factors that inhibit the ability to capture the corneal reflection (e.g. droopy
eyelid, amblyopia, etc.).

Therefore, careful selection of participant group and task design is important prior
to requiring eye-tracking for a study.

6 Auditory Experiments

6.1 Stimulus Parameters

All auditory parameters can be manipulated using currently available software. In
light of the fast temporal processing that occurs in the auditory system including at
the cochlear, brainstem and cortical levels, it is important to understand the
characteristics of the stimuli that are being presented. Simple tones represent one
frequency and can easily be generated in Matlab. However, any sudden onset of a
sound represents a square-wave transition and thereby activates frequencies across
the frequency spectrum. Therefore, when testing tonotopy or simply reporting that
a simple tone was presented, it is important to increase the volume gradually over
a short period of time to reduce the ‘click’ associated with a sudden onset/offset of
a sound. This is commonly performed by applying a 10–20 ms amplitude taper to
the onset and offset of the tone (e.g. Hanning window). More complex auditory
stimuli can also be characterized through a spectrogram to characterize the con-
tribution of an array of frequencies to the sound. To ensure good matching of
stimuli across conditions, it is good to match stimuli on the basis of duration, mean
amplitude and frequency content.

6.2 Auditory Threshold Testing

Auditory threshold testing should be performed to account for differential hearing
loss across participants. This can vary widely in participants at all ages. The testing
should be performed at frequencies that characterize the auditory stimuli in the
study. If you are using auditory inserts for presenting auditory stimuli, these should
be inserted just prior to data collection and auditory thresholding should be per-
formed with the ear inserts in place. The placement of the ear inserts influences the
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perceived volume and auditory threshold testing is sensitive to minor adjustments
to this placement. If there is a large difference in auditory threshold between ears,
it may be related to poor placement in one of the ears. Repositioning and retesting
of the auditory threshold is recommended in this case. With a speaker setup,
auditory threshold testing can occur at a prior visit, assuming that the volume can
be carefully controlled from one visit to the next. The general approach for
auditory threshold testing is to present volumes that are well above and well below
threshold and have the participant respond to every sound they hear. This requires
an adaptive program that continually decreases the interval between the above and
below threshold sounds. Randomly presenting tones of different volumes and
randomizing the time between stimuli, while working toward the ultimate goal of
identifying the threshold helps to eliminate the possibility of false reports.

6.3 Volume Assessment

Volume can be measured using a sound meter. Volume should also be tested with
the stimulus program and any sound equipment used, to determine if the actual
sound volume is consistent with the expected volume output. For example, the
volume increases/decreases by a specified dB level based on programming
parameters in the Neurobehavioral systems Presentation software. We have found
our system to track well with the expected increases and decreases in sound
volume, although the absolute volume is larger than reported. Furthermore, the
length of the tubing from the sound transducers/distance from speakers will change
the volume level accordingly. The volume should be measured to emulate the
conditions of the stimulus. Therefore, if sounds are being presented through ear
inserts, the ear inserts should be connected to the sound meter with a piece of
tubing at a distance approximately equivalent to the distance to the tympanic
membrane. The volume from speakers should be measured with open air access to
the sound meter sensor at the approximate location of the participant.

7 Somatosensory Experiments

7.1 Stimulus Parameters

There are three different types of somatosensory stimulation that have been
employed in MEG studies: direct nerve stimulation with electric pulse, pressure
stimulus generated by a balloon, and vibration stimuli. There are six different
tactile receptors in the skin and each of them responds to different types of tactile
stimuli (Kandel et al., 2000). Vibration stimuli primarily activate Pacinian cor-
puscles, whereas multiple receptors likely respond to a pressure stimulus such as a
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balloon inflating next to the skin, e.g. Ruffini corpuscles and Merkel receptors,
which respond to skin stretch and pressure, respectively.

7.1.1 Direct Nerve Stimulation

Direct nerve stimulation requires that one ensure that the nerve is properly acti-
vated by the electrical pulse. Due to differences in skin conductance and other
factors, the most common method to ensure proper electrode placement is to
position the electrodes and increase the voltage until a known reflex to nerve
stimulation occurs (e.g. median nerve stimulation evokes a natural thumb twitch).
Some median nerve studies choose a voltage setting relative to the onset of the
thumb twitch, whereas other studies simply increase the voltage until the current is
first perceived by the participant. The interstimulus interval can be very brief with
median nerve stimulation (down to 0.5 s) although shorter ISIs decrease the
strength of the later components and longer ISIs lead to a larger contribution from
secondary somatosensory cortex (Wikstrom et al. 1996).

7.1.2 Tactile Stimulation

Tactile stimulation is most commonly performed with an air puff achieved by
filling an air bladder that is placed directly on the skin. The compressed air must be
connected to a device that can control the duration and pressure of the stimulus.
There are two parameters that must be considered when designing a tactile
experiment: pressure and duration. The pressure is often set around 40 PSI with
duration of 20–50 ms to provide time for the balloon to inflate, provide a pressure
stimulus, and deflate again (Lauronen et al. 2006). Activation of the somatosen-
sory system through a pressure stimulus takes longer than direct nerve stimulation.
Therefore, longer ISIs are recommended (C1 s).

7.1.3 Vibration Stimulation

Vibration stimuli require a longer duration stimulus and are often used in a pseudo-
steady-state design. This is related to the natural oscillatory nature of the stimulus
requiring that a sufficient number of cycles are presented to provide a robust
response. Rate of oscillation is another variable to consider to ensure that the
stimulus is comfortable for the participant.
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7.2 Paradigms

Most somatosensory paradigms include simple sensory designs. However, it is
good to alternate left and right median nerve stimulation to reduce habituation
effects. Additional studies have explored the utility of MEG for further under-
standing somatosensory processing including: mapping somatotopy (Inoue et al.
2013; Jamali and Ross 2013), understanding the interaction between sensory and
motor functioning (Cheyne 2013; Piitulainen et al. 2013), linking pain perception
with somatosensory processing (May et al. 2012; Rossiter et al. 2013) and
exploring cognitive aspects to somatosensory processing (Moseley et al. 2013; Sun
et al. 2013).

8 Motor Assessment

8.1 Stimulus Parameters

An important consideration when designing motor experiments is minimizing
motor related artifact. Tasks as simple as pressing a button with an index finger
activate a complex set of muscles that can introduce significant stimulus-locked
muscle artifact in the MEG dataset. Furthermore, muscle tension from holding the
hand or arm in position for movement can lead to muscle tension related artifact. It
is advisable to achieve ergonomic positions for the participant to reduce muscle
tension during data collection. It is also advisable to ask the participant to remain
relaxed throughout data collection. A common approach to identify shoulder
tension is to ask the participant to raise their shoulders into a shrug and then relax.

8.2 Paradigms

Motor paradigms focus on capturing the onset of motion with the goal of capturing
the activity that initiates the movement. In many cases, it is advisable to cue the
participant to initiate movement (e.g. every time the circle appears on the screen,
lift your right index finger). Without pacing provided by external stimuli, partic-
ipants tend to decrease the ISI over time and may decrease it to the point that the
motor activity is not easily distinguishable across trials. It is also important to
provide concise instructions and allow the participant to practice. Better syn-
chronization across trials is obtained with a precise and rapid finger lift as opposed
to slowly lifting the finger. However, other motor tasks may introduce too much
muscle artifact and head motion with rapid onset movement. Pilot testing helps to
provide guidance on developing novel motor paradigms.
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9 Cognitive Paradigms

Due to the large number of cognitive paradigms employed in MEG studies, specific
paradigms are not discussed here. However, there are common considerations to
keep in mind when developing cognitive paradigms that are described below.

First, it is important to match sensory properties across cognitive conditions to
allow one to properly assess cognitive function independent of stimulus parameter
differences (as discussed in the chapter by Aine et al. in this volume). For example,
in Aine et al. (2006) we performed a passive viewing task and a spatial working
memory task using Walsh stimuli. Although the visual stimuli were complex and
changed in complexity across trials, the presentation of these stimuli during a
passive viewing task allowed us to identify the visual processing components that
were independent of the spatial working memory task. Maintaining stimulus
characteristics ensures that contrasts between the control and the cognitive con-
dition are not simply related to sensory differences.

Second, cognitive tasks generally require confirmation that the participant is
performing the task to a specified accuracy level. Therefore, it is important to find
a way to assess whether the participant is performing the task, as instructed. Many
investigators require some type of response using a button press, for example. This
provides a behavioral correlate (reaction time and percent correct) to the neuro-
physiological response as well as allowing the investigator to assess whether the
participant understands the task and is performing the task throughout data col-
lection. If a behavioral response confounds the task, one strategy is to perform a
pre-scan training session and a post-scan questionnaire to determine task com-
pliance. Another strategy is to require the participant to count the number of target
stimuli (rare stimuli designed to test compliance).

Third, the timing of the stimuli and the likely variability of the response must be
considered, to determine if the cognitive process that one is most interested in
studying can be assessed using an MEG study. For example, sentence compre-
hension occurs over a prolonged time window and comprehension may not occur
at the same time relative to the onset of the sentence. One strategy that has been
employed is to complete the sentence with a coherent or nonsense word and trigger
off of the final word of the sentence (e.g. Maess et al. 2006). This helps to
minimize the variability of the cortical response across time, trial and participants.

Finally, a number of strategies have been employed to reduce artifacts that may
contaminate the brain response of interest. For example, Tesche and Karhu (2000)
employed a fixed temporal pattern during a working memory task. Included in the
experimental design was a ‘blink’ command to ensure participant did not con-
taminate the remainder of the trial with eye blinks. Other strategies include
imposing a delayed response to ensure that motor responses do not contaminate
cognitive responses to different stimuli. In that case, it is also important to rec-
ognize that imposing a delayed response (respond when you hear the ‘beep’ cue)
also introduces additional cognitive load into the experiment.
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In summary, high temporal resolution provides an exquisite view into the
cortical dynamics underlying brain function. However, the variability in cortical
response during cognitive tasks can inhibit interpretation. Careful design of the
experiment is important to capitalize on the strengths of MEG.

10 Good Practices

There are a number of good practices outlined below that will facilitate good quality
data collection. Before beginning a study it is important to pilot test the paradigm to
ensure that the behavioral results are as expected. Behavioral testing in a small
group of participants is inexpensive and increases the likelihood that the MEG
results will be meaningful. The question to be answered is whether the patient group
or age group can perform the task to the desired accuracy level. Once the paradigm is
established and the stimulus computer has been programmed to present the desired
task, stimulus timing evaluation should be performed. Empty room MEG data
collection can be performed to test the relative timing of triggers, to verify the
number of triggers/condition is correct and to establish the timing of all peripheral
devices. One should also check that data is being collected for all relevant channels
(including MEG, EEG, bipolar EEG, trigger, and A/D channels), the correct sam-
pling rate is being used, and the correct filter settings are chosen. This is a necessary
step that will help prevent the loss of data due to incorrect settings. Finally, it is
important to run one or a few pilot test participants to ensure that the expected
evoked responses are attained with the paradigm (e.g. auditory M100 is observed
when an auditory stimulus is presented, etc.). Once the paradigm is established, it is
important to maintain identical stimulus parameters across participants to ensure
that sufficiently powered statistical comparisons can be performed at the end of the
study. It is also recommended that a naming convention be established at the
beginning of the study to ensure consistency across subjects. Our current naming
convention includes the SubjectNumber_studyName_Run#_visit#_cont/ave, where
studyName is a descriptive name of the paradigm (e.g. audMMN, visP300, spat-
wm), Run# is the number of a series of runs with the same stimulus conditions if the
study population requires breaks during data collection, visit# accounts for longi-
tudinal studies where the same paradigm is collected over multiple time points and
cont/ave refers to either a continuous data file or the online average data file.
Consistency facilitates auto-analysis pipelines and compilation of data across
studies. Finally, record all stimulus settings and data acquisition parameters to
ensure that the same conditions can be replicated across participants. This is par-
ticularly important in labs where multiple study teams use the same equipment.

Prior to each data collection session it is important to perform a simple test to
ensure that the equipment is in the same state as recorded above. For example,
confirm stimuli are being presented as expected (you can hear the sound through
the auditory inserts, the visual system is functional, etc.). Also, test triggers in the
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MEG data to ensure the program is sending triggers through to the data acquisition
system. Finally, check the participant response device and confirm that the signals
are being received by the stimulus presentation computer and the MEG data
acquisition computer.

11 Summary

There are a number of critical factors to consider in properly designing and
implementing MEG studies to produce high quality data and to eliminate artifacts
that can mislead the interpretation of the results or mask the signal(s) of interest.
Identifying sources of artifact and confounding factors prior to data collection can
simplify post-processing thereby reducing the number of processing steps needed
to obtain good SNR. Being able to reliably identify when stimuli are presented or
when events of interest occurred and characterizing confounding activity provides
the best means to understand the cortical networks involved in brain function.
Finally, establishing good data acquisition procedures to ensure reliable and
consistent data collection across participants is imperative to developing gener-
alizable knowledge. With proper experimental design and participant monitoring
novel MEG analysis techniques will continue to be developed to capitalize on the
rich spatio-temporal datasets obtained with MEG.
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and Multi-Modal Integration



Magnetoencephalographic Imaging

Srikantan Nagarajan and Kensuke Sekihara

Abstract Non-invasive and dynamic imaging of brain activity in the sub-
millisecond time-scale is enabled by measurements on or near the scalp surface
using an array of sensors that measure magnetic fields (magnetoencephalography
(MEG)) or electric potentials (electroencephalography (EEG)). Algorithmic
reconstruction of brain activity from MEG data is referred to as magnetoen-
cephalographic imaging (MEGI). Reconstructing the actual brain response to
external events and distinguishing unrelated brain activity has been a challenge for
many existing algorithms in this field. Furthermore, even under conditions where
there is very little interference, accurately determining the spatial locations and
timing of brain sources from MEG data is a challenging problem because it
involves solving for unknown brain activity across thousands of voxels from just a
few sensors (*300). In recent years, our research group has developed a suite of
novel and powerful algorithms for MEGI that we have shown to be considerably
superior to existing benchmark algorithms. Specifically, these algorithms can solve
for many brain sources, including sources located far from the sensors, in the
presence of large interference from unrelated brain sources. Our algorithms effi-
ciently model interference contributions to sensors, accurately estimate sparse
brain source activity using fast and robust probabilistic inference techniques. Here,
we review some of these algorithms and illustrate their performance in simulations
and real MEG/EEG data. We also briefly how functional connectivity approaches
have evolved and are being applied in conjunction with MEG imaging.
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1 Introduction

Multiple modalities of non-invasive functional brain imaging have made a
tremendous impact in improving our understanding of human auditory cortex.
Ever since its advent in 1991, functional magnetic resonance imaging (fMRI) has
emerged as the predominant modality for imaging of the functioning brain, for
several reasons (Belliveau et al. 1992; Ogawa et al. 1992; Tank et al. 1992). fMRI
uses MRI to measure changes in blood oxygenation level-dependent (BOLD)
signals due to neuronal activation. It is a safe, non-invasive method that allows for
whole-brain coverage, including the ability to examine activity in deep brain
structures. Importantly, the widespread availability of commercial and open-
source tools for analysis of fMRI data has enabled many researchers to easily
embrace this technology. However, since the BOLD signal is only an indirect
measure of neural activity and is fundamentally limited by the rate of oxygen
consumption and subsequent blood flow mechanism, fMRI lacks the temporal
resolution required to image the dynamic and oscillatory spatiotemporal patterns
that are associated with cognitive processes. The temporal resolution limitations of
fMRI particularly constrain auditory studies because auditory stimuli and
responses have inherently fast dynamics that cannot be readily assessed with
fMRI. Furthermore, since the BOLD signal is only an approximate, indirect
measure of neural activity, it might not accurately reflect true neuronal processes
especially in regions of altered vasculature. In fact the exact frequency-band of
neuronal processes that corresponds to the BOLD signal is still being actively
debated (Logothetis et al. 2001; Niessing et al. 2005). Finally, in the context of
auditory studies of speech and language, because fMRI measurements involve
loud scans, caused by fast forces on MR gradient coils, the scans themselves will
invoke auditory responses that have to be deconvolved from the signals in order to
examine external stimulus related activity. Hence, to non-invasively image brain
activity on a neurophysiologically relevant timescale and to observe neurophysi-
ological processes more directly, silent imaging techniques are needed that have
both high temporal and adequate spatial resolution.

Temporal changes can be non-invasively measured using methods with high
(e.g. millisecond) temporal resolution, namely magnetoencephalography (MEG)
and electroencephalography (EEG). MEG measures tiny magnetic fields outside of
the head that are generated by neural activity. EEG is the measurement of electric
potentials generated by neural activity using an electrode array placed directly on
the scalp. In contrast to fMRI, both MEG and EEG directly measure electro-
magnetic (EM) fields emanating from the brain with excellent temporal resolution
(\1 ms) and allow the study of neural oscillatory processes over a wide frequency
range (at least 1–600 Hz). MEG and EEG also provide complementary informa-
tion about brain activity because of their differing sensitivity to current sources
within the brain. While MEG is primarily sensitive to tangential currents in the
brain closer to the surface and insensitive to poor conductive properties of the
skull, EEG is primarily sensitive to radial sources while being highly sensitive to
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the conductive properties of the brain, skull, and scalp. Since bioelectric currents
produced by neurons also generate magnetic fields, which are not distorted by the
heterogeneous environment, measurements of these magnetic fields using MEG
can be considered to give rise to an undistorted signature of underlying cortical
activity. Therefore, MEG and EEG can be viewed as being complementary in
terms of the sensitivity to underlying neural activity. In this chapter, a review is
initially presented on how brain activity can be reconstructed from MEG mea-
surements with implications for spatial and temporal resolution of such
reconstructions.

2 Sensing the Brain’s Magnetic Fields

Biomagnetic fields detected by MEG are extremely small, in the tens-to-hundreds
of femto-Tesla (fT) range—seven orders of magnitude smaller than the earth’s
magnetic field, and as a result, appropriate data collection necessitates a mag-
netically shielded room and highly sensitive detectors—Superconducting quantum
interference devices (SQUIDs). The fortuitous anatomical arrangement of cortical
pyramidal cells allows the noninvasive detection of their activity by MEG. The
long apical dendrites of these cells are arranged perpendicularly to the cortical
surface and parallel to each other, allowing their electromagnetic fields to often
sum up to magnitudes large enough to detect at the scalp. Synchronously fluctu-
ating dendritic currents result in electric and magnetic dipoles that produce these
electromagnetic fields (Nunez and Srinivasan 2006). These dendritic currents from
the brain are typically sensed using detection coils called flux transformers or
magnetometers, which are positioned closely to the scalp and connected to
SQUIDS. SQUIDS act as a magnetic-field-to-voltage converter, and its typically
non-linear response is linearized by flux-locked loop electronic circuits, and have a
sensitivity of *10 femto-Tesla per square root of Hz which is adequate for
detection of brain’s magnetic fields (Vrba and Robinson 2002).

MEG sensors are often configured for differential magnetic field measurements
to reduce ambient noise in measurements—which are also referred to as gradi-
ometers, although some MEG systems are also built out of magnetometers and rely
on magnetic shielding and clever electronics for noise cancellation. The two
commonly used gradiometer configurations are axial and planar gradiometers.
Axial gradiometers consist of two coils that share an axis, whereas planar gradi-
ometers measure gradients (or differences) of magnetic fields in a given plane. The
sensitivity profile of planar gradiometer sensors is somewhat similar to EEG,
whereby a sensor is maximally sensitive to a source closest to it on the cortical
surface In contrast however, the sensitivity profile of an axial gradiometer can be
somewhat counterintuitive because it is not maximally sensitive to sources closest
to the sensors. Both planar and axial gradiometers are sensitive to the orientation
of the sources in a counterintuitive manner, similar to EEG sensors.
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Modern MEG systems often consist of simultaneous recordings from many
differential sensors that cover the whole head, and the total number of sensors
varies from 100–300. The advent of such array systems has significantly advanced
MEG studies. Typical MEG systems have sensors that are spaced approximately
2.2–3.6 cm apart. Although the maximum sampling rate for many MEG systems is
approximately 12 kHz, most MEG data is usually recorded at about 1,000 Hz,
thereby still providing excellent temporal resolution for measuring the dynamics of
cortical neuronal activity at the millisecond level.

There are many reasons why neuroscientists have embraced MEG. First, MEG
setup time is very short and convenient for both experimenters and subjects. A
participant or patient can be in the scanner within 10–15 min from entering the
laboratory because—unlike EEG—the lengthy time necessary to apply and check
electrodes is obviated. Second, the anatomical location of large parts of primary
sensory cortices in sulci makes MEG ideally suited for electrophysiological studies
in audition. Furthermore, with whole-head sensor arrays, MEG is also well-suited
to investigate hemispheric lateralization effects based on sensor waveforms. In
contrast to evoked responses measured with EEG, which are maximal at midline
electrodes making hemispheric effects difficult to characterize, MEG responses are
well lateralized. Distinct groups of MEG sensors are sensitive to lateralized
temporal lobe activity that allows for hemisphere-specific assessments.

3 From Sensing to Imaging: The Prerequisites

MEG sensor data analysis only provides qualitative information about underlying
brain regions whose activity is observed on the sensor array based on experienced
users’ intuitions about the sensitivity profile of the sensors. To more precisely
interpret observed sensor data in terms of the underlying brain activity, it is
possible to reconstruct brain activity from MEG data. Reconstruction of brain
activity from MEG data typically involves two major components—a forward
model and an inverse model.

3.1 Forward Models Describing Brain Activity
and Measurements

The forward model consists of three sub-components—a source model, a volume
conductor, and a measurement model. Typical source models assume that the
MEG measurements outside the head are generated primarily by electric current
dipoles located in the brain. This model is consistent with available measurements
of coherent synaptic and intracellular currents in cortical columns that are thought
to be major contributors to MEG and EEG signals. Although several more
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complex source models have been proposed recently, the equivalent current dipole
is still the dominant source model in the literature (Jerbi et al. 2002; Mosher et al.
1999b; Nolte and Curio 2000; von Ellenrieder et al. 2005). Given the distance
between the sources in the brain and the sensors outside the head, the dipole is still
a reasonable approximation of the sources.

Volume conductor models refer to the equations that govern the relation
between the source model and the sensor measurements—i.e. the electric poten-
tials or the magnetic fields. These surface integral equations, obtained by solving
Maxwell’s equations under quasi-static conditions, can be solved analytically for
special geometries of the volume conductor, such as a sphere and ellipsoids. For
realistic volume conductors, various numerical techniques such as finite-element
and boundary-element methods are employed. These methods are very time
consuming and their use may appear impractical in many settings because of the
lack of knowledge about specific parameters used in these models (Mosher et al.
1999b).

Measurement models refer to the specific measurement systems used in EEG
and MEG including the position of the sensors relative to the head. For instance,
different MEG systems measure axial versus planar gradients of the magnetic
fields with respect to different locations of reference sensors. The measurement
model incorporates such information about the type of measurement and the
geometry of the reference sensors. Since MEG sensor arrays are fixed relative to
the head of a subject, it is necessary to measure the position of head relative to the
sensor array. Typically this is accomplished by attaching head-localization coils to
fiducial landmarks on the scalp, passing current through these coils, measuring the
magnetic field created by the currents passed, and triangulating to locate the head-
position relative to the sensor array. In many MEG systems, head localization is
accomplished every 5–10 min because it disrupts normal data collection. Within a
block of 10 min, with subjects in a supine position with their heads securely
positioned in the array, typically head-movements are found to be less than 5 mm.
However, more modern systems are sometimes equipped with continuous head-
localization procedures that enable constant updating of sensor locations relative to
the head and also correction for subjects’ head movements.

The source, volume conductor and measurement models are typically combined
and embodied in the idea called the ‘‘forward-field’’ that describes a linear rela-
tionship between sources and the measurements. Usually, we assume that the
forward-field matrix is known. We can easily calculate the forward field for
equivalent electric current dipoles in a spherical volume conductor model for a
whole-head axial gradiometer MEG system. In this model, MEG is sensitive only
to the tangential component of the primary current dipoles, whereas EEG is sen-
sitive to all components but sensitive to uncertainties in the head model. Simul-
taneous MEG and EEG can be acquired in most modern MEG systems and require
some modification to the forward-field matrix for combined MEG/EEG mea-
surements especially for more realistic source, volume conductor and measure-
ment models.
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Co-registration is an integral part of forward model construction. Co-registration
involves defining three fiducial points on an individual subject’s head surface, which
creates a coordinate system that includes the brain and the position of the MEG
sensors relative to it. Based on these fiducial landmarks, a transformation matrix is
obtained that enables co-registration with the subjects MRI. This allows for the
source locations and sensors to be defined in MRI coordinates and enables inter-
pretation of inverse model reconstructions in terms of the underlying brain anatomy
provided by MRI.

3.2 Identifying and Reducing Influences from Sources
of Noise in MEG

An enduring problem in MEG-based imaging is that the brain responses to sensory
or cognitive events is small when compared to the large number of sources of noise,
artifacts (biological and non-biological) and interference from spontaneous brain
activity unrelated to the sensory or cognitive task of interest. All existing methods
for brain source localization are hampered by these many sources of noise present in
MEG data. For example, the magnitude of the stimulus-evoked auditory cortical
sources are on the order of noise on a single trial, and so typically 75–200 averaged
trials are at least needed in order to clearly distinguish the sources above noise. This
limits the type of questions that can be asked, and is prohibitive for examining
processes such as learning that can occur over just one or several trials. Averaging
across trials is time-consuming and therefore difficult for a subject or patient to hold
still or pay attention through the duration of the experiment. Gaussian thermal noise
or Gaussian electrical noise is also present at the MEG or EEG sensors themselves.
Background room interference from power lines and electronic equipment, for
example, can be problematic. Biological noise such as heartbeat, eye blink or other
muscle artifact can also be present. Ongoing brain activity itself, including the
drowsy-state alpha (*10 Hz) rhythm can drown out evoked brain sources.

Noise in MEG and EEG data is typically reduced by a variety of preprocessing
algorithms before being used by source localization algorithms. Simple forms of
preprocessing include filtering out frequency bands not containing a brain signal of
interest. Additionally and more recently, Independent Component Analysis (ICA)
(Delorme and Makeig 2004; Makeig et al. 1997) as well as other blind source
separate methods (Parra et al. 2002, 2005; Tang et al. 2002a, b) have been used to
remove artifactual components, such as eye blinks. More sophisticated techniques
have also recently been developed using graphical models for preprocessing prior
to source localization (Nagarajan et al. 2006, 2007). Therefore, algorithms for
source localization from MEG and EEG data typically use a two-stage proce-
dure—the first for noise/interference removal and the second for source locali-
zation. However, more recent algorithms that integrate interference suppression
with source reconstructions have also been proposed and provide for robust source
reconstruction (Wipf et al. 2010; Zumer et al. 2007).
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4 Inverse Algorithms for Magnetoencephalographic
Imaging

Inverse algorithms are used to solve the bioelectromagnetic inverse problem i.e.
estimating neural source model parameters from MEG and EEG measurements
obtained outside the human head. In general, there are no unique solutions to the
inverse problem because there are many source configurations that could result in
the sensor observations, even in the absence of noise and infinite spatial or tem-
poral sampling. This non-uniqueness is referred to as the ill-posed nature of the
inverse problem. Nevertheless, to get around this non-uniqueness, various esti-
mation procedures incorporate prior knowledge and constraints about source
characteristics such as possible source locations, the source spatial extent, the total
number of sources or the source frequency/time-frequency characteristics.

Inverse algorithms can be broadly classified into two categories—parametric
dipole fitting and non-parametric whole-brain imaging methods. Parametric dipole
fitting methods assume that a small set of current dipoles (usually 2–5) can ade-
quately represent some unknown source distribution. In this case, the dipole
locations and moments form a set of unknown parameters which are typically
found using either a non-linear least square fit or multiple signal classification
algorithms (MUSIC) or maximum likelihood estimation methods (Mosher et al.
1999a). Parametric dipole fitting has been successfully used clinically for locali-
zation of early sensory responses in somatosensory and auditory cortices. Figure 1
shows an example of parametric dipole localization in the context of somatosen-
sory evoked responses, and shows that responses to early somatosensory peaks can
often be localized to activity arising from primary somatosensory cortex located in
the central sulcus.

Two major problems exist in dipole fitting procedures. First, due to non-linear
optimization there are problems of local minima when more than two dipole
parameters are estimated and this is usually manifested by sensitivity to initiali-
zation (Huang et al. 1998). Brute-force search methods have a huge computational
burden—exponential in the number of parameters (Mosher et al. 1992, 1993). A
second, more difficult problem in parametric methods is that often these methods
require a priori knowledge of the number of dipoles. Often, such information about
model order is not known a priori, especially for complex brain mapping condi-
tions, and the resulting localization of higher-order cortical functions can some-
times be unreliable. Although information theoretic or Bayesian estimation criteria
have been proposed to address this problem, the success of these approaches is less
clear as these are not widely used (Campi et al. 2011; Kiebel et al. 2008; Sor-
rentino et al. 2009; Wolters et al. 1999). Nevertheless, many basic neuroscience
and clinical studies to date have successfully used dipole-fitting procedures to gain
important insights (Aine et al. 2010; Salmelin et al. 1994; Susac et al. 2009).

Non-parametric whole brain imaging is an alternative approach to estimate the
inverse problem. The relevant localization problem can be posed as follows. The
measured signal is a db 9 n matrix B, where db equals the number of sensors and

Magnetoencephalographic Imaging 169



n is the number of time points at which measurements are made and the unknown
sources are given by a ds 9 n matrix S which is the (discretized) amplitude of the
source activity at ds candidate locations obtained from the forward model calcu-
lations. In this case, B and S are related by the generative model

B ¼ LSþ E

where L is the composite forward-field matrix that captures the relationship
between unit sources all over the brain and the expected pattern of magnetic field
measurement on the sensor array. The number of candidate source locations is
much larger than the number of sensors (ds [[ db). Therefore, the problem
reduces to estimation of the activity in each source regions, which are reflected by
the non-zero rows of the source estimate matrix Ŝ. E is a noise or interference term
discussed earlier.

Many whole-brain imaging algorithms impose constraints on source locations
i.e. the candidate locations for sources based on anatomical and functional
information obtained from other brain imaging modalities. Such constraints within
a Bayesian framework are embedded in a prior distribution p(S) either implicitly or
explicitly. If under a given experimental or clinical paradigm this p(S) were

Fig. 1 Example case of parametric dipole localization of separate somatosensory stimulation of
the right lip (RLip) and right index finger (RD2). Multiple stimulus trials are performed for each
skin stimulation site during MEG recordings. The trials are averaged and a single dipole is
reconstructed for each site using the non-linear fit method. The resulting dipoles are then
displayed on a co-registered, T1-weighted post-gadolinium coronal MR slice
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somehow known exactly, then the posterior distribution can be computed via
Bayes rule:

pðSjBÞ ¼ pðBjSÞpðSÞ=pðBÞ:

This distribution contains all possible information about the unknown S condi-
tioned on the observed data B. Two fundamental problems prevent using p(S|B) for
source localization. First, for most priors p(S), the normalization distribution
p(B) given by

pðBÞ ¼
Z

pðBjSÞpðSÞds

cannot be computed analytically. If only a point estimate for S is desired, rather
than a full distribution, then this normalizing distribution may not be needed. For
example, a popular estimator is the minimum-norm estimator which involves
finding the value of S by assuming that prior p(S) has a Gaussian distribution with
a single scalar variance term. This variance is related to the regularization constant
in many implementations of the minimum-norm estimator and can be obtained by
maximizing the posterior distribution (a.k.a. the MAP estimate) of p(S|B) which is
invariant to p(B). Second, and more importantly, we do not actually know the prior
p(S) and so some appropriate distribution must be assumed, perhaps based on
neurophysiological constraints or computational considerations. In fact, it is this
choice, whether implicitly or explicitly specified, that differentiates a wide variety
of localization methods (Phillips et al. 1997; Wipf and Nagarajan 2009).

While seemingly quite different in many respects, we recently presented a
generalized framework that encompasses different whole-brain imaging methods
for source localization and points to intimate connections between algorithms. We
showed that many seemingly disparate algorithms for source imaging can be uni-
fied using a hierarchical Bayesian modeling framework with a general form of prior
distribution, called Gaussian scale mixture, with flexible covariance components,
and two different types of inferential procedures. The wide variety of Bayesian
source localization methods that fall under this framework can be differentiated by
the following factors: (1) selection of covariance component regularization terms;
(2) choice of initial covariance component set; (3) optimization method/update
rules; and (4) approximation to the lower bound on the marginal likelihood of the
data. Bayesian source localization methods demonstrate a number of surprising
similarities or out-right equivalences between what might otherwise appear to be
very different algorithms. Specifically, from the vantage point of a simple Gaussian
scale mixture model with flexible covariance components, our initial work in this
area analyzed and extended several broad categories of Bayesian inference directly
applicable to source localization including empirical Bayesian approaches, stan-
dard MAP estimation, and variational Bayesian (VB) approximations. This per-
spective leads to explicit connections between many established algorithms and
suggests natural extensions for handling unknown dipole orientations, extended
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source configurations, correlated sources, temporal smoothness, and computational
expediency. Specific imaging methods elucidated under this paradigm include
weighted minimum L2-norm, FOCUSS, minimum-L1 norm (also called minimum-
current estimation (MCE)), VESTAL, sLORETA, ReML and covariance compo-
nent estimation, beamforming, Variational Bayes, and Automatic relevance
determination (ARD) with multiple sparse priors (MSP). Perhaps surprisingly, all
of these methods can be formulated as particular cases of covariance component
estimation using different concave regularization terms and optimization rules,
making general theoretical analyses and algorithmic extensions/improvements
particularly relevant.

These ideas help to bring an insightful perspective to Bayesian source imaging
methods, reduce confusion about how different techniques relate to one another,
and expand the range of feasible applications. Additionally, there are numerous
promising directions for future research, including time-frequency extensions,
alternative covariance component parameterizations, and integration with robust
interference suppression. These insights allow for continued development of novel
algorithms for whole-brain imaging in relation to prior efforts in this enterprise.
Figure 2 shows performance in simulations using one such novel algorithm, called
Champagne, as well as reconstructions from popular benchmark algorithms for
comparisons that highlight their poorer spatial resolution and sensitivity to cor-
related sources and noise (Owen et al. 2012; Wipf et al. 2010). When compared to
ground-truth it can be seen that Champagne is the algorithm that is able to
reconstruct the source configuration. Figure 3 shows source reconstructions of
auditory evoked responses using called Champagne, and benchmarks algorithms.
Auditory evoked responses are challenging datasets because of high degree of
correlations between bilateral auditory cortices. In these real datasets from three
different subjects, it can also be seen that Champagne is the only algorithm able to
reliably reconstruct bilateral auditory cortical activity.

Instead of simultaneous estimation of all sources a popular alternative is to scan
the brain and estimate source amplitude at each source location independently. It
can be shown that such scanning methods are closely related to whole-brain
imaging methods, and the most popular scanning algorithms are adaptive spatial
filtering techniques, more commonly referred to as ‘‘adaptive beamformers’’ or
just ‘‘beamformers’’ (Sekihara and Nagarajan 2008). Adaptive beamformers have
been shown to be quite simple to implement and are powerful techniques for
characterizing cortical oscillations and are closely related to other whole-brain
imaging methods. However, one major problem with adaptive beamformers is that
they are extremely sensitive to the presence of strongly correlated sources.
Although they are robust to moderate correlations, in the case of auditory studies,
since auditory cortices are largely synchronous in their activity across the two
hemisphere, these algorithms tend to perform poor for auditory evoked datasets
without workarounds), and many modifications have been proposed for reducing
the influence of correlated sources (Dalal et al. 2006). The simplest such work-
around is to use half the sensors corresponding to each hemisphere separately, and
this approach works surprisingly well for cross-hemispheric interactions. Other
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modifications to the original algorithms have been proposed in the literature that
require some knowledge about the location of the correlated source region (Dalal
et al. 2006; Quraan and Cheyne 2010). Recently, we have shown that significant
improvements in performance can be achieved by modern Bayesian inference
algorithms that are closely related to minimum-variance adaptative beamformers
and these extensions allow for accurate reconstructions of a large number of
sources from typical configurations of MEG sensors (Wipf et al. 2010; Zumer et al.
2007, 2008).

5 Temporal and Spatial Resolution of MEG Imaging

Since MEG data can be acquired at sub-millisecond time-scale, temporal resolu-
tion of MEG imaging is only limited by the sampling rate, typically *1 kHz, and
in principle, cortical oscillations can be observed up to 500 Hz. In contrast to its
temporal resolution, determining the spatial resolution of MEG imaging is chal-
lenging because it is highly dependent on the reconstruction algorithm chosen, as

Fig. 2 Localization
performance in simulations.
A single example of the
localization results for 10
clusters (each with 10
dipoles) at SNIR = 10 dB
with the vector lead field and
real brain-noise. The ground
truth (GT) location of the
clusters are shown for
comparison, first row. The
results with Champagne
(CHAMP) are shown in the
second row and the
comparison algorithms,
minimum-variance adaptive
beamformer (BF), sLORETA
or dSPM (SL/dSPM), and
generalized minimum-current
estimation (MCE) are shown
in the subsequent rows. We
project the source power to
the surface of a template
brain
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well as a variety of factors such as signal-to-noise and interference-ratio, model
formulation, forward-model accuracy, co-registration errors and accuracy of priors
(Owen et al. 2012; Wipf et al. 2010). In general, it can be easily shown that the
spatial resolution of MEG reconstruction is not limited by sensor spacing, because
many adaptive methods can perform better than estimates based on spatial sam-
pling criteria. For instance, while sensor spacing in many axial gradiometer sys-
tems is 2.2 cm, reconstruction accuracy can in some cases be as small as 3 mm! In
general, co-registration errors alone can be on the order of 3 mm (Roberts et al.
2000). While whole-brain imaging algorithms, such as minimum-norm methods,
have poor spatial resolution on the order of a few centimeters, the spatial reso-
lution of adaptive spatial filtering methods, and more recent whole-brain recon-
struction methods based on machine learning techniques, are difficult to generally
compute because these estimates depend on the data and factors contributing to
data quality etc. As a rule of thumb, for typical datasets, these newer methods can
reconstruct tens-to-hundreds of sources about 0.5 cm apart (assuming time-fre-
quency separation and detectability) and this can be considered an approximate
spatial resolution for MEG, keeping in mind that under certain circumstances the
spatial resolution can be even greater (Owen et al. 2012; Wipf et al. 2010).

A common myth, related to the spatial resolution of MEG, is its lack of sen-
sitivity to gyral crown activity and relative insensitivity to deep sources. While it is
a fact that for single spherical volume conductor models MEG sensors are
insensitive to radially pointing dipoles, this does not necessarily translate to gyral
sources. It has been shown that, using realistic volume conductor models (such as

Fig. 3 Auditory evoked field results for 3 subjects for four different benchmark algorithms.
Champagne is able to reliably reconstruct bilateral auditory cortex activity in all subjects.
SLORETA is only able to do so in two of the three subjects. MVAB fails because of the high-
degree of correlations between the two sources. MCE is another sparse reconstruct algorithm that
only finds auditory cortex in one hemisphere in each subject
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boundary element methods or multiple local-sphere models), some sensitivity to
radial sources can be recovered, and that there is no predominant loss of sensitivity
to gyral sources (Hillebrand and Barnes 2002). Furthermore, while there is a
significant drop in sensitivity to deeper sources because their contributions will fall
by approximately the square of the distance to the sensors, recovery of deep
sources is an issue of the signal to noise ratio. In general, if high signal-to-noise
ratio data are recorded, there is no inherent problem in recovery of deep sources
with some of the newer Bayesian reconstruction methods. However, mid-brain
sources have two additional problems. First, they may not have dipolar organi-
zation due to the architectures and second, the uncertainties in the lead-field
increases for deep brain sources, thereby making them more difficult to
reconstruct.

6 From Single Subject Reconstructions to Group Level
Inference

While the power of MEG imaging is its ability to reconstruct the timing of activation
across different frequency bands in single subjects, inferences across subjects
require group level statistical analyses (Dalal et al. 2008). The most ubiquitous form
of group analysis of MEG studies of auditory cortex are based on parameters,
obtained from dipole fitting of typical component peaks in the response, such as
timing, amplitude, location and sometimes orientation. For the less common whole-
brain imaging and scanning based algorithms, group analysis of data across subjects
have typically paralleled similar procedures for whole-brain analysis based on fMRI
and PET studies (Singh et al. 2003, 2002). These procedures include spatial nor-
malization to template brains, general-linear modeling of experimental effects,
parametric and non-parametric inference procedures, and corrections for multiple
comparisons. It is to be noted that group level statistical corrections for multiple
comparisons are not yet as well developed for MEG imaging studies as they are for
fMRI, and fMRI correction procedures such as family wise error FWE can some-
times be too conservative for MEG reconstructions for a variety of reasons,
including the fact that spatial correlations in reconstructed images are higher than in
fMRI (Dalal et al. 2008; Darvas et al. 2004; Owen et al. 2012).

7 From Source Activity Imaging to Functional
Connectivity Imaging

It is now well recognized in systems and cognitive neuroscience that it is necessary
to examine not only activity within an area during an active or inactive state, but
also how the brain integrates information across multiple regions. The term
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functional connectivity essentially defines the complex functional interaction
between local and more remote brain areas. Although a common approach is to
examine functional connectivity by using hemodynamic measures of brain activity
(such as fMRI), MEG directly measures changes in the magnetic field induced by
underlying neuronal currents, and is better suited for modeling these types of
interactions. Decomposition of information across, space, time, and oscillatory
domains yields complex information about how sources in the brain interact across
many levels.

Despite the advantage of MEG (and EEG) in the temporal domain over fMRI,
there have been relatively few publications that assess event-related or resting-
state functional connectivity using MEG or EEG as compared to fMRI. There are
two genres of metrics used in MEG functional connectivity: bivariate quantities
are calculated in a pair-wise fashion between pairs of voxels and multivariate
techniques model the interactions between several regions of interest. Likewise,
functional connectivity metrics in MEG data analyses can be applied either in
sensor-space or in source-space. Although many metrics have been proposed for
functional connectivity in MEG, no careful comparisons have been made for the
same dataset across bivariate and multivariate metrics.

7.1 Bivariate Metrics of Functional Connectivity in MEGI

Bivariate metrics can be applied to MEG/EEG data in two ways. Since these metrics
are computed between two time courses, they can either be computed between target
sensors/voxels or they can be computed between all sensors/voxels and then an
average connectivity value can be calculated for every sensor/voxel. The first of
these methods is used when there is knowledge about the areas involved and can be
considered a ‘‘hypothesis-driven’’ approach. The second, in contrast, can be
described as a ‘‘data-driven’’ approach and is applicable when there is not a priori
knowledge about which areas should exhibit high or changed connectivity. Corre-
lation and its frequency domain analog, coherence, are the two most commonly used
bivariate metrics in the literature (Nunez et al. 1997). An extension of using
coherence on sensor time courses, a source localization algorithm called DICS, is
particularly designed to construct coherent activity by estimating time course and
calculating magnitude coherence (Gross et al. 2001). There are also phase differ-
ence-based bivariate metrics that can be applied in similar fashion to the metrics
described above. The difference in instantaneous phase between two time courses
can be calculated using the Hilbert transform. There are different subsequent cal-
culations that can be performed with the phase difference, e.g. phase coherence (PC),
phase synchronization, index of synchronization.

All types of bivariate metrics are susceptible to spurious interactions that arise
from volume conduction artifacts in MEG and EEG recordings. The magnetic field
or electric potential generated by a single neuronal source is picked up by not only
the nearest sensor to the source, but the neighboring sensors also pick up the signal
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with a zero-time lag. This creates instantaneous blurring across the sensors. As
such, the time courses of many sensors can contain overlapping information due to
this electromagnetic phenomenon, which can produce spurious interactions. Some
bivariate metrics used for MEG and EEG functional connectivity analyses have
been designed to overcome this blurring by isolating the non-zero-time-lag
interactions from the zero-time-lag interactions, namely imaginary coherence (IC)
and phase lag index (PLI). Both metrics are designed to assess only non-zero time
lagged interactions in source or sensor data in order to cancel out the effects of
cross-talk across the detection sensors.

Imaginary coherence is calculated by only considering the imaginary compo-
nent of the complex-valued coherence. The imaginary part of the coherence is
produced by non-instantaneous interactions between waveforms. It was found to
be a better measure of coupling than the magnitude of coherence in an EEG
experiment of voluntary finger movement (Nolte et al. 2004). PLI is similar to IC
in that it includes only information that is transmitted at a non-zero time lag; any
two signals that are instantaneously coupled and therefore have a phase difference
of zero, are not included in the calculation of PLI. PLI and PC of EEG and MEG
data were more sensitive than IC to increasing levels of true synchronization in the
simulated data, but IC and PLI were less susceptible to spurious correlations in the
data due to common sources (Stam et al. 2007). In addition, PLI and IC were better
able to detect beta band connectivity and uncovered a different spatial pattern of
connectivity in the MEG data. IC has also revealed significant changes in the over
all resting-state connectivity induced by brain lesions (de Pasquale et al. 2010,
2012; Guggisberg et al. 2007; Martino et al. 2011; Marzetti et al. 2013; Tarapore
et al. 2012; Hipp et al. 2011, 2012) (Fig. 4).

7.2 Multivariate Connectivity Metrics in MEG

In contrast to bivariate metrics, which compute relationships between elements in
a pair-wise fashion, multivariate metrics are able to model interactions between
multiple areas in a single model (Astolfi et al. 2005). While powerful, computa-
tional complexity is an issue when performing a multivariate analysis. While all
areas can be modeled simultaneously, the limitation of these methods lies in
maintaining the necessary condition that the number of parameters fit in the model
does not exceed the number of time points. This is done by considering fewer areas
or voxels or by limiting the number of lags the model will analyze. Multivariate
autoregressive models (MVAR) can be applied in the time domain, or in the
frequency domain, as is the case with partial directed coherence and direct transfer
function methods. Although some of these methods have been demonstrated to be
powerful in determining neural networks associated with basic sensory processing
(Porcaro et al. 2009). Future studies will determine how these metrics can be
extended to examinations of impairments in cognitive function in a variety of
clinical populations.
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Nevertheless, already in these early days of functional connectivity analyses, it
has been shown to have profound clinical significance as disturbances in networks
as manifested as abnormalities in functional connecting even during resting state.
Recent studies have shown this to be the case in many clinical conditions such as
brain tumor, schizophrenia, stroke, and developmental disorders (Bartolomei et al.
2006a, b; Bosma et al. 2008a, b). For example, neurocognitive effects are corre-
lated with functional connectivity changes in brain tumor patients, especially in
patients with low-grade gliomas (Douw et al. 2008, 2009, 2010; van Dellen et al.
2012). Similarly, combining activation mapping and resting-state functional con-
nectivity can help predict functional recovery in stroke. Therefore, mapping
functional connectivity and combining this information with brain activation
studies may be an important component in surgical planning and clinical diagnosis
in a variety of disorders (Martino et al. 2011; Tarapore et al. 2012).

8 Conclusions

Great strides have occurred in the development of novel and powerful algorithms
for MEG imaging. These algorithmic approaches not only enable more accurate
reconstruction of brain activity, their time courses and spectral power fluctuations,
but also enable us to examine functional connectivity between different brain
regions from MEG data. These efforts pave the way novel and powerful appli-
cations for MEG imaging in many basic and clinical neuroscience studies of neural
oscillations in the human brain.

Fig. 4 Activation and Functional Connectivity in Stroke. a Activation of motor cortex and its
associated time-frequency plot of the voxel of maximal power change in the beta frequency band
during affected finger button press. b Results of the correlation analysis between baseline resting
MEGI functional connectivity and recovery scores. Gold indicates the location of the lesion and
activated motor cortex. Blue indicates negative correlations. Red indicates positive correlations.
Strong ipsilesional connectivity predicts recovery (Westlake et al. 2012)
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MEG and Multimodal Integration

Seppo P. Ahlfors

Abstract Functional brain imaging methods provide measures of various physi-
ological processes with a range of spatial and temporal scales. Because the sen-
sitivity properties of the imaging modalities differ, combining multimodal data is
expected to provide more information about the brain activity than is available by
a single method. In direct data fusion, multimodal data can be described as
complementary or supportive. Complementary modalities have the same type of
sources, such as electroencephalography (EEG) and magnetoencephalography
(MEG), which are both generated by cortical primary currents, but with different
sensitivity characteristics. Combination of EEG and MEG data can resolve
ambiguities in data from only one of the modalities. In a supportive role data from
one imaging modality guides the analysis and interpretation of another modality.
Structural magnetic resonance imaging (MRI) provides supportive data for MEG
source estimation, e.g., by indicating allowable locations and orientations of MEG
source currents. Functional MRI (fMRI) can be used in a supportive role to suggest
a likely source distribution for MEG among multiple alternatives. MEG and fMRI
can also be considered complementary if the different source types, i.e., primary
currents for MEG and blood oxygenation level dependent (BOLD) contrast for
fMRI, are both derived from a common physiological model.
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1 Introduction

Different functional neuroimaging methods, often called imaging modalities,
provide information about a variety of physiological processes related to brain
activity, and have a range of spatial and temporal sensitivity characteristics (He
and Liu 2008). Magnetoencephalography (MEG) and electroencephalography
(EEG) detect electrical activity in the brain with millisecond temporal spatial
resolution, but the inverse problem of determining the spatial distribution of the
activity is challenging, and the accuracy depends among other things on the overall
pattern of activity (Michel et al. 2009; Hansen et al. 2010). Functional magnetic
resonance imaging (fMRI), positron emission tomography (PET), single-photon
emission computed tomography (SPECT), and optical near infrared spectroscopy
(NIRS) detect hemodynamic phenomena; the time-resolution of these methods is
limited by the relatively slow hemodynamic response. However, fMRI can provide
millimeter-scale spatial resolution across the whole brain, without the kind of
ambiguities inherent in the MEG and EEG source localization. The different
sensitivity properties of the imaging modalities suggest that multimodal imaging
can provide more information about brain function than is attainable by any single
method alone.

In MEG, superconducting quantum interference device (SQUID) sensors are
used to measure extracranial magnetic fields generated by neuroelectric currents in
the brain (Cohen 1972). The main sources of the MEG signals are post-synaptic
dendritic currents in cortical pyramidal cells (Lopes da Silva 2010). From the
measured spatial pattern for the magnetic field outside the head, the spatiotemporal
pattern of sources within the brain can be estimated (Ahlfors and Hämäläinen
2012). Both MEG and EEG originate from the same type of physiological sources,
described as primary currents (Tripp 1983). The spatial sensitivity patterns to the
primary currents are different for MEG and EEG, allowing them to provide
complementary information about the same type of sources. In contrast, the
physiological sources of fMRI (commonly the blood oxygenation level depend or
BOLD contrast) and other hemodynamic signals are of a different type from those
of MEG and EEG, thereby presenting various opportunities and challenges for
multimodal imaging.

According to Horwitz and Poeppel (2002), three main approaches to combining
data from multiple neuroimaging modalities are: converging evidence, direct data
fusion, and computational neural modeling. Comparison of separately obtained
results from different modalities to establish converging spatial or temporal patterns
of brain activation is useful for the assessment of the obtained results, e.g., in clinical
pre-surgical mapping studies. Many studies have examined the convergence of
MEG and fMRI results, including (Beisteiner et al. 1995; Morioka et al. 1995;
Sanders et al. 1996; Stippich et al. 1998; Inoue et al. 1999; Woldorff et al. 1999; Del
Gratta et al. 2002; Mathiak et al. 2002; Singh et al. 2002; Moradi et al. 2003;
Tuunanen et al. 2003; Rossini et al. 2004; Vartiainen et al. 2011; Swettenham et al.
2013); see also the reviews (Mathiak and Fallgatter 2005; Poline et al. 2010).
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In direct fusion, data from different modalities are combined mathematically to
estimate the sources of the measured signals (George et al. 1995; Dale and Halgren
2001). In computational neural modeling, different functional imaging modalities
can be modeled within a common framework and the experimental multimodal data
can be used to determine parameters of the computation model of the brain networks
underlying cognitive tasks (Horwitz et al. 1999; David and Friston 2003; Riera et al.
2005; Babajani and Soltanian-Zadeh 2006; Valdes-Sosa et al. 2009; Plis et al. 2010;
Bojak et al. 2011). Here we focus on the combination of MEG with EEG, anatomical
MRI, and fMRI, mainly from the point of view of direct data fusion.

We suggest that in the direct data fusion approach, imaging modalities can be
conceptually described as ‘‘complementary’’ or ‘‘supportive’’, depending on the
nature of the signal sources and the role of the modalities in the interpretation of the
multimodal data (Fig. 1). Complementary modalities provide information about the
same type of sources. EEG and MEG are complementary modalities, which both
detect the primary current distribution related to neural activity. A common source
model greatly facilitates the fusion of complementary multimodal data. In a sup-
portive role, data from one modality is used to guide and influence the analysis of
the data from another modality. In the analysis of MEG (and/or EEG) signals,
anatomical MRI provides important supportive data to constrain the allowable
MEG source space. Functional MRI data can be combined with MEG in both
supportive and complementary way. In a supportive role fMRI activation can be
used, e.g., to constrain the locations of the MEG sources. However, special

Fig. 1 Schematic diagram of stages involved in the construction of functional brain images.
Biophysical modeling can be used to relate the physical and physiological neural processes
associated with brain activation to the underlying sources of the brain imaging signals. Forward
modeling describes the signal patterns generated by a given source distribution. Inverse modeling
involves the estimation of the source distribution on the basis of the recorded signals. MEG and
EEG record ‘‘complementary’’ (yellow circle) information about the same sources, i.e., primary
currents. Functional MRI can be used in a ‘‘supportive’’ role (blue) in MEG source analysis.
MEG/EEG and fMRI can also be considered complementary (green) since the sources of both
signals originate from common neural processes
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considerations are necessary when the sources of signals are of different type. Since
both fMRI and MEG signals ultimately have their origin in brain activity, linked via
neurovascular coupling, they can also be treated as complementary modalities.

2 MEG and EEG

Since the physiological sources underlying both MEG and EEG are of the same
type, the benefits of combining MEG and EEG are based on the different sensi-
tivity properties of these modalities. The spatial sensitivity patterns of MEG and
EEG sensors are called lead fields. The set of lead fields is one way to express the
forward model, which incorporates the available physical and structural infor-
mation about the head and the instrumentation to establish the signal patterns that
primary currents generate in a sensor array. The structure of the lead fields forms
the basis on which source estimates (inverse solution) are constructed. The lead
fields of MEG and EEG sensors differ in a non-trivial way from each other,
thereby providing complementary information about the underlying primary cur-
rent distribution in the brain (Cuffin and Cohen 1979; Cohen and Cuffin 1983;
Malmivuo and Plonsey 1995; Mosher et al. 1999; Riera et al. 2006). The com-
plementary properties of MEG and EEG can enhance the detection, dissociation,
and localization of the neural sources of interest (Wood et al. 1985).

Two major differences between MEG and EEG lead fields are related to the
orientation and the depth of the sources (Cuffin and Cohen 1979). Regarding the
source orientation, MEG sensors are insensitive to radial source currents, whereas
EEG sensors are sensitive to both radial and tangential sources. In the spherical
head model, the sensitivity of MEG to radially oriented sources is zero (Baule and
McFee 1965; Grynszpan and Geselowitz 1973). The insensitivity of MEG to one
source orientation occurs also for realistic, non-spherical head models (Melcher
and Cohen 1988; Haueisen et al. 1995; Ahlfors et al. 2010a). In a simulation study
using a boundary element model for the head, the median value over cortical
locations for the relative signal magnitude for the source orientation with the
lowest versus the highest sensitivity was found to be 0.06 for MEG and 0.6 for
EEG (Ahlfors et al. 2010a). The selective sensitivity of MEG to tangential source
components can be helpful for the dissociation of multiple time-varying sources.

Regarding the source depth, both MEG and EEG are generally more sensitive to
superficially located sources than to deep sources. However, the relative sensitivity
of MEG diminishes faster as a function of depth than that of EEG (Cuffin and Cohen
1979; Hillebrand and Barnes 2002). In the spherical head model, the sensitivity of
MEG is zero at the center of the sphere, whereas EEG signal can be generated by
sources at any location. Assuming the primary currents are oriented perpendicular
to the cortical surface, only very narrow strips at the crest of gyri are expected to
have the radial orientation that the MEG cannot detect; therefore, the depth-
dependency appears more important in the comparison of sensitivity patterns of
MEG and EEG than the orientation dependence (Hillebrand and Barnes 2002).
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Selective cancellation of signals from tangential source components on opposite
walls of a sulcus or a gyrus tends to make extended source patches look radial
(Eulitz et al. 1997; Freeman et al. 2009; Ahlfors et al. 2010b), with potentially
important implications to the relative signal-to-noise ratio (SNR) of MEG and EEG
and the detectability of e.g., epileptic activity (Goldenholz et al. 2009; Ebersole and
Ebersole 2010).

Several studies have demonstrated complementary properties of EEG and MEG
in detecting epileptic discharges, such that some are detectable in EEG only or in
MEG only, but not necessarily in both (Sutherling et al. 1991; Yoshinaga et al.
2002; Zijlmans et al. 2002; Lin et al. 2003; Rodin et al. 2004; Knake et al. 2006;
Ramantani et al. 2006; Ossenblok et al. 2007). Differences in source detectability
can be understood in terms of the expected SNR for different sources, which
depends on the sensor lead fields, signal noise, the source magnitude, and the
background brain activity (de Jongh et al. 2005; Goldenholz et al. 2009; Huiskamp
et al. 2010). Prominent differences between MEG and EEG have also been
demonstrated, for example, in sleep data (Dehghani et al. 2010).

Combining MEG and EEG data can sometimes be useful for resolving source
configurations that are ambiguous on the basis of the signal topography in a single
modality. Figure 2 shows simulated MEG data from a bilateral pair of occipital
current dipoles. In this case, the quadrupolar MEG topography (Fig. 2a) is consis-
tent in the presence of uncertainty due to measurement noise with two very different
two-dipole models, either laterally located horizontal dipoles or medially located
vertical dipoles (Fig. 2b). The EEG topography, however, would be very different

Fig. 2 An example of complementary properties of MEG and EEG signals that can, in
combination, help disambiguate the source distribution. The quadrupolar pattern of the
extracranial magnetic fields (MEG) (a) could be generated either by two near-midline dipoles
in the parietal and occipital regions (b, top) or by two bilaterally located occipital dipoles (b,
bottom). However, the corresponding topography of scalp potentials (EEG) would be quite
different for these two configurations; here the EEG pattern for the two occipital bilateral dipoles
is illustrated (c). Thus, the combination of MEG and EEG can resolve source configurations that
can be ambiguous in one of the modalities. Analogous examples can be easily constructed in
which MEG resolves source patterns that are ambiguous on the basis of EEG topography only.
Adapted from (Ahlfors et al. 2010b)
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for these two scenarios: the EEG map shown in Fig. 2c suggests horizontally ori-
ented dipoles. Bilateral activation of auditory cortices is a well-know example of
topographies that can be potentially ambiguous in terms of source areas: two tan-
gential supra-temporal lobe dipoles typically generate a large mid-frontal maximum
in EEG that could be mis-interpreted as being due to a radial frontal source
(Vaughan 1982), whereas in MEG the two auditory cortex sources are typically
readily dissociable (Mäkelä et al. 1993); however, these sources may also generate a
dipolar looking MEG signal pattern over the parietal lobe (Hämäläinen et al. 1995).

Combined MEG and EEG inverse modeling is facilitated by the common
source model. Indeed, incorporating signals from both EEG and MEG sensors is
not different, in principle, from incorporating different types of MEG sensors, such
as gradiometers and magnetometers. An important practical issue is how to adjust
the relative weighting of the different sensors in the source estimation procedures
to take into account the expected SNR for each sensor (Fuchs et al. 1998; Baillet
et al. 1999). Determining the SNR is challenging, however, because of the various
types of uncertainties that should be incorporated, such as those related to co-
registration, head model, sensor calibration, and background physiological noise.
Enhanced source estimation results obtained by combining EEG and MEG data
have been demonstrated in several studies of experimental and simulated data
(Stok et al. 1990; Mosher et al. 1993; Phillips et al. 1997; Fuchs et al. 1998;
Muravchik et al. 2000; Pflieger et al. 2000; Babiloni et al. 2001; Liu et al. 2002;
Sharon et al. 2007; Molins et al. 2008).

3 MEG and Structural MRI

MEG source estimates are commonly visualized by superimposing them on high-
resolution structural MRI, thereby relating the MEG results to brain anatomy.
Structural MRI also provides essential supportive information for the inverse
modeling of MEG signals. Anatomical information from MRI can be used to
determine the permissible MEG source locations (often called the source space) to be
within the cranial volume or the cortical gray matter (George et al. 1991; Dale and
Sereno 1993). In addition, the source orientation can be constrained to be strictly or
nearly perpendicular to the cortical surface (Dale and Sereno 1993; Lin et al. 2006;
Chang et al. 2013). Typically, anatomical constraints are imposed on the individual
subject level, but atlas-based approaches are possible as well (Hillebrand et al. 2012).

4 MEG and Functional MRI

Functional MRI and other hemodynamic imaging data can be used in a supportive
role in MEG (and EEG) data analysis to suggest a likely spatial distribution for the
sources of MEG signals (George et al. 1995; Simpson et al. 1995; Dale and
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Halgren 2001). One possibility is to place equivalent dipoles at the locations of
foci of fMRI activation (Heinze et al. 1994; Ahlfors et al. 1999; Korvenoja et al.
1999; Torquati et al. 2005). A powerful application of fMRI-guided MEG source
estimation is to use information from fMRI-based mapping of the retinotopic
representation of the visual field to constrain the locations of equivalent dipoles in
multiple visual areas (Hagler et al. 2009). For distributed MEG source models,
such as the minimum-norm estimate (MNE) (Hämäläinen and Ilmoniemi 1994),
fMRI can be used as an a priori weighting for the inverse solution (Liu et al. 1998;
Dale et al. 2000). This is implemented by adjusting the diagonal elements of the
source covariance matrix (Liu et al. 1998).

Because of the different physiological nature of the origin of fMRI and MEG
signals, it is important to minimize potential adverse effects from a mismatch
between the locations of activity seen in fMRI and the actual source locations of
the MEG signals (Dale and Halgren 2001). ‘‘False positive’’ fMRI locations refer
to cases in which activation in fMRI does not correspond to an MEG source,
whereas ‘‘false negative’’ fMRI refers to the lack of fMRI activity at the location of
a true MEG source (Liu et al. 1998; Ahlfors and Simpson 2004; Im et al. 2005; Im
and Lee 2006; Liu et al. 2006). In general, both of these types of mismatches can
be due to the differing physiological properties of the signal generation in the two
modalities. There is encouraging experimental evidence of the BOLD contrast
typically observed in fMRI being closely correlated with post-synaptic currents
(Logothetis et al. 2001). However, it is likely that details of the local neural
circuitry and the neural and vascular morphology can result in differences in the
properties of the signals in the different imaging modalities. Mismatches may also
be caused by differences in the experimental design in fMRI and MEG data
acquisition and analysis. Event-related fMRI paradigms make it possible to use
similar cognitive task designs that are commonly used in MEG (Rosen et al. 1998).
However, it is important to critically evaluate the similarity of the baseline con-
ditions and design contrasts used in each modality. In addition, false negative
fMRI locations can result from susceptibility artifacts or partial-only coverage of
the head in the fMRI data. False positive fMRI can occur when MEG is insensitive
to some activity, e.g., when the corresponding primary currents are radially ori-
ented or located deep in the brain. Furthermore, false positive fMRI is bound to
happen in the analysis of individual time points of the MEG data: because of the
slow time course of the hemodynamic response, a single fMRI map usually shows
areas whose activity in the millisecond time scale may only partially overlap in
time, and therefore only a subset of the activated areas in fMRI is expected to
contribute to the MEG signal at any given time instant.

Ideally, an approach for incorporating a priori constraints from a supportive
modality would give improved source estimates when the a priori information is
compatible with the actual source distribution, while also being insensitive to
incompatible priors (Liu et al. 1998; Vauhkonen et al. 1998; Ahlfors and Simpson
2004). False positive fMRI constraints in MEG source modeling are typically well-
behaving, i.e., the contribution to the MEG inverse estimates is usually small for
the false positive fMRI locations, especially if the true and false locations are far
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apart from each other (Liu et al. 1998; Fujimaki et al. 2002). False negative fMRI
constraints are expected to be more problematic than false positive ones (Liu et al.
1998; Ahlfors and Simpson 2004; Im et al. 2005), although simple false negative
fMRI may actually have only little effect (Babiloni et al. 2003). In particular, if the
assumed MEG sources are strictly restricted at the locations of fMRI activation
only, MEG signals originating from other locations may be erroneously assigned
to the assumed source locations (Liu et al. 1998; Ahlfors and Simpson 2004).
Therefore, it is important that the source estimation algorithm allows the MEG
sources to be also at non-fMRI locations.

The possibility of a mismatch in the spatial distribution of activation detected
by MEG and fMRI raises a dilemma concerning the use of fMRI in a supportive
role to guide the MEG source estimation. On the one hand, if we cannot be certain
that the underlying patterns of activity are the same, the fMRI may provide an
erroneous bias to the MEG source estimate. On the other hand, if the source
analysis of MEG without the fMRI constraint indicates that the source locations of
a particular set of MEG data indeed are identical to those seen in the corresponding
fMRI, then there would be no need for the fMRI constraint. In other words,
converging evidence of source locations from the comparison of MEG and fMRI
data is useful in confirming MEG source localization results, but once this has
been established, fMRI does not provide additional information for the supportive
data fusion. The suggested resolution to this dilemma is that fMRI data should be
used to indicate likely solutions among the set of all possible solutions allowed by
the non-uniqueness of the inverse problem. The Bayesian approach provides a
general formalism for these types of problems (Baillet and Garnero 1997; Friston
et al. 2002; Jun et al. 2008; Auranen et al. 2009; Wipf and Nagarajan 2009;
Henson et al. 2010). The principle can also be expressed geometrically in the
source space (Ahlfors and Simpson 2004), leading to the same weighted MNE
solution in which fMRI information is incorporated in the diagonal elements of the
a priori source covariance matrix (Liu et al. 1998).

Figure 3 illustrates an example of visual motion related activity in which fMRI
data suggested a likely solution among two possible ones for an ambiguous MEG
topography (Ahlfors et al. 1999). The averaged visual evoked MEG signal showed a
spatial pattern with four extremes (Fig. 3a). This topography suggests at least two
sources, one occipitotemporal and one frontal (Fig. 3b, top). However, the dipolar
pattern formed by the pair of extremes in the middle raises the question whether a
third source, located in between the other two contributed to these MEG data
(Fig. 3b, bottom). The fMRI data obtained using a similar stimulus paradigm indeed
showed activity in the posterior part of the superior temporal sulcus, in accordance
with the location of the putative third source (Fig. 3c). Thus, the fMRI suggests that
a three-source model may be more likely here for the MEG than the two-source
model. However, it is important to acknowledge that both solutions are consistent
with the observed experimental MEG data. Note the difference between the case of
combining EEG and MEG in Fig. 2, where the complementary data about the same
type of sources was able to disambiguate between the two possible models for the
MEG-only data because the EEG data was inconsistent with one of the models.
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Examples of specific situations in which combining fMRI and MEG could
provide helpful qualitative information about the neural activation patterns are
illustrated in Fig. 4. The source currents of MEG and EEG are vector quantities,
whose orientation and direction, in addition to the magnitude, can provide useful
information that is not obtainable by fMRI. MEG is well suited to detect accurately
the physical orientation of the tangential component of a source, because the whole
topographic map of the extracranial signal will rotate if the source rotates tan-
gentially. A change in the source orientation indicates that the neural sources
contributing to the measured signals are not constant over time. This property may
be useful for the detection of the presence of more than one neural population,
even if the fMRI shows only a single extended focus of activity (Fig. 4a).

Since the primary currents generating the MEG signals are expected to be
oriented locally perpendicular to the cortical surface, the physiological direction of
the source can be described as inward (towards the white matter) or outward
(Lopes da Silva 2010). However, the physical orientation, as detected by MEG and
EEG, can be highly variable for a source within the convoluted cerebral cortex. In
determining the physiological direction of the source current, fMRI can be par-
ticularly helpful in suggesting from which side of a sulcus or a gyrus the source is
located. Figure 4b depicts a case in which uncertainty in the MEG source local-
ization allows both walls of a sulcus as possible sites of the source. MEG can
reliably determine the physical direction of the source, but the physiological

Fig. 3 An example of how fMRI data can suggest a likely MEG inverse solution among possible
solutions. Averaged visual evoked MEG response at the latency of 170 ms after the reversal of
the direction of the motion of concentric circles showed an ambiguous topography with four local
extremes (a). This topography suggest two underlying dipole sources (black arrows), one at the
visual motion sensitive middle temporal area and one near the frontal eye field (b, top). However,
the measured topography would also be consistent with a third source in between the other two,
contributing to the dipolar pattern of the two extremes in the middle of the topography (b,
bottom). FMRI data recorded on the same subject indicated activation in posterior superior
temporal sulcus (red circle) that matches the hypothesized third source location for the MEG (c).
Thus, the fMRI suggested that the three-dipole model may be more likely that the two-dipole
model; however, both models are possible solutions for the observed MEG topography. Adapted
from (Ahlfors et al. 1999)
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direction (outward vs. inward) depends on which side of the sulcus the source is
located. Thus, using fMRI information to identify the likely location of the source
will also help to determine the physiological direction of the source.

MEG and fMRI can also be considered complementary modalities, if the
sources of both types of signals are taken to be related to a common pattern of
neural activation. In this case, computational neural modeling is essential to relate
the pattern of activity within brain networks capable of performing the cognitive
task under study, as well as of generating the multimodal neuroimaging signals
(Horwitz et al. 1999; David and Friston 2003; Riera et al. 2005; Babajani and
Soltanian-Zadeh 2006; Daunizeau et al. 2007; Valdes-Sosa et al. 2009; Plis et al.
2010; Bojak et al. 2011).

5 Summary and Future Prospects

Multimodal data can provide information about brain activation patterns that is not
attainable by a single method alone. In the analysis of MEG data, the role of other
imaging modalities in the direct data fusion approach can be described as com-
plementary or supportive, depending on whether the sources of the signals in the
different modalities can be considered to be of the same type or not. This
framework can encompass also other existing and emerging imaging modalities.
Simultaneous acquisition of multimodal data has obvious advantages over
sequential recordings, e.g., by ensuring that the state of the brain was the same for
each modality, and enabling multimodal recording of events that are difficult to

Fig. 4 Schematic illustration of helpful information that can be obtained by combining MEG
and fMRI data. a A change in the MEG source orientation over time (from ‘‘A’’ to ‘‘B’’) reveals
the presence of more than one neural population contributing to the activity, even when the
spatial resolution of MEG as such may not be high enough to dissociate the locations of the
source components, and the fMRI may show a single extended region of activation (gray region).
b Uncertainty in the exact location of the source of the MEG signals can result in erroneous
physiological interpretation of the source current direction if the source is mis-localized into the
opposite wall of a sulcus. Using fMRI to identify the location of activity within the sulcus can
help to determine the physiological direction of the MEG source. Here, the physical direction of
both ‘‘A’’ and ‘‘C’’ is the same; however, the physiological direction is inward for ‘‘A’’ but
outward for ‘‘C’’ with respect to the cortical surface
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repeat in a controlled way, such as epileptic activity. MEG and scalp EEG are
commonly recorded simultaneously. Because EEG is better suited than MEG for
simultaneous data acquisition with hemodynamic imaging modalities, the simi-
larity of the state of the brain during sequential recordings of MEG and other
modalities can be evaluated by examining the concomitantly recorded EEG data.
Promising prospects for multimodal integration in the future are expected from
further developments in computational neural modeling of the brain processes that
underlie the signals of all the imaging modalities.

References

Ahlfors SP, Hämäläinen MS (2012) MEG and EEG: source estimation. In: Brette R, Destexhe A
(eds) Handbook of neural activity measurement. Cambridge University Press, Cambridge,
pp 257–286

Ahlfors SP, Han J, Belliveau JW, Hämäläinen MS (2010a) Sensitivity of MEG and EEG to
source orientation. Brain Topogr 23:227–232

Ahlfors SP, Han J, Lin FH, Witzel T, Belliveau JW, Hämäläinen MS, Halgren E (2010b)
Cancellation of EEG and MEG signals generated by extended and distributed sources. Hum
Brain Mapp 31:140–149

Ahlfors SP, Simpson GV (2004) Geometrical interpretation of fMRI-guided MEG/EEG inverse
estimates. NeuroImage 22:323–332

Ahlfors SP, Simpson GV, Dale AM, Belliveau JW, Liu AK, Korvenoja A, Virtanen J,
Huotilainen M, Tootell RB, Aronen HJ, Ilmoniemi RJ (1999) Spatiotemporal activity of a
cortical network for processing visual motion revealed by MEG and fMRI. J Neurophysiol
82:2545–2555

Auranen T, Nummenmaa A, Vanni S, Vehtari A, Hämäläinen MS, Lampinen J, Jääskeläinen IP
(2009) Automatic fMRI-guided MEG multidipole localization for visual responses. Hum
Brain Mapp 30:1087–1099

Babajani A, Soltanian-Zadeh H (2006) Integrated MEG/EEG and fMRI model based on neural
masses. IEEE Trans Biomed Eng 53:1794–1801

Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, Angelone LM, Cincotti F (2003)
Multimodal integration of high-resolution EEG and functional magnetic resonance imaging
data: a simulation study. NeuroImage 19:1–15

Babiloni F, Carducci F, Cincotti F, Del Gratta C, Pizzella V, Romani GL, Rossini PM, Tecchio F,
Babiloni C (2001) Linear inverse source estimate of combined EEG and MEG data related to
voluntary movements. Hum Brain Mapp 14:197–209

Baillet S, Garnero L (1997) A Bayesian approach to introducing anatomo-functional priors in the
EEG/MEG inverse problem. IEEE Trans Biomed Eng 44:374–385

Baillet S, Garnero L, Marin G, Hugonin JP (1999) Combined MEG and EEG source imaging by
minimization of mutual information. IEEE Trans Biomed Eng 46:522–534

Baule G, McFee R (1965) Theory of magnetic detection of the heart’s electrical activity. J Appl
Phys 36:2066–2073

Beisteiner R, Gomiscek G, Erdler M, Teichtmeister C, Moser E, Deecke L (1995) Comparing
localization of conventional functional magnetic resonance imaging and magnetoencepha-
lography. Eur J Neurosci 7:1121–1124

Bojak I, Oostendorp TF, Reid AT, Kötter R (2011) Towards a model-based integration of co-
registered electroencephalography/functional magnetic resonance imaging data with realistic
neural population meshes. Phil Trans R Soc A 369:3785–3801

Chang WT, Ahlfors SP, Lin FH (2013) Sparse current source estimation for MEG using loose
orientation constraints. Hum Brain Mapp 34:2190–2201

MEG and Multimodal Integration 193



Cohen D (1972) Magnetoencephalography: detection of the brain’s electrical activity with a
superconducting magnetometer. Science 175:664–666

Cohen D, Cuffin BN (1983) Demonstration of useful differences between magnetoencephalogram
and electroencephalogram. Electroencephalogr Clin Neurophysiol 56:38–51

Cuffin BN, Cohen D (1979) Comparison of the magnetoencephalogram and electroencephalo-
gam. Electroencephalogr Clin Neurophysiol 47:132–146

Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple
imaging modalities. Curr Opin Neurobiol 11:202–208

Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000)
Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution
imaging of cortical activity. Neuron 26:55–67

Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and
MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176

Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pelegrini-Issac M, Lina JM, Benali H
(2007) Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian
framework. NeuroImage 36:69–87

David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal
dynamics. NeuroImage 20:1743–1755

de Jongh A, de Munck JC, Goncalves SI, Ossenblok P (2005) Differences in MEG/EEG epileptic
spike yields explained by regional differences in signal-to-noise ratios. J Clin Neurophysiol
22:153–158

Dehghani N, Cash SS, Chen CC, Hagler DJ Jr, Huang M, Dale AM, Halgren E (2010) Divergent
cortical generators of MEG and EEG during human sleep spindles suggested by distributed
source modeling. PLoS ONE 5:e11454

Del Gratta C, Della Penna S, Ferretti A, Franciotti R, Pizzella V, Tartaro A, Torquati K, Bonomo L,
Romani GL, Rossini PM (2002) Topographic organization of the human primary and secondary
somatosensory cortices: comparison of fMRI and MEG findings. NeuroImage 17:1373–1383

Ebersole JS, Ebersole SM (2010) Combining MEG and EEG source modeling in epilepsy
evaluations. J Clin Neurophysiol 27:360–371

Eulitz C, Eulitz H, Elbert T (1997) Differential outcomes from magneto- end electroenceph-
alography for the analysis of human cognition. Neurosci Lett 227:185–188

Freeman WJ, Ahlfors SP, Menon V (2009) Combining fMRI with EEG and MEG in order to
relate patterns of brain activity to cognition. Int J Psychophysiol 73:43–52

Friston KJ, Glaser DE, Henson RN, Kiebel S, Phillips C, Ashburner J (2002) Classical and
Bayesian inference in neuroimaging: applications. NeuroImage 16:484–512

Fuchs M, Wagner M, Wischmann HA, Kohler T, Theissen A, Drenckhahn R, Buchner H (1998)
Improving source reconstructions by combining bioelectric and biomagnetic data. Electro-
encephalogr Clin Neurophysiol 107:93–111

Fujimaki N, Hayakawa T, Nielsen M, Knosche TR, Miyauchi S (2002) An fMRI-constrained
MEG source analysis with procedures for dividing and grouping activation. NeuroImage
17:324–343

George JS, Aine CJ, Mosher JC, Schmidt DM, Ranken DM, Schlitt HA, Wood CC, Lewine JD,
Sanders JA, Belliveau JW (1995) Mapping function in the human brain with MEG,
anatomical MRI and functional MRI. J Clin Neurophysiol 12:406–431

George JS, Lewis PS, Ranken DM, Kaplan L, Wood CC (1991) Anatomical constraints for
neuromagnetic source models. SPIE Med Imaging V Image Phys 1443:37–51

Goldenholz DM, Ahlfors SP, Hämäläinen MS, Sharon D, Ishitobi M, Vaina LM, Stufflebeam SM
(2009) Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and
electroencephalography. Hum Brain Mapp 30:1077–1086

Grynszpan F, Geselowitz DB (1973) Model studies of the magnetocardiogram. Biophys J
13:911–925

Hagler DJ Jr, Ahmadi ME, Kuperman J, Holland D, McDonald CR, Halgren E, Dale AM (2009)
Automated white-matter tractography using a probabilistic diffusion tensor atlas: Application
to temporal lobe epilepsy. Hum Brain Mapp 30:1535–1547

194 S. P. Ahlfors



Hämäläinen M, Hari R, Lounasmaa OV, Williamson SJ (1995) Do auditory stimuli activate
human parietal brain regions? NeuroReport 6:1712–1714

Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm
estimates. Med Biol Eng Comput 32:35–42

Hansen P, Kringelbach M, Salmelin R (2010) MEG: an introduction to methods. Oxford
University Press, New York

Haueisen J, Ramon C, Czapski P, Eiselt M (1995) On the influence of volume currents and
extended sources on neuromagnetic fields: a simulation study. Ann Biomed Eng 23:728–739

He B, Liu Z (2008) Multimodal functional neuroimaging: integrating functional MRI and EEG/
MEG. IEEE Rev Biomed Eng 1:23–40

Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Münte TF, Gös A, Scherg M,
Johannes S, Hundeshagen H, Gazzaniga MS, Hillyard SA (1994) Combined spatial and
temporal imaging of brain activity during visual selective attention in humans. Nature
372:543–546

Henson RN, Glandin G, Friston KJ, Mattout J (2010) A parametric empirical Bayesian
framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp
31:1512–1531

Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG
to activity in the adult human cortex. NeuroImage 16:638–650

Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ (2012) Frequency-dependent
functional connectivity within resting-state networks: an atlas-based MEG beamformer
solution. NeuroImage 59:3909–3921

Horwitz B, Poeppel D (2002) How can EEG/MEG and fMRI/PET data be combined? Hum Brain
Mapp 17:1–3

Horwitz B, Tagamets MA, McIntosh AR (1999) Neural modeling, functional brain imaging, and
cognition. Trends Cogn Sci 3:91–98

Huiskamp G, Agirre-Arrizubieta Z, Leijten F (2010) Regional differences in the sensitivity of
MEG for interictal spikes in epilepsy. Brain Topogr 23:159–164

Im CH, Jung HK, Fujimaki N (2005) fMRI-constrained MEG source imaging and consideration
of fMRI invisible sources. Hum Brain Mapp 26:110–118

Im CH, Lee SY (2006) A technique to consider mismatches between fMRI and EEG/MEG
sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study.
Phys Med Biol 51:6005–6021

Inoue T, Shimizu H, Nakasato N, Kumabe T, Yoshimoto T (1999) Accuracy and limitation of
functional magnetic resonance imaging for identification of the central sulcus: comparison
with magnetoencephalography in patients with brain tumors. NeuroImage 10:738–748

Jun SC, George JS, Kim W, Pare-Blagoev J, Plis S, Ranken DM, Schmidt DM (2008) Bayesian
brain source imaging based on combined MEG/EEG and fMRI using MCMC. NeuroImage
40:1581–1594

Knake S, Halgren E, Shiraishi H, Hara K, Hamer HM, Grant PE, Carr VA, Foxe D, Camposano
S, Busa E, Witzel T, Hämäläinen MS, Ahlfors SP, Bromfield EB, Black PM, Bourgeois BF,
Cole AJ, Cosgrove GR, Dworetzky BA, Madsen JR, Larsson PG, Schomer DL, Thiele EA,
Dale AM, Rosen BR, Stufflebeam SM (2006) The value of multichannel MEG and EEG in the
presurgical evaluation of 70 epilepsy patients. Epilepsy Res 69:80–86

Korvenoja A, Huttunen J, Salli E, Pohjonen H, Martinkauppi S, Palva JM, Lauronen L, Virtanen
J, Ilmoniemi RJ, Aronen HJ (1999) Activation of multiple cortical areas in response to
somatosensory stimulation: combined magnetoencephalographic and functional magnetic
resonance imaging. Hum Brain Mapp 8:13–27

Lin FH, Belliveau JW, Dale AM, Hämäläinen MS (2006) Distributed current estimates using
cortical orientation constraints. Hum Brain Mapp 27:1–13

Lin YY, Shih YH, Hsieh JC, Yu HY, Yiu CH, Wong TT, Yeh TC, Kwan SY, Ho LT, Yen DJ, Wu
ZA, Chang MS (2003) Magnetoencephalographic yield of interictal spikes in temporal lobe
epilepsy. Comparison with scalp EEG recordings. NeuroImage 19:1115–1126

MEG and Multimodal Integration 195



Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using
functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc
Natl Acad Sci USA 95:8945–8950

Liu AK, Dale AM, Belliveau JW (2002) Monte Carlo simulation studies of EEG and MEG
localization accuracy. Hum Brain Mapp 16:47–62

Liu Z, Ding L, He B (2006) Integration of EEG/MEG with MRI and fMRI. IEEE Eng Med Biol
Mag 25:46–53

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological
investigation of the basis of the fMRI signal. Nature 412:150–157

Lopes da Silva FH (2010) Electrophysiological basis of MEG signals. In: Hansen P, Kringelbach
M, Salmelin R (eds) MEG: an introduction to methods. Oxford University Press, New York,
pp 1–23

Mäkelä JP, Ahonen A, Hämäläinen M, Hari R, Ilmoniemi R, Kajola M, Knuutila J, Lounasmaa
OV, McEvoy L, Salmelin R, Salonen O, Sams M, Simola J, Tesche C, Vasama J-P (1993)
Functional differences between auditory cortices of the two hemispheres revealed by whole-
head neuromagnetic recordings. Hum Brain Mapp 1:48–56

Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric
and biomagnetic fields. Oxford University Press, New York

Mathiak K, Fallgatter AJ (2005) Combining magnetoencephalography and functional magnetic
resonance imaging. Int Rev Neurobiol 68:121–148

Mathiak K, Rapp A, Kircher TT, Grodd W, Hertrich I, Weiskopf N, Lutzenberger W, Ackermann
H (2002) Mismatch responses to randomized gradient switching noise as reflected by fMRI
and whole-head magnetoencephalography. Hum Brain Mapp 16:190–195

Melcher JR, Cohen D (1988) Dependence of the MEG on dipole orientation in the rabbit head.
Electroencephalogr Clin Neurophysiol 70:460–472

Michel CM, Koenig T, Brandeis D, Gianotti LRR, Wackermann J (2009) Electrical neuroim-
aging. Cambridge University Press, Cambridge

Molins A, Stufflebeam SM, Brown EN, Hämäläinen MS (2008) Quantification of the benefit from
integrating MEG and EEG data in minimum l2-norm estimation. NeuroImage 42:1069–1077

Moradi F, Liu LC, Cheng K, Waggoner RA, Tanaka K, Ioannides AA (2003) Consistent and
precise localization of brain activity in human primary visual cortex by MEG and fMRI.
NeuroImage 18:595–609

Morioka T, Mizushima A, Yamamoto T, Tobimatsu S, Matsumoto S, Hasuo K, Fujii K, Fukui M
(1995) Functional mapping of the sensorimotor cortex: combined use of magnetoencepha-
lography, functional MRI, and motor evoked potentials. Neuroradiology 37:526–530

Mosher JC, Leahy RM, Lewis PS (1999) EEG and MEG: forward solutions for inverse methods.
IEEE Trans Biomed Eng 46:245–259

Mosher JC, Spencer ME, Leahy RM, Lewis PS (1993) Error bounds for EEG and MEG dipole
source localization. Electroencephalogr Clin Neurophysiol 86:303–321

Muravchik C, Bria O, Nehorai A (2000) EEG/MEG error bounds for a dynamic dipole source
with a realistic head model. Methods Inf Med 39:110–113

Ossenblok P, de Munck JC, Colon A, Drolsbach W, Boon P (2007) Magnetoencephalography is
more successful for screening and localizing frontal lobe epilepsy than electroencephalog-
raphy. Epilepsia 48:2139–2149

Pflieger ME, Simpson GV, Ahlfors SP, Ilmoniemi RJ (2000) Superadditive information from
simultaneous MEG/EEG Data. In: Aine CJ, Okada Y, Stroink G, Swithenby SJ, Wood CC
(eds) BioMag96: 10th international conference on biomagnetism, vol II. Springer, Santa Fe,
NM, pp 1154–1157

Phillips JW, Leahy RM, Mosher JC, Timsari B (1997) Imaging neural activity using MEG and
EEG. IEEE Eng Med Biol Mag 16:34–42

Plis SM, Calhoun VD, Weisend MP, Eichele T, Lane T (2010) MEG and fMRI Fusion for Non-
Linear Estimation of Neural and BOLD Signal Changes. Front Neuroinform 4:114

196 S. P. Ahlfors



Poline J-P, Garnero L, Lahaue P-J (2010) Combining neuroimaging techniques: the future. In:
Hansen P, Kringelbach M, Salmelin R (eds) MEG: an introduction to methods. Oxford
University Press, New York, pp 273–299

Ramantani G, Boor R, Paetau R, Ille N, Feneberg R, Rupp A, Boppel T, Scherg M, Rating D,
Bast T (2006) MEG versus EEG: influence of background activity on interictal spike
detection. J Clin Neurophysiol 23:498–508

Riera J, Aubert E, Iwata K, Kawashima R, Wan X, Ozaki T (2005) Fusing EEG and fMRI based
on a bottom-up model: inferring activation and effective connectivity in neural masses. Philos
Trans R Soc Lond B Biol Sci 360:1025–1041

Riera JJ, Valdes PA, Tanabe K, Kawashima R (2006) A theoretical formulation of the
electrophysiological inverse problem on the sphere. Phys Med Biol 51:1737–1758

Rodin E, Funke M, Berg P, Matsuo F (2004) Magnetoencephalographic spikes not detected by
conventional electroencephalography. Clin Neurophysiol 115:2041–2047

Rosen BR, Buckner RL, Dale AM (1998) Event-related functional MRI: past, present, and future.
Proc Natl Acad Sci USA 95:773–780

Rossini PM, Altamura C, Ferretti A, Vernieri F, Zappasodi F, Caulo M, Pizzella V, Del Gratta C,
Romani GL, Tecchio F (2004) Does cerebrovascular disease affect the coupling between
neuronal activity and local haemodynamics? Brain 127:99–110

Sanders JA, Lewine JD, Orrison WW (1996) Comparison of primary motor cortex localization
using functional magnetic resonance imaging and magnetoencephalography. Hum Brain
Mapp 4:47–57

Sharon D, Hämäläinen MS, Tootell RB, Halgren E, Belliveau JW (2007) The advantage of
combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex.
NeuroImage 36:1225–1235

Simpson GV, Pflieger ME, Foxe JJ, Ahlfors SP, Vaughan HG Jr, Hrabe J, Ilmoniemi RJ, Lantos
G (1995) Dynamic neuroimaging of brain function. J Clin Neurophysiol 12:432–449

Singh KD, Barnes GR, Hillebrand A, Forde EM, Williams AL (2002) Task-related changes in
cortical synchronization are spatially coincident with the hemodynamic response. NeuroIm-
age 16:103–114

Stippich C, Freitag P, Kassubek J, Soros P, Kamada K, Kober H, Scheffler K, Hopfengartner R,
Bilecen D, Radu EW, Vieth JB (1998) Motor, somatosensory and auditory cortex localization
by fMRI and MEG. NeuroReport 9:1953–1957

Stok CJ, Spekreijse HJ, Peters MJ, Boom HB, Lopes da Silva FH (1990) A comparative EEG/
MEG equivalent dipole study of the pattern onset visual response. Electroencephalogr Clin
Neurophysiol Suppl 41:34–50

Sutherling WW, Levesque MF, Crandall PH, Barth DS (1991) Localization of partial epilepsy
using magnetic and electric measurements. Epilepsia 32(Suppl 5):S29–S40

Swettenham JB, Muthukumaraswamy SD, Singh KD (2013) BOLD responses in human primary
visual cortex are insensitive to substantial changes in neural activity. Front Hum Neurosci
7:76

Torquati K, Pizzella V, Babiloni C, Del Gratta C, Della Penna S, Ferretti A, Franciotti R, Rossini
PM, Romani GL (2005) Nociceptive and non-nociceptive sub-regions in the human secondary
somatosensory cortex: an MEG study using fMRI constraints. NeuroImage 26:48–56

Tripp JH (1983) Physical concepts and mathematical models. In: Williamson SJ, Romani G-L,
Kaufman L, Modena I (eds) Biomagnetism: an interdisciplinary approach. Plenum Press, New
York, pp 101–139

Tuunanen PI, Kavec M, Jousmäki V, Usenius JP, Hari R, Salmelin R, Kauppinen RA (2003)
Comparison of BOLD fMRI and MEG characteristics to vibrotactile stimulation. NeuroImage
19:1778–1786

Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-Gomez Y, Bosch-
Bayard J, Carbonell F, Ozaki T (2009) Model driven EEG/fMRI fusion of brain oscillations.
Hum Brain Mapp 30:2701–2721

MEG and Multimodal Integration 197



Vartiainen J, Liljeström M, Koskinen M, Renvall H, Salmelin R (2011) Functional magnetic
resonance imaging blood oxygenation level-dependent signal and magnetoencephalography
evoked responses yield different neural functionality in reading. J Neurosci 31:1048–1058

Vaughan HG Jr (1982) The neural origins of human event-related potentials. Ann N Y Acad Sci
388:125–138

Vauhkonen M, Vadasz D, Karjalainen PA, Somersalo E, Kaipio JP (1998) Tikhonov
regularization and prior information in electrical impedance tomography. IEEE Trans Med
Imaging 17:285–293

Wipf D, Nagarajan S (2009) A unified Bayesian framework for MEG/EEG source imaging.
Neuroimage 44:947–966

Woldorff MG, Tempelmann C, Fell J, Tegeler C, Gaschler-Markefski B, Hinrichs H, Heinz HJ,
Scheich H (1999) Lateralized auditory spatial perception and the contralaterality of cortical
processing as studied with functional magnetic resonance imaging and magnetoencephalog-
raphy. Hum Brain Mapp 7:49–66

Wood CC, Cohen D, Cuffin BN, Allison T (1985) Electrical sources in human somatosensory
cortex: identification by combined magnetic and potential recordings. Science 227:1051–1053

Yoshinaga H, Nakahori T, Ohtsuka Y, Oka E, Kitamura Y, Kiriyama H, Kinugasa K, Miyamoto
K, Hoshida T (2002) Benefit of simultaneous recording of EEG and MEG in dipole
localization. Epilepsia 43:924–928

Zijlmans M, Huiskamp GM, Leijten FS, Van Der Meij WM, Wieneke G, Van Huffelen AC
(2002) Modality-specific spike identification in simultaneous magnetoencephalography/
electroencephalography: a methodological approach. J Clin Neurophysiol 19:183–191

198 S. P. Ahlfors



MEG/EEG Data Analysis Using EEGLAB

John R. Iversen and Scott Makeig

Abstract EEGLAB (sccn.ucsc.edu/eeglab) is an easily extensible, highly
evolved, and widely used open source environment for signal processing and
visualization of electroencephalographic data running on MATLAB (The Math-
works, Inc.). Methods central to EEGLAB include time- and time-frequency
analysis and visualization of individual datasets and complete studies, independent
component analysis (ICA), and rich tools for connectivity analysis, brain computer
interface (BCI) development, and tools for fusion and joint analysis of simulta-
neously recorded motion-capture and brain data. We introduce a new MEEG plug-
in that enables MEG and simultaneously recorded MEG/EEG (MEEG) data to be
readily analyzed using EEGLAB. Its use is demonstrated by the analysis of an
MEEG dataset. Here we show a first ICA decomposition of an MEEG data set and
use MEEG plotting tools to localize and evaluate maximally independent joint
MEG/EEG component processes in the data. The analysis naturally recovers a
range of artifact sources, as well as brain sources common to MEG and EEG, as
well as sources primarily visible only to EEG.

Keywords MEG � EEG � MEEG � Independent component analysis (ICA) �
EEGLAB � Localization � Radial � Tangential � Dipole � AMICA

1 Introduction

EEGLAB (sccn.ucsd.edu/eeglab) (Delorme and Makeig 2004) evolved from an
ICA Toolbox for Electrophysiological Data Analysis released by Makeig and
colleagues at The Salk Institute (La Jolla CA) in 1997. Currently EEGLAB is a
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mature, actively evolving open-source software environment for electrophysio-
logical data analysis running on MATLAB (The Mathworks, Inc.) that makes
freely available a range of state-of-the-art approaches to describe brain dynamics
of effective cortical and non-brain EEG sources at both the individual and group
levels (Delorme and Makeig 2004; Makeig et al. 2004). By a 2011 survey (Hanke
and Halchenko 2011), EEGLAB may currently be the most widely used open-
source toolbox for EEG analysis. EEGLAB functions comprise a broad core range
of functionality accessible either through its graphic user interface (GUI) and/or
directly from the MATLAB command line, plus plug-in tools and toolboxes that
implement a wide range of advanced analysis and visualization methods.

User interface. EEGLAB can be controlled through its GUI (Fig. 1 lower left,
panel), or more directly through MATLAB scripts and command line calls. Use of
the GUI is highly convenient for data exploration. The GUI also accumulates a
history of the commands to EEGLAB functions it issues, enabling processing
pipelines developed using the GUI to be easily turned into a MATLAB script.
Already many students (worldwide) have learned to write MATLAB data analysis
scripts by combining the EEGLAB history mechanism with the extensive
EEGLAB function and wiki documentation (sccn.ucsd.edu/wiki/eeglab).

Other tools. EEGLAB is the center of a growing ecosystem of open source
software tools (Fig. 1) that have been released by researchers at the Swartz Center
for Computational Neuroscience at UCSD (sccn.ucsd.edu). These include the

Fig. 1 The EEGLAB environment for electrophysiological signal processing is the center of a
growing framework of tools developed and released by researchers at the Swartz Center for
Computational Neuroscience (SCCN) at UCSD. These include software for synchronized
multimodal recording (SNAP, LSL, XDF), MoBILAB, an object-oriented toolbox for analysis
and visualization of multimodal data, the HeadIT data and tools resource with its associated tools
(HED, ESS, etc.), and a growing set of toolboxes that operate as EEGLAB plug-ins (AMICA,
DIPFIT, NFT, MPT, SIFT, BCILAB, etc.). MEEG is a new plug-in developed by the authors for
analysis of MEG and MEEG (synchronized MEG plus EEG) data
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Human Electrophysiology, Anatomic Data, and Integrated tools (HeadIT) data
archive and resource (headit.org), with its system for tagging uploaded studies
(Experimental Study Schema (ESS) (Bigdely-Shamlo et al. 2013a), Hierarchical
Events Descriptors (HED) (Bigdely-Shamlo et al. 2013b) and a cross-platform
system for synchronized collection of data from EEG and many other devices (Lab
Streaming Layer (LSL), code.google.com/p/labstreaminglayer) plus an extensible,
XML-based data format (Extensible Data format, XDF; code.google.com/p/XDF)
and a Python-language scripting framework for controlling simple or very com-
plex experimental paradigms (SNAP).

MoBILAB. An object-oriented environment for analysis of multimodal data
collected under the mobile brain/body imaging (MoBI) paradigm, MoBILAB
(sccn.ucsd.edu/wiki/Mobilab_software) can export EEG data to EEGLAB for
further analysis, and may in the future become our primary platform for devel-
oping and sharing multimodal data analysis methods, since the EEGLAB EEG
data structure has limited support for different channel types and assumes all data
to be recorded at the same sampling rate. For MEG/EEG data recorded at the same
rate this is not much of an inconvenience, as EEGLAB provides a channel type
variable that allows functions to perform EEG analysis and/or MEG analysis of the
respective data channel subsets based on their specified channel types.

EEGLAB plug-ins. The growing range of EEGLAB plug-ins have been pre-
viously described (Delorme et al. 2011). Plug-ins released by SCCN itself include
advanced Adaptive Mixture ICA (AMICA) for identification of maximally inde-
pendent brain sources with artifact rejection (Delorme et al. 2012; Palmer 2006),
the DIPFIT toolbox implementing source dipole fitting tools by Robert Oostenveld
from Fieldtrip (fieldtrip.fcdonders.nl), the Neuroelectromagnetic Forward Head
Modeling Toolbox (NFT) for creating detailed boundary element model (BEM) or
finite element model (FEM) head models (Akalin Acar and Makeig 2010), the
Measure Projection Toolbox (MPT) for cross-subject source-level analysis using
measure projection (Bigdely-Shamlo et al. 2013c), the Source Information Flow
Toolbox (SIFT) for calculation and visualization of multivariate causal source
dynamics in both event-related and continuous data (Delorme et al. 2011), and
BCILAB, a complete toolbox for building, running, and statistically evaluating
brain-computer interface (BCI) models (Kothe and Makeig 2010). At least 20
other plug-in tools and toolboxes have been released by other research groups;
these are listed on a wiki page (sccn.ucsd.edu/wiki/EEGLAB_Plugins). A facility
for automated updating of listed plug-ins to new versions from within EEGLAB is
planned for EEGLAB v13.

The MEEG plug-in. EEGLAB now includes an MEEG plug-in (sccn.ucsd.edu/
wiki/MEEG) that expands the ability of EEGLAB users to import and analyze
MEG and dual-modality MEEG (concurrent MEG and EEG) datasets, thereby
opening a range of novel data analysis techniques for use by the MEG community.
MEEG data handling within EEGLAB is tightly coupled to Fieldtrip, allowing the
EEGLAB data structures to be readily imported from and exported to Fieldtrip.
Both the EEGLAB environment and the MEEG plug-ins are ongoing efforts that
we hope other MEG users and methods developers will contribute to. The MEEG
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developers remain open to partnering with other methods developers to share
capabilities between MEEG and other MEG toolboxes.

Data and experiment types supported. In addition to standard EEG data
types, EEGLAB now supports the loading of MEG and MEEG data through its
integration of the Fieldtrip fileio module. Individual data files can be imported as
individual EEGLAB data sets, or multiple runs can be combined into a single
dataset using realignment to a common sensor orientation. In addition, the new
MEEG plug-in enables EEGLAB to import and export a range of Fieldtrip data
structures, including raw and epoched data, as well as independent component
analyses, so that EEGLAB processing can begin after partial analysis in Fieldtrip,
or can be exported, allowing Fieldtrip to be used for additional processing. EEG
recording systems provide a single scalar value per sensor location, in contrast to
the wider variety of MEG sensor types. The scalar model easily accommodates
magnetometer and radial gradiometer systems, but requires either magnetometers
or the magnitude of the planar gradient to be chosen (e.g., for Yokogawa system
data sets).

Source localization. ICA decomposition enables the profitable use of dipole-
based inverse methods because of the characteristic resemblance of many MEG,
EEG, or also MEEG independent component scalp maps to the projection of a
single equivalent dipole, allowing them to be well-fit by a single equivalent dipole
model (or, in some cases, to a dual-dipole model with symmetric location con-
straints) (Delorme et al. 2012). The DIPFIT toolbox in EEGLAB implements
equivalent dipole model fitting tools by Robert Oostenveld from Fieldtrip (field-
trip.fcdonders.nl). Dipole fitting tools have been integrated in the Neuroelectro-
magnetic Forward head modeling Toolbox (NFT) (Akalin Acar and Makeig 2010).
These plus some novel distributed source localization methods will be put into a
toolbox paralleling NFT, to be called the Neuroelectromagnetic Inverse Source
modeling Toolbox (NIST).

Processing data from multiple subjects or sessions. EEGLAB supports
across-subject analysis via a STUDY structure that points to a set of similar EEG
datasets forming an experimental study. Currently, these datasets are typically
epoched datasets (sets of data epochs similarly time locked to one or more sets of
experimental events). EEGLAB Study software can prepare and store a user-
specified set of continuous (power spectrum) and event-related (ERP, ERSP, ITC,
etc.) measures for each dataset and help the user to separate these measures into
conditions, sessions, and/or subject groups. Typically, each dataset is associated
with an ICA decomposition and a list of ‘brain’ components to study, each with an
equivalent dipole model. The Study functions can then prepare a pair-wise distance
measure between components based on component dipole (and/or scalp map) and
specified measure distances. Users then can cluster the components using at least
three clustering methods, and can compute statistical contrasts across subjects/
sessions using either parametric (Gaussian) or non-parametric (bootstrap) statistical
methods. Clustering scalp channel signals, though less advised, is also supported.

Currently, users can create and process one or more 1 9 N or N 9 M statistical
designs for a given Study. Thus, for example, given 5 different event-related
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measures for each subject in an experiment, the user can specify Conditions 1–4 as
forming a 2 9 2 design, and/or can also compare Conditions 2 versus 5 in another
design, without needing to duplicate the STUDY structure and its associated
measure files. Both within-subject and across-subject variable types are supported.

As in practice the range of experimental designs is much wider (than NxM),
EEGLAB and some EEGLAB toolbox developers are now working with Cyril
Pernet of the University of Glasgow to incorporate his LIMO toolbox into the core
of EEGLAB study processing. It supports parametric and non-parametric statistics
for a much wider range of designs (gforge.dcn.ed.ac.uk/gf/project/limo_eeg)
(Pernet et al. 2011).

Measure projection. An alternate approach to component clustering is taken in
the Measure Projection Toolbox (MPT) (Bigdely-Shamlo et al. 2013c). This
toolbox focuses on comparing component source dynamics for a single measure at
a time (for example, ERPs) based on the location of the equivalent source dipole in
a template brain. Each component dipole location is replaced by a 3-D Gaussian
blur (representing location probability) and, after populating the template brain
with source dipoles across a potentially large number of subjects, two operations
are applied voxel-wise (that is, template brain voxel-by-voxel). First, brain regions
in which local dipole measures agree are identified, forming a measure consistency
subspace. Next, voxels in this subspace are clustered using affinity clustering to
form voxel domains with distinct measure time courses. Here the concept of
measure domains in the template brain volume replaces the discrete component
clusters produced by the default EEGLAB study processing. Users may choose
either or both paths to use to characterize their study data.

CSA clustering. Arthur Tsai of Academica Sinica, Taiwan, has recently
developed an advanced approach to study source clustering (Tsai et al. 2013). This
applies spatiotemporal ICA decomposition using EMSICA (Tsai et al. 2006) to
EEG (or as readily, MEG) data from its projection back onto to the oriented
subject cortex, modeled from a subject MR head image. The cortical surface
models are then inflated and co-registered using tools available in Freesurfer
(Fischl et al. 1999). Finally, source clustering across subjects is performed in the
2-D cortical surface-aligned space rather than in 3-D template brain space (as in
MPT and EEGLAB Study functions). A CSA (Cortical Surface Alignment)
EEGLAB plug-in is envisaged that will allow users to perform this potentially
more accurate analysis when MR head images are available for the individual
subjects in an EEG or MEG study.

2 MEEG Data Decomposition: An Empirical Data
Example

For example purposes, we will illustrate the capabilities of the MEEG plug-in and
other EEGLAB features using a simultaneously recorded multimodal (MEEG)
MEG plus EEG dataset (Bledowski et al. 2012) that is jointly decomposed, in a
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single AMICA decomposition, to extract independent components accounting for
both MEG and EEG data streams. The validity of the decomposition is based on
the assumed linearity of the underlying electric and magnetic components of the
electromagnetic field generated by the effective generators of the scalp-recorded
(EEG) potentials and (MEG) flux. We use the NFT toolbox to create an EEG and
MEG head model and use it to fit equivalent dipole models to the resulting
independent component (IC) scalp maps. We focus here on describing the relations
between MEG signal and EEG signal projections of the resulting ICs, including a
first statistical examination using ICA of the degree to which radial EEG sources
(as determined by an equivalent dipole model) are also visible in MEG.

Data loading and preprocessing. The epoched CTF dataset included time
series data from 269 radial gradiometers (3rd-order synthetic) plus 56 EEG
channels. Five separate runs from the same recording session were imported and
merged into a single EEGLAB dataset of size 325 channels by 580 k time points.
The MEEG toolbox enabled the selection of alignment across runs of the MEG
data (e.g., projection onto the average across-run gradiometer locations using
Fieldtrip ft_megrealign) as well as the choice (when appropriate) of synthetic
gradiometer order. Field contributions from external sources were removed by
computation of third order gradients using contributions from reference sensors
(Fife 1999). The resulting EEGLAB dataset included 324 channels and 136 6-s
data epochs. These data were down sampled from 1200 to 600 Hz, and the EEG
channels were average referenced. One EEG channel was dropped following these
procedures to keep the data full rank.

Artifact detection and rejection. A range of artifact rejection options are
available in EEGLAB, both automated and interactive data rejection or cleaning,
as well as ICA-based artifact rejection. For the dataset used here, epochs con-
taining large artifacts had previously been rejected based on visual inspection.

Independent Component Analysis. The MEEG data were analyzed using
AMICA to find independent components across the modalities. ICA in general
proceeds from the observation that the signal measured at any sensor is a linear
mixture of multiple sources within the brain (Makeig et al. 1996). The goal of the
algorithm is to learn an unmixing matrix across all channels that results in a
complete decomposition of the data into maximally independent components
(ICs). In single-modality MEG or EEG data, many ICs have dipolar patterns of
projection onto the sensors (Delorme et al. 2012). In MEEG data decompositions,
both the associated MEG and EEG scalp projection maps in clearly defined
components may be dipolar. In such cases, the maps are near-orthogonal and the
implied equivalent dipole locations and orientations near-identical (Liu et al.
1998), showing that ICA has identified the joint electromagnetic field associated
with a single source process that may be located using its well-defined MEG and
EEG projection patterns also returned by ICA. The AMICA (Adaptive Mixture
ICA; (Palmer et al. 2007); sccn.ucsd.edu/*jason/amica_web.html) algorithm used
here is the blind source separation method that performed best in a recent com-
parative test of 22 linear decomposition algorithms—by both producing the
greatest reduction of the strong mutual information present in the channel data, and
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by finding the largest number of component processes with ‘dipolar’ scalp maps
compatible with the projection of a single cortical area or patch (Delorme et al.
2012).

The joint analysis of MEG and EEG data using independent component anal-
ysis is novel; to our knowledge it has not been previously reported. ICA itself, as a
purely statistical method, has no notion of the type of signal it is decomposing or
of the types of signal sources contributing independent information to the recorded
source mixtures. Thus, to perform ICA decomposition of MEEG data, the MEG
and EEG channel signals are simply concatenated into a dataset (here of 324
channels). The MEG and EEG portions of the data were individually sphered (a
standard procedure to remove correlations and scale from data) before decom-
position (Tukey and Tukey 1981). Sphering serves both to make the MEG and
EEG signals numerically identical in size (avoiding lV versus fT scaling issues),
and to remove correlations between sensors (a standard step prior to ICA that
speeds the convergence of the algorithm). The result of the joint decomposition is
a collection of maximally independent components, each with a pair of spatial
topographies (scalp maps) representing the spatial projections of the source onto
the MEG and EEG sensors, respectively, and a joint MEG/EEG time course of
activation across the trials.

Forward and inverse source modeling. The NFT toolbox was used to warp an
MNI template 4-layer BEM model to the individual head shape defined by the
EEG electrode locations. The EEG head model used the full BEM model, with
forward solutions solved with METU-BEM (Akalin Acar and Gençer 2004). The
MEG head model used the inner skull surface mesh of the BEM model to define a
single-shell BEM model (Hämäläinen and Sarvas 1989). When individual ana-
tomical MRIs are available, the NFT toolbox can use them to segment and create
individual electrical and magnetic forward head models. NFT also generates lead
field matrices for 3-D grid (FEM) source space or for a cortically constrained
(BEM) source-space, e.g. constructed using the Freesurfer toolbox
(surfer.nmr.mgh.harvard.edu). The head models and lead fields generated by the
NFT toolkit can likewise be used for volumetric or cortically constrained inverse
solutions in other data analysis packages. Dipoles were fit to all components
automatically, with a separate dipole fit for the MEG and EEG IC topography.
Each fit was characterized by its residual variance, as well as its direction with
respect to the radial direction (as defined in relation to a best-fit sphere, fit to the
scalp surface).

3 Results: ICA Analysis of MEEG Data

Figure 2 shows ‘ERP image’ plots of trial-by-trial activities of four functionally
distinct ICs from this data set. Each panel shows the IC topography for EEG and
MEG in the upper left. The erpimage function produces a raster image generated by
stacking event-related trials (in any specified order) as horizontal colored lines,
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where color represents signal value. Consistent evoked response activity across
trials time locked to events with consistent trial latencies appears as vertical bands
of color. Smoothing (vertically) lightly across trials can highlight these regularities.
Here, the dashed black lines show the onset of visual stimulus presentations, and the
trials are sorted in order of increasing participant reaction time to the cue stimulus
(the curving black trace indicating the moment of the button press in each trial).

In Fig. 2, evoked responses of four components demonstrate ICAs tendency to
isolate functionally distinct brain responses from the recorded mixture, and that this
naturally generalizes to multimodal recordings. A visual cortex IC (a) follows
onsets of visual stimuli. Note the associated dipolar and near-orthogonal MEG and
EEG scalp maps. The evoked response of a somatomotor cortex IC (b) is primarily
time locked to (before and after) participant button presses, and again has near-
orthogonal MEG and EEG scalp maps. A right frontal-cortex IC (c), whose spec-
trum had a broad peak in the theta band (not shown), produces increased theta band
power (not shown here) during presentation of memorandum (1st) stimuli and
subsequent (3rd) probe stimuli. Some of this theta burst energy was phase locked
across trials; thus, the evoked response of this IC to the memoranda (1st stimuli)
resembles a theta burst superimposed on a slower ERP base. Note the near-radial
scalp pattern of the EEG scalp map, and the corresponding lack of definition of the
(weak) MEG IC projection (discussed further below). The ERP image plot for an IC
accounting for eye blinks (d) shows that the participant blinked consistently during
fixation intervals. Again, the MEG and EEG projections are well defined, consistent
with sources in the eyes themselves, and are near orthogonal.

Figure 3 shows a more complete set of IC MEG and EEG topographies for
(brain and non-brain process) ICs accounting for the most signal variance among

Fig. 2 Four ‘ERP image’ panels showing trial-by-trial activities of four MEEG independent
components. The experiment trial design is depicted above panel 1: in each trial, a target array of
colored squares that are to be memorized is briefly presented, then replaced by a fixation dot
during a retention interval. A single colored probe square is then presented; the participant had to
respond whether or not it was present in the initial color array. In each erpimage panel, vertical
dashed black lines indicate the onset of each visual stimulus (heavier lines for target and probe
stimuli; lighter lines for onsets of fixation dots). The large color image within each panel
represents a raster image of all 136 individual trials, with IC activation coded by color. Activation
units are proportional to projected rms EEG lV and MEG fT. The trials are sorted in order of
descending reaction time, so the trace of button press moments (dark solid trace) forms a diagonal
arc. In the erpimage panels, the trial activations have been (vertically) smoothed with a 10-trial
moving window. Below each erpimage panel is the standard trial average activation ERP. EEG
and MEG IC topographies are shown in the upper left of each panel. a A visual (occipital) IC
(with clear, near-orthogonal EEG and MEG topographies) showing consistent evoked responses
time-locked to presentations of visual stimuli. b A somatomotor IC (again with clear, near-
orthogonal EEG and MEG projections) whose evoked responses are time locked primarily to
button presses. c A near-radial right frontal theta band dominant component with weak and less
clearly defined MEG projection. Response to target and probe stimuli can be modeled as a theta
band burst superimposed on a lower-frequency response, and d an eye blink IC (with clearly
defined, near-orthogonal MEG and EEG projections; 2 trial smoothing window). Separation of
the signals into maximally independent component processes separates out processes that are
maximally functionally distinct as well

b

MEG/EEG Data Analysis Using EEGLAB 207



the 324 ICs returned by AMICA (pvaf = percent variance accounted for; the
leftmost number above each topography). Each IC is represented as a vertical pair
of head cartoons depicting the spatial projection of the IC onto the EEG (top) and
MEG (bottom) sensor arrays. As usual, the ICs accounting for the most signal
variance in each modality are artifactual (top row): an IC accounting for eye blinks
(accounting for 12.6 % of EEG signal variance), and another accounting for
cardiographic contributions (in these data accounting for 21.7 % of MEG signal
variance). The relative sensitivity of each modality to different artifact types is
apparent in the pvaf values: Eye blinks and muscles account for proportionally
more EEG then MEG variance, while for heart-related and line-noise artifacts the
reverse holds. Many of the maps show dipole-like (‘dipolar’) topographies.
AMICA analysis produced a pair of spatially near-orthogonal topographies for the
MEG and EEG projections of the identified joint electromagnetic source processes,
consistent with an origin in a single cortical patch or non-brain generator. Non-
brain components (top two rows) were so classified on the basis of having iden-
tifiable non-brain time courses (Eye & EKG components) or a large high-fre-
quency spectrum consistent with myographic (or line noise) activity together with
equivalent dipole localized to outside the brain volume (myographic or line noise
sources). Identified Brain components have equivalent dipoles (indicated in black)
located within the brain volume (here with residual variance of the dipole
fit \= 20 %). Dipole localization is discussed further below.

As is well known, MEG is less sensitive to the radial component of brain
current sources. In joint MEEG data ICA decompositions, this relationship falls
out naturally: sources with a strong radial orientation have weak and usually less
well-defined MEG projections. For example, the four brain components in the
bottom row of Fig. 3 have large EEG projections, accounting for between 3.5 and
0.9 % of total signal variance (3.5 % was the largest pvaf value of any brain
component). Low residual-variance dipole fits to the IC EEG scalp map return a
near radial equivalent dipole (e.g. in 3 of these 4, with radial angle defined relative
to a best-fit spherical head model). In contrast, the associated MEG scalp maps for
these ICs have quite low pvaf (\0.2 %) and are not dipolar (residual variances,
25–70 %). To check for the presence of this pattern overall in the decomposition,
in Fig. 4 we plot, for each dipolar, brain-based IC, the ratio of variance accounted
for in the whole EEG and MEG signals (EEG pvaf /MEG pvaf) as a function of the
angle from radial of the EEG equivalent dipole. Relative variance explained by the
MEG portion of ICs is reduced 20-fold as the best fit dipole angle approaches a
radial direction, and is close to 1:1 for tangential dipoles, in accordance with
general expectations, and more specifically with expectations that the MEG
component of a radial source dipole in a real head should be about 5–10 % of that
to a tangential source dipole (Ahlfors et al. 2010; Menninghaus and Lütkenhöner
1995).
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Fig. 3 Results of the MEEG data joint independent component decomposition. Joint independent
component (IC) topographies representing the projection patterns of individual ICs to the EEG
(upper map) and MEG (lower map) sensor arrays as viewed from above the head. Each IC is
represented by a vertical pair of EEG and MEG topographies. Numbers above each sensor map
indicate percentage of (EEG or MEG) data variance explained (pvaf, percent variance accounted
for); in brackets, the residual variance of the equivalent dipole fit to the scalp map (shown as a
black dot and line on the maps), and the angle (relative to radial of a best-fit sphere) of the
equivalent dipole. Depicted non-brain (top two rows of four ICs) and brain (bottom two rows) ICs
are the 16 (of 324) accounting for most signal variance in each category. The non-brain component
processes account for eye blinks, cardiographic sources (50-Hz) line noise, and scalp muscle
activity, as labeled. The pair of MEG and EEG scalp maps for most components are near
orthogonal, consistent with a single cortical or non-brain source. This holds for brain ICs having
more tangential EEG topographies and equivalent dipoles, while (as expected) dipoles with a near-
radial EEG maps and equivalent dipoles have weak (low-pvaf), and less dipolar MEG projections
(i.e., single equivalent dipole model for these MEG scalp maps have higher residual variance)
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4 Conclusions

For EEG (Makeig et al. 1996), fMRI (McKeown et al. 1998), MEG (Ikeda and
Toyama 2000), ECoG (Whitmer et al. 2010), and other biomedical data modali-
ties, ICA has become a widely accepted approach that provides a powerful method
for identifying and separating out separate information sources in multichannel
data each of whose channel signals sums activity from more than one (often, not
directly recorded) source.

Here we have demonstrated that ICA may at least complement other methods
for jointly analyzing simultaneously recorded EEG and MEG data (Dale and
Sereno 1993; Fuchs et al. 1998; Huang et al. 2007; Takada et al. 2000; Trujillo-
Barreto et al. 2008). Its benefits may include improved source localization due to
the recovery of dipole-like components with small source projections. Near-radial
sources appear as those with poorly defined MEG projections, and may be better
located by inverting their simultaneously recorded and subsequently ICA-recov-
ered electrical correlate. In addition, MEEG decomposition by ICA gives direct
information on the relative scaling of MEG and EEG signals projected by cortical
(and other) data sources. ICA decomposition of MEEG data should also allow
principled examination of claims that MEG and EEG sources may sometimes have
different spatial distributions. If and when this were the case, some class or classes
of independent component processes returned by ICA applied to MEEG data
should have very little EEG or MEG power. Here we showed that in our sample

Fig. 4 Ratios of relative EEG/MEG strengths (as ratio of the percentages of MEG and EEG
signal variance accounted for, on a log scale) for returned independent MEEG components with
near-dipolar scalp maps (less than 20 % residual variance of the single equivalent dipole model in
at least one of the modalities), as a function of the deviation of the angle from radial of the EEG-
map equivalent dipole. Note the expected dominance of the EEG current projections, relative to
the MEG field projections, of the ICA identified near-radial sources. Best fit line (R2 = 0.31) has
an EEG /MEG ratio of 18.2 for a radial source, and 1.06 for a tangential source
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data set the latter was the case for EEG processes with a net radial orientation, as
expected from theory.

We believe the EEGLAB environment, now augmented with the MEEG plug-in
incorporating several data loading and handling functions from Fieldtrip, as well
as custom handling of the MEEG data within EEGLAB, is suitable for performing
a range of custom MEG data analyses using available EEGLAB tools and its
growing family of plug-in toolboxes. For students and researchers exploring new
data sets, the EEGLAB GUI and palette of data visualization methods offers a
ready way to explore data features and data quality, while its core support for data
decomposition by advanced ICA methods including AMICA, and further analyses
using the IC component basis, provide a powerful platform for information- and
biophysics-based data modeling and statistical testing of experimental hypotheses.
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Fusing Concurrent EEG and fMRI
Intrinsic Networks

David Bridwell and Vince Calhoun

Abstract Different imaging modalities are sensitive to different aspects of brain
activity, and integrating information from multiple modalities can provide an
improved picture of brain dynamics. Electroencephalography (EEG) and func-
tional Magnetic Resonance Imaging (fMRI) are often integrated since they make
up for each other’s limitations. FMRI can reveal localized intrinsic networks
whose BOLD signals have periods from 100 s to about 10 s. EEG recordings, in
contrast, reflect cortical electrical fluctuations with periods up to 20 ms or higher.
The following chapter surveys the physiological differences between EEG and
fMRI recordings and the implications and results of their integration. EEG-fMRI
findings are reviewed in cases where individuals do not participate in an explicit
task (e.g. during ‘‘rest’’). The results are discussed in the context of different
methodological approaches to EEG-fMRI integration, including correlation and
GLM-based analysis, and ICA decomposition of group EEG-fMRI datasets. The
resulting EEG-fMRI networks capture a broader range of brain dynamics com-
pared to EEG or fMRI alone, and can serve as a reference for studies integrating
MEG and fMRI.
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1 Introduction and Motivation

Brain networks operate over a broad range of spatial and temporal scales. Our
ability to capture brain network activity is limited by the spatial and temporal
resolution of the tools that are available. The most common non-invasive imaging
modalities are blood oxygenation level dependent (BOLD) functional magnetic
resonance imaging (fMRI), magnetoencephalography (MEG), and electroen-
cephalography (EEG). Each of these modalities provide a distinct, but limited,
window onto brain network activity. Researchers are therefore interested in inte-
grating information obtained from these different modalities in order to obtain a
more detailed picture of true underlying brain dynamics.

The following chapter addresses some of the motivations, methodology, diffi-
culties, and results of integrating EEG and fMRI. EEG and fMRI are widely used
for multimodal integration since they make up for each other’s spatial and tem-
poral limitations. EEG is sensitive to temporal dynamics on the millisecond
timescale, but has very limited spatial resolution. FMRI, in contrast, is sensitive to
spatial differences on the order of millimeters, but can only capture temporal
changes on the order of seconds. MEG provides comparable spatial and temporal
resolution to EEG with the additional advantage that magnetic source activity is
not spatially filtered by the volume conduction properties of the scalp, skull and
brain. In addition, EEG and MEG are each sensitive to activity at comparable
spatial scales, or volumes of cortex. However, MEG, due to the direction of
magnetic field lines, is preferentially sensitive to cortical activity oriented tan-
gential (or sulcal) to the scalp, while EEG is preferentially sensitive to radial (or
gyral) activity (Cohen and Cuffin 1983). EEG and MEG each provide relatively
distinct measures of cortical source activity. This motivates methodological
approaches that can integrate information both between EEG-fMRI and between
MEG-fMRI.

In addition to their complementary spatial and temporal sensitivities, fMRI and
EEG differ in terms of the aspects of neural activity that they are most sensitive.
EEG is sensitive to synchronous neural electrical potentials primarily along cor-
tical gyri (Cohen and Cuffin 1983). BOLD fMRI, in contrast, is sensitive to neural
metabolic processes via its coupling with changes in local blood oxygenation.
EEG therefore provides a measure of neural activity directly along the cortical
surface while fMRI provides an indirect measure of neural activity throughout the
entire brain.

The different spatiotemporal and neural sensitivities of fMRI and EEG raise
caution in assuming a direct one to one correspondence between the two. It is a
strong assumption that fMRI responses represent the spatial location of the
observed EEG directly, or that EEG responses directly reflect the temporal
dynamics of responsive fMRI spatial locations. Instead EEG and fMRI are sen-
sitive to the different aspects of neural activity that operate over their respective
temporal and spatial scales. EEG may reflect the activity within only a subset of
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activated voxels, or EEG may reflect the activity within brain networks that covary
in a complex manner with fMRI networks.

Different analysis approaches impose different assumptions on the relationship
between EEG and fMRI. One line of research assumes a direct relationship
between them, for example, by constraining EEG sources or inverse solutions to
BOLD fMRI activations or structural MRI locations within radially oriented
cortical gyri (e.g. Ahlfors and Simpson 2004; Lin et al. 2005). Alternatively,
another line of research focuses on common temporal modulations within each
modality irrespective of their spatial overlap. In this instance, fMRI voxels may be
associated with EEG responses measured anywhere over the scalp, and vice versa.
The linked EEG-fMRI responses reveal brain networks that overlap after incor-
porating the broader range of spatial and temporal scales available within each
modality (Siegel et al. 2012).

2 Physiological Considerations in EEG-fMRI

The sections below provide a broad overview of the physiology underlying EEG
and BOLD fMRI responses. These physiological differences are an important
consideration in EEG-fMRI study design and in the subsequent approach to EEG-
fMRI analysis. The differences also provide important context for interpretation of
the EEG-fMRI findings reviewed in the sections of the chapter that follow.

2.1 The Neural Basis of EEG

The first human EEG recordings were reported by Berger (1929) in his seminal
paper. His initial observations were met with skepticism within the scientific
community, and even Berger himself was wary of the findings. The initial skep-
ticism was rightfully warranted, as it is difficult to imagine that small changes in
brain activity would propagate through the head, generating measurable electrical
potentials on the surface of the scalp.

EEG measures micro-volt differences in scalp electric potentials that emerge
from the aggregate activity of a large number of cortical pyramidal neurons.
Synaptic inputs to pyramidal cells generate small sources and sinks along the cell
membrane. These sources and sinks are space averaged over cortical areas that
approximate the size of cortical columns. Pyramidal neurons are aligned parallel to
each other along the cortex, forming a patch of neural tissue that approximates a
dipole moment vector or more realistically, a dipole layer. Scalp EEG is thought to
reflect the average extracellular current generated from these pyramidal synaptic
potentials. In order for the current to propagate to the scalp the net charge of an
individual patch of tissue must be oriented perpendicular to the scalp, and must not
be completely canceled out by opposing charges within neighboring tissues.
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A single EEG electrode reflects dynamic fluctuations in neural activity over an at
least cm2 sized patch of cortex.1 EEG responses can be distinguished as ‘‘local’’ or
‘‘global’’ by comparing the raw cortical potential with its spatially filtered repre-
sentation (e.g. with surface Laplacian or current source density (CSD) analysis).
Local sources are located underneath the electrode and are consistent with the
assumption of a single dipole source. Global sources are present over many
electrodes, correspond to either large areas of cortical activation or deep sources,
and are inconsistent with the dipole assumptions of source localization (Nunez
2000; Srinivasan 2005).

Currents move in opposite directions at any given moment along certain
locations of the scalp, forming sources and sinks. The overall current moving
perpendicular in one direction along the scalp equals the current moving in the
other direction. The movement of currents, and the spatial location of source and
sinks, depends on the skull conductivity. Skull conductivity differs across the head
due to differences in skull thickness and the nature of the bone tissue. Thus, scalp
sources and sinks are more likely to appear over the locations with increased skull
conductivity (Chauveau et al. 2004; Cuffin 1993; Nunez and Srinivasan 2006).
These locations may not directly overlap with the location of cortical activity.

EEG responses reflect cortical potentials conducted through cerebrospinal fluid
(CSF), the skull, and the scalp. The resistivity of these tissues contributes to the
volume conduction properties of the head, effectively forming a head transfer
function (Nunez and Srinivasan 2006). Theoretical studies suggest that these
volume conduction properties emphasize large dipole layers over small dipole
layers (Srinivasan et al. 1996). This low-pass spatial filtering property of the head
effectively acts as a low-pass temporal filter as well, since larger areas of activation
are associated with greater transmission delays and increased transmission delays
render it difficult to sustain high frequency oscillations (e.g. within gamma band
responses appearing at 40 Hz and above). Thus, low frequency EEG responses
between 1–12 Hz (e.g. incorporating the delta, theta, and alpha bands) are often
global or widespread (Nunez and Srinivasan 2006).

In summary, it should be clear that there are a number of nuances to consider
along with the statement that ‘‘EEG reflects synchronous cortical electrical fluc-
tuations’’. Notable nuances include the orientation of the cortical source, the
degree in which cortical sources are cancelled out by neighboring tissues, the
distance between the cortex and the electrode, and the choice of reference. In
addition, the spatial location of EEG is influenced by differences in electrical
conductivity over the skull, and the observed potentials reflect a low-pass spatially
(and temporal) filtered representation of the underlying cortical sources. Some of
these issues with EEG are absent in MEG recordings, and are thus an important
consideration when comparing findings from EEG-fMRI and MEG-fMRI.

1 Note that the voltage at a single electrode reflects the difference in potential between that
electrode and a reference electrode. The electrode is commonly re-referenced to the average of all
electrodes.
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2.2 The Neural Basis of BOLD fMRI

Increases in neural activity within a particular brain area result in increased blood
flow to that same area. For example, tapping your finger for a few seconds will
result in increased blood volume within vessels that supply the motor cortex. The
enhanced blood flow response carries oxygen to the activated neural tissue,
although the amount of oxygen available to the tissues exceeds the tissues needs. It
has been said that the excessive increase in blood volume is akin to a gardener
‘‘watering the entire garden for the sake of one thirsty flower’’ (Malonek and
Grinvald 1996).

The mechanism and function of the large increase in blood flow is a topic of
ongoing research. One hypothesis is that the large increase in blood flow may help
maintain a constant tissue oxygen pressure (pO2) (Buxton 2010). This hypothesis
emphasizes the importance of pO2 in oxygen metabolism, which is interesting in
light of the observation that tissue pO2 appears to approximate the level of pO2 in
the atmosphere when oxygen metabolism first arose on earth. Regardless of the
functional role, however, there is no debate that the large increase in blood flow is
fortuitous, since it is a phenomenon on which the majority of functional neuro-
imaging studies are based.

Blood oxygenation levels serve as a proxy for underlying changes in neural
activity. The relationship between neural activity and blood oxygenation is com-
plex and indirect. Neural activity leads to an increase in cerebral oxygen metab-
olism (CMRO2) and an increase in cerebral blood flow (CBF). These two effects
contribute to the measured fMRI response in opposite ways. A sudden increase in
oxygen metabolism leads to a decrease in oxygenated hemoglobin, which, due to
its magnetic properties, disrupts the magnetic field and reduces the BOLD fMRI
response. The increase in CBF replaces deoxygenated hemoglobin with oxygen-
ated hemoglobin, which reduces the magnetic field distortion and contributes to
increased fMRI responses.2 The neural mechanisms that lead to decreased CMRO2

may differ somewhat from the mechanisms that lead to increased CBF. Relatedly,
the ratio of CMRO2 and CBF changes can differ within the same brain area across
subjects, across brain areas within a single subject, and even within the same brain
area in response to different stimuli. This means that the observed percent signal
change can differ in situations where neural activity is the same (for a review see
Buxton 2010).

The BOLD response is most sensitive to aspects of neural activity that are
associated with increased aerobic metabolism. Attwell and Laughlin (2001) esti-
mate that the majority of the brain’s energy is devoted to restoring postsynaptic ion
gradients. This supports the notion that BOLD fMRI more closely reflects synaptic
integration than neural spike rate, as demonstrated empirically by stronger cor-
relations between BOLD fMRI and the local field potential (LFP) than with

2 The term ‘‘BOLD’’ is not technically accurate since the response depends upon deoxygenated
hemoglobin.
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microelectrode measures of spiking activity (Logothetis et al. 2001) (for excep-
tions see Ekstrom 2010). The sensitivity to synaptic integration means that the
BOLD signal is sensitive to inputs to a particular area, without directly depending
upon whether or not those inputs were effective at generating spikes (i.e. outputs)
to other areas.

In addition, the observed BOLD response can be conceptualized as the neural
metabolic process convolved with a hemodynamic response function (HRF). The
HRF filter peaks about *6 s following the onset of the initial neural/metabolic
event. The *6 s delay accounts for the sluggishness of blood flow changes in
response to neural activity. It is this delay, and the limited sampling rate of fMRI,
that contribute to the reduced temporal resolution of fMRI recordings.

2.3 Physiological Overlap Between EEG-fMRI

The finding that EEG and fMRI are sensitive to different aspects of neural activity
does not make EEG-fMRI integration a futile endeavor. Instead, if EEG and fMRI
completely overlapped in their neural and spatiotemporal sensitivities then their
integration would be redundant and pointless. Instead, linking the two provides an
improved window onto the brain’s spatiotemporal dynamics by incorporating their
non-overlapping range of spatial and temporal sensitivities. The resulting EEG-
fMRI networks indicate that synaptic activity changes (coupled with metabolism
and blood flow) at fMRI spatial locations are related to synchronous cortical
potentials (from pyramidal cells) at certain EEG frequencies.

EEG and fMRI have many important commonalities. The sensitivity of fMRI to
synaptic metabolism overlaps well with the sensitivity of EEG to synchronous
cortical potentials. For example, both EEG and fMRI appear to overlap more with
the low frequency spectrum of multi-unit activity (e.g. up to 250 Hz) compared to
the high frequency spectrum (e.g. from 500–1,000 Hz). The low frequency
spectrum (i.e. the local field potential or LFP) is thought to represent integrative
perisynaptic processes, while the high frequency spectrum reflects ‘‘multi-unit’’
spiking activity. The processes generating LFP’s thus overlap with the processes
generating EEG and the metabolic processes thought to drive BOLD fMRI (for
reviews see Heeger and Ress 2002; Logothetis 2008) (for exceptions see Ekstrom
2010). However, the direct relation between fMRI and LFP’s is less straightfor-
ward since spiking activity is often correlated with both fMRI and LFP’s. This
association is strengthened by cases where correspondence is observed between
fMRI and LFP in the absence of spiking activity. Similar correspondence (e.g.
between spiking activity and fMRI in the absence of LFP’s) is rarely observed
(Goense and Logothetis 2008; Logothetis et al. 2001). With regards to EEG, the
physiologically interesting frequencies observed in LFP’s overlap reasonably well
with the frequencies commonly studied in EEG. For example, the characteristics of
the alpha frequency band (e.g. 8–12 Hz) have also been examined in visual LFP
recordings (Bollimunta et al. 2011; Mo et al. 2011).
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An additional similarity between EEG and fMRI is that they are sensitive to
responses that occur over similar volumes of brain tissue. It has been estimated
that at least a cm2 cortex must be synchronously active to generate electrical
activity observable on the scalp (Nunez and Srinivasan 2006). This volume of
cortex overlaps pretty well with the size of fMRI voxels, which typically range
from about 27 to 64 mm3. The voxels are subsequently smoothed with their
neighbors in order to enhance the signal to noise ratio (SNR) of fMRI responses.
This smoothing also brings a closer correspondence between the effective volume
of fMRI voxels and the minimum volume of cortex for EEG. In either case
however, EEG and fMRI each represent an aggregate measure of activity from the
collective dynamics that emerge from millions of neurons (Fig. 1).

The aggregate window on brain activity provided by EEG and fMRI likely
contributes to their utility in understanding cognition and perception. For example,
cognition and perception are thought to emerge from the dynamic interactions
between multiple brain areas (Siegel et al. 2012; Varela et al. 2001). These
dynamic interactions likely overlap within the timescales of EEG, in the sense that
the timescale of changes in our perceptual experience overlaps well with the
timescales of fluctuations in EEG. EEG, for example, can separate the early visual
response to sensory inputs from the subsequent visual response to the same input
following reciprocal interactions with other brain areas (Lamme and Roelfsema
2000). FMRI provides a limited picture of these aspects of neural dynamics.
However, fMRI is capable of measuring neural responses throughout the whole
brain, providing a window on the brain areas that integrate together over second-
by-second time scales.

Synchronization directly contributes to EEG and likely comprises synaptic
integration processes that contribute to fMRI. The sensitivity of each measure to

Fig. 1 EEG and fMRI are each primarily sensitive to synaptic activity. The factors that
contribute to the non-overlap between EEG and fMRI are listed on top
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synaptic integration suggests that they also provide an aggregate measure of neural
excitability, since neural excitability appears to coincide with the phase of syn-
chronous activity (Klimesch et al. 2007). These coordinated bursts of activity help
ensure that neurons influence other brain areas in a coordinated, efficient manner.
Thus, the spatiotemporal scales and neural sensitivities of EEG and fMRI appear
relevant to understand the brain’s integrative processes guiding cognition and
perception.

3 Approaches to EEG-fMRI Integration

We now turn our focus to different approaches that have been utilized to integrate
EEG and fMRI, and review the findings revealed through each approach. Asso-
ciations between the two modalities time courses are considered, as examined by
correlation or general linear modeling (GLM) of the time courses, by deconvo-
lution of the EEG and fMRI time courses, or by independent component analysis
(ICA) of multi-subject EEG and fMRI datasets. These approaches are insensitive
to whether there is a direct causal relationship between EEG and fMRI. Thus, there
is no implicit assumption that EEG reflects a measure of the neural activity that
contributes directly to the BOLD fMRI response.

3.1 Overview of Correlation and GLM Based Findings

The most straightforward approach to integrating concurrent EEG and fMRI is by
either correlating the time courses or by including the EEG time course as a
predictor in a general linear model (GLM) analysis. In either case, the EEG time
course is divided into non-overlapping epochs and converted to its frequency
representation (e.g. by Fourier analysis), returning complex valued coefficients for
each frequency and epoch. The coefficients are absolute valued, returning the
amplitude of each frequency within a given epoch. The EEG epochs are chosen
such that each amplitude value (within a given frequency) corresponds in time to a
concurrently recorded fMRI acquisition. Broadly, this approach examines whether
fluctuations within a given EEG frequency are related to fluctuations within a
given fMRI voxel.

Temporal delays between the EEG and fMRI time courses are not directly
accounted for in traditional correlation or general linear model (GLM) analysis,
since they focus on the instantaneous relationship between variables. Therefore,
the delay in the hemodynamic response must be accounted for prior to analysis.
The characteristics of the hemodynamic delay are well described by the hemo-
dynamic response function (HRF) (for review see Buxton et al. 2004). The
assumption is that the BOLD fMRI response reflects a low-pass delayed repre-
sentation of the underlying neural activity. The characteristics of the filter are
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incorporated within the HRF shape. For example, the HRF peaks at a delay of
*6 s, which reflects the delayed increase in blood oxygenation following neural/
metabolic events. The low-pass characteristic of the filter incorporates the tem-
poral smearing that results from sluggish hemodynamics. These properties are
accounted for by either convolving the EEG time course with the canonical HRF,
or by deconvolving the fMRI time course with the canonical HRF.

The initial EEG-fMRI studies focused on correlations between individual fMRI
voxel time courses and the amplitude time course of EEG frequencies. This
approach can generate an unmanageable number of statistical comparisons if
univariate tests are conducted separately for each of thousands of fMRI voxels and
for dozens of EEG electrodes and frequency bands. The number of statistical
comparisons is typically reduced by focusing a priori on a subset of EEG fre-
quency bands and/or on a subset of fMRI regions of interest (i.e. ROIs). Data
decomposition approaches have also been quite successful at reducing the data to a
few underlying sources (Eichele et al. 2009).

Initial EEG-fMRI studies focused on fMRI responses associated with the EEG
alpha band (e.g. 8–12 Hz). The emphasis on the alpha band was motivated by its
robust presence in individual recordings; alpha activity can be observed by an
untrained experimenter in unprocessed EEG. The robust presence of alpha activity
is particularly important in concurrent EEG-fMRI since the scanner environment
introduces substantial artifacts in the EEG (for review see Ritter and Villringer
2006). The salience of alpha activity in EEG recordings likely contributes to their
‘‘salience’’ in the EEG literature, as decades of research have been conducted on
the generators and characteristics of the EEG alpha rhythm. It was appropriate that
the first EEG-fMRI studies focused on the alpha band as well.

Alpha oscillations appear predominantly over occipital electrodes and dem-
onstrate a robust increase when individuals close their eyes, are drowsy, or engage
in mental arithmetic (Klimesch et al. 2007). These tasks involve a lesser degree of
visual cortical activity, thus, increased occipital alpha activity is thought to reflect
cortical inactivity. This inactivity reduces the ability of visual areas to influence
areas of the brain that support current cognitions or tasks. For example, increases
in alpha activity are associated with reduced resting-state connectivity between
early visual areas and the rest of the brain (Scheeringa et al. 2012). Increased
visual inactivity is also synonymous with increased synchrony across visual areas,
increased dependence across areas, and an overall reduction in visual complexity
(Edelman and Tononi 2000). These processes are also likely associated with
reduced cortical metabolism, and the sensitivity of BOLD fMRI to metabolic
processes allowed the unique ability to test this theory.

Early EEG-fMRI studies have indeed demonstrated negative relationships
between alpha activity and occipital, parietal, temporal, and fontal fMRI responses
(Bridwell et al. 2013; de Munck et al. 2009; Goldman et al. 2002; Laufs et al.
2003; Sadaghiani et al. 2010; Scheeringa et al. 2011), and positive relationships
between alpha and the thalamus (Bridwell et al. 2013; de Munck et al. 2009;
Goldman et al. 2002). The negative correlation is consistent with the idea that
increased alpha activity reflects reduced cortical metabolism and a subsequent

Fusing Concurrent EEG and fMRI Intrinsic Networks 221



reduction in the BOLD fMRI response. Equivalently, increased metabolism is
associated with increased fMRI responses and a reduction in alpha. This inter-
pretation was further supported by Moosmann et al. (2003) by demonstrating a
negative relationship between changes in deoxy hemoglobin (measured by near-
infrared spectroscopy (NIRS)) and alpha EEG. The main findings from selected
‘‘resting-state’’ EEG-fMRI studies are demonstrated in Table 1. The majority of
studies demonstrate a negative relationship between fMRI and EEG alpha activity.
Thus, this finding is one of the most consistent and reproduced findings in the
EEG-fMRI literature. It can serve as a useful ‘‘sanity check’’ in EEG-fMRI.

Table 1 Main findings from select EEG-fMRI studies

Study Rest Frequencies
examined (Hz)

Source
separation

Main findings

Goldman et al.
(2002)

Yes (EC: eyes
closed)

Alpha (8–12) No (fMRI) - with alpha (occipital,
temporal, frontal)

No (EEG) + with alpha (thalamus)
Laufs et al.

(2003)
Yes (EC) Alpha (8–12) No (fMRI) - with alpha (parietal and

frontal)
Beta (17–23) No (EEG) + with beta

Mantini et al.
(2007)

Yes (EC) Delta (1–4) Yes (fMRI) + with multiple frequencies

Theta (4–8) No (EEG)
Alpha (8–13)
Beta (13–30)
Gamma (30–50)

Sammer et al.
(2007)

No (mental
arithmetic)

Theta (3.5–7.5) No (fMRI) + with theta

Yes (EEG)
Scheeringa et al.

(2008)
Yes (EO: eyes

open)
Delta No (fMRI) - with delta/theta (‘‘resting

state networks’’)
Theta Yes (EEG)

de Munck et al.
(2009)

Yes (EC) Delta (0.1–4) No (fMRI) - with alpha (occipital,
parietal)

Theta (4.5–8) No (EEG) + with alpha (thalamic)
Alpha (8.5–12)
Beta (12.5–36)
Gamma (36.5–100)

Sadaghiani et al.
(2010)

Yes All (1–30) No (fMRI) - with alpha1 and beta1
(dorsal attn. network)

No (EEG) + with alpha2 and beta2
(alertness network)

Scheeringa et al.
(2011)

No (attention
task)

All (2.5–120) No (fMRI) - with alpha and beta

Yes (EEG) + With gamma
Bridwell et al.

(2013)
Yes (EO+EC) All (1–35) Yes (fMRI) - with alpha3, alpha4, beta1

Yes (EEG) + with delta, theta, beta2,
gamma
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3.2 Background and Advantages of ICA in EEG-fMRI

One of the most difficult challenges in multimodal integration is extracting
meaningful information from high dimensional datasets. BOLD fMRI responses
are obtained within tens of thousands of voxels and each EEG epoch contains
information within multiple frequency bands over dozens of electrodes. Integrating
the EEG channel by frequency information with the fMRI voxel information with
the traditional correlation or GLM approach ignores the rich structure within each
dataset, is computationally demanding, and generates an unmanageable number of
statistical comparisons. These limitations can be alleviated with blind source
separation (BSS) approaches such as spectral ICA (Bridwell et al. 2013; Wu et al.
2010), principle component analysis (PCA), and temporal ICA (for a review see
Makeig et al. 2004), as well as semi-BSS approaches such as functional source
separation (FSS) (Porcaro et al. 2010, 2011). These approaches decompose each
observation as the linear sum of a small number of underlying sources.

Among the data decomposition techniques described above, spatial ICA has
demonstrated to be particularly informative and useful in fMRI analysis. For
example, ICA (implemented with the Infomax algorithm) can emphasize sparse
independent spatial fMRI maps, which aligns with the assumption that cognitive
activation is sparse and distributed, and with the sparse and spatially specific
nature of cardiac and motion artifacts (McKeown et al. 1998). Temporal ICA is
commonly utilized for EEG data, and the assumptions for temporal ICA align well
with the theoretical generation of EEG. For example, the decomposition of a time
course as a linear sum of independent temporal sources aligns well with the
assumption that the response at a single electrode reflects a linear mixture of
independent scalp sources3 (for review see Makeig et al. 2004). ICA can also be
conducted on EEG spectra, revealing spectral sources that peak within charac-
teristic EEG frequency bands (Bridwell et al. 2013).

BSS approaches are particularly advantageous when EEG and/or fMRI are
measured in the absence of an explicit task. For example, BSS algorithms such as
ICA utilize the inherent structure in the data to extract underlying spatiotemporal
activity patterns. These coherent patterns of activity likely result from activity
within somewhat distinct brain modes or sources. The coherent nature of unique
modes or sources suggests that they may also be described as distinct brain
networks. The unique networks observed with ICA may demonstrate functionally
distinct properties. For example, ‘‘resting-state’’ ICA can reveal sources which
overlap with brain areas with greater activation during ‘‘internal’’ mental states
(e.g. the so-called ‘‘default mode’’ areas). Other sources overlap with brain areas
with greater activation during ‘‘external’’ attentive states (Corbetta et al. 2008). Of
course, it is difficult or impossible to infer the functional role of networks that are

3 ‘‘Sources’’ here refers to the independent sources estimated through ICA. These sources are
different from the cortical ‘‘equivalent dipole sources’’ thought to generate EEG.
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present in the absence of explicit tasks since the individuals’ cognitions are
unknown to the experimenter.

ICA is routinely used to extract independent spatial fMRI sources to link with
concurrent EEG (for a review see Eichele et al. 2009). EEG is then associated with
temporal fluctuations in fMRI spatial sources, rather than individual voxels or
clusters. This is advantageous since it separates the voxel response at each point in
time by the separate contribution of multiple independent sources. However, only
a few EEG-fMRI studies have additionally conducted ICA on the EEG (Bridwell
et al. 2013; Eichele et al. 2009; Wu et al. 2010). Thus, BOLD fMRI sources are
often linked with EEG spectral information that potentially contains the combined
contribution of multiple sources with overlapping frequency bands and spatial
locations. A spectral EEG decomposition (with ICA) may reveal sources with
distinct peaks that correspond to the traditional EEG frequency bands. This data-
driven approach can validate the presence of distinct EEG frequency bands,
improving the ability to link fMRI with EEG activity within each band.

It can be particularly important to decompose EEG spectra within the alpha
band, as previous studies demonstrate that it contains the combined contribution of
multiple distinct networks which may overlap spectrally and/or spatially. The
8–12 Hz alpha band has been subdivided by its upper and lower frequencies, and
overlaps in frequency with the central mu rhythm. These different alpha sources
demonstrate distinct spatial topographies, spectral peaks, and/or sensitivities to
experimental manipulation (Niedermeyer 1997; Nunez et al. 2001), and the
average 8–12 Hz activity represents the combined contribution of these multiple
independent sources. The presence of multiple sources with overlapping spectral
characteristics is also suggested by the difficulty indentifying the boundaries
between EEG frequency bands within the average EEG spectrum and the presence
of high correlations between the different frequency bands (de Munck et al. 2009;
Mantini et al. 2007).

Conducting an independent group ICA within each modality can provide an
improved measure of fMRI or EEG network activity while also helping to
incorporate as much information as possible within each modality. The approach
reduces the need to restrict the analysis to only a subset of fMRI networks (e.g. the
default mode), or to restrict analysis to a subset of EEG electrodes or frequencies.
An important consequence of this restriction is that it helps guarantee the fre-
quency specificity of the results. Consider the negative relationship between alpha
EEG and fMRI as an example. The demonstration of this relationship can be
strengthened by demonstrating that similar relationships do not exist for other EEG
frequency bands. For example, fluctuations in the alpha band likely reflect both
broad fluctuations in the EEG spectral baseline, as well as fluctuations specific to
the alpha band. This possibility can be directly addressed by including additional
frequencies as covariates in a GLM (de Munck et al. 2009) or multiple linear
regression (e.g. PPI) (Scheeringa et al. 2012), by reporting results obtained sep-
arately for multiple frequencies, and/or by extracting frequency specific sources
with blind source separation (Bridwell et al. 2013; Scheeringa et al. 2008, 2011).
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In either case, considering multiple frequency bands helps acknowledge the full
constellation of fMRI and EEG networks that may be present at any given moment
(Mantini et al. 2007; Siegel et al. 2012).

3.3 Multi-subject Extensions of ICA

ICA can extract spatiotemporal patterns within EEG or fMRI data when indi-
viduals are not engaged in an explicit task (i.e. ‘‘during rest’’). Generalization of
these results across subjects can be more challenging with ICA than a traditional
GLM analysis. For example, GLM analysis can be conducted on fMRI data for
each individual subject and the beta weight associated with the experimental time
course is utilized as an independent observation in the second level group analysis.
Generalization across subjects is straightforward since beta weights can corre-
spond to the same experimental condition across all subjects. ICA decomposes the
multivariate fMRI data into a set of independent spatial sources and their asso-
ciated time courses. Thus, ICA essentially estimates the unknown time courses of
functionally distinct spatial maps (in accordance with the assumptions of the ICA
algorithm) (Fig. 2). Researchers are then faced with the challenge of pairing up
common sources across individuals. This problem can be addressed by incorpo-
rating information from multiple subjects within a single ICA decomposition, and
then examining the subject specific parts (Beckmann and Smith 2005; Calhoun
et al. 2001; Esposito et al. 2005; Guo and Pagnoni 2008; Schmithorst and Holland

Fig. 2 Comparing the GLM and ICA for fMRI. The GLM estimates the contribution of each

modeled time course to the observed data by deriving beta (b̂), the ‘‘activation map’’. ICA models
the observed data as a linear mixture of underlying spatially independent sources S (Adapted from
Calhoun et al. 2009)
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2004). We focus here on the group ICA technique implemented in Calhoun et al.
(2001) and in the GIFT software package (http://mialab.mrn.org/software/gift/).

The typical ICA model assumes that each observation can be described as a
linear mixture of independent sources. This can be demonstrated in an example
with two observations represented by X ¼ x1; x2ð ÞT , begin generated from the
following model:

X ¼ AS:

S ¼ s1; s2ð ÞT is the estimated sources and A is the estimated mixing matrix. The
mixing matrix describes the contribution of each source at each observation. ICA
estimates the matrix inverse of A, which is denoted as the unmixing matrix W. The
unmixing matrix applies a spatial transformation of the observations to arrive at
the estimated sources:

Y ¼ WX;

which approximates the ‘true’ sources S. ICA algorithms can emphasize the
normality, independence, and complexity of the derived sources when estimating
the unmixing matrix. For example, the infomax ICA algorithm iteratively changes
the unmixing matrix in order to maximize the entropy of the estimated sources,
which also maximizes their independence (Bell and Sejnowski 1995). Further
details on ICA algorithms can be found in Stone (2004) and Hyvarinen et al.
(2001).

Group ICA extends the ICA implementation described above in order to
decompose data from multiple subjects. Group ICA estimates group sources based
upon the aggregate group data and enables evaluation of individual subject dif-
ferences via individual back-reconstructed components (Beckmann and Smith
2005; Calhoun et al. 2001; Erhardt et al. 2011). The individual data Xi is first
compressed through principle components analysis (PCA), as expressed by:

Yi ¼ F�1
i Xi:

F�1
i is the reducing matrix derived from PCA for subject i. The reduced data from

M subjects is concatenated in order to form an aggregate group matrix which, in
the case of fMRI, is time�M½ � by voxels½ �. The aggregate group matrix is com-
pressed with PCA into the number of desired group components:

Y ¼ G�1
F�1

1 X1

. . .
F�1

M X

2
4

3
5:

The reducing matrix G�1 is a components by time�M½ �½ � matrix derived from
PCA. The resulting matrix Y is decomposed through ICA (e.g. Y ¼ ÂŜ) in order to

226 D. Bridwell and V. Calhoun

http://mialab.mrn.org/software/gift/


derive the component by voxel½ � matrix of group sources Ŝ. The individual subject
loadings (i.e. time courses for spatial ICA) are derived by matrix multiplication of
the individual partition of the PCA reducing matrix Fi by the individual partition
of the aggregate reducing matrix Gi and Â (Calhoun and Adali 2012; Calhoun et al.
2001; Erhardt et al. 2011).

The group ICA steps described above implement ICA on a data matrix con-
taining the aggregate data from all of the subjects. Spatial group ICA is commonly
applied to fMRI data. In this instance the data are concatenated temporally such
that each column corresponds to the same spatial location across subjects. This
approach assumes common aggregate spatial maps across subjects while allowing
flexibility in the estimated time courses for each subject.

3.4 Group ICA Applied to EEG and fMRI

Spatial group ICA has been particularly effective with fMRI data collected in the
absence of tasks (for review see Calhoun et al. 2009), or in cases where the
experimental models may not necessarily be known in advance (Calhoun et al.
2002). Group ICA has recently been extended to time-locked EEG (i.e. event-
related potentials (ERPs)) analysis during tasks (Eichele et al. 2011) and spatio-
spectral EEG during rest. For example, Bridwell et al. (2013) decomposed 2D
frequency by channel spectral maps into a set of group frequency by channel
sources. The incorporation of frequency and channel information ensures that the
decomposition utilizes as much of the data as possible, without restricting analysis
to a single frequency band or electrode. The group sources correspond well with
the characteristic frequency bands in EEG, and the temporal modulation of the
group source is conceptually similar to the envelope of the response within the
particular frequency band.

Group ICA can be conducted independently on EEG data and fMRI data col-
lected concurrently. The data matrices are constructed so that the temporal mod-
ulations of the fMRI sources correspond in time with the temporal modulations of
the concurrent EEG sources. EEG and fMRI can then be linked by focusing on
relationships between the modulations within the two time courses. For example,
the time courses may be correlated with each other after convolving the EEG time
course with the canonical HRF or deconvolving the fMRI time course with a
canonical HRF. This approach is less than optimal, however, as deviations in the
assumption of a fixed HRF can reduce the sensitivity to instantaneous covariations
between each modality. These assumptions can be relaxed by deconvolving the
fMRI time course against the EEG time course, generating an estimated impulse
response function (IRF). This approach treats the fMRI response as the output of
the EEG response convolved with the unknown estimated filter (de Munck et al.
2009). If the neural activity measured with EEG overlaps with the neural activity
that contributes to fMRI, then the estimated IRF will likely resemble the HRF.
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Estimation of the IRF from the data directly can account for the variation in HRF
shape observed across individuals and over different brain regions (Aguirre et al.
1998; Handwerker et al. 2004; Steffener et al. 2010).

An advantage of applying group ICA independently to fMRI and EEG is that
the number of possible statistical tests reduces from voxels� electrodes�
frequencies� to ½fMRI sources� EEG sources�. Figure 3 indicates 56 group fMRI
sources (in a) and 10 group EEG sources (in b). The results from all 560 com-
parisons are indicated in the ½56� 10� matrix in c. Positive associations (indicated
by significant deviations in the estimated IRF) are indicated in white and negative
associations are indicated in black. In general the majority of positive associations
are present within the lower (e.g. delta and theta) and upper (e.g. high beta and low
gamma) EEG frequencies, while the negative associations were primarily
restricted to two of the five alpha components.

The widespread nature of the findings in Fig. 3 may be related to improved
measurements of frequency specific activity by decomposing underlying EEG
sources at the group level and by relaxing the assumption of a fixed relationship
(e.g. the assumption of a canonical HRF) between EEG and fMRI (as in de Munck
et al. 2007, 2009). This is particularly applicable for the theta band, since esti-
mated theta IRFs less clearly resemble the canonical HRF (de Munck et al. 2007)
and theta IRFs tend to be more variable across subjects compared to the alpha band
(de Munck et al. 2009).

Variability in the IRF can contribute to the variability of results observed in the
literature. For example, the relationship between fMRI and theta EEG is less
consistent than the relationship with the alpha band. Scheeringa et al. (2008)
indicates that frontal theta activity is negatively correlated with many fMRI
regions during rest, including inferior frontal, medial frontal, inferior parietal, and
medial temporal areas. The negative correlation with theta and medial frontal areas
is also supported by (Mizuhara et al. 2004). Figure 3 primarily indicates positive
associations between theta and fMRI, which agrees with positive associations that
have been reported while individuals perform mental arithmetic tasks (Mizuhara
et al. 2004; Sammer et al. 2007).

4 Further Considerations

4.1 The Importance of Concurrent Recording

The fMRI environment introduces substantial artifacts within EEG recordings. The
fluctuating magnetic field induces electric current in EEG, which appears as EPI
artifacts. Current is also induced by movement of EEG wires within the static
magnetic field with each heart beat (i.e. the ballistocardiogram artifact). The EEG
can also introduce artifacts within MRI (Luo and Glover 2012). Researchers must
therefore consider whether the benefits of concurrent recordings outweigh the
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Fig. 3 Spatial fMRI components and their relationship to concurrent frequency by spatial EEG.
56 BOLD fMRI components are z-scored, thresholded and displayed in (a). The spectrum and
topography of the 2D EEG sources are indicated in (b). The relationship between the sources are
indicated by the fMRI source � EEG source½ � matrix in (c). Significant positive associations are
indicated along the white grayscale axis and significant negative associations are indicated along
the black grayscale axis (Adapted from Bridwell et al. 2013)
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costs associated with these artifacts. It may sometimes be the case that concurrent
recordings are not necessary. For example, EEG responses are often averaged
together after time-locking to an external event (i.e. with ERP analysis). This
approach discards the trial-by-trial fluctuations within each EEG epoch, which
strongly reduces the need to measure fMRI concurrently. Instead, ERPs can be
measured outside of the scanner environment, and fluctuations within ERPs across
subjects can be related to fluctuations in fMRI maps across subjects (Calhoun et al.
2006). Fluctuations in ERP and fMRI maps across subjects may be directly
compared with results from MEG, which can further improve the ability to spa-
tiotemporally characterize brain activity (Plis et al. 2010).

Concurrent recordings are particularly advantageous when examining the
epoch-by-epoch fluctuations within each modality. For example, this approach
demonstrates that fluctuations within a particular EEG frequency are associated
with fluctuations within a particular fMRI spatial location. Concurrent recordings
are important in this instance, since they can reveal the characteristics in which the
brain dynamically integrates distant spatial locations in cognition and behavior
(Debener et al. 2006).

4.2 Intrinsic Connectivity Networks

The spatiotemporal patterns that emerge from EEG or fMRI data are thought to
reflect the brain’s inherent structure or intrinsic connectivity. One might imagine
that these networks describe a particular brain state, and that this particular state is
involved in an aspect of cognition such that fluctuations within that state are
associated with fluctuations in that cognition. These networks can be identified in
the absence of explicit tasks (e.g. during ‘‘rest’’), and research is beginning to
focus on how the networks identified during rest can potentially inform individ-
uals’ ability to perform tasks (Carter et al. 2010; Deco et al. 2011).

The idea that ‘‘resting state’’ networks can predict performance is reasonable,
since the cognitions that individuals experience during ‘‘rest’’ likely overlap with
cognitions experienced during tasks. For example, attention is likely facilitated by
enhanced activity within a subset of networks and suppressed activity within
another subset. Tasks can promote attention, which promotes the ability to identify
the subset of networks that facilitate attention. These same networks are likely
present during ‘‘rest’’ since overlapping attentional processes likely occur during
the ‘‘resting state’’.

Thus, the ‘‘resting state’’ should not be thought of as inherently distinct from
tasks. Instead, it simply reflects the broad range of cognitions that can emerge
when individuals are unconstrained by an explicit task. Broadly, this supports the
idea that the intrinsic connectivity networks identified during rest might inform the
degree in which individuals utilize attention and memory processes that underlie
tasks.
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An additional implication, however, it that the relationship between EEG-fMRI
networks observed during rest may overlap closely with the relationship between
EEG-fMRI networks identified during tasks. This brings up a distinction between
the extent in which an area is activated, and the coupling of that area with other
areas or modalities (O’Reilly et al. 2012). Consider the negative correlation
between occipital fMRI voxels and EEG alpha. Individuals may perform tasks
which suppress EEG alpha activity (e.g. reduces its extent), but the relationship
between EEG alpha and occipital fMRI voxels would likely remain intact. In this
instance, one would anticipate an overall reduction in EEG alpha and an overall
increase in occipital fMRI responses. However, the relationship between alpha
activity and occipital responses may remain the same, such that the two measures
maintain the same correlation, and the estimated IRFs do not differ across the two
conditions. This type of scenario is expected if the EEG-fMRI networks reflect the
intrinsic structure of brain activity. Cognitive processes may modulate the extent
in which a particular area is activated, but the inherent intrinsic structure would
likely remain intact.

5 Summary

Combining the spatial information of fMRI and the spectral information of EEG
can provide an improved picture of brain dynamics. These EEG-fMRI networks
can be revealed even though each modality is sensitive to unique aspects of neural
activity. The initial EEG-fMRI integration studies focused largely on fMRI
responses associated with the EEG alpha band, and utilized correlation and GLM-
based approaches. Decomposing the information within each modality (e.g. with
ICA) can provide an improved ability to isolate distinct networks, which can
facilitate subsequent EEG-fMRI or MEG-fMRI integration. Within this context, it
can be particularly important to account for differences in the hemodynamic
response across individuals and across brain areas. The resulting EEG-fMRI
networks can supplement findings in MEG-fMRI. Overall, combining information
within each modality provides an improved ability to isolate brain networks, which
may help clarify their potentially distinct roles in cognition and behavior.
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MRIVIEW: A Software Package
for the Analysis and Visualization
of Brain Imaging Data

Doug Ranken

Abstract MRIVIEW is a freely available, open-source software package written
in IDL that is used to analyze and visualize brain imaging data. Key capabilities of
MRIVIEW include a multi-start, multidipole, spatiotemporal MEG/EEG modeling
program, an MEG/EEG forward simulator program, a large suite of image and
volume processing for manipulating MRI or CT data, and both two dimensional
and three dimensional visualization tools. Dipole-based modeling is provided by
the Calibrated Start Spatial Temporal (CSST) multidipole inverse procedure that
runs numerous spatiotemporal multidipole inverse fits from randomly selected sets
of starting locations derived from a calibrated grid of cortical locations, to find a
small number of sets of dipoles and associated timecourses that best fit the data.
The MEG/EEG Forward Simulator provides an interactive environment for cre-
ating a wide range of realistic MEG/EEG forward simulations. A segmented layer
of cortical voxels from a subject’s MRI data is used to create cortical activity
patches of arbitrary size and shape, and a tool is provided to assign individual
timecourses to these patches. The head-to-sensor system geometry is used to create
sensor forward values, based on the patch timecourses, and user-selected noise
levels. A fully-integrated visualization environment is provided to view CSST and
Forward Simulator results. MRIVIEW relies on a companion package, MEGAN,
that provides extensive capabilities in signal processing and organization of MEG/
EEG data.
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1 Introduction

MRIVIEW was originally designed as a software tool for viewing and manipulating
volumetric MRI head data, and for using this data as an anatomical reference in
MEG studies of brain function (Ranken and George 1993). The initial MRIVIEW
capabilities included methods for reading in raw MRI data, segmenting structures in
the data, reconciling coordinate systems between multiple imaging modalities,
viewing combinations of anatomical and functional information, and building
models of structures within the head. Since its initial version, MRIVIEW has been
extended in several directions, including: an MEG/EEG multi-dipole spatiotem-
poral modeling procedure (CSST), an MEG/EEG forward simulator, a greatly-
expanded set of visualization capabilities, and additional image processing
capabilities.

The Calibrated Start Spatial Temporal (CSST) multidipole inverse procedure is
based on the Multi-Start Spatio-Temporal inverse procedure (MSST) (Huang et al.
1998). CSST runs multiple nonlinear simplex procedures from random combina-
tions of MRI-derived cortical starting locations. For each set of starting locations,
the simplex procedure minimizes a reduced Chi square value obtained from a
linear fit of the dipole timecourses to the measured MEG or EEG sensor data.
Using multiple combinations of starting locations allows the procedure to avoid
local minima of the reduced Chi square error function. A parallel version of this
procedure has been implemented, that uses MPI to distribute the calculation across
a Linux cluster. This provides a linear speedup of the procedure on the number of
processors, with very little overhead. Graphical interfaces, that are extensions of
the MRIVIEW 3D Model Viewer, are used to set up CSST runs, and to view and
analyze results.

The Forward Simulator (Ranken et al. 2002) allows a user to generate regions
of cortical activity using ellipsoidal constraints on a segmented MRI volume, then
assign separate timecourses to each of these regions. The timecourses can be sine
waves, combinations of several Gaussians, or arbitrary timecourses from input
files. The output is either an MEG or EEG forward calculation with user specified
noise based on a sensor geometry derived from a netMEG file.

We begin by describing the computing environment for MRIVIEW, followed
by discussions of the MRIVIEW interfaces for segmentation and visualization of
MRI data, and for visualization of MEG/EEG analysis results. This is followed by
an overview of CSST. The Forward Simulator is then described. Finally, we
present a case study that uses both the Forward Simulator and CSST to investigate
the feasibility of combining MEG and fMRI data to perform analyses of MEG
single-pass data.
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2 Computing Environment

MRIVIEW is implemented using the programming language and runtime envi-
ronment IDL (Interactive Data Language), made by ExelisVIS (www.exelvis.com).
IDL is an interpreted language, and can be used as an interactive data analysis and
visualization environment, but it is mainly used as a fourth generation scientific
programming language, and has similarities to Matlab. It supports arithmetic
operations on multidimensional arrays, and has a wide range of analysis and
visualization routines that typically operate on one to three dimensional arrays.
IDL supports both procedural and object-oriented programming. One of its most
useful features is optional keyword arguments in procedure and function argument
lists. This makes it easy to extend the capabilities of existing IDL programs, while
maintaining backward compatibility for codes that are already reliant on these
programs. IDL also provides an Integrated Development Environment, for code
development.

3 Two Dimensional Interface

When an MRI head data set is read into MRIVIEW, it is maintained as a 3
dimensional array that can be viewed in the 3 orthogonal view planes, to provide
standard radiological views (sagittal, coronal and axial). MRIVIEW can read a
broad range of MRI data formats. It converts these data to an MRIVIEW-standard
format that relies on IDL’s Save and Restore routines. The 2D Interface in
MRIVIEW is used to view MRI data in the user-selected orientation, either 2- or 8
slices at a time, and allows quick paging through the MRI data volume. The 2D
Interface is mostly used with the data segmenting capabilities. MRIVIEW pro-
vides semi-automated methods for labeling different structures within the head,
such as the entire brain, gray matter, white matter, or the scalp. These can be used
to create meshes for Boundary Element Method forward models, and labeled
volumes for finite element of finite difference method models. Figure 1 shows a
view of the 2D Interface, with the several head tissue classes labeled, used for a
finite difference MEG forward model. Figure 2 shows a 3D rendering of this
labeling on the left. MRIVIEW segmentations can also be used for visualization or
location categorization purposes. A segmentation of the major brain compartments
is shown in 3D on the right of Fig. 2.

4 Constrained 3D Interface

In order to localize MEG-derived brain activity on brain anatomy, it is often
necessary to identify head fiducials in the MRI head data volume. The Con-
strained 3D Interface was initially developed to address this problem. With it, a
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user can obtain five head surface views (front, back, top, and sides), by selecting an
isosurface value. A data structure links these five views to location information, so
that cursoring over any of the five surfaces will select the corresponding orthog-
onal slice views, also shown in the interface (see Fig. 3). After the user selects
fiducials corresponding to those used when obtaining MEG (or EEG) data, an
MEG- (or EEG)-to-MRI coordinate transformation can be obtained, and used both

Fig. 1 The MRIVIEW 2D interface, shown here after performing a segmentation of MRI head
data into 6 tissue types

Fig. 2 The 6 tissue class segmentation is shown in 3D on the left. A segmentation of the major
brain compartments is rendered in 3D on the right
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for MEG (or EEG) forward (and thus inverse) calculations, and to plot repre-
sentations of source activity on the MRI-based brain anatomy.

The other major use of the Constrained 3D Interface is with the MEG/EEG For-
ward Simulator. This will be discussed in the Forward Simulator section below.

5 Full 3D Interface

A full 3D interface, called the Model Viewer, was developed to show combina-
tions of MRI-derived anatomy with representation of brain activity and sensor
locations in a full 3D viewing environment. The Model Viewer consists of a
procedural-based graphical user interface (GUI) that makes calls to an object-
oriented viewing engine, which in turn utilizes many of the capabilities in the IDL
Object Graphics library. The Model Viewer provides four model objects, that are
used to store either volumetric or geometric data. Typically, the MRI data is
loaded into Model 1, while source representations and other geometric information
is loaded into Models 2 through 4. An isosurface of the MRI data can be obtained,
and sliced in the 3 orthogonal directions to provide 3D reference anatomy. The
slices and isosurface can each be shaded and colored independently, and are all
stored in a single viewer model (Fig. 4). The Model Viewer can be used to show
combinations of anatomy, sensor locations and magnetic or electric field values by
using the available model containers to independently control, then combine
model elements, as shown in Fig. 5.

Fig. 3 The 8-panel view of the constrained 3D interface, showing selection of the nasion
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Fig. 4 3D model viewer user interface (above) and display window (below) showing orthogonal
cutplanes

Fig. 5 MRI-based head
anatomy is combined with
MEG sensor geometry, and
a color contour map
representation of the
magnetic field at the head
surface
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The 3D Model Viewer has a small set of application programming interface
(API) routines that can be used to perform more generalized 3D model viewing,
including movie generation. The image in Fig. 6 is one frame from a neuron
activation simulation movie, showing the changing electric potentials within the
neuron, and corresponding magnetic fields surrounding it (Blagoev et al. 2007).

Fig. 6 A frame from a neuron electric potential and magnetic field simulation, generated using
the API capabilities of the model viewer
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6 MEG/EEG Inverse Modeling

Inverse modeling is integrated into the Model Viewer interface of MRIVIEW,
using CSST. In CSST, a multi-dipole inverse procedure is started M times, using
M sets of N randomly chosen locations. M and N are user inputs, with N being the
dipole model order. In CSST, the cortical voxel locations obtained with the seg-
mentation procedures in the 2D Interface provide the set of locations from which
the random starting points are selected. The segmentation procedures can be used
to select different types of starting location sets, such as all the brain voxel
locations, or locations from a selected area of the brain. Originally, cortical
locations were typically used, because they provide good coverage of the brain
using less than 40,000 points. Currently, the preferred approach uses a calibrated
grid that spans the entire brain, with the grid becoming coarser for deeper regions
of the brain, since brain activity in these deeper regions cannot be localized as
accurately as more superficial sources, based on Cramer-Rao bounds (Mosher
et al. 1993). Figure 7 shows a typical grid of starting locations. For each set of
starting locations, the multi-dipole procedure implemented in CSST uses the
Nelder-Mead nonlinear simplex procedure (Nelder and Mead 1965) to perform a
spatial search. For each step of the simplex search, a singular value decomposition
is used to obtain a linear fit to the sensor measurements, using a spherical model
for MEG or a 3 sphere model for EEG, with unconstrained dipole orientations. A
reduced Chi square value is calculated for this fit. This is the value that is mini-
mized by the simplex procedure. The user selects how many of the best fits to save
for a given program run. After processing, the Model Viewer in MRIVIEW can be
used to display the CSST results (see Fig. 8).

For higher-dipole model orders (e.g., 5–9 dipoles) multi-start procedures
become computationally intensive. For this reason, CSST, written in IDL, has been
parallelized using the Message Passing Interface (MPI). The parallel version,
MPI_CSST, uses a C language implementation of MPI to distribute the multiple
starts across a user-selected number of processors in a Linux cluster, each running
an instance of CSST. Each instance of CSST runs with its subset of the original set
of starting locations. As each CSST process completes, the output is collated with
the output from CSST processes that have already completed, to produce a com-
bined output with the number of best fits requested by the user. The performance of
MPI_CSST scales linearly with the number of processors used. The speed-up
obtained using multiple processors makes the real-time use of MPI_CSST feasible.

6.1 Two-Stage Simplex Search

Many starting dipole configurations are far removed from an optimal solution, and
end up converging on sub-optimal solutions after many iterations of the simplex
minimization procedure. For this reason, a two-stage simplex approach has been
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added to MPI_CSST. Stage one uses a coarse convergence setting in the simplex
procedure, saving a user-selected number of best solutions. A fine convergence
setting is used in the second stage on these best solutions, to obtain the final
results. This two-stage approach reduces the analysis time by 50 % or more,
compared to the single-stage approach.

6.2 MUSIC-Seeded CSST

For difficult MEG/EEG inverse analyses (high model order, low SNR), CSST
requires numerous random starts to achieve high confidence that a global mini-
mum to the reduced Chi square function has been found. For instance, a six dipole
model of MEG visual data may require 15,000 random starts with a CSST anal-
ysis. By incorporating the results of a MUSIC analysis into the selection of starting
dipole configurations in CSST, the number of starting configurations needed to

Fig. 7 Grid of brain locations from which CSST randomly selects numerous sets of initial dipole
locations
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obtain accurate CSST results can be greatly reduced. The MUSIC-seeded CSST
(MS-CSST) algorithm performs one MUSIC analysis on a variable density grid of
approximately 7000 locations. A novel clustering approach is used to find the
MUSIC peaks, saving the best 20 dipole locations in each cluster for use with
CSST. Various sampling strategies can be used when mixing in these MUSIC

Fig. 8 CSST results for an MEG visual study, showing the best 60, 6-dipole fits from 20,000
starts
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dipole locations with randomly selected locations, while creating the CSST
starting dipole sets. We illustrate results for a five dipole MEG simulation, based
on an actual subject/sensor configuration with a Neuromag 122 system. The
dipoles were given highly-overlapping timecourses, with low signal-to-noise, so
that the MUSIC procedure would not localize all of the dipoles well. A 5-dipole
MS-CSST analysis was performed, using 100 pseudo-random initial dipole con-
figurations, creating 50 sample configurations with 2 MUSIC locations and 3
random locations, and 50 samples with 1 MUSIC location and 4 random locations.
The same data was analyzed with CSST with no MUSIC seeding, using 1000
initial dipole configurations, and saving the best 100 based on reduced Chi square
values. We compare the reduced Chi square results for these 2 analyses in Fig. 9.
Comparing the best 26 fits from each analysis, MS-CSST outperformed regular
CSST, with one tenth as many initial dipole configurations.

In analyses of simulated MEG data, MS-CSST outperforms CSST with 90 %
fewer initial dipole configurations. In analyses of empirical MEG data, the per-
formance improvement has been less, requiring 75–80 % fewer starting configu-
rations with MS-CSST versus CSST to produce comparable results for the best 5
to 10 solution sets.

6.3 MEG/EEG Signal Processing and Data Organization
Using MEGAN

All of the human subject MEG/EEG data used by CSST are first processed using
MEGAN, a software package written in IDL by Elaine Best (Best et al. 1998)
MEGAN provides a large suite of tools to process and view MEG/EEG sensor
data. The signal processing tools provided include noise filtering, artifact rejec-
tion, pass averaging and other capabilities needed to work with MEG/EEG data.

Fig. 9 This figure compares the performance of MS-CSST to regular CSST, showing the best 36
reduced Chi square values for a 5-dipole analysis of MEG data generated from 5 simulated
sources. MS-CSST slightly outperformed regular CSST, when comparing the best 26 solutions
from each analysis, using one-tenth as many starting dipole sets
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MEGAN is graphical user interface base, and provides several interfaces for view-
ing raw and processed data, including overlaid multi-sensor signal time plots, sig-
nal plots on a map of the sensor locations, and colored contour plots (and movies).
MEG/EEG data sets processed by MEGAN are written to a standardized format,
called netMEG, that is based on netCDF. It is thus a self-describing format that can
be accessed using standard libraries available for several major programming
languages, including C and Fortran. Using these netMEG files to provide the
MEG/EEG input data for CSST greatly simplifies reading in and setting up the
data for CSST analyses.

6.4 Combining MEG and EEG

CSST provides a method for analyzing combined MEG and EEG data. This is
done using the same nonlinear simplex analysis as is used for a single-modality
analysis, but averaging the MEG and EEG reduced Chi square values at each step
of the simplex search. The user sets a weighting that determines the relative
contribution of each modality to this combined metric. Only preliminary work has
been done on determining what weighting value to use for a given combined
analysis. Criteria to consider include: the relative SNR of the MEG versus EEG
data being analyzed (usually higher for EEG), the relative overall quality of the
data (e.g. sensor count and spacing), and the fact that localization accuracy is
generally better for MEG than EEG.

6.5 Combining fMRI/MEG/EEG

CSST can be used to perform combined analyses of MEG and/or EEG with fMRI
or other volume based brain imaging data, using the concept of a likelihood
volume (LV). An LV is used in CSST to weight the reduced Chi square values of
the multi-dipole analysis using information from other functional (or volume-
based) brain imaging modalities, such as fMRI, PET or structural MRI. Voxels in
the LV contain a value in the interval [0, 1], representing the likelihood of cortical
activity at that voxel location. If V is the value in a voxel of the LV, an error value,
VE is obtained using VE = 1.0 - V. If AVE is the average of the VE values for a
set of dipole locations, CE is the reduced Chi square value for this dipole set, and
W is a user selected weighting value, then the new error measure for the simplex
search is defined by: E = W * CE + (1 - W) * AVE. This error measure will
influence the simplex search for the best-fitting dipole location sets, but still allows
dipole locations in best-fitting sets that do not fall within regions of high likeli-
hood, as determined by the LV.

As used with CSST, an LV is constructed with the same resolution as the struc-
tural MRI volume, and is registered to this MRI volume, and thus, the MEG or
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EEG data. In the case of BOLD fMRI, an LV can be obtained by thresholding and
scaling the T-statistic volume derived from the fMRI analysis to [0, 1], then resam-
pling and registering this volume to the subject’s sMRI volume.

A simulation-based analysis of the use of combined MEG/fMRI for analyzing
single-pass MEG data is presented below. That analysis shows the possible ben-
efits of using a combined MEG/fMRI analysis. The use of a LV has more recently
been incorporated in a Bayesian combined fMRI/MEG analysis procedure (Jun
et al. 2008).

7 Forward Simulator

To aid in comparing alternative MEG/EEG inverse algorithms using more realistic
current distributions than single or multiple dipoles, a focal- and distributed-
source forward simulator was developed within the MRIVIEW framework. Using
the MRIVIEW surface viewing mode, ellipsoidal regions of the g/w matter
boundary can be labeled. A user-specified oriented ellipsoid is used to create
simulated regions of activity that can, for instance, lie along one bank of a sulcus.
Multiple regions of arbitrary size and orientation can be created. Figure 10 shows
three regions created using the forward simulator.

The simulator interface contains a table, with a row to control the activation
characteristics of each region. The activation timecourses can be modeled using
multiple Gaussians or a sinusoid, or they can be read from a file. For each region, a
maximum timecourse current is set using table entries for either current density, or
total current.

To generate EEG or MEG forward solutions, sensor geometries and other
information are obtained from a netMEG file produced by the program MEGAN,
usually from a human EEG or MEG study. Treating the cortical voxels in a region
as oriented dipoles acting in concert, a spherical EEG or MEG forward is calcu-
lated using the timecourse for that region. The EEG forward uses the Sun algo-
rithm (Sun 1997); the MEG forward uses the Sarvas formula (Sarvas 1987). The
simulated sensor measurements are obtained by summing the forwards for all of
the regions. Spatially uncorrelated Gaussian noise with a desired standard devia-
tion can be added to the forward measurements, as can real noise from MEG/EEG
experiments. Figure 11 shows the Forward Simulator interface being used to
create a complex, 5-active-region simulation, showing plots of the simulated
cortical activity, and the forward timecourses based on subject/sensor geometries
obtained from a study using a Neuromag 122 MEG system. The MEG/EEG
Simulator has been used in several MEG studies (e.g. Stephen et al. 2002), and is a
key component of the MEG-SIM Portal project (Aine et al. 2012; Sanfratello et al.
2010 and see Sanfratello et al. this volume).
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Fig. 10 The forward simulator and constrained 3D interface were used to create 3 patches of
simulated cortical activity

Fig. 11 The forward simulator interface, showing a 5-active-region simulation. The upper plot
shows the simulated timecourses, the lower shows the resulting sensor measurements

250 D. Ranken



8 Combining MEG and fMRI for Single-Pass MEG
Analysis: A Simulation Study

In a typical MEG sensory response experiment, a single MEG pass measures the
brain activity corresponding to a single application of a stimulus, such as the
sounding of a tone. Usually, 100 or more passes are recorded for a given stimulus,
and their average is used to perform location and timecourse analysis of the
stimulus-induced brain activity. Because of the low single to noise ratio, inverse
analysis of single pass MEG data is extremely difficult. In some cases, using
information from other sources could aid in this analysis. The fMRI data in a
combined MEG-fMRI experiment can complement the MEG data, in terms of
providing additional brain activity location information, but it does not provide
information on millisecond activity timecourses.

The MEG Forward Simulator in MRIVIEW was used to create 3 regions of
brain activity, with activity timecourses similar to those shown in the upper right
plot in Fig. 12, and MEG sensor timecourses shown in the two left plots. The
upper left plot shows noise-free sensor timecourses, the lower left plot shows the
same timecourses with added simulated noise, giving a noise level typical of
single-pass MEG data.

A simulated fMRI volume was generated by applying a smoothing algorithm to
the voxels of the three simulated regions, plus four additional regions having no
electrical activity, to create brain activity maps similar to those obtained in an
fMRI analysis. A LV was obtained for these regions by scaling the voxel values in
the smoothed volume to the interval [0, 1]. This volume was registered to the MEG
coordinate space. During the CSST search process, the voxel values of the LV
were used to weight the MEG-only Chi square measure for a given set of locations,
to produce a combined (simulated) MEG- fMRI measure. This fMRI weighting
influences the simplex search in CSST, but does not constrain the dipole locations
to only regions of fMRI activity.

The lower right plots in Fig. 12 show the benefits that may be realized with a
combined MEG-fMRI analysis. The combined MEG-fMRI analysis demonstrates
the fMRI influence on dipole locations. In the combined analysis, the fitted dipole
locations are pulled toward regions of high fMRI activity, counteracting the
influence of the MEG noise on the dipole fits. The dipole timecourses arising from
the combined CSST analysis of the noisy simulated MEG data more closely match
the low-noise analysis results, as evidenced by the shape and peak amplitudes
shown in green and blue. In the MEG-only case, the peak green dipole timecourse
amplitude is 50 % higher than it should be, because of complications in dipole
fitting arising from the sensor noise. A similar problem can be seen with the blue
dipole. For both the green and blue dipoles, the combined analysis time-course
results closely match the actual timecourses. This improvement in time-course
matching most likely arises from the fMRI contribution reducing the error in fitted
dipole locations due to the influence of sensor noise.
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Fig. 12 The MRI head data shown in 3D was used to create simulated regions of brain activity.
The white regions represent simulated fMRI data. The 3-dipole CSST solution for the low noise
case is shown with the larger arrows. For the high noise analyses, the MEG-only solution
locations are shown using spheres. The combined MEG, fMRI solution locations are shown using
the smaller arrows
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A LV can also be constructed by performing a CSST analysis of averaged (low-
noise) MEG data obtained from the MEG data, by deriving a LV from a Monte
Carlo analysis (a post-processing option in CSST) of the CSST results. The
derived LV will have peaks at locations where the Monte Carlo analysis is most
densely clustered. In either case, having a LV to influence the CSST fitting pro-
cedure shows promise as an approach to single-pass analysis. In cases where MEG
and EEG are acquired simultaneously, the improved SNR will be even more likely
to produce reasonable single-pass results using a combined MEG/EEG/LV anal-
ysis. Since this could provide spatially localized signal (time) frequency infor-
mation, the results of these single pass analyses could be useful in performing
reconstructions of cortical networks.

9 Conclusion

The MRIVIEW brain imaging software package provides an integrated environ-
ment for analyzing MEG/EEG data, and visualizing the results on MRI anatomy.
The major components of MRIVIEW provide a wide range of capabilities,
allowing a user to read in and view MRI data, segment anatomical structures,
obtain MEG to MRI transformations and create MEG/EEG forward simulations.
MRIVIEW includes CSST, which is used to perform multi-start, multi-dipole-
based analyses of MEG/EEG data, with options for using MUSIC-based seeding or
fMRI data to improve minimization performance. Solutions from fMRI analyses or
averaged multi-pass MEG data can also be used to create LVs. The use of these
LVs in CSST shows promise as a means of obtaining dipole location and time-
course information from single-pass MEG/EEG data.

10 Obtaining MRIVIEW

MRIVIEW is freely available from this website: ftp.lanl.gov/public/ranken/mri-
view. The source code is also freely available for academic research use. The
software is written in IDL and requires IDL to be used. A free version of IDL,
called the IDL Virtual Machine, is available from ExelisVIS at www.ExelisVis.
com. The Virtual Machine can be used to run 3rd-party, GUI-based packages, such
as MRIVIEW, but cannot be used for code development.
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Abstract NUTMEG is an open-source MATLAB-based toolbox for MEG/EEG
data. NUTMEG includes many options for source reconstruction, an easily navi-
gable window for exploring source results, several options for source level con-
nectivity computation, statistical evaluation of these source results, and conversion
to and from formats of other toolboxes.
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1 Introduction

1.1 Background

NUTMEG (nutmeg.berkeley.edu) (Dalal et al. 2004, 2011) was initially developed
by researchers and collaborators at the University of California San Francisco
Biomagnetic Imaging Lab. The primary objective was to provide an open-source,
easy-to-use toolbox for beamformer source reconstruction from MEG data, along
with intuitive visualization and navigation of the source level analyses. It has since
implemented a variety of other source reconstruction methods, support for EEG
and, experimentally, intracranial EEG.

1.2 Data and Experiment Types Supported

NUTMEG includes custom import functions for several major MEG manufac-
turers, including CTF, 4D/BTi, KIT/Yokogawa, and Elekta Neuromag. In addition,
all of the MEG, EEG and intracranial EEG data types that are supported with the
FieldTrip fileio (Oostenveld et al. 2011) may also be read into the NUTMEG
sensor data structure. This is achieved either via a NUTMEG graphical user
interface (GUI) which calls FieldTrip functions, or by converting a dataset already
loaded using standard FieldTrip into the NUTMEG data style.

Essentially all experiment and analysis types are supported in NUTMEG. Task-
based evoked responses, task-based induced oscillatory changes, and task-based or
resting connectivity analysis have been successfully analyzed using NUTMEG.

1.3 Integration with Other Toolboxes

NUTMEG is easily compatible with other MATLAB-based toolboxes. NUTMEG
uses two primary data structures, a sensor level data structure and a source level
data structure. Both may be converted to or from FieldTrip, for sharing of pre-
processing, source inversion, or statistical testing steps between packages. Pre-
processed data in ELAN (Aguera et al. 2011) may also be imported into NUTMEG.

Lead fields computed in other software packages, including OpenMEEG
(Gramfort et al. 2011), Cartool (Brunet et al. 2011), FieldTrip (including Simbio
[https://www.mrt.uni-jena.de/simbio] and FNS (Dang and Ng, 2011)), MNE
(www.martinos.org/mne), EMSE (www.sourcesignal.com), SMAC (Spinelli et al.
2000), and Brainstorm (Tadel et al. 2011), may be imported for use with NUT-
MEG inverse solutions.

Visualization of NUTMEG source data primarily utilizes SPM8 (www.fil.ion.
ucl.ac.uk/spm/software/spm8) to overlay activations on an MRI, without requiring
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conversion to the SPM8 MEG/EEG data format. The NUTMEG source data may
also be explicitly converted to Analyze format for further visualization or
manipulation in Cartool, mri3dX (www.cubric.cf.ac.uk/Documentation/mri3dX),
DataViewer3D (Gouws et al. 2009) and MRIcro (mricro.com).

1.4 Interface

NUTMEG has been designed with a graphical interface that facilitates the most
common data processing workflow scenarios involving evoked responses as well as
time-frequency modulations (Fig. 1a). This comprises data import, MRI coregis-
tration, source analysis parameters, and statistical analysis. Additionally, most
features of the graphical interface call underlying functions that can be manually
used from the command line or batch analysis scripts. This feature allows any
potentially intensive calculations, such as permutation testing or processing raw
data with large filter banks, to be conveniently passed to high-performance com-
puting clusters. Finally, the GUI features interactive visualization and navigation of
the analyzed results, described in further detail below.

2 Processing Steps

2.1 Loading MEG/EEG Data

See Sect. 1.2 for which MEG and EEG data formats can be loaded and how they
may be loaded. The open source format of NUTMEG allows for the seamless
implementation of customized scripts from third parties to load additional file
formats. During the M/EEG data loading process, sensor coordinates can also be
imported for both visualization of field/potential topographies and lead field/
potential calculation. This is done automatically for some MEG datasets. For EEG
datasets, Polhemus-localized sensor positions are supported.

2.2 Loading Anatomical Information

Through SPM8, NUTMEG is able to load Analyze and Nifti MRI file formats for
coregistration (Fig. 1b). The option of loading an additional, spatially normalized
MRI allows for the computation of MNI coordinates for inter-subject comparison.
For the purposes of coregistering M/EEG sensors, fiducials can be manually
marked on the imported MRI, as well as imported from saved text files or CTF
MEG localsphere head model files.
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2.3 Computation of Head Models

NUTMEG provides several options for computing the lead field. Forward fields and
potentials can be computed for spherical head models using built-in functions. The
sphere center can either be specified manually, or loaded from a CTF local sphere
head model file. The loading of CTF multisphere head models is supported for MEG
datasets. For EEG datasets, a multisphere model can be generated using a provided

Fig. 1 Example components of the NUTMEG graphical user interfaces (GUIs). a The main GUI
is designed to guide the user through sequential stages of the data analysis process. b The
coregristration interface allows the user to load MRI data along with normalization data and mark
the fiducial points. c The SPM8 window allows the user to navigate the MRI, define fiducial
points, and visualize activation overlays. d The NUTMEG results viewer showing time-frequency
data: the user can specify which frequency band and time point to visualize on the activation
overlay in the dynamically linked SPM8 window. The results viewer can also display time-
domain data, depending on the type of analysis used
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function that adjusts the sphere centers to minimize the difference between the
forward potentials generated for a few sparsely sampled points using the multi-
sphere method and those derived using the boundary element method (BEM).

The calculation of lead fields/potentials using more computationally intensive
BEM head models is provided via integration between NUTMEG and either the
Helsinki BEM (Stenroos et al. 2007) or the OpenMEEG (Gramfort et al. 2010)
toolboxes. NUTMEG provides the necessary tools for importing tissue surface
meshes from either BrainSuite or BrainVisa MRI segmenting software, thereby
presenting the user with a complete BEM pipeline. Finally, see Sect. 1.3 for
loading forward lead fields computed in other software for use in NUTMEG.

2.4 Inverse Methods

Many variants of popular inverse methods are included; furthermore, NUTMEG is
stylized to allow easy drop-in and incorporation of newly developed inverse
methods. The use of the time-domain LCMV beamformer for localizing both the
oscillatory power changes over many time-frequency windows as well as evoked
responses (ERF/ERPs) is well supported in NUTMEG. Minimum-norm methods
also supported include sLORETA and dSPM.

Several Bayesian methods have been developed in the research group of Prof.
Nagarajan for improved source estimation and denoising. These localization
methods include Champagne (Owen et al. 2012b), SAKETINI (Zumer et al. 2007),
and NSEFALoc (Zumer et al. 2008), which all involve the idea of denoising and
localizing data in one step, for improved spatial specificity and reduced sensitivity
to correlated sources. Prior to inversion, data may also be preprocessed to remove
artifacts. Several versions of Bayesian factor analysis (Nagarajan et al. 2007) are
implemented which identify artifact components present in a control condition so
that they can be removed from a condition of interest in the sensor data; this
denoised sensor data may then be input to the beamformer or minimum-norm
inverse methods.

3 Visualization

Neural activity can be visualized as a tomographic map overlaid on the MRI in
SPM (Fig. 1c). Using the modified SPM orthogonal-slice navigator, the researcher
can explore the source reconstructed M/EEG dataset in 3D space overlaid on the
MRI, while an extra, integrated GUI allows the user to explore the dataset over
time by displaying the virtual sensor time course for the voxel selected on the SPM
navigator. For time-freqency analysis (Dalal et al. (2008), Fig. 7 of Dalal et al.
(2011), and Fig. 1d), the virtual sensor data plot is replaced by a time-frequency
image of the power for the selected voxel.
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A link to SPM functions offers the ability to display the activations on a
normalized rendered brain surface. Neural activity can also be projected on a 3D
brain surface imported from BrainSuite. If dipole orientation vectors are provided
for each voxel, this display has the option of attenuating surface projections from
voxels that do not contain a dipole orientation that is orthogonal to the cortical
surface.

4 Statistics

Both within-subject and across-subject parametric and non-parametric statistics
are available to compute. Within-subject statistics may use the Wilcoxon signed
rank test based on the variability of responses across trials in a single subject. For
across-subject analyses, NUTMEG uses statistical non-parametric mapping
(SnPM) (Singh et al. 2003), which has the advantage that it does not depend on an
assumption of a normal distribution and that it is robust even for small populations
of as few as 5 subjects (though having more subjects will allow detection of
weaker effects). SnPM also allows correcting for multiple voxels, time windows,
and frequency bands. Most common study designs are supported including paired
and unpaired comparisons, as well as correlations with behavioral variables. It is
also possible to account for confounding covariates. The computed statistical
probabilities can be used to display thresholded functional images.

5 Connectivity

NUTMEG offers a functional connectivity map (FCM) toolbox that enables the
localization of functional connectivity (FC) among brain areas from EEG and
MEG recordings. The FCM toolbox takes advantage of the rich set of source
analysis algorithms available in NUTMEG and reconstructs neural oscillations in
the cortex. From this, the toolbox efficiently computes several measures of func-
tional connectivity (FC) between voxels, including imaginary coherence (Nolte
et al. 2004), magnitude squared coherence, the phase lag index (Stam et al. 2007),
amplitude envelope correlations (Brookes et al. 2011), and the general lagged
coherence (Pascual-Marqui et al. 2011). Efficient algorithms enable the compu-
tation of interactions of all-to-all voxels on standard single computers. The highly
multidimensional connectivity datasets can be interactively visualized together
with structural brain images. The toolbox is therefore particularly suitable for
explorative studies into the function and pathology of brain networks (Guggisberg
et al. 2008). Both cortico-cortical as well as cortico-peripheral (e.g., cortico-
muscular; Guggisberg et al. (2011)) measures of FC can be calculated. Several
utilities for defining anatomical or functional regions of interest are available. The
analyses can be applied to resting-state recordings (e.g., Dubovik et al. (2012)) as
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well as to event-locked datasets. Moreover, the toolbox offers parametric and non-
parametric statistical analysis including correlations with behavioral data. The
analyses can be performed either via the intuitive graphical user interface or
via the Matlab command line for efficient batch scripting.

6 Extensions and Future Directions

Extensions include support for specific processing steps of (1) EEG data via
‘NUTEEG’, and (2) intracranial EEG. Incorporation of recently developed sta-
tistical thresholding for sparse source reconstruction methods (Owen et al. 2012a)
is also planned. Extensions of the code from the MATLAB to Python language are
in place and support additional viewing tools via Xipy (https://github.com/
miketrumpis/xipy) and integration with other imaging modalities such as DTI.
Future directions include further integration with other existing toolboxes.

Acknowledgments We thank Kensuke Sekihara and Mike Trumpis for their contributions to
NUTMEG.
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Recent Developments in MEG Network
Analysis

Arjan Hillebrand and Cornelis J. Stam

Abstract In this chapter we will describe recent developments in MEG network
analysis, where we will focus on the rationale behind, and application in clinical
cohorts of, an atlas-based beamforming approach. This approach contains 3 main
components, namely (i) the reconstruction of time-series of neuronal activation
through beamforming; (ii) the use of a standard atlas, which enables comparisons
across studies and modalities; (iii) the estimation of functional connectivity using
the Phase Lag Index (PLI), a measure that is insensitive to the effects of field
spread/volume conduction. Moreover, we will discuss the use of the minimum
spanning tree (MST), which allows for a bias-free characterization of the topology
of the reconstructed functional networks. Application of this approach will be
illustrated through examples from recent studies in patients with gliomas,
Parkinson’s disease, and Multiple Sclerosis.

Keywords Resting-state � Network analysis � Graph theory �Minimum spanning
tree � Atlas-based beamformer � Phase lag index (PLI) � Clinical applications

1 Functional Brain Networks

The brain consists of billions of interconnecting neurons, forming an extremely
complex system (Tononi et al. 1998; Tononi and Edelman 1998) in which clusters
of neurons are organized as functional units with more-or-less specific information
processing capabilities (e.g. Born and Bradley 2005; Grodzinsky 2000). Yet,
cognitive functions require the coordinated activity of these spatially separated
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units, where the oscillatory nature of neuronal activity may provide a possible
mechanism (Buzsaki and Wang 2012; Engel et al. 2001; Fries 2005; Singer 1999;
Varela et al. 2001). These interacting units form a large-scale complex network
(Bullmore and Sporns 2012; Schnitzler and Gross 2005). The organization of such
complex brain networks can be characterized using concepts from graph theory
(Bullmore and Sporns 2009; Reijneveld et al. 2007; Stam and Reijneveld 2007;
Watts and Strogatz 1998). Application of graph theoretical tools to human brain
networks has shown that the brain is organized according to a highly efficient
topology that combines a high level of local integration (i.e. dense local clustering
of connections) with a high level of global efficiency (i.e. critical long-distance
connections), forming a so-called small-world organization (Bassett and Bullmore
2006; Stam and van Straaten 2012b; Watts and Strogatz 1998). In addition, brain
networks in healthy subjects contain a subset of relatively highly connected
regions (‘hubs’) (Achard et al. 2006; Barabasi and Albert 1999). These hubs seem
to be mutually and densely interconnected, forming a connectivity backbone or
‘‘rich club’’ crucial for efficient brain communication (van den Heuvel et al. 2012;
van den Heuvel and Sporns 2011).

It has been shown that network topology is highly heritable (Smit et al. 2008,
2010), that the network configuration changes during the life span (Smit et al.
2012) and that there are gender differences (Smit et al. 2008; Tian et al. 2011).
Moreover, an increasing number of studies has shown that various brain disorders
disturb the optimal organization of the functional brain networks (for reviews see
Reijneveld et al. 2007; Stam and van Straaten 2012b; van Straaten and Stam
2013), and that these network alterations correlate with cognitive performance, as
well as with parameters of disease severity and/or progression.

2 Source-Space Analysis

Magnetoencephalography, with its high temporal resolution, can be used to
characterize the functional brain networks that are formed by interacting sources
of oscillatory activity. Although such an analysis can be performed directly at the
sensor-level, there are several factors that should be considered. Firstly, multiple
sensors pick up the signals from a single source due to the nature of the electro-
magnetic signals (Sarvas 1987), known as field spread, as well as due to volume
conduction.1 Both these phenomena may lead to erroneous estimates of functional
connectivity. It is important to realize though that projection of the signals to
source-level in itself does not eliminate these effects (Hillebrand et al. 2012).
Secondly, the mixture of signals originating from spatially separated brain areas

1 In a spherically symmetric volume conductor the magnetic fields produced by the volume
currents cancel out exactly (Sarvas 1987), but in a realistically shaped volume conductor there are
observable effects of volume conduction.
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can result in under- or overestimation of functional connectivity (Schoffelen and
Gross 2009). Demixing the contribution from spatially separate sources, as well as
enabling a more straightforward interpretation of the functional data in relation to
its underlying structure, are therefore the main reasons to perform an analysis in
source-space. This requires the solution of the inverse problem, i.e. the problem of
estimating the electrical current distribution that produced the recorded magnetic
flux. This is an ill-posed problem, meaning that there is no unique solution, unless
prior knowledge (or constraints) is added. We know, for example, that the cortical
current density is small (the moment per unit area is typically of the order of
50 pAm/mm2; Lü and Williamson 1991), and solutions with estimated source
strengths of several Ampere-meter can therefore safely be ignored. Different
source reconstruction techniques exist (Baillet et al. 2001), and they vary in the
type and number of constraints that are imposed (Hillebrand and Barnes 2005;
Wipf and Nagarajan 2009). Constraints might be that there are only a small
number of sources active at a specific instant in time (multi-dipole solutions;
Supek and Aine 1993), that the whole cortex is active to some degree but with the
minimum energy necessary to describe the measured data (minimum norm solu-
tions; Hamalainen and Ilmoniemi 1994), or that there are no perfectly linearly
correlated areas of activation within the brain (beamformers; Robinson and Vrba
1999; Sekihara and Nagarajan 2008; van Veen et al. 1997).

In recent years, beamforming has become one of the main source reconstruction
approaches for MEG. It has been argued that the uncorrelated-source assumption
may be realistic for many empirical datasets (Hillebrand and Barnes 2005), and
violations of this assumption can be tolerated to some extent (Hadjipapas et al.
2005). For those cases where strongly correlated sources are encountered, for
example during auditory stimulation or parallel processing of visual stimuli, the
beamformer formulism can be adapted (Brookes et al. 2007; Dalal et al. 2006;
Diwakar et al. 2011; Hui et al. 2010; Quraan and Cheyne 2010). From a practical
point of view, there are few parameters to set when performing beamformer
analysis, the main ones being the time-frequency window(s) in the data for which
to perform the source reconstruction (Dalal et al. 2008). Source reconstruction is
achieved in a sequential manner, where for each target location in the brain
(typically a grid consisting of 5 9 5 9 5 mm voxels is used; Barnes et al. 2004)
neuronal activity is estimated using an optimal set of beamformer weights, W:

Q̂ ¼WB; ð1Þ

where Q̂ is the estimated source strength in nAm for a source at a given target
voxel, and with a certain orientation; B is a vector containing the recorded mag-
netic flux at a given latency.

These weights are optimal in the sense that the values of the weights are chosen
such that activity would be fully reconstructed for a target location, if this target
location happens to be active (this is called the unit-gain constraint), whilst
rejecting the contribution from all other sources, be it within or outside the brain.
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For a mathematical description we refer the reader to Robinson and Vrba 1999;
Sekihara and Nagarajan 2008; van Veen et al. 1997, and for a review see
Hillebrand et al. 2005).

Although other source reconstruction approaches also require accurate MEG/
MRI co-registration and modeling of the volume conductor, beamforming is par-
ticularly sensitive to inaccuracies in the forward solution (Hillebrand and Barnes
2011, 2003; Vrba 2002): the unit-gain constraint described above results in a sup-
pression of source activity if there is a deviation from the correct forward solution.

Equation 1 assumes that the orientation of a source is known. In practice, this is
not the case, and the orientation can be set to the one that gives the maximum
beamformer output (scalar beamformer; Robinson and Vrba 1999; Sekihara et al.
2004), the orientation of the cortical surface could be used (but see Hillebrand and
Barnes 2003), or one could estimate the beamformer output for three orthogonal
directions (vector beamformer; van Veen et al. 1997). Finally, the decrease in
sensitivity for deeper sources (Hillebrand and Barnes 2002) results in an increase
in the (norm of) the beamformer weights with source depth, and a disproportionate
amplification of white sensor noise for deeper sources. To compensate for this
depth bias, the beamformer weights, or equivalently the reconstructed beamformer
image (Cheyne et al. 2006), are typically rescaled using a (projection of) the sensor
noise. An estimate of the sensor noise therefore has to be provided. The effects of
noise can further be reduced through regularization (Vrba 2002).

Once the beamformer weights have been estimated, one can reconstruct a three-
dimensional volumetric image of activity (or of a change in activity in case
experimental conditions are contrasted; see also Brookes et al. 2005). The statistical
significance of these individual images is difficult to determine (but see Barnes and
Hillebrand 2003), yet one can readily perform group-level statistics using tools
developed for functional Magnetic Resonance Imaging (fMRI; Singh et al. 2002,
2003). We have recently introduced an atlas-based approach that also enables the
comparison of beamformer results across individuals (see Fig. 1; Hillebrand et al.
2012). For each individual, the neuronal activity is reconstructed for a limited set of
regions-of-interest (ROIs) that covers almost the entire brain, where the ROIs can be
obtained from a standard atlas (Collins et al. 1995; Evans et al. 2012; Lancaster et al.
1997, 2000; Tzourio-Mazoyer et al., 2002). This approach has two main advanta-
ges: i) it enables the comparison between different modalities (Bullmore and Sporns
2009); ii) the number of ROIs is always the same across individuals, such that
functional networks can more readily be compared (but see below).

3 Functional Connectivity in Source-Space

The recorded MEG data can be projected through the estimated beamformer
weights in order to obtain the time-series for each voxel in the brain (Eq. 1), which
are often referred to as virtual electrodes. In order to obtain a single time-series for
each ROI, we subsequently select the voxel with maximum power as representative
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for the ROI. These ROI time-series can then be used as input for functional con-
nectivity analysis. A wide range of functional connectivity estimators are available
(Pereda et al. 2005), yet most of these measures are sensitive to the effects of volume
conduction and field spread. One could remove these biases before performing
connectivity analysis (Brookes et al. 2012; Hipp et al. 2012), or estimate the extent
of the bias through simulations (Brookes et al. 2011a). Perhaps more straightforward
is the use of measures such as the imaginary part of coherency (Nolte et al. 2004),
phase-slope index (Nolte et al. 2008), the Phase Lag Index (PLI; Stam et al. 2007)
and related lagged phase synchronization (Pascual-Marqui 2007), as these are
inherently insensitive to these biases, where the PLI has the additional advantage
that it does not directly depend on the amplitude of the signals (but see Muthu-
kumaraswamy and Singh 2011). These measures have therefore gained popularity
in recent years (Canuet et al. 2011, 2012; Guggisberg et al. 2008; Ioannides et al.
2012; Martino et al. 2011; Nolte and Muller 2010; Ponsen et al. 2013; Sekihara et al.
2011; Shahbazi et al. 2012; Tarapore et al. 2012).

The PLI is defined as (Stam et al. 2007):

PLI ¼ sign sin D/ðtkÞð Þ½ �h ij j; ð2Þ

Fig. 1 Examples of recent applications of an atlas-based beamformer in combination with
functional network analysis. Panel a shows data from a group of 13 healthy controls. The mean
alpha band PLI, also known as the weighted degree or node strength in terms of graph theory, for
each ROI, is displayed as a color-coded map (thresholded at p = 0.05) on a schematic of the
parcellated template brain (modified from Hillebrand et al. 2012). Note that the regions in the
occipital lobe are most strongly connected, as can be expected for the alpha band. Panel b shows
the connections (PLI) from each ROI to all other ROIs, using an arbitrary threshold. Again, there
is a clear pattern of strong connections between regions in the occipital lobe, with additional
connections to areas in the temporal and frontal lobes. The upper panel in c shows a similar
patterns for data from 17 healthy controls from a different study (Tewarie et al. 2014). This figure
displays only the connections that formed part of the MST in the alpha2 band (the colorbar
indicates PLI values). Interestingly, there seems to be a shift from an occipital to frontal pattern in
healthy controls to a more diffuse pattern in 21 patients with Multiple Sclerosis (lower panel)
(modified from Tewarie et al. 2014). Moreover, Tewarie and colleagues showed that this change
in network topology correlated with reduced overall cognitive performance.
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where D/ is the difference between the instantaneous phases for two time-series
defined in the interval [-p, p], tk are discrete time-steps, and \[ denotes the
mean. In short, PLI is a measure for the asymmetry of the distribution of phase
differences between two signals, and ranges between 0 and 1. A PLI value of 0
indicates no coupling, coupling with a phase difference of 0 ± np radians (with n
an integer), or an equal distribution of positive and negative phase differences.
Common sources lead to a phase difference of 0 ± np radians between two sig-
nals, hence the PLI is insensitive to the influence of common sources (Stam et al.
2007). A PLI [ 0 is obtained when the distribution of phase differences is
asymmetric and is indicative of functional coupling between two signals. Note that
PLI does not indicate which of the signals is leading in phase (but see Stam and
van Straaten 2012a) and that it potentially discards true interactions with zero-
phase lag. Moreover, a value of 0 for uncoupled sources is only achieved for
(infinitely) long time-series, hence the PLI is affected by the length of the time-
series. PLI also underestimates connectivity between sources with small-lag
interactions. A modification of PLI addresses this issue, albeit at the expense of
introducing an arbitrary bias favoring large phase differences and mixing of the
estimation of consistency of phase differences with the estimation of the magni-
tude of the phase difference (Vinck et al. 2011).

4 Topology of the Functional Network

Graph theory provides the mathematical framework to characterize the topology of
the functional network that is formed by the interacting sources. For this purpose,
each ROI is denoted as a vertex (node) and each connection (e.g. the PLI value) is
denoted as an edge between the vertices (see Fig. 1). Various graph-theoretical
measures can subsequently be used to characterize the network (e.g. Rubinov and
Sporns 2010). Two such measures, the clustering coefficient2 and the (average
shortest) path length,3 can be used to explain how the brain can fulfill two
seemingly contradictory requirements, namely the processing of information in
local functional units on the one hand (‘segregation’) and simultaneous coordi-
nation of activity in and between these spatially separated units (‘integration’)
(Sporns et al. 2002, 2004). Watts and Strogatz (1998) famously demonstrated with
a simple rewiring model that adding a few long distance connections to a network
with many local interconnections results in a high clustering yet small average
path length. Many large networks, including the brain, have such a so-called small-
world configuration (Bassett and Bullmore 2006; Stam 2004). However, this

2 The (unweighted) clustering coefficient denotes the likelihood that neighbours of a node are
also connected to each other, and characterizes the tendency of nodes to form local clusters.
3 The average shortest path length is a measure for global integration of the network. It is defined
as the harmonic mean of shortest paths between all possible node pairs in the network.
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model does not provide a completely satisfactory description of functional brain
networks, since it can not explain the occurrence of hubs (Eguiluz et al. 2005).
Similarly, the scale-free growth model by Barabasi and Albert (1999), which
explains the occurrence of hubs, does not capture the high level of clustering and
(hierarchical) modularity observed in experimental data (Meunier et al. 2009).
Obviously, we currently lack a model that integrates small-world and scale-free
models and fully and elegantly explains the observed functional brain network
characteristics (Bullmore and Bassett 2011; Clune et al. 2013; Stam and van
Straaten 2012b).

From a practical point of view, although the application of graph theory at the
source-level already aids the interpretation of results and the comparability across
studies, it is not trivial to compare network topology across individuals, groups,
studies or modalities, as was elegantly shown by van Wijk et al. (2010). At the
heart of the problem lies the observation that many network properties depend on
the size, sparsity (percentage of all possible edges that are present), and the
average degree (i.e. the average number of connections per node) of the network.
Fixing the number of nodes and average degree in the network (by setting a
threshold) does eliminate size effects but may introduce spurious connections or
ignore strong connections in the network, and using random surrogates for nor-
malization does not solve this problem either (and may even exuberate it; van Wijk
et al. 2010).

A novel approach is to construct the minimum spanning tree (MST) of the
original graphs (Boersma et al. 2013; Jackson and Read 2010a, b; Wang et al. 2008).
A tree is a sub-graph that does not contain circles or loops and connects all nodes in
the original graph, and the MST is the tree that has the minimum total weight (i.e. the
sum of all edge values4) of all possible spanning trees of the original graph. If the
original graph contains N nodes than the MST always has N nodes and M = N-1
edges, therefore enabling direct comparison of MSTs between groups and avoiding
aforementioned methodological difficulties. Furthermore, if the original network
can be interpreted as a kind of transport network, and if edge weights in the original
graph possess strong fluctuations, also called the strong disorder limit, then all
transport in the original graph flows over the MST (van Mieghem and van Langen
2005), forming the critical backbone of the original graph (van Mieghem and
Magdalena 2005; Wang et al. 2008). Interestingly, it seems that for source-recon-
structed MEG data for patients with Multiple Sclerosis, as well as for healthy
controls, there is a tendency of the weight distribution towards the strong disorder
limit (Tewarie et al. 2014). This implies that there is a high probability that the
MSTs for both patients and healthy controls can be considered as the critical
backbone of the original functional brain networks. Hence, analysis of the minimum
spanning tree not only provides a bias free approach to network analysis, but also
captures important properties of the original network.

4 For the construction of the MST, the edge weight is defined as 1/(functional connectivity
estimate), e.g. 1/PLI.
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5 Applications in Neurology

5.1 Glioma

In a recent MEG study we revealed a relationship between resting-state functional
network properties and protein expression patterns in tumor tissue collected during
neurosurgery (Douw et al. 2013). In particular, between-module connectivity was
selectively associated with two epilepsy-related proteins, namely synaptic vesicle
protein 2A (SV2A) and poly-glycoprotein (P-gp), yet only for the ROIs that
contained tumor tissue. Moreover, receiver operator characteristic (ROC) analysis
revealed that SV2A expression could be classified with 100 % accuracy on the
basis of the between-module connectivity, indicating that the role of the tumor area
in the brain network may be an excellent marker for molecular features of brain
tissue, which may be used clinically to monitor the efficacy of the anti-epileptic
drug levetiracetam (de Groot et al. 2011). Moreover, lower between-module
connectivity in the tumor area and higher number of seizures significantly pre-
dicted higher P-gp expression, which is in line with previous research showing that
high seizure proneness is related to increased P-gp expression (Miller et al. 2008),
and suggests that local network topology is an intermediate level between
molecular tissue features and clinical patient status. A separate study (van Dellen
et al. 2014) examined the link between functional network organization and sei-
zure status further in a longitudinal study. Resting-state MEG recordings were
obtained for 20 lesional epilepsy patients at baseline (preoperatively; T0), and at
3–7 (T1) and 9–15 months after resection (T2). Functional connectivity in the
lower alpha band correlated positively with seizure frequency at baseline, espe-
cially in regions where lesions were located. MST leaf fraction, a measure of
integration of information in the network, was significantly increased between T0
and T2, yet only for the seizure-free patients. Moreover, MST-based eccentricity
and betweenness centrality, which are measures of node importance and hub-
status, decreased between T0 and T2 in seizure free patients, also in regions that
were anatomically close to lesion locations and resection cavities. These results
demonstrate that there is a link between successful epilepsy surgery and changes in
functional network topology. These insights may eventually be utilized for opti-
mization of neurosurgical approaches.

5.2 Parkinson’s Disease

A longitudinal study involving patients with Parkinson’s disease (PD) also
revealed a relationship between disease progression and functional brain network
topology (Olde Dubbelink et al. 2014). MST analysis revealed a decentralized and
less integrated network configuration in early stage untreated PD, which pro-
gressed over time. Conventional analysis of clustering and path length also
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revealed an initial impaired local efficiency, which continued to progress over
time, together with reductions in global efficiency. Importantly, these longitudinal
changes in network topology were associated with deteriorating motor function
and cognitive performance.

6 Future Developments

Excitingly, network analysis, particularly in combination with a standard parcel-
lation of the brain (e.g. through the use of an anatomical atlas), provides a prin-
cipled way to compare results across different modalities (Bullmore and Sporns
2009). For example, in recent years there has been an insurgence of research into
the functional and cognitive relevance of resting-state functional connectivity as
determined using fMRI (van den Heuvel and Hulshoff Pol 2010). Although it is
already becoming clear that there is a close link between resting-state networks
based on hemodynamic phenomena and the underlying electrophysiological net-
works (e.g. Brookes et al. 2011b; Niu et al. 2012), we envisage that a bias-free
network approach allows for an even more accurate integration of these modali-
ties, leading to a better understanding of brain function. Similarly, this approach
enables us to directly link the properties of, and dynamics on, functional networks
to the topology of the underlying structural network (Guye et al. 2008; Honey et al.
2007). An interesting direction for future work is the study of the interaction
between these two types of networks, i.e. to study how functional plasticity affects
the structural network, and vice versa (Assenza et al. 2011). Additionally, the same
framework can be used to create anatomically and functionally realistic models
that can simulate MEG signals. That is, neural mass models can be placed at each
location of the anatomical parcellation scheme, where the anatomical connections
between the neural masses can be based on experimental DTI data that were
obtained for the same atlas. The parameters in these simulated structural/functional
networks can subsequently be adjusted in order to test hypotheses (based on
observations in experimental data) about disease mechanisms, or to generate new
hypotheses about disease effects that we should be able to observe in experimental
studies (de Haan et al. 2012; van Dellen et al. 2013).

The atlas-based beamforming approach itself may be developed further in
several aspects. We have proposed to use the voxel with maximum power as
representative for a ROI, which can introduce some biases, for example for ROIs
that cover a large area of cortex. Indeed, the spatial resolution that is obtainable
with MEG varies from millimeters to centimeters across the brain (Hillebrand and
Barnes 2002), and depends on factors such as location of the neuronal activity,
orientation of the cortex and signal-to-noise ratio (Barnes et al. 2004; Hillebrand
and Barnes 2002). Our current hypothesis is that the AAL atlas has a resolution
that matches the spatial resolution of MEG resting-state data. However, future
research should test whether this hypothesis is valid for all cortical regions, for
example through the use of atlases with higher spatial resolution (Evans et al.
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2012; Seibert and Brewer 2011). In addition, selection of a single representative
voxel might be prone to noise and outliers. However, the optimal method of
dealing with multiple voxels within a ROI has not been defined yet, and using for
instance an averaging method presents other biases, such as introducing artificial
differences in signal-to-noise ratios for different sized ROIs. Similarly, one could
argue that a priori selection of a target location within a ROI would speed up the
computations. However, beamformer reconstructions vary most around peak
activations (Barnes and Hillebrand 2003) and as a consequence, the a priori
selection of a target voxel could have the effect that the activity for a ROI is
completely missed (Barnes et al. 2004).

Another interesting direction for new research is to study the dynamics of
functional networks in more detail (de Pasquale et al. 2012), thereby taking
advantage of the strongest attribute of MEG, namely its high temporal resolution.
A prerequisite is the development of measures of functional connectivity that have
high temporal resolution, yet are insensitive to the effects of volume conduction.
This would allow us to study functional networks in more detail, and examine the
importance of the evolution of functional networks on short time-scales. For
example, it was described above that functional brain networks can be divided into
modules; are these modules stable over time (Bassett et al. 2013)? And hubs play
an important role in the network, is this also reflected in their dynamics, i.e., do
hubs evolve differently than non-hubs? Similarly, how does the formation and re-
configuration over time of functional networks relate to cognitive performance?
Are these dynamics altered in the diseased brain? And if so, is there a phase-
transition that distinguishes the healthy from the diseased brain?
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Non-parametric Statistical Analysis
of Map Topographies on the Epoch Level

Michael Wagner

Abstract In Event-Related Field (ERF) experiments, stimuli—often of several
different types—are presented repeatedly, and the subject’s brain response is
recorded using MEG.

Keywords Magnetoencephalography � Electroencephalography � Event-related
fields � Event-related potentials � Mismatch negativity � Mandarin language �
Statistical analysis � Randomization statistics � Non-parametrical statistics �
Topographical analysis of variance

1 Introduction

In Event-Related Field (ERF) experiments, stimuli—often of several different
types—are presented repeatedly, and the subject’s brain response is recorded using
MEG. After removing artifacts and epoching the data, many repetitions per
stimulus type are available, which are later usually averaged and compared. At this
stage, though, it is no longer possible to establish whether and for which latencies
the averaged waveforms are significantly different between stimulus types, nor
whether the trials (epochs) for a given stimulus type are consistent enough to
warrant averaging them in the first place. A statistical analysis of all individual
epochs can provide exactly this information.

Traditional statistical measures in channel space such as the t-test make dis-
putable assumptions regarding repeatability and independence (Murray et al. 2008;
Koenig and Melie-Garcia 2009). Therefore, a new non-parametric family of
methods has recently attracted attention as it became computationally feasible for
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the analysis of Event-Related Potential (ERP) group studies (Murray et al. 2004).
Although—misleadingly—referred to as Topographic Analysis of Variance (TA-
NOVA), no analysis of variance is being conducted, but rather a non-parametric
randomization test.

In this contribution, a framework is proposed that allows the application of
TANOVA not only to individual averages in the context of an ERP group study
but to the un-averaged individual epochs themselves, as obtained in a Mismatch
Negativity (MMN) MEG experiment.

2 Methods

2.1 Mismatch Negativity Experiment

Three Mandarin syllables were used as auditory stimuli: yi1 (‘‘cloth’’), yi2
(‘‘aunt’’), and yi3 (‘‘chair’’). They share the vowel /i/ but differ in tonal contours.
The same set of stimuli was used in Lee et al. (2012), where a complete charac-
terization of the experiment can be found.

In an MMN paradigm, yi3 was used as the standard stimulus, with yi1 and yi2 the
deviants. Syllables yi2 and yi3 are harder to discriminate than yi1 and yi3 (Lee et al.
2012). The subject, a healthy adult native Mandarin speaker, lay in a magnetically
shielded room and attended to a silent movie while passively listening to the stimuli.
Stimuli were delivered binaurally using sound tubing. An initial 20 trials of stan-
dards were followed by a randomized presentation of 800 standard stimuli and 100
of each deviant, with at least two successive standards between deviants. The
stimulus duration was 250 ms, with an interstimulus interval of 500 ms. MEG data
were recorded using a 157-channel axial gradiometer whole-head MEG system
(Yokogawa Electric Corporation, Japan) with a sampling frequency of 1 kHz.

Signal processing was performed in the Curry 7 software (Compumedics,
Charlotte, NC, USA). Data were filtered from 1 to 40 Hz and epoched from 100 ms
before to 600 ms after stimulus onset (Fig. 1). The initial 20 standard stimuli were
excluded, as well as any epochs with signals exceeding ±1.5 pT, since signals of
this magnitude are likely due to artifact. The remaining epochs were down-sampled
to 200 Hz. Averages for all three stimulus types were computed (Fig. 2).

2.2 Statistical Analysis

In the context of a TANOVA, two different non-parametric randomization tests
were performed for all epochs: a consistency test per stimulus type, and a test for
differences between stimulus types. Statistical analysis was performed using the
Curry 7 software.
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The consistency test evaluates field topography (map) similarity across epochs.
It is performed independently for each stimulus type and each sample. Here, the
Null Hypothesis is that epochs of the same stimulus type are unrelated, i.e. that
random maps have been measured. If the Null Hypothesis holds, randomly

Fig. 1 A 10 s page of ongoing MEG data, filtered at 1 to 40 Hz, with trigger and audio channels.
Latency ranges marked in gray were used for epoching, from 100 ms pre- to 600 ms post-
stimulus onset

Fig. 2 Averages and field topography maps (shown at 225 ms) for the three stimulus types
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perturbing channels within each epoch’s map should not deteriorate the average
map across all epochs.

For each sample s and Et epochs of stimulus type t, the test is performed as
follows: First, the observed mean global field power (MGFP) Ps,t,0 of the average
over all epochs e of the individual maps ds,t,e is computed as

Ps;t;0 ¼ mgfp
1
Et

XEt

e¼1

ds;t;e

 !
with mgfpðdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
i¼1

di � d
� �2

vuut ð1Þ

where M is the number of channels.
Then, for a total of R repetitions, the channels within each map are randomly

shuffled. For each repetition r, this yields new randomized maps ds,t,e,r, and a new
global field power Ps,t,r can be computed according to

Ps;t;r ¼ mgfp
1
Et

XEt

e¼1

ds;t;e;r

 !
ð2Þ

The probability ps,t of the Null Hypothesis is the fraction of values Ps,t,r that are
larger than or equal to Ps,t,0. Small values of p, traditionally p \ 0.05, indicate
rejection of the Null Hypothesis, or consistency between epochs of the same
stimulus type.

The test for differences between stimulus types is again performed indepen-
dently for each sample. Here, the Null Hypothesis is that there is no difference
between stimulus types, i.e. that the same maps occur regardless of stimulus type.
If the Null Hypothesis holds, randomly perturbing maps across stimulus types
should not alter the average maps per stimulus type.

When just two stimulus types are compared, the MGFP of the difference of the
averaged maps per stimulus type can serve as the measure. For each sample, the
test is performed as follows: In a first step, the observed global field power Ps,0 of
the difference of the averages over all epochs of stimulus types t = 1 and t = 2 is
computed as

Ps;0 ¼ mgfp
1

E1

XE1

e¼1

ds;1;e �
1

E2

XE2

e¼1

ds;2;e

 !
ð3Þ

For R repetitions, maps are then randomly shuffled across stimulus types. For
each repetition r, randomized maps ds,t,e,r are obtained and the global field power
Ps,r can be computed according to

Ps;r ¼ mgfp
1

E1

XE1

e¼1

ds;1;e;r �
1

E2

XE2

e¼1

ds;2;e;r

 !
ð4Þ
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Again, the probability ps of the Null Hypothesis is the fraction of values Ps,r

that are larger than or equal to Ps,0. Small values of p indicate significant map
differences between stimulus types.

Optionally, averaged maps may be normalized before computing the difference.
An extension to more than two and to different categories of stimulus types using a
measure called global dissimilarity is described in Murray et al. (2008).

For this paper, the number of repetitions was R = 5,000 and values of p \ 0.05
were regarded as significant. Map normalization was used for the difference tests.

3 Results

After excluding epochs with signals exceeding ±1.5 pT, 981 epochs remained and
were subjected to TANOVA analysis: 99 of type yi1, 99 of type yi2, and 783 of
type yi3. The consistency test for yi1 yielded periods of consistency from 80 to
135 ms, from 145 to 230 ms, from 275 to 400 ms, and from 515 to 600 ms. For
yi2, consistency periods were 80–130, 145–310, 335–350, 380–395, 455–470, and

Fig. 3 Rows 1–3 show consistency test results for stimuli yi1, yi2, and yi3. White areas indicate
consistency, with p \ 0.05. Waveforms are MGFPs of the average per stimulus type. Rows 4 and
5 show differences between yi1 and yi3, and between yi2 and yi3. The waveforms here are p
values, and white areas indicate significant differences, with p \ 0.05
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525–600 ms. For yi3, consistency was established for 10–70 and for 80–600 ms
(Fig. 3). Pre-trigger consistency periods have not been mentioned as they are
likely due to late effects of the previous stimulus.

The test for differences between yi1 and yi3 yielded significant latencies from
175 to 255, 295 to 340, 375 to 425, and 495 to 520 ms. Differences between yi2
and yi3 occurred from 150 to 160, 170 to 190, 300 to 315, and 445 to 490 ms
(Fig. 3). The combined computation times of consistency and difference tests with
5,000 randomizations each for 157 channels and 981 epochs, performed for all 140
samples per epoch at 200 Hz were 14 min on a 2 GHz Core i7 CPU.

4 Discussion and Conclusion

Consistent with the behavioral results, the MMN data displayed a more robust
statistical difference for the perceptually easier discrimination of the yi3/yi1
contrast compared to yi3/yi2 contrast. It was shown how TANOVA can be applied
to the individual epochs obtained in an MMN experiment. This allowed estab-
lishing data plausibility and identifying latencies-of-interest for further analysis.

Obviously, this approach is not limited to MEG data analysis but can also be
performed on EEG data. It can easily be extended to group or longitudinal studies.
In some cases, it is then necessary to shuffle within-subject only. For group or
longitudinal studies, either individual averages per stimulus type can be processed,
or all acquired epochs of all datasets.

Acknowledgments Michael Wagner thanks Chia-Ying Lee for kindly providing the MMN data
and Curtis W. Ponton for data processing advice, as well as Manfred Fuchs and Jörn Kastner for
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MEG-SIM Web Portal: A Database
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MEG Data for Testing Algorithms
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Abstract MEG is a noninvasive measure of electrophysiological brain activity
which provides excellent temporal and high spatial resolution. Because of its uniquely
high temporal resolution relative to the more commonly used hemodynamic-based
measures (fMRI, PET), the usefulness of MEG as a complementary neuroimaging
method is becoming more widely recognized, particularly in the investigation of
functional connectivity within and between large-scale brain networks. However, the
available analysis methods for solving the inverse problem for MEG have yet to
be compared and standardized. A comparison of analysis methods is further com-
plicated by the fact that the different MEG systems have different data formats, noise
cancellation methods, and sensor configurations. In order to facilitate this process,
we established a website containing an extensive series of realistic simulated data for
testing purposes (http://cobre.mrn.org/megsim/). In addition, we assert the useful-
ness of these datasets for training purposes, as they will provide an unambiguous
answer to whether a trainee is correctly carrying out analyses. Here we present a
brief rationale and description of the testbed created, including cases emphasizing
functional connectivity (e.g., oscillatory activity) and the Default Mode Network
(DMN). They are suitable for use with a wide assortment of analyses including
equivalent current dipole (ECD), minimum norm, beamformers, independent
component analysis (ICA), Granger causality/directed transfer function, and
single-trial methods.
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1 Introduction

MEG has the ability to provide information about the temporal activity of brain
signaling with excellent temporal resolution (ms), and good spatial resolution (mm
range for single source localization and cm range for source discrimination (Supek
and Aine 1993, 1997)), and therefore has a unique potential as a tool to investigate
brain activity. Furthermore, since MEG offers the capability of providing com-
prehensive information concerning brain signaling it can also be used for char-
acterizing the fine temporal dynamics of signals underlying cognitive deficits in
clinical populations. However, to date, there has been a lack of accepted standards
within the MEG community as to what types of analyses are optimal for which
types of studies. It is understood that with a given set of assumptions and
parameters, the analysis methods each have unique strengths and weaknesses,
depending on how they are used (for some examples see (Liljestrom et al. 2005)).
Yet a systematic understanding of these methods remains limited. This is in part
due to the mathematically ill-posed nature of the inverse problem for source
reconstruction of MEG data (i.e., the reconstruction of the current distribution
inside the brain based on measurements made outside the head). To solve the
inverse problem, constraints need to be applied to obtain a unique solution (Baillet
et al. 2001). These constraints vary between analysis methods (Hämäläinen et al.
1993), thereby making certain analysis techniques more appropriate for particular
research questions, and making it challenging to choose one or a few analysis
methods as ‘‘best’’ in most cases as has occurred in other neuroimaging fields (e.g.
fMRI, PET). To further complicate the standardization of MEG data analysis
techniques, the various MEG systems have different types of sensor pick-up coils,
different number of sensors, and a variety of filtering methods and analysis soft-
ware, much of which is proprietary.

Of the four broad categories of inverse procedures: equivalent current dipole
(ECD), minimum norm (L1 and L2 norms), beamformer, and Bayesian, each has
limitations associated with it as discussed below. Critics of the earlier dipole mod-
eling approaches emphasize the difficulties in: (1) accurately localizing more than
one or a few point current dipoles; (2) using point current dipoles to localize extended
sources; and (3) determining the number of sources to be included in the search a
priori (Liu et al. 1998; Fuchs et al. 1999; Uutela et al. 1999; Huang et al. 1998, 2006;
Lin et al. 2006; Mattout et al. 2006, Mosher et al. 1992). Our greatest concern for
the multidipole, spatiotemporal modeling methods is that under-estimation of the
number of true sources can compromise location and timecourse accuracy for
the identified sources (Supek and Aine 1997; Greenblatt et al. 2005). This is because
multidipole modeling methods attempt to account for the entire measured signal via
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a set number of sources, and the omission of one source will generally change
the position and/or magnitude of other sources to account for the signal from the
omitted source. This is not true for the minimum norm, beamformer, or Bayesian
methods. We later discuss a CSST dipole modeling technique, and show how it
can accurately localize (mm spatial resolution) simple and complex source
configurations.

In contrast, critics of the minimum norm-based (Hämäläinen et al. 1994)
approaches state that: (1) the results often appear smeared, even for point current
sources and at times may become split across lobes which produce spurious or ghost
sources leading to imprecise estimated dynamics (David et al. 2002; Michel et al.
2004; Lin et al. 2006); (2) the solution is biased toward superficial source locations
leading to the application of depth weightings by some groups (Ioannides et al. 1990;
Lin et al. 2006); (3) the smeared or broadened effect becomes more pronounced
with a decrease in signal-to-noise, potentially leading to false positive sources
(Wischmann et al. 1995); and (4) it is severely under-determined thereby requiring
the use of regularization methods to restrict the range of possible solutions.

Although the linearly-constrained minimum variance (LCMV) beamformer
(Vrba and Robinson 2000) has higher spatial resolution than minimum norm-based
methods when cortical sources are focal, the underlying assumption is that neural
sources are incoherent. Coherent signals will cause the beamformer to fail in
finding locations of other coherent sources due to partial cancellation (Hui et al.
2010) which is a potential problem for cognitive data where coherence typically
abounds. For example, in working memory studies, activity tends to synchronize
across many widespread brain regions for seconds (Aine et al. 2003). Fortunately,
several groups have recently introduced variants of the beamformer that can
reportedly deal with coherent sources, with some restrictions [e.g. Dalal et al.
(2006); Brookes et al. (2007, 2011); Diwakar et al. (2011); Moiseev et al.
(2011)visual and auditory studies]. However both beamformer and minimum norm
techniques have some difficulty in examining functional connectivity or cortical
interactions, given the robust cross-talk present in the data (Hui and Leahy 2006;
Hui et al. 2010). But, the general advantages of minimum norm and beamformer
methods are that they require less analysis time making them quicker to use.

Finally, there are Bayesian methods (Jun et al. 2005; Schmidt et al. 1999; Wipf
et al. 2010). The current drawback of these methods is that they have not yet been
widely applied to empirical data. In part this may be due to a need for large
computational resources since some versions utilize a Markov Chain Monte Carlo
approach to generate sets of activity parameters that are distributed according to
the posterior distribution (Schmidt et al. 1999). However proponents of this
method state that the Bayesian method combats the issue of ill-posedness by
offering a general formulation of regularization constraints. In addition, the
Bayesian approach provides statistical performance tools. These tools include the
estimation error covariance and the marginal probability density of the measure-
ments (Brooks et al. 2005).

Recently, the strong interest in functional connectivity that has arisen in the
MEG field has investigators combining some of the above mentioned localization
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methods with other types of analyses to determine which and how sources of
activity are temporally related. Functional connectivity has historically been
assessed in sensor space (e.g. de Pasquale et al. 2010), but new methods are being
developed to determine functional connectivity in source space. For example,
Brookes et al. (2011) have used a beamformer localization method, along with a
Hilbert transform to derive the analytic signal, to which independent component
analysis (ICA) is applied, in order to identify the functional networks of activity.
The oscillatory and DMN simulations that have been created and described in
Sect. 2.6 could be used to further characterize the strengths of such an analysis
procedure.

Given the above, we have established the MEG-SIM website containing both a
series of realistic simulated data sets and empirical data sets for testing purposes
(http://cobre.mrn.org/megsim/). Through a partnership formed between the Mind
Research Network (MRN), Massachusetts General Hospital, University of
Minnesota/Veterans Affairs in Minneapolis, University of New Mexico, and Los
Alamos National Laboratory, we acquired MEG data using three different MEG
systems (VSM MedTech 275, Elekta-Neuromag 306, 4-D Neuroimaging 3,600)
and three different sensory paradigms (visual, auditory and somatosensory) for
each of 9 participants. A grant from NIMH (R21MH080141) then allowed us to
create realistic simulated data derived from the real noise contained in the col-
lected empirical data. A web portal was established so others can access both the
simulated and empirical datasets with the hope of furthering algorithm perfor-
mance assessment and development through the MEG-SIM website. We refer to
the testbed as ‘realistic’ simulated data because: (1) colored noise is used in most
examples (i.e., simulations are embedded in spontaneous data containing corre-
lated noise); (2) the simulated timecourses and source locations are based on
findings from empirical data; (3) focal and extended cortical patches are created
from MRIs of individual participants (i.e., the SNR and orientation of sources
differ across participants); and (4) in some cases each of the unique single trials
and continuous data, mimicking actual data acquisition, are provided.

We assert that if an algorithm fails to identify the simulated sources and
timecourses under realistic conditions (e.g., similar SNR as empirical data with
real artifacts occurring at random intervals), then one cannot realistically expect to
obtain correct results in empirical data. If an algorithm provides reasonable
solutions to simulations then it is standard practice to next apply the algorithm to
simple sensory empirical data where the literature provides information on the
expected locations and timecourses of sources (e.g., non-human primate studies)
before attempting analysis of cognitive datasets, where the literature is not yet well
established. We have designed the simulated datasets to provide a wide range of
realistic examples emulating brain activity. We specifically tried to design these
simulations such that one analysis approach would not be favored. We hope
developers will utilize these data to further develop and refine MEG analysis
methods. Similarly, we hope that users of the algorithms will compare and contrast
their favored approaches with others. Because we are avid users of a semi-
automated, multidipole, spatiotemporal approach [Calibrated Start Spatio-Temporal
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or CSST; (Ranken et al. 2002, 2004)], many of the solutions shown herein are
from the CSST algorithm to demonstrate the efficacy of these simulations. Because
the empirical datasets were covered in depth in Aine et al. (2012), we only briefly
describe those that are available at the MEG-SIM website in Sect. 3 of this chapter.

2 Simulated Datasets

2.1 Software

The simulated data were primarily created using MRIVIEW and MEGAN software,
both of which are made available at the MEG-SIM website. MRIVIEW (Ranken
and George 1993; Ranken et al. 2002) is a software tool for integrating volumetric
MRI head data with functional information (e.g., EEG, MEG, fMRI—see chapter in
this volume by Ranken for further details on MRIVIEW). A Forward Simulator is
included in MRIVIEW for creating multiple focal or distributed-source regions of
arbitrary size and orientation, allowing users to create a vast array of simulated
datasets. We have used these tools previously for simulating epileptic spikes that
were then embedded in spontaneous activity from patients (Stephen et al. 2003a,
2005).

MEGAN (E. Best) organizes the data from the different MEG systems into a
consistent data format, netMEG, a self-documenting and highly portable file,
written using netCDF format. This netCDF file is imported into MRIVIEW. The
simulated sensor measurements are obtained by summing the forward fields from
all of the simulated sources. White noise, simulated noise or real noise from MEG
acquisitions can then be added to the calculated forwards to generate simulations
of empirical MEG data. More information about MEGAN can be found in Aine
et al. (2012).

CSST (Calibrated Start Spatio-Temporal) is a multidipole, spatiotemporal
modeling approach to source localization that has been automated, i.e., it takes the
traditional starting parameter guess(es) out of the hands of the investigator. CSST
uses the Nelder-Mead non-linear downhill simplex procedure to perform a spatial
search (Nelder and Mead 1965) and utilizes information based on a singular value
decomposition (SVD) of the data matrix for determining an approximate number of
sources to be localized (a range of source models is then chosen by the investi-
gator). CSST runs multiple instances of the downhill simplex search from random
combinations of MR-derived starting locations from within the head volume on a
Linux PC cluster. CSST has been used extensively with both Neuromag 122 and
CTF 275 MEG systems (Stephen et al. 2003a, b, 2005, 2006; Aine et al. 2000, 2010)
as well as the Neuromag Vectorview 306-system (Stephen et al. 2012; Susac et al.
2010, 2011; Golubic et al. 2011). CSST has also been thoroughly tested on EEG
data.
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2.2 Physiologically Plausible Simulations

The initial simulated datasets were constructed using two different-sized patches of
cortex determined via MRI (*4 and *20 mm2) and two different source
strengths (30 and 50 nAm). We used these values because our previous empirical
results suggest that those current strengths are typical of what is encountered in
visual and auditory studies [e.g. Table 2 in Aine et al. (2006) and Fig. 4 and
Table 3 in (Aine et al. (2005)]. In addition, the empirical visual paradigm used to
acquire data at each MRN partner site utilized small and large stimuli (1.0� and
5.0� visual angle) designed to activate *4 mm2 of tissue and *20 mm2 of tissue
in primary visual cortex, according to the cortical magnification factors presented
in Rovamo and Virsu (1979). We attempted to equate the simulated and empirical
parameters since the goal was to produce both focal and extended activity. This is
necessary to evaluate analysis methods where source extent is believed to be dealt
with less effectively (e.g. dipole modeling). The somatosensory study used elec-
trical stimulation of the index finger and median nerve, to produce focal versus
extended sources. The auditory study used individual pure tones and bursts of
white noise to evoke focal versus extended activity. Additional justification for
parameter choices can be found in Aine et al. (2012).

2.3 Simulated Visual Data

The locations, timing, and extent of the simulated sources (see Table 1 for Sets
1–5) were generated based on our previous basic visual (Stephen et al. 2002) and
visual working memory studies (Aine et al. 2006). Set 3 differs from Set 1 in
having synchronous late activity. Set 1.B and 3.B differ from 1.A and 3.A in dipole
strengths (i.e., larger cortical patches). Note, these latencies are modeled after
empirical visual studies but they were embedded in the noise file so that *200 ms
was treated as prestimulus baseline. DLPFC (dorsolateral prefrontal cortex) and
AC (anterior cingulate) were treated as ramping activity peaking later in time.
Definitions of areas are: V1 = visual area 1; V2 = visual area 2; V3 = visual area
3; I. LOG = inferior lateral occipital gyrus; IPS = intraparietal sulcus; S.
LOG = superior lateral occipital gyrus; RHC = right hippocampus. We varied the
synchronicity of sources to allow developers to determine an algorithm’s sensi-
tivity to fine temporal changes. Parameters that vary within and across datasets
include: number of sources, focal versus extended sources, source strengths,
degree of synchrony of sources, and noise level or type of noise (white noise or
spontaneous noise). The first 5 sets were produced for 5 participants using indi-
vidual cortical geometries, different SNRs, and empirical noise data from both the
CTF Omega 275 and Neuromag Vectorview 306 MEG systems. Although it was a
goal to simulate these cases for the 4-D Neuroimaging Magnus 3,600 system as
well, funds for this project ended before we could do so. Timecourses were usually
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modeled using 3 Gaussians (e.g., early spike-like activity followed by later slow-
wave activity) as typically found in many visual and auditory MEG studies (Portin
et al. 1999; Aine et al. 2003, 2005, 2012; Vanni et al. 2004; Kovacevic et al. 2005).

In the simulated example shown in Fig. 1, a Freesurfer-segmented gray matter/
white matter boundary for the simulations was imported into MRIVIEW (Fig. 1a),
although the segmentation may also be accomplished within MRIVIEW. The
simulated activation timecourses (signal) are shown Fig. 1b. In each case, 100
single trials of real spontaneous background activity were averaged together as the
noise trial for each of the 5 participants and for each of the MEG systems (Fig. 1c).
Then the signal was embedded within the averaged noise file (Fig. 1d). For all
simulated datasets on the web portal, a spherical head model was used for the
simulations and modeled data; however, a boundary element model (BEM) is also
available in MRIVIEW.

Table 2 shows actual source locations, CSST estimated source locations, and
errors when either noise was absent (no-noise) or empirical noise was present for
visual simulated data Set 4. CTF head-centered coordinate system is used, where
-x points out the back of the head, +y points out the left ear, and +z points out the
top of the head. Average error across the 6 sources was 0.1 mm for the no-noise
condition and 6.8 mm for the real noise condition. Standard deviation (SDev) is
shown for estimated solutions for real-noise simulated data. This table demon-
strates that the presence of real noise significantly affects source localization
accuracy; however, our CSST solution for the real noise condition was still good
for this complicated dataset, and inconsistent with previous critiques of dipole-
modeling approaches that state dipole methods cannot accurately localize more
than a few point sources of activity. Further, Table 3 lists CSST output when

Table 1 Onset latencies and amplitudes of sources in different visual areas used for each sim-
ulated dataset. Reprinted from Aine et al. (2012) with permission from Springer

VI V2/V3 I. LOG IPS S.LOG DLPFC AC RHC

Set 1.A 80 ms 90 ms 100 ms
30 nAm 30 nAm 30 nAm

1.B 80 ms 90 ms 100 ms
50 nAm 50 nAm 50 nAm

Set 2 90 ms 90 ms 100 ms
15 nAm 30 nAm 30 nAm

Set 3.A 80 ms 90 ms 100 ms
30 nAm 30 nAm 30 nAm

3.B 80 ms 90 ms 100 ms
50 nAm 50 nAm 50 nAm

Set 4 90 ms 90 ms 100 ms 100 ms 300 ms* 400 ms*
15 nAm 30 nAm 20 nAm 30 nAm 20 nAm 30 nAm

Set 5 90 ms 90 ms 100 ms 100 ms 300 ms* 400 ms* 80 ms
15 nAm 30 nAm 20 nAm 30 nAm 20 nAm 30 nAm 51 nAm

* DLPFC and AC were treated as ramping activity peaking later in time
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Fig. 1 A Freesurfer-segmented gray matter/white matter boundary for the simulations (shown in
red) was imported into MRIVIEW from which patches (a) of simulated activity (b) were
generated. 100 passes of spontaneous activity or noise (c) were identified using CTF software
(Data Editor) and averaged together using MEGAN. The simulated activity was embedded within
the averaged noise file (d) and saved in netCDF format (i.e., a netMEG file in MEGAN).
Reprinted from Aine et al. (2012) with permission from Springer

Table 2 Actual and CSST estimated (‘‘no-noise’’ and ‘‘real-noise’’) locations for a 6-source,
realistic simulation

SET 4 6
sources

Source V3 Error
(mm)

Source I. LOG Error
(mm)

Source IPS Error
(nm)

X Y Z X Y Z X Y Z

Actual -70.0 5.9 75.8 -59.7 33.2 42.9 -22.1 38.3 82.6
No noise -69.7 6.0 75.9 0.3 -59.8 33.3 42.9 0.1 -22.1 38.2 82.7 0.1
Real noise -61.3 4.3 74.1 9.0 -55.6 31.7 44.5 4.6 -18.7 28.7 71.8 14.8
SDev

(Real)
0.3 2.3 1.6 1.6 0.3 0.4 1.5 1.7 0.9

Source R. frontal Source AC Source S. LOG

X Y Z X Y Z X Y Z

Actual 58.1 -41.5 46.2 74.1 -7.0 47.8 -31.3 -40.7 60.3
No noise 58.1 -41.7 46.2 0.1 74.0 -7.1 47.6 0.2 -31.4 -40.8 60.3 0.1
Real noise 58.5 -43.2 44.0 2.8 72.6 -9.9 46.7 3.4 -27.5 -36.1 59.1 6.1
SDev (Real) 0.1 0.1 0.4 0.5 0.3 0.2 0.5 0.6 0.6
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varying the model order (i.e. number of fitted dipoles) for a 3-dipole simulated
dataset. The solutions (1–4 Dipoles) shown are for real spontaneous noise.
Timecourses (shown as absolute values, bottom) are from the 4-dipole fit to
3-source data. In Table 3 the entries P1, P2, and P3 correspond to the Pk 1, Pk 2,
Pk 3 timecourses. Notice that the noise timecourse is low-amplitude and without
structure. As this table shows, under-modeling (1- and 2-dipoles) results in large
localization errors. In contrast, localization errors are often reduced when over-
modeling by 1 dipole (i.e., 4-dipoles for this 3-source dataset). Fortunately, noise
sources are often easy to identify by a lack of timecourse structure and low
amplitude (lower right panel).

Set 6 (remaining sets are not shown in Table 1) includes late activity (e.g.,
400–600 ms) that was synchronous across four cortical sites (V1, I. LOG, IPS, and
DLPFC), as is seen in working memory studies (Aine et al. 2006). The upper left
panel of Fig. 2 displays the locations of the cortical patches (cortical patches are
located at the cross-hairs) while the timecourses assigned to the cortical patches
are shown beneath the MRIs. The averaged waveforms (128 trials with signals
embedded in real spontaneous noise) seen across the 275 channels of the CTF
MEG system are shown in the middle left column. CSST source locations are
shown in the upper right panel (see tabled values). The table shows the coordinates
of the actual sources, the estimated source locations, and the errors using
Euclidean distance. Net source orientation errors were 42.0� for V1, 58.2� for I.
LOG, 20.9� for IPS and 48.0� for the DLPFC sources. However, summarizing
absolute orientation error is challenging since the original sources consisted of

Table 3 Sample output from an automated routine for determining best-fits to 3-source simu-
lated data

Source
location

Loc error mm
(STD)

Peak amplitude
error nAm

Peak latency
error ms

Avg Loc
error mm

Pk
1

Pk
2

Pk
3

Pk
1

Pk
2

Pk
3

Real
spontaneous
noise

1 Dip-V3 17.5 (0.15) 12.4 42.5 19.6 3.0 1.0 18.0 17.5
2 Dip-Vl 9.25 (0.11) 1.6 4.7 1.0 4.0 2.0 2.0
2 Dip-IPS 7.22 (0.08) 5.1 21.5 11.0 7.0 4.0 18.0 8.23
3 Dip-V1 4.93 (0.13) 1.1 0.45 2.2 5.0 2.0 1.0
3 Dip-V3 4.98 (0.12) 1.9 7.1 4.1 13.0 0.0 25.0
3 Dip-IPS 2.32 (0.05) 1.3 4.6 2.8 6.0 2.0 15.0 4.08
4 Dip-V1 3.11 (0.14) 0.03 3.6 0.80 4.0 2.0 6.0
4 Dip-V3 3.51 (0.14) 3.2 5.1 2.5 1.0 1.0 29.0
4 Dip-IPS 1.56 (0.05) 1.4 5.6 3.6 5.0 2.0 18.0 2.73
4-Dip-N Noise – – – – – –

MEG-SIM Web Portal 293



patches of cortex with the orientation of the patch activity conforming to the
cortical folds. The middle right panel shows the estimated timecourses and source
locations. The average localization error across all 4 sources was 6.7 mm with the
greatest error for the I. LOG source. The cross-correlations between timecourses
are shown in the bottom row of Fig. 2. We examined early activity first
(200–350 ms–bottom left panel) which shows that V1 activity correlated highly
with I. LOG, regions showing the initial spike-like activity (*280 ms). IPS and
DLPF cross-correlations were also highly correlated with near zero-lag. The
maximal correlation coefficients of the other pairs of sources were lower in value

Fig. 2 Simulation results for a 4-source model (Set 6) where all sources became synchronous
during the later interval (see upper left panels for source locations (cross-hairs) and timecourses
of the sources). Amplitudes and peak latencies were jittered across each of 128 single trials. The
averaged waveforms seen at the sensor level for the CTF system are shown beneath the input
timecourses. Upper right table shows CSST actual locations and errors associated with modeled
source locations. The middle panel shows location and timecourse plots of the CSST solutions.
Bottom row shows cross-correlations between source timecourses for an early interval (left) when
there was some asynchrony across sources and a later interval (right) when all sources became
synchronous. Adapted from Fig. 5 Aine et al. (2012) with permission from Springer

294 L. Sanfratello et al.



and were not near zero-lag. In contrast, the late activity (350–600 ms—bottom
right panel) shows higher zero-lag correlation coefficients for activity between the
4 brain regions (i.e., late activity was synchronous across brain regions) with IPS
and DLPFC revealing the highest correlation coefficient. This dataset is also
suitable for examining coherence either between sensors or between reconstructed
sources.

Next, single-trial datasets were created with and without oscillatory activity,
with some reflecting functional connectivity in a working memory task, which are
suitable for additional types of analyses (i.e., time-frequency analyses, Granger
Causality, etc.). In this case, sources embedded within 128 single trials of noise
were jittered about their mean latency and amplitude. This dataset (Set 7) is similar
to Set 6 (VSM-CTF MEG System). Again, the four cortical sites were: (1) primary
visual cortex (V1); (2) inferior lateral occipital gyrus (I.LOG); (3) intraparietal
sulcus (IPS); and (4) dorsolateral prefrontal cortex (DLPFC). The cortical patch
current strengths were initially assigned values similar to those we observe in our
visual working memory studies (30–50 nAm peaks) using the MRIVIEW Forward
Simulator (Ranken and George 1993; Ranken et al. 2002) but were then randomly
jittered about those values by up to ±50 % across the single trials. Peak latencies
were also jittered across each trial by a randomly selected value up to ±FWHM/2.
To allow for source analysis of averaged evoked responses, the 128 single trials
were then averaged together and written out to the netCDF file format. Therefore
each of the 128 single trials plus the averaged file is available at the MEG-SIM
website, in netCDF format.

In Set 8, oscillatory activity was added to Set 7 timecourses (Fig. 3). For the
time-locked oscillatory activity, V1, I. LOG, and IPS oscillated between 30 and
60 Hz (gamma band) across the 128 trials while IPS and DLPFC oscillated
between 14 and 28 Hz (beta band). Oscillatory activity for DLPFC was delayed by
20 ms relative to IPS, and IPS gamma activity was delayed by 10 ms relative to
IPS beta activity (see schematic in Fig. 3a). The delays were meant to reflect
normal time delays between visual areas (Stephen et al. 2002). Gamma activity
mimicked local circuitry activity between V1, I. LOG, and IPS while beta activity
mimicked long-range connections between IPS and DLPFC. For both beta and
gamma oscillations, the amplitudes were set at 10 nAm and were then jittered
between 5 and 15 nAm across the 128 trials. Note that the latencies, and therefore
the phase of the oscillations, were kept constant between brain regions, and also
between trials. As with the other simulated data sets, the timecourses were con-
structed within MRIVIEW, however, they had to be constructed independently;
i.e., one timecourse contained the evoked response plus real noise while the other
timecourse contained the oscillations without noise. The two timecourses were
then added together using a Matlab script. Again, to allow for source analysis of
the averaged responses, the 128 single trials were averaged together to create a
single averaged dataset, and were written out to a netCDF file (datasets for two
subjects were created).

Figure 3b shows the input signal at the sensor level across sources before
oscillatory activity or noise was added. Sample single trials are shown where peak
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amplitudes (of both the evoked and oscillatory activity), peak latencies (of the
evoked activity only), and frequency of the oscillatory activity were jittered across
trials so each single trial is unique. The average of the 128 single trials is shown
beneath. Figure 3c and 3d show the output of the CSST algorithm. CSST provides
both the locations of the dipoles and the reconstructed timecourses of activity.
Table 4 contains the results of this analysis for the two visual/working memory
datasets that were created for the first subject (i.e., single trials averaged with and
without oscillatory activity). Our results show that CSST can accurately recon-
struct both temporal and spatial characteristics of the simulated datasets, even with
noisy and oscillating sources. Time-frequency plots are shown in Fig. 3e for

Fig. 3 Simulated visual working memory with long-range beta band and short-range gamma
band oscillatory activity (see (a) schematic). DLPFC and IPS oscillated at 15–20 Hz while IPS, I.
LOG, and V1 oscillated at 30–80 Hz. IPS generated both beta and gamma band oscillations.
a The averaged input signal without noise is shown followed by sample single-trials and the
averaged data as seen at the sensors of the CTF system. c CSST location estimates and their
associated timecourses (d) are shown. e Time-frequency representations using Morlet wavelets
for the CSST solutions shown above. Frequency was normalized to the Nyquist frequency = �*
sampling frequency (600 Hz). Oscillatory activity was given 10 nAm on average across trials.
Reproduced from Aine et al. (2012), with permission from Springer
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gamma and beta bands. Gamma band activity is primarily seen in dipoles located
in V1, I.LOG and IPS, which is consistent with the simulated data. No gamma
activity was provided to DLPFC and correspondingly, gamma activity during this
interval of time is essentially non-existent. It appears that the initial spike-like
activity in the timecourse has a predominantly beta component to it as seen in the
V1 and I.LOG beta band plots. IPS and DLPFC, in contrast, reveal beta band
activity throughout the interval, which is consistent with the simulated data. This
shows how our realistic simulated oscillatory activity datasets can be used for
testing various frequency analyses and inverse procedures. Again, these data also
come with all 128 unique individual trials for investigators wishing to apply single
trial analysis methods.

Many MEG/EEG investigators are familiar with more traditional analyses of
functional connectivity such as that provided by coherence analysis. Here we show
that coherence analysis can be conducted both at the sensor and the source level
using our simulated datasets. For example, a sensor near V1 which showed a large
evoked response was chosen as the sensor of interest (see Fig. 4a, sensor #273
encircled by a green ring). Next the averaged simulation file (Set 7) was imported
into Matlab where ‘‘mscohere’’ was used to determine the coherence of sensor 273
with every other sensor in the MEG array for the frequency range 30–60 Hz. This
coherence analysis was repeated for the simulation in which oscillations had been
added to the sources as described above (Set 8). Results show a clear increase in
coherence between sensors which had gamma band oscillations added to nearby
sources. Coherence analyses were also carried out at the source level for Set 8
(Fig. 4b). In this example, coherence in the beta band was examined between
sources (i.e., output from CSST). Beta oscillatory activity was added to DLPF and
IPS sources and the bottom figure of Fig. 4b shows the resulting coherence
between these two sources (IPS is the reference source shown in white and its
coherence (normalized magnitude) with DLPF is represented by red color). It turns
out that the initial spike-like activity of the timecourses also has a beta band
component as indicated by the coherence between reference source V1 (shown in
white in the upper Fig. 4b) and I.LOG. Recall that the time-frequency plots shown
in Fig. 3e also revealed this information (see Beta activity for V1 and I.LOG).

Table 4 CSST results for
simulated datasets with 4
visual sources based on
averaged waveforms without
oscillatory activity (top) and
with oscillatory activity
(bottom) for Subject #1

Source Loc. error (mm) Lat. error (ms) Amp. error (nAm)

Single trials (Set 7):
VI 1.5 6 2.5
I.LOG 9.4 4 3.2
IPS 3.7 3 7.9
DLPF 8.9 13 6.8
Single trials with oscillations (Set 8):
VI 4.7 6 9.8
I.LOG 9.7 1 4.8
IPS 7.0 1 11.2
DLPF 4.9 16 2.4
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For the final visual simulated dataset (Set 9), the same data as Set 8 was created
for the Neuromag 306 system with different noise trials and sensor configuration
relative to the CTF 275 system. In this case, a Matlab program utilized the netCDF

Fig. 4 a Sensor level coherence analysis with no oscillatory activity applied to underlying
sources (top) and with oscillatory activity applied to underlying sources (bottom). b Source level
coherence analysis relative to the white source (V1 Top, IPS Bottom) of Beta band activity. Level
of coherence is indicated by the colorbar

Table 5 CSST results for
Subject #2 for both CTF (Set
8) and Neuromag (Set 9)
MEG systems

Source CTF Neuromag

Single trials and oscillations Loc. error (mm) Loc. error (mm)
VI not found 9.9
I. LOG 7.5 3.7
IPS 4.2 2.8
DLPF 2.1 4.7
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toolbox for manipulating the opening and closing of the netCDF files containing
the individual evoked waveforms and the individual oscillatory waveforms, which
were created at cortical locations as similar as possible to Set 7. The simulated data
were again created using MRIVIEW and MEGAN. Matlab was used to import the
timecourses of the individual areas of evoked activity which were then jittered (in
the same way as discussed above) and combined with randomly selected instances
of Neuromag 306 noise which was read into Matlab using Fieldtrip functions
(http://fieldtrip.fcdonders.nl/). One hundred single trials were created containing
evoked and oscillatory activity. This was automated by the process of generating
single trials described previously for Set 8. The 100 single trials were then aver-
aged together and saved to a netCDF file, to be used with CSST analyses, and to a
Neuromag 306 FIF file to be used with Curry, a commercial software package
(Compumedics Neuroscan, Charlotte, NC http://www.neuroscan.com/) for the
sLORETA and SWARM analyses (Wagner et al. 2007) discussed below.

2.4 Preliminary Examples of Analysis Algorithm Output
for Visual Simulated Data

First, for comparison, multidipole, spatiotemporal source localization was con-
ducted for Subject #2 using the CSST algorithm for simulated data Sets 8 and 9
(CTF and Neuromag systems, respectively). Table 5 shows the results from these
analyses. Location was considered ‘‘not found’’ if it was C50.0 mm from the true
source. Once again CSST determines the locations of the active cortical areas with
a good degree of accuracy. We do find obvious differences between the results for
the CSST dipole fits for the two different subjects (compare Tables 4 and 5) and
between the same subject and the two MEG systems (Table 5). This was not
surprising since the simulations were (1) created using each subjects’ MRI,
therefore, the exact location of the cortical patch differs somewhat between sub-
jects which will result in different waveform distributions at the sensor level for the
different MEG systems; and (2) the V1 source was given a smaller initial
amplitude (30 vs. 50 nAm) in Subject #2, making it more difficult to identify.
Furthermore, there is also a slight variation in the noise trials chosen since the
noise trials were taken from the empirical datasets (therefore noise varied across
the MEG systems).

We next report the results of two L2 minimum norm-based current distribution
analyses, sLORETA and SWARM, available in Curry for the datasets made for
Subject #2. In current distribution models, the cortex is divided up into a large
number of elements, which form the solution space. Since the primary source of
the MEG signal is assumed to be associated with postsynaptic currents, a current
dipole is assigned to each of the many tens of thousands of tessellation elements
(user chooses exact number depending upon desired resolution). Additionally,
since the problem is under-determined (i.e. there are fewer equations than
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unknowns), the weighted least-squares criterion requiring that the prediction error
is minimized must be augmented with an additional constraint to select the best
current distribution among those capable of explaining the data. In the case of the
basic L2 minimum norm approach, the mathematical criterion is the solution that
minimizes the power (L2-norm) of the dipole moment. After adding noise nor-
malization, statistical significance of current estimates relative to the level of noise
can be determined using ‘‘dynamic statistical parametric’’ maps; sLORETA is a
variation of this approach (Pascual-Marqui et al. 1994, 1999; Dale et al. 2000;
Pascual-Marqui 2002; Wagner et al. 2004, 2008), while SWARM (Wagner et al.
2007, 2008) is an sLORETA-based method that provides current estimates instead
of probabilities. Simulated data was read into the Curry software package using
either DS files (for the CTF simulations) or FIF files (for the Neuromag simula-
tions). This allowed Curry to assign the correct coordinate system when importing
the data and provided access to the digitized fiducials in the files to be used for
accurate alignment with the subjects MRI, which was also imported into Curry.

Figure 5 shows preliminary results of the sLORETA and SWARM analyses
carried out using the Curry software package. The CTF simulations show results
that are more distributed in the IPS/I.LOG/V1 areas in both sLORETA and
SWARM in comparison to the simulations made with the Neuromag system,
which shows more focal solutions. This is not particularly surprising based on the
fact that planar gradiometers are more sensitive to signals directly below the
sensors. We additionally provide the results at two different thresholds, to show
that some activation may not be seen if the threshold is too high, e.g. compare the
CTF sLORETA results in Fig. 5, where the DLPFC area of activity is lost at the
higher cutoff. Figure 5 also shows that sLORETA was unable to find DLPFC
activity at either cutoff in the Neuromag data. In addition, it is possible to extract

Fig. 5 a sLORETA results using Curry at two different cutoff values (30 and 50 %) for the same
active cortical areas mixed with spontaneous noise files from the CTF and Neuromag systems.
b SWARM results using Curry at two cutoff values for the same active cortical areas and noise
files used in (a). c Timecourse reconstructions from SWARM using simulated datasets in
(b) (both CTF and Neuromag). Reproduced from Aine et al. (2012), with permission from
Springer
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timecourse activation from the SWARM analysis. Although Curry software pro-
vides timecourse extraction via ‘‘CDR dipoles’’, an ECD method, it also contains
the functionality to save the SWARM results into a Matlab file format for further
investigation. We utilized the latter method. As a first step to show how time-
courses can be extracted from the SWARM data we chose to identify areas of
activation as simply as possible. To this end we used Matlab to identify the areas
of highest activation from the SWARM data that Curry created, after importing the
Curry output into Matlab. We then plotted the timecourses at those locations (right
portion of Fig. 5); the only constraint was that the independent sources be greater
than 2.0 cm apart, which we empirically chose such that different sources were
resolvable at this separation. Note that the added oscillations (e.g., beta and
gamma band activity) can be easily identified. We have less experience with these
two L2 minimum norm-based analyses, therefore they should be considered pre-
liminary and no tables of error values are offered. We present a preliminary report
here hoping to encourage others to investigate these analyses further using the
same simulations. It is clear however that these simulated datasets are already
providing a reasonable challenge for a variety of analysis methods.

2.5 Simulated Somatosensory and Auditory Datasets

Simulated somatosensory and auditory datasets are also available at the web
portal. Simulating median nerve stimulation provides one of our simplest cases.
This activity consists of contralateral primary somatosensory (SIcontra), contra-
lateral secondary somatosensory (SIIcontra), and ipsilateral secondary somato-
sensory cortex activity (SIIipsi). In addition, an auditory dataset provides a simple
example of initial synchronous, bilateral activity in auditory cortex. This set also
includes asynchronous activation of the temporo-parietal junction and cingulate
cortex (4 cortical sources). For additional details on these datasets please refer to
Aine et al. (2012).

2.6 Preliminary Work on a Default Mode Network Dataset

Our newest and most preliminary simulation focuses on resting state data; that is,
we have developed a simulated default mode network (DMN) based on what is
typically found in the MEG/EEG and fMRI literature. For example we used a low
alpha oscillation, and the approximate locations for simulated activity included
prefrontal cortex (PFC)/medial prefrontal cortex, posterior cingulate cortex (PCC),
and right and left anterior parietal lobes (Brookes et al. 2011; Allen et al. 2014).
This first attempt exaggerates the probable size of some of the nodes for initial
testing purposes, and may underestimate others. Four 20 mm diameter patches
(approximately spherical) were located as shown in Fig. 6a within MRIVIEW.
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Each was given a 10 Hz oscillation, with, at this time, no relative phase lag.
Simulations with oscillation amplitudes of 20, 100, and 200nAm were created and
combined with resting state data from the Neuromag 306 MEG system. The
simulations were saved as both continuous files and averaged files, in both netCDF
and FIF formats. The simulation with the 100nAm oscillations was then analyzed
with three different methods, CSST and SWARM (from within Curry software)
which have been discussed previously, and ICA. For the ICA analysis EEGlab
(Delorme and Makeig 2004; http://sccn.ucsd.edu/eeglab/) was used to separate the
data into 102 independent components (ICs), using only the Neuromag magne-
tometer data from simulations, due to current capabilities of the EEGlab software.
Next, the 5 largest alpha band contributors were determined by the EEGlab
software and combined, as shown in the output, Fig. 6b. This is a typical EEG/
MEG DMN pattern, as expected (Hui et al. 2010; Brookes et al. 2011).

In addition, as seen in Fig. 6c, SWARM accurately reconstructs the DMN
pattern, with some additional sources of activation. And CSST, with a 6 dipole fit,
does a good job of accurately locating these distributed sources, although the
anterior parietal lobe sources are skewed medially, possibly due to the influence of
the large PCC source. SWARM and CSST analyses were conducted on averaged
data. As mentioned previously, this simulation and analysis is preliminary.

3 Empirical Datasets

Empirical MEG/MRI data were acquired for 9 participants at MRN, Massachusetts
General Hospital and University of Minnesota/Veterans Affairs in Minneapolis.
Data from 5 of the participants are available on the MEG-SIM website. Data were
acquired using the VSM MedTech 275, Elekta-Neuromag 306, 4-D Neuroimaging
3600 systems and 3 different sensory paradigms (visual, auditory and somato-
sensory) for each participant. Most participants had repeat testing conducted the
following day, which are also available. General characteristics of the sensory
studies were mentioned in Sect. 2.2 while detailed information is presented in
Aine et al. (2012).

4 Discussion

One objective of the MEG-SIM portal is to offer developers of MEG methods an
extensive testbed of realistic simulated and empirical data, established for the
purpose of quantifying the strengths and limitations of each analysis method for
the purposes of method standardization. This will aid in the refinement and further
development of algorithms. Second, we are all aware that some analysis proce-
dures are better-suited for certain types of studies while other analysis procedures
are better-suited for other studies. This set of realistic simulated data provided at
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the web portal (http://cobre.mrn.org/megsim/) includes sample datasets emulating
sensory and working memory-related processes across visual, auditory, and
somatosensory modalities. Users of MEG analysis procedures should be able to
make informed decisions as to which analysis tools are best-suited for their
research goals by working with these datasets.

The recent creation of continuous and single trial simulated datasets permit
testing of a wider variety of MEG analysis tools. Construction of continuous data
that mimic the differences between epochs of real data allow the use of analysis
techniques such as ICA to be used individually or in conjunction with various

Fig. 6 a Distributed source locations created within MRIVIEW to simulate DMN activity. Each
was given a 10 Hz oscillation, with a 100 nAm amplitude. b ICA analysis showing pattern of
activity similar to that seem in the literature for DMN. c SWARM analysis using Curry software.
d CSST analysis
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source modeling techniques to identify functional networks. These results can then
be compared with traditional source analysis conducted on averaged data, both at
the source and sensor levels. With the addition of oscillations to the simulated
datasets the accuracy of functional connectivity measures between various brain
areas using different analysis methods can also be investigated. Due to requests,
system-specific formats have been added, with identical cortical areas and
strengths of activation. For example, some of the simulated datasets described here
are now available in a variety of file formats, including netCDF, Neuromag FIF,
CTF DS and Curry (Compumedics, Neuroscan). Hopefully, the creation of these
new datasets and formats, including novel continuous and DMN simulations, will
foster algorithm performance comparisons and facilitate cross-site collaborations.
We hope that these examples provide sufficient evidence of the flexibility of the
simulations we created and we encourage others not only to use the simulations
that are currently available but also to suggest additional simulations that may
have widespread interest within the community.
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Analyzing MEG Data with Granger
Causality: Promises and Pitfalls

Mingzhou Ding and Chao Wang

Abstract In this chapter we begin by introducing the basic idea of Granger
causality and discussing its applications to local field potential data. We then
proceed to comment on recent results of applying Granger causality to MEG data.
Recognizing that Granger causality is frequently used to examine neural activity
recorded during stimulus processing, we point out the adverse effects of the
inevitable trial-to-trial variability of stimulus-evoked responses on Granger cau-
sality estimation. We end the chapter by discussing the future prospects of using
Granger causality in basic and clinical neuroscience research.

Keywords Granger causality � MEG � Local field potential � Trial-to-trial
variability � Stimulus-evoked responses

1 Introduction

Cognitive functions are achieved through cooperative neural computation. Multis-
ensor recording and functional imaging afford us the opportunity to study brain
mechanisms of cognition from a network perspective. Analytically, cross correla-
tion and ordinary coherence have been the main statistics for assessing the functional
connectivity among the monitored nodes of a neuronal network. In the case of MEG,
these nodes could be defined either in sensor space or in source space. These
measures have the drawback that they do not provide information on the direction of
information flow. As neural interactions are mediated by synaptic transmissions
which are inherently directional, and the hypotheses concerning the role of network
operations in cognitive paradigms become more elaborate, being able to assess the
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direction of information flow between neuronal ensembles is becoming increasingly
important to better understand the organization and function of complex neural
networks. Granger causality has emerged in recent years as a statistically principled
way to furnish this capability. The goal of this chapter is to introduce the basic idea
of Granger causality and discuss its various applications to local field potential
(LFP) and MEG data. Important insights generated by this method are highlighted
and a potential issue pointed out.

2 Granger Causality: Basic Idea and Applications
to LFP Data

The basic idea of Granger causality can be traced back to Wiener (1956). He
proposed that, for two simultaneously measured time series, one series can be
called causal to the other if we can better predict the second series by incorporating
past knowledge of the first one. This concept was later adopted and formalized by
Granger (1969) in the context of linear regression models of stochastic processes.
Specifically, if the variance of the prediction error for the second time series at the
present time is reduced by including past measurements from the first time series
in the linear regression model, then the first time series can be said to have a causal
(directional or driving) influence on the second time series. One repeats the pro-
cess to address the question of driving in the opposite direction by reversing the
roles of the two time series. From this definition, it is clear that the flow of time
plays an essential role in allowing inferences to be made about directions of causal
influences from time series data.

Mathematically, the above idea can be further illustrated as follows. Let the two
time series be denoted as x1; x2; . . .; xn; . . . and y1; y2; . . .; yn; . . .. Suppose that one
wants to predict the value of xn from the linear combination of m previous values of
the x-series: a1xn�1 þ a2xn�2 þ � � � þ amxn�m. Because the time series came from a
stochastic process, xn can be written as xn ¼ a1xn�1 þ a2xn�2 þ � � � þ amxn�m þ en,
where en is the prediction error. This is nothing but a single variable autoregressive
(AR) model. The variance of the error series en is a gauge of the prediction accu-
racy. Now consider the prediction of xn by including the previous values of both x-
series and y-series, namely, xn ¼ b1xn�1 þ b2xn�2 þ � � � þ bmxn�m þ c1yn�1þ
c2yn�2 þ � � � þ cmyn�m þ gn. The variance of the error series gn is a gauge of the
prediction accuracy of the new expanded predictor. If varðgnÞ=varðenÞ is less than
one in some suitable statistical sense, meaning that the prediction of xn is improved
by incorporating the past knowledge of the y-series, then we say the y-series has a
causal influence on the x-series. The role of the x and y series can be reversed to
address the influence from x to y.

A comprehensive statistical framework has been developed to estimate Granger
causality from experimental data in both the time and frequency domain (Geweke
1982; Ding et al. 2006). A key question is whether Granger causality, a statistically
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estimated measure of information flow, reflects physiological information flow
mediated by action potential transmission. This question was considered by
Bollimunta et al. (2008) in the context of alpha rhythm (8–12 Hz) generation.
Alpha oscillations were discovered in the 1920s (Berger 1929). Prior to the 1970s,
the thalamus was thought to be the generator of cortical alpha (Andersen and
Andersson 1968). More recent studies using in vitro preparations have discovered
the role of deep layer pyramidal cells in alpha pacemaking in cortical slice
preparations (Silva et al. 1991). We took this finding as the ‘‘ground truth’’ for
testing the validity of Granger causality and predicted that if multiple electrodes
are placed simultaneously in different layers of the cortical column, because alpha
activity measured at middle (layer 4) and superficial layers stems from synaptic
transmission of alpha signals from deep layers, one should observe Granger causal
influences from deep to middle and superficial layers in the alpha frequency band.
Bollimunta et al. (2008) confirmed this prediction by analyzing laminar recordings
from V2 and V4 in two awake-behaving monkeys and thereby established the
basis for interpreting Granger causality in terms of neuronal information flow. See
Fig. 1a.

The crucial role of directional information provided by Granger causality in the
formulation of scientific hypotheses was considered in another series of studies in
awake-behaving monkeys where local field potentials were recorded simulta-
neously from multiple sites in the sensorimotor system (Brovelli et al. 2004; Chen
et al. 2006; Ding et al. 2006). From power spectral and coherence analysis, it was
found that during the prestimulus period in which the monkey anticipated the
stimulus onset by attending the computer monitor while holding steady a
depressed mechanical lever, there are synchronized beta oscillations in three
recording sites: primary motor (M1), primary somatosensory (S1), and posterior
parietal area 7b. However, based on power and coherence alone, the functional
significance of this oscillation network remains difficult to ascertain. The evalu-
ation of Granger causality, yielding the pattern of causal interactions: (1) S ? M1
(2) S1 ? 7b, and (3) 7b ? M1, shown in Fig. 1b, overcame the problem. The
following three reasons led to the hypothesis that the beta oscillation network may
exist to support the steady pressure maintenance of the depressed lever. First,
steady pressure maintenance is akin to closed loop control and, as such, sensory
feedback is expected to provide the input needed for cortical assessment of the
current state of behavior. It is well known that the maintenance of sustained motor
output is severely impaired when somatosensory input is lacking (Rothwell et al.
1982). This notion is consistent with our observation that S1 serves as the dom-
inant source of causal influence to other areas in the network. Second, posterior
parietal area 7b is known to be involved in the control of non-visually guided
movement and, as a higher-order association area, it maintains representations
pertaining to the current goals of the motor system (Rushworth et al. 1997). This
would imply that area 7b receives sensory updates from area S1 and outputs
correctional signals to the motor cortex (M1). This conceptualization is consistent
with the causality pattern in Fig. 1b. Third, previous data from M1 have already
implicated beta range oscillations as a neural correlate of isometric pressure
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maintenance (Baker et al. 2003). By including S1 and 7b, the relation between M1
and the post-central areas is further clarified. Clearly, in the formulation of the
above hypothesis, the vivid computational picture in Fig. 1b derived from Granger
causality played a crucial role.

3 Applications to MEG Data

Granger causality is increasingly applied to MEG data. With very few exceptions
the analysis is done in the source space. Three examples are considered here to
illustrate the diversity of paradigms where this technique has been used to generate
insights.

Moratti et al. (2011) analyzed MEG data recorded during the viewing of
affective pictures with the goal to study the functional network organization
associated with the generation of the magnetic homolog of the emotion-induced
late positive potential (mLPP). The research question concerns whether the
affective modulation of the mLPP is an automatic bottom-up response to moti-
vationally salient stimuli or a response that reflects both bottom-up and top-down
effects. To address this question requires the decomposition of neural interactions
into their directional components. Reconstructing the source space time series of
cortical activity by using the beamformer technique and computing time-domain
Granger causality among predefined regions of interest (ROIs), they found that
bidirectional influences between frontal and occipitoparietal cortex were stronger
for emotional relative to neutral pictures, lending support to the hypothesis that
mLPP reflects a combination of both bottom-up and top-down mechanisms.

Ploner et al. (2009) applied frequency-domain Granger causality to investigate
functional integration among pain-related cortical regions. They conducted an
MEG study using a simple reaction time paradigm in which painful and nonpainful
stimuli were randomly applied to the right hand. Primary (S1) and secondary (S2)

Fig. 1 a Granger causality graph for laminar alpha generation. b Granger causality graph for
sensorimotor beta network
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somatosensory cortices as well as primary motor cortex (M1) were source local-
ized from evoked responses by a spatiotemporal source model (Hämäläinen et al.
1993) and were selected as ROIs. Time-courses were computed using a linearly
constrained minimum variance beamformer applied to the source locations. The
Granger causality analysis revealed that there are causal influences from S1 to S2
during the processing of nonpainful stimuli but such influences are absent in the
processing of painful stimuli. These results are taken to be in support of
the proposition that there is a partially parallel organization of pain processing in
the human brain.

Gow et al. (2008) applied Granger causality to simultaneously recorded MEG
and EEG data to study whether the influence of lexical knowledge on speech
perception takes the form of direct top-down influences on perceptual processing
or it mainly involves feedforward convergence during decision making. In their
analyses, the minimum-norm estimate (MNE) and the noise-normalized MNE
called dynamic statistical parametric mapping (dSPM) (Dale et al. 2000) were
applied to estimate the time-courses of activation across the cerebral cortex. MNE
is an estimate of the actual activation time-courses whereas the dSPM provides a
statistical measure that indicates regions where the estimated activity exceeds the
estimated noise level. Therefore, dSPM was applied for identifying ROIs, but for
analysis within and across ROIs, the MNE values were used. In their ROI iden-
tification, the 40 Hz gamma band phase synchrony was considered as a mechanism
for binding neural populations into transient cell assemblies. Thus a network of
ROIs was identified based on the 40 Hz phase locking values across the cortical
surface to a reference region. The reference region, consisting primarily of the left
posterior superior temporal gyrus (pSTG), was selected as the first area of
increased cortical activity after stimulus onset. Within the identified network, the
results of Granger causality analysis showed that the left supramarginal gyrus
(SMG), known to be associated with wordform representation, influences phonetic
processing in the left pSTG during a period of time associated with lexical pro-
cessing. This finding provided evidence that lexical processes exert top-down
influences on lower level phonetic perception.

4 Impact of Stimulus-Evoked Responses on Granger
Causality Estimation

The LFP studies reviewed above mainly focus on ongoing neural activity in the
absence of a transient sensory stimulus. The three MEG studies reviewed above,
however, share a common feature in that they all focus on neural activity in the
time period following the presentation of a transient sensory stimulus. Post-
stimulus neural activity can be written as the superposition of stimulus-evoked
responses, which vary from trial to trial in both amplitude and latency, and
ongoing activity which is assumed to be zero-mean (Xu et al. 2009). To estimate
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Granger causality from the ongoing activity a common approach is to remove the
average stimulus-evoked response from single trial data. Past work has shown that
this approach leaves traces of stimulus-evoked response in the ongoing activity
which can adversely impact Granger causality estimation (Wang et al. 2008).
Without being cognizant of such adverse effects Granger causality analysis can be
misconstrued.

Granger causality analysis begins with the fitting of an autoregressive model to
data (Ding et al. 2006). The common AR model formulation assumes that the input
time series come from a zero-mean stationary stochastic process. To meet the zero-
mean requirement one typically computes the average event-related potential
(ERP)/event-related field (ERF) and removes it from single trial data. Inherent in
this practice is the assumption that ERP/ERF is invariant across trials. It is now
clear that this assumption is overly simplistic and trial-to-trial variability of ERP/
ERF is substantial (Wang et al. 2008; Liu et al. 2012). This means that removing
the average ERP/ERF from single trial data will leave traces of stimulus-evoked
response in the residual, which, as the following conceptual model illustrates, can
significantly impact Granger causality analysis. A more thorough analysis of this
problem can be found in Wang et al. (2008).

Consider two recording channels where ERP/ERFs are represented by sinusoids
in Fig. 2a, b. ERP/ERF 2 (channel 2) (Fig. 2b) is 20 ms behind ERP/ERF 1
(channel 1) (Fig. 2a). The amplitude of the evoked response varies from trial to
trial and these variations are assumed to be correlated between the two recording
sites. Physiologically, one may view ERP/ERF 1 as arising from a primary sensory
area while ERP/ERF 2 from an association area. To calculate Granger causality
between the two channels, we follow the traditional approach by first obtaining the
average ERP/ERF and then subtracting the average from each trial to produce the
residual data (Fig. 2c, d), which are then subjected to a sliding window analysis.
For the 50 ms window between the two solid lines, the strong activity in channel 1
temporally precedes that in channel 2. Since these activities are correlated, by the
definition of Granger causality, we will see a causal influence from channel 1 to
channel 2. As the window is moved between the dashed lines, the opposite occurs.
Specifically, the temporal precedence of strong activity in channel 2 over that in
channel 1 will result in a causal influence from channel 2 to channel 1. In general,
as the analysis window is moved through the entire trial, one may observe multiple
episodes of causal influence reversals, depending on the morphology of the ERP/
ERFs. Such intricate temporal patterns of Granger causality modulations are
clearly artifactual and are the result of three factors. First, the event-related
responses from two different channels are of a similar shape and have different
temporal onsets. Second, the two event-related responses have correlated trial-to-
trial variability. Third, the time-frequency analysis of Granger causality is carried
out by employing a small moving window. It is worth noting that an analysis with
a long time window extending over the entire evoked response will result in a
predominantly unidirectional driving from channel 1 to channel 2.
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5 Concluding Remarks

Multivariate neural recordings promise unparalleled insights into how different
areas of the brain work together to achieve thought and behavior, and how such
coordinated brain activity breaks down in disease. While the accumulation of data

Fig. 2 A conceptual model illustrating the impact of trial-to-trial variability of stimulus-evoked
response on Granger causality estimation. a and b 500 trials of simulated data from channel 1 and
2, respectively. c and d residuals after subtracting the ensemble averages. Two analysis windows
are delineated by the interval between the two solid lines and that between the two dashed lines.
Vertical axis: arbitrary unit. From Wang et al. (2008)
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continues at an astonishing rate, how to effectively analyze these data to extract
information about the workings of the brain remains a key challenge. Work over
the past decade has established the importance of Granger causality in dissecting
the directional interaction patterns in neuronal networks. As a tool for exploratory
analysis, Granger causality is shown to be able to generate physiologically
meaningful hypotheses, which can then be tested with further analysis and
experimentation (Brovelli et al. 2004; Ding et al. 2006), while as a tool for con-
firmatory analysis, Granger causality can be used to test physiological hypotheses
that are formulated according to consideration and knowledge existing outside the
Granger causality analysis framework (Bollimunta et al. 2008).

Despite these promises there are also potential pitfalls associated with the
application of Granger causality to MEG/EEG data. Discussions above pointed out
the negative impact of the trial-to-trial variability of stimulus-evoked response on
Granger causality estimation (Wang et al. 2008). One possible remedy for this
problem is to remove evoked responses on a single trial basis (Wang and Ding
2011). Another problem, which is more of a concern in electrophysiological
recordings such as LFP, EEG and ECOG, has to do with the negative impact of
common reference and volume conduction on connectivity measures. The possible
remedy in this case is to perform the analysis in source space or after local
referencing such as bipolar derivation to remove or attenuate the effect of common
reference and volume conduction (Bollimunta et al. 2009).

These concerns notwithstanding, evidence so far suggests that Granger cau-
sality has a useful role to play in both basic and clinical neuroscience, comple-
menting other methods. For many problems the framework for initiating and
interpreting a Granger causality analysis is already established by the knowledge
accumulated by years of research. For example, the neural substrate of a given
behavior is often encapsulated in a network flow diagram with arrows connecting
different structures emphasizing their respective roles and their interrelations with
one another. An example derived from the literature on sensorimotor control is
shown in Fig. 3a (Gazzaniga et al. 2002). Likewise, many neurological and psy-
chiatric disorders involve abnormal cortical and subcortical circuit dynamics. The
network mechanisms of these disorders are also expressed in diagrams similar to
Fig. 3a. In the case of drug addiction, it has been shown that the nucleus ac-
cumbens, amygdala, and hippocampus comprise the mesolimbic system that is
important in the reinforcing effects of drugs, whereas the prefrontal cortex,
orbitofrontal cortex, and anterior cingulate comprise the mesocortical circuit
known to mediate the conscious experience of drug intoxication. These brain areas
are hypothesized to interact as illustrated in Fig. 3b (Goldstein and Volkow 2002).
These diagrams are compiled from many studies using diverse techniques and
could be used to formulate initial hypotheses for a Granger causality analysis and
constrain the subsequent interpretation.

As the contributions in this volume demonstrates, MEG, offering superior
temporal resolution over fMRI and superior spatial resolution over EEG, can be
used to address many basic and clinical neuroscience questions. Because Granger
causality can be applied to either sensor or source space MEG has a significant role

316 M. Ding and C. Wang



to play in quantifying the strength of interaction between different brain areas in
normal and diseased circuits. It is expected that, with proper care and precaution,
principled applications of Granger causality to MEG data will continue to grow,
generating insights into the collective computation in the brain not possible with
other methods.
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Part III
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and Oscillatory Activity



An Introduction to MEG Connectivity
Measurements

Matthew J. Brookes, Mark W. Woolrich and Darren Price

Abstract Researchers are beginning to appreciate the brain as more than a mere
collection of loosely connected, highly specialised components. While there is
clear specialisation among regions of the cortex, the true power of the brain
appears to arise from the ability of those regions to work together across a range of
spatial scales as a richly interconnected and complex network. On all levels, the
study of brain connectivity seeks to understand how different regions of the cortex
communicate, what the emerging networks signify functionally, and why these are
important for normal behaviour. The use of MEG in this endeavour is an attempt to
understand these processes on the broad, interregional scale, and in that respect
MEG is an ideal tool. It has a good deal of spatial resolution, enough to distinguish
between brain areas *1 cm apart, and exquisite temporal resolution, enough to
record even the fastest electrical oscillations the brain can generate. This chapter
begins with a brief overview of the history of electrophysiological measures and
their application to the study of brain connectivity. We then describe some of the
core theory underlying the measurement of magnetic fields generated by the brain
and practical considerations of measuring correlated activity with MEG. Some
notable applications of MEG to the study of brain networks will then be described
and a comparison will be made between MEG to other methods such as ECoG.
The chapter will also explore some of the principal mathematical techniques used
by researchers to probe different aspects of connectivity ranging from simple
correlational approaches to more involved concepts such as multivariate autore-
gressive models (MAR). Finally, we will discuss limitations of using MEG to
study connectivity and also give some insight into the exciting prospects the future
might hold for MEG connectivity research.
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1 Introduction

In classical studies of brain function, particularly the study of cytoarchitectonics
and neuropsychology, the brain is divided into distinct specialised cortical regions
that have some specific functional role in information processing or behavioural
control. For example, early studies by Paul Broca in 1861 (Broca 2011) identified a
region of the frontal cortex (now known as Broca’s area and comprising the pars
opercularis and pars triangularis) related to language. There now exists a wealth of
literature for almost any area of the cortex that implies some specialisation, some
being narrow in scope (e.g. the fusiform face area) and others spanning broad
functional domains such as planning and working memory (e.g. prefrontal cortex).
This research lends support to hypotheses that information processing subsystems
can be related to clear structural and functional modularisation of the cortex.
However, whilst it remains clear that there is a degree of specialisation in cerebral
architecture, healthy brain function must necessarily rely on communication
between those specialist areas. Advances in neuroimaging are beginning to reveal
a complex picture of the brain as a dynamic interconnected network, capable of
flexible adaptation to the immediate environment (Bressler and Kelso 2001; Engel
et al. 2001; Fries 2005; Schnitzler and Gross 2005; Singer 1999; Varela et al.
2001). Recent years have seen rapid progress in this area through the study of
network connectivity and MEG has a large part to play in this developing research
area. In this chapter we review some of the key concepts and methods related to
MEG measurement of network connectivity.

1.1 Types of Connectivity Measurements

On the microscopic scale, investigators are interested in the properties of neurons
that allow the binding of neuronal cell assemblies, thought to be important for
information processing and remote coordination of cortical regions. This has led to
a broad research area that includes animal studies and computational modelling
(Rodriguez et al. 1999; Roelfsema et al. 1997; Roopun et al. 2008; Singer and
Gray 1995; Whittington et al. 1995). At the systems level (or macroscopic scale),
investigators are interested in properties of cortical regions that allow coherent
functional systems to form, capable of producing complex behaviour and cogni-
tion. This research has wide reaching implications for both normal and abnormal
brain function; e.g. neuroimaging research implies that illnesses such as schizo-
phrenia are characterised by disturbances in the recruitment of brain regions,
leading to a disconnection hypothesis (Friston 1999; Phillips and Silverstein 2003).
Whilst parallels can be drawn between the microscopic and macroscopic scales
(Scholvinck et al. 2012), this chapter is concerned with the measurement of
connectivity at a macroscopic level.
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Using brain imaging techniques such as MRI, fMRI, and MEG, there are three
main types of connectivity analysis typically employed: structural, functional and
effective. Structural connectivity can have many definitions depending on the
spatial scale at which it is studied. However, at the macroscopic scale it typically
involves mapping physical connections between brain regions. A popular meth-
odology to achieve this is diffusion weighted MRI although other methods are now
becoming available (Wharton and Bowtell 2012); these techniques allow for
mapping of white matter tracts with millimetre precision (Koch et al. 2002;
Sakkalis 2011). This approach can give us useful information about the changing
structure of the brain’s connections during development or illness, but does not tell
us much about functional dynamics within and between connected regions. This is
the purpose of functional and effective connectivity. Functional connectivity (FC)
is typically defined by the measurement of a statistical interdependence between
functional brain signals measured at two or more spatially separate brain regions.
This is distinct from effective connectivity (EC) (Friston et al. 2003; Friston et al.
2011), which typically comprises an estimate of directed influence between brain
regions (i.e. implying a directionality of information flow) inferred using a gen-
erative model. The remainder of this chapter will focus mainly on MEG meth-
odology for functional connectivity, although we will also consider some effective
connectivity approaches as well.

1.2 Ways to Measure Functional Connectivity

Functional magnetic resonance imaging (fMRI) has become a popular technique by
which to assess functional connectivity following the seminal work of Biswal et al.
(1995), who showed temporal correlation between blood oxygen level dependent
(BOLD) signals, measured between the left and right motor cortices, in the absence of
a task. This study was the first to demonstrate ‘‘resting state’’ (i.e. task independent)
long range connectivity in fMRI and this prompted a surge of research in this area.
Further use of BOLD temporal correlation, as well as more sophisticated techniques
such as independent component analysis (ICA) (Beckmann et al. 2005; Fox et al.
2006; Smith et al. 2009), have led to the somewhat surprising discovery that the
resting brain contains a relatively small number of large scale distributed networks,
each associated with a specific function or behaviour; for example some networks are
associated with sensory action (e.g. visual or somato-motor networks) and others
attention or cognition (e.g. the dorsal attention or default mode network). These
networks have been shown to be exceptionally robust across subjects and sessions.
Furthermore, they are observable during a wide variety of tasks or in the resting state.
The field of functional connectivity is, at the time of writing, one of the most rapidly
expanding fields in neuroimaging with a fourfold increase in the number of papers
published in the last 4 years. fMRI benefits from excellent spatial resolution and
reasonably high signal to noise (SNR) (especially at high field; Hale et al. 2010)
allowing spatial characterisation of networks at the millimetre scale. However, fMRI
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suffers from poor temporal resolution due to the dependence of the BOLD signal on
the slow (5–8 s time scale) haemodynamic response. The BOLD response is also
indirect, mediated by a poorly understood and convoluted mix of cerebral blood flow,
cerebral blood volume, and the cerebral metabolic rate of oxygen uptake. Further-
more, spurious correlations have been identified and attributed to respiratory arte-
facts, heart rate or vascular organisation (Birn et al. 2006, 2008). In short fMRI
network observations can be confounded by haemodynamics; they preclude inves-
tigation of the temporal dynamics of functional connectivity, and cannot straight-
forwardly assess the electrophysiological basis for functional connectivity.

MEG and EEG provide us with excellent tools for studying the electrophysi-
ological signals arising from neural activity. Both have been used extensively to
measure functional connectivity (Gow et al. 2008; Gross et al. 2001; Ioannides
et al. 2000; Jerbi et al. 2007; Nolte et al. 2004, 2008; Schlögl and Supp 2006;
Schoffelen and Gross 2009; Tass et al. 1998) and, as we shall see, there now exists
a multitude of different methodologies capable of measuring functional connec-
tivity in MEG or EEG data. A number of studies measure statistical interdepen-
dencies between MEG signals at the sensor level; however, scalp based
measurements in EEG and MEG are subject to volume conduction or field spread
between channels (Schoffelen and Gross 2009) and this has led to development of
several techniques designed to probe electrical activity in brain space via source
localisation. MEG is significantly advantageous over EEG since magnetic fields
are not distorted by the inhomogeneous conductivity profile of the head; this
adversely affects the electric field measured in EEG by distorting spatially the
electrical potentials measured at the scalp, thus limiting spatial resolution. MEG,
therefore, exhibits improved spatial specificity compared to EEG and source
localisation techniques such as minimum norm (Hämäläinen and Ilmoniemi 1994),
beamforming (Robinson and Vrba 1998), and more recently Bayesian algorithms
such as Champagne (Owen et al. 2012) and multiple sparse priors (Friston et al.
2008), facilitate spatial resolution on the millimetre scale. Its exquisite temporal
resolution, its good spatial resolution, and its ability to directly assess electrical
activity in neural cell assemblies make MEG one of the most attractive techniques
for non-invasive measurement of functional connectivity.

1.3 Neural Oscillations

MEG and EEG signals, in the resting and task positive states, are dominated by
oscillations over a wide range of frequencies (e.g. 0 to *1,000 Hz). These neural
‘‘oscillations’’, induced by rhythmic electrical activity in cell assemblies (i.e.
clusters of neurons), have been studied non-invasively in humans since Hans
Berger (Berger 1929) recorded the 10 Hz alpha (*8–13 Hz) rhythm using EEG in
the 1920s. Modern research into neural oscillations seeks to understand their
functional role in the brain and MEG, EEG, and invasive electrocorticography
(ECoG) studies in humans and animals show that one typically observes
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modulation of the envelope of oscillations across a wide variety of frequency
bands in response to stimulation. For example, a visual grating induces changes in
alpha, beta (13–30 Hz) and gamma (30–200 Hz) band oscillations. Furthermore,
the frequency of induced gamma oscillations has been related to levels of the main
inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), in occipital cor-
tex (Muthukumaraswamy et al. 2009). Beta-band oscillations in the human motor
cortex are modulated by movement; an effect that has also been related to con-
centrations of GABA (Gaetz et al. 2011). Such demonstrations show clearly that
oscillatory phenomena are mediated by neurochemistry. There is a wealth of
computational modelling (Kopell et al. 2000; Kopell et al. 2010) and animal
research showing that oscillations have a functional role in the brain, possibly
facilitating information transfer via short range and long range synchronisation.
One hypothesis is that the efficacy of communication is enhanced via temporal
synchronisation (Gray et al. 1989; von Stein et al. 2000; Womelsdorf et al. 2007).
Early in vivo studies of the cat brain have shown that inter and intra-regional
synchronisation of neuronal firing serves a crucial role in the perception of visual
stimuli (Gray et al. 1989). Other researchers suggest that oscillations are a means
by which groups of neurons improve the efficacy of information transfer between
networks (Kopell et al. 2010; Roopun et al. 2008). There is now emerging liter-
ature suggesting that oscillations play a key role in functional connectivity and that
via measurement of synchronisation between distant brain regions we can begin to
infer the electrophysiological manifestations of functional integration.

In the remainder of this chapter we introduce key concepts that facilitate
measurement of functional connectivity, as inferred by neural oscillatory pro-
cesses, measured using MEG. In Sect. 2 we discuss pre-processing methodology,
specifically the procedures required for source space measurement. In Sect. 3 we
discuss a number of disparate techniques capable of assessing functional con-
nectivity in brain space and also possible strategies for reducing spurious con-
nectivity introduced as a result of the ill posed inverse problem. In Sect. 4 we
introduce some principal findings of current MEG functional connectivity studies,
and finally in Sect. 5, we discuss future directions for this important research field.

2 Pre-processing Methodology for Connectivity
Measurement in MEG

2.1 Sensor Space Measurements: Volume Conduction
and Field Spread

The physics underlying MEG/EEG measurements means that multiple scalp based
detectors receive signals from a single source in the brain; the deeper the current
source, the more sensors affected (see Fig. 1a). In EEG this is known as volume
conduction and is confounded by the low (and inhomogeneous) conductivity of the
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skull which means that the electric field measured at the scalp is spatially
broadened and distorted. In MEG the analogous effect is termed field spread and is
governed by the Biot-Savart law. As stated above, field spread in MEG is less
confounded than it’s EEG counterpart since magnetic fields pass relatively
undistorted through the skull and it is this fact (coupled with the increased number
of sensors) that makes MEG advantageous over EEG in terms of spatial resolution.
However, despite this advantage, field spread still means that two spatially sepa-
rate current sources in the brain can affect the same MEG sensor. This in turn
means that in practice, sensor measurements are complex mixtures of many cor-
tical sources making sensor based assessment of long range functional connec-
tivity difficult to interpret. This is highlighted in Fig. 1b where resting state
temporal correlation between the amplitude envelopes of beta band oscillations in
the left and right sensorimotor regions is represented in sensor space. A ‘seed’
sensor has been chosen over the right motor area and the result shows temporal
correlation between the beta envelope at the seed sensor, and all other sensor
locations across the scalp. Note the diffuse pattern of sensors exhibiting correlation
with the seed and that, whilst a degree of inter-hemispheric correlation is observed,
little spatial information is gained.

Sensor space measurement of connectivity is further complicated by interfer-
ence measured at multiple sensors. MEG is susceptible to many sources of
interference including external environmental noise sources such as computers or
50/60 Hz mains frequency interference as well as biological interference from, for
example, the heart or muscles. If such interference sources impact on multiple
MEG sensors, then this is likely to generate a spurious increase in sensor space
connectivity values. An example (Brookes et al. 2011a) of this is given in Fig. 2:
Fig. 2a, shows the measured electrocardiogram (ECG) from a single subject

Fig. 1 a Schematic showing the physical mechanisms of volume conduction for EEG and MEG.
b Sensor space representation of left and right motor cortex envelope correlation. Seed sensor
selected over right motor cortex
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plotted alongside the MEG signal from a single sensor; Fig. 2b shows the spatial
topography of Pearson correlation between the frequency filtered ECG and the
frequency filtered sensor space MEG signals. Note not only the large ([0.5)
correlation between MEG and ECG measurements, but also that the cardiac
interference affects a large number of MEG sensors and unless adequately dealt
with this could lead to spurious connectivity measurement, particularly when using
sensor space measurement.

2.2 Projection to Brain Space and Source Leakage

The most useful mechanism to limit confounds associated with field spread is
source space projection (Schoffelen and Gross 2009); this means reconstructing
timecourses of electrical activity at a set of locations (voxels) in brain space via
projection of the MEG/EEG field measurements. The spatial accuracy of such
projections is limited since the reconstruction problem (the inverse problem) is
mathematically ill-posed; field cancellation means that a single field pattern could
result from an infinite number of different current density distributions and so no
unique solution exists. However, a rich literature on source space reconstruction
shows that, using specific assumption sets, reconstruction is possible with rea-
sonable accuracy (5–8 mm) (Brookes et al. 2010). Figure 3 shows the principal
advantage of applying source space projection to MEG data. The left hand panel
shows inter-hemispheric functional connectivity measured in sensor space
(equivalent to that shown in Fig. 1b) whilst the right hand panel shows inter-
hemispheric connectivity, measured using the same data, in source space. Here
projection from sensor to source space has been achieved via application of a
beamformer spatial filtering approach (Gross et al. 2001; Robinson and Vrba 1998;
Sekihara et al. 2006, 2001; van Veen et al. 1997) and the image shows functional
connectivity, measured using correlation between band limited power envelopes

Fig. 2 Cardiac interference in sensor space. a The measured ECG and the magnetic field from a
single MEG sensor. b The sensor space topography of cardiac interference plotted for each
frequency band of interest adapted from Brookes et al. (2011a)
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(Brookes et al. 2011a), between a seed voxel (at the cross hairs) and all other
locations in the brain. Note that unlike its sensor space equivalent, source space
connectivity measurement facilitates direct interpretation of the image with respect
to anatomy. In this example, functional connectivity in the resting state between
the left and right sensorimotor areas is shown.

In addition to the advantages summarised by Fig. 3, source space projection
offers a second, less obvious advantage over sensor space measurement, specifi-
cally a marked improvement in signal to noise ratio. In projecting data from sensor
to source space, an estimate of electrical source strength Q̂w tð Þ, is made at time
t and at a predetermined location and orientation in the brain (w) using a weighted
sum of MEG sensor measurements:

Q̂w tð Þ ¼WT
wm tð Þ ð1Þ

Here, m(t) is a (Nsens 9 1) vector of magnetic field measurements made at time
t, and Ww is a (Nsens 9 1) vector of weighting parameters tuned to a specific
source space location and current orientation (Nsens represents the number of MEG
sensors). Superscript T indicates a matrix transpose. Mathematically speaking,
most of the commonly used MEG inverse solutions can be formulated in this way,
and importantly the weighting parameters can be tuned not only to maintain sig-
nals originating at w, but also to suppress any unwanted interference signals. A
good example of such an algorithm is beamforming (Gross et al. 2001; Robinson
and Vrba 1998; Sekihara et al. 2006, 2001; van Veen et al. 1997), in which the
weighting parameters (Ww) are derived based on power minimisation: the overall
power in Q̂w tð Þ is minimised with a linear constraint that power originating from
location/orientation w remains. Mathematically:

min
Ww

e Q̂2
w

� �h i
subject to WT

wLw ¼ 1 ð2Þ

where Lw is the lead field vector (containing the magnetic fields that would be
measured at each of the MEG sensors in response to a dipole source of unit
amplitude with location and orientation w). Note that the minimisation term

Fig. 3 The effect of projecting MEG data from sensor space to source space of functional
connectivity measurement
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ensures that any signal variance not originating from w is minimised. An analytical
solution to this problem is:

WT
w ¼ LT

w Cþ lRf g�1Lw

h i�1
LT

w Cþ lRf g�1 ð3Þ

where C represents the data covariance matrix calculated over a time-frequency
window of interest,R is a diagonal matrix representing the white noise at each of
the MEG channels, and l is a regularisation parameter. In this way, the weights
Ww are derived specifically to reject interference, including that which is corre-
lated across multiple MEG sensors and which might otherwise generate spurious
functional connectivity.

Rejection of interference by beamforming is highlighted in Fig. 4 (Brookes
et al. 2011a). As shown above in Fig. 2, MEG is highly susceptible to interference
generated by the magnetocardiogram. In Fig. 4a, b the blue line shows Pearson
correlation between the ECG and the MEG sensors most affected by sources in
left (A) and right (B) sensorimotor cortices. In contrast, the green line shows
correlation between the ECG and the beamformer reconstructed timecourses from
the peak voxel of interest in the left (A) and right (B) sensorimotor cortices.
Notice that for sensor space data, high correlation with the ECG is observed, and
further that correlation is inhomogeneous with respect to frequency, peaking in the
low beta band. However, following application of the beamformer, correlation is
significantly reduced across all bands. (Note this example uses the same data as
that in Fig. 2.) It is clear that, had sensor space functional connectivity been
assessed in these data, it is likely that correlations between left and right hemi-
sphere would have been spuriously increased by the common mode cardiac
artifact, particularly in the beta band. However this confound has been reduced by
beamforming.

Fig. 4 a Correlation between MEG and ECG plotted as a function of frequency; the blue line
shows correlation with sensors most affected by a source in left primary motor cortex; the green
line shows correlation with a beamformer reconstructed timecourse for the same source in left
motor cortex. b Equivalent to (a) but shown for the right motor cortex. Notice the significant drop
in ECG correlation with application of the spatial filter adapted from Brookes et al. (2011a)
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2.3 Source Leakage and Desirable Properties of Inverse
Solutions

Despite the advantages of source space projection in measurement of functional
connectivity, there remain significant problems which, if not controlled, can lead
directly to spurious connectivity measurement. The ill-posed nature of the inverse
problem causes a degree of spatial blurring (i.e. a single point dipolar source will
be spread across a finite volume). In addition, sources can be mislocalised, for
example due to inaccuracies in the MEG forward solution (e.g. representing an
extended source as a point dipole) or due to incorrect assumptions made by the
inverse localisation algorithm used (e.g. suppression of temporally correlated
sources using beamforming). These effects combined mean that MEG assessment
of electrical activity made at spatially separate brain sites are not necessarily
independent. This means that signals originating from a single brain location can
‘‘leak’’ into the estimated signals from other spatial locations. This manifests as
apparent ‘signal leakage’ between voxels which can lead to spurious functional
connectivity measurement. For this reason, it can be instructive to measure the
likely effects of signal leakage prior to functional connectivity assessment.

Signal leakage differs depending on the inverse solution employed and brain
area studied; for example leakage tends to be worse for deeper sources where the
generated field patterns are more spatially diffuse. Furthermore when using adap-
tive techniques the leakage profile for any given voxel will change depending on the
signal to noise ratio of the MEG data. This makes leakage assessment non-trivial.
There are many ways to estimate the extent of source leakage and each has its own
advantages and disadvantages. In cases where connectivity assessment involves a
priori selection of a seed location, a simple but instructive technique is to measure
correlation between the source reconstruction weighting parameters, Ww, derived
for the seed location, and the equivalent weighting parameters for all other voxels in
the brain. In an ideal world, the weights for any one voxel would be a unique
combination of MEG sensors, however the underdetermined nature of the inverse
problem prevents this and there will necessarily be some correlation between
weights for voxels in close proximity. Equation 1 shows that if the weights for two
spatially separate voxels are correlated (as is likely to be the case for nearby voxels)
then the projected signals will also be correlated and this may appear as spurious
functional connectivity in source space. If, however, the weights for two voxels are
completely independent, but the timecourses from those voxels are highly corre-
lated, it is more likely that genuine FC exists between those two brain locations.

An example of leakage assessment via weights correlation is given in Fig. 5
(Brookes et al. 2011a). Here we compare the case for a spatial matched filter in
which the weighting parameters are simply a scaled version of the lead fields, and
two instances of weighting parameters derived using regularised beamforming
(Eq. 3; l = 4). Figure 5a shows a volumetric image of Pearson correlation
between lead fields at the seed location (placed at the cross hairs) and lead fields at
all other source space voxels. This is shown for a single subject (with the source
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orientation for each voxel derived as the orientation of maximum signal to noise
ratio). Pearson correlation coefficients are thresholded at 0.5 for visualisation.
Figure 5b, c show volumetric images of correlation between beamformer weights
at the seed location and at all other voxels in the brain. (Weights correlation
images are computed using 13–20 Hz filtered data.) Figure 5b shows weights
correlation in a case where the covariance matrix (C) is based on all available
MEG data (25 min for this example experiment); Fig. 5c shows weights correla-
tion in a case where covariance is based on the first 5 min of data only. Notice here
that weights correlation is far less widespread than lead field correlation, an effect
of the adaptive nature of beamforming which shows that, even if lead fields are
correlated, beamformer weights can remain independent. Figure 5d, e show lead
field correlation and weights correlation as a function of Euclidean distance from
the seed location, respectively. Note the improved spatial resolution of beam-
former weights correlation with respect to lead field correlation, that is also
apparent in Fig. 5a, b. (Separate lead field correlations for different frequency
bands appear because the source orientation is computed independently for each
frequency band. Lead fields themselves do not change with frequency.)

This simple example highlights some of the desirable properties of inverse
problem solutions for functional connectivity measurement. Firstly, the spatial

Fig. 5 Signal leakage in beamformer spatial filtering: a Correlation between lead fields at the
seed location (cross hairs) and all other brain voxels. b–c Volumetric images of correlation
between beamformer weights at a seed location (cross hairs) and all other test voxels in the brain.
b Weights computed using 25 min of data (l = 4; 13–20 Hz band; single subject); c Weights
computed using 5 min of data only (l = 4; 13–20 Hz band; single subject); d Lead field
correlation plotted as a function of Euclidean distance from the seed location. e Beamformer
weights correlation (Weights computed using 25 min data; l = 4) plotted as a function of
distance from the seed location adapted from Brookes et al. (2011a)
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extent of weights correlation should be as small as possible. In this example we
show that the adaptive nature of beamforming limits the spatial extent of weights
correlation compared to a spatial matched filter. Note also that for beamforming,
data duration has an effect. In this example the total volume of cortex with weights
correlated at r [ 0:25 was 126� 15 cm3 when using 25 min of data; this was
compared to 155� 17 cm3 when weights were computed using only the first
5 min (Brookes et al. 2011a). This highlights the importance of judicious exper-
imental design (Brookes et al. 2008), meaning that researchers aiming to assess
MEG connectivity based only on 5 min data segments are necessarily going to be
more affected by source leakage than those basing measurements on much longer
experiments (assuming stationary sources). This is the case for beamforming,
however it is not the case for non-adaptive techniques such as certain forms of
minimum norm estimation in which weights are based only on system geometry
and not the MEG data. Finally, note the inhomogeneous nature of weights cor-
relation. This is particularly notable in Fig. 5a where weights correlation extends
asymmetrically from the seed location. For example, here one might spuriously
estimate connectivity between the seed in right motor cortex (the cross hairs) and
the right insula cortex; however this would be based only on leakage.

In summary, there are significant advantages in measurement of connectivity in
source space over sensor space (Schoffelen and Gross 2009) including increased
interpretability with respect to anatomy (Fig. 3) and also improved rejection of
non-neuronal artifacts (Fig. 4). However, even if connectivity is measured in
source space, it is important to note that electrical activity estimated at spatially
separate source space locations are not necessarily independent due to signal
leakage and care must be taken to ensure that this effect does not impact on
measurements. The leakage problem will be further discussed in Sect. 3.3.5.

3 Measuring Functional Connectivity in MEG

Following projection of MEG data from sensor space to source space, which may
be achieved using any inverse projection algorithm whose underlying assumptions
are reasonable given the experimental design, one aims to assess connectivity
between projected signals. To achieve this there are a variety of linear and non-
linear methods available. In this section we describe a number of these techniques.

3.1 The Definition of Functional Connectivity

Functional connectivity is based on quantifying statistical dependencies directly
from the data (Friston 2011). These statistical measures typically characterize the
similarity between a pair of signals (or more) in terms of quantities such as their
amplitude or phase in particular frequency bands. This is in contrast to effective
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connectivity measures, which are based on generative models of the data, such as
Dynamic Causal Modelling (DCM). In fMRI, the term ‘‘functional connectivity’’
has become synonymous with temporal correlation between BOLD signals from
spatially separate voxels. However, a number of measures of functional connec-
tivity have also been applied to M/EEG data, with varying levels of success. These
include power correlations, mutual information, coherence and phase locking.
Unless explicitly stated otherwise, we will assume throughout this chapter that
these measures are applied on the timecourses in brain (source) space.

At the outset we should be aware that there are potential problems with the use,
and in particular in the interpretation, of functional connectivity. One particularly
important issue is well exemplified by the increasingly popular approach of using
functional connectivity (in fMRI and M/EEG) as a feature to predict or classify the
group from which a particular subject was sampled (Craddock et al. 2009). The
problem is that changes in functional connectivity, e.g. between conditions or
between two population groups, can occur simply due to changes in the signal-to-
noise ratio, or due to changes in other parts of a wider network (sometimes known as
the ‘‘missing node’’ problem); even when there is no change in the actual neuronal
connectivity. This issue has been well documented elsewhere (Friston 2011).

False positive connectivity can also be inferred if correlations caused by the
measurement process itself are not accounted for. In particular, as described in
Sect. 2.3, artefactual zero-lag correlations are readily caused due to source leakage
(Schoffelen and Gross 2009). These phenomena will tend to contaminate all func-
tional connectivity measures unless accounted for.1 Different ways for accounting
for this particular problem will be presented at various points throughout this sec-
tion, and in particular in Sect. 3.3.5.

Functional connectivity also provides limited insight into the mechanisms of the
dynamics that underlie brain activity, and does not directly provide biologically
relevant information. In theory, the best way to overcome these limitations is to turn
to effective connectivity. However effective connectivity approaches arguably still
need substantial development and validation before they can be used in earnest on
MEG data. Effective connectivity will be discussed further in the ‘‘Future Direc-
tions’’ section in this chapter. Until effective connectivity is indeed rendered
‘‘effective’’, functional connectivity will remain the dominant approach in use, with
the caveat that considerable care must be taken when interpreting the results.

3.2 Linear Metrics

In this section we will consider linear metrics of statistical dependency, or func-
tional connectivity, between brain areas. Clearly the most straightforward of these

1 Note, that this problem is avoided when the connectivity to be estimated is between MEG and
an externally measured signal such as LFP or EMG recordings.
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would be correlation on the raw time series in brain space. However, this is
impotent in MEG due to the fact that we do not expect there to be zero lag
correlations between distal brain areas. Instead we need turn to more sophisticated
measures such as coherence and phase locking.

3.2.1 Coherence and Dynamic Imaging of Coherent Sources

Coherence is a widely used measure of functional connectivity that provides
information about the degree of coupling between two signals at a particular
frequency. In essence it quantifies linear correlations in the frequency domain. The
coherence Myzbetween a dipole timecourse yðtÞ and a reference signal zðtÞ is
defined as the magnitude squared cross spectral density of the two signals divided
by the autospectral density of each signal:

Myz ¼
Cyz fð Þ
�� ��2

Cyy fð ÞCzzðf Þ
ð4Þ

where Cyz is the cross-spectral density between signals y and z, and Cyy and Czz are
the autospectral densities of signals y and z respectively. The calculation of
coherence is a function of frequency, f, and depends on the frequency band over
which the cross-spectral density is computed. The cross-spectral density between
the two signals may be calculated in the frequency domain as the complex con-
jugate product of the Fourier transformed data Yðf Þ and Zðf Þ:

Cyzðf Þ ¼ Yðf ÞZ�Tðf Þ ð5Þ

Coherence values lie in the range 0�M� 1, with a value of 1 indicating that
the signals are perfectly coupled in frequency. At a given frequency, if the phase of
one signal is fixed relative to the other then the signals can have a high coherence
at that frequency.

Coherence has been widely used for measuring connectivity in MEG, largely
thanks to the popular dynamic imaging of coherent sources (DICS) method (Gross
et al. 2001), which uses a frequency domain beamformer to localise sources
coherent with a reference signal. The reference signal may be from a cortical
location, or an externally measured device (e.g. electrode). This has been shown to
work particularly well between cortical sources in MEG and EMG hand movement
measurements in motor experiments (Gross et al. 2001), but also between brain
regions during a task (Kujala et al. 2007). It should be noted that while DICS
computes the cross-spectral density matrix in sensor space, and then applies an
adaptive spatial filter (beamformer) to reconstruct source power and coherence for
a given frequency bin or band; it can be shown that this is equivalent to using a
time-domain beamformer (Woolrich et al. 2011) followed by computation of
coherence in source space.
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As discussed above, vanilla coherence will be susceptible to false positives due
to artefactual zero-lag correlations due to the source leakage problem. A modifi-
cation to coherence that can overcome this problem is to use imaginary coherence
(Nolte et al. 2004), which works by only using the imaginary terms. These terms
cannot be influenced by zero lagged correlations, and so necessarily represent true
interactions between brain areas occurring with a certain time (phase) lag:

~Myz ¼
ImðCyz fð ÞÞ
�� ��2
Cyy fð ÞCzzðf Þ

ð6Þ

Measures like imaginary coherence have been used to investigate functional
connectivity in patients with brain lesions using resting state MEG (Guggisberg
et al. 2008). However, in some resting state MEG studies it is has been shown to be
less effective for estimating cortico-cortical interactions than power correlation
methods, such as when looking for inter hemispheric connectivity between the left
and right motor cortex (Brookes et al. 2011a).

3.2.2 Phase Locking

It has been argued that one of the problems with coherence is that it is not a pure
measure of the phase relationship. In other words, it also increases with amplitude
covariance, and the relative importance of amplitude and phase covariance in the
coherence value is not clear (Lachaux et al. 1999). An alternative is to use a
measure that specifically identifies when there is frequency specific transient phase
locking. The phase-locking value (PLV) is one example of such a measure.

To estimate PLV, we start by extracting the timecourse of the instantaneous
phase of two signals x and y (/xðtÞ and /yðtÞ, respectively) at the frequency of
interest, f. Typically, this is done by band-pass filtering the data, and then com-
puting a time-frequency transform (e.g. Wavelet or Stockwell). We can then
compute the phase difference at each time point, h tð Þ ¼ /xðtÞ � /yðtÞ. The phase
locking value (PLV) is then given by:

PLV ¼ 1
T

XT

t

exp ih tð Þð Þ ð7Þ

We can look also for phase locking with regards to finding consistent phase
difference over repeats of a stimulus in multi-trial (epoched) data at the same time
point, t, within trial. In this case we have (Lachaux et al. 1999):

PLVðtÞ ¼ 1
N

XN

n

exp jh t; nð Þ ð8Þ
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where n indexes the N repeated trials. Note that this is related to the Inter-trial
Coherence (ITC), which is a univariate measure looking for consistent phase
locking over trials in a single brain area at a time. When interpreting multi-trial
PLV, it is important to be aware that if the two brain areas in question are both
separately responding in a stimulus-locked manner (as in an event related field) to
the underlying stimulus, then a significant PLV could result even though the two
areas are not necessarily directly interacting. Note that this issue of interpretation
in the face of what corresponds to the ‘‘missing nodes’’ problem is not specific to
PLV, but is a problem inherent to all functional connectivity measures.

One important consideration in the measurement of phase locking is how to
choose an appropriate bandwidth. This is a trade-off; the bandwidth needs to be
sufficiently specific for the concept of phase to be meaningful, but not too narrow as
to make estimation excessively noisy. Like coherence, PLV is a symmetric measure
and so does not allow direct inference about directionality between areas. None-
theless, phase locking measures have been successfully used in task MEG data,
notably to detect distributed visuo-motor networks, including structures of the
frontoparietal circuit and the cerebello-thalamo-cortical pathway (Jerbi et al. 2007).

Phase lag index (PLI) can be thought of as being the same to PLV as imag-
inary coherence is to coherence (Stam et al. 2007). In other words PLI is a
modification of the PLV measure such that it is protected from contamination due
to artifactual zero-lag correlations caused by source leakage. PLI works by
defining an asymmetry index for the distribution of phase differences. If no phase
coupling exists between two time series, then this distribution is expected to be
flat. Any deviation from this flat distribution indicates phase synchronization. Pure
zero lag phase locking due to field spread will manifest as a symmetric distribution
around zero phase lag, and so will not adversely influence PLI.

3.3 Nonlinear Metrics

3.3.1 Band Limited Power Correlations

Perhaps the simplest non-linear methodology for measurement of functional
connectivity is to assess correlations between either the amplitude or power
envelope of band limited oscillations. These envelopes have been shown to exhibit
temporal variation over time scales of seconds and in some cases even minutes.
Invasive measurements have shown that correlations between band limited power
envelopes fall off with distance, yet much more gradually than the correlations in
the raw high-frequency local field potentials from which envelopes are derived
(Leopold et al. 2003). Spontaneous gamma band limited power fluctuations
recorded from depth electrodes in epileptic patients (Nir et al. 2008) revealed
correlations between bilateral homotopic brain regions, which is consistent with
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numerous fMRI functional connectivity studies. Furthermore a large amount of
work has shown a relationship between the BOLD response and changes in MEG
oscillatory power during a task (Brookes et al. 2005; Singh et al. 2002; Winterer
et al. 2007; Zumer et al. 2009) and this implies that if the haemodynamic networks
observed using fMRI are visible to MEG, then assessment of band limited power
correlation should be informative.

There are numerous techniques by which to compute either band limited
amplitude envelope, or band limited power envelope; here we describe a popular
approach based on a Hilbert Transform. In source space, having computed the
timecourse of electrical activity in some band of interest, Q̂h tð Þ, for each voxel, the
analytic signal zhðtÞ is given by:

zhðtÞ ¼ Q̂hðtÞ þ iHðQ̂hðtÞÞ ð9Þ

where HðQ̂hðtÞÞ represents the Hilbert transform of Q̂hðtÞ and is given by:

H½Q̂hðtÞ� ¼ P
1
p

Z 1
�1

Q̂hðuÞ
t � u

du

" #
ð10Þ

P denotes the Cauchy principal value of the integral and is used to take account
of the singularity at t ¼ u. The magnitude of the analytic signal yields the envelope
of the measured oscillatory activity thus:

EðQ̂hðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ̂hðtÞÞ2 þ ðHðQ̂hðtÞÞÞ2

q
ð11Þ

Hilbert envelopes, EðQ̂hðtÞÞ can be computed for every voxel in the source
space.

Following computation of the band limited amplitude envelopes at all locations
in the brain, a metric of connectivity between two voxels can be formulated via
computation of a Pearson correlation coefficient between Hilbert envelopes at a
seed voxel of interest, and some other test voxel (Brookes et al. 2011a). Mathe-
matically, the Pearson product moment correlation coefficient is given by:

rðx; yÞ ¼ e Eh1 Eh2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e E2

h1

� �
e E2

h2

� �r ð12Þ

where h1 and h2 refer to the seed and test locations/orientations respectively and e
denotes expectation value. Alternatively, in vector notation

rðx; yÞ ¼ xT yffiffiffiffiffiffiffiffi
xT x
p

:
ffiffiffiffiffiffiffiffi
yT y

p ð13Þ
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where we use x to represent the mean corrected N element envelope timecourse at
the seed voxel (h1), and y to represent the mean corrected N element envelope
timecourse of the test voxel (h2). N is the number of samples in the timecourse
which we assume is large. Sequential application of this formula, keeping the seed
voxel static and moving the test voxel, enables images of connectivity to be
derived. Examples of this are given in Fig. 3.

The reader should note that determining this linear relationship between band
limited amplitude envelopes at the seed and test voxel can also be re-cast in the
context of a linear regression (Hall et al. 2013). Here, the test envelope timecourse
(y) is described by a general linear model (GLM) where x is used to form the
design matrix; b represents the regression parameter (or effect size) and D the
error.

y ¼ bxþ D ð14Þ

The regression parameter (or effect size) estimate b is computed via the Moore-
Penrose pseudo inverse thus:

b ¼ ½xT x��1xT y ð15Þ

It is possible to show (Hall et al. 2013) that, for the case where only a single
column is used in the design matrix, the linear regression framework (Eq. 15) and
Pearson correlation (Eq. 13) are directly equivalent other than a constant factor,
which itself is reduced to unity if x and y are normalised. However, the regression
framework has the advantage that the design matrix can be extended to incorporate
more columns and thus regress out confounding factors such as motion, heart rate
or respiration.

3.3.2 A Note on Full Versus Partial Power Correlations

The technique highlighted above and summarised by Eq. 13 corresponds to full
correlation. However, it should be noted that full correlation cannot distinguish
between direct and indirect connections, whereas partial correlation can—at least
to some extent. Partial correlation refers to the correlation between two timeseries,
after each has been adjusted by regressing out other variables (e.g. activity in other
brain regions/network nodes). An efficient way to estimate the full set of partial
correlations is via the inverse of the covariance matrix (Marrelec et al. 2006).
Under the constraint that this matrix is expected to be sparse, regularisation is
often applied, for example, using the Lasso method (Friedman et al. 2008). Partial
correlation has been advocated (Marrelec et al. 2006) as a good surrogate for
structural equation modelling (SEM). While partial correlation does seem to
improve the distinction between direct and indirect connections, it also introduces
Berkson’s paradox, where there can be artifactual negative correlations between
brain regions (Smith et al. 2011).
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3.3.3 Independent Component Analysis

One of the disadvantages with seed based approaches to functional connectivity
analysis is that they necessarily require selection of a priori seed locations. This
can prove a limiting factor due to its subjective nature and this has led to the
introduction of other methodologies that are not limited in this way. One such
technique is ICA which is a commonly used method for the denoising of MEG
data and has been used previously with great success in EEG, and in fMRI,
particularly for connectivity analysis. ICA itself is a linear decomposition. How-
ever, here we consider this as a nonlinear approach as in MEG it is typically
(Brookes et al. 2011b; Hall et al. 2013; Luckhoo et al. 2012) applied to the
(nonlinear) band-limited power timecourses, rather than raw timecourses.

Although there are many ways in which to apply ICA, the simplest technique
for connectivity analysis is first to form a matrix, X, where each row represents the
band-limited power (e.g. Hilbert envelope) timecourse, from a single voxel in the
brain, temporally concatenated across subjects as shown in Fig. 6, thus:

X ¼

E Qðsubject 1Þ
r1

� �
; E Qðsubject 2Þ

r1

� �
; . . .

E Qðsubject 1Þ
r2

� �
; E Qðsubject 2Þ

r2

� �
; . . .

. . .
E Qðsubject 1Þ

rNVoxels

� �
; E Qðsubject 2Þ

rNVoxels

� �
; . . .

2
66664

3
77775

ð16Þ

Here E Qðsubject kÞ
ri

� �
represents the mean corrected vector envelope timecourse

spanning the whole experiment extracted from voxel r using data from subject k.
NVoxels is the total number of voxels in standard space. Note that X represents data
from all subjects in all tasks but only a single frequency band, and in practice it is
often desirable to temporally smooth and down-sample the voxel timecourses to
improve computational efficiency.

Temporal ICA can then be applied such that the measurement matrix, X, is
defined as linear mixtures of independent temporal signals S:

X ¼ AS ð17Þ

A is the mixing matrix which defines the contribution of each independent
component to each voxel timecourse. Note temporal ICA is employed since, in
MEG, the maximum information is in the temporal domain; this is distinct (typ-
ically) from fMRI where spatial ICA is often used because maximum information
is to be gained in the spatial domain. The unmixing matrix, V, can be estimated
giving the contribution of each voxel timecourse to each independent component:

S ¼ VX ð18Þ
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The spatial signature of each temporal component, for a single frequency band,
is represented by the columns of the mixing matrix A. This ICA process is
depicted schematically in Fig. 6.

Application of ICA in this way typically yields a small number of temporally
independent signals, each of which corresponds to a spatial signature in source
space. In resting state MEG those spatial signatures have been shown to be similar
to spatial signatures of resting state haemodynamic networks observable in fMRI
(Brookes et al. 2011b). Further, similar networks have been observed in a task
positive state, with network activity significantly altered by the task (Luckhoo
et al. 2012; Brookes et al. 2012a, b). Most importantly, derivation of temporally
independent timecourses from the data matrix using ICA eliminates the need for a
priori selection of a seed.

3.3.4 Generalized Synchronization

Coherence or PLV, described above in Sect. 3.2, are only capable of detecting
linear relationships, and band-limited power correlation is only capable of
detecting linear relationships in the band-limited power timecourses. Furthermore,
none of those methods handle temporal non-stationarity in functional connectivity.
An alternative approach to detecting synchronization, without these limitations, is
generalized synchronization. Generalized synchronization (GS) exists between
two signals, x and y, when the state of one signal y is a repeating function of the
other signal x, i.e. y ¼ f ðxÞ. The idea is that when signal y plays out a particular
pattern, then signal x has a tendency to play out its own specific pattern at the same
time; crucially, these patterns in x and y need to be consistently paired up over
time, but do not need to resemble each other. But how do we detect these repeating
paired patterns? The trick is to convert (embed) x and y into a state-space where we
can first detect repeating patterns in x and y individually. Such a state-space
corresponds to the values of the time series at different time lags. Figure 7 shows a
simple example with x and y plotted (embedded) at just M ¼ 2 time lags, t and

Fig. 6 Schematic representation of ICA on a single frequency band
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tþ s. The idea is that if x and y are synchronised, then the time points defined as
when points are ‘‘close’’ in the embedded space for x (green points), should
produce points in the embedded space for y that are also ‘‘close’’ together
(magenta points). This is illustrated for the pattern (time point) indicated with the
green arrow; GS is effectively calculated by moving this arrow over all time points
and aggregating this measure of ‘‘closeness’’ in the embedded space.

As well as nontrivial interpretation, one of the challenges in using GS is how to
choose parameters such as the dimensionality of the embedded space (i.e. the
number of lags to look at, M), the lag time step, D, and the parameters that
determine what is regarded as being ‘‘close’’ in the embedded space. The best
choice of parameters will depend on the peculiarities of the attractors (patterns) in
x and y: Note that GS can be readily extended to multiple (greater than 2) brain
areas (Stam and van Dijk 2002).

3.3.5 Leakage Correction via Linear Regression

We have seen above how techniques such as imaginary coherence or PLI can
eliminate source leakage for seed based connectivity estimation by removing zero-
phase lag correlation. A related alternative technique, that is perhaps more
straightforward, is to remove the zero lag correlations in the raw time series

Fig. 7 Illustration of the idea behind Generalised Synchronisation. [Left] two timecourses,
x (blue line) and y (red line), for two scenarios: [top] synchronised, [bottom] unsynchronised (x is
the same in both cases). [Middle] shows x; and [right] shows y; plotted (embedded) at just M ¼ 2
time lags, t and tþ s. The idea is that if x and y are synchronized, then the time points defined as
when points are ‘‘close’’ in the embedded space for x (green points), should produce points in the
embedded space for y that are also ‘‘close’’ together (magenta points). When x and y are
unsynchronised, these magenta points are spread widely [bottom-right]
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(Luckhoo et al. 2012; Hipp et al. 2012). It is well known that source leakage gives
rise to zero phase lag correlation and so removal of this component suppresses
source leakage between a seed and test voxel, albeit at the expense of any genuine
zero-phase lag correlation that may exist between the seed and test voxel. To
remove the effect of signal leakage between a seed timecourse, Q̂h1 and a test
timecourse Q̂h2, a univariate projection of the vector Q̂h1 on Q̂h2 is estimated thus:

bUV ¼ Q̂þh1Q̂h2 ð19Þ

where Q̂þh1 denotes the pseudo-inverse of Q̂h1. The linear projection (or estimate of

Q̂h2 based on vector Q̂h1) is removed thus:

Q̂h2R
¼ Q̂h2 � Q̂h1bUV ð20Þ

where Q̂h2R
is the component of Q̂h2 that is orthogonal to Q̂h1. In this way any

linear interaction between the seed and test timecourse is removed. We also note
here that this approach can equivalently be used alongside coherence, or PLV, to
find non-zero phase lag relationships. An example of the effectiveness of this
approach is given in Fig. 8 (Luckhoo et al. 2012; Hipp et al. 2012).

4 Current Findings in MEG Connectivity

Thus far, we have outlined some of the most popular methods for measuring
connectivity in MEG. We have also highlighted some of the potential confounds of
these metrics, as well as some of the methods by which those confounds might be
eliminated. In this section, we will briefly summarise some of the example
applications of these methods, and how they are helping neuroscientists understand
the functional dynamics of the human brain. The reader should be aware that this
section is by no means intended to be an exhaustive list of studies in this area.
Instead, some examples are presented that the authors believe are either early key
publications or significant recent advances. Throughout, the reader is directed to
more comprehensive literature reviews that offer much broader view of specific
topics.

4.1 Applications to Pathology

Measurement of network synchronisation has been proposed as a method for the
early detection of various forms of neuropathology such as Alzheimer’s disease
(AD), Parkinson’s Disease (PD) and Schizophrenia. For example, EEG has been
used as a diagnostic tool in AD for several decades, and is characterised by a
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decrease in synchrony in the alpha and beta bands (Dauwels et al. 2010a, b). This
effect is thought to be caused by disconnections between cortical regions leading to
decoupling of oscillating networks (Locatelli et al. 1998) (for a review see Jeong
et al. 2001). Furthermore, Tass et al. (1998) used MEG to measure phase syn-
chrony between sensors during muscle tremor in PD patients. It was discovered
that the temporal evolution of the muscle tremors reflected the timecourses of
coherence of abnormal activity between spatially separate motor areas. Bob et al.
(2008) investigated disturbed fronto-temporal-central-parietal connectivity in
schizophrenia by examining synchronisation patterns using wavelet phase syn-
chronisation (WPS) in 8 EEG electrodes comparing synchrony between all pos-
sible pairs. They found significant relationships between symptoms of
schizophrenia and phase synchrony. In particular, WPS in frequencies lower than
8 Hz were positively correlated with symptoms, while WPS in bands higher than
8 Hz showed a negative correlation. These studies demonstrate the important
clinically evaluative role that synchrony measures may have.

Detection of reduced phase synchrony can be used as an early diagnosis cri-
terion in AD and PD patients potentially improving outcomes for patient’s
worldwide (Dauwels et al. 2010a; Jeong et al. 2001) by allowing clinicians to
begin treatment earlier and potentially prolong quality of life. MEG phase
coherence measures have also shown promise as a method to test the disconnection
hypothesis of schizophrenia. For example, Maharajh et al. (2010) studied the phase
stability of the 40 Hz auditory steady state response (ASSR) using the phase

Fig. 8 An illustration of leakage correction. a Envelope correlation between a seed in right
motor cortex and all other brain locations, prior to correction for leakage. b Envelope correlation
for the same data post leakage correction. Correction achieved by removing the zero-time lagged
components of the raw beta band signal
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synchrony index (PSI) with MEG. Results demonstrated reduced phase synchro-
nisation between hemispheres in ipsilateral and contralateral gamma. As well as
lending support to the disconnection hypothesis, this might also provide a means to
aid drug testing in psychiatric disorders.

For a review on the role of oscillatory communication in the brain during
neurodegenerative disorders see (Schnitzler and Gross 2005). At the time of
writing there are a multitude of ongoing studies worldwide investigating MEG
based metrics of functional connectivity across multiple pathologies, and this is
likely to be a fruitful area of future study.

4.2 ECoG

ECoG is an invasive technique used only in pathophysiological conditions such as
epilepsy lesion treatment or tumour resection. The most common use of ECoG is
as a method to locate the epicentre of epileptiform spike activity in serious cases of
epilepsy (Arroyo and Lesser 1993; Wyler et al. 1984) (for a review see Towle et al.
1999). It involves placing an array of electrodes directly on a portion of the brain
in order to measure the electric field potentials produced by synchronous neuronal
firing; in much the same way as EEG, but with the benefit that no intervening
anisotropic conductivity (e.g. from the skull) is present to distort the field poten-
tials. ECoG therefore gives higher spatial resolution than EEG. Numerous studies
have highlighted the link between MEG and invasive metrics (Hall et al. 2005) and
here we discuss several key connectivity applications that may generalise to MEG.

Connectivity studies have been performed on patients using ECoG although the
number of studies and the range of paradigms are generally fairly low. In one
notable study, Gevins et al. (1994) used a large ECoG grid (64 electrodes, 8 cm2)
to measure coherence patterns across short distances of the cortex. They detected
phase delays of several hundred milliseconds over 7 cm during a behavioural task,
which according to Towle et al. (1999) indicates some information transfer
between regions. More recently, Matsuzaki et al. (2013) used ECoG to measure
cortico-cortical evoked potentials (CCEPs) and stimulation elicited gamma band
activity (80–150 Hz) in the medial occipital regions of 10 patients with focal
epilepsy. Brain activity was elicited by means of stimulus electrodes with a 3 mA
1 Hz pulse train and wave propagation was tracked across the electrode array. It
was found that stimulation of the primary visual areas produce feed forward
propagations in high processing areas indicating a direction of information flow
from primary to higher order regions of the visual cortex.

It is clear that ECoG is a useful technique for measuring spiking activity and
oscillations across relatively large regions of the cortex. The downside of using
ECoG as a neuroscientific research tool is that it is only viable in cases where brain
damage, or some other disorder, is likely to be present and therefore not viable as a
tool to measure healthy function. Furthermore, its usefulness in connectivity
research is limited as the brain coverage is generally low, only covering a small
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patch of the brain at any one time. However, the increasing utility of MEG con-
nectivity metrics are likely to facilitate non-invasive parallels to these invasive
experiments, enabling measurement across a much wider population as well as the
whole brain coverage that MEG affords. For a review and in depth discussion of
ECoG techniques see Towle et al. (1999).

4.3 Brain Networks and Comparison with fMRI

The recent prevalence of fMRI connectivity measurements have led to obvious
questions as to whether the electrophysiological signals measured using MEG
mirror the long range interactions observed in distributed fMRI networks. Recent
work suggests that significant statistical interdependencies exist between source
space reconstructed MEG signals at spatially separate nodes of fMRI networks.
Specifically, if one takes the band limited power (BLP) MEG timecourse at a seed
location defined within a node of an fMRI network, one generally finds that across
the whole brain, the highest correlation often occurs with the BLP MEG time-
courses in a separate node of that same network. One of the first demonstrations
(de Pasquale et al. 2010) used source space reconstruction and correlations in the
BLP timecourses in the theta (3.5–7 Hz), alpha (8–13 Hz), beta (14–25 Hz),
gamma (27–70 Hz) bands and broadband (1–150 Hz). By identifying temporally
non-stationary periods of particularly high BLP correlation, they found networks
in MEG that resembled the default mode and dorsal attention networks, well
characterised in fMRI. Further expansion of these findings came from Brookes
et al. (2011a) who used a seed based correlation approach to show that temporally
down-sampled BLP timecourses are correlated across the left-right motor cortices,
mirroring the findings of Biswal et al. (1995). Dependence on frequency band was
also investigated with the strongest correlation evident in the beta band. These
findings were also mirrored by Hipp et al. (2012), who have extended this to
auditory and visual networks, as well as attentional networks that have been
previously well characterised by fMRI.

Resting state networks (RSNs) have also been identified independently in MEG
data without the need to a priori specify (fMRI-derived) seed placement. This has
been through the use of temporal ICA applied to BLP timecourses, revealing a
number of resting state networks (independent component spatial maps) that
significantly spatially correlate with BOLD resting state networks (Brookes et al.
2011b). This ICA approach has also been applied to task positive data (Brookes
et al. a, b; Hall et al. 2013; Luckhoo et al. 2012).

Evidence is therefore beginning to suggest that a degree of spatial similarity
exists between patterns of haemodynamic and electrophysiological connectivity.
However, networks observed in MEG are not perfect spatial matches to those
observed in fMRI, and the differences, which are often overlooked, may be just as
important as the similarities. Spatial matching of MEG and fMRI networks is
inherently confounded due to the fact that both modalities have their own
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weaknesses. fMRI is an indirect measure of electrophysiological processes in the
brain reflected in the slow hemodynamic response, and while MEG measures
electrophysiology more directly, spatial filtering techniques are hampered by the
nature of the ill-posed inverse problem that impacts on spatial resolution. However
despite this confound, it appears that MEG connectivity measurement will facilitate
a useful means by which to investigate the electrophysiological basis of haemo-
dynamic network measurements. For a review of the relationship between elec-
trophysiological and haemodynamic functional connectivity measurements see
(Scholvinck et al. 2013).

5 Future Directions

5.1 The Role that Oscillations Play in Long Range
Connectivity

Over recent years fMRI has been successful in the mapping of functional networks,
for example, using resting state data (Beckmann et al. 2005). However, evidence
from MEG suggests that these network interactions are likely underpinned by
oscillatory activity in particular frequency bands (Brookes et al. 2011a; Hipp et al.
2012). Understanding these oscillations, and the biophysical models that underpin
them, will provide unique and important insights into the function of the brain. For
example, one possibility is that long-range connectivity may be mediated by
synchronisation of oscillatory activity. To illuminate these models, direct measures
of neural activity at high temporal resolution are needed, and such measures are
likely to be increasingly provided by MEG.

5.2 Pharmaco-MEG

Given the wealth of data suggesting the role of neural oscillations in connectivity,
the development of a true understanding of oscillations and what drives them is
likely to be key in our understanding of connectivity. With this in mind, it seems
likely that future experiments should aim to probe the relationship between
oscillations and neurochemistry. There has been extensive research at the micro-
scopic scale on the role of neurotransmitters such as Glutamate and GABA, and
how excitatory and inhibitory neurons interact to produce oscillatory activity (e.g.
Bartos et al. 2007; Traub et al. 1996). However, at the macroscopic scale relatively
little is known about the role of neurotransmitters in generating the range of
oscillatory patterns seen in rest and cognitive tasks in MEG.

Recent studies have measured basal GABA levels and correlated those, across
subjects, with task induced neuronal activity measured with MEG (Gaetz et al.
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2011; Muthukumaraswamy et al. 2009). However, in such correlation studies it is
impossible to infer causality, or rule out the presence of a third hidden covariate.
By experimentally manipulating specific variables, the causal effects of neuro-
transmitter concentration on electrophysiology may be understood more clearly.
Hall et al. (2010) demonstrated a novel technique for determining the temporal,
spatial and frequency distribution of power changes in the cortex following the
administration of any drug that is thought to affect neurotransmission in the brain.
They administered the GABAergic modulator diazepam and measured the oscil-
latory changes in source space using a beamformer approach. Brain wide changes
in oscillatory power were observed, mainly in beta band (13–30 Hz), but also in
theta, alpha and gamma. These changes were dependent on the region under
observation. This technique was later applied to a brain injured patient (Hall et al.
2010) after administration of zolpidem; and it was found that while MRS and MRI
showed complete loss of neuronal viability in the peri-infarct region, MEG
beamformer analysis showed high amplitude theta and beta band oscillations that
were reduced after drug administration.

The use of psychoactive drugs to experimentally alter electrophysiology is not
new but until now most of the research was performed with EEG (Bartel et al.
1988; Greenblatt et al. 2004; Loughnan et al. 1987; Restuccia et al. 2002) or fMRI
(Bloom et al. 1999; Breiter et al. 1997; Wise and Tracey 2006). The advantage of
using MEG is that it offers improved spatial resolution over EEG and is less
susceptible to the potential confounds in fMRI such as drug induced changes in
baseline blood flow. Hall et al. (2010) point out some limitations of this approach.
Firstly, the distribution of receptor sites affected by the drug is inhomogeneous and
this might differ between participants, making spatial group averaging difficult.
Second, deep sources are generally challenging to observe using MEG and the
effects that drugs have on the electrophysiology of subcortical structures is difficult
to measure. Multimodal approaches, using MEG/PET for example, could over-
come these problems by mapping receptor site distributions and monitoring uptake
in subcortical structures. In terms of functional connectivity, pharmacological
manipulation offers an exciting new field in which the role of neurotransmitters in
cortico-cortical connectivity could be elucidated. At present this field is largely
untapped, but may represent a rich area for future investigation.

5.3 Dynamic Connectivity Measurement

In the ‘‘resting’’ brain, one hypothesis is that the resting state can be thought of as a
condition of undirected wakefulness in which the mind occupies a number of
mental states (Deco et al. 2008). We would therefore expect dynamic changes in
functional connectivity in the resting state. Indeed a number of recent studies
support this. Chang and Glover (2010) applied time-varying measures of pairwise
functional connectivity to fMRI time series to show that the brain undergoes
fluctuations in connectivity between nodes of the default mode network. High
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temporal resolution fMRI (a method of fMRI acquisition that has *10 times the
temporal resolution) used in conjunction with temporal ICA has been shown to
reveal multiple temporal modes that appear to break down several well-known
RSNs into transient, spatially overlapping subcomponents (Smith et al. 2012),
although it should be noted that the method is still limited by the slow haemo-
dynamic response. In MEG, it has been shown that there is temporal non-sta-
tionarity in (alpha/beta) band limited power correlations (de Pasquale et al. 2010);
along with evidence of a bi-state nature to the power correlations, with periods of
zero FC interspersed with periods of high transient FC (Baker et al. 2012). By
identifying time points corresponding to high within-network connectivity, it has
also been suggested that networks transiently engage with other networks during
periods of high internal correlation, with the default mode network (DMN) acting
as a hub of cross network interaction (de Pasquale et al. 2012).

However, most of the methods used for investigating time-varying connectivity
so far have one fundamental limitation: the fact that they compute time-varying FC
using sliding time windows. This limits temporal resolution to the size of the
sliding window, which needs to be kept large enough to allow for a good estimate
of FC. An attractive alternative is to deploy techniques such as Hidden Markov
Models (HMMs), which have already been shown to detect short-lived re-occur-
ring states in resting state MEG data, characterised by repeating multivariate
patterns of covariance over channels (Woolrich et al. 2013). Intriguingly, this
approach detects states with very short lifetimes on the same timescale as EEG
microstates (*100 ms) (van de Ville et al. 2010; Koenig et al. 2005; Britz et al.
2010), and has also been used to perform temporally adaptive MEG source
reconstruction.

5.4 Phase Amplitude Coupling

The methodologies for measurement of functional connectivity, as described in
Sect. 3, are intended for use within specific frequency bands. However, there is
now good evidence from invasive electrophysiological recordings and MEG
showing a direct relationship between the phase of some low frequency oscillation,
and the amplitude of a higher frequency oscillation. For example, Canolty et al.
(2006) show that the phase of theta oscillations is correlated with the amplitude of
high frequency oscillations. This form of cross frequency coupling has been
observed within single brain regions and also across brain areas (i.e. the phase of
low frequency oscillations within one area related to the amplitude of higher
frequency oscillations in a second brain area). It is conceivable then that such
effects may be a means by which distal cortical regions are synchronised. These
measures are in their infancy, however they may provide informative future
insights into functional connectivity.
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5.5 Effective Connectivity and Network Models

Essentially, effective connectivity (EC) is an estimate of directed influence,
inferred using a generative model. By attempting to explicitly model the entire
network, and accounting for endogenous and exogenous inputs, these can, at least
in principle, overcome many of the limitations of functional connectivity. In this
section we consider EC techniques such as multivariate autoregressive model, and
then more biophysically informed network models, such as Dynamic Causal
Modelling.

5.5.1 Multivariate Autoregressive (MAR) Models

The multivariate autoregressive model (MAR) is a generative model that captures
the time lagged linear interactions between multiple sources (e.g. brain areas). It is
often used to underpin, and provide measures for, Granger Causality. Consider that
we have N brain areas (timecourses) with T timepoints, x1 tð Þ; x2ðtÞ. . .xNðtÞ. Then a
MAR with model order (maximum lag) P is given by:

x tð Þ ¼
XP

p

Apx t � pð Þ þ eðtÞ ð21Þ

where xðtÞ is the N � 1 vector containing xnðtÞ for all brain areas, Ap is the N � 1
vector of the autoregressive parameters at lag p, and eðtÞ is a multivariate Gaussian
distribution with zero mean.

To capture the full cross-spectral characteristics of MEG data, MARs can need
a large number of parameters. As a result, a particularly useful method of inference
is Bayes. This provides a principled framework to regularise the model parameters,
at the same time as accounting for their probabilistic uncertainty. These methods
can also provide estimates of the Bayesian Model evidence (the probability of the
data given the model), which can be used to infer the model order of the MAR, i.e.
the number of time lags that need considering (Harrison et al. 2003; Schlögl and
Supp 2006).

One of the attractions of working with MAR models, is that the inferred MAR
model parameters, Ap, can be used to estimate a wide variety of different func-
tional connectivity measures. These include the cross-spectral density, coherence,
partial coherence, directed transfer function (DTF), and partial directed coherence
(PDC). Partial coherence and PDC are particularly interesting measures as they
effectively find direct connections only, rather than also considering indirect
connections as is the case in non-partial approaches. This is analogous to the
benefits of partial correlation (e.g. when looking at power correlations), as com-
pared with full correlation, which is discussed above.

Another useful feature of MAR models is that because they are linear, they
commute with linear source reconstruction methods (e.g. minimum norm). This
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means that the MAR can be fit in the relatively low dimensional sensor space, and
then be transformed into source space via the linear source reconstruction oper-
ation. However, to benefit from the potentially superior rejection of artefacts
afforded by nonlinear adaptive reconstruction methods (such as beamformers),
then the MAR models need to be fit in source space.

MARs have been used to compute measures like DTF and PDC in a number of
different applications, particularly in EEG (Astolfi et al. 2005), and spike data
(Kaminski and Liang 2005). Recent extensions allow for the computation of time-
varying connectivity using adaptive MAR-models (Astolfi et al. 2008). For more
information on MAR derived-measures and their mathematical definitions, the
reader is referred to (Dauwels et al. 2010b).

5.5.2 Biophysical Network Models

A plausible biophysical model of neuronal interactions should be cyclic, con-
nections should be able to be reciprocal (bi-directional), and the effect of one brain
area on another cannot occur instantaneously, due to conduction delays (Woolrich
and Stephan 2013). This leads us to the general framework of Dynamic Causal
Models (DCM) pioneered by Friston and colleagues (Friston et al. 2003). DCM
expresses the interactions between brain regions using differential equations.
These equations also allow for known external inputs (experimentally controlled
perturbations), and can model both ‘‘resting’’ brain activity and task- or stimulus-
related responses:

_x ¼ f x; h; uð Þ þ ex ð22Þ

where x is P� Tx matrix of P hidden neuronal states, _x is its temporal derivative,
Tx is the number of time points, h are the biophysical neuronal model parameters, u
are the known external inputs, and ex is stochastic neuronal noise. These neuronal
models are augmented with an observation model (e.g. incorporating the lead
fields) to form a complete generative model of MEG data in sensor space. Typi-
cally DCM is inferred upon using Bayesian inference techniques, which allow for
the incorporation of biophysical prior knowledge about plausible parameter values,
and for model comparison between different hypothesised network models (Penny
et al. 2004; Stephan et al. 2007).

In MEG (and EEG) DCM, the form of f x; h; uð Þ is much more biophysically
informed and complex than the function used in fMRI DCM, owing to MEG being
a more direct neuronal measure with higher temporal resolution. Each brain area in
the MEG DCM network is modelled via the combined effects of populations of
large numbers of neurons. These neuronal populations can be modelled using
mean-field or neural mass approximations, in which the population behaviour is
captured using probability distributions over the neuronal state variables (Deco
et al. 2008). Specifically, in M/EEG DCM, there are three sub-populations within
each brain area, corresponding to excitatory pyramidal neurons, excitatory spiny
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stellate neurons, and inhibitory inter neurons (David et al. 2006). More recently M/
EEG DCM has been extended to work with so-called conductance-based models,
which model state variables for the transmembrane potentials and for different
channel conductances (Marreiros et al. 2010). Note that these conductance-based
models are particularly attractive biophysical models to work with, since they are
directly related to specific synaptic processes, and can be used to investigate
experimental effects of altering specific neurotransmitters (Moran et al. 2011).
Arguably, the most successful version of DCM for electrophysiology, has been
DCM for steady state responses (Moran et al. 2009), where the temporally sta-
tionary frequency response at each brain area in M/EEG or LFP data is modelled
directly (rather than the full time series). This includes the demonstration that
steady state response DCM can recover known changes in synaptic transmission
following neurochemical modulation in rodents (Moran et al. 2008) or MEG in
humans (Moran et al. 2011), and that it can track dose-dependent changes in
excitation and inhibition, under varying levels of anaesthesia in rodents (Moran
et al. 2011).

5.5.3 Kuramoto Oscillators

Coupled mean-field models of neurons tend to produce dynamics that are oscil-
latory. So an alternative strategy has been to circumvent the complexity of a full
neuronal model (albeit at the expense of biophysical interpretability of the
parameters), and to model each brain area’s population dynamics as a Kuramoto
oscillator (Cabral et al. 2011; Shanahan 2010; Breakspear et al. 2010). As in the
full biophysical models, these phenomenological models can incorporate endog-
enous noise, and biophysical parameters such as conduction delays; and have been
shown to simulate emergent dynamics, e.g. multistability, similar to those found in
‘‘resting’’ state FMRI (Cabral et al. 2011) and MEG (Cabral et al. 2013) data. A
more extensive review of biophysical network models, particularly with regards to
their more general role in using multi-modal neuroimaging data to inform human
connectomics can be found in (Woolrich and Stephan 2013).

6 Concluding Remarks

In this chapter we have introduced the topic of functional connectivity measurement
in MEG. We have discussed source space localisation, the advantages that it brings,
and also its limitations in terms of source leakage. We have introduced a multitude
of metrics for the measurement of functional connectivity using MEG data;
including fixed phase metrics such as coherence or phase locking value, envelope
correlation metrics, independent component analysis, and generalised synchroni-
sation. We have also introduced the principles behind reduction of spurious func-
tional connectivity via assessment of the imaginary part of coherence, phase
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locking index, and removal of zero-phase-lag interaction via linear regression. The
direct nature of the measurements, coupled with exquisite temporal resolution and
good spatial resolution make MEG one of the most attractive non-invasive methods
for assessment of functional connectivity and this has been evidenced with some of
the exciting findings summarised in Sect. 4. Finally we have put forward some
ideas for future studies, in particular the introduction of effective connectivity
which promises to be an important tool for future research into understanding the
temporal dynamics of brain networks.
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Human Brain Oscillations: From
Physiological Mechanisms to Analysis
and Cognition

Ole Jensen, Eelke Spaak and Johanna M. Zumer

Abstract In the cognitive neuroscience community there is a strong and growing
interest in the function of oscillatory brain activity. Brain oscillations can readily
be detected with MEG, which also allows for indentifying the sources and net-
works producing the activity. The aim of this chapter is first to describe the
physiological mechanisms responsible for generating brain oscillations in various
frequency bands and regions. We will focus on insight gained from the animal
literature and physiologically realistic computational modeling. Next, we will
explain the signal processing tools typically applied to characterize oscillatory
brain activity from human electrophysiological data in the context of cognitive
paradigms. The final section will address the main ideas on the functional role of
brain oscillations in various frequency bands. This discussion will be focused on
recent findings applying MEG.

Keywords Magnetoencephalography � Brain oscillations � Signal processing �
Time-frequency analysis � Functional and cognitive relevance of oscillations �
Computational modelling � Biophysical modelling � Alpha oscillations � Beta
oscillations � Gamma oscillations � Delta oscillations � Theta oscillations

1 Introduction

Oscillations in the brain are produced by coordinated electrophysiological activity
in large groups of neurons. Human brain oscillations were first discovered in 1929
by Hans Berger by measuring the electrical potentials between two electrodes
placed at the scalp (Berger 1938). When the subject was asked to close her eyes,
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Berger observed a strong *10 Hz rhythmic activity in the electrical potential over
time. Modulations in the alpha rhythm were also observed in response to simple
cognitive manipulations (Fig. 1). The oscillatory activity in the 10 Hz band is
termed the alpha rhythm or the Berger rhythm. Given that such brain oscillations
can be readily measured at the scalp and observed with the naked eye, they must
be a consequence of thousands of neurons oscillating in synchrony. As such, it is
conceivable that brain oscillations will have a strong impact on how neuronal
spiking is coordinated in both space and time. The coordination of neuronal
spiking by oscillatory brain activity is thus important to investigate in the quest to
understand the physiological basis of cognition.

Human brain oscillations have been known for almost a century and have been
investigated with various degrees of vigor over the years (Shaw 2003). However,
recently there has been a surge in the interest in oscillatory brain activity. This is
partly explained by intracranial animal recordings relating spike timing to ongoing
oscillations measured in the local electrical field potential. These studies have
revealed that spike timing is locked to the phase of the ongoing oscillations in
various brain regions and frequency bands (Fries et al. 2001; O’Keefe and Recce
1993; Bollimunta et al. 2008; Pesaran et al. 2002). What also has kindled the
interest in brain oscillations is the fact that they are strongly modulated during
cognitive tasks. There is now a rich literature reporting on the modulation of brain
oscillations by a wealth of tasks spanning from simple perception to higher levels
of cognitive processing such as language comprehension (Buzsáki 2006). In par-
ticular, MEG recordings using hundreds of sensors have made it possible to
identify and locate the source of the brain oscillations (Hari and Salmelin 1997;
Siegel et al. 2012; Varela et al. 2001; Tallon-Baudry and Bertrand 1999; Vrba and
Robinson 2001; Singh et al. 2002). Further, the theoretical basis of the functional
role of neuronal activity coordinated by oscillations is in rapid development (Fries
et al. 2007; Jensen et al. 2012a; Fell and Axmacher 2011; Lisman 2005; Mehta
2001). These developments, in combination with improved computer speed and
the development of signal-processing tools, have now made human electrophysi-
ological recordings focusing on brain oscillations a strong research area.

Fig. 1 An early EEG
recording performed by Hans
Berger. Prior to the arrow the
subject is performing a
mental arithmetic task. After
the task stops, alpha returns.
Reproduced
from (Niedermeyer 1997)
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The aim of this chapter is first to describe the physiological mechanisms gen-
erating oscillations in various frequency bands. We will then describe how these
oscillations can be measured and quantified in humans. Finally we will discuss
current ideas on the functional role of brain oscillations for cognitive processing.
Each section will be organized according to the conventionally defined frequency
brands. However, it should be made clear from the onset that these frequency
bands are somewhat arbitrarily defined. It is currently debated to what extent
distinct brain oscillations should be defined according to frequency band or
according to function.

2 Physiological Mechanisms

We have probably all had the following experience: after a play or a concert the
audience is applauding. While the audience initially is clapping at a different pace
and out of synchrony, they suddenly enter a mode where everybody is clapping in
synchrony in a rhythmic manner. What happens is a self-organizing phenomenon
where the dynamics emerge from interactions between the individual persons in
the audience without external organization. A key requirement for this phenom-
enon is communication between the individuals in the audience. The communi-
cation is constituted by auditory perception of the clapping sounds heard from the
other persons. A second key requirement is an inherent drive to clap in pace with
the rest of the crowd or, stated differently, the timing of the clapping of an
individual is adjusted in phase and frequency according to the summed clapping
sound from the audience. Likewise, neurons coupled in a network often show the
emergence of spontaneous oscillations (Buzsáki 2006; Traub et al. 1999; Wang
2010). In this case, the communication is constituted by the synaptic interactions
between the neurons. The phase- and frequency-adjustments are determined by
how the electrical membrane dynamics respond to the synaptic currents. Sponta-
neous neuronal oscillations have been defined in a wide range of frequency bands.
We will here discuss the different physiological mechanisms thought to be
responsible for determining the characteristic frequencies of these oscillations and
the neuronal synchronization properties underlying them.

2.1 Gamma Oscillations

Neuronal synchronization in the gamma band (30–100 Hz) has been intensively
studied via both in vivo and in vitro recordings (Buzsaki and Wang 2012; Traub
and Whittington 2010). Further extensive theoretical work has been done in order
to understand the dynamical principles creating these oscillations.

Much empirical work has focused on gamma oscillations in various animals
and brain regions. For instance there has been a strong interest in the gamma
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activity generated in the visual system. In cats, monkeys, and humans, gamma
oscillations can be observed in response to visual gratings (Gray et al. 1989;
Bosman et al. 2012; Hoogenboom et al. 2006). Another line of research has
focused on gamma oscillations in the rat hippocampus (Chrobak and Buzsaki
1996). In particular it has been found that the power in the gamma band is locked
to the phase of theta oscillations in the behaving rat (Bragin et al. 1995; Belluscio
et al. 2012; Colgin et al. 2009). Importantly, it is also possible to identify the
gamma oscillations in slice preparations of the rat and mouse hippocampus. This
has allowed for both pharmacological and genetic manipulations aimed at iden-
tifying the core mechanism determining neuronal synchronization in the gamma
band. This work has then informed computational modeling which has identified
the dynamical properties determining both frequency and synchronization prop-
erties (Buzsaki and Wang 2012).

The theoretical work has resulted in two key mechanisms which can produce
gamma band oscillations, termed the ‘‘interneuronal network gamma’’ (ING)
mechanism and the ‘‘pyramidal-interneuronal network gamma’’ (PING) mecha-
nism (Whittington et al. 2000; Tiesinga and Sejnowski 2009).

The ING mechanism (sometimes also referred to as the I-I, inhibitory-inhibi-
tory, model) refers to gamma oscillations produced by interactions between
interneurons alone, communicating through gamma-aminobutyric acid (GABA)
synapses. These oscillations can be observed in hippocampal slice preparations
where the AMPA and NMDA synaptic inputs from pyramidal cells are blocked by
CNQX and APV, respectively (Whittington et al. 1995), thus proving that input
from pyramidal neurons is not required for the generation of gamma. To observe
the oscillations in slice preparations it is essential that the activity of the inter-
neurons is boosted by cholinergic and metabotropic glutamate receptor agonists.
The oscillations are abolished if a GABAergic antagonist is applied. The important
theoretical insight is that inhibitory interactions alone can serve to synchronize a
neuronal population (Van Vreeswijk et al. 1994).

The basic ING mechanism can be understood as follows. Consider one neuron
coupled to itself by a GABAergic synapse, receiving some tonic excitatory input.
After the neuron fires, the GABAergic feedback will hyperpolarize the membrane
potential. The duration of the hyperpolarization is determined by the kinetics of the
GABAA receptor and will typically last 10–20 ms, i.e., the duration of a gamma
cycle at 50–100 Hz. When the GABAergic hyperpolarization wanes, the cell will
fire again (Fig. 2a). Now consider two inhibitory interneurons mutually coupled
with GABAergic connections. If they both fire at about the same time, the
GABAergic connections will provide mutual inhibition. When the inhibition
wanes, the cells will fire simultaneously (Fig. 2b). Thus zero-lag synchronization
emerges. One might also consider the alternative case in which the two neurons
fire out of phase. In this case the first neuron might inhibit the second, delaying its
firing. When the second neuron fires it will inhibit the first (Fig. 2c). This results in
anti-phase synchronization. The conditions for zero-lag and anti-phase synchro-
nization have been studied in the context of physiologically realistic parameters
(Van Vreeswijk et al. 1994; Gerstner et al. 1996). As it turns out, the kinetics of the
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GABAA receptor are a main player in determining the synchronization properties.
Importantly, for physiologically realistic parameters, zero-lag synchronization is
typically the most stable model (Van Vreeswijk et al. 1994; Wang and Buzsaki
1996). This synchronization scheme is also robust to delays in synaptic trans-
mission. In short, when two interneurons are mutually coupled with GABAergic
synaptic input they will typically enter a mode in which they rhythmically syn-
chronize their firing. The frequency of firing is determined by the kinetics of the
GABAergic feedback. Now consider what happens when a third or more inhibitory
interneurons are added to the network. They will also fire synchronously with the
rest. This mechanism explains how gamma oscillations can emerge from a net-
work of interneurons only.

The PING mechanism (also referred to as the E-I, excitatory-inhibitory, model)
constitutes another important principle by which neuronal oscillations can emerge
in the gamma band. In contrast to the ING mechanism, the PING mechanism

Fig. 2 The ING and PING mechanisms for neuronal synchronization in the gamma band
(a) Consider one inhibitory neuron coupled to itself with a GABAergic synapse. If sufficiently
depolarized, it will fire rhythmically with a frequency determined by the kinetics of the
GABAergic feedback. b Consider two inhibitory neurons mutually coupled. When coupled they
might fire either in phase or in anti-phase. It turns out that synchronized firing (in phase) typically
is the most dynamically stable mode given realistic physiological parameters. This constitutes a
mechanism for neuronal synchronization in the gamma band that generalizes to larger
populations of interneurons. It is termed interneuronal network gamma (ING). c A second
mechanism for the fast oscillations involves pyramidal neurons, and is termed pyramidal-
interneuronal network gamma (PING). According to this mechanism the pyramidal neurons
periodically excite the interneurons, which in return induce synchronized inhibitory post-synaptic
potentials (IPSPs) in the pyramidal neurons
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employs two different populations of cells: one excitatory and one inhibitory,
reciprocally connected to each other (Whittington et al. 2000; Wilson and Cowan
1972; Ermentrout and Kopell 1998; Borgers and Kopell 2003). In the PING
mechanism, AMPAergic projections of the excitatory population onto the inhibi-
tory population provide fast excitation of the latter cells. These inhibitory cells, in
turn, provide fast inhibition of the excitatory cells through GABAergic synapses.
When the inhibition on the excitatory cells wears off, the excitatory cells fire. The
excitatory firing results, a short delay later, in inhibitory firing, thus bringing the
network into an oscillatory state. For this oscillatory state to happen, the strength
of inhibition and excitation needs to be properly balanced. Note that the short
delay between excitatory and inhibitory firing is the crucial factor for determining
the oscillatory properties in this network (Borgers and Kopell 2003). This delay is
composed of both axonal conduction and synaptic delays (Leung 1982).

For both ING and PING models, GABAergic interneurons are key players, a
finding which is corroborated by the observation that GABA concentration in the
brain predicts an individual’s peak gamma frequency (Muthukumaraswamy et al.
2009). Even though either of these two mechanisms could in principle explain all
gamma oscillation phenomena in the brain, there is ample evidence that both of
them are at work. For instance, when synaptic inhibition onto inhibitory cells is
disabled in the mouse hippocampus, gamma activity is not significantly affected,
providing evidence that some mechanism other than ING is at work (Wulff et al.
2009). In contrast, it is known that gamma oscillations are also prominent in
structures that do not have dense excitatory-to-inhibitory connections (Brown et al.
2002; Fujisawa and Buzsaki 2011), indicating that PING cannot be the whole
story. Thus, whether the PING or the ING mechanism is dominating might depend
on the brain region and species (Tiesinga and Sejnowski 2009; Buzsaki and Wang
2012).

Given the likelihood that inhibitory interneurons are crucial for generating
gamma oscillations, is anything known about the specific type of inhibition
involved in this mechanism? Inhibitory interneurons can be broadly classified
along two dimensions: fast-spiking versus non-fast-spiking, and soma-targeting
versus dendrite-targeting. Several strands of evidence indicate that fast-spiking,
soma-targeting basket cell interneurons (specifically, those that express parval-
bumin (Kawaguchi et al. 1987)) are crucial in the generation of gamma rhythms
(Bartos et al. 2007). These cells are abundant (Freund and Buzsaki 1996), form
extensive interconnections amongst one another (Gulyas et al. 1999), and a single
basket cell can project onto more than one thousand pyramidal cells (Cobb et al.
1995). These conditions enable basket cells to impose their gamma rhythm onto a
pyramidal cell network; the population activity of the pyramidal cells then is
reflected in the local field potential (LFP) and MEG signal. Furthermore, gamma
activity is associated with strong perisomatic current sinks, consistent with the
soma-targeting properties of basket cells (Mann et al. 2005). Finally, fast-spiking
basket cells have resonance properties in the gamma range (Pike et al. 2000;
Cardin et al. 2009) and typically produce *1 spike per gamma cycle, phase-
locked to the population rhythm (Gloveli et al. 2005). Further evidence shows that
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gamma-generating interneurons are likely coupled through shunting inhibitory
synapses and by gap junctions, which increases their robustness against hetero-
geneous input (Vida et al. 2006; Bartos et al. 2007).

Apart from gamma oscillations, another high-frequency component of LFP and
MEG signals can be distinguished. Sometimes referred to as high gamma, rela-
tively broadband high-frequency activity ([85 Hz) is also known as epsilon
activity (Freeman 2007; Belluscio et al. 2012) or the chi band (Miller et al. 2008).
It is currently unclear to what extent this activity should be considered a rhythm.
The high-frequency broadband spectral components might reflect the spectral
fingerprint of neuronal spiking (Manning et al. 2009; Belluscio et al. 2012).

2.2 Beta Oscillations

Typically, beta oscillations (14–30 Hz) are considered to be generated by similar
mechanisms as the gamma rhythm. A large-scale simulation of a network gener-
ating beta oscillations has been implemented (Traub et al. 1999), based on in vitro
observations of hippocampal slices that alternate between gamma and beta states.
It has been shown that the essential features of this large-scale network can be
reproduced in a much simpler network, which bears strong resemblance to the
PING mechanism of gamma generation (Kopell et al. 2000).

Imagine again the PING network described earlier, in which alternating bal-
anced inhibitory and excitatory bursts between two coupled populations result in a
network oscillating at gamma frequency. It turns out that only two changes need to
be made to this model for it to generate beta oscillations: first, a slow potassium
after-hyperpolarization (AHP) conductance is added to the excitatory cells, and,
second, the excitatory cells have recurrent connections to themselves. When an
excitatory cell has fired in this regime, it cannot fire again in the next gamma
cycle, because then the AHP conductance prevents the cell’s membrane potential
from reaching threshold. Only on the next cycle can the cell fire again. This
phenomenon is known as ‘‘beat-skipping’’ and results in the excitatory cells
synchronizing at a beta frequency that is half the frequency of the interneuronal
gamma rhythm. Note that because the inhibitory cells receive phasic excitatory
input from the pyramidal cells, when one pyramidal cell fires, other pyramidal
cells on the next gamma cycle will be silenced by the recurrent inhibitory con-
nection. This leads to a regime where, although each individual pyramidal cell
fires in a beta rhythm, the population activity is still of gamma frequency. The
additional change to the model, the addition of recurrent connections between
excitatory cells, ensures the synchronization: because the excitatory cells excite
one another, they will fire before the inhibition from the GABAergic cells arrives.
The latter route requires two synapses, while the recurrent connection is mono-
synaptic. Thus, a ‘‘PINB’’ (pyramidal-interneuronal network beta) mechanism
might explain the occurrence of beta oscillations in local neuronal networks
(Kopell et al. 2000), such as in the hippocampus.
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Just as PING is not the whole story for gamma, so PINB is not the whole story
for beta. Beta oscillation amplitude over human sensorimotor cortex is increased
when benzodiazepines are administered, while the oscillation frequency is
decreased (Jensen et al. 2005). Benzodiazepines mainly act by increasing GAB-
Aergic conductances. In a PINB-regime, increasing GABAergic conductances has
the effect of decreasing the spiking frequency of the inhibitory cells, thus allowing
more of the excitatory cells to fire, which in turn then excites the inhibitory cells
more, leading to an equilibrium in which the net effect on network frequency is
negligible. Therefore, the PINB mechanism cannot explain the robustly observed
effect of benzodiazepines on beta oscillations. In contrast, an ‘‘INB’’ mechanism,
analogous to ING for gamma, is able to explain these findings: in this mechanism,
excitation of the inhibitory cells is tonic, so the period of the inhibitory cells’ firing
is determined only by the recurrent inhibitory connections. Since these become
stronger under administration of benzodiazepines, the period of the inhibition
becomes longer, in line with the observed results. As the period increases, a larger
fraction of pyramidal cells will be released from inhibition during the refractory
period. This explains the increase in beta power and decrease in frequency with
benzodiazepines in sensorimotor areas observed in humans (Jensen et al. 2005).

2.3 Theta Oscillations

The mechanisms described above for the generation of gamma and beta oscilla-
tions are primarily local models: they describe how oscillations of a particular
frequency can arise through interaction of neuronal populations within the same
brain structure. This allows for related models to account for gamma and beta
activity in different structures such as the hippocampus, entorhinal cortex, or
neocortex. The lower-frequency theta oscillations (4-8 Hz), primarily (though not
exclusively) observed in hippocampus, are typically thought to be generated by an
interaction between several brain regions, and might not sufficiently be explained
by a local model (Wang 2010).

Classically, the medial septum-diagonal band of Broca (MS-DBB) has been
regarded as the crucial brain structure for the generation of the hippocampal theta
rhythm, a notion which is corroborated by the observation that lesioning or inacti-
vating the MS-DBB effectively obliterates theta in the rat brain (Stewart and Fox
1990). The MS-DBB provides a tonic cholinergic drive to the hippocampus which
greatly influences the amplitude of the hippocampal theta rhythm (Lee et al. 1994).
In addition, GABAergic interneurons in the MS-DBB project selectively onto
hippocampal interneurons and these projections likely provide the phasic entrain-
ment (Freund and Antal 1988; Buzsaki 2002). Although originally the MS-DBB was
regarded as the pace-making structure for theta oscillations (i.e., it was thought that
the MS-DBB generates theta by itself and then imposes its theta rhythm onto the
regions to which it projects), later studies have found that interactions between the
MS-DBB and the hippocampus, as well as intra-hippocampal processes, are just as
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essential for theta generation. For instance, it turns out that an in vitro preparation of
an entire isolated hippocampus is still capable of generating theta oscillations
(Goutagny et al. 2009). Furthermore, dendritic inhibition of pyramidal cells by
oriens lacunosum-moleculare (OLM) interneurons, the presence of slow GABAA-
receptors on hippocampal cells, and the value of several specific active membrane
conductances all are important for the occurrence of hippocampal theta oscillations
(Buzsaki 2002; Rotstein et al. 2005: Kopell et al. 2010; Wang 2010).

2.4 Alpha oscillations

Alpha oscillations (8-12 Hz) can be robustly observed in both the thalamus and the
neocortex. Which of these two regions is the primary pacemaker of the alpha
rhythm is still under debate. Generators of the alpha activity have been found with
certainty in both thalamus and in neocortex (Lopes da Silva et al. 1980; Bollimunta
et al. 2008, 2011). The neocortical alpha activity measured by MEG likely stems
from an interaction between the thalamic and neocortical generators.

Most is known about the generation of thalamocortical (TC) alpha oscillations.
The lateral geniculate nucleus (LGN) of the thalamus contains a particular set of
TC neurons, the high-threshold bursting TC neurons, or HTC neurons. These
neurons, coupled through gap junctions, fire bursts of spikes in synchrony with
alpha oscillations in the field potential (Hughes and Crunelli 2005). However, this
cannot be the whole story of TC alpha, since the main projections conveying visual
information from thalamus to cortex are from relay-mode cells (Llinas and Jahnsen
1982), and not HTC cells. So how do the HTC and relay-mode cells interact?
Extensive physiological and computational work has converged on the following
model (Lorincz et al. 2009; Vijayan and Kopell 2012). HTC cells rhythmically
excite thalamically local GABAergic interneurons, probably through axon col-
laterals. This causes these interneurons to also fire at alpha frequency. Depending
on the strength of tonic excitation, the interneurons can fire in one of two modes: a
rhythm of single spikes near the trough of an alpha cycle, or a rhythm of spike
bursts near the peak of alpha. The interneurons project extensively to the relay-
mode cells, thus resulting in an alpha-frequency occurrence of IPSPs on their
membrane potential. Because of the two modes of firing of the interneurons, the
relay-mode cells can send their information to the cortex in two distinct temporal
framing regimes, i.e. at different alpha phases (Lorincz et al. 2009; Vijayan and
Kopell 2012).

Apart from alpha activity, sleep spindles are also reflected in the frequency
range of 10-15 Hz. These are thought to be generated by mechanisms related to the
thalamocortical alpha oscillation, with some important differences: cells of the
reticular nucleus are believed to be crucial for the spindle rhythm, and spindle
activity emerges only in a regime of widespread (as opposed to sparse) inhibition,
as would be expected for a sleep rhythm (Destexhe et al. 1993; Terman et al.
1996).
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2.5 Delta Oscillations

Delta oscillations (1–4 Hz) are prominent during sleep, just like the spindle
rhythm. A model has been proposed in which these two rhythms are generated by
the same neuronal circuitry: an interaction between thalamic reticular (RE) cells,
thalamocortical (TC) cells, and neocortical excitation of the reticular cells. In the
generation of spindles, RE cells inhibit TC cells through GABAA and GABAB

receptors. The TC cells project with excitatory connections to the cortex and the
RE cells, and the cortex excites the RE cells. A network in this configuration
generates spindle activity. When the conductance of the RE cells is changed such
that they become less sensitive to the excitatory input of the TC cells, this causes
the fast inhibition of the TC cells through GABAA-receptors to be functionally
removed. The slow inhibition through GABAB is unaltered. This gives rise to a
rhythm in the delta frequency range during sleep (Terman et al. 1996). Delta
activity also occurs during wakefulness (e.g. Lakatos et al. 2008); however, few if
any models have been developed for the generation of delta during wakefulness.

2.6 Cross-Frequency Interactions

In addition to observing oscillations in distinct frequency bands, one can also
observe interactions between those oscillations. In Sect. 3.4, the different types of
cross-frequency interactions that can be observed are outlined. The neuronal
mechanisms underlying cross-frequency interactions are currently not well
understood. One possibility for the observed coupling between the hippocampal
theta rhythm and the neocortical gamma rhythm (Sirota et al. 2008) is that the
hippocampal theta rhythm is imposed onto fast-spiking interneurons in the neo-
cortex by direct anatomical projections (Tierney et al. 2004; Gabbott et al. 2002).
These interneurons are crucial for the generation of the gamma rhythm, as
explained in the section on gamma activity above. The number of interneuron
network spikes per gamma cycle is proportional to the measured gamma amplitude
in the local field potential (and thus the MEG signal). Since the interneuron net-
work spike rate is determined by the input to the network, whenever this input is
time-varying at a certain low frequency (e.g., theta), the gamma amplitude will be
modulated at the same frequency (Spaak et al. 2012b; Wulff et al. 2009).

3 Methods for Characterizing Oscillations

An oscillation as measured by MEG can most simply be thought of as a stationary
sinusoidal signal, varying across time at a particular frequency. However, such
pure signals do not exist in the brain, but rather neural data are mixes of sinusoidal
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oscillations at varying frequencies whose peak amplitudes vary over time. This
section describes how to compute meaningful quantities from these signals that
characterize their frequency dependence and dynamics. Although the oscillations
are recorded in the time domain (i.e., a signal that varies over time), often they can
be better defined in the frequency domain (i.e., a signal whose amplitude and phase
vary over frequency). The power spectral density (PSD) of a time series describes
how its power (amplitude squared) is distributed with frequency. In this section,
first we will describe the transformation of the raw (recorded) time series to the
PSD and how the PSD is optimally computed for neuroscience applications.
Second, we will describe how oscillations can alternatively be treated in the time
domain and lastly, methods for computing within- and cross-frequency interac-
tions. For further references on methods and computation, please see (Muthusw-
amy and Thakor 1998; Mitra and Pesaran 1999; Gross et al. 2013).

3.1 Power Spectral Density of Oscillatory Activity

Any time series can be re-written as a sum of sine waves with each wave having a
frequency at the appropriate amplitude and phase. Vice versa, by knowing the
amplitudes and phases of the waves, the original time series can be reconstructed.
The amplitude and phase of the sine waves for all relevant frequencies can be
determined from the Fourier Transform. Power is defined as the magnitude of the
signal squared per time; thus the power spectral density describes how the squared
amplitude for a given time window is distributed with frequency.

For discrete, digitized signals, such as those obtained from MEG, EEG, and
invasive electrophysiological systems, the discrete Fourier Transform (DFT) is
used to compute the amplitude and phase estimates for a finite number of fre-
quencies. Thus, the PSD is the square of the DFT of a given discretized signal. The
DFT is typically computed by the Fast Fourier Transform (FFT), a computation-
ally fast and practical algorithm. Limits on the maximum frequency and the
spacing of the estimated frequencies exist. First, the maximum frequency possible
to be quantified, also called the Nyquist frequency, is half of the temporal sam-
pling rate. For example, using a 1000 Hz sampling rate means that the maximum
frequency at which information is estimable is at 500 Hz. If the underlying time
signal contains information at a frequency higher than the Nyquist frequency, this
information will bleed in at lower frequencies (termed ‘‘aliasing’’), thus making
this information irrecoverable and will corrupt the estimates at lower frequencies.
Thus, it is imperative to low-pass filter the analog continuous signals prior to
discretizing (Smith 1997). Indeed most commercial data acquisition systems will
apply anti-aliasing filters via a lowpass filter at typically 1/4–1/3 of the sampling
frequency. The second limit when converting recorded data to the frequency
domain is the spacing between discrete frequencies. This spacing is referred to as
the Rayleigh frequency and is equal to the inverse of the length of the temporal
sampling window. For any finite signal, estimates of oscillatory power can only be
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obtained at integer multiples of the Rayleigh frequency (for example, for a 400 ms
data segment, estimates will be obtained at 2.5, 5, 7.5 Hz, etc.) (Mitra and Pesaran
1999; Pesaran 2008).

In theory, the estimate of the power spectrum from the FFT of a finite data
segment is biased, as the true spectrum can only be obtained from an infinitely
long segment. In practice, however, directly applying the FFT to longer segments
of data is less desirable for at least three reasons. It will require long computational
time, it assumes stationarity of the underlying signal, and also it does not exhibit
the expected property of a decrease in variance with increased data length. For a
long segment, the noise will be represented at a high spectral resolution deter-
mined by the Rayleigh frequency, but not be averaged over nearby frequency bins.
As such, while the frequency resolution increases with long data length, the noise
variance of the spectral estimate is not improved. Welch’s method is one way to
circumvent these concerns, by first ‘‘windowing’’ (i.e. cutting the data into N
shorter equal-length segments) and then computing the power spectra per segment
followed by averaging the spectra (Welch 1967). Figure 3 illustrates this, first by
showing a long (20 s) time segment of a 20 Hz oscillation with added pink noise
(Fig. 3a); a 1 s subset is shown in Fig. 3b. (Pink noise is noise drawn from a signal
with a power spectral density following 1/f, in other words inversely proportional
to frequency). If the FFT of the 20 s data is calculated (Fig. 3c), the peak at 20 Hz
is strong, but also the noise is strong. In contrast, if the Welch method is used,
whereby the FFTs of 20 (N = 20) segments, each 1 s long, are computed and
averaged, the result is a smoothing over N adjacent frequency bins. This
smoothing reduces the main peak at 20 Hz, but also reduces the noise, by the
expected ratio of 1/HN. Effectively, one compromises frequency resolution when
averaging over N bins, but typically the increased signal-to-noise ratio is preferred
over a small Rayleigh frequency, since neural oscillations typically fluctuate in
frequency. (Note that in Fig. 3, the short 1 s segments were padded to a length of
20 s prior to FFT; padding is discussed further down).

Segmenting has the further advantage of only assuming/requiring short-time
stationarity within one segment, as variation over segments can be examined for
non-stationarity. However, care should be taken that the segments do not become
too short, as the practical minimal data segment length to sufficiently capture an
oscillation is suggested to be about 3–5 times the length of the period of the
frequency of interest. Thus, for example, a segment not much shorter than 400 ms
should be used to estimate the power and/or phase at 10 Hz. Longer time segments
may be advised if characterization of precise frequency estimates are desired (e.g.,
determining the peak frequency of the alpha oscillation during an eyes-closed
resting condition to within 0.5 Hz precision would require a 2 s window). How-
ever, at least two concerns become apparent with the use of shorter time windows.
The first is the increased Rayleigh frequency. In the example above, sacrificing a
Rayleigh frequency of 0.05 Hz from a 20 s window to 1 Hz from a 1 s window is
usually acceptable for most research questions; however, a Rayleigh frequency of
5 Hz, resulting from a window length of 200 ms, may not be sufficiently precise.
To mitigate this, one may ‘‘pad’’ a time window with extra zeros resulting in a
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desired Rayleigh frequency. New information has not been gained at these inter-
mediary frequency bins; the improved frequency resolution is a consequence of
spectral interpolation. However, padding allows a spectrally smoothed represen-
tation to be depicted. In the situation of unequal time segments, for example due to
unequal trial lengths between stimulus and response time, padding each segment to
an equal length is necessary if these trials are to be averaged in the frequency
domain and thus at the same frequency bins. The effect of padding is illustrated
in Fig. 4

A second problem with shorter time windows is that more blurring (spectral
leakage) of the PSD can occur. The original Fourier Transform assumes an infi-
nitely long signal with periodic components. However, when a segmented time
window is used, this is implicitly the multiplication of a boxcar-shaped window
(zeroes everywhere except a segment of ones) with the original signal. Since
multiplication in the time domain is equivalent to convolution in the frequency
domain, the FFT of a windowed time series appears as the convolution of the FFT
of the original signal (for example, a stick, or delta function, at 20 Hz for a pure

Fig. 3 Illustration of the averaging/smoothing over frequency provided by the Welch method
using averaged spectra from shorter time windows. a A simulated 20 s long signal created from
the addition of a 20 Hz sinusoid plus pink noise. b A zoomed in view of 1 s of the simulated
signal. c The FFT of the data in (a). The inset is the same figure with a different y-scale. d The
average of the 20 FFTs obtained from dividing the signal in (a) into 20 separate 1 s duration
segments, with padding to 20 s length. The inset is the same figure with a different y-scale, but
same y-scale as the inset in (c)
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20 Hz sinusoid) with the FFT of a boxcar, which is a sinc function. The resulting
power spectral density contains power in the ‘‘tails’’ of the sinc function, outside
the main peak of 20 Hz. This is illustrated in the example in Fig. 4. The time
domain (left column) and frequency domain (right column) of several signals are
shown. Figure 4a and 4c show sinusoids at 20 Hz and 21.5 Hz, respectively, with
a sampling rate of 1000 Hz for duration of 1 s. The Rayleigh frequency is thus
1 Hz and the 20 Hz sinusoid can be well captured in the PSD as a sharp peak at

Fig. 4 Effect of window length, zero padding, and tapering on short window Fourier Transform.
a 20 Hz sinusoid over 1 s. b FFT of (a). c 21.5 Hz sinusoid over 1 s. d FFT of (c); note the spectral
leakage. e Boxcar window of length 200 ms. f FFT of (e). g Sinusoid from (a) multiplied by boxcar
from (e). h Blue line is the FFT of 1 s padded segment from (g); black circles are the FFT from the
200 ms segment without padding. i Sinusoid from (c) multiplied by boxcar from (e). j Blue line is
the FFT of 1 s padded segment from (i); black circles are the FFT from the 200 ms segment without
padding. Again notice the bleeding. k Hanning taper of length 200 ms. l FFT of (k). m 20 Hz
sinusoid from A multiplied by Hanning taper of (k). n FFT of (m), with the blue line resulting from
padding to 1 s and the black circles from no padding of the 200 ms segment. o 21.5 Hz sinusoid
from (c) multiplied by the Hanning taper of (k). p FFT of (o), with the blue line resulting from
padding to 1 s and the black circles from no padding of the 200 ms segment. The Hanning taper
effectively resolved the leakage but with the trade-off of increased spectral smoothing
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20 Hz and no power elsewhere (Fig. 4b). However, since the 21.5 Hz sinusoid
contains its power at a frequency not at a multiple of the Rayleigh frequency, then
the corresponding PSD exhibits a blurred peak near the true frequency but also
power in other bands quite some distance from the true peak (Fig. 4d). The sit-
uation is worsened by using a shorter time window of 200 ms (sufficiently long to
capture at least three periods of oscillation for both 20 Hz and 21.5 Hz), as shown
in Fig 4g, i. The Rayleigh frequency is now 5 Hz; the PSD at every 5 Hz is shown
in Figs 4h, j indicated by the black circles. The blue lines in these subfigures are
computed from ‘‘zero padding’’ the 200 ms signal to a full 1 s length (as depicted
in Fig. 4g, i). In Fig. 4h, the PSD of the 20 Hz sinusoid is again well captured with
the peak power at 20 Hz and no power at the other sampled frequencies for the
time window 200 ms; however, the FFT of the padded signal shows the leakage
effects of the boxcar window. Furthermore, in Fig. 4j the bleeding of power to
frequencies away from the true 21.5 Hz is strong, both in the unpadded (black
circles) and padded (blue line) results.

An operation known as tapering can be used to mitigate the effect of the bleeding
into far-away frequencies due to shorter time windows. Tapering is the explicit
multiplication of the signal with some taper or window function, rather than relying
on the implicit multiplication with a boxcar. Smoothing the sharp rise/fall of the
boxcar edge leads to reduced leakage into further away frequencies. Tapering results
in local smoothing of the peak frequency and thus assumes similarity of power in
nearby frequencies (an assumption which is usually justified when analyzing brain
signals). A common function used is the Hanning taper. A 200 ms version of the
Hanning taper with zeros padded on either side is shown in Fig. 4k and its FFT is
shown in Fig. 4l. When multiplying the windowed sinusoids by the Hanning taper
(Fig. 4m, o), the resulting FFT of the sinusoids (Fig. 4n, p) now appear as the stick
(delta function) at 20 or 21.5 Hz convolved with the smooth curve of Fig. 4l, rather
than convolved with the bumpy curve of the sinc function in Fig. 4f. The short
window of 200 ms still limits the Rayleigh frequency to 5 Hz and there is still some
bleeding at nearby frequencies (e.g. at 15 and 25 Hz); however, the leakage at
10–30 Hz is greatly reduced. It is often recommended to demean before FFT as the
baseline (DC) component can leak to other frequency bands.

The choice of which taper to use is based on the assumptions of the underlying
true PSD. The Hanning taper illustrated minimizes the spectral leakage in the tails
(also referred to as leakage in the side lobes) but results in a fairly wide blur
around the true spectral peak (also referred to as a wide main lobe). Ideally, the
taper choice should match the expected underlying spectral width. For example, in
the alpha band of 8–12 Hz with a 4 Hz bandwidth, the Hanning taper over a
400 ms window gives a suitable match of the width of the main lobe (in fact, one
roughly twice as narrow as that depicted in Fig. 4l, since the longer that the
Hanning taper is in time, the narrower the lobe is in frequency). Other functions
such as the Hamming taper can also be used. The Hanning, Hamming and other
tapers differ from each other in their characteristics of relative suppression of the
leakage in near and far frequency bands and width of the main lobe. Please see
Smith (1997) for a detailed discussion.
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When considering neural responses in the gamma band, they are often broad-
band, for example from 60–80 Hz. In this case, one commonly uses a set of tapers,
known as the Slepian or discrete prolate spheroidal sequences (DPSS) or simply
‘‘multitapers’’ (Slepian and Pollak 1961), which are a set of mutually orthogonal
vectors with optimal desired spectral properties. The number of tapers used is
determined by the length of the time window (Dt) and the desired frequency
bandwidth (Df), with the formula: K = 2*Dt*Df – 1, where K is the number of
tapers (Percival and Walden 1993). Ideally at least three tapers should be used. A
set of four DPSS are shown in Fig. 5. The result of using the multitaper method is a
wider but specific passband with minimal leakage in the stopbands. In other words,
the spectral properties are ideal for a broadband but yet band-limited response in
the gamma band. The choice of data segment length and desired bandwidth of the
multitapers is important, but to advise specific settings that are generally appli-
cable is not possible. Rather, iteration and initial exploration of the data is rec-
ommended, for example, to determine whether a wide-band response is actually
two distinct bands near each other. Further discussion of Fourier analysis for
neural signals can be found in Pesaran (2008).

3.2 Time Domain Characterization of Oscillations

Rather than computing the FFT of a time-windowed signal to obtain its PSD across
all frequencies, another option is to band-pass filter the data so as to obtain a time
domain signal containing only frequencies of some band of interest. The success of

Fig. 5 Orthogonal DPSS tapers over a 1 s window (left) and their spectral density (right), with
zero padding to 10 s length. The black line in the right figure is the average of the FFT of each
taper, which indicates the effective result of using all four together
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this method depends on the characteristics of the filter which, similar to the dis-
cussion of tapers above, depend on passing the desired frequencies (in the ‘‘pass-
band’’) with as close to unity gain as possible and suppressing the non-desired
frequencies (in the ‘‘stop-band’’) with as close to full attenuation as possible (see
Fig. 6). The ‘‘transition-band’’ refers to the frequencies in between the pass-band
and stop-band for which the gain is neither zero nor unity. Four filter types are
named according to the relative position(s) of their pass-band and stop-band: low-
pass (Fig. 6), high-pass, band-pass and band-reject. In reality, filters are not per-
fect, and thus three important characteristics of filters are roll-off between the pass-
band and reject-band, amount of ripple in the pass-band, and amount of attenuation
in the stop-band. For more information on digital filtering, please see Smith
(1997).

While the characterization above (low-pass, high-pass etc.) applies to the desired
behavior of the filter, another characterization of filters is the type of implemen-
tation used: ‘‘infinite impulse response’’ (IIR) or ‘‘finite impulse response’’ (FIR).
We do not intend to provide a mathematical explanation of these types and how
they differ, but rather to introduce and discuss trade-offs of commonly used filters in
neuroscience. For further details please see (Smith 1997). The Butterworth filter is a
commonly used IIR filter. Some considerations as to whether to use an IIR or FIR
filter are that IIR filters tend to have a flat frequency response but a shallow drop-off
in the frequency domain and indirect control over time and frequency resolution,
whereas FIR filters tend to have precise control over time and frequency resolution
and a sharp drop-off in the frequency domain, but have an ‘‘oscillating’’ response in
the frequency stop-band. The order of the filter is important as well, as it relates to
the amount of temporal lag of the convolution kernel as well as computation time.
One important criterion is to use a filter that will preserve the phase of the signal (a
‘‘zero-phase filter’’) since the phase of the oscillation can be of important functional
importance. A zero-phase filter is often implemented by applying two linear-phase

Fig. 6 Portions of a low-pass
filter which correspond to the
pass-band (unity
amplification), transition-
band (neither unity
amplification nor full
suppression), and the stop-
band (full suppression).
Similarly, a high-pass, band-
pass and band-stop filter can
be constructed
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filters in succession, where the second ‘‘un-does’’ the phase shift of the first.
However, it is important to know that no filter is perfect and thus by applying the
same filter twice to obtain zero-phase, the amplitude is reduced twice as strongly in
the pass-band. Thus when comparing amplitudes across conditions, it is imperative
to use the same filtering and other preprocessing.

Filters may still have a ringing artifact (Gibbs ringing) of the filtered time series
near sharp transitions in the signal, even though optimal filters aim at reducing this
artifact. Thus, it is suggested to filter a segment of data longer than needed and
discard the transition effects at the edges. The length of the discarded segment
depends on the severity of the artifacts, but often 50–100 ms at each end is sufficient.
This longer, edge-trimmed segment then can be further cut into shorter segments
according to the same guidelines given above (at least 3–5 times the length of the
period of oscillation) and a sum of squared amplitudes can be computed for the
power of that particular time segment and frequency band according to the filter.
Thus, in contrast to the FFT where all frequencies are obtained in one computation
and at precise frequencies determined by the window length, this time-domain
method allows for power over a window for the breadth of a frequency band to be
computed, subject to the precision of the filter used. Note that filtering is for com-
putational reasons often computed in the frequency domain using the FFT approach.

A possibility of probing the data characteristics from the band-pass filtered time
domain signal is to compute its instantaneous phase and amplitude envelope
(Fig. 7), using the Hilbert Transform (Bruns et al. 2000). In the limit that the time-
varying signal is a perfect sinusoid, then the Hilbert transform would provide the
same results as the FFT approach at a particular frequency for an infinitely long
segment. The Hilbert transform can be useful to obtain the instantaneous phase
estimate for an oscillation which, as recorded from a distant sensor as in MEG,
may well be a mix of several oscillating neurons at nearly the same frequency.
Additionally, the Hilbert amplitude envelope itself may be filtered to assess at
what frequency the envelope is modulating (e.g., commonly observed in the range
of 0.01–0.1 Hz (Hipp et al. 2012)).

3.3 Computation of Time-Frequency Representations
of Oscillations

For many neuroscience applications, it is desired to compute the PSD over a range
of frequencies and investigate how the PSD changes over time relative to some
aspects of the task. Considering modulations in oscillatory power this way is
referred to as a time-frequency representation (TFR) of power. The TFR is
computed using a sliding time window. The length of each time segment in the
window is determined as discussed before, but the time scale over which the
changes in power may occur can be faster than the segment length; thus over-
lapping segments are often used. For example, 400 ms segments may be computed
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with the central time point in steps of 50 ms. The overlap helps mitigate the
dampening effect that tapering has on the power at the edges of the time segment;
the loss of power at the edges of one segment is less of a concern if the edges are
the middle of another computed segment. The window length of the segments may
be kept the same for all frequencies examined (Fig. 8a) as long as the window
length is sufficiently long for the lowest frequency. Alternatively, as shown in
Fig. 8b, a different window length may be used for every frequency so that the
number of periods of oscillation remains fixed (for example, keeping 4 cycles fixed
leads to a 400 ms window for 10 Hz, 200 ms window for 20 Hz, and so on). Keep
in mind that if a multitaper approach is used for computing the PSD of broadband
gamma, the time window should be kept constant over the frequencies, as the
multitapers interact over the range of frequencies. Also due to the difference in
spectral width of the generated oscillations, the lower bands (e.g. 1–30 Hz) and
higher bands (e.g. 20–100 Hz) are often computed separately using, respectively,
Hanning and multitapers.

Wavelets are another computational method which may be used to compute the
TFRs of power. They use a set of basis functions across multiple frequencies and
times, that qualitatively each look like a burst of oscillatory activity at a given time
and frequency, beginning and ending with zero amplitude. The exact shape of the
wavelet depends on the type, of which there are many. One common type is the
Morlet wavelet created by a sinusoid tapered by a Gaussian window centered at a
specific time point (Fig. 9 left panel). The wavelet transform then uses the wavelet
basis set (typically optimized for discrete signals with a discrete wavelet trans-
form) to estimate power and phase at each frequency over time (Fig. 9). Wavelets
have the property that the product of the bandwidth and window length remains
constant, ensuring a constant time-frequency ‘‘area’’ of which the power is com-
puted; the value of this product is user-specified. Note that Fourier analysis using

Fig. 7 The blue line shows a
20 Hz oscillation modulated
by lower frequencies. The
green line in the top panel
shows the Hilbert amplitude
of this signal and the green
line in the bottom panel
shows the Hilbert phase
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sliding time windows, filtering plus Hilbert transform, and the wavelet transform
are mathematically equivalent, given specific sets of parameters (Le Van Quyen
et al. 2001; Bruns 2004).

Fig. 8 Illustration of how time-frequency windows may be selected. a A fixed time width (DT)
and fixed frequency width (DF) can be used. The center of each time window may be shifted in a
time shorter than DT. b Variable time and frequency widths may be used where the area of the
time-frequency window remains constant. As the time width (and temporal smoothing) is reduced
at higher frequencies, the spectral width and smoothing are increased. This figure is reproduced
from the tutorial on time-frequency analysis on the wiki page of the FieldTrip analysis toolbox
(http://fieldtrip.fcdonders.nl/tutorial/timefrequencyanalysis)

Fig. 9 Morlet wavelets and their use to create a time-frequency representation of data. (Left) A
set of Morlet wavelets, with four different central points over three different frequencies. (Middle)
example data with an oscillation at a frequency close to that of the middle frequency of the
wavelets. (Right) The time-frequency representation of the spectral (vertical) and temporal (left to
right) variation of each wavelet with the data
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3.4 Characterizing Cross-Frequency Interactions

The physiological mechanisms of interactions across frequencies have been briefly
described earlier in this chapter and may be quantified in various ways, each
emphasizing different aspects of the interaction. Cross-frequency coupling can
occur in various ways, involving the phase or amplitude (power) of a lower fre-
quency band and the phase, amplitude or frequency in a higher-frequency band
(Colgin et al. 2009; Fig. 10a).

One well-studied type of cross-frequency coupling is phase-amplitude coupling
(PAC), i.e., coupling of the phase of the lower frequency (LF) (Fig. 10b–c) to the
amplitude of the high frequency (HF) (Fig. 10b–d). Eight metrics to compute PAC
are compared in (Tort et al. 2010) and reviewed in (Canolty and Knight 2010), of
which we provide here a summary. As shown in Fig. 10b–e, reproduced from (Tort
et al. 2010), a phase-amplitude histogram can be computed from the amplitudes of
the higher frequency binned according to the phase of the lower frequency. Metric 1
(heights ratio; HR) uses this histogram directly to compute the ratio of the relative
difference between the highest and lowest amplitudes; thus the HR metric lies
between 0 and 1. Rather than just using the bins with the highest and lowest
amplitudes, Metric 2 instead uses the whole distribution to compare against a uni-
form distribution (Tort et al. 2008, 2009), via a modulation index (MI) computed
from the Kullback-Leibler (KL) distance (a method to compute a distance between
probability distributions), denoted MI-KL. Metric 3 uses the PSD of the high fre-
quencies to explore for possible PAC with any number of low frequency bands
(Cohen 2008). However, note that a simple presence of power at low and high
frequencies does not mean that there is phase-coupling in the same bands. Metric 4
uses a complex-valued time series created by the amplitude at high frequencies and
the phase of the low frequencies; the mean vector length (MVL) of this new signal in
the complex domain then indicates the extent to which amplitudes of high frequency
activity are clustered in a particular phase of the low frequency oscillations (Canolty
et al. 2006). Metric 5 computes a phase-locking value (PLV) between the phase of
the low frequency signal and the phase of the envelope of the high frequency signal
(Cohen 2008, Penny et al. 2008). Metric 6 computes the correlation of the high
frequency envelope to low frequency signal, referred to as the envelope-to-signal
correlation (ESC); this can be modulated to use only the cosine of the phase of the
low frequency component removing its amplitude, thus a normalized ESC (NESC).
However, ESC and NESC are phase-dependent and cannot detect a 90� phase dif-
ference. To get around his problem (Penny et al. 2008) proposed Metric 7, which
improves on the phase-specificity of ESC by adding a sine component and using a
general linear model (GLM) to determine the dependence of the high frequency
envelope on any phase of the low frequency signal. Finally, metric 8 computes a
coherence spectrum between the amplitude envelope of the high frequency and the
original unfiltered signal (Osipova et al. 2008).

(Tort et al. 2010) compared these eight metrics (see their Table 1) for properties
of tolerance to noise, dependence on the amplitude of the low frequency, sensitivity

Human Brain Oscillations 379



Fig. 10 a Demonstration of four ways in which a higher frequency can be modulated by a lower
frequency (reproduced from Jensen and Colgin (2007)). b Analysis pipeline and example results
for computing phase-amplitude coupling, with the lowest panel showing the histogram of
amplitudes of the higher frequency binned according to phase of the lower frequency (reproduced
from Tort et al. (2010))
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to a multimodal histogram distribution, and sensitivity to width of the modulation
distribution of the phase-amplitude coupling histogram. Specifically, measures that
are only sensitive to the phase-locking will miss out on information of the extent of
high frequency envelope modulation. Furthermore, the metric should be indepen-
dent of the phase at which the high frequency envelope is maximal or minimal or if
indeed multimodal. The metric should also have relative tolerance to noise and
insensitivity to the absolute amplitudes of the low frequency or envelope of the high
frequency signals. They conclude that their method of MI-KL performs optimally
on these four considerations, and gives results that match intuitively with quanti-
fication of phase-amplitude coupling. The MI-KL metric is limited to examine only
one low frequency band at a time, but of course the MI-KL of the same high
frequency to several different low frequency bands may be computed
independently.

Amplitude-amplitude (or power-power) coupling may be computed in several
manners, although not so much variability or flexibility exists as it does for phase-
amplitude coupling. One method includes computing the Hilbert amplitude
envelope for two different frequencies and correlating them over time or trials.
Note that the time series of the Hilbert envelope itself will fluctuate at a frequency
much lower than the underlying frequency from which it is computed; thus, in
order to compute a correlation, a sufficiently long time window to capture several
cycles is needed (e.g., 10 s for the alpha activity). This can be therefore useful in
resting state paradigms (de Pasquale et al. 2010; Brookes et al. 2011b; Hipp et al.
2012). Alternatively, it may be desired to assess whether the power at a particular
time relative to a task from two different frequencies are co-modulated over trials
(de Lange et al. 2008; Mazaheri et al. 2009). In this case, either the frequency
domain or time domain methods for computing a PSD may be used.

Phase-phase coupling (PPC) means that the phase of an oscillation in one
frequency is coupled to the phase of an oscillation in another frequency; in other
words, a fixed number of high frequency cycles occurs every low frequency cycle.
Once again, several methods exist to quantify this coupling. Bispectral analysis
quantifies how two oscillations can nonlinearly interact to generate a third fre-
quency. This metric has been used successfully in EEG data (Sigl and Chamoun
1994; Shils et al. 1996; Schack et al. 2002). However, like coherence between two
signals of the same frequency, the amplitude is involved as well, thus not a strict
phase-phase coupling measure. If the two frequencies (n and m) are harmonics of
the same fundamental frequency (such that n*f1 = m*f2), then a modified n:m
phase synchronization index is computed as xn,m = n*u1-m*u2 (Tass et al.
1998; Guevara and Glass 1982; Palva et al. 2005).

3.5 Concluding Remarks

We have demonstrated that transforming the original time domain signal to the
frequency domain allows for a rich characterization and efficient computation of
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the data to obtain a time-frequency representation of power. Considering the time
signal as a sum of sinusoids each with its own amplitude and phase can promote a
greater conceptual understanding. Considering cross-frequency interactions pro-
vides a new and exciting manner for analyzing oscillatory activity. Attention to
details such as window length, tapering, spectral leakage and spectral smoothing
will ensure an optimal representation of the data.

4 Functional Role of Brain Oscillations

4.1 Gamma Oscillations

Oscillatory activity in the gamma band (30–100 Hz) is typically associated with
active neuronal processing of information. We will here first review the theoretical
notions for how gamma activity might organize neuronal processing in time. We
will then bring forward some examples demonstrating how the gamma activity can
be investigated and interpreted in the context of MEG studies on cognition.

One of the key mechanistic ideas of the gamma band activity is related to
synaptic integration. Imagine a group of neurons projecting to a downstream
region. In order for a single neuron in the receiving region to fire, it must receive
synaptic input from several of the neurons in the sending network. However, these
inputs need to be somewhat synchronized to add up sufficiently. Typically an
excitatory postsynaptic current lasts for about 10–20 ms. This implies that neurons
in sending regions that synchronize in the gamma band (1/[20 ms]–1/[10 ms]
corresponding to 50–100 Hz) provide a strong feed-forward drive (Tiesinga et al.
2004; Salinas and Sejnowski 2001) (Fig. 11). This framework is supported by the
observation that the engagement of a given brain region often is reflected by a
gamma band power increase. This has for instance been reported in LFP record-
ings in animal preparations (Gray et al. 1992). When a visual grating is presented
to the monkey, strong gamma band synchronization is observed in visual regions
including V1 and V4 (Gail et al. 2000; Fries et al. 2001; Rols et al. 2001; Buffalo
et al. 2011; Bosman et al. 2012). Further the timing of neuronal firing is tightly
coupled to the phase of the gamma band oscillations. Importantly, the degree of
gamma band synchronization might act as a mechanism for gain control (Tiesinga
et al. 2004). Tighter synchronization in the sending regions leads to a stronger
feed-forward drive. This notion is reflected by an increase in spike-field coherence
in the gamma band when covert attention was allocated to the respective visual
field (Fries et al. 2001; Buffalo et al. 2011). Further, the tightness of the syn-
chronization will be reflected as an increase in the electrical fields in the gamma
band. This has been demonstrated in several human studies using EEG and MEG
in which the gamma band activity increases with attention (Bauer et al. 2012;
Gruber et al. 1999; Siegel et al. 2008).
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While these findings mainly pertain to the gamma activity in a given region
(‘‘the sender’’) it has also been proposed that communication between regions is a
consequence of the dynamics in both the sender and the receiver. This theory is
termed ‘‘communication through coherence’’ (Fries 2005). It proposes that to
achieve optimal communication, the sender and the receiver need to oscillate
coherently such that an incoming synaptic input co-occurs with the maximally
excitable gamma phase in a receiving neuron (Fig. 12). Likewise communication
between the two regions can be blocked by adjusting the phase relationship such
that incoming spikes arrive at the least excitable gamma phase. In general the
framework is consistent with the notion that communication between brain regions
should be reflected in gamma band coherence (Bressler 1996; Varela et al. 2001).
Recently the theory has received some experimental support from intracranial
recordings in monkeys (Bosman et al. 2012; Grothe et al. 2012). While these
findings are in support of the theory, long-distance coherence in the gamma band
has been difficult to reliable identify in human MEG recordings, albeit there are
several reports (Siegel et al. 2012). Interestingly there are now several papers on
phase-synchronization in the theta and alpha band facilitating long-distance neu-
ronal communication in both animals and humans (Colgin 2011; Liebe et al.
2012; Palva and Palva 2011; Saalmann et al. 2012). More work is required in order
to determine the generality of communication through coherence and which fre-
quency bands best reflect communication.

Beyond neuronal communication, it has been proposed that gamma band
synchronization is needed for solving the ‘‘binding problem’’ (Gray et al. 1989;
Engel and Singer 2001; Engel et al. 1999; Tallon-Baudry and Bertrand 1999). It
should be mentioned that this framework pre-dates the ideas on communication by

Fig. 11 Neuronal synchronization promotes a stronger feed-forward drive due to the temporal
integration of synaptic input. This time-window of temporal integration is determined by the
GABAergic feedback and is in the order of 10–20 ms, which makes synchronization in the
gamma band optimal for providing a feed-forward drive. A slower rhythm like the alpha rhythm
will provide a less tight synchronization and provide a less effective feed forward drive
(reproduced from Jensen et al. (2007))
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gamma band synchronization. Typically when we perceive an object it is com-
posed of several parts. In order to perceive the object as one, we need to per-
ceptually combine the parts. Obviously binding needs to be done in a fast and
flexible manner. The ‘‘binding-by-synchronization’’ hypothesis proposes that
binding is achieved by neuronal synchronization in the gamma band. In other
words, neurons coding for different parts will fire synchronously in order to form
an ensemble that is perceived as one object (Fig. 13). This theory has received
some experimental support (Gray et al. 1989; Engel et al. 1997; Castelo-Branco
et al. 2000); however, it has also been criticized (Roelfsema 1998; Burns et al.
2011). One point of criticism pertains to the observation that gamma band activity
changes frequency with stimulus contrast (Ray and Maunsell 2010). This poses a
challenge to the binding theory since an object can be perceived as one, even if it is
composed of parts of different contrast. It is of interest to point out, that a recent
paper reported that an ensemble of neurons synchronizing in the beta band
(*30 Hz; also termed lower gamma band) reflected the dynamic formation of
representations for rules implementing stimulus-response mappings in prefrontal
cortex (Buschman et al. 2012). In this study, the formation of representations
seems to be reflected by neuronal synchronization. Although this does not pertain
to perceptual binding per se, it does demonstrate that synchronization could play
an important role for the dynamic formation of neuronal representations. Further
research applying multi-unit and field recordings need to be performed to deter-
mine the general importance of gamma synchronization and binding.

Fig. 12 A schematic illustration explaining communication through coherence. The red and the
green cells are phase-locked in such a manner that spiking in one set of cells will coincide with
the excitation by the gamma phase in the other cells. This allow for the cells to communicate. The
phase relationship between the red and black cells is such that the incoming spikes will be
missing the excitable phase. Thus information is only exchanged between the red and green cells.
Reproduced from (Fries 2005)
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To summarize, there are several influential theories on the functional role of
gamma band oscillations. What these theories have in common is that they
implicate gamma band synchronization in neuronal processing. There are now
numerous studies demonstrating robust gamma band activity observed with MEG.
We will mention a few here. Visual gamma band activity can be induced by
gratings presented to the subject (Hoogenboom et al. 2006; Muthukumaraswamy
and Singh 2013) (Fig. 14a). This gamma activity is highly robust and remains
stable when tested over days (Muthukumaraswamy et al. 2010). Interestingly, the
properties of the spectra in the gamma band are highly reproducible over mono-
zygotic twins (van Pelt et al. 2012). This suggests that the frequency and syn-
chronization properties are strongly linked to the physiology in a given subject.
Further, sustained gamma band oscillations have been observed in human visual
areas during working memory maintenance (Jokisch and Jensen 2007; Roux et al.
2012; Van Der Werf et al. 2009) (Fig. 14b). These findings are consistent with
intracranial monkey recordings also demonstrating sustained gamma band activity
during working memory maintenance (Pesaran et al. 2002). This was observed in
LFP power but also in the coupling between neuronal spiking to the phase of
ongoing gamma oscillations. Gamma band activity has also been associated with
the successful encoding of long-term memory. Stronger induced gamma activity

Fig. 13 Perceptual binding by neuronal synchronization in the gamma band (reproduced from
Engel 1999). Cells whose receptive fields (RFs) correspond to locations of parts of the same
object will synchronize with each other, binding those parts of the visual field together
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was observed in response to the presentation of items that were later remembered
compared to forgotten (Gruber et al. 2004; Osipova et al. 2006; Meeuwissen et al.
2011). These findings are possibly linked to the observation that synaptic plasticity
(long-term potentiation) can be improved when the inducing stimulus is coupled to
the phase of the gamma oscillations (Wespatat et al. 2004). Finally it should be
mentioned that MEG studies have found gamma band activity not only in the
visual system. Reliable gamma band activity modulated by attention has also been
observed in the somatosensory system (Bauer et al. 2006). Also, gamma band
activity in the auditory system has been intensively investigated (Knief et al. 2000;
Pantev et al. 2003; Kaiser and Lutzenberger 2005).

In conclusion gamma activity can be reliably detected using MEG. Further, the
gamma band activity is often observed to be modulated by various cognitive
manipulations. Animal recordings indicate that the gamma band activity is a
consequence of a temporal organization of neuronal firing. As both theories and
experiments develop we will gain further insight into the functional role of gamma
oscillations.

Fig. 14 a Robust gamma
band oscillations induced by
visually presented moving
gratings. Their sources were
localized to visual cortex
(reproduced from
Hoogenboom et al. (2006)).
b Sustained gamma band
oscillations observed during
working memory
maintenance (reproduced
from Roux et al. (2012))
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4.2 Alpha Oscillations

Oscillatory activity in the alpha band was first reported by Hans Berger in 1929
(Berger 1938). Given that the alpha band activity emerges during rest and increases
when subjects close their eyes, it has been associated with a state of rest. It has also
been termed an idling rhythm, i.e., reflecting a state in which subjects are not
engaged in a particular task but yet wakeful. This notion has recently lost ground in
favor of the idea that alpha oscillations reflect active inhibition in a given region,
although several indications from older studies actually are in support of this notion.
For instance (Adrian 1944) showed that alpha band activity in posterior regions
increases when attention was allocated from the visual to the auditory modality
(Fig. 15). An EEG study by Ray and Cole (1985) showed a relative increase in alpha
band power when attention was allocated to an internal task compared to the
environment (Ray and Cole 1985). These types of observations were not consistent
with the resting or idling notion of the alpha band activity. As a result of studies
manipulating attention between the auditory and visual modality, it has been pro-
posed that the alpha band activity reflected active inhibition of the visual system
(Foxe et al. 1998). There are now numerous papers supporting the alpha inhibition
hypothesis and we will here mention a few of those (for reviews see Foxe and Snyder
(2011); Klimesch (2012); Jensen and Mazaheri (2010)).

There are several lines of direct evidence showing that the alpha activity is
associated with a decrease in neuronal activity. When relating spiking neurons to the
field potential of ongoing oscillations in monkey recordings, a robust phasic mod-
ulation has been shown (Bollimunta et al. 2008; Haegens et al. 2011b; Buffalo et al.
2011; Saalmann et al. 2012). Further it was demonstrated in sensorimotor regions
that as firing rate decreases, alpha power increases (Haegens et al. 2011b). In
recordings from the monkey visual system, a negative correlation between alpha and
gamma power was demonstrated (Spaak et al. 2012a). Combined EEG and fMRI
recordings have consistently demonstrated a negative correlation between alpha
power and the BOLD signal (Laufs et al. 2003; Goldman et al. 2002). The perception
of phosphenes induced by transcranial magnetic stimulation (TMS) has been related
to the ongoing EEG signal. It was found that phosphene perception decreases as
alpha power increases (Romei et al. 2008). These studies provide direct physio-
logical support for a region specific inhibitory role of the alpha band activity.

Fig. 15 An example of an EEG study in which subjects were asked to shift attention between
vision and hearing. The alpha power increased with an increase in attention towards hearing.
(Reproduced from Adrian (1944))
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Considerable effort has also been put into investigating the functional role of
the alpha band activity using EEG and MEG. In particular, MEG has allowed
studying the region-specific properties of the alpha band activity. One of the
challenges to the idling hypothesis stems from working memory paradigms,
applying a variation of the Sternberg task. In these studies it has been demon-
strated that the alpha activity systematically increases with memory demands
(Jensen et al. 1999; Klimesch et al. 1999) (Fig. 16a). This is a highly robust finding
that has been shown with EEG, MEG and even concurrent EEG and fMRI
recordings using various kinds of stimuli (Tuladhar et al. 2007b; Scheeringa et al.
2009; Park et al. 2011). The increase in the alpha power with working memory
demands is in stark contradiction to the resting or idling notion of the alpha
activity. It has been proposed that the alpha power increase reflects either the
active maintenance of the working memory representations (Palva and Palva 2007)
or active inhibition of posterior regions (Klimesch et al. 2007; Foxe and Snyder
2011). This inhibition would serve to decrease the processing of potentially
interfering information and thus allocate resources to working memory mainte-
nance. This hypothesis was recently tested in a working memory study in which
distracters were presented during the retention interval in a modified Sternberg
task (Bonnefond and Jensen 2012). The timing and type of the presented di-
stracters could be anticipated by the subjects. A clear increase in alpha activity was

Fig. 16 a It has been consistently demonstrated that the posterior alpha activity increase
systematically with working memory load. This finding is in contradiction to the resting or idling
notion of the alpha activity (reproduced from Tuladhar et al. (2007a)). b Distracters were
presented in the retention interval of the Sternberg task. The alpha activity increased just prior to
the anticipated distracter. This increase was predictive of performance (reproduced from
Bonnefond and Jensen (2012))
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shown to occur just prior to the arrival of the distracter (Fig. 16b). Furthermore,
trials with longer response times to the memory probe were associated with a
weaker pre-distracter alpha increase. These findings demonstrate that the posterior
alpha activity serves an active role in filtering out distracting information. The
alpha activity has also been shown to be strongly modulated with regard to
attention allocated to the left or the right hemifield (Worden et al. 2000). When
attention is directed to the left hemifield the alpha power is decreased over the
right posterior hemisphere. Importantly, the alpha activity is relatively greater in
the left hemisphere (and vice versa). These findings suggest that the right hemi-
sphere is engaged while the left is inhibited. This hemispheric lateralization has
been shown to have behavioral consequences for visual detection (Thut et al. 2006;
Gould et al. 2011; Händel et al. 2010). Importantly, the alpha activity in the
hemisphere ipsilateral to the direction of attention predicted performance to a
greater extent than the alpha decrease contralateral to the direction of attention.

The functional role of alpha activity generalizes beyond the visual system. The
primary sensorimotor system is known to strongly modulate alpha band activity
(Pfurtscheller and Neuper 1994; Hari and Salmelin 1997). The somatosensory
alpha band rhythm is also referred to as the mu rhythm. Sensorimotor alpha
activity is also lateralized hemispherically with respect to attention to left and right
hands. This has for instance been observed in a somatosensory working memory
task in which subjects had to attend to electrical stimuli presented to one hand. The
alpha activity which localized to the primary sensorimotor cortex decreased
contralaterally to the stimulated hands, whereas it increased ipsilaterally. Impor-
tantly the ipsilateral alpha increase was the best predictor of performance (Hae-
gens et al. 2010). These findings suggest that the active inhibition of task-
irrelevant, but potentially interfering, regions is the best predictor of optimal
performance. The notion that alpha activity reflects the inhibition of distracting
information in the somatasensory system was directly tested in a study where
target stimuli were presented to one hand and distracters were presented to the
other (Haegens et al. 2012). The alpha activity in the somatosensory cortex con-
tralateral to the hand with the distracters was the best predictor of target detection.
Interestingly alpha band activity associated with the inhibition of motor responses
has also been identified in the motor system (Sauseng et al. 2009). Alpha activity
has also been identified in the auditory cortex using intracranial recordings in
humans and MEG (Gomez-Ramirez et al. 2011). In older MEG studies this activity
was called the tau rhythm (Lehtela et al. 1997). In more recent studies the func-
tional role of the auditory alpha activity has been investigated (Weisz et al. 2011;
Muller and Weisz 2012). These studies suggest that the alpha activity also plays an
inhibitory role in the auditory system.

In sum, these studies strongly point to an inhibitory role of the alpha activity.
This alpha activity serves to suppress the processing in regions not required for a
given task. Importantly, if the suppression is insufficient, performance is subopti-
mal. While this functional role seems to apply to the visual, somatosensory and
auditory sensory systems, it might generalize to other regions. MEG may be par-
ticularly sensitive to activity produced in sensory regions. Intracranial recordings
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would help to elucidate the generality of the function of alpha oscillations. A recent
study reported alpha activity in the prefrontal cortex of monkeys performing a rule-
based stimulus-response mapping task (Buschman et al. 2012). Importantly, the
alpha band synchronization in prefrontal cortex was associated with the suppression
of the rules not to be applied.

The studies mentioned so far have only addressed the functional role of the
amplitude or power of the alpha activity. This functional description is incomplete
since the phase of the alpha oscillations strongly modulates neuronal firing as well
(Bollimunta et al. 2008; Haegens et al. 2011b; Saalmann et al. 2012). Consistently,
the BOLD signal evoked by visual stimuli has been shown to depend on the phase
of ongoing alpha oscillations (Scheeringa et al. 2011). Several recent studies have
investigated how the phase of the alpha oscillations modulates perception. It has
been demonstrated that alpha phase in relation to stimulus presentation is pre-
dictive of hard-to-detect stimuli (Busch et al. 2009; Mathewson et al. 2009). Also,
the detection of phosphenes evoked by TMS is dependent on the phase of ongoing
alpha oscillations (Dugue et al. 2011). A recent working memory study demon-
strated that alpha phase could be adjusted in anticipation of an incoming stimulus
(Bonnefond and Jensen 2012). These studies can all be interpreted as the alpha
activity allowing for windows of processing. This notion can be reconciled with
the alpha inhibition hypothesis: the stronger the alpha, the shorter the time-window
(‘‘duty cycle’’) of processing. A recent theory has developed these ideas in the
context of attention of visual processing (Jensen et al. 2012b). The phasic mod-
ulation of processing is also likely to have consequences for communication
between brain regions (Palva and Palva 2011). If the information processing is
constrained to certain alpha phases in sending regions, a receiving region could
benefit in terms of adjusting its phase accordingly. In support of this notion, a
recent intracranial monkey study demonstrated phase-synchronization between
several visual regions organized by the pulvinar (Saalmann et al. 2012).

4.3 Delta Oscillations

There are several EEG and MEG studies reporting on the modulation of delta
oscillations in various tasks (Basar et al. 2001; Handel et al. 2007; Handel and
Haarmeier 2009; Knyazev et al. 2009; Knyazev 2012); however, there are only a
few explicit ideas on the mechanistic role of the delta oscillations (Lakatos et al.
2005, 2008). One dominating idea is that the phase of the delta oscillations
determines the excitability of the network. In tasks where incoming input can be
anticipated, the phase of the delta oscillations can change. This provides a gating
mechanism allowing for either blocking or facilitating a given anticipated input.
This mechanism has been demonstrated in monkey recordings to operate in cross-
modal integration paradigms (Lakatos et al. 2008). A monkey received a stream of
alternating visual and auditory input spaced at 300 ms. The monkey had to attend
to either the visual or the auditory input. As the monkey attended to the visual
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input, the delta activity measured in visual cortex adapted in phase to the timing of
the visual stream. When attention was allocated to the auditory stream, the delta
phase adjusted such that the excitability in visual cortex was no longer high when
the input arrived. Further, induced gamma activity reflecting the processing of the
input was found to be phase-locked to the delta phase. The demonstration that the
phase of the slower delta oscillations control the gamma activity has also been
reported in MEG studies (Handel and Haarmeier 2009). In future work it would be
interesting to further uncover the mechanistic role of delta oscillations, particularly
in tasks where the timing of input can be anticipated.

4.4 Theta Oscillations

Substantial insight on the mechanistic role of theta oscillations has been gained
from multi-electrode recordings in behaving rat. It is now possible to record single
unit activity from about 100 cells while simultaneously acquiring local field
potentials (Wilson and McNaughton 1993). This allows for relating spiking
activity of a population of cells to local field oscillations. One of the most
important insights from this work is the discovery of phase coding of hippocampal
place cells. Place cells code for specific regions in an environment as the rat is
exploring. The area in the environment in which a given place cell fires is termed
the place field (O’Keefe and Dostrovsky 1971). As the rat enters a place field, the
respective place cell will first fire at late phases of the theta cycle. As the rat
advances, the firing will occur at earlier and earlier phases. This phenomenon is
termed theta phase precession (O’Keefe and Recce 1993). From an ensemble of
place cells it is possible to reconstruct the position of the rat; however, when taking
the theta phase of firing into account, the reconstruction error is further reduced
(Jensen and Lisman 2000; Harris et al. 2003). The evidence for phase coding in the
rat hippocampus has promoted the development of biophysical models accounting
for the phenomena (Burgess and O’Keefe 2011; Lisman and Redish 2009; Mehta
et al. 2002). Several of these models are based on time-compressed representations
being activated sequentially within a theta cycle. The principle of phase coding has
consequences for communication between regions. A region receiving phase
coded information must also receive information about the phase of the theta
oscillations in order to make use of the code (Jensen 2001). This can be achieved
through theta phase synchronization between regions exchanging a phase code. In
support of this notion, phase synchronization between the hippocampus and other
regions has been reported in numerous studies. For instance, the hippocampal theta
oscillations have been found to be phase-locked to theta activity in prefrontal
cortex (Siapas et al. 2005). This phase synchronization is modulated by the
memory component in a navigation task (Jones and Wilson 2005; Colgin 2011).
Further, the hippocampus has been found to be synchronized to the striatum and
the amygdala (Tort et al. 2008; Battaglia et al. 2011; Seidenbecher et al. 2003).
Theta oscillations related to information exchange between regions have also been
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observed in other animals. For instance, theta phase-synchronization between V4
and prefrontal cortex was reported in a monkey study on working memory
maintenance (Liebe et al. 2012). This synchronization was observed both in the
local field potentials as well as in the spike trains.

Theta oscillations do not only modulate neuronal spiking, but also oscillations
in higher frequency bands. In the rat hippocampus, gamma power in different
frequency ranges is modulated by the phase of the theta oscillations (Bragin et al.
1995; Belluscio et al. 2012). Importantly theta modulated gamma band synchro-
nization in different frequency ranges has been shown to route information from
either the entorhinal cortex or the CA3 to the CA1 region (Colgin et al. 2009).

Intracranial recordings in humans have also reported theta band activity from
both neocortical and hippocampal regions. These recordings are performed using
either electrocorticographic or depth electrodes (Kahana et al. 2001; Sederberg
et al. 2003; Lega et al. 2012; Burke et al. 2013; Watrous et al. 2013). The intra-
cranial theta band activity has mainly been related to working and long-term
memory processing. Interestingly, the intracranial theta activity is also phase-
locked to gamma power exactly as seen in the rat (Canolty et al. 2006; Canolty and
Knight 2010).

In human extracranial EEG and MEG recordings, the theta band activity is
observed most strongly over the frontal midline (Mitchell et al. 2008). In partic-
ular, frontal midline theta activity has been reported to increase with memory load
in both the N-back and the Sternberg tasks (Scheeringa et al. 2009; Gevins and
Smith 2000; Jensen and Tesche 2002).

Frontal midline theta activity has also been associated with error-processing.
Several studies using go/no-goparadigms have reported an increase in frontal
midline theta after a wrong motor response has been elicited. It remains unclear
how the frontal midline theta relates to the error-related negativity, but there might
be a tight relation (Luu et al. 2004; Mazaheri et al. 2009; van de Vijver et al.
2011). In general, the frontal midline theta is thought to reflect executive processes
related to updating after a perceptual error (Cohen and van Gaal 2013).

It remains unknown to what extent the frontal midline theta activity, associated
with working memory maintenance and error processing, relates to the theta
activity reported in rats. Nevertheless, both the frontal midline and the hippo-
campal theta activity are thought to be associated with the temporal coordination
of neuronal processing.

4.5 Beta Oscillations

Beta oscillations are strongly associated with the motor system (Baker 2007). They
have been recorded both in animals and in humans. Typically beta oscillations
decrease in power in anticipation of sensori-motor processing (van Ede et al.
2011). Thus one might think that beta oscillations are associated with suppression.
Nevertheless, beta oscillations have also been associated with the exchange of
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information between motor cortex and the muscle (Kilner et al. 2000; van Elswijk
et al. 2010). During isometric muscle contraction, strong coherence is observed in
the beta band between the EMG and the motor cortical EEG or MEG signal (Baker
2007). The motor cortical beta oscillations are not only synchronous with muscle
activity but also with basal ganglia areas and the subthalamic nucleus (Hirschmann
et al. 2011; Litvak et al. 2011; Jenkinson and Brown 2011). Thus, while it is clear
that cortical beta oscillations play an important role for coordinating the timing of
spiking between neocortex and motor units, the precise functional role remains
elusive. A recent paper proposed that the beta oscillations are involved in setting
the status quo, i.e. maintaining the state of an extended network (Engel and Fries
2010). This idea is consistent with the observation that restating state networks
observed with MEG often are reflected by functional connectivity in the beta band
(Hipp et al. 2012; Brookes et al. 2011a).

Higher level cognitive studies in both humans and monkeys point to a role for
beta oscillations in decision making. During critical decision periods and updating,
beta increases have been observed in prefrontal regions in both monkey and human
recordings (Haegens et al. 2011a; Spitzer et al. 2010). Along those lines, the motor
cortical beta activity has been proposed to be involved in the accumulation of
evidence when perceptual decisions, and motor responses on those decisions, have
to be made (Donner et al. 2009). The findings on decision making and beta
oscillations give a strong processing connotation to the beta band activity which
somehow is in contrast to observed functions of the motor cortical beta activity.
Future work is required to determine if activity in the beta band is associated with
only one function, or whether beta oscillations in different regions are associated
with different functions.

5 Future Perspectives and Conclusions

Hopefully it is clear from this chapter that oscillatory brain activity is observed in a
wide range of species. Further, the brain oscillations seem to play an important
role in coordinating neuronal processing. This coordination is achieved by a phasic
modulation of neuronal firing. The degree of phasic modulation is determined by
the magnitude of the oscillations. Further, from human studies, various kinds of
cognitive tasks result in reliable modulation of oscillatory activity in different
frequency bands. These observations make integration possible in which neuronal
firing is related to behavior by considering temporal coordination organized by
brain oscillations.

Future work is required to further uncover the functional role of brain oscil-
lations. New technologies and the integration of techniques will facilitate these
efforts. For instance, the application of optogenetics will allow for driving oscil-
latory activity in order to study their causal role (Tiesinga and Sejnowski 2009).
Likewise, entrainment can be applied in humans using TMS and transcranial
alternating current stimulation (tACS) in association with cognitive paradigms
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(Thut et al. 2012). While oscillatory activity is particularly strong in sensory
regions, it remains unclear which brain regions are involved in controlling the
oscillations. While the fronto-striatal network is likely to play a strong role in the
top-down control, the mechanisms by which this control is exercised is unclear.
Several approaches can be applied to identify the frontal control network. For
instance, EEG combined with fMRI can be applied to identify prefrontal and deep
brain regions associated with the modulation of posterior regions. Recording MEG
and the structural MRI in the same subjects makes it possible to associate oscil-
latory modulations with anatomy. Finally, pharmacological manipulations hold a
strong promise for isolating the physiological mechanisms associated with top-
down control of oscillatory activity. In particular, manipulating the cholinergic and
dopaminergic system is of importance (Bauer et al. 2012; Noudoost and Moore
2011). In short, substantial insight has been gained on understanding the functional
role of oscillatory brain activity; however, many questions remain open. Integra-
tion of evidence where human data are interpreted in the light of animal recordings
and the combination of techniques hold a strong promise for making further
advances.
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Studying Dynamic Neural Interactions
with MEG

Jan-Mathijs Schoffelen and Joachim Gross

Abstract Interactions between functionally specialized brain regions are crucial
for normal brain function. Magnetoencephalography (MEG) is suited to capture
these interactions because it provides whole head measurements of brain activity
with temporal resolution in the millisecond range. Many different measures of
connectivity exist and in order to take the connectivity analysis results at face
value one should be aware of the strengths and weaknesses of these measures.
Next to this, an important challenge in MEG connectivity analysis lies in the fact
that more than one sensor picks up the activity of any underlying source. This field
spread severely limits the utility of connectivity measures computed directly
between sensor recordings. As a consequence, neuronal interactions should be
ideally studied on the level of the reconstructed sources. MEG is well suited for
this purpose, since its signal properties and high spatial sampling allows for rel-
atively accurate unmixing of the sensor recordings. This chapter provides some
necessary background on connectivity analysis in general, and proceeds by
describing the challenges that are associated with the analysis of MEG-based
connectivity at the sensor level. Source level approaches are described and some
recent advances with respect to MEG-based connectivity during the resting state
and graph theoretic approaches are described.
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1 Introduction

Magnetoencephalography (MEG) as a technique is ideally suited to study activity
of the human brain on the time scale of cognitive and behaviorial processes. It
provides measurement of brain activity by covering the whole head with a high
number of sensors, and is increasingly used to study networks of interacting brain
regions. The purpose of this chapter is to provide some background on connec-
tivity analysis with MEG and to highlight some recent methodological develop-
ments, which enable researchers to study the interaction between brain regions
based on these non-invasively obtained electrophysiological measures of neuronal
activity.

The structure of this chapter is as follows: first we review some of the measures
that are commonly used to analyze connectivity. Then we will discuss the prob-
lems related to electromagnetic field spread in the context of connectivity analysis
at the MEG sensor level. Next we will describe approaches that analyze connec-
tivity in source space. Following this, we will discuss the emerging fields of
studying connectivity in the brain at rest with MEG and graph theoretic analysis of
MEG-based connectivity metrics.

2 Measures of Connectivity

When faced with the possibility to analyse connectivity in MEG, the researcher
can employ a vast number of different measures and analysis approaches to
quantify this. Each of the different measures of connectivity has its merits and
disadvantages with respect to what can be interpreted from those measures, and the
ease with which they can be computed. This section provides an overview of the
measures most commonly used, without having the intention to be comprehensive.
The different metrics that are mentioned are shown in Table 1.

2.1 Connectivity Measures can be Grouped Along Different
Dimensions

It may be useful to group the different connectivity measures along several dif-
ferent dimensions. One key distinction which is often made is that of functional
versus effective connectivity (Friston 1994). Measures of functional connectivity
(undirected interaction measures) quantify statistical dependencies between neu-
ronal signals, without explicitly addressing directed interactions. On the other
hand, measures of effective connectivity (or directed interaction measures)
quantify the directed influence of one neuronal system over another. This dis-
tinction has its implications for the interpretation of the analysis results. Per
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definition, undirected interaction measures do not allow for an interpretation of
causality.

Another important distinction is that between time and frequency domain
measures of connectivity. This directly refers to the underlying physiological
mechanisms by means of which neuronal interactions are thought to occur. One
view, which has gained a lot of interest in the past few decades, is that neural
interactions are reflected in changes in the synchronization of rhythmic activity
between brain regions (Fries 2005). In light of this proposed mechanism of
interaction, it makes sense to use connectivity measures that are defined in the
frequency domain, and where an estimate of the phase difference is used to
compute the connectivity.

Yet another distinction pertains to whether the connectivity measure is a
bivariate or a multivariate one. Although typically connectivity measures are
estimated between pairs of signals, some measures account for the influence of
‘third party signals’ on the connection under consideration, yielding a potentially
clearer interpretation of the interaction being direct or indirect (e.g. due to com-
mon input from a third source of activity).

Some connectivity measures assume the interaction between signals to be linear
and/or use linear estimation techniques. Other measures don’t rely on these

Table 1 Overview of different connectivity measures and their main characteristics

Directed
interactions

Freq/time
domain

Multi/
bivariate

Linear Sensitive to field
spread

Amplitude envelope
correlation

– f b + +

Coherence – f b + +
Cross-correlation

function
+ t b + +

Cross-frequency
interactions

– f b – +

Directed transfer
function

+ t m + +

Dynamic causal
modelling

+ t/f m – +

Granger causality + t/f b + +
Imaginary part of

coherency
+ f m – –

Mutual information – t/f b – +
Partial directed

coherence
+ f m + +

Phase lag index + f b – –
Phase locking value – f b – +
Phase slope index + f b – –
Synchronization

likelihood
+ t b – –

Transfer entropy + t/f b – –
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assumptions. This constrains the interpretation of the estimated connectivity
results. Also, in general non-linear measures are often based on estimates of
probability distributions and require more computing time, and also more data to
be computed reliably.

Finally, in the context of MEG, it is crucial to consider whether the connectivity
measure is sensitive to the effects of electromagnetic field spread. This will be
outlined and discussed in more detail in Sect. 3.

2.2 Frequency Domain Measures of Undirected Interactions

Amplitude envelope correlation refers to the correlation coefficient between
amplitude envelope time courses, which are typically computed on bandpass-
filtered data, and as such this measure classifies as a frequency domain connec-
tivity measure.

Coherence (Gross et al. 2001) is the frequency domain analogue of the cross-
correlation coefficient, and is usually computed using non-parametric spectral
estimation techniques, such as the Fourier transform, or a wavelet transform. As
such coherence confounds the estimated consistency of a fixed phase difference
with the correlation of the signals’ amplitudes. It’s a very popular measure,
because it’s easy to compute and it has a straightforward interpretation in terms of
frequency-resolved linear predictions.

Amplitude effects can be disentangled from the consistency of the phase dif-
ference by means of the phase locking value (PLV). This measure can be obtained
by normalising the complex-valued frequency domain single trial values with
respect to their amplitudes, prior to estimating the interaction between the signals
(Lachaux et al. 1999). This phase synchronisation analysis has been used in source
connectivity analysis to complement traditional coherence analysis (Jerbi et al.
2007). Both coherence and PLV are symmetric measures and do not allow direct
inference about directionality of information flow between areas. However, time
delays can be estimated from the slope of the cross-spectral densities between time
series under favourable conditions (Nolte et al. 2008).

Recent years have seen an increased interest in cross-frequency interactions,
inspired by the notion that neuronal signals typically show rhythmic activity in
several distinct frequency bands, and that neuronal interactions thus may also be
reflected in statistical dependencies between these frequency bands (Jensen and
Colgin 2007). Several types of interactions can be considered here, e.g. amplitude-
amplitude coupling (where there is a correlation across observations of the
amplitude envelopes of different frequency bands) or phase-amplitude coupling
(where the phase of a slow oscillation systematically modulates the amplitude of a
fast oscillation).
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2.3 Measures of Directed Interactions

Directed interactions can be inferred in one of the following conceptually different
ways. The simplest concept is based on estimating the time lag between events
occurring in a pair of signals (Nolte et al. 2008; Gross et al. 2000). This is linked to
the principle that a cause must precede its effect, but it should be noted that
temporal precedence does not provide direct evidence for causal interactions
(Atukeren 2008). In the time domain, the cross correlation function can be used to
estimate time lags between signals. However, this technique is hardly used in
MEG-research. It is more common to explore the time lag in the frequency
domain, where one can exploit the principle that a fixed time delay translates into
linearly increasing phase differences with increasing frequency. Hence, the slope
of the phase difference spectrum is a direct estimate of this time-delay. The phase
slope index (Nolte et al. 2008; Haufe et al. 2013) is a measure that is based on this
principle. The phase lag index (PLI) (Stam et al. 2007) quantifies the deviation of
the phase difference distribution from 0, thus allowing for the inference of one
signal leading (or lagging) the other.

Related to the concept of temporal precedence is the concept of Wiener-
Granger causality (Bressler and Seth 2011), which is based on the prediction of a
signal (let’s call this signal A for the time being) based on the past values of itself,
and based on the past values of another signal (signal B). If the quality of the
prediction of signal A is substantially improved when past values of B are taken
into account, signal B is said to cause signal A. This principle has been originally
formulated by Wiener (1956), and is operationalized in the measure of Granger
causality (Granger 1969). Granger causality in its original formulation is defined in
the time domain. It is usually implemented by means of fitting a series of multi-
variate autoregressive models (MVAR-models) (Schloegl et al. 2006) and by
exploring the residuals of the model fit. Based on work by Geweke, frequency-
resolved Granger causality can also be computed, and from the Fourier transform
of the autoregressive model coefficients a series of related measures can be derived
such as the directed transfer function (DTF) (Kaminski and Liang 2005) and
partial directed coherence (PDC) (Baccala and Sameshima 2001). Common to
these measures is that they assume that the interaction is linear. Transfer entropy
(TE Schreiber (2000)) is an implementation of Wiener’s principle of causality that
is free of an explicit model of the signals and their interaction. A non-linear
formulation of Granger causality also exists (Marinazzo et al. 2011).

Finally, rather than using a data-driven approach, one can try and create gen-
erative model of the measured data, where the model entails not only the activation
patterns of the underlying neural sources, but also their interactions. This approach
is implemented in Dynamic Causal Modelling (DCM) (Moran et al. 2007; Kiebel
et al. 2008; David and Friston 2003). The generative model specifies how input
activates a system of pre-specified interconnected neuronal populations, leading to
the measured signal. As such DCM provides an estimate of coupling parameters
and source parameters in a single step (Kiebel et al. 2008). DCM had originally
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been devised for the analysis of evoked responses (Garrido et al. 2007). Recent
developments have extended the functionality of this promising technique to
induced responses (Chen et al. 2008), steady state responses (Moran et al. 2007)
and phase-coupling (Penny et al. 2009).

3 MEG Sensor Level Connectivity Analysis

A central issue in the interpretation of MEG data is the problem of electromagnetic
field spread. Although it is a well-known problem and described elsewhere (Winter
et al. 2007), it merits discussion in the context of connectivity analysis because it
severely confounds many connectivity measures and therefore complicates the
correct interpretation of the results. In the following sections we will outline this
problem in the context of connectivity analysis, and describe two strategies, which
attempt to diminish this problem: the analysis of experimental contrasts, and the
use of connectivity measures that are less sensitive to electromagnetic field spread.

3.1 Electromagnetic Field Spread

Field spread refers to the phenomenon that the magnetic fields that are associated
with electrical currents (of neural and non-neural origin) are not confined to the
vicinity of the current generators, but are measurable far away from their source.
For any neuronal source this leads to a widespread representation at the level of the
sensor array. As a matter of fact, thanks to this feature, it is possible in the first place
to measure MEG extracranially and to build models of the underlying neural
sources. Yet, electromagnetic field spread also has important consequences for the
interpretability of connectivity measures estimated between pairs or sensors. The
reason for this is that any single source of neural (or non-neural) electric activity is
visible to many sensors at once. This is illustrated by Fig. 1a. The spatial topog-
raphy shows the correlation between one channel and the rest, from simulated data
containing one single dipole plus uncorrelated sensor noise. Obviously, MEG
sensor recordings represent the superposition of the activity of multiple sources,
which are either or not functionally connected. Also with multiple sources present,
even if the underlying sources are ‘unconnected’, many connectivity measures
estimated between pairs of sensors will yield spurious estimates due to the
instantaneous mixing process. To illustrate this we simulated the activity of 821
temporally uncorrelated dipoles, with an orientation parallel to the axis between the
nasion and the midpoint of the interauricular line, and that were randomly dis-
tributed on the cortical sheet. Clearly, the orientations chosen are physiologically
not meaningful, but are appropriate to demonstrate the effect of field spread on
connectivity analysis. Using FieldTrip (Oostenveld et al. 2011), we simulated 50 s
of data for a 275-channel CTF axial gradiometer system, by using a single shell
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volume conductor model (Nolte 2003) and uncorrelated sensor noise. Figure 1b
shows the absolute value of the correlation coefficient between all MEG sensor
pairs as a function of their distance. Even though the underlying source activities
are temporally uncorrelated, many sensor pairs show high values of correlation.

3.2 Addressing Electromagnetic Field Spread with Statistics

In order to reduce the interpretational difficulties caused by field spread, one
potential strategy could be to analyze changes in connectivity caused by an
experimental manipulation, rather than the strength of the connectivity as such.
The rationale for using experimental contrasts in this context is based on the
assumption that the effects of electromagnetic field spread are identical across the
experimental conditions and therefore subtract out. Unfortunately, the spatial
structure of field spread is highly dependent on changes in the signals, and on
changes in the noise. As a consequence, estimated modulations in connectivity do
not necessarily always reflect modulations in actual connectivity between relevant
neuronal sources. Experimental manipulations will most likely always lead to
changes in activity of the underlying sources, or in the activation of different
sources. Also, in studies that involve the comparison between different groups of
subjects (e.g. patients versus controls), it is not unlikely that difference in the
distribution and activity of the underlying sources exist. These potential confounds
in the interpretation of estimated differences in connectivity should therefore
always be taken into account. This is illustrated in Fig. 2. Here, we simulated two
dipoles oscillating at 20 Hz in left and right ‘motor cortex’, at a phase difference of
90�, against a background of 821 uncorrelated dipoles evenly distributed across the
cortical sheet. We generated 2 conditions of data where the amplitude of the motor

Fig. 1 The effects of field spread confound sensor level estimates of connectivity measures.
a Sensor-level connectivity between a seed sensor and the rest of the sensor array in the presence
of a single underlying source. b The absolute value of the correlation coefficient between all pairs
of measured signals as a function of sensor distance, where the underlying 821 sources were
uncorrelated
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cortex dipoles was twice as large in condition 1 compared to condition 2 (Fig. 2a).
We computed coherence and the imaginary part of coherency (see Sect. 3.3)
across all channel pairs and display the sensor pairs in which the difference in
connectivity across the conditions exceeded a certain threshold. Clearly there is
interesting spatial structure in the differential coherence and imaginary coherency
maps, that cannot be accounted for by a change in actual connectivity (which as a
matter of fact in both conditions was simulated to be equal to 1).

For the reasons outlined above, field spread is problematic in the interpretation of
sensor-level connectivity estimates, and an important motivation to perform the
connectivity analysis at the source level. Also, contrasting connectivity between two
experimental conditions in sensor space will likely reduce (but not abolish) negative
effects offield spread (Schoffelen and Gross 2009). In addition to this, there are other
important motivations to perform the analysis on the source level. First of all, there
is a more direct indication of the anatomical location of the interacting brain regions.
Secondly, source level analysis facilitates subsequent group analysis because the
data can be averaged in a meaningful standardized space.

(a)

(b)

Fig. 2 Changes in source strength yield widespread changes in sensor-level connectivity.
a spatial topography of simulated activity with 821 randomly distributed, uncorrelated dipoles,
and 2 strong, highly correlated dipoles in approximately left and right motor regions. The
amplitude of the ‘motor’ sources is two times higher in the left panel than in the right panel.
b Thresholded differential connectivity patterns (high amplitude condition minus low amplitude
condition), where each line represents a sensor pair where the differential connectivity exceeded a
threshold of 0.2. Two different connectivity metrices were used: coherence (left panel) and the
imaginary part of coherency (right panel)
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3.3 Addressing Electromagnetic Field Spread with Clever
Measures of Connectivity

Another strategy to address interpretation problems associated with electromag-
netic field spread is to use connectivity measures that are insensitive to this effect.
In general, this type of measure can be divided into two categories. The first
category consists of measures that are derived from conventional linear measures.
The imaginary part of coherency (Nolte et al. 2004) is a well-known example of
this type of measure. Another example is amplitude-envelope correlation with the
zero time-lag correlation removed (Hipp et al. 2012) (see Sect. 5). The other
category consists of measures that are derived from the non-linear dynamics
framework. This type of measure includes the phase lag index (Stam et al. 2007)
synchronization likelihood (Stam and Van Dijk 2002) and transfer entropy
(Vicente et al. 2011).

Measures that are insensitive to field spread usually exploit the fact that field
spread caused by point sources has an instantaneous effect on the sensors. In other
words, field spread causes cross-correlation effects between sensors at a time lag of
0 ms, or equivalently at a phase difference of 0 or 180�. Explicitly removing the
zero ms time lag contribution to the estimate of connectivity reduces the risk of
falsely interpreting the estimate as true interaction. In the case of the imaginary
part of coherency the removal of the 0� phase difference contribution is achieved
by projection of the vector representation of the complex-valued coherency onto
the imaginary axis.

An important caveat needs to be raised here, which is related to the fact that
spurious connectivity is addressed only when contributing sources can be modeled
as single point sources (equivalent current dipoles). This is illustrated in Fig. 3
where we present results of an analysis of the weighted phase lag index (WPLI) at
10 Hz (Vinck et al. 2011). For each channel, we computed the average WPLI
between that channel and the rest of the channels and represented this in a spatial
topography (panel A). Red here means that the underlying channels on average
have a positive phase difference with the other channels, blue means that the
underlying channels on average have a negative phase difference with the other
channels. Thus the picture suggests a fronto-occipital gradient of time-lagged
neural oscillations at 10 Hz, where the frontal channels ‘lead’ the occipital
channels. However, the data that was used to generate this topography was con-
structed by back-projecting two independent components that were estimated from
a few minutes of resting state MEG data. The time course of these components and
their corresponding spatial topographies are shown in panel B. Clearly, these two
components mainly represent cardiac activity. The slight time lag between the
individual components in combination with the different topographies leads to a
non-trivial mixing with significant interaction at non-zero time lag.

For the reasons outlined above it is increasingly acknowledged that the func-
tional interactions should be studied at the level of the neuronal sources.
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4 MEG Source Level Connectivity Analysis

In this section we will provide an overview of the main methods that have been
suggested for MEG source connectivity analysis. Most methods essentially adopt a
two-step procedure. Firstly, an estimate of the activity of the neuronal sources is
obtained by applying an inverse method (for a review, see Baillet et al. (2001)).
Secondly, an analysis of connectivity is performed, in which researchers usually
restrict themselves to a set of pre-specified seed regions-of-interest (ROIs).
A notable exception to this two-step approach is Dynamic Causal Modelling,
which will be described below. It is beyond the scope of this chapter to present in a
comprehensive discussion the advantages and disadvantages of all connectivity
measures and inverse methods; thus we will focus on some applications of con-
nectivity measures in source space.

Typically, MEG source connectivity analysis is performed on the basis of a few
selected regions of interest (ROIs). Connectivity measures are computed between
all combinations of ROIs or ROIs are used as seeds to compute connectivity
between activity at the seed location and all other voxels. Several strategies for the
selection of ROIs exist:

A priori selection. A priori knowledge from previous functional imaging studies
can be used to select ROIs (Astolfi et al. 2005). These areas can be identified in the
individual anatomical MRI or coordinates in Talairach-MNI space can be trans-
formed into individual coordinates. A related approach has been proposed by
Haerle et al. (2004). Minimum norm source estimates were computed for 350

(a)

(b)

Fig. 3 Sources that cannot be described as a single equivalent dipole yield non-zero phase-
lagged connectivity estimates. a Spatial topography displaying for each sensor the average of the
weighted-phase lag index between that sensor, and the rest of the sensor-array, yielding a distinct
pattern of ‘information flow’ from frontal to posterior sensors. b Fragment of the time courses and
spatial topographies of the independent components underlying the data that was used to generate
the topography in panel (a)
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voxels to study steady-state auditory responses. Subsequently, coherence was
computed between all pairs of voxels.

Cortico-peripheral coherence. In this approach an external signal serves as a
reference signal. This can be a kinematic or electromyographic recording or even a
continuous stimulus signal (such as speech). Coherence is computed between the
reference signal and brain activity reconstructed at a discretized grid. This method
allows the identification of brain areas where the activity is modulated by rhythmic
processes in the peripheral signal. This strategy has been used successfully for
oscillatory components in movements as recorded with electromyography and
movement tracking devices (Gross et al. 2001, 2002; Schoffelen et al. 2008), and
for localizing activity in auditory cortex using the speech signal as reference signal
(Peelle et al. 2012). The local maxima in the cortical coherence map can be used as
seed voxels for the analysis of cerebro-cerebral connectivity.

Power maps. Possibly the most widely used strategy is a selection of ROIs
based on maps of neural activation or the statistical contrast in activation between
experimental conditions. This approach has been successfully applied in a number
of studies (David et al. 2002, 2003; Jerbi et al. 2007; Hipp et al. 2011).

Connectivity-based methods. Recently, several studies have performed the
computation of connectivity between all pairs of voxels. Palva et al. (2010)
computed phase locking on MEG minimum norm estimates to identify networks in
a working memory task (see also Sect. 6). Hipp et al. (2011) developed a
6-dimensional cluster method to identify coherent networks from beamformer-
localised EEG data. Kujala and co-workers suggested a technique that identifies
highly connected areas by computing the connection density throughout the brain
(Kujala et al. 2007). These ‘hubs’ can then be used as ROIs for a more detailed
analysis of connectivity.

Source level connectivity analysis has become a powerful tool to identify
networks of interacting brain regions and to study task-related changes in these
networks. Several consistent findings seem to emerge from these studies. Network
interactions seem to be highly specific regarding the frequency band and have
modulatory effects on behavioural performance. Phase synchronization in the beta
frequency band engaging a fronto-parietal network has been related to successful
target detection (Gross et al. 2004). Interestingly, this study also demonstrated that
desynchronisation in the network after target detection is important to facilitate
detection of a subsequent target. Another study showed beta synchronization in a
similar fronto-parietal network related to the perception of ambiguous audiovisual
stimuli (Hipp et al. 2011). Again, beta synchronization distinguished between
different percepts of the same stimuli. These results are consistent with the
involvement of beta band synchronisation in top-down processes.

Another study nicely demonstrates that connectivity between brain areas is task-
dependent. Siegel and colleagues studied connectivity between visual, parietal and
frontal brain areas in both hemispheres during a visuospatial attention task (Siegel
et al. 2008). Interestingly, shifting visuospatial attention to one hemifield (while
maintaining central fixation) leads to increased gamma synchronisation between
visual, parietal and frontal areas specifically in the contralateral hemisphere. These
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findings generalise beyond cognitive processes related to attention and perception.
Palva et al. (2010) have studied phase synchronisation in a working memory task.
They reported frequency-specific networks with low-frequency phase synchroni-
sation predicting task performance.

5 Resting-State Connectivity

Human electrophysiological brain activity during rest has been studied since 1929,
when Hans Berger performed the first human EEG recordings (Berger 1929). He
discovered prominent rhythmic fluctuations in the signal at a rate of about 10/s.
We now know that this so-called alpha oscillation dominates resting state activity,
is strongest over occipital brain areas, and it reflects excitability changes in the
generating neuronal populations (Niedermeyer and Silva 2004; Romei et al. 2008).

A vast number of MEG/EEG studies have been performed to study resting state
activity in healthy participants and patients. In recent years functional connectivity
has been studied in the resting state with MEG/EEG (Stam and van Straaten 2012;
Stam 2010). Here, we focus on research that studies resting-state connectivity in
source space. First, we present the commonly used methods to study resting-state
connectivity and then we proceed to a discussion of the main findings.

5.1 Methodological Overview

It seems surprising that specific methods have been developed to study resting-
state connectivity since the overall aim of this analysis is similar to the connec-
tivity analysis for other types of data—namely the identification of significant
functional interactions between the time series of different brain areas. However,
connectivity analysis in cognitive studies generally relies on the statistical com-
parison of two conditions, or an ‘active’ period of time and a baseline—a pro-
cedure that is known to reduce (but not abolish) the effect of field spread (see
Sect. 3.2). No such comparison is available for resting state data (although sur-
rogate data can be used (Ghuman et al. 2011)). Therefore, researchers have
focused on methods that are more robust against contamination by field spread—
mostly relying on amplitude correlations.

Most resting state connectivity methods rely on independent component anal-
ysis (ICA), albeit at different stages in the processing pipeline. One method has
been proposed by Brookes et al. (2011). Beamforming is used to compute time
series of activation for individual voxels from bandpass filtered resting-state data
(Fig. 4a). ICA is performed on the amplitude envelopes of the band-limited voxel
time series to identify independent temporal components with corresponding
spatial maps.
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In a recently proposed method (de Pasquale et al. 2010; Mantini et al. 2011)
ICA is used as a first step to decompose the signal into statistically independent
components that often correspond to different types of artefacts (e.g. eye blinks
and cardiac artefacts) and different activated brain areas (Makeig et al. 2002). In a
second step neural generators of non-artifactual components are localised using
standard source localisation techniques such as minimum norm or beamforming
methods (Fig. 4b). The time series at any voxel in the brain is then computed from
the summation of IC timecourses weighted by the amplitude of their source
reconstruction at that voxel. A bandpass filter is then applied and the amplitude
envelope is computed as the absolute value of the hilbert transform of the filtered
signal. Amplitude correlations are computed between a seed voxel and all other
voxels.

A promising extension of the seed-based approach has been presented by Hipp
et al. (2012). Similar to the approach by Brookes et al. bandpass-filtered data is
subjected to beamformer analysis to derive a time series for individual voxels.
However, each pair of time series (corresponding to seed voxel and target voxel)
was first orthogonalised to remove common components with zero delay—the
hallmark of components related to field spread (see Sect. 3).These resting-state
methods typically use amplitude correlations based on downsampled amplitude
envelopes. The optimal integration window seems to be in the order of 1–4 s
(Luckhoo et al. 2012).

Gomez-Herrero et al. combined ICA with multivariate autoregressive (MVAR)
models to study directionality in resting-state data (Gomez-Herrero et al. 2008),
see also (Haufe et al. 2010). The analysis pipeline (see also Sect. 4) consisted of
PCA for dimensionality reduction, followed by estimation of a MVAR model.
Residuals of the model were then subjected to ICA decomposition to estimate
cortical generators with a source reconstruction method. ICA components were
then combined with the coefficients of the MVAR model to compute measures of
directed interactions (in this case directed transfer function) in source space.

Alternative approaches have been introduced that do not rely on ICA. Hille-
brand et al. (2012) proposed to use beamforming to estimate time series of

DAN 

DMN 

Fig. 4 Schematic illustration
of two resting-state networks.
DAN Dorsal Attention
Network, DMN Default Mode
Network. Locations are taken
from (de Pasquale et al. 2010;
Brookes et al. 2011)
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activation for regions of interest (ROIs) derived from an anatomical atlas. Spatial
normalisation of individual MRIs is used to identify corresponding atlas-based
ROIs in the individual brain. The study demonstrated that problems associated
with field spread are reduced by using the Phase-Lag Index (Stam et al. 2007). A
similar approach was used to study resting-state connectivity based on imaginary
coherence in stroke patients (Guggisberg et al. 2008; Westlake et al. 2012).

5.2 Functional Connectivity in Resting-State Networks

The analysis of resting state connectivity in functional MRI has recently attracted
significant interest (Beckmann et al. 2005; Deco and Corbetta 2011). This is at
least partly due to the seminal study by Biswal and colleagues who demonstrated
spatially specific correlations in the temporal activation of brain areas during rest
(Biswal et al. 1995). These correlations are driven by slow temporal fluctuations
with frequencies around or below 0.1 Hz. However, until recently is has been
unclear if and how these correlation patterns are represented in electrophysio-
logical recordings. Recent developments in data analysis methods (reviewed in the
previous section) have facilitated the identification of similar spatio-temporal
correlation pattern in MEG/EEG signals of the resting brain. Due to their excellent
temporal resolution MEG/EEG contribute complementary information to the
fMRI-studies of human resting-state connectivity.

De Pasquale and colleagues used a seed-based correlation approach (see pre-
vious section) to identify the default mode network (DMN) and the dorsal attention
network (DAN) from MEG data (Fig. 5). Both networks showed high spatial
overlap with the corresponding networks identified in fMRI data. Interestingly, the
high temporal resolution of MEG recordings afforded the investigation of this
correlation structure in different frequency bands. DMN and DAN showed strongest
amplitude correlations in the alpha (8–13 Hz) and beta (14–25 Hz) frequency
bands with correlations that changed significantly over time. These temporal
changes were further investigated in a subsequent study by the same authors (de
Pasquale et al. 2012). Here, the DMN emerged as the network with strongest cross-
network interactions with the posterior cingulate cortex as the most important node
in the DMN. The DMN preferentially engages with nodes of another network when
the within-network interactions of this other network are low.

Using a data-driven approach that is not based on seed voxels Brookes and
colleagues largely corroborated these results by identifying several resting-state
networks (including DMN and DAN) with dominant interactions in the beta band
(Brookes et al. 2011). The frequency-specific nature of correlations in these (and
other) studies convincingly implicates brain oscillations as the basis for these
network interactions.

The orthogonalisation introduced by Hipp et al. (2012) improved spatial res-
olution of correlation maps with interesting results. Significant interhemispheric
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amplitude correlations emerged in the beta frequency band between homologous
sensory (auditory, somatosensory, visual) areas.

In summary, recent MEG resting-state connectivity studies in source space
independently confirm the existence of resting-state networks previously discov-
ered in fMRI data. Interestingly, MEG studies demonstrate that the correlation
pattern in these networks is mediated by brain oscillations (predominantly in the
alpha and beta frequency band) and that these correlations show strong temporal
modulations that coincide with state transitions of between-network interactions.

6 Graph Theory

Although Graph Theory has been developed decades ago (Erdoes and Renyi 1959)
it has only recently found a widespread use in the investigation of brain networks.
This interest likely originates from a challenge that researchers face when they
investigate anatomical or functional brain connectivity—namely its complexity.
Human brain connectivity studies typically work with anatomical or functional
data at a spatial resolution of 1–10 mm, leading to thousands of voxels. Each voxel
can have anatomical or functional connections to many other voxels. In addition,
functional connections are often evaluated in different frequency bands, experi-
mental conditions, and may change over time. A meaningful low-dimensional
characterization of this complex, high-dimensional data would greatly facilitate
the identification of systematic differences between experimental conditions, or

Bandpass filter MEG data Decompose MEG data with ICA

Reconstruct voxel time
series

Decompose voxel time
series using ICA

Compute downsampled
amplitude

Remove artifact components

Localize ICA components

Reconstruct voxel time series

Compute downsampled
amplitude

(a) (b)

Fig. 5 Two analysis pipelines for resting state MEG data. a Analysis approach used by Brookes
et al. 2011). b Analysis approach used by de Pasquale et al. (2010), (Mantini et al. 2011)
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patients and healthy controls and could lead to a better understanding of the
aspects of these complex networks that are essential for the functioning of the
human brain. We will first introduce basic concepts of Graph theory, then present
applications for MEG connectivity studies and, finally, discuss some limitations.

Networks of interacting brain areas can be represented by graphs. Graphs
consist of nodes (or vertices) representing the brain areas, and connections (or
edges) that represent the interactions between pairs of brain areas. Furthermore,
information about directed information flow can be represented in directed graphs
and information about connection strength can be represented in weighted graphs.

The topology of graphs can be characterized in a meaningful way by a number
of measures that characterize different aspects of the graph. Here, we describe
three important measures and refer the interested reader to more comprehensive
material (Sporns 2011; Stam and van Straaten 2012; Ioannides 2007; Bullmore and
Basset 2011).

Characteristic path length This is the average number of nodes on the shortest
path between two nodes

Degree distribution The degree of a node is the number of connected
nodes. The distribution of degree across all nodes of
a graph is the degree distribution

Clustering coefficient For a given node the clustering coefficient is the ratio
of the number of existing to the number of possible
connections between all neighbours of the node

Other measures such as modularity or efficiency have been introduced to
characterise brain networks (Bullmore and Bassett 2011) with the aim to capture
basic network characteristics that relate in a meaningful way to aspects of brain
function or dysfunction.

Bassett and colleagues have used this approach successfully (Bassett et al.
2009). They demonstrated a positive correlation between performance in a
working memory task and cost efficiency of network nodes. Consistent with the
majority of MEG/EEG studies in this field individual sensors were taken as nodes.
Various connectivity measures (see Sect. 2) can be used to quantify interactions
between the signals of sensor pairs. Here, authors used mutual information in
different frequency bands ranging from 1–60 Hz. Mutual information between all
pairs of sensors signals results in a symmetric connectivity matrix. This matrix
(that can also be computed from other connectivity measures such as coherence or
phase synchronisation) is then converted into a graph. This conversion involves a
thresholding and binarization of the matrix. The binarization sets every element
with a value below threshold to zero and every element with a value above
threshold to 1. The graph measure used by the authors was cost efficiency, which is
inversely related to minimum path length computed at different thresholds. The
authors observed significant correlation between cost efficiency and behavioral
performance over left temporal and parietal areas and over midline frontal areas.
This correlation was strongest in the beta band (12–30 Hz).
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The possibility to describe topological aspects of a complex network with a few
measures is particularly attractive for clinical studies since some of these measures
could potentially be used as biomarkers for pathological changes associated with
specific brain dysfunctions. Stam and colleagues have used Synchronization
Likelihood (SL), a nonlinear measure of statistical interdependency, to study
disease-related changes in functional brain networks. Again, SL values between
pairs of MEG signals are used to build an association matrix that is converted into
a graph before graph measures are computed. This approach has been used to
uncover changes in network topology in different disorders such as Parkinson’s
and Alzheimer disease and is reviewed in (Stam 2010).

One of the most consistent findings emerging from these studies is that the
functional network architecture of the human brain shows small-world properties
(Stam 2004; Bassett et al. 2006). Small-worldness refers to networks that are
characterised by high clustering but small path length. This is achieved by adding a
few long-range connections to networks with predominantly short-range
connections.

A limitation of these studies is that they use MEG sensors as graph nodes. This
is problematic for at least two reasons (Schoffelen and Gross 2009). First, it is
difficult to infer the involvement of specific brain areas from the location of MEG
sensors. Second, the signal recorded by any given MEG sensor is typically a linear
combination of the activity of several brain areas. Consequently, the topology of
graphs constructed from sensor signals can be significantly affected by the sen-
sitivity profile of the MEG sensor type and the specific configuration of active
brain areas. Only few studies have addressed this problem by computing graphs
from MEG data after source localization. Palva and colleagues studied functional
connectivity in source space during visual working memory (Palva et al. 2010) and
used graph theory to characterize the network. They localized bandpass filtered
single-trial data using cortically constrained minimum-norm estimates. Phase-
locking value was computed between pairs of cortical patches to build the asso-
ciation matrix. After thresholding based on group statistics, they used the node
degree and related measures to identify hubs in frequency-dependent networks.
The alpha-band network showed a hub in frontal cortex whereas for the beta-band
hubs emerged in parieto-occipital cortex. Major hubs in the gamma-band were
intraparietal sulcus (IPS) and superior parietal gyrus. Phase synchronization
between brain areas was shown to correlate with behavioral performance. IPS was
again the major hub in these performance-related networks.

This study nicely demonstrates the benefit of performing MEG connectivity
analysis together with graph theory at the level of brain areas (as opposed to MEG
sensor signals). Since here the graph nodes corresponded to anatomical brain areas
results inferred from the functional data increase our understanding of specific
brain networks and results can be related to findings from fMRI studies.

Although Graph Theory is a promising approach for the characterization of
complex brain networks it has limitations. One main limitation is the loss of
information during the computation of graphs (see Fig. 6). Following connectivity
analysis the association matrix contains information about the strength of
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interactions between all pairs of nodes (where nodes could be brain areas or MEG
sensors). In addition, some connectivity measures provide information about the
direction of information flow (e.g. Granger causality or transfer entropy) leading to
a non-symmetric association matrix (different values for the connection from node
x-y compared to y-x). Most connectivity studies using graph theory measures
however use undirected, unweighted graphs. Converting the association matrix
into an undirected, unweighted graph involves thresholding. In most cases there is
no objective way for selecting the threshold so one or several arbitrary thresholds
are often used. This is problematic since the choice of threshold can affect the
results. It is also unclear if different thresholds should be used (e.g. with respect to
the distribution of values in the association matrix) when two or more experi-
mental groups are compared.

7 Conclusion and Outlook

MEG connectivity analysis aims to understand the mechanisms underlying
information processing in the complex human brain network. This poses a for-
midable challenge for a number of reasons. Although the location of specialised
anatomical areas does not change over time, studies investigating neural plasticity
demonstrate that their anatomical and functional properties and their interactions
with other brain areas change at different time scales. In addition, connectivity
studies have to account for the highly dynamic nature of interactions between
brain areas that quickly adapt to changes in incoming sensory information or task

Fig. 6 Typical pipeline for
applying Graph Theory to
MEG connectivity results
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demands. As discussed in this chapter, there is now compelling evidence that
functional brain connectivity has to be studied in different frequency bands to
account for the potentially different functional roles of these different frequency
bands in neural communication. To further add to the complexity, different cou-
pling mechanisms exist both, within and between different frequency bands and
may involve phase and/or amplitude dynamics (Jensen and Colgin 2007). Further
complications arise from the difficulty in distinguishing real interactions between
brain areas from artifacts due to field spread (see Sect. 3).

Despite these challenges, MEG connectivity analysis is a highly active, suc-
cessful and promising area of research (Palva and Palva 2012; Siegel et al. 2012;
Schnitzler and Gross 2005). Significant progress has been made along different
dimensions. First, methods have been developed that are more robust against or
aim to circumvent the effects of field spread. Second, the development and
application of biophysically meaningful generative models such as DCM provide a
promising way to model dynamic interactions in brain areas. Third, recent
advances of analysing resting-state connectivity with MEG have been able to
identify networks that are consistent with results from fMRI studies. Here, MEG
can contribute temporally and spectrally resolved information about these net-
works at a resolution that cannot be achieved with fMRI. Fourth, graph theory has
become an increasingly useful tool to characterise the topology of complex ana-
tomical or functional brain networks. This progress has significantly improved our
understanding of functional connectivity in the human brain.
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Thalamocortical Network Dynamics:
A Framework for Typical/Atypical
Cortical Oscillations and Connectivity

Urs Ribary, Sam M. Doesburg and Lawrence M. Ward

Abstract Recently there has been increased interest in understanding the brain’s
functional connectivity within local and long-range networks. While structural and
functional connectivity at the cortical level has received considerable attention, the
structure and functional dynamics of thalamo-cortical interactions are as yet
insufficiently integrated with our knowledge of large-scale connectivity and
regional function. An important question, yet to be answered in detail, is how
typical cognitive functions and their alterations in neuro-psychiatric pathologies
are temporally generated across the entire brain space (thalamo-cortical, cortico-
cortical, cortico-thalamic) based on intact or altered brain structure and function.
We review MEG and related EEG research in the context of multimodal imaging
findings, focusing on thalamo-cortical dynamics and their role in functional con-
nectivity across cortico-cortical, and cortico-thalamic circuits, including oscilla-
tory synchronization within and across the various frequency bands underlying
cognition. We then further explore the cognitive consequences of various dis-
ruptions of thalamo-cortical and cortico-cortical dynamics, including slowing and
selective loss of functional network dynamics in particular brain networks related
to disabilities or pathologies. We present an overview of current findings and their
conceptual implications for how brain imaging technologies can further contribute
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to a better understanding of the brain’s structural, functional and temporal
connectivity dynamics and their relationship to typical and atypical cognition and
consciousness.

Keywords Thalamo-cortical � Cortico-cortical � Cortico-thalamic � Synchroni-
zation � Functional connectivity dynamics � Alpha � Theta � Gamma � Cognition �
Consciousness � Cognitive deficit � Neurology � Psychiatry � Traumatic brain
injury

1 Introduction

Recently there has been increased interest in understanding neuronal networks and
their connectivity in the human brain (Miller 2010; Sporns et al. 2005), especially
regarding structural and functional connectivity at the cortical level using multi-
modal imaging technologies. Nonetheless, the dynamics of these networks, par-
ticularly thalamo-cortical interactions are as yet insufficiently integrated with our
knowledge of large-scale connectivity and regional function (Ribary and Ward
2014). This article presents a conceptual overview of current findings from human
brain imaging studies that, together with knowledge from animal neurophysiology
and neuroanatomy, indicate the significance of thalamo-cortical (TC) network
dynamics and connectivity for cognition and perception. We also explore the
implications of these findings for how dynamic brain imaging technologies can be
further used to probe structural, functional and temporal connectivity across cor-
tical and sub-cortical brain areas. Such potential strategies, as yet sparsely utilized,
will provide the possibility of a more detailed and complete understanding of
cognition and consciousness, and a better way of diagnosing and treating cognitive
disabilities and neuro-psychiatric pathologies, including traumatic brain injury.

Magnetoencephalography (MEG) is particularly well suited for characterizing
neural oscillations and their dynamics due to its uniquely good combination of
temporal and spatial resolution (Hari and Salmelin 1997). It is very well known
that imaging of sub-cortical brain dynamics and connectivity using MEG tech-
nologies can be challenging, but by using more advanced state-of-the-art signal
processing analysis techniques that are becoming more available over recent years,
this challenge can be lessened. Twenty-two years ago, MEG and MFT (Magnetic
Field Tomography) technologies were first being combined and they demonstrated
coupling of gamma band oscillations within cortical and sub-cortical areas (Ribary
et al. 1991), which was later confirmed by animal studies. Eight years ago,
Schnitzler and Gross implemented Dynamic Imaging of Coherent Sources (DICS)
for the study of Parkinson patients, and were able to successfully image the entire
movement-related brain network including thalamus and basal ganglia in relation
to the reference primary motor area (Schnitzler and Gross 2005), and again this
was similar to the extensively studied motor network reported from many animal

430 U. Ribary et al.



studies. Very recently, Gross, Schnitzler and colleagues provided first evidence for
bi-directional causality within the paralimbic network including thalamus, and
related such causality to cognition and self-awareness (Lou et al. 2011), further
supporting the possibility and significance of studying the thalamo-cortical cir-
cuitry and causality within it. In addition, MEG technology is and should be
further integrated with multimodal structural and functional brain imaging and
combined with knowledge from animal neurophysiology and human neuroanat-
omy, in order to fully explain MEG data and to better understand cognition and
consciousness of the human brain in health and disease.

An important question then arises, that is yet to be answered in detail, namely
how typical or atypical cognitive functions and consciousness are temporally
generated across the entire brain space, in terms of specific underlying intact or
altered brain structure and function across cortical and sub-cortical regions. The
challenge in current dynamic brain imaging, using MEG or EEG technologies, is
to analyze detailed communication or connectivity dynamics across five dimen-
sions, namely within 3D space across oscillatory frequency and time, and to
describe in detail the relation of these connectivity dynamics and causality in
relation to cognition and consciousness in health and disease.

2 Thalamo-Cortical Oscillations, Synchronization,
Coupling and Connectivity in the Healthy Human Brain

Many investigations over the past 2–3 decades using dynamic brain imaging
technologies have indicated the significance of brain dynamics relating to cogni-
tion and consciousness (Varela et al. 2001; Ward 2003; Schnitzler and Gross
2005). In addition, the importance of TC network dynamics has also been
implicated (Ribary et al. 1991; Victor et al. 2011) in understanding alterations of
cognition in disabilities and pathologies (Ribary 2005), including the impact of
thalamic damage relating to traumatic brain injuries (TBI) (Schiff et al. 2002).
Conversely, surgical intervention at the central thalamus has been shown to
improve consciousness in one minimally conscious patient (Schiff et al. 2007).
Others have also reported on the significance of the thalamus relating to con-
sciousness (Ward 2011). One striking finding is that the most consistent regional
effect produced by general anesthetics at or near loss of consciousness relates to a
reduction of thalamic metabolism and blood flow (Alkire et al. 2008), indicating
that cortical arousal may occur without the thalamus but that consciousness may
not, further explaining why a corticothalamic complex is essential for cognition
and consciousness. Recent findings also indicated the importance of imaging the
development of functional thalamo-cortical connectivity in humans (Fair et al.
2010), indicating stronger TC functional connectivity in adults than in children,
and its weakening with age. Recent MEG findings provided evidence for analyzing
and reporting bi-directional causality within the paralymbic TC network related to
memory retrieval and self-awareness (Lou et al. 2011). In addition, it has been
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recently reported in animals that synchrony of thalamo-cortical inputs maximizes
cortical reliability, even though these neurons constitute only about 5 % of the
synapses on layer 4 spiny stellate simple cells (Wang et al. 2010), further sup-
porting the importance of TC relations and brain dynamics.

2.1 Thalamo-Cortico-Thalamic Oscillations and Circuitry

It has become evident in recent years that functional connectivity dynamics within
the entire brain space and across frequency and time needs to be analyzed in detail
in order to better understand the underlying neurophysiology of the typical and
atypical brain function. Over the past decade, there is a large and accumulating
body of evidence that dynamic human brain imaging using EEG and MEG has
revealed many task dependent cortical gamma band activations and connectivities
across frequency and time relating to most cognitive brain functions (Tallon-
Baudry and Bertrand 1999; Jensen and Vanni 2002; Ward 2003; Ribary 2005;
Doesburg et al. 2010).

This recent surge of human neuroimaging research of the oscillatory dynamics
during cognitive and perceptual processing is predicated on earlier seminal find-
ings, which indicated that brain rhythms and their coherence were fundamental
processes underlying cortical processing. Shortly after Gray and Singer (1989)
discovered the 40 Hz synchronized oscillation in cat visual cortex and proposed it
as the mechanism to bind visual features into a percept, Crick and Koch (1990)
proposed it as the foundation of conscious vision. In parallel, Ribary and Llinás
discovered the functional significance of human gamma band oscillations in health
and disease, as well as the TC coupling of human gamma-band activations (Ribary
et al. 1989; Ribary 2005), and further proposed that TC coupling of gamma-band
activity supports the temporal binding mechanism responsible for bringing toge-
ther information from various sensory modalities into one single percept (Llinás
and Ribary 1993). Indeed, MEG recordings on control subjects demonstrated that
precise timing of gamma-band TC network activity is associated with sensory
processing (Ribary 2005), namely with the minimal interstimulus interval required
to identify separate auditory stimuli (Joliot et al. 1994).

Analysis of the origin of transient gamma-band neural activity in humans
during early sensory processing using MEG demonstrated specific cortical acti-
vations (Pantev et al. 1991) and subcortico-cortical correlations (Ribary et al.
1991), indicating coupling within thalamo-cortical networks and its clinical sig-
nificance. Specifically, combined MEG and MFT brain imaging results indicated a
large-scale coupling of thalamo-cortical gamma-band oscillations, organized in
space and time (Ribary et al. 1991), which was altered in Alzheimer patients.
These initial MEG findings have stimulated several animal studies confirming the
existence of such thalamo-cortical oscillations and rhythmicity using intracellular
recordings from cortical interneurons (Llinás et al. 1991) and specific/non-specific
thalamic neurons studied in vivo (Steriade et al. 1991, 1993a).

432 U. Ribary et al.



A model for generating and maintaining such thalamo-cortical coupling was
then proposed (Llinás and Ribary 1993) allowing the recruiting of sufficient ele-
ments to generate the synchronicity observed at both intracellular and extracellular
levels in the cortex and thalamus in animals and as observed in human brain
imaging (Ribary et al. 1991). Specifically, Llinás and Ribary proposed, based on
knowledge from neurophysiology and neuroanatomy, that a co-activation of the
specific (via layer IV) and the non-specific (via layer I) TC circuitry is required to
initiate and stabilize CC (cortico-cortical) synchronization and functional con-
nectivity among the many brain areas and pathways (see Ribary 2005), including
the CT feedback loops. Such a ‘‘dialogue’’ allows (i) to achieve global functional
connectivity within the entire brain (ii) the task-dependent integration of well-
trained specific local circuits into long-range connectivity across the entire brain,
by integrating ‘‘content’’ into ‘‘context’’ (see Llinás and Ribary 1993), and
(iii) detailed cortical oscillatory connectivity dynamics at cortical level. Such
speculations based on MEG findings and animal neurophysiology have been con-
firmed by direct recording in animals (Steriade 1993), indicating such specific and
nonspecific thalamo-cortical conjunction (Steriade and Amzica 1996). In addition,
recent MEG findings provided further evidence for bi-directional causality within
the paralimbic network [anterior cingulate/medial prefrontal, posterior cingulate/
medial parietal, and pulvinar thalami] related to cognition, namely to autobio-
graphic memory retrieval and self-awareness (Lou et al. 2011), further supporting
the importance of thalamo-cortical interactions in cognitive brain function.

In addition, mathematical modeling of the thalamo-cortical system (Babloyantz
1991; Llinás et al. 1994; Wright et al. 2001; Rennie et al. 2002) showed that the
dynamics of the system were turbulent and desynchronized when intrinsic tha-
lamic activity was excluded from the model (Babloyantz 1991). The onset of a
pacemaker input organized the system into a more coherent spatio-temporal
behavior and further provided evidence for the significance of coupling and
connectivity of oscillatory activity within thalamo-cortical systems (Steriade and
Llinas 1988; Steriade et al. 1993a, b; Llinás et al. 1994; Barth and MacDonald
1996).

Classically, the thalamus is considered to consist mainly of a group of ‘‘relay
nuclei’’ (e.g. Sherman and Guillery 2006). Thalamic nuclei such as the lateral and
medial geniculate nuclei, which receive input from the peripheral visual and
auditory systems, respectively, are examples of such nuclei. These nuclei do
indeed relay sensory information into the primary sensory cortical processing areas
(V1 and A1 respectively). They also receive massive projections back from cor-
tical layers 5 and 6 that were thought to modify the processing in the thalamic
nuclei. This original simple picture of the thalamus as a modulated relay station,
however, has changed radically in recent years. First, Guillery and Sherman (e.g.
Guillery and Sherman 2002; Sherman and Guillery 2006) argued that the higher-
order thalamic nuclei (those that do not receive direct afferent input) function
exactly as do the first-order nuclei (those receiving afferent input from sensory
receptors, such as the lateral geniculate nucleus from retina, or from subcortical
brain areas, such as the medial geniculate nucleus from subcortical auditory
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nuclei): they relay information. Sherman and Guillery extended the classical
notion of the thalamus as a sensory relay from sensory nuclei such as the lateral
geniculate and the medial geniculate, to all thalamic nuclei. They did add a twist,
however, based on their observation that cortico-thalamic inputs originating in
layer 5 of the cortex also branch to motor areas (at least in the visual and somato-
sensory systems). Moreover, those inputs from cortical layer 5 do not return to the
thalamic nucleus associated with the originating cortical area, but rather to other,
‘‘higher’’ thalamic nuclei (at least for vision), and they are of the ‘‘driving’’ type of
inputs (fast, ionotropic synapses, large axons and large synaptic boutons, etc.).
Based on these facts, Sherman and Guillery proposed that the higher-order relay
neurons relayed motor information from one cortical area to other higher areas,
basically an efference copy of action-related information sent to motor areas such
as the superior colliculus (which controls eye movements), brain stem and spinal
cord from these perceptual areas. The scope of their argument is too broad for the
present context, but it requires a rethinking of many accepted assumptions about
cortical processing of perceptual information.

Other and later important extensions to the classical picture of cortico-thalamic
interactions arose from the discovery of two types of thalamic neurons in animals
(Jones 2001, 2002, 2009). The ‘‘core’’ and the ‘‘matrix’’ neurons are chemically
distinguishable and make very different projections to their targets. All dorsal
thalamic nuclei contain matrix neurons and the sensory and motor nuclei in par-
ticular also contain many core neurons. Core neurons project to layer IV stellate
neurons and layer III, V, and VI pyramidal neurons in sensory- or motor-specific
cortical areas, as in the classical picture. Matrix neurons project diffusely to
stellate neurons in the superficial layers of several cortical areas, especially in
frontal areas. Both types of thalamic neurons receive back projections from layer
V pyramidal neurons and the core neurons also receive back projections from layer
VI pyramidal neurons. Jones (2001, 2002, 2009) argued that, during thalamic tonic
mode, core neurons relay sensory or motor information within specific pathways,
whereas matrix neurons bind thalamic and cortical activity and promote thalamo-
cortical synchronization, creating consciousness and action. When the thalamus is
in burst mode, however, the brainstem arousal system is quiescent and the core and
matrix neurons are suppressed by inhibition from the thalamic reticular nucleus
(TRN). The TRN, in combination with the brainstem arousal system, thus deter-
mines whether the thalamus will promote thalamo-cortical synchronization in the
gamma band (consciousness) or at much lower frequencies, in the delta band
(sleep). Ward (2011), elaborating on a proposal of Mumford (1991), argued that
the sensory thalamus serves as an active blackboard, echoing back to the cortex an
integrated impression of diverse cortical inputs. For example, the thalamic neurons
associated with visual association areas of the cortex would be integrating
‘‘where’’ information from one, ‘‘lower’’ cortical area with ‘‘what’’ information
from another, ‘‘higher’’ cortical area, and sending that integrated information back
to their own area. In non-sensory domains, however, in addition to providing a
synthetic perceptual construct, the diverse information integrated in thalamic
nuclei would be associated with multi-modal association areas. In particular in
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those associated with prefrontal cortex, would include that of a non-sensory nature
as well, encompassing different facets of information computed by frontal or
associative circuits. For example, a perceptual construct of a face is then
accompanied by a memory of having seen the face before and the associated
person’s name, occupation, social standing, and personal relationship to oneself.
Ward (2011) argued that the information integration giving rise to primary con-
scious awareness takes place mostly in the matrix neurons, as these are more
common in the non-sensory and non-motor nuclei, rather than in the core neurons.
This would explain why the detailed activities of primary and secondary sensory
cortical areas do not enter primary awareness, although their outputs are necessary
for awareness of specific sensory content.

Indeed, it has been well known for some time that damage to specific brain
systems produces loss in the corresponding modality (i.e. vision, sensation,
audition, motor functions etc.), while damage of the nonspecific thalamus produces
lethargy and coma (Façon et al. 1958; Castaigne et al. 1980) and disturbances in
visual perception (Purpura and Schiff 1997) and consciousness (see later section
on TBI in this chapter). As such, the resonant gamma-band co-activation (or
connectivity dynamics) of both the specific and non-specific TC system, may
indeed contribute to awareness and consciousness of a single percept (Llinás and
Ribary 1993), and may relate to the well-described integration of sensory infor-
mation within and across the hemispheres (Gray 1999).

2.2 A Framework for Cortico-Cortical Synchronization
and Connectivity Across Alpha, Gamma, and Theta
Frequency Bands

As mentioned above, thalamo-cortical interactions are closely related to the initia-
tion and stabilization of dynamic CC connectivity in various frequency bands, which
in turn are closely related to cognitive function (see conceptual Fig. 1a). There exist
considerable data supporting the view that synchronization of neuronal oscillations
both within and between brain regions is an important mechanism mediating for-
mation of and communication within these and other neural networks (Varela et al.
2001; Ward 2003; Palva and Palva 2007; Fries 2005, 2009; Sauseng et al. 2004).

Local alpha oscillations are thought to reflect cortical inhibition (Klimesch et al.
2007) and/or idling (Pfurtscheller et al. 1996), as local alpha power reductions
have been observed following stimulus presentation in various sensory modalities
(Klimesch et al. 2007) and during cognitive tasks such as selective attention
(Snyder and Foxe 2010; Banerjee et al. 2011). Local desynchronization of alpha
rhythms over primary cortex is also associated with active motor control
(Pfurtscheller and Neuper 1994) and perceptual processing (Hanslmayer et al.
2011). Such results indicate that alpha oscillations reflect fundamental mecha-
nisms of cortical idling and inhibition that directs information flow within brain
networks across diverse contexts (Jensen and Mazaheri 2010). It has also been
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reported, however, that increases in alpha synchronization among cortical regions
may be related to the establishment of long-range networks and further relating to
memory retention (Doesburg et al. 2010, 2011a; Palva et al. 2010).

Fig. 1 Conceptual representation of connectivity and dynamics in healthy and challenged brains.
Central ellipse represents thalamus, wavy boxes represent specific cortical regions, connecting
lines represent both structural and functional connectivity. Green is healthy, red is damaged or
dysfunctional, and represents slow or otherwise compromised functional connectivity. Black
arrows represent subcortical inputs to thalamus. a Healthy human brain intact structural,
functional and temporal connectivity (shown in green) with intact cognition and full
consciousness and awareness of external and internal world. b Cognitive disabilities slight
alterations in functional (perhaps structural) connectivity and slight partial slowing (indicated in
red), otherwise globally intact structural, functional and temporal connectivity, with full
consciousness and noticeable but not severe perceptual or cognitive alterations. c Neurology
severe partial and persistent slowing and alterations in structural, functional and temporal
connectivity (shown in red), mostly related to sensory, motor and cognitive brain areas (TBI
patients are excluded here and will be shown in detail in Fig. 2); affecting single or multiple brain
networks (probably via inhibition or de-afferentation at thalamic level on TC networks, with
additional alterations at CC level). Ranging from intact to altered consciousness depending on
pathology, with various and often severe cognitive and sensory-motor alterations. d Psychiatry
severe partial and persistent slowing and alterations in structural, functional and temporal
connectivity (shown in red), mostly related to limbic and frontal brain areas; affecting single or
multiple brain networks (probably via inhibition at thalamic level on TC networks, with
additional alterations at CC level). Ranging from intact to distorted consciousness or/and altered
emotions depending on pathology, with various and often severe cognitive and sensory-motor
alterations and distortions
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Local increases in gamma-band activity have been linked to active processing
within cortex across numerous contexts, supporting the view that they play a critical
role in cortical sensory and cognitive processing (Ribary 2005; Fries 2009),
including attention and memory (Jensen et al. 2007). Sensory stimulation produces
gamma activation (Pantev et al. 1991), as does sensory perception, object recog-
nition and short-term memory retention (Fell et al. 2002; Supp et al. 2007; Tallon-
Baudry et al. 1998). Processes that have been reported to reduce local alpha activity
are also associated with increased local gamma activation (Fries et al. 2001;
Doesburg et al. 2008). As alpha-desynchronization occurs across large areas of
cortex relative to the more spatially complex coincident increases in gamma power
(Jerbi et al. 2009), transitions of local population dynamics from alpha toward a
gamma oscillatory state may mediate segregation of neural populations into
functional assemblies relevant for required cortical processing and connectivity.

Further, local theta rhythms have been related to task-dependent processing in
both hippocampus and neocortex (Kahana et al. 2001). The relationship between
cortical theta oscillations and active processing is perhaps best documented in
working memory paradigms (Sauseng et al. 2010). Local theta activity has also
been implicated in other cognitive processes including long-term memory pro-
cesses and selective attention (Osipova et al. 2006; Green et al. 2011). In partic-
ular, the coupling of gamma to theta frequency bands has been reported in a
variety of cognitive and perceptual processes based on noninvasive recordings
(Sauseng et al. 2008; Doesburg et al. 2009, 2012; Griesmayr et al. 2010).

Given the fact that all these oscillations indicate specific individual signatures
within the same sensory or cognitive contexts, it is likely that task-dependent
activation within a cortical region involves quantifiable cross-frequency relations
and connectivity across the entire brain space supported by TC network dynamics,
relating to cognition and consciousness (Doesburg, Ward and Ribary, in prepar-
taion). More discoveries and reports specifically on cortical oscillatory synchro-
nization and connectivity underlying sensory and cognitive functions in the human
brain will be further discussed by several other authors in various other chapters of
this book.

3 Persistent Partial Slowing and Altered Functional
Network Dynamics in Neurology and Psychiatry

Llinás, Jeanmonod and Ribary (Llinás et al. 1999) suggested that a slowing of
spontaneous oscillations and alteration of the functional connectivity dynamics
within thalamo-cortical systems could contribute to a better understanding of the
brain dysfunctions underlying various pathological behavioral symptoms. While
general slowing in clinical populations is well known, earlier MEG results,
combined with findings based on electrical recordings from human thalamus
(Jeanmonod et al. 1996, 2001; Sarnthein et al. 2003) and physiological findings on
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animals (Jahnsen and Llinás 1984; Llinás et al. 2002), indeed indicated that a
severe and sustained slowing together with dysrhythmic thalamo-cortical inter-
actions could be related to various positive symptoms observed in a subset of
neurological and psychiatric patients (Schnitzler and Gross 2005; Llinás et al.
1999; Volkmann et al. 1996; Llinás et al. 2001; Schulman et al. 2005, 2011;
Timmermann et al. 2003; Sarnthein and Jeanmonod 2007, 2008). Compared to
control subjects, patients showed increased low frequency theta rhythmicity in
conjunction with a widespread and marked increase of power correlation among
high and low frequency oscillations, consistent with other reports (John et al.
1988). Such dysrhythmias can be explained by either excess inhibition or disfa-
cilitation on the TC system in those patients, inducing the generation of low
threshold calcium spike bursts by thalamic cells as seen in animals (Llinás et al.
2001) and humans (Jeanmonod et al. 1996). The presence of these thalamic bursts
then directly relates to thalamic cell hyperpolarization and low frequency oscil-
lation generation within thalamus (Jahnsen and Llinás 1984). This produces a
slowing of theta/delta activity as a result of a resonant interaction between thal-
amus and symptom-specific cortical areas. The etiology of many of these neuro-
psychiatric pathologies which express these core characteristics of thalamocortical
dysrhythmia are of course quite different in nature, but what they all have in
common is either an increased inhibition at the thalamic level (i.e. in Parkinson’s
Disease via pallido-thalamic tract) or a dysfacilitation at the thalamic level (i.e. in
amputee patients with neurogenic pain). Such pathological changes in thalamic
inhibition or disfacilitation result in such TC slowing, which has been well
characterized through animal neurophysiology, and is best observed at the cortical
level using MEG or EEG imaging technologies.

Global slowing has been well characterized in the healthy human brain in the
context of transition to sleep. Such slowing has also been demonstrated in animal
studies, as the brain slows down from resting alpha band frequency (8–12 Hz) to
lower frequency theta (6–8 Hz) and then to delta band (2–4 Hz) during deep sleep
with a large global coherence across the entire brain (Steriade et al. 1993b). In
states of thalamocortical dysrhythmia (TCD) however, partial slowing is persistent
with ongoing theta-range (4–8 Hz) thalamic activity, serving as the trigger for
cortical dysfunction in which a core region of cortex functions at lowered fre-
quency, surrounded by a region of activation in the normal waking gamma
(25–50 Hz) range (Llinás et al. 1999, 2002). In addition, the altered connectivity of
the thalamocortical system not only maintains this pathological dynamic, but also
causes it to become distributed throughout wide areas of cortex representing a
large-scale coupling, which allows such activity to constrain thalamocortical
dynamics very efficiently. This strengthens considerably the idea that some of the
mild cognitive deficits could arise from varying degrees of a slight dysrhythmia
(Llinás et al. 1998b; Ribary 2005).

The challenge for future dynamic brain imaging studies using MEG or EEG
technologies is then (i) to precisely localize these persistent slowing TC areas or
symptom-specific networks, best observed at the cortical level during ‘‘resting
state’’ (ii) to specify the alterations in ‘‘resting’’ connectivity and subsequent
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induced altered task-specific activations in functional cortical connectivity
dynamics across all frequency bands in precise detail, and (iii) to correlate such
altered connectivity and dynamics with clinical symptoms (see conceptual figure:
Fig. 1c–d).

4 Slight Partial Slowing and Altered Functional
Connectivity Dynamics in Cognitive Disabilities

Altered functional connectivity dynamics, as described in neuropsychiatric pop-
ulations above, also provides a conceptual framework for evaluating slight alter-
ations in resting brain activity in the normal aging brain or in some cognitive
disabilities (see Ribary 2005). These alterations are expected to be minimal
compared to severe dysrhythmia in neurological or psychiatric conditions (see
conceptual figure: Fig. 1b). Recent behavioral and functional brain imaging
studies of some cognitive disabilities indeed suggest slight perceptual and cog-
nitive alterations including slowing in the underlying neurophysiological network
connectivity, despite an average or even above average IQ in some of these
individuals. In children born very preterm (B32 weeks gestational age), for
example, Grunau, Doesburg, Ribary and colleagues have recently shown a sig-
nificant alteration in synchronization and network connectivity dynamics within
the alpha frequency band (Doesburg et al. 2011a). In particular, a slight slowing of
resting alpha band activity towards theta (6–8 Hz), has been correlated with
selective developmental difficulties in this group (Doesburg et al. 2011b).

An alteration of precise timing of network dynamics and connectivity has also
been reported earlier to be associated with altered behavioral patterns, namely with
altered perception of sensory input (Ribary et al. 1999; Ribary 2005). Earlier MEG
studies suggested a slight dysrhythmia within thalamo-cortical systems in subjects
with Language-Based Learning Disabilities (Llinás et al. 1998a; Nagarajan et al.
1999). Functional imaging data by Ribary, Llinás, Tallal, Miller and colleagues
have shown that the minimal interstimulus interval required to identify two sep-
arate sensory events was altered and delayed in subjects with Language-Based
Learning Disabilities (LLD or dyslexia) (Llinás et al. 1998a; Ribary et al. 2000).
This relationship is observable independently by either through psychological tests
or by functional MEG imaging. Also, the results from these two different mea-
surement techniques were highly correlated, indicating that MEG imaging can be
used as an objective measure of normal and slightly altered sensory cognitive
experience, including improvements during intervention (Nagarajan et al. 1999).

Gamma-band connectivity abnormalities were further suggested to be one of the
neurophysiological correlates of the temporal deficits recorded in Language-Based
Learning Disabilities (LLD or dyslexia) (Llinás 1993). This dyschronia is in fact
consistent with other functional and temporal brain imaging findings concerning
LLD (Tallal et al. 1993; Tallal 2004; Salmelin et al. 1996; Salmelin 2007;
Helenius et al. 1999; Simos et al. 2000; Heim et al. 2000; Benasich and Tallal 2002;
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Gabrieli 2009), including the remediation by cognitive interventions (Tallal et al.
1996; Merzenich et al. 1996). MEG findings further suggested the existence of two
different sub-groups of LLD subjects, possibly relating to either a delay or an
interruption of gamma band connectivity dynamics (Ribary 2005).

Present research on the diagnosis and treatment of dyslexia has accelerated with
an increasing focus on identifying biological substrates and potential early pre-
cursors (see Benasich and Fitch 2012). A tighter emphasis on precursors, referred
to as ‘‘predyslexic’’ populations, should enable earlier identification of those
children at highest risk for dyslexia and provide insight into the etiologies, com-
mon pathways, neurobiological correlates, and behavioral phenotypes of language
learning disorders. Such identification of populations at highest risk is particularly
important, given that current remediation relies exclusively on interventional
therapies that are most effective at a young age. Therefore, more comprehensive
research on cognitive disabilities using structural and functional brain imaging
technologies is necessary for better understanding the alterations in structural and
functional connectivity and especially the oscillatory connectivity dynamics across
subcortical and cortical brain networks (see conceptual figure: Fig. 1b).

5 Alteration and Loss of Functional Network
and Connectivity Dynamics in TBI

Schiff, Ribary and colleagues earlier reported a massive dissociation among
TC-CC-CT networks in traumatic brain injury in persistent vegetative patients
(PVS) who had suffered severe thalamic injury and were unconscious for several
months to several years (Schiff et al. 2002). In a series of studies on these PVS
patients, using MRI (magnetic resonance imaging), PET (positron emission
tomography) and MEG, they reported massive structural damage within thalamo-
cortical systems, combined with a massive shutdown of cortical and sub-cortical
brain metabolism, and a massive reduction in functional dynamics indicating
abnormal, delayed and incomplete brain activity and gamma band responses
(Schiff et al. 1999, 2002; Plum et al. 1998) (see conceptual Fig. 2f). These studies
were in accordance with other functional brain imaging studies, demonstrating
consistently diffuse and uniformly reduced cerebral metabolic activity (Levy et al.
1987; DeVolder et al. 1990; Tomassino et al. 1995; Rudolf et al. 1999; Laureys
et al. 1999), and a selective disappearance of sensory midlatency responses and
early-evoked potentials in comatose patients (Pfurtscheller et al. 1983) and during
anesthesia (Madler et al. 1991).

In addition, these findings demonstrated for the first time that, although PVS is
characterized by massively reduced brain metabolism and functional connectivity,
some PVS patients may express isolated meaningless fragments of behavior that
can be related to islands of residual metabolic and physiological brain activity
(Schiff et al. 2002). An earlier case study described a unique vegetative patient
suffering from bilateral thalamic stroke, who randomly produced occasional single
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words (Schiff et al. 1999). In this patient, isolated regions of preserved cerebral
metabolic activity and thalamocortical transmission were associated with remnants
of the human language system. These findings led to the evaluation of additional
PVS patients with multi-modal imaging techniques in order to determine in detail
what cerebral activity may remain in patients with catastrophic brain injuries.
Schiff, Ribary, Llinas, Plum and colleagues reported the first evidence of reci-
procal clinical-pathological correlation with regional differences of quantitative
cerebral metabolism (Schiff et al. 2002). In addition, these MEG data from the
PVS patients indicated partially preserved but abnormal, delayed, incomplete or
absent dynamic brain activity. Restricted sensory representations evidenced by
slowing evoked magnetic fields and abnormal gamma band activity, were uniquely
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expressed in each patient, and correlated with isolated behavioral patterns in two
patients (Schiff et al. 2002). The combination of MRI, PET and MEG techniques
employed allowed assessment of the residual network properties underlying the
expression of meaningless fractional behavior observed in three of the five chronic
vegetative patients reported.

In the intact normal healthy brain, modular networks process selective sources
of information and are typically integrated into large, coherent or coupled patterns
of activity. These initial findings on PVS patients provided an initial foundation for
identifying mechanisms underlying complex brain injuries and represented a first
step toward characterizing patients with varying degrees of functional recovery
beyond the vegetative state (Schiff et al. 2002). These studies also indicated the
enormous necessity for further brain imaging studies on such PVS patients. The
challenge is to identify such possible isolated network functions within a globally

Fig. 2 Effects of traumatic brain injury (TBI). Central ellipse represents thalamus, wavy boxes
represent specific cortical regions, connecting lines represent both structural and functional
connectivity. Green is healthy, light green and red is loss and dysfunctional, and represents slow
or otherwise compromised connectivity. Blue circles represent severed connections. Black arrows
represent subcortical inputs to thalamus. a Healthy human brain intact structural, functional and
temporal connectivity (indicated in green) with intact cognition and full consciousness and
awareness of external and internal world. b Mild TBI (mTBI) slight alterations in functional and
structural connectivity and slight partial slowing (shown in red), affecting frontal, temporal,
parietal and/or occipital areas, otherwise globally intact structural, functional and temporal
connectivity, with mostly preserved consciousness and noticeable but rather mild perceptual or
cognitive alterations. c Locked in syndrome (LIS) intact structural, functional and temporal
connectivity with intact cognition and full consciousness and awareness, but disrupted motor
output, with no ability to communicate (except possible eye movements). d Focal lesion local
disruption of structural and functional connectivity (shown in light green) accompanied by loss of
specific sensory or cognitive function (or neglect); otherwise intact global structural, functional
and temporal connectivity with intact cognition and full consciousness and mostly preserved
awareness. e Minimally conscious state (MCS) severe alterations in global functional and
temporal connectivity (shown in light green) with probably more or less preserved structural
connectivity; accompanied by global reduction of consciousness and awareness to a minimal
level, and inconsistent ability to follow simple commands. MCS can evolve further with possible
restoration of cognitive functions. In one case electrical deep brain stimulation (DBS) of the
central thalamus improved cognitive and motor function in an MCS patient (Schiff et al. 2007),
probably by activating TC networks and at the same time synchronizing/stabilizing CC-CT
circuitry. f Persistent vegetative state (PVS) disruption in global structural, functional and
temporal connectivity (shown in light green with broken lines) (probably mostly affecting
thalamus, frontal and parietal TC connectivity, and frontal-parietal pathways), accompanied by
complete loss of consciousness and of awareness of the internal or external world with no signs of
ability to follow commands or any adaptive behavior. There is a very small chance that PVS, if
diagnosed correctly, can evolve further into MCS. However, a subgroup of PVS patients
sometimes demonstrate residual and partially preserved local structural, functional and temporal
connectivity allowing them to generate some ‘‘out of context’’ behavioral patterns (Schiff, et al.
2002), such as speaking a few ‘‘words without mind’’ (Schiff et al. 1999). Schiff, Ribary and
colleagues have further analyzed one particular patient with bilateral thalamic lesion, expressing
large arousal and larger brain metabolism at cortical level, which was termed a ‘‘free running
cortex’’ (Schiff et al. 2002), probably indicating ‘‘uncontrolled’’ and over-expressive functional
and temporal connectivity at the cortical level

b
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fractured brain and relating to meaningless fragments of behavior rather than to
some conscious awareness. Such findings will further allow one to avoid misdi-
agnosis and move towards establishing neuroethical guidelines for best possible
clinical practice (Lee et al. 2012).

Many other brain imaging studies have been reported recently (Laureys 2005;
Owen et al. 2010; Victor et al. 2011). These findings indicate the importance of
using multimodal brain imaging technologies to further study, quantify and
understand the many forms of traumatic brain injuries (see conceptual figure:
Fig. 2b–f), ranging from full consciousness to slowing in mild TBI (Huang et al.
2012), to major connectivity changes in severe TBI and coma. The challenge is to
specify its required areas and necessary connectivity (Laureys et al. 2004),
including the targeting of central thalamus for surgical interventions in minimally
conscious patients (Schiff et al. 2007). These findings are consistent with the view
that thalamic and cortiocothalamic systems are critical for conscious experience
(Ward 2011; Alkire et al. 2008). In addition, a recent study measured the effective
connectivity during a mismatch negativity paradigm and reported impaired
backward connections from frontal to temporal cortices in vegetative patients
(Boly et al. 2011). These results specifically emphasize the importance of top–
down projections in recurrent processing that involve high-order associative cor-
tices for conscious perception. Whereas the loss of cognitive functions and con-
sciousness relates to a breakdown of global structural, functional and temporal
connectivity across the TC-CC-CT networks, research findings over recent years
further indicated that dysfunction of some brain areas are more damaging than
others, such as the thalamus (Façon et al. 1958; Castaigne et al. 1980), or the
parietal associative areas (Alkire et al. 2008).

6 Towards Better Understanding Large-Scale Functional
Connectivity Dynamics in Health and Disease

Non-invasive brain imaging technologies (MRI, fMRI, PET, MEG, EEG) available
today, and combined with highly sophisticated signal processing and analysis
techniques are providing complementary and very useful information regarding
brain structure and function. A better characterization and detailed analysis of the of
underlying structural, functional and temporal connectivity among the TC-CC-CT
networks, however, is very important in order to better understand sensory-motor
and cognitive human brain function and its alterations in cognitive disabilities and
pathologies including its relation to altered consciousness in traumatic brain injury.

The challenge for future structural and functional brain imaging studies will be
the quantification and specification of structural, functional and temporal con-
nectivity required to achieve full consciousness and cognition. The various
alterations in local and long-range connectivity (see conceptual figures: Figs. 1, 2)
can then be statistically specified in five dimensions and attributed to the various
brain states in the healthy human brain (wakefulness, deep sleep, REM sleep, etc.)
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and to the various cognitive disabilities and neuro-psychiatric pathologies
including traumatic brain injury (Laureys et al. 2004; Ribary and Ward 2014).
Such imaging and quantification strategies will then allow the determination of
truly brain-based and objective diagnostic markers for cognitive disabilities and
pathologies, by using the highest neuroethical standards towards best possible
clinical practice, and will further allow one to better monitor and improve subject-
specific cognitive, pharmacological and surgical interventions.
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Temporal and Spectral Signatures
of the Default Mode Network

Francesco de Pasquale and Laura Marzetti

Abstract The existence of a structured pattern of neuronal activity in the brain at
rest has been consistently reported in the neuroscience literature. Multiple tech-
niques, such as fMRI, MEG and EEG, showed that spontaneous, slow fluctuations
of cerebral activity are temporally coherent within distributed functional networks
resembling those evoked by sensory, motor, and cognitive paradigms. Among
these networks, the Default Mode network gained large interest because of its
anatomical and functional architecture. In fact, this network seems to reflect the
default brain activity at rest and it has been associated with internal mentation,
autobiographical memory, thinking about one’s future, theory of mind, self-ref-
erential and affective decision making. What processing demands are shared in
common across such a variety of tasks is presently unclear, and to disentangle such
high level tasks into component processes is challenging. Here, we address some
of these aspects by reviewing the current MEG studies on this network. In fact,
while MEG data confirm the observed fMRI spatial topography, some new
intriguing temporal and frequency properties of this network are revealed. Such
findings enrich the original fMRI scenario on the DMN functional roles in terms of
internal coupling and cross-network communication in the brain at rest. The
Default Mode Network’s internal coupling seems to be characterized by slow
frequencies in the alpha and beta range and the cross-network interaction reveals
that the DMN plays a central role in the communication across many different
resting state networks.
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1 Introduction

The ‘‘resting state’’ can be defined as a condition in which the subject is engaged in
unconstrained stimulus independent thoughts, i.e. the brain is not performing any
specific attention-demanding or stimulus dependent task and it switches into a
default mode characterized by mental explorations based on personal introspec-
tion, autobiographical memories, and thoughts of the future (Buckner et al. 2008).
In such an uncontrolled state, brain activations underlying the flow of thoughts
would be expected to vary greatly. Despite this intuitive observation, such stimulus
independent thought during rest recruits a remarkably consistent neural network—
the Default Mode Network (DMN) (Raichle et al. 2001; Shulman et al. 1997).

1.1 Brief History of the Default Mode Network

The discovery of the DMN was an accidental one. The first evidence for the
existence of this network came out when measuring brain activity in humans
during undirected mental states. Indeed, common practice in studying task driven
modulations of brain activity was to acquire passive conditions to be used as
experimental controls. However, while comparing activity during different states it
was observed in the last decade that specific brain regions were more active during
control states than during many goal-directed tasks (Mazoyer et al. 2001; Shulman
et al. 1997). These brain regions have gained much attention from the scientific
community (Gusnard and Raichle 2001; Raichle et al. 2001). Although the
observation of a network of default state was made in the 20th century, the idea
that brain activity persists during undirected mental activity was known earlier.
Electrophysiological support for this hypothesis was apparent since electroen-
cephalogram (EEG) was discovered and it was evident that electrical oscillations
measured by EEG did not stop when the subject was at rest (Berger 1929).

In addition, in 1955, Sokoloff et al. (1955) discovered that cerebral metabolism,
measured by using the Kety–Schmidt technique (Kety and Schmidt 1948), did not
globally change when going from a quiet rest state to performing a challenging
arithmetic problem. Starting from the seventies, Ingvar used regional cerebral
blood flow (rCBF) to show that brain activity persists during rest (Ingvar 1979,
1985) and such activity was structured in consistent, regionally specific patterns
that prominently include prefrontal cortex.
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By the late 20th century, positron emission tomography (PET) became popular,
thus allowing for finer spatial resolution and sensitivity to deep-brain structures
than earlier methods. Moreover, owing to the development of isotopes with short
half-lives, typical PET experiments could include many task and control condi-
tions. This paved the way for performing many imaging studies based on different
tasks examining different aspects of brain functioning: language, perception,
memory and attention. Within a few years, several dozen experiments were con-
ducted, each comprising scans of different tasks and resting state brain activity as a
control condition. The meta-analyses of the passive task data (Mazoyer et al. 2001;
Shulman et al. 1997) resulted in the observation that there are brain regions that
are consistently active in the passive control condition and show a ‘‘deactivation’’
in the task condition in comparison to control. For review see Andrews-Hanna
et al. (2010), Buckner et al. (2008).

1.2 Default Mode Network Functional Roles

Default Mode Network activations have been observed during direct tasks related
to internal mentation, autobiographical memory, thinking about one’s future,
theory of mind, self-referential and affective decision making (Buckner et al. 2008;
Ochsner et al. 2004; Spreng et al. 2009). What processing demands are shared in
common across such a variety of tasks is presently unclear and to disentangle such
high level tasks into component processes is challenging.

Some researchers suggested an involvement of the DMN in scene construction
(Hassabis and Maguire 2007), contextual associations and processing (Bar et al.
2007). Others proposed a role for this network in social (Mitchell et al. 2006;
Schilbach et al. 2008), self-referential or affective cognition (D’Argembeau et al.
2005; Gusnard et al. 2001; Gusnard and Raichle 2001; Wicker et al. 2003). The
divergence across these perspectives, perhaps best exemplified by the different
emphasis in Hassabis and Maguire’s scene construction model (Hassabis and
Maguire 2007) and D’Argembeau and colleagues’ emphasis on self-referential
cognition (D’Argembeau et al. 2005), suggests that the DMN likely comprises
multiple interacting subsystems, e.g., (Buckner et al. 2008). This hypothesis seems
to be supported by the identification of distinct and functionally separated DMN
subsystems: the dorsal medial prefrontal cortex (dMPFC) and the medial temporal
lobe (MTL) systems. The MTL subsystem showed increased activity preferentially
when participants made episodic decisions about their future, see Schacter and
Addis (2007). The common activation during remembering and prospection implies
that a common set of processes underlies these abilities. This evidence hints at the
possibility that the MTL subsystem is more sensitive to the act of simulating the
future using mnemonic imagery-based processes rather than to temporal aspects of
the future per se. In contrast to the constructive function of the MTL subsystem, the
dMPFC subsystem seems to be preferentially active when participants consider their
present mental states (Gusnard et al. 2001; Lane et al. 1997; Ochsner et al. 2005;
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Saxe et al. 2006; Vanderwal et al. 2008; reviewed in Amodio and Frith 2006;
Ochsner et al. 2004). Interestingly, regions within the dMPFC subsystem are also
activated when participants infer mental states of other people (Gallagher et al.
2000; Ochsner et al. 2004, 2005; Saxe and Kanwisher 2003; Saxe et al. 2006;
reviewed in Amodio and Frith 2006; Frith and Frith 2003).

Furthermore, some authors examined how DMN interacts with other networks
during memory retrieval and reported a robust functional dissociation within the
DMN: whereas angular gyrus and posterior cingulate/precuneus are significantly
activated during memory retrieval, an anterior DMN node in medial prefrontal cortex
is strongly deactivated. This finding supports a functional heterogeneity rather than
homogeneity within the DMN during episodic memory retrieval (Sestieri et al. 2011).
The possible neural overlap among affective, self-referential, and social cognitive
processes suggests a broader role for this subsystem in either meta-cognition
(Ochsner et al. 2004), mental state inference (Frith and Frith 2003; Olsson and
Ochsner 2008), social cognition (Mitchell 2006; Mitchell et al. 2006), or the use of
one’s own mental states as a model for inferring the mental states of others (Goldman
1992). However, the precise interplay between emotion, self-knowledge, and pre-
diction of other’s mental states is currently still under investigation, as many stimuli
may confound these processes, see Olsson and Ochsner (2008) for a review.

The large scale interactions among the dMPFC and MTL subsystems are
realized through a local core set of hubs including the Posterior Cingulate Cortex
(PCC) and the anterior medial prefrontal cortex (aMPFC). Consistent with their
possible role of integration as default network hubs, the aMPFC and PCC seem to
share functional properties of both subsystems exhibiting preferential self-related
activity regardless of temporal context.

In general, the presence of such hubs suggests a small-world topology for the
DMN architecture, in which separate functional modules are linked through cen-
tral hubs, and seems to represent a general structure of the brain which allows for
the implementation of the two basic principles of functional segregation and
dynamic integration (de Pasquale et al. 2012b). This is an attractive model for the
organization of brain anatomical and functional networks since it can support both
segregated/specialized and distributed/integrated information processing. Small-
world networks are efficient, tending to minimize the cost of information flow
while supporting high dynamical complexity.

Eventually, a fundamental role for the DMN functions seems to be played by its
competitive interactions with other networks (e.g., dorsal attention network-or in
general task-positive networks). These DMN interactions have an important
cognitive impact: in the healthy brain, greater suppression of the default network is
associated with better memory formation (Daselaar et al. 2004, 2009). As a task
becomes more difficult, DMN suppression increases (McKiernan et al. 2003; Singh
and Fawcett 2008), as if attentional resources are allocated away from intrinsic
thoughts and toward difficult extrinsic tasks. On the other hand, greater DMN
activation (less task suppression or deactivation) just prior to a stimulus predicts
lapses of attention measured as slower and less-accurate performance (Eichele
et al. 2008; Betti et al. 2013).
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To summarize, the above functional and topological properties of the Default
Mode Network raised the interest of the neuroscience community exponentially,
thanks to the fascinating idea that this network, rather than simply reflecting a
quiescent or idling brain state, represents a window into the brain for the under-
standing of the basis of free thought from a neuroscience perspective.

2 Methodologies to Study Default Mode Network
Interactions at Rest with MEG

Studying the covariance structure of spontaneous cortical activity with MEG at rest
is challenging for several reasons. MEG data are often contaminated by several
artifacts including physiologic noise (respiration, heart), head and eye movements,
and environmental noise. The impact of these artifacts is important in resting state
studies because averaging in phase with events cannot be used to improve the signal
to noise ratio, which in resting state MEG connectivity studies will always be poor.
Moreover, inverse source modeling is inherently uncertain and is especially so when
the objective is to recover multiple simultaneously active sources. Most of these
factors and their impact on the detection of MEG Resting State Networks (RSNs)
have been discussed in Brookes et al. (2011a, b; de Pasquale et al. 2010; Mantini
et al. 2011). However, despite these difficulties, a number of studies have employed
MEG to measure functional connectivity in both sensor and source space, and a
variety of methodologies has been described. Here we summarize some of the most
recent and promising approaches based on the MEG band limited power, for a
review see Darvas and Leahy (2007).

Several approaches in the frequency domain have been presented to study MEG
connectivity. For example, dynamic imaging of coherent sources (Gross et al.
2001) is a technique in which a frequency domain beamformer is employed to
project MEG data spectral properties (cross-spectra) onto the source space
resulting in coherence maps between brain regions. Other studies have based
functional and effective connectivity metrics on the insight that the imaginary part
of the cross-spectra cannot be explained as a mixing artifact due to field spread and
cross talk (Nolte et al. 2004). From this observation, a series of methods to identify
(Ewald et al. 2012; Nolte et al. 2006, 2009) and localize brain interactions
(Marzetti et al. 2008, 2013; Shahbazi Avarvand et al. 2012) has been developed.
Also the phase slope has been used as a marker for effective connectivity in (Nolte
et al. 2008). For a comprehensive review on these methods see also the chapter
from Nolte and Marzetti in this book. Other metrics include phase lag index—PLI
(Stam et al. 2007)—which quantifies asymmetry in the phase lag distribution
based on the observation that field spread and cross talk will cause a symmetric
distribution and therefore will not contribute to PLI, and synchronization likeli-
hood (Stam et al. 2002). Essentially, PLI takes two separate electrical signals and
looks for isochronous recurrence to a certain part of their (individually different)
attractors. Interestingly, in a recent paper (Liu et al. 2010), Liu and colleagues
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employed a MEG sensor space ‘envelope correlation’ metric to show that inter-
hemispheric connectivity (observed by functional connectivity MRI, fcMRI) is
mirrored by interhemispheric neuromagnetic correlation. Other studies (Guggis-
berg et al. 2008) have also employed time domain beamforming and imaginary
coherence to efficiently map connectivity patterns in tumor patients.

Within the framework of source-space connectivity, we will now focus on three
methods which have been successfully developed and applied to investigate MEG
connectivity at rest and in particular the DMN within and across network inter-
actions. The first method developed by de Pasquale and colleagues, is based on the
instantaneous correlation of MEG Band Limited Power (BLP) in the time domain
(de Pasquale et al. 2010, 2012a). The second approach, developed by Brookes
et al. is based on Independent Component Analysis and MEG power envelope
(Brookes et al. 2011b). The third method, developed at the University Medical
Center Hamburg-Eppendorf by the group of Andreas Engel, takes advantage of
orthogonalized signals to identify delayed interactions thus assuming that all the
instantaneous interactions are induced by artificial spurious correlation (Hipp et al.
2012). The different temporal scales of the MEG BLP compared to the MEG
signals are shown in Fig. 1 where the two quantities estimated for the same voxel
are shown.

Interestingly, all three methods showed important similarities regarding the
Default Network interactions’ properties. In (Hipp et al. 2012) it is assumed that
signal components of the same source measured from different sensors will be
characterized by an identical phase while in many cases, different neuron popu-
lations have a variable phase relation. This difference can be exploited to remove
spurious correlation patterns due to the MEG limited spatial resolution. In par-
ticular, every considered pair of signals is orthogonalized before the computation
of their power envelopes. This allows one to remove the spurious common cor-
relation leaving a residual ‘cleaned’ spatial correlation. The activity orthogonali-
zation is performed in the frequency domain on the estimated band limited activity

Fig. 1 MEG signal versus power time-scales. Example of time courses of MEG activity (black)
and power envelope (red)
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but this can similarly be done in the time domain where it generalizes to broadband
signals. Of practical importance is the selection of the time interval to derive the
regression coefficient. This can range from the entire dataset to just a single time
window during which the signals’ relation should be constant. If such stationarity
is fulfilled, longer time intervals provide more robust estimates and may lead to a
superior sensitivity of the method. However, it is important to stress that without
stationarity, the orthogonalization step may be incomplete. Eventually, the inter-
action between orthogonalized signals is quantified by means of correlation of the
power envelopes obtained by squaring the absolute values of the complex spectral
estimates after a logarithmic transform (this makes the power more normally
distributed). The correlation with a given seed is considered as significant when it
is higher than a baseline value computed as the average correlation with the rest of
the brain.

In Brookes et al. (2011a, b) an approach based on Beamforming and the
computation of the Hilbert Envelope is presented. MEG data are frequency filtered
in the typical physiological bands and covariance matrices are generated inde-
pendently for each frequency band, using the whole recording session at the
subject level. It is important to stress that this corresponds to assuming that sources
of interest are stationary throughout the experiment. Following beamformer pro-
jection, source-space signals are normalized and Hilbert transformed. The absolute
value of the analytic signal, called the ‘‘Hilbert envelope’’, is computed to obtain
an amplitude envelope of oscillatory power. Then, data from all subjects are
concatenated in the time dimension and temporal Independent Component Anal-
ysis (ICA) is applied using the fastICA (http:www.research.ics.tkk.fi/ica/fastica)
algorithm. The spatial signature of each IC is measured by Pearson correlation
between the temporal IC (tIC) and the time course of each voxel in the concate-
nated dataset. This process is implemented independently for each frequency band
of interest. In addition to the ICA-based approach, the authors also present a
seed-based approach for DMN characterization to show that independent temporal
signals arise from spatially orthogonal networks. Seed locations in the motor,
fronto-parietal, and visual networks are extracted from fMRI data. Down-sampled
Hilbert envelopes are extracted for each of these seed locations and in order to
generate seed-based correlation maps, data are concatenated across subjects. The
Pearson correlation between seed time course and down-sampled Hilbert enve-
lopes for all other brain voxels is computed. In (Brookes et al. 2011b), the validity
of correlation measurements are tested using a simulation approach in which two
dipolar sources (at the seed and test locations) are repeatedly simulated. To obtain
noise data to be added to these simulated data, one empty-room session is recorded
(no subject in the scanner). The simulation step is repeated to assess the statistical
significance of measured functional connectivity values. Simulated MEG data are
projected into the brain using the same beamformer weights derived from and
applied to the real MEG data. This interesting approach allows one to check
whether the adopted beamformer projection generates spurious correlation due to
the volume conduction and signal leakage.
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Another interesting aspect of the work of Brookes and colleagues is the dif-
ferent metrics the authors propose to assess the functional connectivity: two are
based on envelope correlation—termed Average Envelope Correlation (AEC) and
Correlation of Averaged Envelopes (CAE); while two others are based on
coherence—termed coherence (Coh) and Imaginary coherence (ICoh). In all cases,
connectivity is measured between the projected signal at the seed voxel, and that
from all other (test) voxels in the brain.

The approach presented in (de Pasquale et al. 2010, 2012a) is based on the BLP
but is different from the previous ones; it is developed to take into account the non-
stationarity of brain connections. This temporal non-stationarity represents an
important aspect of the DMN internal and across-network interactions. In fact,
based on the observation that the coupling among different RSN nodes oscillate
over time, de Pasquale et al. propose an approach to estimate time epochs in which
the internal connectivity of a network is optimized. In what follows, we describe
the basic ingredients of this methodology.

The MEG data are pre-processed by applying a pipeline based on ICA
described in (de Pasquale et al. 2010; Mantini et al. 2011), which extends an
approach described in (Hironaga and Ioannides 2007). Basically, different from
what was described above where each IC was related to a given resting state
network, a subset of ICs is classified as artifactual and removed. Importantly, the
authors do not assume that a network can be assigned single ICs but rather a
combination of them. For this reason, once non-artifactual ICs are identified these
are linearly combined to generate the ‘cleaned’ MEG signal. To this aim, source-
space IC maps are reconstructed from the remaining ICs on a Cartesian 3D grid
with 4 mm voxel side using a weighted minimum-norm least squares (WMNLS)
procedure. For each voxel and each time sample, source-space signals are obtained
by linear combination of IC time-courses, each weighted by its source-space map.
Then, source-space signals are filtered in the typical physiological frequency
bands. From these filtered signals, MEG power time series are obtained by aver-
aging the square of source-space MEG signals.

In order to determine the time scale to adopt for the non-stationary analysis, the
total interdependence function, a coherence-based measure of the functional
connectivity, is examined from nodes of known network affiliation. The authors
report initially for the Default Mode Network and the Dorsal Attention network
(de Pasquale et al. 2010), an increase in the vicinity of 0.1 Hz. This result was then
extended to the Ventral Attention, Motor and Language networks. Based on this
observation the length of 10 seconds, the reciprocal of 0.1 Hz, is selected as the
window duration to be used for the evaluation of time-varying node-pair
correlation.

Eventually, to identify epochs of high within-RSN correlation or maximal cor-
relation windows (MCWs), de Pasquale and colleagues developed the ‘extended
maximal correlation window’ (EMCW) algorithm. This algorithm accepts as input
power time-series spanning an entire MEG run from one seed and two other nodes of
known network affiliation. The objective of this algorithm is to identify epochs in
which the contrast between within-network, i.e. between the seed and other network
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input nodes, versus external node-to-network correlation, i.e. between the seed and
an external node, is maximal. Specifically, the algorithm seeks epochs in which the
least within-network correlation is above a threshold while the external node-to-
network is minimal. This is accomplished using an iterative strategy based on the
Old Bachelor Acceptance thresholding technique (Hu et al. 1995). The algorithm is
run starting with different groups of input nodes to obtain a specific set of MCWs for
each network by concatenating the MCWs for each input node group. Additional
details on the selection of the threshold and criteria for epoch selection can be found
in (de Pasquale et al. 2010, 2012a, b; Mantini et al. 2011).

The network connectivity maps and cross-network interaction matrices are
based on the definition of a Z-score obtained from correlation maps computed in
all the sessions of all the subjects in all the estimated MCW epochs. To obtain the
final RSN connectivity maps, the strengths of the correlations in every voxel of the
brain with the seed, compared to the mean correlation in the whole brain, is tested.
Then, each connectivity map is corrected for false discovery rate—FDR
(p \ 0.05) and thresholded at a significant level to obtain a binary map. All the
binary maps from the different seeds are combined together through a logic AND.
This step insures that only regions of significant correlation across all nodes of a
network are maintained.

Analogously, the cross-network interaction matrices are also based on Z-scores
to is the strengths of the correlations between a pair of RSN nodes compared to the
mean correlation of these nodes, with the rest of the brain. It must be stressed that,
based on the above definitions, Z-scores are defined on specific temporal epochs
including all the MCWs obtained for each specific RSN. This quantity represents
the average interaction between one ‘fully engaged’ network and another network.

In (de Pasquale et al. 2012a) MEG-RSNs interactions are not only characterized
on average throughout the recording period by computing matrices of node-to-
node or RSN-to-RSN power correlation, but also by characterizing the dynamics
of this interaction. This is achieved by computing the degree of temporal overlap
between two networks, when each one is respectively in a state of high internal
correlation (or MCW). Given two sets of RSN MCWs, we computed the MCW
overlap as the average ratio of overlap of all the possible pairs of MCWs from the
two networks. It must be noted that differently from the power correlation matrix,
this matrix is symmetric by definition. To summarize, in Fig. 2 we report the
flowcharts of the described ICA and seed-based approaches.

2.1 Methodological Considerations

The methodologies adopted in the MEG community, due to the intrinsic nature of
the MEG signal and the acquisition setup, differ at several levels. The first level is
related to the solution of the inverse problem for which different kinds of spatial
filters, adaptive or non adaptive, with or without noise normalization, in time or in
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Fig. 2 MEG seed vs ICA based pipelines. a Flowchart of the analysis pipeline developed in de
Pasquale et al. (2010, 2012a); b Flowchart of the analysis pipeline developed in Brookes et al.
(2011a, b)
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frequency domain, have been developed and employed. The different strategies
provide results with different properties (e.g., in terms offield spread) that are related
to the different assumptions of the method. Specific metrics have been defined to
measure the performance of the inverse strategy used with regard to localization
error, presence of ghost sources, point spread function, cross talk function or their
combinations (Hauk et al. 2011). Despite the exact choice, all the considerations on
the obtained results have to be made without discarding the information on the
above characteristics since they basically define the method limitations. This is
particularly relevant for connectivity mapping since spurious connectivity can be
induced by e.g., mislocalized sources, ghost sources, field spread.

A second level is represented by the particular parameter, i.e. signal vs power or
linear vs nonlinear association measures adopted to study the functional connec-
tivity. In fact, a full understanding of brain function requires the investigation of
brain interactions at different temporal scales: the slow power fluctuation scale
(several seconds) and the faster neuronal communication scale (several millisec-
onds) see Fig. 1. The first approach has been traditionally pursued with fMRI and
more recently also with MEG as extensively discussed above. The second is
unique to MEG since it measures the activity of neuronal populations in which
communication has been shown to be accomplished in large part via synchronized
oscillatory activity (Buzsaki 2009; Fries 2009; Singer 1993). This level of
investigation of RSNs offers MEG the privilege and the challenge to provide a
unified framework for the relationship between fast oscillatory brain activity and
slow temporal dynamics. The exploitation of different connectivity metrics based
on signal properties or on power modulation properties represents a first step
towards this integration. Also within one temporal scale, the choice of a particular
connectivity metric plays a final fundamental role for the characterization of the
results. Temporal correlation of BLP is a robust strategy but many other approa-
ches, e.g., non linear measures of interaction or probabilistic ones will provide
information on different aspects of the connectivity.

Moreover, seed based approaches are different from ICA based approaches. The
main limitation of seed based approaches is that it is assumed that the seed, usually
obtained from previous independent experiments, is reproducible across subjects.
With ICA this limitation is somehow overcome, but on the other hand, it is
assumed that different nodes of the same network are characterized by an identical
signal time course. In this way, the hierarchical structure of the network and the
different roles played by different nodes cannot be investigated. In addition, the
cross-network interaction is somehow limited by the IC independence assumption,
i.e. ICs are by definition either spatially or temporally independent. In (Brookes
et al. 2011b), since the ICA is run separately on the different frequency bands, the
cross-frequency network interaction is presented, i.e. the interaction is computed
between ICs extracted from different frequency bands. Seed-based and ICA based
approaches also share some similarities: in a seed based approach a seed is con-
sidered reproducible across subjects, while in the temporal ICA approach, a similar
assumption is made when data from a set of subjects are concatenated together.
This assumes that the different subjects are just replications of one subject.
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Once a given parameter is chosen to quantify the strength of coupling, a critical
question is how to define its statistical significance. A common feature of the
different strategies described so far is that they all assume the temporal correlation
as a linear measure of coupling among brain areas (Brookes et al. 2011a, b; de
Pasquale et al. 2010; Mantini et al. 2011). Then, correlation values are compared
to a ‘baseline’. In (de Pasquale et al. 2012a; Hipp et al. 2012) this baseline is
defined as the average correlation of the seed with the rest of the brain. Such a
baseline is subject specific and scales the coupling with a given specific level of
‘general’ connectivity in the brain during the recording session. In this way, in a
group analysis consistent deviations from the average connectivity in the brain are
tested. In other studies, however (Brookes et al. 2011b) the baseline value of
connectivity is not estimated from the real acquired data but from simulated data
obtained by adding synthetic noise to real empty-room data. This threshold is not
subject specific and it allows spurious connectivity to be induced by the different
pre-processing steps. This approach has the advantage that the coupling is not
scaled, i.e. all subjects are tested against the same reference value.

Another common aspect of these approaches is the adoption of ICA based
methods. ICs are always used as a classification methodology but the meaning of the
estimated ICs is opposite. In one case, the identified temporal ICs are linked to RSNs
so that a subset of the estimated ICs are mapped one to one to a subset of resting state
networks and the remaining ones are discarded. In the another case, a subset of the
identified ICs are linked to artifactual components of the signal and are discarded
while the remaining ones are recombined to build a ‘cleaned’ MEG signal. Thus, the
real signal is assumed to be a linear combination of the estimated ICs.

Based on these considerations, it must be stressed that a complete scenario can
only be gathered by integrating the properties highlighted by ICA and seed based
results. The former will provide important information on the segregation prop-
erties of RSNs without any prior information and the latter will provide infor-
mation on the integration among different RSNs. Interestingly the spatial maps and
frequency content obtained by these different approaches are in good agreement.

3 Stationary Connections of the Default Mode Network

There is growing evidence of DMN internal coupling observed with MEG. Typ-
ically, a first step in these analyses is to compare the DMN topography with that
from fMRI which has been playing the role of golden standard in the identification
of RSNs so far. In fact, in Brookes et al. (2011a, b; de Pasquale et al. 2010, 2012a,
b) great care is shown in developing techniques to quantify the MEG-fMRI
agreement. In Fig. 3 we report the comparison between the nodes of the RSNs
usually reported in the fMRI and MEG literature.

This comparison is a very complex and delicate topic since these techniques
highlight different properties of the networks under investigation. Apart from the
obvious difference between fMRI and MEG spatial and temporal resolution, it
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must be reminded that these techniques are intrinsically different given the dif-
ferent nature of the collected signals. Thus, the observed differences will not claim
a superiority of one technique compared to the other but it will simply enrich a
multivariate scenario of the considered network. In (Brookes et al. 2011b) good
agreement is found between the DMN observed with fcMRI and MEG which
corresponds to one of the 25 temporal ICs extracted in the alpha band. In par-
ticular, nodes are observed in medial frontal cortex and left/right inferior parietal
lobules. The main important difference with fMRI is the absence of the Posterior
Cingulate Cortex (PCC), an important node of the DMN which has been consis-
tently reported from other studies and it is hypothesized to play a fundamental role
in connectivity at rest (see Fig. 4 panel A). This point is further discussed in the
Conclusions section. Of most interest in (Brookes et al. 2011b) is the difference
between amplitude and correlation spectra. In the left/right fronto-parietal and the
default mode networks clear h-band components are observed in the amplitude
spectra, but not the correlation spectra, indicating that despite the prevalence of h-
oscillations, they are not involved in fronto-parietal or default mode connectivity.

Analogously, also in the motor network, a similar property is observed: despite
the prevalence of 8 to 13 Hz oscillatory activity in both primary sensorimotor
regions, no significant correlation is observed between the Hilbert envelopes in
this frequency band.

Regarding the DMN cross-network interactions, since temporal ICA forces
orthoghonality among the networks, this approach cannot be used to study network

Fig. 3 fMRI versus MEG resting state networks. Location of the consistent nodes of the dorsal
attention (yellow), ventral attention (Pink), default mode (cyan), visual (red), motor (green) and
language networks (brown) reported in the fMRI literature (round marks) as compared to the
corresponding regions observed by MEG (solid lines)

Temporal and Spectral Signatures of the Default Mode Network 463



cross-coupling within the same frequency band. However, since ICA is adopted
independently to each frequency band, cross-network interactions can only be
addressed between different frequency bands, in a cross-frequency fashion. In this
case, good agreement is reported between fMRI and MEG patterns of interaction
between the DMN (for the MEG in the a-band) and the other considered networks
(for the MEG in the b-band) such as the left/right frontoparietal, medio-frontal,
parietal, visual, motor and cerebellum. These results show some frequency
dependence; correlation between nodes of the fonto-parietal, DMN, and motor
networks is observed across the 10–30 Hz range, but is strongest in the b-band.
This finding agrees with the work by Mantini et al. (Mantini et al. 2007) who used

Fig. 4 The internal coupling of the Default Mode Network is consistently observed mainly in the
alpha band under the temporal stationarity assumption both from an ICA based approach (Panel
A modified from Brookes et al. 2011b) and a seed based a one (Panel B left—modified from de
Pasquale et al. 2010). When the non-stationarity is accounted for a mixed contribution of alpha
and theta bands is revealed (Panel B right)
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concurrent EEG/fMRI to show that the envelope of band-limited EEG signals
correlates with BOLD signals from separate network nodes. Moreover, these
results are in line with (de Pasquale et al. 2012a) in which a strong cross-network
interaction of the DMN in the alpha and beta band was found.

By means of BLP seed based connectivity, the picture of the MEG internal
coupling of the DMN looks different from the one described so far. As a matter of
fact, under the assumption of temporal stationarity, only intra-hemispheric con-
nections, ipsilateral to the seed, are observed in the DMN (when the Left or Right
Angular Gyrus are selected as seeds). These connections relate to specific known
fMRI DMN nodes such as the Superior Frontal Sulcus, Posterior Cingulate and
retrosplenial cortex. This result cannot be attributed to differences between fMRI
and MEG in signal temporal frequency content, as shown in (de Pasquale et al.
2010) in which the convolution of the MEG power time series with a canonical
hemodynamic response function generated only a spatially blurred version of the
original results. However, the identified DMN connections were strongest in the
alpha band (see Fig. 4 panel B—left).

4 Dynamic Connections of the Default Mode Network

In (de Pasquale et al. 2010) the comparison of the fMRI and MEG DMN topog-
raphy revealed a discrepancy showing only ipsilateral connections in the MEG
case when a stationary interaction among DMN nodes is assumed. Now, if the
same interactions are examined during smaller temporal epochs, a non-stationarity
property is revealed, i.e. same nodes alternate periods of high and low synchro-
nization. In this scenario, it seems that a static spatial topography is not sufficient
to fully describe the network coupling: the temporal axis must be considered, i.e.
the coupling must be considered dynamic over time. Thus, to investigate this
dynamic interaction the following properties must be addressed: the temporal scale
of interaction, the frequency content of both internal and external network cou-
pling, the degree of non stationarity of the DMN compared to other RSNs and its
meaning. In (de Pasquale et al. 2012a), in order to estimate the temporal scale of
dynamic interactions the spectral properties of interregional correlations are
investigated. Autospectra and total interdependence, a measure of the internodal
coherence, are computed for each subject on the principal nodes of DMN (L/R
AG;LPCC; LMPFC), and then averaged across subjects. This analysis showed a
peak around 0.1 Hz suggesting appropriate time epochs to be as large as 10 s. Of
note, in a different study (Luckhoo et al. 2012), although by means of different
techniques, a similar range of temporal epochs is proposed to characterize the
dynamics. The authors optimize the time-frequency windows for connectivity by
estimating the distribution of functional connectivity scores between nodes of
known RSNs and contrasting it with a distribution of artefactual scores due to
spatial leakage caused by the inverse problem. Interestingly, it is reported that the
connectivity is best estimated via correlations in the oscillatory envelope in the

Temporal and Spectral Signatures of the Default Mode Network 465



8–20 Hz frequency range. In this work, differently from (de Pasquale et al. 2012a),
this result is obtained by assuming that the DMN is both internally and externally
coupled to other network nodes in a cross-frequency fashion (alpha–beta syn-
chronization) (Brookes et al. 2011b). Nevertheless, the identified range is in line
with (de Pasquale et al. 2012a) which showed the strongest cross-network inter-
actions in the alpha and beta bands.

Now, when the non-stationarity is taken into account, by considering the 10 s
temporal scale, MEG activity shows transient formation of complete RSNs,
including nodes in the hemisphere contralateral to the seed. In this case, BLP
correlations are more bilateral and thus similar to fMRI RSNs (Cordes et al. 2001;
Damoiseaux et al. 2006; De Luca et al. 2006; Greicius 2008; Greicius et al. 2003,
2009).

Such similarity is documented via a nonparametric test based on Spearman rank
correlation. Thus, a complete set of networks, closely resembling the fMRI ones,
can be obtained from MEG. In particular, six RSNs are described: the default
mode network (DMN), the dorsal attention network (DAN), the ventral attention
network (VAN), plus language (LAN), somatomotor (SOM), and visual (VIS)
networks.

The next question is if there is any frequency specificity of this internal cou-
pling. In fact, previous ECoG studies and theoretical considerations suggest that
long-range and local synchronization are differentially reflected at low and high
frequencies, respectively. For the DMN the most fMRI-like topography is reported
in the theta and alpha bands (de Pasquale et al. 2010). Interestingly, stronger
correlation with frontal DMN nodes (LMPFC2, LSFS, RMPFC) is observed in
theta as compared to alpha or beta bands, see Fig. 4 (panel B—right). Unambig-
uously, no long-range gamma band power correlations were obtained even when
the non-stationarity is taken into account.

Among all RSNs, the DMN also showed the strongest interaction with other
networks, and this effect is especially clear in the beta and alpha bands, see (de
Pasquale et al. 2012a). Other networks with significant cross-network interactions
include the DAN while other networks such as VAN, language, and visual net-
works appeared relatively segregated on average. When the node-node interactions
are investigated, five out of seven nodes of the DMN showed significant inter-
actions with nodes of other networks in the beta band. Among these nodes, the
posterior cingulate cortex (PCC) showed the highest mean interaction with all
other nodes, see Fig. 5.

Now, a key finding reported in this work, is that the observed strong cross-
network interactions of the PCC, and more generally the DMN, are limited to
temporal epochs in which this network is strongly internally coherent. The DMN
does not exhibit strong correlations with other networks when they are in a state of
internal coupling. Importantly, the principle that a network interacts with others
when it is in a state of strong internal coherence generalized to both DAN and
somatomotor networks, the other two networks with significant cross-network
interactions. Thus, these results can be summarized as:
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1. RSNs can be recovered with MEG BLP or power and Hilbert based envelope
correlation, especially in the alpha and beta bands, and exhibit large-scale,
spatially segregated topographies similar to those obtained with resting state
fMRI;

2. RSNs, when internally engaged, differ in the degree with which they interact
with other networks;

3. The DMN exhibits the strongest cross-network interactions in the beta and
alpha bands;

4. Cross-network interactions are transient: The DMN, and other significantly
cross-interacting networks (DAN, somatomotor), do not interact with other
networks when they are not internally coupled, nor when correlation in other
networks is strong. Cross-network interactions involve one fully engaged
network and a subset of nodes of another network, when it is in a state of lower
internal correlation. It appears that some nodes can break away from their usual
RSN and transiently correlate with one of the networks that tend to cross-
interact, especially DMN.

5. Networks spend a variable fraction of time in a state of high internal correla-
tion, and this property seems to inversely relate to their tendency to couple with
other networks. Interestingly, the DMN, the most interacting network, spends

Fig. 5 DMN cross-network interactions. The Default Mode Network plays a central role in the
RSN cross-network interactions in the beta band during epochs in which it is highly, internally
coupled. In particular, among the DMN nodes, the PCC is statistically more central than the other
nodes. (Taken from de Pasquale et al. 2012a)
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on average, less time in a state of high internal correlation (20 % in alpha;
36 % in beta) than the VAN (53 % in alpha; 56 % in beta), the least interacting
network. This result is remarkable given these two networks are topographic
neighbors yet display very different patterns of temporal interaction (de Pas-
quale et al. 2010, 2012a). Thus, an intriguing hypothesis is emerging that the
observed non stationarity can be interpreted as a mechanism to allow efficient
cross-network interactions through the DMN and in particular the PCC. This
idea is schematically reported in Fig. 6.

This non-stationarity interpretation could reconcile the distinct spatially sepa-
rated fMRI networks with the dynamically integrated MEG networks: this strong
cross-network interaction happens dynamically in a small fraction of time and
therefore when RSN interaction is averaged on long temporal windows (as with
fMRI), the internal coupling will weigh more and thus allow only separated net-
works to emerge.

Fig. 6 DMN—DAN cross-network interaction mechanism. a Coupling of the Default Mode
Network during epochs in which it is highly internally coupled; b coupling of the Dorsal
Attention Network epochs in which it is highly internally coupled; c cross-network coupling
between the Default Mode Network and the Dorsal Attention Network during epochs in which
the DMN is highly internally coupled. DAN is less internally engaged in favor of cross-network
coupling with DMN
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5 Clinical Applications of the MEG Default Mode Network
Connectivity

The complex scenario depicted from MEG connectivity at rest and the central role
played by the DMN are paving the way to many clinical applications. For
example, the internal coupling and more importantly an abnormal interaction of
this network with the other RSNs (e.g., task positive networks) is now being
considered a possible biomarker of different mental disorders, see (Broyd et al.
2009) and currently there is a growing literature in which DMN connectivity
results are being translated into different clinical fields.

In Castellanos et al. (2010, 2011) the plasticity and reorganization of MEG
functional networks are linked to the cognitive recovery of acquired brain injury
patients. This provides new evidence of the neurophysiologic mechanisms
underlying neuronal plasticity processes after brain injury, and suggests that these
changes are related with observed changes at the behavioral level. In the same
vein, in (Andrews-Hanna et al. 2010; Stam et al. 2009) the link between RSNs and
neurodegenerative disorders such as Alzheimer (AD) and Parkinson Disease (PD)
is investigated. These studies show that in PD and AD, characteristic patterns of
abnormal oscillatory activity in different frequency bands can be identified as well
as distinct patterns of abnormal RSN connectivity in demented and non-demented
PD, as well as in AD. In PD, abnormal oscillatory activity and disturbed con-
nectivity may respond differently to dopaminergic treatment.

Moreover, it has been shown that in presence of attention-deficit/hyperactivity
disorders (ADHD), DMN functional connectivity between the anterior and pos-
terior aspects is reduced. In particular, in (Wilson et al. 2013) unmedicated adults
with ADHD exhibited broadband deficits in medial prefrontal cortices (MPFC),
but not in other DMN regions compared to adults without ADHD. Unmedicated
patients also showed abnormal cross-frequency coupling in the gamma range
between the MPFC and posterior cingulate areas, and disturbed balance within the
DMN as activity in posterior regions was stronger than frontal regions at beta and
lower frequencies, which dissipated at higher c-frequencies. Administration of
pharmacotherapy significantly increased prefrontal alpha activity (8–14 Hz) in
adults with ADHD, and decreased the cross-frequency gamma coupling. These
results indicate that neurophysiological aberrations in the DMN of patients with
ADHD are not limited to ultra slow oscillations, and that they may be primarily
attributable to abnormal broadband activity in the MPFC.

Another clinical application relates to the study of the obesity in which altered
functional connectivity in the DMN and temporal lobe network has been shown
(Kullmann et al. 2012). In the DMN, obese subjects showed increased functional
connectivity bilaterally in the precuneus while the right anterior cingulate revealed
decreased functional connectivity strength. Furthermore, in the temporal lobe
network, obese subjects showed decreased functional connectivity strength in the
left insular cortex. The functional connectivity magnitude significantly correlated
with body mass index (BMI). Taken together, these results complement and
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expand previous functional neuroimaging findings by demonstrating that obesity
and insulin levels influence brain function during rest in networks supporting
reward and food regulation.

Another interesting application is the epilepsy in which patients with juvenile
absence epilepsy are investigated (Sakurai et al. 2010). Results show strong medial
prefrontal activation in all patients, with simultaneous activation in the posterior
cingulate and precuneus in three of five patients, or slightly after medial prefrontal
activation.

6 Conclusions

Resting State Networks can be recovered with MEG as documented by several
papers on this topic which showed a consistent reproducibility of the Default Mode
Network obtained using different approaches with similar frequency signatures in
the range of alpha and beta bands, see Brookes et al. (2011a, b; de Pasquale et al.
2010, 2012a; Hipp et al. 2012; Luckhoo et al. 2012). Moreover, this network, and
in particular PCC, stand out as functional cores of cross-network integration in the
awake resting state. This result is in line with previous structural (Hagmann et al.
2008; Sporns et al. 2007) and functional connectivity studies (Buckner et al. 2009;
Fransson and Marrelec 2008; Hagmann et al. 2008; Tomasi and Volkow 2011) that
have described the centrality of the DMN in terms of graph theory. In (de Pasquale
et al. 2010, 2012a), for the first time this property is reported as dynamic on a time
scale of seconds which is in agreement with the reported functional significance of
these nodes. In fact, PCC is typically reported to serve an important adaptive
function and it is implicated in broad-based continuous sampling of external and
internal environments (Raichle et al. 2001). This region, together with the retro-
splenial cortex, is also associated with the processing of emotionally salient
stimuli, and may play a role in emotional processing related to episodic memory
(Raichle et al. 2001). Clinical studies showed that this region is implicated in
working memory dysfunction (Greicius et al. 2003), it is susceptible to atrophy in
Alzheimer disease patients (Buckner et al. 2009) and it shows reduced connec-
tivity with anterior DMN regions in ADHD patients. PCC centrality is apparently
in contrast with the work of Brookes (Brookes et al. 2011b) in which this node is
not as strongly connected to the other DMN nodes. A possible interpretation could
be related to the different approach used for the analysis. In fact, temporal ICA
identifies networks by maximizing their independence and thus it will provide
networks that are internally coupled, but by definition, segregated from the other
networks. Now, if a node is central, thus allowing the communication across
multiple networks, its time course will be a mixture of different contributions from
the different networks and therefore it will not be identified by the ICA. Another
important aspect of this cross-network interactions is that they occur when the
DMN is internally engaged, whereas weak or no interactions occur at other times,
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even when other networks are internally coupled. This transient functional cen-
trality property of the DMN extends from resting state to goal-driven behavior. In
fact, the metabolic activity within the DMN is commonly suppressed (or deacti-
vated) during goal-driven behaviors (Raichle et al. 2001; Shulman et al. 1997) and
many different sensory, motor, and associative brain regions also exhibit para-
digm-specific deactivations that co-occur with task deactivation of the DMN.

Spectral characterization of network communication is feasible with MEG but
not with fMRI because of the sluggish hemodynamic properties of the BOLD
signal (Boynton et al. 1996). For the DMN in particular, higher values of cross-
network interactions were obtained in the beta band (de Pasquale et al. 2012a).
There are also spectral-based distinctions between DMN and DAN, with the
former spending more time internally coupled in the beta band, while the latter
more in the alpha band. This distinction is consistent with previous work that
highlights an attentional role for alpha rhythms (Capotosto et al. 2009; Klimesch
1997), and a complementary role of alpha and beta rhythms in relation to DAN and
DMN (Laufs et al. 2003; Mantini et al. 2007). To date, there have been few
attempts to characterize the electrophysiological counterparts of fMRI-RSNs. A
previous electrocorticography (ECoG) study reported significant spatial correla-
tions between fMRI RSNs and slow cortical potentials in the delta range, as well as
interregional BLP correlation in higher frequencies (He et al. 2008). Gamma BLP
correlation has been observed in bilateral auditory cortex (Nir et al. 2008) con-
sistent with strong interhemispheric functional connectivity in fMRI. MEG studies
have emphasized the importance of alpha and beta BLP in recovering MEG and
EEG correspondents of the DMN and the DAN (de Pasquale et al. 2010; Laufs
et al. 2003; Mantini et al. 2007). Similarly, Brookes et al. (2011a, b) recovered
MEG correlates of the fMRI-sensorimotor RSN and observed that the beta band
yielded the closest topographic similarity. Beta rhythms have been reported also to
be the main driver of large scale spontaneous neuronal interactions at the MEG
sensor level (Liu et al. 2010) and source level examined with ICA (Brookes et al.
2011b). Our results show the importance of beta (and alpha) rhythms not only for
within—but also for cross-network interactions in the resting state. A possible
interpretation of the dominant role of beta rhythms, in regulating functional
interactions at rest, comes from a recent hypothesis by Andreas Engel and Pascal
Fries (Engel and Fries 2010), and the observation that the DMN is ubiquitously
deactivated across a wide range of cognitive tasks (Shulman et al. 1997). Engel
and Fries argue that beta rhythms, even though classically associated with motor
tasks, may play a more general role in maintaining the ‘status quo’ of a current
behavioral state. For instance, in the motor system, beta rhythms are strong at rest
or during maintenance of a motor set, but are disrupted by a change in motor
behavior. Similarly, in perceptual-cognitive tasks, this rhythm is associated with
the dominance of the endogenous top–down influences to override the effect of
potentially unexpected external events. Beta band oscillations might therefore be
important in maintaining the cognitive status quo.
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Methods to Estimate Functional
and Effective Brain Connectivity
from MEG Data Robust to Artifacts
of Volume Conduction

Guido Nolte and Laura Marzetti

Abstract Due to the high temporal resolution of MEG data they are well suited to
study brain dynamics while the limited spatial resolution constitutes a major
confounder when one wants the estimate brain connectivity. To very large extent,
functional relationships between MEG sensors and also between estimated sources
are caused by incomplete demixing of the brain sources. Many measures of func-
tional and effective connectivity are highly sensitive to such mixing artifacts. In this
book chapter we review methods which address this problem. They are all based on
the insight that the imaginary part of the cross-spectra cannot be explained as a
mixing artifact. Several variants of this idea will be presented. We will present three
different methods adapted to localize source interactions: (a) minimum overlap
component analysis (MOCA) decomposes linear estimates of the P most relevant
singular vectors of the imaginary parts of the cross-spectra, (b) the MUSIC algo-
rithm can be applied to this same subspace, and (c) the estimated sources can be
analyzed further using multivariate generalizations of the imaginary part of
coherency. Finally, a causal relation between these sources can be estimated using
the phase slope index (PSI). The methods will be illustrated for empirical MEG data
of a single subject under resting state condition.
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1 Introduction

Magnetoencephalography (MEG) and Electroencephalography (EEG) can directly
measure ongoing brain activity at the temporal scale of neuronal communication,
i.e. frequencies nominally in the range of 1–100 Hz. Although these techniques
feature such a millisecond time resolution, their spatial resolution is intrinsically
limited by the fact that neuronal signals are recorded from the scalp (Hari and
Salmelin 2012). In the past decades the main focus of EEG and MEG research was
the analysis of event related fields, i.e. the average brain response to a given
stimulus. More recently, the interest of the scientific community has moved
towards the understanding of how information is integrated in the brain. Neural
oscillations, which are thought to be a direct manifestation of cortical connectivity
(Singer 1999; Schnitzler and Gross 2005; Varela et al. 2001), have thus become
the focus of the analysis. The ability of MEG (and EEG) to study brain connec-
tivity has been shown by a large number of studies (Fries 2009; Gow et al. 2008;
Gross et al. 2002, 2006; Ioannides et al. 2000; Jerbi et al. 2007; Siegel et al. 2008;
Womelsdorf and Fries 2006), the great preponderance of this work still concerns
coherence induced by task- or stimulus-related events. Nevertheless, strong evi-
dence has been provided by the functional magnetic resonance (fMRI) research in
the last fifteen years for the brain as an ensemble of large distributed brain net-
works that show patterns of coherent activity also in the absence of any imposed
task or stimulus, i.e. at rest. Some of these networks are associated with simple
sensory processing and others with higher level cognitive function (Buckner and
Vincent 2007; Cole et al. 2010; Daglish et al. 2005; Deco and Corbetta 2010;
Damoiseaux and Greicius 2009; Fox and Raichle 2007; Miller et al. 2009). Very
recently it has been shown that networks can also be detected using MEG (Brookes
et al. 2011a, b; de Pasquale et al. 2012; Liu et al. 2010). Despite these promising
results, a number of methodological difficulties remain when studying brain
connectivity using noninvasive electrophysiological measurements like MEG or
EEG. The major challenge is that the data are largely unknown mixtures of
activities of brain sources and thus spurious connectivity, which can be estimated
by various measures of statistical dependencies (Pereda et al. 2005), can exist that
is due entirely to signal leakage rather than to interacting sources (Brookes et al.
2012; Schoffelen and Gross 2009).

To address this issue, we suggest to construct estimates of brain connectivity
from quantities that are unbiased by non-interacting sources. For zero mean data1

the linear statistical signal properties can be determined by the cross-spectral
matrices S(f) defined as

Sijðf Þ ¼ hxiðf Þx�j ðf Þi ð1Þ

1 In an event related design the mean can be subtracted.
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where xmðf Þ are the Fourier transforms at frequency f in channel m for a given
segment or trial and h�i denotes the expectation value which is typically approx-
imated by an average over the segments or trials.

It is straight forward to show that noninteracting sources do not contribute
systematically, i.e. apart from random fluctuations around zero to the imaginary
part of the cross-spectra, =ðSðf ÞÞ, regardless of the number of sources and details
of the forward mapping (Nolte et al. 2004). The reason is that the forward mapping
is essentially instantaneous and does not induce phase delays to excellent
approximation (Stinstra and Peters 1998) which would be necessary to yield a
nonvanishing imaginary part of S(f).

From the cross-spectra S(f) one can construct coherency matrices C(f), which
are a normalized version of S(f), as

Cijðf Þ ¼
Sijðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Siiðf ÞSjjðf Þ
p ð2Þ

In contrast to the imaginary parts of the cross-spectra, =ðCðf ÞÞ also depends on
independent sources through the denominator in Eq. (2). However, independent
sources can only lead to a decrease of =ðCðf ÞÞ and hence also =ðCðf ÞÞ reflects
true interaction even though the physiological interpretation is not trivial espe-
cially when interpreting differences of =ðCðf ÞÞ e.g. between different tasks.

Based on these observations we suggested a series of methods to identify and
localize brain interactions (Nolte et al. 2006; Marzetti et al. 2008; Nolte et al.
2009; Ewald et al. 2012; Shahbazi Avarvand et al. 2012). Additionally, we pro-
posed a method to identify causal structures of the dynamical system under study
(Nolte et al. 2008). We here give a brief review of some of these methods (Nolte
et al. 2006; Marzetti et al. 2008; Ewald et al. 2012, Shahbazi Avarvand et al. 2012;
Nolte et al. 2008) to identify interacting brain sources and to estimate causal
relationships. All the methods will be demonstrated using real data whose char-
acteristics are defined in the following section.

2 Data Set

For illustrative purposes, and for illustrative purposes only, we will apply the
methods, which will be reviewed throughout this chapter, to an emprirical MEG
data set. The data set consists of around 20 min MEG data, under resting state,
with 10 min eyes closed and 10 min eyes open. We will average across these two
conditions. MEG was measured with a CTF system with 273 channels in Ham-
burg-Eppendorf.

For the subject an anatomical MRI data set was available which was analyzed
with fieldtrip/SPM (Oostenveld et al. 2011) for segmentation to get a volume
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conductor, which was defined by the inner surface of the skull. Forward calcula-
tion was done with an expansion of the magnetic lead field (Nolte 2003).

Spectral analysis was done with a frequency resolution of 0.5 Hz using short-
time FFTs of Hanning windowed segments of 2 s duration. In Fig. 1 we show the
power for all channels and the imaginary part of coherency (ImCoh) for all pairs of
channels as function of frequency. While the peak in the alpha range is very clear it
is fairly weak in the beta range and not observable in the gamma range. The
rhythms are more clear for ImCoh showing two peaks in the alpha range, at 8 and
10 Hz, a clear peak in the beta range, with a center at 20.5 Hz, and an additional
weaker peak at 31 Hz.

In general, subjects can be very different. The present subject has prominent peaks
of the imaginary part of coherency at alpha, beta, and gamma frequencies both under
eyes closed and eyes open condition. The gamma peak is apparently a (second)
higher harmonic of the motor alpha rhythm. At the alpha peak the distinction between
central and occipital alpha is not straight forward. The beta-peak, on the other hand,
appears to be clearly related to activity in sensory-motor areas, which is also the case
for the weaker gamma peak. Since we here show just one example for illustration we
decided to discuss in the detail the inverse solutions for the beta-rhythm.

In Fig. 2 we show the imaginary part of coherency at 20.5 Hz. Each of the 50
circles represents one out of the total of 273 channels and shows its ImCoh value
to all other channels. The subset of 50 equally distributed channels was chosen to
ease visibility. We observe clear dipolar structures over both hemispheres, how-
ever, with unclear origin from visual inspection.

3 Methods

3.1 Identifying the Subspace

Below, we will use two different inverse methods to find the sources of the
imaginary part of the cross-spectrum. Both methods require the identification of a
low dimensional subspace within the channel space. Analogous to the standard

Fig. 1 Power for all channels and ImCoh for all pairs of channels
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PCA decomposition of the full cross-spectrum of a covariance matrix we perform
a singular value decomposition of the imaginary part of the cross-spectrum at the
signal frequency f ¼ 20:5 Hz

Ssignal ¼ Sðf Þ ð3Þ

For some applications it is convenient to estimate a meaningful contrast, i.e. a
cross-spectrum which contains similar background noise but not the rhythmic
phenomenon which is under study. We will here construct this as an interpolation
between neighboring frequencies:

Snoise ¼
1
2

Sðf þ Df Þ þ Sðf � Df Þð Þ ð4Þ

The singular values of =ðSsignalÞ and the ratios of these and the corresponding
singular values of =ðSnoiseÞ are shown in Fig. 3. Since the imaginary parts of cross-
spectra are real valued and antisymmetric, all singular values occur in pairs. (For an
odd number of channels the last one is zero.) We observe the presence of four
prominent singular values. The ratios of singular values converge roughly to
1:37 �

ffiffiffi
2
p

, indicating that the background noise is estimated too low. This is
expected if the background noise consists essentially of non-interacting sources: the
linear interpolation effectively doubles the number of averages and since for non-
interacting sources the imaginary part of the cross-spectrum drops with 1=

ffiffiffiffi
N
p

for
N averages, we expect an additional drop by a factor

ffiffiffi
2
p

. The factor is slightly less
than

ffiffiffi
2
p

which is possibly due to the typical 1/f-decay of the background noise: it is a
convex function having the property that linear interpolations are above the true
value. Also from this ratio we observe that only 4 singular values are clearly above
noise level. In the following we will always analyze this 4-dimensional subspace.

Fig. 2 ImCoh at 20.5 Hz
between 50 selected channels
and all other channels
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The singular vectors are shown in Fig. 4. They roughly have dipole structure,
but apparently the dipoles are not well separated. A standard method to demix
sources is independent component analysis (ICA), which, however, is not appro-
priate here, since we are studying interacting sources in sharp contrast to the
fundamental assumption of ICA. A separation can still be done using dynamical
assumptions if one assumes that all interactions are pairwise using the ‘Pairwise
Interacting Component Analysis’ (PISA) (Nolte et al. 2006). Then the pairs can be
separated from each other but a separation of the two sources within each pair is
not possible. Also, for such a separation a wide-band analysis of the data is
necessary and cannot be done for a single frequency alone. For completeness, we
will sketch the theory behind it, but below we will continue with the space spanned
by all chosen singular vectors without dynamical separation.

In general, EEG and MEG data are a superposition of many subsystems
including (effectively) independent sources but also interacting rhythmic sources
of various physiological content. To separate these systems one can assume that
(a) all interactions are pairwise and that (b) there are not more interacting sources
than channels. These two assumptions are a clear simplification of the true brain
dynamics, but they yield a unique decomposition of the data and may capture the
most relevant aspects of the interaction observed in EEG/MEG data. These

Fig. 3 Top singular values of imaginary part of cross-spectrum at 20.5 Hz. Bottom ratio of
singular values of imaginary part of cross-spectrum at 20.5 Hz and a noise cross-spectrum
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assumptions can be expressed for an even number of N channels as a model for the
imaginary part of the cross spectra:

=ðSðf ÞÞ ¼
XN=2

k¼1

pkðf Þ akbT
k � bkaT

k

� �
ð5Þ

For each k the set of topographies (ak and bk) and the ‘interaction spectrum’
pk(f) form a—what we call—PISA-component. We note that this model is only
unique up to linear mixing of the two topographies for each k. In other words, the
model only identifies the 2D-subspace spanned by the two topographies and not
the individual components. For technical details we refer to (Nolte et al. 2006).

3.2 Inverse Method

In order to uniquely decompose the 2D-subspaces found by the singular value
decomposition into contributions from individual sources we must introduce fur-
ther spatial constraints on the nature of the sources. To apply a method designed to

Fig. 4 First four singular vectors of the imaginary of the cross-spectrum at f ¼ 20:5 Hz
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this purpose, outlined in the next section, it is necessary to use a linear inverse
method. While in principle the decomposition in sensor space itself does not
depend very much on the chosen inverse method, results in source space can vary
substantially. We here use eLORETA (Pascual-Marqui et al. 2011), which is a
non-adaptive linear inverse solver with a block-diagonal weight matrix adjusted
such that the estimated source distribution has maximal power at the true source
for a single dipole. The inverse method will be applied for a predefined grid of
voxels in the brain. For the mth brain voxel and for the kth dipole direction and for
a given forward model, eLORETA defines a spatial filter Gmk, which is a column
vector of N elements for N channels, such that for the data vector x(t) in channel
space the activity of the kth dipole moment on the mth voxel is given by

smkðtÞ ¼ GT
mkxðtÞ ð6Þ

Due to the linearity of the inverse method, one can directly apply the spatial
filters to the cross-spectra to estimate the elements of the 3 9 3 cross-spectral
matrix P(f, m) at the mth voxel at a given frequency

Pkk0 ðf ;mÞ ¼ GT
mkSðf ÞGmk0 ð7Þ

The maximum eigenvalue of P(f, m) is the power of the strongest dipole at that
location and the corresponding eigenvector is the orientation.

For the present data, the spectral peak in the beta range is very small. Due to the
large noise, meaningful source estimates could not be achieved. Instead, it was
necessary, to calculate the power in source space both for the Ssignal and Snoise

defined in (3) and (4) and to calculate the ratio of powers shown in Fig. 5.2 We
observe signal peaks in left and right sensory-motor areas as can be expected for
central beta-rhythms. We emphasize that for the estimation of the sources of the
interaction, to be conducted in the next section, the localization of power is not
necessary, but only serves to demonstrate the consistency of the results.

3.3 Minimum Overlap Component Analysis

3.3.1 The Concept

The goal of Minimum Overlap Component Analysis (MOCA) is to decompose sets
of topographies based on assumptions about the underlying sources and taking note
that orthogonality assumptions, as implicit in PCA or SVD decompositions, are
unrealistic (Marzetti et al. 2008). We will explain the concept for two topographies.

2 We also found that adaptive beamformer performs worse: we could not find convincing inverse
solutions for both the signal power and for the power ratios.
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We apply a linear inverse operator G onto the singular vectors x1 and x2, such that
these topographies are mapped into distributions si of the source field

si ¼ GðxiÞ ð8Þ

where si ¼ siðm; kÞ is a three dimensional vector field calculated in brain voxels
m ¼ 1; . . .;M and in directions k ¼ 1; . . .; 3.

The distributions do not represent the sources of the brain, denoted as qi, but are,
within the accuracy of the inverse method, a yet unknown superposition of them:

si ¼
X2

j¼1

Wijqj ð9Þ

for i = 1, 2. The 2 9 2 mixing matrix W can be calculated uniquely under the
following constraints

1. The sources are orthonormal:

\qi; qj [ �
X
m;k

qiðm; kÞqjðm; kÞ ¼ dij ð10Þ

Fig. 5 Power ratio between signal and noise calculated from cross-spectra using eLORETA
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2. The sources have minimum overlap:

Lðq1; q2Þ �
X

m

X
k

q1ðm; kÞq2ðm; kÞ
 !2

¼ min ð11Þ

This cost function first squares the scalar product of two dipole moments at
each voxel and then sums these squares over all voxels. It vanishes if the two
dipole distributions have disjoint support (i.e. disjoint regions of non-vanishing
activity), thus measuring overlap. It also vanishes if the orientations at each voxel
are orthogonal and therefore corresponds to a weaker form of overlap allowing in
principle also activities at the same location as long as the orientations are suffi-
ciently different. Thus, a strong bias towards remote interaction is removed.

The minimization in Eq. (11) can be done analytically (Marzetti et al. 2008). If
the concept is generalized to more than two topographies the minimization
requires a numerical approach, which, however, is surprisingly fast and robust
(Nolte et al. 2009). We note that the spatial constraints (Eqs. 10, 11) and the
methods to solve the minimization are similar to those used in ICA in the context
of fMRI data analysis (McKeown and Sejnowski 1998; Matsuda and Yamaguchi
2004) with the major difference that we here decompose vector fields rather than
scalar ones. To relate to ICA to decompose EEG and MEG data, the orthogonality
constraint in Eq. (10) corresponds, mutatis mutandis, to ‘sphering’ as is used in
most ICA methods: the data are transformed to be exactly uncorrelated while
independence in higher statistical orders is only forced to be as good as possible.

3.3.2 Illustration

Once the demixing matrix W is found, it can be applied equally to the source
distributions and the topographies. If U is an N 9 K matrix containing the first
K singular vectors as columns, and H ¼ W�1 is the demixing matrix, then Û ¼
UHT contains as columns the demixed topographies. The demixed topographies
for the singular vectors shown in Fig. 4 are presented in Fig. 6. While, of course,
the true result is not known for real data, we observe that the apparent mixture of
several dipolar structures has been removed.

In Fig. 7 we show the power of the source estimate for all four demixed
topographies. We can see that, similar to the result shown in Fig. 5, sources are
located in left and right motor-sensory areas. In contrast to the localization of the
entire cross-spectrum, for this localization of the interacting sources it is not
necessary to visualize power ratios to achieve meaningful results.
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3.3.3 Minimization of the Cost Function

In this subsection we present the algorithm to solve the minimization problem
defined by MOCA. If we only have two source distributions this can be done
analytically. To do this we first whiten the distributions si to fulfill (10)

ŝi ¼
X

j

Aijsj ð12Þ

with A ¼ V�1=2 and

Vij ¼
X
m;k

siðm; kÞsjðm; kÞ ð13Þ

In a second step we rotate ŝi as

q1

q2

� �
¼ cosð/Þ sinð/Þ
� sinð/Þ cosð/Þ

� �
ŝ1

ŝ2

� �
ð14Þ

Fig. 6 Demixed singular vectors using MOCA
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and find the angle / by minimizing the cost function defined in (11). This mini-
mization can be done analytically in closed form and leads to the solution

/0 ¼
1
4

tan�1 b

a� c

� �
ð15Þ

with

a ¼
X

m

X
k

ŝ1ðm; kÞŝ2ðm; kÞ
 !2

b ¼
X

m

X
k

ŝ1ðm; kÞŝ2ðm; kÞ
X

k

ðŝ1ðm; kÞŝ1ðm; kÞ � ŝ2ðm; kÞŝ2ðm; kÞÞ
 !

c ¼ 1
4

X
m

X
k

ð̂s1ðm; kÞŝ1ðm; kÞ � ŝ2ðm; kÞŝ2ðm; kÞÞ
 !2

:

Fig. 7 Sources of demixed singular vectors. Each row displays one source distribution with
shown MRI-slices centered at the maximum of the respective power distribution
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Various solutions arise due to the various branches of the tan�1 function and
differ by multiples of p/4. Minima and maxima are alternating, and we only have
to calculate two neighboring solutions with angles /max and /min for the maximum
and minimum, and pick the one referring to the minimum out of these two.

For more than two sources the cost function in (11) cannot be solved analyti-
cally and must be solved numerically with an iterative procedure using the analytic
solution for any given pair of source distributions. These ‘sweeps’ are repeated
over all pairs until convergence is reached. This procedure appears at first sight to
be rather naive because such a rotation might affect overlaps between other pairs
of sources. This, however, is not the case: all changes between other pairs cancel
out exactly in the total cost function which results in a highly efficient algorithm
with only few sweeps necessary.

3.4 Music

The multiple signal classification (MUSIC) algorithm is a method which finds
sources based on low dimensional subspaces of the entire signals assuming that the
topographies of dipoles on true source locations are contained in such a subspace.
This is most commonly applied to low dimensional approximations of a covari-
ance matrix defined by the K eigenvectors corresponding to the K largest eigen-
values. Recently, it was suggested to apply this algorithm to the K singular vectors
corresponding to the K largest singular values of the imaginary part of the cross-
spectrum (Shahbazi Avarvand et al. 2012).

We here recall the essential steps for the MUSIC algorithm. We will at first
consider the almost trivial case of fixed dipole orientations with a topography
L and a one-dimensional subspace U, which are both N 9 1 vectors. The con-
sistency between dipole field and subspace can be measured by the angle

cos H ¼ LT U

LT L
� �1=2

UT U
� �1=2

ð16Þ

In the general case, the subspace U is an N 9 K matrix and L is an N 9 3
matrix corresponding to all three dipole orientations. The question then is whether
some dipole at a specific location is consistent with the subspace, i.e. whether
Lx with unknown dipole moments x matches a linear combination of the columns
of U, which is expressed as Uy with y being an unknown Kx1 vector. For the
minimal angle we have

cos H ¼ max
x;y

xT LT Uy

xT LT Lxð Þ1=2 yT UT Uyð Þ1=2
ð17Þ
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For later use, we express this maximization problem by a gain function
G(x, y) with

Gðx; yÞ ¼ xT Zy

xT Xxð Þ1=2 yT Yyð Þ1=2
ð18Þ

where X and Y are symmetric and positive definite matrices. Maximization, as well
as minimization, of G leads to the eigenvalue problem

X�1=2ZY�1ZT X�1=2x̂ ¼ kx̂ ð19Þ

Y�1=2ZT X�1ZY�1=2ŷ ¼ kŷ ð20Þ

with

x̂ ¼ X1=2x ð21Þ

ŷ ¼ Y1=2y ð22Þ

The eigenvalues in (19) and (20) are identical, but the eigenvectors are not. If
kmax is the maximal eigenvalue, then G is maximized and minimized by the
corresponding eigenvectors and it attains the value

G2
max ¼ kmax ð23Þ

Whether a maximum G2 is a maximum or minimum of G depends on the
chosen sign of the eigenvectors which is arbitrary. If we have a maximum for some
choice of signs we get a minimum by switching the sign of one of the eigenvectors.

The MUSIC algorithm corresponds to the above case by setting

X ¼ LT L ð24Þ

Y ¼ UT U ¼ idK�K ð25Þ

Z ¼ LT U ð26Þ

For the minimal angle we get

cos2 Hmin ¼ kmax ð27Þ

and the dipole orientation x can be calculated from (21). Finally, the topography of
the optimized dipole reads

v ¼ Lx ð28Þ
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For a MUSIC-scan the maximal eigenvalue kmax is calculated for all voxels, and
displayed as 1=ð1� kmaxÞ which is infinite for a perfect fit.

The MUSIC algorithm can be used to find the location in the brain which is
most consistent with the observed subspace as the voxel which maximizes kmax

now also over source points. The technical disadvantage of MUSIC is that finding
several maxima may be difficult (Mosher et al. 1999). As a remedy, a modification
called recursively applied and projected (RAP)-MUSIC was proposed (Mosher
et al. 1999). Here, instead of searching simultaneously for several local maxima,
only global maxima are determined iteratively. In order to find the next source
location, the subspace is updated by projecting out the previously found topog-
raphies and then the maximization is repeated. If V ¼ ðv1; . . .; vlÞ is the matrix
containing as columns the topographies of l sources, then these topographies are
projected out both from L and the subspace. Defining a projector as

P ¼ id � V VT V
� ��1=2

VT ð29Þ

and in order the find the l-1th location, L is replaced by PL and U is replaced by
PU and then the MUSIC algorithm is applied as outlined above.

The result of RAP-MUSIC scans is shown in Fig. 8 for four interations. The red
crosses indicate the locations of the maximal eigenvalues which are almost
identical to the maxima found by the MOCA inverse solutions. In these figures, the
top row corresponds to a ‘normal’ MUSIC scan without projection. All locations
are in principle contained in the scan but only the ‘strongest’ source is visible in
this scan. The ith row corresponds to a MUSIC-scan after the topographies of the
i-1 previously found sources is projected out.

3.5 ImCoh in Source Space

To calculate connectivity in source space we first map activities of sensors into
sources using eLORETA and then we calculate the imaginary part of coherency
between several sources. This is straight forward if the dipole orientation for each
voxel is known: the mapping into two voxels leads to a bivariate signal for which
ImCoh can be calculated. This is less trivial for unknown dipole orientation, as
then each voxel consists of three signals. We will here estimate the directions for
each pair voxels as those for which ImCoh is maximized (Ewald et al. 2012;
Shahbazi Avarvand et al. 2012; Marzetti et al. 2013). Mathematically, this is very
similar to the MUSIC approach presented in the previous section.

Let F1 and F2, both of them being N 9 3 matrices, be the spatial filters (given
here by eLORETA) which map the sensor activity into voxel 1 and voxel 2,
respectively. If x(t) is the activity in the sensors, then the sources activity in the ith
voxel reads
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siðtÞ ¼ FT
i xðtÞ ð30Þ

for i ¼ 1; 2. Then the cross-spectral matrices within each voxel reads

Ŝiiðf Þ ¼ FT
i Sðf ÞFi ð31Þ

recalling that S(f) is the cross-spectrum in sensor space. The cross-spectral
matrices between voxel 1 and voxel 2 reads

Fig. 8 RAP-MUSIC scan of imaginary part of cross-spectrum. The kth row shows the kth scan in
the three orthogonal views
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Ŝ12ðf Þ ¼ FT
1 Sðf ÞF2 ð32Þ

If xi is the dipole moment in the ith voxel, ImCoh between the two dipoles reads

ImCoh ¼
xT

1= Ŝ12
� �

x2

xT
1 Ŝ11x1

� �1=2
xT

2 Ŝ22x2
� �1=2

ð33Þ

with dependence on frequency f implicit. This, again, has the structure of (18) with
the setting Z ¼ = Ŝ12

� �
;X ¼ Ŝ11, and Y ¼ Ŝ22. The maximal imaginary coherency

and the dipole orientations are then given by (19)–(22) with

ImCohmax ¼
ffiffiffiffiffiffiffiffiffi
kmax

p
ð34Þ

In Fig. 9 we show this maximizing ImCoh value between between a reference
voxels and all other voxels for four different reference voxels, which were found
previously from MOCA, and all other voxels. The reference voxels are indicated
by blue dots. We observe that ImCoh is maximized in the vicinity of the reference
voxels, indicating that the interaction is local.

Local interactions are always trivially observed if one calculates the absolute
value of coherency, called coherence, which is a mixing artefact: especially the
coherence between a signal and itself is always one and such a result is mean-
ingless. The situation, however, is different when calculating the imaginary part of
coherency, which always vanishes between a signal and itself. The interaction can
still come out to be local, if the true sources are very close to each other, but have
different orientations. Due to the low spatial resolution of EEG/MEG inverse
calculations this includes estimated interactions between a voxel and itself if the
respective sources are too close to each other to be resolved. Note, that this is also
the basis of the ‘rotating diple model’ which is an effective model for two dipoles
which have such a small distance that putting them on the same location is rea-
sonable within the limited spatial resolution of EEG/MEG data.

Had we fixed the orientation according to power, we would not be able to
observe such local interactions. In Fig. 10 we show results for the absolute value
of imaginary part of coherency for fixed dipole orientations, chosen to the ones
which maximize the power for each voxel. For the sources on the right hemisphere
we get a qualitatively similar picture but with substantially suppressed values for
ImCoh. The local interaction is almost completely lost on the left hemisphere and
the remaining interaction appears to be too low and scattered to be considered
meaningful.
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3.6 Phase Slope Index

We finally want to estimate causal structures between the estimated sources. The
‘Phase Slope Index’ (PSI) estimates the causal structure between any two source
activities. It is defined as (Nolte et al. 2008)

Ŵij ¼ =
X
f2F

C�ijðf ÞCijðf þ df Þ
 !

ð35Þ

Fig. 9 Maximal ImCoh between reference voxel, calculated from MOCA, and all other voxels
for four different reference voxels
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where Cij(f) is the complex coherency between sources i and j, as given in Eq. (2),
and df is the frequency resolution of the coherency. F is the set of frequencies over
which the slope is summed. Usually, F contains all frequencies, but it can also be
restricted to a specified band for rhythmic activities.

To see that the definition of Ŵij corresponds to a meaningful estimate of the
average slope it is convenient to rewrite it as

Ŵij ¼
X
f2F

aijðf Þaijðf þ df Þ sinðUðf þ df Þ � Uðf ÞÞ ð36Þ

Fig. 10 ImCoh between reference voxel, calculated from MOCA, and all other voxels for four
different reference voxels with dipole orientation fixed by power
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with Cijðf Þ ¼ aijðf Þ expðiUðf ÞÞ and aijðf Þ ¼ jCijðf Þj being frequency dependent
weights.

For smooth phase spectra, sinðUðf þ df Þ � Uðf ÞÞ � Uðf þ df Þ � Uðf Þ and

hence Ŵ corresponds to a weighted average of the slope.

We list the most important qualitative properties of Ŵ:

1. For an infinite amount of data and for arbitrary instantaneous mixtures of an

arbitrary number of independent sources, Ŵ is exactly zero, because mixtures
of independent sources do not induce an imaginary part of coherencies (Nolte

et al. 2004)) which in turn is necessary to generate a non-vanishing Ŵ. For

finite data, Ŵ will then fluctuate in this case around zero within error bounds. A
special case of this are phase jumps from 0 to ±p which can arise also for
mixtures of independent sources.

2. Ŵ is expressed in terms of coherencies, only. The standard deviation of a
coherency is approximately constant and only depends on the number of
averages which is equal for all frequencies. Thus, large but meaningless phase
fluctuations in frequency bands containing essentially independent signals are
largely suppressed.

3. If the phase Uðf Þ is linear in f and provided that the frequency resolution is
sufficient (i.e. df is sufficiently small), the argument in the sum has the same

sign across all frequencies and then Ŵ will have the same sign as the slope of
U(f).

It is convenient to normalize Ŵ by an estimate of its standard deviation

W ¼ Ŵ

stdðŴÞ
ð37Þ

Fig. 11 PSI in channel space
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with stdðŴÞ being estimated by the Jackknife method. In the examples below we
consider absolute values of each larger than 2 as significant.

It is important to point out that the phase of coherency itself is not interpreted in
terms of causality. For example, a phase of p/2 switches to -p/2 if the sign of one
of the signals is reversed, but the PSI measure is invariant with respect to the sign
of the signals. Rather than on phase, PSI is based on the slope of the phase as a
function of frequency. Note, that a sign change adds a constant to the phase and
has no effect on the slope. The method assumes that the studied frequency range
properly covers the dynamical range. For purely periodic signals, any causality

Fig. 12 PSI between reference voxel (black dot) and all other voxels for four different
references. Blue color means the reference is receiving information from these areas and red
means the reference is sending information to these areas
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estimate would be dubious. In that case W would be insignificant because negative
and positive slopes cancel.

To calculate the causal relation for the beta range we calculated PSI in the
frequency range around the beta peak f � Df ; f þ Df½ � with f = 20.5 Hz and
Df ¼ 2Hz. Results in channel space are shown in Fig. 11. Absolute values of PSI
above 2 are significant without correction for multiple comparison with p	 :05. We
observe fairly large values up to almost 5 but with highly unclear spatial structure.

To calculate PSI in source space we need to fix an orientation of the dipoles.
For each pair of voxels these orientations are chosen to maximize imaginary
coherence between the voxels at frequency f = 20.5 Hz as explained in the pre-
vious section. Results for reference voxels taken from results of the RAP-MUSIC
algorithm are presented in Fig. 12. We observe higher (and hence more signifi-
cant) values than on the sensor level which can mainly be explained by the fact
that the source orientation was optimized to observe delayed interactions.

In contrast to ImCoh, for which we displayed the absolute value, the result now
has a sign. Such a sign was meaningless for ImCoh at the source level, because it
switches if we switch the sign of a source. Since the dipole moment was calculated
by an eigenvalue equation with meaningless sign of the eigenvector such a sign
was also meaningless for ImCoh. In contrast, PSI does not depend on the sign of
the dipole but reflects temporal order. In the figure, blue regions mean that the
reference voxel receives information from them, while the reference voxel send
information to the red ones. We emphasize, that maximizing ImCoh does not
necessarily maximize PSI. It is very well possible that the present approach still
misses major effects which are bigger than the ones observed.

4 Conclusion

We presented a series of methods to study functional and effective connectivity
from MEG/EEG data in the frequency domain. All presented methods addressed
the problem of volume conduction which is by far the most severe confounder
when one wants to estimate brain interactions. The basis of the methods is the
observation that brain interactions take some time which is much longer than the
time needed for the propagation of electromagnetic signals from a source to a
sensor which can be considered as quasi-instantaneous for the frequency ranges of
interest (Stinstra and Peters 1998). The finite time needed for different neuronal
groups to interact with each other makes it possible to find true brain interactions
by systematically exploiting time delays between measured signals. This, however,
does not mean that for any brain interaction the time delay is observable. If, e.g. an
interaction is totally symmetric all net phase/time delays vanish and the interaction
cannot be studied with these methods.

We presented two different methods, MOCA and RAP-MUSIC, to localize
interacting sources both based on a singular value decomposition of the imaginary
part the cross-spectrum at some frequency. The crucial step is to determine a low
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dimensional subspace of the signal space spanned by the singular vectors corre-
sponding to the largest P singular values. The choice of P, which corresponds here
to the chosen number of sources, is the only free parameter of the methods. For the
chosen data set we observed a drop of the kth singular value to a noise floor for
k [ 4 and set P = 4 accordingly. The evaluation of other or the development of
new techniques to choose P is beyond the scope of this book chapter.

Both presented inverse method only depend on the subspace spanned by the
singular vectors and not on the vectors themselves. It is therefore irrelevant
whether the singular vectors themselves correspond to topographies of the single
sources. The first method, MOCA, is based on some linear inverse method for
which we chose eLORETA, but other choices are also possible. MOCA demixes
the singular vectors based on assumptions in source space. The second method was
RAP-MUSIC applied to this subspace and it assumes that the interacting sources
are dipoles. We then found final results to be almost identical for the two methods
for the data at hand. Interactions between voxels in the brain were estimated using
a multivariate method, with optimized source orientation for each voxel, which
was capable of detecting both local and non-local interactions. A comparison with
a bivariate method for which source orientation was fixed by power showed that
the latter procedure suppresses local interactions. This could lead to a potential
bias towards remote interaction. We finally estimated causal relations using the
Phase Slope Index in source space with reference voxels chosen from the pre-
ceding localization of interacting sources. We observed clear and significant
structures in source space which could not be expected from sensor space results.

This book chapter is not an attempt to review all methods addressing the
problem of volume conduction. We concentrated on own methods, covering these
only partly and totally ignoring a couple of new approaches from other researchers
(Pascual-Marqui et al. 2011; Vinck et al. 2011; Stam et al. 2007; Hipp et al. 2012;
Meinecke et al. 2005; Sekihara et al. 2011). The relation between our work and the
nonlinear measures presented in (Vinck et al. 2011) and the multivariate measures
in (Pascual-Marqui et al. 2011) were presented in (Ewald et al. 2012). A more
complete survey and comparison of all methods will be addressed in the future.
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Neural Decoding and Brain Machine
Interfaces Based on Electromagnetic
Oscillatory Activities: A Challenge
for MEG

Masayuki Hirata

Abstract One of the technological challenges in neuromagnetism is to establish a
method for neuromagnetic measurement of high gamma band activities on a sigle
trial basis. This would enables not only accurate neural decoding using MEG, but
would also allow phase analyses revealng coupling phenomena between the
gamma and other bands.

Keywords Neural decoding � Brain machine interfaces � Electrocorticography �
Magnetoencephalography � Oscillations

1 Functional Mapping Using the Magnetoencephalogram

Electromagnetic measurements and analyses of cerebral oscillatory activities have
spawned the new field of neuromagnetism. The electroencephalographic analyses
conducted by Pfurtscheller on event-related desynchronizations and synchroniza-
tions during finger movements was the first study in this field (Pfurtscheller and
Aranibar 1977). Since then, a number of studies have established that desynchro-
nization in the alpha to low gamma bands well reflects functional localization of
motor, somatosensory and language functions (Hirata et al. 2010, 2002; Taniguchi
et al. 2000). Language dominance and localization may also be evaluated nonin-
vasively and can now be investigated as a pre-surgical evaluation (Hirata et al.
2010, 2004). Sliding time window analyses have also revealed temporal profiles of
language processing (Goto et al. 2011). However, it is still difficult to record
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neuromagnetic high gamma activities with stability on a single trial basis, and high
gamma band activities are not consistently visible on MEG without time-locked
stimulation and multi-trial data (Hirata et al. 2002).

2 Brain Machine Interfaces Using the Electrocorticogram

Electrocorticograms provide us with high gamma band activities on a single trial
basis. The spatial distribution of high gamma band activities is more focal than that
of alpha and beta desynchronizations, and well reflects somatotopic representa-
tions (Fig. 1) (Yanagisawa et al. 2011). Using electrocorticographic high gamma
activities, we can perform accurate neural decoding as well as the real time control
of a robotic arm (Yanagisawa et al. 2011, 2012a). More recently, electrocortico-
graphic phase analyses have revealed cross frequency coupling and phase
amplitude coupling in the motor cortex (Yanagisawa et al. 2012b).

Fig. 1 Spatiotemporal distribution of oscillatory changes during hand grasping, a the location of
the implanted electrodes, b a time-frequency spectrogram, c spatial distribution of high gamma
band activities (left) and alpha and beta desynchronizations (right)
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3 Neuromagnetic Neural Decoding

Neural decoding using neuromagnetic signals is still a relative newcomer com-
pared to electrocorticographic decoding. Magnetic amplitude as a parameter
decodes upper limb movements with high accuracy, while decoding using oscil-
latory activities does not allow for high accuracy (Sugata et al. 2012a, b). This is
probably because it is difficult to pick up weak gamma band activities using MEG.
Therefore, one of the technological challenges in neuromagnetism is to establish a
method for neuromagnetic measurement of high gamma band activities on a single
trial basis. This would enable not only accurate neural decoding using MEG, but
would also allow phase analyses revealing coupling phenomena between the
gamma and other bands.
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Fetal Magnetoencephalography (fMEG)

Jana Muenssinger, Hari Eswaran and Hubert Preissl

Abstract The human brain is one of the most complex organs which develops and
adapts continuously over lifetime. Until now, neurophysiological research is mainly
related to brain development from birth to adulthood and neurophysiological
research concerning prenatal human brain development only started in the last
decades. Magnetoencephalography (MEG) is especially suited for fetal investiga-
tion, because it is completely noninvasive and not affected by the biological tissue
separating the fetus from the outside. The first successful fetal MEG (fMEG)
recording was reported in 1985 (Blum et al. 1985). Since the human brain in utero is
highly vulnerable to internal and external influences, prenatal brain research is
highly important to understand its development during that time period. Therefore,
measurement techniques were improved and basic research concerning brain
development in utero was conducted. So far, mainly auditory and visual stimulation
was used to assess fetal brain development by means of changes in signal pro-
cessing speed or the development of basic forms of learning. The goal of basic
fMEG research is to understand healthy fetal brain development and enable an early
detection of possible deviations from it. In the future this may allow the develop-
ment of early, even prenatal treatments and reduce the risk of adverse outcomes.
This chapter gives an overview over structural and functional brain development
and introduces the fMEG, a measurement technique to non-invasively assess
functional fetal brain development in utero. Moreover, current fMEG studies are
introduced and the potential of the method of fMEG is illustrated and discussed.

Keywords Auditory evoked response (AER) � Visual evoked response (VER) �
Fetal brain maturation � Magnetoencephalography (MEG)
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1 Introduction

The human brain changes constantly during lifetime and shows high plasticity
especially during early development. While the brain’s high plasticity is advan-
tageous concerning the rehabilitation of functions after brain damage, unfortu-
nately it also makes the brain vulnerable to external influences, especially during
prenatal brain development. In addition to the ‘‘normal’’ differences between age
groups, external influences during fetal development can also cause alterations in
brain development leading to impairments in individual cognitive processes.
During the last decades, augmented research has been done concerning ‘‘fetal
programming’’, showing that maternal stress (Talge et al. 2007), exposure to lead
(Jedrychowski et al. 2009) or cocaine (Singer et al. 2008) as well as maternal
undernutrition (Szitanyi et al. 2003) or obesity (Muhlhausler et al. 2008) during
pregnancy can negatively influence cognitive development or increase the risk of
developing diseases such as type 2 diabetes in later life.

Since human brain development is such a fragile process, which can be influ-
enced by many different internal and external factors, evaluation of this process
especially before birth can give first indications of possible deficits. This might
serve as a first step towards an even faster and more adequate treatment and
therefore help in the future to decrease the risk of negative outcomes for later life.
To evaluate healthy cognitive development in utero, basic research is needed. Only
by knowing the developmental steps of the healthy brain, modifications from this
process can be detected and treatment initiated.

The fetal magnetoencephalography (fMEG) is a non-invasive technique which
enables the investigation of human brain development in utero by evaluating
spontaneous fetal brain activity, fetal brain reactions to auditory or visual stimu-
lation, and change detection between stimuli or habituation to repetitively pre-
sented stimuli. In this chapter we provide an overview of human central nervous
system (CNS) development during the fetal period. Subsequently, the fMEG and
its possible applications are introduced and discussed and an overview of the
current state of the art in fMEG research is given.

2 Background on Human CNS Development

Shortly after conception, the human brain starts to develop. Already after 18 days
post conception, the neural plate, built of tissue developing into the human nervous
system, is visible and developing to form a neural tube after 24 days. Around this
time, cell proliferation starts. Due to cell division, the number of cells in the neural
tube increases substantially. Once created, the cells leave their place of origin to
migrate to their place of destination and align themselves with other neurons in the
same area (aggregation). These processes build the foundation for the formation of
different structures of the human nervous system. However, to enable the newly built
brain structures to function appropriately, cells need to be connected to enable
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interaction between different structures. This cell connection is initiated immediately
after cell aggregation and is characterized by axon growth and synapse formation.
However, due to a neuronal overproduction of about 50 % of neurons, a selection
takes place, which seems to be related to the integrity of the associated axon and its
projection. The decay of neurons takes place either actively (apoptosis) or passively
(necrosis) and is regulated by neurotrophins. To ensure the appropriate function of
brain structures, axons of the surviving neurons sprout to occupy gaps, which arose
through death of neighboring cells. The process of neuronal development and
migration is terminated at approximately 7 months of prenatal development. How-
ever, the development of the human brain is not ‘‘finished’’ at this point in time or at
birth. In contrary, development continues postnatally and proceeds throughout late
adolescence. The postnatal period is characterized by an intensified development of
new synapses (synaptogenesis), myelination and an increase in dendrite branching
as well as synaptic loss. During the long period of brain development between
conception and adulthood, different brain regions mature at different time points.
While primary visual and auditory cortices are among the first to mature, reaching
their maximal synapse density already in the seventh or eighth postnatal month, the
prefrontal cortex (PFC) is known to be one of the last brain regions to mature,
reaching its maximal synapse density in the second year after birth. Similarly,
myelination and synaptic loss occur first in the primary auditory and visual cortices
and continue into adolescence in the PFC (Casey et al. 2000; Pinel 2003).

Historically, knowledge about brain development was originally gained through
post-mortem examinations; in vivo evaluations became possible with the invention
of brain imaging techniques like magnetic resonance imaging (MRI) (for a review
about developmental MRI studies see Lenroot and Giedd (2006)). In the last dec-
ades, several studies used MRI to evaluate brain development in neonates and
children (Huppi et al. 1998; Giedd et al. 1996; Casey et al. 2000). Examining 78
premature and mature newborns at the ages between 29 and 41 postconceptional
weeks, Huppi et al. (1998) showed an increase in total brain tissue volume of
22 ml/week during that period. Accordingly, also total gray matter volume
increased at approximately 15 ml/week. The highest increment was found in cor-
tical rather than sub-cortical grey matter. In the first two years, synapse formation in
the brain was found to be highest and by the age of 2 years, the human brain
reached about 75 % of its adult weight. Moreover, no significant increment of
cerebral or cerebellar volume could be found during the time period between 4 and
18 years of age (Giedd et al. 1996; Kretschmann et al. 1986; Casey et al. 2000).

2.1 Development of the Auditory System

Human hearing is a process that requires the cooperation of different parts
including the ear, auditory nerve, thalamus, and primary auditory cortex. Only a
flawless interaction of these systems enables the perception of sounds. The
fetal outer ear can already be observed after 10 weeks of gestational age (GA)
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(Arabin and van Straaten 2006). The tympanic membrane and ring, which are the
transition between the outer and the middle ear, are developed at 16 weeks GA.
The adult size of the pinna is reached at about 19–20 weeks GA (Counter 2010).
The three ossicles of the middle ear begin to develop between the 4th and the 6th
week GA and reach their full size at an gestational age of 18 weeks (Counter 2010;
Arabin and van Straaten 2006). In the inner ear, the hair cells can be detected after
14 weeks. At about 20 weeks of GA, the morphology of the cochlea is found to be
already similar to the stage when its first function is detected. However, cochlear
development was found to proceed after the 20th week GA and to mature around
the 30–35th week GA (Pujol et al. 1991). Leaving the ear, the ‘‘sound waves’’
travel further to the auditory pathways, which undergo myelination between the
26th and 29th week of gestation. Nevertheless, myelination further progresses until
the age of approximately one year after birth (Arabin and van Straaten 2006).

With a slight delay in comparison to the anatomical development of the fetal
auditory system, first auditory experiences can be expected starting at the 20th
week GA. Monitoring blink-startle reflexes in response to vibro-acoustic stimu-
lation, Birnholz and Benacerraf (1983) detected first responses in fetuses between
the 24th and 25th week GA, however, stable responses across the study group were
found at the gestational age of 28 weeks. Using pure tone stimulation of different
frequencies, Hepper and Shahidullah (1994) found that responses to different
frequencies are observable at different gestational ages. First responses have been
detected for 500 Hz stimulation. For this frequency, they were detected even at an
age of 19 weeks GA and at the age of 27 weeks GA, 96 % of the participating
fetuses showed responses for frequencies of 250 and 500 Hz. Responses to higher
frequencies showed a developmental delay with the fetuses responding to a fre-
quency of 1,000 Hz at 33 weeks GA and to a 3,000 Hz tone at 35 weeks GA
(Hepper and Shahidullah 1994). Similar gestational ages for the occurrence of fetal
responses to external auditory stimulation have also been reported by others
(Querleu et al. 1988). During the last trimester of gestation, the intensity of
stimulation needed to elicit a fetal response was found to decrease, also indicating
developmental progress (Hepper and Shahidullah 1994).

After birth, neonates’ auditory system undergoes further development, which
enables the localization of sound sources in the environment at about 2 months of
age. At an age of around 6 months, localization is even possible in horizontal and
vertical planes. In general, an improvement concerning the acuity of hearing as
well as the discrimination of different speech sounds progresses over the first three
years of life.

2.2 Development of the Visual System

Similar to the auditory system, the visual system consists of multiple parts which
have to cooperate to enable human vision. This development starts in early fetal
life and progresses through the first postnatal years. One of the first structures to
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develop is the physical structure of the eye (early phase of fetal life), while the
different necessary neuronal structures and connections develop during later fetal
and early neonatal life (Graven and Browne 2008). The development of the retina
and its layers commences at around 24 weeks GA and is not finished until 2 or
3 months of postnatal life. This long period is determined by the development of
the retinal substructures. While the rod receptors important for scotopic vision
develop without any influence of light during the latter period of fetal life and are
functional at term, the cone receptors important for photoptic vision are not
functional when the baby is born. Photoptic vision develops during the first months
of neonatal life. Other retinal cells mature during the period of 22–30 weeks GA.
Moreover, random firing of retinal ganglion cells activates the growth of axons
which become the optic nerve, the connection between the retina and the lateral
geniculate nucleus (LGN). Also retinal amacrine cells start to fire to stimulate axon
growth between the retina and the LGN as well as between the LGN and the visual
cortex. Amacrine cell activity starts around the fetal age of 28–30 weeks GA and
becomes more regular when development progresses. This regularization of
activity is accompanied by the beginning of the first organized sleep states which
are important for the configuration of ocular dominance columns in visual cortex
(Graven and Browne, 2008). First fibers reaching the LGN were detected as early
as 7 weeks GA (Cooper 1945). However, at this stage, the LGN is in the beginning
of its development and consists of homogeneous cell arrangements while the
6-layer-structure seen in mature LGN develops around the 22th week GA
(Hitchcock and Hickey 1980; Cooper 1945). First connections between the LGN
and the visual cortex, which is also organized in 6 layers, begin to evolve before
the mid-gestational period (Henver 2000). Ocular dominance columns in the visual
cortex are built in the last 8–10 weeks of gestation (Graven and Browne 2008).

While not all parts of the visual system are mature before birth and continue
developing during the first years of neonatal life, much development takes place in
the prenatal period between around 24 and 40 weeks GA. For example, scotopic
vision becomes functional during the late prenatal period. Moreover, studies
investigating fetal brain maturation showed reactions to light flashes as early as
28 weeks GA (Eswaran et al. 2004).

3 Introduction of the Fetal MEG

Since human brain development in utero is such a complex and fragile process, its
anatomical as well as functional evaluation provides important information about
healthy brain development. However, because the fetal head is covered by the
maternal abdomen and not accessible from outside, the investigation of fetal brain
function is accompanied with many challenges. Nevertheless, advances in the
technology of brain imaging in the last decades made the evaluation of prenatal
brain development possible. During this time, two brain imaging techniques have
been developed, which showed promising results in the research of fetal brain
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development and function: functional MRI (fMRI) (Belliveau et al. 1991) and fetal
magnetoencephalography (fMEG) (Blum et al. 1985). While fMRI has the
advantage of high spatial resolution, it also involves many difficulties concerning
fetal measurements. During an fMRI measurement, fetuses are exposed to high
sound levels and magnetic fields, which mainly restrict the usage to fetuses pre-
senting with clinical measurement indications. In contrast, the fMEG is a nonin-
vasive technique, which makes it a suitable tool for basic research as well (Preissl
et al. 2004, 2005). So far, the fMEG is mainly used to evaluate fetal heart signals
and brain function as measured by fetal auditory evoked responses (AERs) elicited
by tone stimulation, fetal visual evoked responses (VERs) elicited by light stim-
ulation and spontaneous fetal brain activity (for a review see Preissl et al. (2004)).

The fMEG uses the same technique as the MEG but combines this technique with
the special requirements needed for fetal and neonatal measurements. To ensure a
good detection of the fetal heart and brain signals and enable the mother to have a
comfortable position on the device, the sensor array is shaped to fit the maternal
abdomen. Worldwide, only two dedicated fMEG devices—also called SARA sys-
tems (SQUID Array for Reproductive Assessment)—are operational so far. The first
one was developed and installed in Little Rock, Arkansas, USA while an advanced
version was installed at the fMEG Center in Tübingen in the year 2008.

The fMEG device installed at the MEG Center in Tübingen (SARA II, VSM
MedTech Ltd., Port Coquitlam, Canada) includes 156 primary sensors and 29
reference sensors (see Fig. 1). Four localization coils are used to localize the
maternal body and the fetal head in relation to the sensor array. One is attached

Fig. 1 156-channel fMEG
device SARA II (SQUID
Array for Reproductive
Assessment, VSM MedTech
Ltd., Port Coquitlam,
Canada) installed at the
fMEG Center in Tübingen
(� University Hospital
Tübingen)
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directly to the maternal abdomen above the fetal head, one at the left and right side
of the mother respectively and one at the maternal spine. To ensure that the mea-
surement is not influenced by magnetic fields from the surrounding environment,
the device is located within a magnetically shielded room (Vakuumschmelze,
Hanau, Germany).

3.1 Fetal Measurements

Before each fetal measurement, the head position of the fetus has to be determined.
Therefore, an ultrasound is performed immediately before the measurement and
fetal head position is marked on the maternal abdomen. After finding a comfort-
able position on the device, localization coils are attached as described above.
During the entire measurement session, contact between the subject and the
researcher is ensured through a camera and an intercom. Immediately after the
measurement, a second ultrasound is performed to check for changes in the fetal
position.

For auditory stimulation during a measurement, stimuli are produced by
loudspeakers outside the shielded room and led through air-filled tubes to a balloon
which is located directly above the maternal abdomen (Fig. 2a). For visual stim-
ulation, light stimuli are produced by a panel of light emitting diodes (Fig. 2b).

Fig. 2 Fetal measurement with (a) auditory and (b) visual stimulation. Tones are produced
outside the shielded room and transmitted through air-filled tubes to a balloon located directly
above the maternal abdomen. Light flashes are produced by a panel of light emitting diodes
(� University Hospital Tübingen)
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3.2 Neonatal Measurements

For neonatal measurements, a cradle is attached to the fMEG device, which
ensures that the newborn is lying comfortably and safely during the measurement.
Generally, measurements are performed while the newborn is sleeping or lying
quietly.

For auditory stimulation, the newborn is lying on one side with its contralateral
temporal lobe resting on the sensor array. Stimulation is produced outside the
shielded room, conducted through air filled tubes and presented to the left ear
using a headphone which is especially developed for neonatal measurements
(Fig. 3). For visual stimulation, the newborn is lying on its back with its occipital
lobe resting on the sensor array. The light pad is fixed at approximately 1 m above
the neonatal head.

4 State of the Art in Functional Fetal Brain Research
Using fMEG

In the year 1985, the first fetal AERs were detected using a one-channel MEG
device (Blum et al. 1985). Since then, the technology was improved and mea-
surements with more channels were made possible. In the last decades, mainly
auditory evoked responses (AERs) and visual evoked responses (VERs) were
recorded and their change over gestational age was investigated (Holst et al. 2005;
Eswaran et al., 2002a, b; Schleussner and Schneider 2004). Moreover, auditory
change detection (e.g., change in frequencies) was evaluated (Draganova et al.
2005, 2007) and response decrement (i.e., habituation) after repetitive auditory and
visual stimulation has been investigated (Sheridan et al. 2008; Matuz et al. 2012;
Muenssinger et al. 2013).

Fig. 3 Neonatal
measurement with auditory
stimulation. Tones are
produced outside the shielded
room and transmitted through
air-filled tubes to small
earphones especially
designed for neonatal
measurements (� University
Hospital Tübingen)
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4.1 State of the Art in Auditory fMEG Research

As described above, the first human auditory experiences can be expected at
20 weeks GA. In fMEG studies using pure tone stimulation, AERs were detected
reliably at a GA of 28 weeks (Lengle et al. 2001; Schleussner and Schneider,
2004; Eswaran et al. 2002a). While response detection rates were highly variable,
an AER detection rate of around 80 % could be reached in fetuses between 28 and
40 weeks GA (Schleussner and Schneider 2004; Holst et al. 2005) and 30 and
40 weeks GA (Eswaran et al. 2002a). Moreover, longitudinal studies evaluated the
development of AER responses over GA. Therefore, fetuses between 27 and
40 weeks GA were included and measured at least twice with an interval of
approximately 2 weeks between measurements (Holst et al. 2005). Results showed
that the AER latencies decreased with increasing GA, indicating a gradual mat-
uration of auditory processes and therefore an increase in the speed of auditory
signal processing during the last trimester of pregnancy (Holst et al. 2005). These
results are also in accordance with those of Schleussner and Schneider (2004), who
showed decreasing latencies of the P2 pm and N2 pm components with increasing
GA. These findings are first steps toward the understanding of healthy brain
maturation in utero and might in the future be helpful in detecting deviant brain
development. Moreover, in addition to pure sound detection, fetuses in the last
trimester of pregnancy are also able to detect changes in sound frequencies
(Draganova et al. 2005). To investigate this ability, an oddball paradigm was used.
500 Hz (88 %) tones were intermixed with 750 Hz (12 %) tones and mismatch
negativity responses (MMN), which are an indicator for change detection (in this
case a change in frequency), were evaluated. It could be shown that in 48 % of the
fetal recordings, an MMN response was found. In a follow-up study, detection
rates of MMN responses increased to 66 % in fetuses between the GA of 28 and
39 weeks and 89 % in newborns (Draganova et al. 2007). These results strongly
indicate that the fetal brain in the last trimester of pregnancy is able to process
auditory stimuli and detect changes in stimulus frequencies. This is an important
prerequisite for language development and processing. Also concerning habitua-
tion, the most basic form of learning, an auditory fMEG study was performed
(Muenssinger et al. 2013). Fetuses were measured using an auditory short-term
habituation paradigm consisting of trains of tones including five 500 Hz tones, one
750 Hz tone (dishabituator) and another two 500 Hz tones each. After response
sensitization resulting in a response increment between tones one and two, the
expected response decrement for the four repetitively presented 500 Hz tones
could be observed (Fig. 4).

This response decrement could either be due to sensory adaptation (fatigue) or
to habituation. Therefore, not only dishabituation (response increment between last
tone before and first tone after the dishabituator) but also stimulus specificity
(response increment between last tone before dishabituator and dishabituator
itself) were evaluated. Additionally, MMN responses between the last tone before
the dishabituator (standard) and the dishabituator itself (deviant) have been
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investigated. Both stimulus specificity and the presence of MMN responses would
be an indicator for habituation as reason for response decrement, because sensory
fatigue would be stimulus independent. Significant stimulus specificity was found
and MMN responses were detected in 50 % of the fetuses (Fig. 5). This indicates
that already fetuses in the last trimester of pregnancy are able to show habituation,
a basic form of learning.

4.2 State of the Art in Visual fMEG Research

Similar to AERs, VERs have been detected in fetuses as early as in the 28th week
GA. In their preliminary study, Eswaran et al. (2002b) presented 180 light flashes
to ten fetuses between the GA of 28 and 36 weeks and could show that four of the
ten fetuses showed evoked responses to the light stimulation. Using longer

Fig. 4 Normalized fetal amplitudes to tones 2–8 of an auditory habituation paradigm. Mean and
standard error are displayed. Figure with permission from Muenssinger et al. (2013)

Fig. 5 Amplitude example of tone 2, tone 6 (dishabituator) and the MMN response of one fetus
at the gestational age of 36 weeks. The five channels with the highest amplitudes are shown.
Figure with permission from Muenssinger et al. (2013)
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stimulus durations, the response rates could be strongly enhanced. By presenting
light flashes with a duration of 100 ms or 500 ms to fetuses starting at 28 weeks
GA, a response detection rate of 60 % was found in fetuses between 28 and
32 weeks GA and even a response detection rate of 70 % was found in fetuses
between 32 and 36 weeks GA. In the oldest fetuses (36–40 weeks GA), the
response detection rate was rather low (28 %). However, different than in
responders, it was reported that the position of most of the non-responders was in a
way that the eyes were not visible with ultrasound which means that they were
turned away from the visual stimulation. Concerning the development of VERs in
fetuses over GA, it could be shown that the latencies of the fP200 component
decreased with increasing GA. No changes for GA were found for the fP300
component (Eswaran et al. 2004). These results show the possibility to use fMEG
to monitor fetal brain development not only using auditory stimulation but also
using visual stimulation (Fig. 6).

However, for a clinical setting, the response detection rates are still not high
enough. By combining both stimulation types (i.e., by presenting auditory as well
as visual stimulation to the fetus), the response detection rate could be enhanced to
91 % (criteria that the fetus showed a response to either one of the stimuli)
(Eswaran et al. 2005). In addition to the development of stimulus processing, also
studies concerning habituation have been performed using fMEG. Sheridan et al.
(2008) investigated the decrement of VERs elicited by trains of four light flashes in
fetuses between the GA of 29 and 37 weeks as well as in newborns between 6 and
22 days of age. Newborns showed response decrement from the first to the last
light flash. In fetal recordings the response rate was low (29 %), which may be
caused by the low signal to noise ratio of visual evoked responses. However, for
the fetuses who showed responses, either a decrement from flash one to two or a
response for flash one followed by no detectable response for the following flashes
were detected. This might at least indicate that response decrement to visual
stimuli can be detected in utero. Similar results have also been shown by Matuz
et al. (2012), who presented four light flashes to fetuses and neonates but also
included an auditory dishabituator in the trains of light stimuli, which was pre-
sented after the fourth light flash. Neonatal results showed response decrement
between the first and the last light flash as well as response recovery for the
dishabituator. For fetal measurements, a low detection rate was found, but a
decrement between the VER of flashes one and two could be detected in those
fetuses showing VERs. These two studies indicate that newborns born at term
show visual response decrement as well as response recovery when an array of
repetitive stimuli is interrupted by a novel stimulus. Moreover, there are first
indications, that already the fetal brain might be capable of showing visual
habituation. However, further research is needed to clearly show visual response
decrement in utero and to gain more information about the question if visual
response decrement is due to habituation, a basic form of learning, or sensory
adaptation/fatigue.
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4.3 State of the Art in Clinical fMEG Research Using
Auditory and Visual Stimulation

The knowledge obtained from fMEG research with healthy fetuses and neonates
was used to assess clinical questions. In utero, there are different factors which can

Fig. 6 Averaged VER responses and their locations on the 151 sensor array map from a fetus at
32 (top) and 34 (bottom) weeks of gestation. The flash duration was 100 ms. Figure with
permission from Eswaran et al. (2004)
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influence fetal brain maturation. Intrauterine growth restriction (IUGR) is one
factor known to increase the risk for neurologic damage due to oxygen deprivation
of the fetal brain as a consequence of placental insufficiency. Therefore, the
developmental course of IUGR fetuses is expected to be delayed. Kiefer et al.
(2008) used fMEG to investigate fetal brain maturation in fetuses (C27 weeks GA)
who were small for gestational age (SGA), a state defined by a weight below the
10th percentile of the GA age group. In this group, placental insufficiency was
expected and validated in 12 of 14 cases through the use of Doppler scans. Results
of the SGA group were compared to results of a group of healthy fetuses to assess
possible delays in stimulus processing. Both groups were presented with tone burst
and AER latencies were evaluated. Results showed longer AER latencies for the
group of SGA fetuses in comparison to the group of healthy fetuses. In line with
prior studies (Schleussner and Schneider 2004; Holst et al. 2005), a decrement of
AER latencies with increasing GA was found in both groups. These fMEG results
are a strong indicator for delayed brain maturation in SGA fetuses.

Another factor which may influence fetal brain development is the adminis-
tration of medication to the mother. Steroids are often administered to the mother
to induce fetal lung maturation if premature birth is suspected. However, animal
models showed that antenatal steroids involve a delay in fetal brain myelination as
well as a delay in fetal brain growth (Whitelaw and Thoresen 2000). Schneider
et al. (2011) investigated the fetuses of mothers who received a steroid treatment
for medical reasons. Steroids were given at two consecutive days and fMEG
measurements were conducted before the first as well as not later than 3 h after the
second administration. All fetuses were presented with pure tone stimulation.
Results showed a delay in AER responses after steroid administration. Even
though steroid administration has been proven to be lifesaving, the results of this
study emphasize that they should only be administered when the benefits outweigh
the risks.

5 Summary

In the last decades, fMEG opened a new possibility to investigate fetal functional
brain development by enabling the direct evaluation of fetal brain responses to
different kinds of stimulation. Since the fetal brain is especially vulnerable to
internal as well as external influences during that period, knowledge about healthy
brain development in utero is needed. Only by knowing how the healthy brain
develops, it is possible to detect deviations or delays. Early detection of devel-
opmental deviation or delays could enable faster postnatal treatment and therefore
improve treatment outcome. Moreover, by examining the harmful effects to the
fetus which are induced by maternal medication, the advantages and disadvantages
of drug administration can be better weighted, which in turn could also decrease
negative neonatal outcomes. Taken together, the fMEG is a promising tool to
investigate functional brain development in utero.
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Pediatric MEG: Investigating
Spatio-Temporal Connectivity
of Developing Networks

Kristina R. Ciesielski and Julia M. Stephen

Abstract The extended development of the human brain provides a unique
opportunity to study the maturation of cortical networks that subserve sensory and
cognitive functions using noninvasive functional neuroimaging techniques.
However, considerable challenges have limited the number of functional neuro-
imaging studies in children. MEG addresses a number of those limitations. MEG
provides high temporal and spatial resolution to assess the development of
dynamic cortical networks. The technique provides a secure, peaceful testing
environment, requires minimal preparation of the child and offers technology to
compensate for head movement during scans. We contrast MEG with other
functional neuroimaging techniques and describe effective MEG paradigms for
testing children. We present MEG as the technique of choice for testing the
dynamics of healthy and disordered brain networks.
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1 Introduction

Human brain development is a primary focus of research in cognitive neurosci-
ence. The functional imaging technique of magnetoencephalography (MEG), with
its superior, millisecond temporal resolution, good spatial resolution and totally
noninvasive nature displays all the merits of becoming a leading tool in cognitive
studies with children, and yet MEG is rarely used and, as we perceive, under-
valued. In this chapter we present evidence that by applying MEG in studies on the
developing brain we will attain real-time tracking of distributed long-range cog-
nitive networks and thus gain better insight into brain interconnectivity serving our
perceptions, thoughts, feelings and actions (Jaffee and Price 2007; Kandel et al.
2000; Rutter 2006). Since the spatial-temporal distribution of brain signals is a
sensitive correlate of brain maturation in health and disease (Bunge and Wright
2007; Casey et al. 2005; Khundrakpam et al. 2012; Stiles et al. 2003; Uddin et al.
2010; Vogel et al. 2010), MEG may provide unique insights into the development
of diagnostic, therapeutic and preventive measures (Buzsaki 2006; Hamalainen
and Hari 2002).

Magnetic resonance imaging (MRI and fMRI) has been the primary neuroim-
aging technology used for developmental brain research in children 0–18 years
over the last two decades. It has provided a range of findings about brain devel-
opment including differential development of white and gray matter trajectories
(Stiles 2008). It also provided solid evidence of developmental changes across
brain regions associated with sensory and cognitive processing (Ciesielski et al.
2006; Durston and Casey 2006; Gao et al. 2009; Tamm et al. 2002). Here, we
review outcomes of some of these studies and suggest the possibility for original,
complementary contributions from MEG to developmental neuroscience.
Recently, developmental studies have shifted towards a dynamic concept of
interactive neural connectivity (Atkinson and Adolphs 2011; Johnson 2010;
Poldrack 2010). Questions are now asked about the development of long-range
neural networks, driven by the principle of non-linear rise-fall of tissue in spe-
cialized gray matter modules (Giedd and Rapoport 2010; Sowell et al. 2004), and
by concurrent development of white matter that increases monotonically both in
volume and density throughout adolescence (Gordon et al. 2011; Hagmann et al.
2010; Loenneker et al. 2011; Paus et al. 2001; Yakovlev and Lecours 1967).

In this chapter we present MEG as a unique tool for studying the developing
human brain by direct examination of the temporal characteristics of complex
networks that underlie brain function. MEG is a neuroimaging technique that
measures the magnetic field generated by the ionic currents primarily within
populations of synchronously activated neurons in the brain and the signal arises
from the same source as the electroencephalogram (EEG). Both, EEG and MEG,
are directly tied in time to neuronal information processing. MEG, however, is
unaffected by scalp, skin and, to a large degree, brain tissue inhomogeneities and
is, therefore, ideal for testing complex networks in different stages of ontogeny.
Since the main attribute of the brain is its dynamic temporal pattern of interactions
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between specialized neural modules, the high temporal resolution (millisecond) of
MEG offers unprecedented detail for investigation of complex interactive net-
works. Thus, for this chapter we present a dynamic view of the developing brain as
a spatio-temporal connectome of networks. In the following sections we first
provide neuroimaging evidence supporting such a view of the developing brain
and we discuss the use of MEG in several studies targeting long-range functional
networks. Then, we describe an optimal MEG data acquisition session with
children and discuss the predominant merits of MEG for pediatric research.
Finally, we propose future directions for MEG studies with children.

2 The Developing Brain as a Spatio-Temporal Connectome
of Networks: Potential of MEG for a Unique
Contribution to Developmental Neuroscience

Developmental neuroimaging studies, mostly MRI and fMRI, have demonstrated
that the maturation of cognitive functions during ontogeny may result from the fine-
tuning of the structural and functional organization of long-range neural networks
(Khundrakpam et al. 2012). The majority of MRI research has shown marked
structural and functional brain changes between infancy and young adulthood (Stiles
2008). Longitudinal MRI studies of normative children demonstrate a systematic
increase of white matter volume but a nonlinear change (rise-fall) in gray matter
volume (Gogtay et al. 2004; Paus 2005; Sowell et al. 2002). The tuning of functional
networks, first suggested by Changeux and Danchin (1976) and Huttenlocher (1979)
was considered an adaptive mechanism for eliminating redundant neural connec-
tions. The earliest maturation of cortical layers (as measured by pruning synaptic
connections) was first reported in the primary sensory-motor cortex, and only later in
higher order association areas, thus suggesting developmental progress in the cor-
tical connections through regressive pruning (Evans 2006; Kuhn 2006). In contrast,
the white matter’s progressive myelination of axons (Hagmann et al. 2010; Imperati
et al. 2011; Tamnes et al. 2010) reflects increased conductivity and speed of
information transfer. New studies document coherent changes in cerebral cortical
development (Raznahan et al. 2011).

In line with structural findings, functional studies (fMRI) have demonstrated
segregation and weakening of short-range local networks, and increasing con-
nectivity and integration of distant regions into functional networks (Dosenbach
et al. 2010; Fair et al. 2009). Supportive evidence from fMRI studies with task-
evoked activity paradigms mostly conducted in the visual modality (Bunge et al.
2002b; Bunge and Zelazo 2006; Church et al. 2010; Schlaggar et al. 2002; Tamm
et al. 2002) have been outnumbered in recent years by studies using resting-state
fMRI. The latter reports spontaneous BOLD signal fluctuations in the range
0.01–0.1 Hz that occur without task performance. Often just 4–12 min of data is
acquired from each subject. Consistent with Biswal’s seminal report on resting
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state networks (Biswal et al. 1995) various resting state time-courses reveal con-
nectivity within and between captured networks. For example, significant con-
nectivity is displayed between distant regions of the frontal-parietal network,
default mode network, the control attention networks, memory networks (Greicius
et al. 2003), and lexical networks (Koyama et al. 2010). The conceptual basis is
that certain correlations appear to be strongest between functionally related
regions, and this may reflect the past history of co-activation between brain regions
and their functional familiality (Van Dijk et al. 2010). Those regions that activate
and deactivate at the same time, and therefore show functional time-courses with a
significant statistical dependency have been considered to form ‘‘a network’’.

A growing number of studies have utilized the resting state fMRI signal to
examine age-dependent changes in well-defined brain networks, both in normative
children [e.g. (Fair et al. 2007, 2009; Fransson et al. 2010; Kelly et al. 2009; Stevens
et al. 2009; Supekar et al. 2009)], atypical children [e.g. (Gozzo et al. 2009; Myers
et al. 2010; Smyser et al. 2010)], and in disease states [e.g. (Church et al. 2009;
Cullen et al. 2009; Hampson et al. 2009; He et al. 2007; Jones et al. 2010)]. Since
fMRI has low temporal resolution (200–2,000 ms), such a ‘‘defined network’’
remains at a general level of description, raising questions about the phenomena
underlying resting-state activity (Kelly et al. 2012). Insight into the temporal
interplay between the nodes that form the resting-state network using MEG may
greatly improve our understanding of the formation of long-range networks.

We are currently conducting a resting state study on interactions between dorsal
and ventral visual networks in young healthy children and children at risk from
OCD families, using coherence of MEG oscillatory activity within alpha band
[(8–13 Hz) (Ciesielski et al., study in progress)]. Coherence is a frequency-
indexed measure commonly used to estimate the power transfer between input and
output of a linear system. Thus, coherence between two regions measures the
linear relationship between the signals across all time points at a specific fre-
quency. In order for this measure to be relevant, the signals must be stationary,
which is not, in general, the case with MEG signals. That is why we epoch our
signal in smaller time segments, during which the assumption of stationarity is
better justified.

There is a challenge in interpreting MEG data in terms of brain connectivity
because of the limited spatial resolution of the inverse solution, activity in one
brain region may spread over to other areas in the source estimates. The method
proposed by Nolte et al. (2004), focusing on the imaginary part of coherency,
effectively overcomes this problem. The imaginary part of coherence is insensitive
to ‘self-interaction’ caused by volume conduction. The imaginary part of coher-
ence is only sensitive to synchronization of two signals, which are time-lagged to
each other, whereas estimated signals in two regions that are due to spatial spread
caused by the inverse solution will always have zero lag, and thus the imaginary
part of the coherence for those signals will vanish. Using our preliminary data on 5
healthy children, age 6–12, and children ‘‘at risk’’, we computed, using measures
of alpha-band oscillatory activity (8–13 Hz) the imaginary coherence between
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16 nodes, 8 nodes related to ventral visual network and 8 to dorsal visual network
(all derived from fMRI studies). Custom matlab scripts are used for visualization
[Khan et al. 2013]. As shown on Fig. 1 the resting-state connectivity is prominent
in the posterior cortical regions, where strong alpha power is typically observed in
adults (Buzsaki 2006) engaging more significantly cortical nodes (inferior parietal,
premotor, dorsal prefrontal, precuneus) within the dorsal visual network, irre-
spective of age. The preliminary observations suggest also a hypothesis of more
prominent maturational differences between healthy children and children
‘‘at risk’’ for OCD within the dorsal visual attentional network as compared to
ventral. However, more evidence on the interaction between dorsal and ventral
visual networks along the ontogenetic course is needed to verify this observation.

Furthermore, the developmental changes, in both gray and white matter, may be
captured by measuring MEG latency in task-related networks. Based on recent
studies, it is suggested that nesting oscillations by phase or amplitude of a lower
frequency (theta, 3–7 Hz, or alpha, 8–13 Hz) may modulate phase or amplitude of
a higher frequency (beta, 13–30 or gamma, 30–60 Hz). It is also suggested that
phase-amplitude coupling interacts with local and long-range functional connec-
tivity to integrate information across-networks. A study, employing perception of
emotional and neutral faces, has reported reduced local and long-range functional
connectivity in autism-spectrum disorders using this approach [Khan et al. 2013].

In summary, although resting-state fMRI studies have provided consistent
evidence of correlated changes in spontaneous neural activity within long-range
networks, fMRI allows only indirect evidence of brain connectivity. MEG, how-
ever, measures the ongoing physiological neural activity in vivo. Because of the
high temporal resolution and measurement of specific spectral frequencies, MEG
(and EEG) is uniquely suited for measurements of connectivity of groups of
neurons within a small envelope of time, thus providing valuable insight into the
rapid and complex changes in developing networks.

Fig. 1 Resting state MEG for alpha-band oscillatory activity in healthy children and children
‘‘at risk’’ for OCD age 6–12 y (Ciesielski et al. 2013, study in progress)

Pediatric MEG 529



3 Developmental MEG Studies of Long-Range Networks

3.1 MEG Studies of Stimulus Evoked Responses

This chapter aims to facilitate the use of MEG for investigating network connec-
tivity in children. Below, we present several examples of MEG studies in children.
Each study is concluded with a synopsis regarding the contribution of MEG tech-
nology in attaining the aims of the study. It is important to realize that most of the
studies employing MEG in pediatric populations are used with a clinical aim and
focus on neurological conditions, such as mapping focal or multifocal interictal
epilepsy. In this capacity MEG is routinely used for preoperative assessment of
somatosensory, auditory, visual and language areas for presurgical mapping. The
main goal is to improve postoperative patient outcome (Schwartz et al. 2010). There
are numerous MEG reports from clinical studies in epilepsy. These are the focus of
another chapter in this volume (see Ivasaki and Nakasato, Chap. 39).

Early pediatric MEG studies focused on sensory processing. For example, Paetau
et al. (1995) evaluated the characteristics of the auditory M100 in typically
developing children in response to speech and non-speech stimuli. The reported
reduction of the M100 latency in children age 3–15 years was suggested to be due to
a longer refractory time in the auditory cortex, mostly over the right hemisphere
(Rojas et al. 1998). The maturational changes in latency of M100 have also been
used to investigate processing of low and high frequency tones in children with
Autism Spectrum Disorder (ASD) and in healthy children (Gage et al. 2003a, b).
A delayed activation in the auditory cortex in ASD as compared to controls was
found. The annual rate of latency reduction with age was slower in the ASD group
than in controls, suggesting a continued maturational deficit in autism. Furthermore,
we have recently identified a systematic delay in auditory processing in children
with fetal alcohol spectrum disorders (Stephen et al. 2012). This finding suggests
that sensory processing deficits may be a nonspecific marker of atypical brain
development across developmental disorders. The above studies indicate that
timing of cortical processing is a critical marker of brain maturational progress and
therefore millisecond resolution of MEG measures is invaluable here. In agreement,
Roberts (2009) provided evidence for a direct link between white matter devel-
opment in the auditory white matter tracts and decreases in MEG latency with
increasing age. Our results from a younger cohort of children aged 6–50 months
provides additional evidence of a linear decrease in latency and evolution of the
morphology of auditory evoked responses in very young children (see Fig. 2).

MEG studies have also characterized the development of the somatosensory
response across age. Most notably Pihko et al. (2009), Pihko and Lauronen (2004)
described the emergence of the characteristic peaks of the somatosensory response
in infants relative to children and adults. Additional studies indicate atypical brain
development based on abnormal somatosensory responses in children with autism
spectrum disorders (Marco et al. 2012), children with cerebral palsy (Kurz and
Wilson 2011), and in children born prematurely (Rahkonen et al. 2013).
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Most of the reported pediatric MEG studies focused on cognitive development
search for magnetic sources of cortical activity associated with a task. The scalp
location of magnetic signals and their coherent changes in distant cortical regions
inform researchers about interacting components of cognitive networks. In one
study facial stimuli were employed to examine preferences to faces from early
childhood (6 y) through young (20–30 y) adulthood (Taylor et al. 2011). Over 200
faces were presented within a 1-back working memory task. The high temporal
resolution of MEG permitted careful control of time of onset for cortical components
(including face-specific M100 and M170). Contrast between those signals syn-
chronized in time offered an important insight into the location of cortical activity
associated with developmental changes in memorizing facial stimuli. The
M250–600 ms peak was prominent for repeated faces across all ages and all fre-
quency windows, and larger in the right temporal region including the hippocampus.
Thus, well-developed facial recognition is present early in childhood. The
engagement of the ventral prefrontal cortex, well documented in memory processing
in adults, only became significant in later childhood. Generally consistent with these
findings are results from another MEG study pointing to protracted development of
face processing until adolescence (Kylliainen et al. 2006). The authors presented
stimuli of faces and motorbikes in a visual consecutive matching task in boys 8–11
and young adult men. Although MEG activation in the right ventral occipital-
temporal region was engaged in both groups at 100 and 135 ms (M100, M135), the
primary evidence for face sensitivity in this region came only from a consistent and
narrow timing difference between the responses to faces and motorbikes.

3.2 MEG Studies of Brain Oscillatory Activity in Children

Research by others and by our team indicates that neural oscillations are critical
for understanding developmental processes within and between brain networks.
Indeed, spectral analysis has long been used to characterize brain development in

Fig. 2 Auditory evoked
responses during sleep in
children aged 6–50 months.
A linear progression of
decreasing latency was
observed across 35 healthy
children. (Stephen et al.
Developmental
Neuroscience, submitted)
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children mostly using EEG (Case 1992; Klimesch et al. 2001; Krause et al. 2007).
A change in amplitude or phase of a single oscillation reflects a change in local
neural processing, while amplitude and/or phase correlations (e.g. synchroniza-
tion) between two distant oscillations reflect the functional connectivity between
two neural populations (Buzsaki 2006). An important theta-alpha-beta EEG study
in children and adolescents revealed an age-dependent pattern of oscillatory
changes (Uhlhaas et al. 2009). These changes involve gradually increasing neural
synchrony across childhood followed by an unexpected decrease in synchrony in
later adolescence, paralleled by lower performance. The finding is of significance
for diagnostic and treatment approaches in child psychopathology, and needs to be
further investigated using MEG. Although a considerable number of studies have
been completed on oscillatory activity in children using EEG, very few were done
with MEG. The general consensus is that the MEG signal is more pure as it is not
distorted by skull or skin artifacts, has the advantage of better spatial localization
(Papanicolaou et al. 2005a, b) and is superior in analysis of coherence within and
between networks (Hamalainen and Hari 2002; Srinivasan et al. 2007). It offers,
therefore, unique insight into the mechanism of brain development. For example,
our recent MEG study showed a clear increase of mu rhythm frequency in children
from 3 months to 5 years of age relative to adults with the most rapid development
occurring in the first year of life (Berchicci et al. 2011). This is in line with earlier
spectral EEG studies in children (Orekhova et al. 2006; Yordanova and Kolev
1996). Fewer EEG studies have been performed on the sensorimotor mu rhythm,
in part because it is only sporadically identified with consistent identification in
standard clinical EEG in only 10 % of individuals (Fisch 1991). It has been
observed that the generators of the mu rhythm are oriented in the cortex in such a
way that MEG is more sensitive than EEG to the sensorimotor mu rhythm.
However, further research is needed to explain the developmental significance of
this increase in frequency with age and the mu rhythm’s role in the development of
imitation skills in young children.

Even more rare are studies investigating developmental changes in spectral
oscillatory activity in children performing visual working memory tasks. Among
different oscillatory spectra the alpha band is the earliest to develop, most robust in
children and displays a clear relationship to the inhibitory brain network (Klimesch
et al. 2007; Kolev et al. 2002; Krause et al. 2007; Yordanova et al. 2001;
Yordanova and Kolev 1996). Alpha oscillations have been associated in adults
with top-down inhibitory control and the frontal–parietal network. We recently
examined developmental differences in top-down cognitive control by monitoring
MEG event-related desynchronization (ERD) and event-related synchronization
(ERS) of alpha-band oscillatory activity (8–13 Hz) during the anticipation stage,
target detection stage and post-response stage using a visual working memory task,
the Categorical N-Back [CNBT; (Ciesielski et al. 2004, 2006, 2010)]. CNBT was
validated in our fMRI studies (Ciesielski et al. 2006), which revealed prime
activation in the inferior frontal cortex in adults, but significantly less prominent in
children. Children, however, had stronger activation than adults in the striatum and
posterior cerebellum (Fig. 3a). For details on CNBT see Sect. 6.4. in this chapter.
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Full head MEG was recorded from healthy 10-year-old children and young adults,
and analyzed with a focus on the frontal-parietal attention network. Figure 3b
illustrates the alpha modulation at different temporal stages of the CNBT in
children as compared to adults. Whereas adults showed a modulation of the ERD
at the anticipatory stages of CNBT and ERS at the post-response stage, children
displayed only some anticipatory modulation of ERD but no ERS at the post-
response stage, with the alpha-band magnitude remaining in a desynchronized
state. Since prior neuroimaging findings indicate that the prefrontal–parietal net-
works are not fully developed in 10-year olds, and since the children performed as
well as the adults on CNBT and yet displayed different patterns of ERD/ERS at
different time points of the categorical n-back task (Fig. 3c), it has been suggested
that children may be using different top-down cognitive strategies and, hence,
different, developmental-stage appropriate neuronal networks (Ciesielski et al.,
2006, 2010). One needs to emphasize that top-down cognitive control develops as
a result of interaction between top-down and bottom-up networks (Friston and
Price 2011; van Essen et al. 1992), and thus new MEG paradigms integrating both
measures need to be developed for testing children.

Banaschewski and Brandeis (2007) have recently summarized the findings on
developmental patterns in oscillatory brain activity noting a decrease in low fre-
quency activity (delta and theta) and an increase in alpha and beta activity with
increasing age. Developmental aspects of gamma have been studied less, but are
reliably implicated in feature binding (Csibra et al. 2000; Taylor and Baldeweg
2002). Many of the developmental studies have focused on the evolution of sleep
patterns throughout development (Danker-Hopfe 2011). Despite differences in
spectral patterns across multiple developmental disorders, EEG measures have not
reached the threshold to definitively differentiate disorders or to predict long-term
outcome (Cantor and Chabot 2009; Rothenberger 2009).

A new focus on spectral analysis in fMRI and the additional temporal resolution
afforded by MEG/EEG has led to an increased interest in spectral analysis in EEG
and MEG studies to better understand the interaction between resting brain
rhythms and cognitive functioning. Recent MEG and EEG studies have also
emphasized the importance of accounting for resting brain rhythms in the context
of evoked responses (Fujioka and Ross 2008; Kolev et al. 2002). Fujioka and Ross
(2008) reported hemispheric differences in alpha desynchronization following pure
tones or musical stimuli suggesting that the amount of desynchronization may
provide a hemisphere specific measure of brain development. Rojas (2006) also
identified an exponential increase in the auditory 40 Hz steady-state response in
children providing a potential marker for normal brain development. Recent
reviews (Cantor and Chabot 2009; Rothenberger 2009) report evidence that EEG
oscillatory measures may play an important role in guiding diagnosis, prevention
and treatment of developmental disorders. We postulate that MEG can further
facilitate these translational efforts, by better identifying deficits in the spatio-
temporal connectome of networks to improve brain functioning in individual
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children. Future studies will also continue the work linking genetics with cortical
oscillatory activity (Begleiter and Porjesz 2006) to identify endophenotypes of
developmental disorders.

Fig. 3 a CNBT has been validated in fMRI studies with adults (A) and children (C); Of note are
the age-dependent differences in task-related networks; b Changes in MEG alpha-band
Temporal-Spectral Evolution TSE [%]. The normalized TSE waveforms show task-related
changes in alpha-band activity; c Changes in alpha band: BT-before the target, T-Target-raccoon;
PR-Post-Response; TSE changes calculated in relation to the Pre-2BT baseline; *p \ 0.05;
**p \ 0.001. Ciesielski et al. (2006, 2010)
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4 MEG Studies: Challenges Specific to Studies
with Children

4.1 MEG: Preparation and Acclimation of Children
for Testing: Significance of Parent-Researcher-Child
Relationship

MEG has now been used for over a decade to perform clinical diagnostic evalu-
ations in children, but only recently for pediatric research. Excellent communi-
cation and trust between the parent, researcher, and child are the prime markers of
success in neuroimaging research with children. We, therefore, schedule additional
time at the beginning of each MEG session to familiarize both the parent and the
child with the study details and testing environment. We describe below several
strategies we employ in our pediatric neuroimaging studies to optimize testing for
children.

4.2 MEG: Data Acquisition and Processing

Data acquisition is the most important part of any neuroimaging study, since errors
committed at this stage are irreversible. Often the participating child is available
just for one session. Among the factors that determine whether relevant and valid
data have been collected include: clarity of the scientific question and hypothesis,
and the pre-selection of a representative subject population. Helpful discussions of
those and other factors relevant to studies with children have been published in
recent years (Burack et al. 2004; Byars et al. 2002; Cheour et al. 2004; Gaillard
et al. 2001; Hansen et al. 2010; Karmiloff-Smith 2010; Kotsoni et al. 2006; Picton
et al. 2000; Poldrack 2010; Taylor and Baldeweg 2002; Taylor et al. 2012).

4.3 MEG: Data Acquisition in Infancy

In infants and toddlers [age 6–24 months], an optimal data acquisition is per-
formed during sleep. Multiple studies have confirmed that sensory responses can
be probed during sleep with some changes in peak latencies and a reduction in
amplitude of later peaks [(Lutter et al. 2004; Pihko et al. 2004)]. Neonatal studies
are presented in a separate chapter in this volume (Münbinger et al. in Chap. 23).
Importantly, sleep stages mature towards an adult pattern by 6 months of age
making it feasible to perform developmental studies across children [6 months
while maintaining a constant arousal level across groups and participants. The
parent is actively involved and a number of strategies are used for attaining sleep
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in young children, all aimed at comfort and safety. Infant/child safety must be
ensured to reduce the risk of a child rolling off the MEG system beds as only a few
are designed with barriers. Some infants may fall asleep better while being held. It
is important that the study begins promptly when sensitivity to touch is reduced, as
sleep cycles are short in infants (*20 min before they rouse/reposition).

If the MEG study is to be performed while the infant is awake, it is important to
schedule the time of day when the infant is most alert with a feeding scheduled
immediately prior to the study. Infants are sensitive to diurnal patterns and
therefore optimizing the chance for an attentive infant is well worth the effort.
Patience of the researchers and parents is a valuable determinant of successful data
acquisition. Optimization of the study procedures by eliminating unnecessary steps
and having well-trained staff is essential.

4.4 MEG: Data Acquisition in Early Childhood

Young children [ages 3–10 years] are apprehensive of new experiences. Thus,
providing the parent, in the presence of a listening child, with comprehensive and
friendly study information provides important comfort for a child. To secure child
collaboration we designed a specific neuroimaging protocol, for both, MEG and
MRI laboratory environments. The protocol reduces movement artifacts and
remains enjoyable for the child across the testing sessions. The main highlights of
our protocol are: (i) acclimation session conducted a couple of hours prior to MEG
or MRI scanning; (ii) relaxation session conducted directly before entering MEG
or MRI testing rooms, and (iii) information session with a parent and child about
safety and the meaning of MEG and MRI technology. In relation to acclimation,
some laboratories use a mock MRI scanner a day or two before testing. In our
experience mock MRI may not always work well for young children as upon
detecting the difference between the mock and the real scanner, the youngsters
may refuse participation. Thus, we conduct the acclimation session in the same
MRI scanner the day the study is run. There are no mock MEG helmets, thus
exposing the young participant to the actual MEG laboratory environment is the
most effective priming technique. Muscle relaxation session is conducted imme-
diately before entering the scanner. Children respond well to instructions of
control of targeted groups of muscles. The playful approach to the study effec-
tively substitutes the child’s fear with curiosity, and develops trust to the experi-
menter. Imaginary play is typical in young children, and the testing session may be
turned into a game with the children imagining themselves as astronauts, etc.

The influence of emotional state, and in particular the level of anxiety in a child
and his/her parent are powerful confounds during testing. It is our experience that
healthy children who evaluate the laboratory visit as less enjoyable generate higher
activation in prefrontal brain regions, despite having comparable performance
accuracy to children who enjoyed the study. The relaxation session with children
leads to reduction of generalized frontal activity (KRC unpublished data from
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MEG and fMRI studies). We agree with Hinton (2002) about the importance of
maintaining high ethical standards in performing pediatric neuroimaging studies.
The consent to participate by the parent and child frequently needs individualized
explanations.

4.5 Time-Table for MEG Studies with Children
Age 5 and Older

To benefit also from the spatial sensitivity of MEG, a range of available source
estimation methods can be used to map MEG sensor data to the source-cortex in
each child individually, thereby requiring an MRI in addition to the MEG data.
The optimal course of events in MEG studies is to schedule both MEG and a short
MRI session within proximity of a couple of hours, with an MEG session always
conducted first. It is preferable to schedule neuropsychological testing, for the
following day. The novelty of the MEG and MRI imaging environment is often
taxing to a child and they need to relax before attending to multiple tasks of a
neuropsychological battery. Thus, a 2-day schedule appears optimal for a pediatric
MEG study: First day: (i) Study consent and assent; (ii) Acclimation sessions for
MEG *10 min and for MRI *10 min; (iii) Development of child/parent/
researcher rapport [including sensory evaluation, demographics, and question/
answer session] takes *30 min; (iv) MEG data acquisition (with preparation)
*40–60 min; (v) Break 30 min; (vi) Anatomical MRI (with preparations)
*30 min; Second day: (i) Psychiatric/clinical evaluation *1 h; (ii) Resting break
*1 h; and (iii) Neuropsychological testing *2 h with resting breaks; (iv)
Debriefing session with parents and a child.

5 MEG in Children: Technical Considerations

5.1 Helmet Positioning

It is a continuous challenge to optimize signal strength in pediatric studies since the
adult MEG systems are not optimized for children. For example, children find it
uncomfortable to keep their head back in the helmet and may compromise data
quality in the posterior cortex by bringing their head forward. MEG studies in
infants are conducted mostly in the supine position. Alternatively, infants
6–18 months of age may sit in an MEG compatible child seat (Imada et al. 2006).
We have found that the supine position works well for children up to 5 years of age
(Stephen et al. 2012) by allowing the child to better see investigators in the room in
addition to the benefit that the head naturally lays in approximately the same
position between transient movements due to the concave shape of the helmet.
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Finally, continuous head position monitoring provides an important advantage for
pediatric studies (Stephen et al. 2012; Wehner et al. 2008). By approximately
5 years of age, MEG data may be collected in the upright position, in agreement
with the child’s preference.

5.2 Head Position Indicator Coils

Use of head position indicator (HPI) coils is important to determine where the head
is relative to the sensor array in all MEG studies. However, placement of the HPI
coils is a greater challenge in children. HPI coils placed on the forehead or neck in
young children may be located below the sensor array making the HPI coil
position unreadable during data collection. Therefore, we place the HPI coils on
the EEG cap, in the case of simultaneous MEG and EEG data collection, or HPI
coils are taped to a snug fitting cap that is secured to the head. The cap must be
sufficiently taut to ensure that the relative position of the HPI coils does not change
with child movement. Beginning from age 5 a child can comfortably sit in the
MEG with the HPI coils generally taped along the hairline.

5.3 Bipolar EEG Channels

Bipolar EEG electrodes are used to monitor eye movement, cardiac signal and chin
movement in young infants to monitor sleep stage (Fisch 1991). Additional bipolar
EEG channels can be used to monitor muscle activity. Based on the robust eye
movements and cardiac signals, only mild removal of skin oils is sufficient in infants
and young children. We use medical paper tape for attaching facial electrodes so
that it can be removed from the skin without distress. Baby oil or commercially-
available tape removal swabs provide the best means for removing tape. For older
children standard electrode placement is sufficient. However, in childhood disorders
with sensory sensitivities electrode placement should be minimized.

6 Examples of Tasks Useful in Pediatric MEG Studies

6.1 Design of Passive Paradigms for Infants

Since infants cannot follow explicit instructions, MEG protocols for infants need
to encourage natural behaviors or employ a passive design. Passive designs have
been used to track sensory development during sleep in young neonates (see
chapter on Designing MEG Experiments by J. Stephen in Chap. 5). Other work
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has been performed in older infants in the awake state [e.g. (Imada et al. 2006;
Johnson et al. 2010, 2013; Wakai et al. 2007)]. Our approach is to track the child’s
behavior during the task using: (i) MEG-synchronized video recording to allow for
post-processing of behavior with respect to task stimuli and brain function, and
(ii) Physiological monitoring, such as monitoring respiration, heartbeat, and sup-
plementary bipolar EEG electrode placements. Standard sleep electrodes are
recommended for sleep stage characterization in children who sleep during the
protocol. Protocols for young children can include explicit tasks, but require
succinct tasks that are designed with young children in mind.

6.2 Sensory Tasks

With some modifications of adult protocols, standard sensory tasks can be pre-
sented very efficiently when a child is alert and cooperative. Since cortical pro-
cessing in children is slower than adults, the inter stimulus interval must be longer
to obtain the full sensory response (including the later components). For example,
Pihko et al. (2004) recommends an ISI *2 s for young children. One approach to
record data for longer periods of time employed in both child and adult studies is
to present a silent video [children: (Oram Cardy et al. 2008; Stephen et al. 2012);
adults: (Huttunen et al. 1999; Korvenoja et al. 1999)]. The silent movie while
passively activating the visual system is not synchronized to auditory or
somatosensory stimuli. It is now recognized that attention impacts even basic
sensory responses (Donohue et al. 2011), therefore attention components may be
modulated by observation of a video. Our experience is that videos help to calm
children and allow for 15 min of data collection in children as young at 2–3 years
of age.

Very few basic visual MEG studies have been performed in children. While
visual stimuli can be engaging for infants, they become fast disinterested in rep-
etitious stimulus presentation. However, basic visual studies are important for
investigating both healthy and disordered brain development. For example, an
increase in occipital cortex sensitivity to visual stimulus onset asynchrony has
been reported in young children with autism relative to healthy control participants
using MEG (Falter et al. 2012). In another study, significant delays in the primary
visual cortex response in adolescents with fetal alcohol spectrum disorders (FASD)
are reported during a pro-saccade task with greater delays to peripherally versus
centrally presented stimuli (Coffman et al. 2012). These results indicate basic
sensory processing deficits in developmental disorders and thus encourage studies
of the visual system using MEG. Refinement of remote MEG-compatible eye-
tracking systems, that accommodate head movement, may provide the necessary
technical support to enable future visual studies in children aged 3 and younger.
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6.3 Motor Tasks

Among motor tasks, a standard finger lift task can be implemented to study the
motor network displaying beta and gamma oscillations (Wilson et al. 2010, 2011).
Huo et al. (2011) describe high gamma in children through a simple unilateral
finger lift task. Furthermore, we have employed an imitation, squeezing task in
infants and young children (Berchicci et al. 2011), which allows the infant to make
use of their natural tendency to reach and grasp presented objects. By making this
a game with the child, one can monitor mu rhythm (*10 Hz) modulations based
on the child’s motor activity and their observations of the investigator performing
a similar task. We also use bipolar EEG electrodes to monitor arm muscle activity
in the infant to help determine when the child is resting or actively responding.
Despite these studies, very few motor studies have been designed for MEG
because muscle activity contaminates the MEG signal. Therefore, children must be
carefully trained to limit their movement to the chosen hand/finger during the task.

6.4 Cognitive Top-Down Control Tasks

Effective working memory is a fundamental marker of healthy cognitive devel-
opment. Working memory refers to time-limited processing of an active repre-
sentation of information, which is accessible for recall or for further manipulation
(Baddeley 1986). In other words it is an outcome of sustained attentional focus on
task-relevant mental representations and on suppression of competing distracting
events (Engle et al. 1999). Effective use of mental representations, actively held
‘‘on line’’, has been found to be critical for behavioral and cognitive flexibility
(Gevins and Smith 2000; Goldman-Rakic 1987) and is a sensitive marker of cog-
nitive development. A variety of working memory tasks have been used in classical
developmental studies and more recently in pediatric neuroimaging, mostly fMRI
(Berl et al. 2006; Bunge et al. 2002b; Gabrieli et al. 1998; Nelson et al. 2000; Owen
et al. 2005; Taylor et al. 2011). The major aim has been identification of cortical
activation maps over the course of development, and in particular the contribution
of late maturing prefrontal networks. However, dynamic changes of the developing
brain could be specifically examined through the temporal properties of the cortical
long-rage networks and their spatio-temporal engagement at each stage of the
working memory task: encoding, retention with distractor and retrieval. Here
the role of MEG with its total noninvasiveness and high time resolution is unique
and invaluable. Event-related MEG recordings provide an accurate timing of dif-
ferent sensory and cognitive processes, and increase our insight into the temporal
organization of different stages of the working memory task.

Among tasks conducive to the MEG environment we suggest two in particular:
the Delayed Matching-to-Sample Task (DMST) and the N-Back working memory
task, both permitting accurate timing of attentional and memory processes that are

540 K. R. Ciesielski and J. M. Stephen



changing during developmental course. Distinct stages of DMST (encoding,
retention and retrieval) belong to these memory processes and attentional pro-
cesses include top-down inhibitory control of interference and set-shifting. For
DMST two variants of the task are available: DMST with distracter (DMST-WD)
and without distracter (DMST-ND). Figure 4 presents the DMST-WD sequence of
events. Classified by the leading cognitive processes involved, DMST is some-
times labeled as a ‘‘delayed recognition’’ task. We found the following time
parameters as the most effective in using the DMST-ND in older children (age 8+)
and adolescents: (1) Encoding phase with presentation of a black and white
checkerboard sample-stimulus for 200 ms duration and 1.5 9 1.5 visual angle; (2)
Retention of about 3,000 ms, and (3) Retrieval involving presentation of two
checkerboard patterns (200 ms duration), one identical to sample stimulus. The
child is to indicate which of the two patterns is matching the sample-stimulus by
pressing a button with the right index finger as fast as possible. The response is
counted, if the button is pressed before the beginning of the next trial (2,000 ms
window). The DMST-WD is identical to the above version with ND, except that a
distracter pattern (200 ms duration), very similar to the stimulus-sample, is pre-
sented at the beginning of the Retention phase, 1,000 ms post presentation of the
sample-stimulus. The total duration of the Retention phase in DMST-WD is
3,200 ms.

DMST requires effective top-down inhibitory control of events to empty the
memory buffer after each single sample-stimulus trial is presented in order to be
able to encode the new complex sample-stimulus and to refrain from processing
any interfering stimuli during the retention period (e.g. the distracter stimulus) and
to correctly identify the sample-stimulus (Ciesielski et al. 2005, 2007, 2012). Thus,
MEG with its high temporal resolution (ms) is well suited to examine cortical
responses related to the three consecutive phases of the DMST, encoding of the
sample-stimulus, retention, and retrieval. In estimating the current brain sources
underlying the MEG responses in the DMST task, we employ the minimum-norm

Fig. 4 DMST-WD: Visual-Spatial Delayed Matching-to-Sample Task with distractor (Ciesielski
et al. 2005, 2007, 2012)

Pediatric MEG 541



estimates constrained to the cerebral cortex (Dale et al. 2000; Dale and Sereno
1993; Hamalainen and Ilmoniemi 1994). This approach allows user-independent
automatic computation of the source estimates and is especially suitable for ana-
lyzing complex patterns of activation expected in a multistage cognitive task like
DMST.

The network of areas activated by DMST include the lateral and ventral occipital
areas, the insular region extending towards the prefrontal orbital cortex, superior
temporal sulcus, dorsolateral prefrontal cortex (BA6/8/9 and SFS) and posterior–
inferior parietal cortex. It is remarkable that the ROIs which we have chosen for
investigation based on adult human fMRI studies of visual–spatial working memory
tasks (Courtney et al. 1998; Haxby et al. 2000; Smith and Jonides 1998), showed
such a close correspondence to the MEG activation by DMST in adolescents.
Moreover, the network of regions (prefrontal, parietal, insula, superior temporal
sulcus) related to executive control in adults (Bunge et al. 2002a; Cohen et al. 1997;
D’Esposito and Postle 1999; Jonides et al. 1998; Petrides 2000) is crucial to
understanding the development of the inhibitory mechanism in developmental
disorders.

The N-back working memory task remains one of the most inspirational and
most frequently used paradigms in cognitive neuroscience. The simple, elegant
design of the task reflects the working memory concept as an integral cognitive
operation with an active ‘‘on-line’’ short-term information storage that is cueing
the cognitive process and the behavioral response (Gevins and Cutillo 1993). We
designed a variant of the classical N-Back task, the Categorical N-Back task
[CNBT] (Ciesielski et al. 2004, 2006, 2010). CNBT contains the challenging
component of fast ‘‘on-the-go’’ categorical concept formation, a process that may
be tracked in time. CNBT performance requires a two-step executive process, first
the formation of a categorical concept by comparing each object to a categorical
prototype, and second, a comparison between the categorical properties of objects
presented consecutively within n-trials prior to the designated target. The memory
demands in CNBT, therefore, in contrast to the classical N-Back, remain constant,
while the challenge to mental flexibility is emphasized.

Figure 5 illustrates the object Categorical N-Back Task (CNBT). Images of
animals and non-animated objects were presented sequentially. Each consecutive
image was presented for 500 ms, except for a blank screen that lasted 1,000 ms.
The subjects were asked to press one of two buttons whenever an image of a
raccoon (target, T) appeared: right button if the two images preceding the target
(2BT) belonged to the category of animals, and left button if they belonged to
other categories of stimuli. The total time available for the subjects to respond to
the target is 2,000 ms. CNBT is appreciated by children, as it has the primary
characteristics of an interesting computer game.
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7 MEG: Processing of Pediatric Data

Although the approach to MEG data processing in pediatric studies depends on the
question that is being posed, the standard stream of data processing is applied first
in most pediatric studies. Therefore, signal averaging is required if one is char-
acterizing the evoked response to one stimulus or a set of stimuli. This requires
that the paradigm be designed in such a way that one can present a sufficient
number of trials for each condition that the child can enjoy the task and yet allow
the researcher to obtain a good signal to noise ratio of the evoked response for each
condition.

7.1 MEG: Analysis of Source Activity in Children

Descriptions of source analysis techniques are covered in detail in other chapters in
this volume. These will include minimum-norm estimation (MNE) using Statis-
tical Parametric Mapping (Dale 2000; Hamalainen and Ilmoniemi 1994) and
dipole modeling. One challenge for source analysis is obtaining individual MRIs
due to the severe restrictions on movement during the MRI scan. Although it is
optimal to obtain individual MRIs for MEG source analysis, a number of studies
have used template MRIs and many source analysis packages provide template
MRIs (e.g. Brainstorm, Besa, Curry). Furthermore, pediatric MRI templates are
available for research purposes through NIH Pediatric MRI database [4–18 years]
http://pediatricmri.nih.gov/nihpd/info/index.html—also available at: http://www.
nitrc.org/projects/pediatric_mri/; Neurodevelopmental MRI Database [infant–4
years] http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/.

Employing source analysis in pediatric studies allows one to fully utilize the
strength of MEG by obtaining information about the location and the timing of
activity. This is important for both normative studies in normal children and for

Fig. 5 CNBT Categorical N-Back Task (Ciesielski et al. 2006, 2010)
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understanding developmental disorders. For example, developmental studies of
auditory processing have identified peaks with different latencies across the
pediatric age span (Paetau et al. 1995). While this progression is consistent with
the process of white matter myelination, it appears that MEG components within a
specified latency window may represent different activations across age and may
be differentially impacted by stimulus parameters (e.g. interstimulus interval,
auditory stimuli characteristics, language vs. tonal stimuli). With such variability,
it is challenging to generalize findings across studies and across developmental
disorders. Source analysis helps to clarify these differences by identifying the
cortical source associated with waveform peaks to determine if the auditory cortex
is exclusively involved in auditory processing or if other areas are also involved
(Kotecha et al. 2009; Lutter et al. 2006; Roberts et al. 2009). Similar challenges are
apparent across the sensory [e.g. somatosensory (Pihko et al. 2009)] and cognitive
domains (Ciesielski et al. 2006; Horiguchi et al. 2003; Trainor 2012). MEG source
analysis has improved our understanding of language processing and reading
difficulties in pediatric studies [e.g. (Heim et al. 2000; Simos et al. 2011; Wehner
et al. 2007)]. Furthermore, the improved techniques of MEG source analysis have
increased successful treatment in pediatric epilepsy (Pataraia et al. 2008; Stefan
et al. 2003).

7.2 MEG: Analysis of Oscillatory Activity in Children

The analysis of pediatric oscillatory activity is performed using the same tools
applied in adult data including standard spectral analysis, coherence analysis, time-
frequency analysis, and phase locking (Jensen et al. in Chap. 17). However,
oscillatory activity develops rapidly across childhood, requiring that time and
frequency windows and oscillatory power must be accounted for during the
analysis and interpretation of results from children of different ages. For example,
a developmental study designed to assess resting brain rhythms (e.g. occipital
alpha or central mu rhythm) will benefit from employing a paradigm that assesses
oscillatory reactivity (eyes open/eyes closed for occipital alpha or rest vs. active
for sensorimotor mu rhythm). This has been addressed in our recent mu rhythm
study by first empirically identifying the subject-specific mu rhythm based on
motor reactivity from active to rest conditions (Berchicci et al. 2011). Caution is
advised in interpretation as other processes or resting brain rhythms may overlap
due to differential development of oscillatory rhythms or spatial congruency
between the resting brain rhythm of interest and other confounding oscillatory
activity. Finally, applying source analysis to the spectral data (e.g. using a
Beamformer approach) will provide important insights into the role of resting state
brain rhythms in developmental disorders.
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8 MEG Versus Other Measures for Tracking Brain
Development in Children: PET, fMRI, EEG

Here we assert that MEG is the most effective functional neuroimaging technique
for pediatric studies as it balances the factors of safety, comfort and provides
unique insight into temporal characteristics of MEG data, essential for develop-
mental research. The two factors that we consider to be of utmost importance in
pediatric studies are: (1) Low stress environment; it is important that the technique
does not introduce sustained anxiety. Some apprehension in children is normal in
new environments, however, one needs to be able to reliably redirect the child’s
attention to the task at hand across patient groups to obtain meaningful data.
(2) Safety. The technique must be non-invasive. To fully study development it is
important to obtain data not only from children with a specific developmental
disorder, but also from healthy control children. As a protected population, chil-
dren can only participate in studies that present a minimal to no-risk environment.

PET as a technique provides important information about the functioning and
chemical makeup of the brain. Furthermore, it provides absolute measures of blood
flow. However, PET exposes study participants to ionizing radiation and therefore
cannot be used in healthy children, thereby limiting the generalizability of pedi-
atric PET studies. Due to this limitation, only a few pediatric studies have been
performed in children with developmental disabilities [e.g. (Chugani et al. 1987)],
based on the prediction that the individual children may directly benefit.

fMRI is considered a minimally invasive imaging technique. Although there is
no evidence of harm associated with participating in MRI scans, the high magnetic
field environment generates a risk from metallic projectiles. Additionally, regional
heating may occur if the child crosses their arms or legs. Very strict rules must be
maintained in MRI laboratories. Furthermore, the MRI scanner generates con-
siderable noise that is anxiety-evoking for many children. To date, most MRI
studies are performed on young infants during sleep or children old enough to
reliably control movement during the scan (children[5 years of age (Byars et al.
2002; Leach and Holland 2010)]. O’Shaughnessy et al. (2008) reported that
children as young as 4 years of age could successfully participate in an fMRI scan
with proper behavioral training. However, fMRI studies in awake children under
4 years of age have not been reported, to the best of our knowledge.

EEG is the complement to MEG and similarly noninvasive. However, several
factors limit the use of EEG in pediatric studies. First, the preparation required for
EEG studies and the requirement that electrodes be placed directly on the scalp
make EEG impossible for some study populations due to tactile sensitivity
(Baranek et al. 2006). Second, the preparation time may make the study unfea-
sible. With traditional EEG systems, only a 10–20 system with sparse electrode
density is used in children up to 10 years of age. While this provides a measure of
brain function, it does not provide sufficient spatial sampling for source analysis.
The recently developed high-density, high-impedance EEG systems provide an
important alternative to traditional EEG without requiring the intensive EEG
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preparation for each electrode site (Ferree et al. 2001), however, it still requires
that the child tolerate the high density sensor array placed directly on their head.
Third, the changes in the skull that occur across childhood may also impact lon-
gitudinal and cross-sectional EEG findings in young children. The skull of young
infants contains both superior and posterior fontanels that close at approximately
one year of age. Further, the skull plates do not fully fuse until 8–10 years of age.
The skull has a noticeable impact on the measured EEG signal with the largest
change over the fontanels, whereas there are no detectable differences in the MEG
signal (Flemming et al. 2005). Finally, realistic estimates of skull conductivity are
required to obtain accurate source localization results (Richards 2005). MEG is
resistant to the above factors allowing investigators to use simpler head models for
source analysis and, thus, eliminate the risk of misinterpretation of developmental
MEG data.

9 Unique Attributes of MEG for Studies of Developmental
Connectome in Healthy and Disordered Brain

MEG, with its high temporal and spatial resolution provides unprecedented evi-
dence of changes in the dynamics of cortical networks underlying sensory and
cognitive development. Further, MEG provides a non-threatening environment for
parents and children, thereby allowing acquisition of data not confounded by fear
or discomfort. The peaceful, unobtrusive nature of MEG is welcomed by children
who have high levels of anxiety or sensory oversensitivity. These exceptional
attributes of MEG provide an opportunity to address crucial questions about the
developing brain, related to characteristics of resting-state networks from infancy
to adulthood, the role of sensory function in development of healthy cognitive
abilities, or the emergence of key cognitive abilities in healthy development and in
brain disorders of early childhood. This in vivo time-tracking technique enables
exploration of how resting brain activity interacts or interferes with task-related
activation.

Previous research has demonstrated the ability of MEG to identify subtle changes
in the cortical network dynamics underlying sensory and cognitive functions in
children with various developmental disorders. It is estimated that 1 out of 6 children
in the United States suffers from a developmental disability (US Center for Disease
Control) with the estimated lifetime cost of caring per child reaching $5 million and
significant human cost of emotional distress on the children and their families. There
is a great need for studies that may help to understand when in ontogeny and why
brain development is different in these children. At present, diagnosis of many
developmental disorders is made late in development, thus depriving children of
early intervention with the best long-term outcomes. The attributes of MEG
described above render this technique ideal as a very early testing tool.
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In summary, considering the superb time resolution, high spatial resolution,
total noninvasiveness, including a quiet testing environment, and the rich insight
that MEG offers into the temporal causality and directionality of functional con-
nectivity in developing networks, this technique is uniquely suited for brain studies
with children. MEG has all the attributes to become the prime reliable technology
for defining the pattern of the developmental connectome of the human brain.
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MEG and Cognitive Developmental
Studies

Margot J. Taylor and Elizabeth W. Pang

Abstract Human social, executive and language functions are complex and
known to follow a prolonged developmental course from childhood through to
early adulthood. These processes rely on the integrity and maturity of the frontal
lobes, which also show protracted maturation into adulthood. MEG is the ideal
modality to determine the development of these intricate and multi-faceted cog-
nitive abilities; its exquisite temporal and spatial resolution allows investigators to
track the age-related changes in both neural timing and location. The challenge for
MEG has been two-fold: to develop appropriate tasks to capture the neurodevel-
opmental trajectory of these functions; and, to develop appropriate analysis
strategies that can capture the subtle, often rapid, frontal lobe activity. In this
chapter, we will review our MEG research on social, executive and language
functions controlled by the frontal lobes in typically developing children and
clinical groups. The studies include the examination of facial emotional process-
ing, inhibition and verb generation. We end with a discussion on the challenges of
testing young children in the MEG environment and the development of age-
appropriate technologies and paradigms.
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1 Development of Executive Functions
and the Frontal Lobes

The frontal lobes are among the last brain regions to mature, with myelination
continuing into the third decade of life (Yakolev and Lecours 1967). The frontal
lobes are essential for executive functions and perturbations in their development
can have devastating effects on executive processes (Powell and Voeller 2004).
Social cognitive function, which falls within the rubric of executive functions and
describes the ability to adjust and manage successfully in social settings, also relies
on intact frontal lobe structure and function. Social cognitive aptitude increases in
parallel with frontal lobe maturation. Current models conceptualise executive
processes as reliant on a network of frontal lobe regions with strong reciprocal
connections to subcortical and parietal areas (Elliott 2003). Social cognitive
functions have been linked more specifically with the medial prefrontal and
anterior cingulate cortex (Bush et al. 2000; Radke et al. 2011; Telzer et al. 2011)
inter-connected with dorsolateral and inferior frontal regions (Hall et al. 2010),
with connections to the superior temporal sulcus (STS) (Carter and Pelphrey 2008;
Kramer et al. 2010) and subcortical regions including the amygdalae and basal
ganglia (Satpute and Lieberman 2006, Jackson et al. 2008, Mehta et al. 2010). This
cognitive network is activated to a range of social and emotional tasks, including
social judgement, facial affect, inhibition (Go/No-go) and empathy protocols. The
medial prefrontal cortex is activated in all of these tasks and is also known to be
the last region to mature (Shaw et al. 2008). We focus on the development of two
aspects of social cognitive function—emotional processing and inhibition—and
the advantages of MEG studies in our understanding of these abilities.

1.1 Social Cognitive Processing Assessed Using
Emotional Faces

The most critical visual stimulus in human social interactions is the human face.
Faces convey a vast amount of information, and the skill in differentiating and
recognizing faces and their emotional content has an extended developmental
course through to adulthood (see (Kolb et al. 1992) for review). Although posterior
brain areas are involved in face processing, frontal cortices are critical in under-
standing the social significance of facial expressions and in directing appropriate
attention (Adolphs et al. 2002, Kilts et al. 2003). Perception of emotional facial
expressions involves an extensive network that includes the amygdalae, frontal
lobes, anterior cingulate, STS and fusiform gyri (McCarthy et al. 1999; Allison
et al. 2000; Haxby et al. 2000).

Despite the numerous neuroimaging studies on face processing in adults, there
are fewer developmental studies and even fewer that investigate emotional pro-
cesses. Differences in frontal activation between adolescents and adults, however,
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have been reported in emotional regulation tasks (Burnett et al. 2009; Passarotti
et al. 2009), as well as changes across childhood in frontal activation related to
emotional tasks of self-regulation and empathy (Lamm and Lewis 2010). We have
demonstrated marked developmental changes in emotional face processing
throughout childhood and adolescence with event-related potentials (ERP) (Batty
and Taylor 2003) and atypicalities in ERPs to emotional faces in children with
autism spectrum disorder (ASD) (Batty et al. 2011). We have extensive devel-
opmental data on the spatio-temporal patterns of neutral face processing in MEG
recognition paradigms (Taylor et al. 2008, 2010, 2011a, b, 2012). With emotional
faces in an explicit recognition task, we showed an early frontal activation that
reflected implicit emotional processing, whereas later insula and fusiform activity
was related to explicit emotional recognition (Bayle and Taylor 2010). This task,
however, was too difficult to be completed in children; therefore we turned to
implicit emotional face processing tasks.

An initial adult study provided novel timing information on implicit brain
processing to happy and fearful facial emotions (Hung et al. 2010). The faces were
presented rapidly and concurrently with a scrambled pattern, one on each side of a
central fixation cross. Participants responded as quickly as possible (left or right)
to the side of the scrambled pattern; thus attention was not directed to the faces or
the emotions. With this implicit processing task, we found that at 100 ms, left
amygdala activation was seen to fearful versus neutral faces, and concurrently
there was increased activation in the dorsal ACC. The very rapid timing of
amygdala-ACC activity suggested a specialized frontal-limbic network that could
facilitate early response to a potential threat. This study also demonstrated that
MEG source analyses could accurately measure both the location and time course
of neurocognitive events in deep brain structures, as confirmed with simulated and
real data analyses (Quraan et al. 2011, Mills et al. 2012).

We also determined the development of MEG responses associated with the
implicit processing of fearful and happy facial emotions, using the same protocol
in two groups of children—school-aged children (7–10 years) and young adoles-
cents (12–15 years) (Hung et al. 2012). In the younger children, there was right
lateralised amygdala activation to both happy and fearful faces while no ACC
activity passed threshold. For the young teenagers, the pattern was similar to that
seen with the adult cohort—only left amygdala activity was seen in response to the
fearful faces, and ACC activation was apparent, also to fearful faces only. The
results suggest that the processing of emotions first engaged the earlier-developing
amygdalae, but was non-specific in regards to the emotion, and then by the
teenaged years, involved the later-maturing ACC system. With increasing age
there was also a shift in lateralisation of amygdala responses sensitive to the
fearful faces. The findings are important to our understanding of the development
of functional specialisation of fear perception over childhood; this is a late-
maturing process involving the frontal-limbic emotion system. This study also
suggests that there may be developmentally time-sensitive periods that influence
the normal functioning of these brain regions.
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A subsequent study used angry faces rather than fearful faces, as anger is an
emotional expression that is more commonly experienced in childhood (Todd et al.
2012), and is one with which children with autism have particular difficulties (e.g.,
Kuusikko et al. 2009). Seventeen adults (23.0 + 1.9 years) and 14 adolescents
(14.4 + 1.1 years) were tested. Happy, neutral and angry male and female faces
were used from the NimStim Face Stimulus Set (Tottenham et al. 2009) (Fig. 1).
Emotional faces and scrambled versions of each were presented concurrently on
either side of a central fixation cross. Participants responded as quickly as possible
to indicate the left or right location of the scrambled pattern by pressing the left or
right button on a response button box. The stimuli were presented for 80 ms to
avoid saccadic eye movement.

We conducted event-related beamforming analyses (Quraan and Cheyne 2010)
on the MEG data in early time windows (60–200 ms). Happy and angry faces
appeared to activate largely distinct brain regions (consistent with fMRI studies
e.g., Kesler/West et al. 2001), and the patterns also differed with age group. In
response to happy faces, we found that adults showed greater activity than ado-
lescents, particularly at 100–140 ms, in left inferior frontal and inferior parietal
lobule, as well as right middle temporal gyrus and superior parietal lobule (Fig. 2).
At the same latency, adolescents showed greater activation in bilateral middle
frontal regions. Adolescents showed greater activation to happy faces at
140–180 ms, with regions including bilateral inferior frontal, left superior frontal,
and right superior temporal and middle frontal gyri. To angry faces, adults showed
greater early (60–100 ms) activity in left inferior and right superior frontal regions
while adolescents showed greater right middle frontal activation. Between
100–140 ms, adults showed greater right frontal and temporal activation to angry
faces, whereas adolescents showed only greater left frontal and temporal activity
(Fig. 2). This right hemisphere bias for adults, and left hemisphere bias for ado-
lescents continued until 180 ms.

Early emotion-specific processing has been shown by Peyk et al. (2008) con-
sistent with our findings of bilateral medial frontal activation in response to angry
faces (140–180 ms) in adults, but no significant frontal activations to happy faces
in this latency window. A number of studies have reported that the right

Fig. 1 Examples of the stimuli in the emotional faces task. Happy, angry or neutral faces were
presented to the left or right of fixation, with their matched scrambled faces. Children responded
with a left or right button press to indicate the side of the scrambled pattern, as quickly as possible
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hemisphere may be dominant for processing negative emotional stimuli (Killgore
and Yurgelun-Todd 2007, Fournier et al. 2008); the current data suggest that if this
is the case, this lateralisation of function is not complete even in the teenage years.
Thus, these MEG data demonstrate that in adolescence the neural mechanisms
underlying the development of rapid, implicit and emotion-specific processing are
distinct from those seen in adults, suggesting that these processes are continuing to
mature.

1.2 Inhibition Skills and Imaging Studies

Inhibition is a key process underlying social cognitive function, as inhibition of
context-inappropriate behaviour is critical for successful social functioning.
Behavioural studies of inhibition indicate reliable improvements from early
childhood to adulthood (Luna et al. 2004), and the ability to produce sustained
inhibitory control continues to improve through adolescence. Inhibitory control is
supported by a widely-distributed circuitry in which frontal cortex plays a primary
role (Rubia et al. 2007).

fMRI investigations in adults have identified a distributed network of brain
areas involved in inhibition including striatal and thalamic structures, motor areas,
anterior cingulate, parietal lobes and the inferior and dorsolateral frontal gyri
(Rubia et al. 2001; Watanabe et al. 2002; Mostofsky and Simmonds 2008). The
frontal cortex has been shown to play a major role in inhibition by studies that
employed Go/No-go tasks where contrasts were made between the activations of
No-go (successful response inhibition) to Go trials (response execution) (see

Fig. 2 Frontal and parietal activation to emotional faces differed between adults and adolescents
between 100–140 ms—Adolescents [ Adults shown in blue; Adults [ Adolescents shown in
yellow; happy (left) and angry (right). There was greater activation to the Happy than Angry faces
in both age groups, and greater frontal activity to emotional faces in adults than in adolescents (in
the left hemisphere for happy face, and the right for angry faces)
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review in (Dillon and Pizzagalli 2007)). Brain imaging findings in typical devel-
opment, using Go/No-go tasks, vary extensively but have demonstrated a role for
dorsolateral and inferior frontal regions in inhibition, although this involvement
was not always reliably reported over childhood (e.g., Durston et al. 2002a; Tamm
et al. 2004; Rubia et al. 2007).

Relatively few MEG studies have been conducted on inhibition and most
included only a small number of sensors and/or subjects. We have tested ado-
lescents and adults using MEG to determine the spatiotemporal brain dynamics of
inhibitory control during the period of significant maturational changes over the
teenage years. We used visual Go/No-go tasks that included a baseline condition
with many more No-go than Go trials, allowing us to contrast only the No-go trials
in the two runs, avoiding the confound of motor activity to the Go trials (Vidal
et al. 2012). In this Go/No-go task, the Go stimuli were solid black shapes and No-
go stimuli were the same shapes with a superimposed grey ‘X’ (Fig. 3). Similar to
a recent ERP study (Bokura et al. 2001) we found right-lateralised frontal activity
starting at 200 ms for the adults in the inhibition condition. Brain activations
underlying inhibition in adolescents were slower, more superior and more bilateral
in the frontal lobes compared to adults (Vidal et al. 2012). However, the low
percentage (7 %) of Go trials in the control condition raised the possibility that the
findings were influenced by an oddball effect. Thus, we ran a second study which
also included two conditions, but the tasks contained inverse frequencies of Go to
No-go trials for the experimental (67–33 %) and control (33–66 %) conditions
to avoid an oddball confound and still allowed analysis of only trials pertinent to
inhibition: the No-go trials (Vara et al. 2014). Only correct No-go trials from the
two conditions were analysed.

The spatiotemporal brain profiles involved in inhibition were examined in 15
adolescents and 15 adults with this Go/No-go task. Contrasting brain activation
during No-go trials using vector event-related beamformer (Quraan and Cheyne
2010) showed recruitment of the right inferior frontal gyrus in adults (BA 45;
200–250 ms), but bilateral and delayed recruitment of similar locations in ado-
lescents (BA 45/9; 250–300 ms) (Fig. 4). Activity near the hand motor region in the
left hemisphere (BA 6) was present in both groups but persisted for a longer time in
adults, suggesting that adolescents relinquished more rapidly the preparation to
respond following the No-go stimuli. Adolescents also recruited the right temporal
(BA 21) and inferior parietal (BA 40) regions during inhibition, likely reflecting
increased attention-related resources being recruited (Durston et al. 2002b,
Hampshire et al. 2010) to perform at adult levels. The findings of both delayed
frontal and additional cortical recruitment in the teenagers compared to adults
(Vidal et al. (2012), Vara et al. 2014) underline the immaturity of the inhibitory
network in adolescence. These studies also highlight the importance of MEG to
determine the temporal and spatial changes in brain processes related to the late
maturation of inhibitory control over adolescence and into adulthood.

In summary, the frontal lobes are critical for cognitive processes underlying
social as well as other executive functions; disturbances in their development have
long-term, profound consequences. As the development of the frontal lobes
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continues into adulthood, their functions are the most susceptible to developmental
disturbances; they are also the most amenable to modification with interventions,
making the investigation of abilities dependent on the frontal lobes of considerable
importance in atypical development.

Fig. 3 Figure of Go/No-go protocol. An example of the stimuli in the Go/No-go tasks.
Participants responded as quickly as possible to the stimuli except when there was a
superimposed ‘X’

Fig. 4 Early activation in inhibition condition in adults and adolescents. Within group
activations overlaid on brain images for 200–250 ms (left) and 250–300 ms (right). Inhibition
condition [ baseline condition, in adults shown in magenta (p \ 0.005, uncorrected). Inhibition
condition [ baseline condition in adolescents shown in blue (p \ 0.005, uncorrected). Note the
early right IFG activation in adults, but the later left IFG in the teenagers. L Left, R Right, MFG
Middle Frontal Gyrus, SFG Superior Frontal Gyrus, IFG Inferior Frontal Gyrus, PreCG,
Precentral Gyrus
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2 MEG Studies of Executive Functions in Autism
Spectrum Disorder (ASD)

Autism is described as a disorder encompassing abnormal social reciprocity,
abnormal language use and an intense desire for sameness. While current defini-
tions of ASD encompass varying degrees of difficulties in these three spheres,
impairments in social interaction are the most striking feature which even affects
individuals with high communication and cognitive functioning abilities (Frith
2004).

Despite considerable evidence of abnormalities of brain development in ASD,
there is little consensus on how these findings lead to clinical and behavioural
manifestations of ASD. Some findings suggest that some young children with ASD
have a 5–10 % abnormal enlargement in total brain volume (Sparks et al. 2002,
Courchesne 2004, Hazlett et al. 2005); the most reliable increases are reported in
the frontal lobes, particularly in dorsolateral and medial frontal cortices (Carper
and Courchesne 2005), which are areas strongly implicated in social cognitive
function (Lewis et al. 2011, Telzer et al. 2011). Our own work with children
6–14 years of age found a trend for decreasing grey matter in typical children, but
increasing grey matter in children with ASD (Mak-Fan et al. 2012). ASD children
also show reduced measures of white matter integrity as assessed with DTI that are
particularly marked in the long-range fibres and areas linked to social cognition
(Cheng et al. 2010; Shukla et al. 2011; Mak-Fan et al. 2013).

2.1 Deficits in Social Cognition as Assessed with Emotional
Faces in ASD

Face processing is central to much of social cognition. The behavioural literature
has long reported face processing dysfunction in ASD; people with ASD exhibit
poor eye contact (Hobson and Lee 1998) and look less at others’ faces (Langdell
1978). Many of the cognitive neuroimaging studies in ASD have focused on face
processing, frequently finding atypical activation patterns in the fusiform gyri and/
or amygdalae (Pierce et al. 2001; Amaral et al. 2003). In an ERP study we found
that early responses to emotional faces were delayed and smaller in children with
ASD (Batty et al. 2011), emphasising the need for the use of neuroimaging
techniques with high temporal and spatial resolution, such as MEG, to investigate
these issues. Face affect protocols in ASD participants have reported reduced
activation in the medial prefrontal and STS regions (Pelphrey et al. 2007; Wang
et al. 2007), key areas of the social brain network.

Emotional faces are arguably the most critical visual emotional stimuli and the
ability to perceive, recognize, and interpret emotions is central to social interaction
and communication. As impaired social interaction is one of the hallmarks of
ASD, studies on the neural and cognitive mechanisms underlying emotional face
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processing in ASD are critical. Using an implicit emotional face processing task
while acquiring MEG data (as detailed above), we examined spatiotemporal dif-
ferences in neural activation during angry and happy emotional face processing in
adolescents with and without ASD. The study included 12–15 year-olds, 14 in
each group, with the controls being age- and sex-matched with the ASD teenagers.
Both groups completed the Affect Recognition subtest of the NEPSY-II (Korkman
et al. 2007); the scores on this test and response latencies on the emotional face
task during MEG acquisition did not differ between groups. This argues that group
differences found in neural activity on the emotional face task were not due to
differences in perceived task difficulty. We focused on the MEG responses in the
frontal lobes.

Early significant between-group differences to happy faces occurred at
80–120 ms, during which adolescents with ASD exhibited greater right superior
and inferior frontal activation relative to controls. In contrast, controls showed
greater superior temporal activation, relative to the ASD group, which is consistent
with earlier findings of reduced superior temporal activation in individuals with
ASD to faces (Pierce et al. 2001) and during social processing (Castelli et al. 2002)
in a task that involved attributing mental states to geometric objects.

In response to the angry faces from 160–240 ms, we found greater left middle
temporal activation in adolescents with ASD, relative to controls, consistent with
the results of an emotional face matching task (Wang et al. 2004). This was in
contrast, however, to greater left middle temporal activation seen in controls
during explicit emotional face processing (Critchley et al. 2000), suggesting the
involvement of different neural structures during explicit and implicit emotional
face processing, also confirmed by our group (Bayle and Taylor 2010). In ado-
lescents with ASD, greater activation occurred in the left BA 10 (superior frontal
gyrus) while in typically developing controls, greater activation occurred in the
right BA 10 (middle frontal gyrus). Our within-group analyses of orbitofrontal
activation in controls to angry faces are consistent with evidence in the literature of
the orbitofrontal cortex playing a role in anger processing (Blair et al. 1999; Luo
et al. 2007). In controls, left orbitofrontal activation was first observed in BA10
from 120–160 ms, bilateral activation during 160–200 ms, which continued into
200–240 ms (right only). In contrast, adolescents with ASD show a delayed trend,
with left BA10 activation starting at 200–240 ms, then bilateral activation from
240–280 ms. An atypical pattern of orbitofrontal activity to angry faces was seen
in the adolescents with ASD compared to the controls; it was temporally shifted
and had a different lateralization pattern Furthermore, between 200–240 ms,
between-group comparisons showed greater left orbitofrontal activation in ado-
lescents with ASD while controls showed greater right orbitofrontal activation. As
left and right hemisphere advantages have been indicated for holistic and featural
face processing, respectively, these findings are consistent with the notion that
individuals with ASD utilise alternative face processing strategies, endorsing
feature-based rather than holistic information processing (Hillger and Koenig
1991).
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Of particular interest was the finding of similar MEG activity during happy, but
not angry, face processing, suggesting more typical processing of happy faces in
individuals with ASD. In response to angry faces, we found temporally delayed and
contralateral activation of the orbitofrontal cortex, an area that has been implicated
in anger processing. These data are also consistent with behavioural studies that
show high functioning ASD participants perform comparably to controls on tasks
involving happy faces, but have the most difficulty with angry faces (Kuusikko et al.
2009; Rump et al. 2009). Furthermore, our data suggest different emotional face
processing strategies in individuals with ASD, who may use more local, feature-
based processing strategies compared to typically developing individuals, who
endorse more holistic strategies when processing emotional faces.

2.2 Difficulties with Inhibitory Control in ASD

Inhibitory control is often deficient in people with ASD, underlying in part their
difficulties with emotional outbursts and inappropriate social behaviour. Given its
protracted developmental course (Luna et al. 2010; Vidal et al. 2012), inhibition is
an important area of investigation in teenagers with ASD, as they are adapting to
increasing social demands. Luna et al. (2004) proposed that deficits in inhibitory
capacities increase with age in autism, as the inhibitory demands increase in
adolescence, a period of critical social development.

Some studies have investigated inhibition tasks in ASD. Adults with ASD show
activation with notable differences in the patterns from that seen in controls, e.g.,
greater left frontal activity (Schmitz et al. 2006), reduced anterior cingulate
activity (Kana et al. 2007), as well as in the timing of the brain activation within
the frontal network. However, as inhibition is largely dependent upon the slowly
maturing frontal lobes, the results from these adult studies cannot be used to
generalise to a younger population. To date, there has been little research con-
ducted on the period of brain maturation through adolescence in ASD, when adult
levels of inhibition are being established in typically developing individuals which
are critical to the establishment of normal social relationships.

To better understand the maturation of inhibition skills in ASD, we acquired
MEG measures of brain activity during a Go/No-go task with adolescents and
adults with ASD and age- and sex-matched controls (see Vara et al. 2014). There
were 15 participants in each of the four groups. During the tasks participants
responded to Go stimuli and withheld their response to No-go stimuli (as detailed
above). Inhibition (MEG responses to the No-go trials) was compared between
individuals with and without ASD. In the comparison between the adult groups,
lateralisation differences were found: adults with ASD activated the left inferior
prefrontal cortex and control adults recruited the right inferior prefrontal cortex.
Adolescents with ASD recruited predominantly frontal regions, unlike their mat-
ched controls who showed bilateral frontal activation, as well as activity in tem-
poral and parietal regions (Fig. 5). Implications include immature and deficient
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processing in adolescents with ASD, whose false alarm rate was also higher than
the control groups, demonstrating poorer inhibitory control. This may be partially
accounted for by their failure to recruit distal cortical regions to supplement poor
frontal lobe function.

Comparisons of the four groups showed that adults with ASD recruited the left
inferior frontal gyrus, similar to typically developing adolescents, but adults with
ASD recruited this frontal region at an earlier time than typical adolescents.
However, the adults with ASD also activated areas similar to control adults.
Although ASD adolescents recruited an inhibitory neural network that differed
from age-matched controls, in adulthood functional activity was more comparable,
which may suggest some resiliency in the development of this network in ASD
adults.

3 MEG Studies of Language Production

While language is a complex phenomenon that requires the integration of dis-
tributed brain regions, research in language relies on a framework that emphasises
two key areas responsible for core language function. This framework, based on
classic neuropsychological data, is referred to as the Wernicke-Geschwind model
of language organization (Geschwind 1970). This model suggests that in a typical
adult brain, language is located primarily in the left hemisphere with receptive
language subsumed in Wernicke’s area at the left temporo-parietal junction, and
expressive language controlled by Broca’s area in the left inferior frontal gyrus
(Broca 1861; Wernicke 1874). These two regions have complex and reciprocal
connections between primary sensory, secondary sensory and association areas
which are incorporated into more specific and complex models, but the basic
Wernicke-Geschwind structure is helpful for framing neuroimaging studies
(Demonet et al. 2005)

Receptive language has been well studied with MEG (see (Salmelin 2007) for a
review). Protocols exist that localize Wernicke’s area, and these have been con-
firmed in healthy (Papanicolaou et al. 2006) and clinical subjects (Simos et al.
1999; Kamada et al. 2007; Breier et al. 2009) and validated against other imaging
modalities (Billingsley-Marshall et al. 2007).

Expressive language has been more difficult to study with MEG, for a number
of reasons. The large muscle artefact from mouth and tongue movements with
speech is problematic, as is the trial-by-trial variability inherent to a complex
exogenous response such as speech production (Salmelin 2007). To address these
issues, many groups have developed expressive language paradigms that do not
require an overt verbal response. For example, Dhond et al. (2001) used a silent
word stem completion task, while others used picture/object naming or reading
(Vihla et al. 2006; Herdman et al. 2007; Liljestrom et al. 2009; Wheat et al. 2010),
and imaginary speech articulation (Kato et al. 2007); others have implemented
delayed response paradigms (Breier and Papanicolaou 2008).
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3.1 Localizing Expressive Language Areas in Children

We have developed an expressive language paradigm that can be used to lateralize
and localize frontal language areas in young children. The stimuli consist of high-
quality colour pictures of objects familiar to a typically developing 5 year old child
(Fig. 6). Children, depending on their ability, are instructed to complete a verb
generation task. If unable to do this, they are asked, instead, to name the object in the
picture. To ensure that children are alert and attending to stimulus presentation, a
‘vigilance trial’ is presented with a frequency of 10 %. When children see this
stimulus, they are instructed to press a button; these button presses are monitored as
a surrogate measure of task attention. After MEG testing, the children are shown the
images outside the scanner and asked to complete the task again, overtly. Differ-
ential synthetic aperture magnetometry analyses (Robinson and Vrba 1999; Vrba
and Robinson 2001) identified task-related low beta desynchronization in left
inferior frontal cortex in a group of healthy children aged 13–18 years and in a small
clinical series in children with epilepsy and brain tumours (Kadis et al. 2008). We
then extended this series to include children as young as 5 years of age, and in all
subjects we were successful in identifying Broca’s area (Kadis et al. 2011) (Fig. 7).
However, the intriguing finding was a significant positive correlation between left
hemisphere lateralization and age. This suggested that the left hemisphere frontal
language dominance, seen in adults, emerges with development and is, in fact,
bilateral in young children.

Fig. 5 Inhibition activation in adolescents with and without ASD. Significant (p \ 0.005) neural
activations for ASD (yellow) and control adolescents (blue), where the inhibition condition was
greater than the baseline condition, at 300–350 ms (left) and 350–400 ms (right). L Left, R Right,
MTG Middle Temporal Gyrus, MFG Middle Frontal Gyrus, STG Superior Temporal Gyrus,
PreCG Precentral Gyrus, MedFG Medial Frontal Gyrus, Inf Par L Inferior Parietal Lobule
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3.2 fMRI Validation of MEG Expressive Language Task

To validate this expressive language paradigm, we conducted an MEG-fMRI study
where the same group of adolescents completed the same tasks in both modalities
on the same day. Resultant images from MEG and fMRI analyses were normalized
into Talairach space and overlaid onto each individual’s structural MRI. After
significance testing, the number of remaining voxels from both MEG and fMRI
were counted; as well, the number of voxels that overlapped in both modalities
was counted. MEG and fMRI showed 100 % concordance for laterality and
79.6 % voxel overlap. We concluded that our MEG paradigm showed high con-
cordance with fMRI verb generation, which is the current clinical gold standard for
pre-surgical evaluation of language; thus, MEG is a promising alternative method
for the non-invasive localization of frontal language (Pang et al. 2011).

3.3 Sex Differences in Language Lateralization in Young
Children

To further examine the bilateral involvement of the frontal lobes in expressive
language across development, we conducted a large-scale MEG study where 80
typically developing children (aged 4–18; 48 girls) completed our picture verb

Fig. 6 Sample of stimuli used in MEG verb generation task

Fig. 7 Event-related desynchronization localizes inferior frontal areas involved in verb
generation. In the youngest cohort, the localization is bilateral; whereas in the oldest cohort,
the typical left lateralization is seen
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generation task (Yu et al. 2012). MEG data were analyzed for each subject and
then grouped by age and sex. The magnitude of event-related desynchronization
(ERD) in canonical language areas was calculated as a percentage of total ERD.
Boys and girls exhibited significantly different patterns of ERD magnitude in the
youngest age groups, and these became increasingly similar as the groups
approached the teenage years. Specifically, a strong left lateralization was seen in
the boys in the youngest age group, and this was maintained through all age
groups. The girls, however, showed a bilateral activation in the youngest groups,
which progressively became more left lateralized with age, but did not become
predominantly left lateralized until around 16 years. Furthermore, boys showed a
significantly greater percentage of ERD activation in canonical language areas
during childhood and adolescence, while girls showed lower ERD in canonical
language areas and this pattern changed to become more comparable to the boys at
around age 10 years. This is interesting as behavioural studies have reported that
young boys and girls use different strategies when completing verbal learning and
word recall tasks (Kramer et al. 1997); our MEG findings may be capturing these
sex-related preferences for different language strategies. Our study suggests,
however, the laterality differences do not persist into adulthood, and this is con-
sistent with what is reported in the adult literature. These data emphasize the need
to look carefully at age-related and sex-related factors when testing young chil-
dren, especially as MEG is sensitive enough to capture subtle processing differ-
ences that index strategy differences despite similar performance.

3.4 Connectivity Within the Frontal Language Network

Having demonstrated that MEG can localize the left inferior frontal regions
involved in language production, we were interested in examining how this region
communicates with other regions in the language network. It is thought that low-
gamma band (\30 hz) synchronization between neural regions is the underlying
mechanism for the integration of functional cortical networks while theta-band
oscillations (4–8 Hz) are the key to local regional integration (Ward 2003; Canolty
and Knight 2010). Using MEG data from a covert picture verb generation task, we
examined inter-regional phase locking between left inferior frontal gyrus and other
brain areas, and computed the modulation of inter-regional gamma synchroniza-
tion by theta phase. We found task-related transient gamma-band long-range
synchronization was modulated by the phase of regional theta oscillations (Fig. 8).
This was the first evidence of gamma-band synchronization and theta-band
modulation within the expressive language network (Doesburg et al. 2012). Fur-
thermore, these findings revealed the extensive connectivity of the left inferior
frontal gyrus and confirm the long-held belief that this brain region plays a pivotal
role in expressive language control.
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4 Practical Considerations for Testing Children
in the MEG

We hope, in this review, that we have demonstrated the value of developmental
studies and testing children along the age spectrum. Many of the results that we have
described show surprising and dramatic changes across age, not just in childhood, but
into the teenage and young adult years. Furthermore, the language study reported sex
differences only in the youngest age groups which disappeared by the adolescent
years; again, emphasizing what may be missed if all stages of the developmental
spectrum are not given full scrutiny. Having said this, running developmental studies
requires many practical considerations. This last section will describe some of the
challenges involved in testing children and provide commentary on some technical
and task issues to consider prior to embarking on a developmental study. The reader is
referred to Pang (2011) for a more extensive discussion.

When testing children, the most challenging technical factor to overcome is that
of movement artefact. While voluntary movement of the head and eyes can be
addressed by training, researchers need to be aware that paradigms may need to be
lengthened and trial numbers increased to allow for rejection of trials containing
unacceptable muscle artefacts. New MEG systems with continuous head locali-
zation hold good promise for addressing head movements, but these solutions are
valid within a small range and cannot correct for the activities of an agitated,
hyperactive or uncooperative child.

Fig. 8 Neural areas where gamma oscillations induced by verb generation were modulated by
regional theta oscillations
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Smaller, child-sized, MEG helmets may be very helpful in dealing with head
movement, as there is less room for the child to move. These child-sized MEG
systems have the further benefit of placing the sensors much closer to the head
surface, resulting in significant improvement to the signal to noise ratio, but
unfortunately leave some frontal areas without sensor coverage. Institutions
owning one of the systems would still need an adult system as the helmets will fit a
typical child until the early school years (approximately 4–5 years of age), but
would not fit a pre-teen or teenaged individual.

In the studies we have described in this review, our primary strategies for
dealing with head movement have been training and subject preparation. The
laboratory staff, who are responsible for running these studies, ensure that all
subjects, clinical or control, understand the importance of staying still, and sub-
jects are monitored and reminded of this throughout the testing. Furthermore,
subjects are offered breaks as often as necessary to ensure compliance with staying
still. In addition, our teams have had good success with applying padding into the
dewar to stabilize the head, as well as covering the child with a blanket to reduce
body movement and thus head movement.

The other important consideration for developmental studies is task design.
Tasks need to be age-appropriate, simple, understandable, engaging and quick. In
this review, we have presented a variety of tasks which we have found to be
effective in children. What may not be obvious to the reader, since the tasks and
stimuli look very simple, is the amount of work required to develop, pilot and
validate stimuli and tasks for children. Often we start with an adult version of the
task and ask what the core function is that we would like to test, then we pare the
task down to this core function and develop a paradigm around it. This reduces,
but does that eliminate, the possibility that children use different strategies, and
that these strategies may differ at different ages, and maybe even between sexes.

There is no guarantee, but an awareness of the challenges and issues unique to
testing children increases the likelihood of obtaining valid and reliable data.

5 Summary

We have shown some of the detailed spatial and temporal data available from MEG
studies examining the development of social, executive and language skills in
typically developing children and children with autism spectrum disorders. The
results of these studies emphasize the importance of developmental research as there
are variable and subtle changes in brain function that are related to age, sex and
clinical condition. Furthermore, we hope that these studies highlight the potential for
using MEG as a research tool to examine the spatiotemporal involvement of
important brain areas, with an emphasis in this chapter on the frontal lobes. Finally,
we hope that our brief discussion of practical considerations for developmental
research will help guide labs to explore the possibility of testing children and looking
specifically at the maturation of the brain and its corresponding behaviour.
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Language Processing in Atypical
Development: Looking Below the Surface
with MEG

Maria Mody

Abstract Neurodevelopmental disorders like dyslexia and autism have witnessed
an explosion of research in recent years, leading to detailed characterization of
these conditions and paving the way for the identification of phenotypes. Common
to both these disorders is an impairment of the language system. Deficits in
phonological processing have been the single most consistent finding in individ-
uals with dyslexia, affecting the acquisition of reading skills. In contrast, children
and adults with autism spectrum disorder (ASD) have difficulty using semantic
information, evident in their idiosyncratic vocabulary and excessively literal
interpretation of statements. However, as the term implies, ASD is associated with
very heterogeneous profiles and poor language may be related to a broader deficit
in social reciprocity and motivation. Regardless, given the important prognostic
value of early language abilities in later developmental outcomes, there has been a
tremendous drive to better understand the neurobiological basis of language
impairments in developmental disorders. Over the years, a growing appreciation of
the workings of the human brain has pushed to the forefront noninvasive neuro-
imaging. Methods like electroencephalography (EEG) and magnetoencephalog-
raphy (MEG) are providing useful insights into connectivity patterns in the brain
by yielding information about temporal coupling in the millisecond time scale
across brain regions and frequency bands of neural oscillations. The resulting
‘‘spectral-temporal-spatial’’ patterns of brain activity, characteristic of different
cognitive processes, are providing meaningful probes for use in neuroscience and
genetic studies toward an improved understanding, assessment and treatment of
developmental disorders.
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Event-related potentials � Brain oscillations � Magnetic resonance imaging �
Diffusion tensor imaging

1 Introduction

Dyslexia (or specific reading disability) is one of the most common learning
disabilities, with prevalence rates ranging from 5 to 17.5 % of school-aged chil-
dren. It affects about 80 % of all individuals identified as learning disabled
(Shaywitz et al. 2007). Dyslexia is characterized by an unexpected difficulty in
learning to read despite normal intelligence, motivation, and educational oppor-
tunity. Hallmarks of the disorder include poor word recognition, slow and/or
inaccurate decoding and difficulties with spelling. Dyslexia represents the tail end
of normal reading distribution and is a life-long condition. At the core of the
problem is believed to be a deficit in phonological processing (Mody 2003a, for
review). Specifically, poor readers lack phonological awareness, i.e., awareness of
the segmentability of the speech stream into smaller units such as syllables and
phonemes. Importantly, this deficit is evident in pre-school years, and hence serves
as a risk factor for early identification and remediation of reading failure.

Autism spectrum disorder (ASD), like dyslexia, is both familial and heritable
(Pennington and Gilger 1996; Ronald and Hoekstra 2011). It is considered to be
the fastest growing category of developmental disorders, with recent estimates
placing it at 1 in 161 children worldwide (Elsabbagh et al. 2012). ASD affects
more boys than girls (4–1) and is diagnosed through the presence of deficits in
social communication, repetitive behaviors and restricted interests; it falls along a
continuum, varying widely in severity as well as in IQ and linguistic skill
(Constantino et al. 2004). Despite the heterogeneity of ASD, a characteristic
feature of children and adults on the spectrum is their limited use of language in
social context (i.e., to request information, describe an event, or to comment).
They also tend not to orient to speech from an early age (Klin 1991; Kuhl et al.
2005). There appears to be a growing belief that the communication impairment in
autism may be secondary to a deficit in social reciprocity and motivation (Dawson
et al. 1998; Swettenham et al. 1998; Schultz et al. 2000). In a simple sense, the
absence of communicative intent may be due to a social deficit that disguises itself
as an expressive language impairment (Happe and Frith 1996).

From a neurodevelopmental perspective, disorders like dyslexia and autism
tend to be complex, having unknown or multiple etiologies. Unlike Fragile-X
Syndrome and Down Syndrome that may be confirmed by genetic testing, the
diagnosis of dyslexia and autism depend on standardized cognitive assessments,
which tend to suffer from poor sensitivity and low specificity (Byrne et al. 2006;
Risi et al. 2006). Particularly troublesome is the fact that whereas these disorders
are considered life-long conditions, their diagnosis are far from stable. The varying
severity and/or profile of language impairment with age and across subtypes of the
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disorder add to the heterogeneity of the subjects across different studies, thereby
contributing to the inconsistent findings. Results of structural and functional brain
studies with dyslexia and autism suffer from similar criticisms, thereby making it
difficult to interpret the many different areas in the brain that have been implicated,
as well as identify a core neurobiological profile for each of these disorders.

Despite the issues of complexity and comorbidity of dyslexia and autism with
specific language impairment (Kjelgaard and Tager-Flusberg 2001; Messaoud-
Galusi and Marshall 2010), recent efforts to identify endophenotypes (i.e., cog-
nitive markers that are inheritable and consistent at all stages of the disorder) along
with advances in functional imaging of infants hold tremendous potential for early
identification and remediation of neurodevelopmental disorders involving
language.

Children’s linguistic progress in early years, especially if there is a family
history of speech and language difficulties, has important implications for later
literacy development (Tomblin 1989). Catts et al. (1999) found that 70 % of their
poor readers in second grade had a history of language and phonological pro-
cessing problems in kindergarten. In fact, phonological awareness is the single best
predictor of learning to read (Liberman and Shankweiler 1991) and correlates
highly with word recognition; reading comprehension, however, is best predicted
by oral language comprehension (namely, vocabulary and grammatical under-
standing) (Oakhill et al. 2003; Catts et al. 2006). Of particular relevance here is a
characteristic difference between autism and dyslexia: whereas phonological
deficits are at the core of developmental dyslexia, individuals with ASD appear to
be unimpaired on phonological tasks but have deficits in semantic processing. This
difference offers interesting points of interaction and divergence for linguistic
exploration in these populations (Ricketts 2011). We focus below on language-
related MEG findings in autism and dyslexia. First, however, we present a brief
overview of the characteristic profiles and related theories of these disorders.

2 Historical Perspective

Over the years, deficits in phonological processing have been found to be the
single most consistent finding in dyslexia (Ramus et al. 2003). According to the
dual route account (Coltheart 2005), reading engages two routes: a phonological
route, which involves decoding, especially for unfamiliar words and nonwords,
and a lexical route, which involves word recognition of familiar regular words and
irregular words. The achievement of reading mastery is characterized by highly
automated phonological processing and increasing use of the lexical route. Find-
ings suggest that dyslexics’ difficulties with phonological processing may be
traced to weak categorical perception of speech (Godfrey et al. 1981; Mody et al.
1997; Nittrouer 1999) related to their poor coding of phonetic distinctions in the
speech stream. While the auditory versus speech-specific basis of the deficit has
been a point of controversy (Studdert-Kennedy and Mody 1995; Mody 2003b, for
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review), language-based intervention targeting phonological skills have yielded
the most promising outcomes (Simos et al. 2002; Blachman et al. 2004). Impor-
tantly, despite improvements in decoding, adult dyslexic readers often struggle to
achieve reading fluency (Shaywitz et al. 2003), which adversely affects their
reading comprehension (Shankweiler et al. 1999). In summary, a deficit in pho-
nological processing in early years may permeate the larger language system
affecting later academic performance.

Individuals with dyslexia typically have IQ in the normal range. In contrast, at
least half of all children who have autism are intellectually disabled. As such,
language abilities may range from being non-verbal to highly idiosyncratic lan-
guage with echolalia and unusual prosody. For the most part, children with ASD
have receptive and expressive language impairments. Theories attempting to
explain these deficits in individuals on the spectrum (excluding sensory impair-
ment or other comorbid medical conditions) typically implicate social impairments
and/or cognitive impairments. According to the social deficit account, an impaired
theory of mind (Baron-Cohen 1995) would affect the acquisition of language.
Problems with joint attention and shared referencing early in development at
9–12 months of age would lead to missed learning opportunities for building
object-word associations due to a failure to infer the speaker’s intention (Parish-
Morris et al. 2007; Preissler 2008). The cognitive impairment theories, on the other
hand, conceptualize language impairment in ASD as a type of or comorbid with
specific language impairment (Kjelgaard and Tager-Flusberg 2001; Walenski et al.
2006; Whitehouse et al. 2007). As such, there appear to be ASD subtypes with and
without language impairment.

Despite the shared linguistic features and cognitive markers across ASD with
language impairment (ASD/LI+) and SLI, neuroimaging and genetic studies have
found significant differences between the two disorders suggesting that they may
only be loosely related (Williams et al. 2008).

3 Structural-Functional Language Network in the Brain:
A Framework for Examining Language Impairment
in Atypical Development

Prior to the introduction of non-invasive neuroimaging, post-mortem studies were
the primary source of evidence of alterations in global brain morphology including
cortical thinning, gyral atrophy, and total brain weight with normal aging, as well
as in disease (Kemper 1994). Today, magnetic resonance imaging (MRI) allows us
to examine and quantify the changes in vivo, providing in exquisite detail the
evolving anatomy of the pathologic brain in various stages of a disease. This has
had a tremendous impact on early detection and diagnosis of neurological
conditions.
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Over the years, functional neuroimaging studies of individuals with normal and
impaired reading have implicated three language areas in reading: the inferior
frontal gyrus (IFG), the occipitotemporal (OT) and temporoparietal (TP) junctions
(Rumsey et al. 1992; Salmelin et al. 1996; Fiez and Petersen 1998; Shaywitz et al.
1998). The occipito-temporal area known as the Visual Word Form Area (VWFA;
Cohen et al. 2000) responds differentially to real words and legal pseudowords
versus illegal pseudowords and false-font strings (Petersen et al. 1988; Price et al.
1996). The temporo-parietal region is sensitive to phonological and semantic
processing as in word recognition and sentence comprehension (Helenius et al.
1998; Simos et al. 2000). The IFG, on the other hand, is typically activated under
phonologically-demanding conditions as in nonword reading (Pugh et al. 2000). A
number of structural imaging studies of voxel-based morphometry (VBM) have
shown reduced cortical gray matter in these areas in individuals with develop-
mental dyslexia (Eckert et al. 2003; Brambati et al. 2004; Silani et al. 2005;
Kronbichler et al. 2008). Of relevance is that the gray matter in OT and TP regions
correlates positively with measures of real and/or pseudoword reading, phono-
logical processing, and/or rapid automatized naming.

Newer MRI methods like diffusion tensor imaging (DTI) take advantage of the
differences in brain tissue composition to distinguish gray (i.e., cortex) from white
matter (i.e., myelinated axons). This has made it possible to visualize and measure
white matter (WM) connections in the living brain. Measures of white matter
integrity such as fraction anisotropy (FA) and mean diffusivity (MD) have become
increasingly important in studies of the intactness of brain circuits for different
functions like attention, language, memory and reading that are frequently
implicated in cognitive dysfunction. Whereas WM changes are influenced by age
(Lebel et al. 2008; Moon et al. 2011), training can also impact white matter
structure highlighting the plasticity of different brain systems (Steele et al. 2013).
The rate of myelination of frontal and temporo-parietal fiber tracts appears to
coincide with the development of working memory and reading ability, respec-
tively (Nagy et al. 2004). Several studies have found (FA) in the left temporo-
parietal white matter to be positively correlated with measures of reading and
spelling in individuals with and without dyslexia, indicative of an advantage of
increased WM in this area (Klingberg et al. 2000; Niogi and McCandliss 2006),
and further validating its role in reading.

Insofar as reading involves multiple brain regions, efficient communication
between these areas would appear to be important for the achievement of skilled
reading. Support for this view comes from the reduced or absent functional con-
nectivity within the reading network in dyslexic readers (Horwitz et al. 1998; Cao
et al. 2008; van der Mark et al. 2011). Importantly, the left arcuate fasciculus, a
perisylvian WM bundle that connects Wernicke’s with Broca’s area (Catani and
Thiebaut de Schotten 2008) and which corresponds to the dorsal reading route
(responsible for mapping graphemes to phonemes during word access) has shown
reduced FA in dyslexic readers (Rimrodt et al. 2010; Vandermosten et al. 2012). In
the same study, Vandermosten et al. also found a correlation between orthographic
processing and FA in left inferior fronto-occipital fasciculus which corresponds to
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the ventral (i.e., direct ‘‘orthographic to meaning’’ lexical) route in reading. These
findings open up exciting opportunities to combine DTI measures with functional
connectivity measures (e.g., phase-locking values (PLV), cross-frequency cou-
pling (CFC) from time-frequency analysis of EEG and MEG data, given the ability
of the latter to identify temporally coupled frequency bands and brain areas that
could then serve as meaningful targets for white matter tractography in develop-
mental disorders involving language.

The field of autism has seen a surge in the number of neuroimaging studies, but
unlike dyslexia, few have examined the neurobiology of speech and language in
autism. An inability to stay still, comply with task demands and follow instructions
have contributed to the challenges of functional neuroimaging in autism. Conse-
quently, most of the studies have focused on structural imaging and participants in
these studies have been adults or high-functioning children with autism. However,
recent technical advances and computational modeling are making it easier to
study cognitive functions in hard-to-test populations.

One of the most replicated anatomical findings in ASD is the presence of
enlarged overall brain volume (Petersson et al. 1999; Courchesne et al. 2011),
which is thought to be related to an accelerated rate of growth in total brain volume
in the first 2 years of life. Regional variations in brain volume have also been
found and seem to be related to differences in white matter volume (Herbert et al.
2004), which appears to be increased in fronto-temporal regions important for
language and social cognition (Radua et al. 2010). Others, though, have found gray
matter abnormalities in these regions (Abell et al. 1999; McAlonan et al. 2008).
Studies using DTI in autism have revealed WM disruptions in the arcuate fas-
ciculus and superior longitudinal fasciculus (SLF) which connect fronto-temporal
language areas (Barnea-Goraly et al. 2004; Alexander et al. 2007; Sahyoun et al.
2010a), similar to the findings in dyslexia as mentioned earlier. The results point to
the vulnerability of this structure in language impairment.

In a recent study, Wolff et al. (2012) found evidence of blunted white matter
development in very young, high-risk infants, 6–24 months of age, who went on to
develop autistic symptoms. These results are particularly exciting in light of the
late age of diagnosis ([2 years) and the potential for earlier identification and
neuroprognosis. As early as 6–12 months of age, infants recruit traditional speech
areas in the superior temporal gyrus (STG) as well as motor areas in the frontal
lobe in response to speech sounds (Imada et al. 2006). Studies have found 2–3 year
olds activate multiple areas including front-temporal and cerebellar regions while
listening to bedtime stories during sleep fMRI (Redcay and Courchesne 2008). In
summary, WM connections between anterior and posterior brain regions appear to
be the locus of structural disruptions in neurodevelopmental disorders involving
language. MEG with its exquisite time resolution allows for a deeper interrogation
of the causal nature and direction of these disruptions as they relate to functional
behaviors.
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4 Using MEG to Relate Core Language Symptoms
to Neural Bases in Dyslexia and Autism

Over the years, functional neuroimaging methods like electroencephalography,
magnetoencephalography, and functional magnetic resonance imaging (fMRI)
have helped provide important insights about the functional architecture of
language in the brain by disentangling domain-general from language-specific
activation patterns. Creative experimental paradigms that combine behavioral
measures with brain imaging tools provide a means to temporally and spatially
segregate and interrogate component processes in language. Hemodynamic tech-
niques such as PET and fMRI have high spatial resolution (in mm) (Logothetis
et al. 2001) but their coarse temporal resolution (in sec) lack sensitivity to the
dynamic and millisecond nature of the changes in the brain that are characteristic
of language processing, which lend themselves better to study by EEG and MEG.
Additionally, a key question in language-based research is whether the component
processes of language (viz., phonology, semantics, and syntax) are accessed
simultaneously or serially (Friederici 2002; Hagoort 2003) which has conse-
quences for understanding differences across age- and clinical groups (Wehner
et al. 2007b; Mody et al. 2008; Han et al. 2012).

4.1 Dyslexia

Findings from a number of studies suggest that the initial steps of language pro-
cessing are serial with interactions in later stages involving lexical integration. In
individuals with dyslexia the deficit appears to be early on in phonological pro-
cessing evident in tasks like categorical perception of speech. Studies using mis-
match negativity (MMN), a pre-attentive index of the brain’s capacity to
discriminate between two auditory stimuli (Naatanen 1995), have revealed lan-
guage-specific memory traces in infants as young as 6 months of age (Cheour et al.
1998). It is not surprising then, that auditory event-related potentials (ERP; viz., N1,
N2, and P2) recorded with EEG to speech and nonspeech sounds in newborn infants
correctly classified 81 % of the subjects as normal, or impaired readers at 8 years of
age (Molfese 2000), given that dyslexia is a language-based disorder. In fact, ERP
measures in pre-reading children with a family history of reading difficulties were
similarly found to be predictive of later reading ability (Maurer et al. 2009).

Studies using MMN have shown that very early on in the auditory pathways, the
brain has access to phonological categories (Schulte-Korne et al. 1998; Phillips et al.
2000). Hence a poor MMN response in children with specific language and/or
reading impairment may well reflect their difficulties with poor neurophysiological
encoding of acoustic-phonetic distinctions and not merely with auditory-acoustic
processing. Using an oddball paradigm, Wehner et al. (2007a) tested good and poor
readers, 7–13 years of age, with MEG, on auditory discrimination of words varying
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in their degree of phonetic contrast. Both groups took longer to discriminate the
phonologically similar (PS; e.g. /pat/-/cat/) than phonologically dissimilar (PD; /
pat-/rat/) contrast. However, whereas good readers showed a significant difference
in activation between the conditions in the STG between 140–190 ms post-stimulus,
the poor readers did not, reflecting the latter’s reduced sensitivity to phonological
contrast. In a follow-up study with the same subjects, Mody et al. (2008) further
examined auditory discrimination but within a sentence context. Using a sentence
anomaly paradigm containing sentence-terminal incongruent words that were
phonologically similar or dissimilar to the target congruent words (e.g., At the
restaurant, he offered to pay the bill/pill/hill), the authors found no performance
difference between the groups. Both, normal and impaired readers were able to
process the sentences correctly. However, the two groups differed significantly in
their neural activation patterns with poor readers revealing delayed, and less left-
lateralized responses to the PS than PD stimuli in the superior temporal region. The
findings are consistent with a reduced response to phonological repetition that has
been seen in superior temporal areas (Wei et al. 2007) and thereby support a weak
phonological processing account of reading disability especially under perceptually
challenging conditions in a semantically-conflicting sentence context (see Fig. 1).

Salmelin et al. (1996, 2000) found that good readers show a strong response to
reading words relative to nonwords 150–200 ms post-stimulus in OT area, a region
known to be sensitive to letter-strings. Dyslexic readers did not display this early
response, which may account for the subsequently weaker and delayed activation
in semantic processing in temporo-parietal areas (Helenius et al. 1999). These
studies suggest that a disruption in the grapheme-to-phoneme translation interface
can have consequences for comprehension. In fact, the temporal profiles of the
activity in language-implicated frontal, temporal and parietal areas reflect near-
simultaneous peaks in children with reading difficulties compared to the distinct
temporal progression of activity associated with component reading processes in
these areas, in a typical reader (Rezaie et al. 2011). It is important to note that
phonological processing skills continue to develop into mid childhood, as evi-
denced by changes in underlying speech perception skills. Parviainen et al. used
MEG to record neural responses to speech and nonspeech sounds in 7–8 year olds
and adults (Parviainen et al. 2011). Whereas both groups activated the superior
temporal cortex, the differentiation between the cortical response to the two types
of sounds was later (250 ms after sound onset), more prolonged and evident in
both hemispheres in children; adults showed a corresponding effect though earlier,
at 100 ms post-stimulus, and specifically in the left hemisphere which was linked
to superior reading skills. Findings of less lateralized responses to auditory stimuli
in children with dyslexia may suggest a problem in balance of auditory functions
between the two hemispheres (Johnson et al. 2013).

In a recent study, Han et al. (2012) used MEG to investigate neural oscillatory
activity associated with auditory sentence processing in reading impaired ado-
lescents and age and IQ-matched controls. Insofar as auditory comprehension
involves the integration of sensory, cognitive, and linguistic processes to arrive at
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the meaning of a word or sentence, neural synchrony may be a promising target
mechanism for the study of higher-level language. The authors used an N400 task
from a previous study with younger dyslexic readers (Mody et al. 2008) to
examine top-down and bottom-up interactions in integrating sentence-terminal
phonologically similar (PS) versus dissimilar (PD) incongruent words into pre-
ceding context. Similar to the results from the previous study, older good and poor
readers also differed in their brain activation as a function of the degree of pho-
nological contrast but in the time range of semantic processing (400–600 ms).
Specifically, the functional coupling between auditory and superior temporal
cortices in the right hemisphere as measured by PLV, was greater in the PS than
PD condition for good readers. The results were interpreted as reflecting good
readers’ superior coding of subtle phonetic differences between perceptually
confusable terminal words in a semantically conflicting context. In contrast, for
poor readers, who were selected on the basis of impaired decoding abilities, the

Fig. 1 MEG source estimates. Dynamic Statistical Parametric Maps (dSPM) averaged in
sequential 50 ms time bins from 200 to 500 ms for the good reader group (top) and the poor
reader group (bottom). The group-averaged dSPM for the two subtraction contrasts (phonolog-
ically similar (PS) and phonologically dissimilar (PD)) are shown on the reconstructed cortical
surfaces of one child. The lateral surfaces have been inflated for better visualization of activation
within the sulci (dark gray) as well as the gyri (light gray). Both left and right hemispheres are
shown for all time points. Note, delayed and less lateralized response to PS compared to PD
condition in poor readers (Mody et al. 2008)
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PLV was lower in the PS than in the PD condition. This may relate to the group’s
weak speech perception of subtle phonological differences exacerbated under
conflicting semantic cues. That the group difference in phase-locking was signif-
icant in the gamma band is in keeping with existing studies that have indicated that
gamma-band oscillations may play an important role in spoken language com-
prehension (Shahin et al. 2009; Obleser and Kotz 2011).

According to a recent study, poor readers’ difficulties may arise in part because
of impaired phase locking to the slower modulation in the speech signal (\10 Hz),
which could affect syllable segmentation abilities key to processing phonological
aspects of speech (Hamalainen et al. 2012). To the extent that the responses
patterns of the dyslexic and unimpaired readers in the study by Han et al. (2012)
was modulated by the degree of phonological contrast, the results appear to be
consistent with a phonological rather than an auditory temporal account of the
disorder. The findings are also in keeping with the lack of a consistent auditory
brainstem response to complex speech-like sounds and not to simple clicks in
impaired readers, seen in EEG (Hornickel and Kraus 2013), which was taken as
evidence of poor neurophysiological coding and may be viewed as further support
of weak and underspecified speech sound representations in dyslexia.

4.2 Autism

Unlike dyslexia, which is primarily a written language disorder, individuals with
autism have spoken language problems (Hudry et al. 2010). Early on the problem
takes the form of a lack of orientation to speech and to their name when called
(Osterling et al. 2002; Nadig et al. 2007). These behaviors have been found to be
predictive of broader receptive language problems. However, the apparent diffi-
culty with auditory comprehension may also be reflective of difficulties with
testing this population due to a lack of social motivation.

Despite the absorption of language deficits under the broad umbrella of social
communication deficits in the new DSM-5, language impairment remains a
striking feature of ASD. In general, semantic deficits are among the few consistent
language findings in autism (Rutter et al. 1992; Tager-Flusberg and Joseph 2003;
Vogindroukas et al. 2003). While the number of functional neuroimaging studies
of speech and language in autism has been limited, recent auditory event-related
potential studies have begun to yield some important insights into the nature of the
language impairment in ASD. Measures like the MMN response, which is larger
for between- than within-category phonetic differences, has the potential to reveal
abnormalities in auditory perception which have been implicated in autism and
dyslexia. Čeponiene et al. (2003) used EEG with an oddball paradigm to examine
the MMN for speech (viz., vowels) and non-speech stimuli (viz., simple tones,
complex tones) each with a corresponding frequency deviant (created by raising all
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the frequencies of the original token by 10 %) in high-functioning children with
autism and age-matched controls. Whereas the authors found that there was no
difference in the MMN between the groups for all three stimulus types, revealing
intact auditory processing in ASD, some studies have yielded delayed MMN
responses to speech and non-speech in autism (Oram Cardy et al. 2005; Roberts
et al. 2011), similar to that observed in children with specific language impairment
(Roberts et al. 2012), and indicative of language impairment in autism. In these
latter studies, the speech stimuli consisted of two different vowels, /a/and/u/;
Čeponieni et al. however, used a standard vowel paired with an acoustic deviant
that was not phonologically different, which might explain the different results.
Nevertheless, it is interesting, then, that the ASD participants while showing a
normal MMN response, lacked the P3a response (a neural index of involuntary
orienting to a novel or salient stimulus) in the speech condition, though not in the
tone conditions. In keeping with the literature, the ASD participants did not orient
to speech which may account for difficulties in auditory comprehension and an
apparent preoccupation with their own world.

In older individuals on the spectrum, abnormal functional organization in
fronto-temporal areas has been consistently observed in fMRI tasks of spoken and
written language comprehension. These semantic tasks have included priming,
categorization, fluency, and sentence processing. Activation is typically reduced in
the left hemisphere (Just et al. 2004; Harris et al. 2006; Gaffrey et al. 2007) and
increased responsiveness is evident in the right hemisphere (Wang et al. 2006;
Knaus et al. 2008; Mason et al. 2008). Studies of reading in high-functioning
autism suggest that individuals on the spectrum do not take advantage of con-
textual cues (Happe 1996). Using a sentence anomaly paradigm, Braeutigam et al.
(2008) found that the neuromagnetic N400 response following incongruous words
was weaker over left temporal cortices in individuals with autism. The incongruent
sentence terminal words also elicited long-lasting gamma oscillations above 40 Hz
in the ASD group but not in the controls. While the latter finding is hard to
interpret, the results point to atypical semantic processing in ASD. Interestingly,
access to semantics via pictures as well as picture naming appears to be less
affected in autism (Kamio and Toichi 2000; Walenski et al. 2008; Sahyoun et al.
2010b) supporting an apparent dichotomy between visuo-spatial and linguistic
abilities in autism (Tager-Flusberg and Joseph 2003; Behrmann et al. 2006). In
separate fMRI and DTI studies, Sahyoun et al. used a three-condition pictorial
problem solving task designed to vary the linguistic processing demands across the
conditions (Sahyoun et al. 2010a, b). The authors found no difference in behavioral
performance between high-functioning children with autism (HFA) and age- and
IQ-matched controls regardless of linguistic demands; however, the control group
relied more on frontal and temporal language areas whereas the HFA group
activated occipito-parietal and ventral temporal areas. Taken together with find-
ings of reduced white matter integrity of the connections between inferior frontal
and middle/ventral temporal areas, the results appear to support HFAs’ preference
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for visuo-spatial strategies in the face of linguistic weaknesses. They also provide
connectivity patterns that lend themselves to further fine-grained probing by MEG
through use of language tasks that implicate temporal coupling of the same brain
areas.

To date, studies of language processing with MEG in autism are limited. While
there have been several studies of basic auditory processing in autism, few have
examined higher level language processing. The auditory studies involving speech
have, for the most part, looked at sound discrimination early in the auditory path-
ways using the MMN. The results have been mixed, with some reporting abnormal
MMN responses (Jansson-Verkasalo et al. 2003; Roberts et al. 2011), yet others
finding no abnormalities (Kemner et al. 1995; Čeponiene et al. 2003). Additionally
troublesome is the lack of reliability in determining an MMN response, which raises
questions as to its usefulness in clinical screening (Kurtzberg et al. 1995). Recent
findings of abnormalities in gamma-band oscillatory responses during a continuous
word recognition task in parents of children with ASD suggest a possible role for
neural oscillatory responses in the search for a heritable neurophysiological bio-
marker of ASD (McFadden et al. 2012).

5 Future Directions

Findings from a number of behavioral and MEG studies appear to be converging
on core abnormalities in dyslexia and autism. Evoked responses and neural syn-
chrony measures in basic and intervention research appear to support a phono-
logical core deficit in developmental reading disability. In later years, the problem
of accuracy, frequently gives way to one of fluency, with ‘‘slow but accurate’’
reading frequently being the hallmark of the remediated adult dyslexic reader
(Shaywitz et al. 2003). EEG and MEG with their superior temporal resolution are
ideally suited to temporally unravel the interactions between top-down and bot-
tom-up processes in reading. Such an approach could be tremendously powerful in
a comparison, for example, of reading comprehension in dyslexia versus autism,
insofar as a large number of individuals on the spectrum tend to be hyperlexic (i.e.,
precocious decoders). The findings from such contrasting disorders would move us
closer to understanding the neurocognitive architecture of language, as well as the
nature and locus of speech and language deficits critical to solving the discon-
nection puzzle that appears to be characteristic of neurodevelopmental disorders
like autism and dyslexia (Mody et al. 2013). Finally, the development of passive
task paradigms that reliably capture language processing will go a long way in
extending the use of MEG and EEG to the study of minimally verbal ASD, a much
needed area of research.
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Whole-Head Child MEG System
and Its Applications

Yoshiaki Adachi and Yasuhiro Haruta

Abstract Whole-head magnetoencephalography (MEG) systems to study cogni-
tive processing in young children have recently been developed. The child MEG
system has a helmet-shaped sensor array designed to fit child-sized heads. The
sensor array comprises 64 or more LTS-SQUID axial-type gradiometric magne-
tometers with a baseline length of 50 mm, arranged about 100 mm from the center
of the child’s head. The sensor array is installed in a helmet of a horizontal dewar
with a head circumference of about 530 mm, which was determined on the basis of
a preliminary investigation on the standard size of preschool children’s heads. In
this chapter, the details of the child MEG system and its applications to auditory
brain functions such as language acquisition are described.

Keywords Magnetoencephalography � MEG � SQUID � Child MEG � Auditory
evoked field � Brain connectivity � Language acquisition � Brain development

1 Introduction

We developed a whole-head magnetoencephalography (MEG) system to study
cognitive processing in young children. This child MEG system contrasts with
conventional systems that have a helmet-shaped sensor array designed to fit adult-
sized heads. When adult MEG systems are used with young children, it is difficult
to achieve a sufficient signal-to-noise (S/N) ratio because children’s head sizes are
much smaller than those of adults, and the distance between the sensors and the
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magnetic sources in the brain is significant. Therefore, the use of a conventional
MEG system to study child cognitive processing requires compromises that are
less than ideal, such as positioning the child’s head to one side of the helmet and
then the other, which increases data acquisition times.

The child MEG system is expected to become an effective tool for investigating
children’s brain functions, especially that related to language acquisition and brain
development, given its noninvasiveness and high temporal and spatial resolution.
An additional advantage is that the MEG system is ‘‘acoustically silent’’ in gen-
eral. The child MEG system does not make acoustic noise that could sometimes
scare child participants during the measurement, unlike other brain functional
imaging devices such as functional MRI (fMRI) or positron emission tomography
(PET). In this chapter, the details of the developed child MEG system and its
applications are described.

2 Instrumentation

2.1 System Configuration

Figure 1 shows the configuration of the child MEG system. SQUID sensors inside
the dewar are connected to the SQUID driving electronics outside the magnetically
shielded room (MSR). The SQUID signals are amplified and filtered by analog
signal processing electronics and are then digitally recorded for visualization and
further analysis.

The appearance of the child MEG system installed in an MSR at the Australian
Hearing Hub at Macquarie University is shown in Fig. 2. The MSR is made of
three mu-metal layers, and it houses two MEG systems. The child MEG system is
to the left and a conventional adult MEG system is to the right in the figure. Like
the adult MEG, the child MEG system has the gantry-free structure designed for
subjects in a supine position (Kado et al. 1999). The supine position is effective for
suppressing the movement of the subject’s head during the measurement. Similar
child MEG and adult MEG systems are installed in an MSR at the Department of
MEG, Yokogawa Electric Corp.

2.2 Sensor Array and Dewar

The sensor array comprises 64 LTS-SQUID axial-type first-order gradiometric
magnetometers. Niobium-based LTS-SQUIDs known as Ketchen type (Jaycox and
Ketchen 1981; Ketchen and Jaycox 1982) are used. The pick-up coil made of
niobium thin wire with a 15.5-mm diameter and 50-mm baseline length is wound
around a bobbin and coupled with the input coil of each LTS-SQUID mounted at the
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top of the bobbin. The typical noise characteristics of the sensor are less than 10 fT/
Hz1/2 at 1 Hz and less than 5 fT/Hz1/2 at 100 Hz. The number of SQUID sensors is
expandable up to more than one hundred by reconfiguration with additional sensors.
The sensor array is helmet-shaped and its size is about 200 mm in diameter and
about 530 mm in circumference. These dimensions were determined on the basis of
a preliminary investigation of the standard size of preschool children’s heads. This
size was about 20 % less than the size of the conventional adult MEG sensor array.

The dewar to store liquid helium is of a horizontal type and is optimized for the
measurement in the supine mode. The sensor array described above is positioned

Fig. 1 System configuration of the child MEG

Fig. 2 Appearance of the child MEG system (left) and the conventional MEG system (right)
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inside the dewar at the helmet side. The size of the helmet for the child MEG system is
shown in Fig. 3 in comparison with that for the conventional adult MEG system. The
angle of view was designed to be wider than that for the adult MEG system to broaden
the field of vision during the measurement. This wide angle of view is effective for
preventing the children from feeling claustrophobic. The cool-to-warm separation at
the helmet-shaped part is 20 mm. The liquid helium capacity of the dewar is roughly
100 L, and the helium consumption rate is less than 6 L/day. The sensor array is
assembled using the ship-in-a-bottle approach (Kado 1999), a method used to
assemble our adult MEG systems. This technique enables the diameter of the opening
to access the dewar to be kept smaller than the total size of the sensor array and, as a
result, to reduce the liquid helium consumption rate.

The dewar and the sensor array are made of glass-fiber reinforced plastic
(GFRP). It is non-magnetic and effective in preventing magnetic artifacts. How-
ever, it is known that GFRP can be mechanically distorted when it is cooled in
liquid helium, and a sensor can inevitably be dislocated from its originally
designed position. The displacement is not predictable before cooling and it is not
negligible in view of the accuracy of magnetic source analysis. Therefore, the
positioning and calibration of each sensor is performed after cooling using a
precisely machined array of coils and standard electric current to produce standard
magnetic fields (Higuchi et al. 1989).

2.3 Flux Locked Loop (FLL) and Data Acquisition Unit

A double-integrator-type FLL based on a direct offset integration technique
(DOIT) (Drung et al. 1990; Adachi et al. 2007) is adopted to linearize the flux-
voltage characteristics and to improve the dynamic range of the SQUID signal.
The second feedback loop of the FLL provides an automatic offset adjustment.
Consequently, the effective frequency range of the FLL is 0.16 Hz–5 kHz.
Therefore, this FLL is also called a band-pass type FLL.

3 Comparison with the Conventional MEG System

Pioneering works using the whole-head child MEG system were reported by
Johnson et al. (2010). Measurements of the auditory evoked field (AEF) from
preschool children were performed using both the child MEG system and the
conventional MEG system. The position of the child’s head relative to the sensor
array was obtained by marker coil measurement prior to each MEG measurement
(Erné et al. 1987). The conformity of the children’s heads to the child MEG helmet
and the conventional MEG helmet was evaluated based on the analysis of the
sensor-head center distance. The fit of the child MEG helmet to the children’s
heads was comparable to or better than that typically achieved for adult heads with
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a conventional MEG system. The head of a 4-year-old child could not be fully
inserted into the adult helmet owing to the smaller crown-neck distance, and
symmetrical lateral positioning in the adult helmet could not be achieved and
maintained without the insertion of shim pads in the temporal regions.

The AEF was recorded from seven healthy children aged between 4 and 5 years
of age using the child MEG system. The repetitive broadband noise stimuli were
binaurally presented via plastic tubes with a random interstimulus interval. Sub-
sequent AEF recordings from three of the participants were attempted using the
conventional MEG system with the same stimulus conditions.

It is sometimes impossible for young children to perform the demanding tasks
that are commonly employed for healthy adult participants. Therefore, acoustic
stimuli were delivered to child participants while they viewed a silent video
program projected through a hole at the MSR wall onto a screen mounted above
them from a video projector placed outside the MSR. The video aided the con-
tinued engagement of the child in the MEG environment and also helped minimize
the movement artifacts during the experiment.

Using the child-friendly data acquisition technique described above (i.e., silent
video), AEFs were obtained from all seven children with the child MEG system.
The maximum amplitude response, termed child P100 m, had a mean amplitude of
101.0 fT and a mean latency of 121 ms. The pattern of the P100 m distribution
was oppositely directed to that of the adult M100.

In contrast, when children were placed in the conventional MEG system, no
AEFs were successfully recorded. This was mainly because of two difficulties
associated with the poor fit of children’s head to the adult helmet. The first was

Fig. 3 Front view of the dewars (a) for the child MEG and (b) conventional MEG systems
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positioning of children in the adult helmet. It took about 10 min for placement of
shim padding to reduce the children’s head movement and it made the recording
session longer. Two children were placed in the conventional MEG system, but
measurements were terminated before completion owing to considerable move-
ment or by a request by the child. This indicated that the length of the recording
session became a strain for child participants. The second difficulty was that the
head of a 4-year-old child could not be fully inserted into the adult helmet because
of the smaller crown-neck distance. One child completed a recording session in the
conventional MEG system, but no AEF was discernible in the recorded data.

Figure 4 shows an example of the AEF obtained from a healthy 4-year-old
male child using the child MEG system (Adachi et al. 2010). A numerical
experiment was performed to estimate a hypothetical child’s AEF distribution
obtained by using a conventional MEG system based on the equivalent current
dipoles (ECDs) shown in Fig. 4c. When AEF amplitudes in children were
compared between the child MEG system and conventional MEG systems,
amplitudes were reduced to 74 % in the conventional system, compared to the
child MEG system. This result indicated that although it may be possible to
record child MEG signals using a conventional MEG system, the amplitude of
the detected signals would most likely be lower than that recorded using a child
MEG system. It would be necessary to increase the number of repetitive epochs
to be averaged by almost a factor of two in order to achieve the same S/N ratio
achieved with the child MEG system. This implies that the recording session also
has to be extended. A prolonged MEG experiment would be tedious and
uncomfortable even for the adult participants. Therefore, it is beneficial for the
child participants and researchers to shorten the measurement time using the
child MEG system.

4 Applications to Pediatric Neuroscience Research

The child MEG system is currently being used for the functional neuroimaging of
children. Unlike other functional neuroimaging devices such as fMRI and PET,
MEG is ‘‘acoustically silent.’’ This is a large advantage for pediatric neuroscience
research because the substantial acoustic noise from the device sometimes scares
child participants and disturbs their concentration during MEG measurements. In
this section, recent studies of cognitive functions in children using the child MEG
system are presented.

Yoshimura et al. (2012) investigated 63 children in an attempt to reveal the
linkage between the AEF response to speech syllable stimulation and their lan-
guage performance using the child MEG system. ECDs were estimated for the
P50 m component, between 40 and 150 ms in latency. The results of the AEF
measurement indicated that the amplitudes of the ECDs in the left hemisphere
were positively correlated with the language performance index obtained by the
Kaufman Assessment Battery for Children (K-ABC).
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The analysis of spontaneous MEG signals in children is also useful because it is
sometimes difficult to get child participants to perform specific tasks in order to
obtain event-related MEG signals. Sophisticated analysis techniques for the
oscillatory spontaneous MEG signals in the frequency domain are also important
for investigating connectivity within the brain network. In contrast with evoked
response recordings, the S/N ratio of spontaneous signals cannot be improved by
averaging. Therefore, the acquisition of larger MEG signals, accomplished by
using a helmet fitted to a child’s head in the child MEG system, is especially
effective.

The child MEG system was recently applied to research on brain connectivity
to reveal language development in preschool children (Kikuchi et al. 2011). The
spontaneous MEG signals were recorded from 78 preschool children while they
watched narrative videos. MEG spectra at each sensor obtained with the fast
Fourier transform were separated into eight bands; delta (0.7–3.9 Hz), theta-1
(4.2–5.9 Hz), theta-2 (6.4–7.8 Hz), alpha-1 (8.3–9.8 Hz), alpha-2 (10.0–12.0 Hz),
beta-1 (12.2–19.8 Hz), beta-2 (20.0–29.8 Hz), and gamma (30.0–57.9 Hz). The
coherence and relative power among the sensors were calculated in each band.
Their linkages with language-related, cognitive performance acquired by the
K-ABC were investigated. A positive correlation between the left dominant

Fig. 4 An example of the AEF recording using the child MEG. a Isofield contour map at 130 ms
in latency b waveforms obtained at the sites indicated in the contour map and c the positions of
estimated equivalent current dipoles
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parietotemporal theta band coherence and higher performance scores of language
related tasks was indicated. According to this result, it was suggested that the left-
lateralized connectivity via theta oscillation activity, not the left dominance in the
theta band itself, is linked to the development of language ability.

The foregoing connectivity analysis conducted using spontaneous MEG data, to
investigate information flow and interactions between brain areas, is currently
becoming more prevalent. A source reconstruction method based on a beam-
forming technique is compatible with the analysis of the spontaneous MEG data.
Source-level connectivity analysis should become the dominant method, rather
than sensor-level connectivity analysis because source-level connectivity analysis
can be easily related to the neuroscientific data obtained by other functional brain
mapping devices such as fMRI (Gross et al. 2013).

In recent studies on sensorimotor rhythms, data acquired by the child MEG
system also revealed that the oscillatory activity pattern evident in young chil-
dren’s brains, induced by a videogame-like task, differs from the typical adult
pattern (Cheyne 2012). This result implies that cortical motor networks reveal
developmental changes for preferred oscillation frequencies, possibly owing to
changes in cortico-subcortical or intracortical connectivity.

5 Conclusion

We developed a whole-head MEG system for young children. To improve the fit
of the MEG helmet to the size of a child’s head, the size of the helmet-shaped
sensor array was reduced by about 20 % compared to a conventional adult MEG
system. In addition, because the sensor array is fitted to a child’s head, the
amplitude of the MEG signals obtained by the child MEG system is higher than
that obtained by the conventional MEG system. Consequently, the recording
session time to achieve the adequate S/N ratio is shortened, and this is a significant
advantage both for the child participants and experimenters using the child MEG
system.

The child MEG system will become an effective tool in pediatric neurology.
Recently, the child MEG data was effectively used to investigate language
acquisition of preschool children. The significance of studying children’s brain
function is increasing in terms of the early detection of developmental disorders or
high-functioning autism. The importance of the child MEG will grow rapidly in
the future.

606 Y. Adachi and Y. Haruta



References

Adachi Y, Kawai J, Uehara G, Miyamoto M, Tomizawa S, Kawabata S (2007) A 75-ch SQUID
biomagnetometer system for human cervical spinal cord evoked field. IEEE Trans Appl
Supercond 17(4):3867–3873

Adachi Y, Miyamoto M, Kawai J, Kawabata M, Higuchi M, Ogata D, Uehara G, Ogata H, Kado
H, Haruta Y, Tesan G (2010) Development of a whole-head child MEG system. IFMBE Proc
28:35–38

Cheyne DO (2012) MEG studies of sensorimotor rhythms: A review. Exp Neurol. doi:10.1016/j.
expneurol.2012.08.030

Drung D, Cantor R, Peters M, Scheer HJ, Koch H (1990) Low-noise high-speed dc
superconducting quantum interference device magnetometer with simplified feedback
electronics. Appl Phys Lett 57(4):406–408

Erné SN, Narci L, Pizzella V, Romani G (1987) The positioning problem in biomagnetic
measurements: a solution for array of superconducting sensors. IEEE Trans Mag MAG-
23:1319–1322

Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, Jerbi K, Litvak V, Maess B,
Oostenveld R, Parkkonen L, Taylor JR, Wassenhove V, Wibral M, Schoffelen JM (2013)
Good practice for conducting and reporting MEG research. Neuroimage 65:349–363

Higuchi M, Chinone K, Ishikawa N, Kado H, Kasai N, Nakanishi M, Koyanagi M, Ishibashi Y
(1989) The position of magnetometer pick up coil in dewar by artificial signal source, in
advance in Biomagnetism. In: Proceedings of the 7th international conference on Biomag-
netism. New York, pp 701–704

Jaycox JM, Ketchen MB (1981) Planar coupling scheme for ultra low noise DC SQUIDs. IEEE
Trans Mag M-17:400–403

Johnson BW, Crain S, Thornton R, Tesan G, Reid M (2010) Measurement of brain function in
pre-school children using a custom sized whole-head MEG sensor array. Clin Neurophysiol
121:340–349

Kado H (1999) Method of assembling a magnetomeasuring apparatus, US patent, Patent number
5,896,645

Kado H, Higuchi M, Shimogawara M, Haruta Y, Adachi Y, Kawai J, Ogata H, Uehara G (1999)
Magnetoencephalogram system developed at KIT. IEEE Trans Appl Supercond
9(2):4057–4062

Ketchen MB, Jaycox JM (1982) Ultra-low noise tunnel junction dc SQUID with a tightly coupled
planar input coil. Appl Phys Lett 40:736–738

Kikuchi M, Shitamichi K, Yoshimura Y, Ueno S, Remijn G, Hirosawa T, Munesue T, Tsubokawa
T, Haruta Y, Oi M, Higashida H, Minabe Y (2011) Lateralized theta wave connectivity and
language performance in 2- to 5-year-old children. J Neurosci 31(42):14984–14988

Yoshimura Y, Kikuchi M, Shitamichi K, Ueno S, Remijn GB, Haruta Y, Oi M, Munesue T,
Tsubokawa T, Higashida H, Minabe Y (2012) Language performance and auditory evoked
fields in 2- to 5-year-old children. Eur J Neurosci 35:644–650

Whole-Head Child MEG System and Its Applications 607

http://dx.doi.org/10.1016/j.expneurol.2012.08.030
http://dx.doi.org/10.1016/j.expneurol.2012.08.030


Towards the Understanding of Healthy
and Pathological Aging Through MEG

Fernando Maestú, Elena Solesio-Jofre and Ricardo Bajo

Abstract The study of healthy and pathological aging with Magnetoencepha-
lography (MEG) has become more widespread in recent years. This is mainly due
to its excellent temporal resolution which allows the evaluation of functional
connectivity in the frequency domain. These characteristics make MEG unique for
the study of the organization of the neurophysiological mechanisms supporting
cognitive capabilities in the aging brain. In this chapter we will review MEG
findings in normal and pathological aging. In normal aging, we will go through the
mechanisms of forgetting and the assessment of the default mode network orga-
nization. In the field of pathological aging, the literature has mainly focused on
Alzheimeŕs Disease (AD). These studies assess sensory memory, short-term and
long-term memory, indicating decreased activity and connectivity in AD patients
but increased activity at early stages such as Mild Cognitive Impairment (MCI).
Finally, there is extensive literature using resting state recordings to characterize
the brain networks of patients with dementia in a non-task context. All these topics
will be discussed in the context of the literature of cognitive neuroscience of aging.
Potential new approaches and recommendations for future research will be
provided.
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1 Introduction

There is growing interest in studying the neurophysiological mechanisms associ-
ated with the process of aging. This is mainly due to the progressive increase in the
elderly population in developed societies over the last few decades. In fact, the
number of elderly people is projected to represent 34 % of the entire population by
the year 2050, in more developed regions of the world (world population prospects
2011). In the case of dementia and particularly Alzheimer’s disease (AD), which
accounts for 50–70 % of all dementia cases (Kukull and Bowen 2002), the inci-
dence is at 35.6 million worldwide and is predicted to rise to 115 million by 2050.
These numbers alone illustrate the importance of the study of aging and the need to
develop cognitive and neurophysiological models to increase our understanding of
the aging process.

Cognitive neuroscience provides an excellent framework from which to
develop models that combine information from the behavioral and the neuro-
physiological levels of analysis. To achieve a more complete understanding of the
origin of cognitive decline, it is important to investigate the organization of the
aging brain and the intrinsic neurophysiological profiles underlying performance
of cognitive tasks.

The process of healthy aging leads to a progressive decline in cognitive abilities
such as memory, executive function, visuo-spatial skills, and orientation. All of
this seems to be associated with some changes at the neurophysiological level that
underlie dysfunctions at the behavioral level. Biochemical changes affect cate-
cholamine circuits such as acetylcholine, dopamine or noradrenalin. Each of these
neurotransmission systems has been associated with different behavioral processes
that are partially impaired in elderly subjects, such as the ability to encode and
remember information (acetylcholine), modulate emotional responses (noradren-
alin) or establish some executive mechanisms such as the maintenance and
manipulation of information (dopamine). These changes at the biochemical level
are somehow associated with modifications at the morphological level. From a
neuroanatomical point of view, several changes have been described in the process
of normal aging such as the decline in the total brain volume and in both grey and
white matter (Hutton et al. 2009). Specific regions seem to be particularly affected
by the normal aging process such as the medial temporal lobe (hippocampus,
entorhinal cortex), cingulate cortex (anterior and posterior), and the cerebellum
(Raz et al. 2005). These morphological changes are probably expressing the loss of
cells as well as changes in synaptic efficiency and loss of synaptic connections
(Terry et al. 2001).

Functional MRI studies have provided important information regarding the
functioning of the aging brain. Based on these findings, some models have emerged
aiming to interpret different profiles of brain activity in elderly subjects. Cabeza
et al. (2002), taking into account several previous papers reporting the recruitment
of the right prefrontal cortex during performance of verbal tasks, developed the
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HAROLD model (hemispheric asymmetry reduction in older adults). This model
suggests that prefrontal activity during performance of cognitive tasks tends to be
less lateralized in older adults than in younger adults. As indicated by Cabeza, this
phenomenon is consistent during the performance of a variety of memory (episodic,
semantic, working memory), executive (inhibition) and perceptual tasks. This
neurophysiological phenomenon seems to be reflecting compensatory mechanisms
in response to the lack of efficiency of certain brain networks. However, other
authors interpret this finding as a progressive loss of brain functional distinctive-
ness, termed the dedifferentiation hypothesis (Park et al. 2004). This hypothesis
claims that reduced asymmetry in elderly adults may reflect an age-related difficulty
in recruiting specialized neural mechanisms (Lindenberger and Baltes 1994).
Cabeza et al. (2002) tried to evaluate which of the two hypotheses was more
plausible by comparing the brain activity of two groups of healthy elderly subjects:
low and high performers of a memory task. Low performers showed unilateral
activity while high performers showed bilateral activity of prefrontal cortex. Thus,
these data appear to confirm the compensation hypothesis as the most plausible
interpretation for the lack of asymmetrical prefrontal activity in elderly subjects.

Another interesting model that accounts for the activation changes in elderly
subjects is the PASA model (posterior anterior shift in aging; Davis et al. 2008).
This model reflects the fact that elderly subjects tend to recruit the frontal lobe
more than younger subjects (Cabeza et al. 1997). The PASA model maintains the
idea of hyperactivation as a compensation mechanism based on the following
observations: (1) in some tasks elderly subjects achieve a similar performance as
young subjects while exhibiting greater brain activity; and (2) when high and low
elderly performers were compared to each other, high performers tended to show
higher activation levels.

Another approach is the ELSA model, which accounts for the shift from an
early- to late-onset cognitive control strategy linked with temporally extended
activity in the prefrontal cortex and medial temporal lobe regions (Dew et al. 2012;
Velanova et al. 2007). Velanova et al. (2007) showed how elderly subjects tend to
delay their strategies until a later stage while young subjects tend to use proactive
strategies.This proactive (young subjects) versus reactive (elderly subjects) pattern
difference indicates an inefficient use of cognitive strategies, which affects the
temporal profile of brain activation in the elderly.

Finally, a phenomenon that is important to bear in mind when attempting to
account for the differences in brain activation between young and elderly subjects
is the fact that elders tend to show higher activation in low-load tasks and lower
activation in high-load tasks. This phenomenon called CRUNCH (compensation-
related utilization of neural circuit hypothesis; Reuter-Lorenz and Capell 2008) is,
again, in favor of compensatory mechanisms that can only be recruited when
elderly subjects can handle the information necessary to perform the task.

These cognitive neuroscience models have addressed the question of hyper-
activation as a balance between compensation and dedifferentiation. However, the
majority of these interpretations are based on fMRI studies; therefore time-
frequency information has not been considered.

Towards the Understanding of Healthy and Pathological Aging Through MEG 611



In addition to the peculiarities in brain activation of elderly subjects, research
into healthy and pathological aging should take into account several variables such
as biomolecular issues. A phenomenon associated with the aging process is the
progressive accumulation of beta-amyloid protein (Pike et al. 2007), a mechanism
frequently associated with dementia. Another factor related to a higher degree of
cognitive decline is the APOE 4 genotype. Nichols et al. (2012) found that elderly
carriers of the APOE4 showed increased medial temporal lobe (MTL) hemody-
namic response compared to APOE 3 or 2 carriers. Furthermore, middle age and
elder carriers of APOE 4 showed increased synchronization at the MTL (Westlye
et al. 2011). These findings reveal a pathophysiological sign of abnormal MTL
functioning in elderly subjects with a strong genetic risk factor for the develop-
ment of dementia.

So far, we have provided a general overview of functional neuroimaging
activity and biomolecular influences in healthy aging. However, the majority of
the studies mentioned above have been carried out using fMRI, a technique with
high spatial resolution but very low temporal resolution. A combination of good
temporal and spatial resolution is necessary for the study of neuroscience since
brain networks have a dynamic organization in which information processing can
occur in parallel. Different networks process information at different band fre-
quencies, in very short periods of time, in response to environmental demands.
Thus, limiting the study of the aging brain to just one of the dimensions (e.g.,
space) could lead to an erroneous interpretation of the mechanisms underlying
cognitive processes in elderly subjects. Magnetoencephalography (MEG) is able to
overcome some of the limitations of techniques based on hemodynamic response
changes. Some advantages of using MEG are: (1) it is a non-invasive procedure;
(2) spatial-time-frequency information of the physiological signals can be obtained
and combined with other measures; and (3) it is an absolute measure (e.g., a
reference is not required). These advantages make MEG unique in comparison
with other procedures such as fMRI, PET and EEG.

So, now the question is, what can MEG add to the study of healthy and
pathological aging? Its temporal resolution could be an advantage for studying the
speed of processing and for testing ideas that suggest that there are delays in the
activation of certain brain regions, such as the prefrontal cortex, in elderly sub-
jects. The exquisite frequency resolution, could add fundamental information
regarding the multiple functional networks that are co-activated with time-fre-
quency differences. Finally, the connectivity dimension will be enriched by
combining space-time-frequency information that could provide new insights into
the hyperactivation phenomena (compensation/dedifferentation) reported in
elderly subjects.In the following sections of this chapter we will review the fun-
damental MEG literature emerging over the last 15 years regarding healthy and
pathological aging with MEG.
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2 The Study of Normal Aging
with Magnetoencephalography

During the last decades cognitive neuroscience has placed special emphasis on the
identification of the neural correlates that occur with age-related changes in cog-
nition. The brain is an open system and cognitive development across the lifespan
is a dynamic, cumulative process that shapes the neurocognitive representations of
ongoing interactions with the environment through experiences. Therefore, not
only feed-upward effects from neural mechanisms to cognition and behavior, but
also downward contextual and experiential influences on neurocognitive pro-
cessing have to be investigated (Li et al. 2005).

As stated in the introduction section of this chapter, many models, based on
different theoretical assumptions, have been developed to give a plausible expla-
nation to the age-related declines in certain cognitive domains. Such is the case of
the Global Factor Models, which postulate the presence of a general slowing-down
process in cognition (Salthouse 1996); Cognitive Processes Models, referred to as
prefrontal declines (West 1996) and their relation with impairments in inhibition
(Hasher and Zacks 1988); the Brain Activation Models, which establish differ-
ential brain activation patterns of hemispheric asymmetry in the elderly (HERA
Model, Tulving 1994; HAROLD Model, Cabeza 2002; Reuter-Lorenz Model
2005; PASA Model, Davis 2008) and the Neurocomputational Models, which
examine the relation between age-related cognitive deficits and the attenuation of
neuromodulation affecting neurotransmission (Li et al. 2001). Nevertheless, the
aim of this section is not devoted to a comprehensive review of models in cog-
nitive aging that, in the major part of the cases, have been reported with fMRI. Our
aim is devoted to those models from the cognitive neuroscience of aging in which
MEG reveals very valuable information regarding age-related differences in the
temporal dynamics of brain function that other neuroimaging techniques are
unable to provide. In this regard, work in the field has focused primarily on
memory, which reflects the large behavioral literature existing on memory dis-
ruptions in older adults, particularly in terms of episodic memory (Coane et al.
2011) and working memory (Hasher and Zacks 1988). Hence, in the next section
we will review research studies using MEG with the aim to explain age-related
deficits in memory and the emergent use of MEG as a powerful tool to explore
resting state functional connectivity.

2.1 Why do the Elderly Forget? MEG Contributions
to Assess the Inhibitory Deficit Hypothesis

Forgetting occurs when items leave the focus of attention and must compete with
other items to regain the focus (interference) or when the fidelity of the repre-
sentation declines over time (decay). This gives rise to two major explanations for
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forgetting, often placed in opposition; time-based decay and similarity-based
interference. Both of them may ultimately result from the same underlying prin-
ciples. The central claim of decay theory is that memory fades over time without
additional identifiable causal agents, and information is less available for later
retrieval (Lewandowsky 2008). There has been strong criticism of decay models,
questioning whether it plays any role at all (Nairne 2002; Lewandowsky et al.
2004). Interference is a theoretical notion that refers to memory impairment that
occurs due to interfering representations. The basic principle is that items in
memory compete with the amount of interference determined by the similarity,
number, and strength of the competitors. Interference may occur at multiple stages
(encoding, retrieval, and storage) and levels (the representation itself or its asso-
ciation with a cue or a response). Interference from the past (proactive interfer-
ence, PI) may affect both the encoding and the retrieval of new items, and it often
increases over time. By contrast, interference from new items onto older memories
(retroactive interference, RI) frequently decreases over time and may not be as
reliant on similarity (Wixted 2004).

Interference effects are the dominant explanation of forgetting in the elderly. It
is common to use the terms interference and inhibition interchangeably. Instead, it
would be preferable to reserve the term interference for an empirical phenomenon
in which performance decreases, relative to a baseline, because of processing of
some irrelevant information. The term inhibition would be considered as the
mechanism to potentially explain that interference. We characterize inhibition as
an executive, active, goal-directed process that controls the contents of con-
sciousness. Hence, executive control is necessary to override the retrieval of
unwanted memories. It induces a lasting suppression of the unwanted memories,
making them more difficult to recall later even when we want to return to them
(Anderson 2005). In this regard, one must stop a prepotent response to a stimulus,
either because that response must be withheld or because an alternative, a more
weakly learned response to that stimulus, is desired. This ability to stop prepotent
responses is critical to the flexible control of behavior.

In this context, the inhibitory deficit hypothesis (Hasher and Zacks 1988)
provides a theoretical framework to understand cognitive decline during aging.
According to this hypothesis, age-related impairments in multiple domains, such
as attention, working memory or episodic memory, are the result of an inability to
reduce interference from task-irrelevant information due to inefficient inhibitory
control mechanisms (May et al. 1999; Zacks et al. 1999; Grady 2000). Age-related
decrements in working memory performance have been reported (Salthouse et al.
1991; Grady et al. 2000; Cowan 2008), especially in tasks where subsequent
events interfere with previous ones during the maintenance of information
(Buckner 2004). This phenomenon termed retroactive interference reduces the
ability to down-regulate relevant information and also leads to declines in bottom-
up mechanisms.

Two main sources of retroactive interference might affect mainly inhibitory
mechanisms, distractions and interruptions. On the one hand, distractions refer to
the irrelevant information that should be ignored and are related to top-down

614 F. Maestú et al.



suppression signals from the prefrontal cortex (Chao and Knight 1998; Clapp et al.
2010). Top-down modulation is believed to be the neural mechanism underlying
the enhancement of relevant information and the suppression of irrelevant dis-
tractions. It is mediated by higher-order regions in multimodal association cortices
(prefrontal and parietal), with projections to sensory cortices (Gazzaley et al. 2005,
2007, 2008). On the other hand, interruptions refer to information encountered
secondarily, and managing them involves the reallocation of cognitive resources to
reactivate the disrupted representations; this process is mediated by the medial
temporal lobe and the prefrontal cortex (Sakai and Passingham 2004; Clapp et al.
2010).

Despite the widespread cognitive literature regarding age-related inhibitory
deficits, physiological evidence characterizing their neural underpinnings is con-
troversial and has yet to be clearly established. Specifically, a question needs
clarification: Is age-related increased susceptibility to interference from task-
irrelevant information accompanied by changes in neural activity patterns? In this
regard, Solesio-Jofre et al. (2011) investigated with MEG, age-related changes in
brain activity during the active maintenance of information ascribed to the pre-
sentation of two types of RI, interruptions and distractions (see Fig. 1). To explore
age-related and interference-related changes, as well as to assess differences in
behaviour, young and older adults performed a delayed paired-associate (DPA)
task for faces in which interruptions and distractions were presented during the
maintenance stage. These investigators examined the temporal dynamics during
the first 1000 ms after the onset of the interfering stimulus, restricted to those trials
followed by a correct response in the subsequent probe period. Behaviourally, both
types of RI significantly impair memory accuracy at recognition more in older
adults than in young adults. MEG results revealed the presence of differential age-
related and interference-related neural patterns.

Specifically, time-modulated activations in posterior-frontal regions were
increased in young compared to older adults. Additionally, young adults exhibited
greater posterior-frontal activations for the interrupting compared to the distracting
condition. These results suggest that age-related deficits in inhibitory mechanisms
were associated with under-recruitment in posterior-frontal regions. On the other
hand, the absence of differential interference-related neural recruitments suggests
that both types of interference affect the elderly equally. In a subsequent study,
Solesio-Jofre et al. (2012) investigated age-related changes in brain activity during
recognition and after the presentation of two types of RI, interruptions and dis-
tractions, by using the same DPA task for faces as in the previous study. These
investigators, examined the temporal dynamics of brain magnetic activity during
the first 1000 ms after the onset of each correct response at recognition. MEG
results revealed the presence of differential age-related neural patterns. Specifi-
cally, time-modulated activations in temporo-occipital and superior parietal
regions were higher in young adults compared to older adults for the interrupting
condition. They suggested that age-related deficits in inhibitory mechanisms may
be associated with neural under-recruitment in a highly interfering task. Finally,
García-Pacios et al. (2013) reported on activity related to the encoding process of

Towards the Understanding of Healthy and Pathological Aging Through MEG 615



this DPA task. They found increased activity over prefrontal regions for elderly
participants compared to young adults. This result indicates that elderly subjects
needed higher executive control resources during encoding in order to achieve
adequate performance on the task.

Altogether, this suggests that the Inhibitory deficit hypothesis provides an
appropriate theoretical framework in which to understand age-related declines in
memory function. Different studies show that MEG is an ideal tool to test the
temporal dynamics of brain activity related to such cognitive deficits. The emerging
MEG literature confirms that age-related under-recruitment, together with lower
performance on memory tasks, reflect deficient inhibitory mechanisms. Specifi-
cally, deficient inhibitory mechanisms result from top-down control processing that
regulates goal-directed behaviour and the suppression of irrelevant information
when different responses compete for limited working memory resources.

Fig. 1 Statistical maps refer to the largest clusters (LC) at the source space indicating significant
increased activity for the young adults group relative to the older adults group in the IC [(A) (B)
(C) (D)], and in the DC (E). Only statistical differences are shown considering the corresponding
minimum Monte Carlo p-value (in text). A time axis (in milliseconds) is included to mark the
temporal dynamics of neural differences
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2.2 The Neural Correlates of Age-related Inhibitory Deficits:
The Frontal Deficit Hypothesis

Extensive literature suggests that cognitive decline in aging is accompanied by
degeneration of tissue and functional reserves (Cabeza et al. 2002; Reuter-Lorenz
and Lusting 2005). Converging evidence comes from lesion, anatomical and
functional neuroimaging studies. The former show that lesions in dorsolateral
prefrontal regions are associated with poorer performance on working memory,
executive attention, and inhibitory control (Grasby et al. 1994; D’ Esposito et al.
1995; Muller and Knight 2006). Different anatomical approaches have reported
linear declines in gray matter in prefrontal regions starting during young adulthood
(Gogtay et al. 2004; Hutton et al. 2009). Declines in white matter tracts connecting
prefrontal and temporal lobes present the same linear pattern starting from
45 years (Bartzokis et al. 2001; Sullivan et al. 2001). Both gray and white matter
declines with advancing age are supportive of the disconnection hypothesis
(Geschwind 1965; O’Sullivan et al. 2001) that proposes that functional disruptions
of large-scale brain networks account for the cognitive decline across the lifespan.
Finally, most functional neuroimaging studies of aging have investigated the
relationships between behaviour and brain activation patterns comparing young
and older adults. It has been commonly reported that during the performance of
memory recognition tasks, older adults show bilateral prefrontal activity while
young adults show more lateralized prefrontal activity (Cabeza et al. 2002).

Although inconclusive, these findings showing age-related over-recruitment in
the frontal lobes, together with those showing under-recruitment by Solesio-Jofre
et al. (2011, 2012) are consistent with the frontal deficit hypothesis. It postulates
that cognitive deficits in older adults are primarily caused by the anatomical and
functional deterioration of the frontal lobes (e.g., Moscovitch and Winocur 1995;
West 1996). Two main mechanismsfor age-related over-recruitment of the PFC
have been proposed. On one hand, the compensation model (Madden et al. 1999;
Reuter-Lorenz et al. 2000; Cabeza et al. 2002; Grady et al. 2006) postulates that
older adults engage some brain areas, particularly the frontal lobes, above the level
seen in younger adults to compensate for reduced activity in visual processing
regions (PASA, Davis et al. 2008 see above for a detailed explanation). On the other
hand, the dedifferentiation model also seems to characterize the increased bilateral
prefrontal activity found in older adults (Colcombe et al. 2005; Aine et al. 2010;
Park et al. 2010; see introduction section). One MEG study in support of the PASA
Model was conducted by Aine et al. (2006). These investigators examined spatial
working memory in young and older participants with a delayed-match-to-sample
(DMS) task. Correlations between MEG responses and behavioural performance
suggested that two different strategies were used by the different age groups while
maintaining the same overall performance levels; young adults relied on posterior
brain regions while the elderly relied on inferior frontal and supramarginal regions.
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To determine the aging effects of brain activity on behaviour and differentiate
between compensation and dedifferentiation, Grady (2008) summarized the most
relevant findings to date and described four distinctive patterns in order to select
the most appropriate explanation. First, older adults show more brain activity but
the same performance level as younger adults as evidence of inefficient neural
processing. Second, older adults reveal equal or greater brain activity but worse
performance which is evidence of inefficient neural processing. Third, older adults
recruit a brain region that is not active in young adults but they show equivalent
performance, as evidence of compensation or dedifferentiation. Fourth, older
adults recruit a brain region that is not active in young adults and it is positively
correlated with performance in older adults and not in the young as evidence of
compensation.

However, in a recent review (2011), Aine et al. brilliantly suggest an alternative
explanation for such under-recruitment and over-recruitment discrepancies com-
monly shown in brain aging research. Prefrontal differences observed between
young and older adults do not necessarily refer to aging impairments but brain
maturation as a dynamic process that might improve cognitive abilities through
later decades in life. It emphasizes the importance of brain flexibility and devel-
opment throughout the lifespan in order to differentiate between adaptive changes
that occur with age in opposition to brain dysfunction. There is growing interest in
the neurosciences on exploring brain development from infancy through child-
hood, adulthood and aging (Pascual-Leone 2011). It is important to understand the
processes underlying aging and how do they shape brain structure and function
until death. It is crucial to conduct longitudinal lifespan studies or to, at least,
include middle-aged subjects in cross-sectional studies in order to detect the
continuous changes from the first to the last stages in life. Additionally, Aine et al.
(2011) also highlight the necessity to better define aging and differentiate healthy
successful aging from normal and pathological aging with objective measures,
instead of subjective self-reports. It will enable the identification of additional risk
factors that may lead to cognitive decline.

Finally, it is important to consider that the abovementioned discrepancies across
studies regarding age-related neural differences (under-recruitment or over-
recruitment) and their relationship with behaviour (compensation, or dedifferenti-
ation) may be affected by different factors (Aine et al. 2011) such as the differences
in experimental designs (Daselaar et al. 2003); analysis procedures (ROIs vs. whole
brain approaches); and the heterogeneous variability of different measures across
lifespan (e.g., white matter tracts in DTI studies, Aine et al. 2010; neurovascular
coupling in fMRI studies, Kannurpati et al. 2011). In this regard, resting state
functional connectivity emerges as a powerful tool that overcomes some of the
limitations derived from task-related experiments. We describe the basic notions
and current developments in the use of MEG in resting state studies in the following
section.
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2.3 Future Directions in the Study of Normal Aging
with MEG: Resting State Functional Connectivity

Resting state functional connectivity is a useful tool to investigate the large-scale
functional organization of the human brain. This method is based on the discovery
that functionally related brain areas have correlated signal oscillations in low
frequency ranges, something that was first described (Biswal et al. 1995; Fox et al.
2005) for blood oxygen level-dependent (BOLD) fluctuations measured with
fMRI. The advantages of resting state recordings include the ease in acquiring data
without any complicated task design, which makes resting state recordings ideal
for children, elders, and patients.

Resting state has been used to explore the default activity of different brain
networks involved in motor (Biswal et al. 1995), language (Hampson et al. 2002),
sensory (De Luca et al. 2005), memory (Greicius et al. 2003), attention (Fox et al.
2006) and reading (Koyama et al. 2010) systems. Most of the studies in the field
have measured the integrity of the large-scale system that involves frontal and
posterior brain regions (Shulman et al. 1997; Mazoyer et al. 2001; Andrews-Hanna
et al. 2007). This is commonly referred to as the default network (DMN, Raichle
et al. 2001) which is associated with internally directed mental states, including
memory and executive functions, during rest (Greicius et al. 2003; Fransson 2005;
Vincent et al. 2006) and characterized by coherent neuronal oscillations
(\0.1 Hz). During high demanding cognitive tasks, the DMN is deactivated and a
task-positive network (TPN) is activated. Both the DMN and TPN can be con-
sidered elements of a single default network with anti-correlated components (Fox
et al. 2005). Specifically, a set of frontal and parietal cortical regions routinely
exhibit task-related activity increases, whereas a different set of regions including
posterior cingulate, medial and lateral parietal, and medial prefrontal cortex rou-
tinely exhibit activity decreases. Extensive literature (Park et al. 2004; Gazzaley
et al. 2005; Andrews-Hanna et al. 2007) has shown that cognitive decline in
normal aging arises from functional disruptions in the large-scale brain systems,
especially between anterior and posterior components of the DMN.

The study of age-related changes in the DMN by means of MEG is an emerging
approach with great advantages. Resting state MEG extends and complements
resting state fMRI (R-fMRI) by providing high temporal resolution that covers
major bands of oscillatory brain activity (Schlee et al. 2012). Additionally, MEG
offers a useful way to measure connectivity between brain regions with a direct
measure of brain activity, that is, the magnetic fields associated with electrophys-
iological brain activity (Brooks et al. 2011a). A recent study by Schlee et al. (2012),
exploring aging effects within the DMN with MEG, found significant age-related
alterations of functional resting-state connectivity. Specifically, they found reduced
information input into the posterior cingulum/precuneus region together with
enhanced information flow to the medial temporal lobe. The authors concluded that
resting state functional connectivity in the elderly is driven by attention to internal
processes rather than attention to external stimulation and this is associated with
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reduced performance in cognitive tasks. In another study, Schlee et al. (2012)
focused on large-scale DMN organization across the lifespan. They found that slow
frequencies were associated with larger networks compared to higher frequencies.
In addition, decreases in visual memory and visuo-constructive functions were
associated with an age-dependent enhancement of functional connectivity in both
temporal lobes. It led them to conclude the usefulness of resting MEG recordings as
a measure of the brain’s baseline activity of functional networks.

In general, the utility of MEG to investigate different resting state networks has
been shown in recent papers; de Pasquale et al. (2010) showed a correlation
between resting state temporal MEG signals in the DMN and the TPN or dorsal
attention network (DAN). Liu et al. (2010) examined correlations between oscil-
latory power modulations at the sensor level showing that significant correlations
could be measured across hemispheres. Brookes (2011b) used seed-based corre-
lation in conjunction with beamformer spatial filtering methods to show inter-
hemispheric motor cortex connectivity in source space.

Altogether, these reports provide evidence that results from resting MEG rep-
licate those from fMRI, suggesting that MEG is a powerful tool in the study of
age-related changes of resting state functional connectivity. It is also important to
emphasize that a better understanding of the age-related changes in resting state
networks may provide information on the neural substrates underlying the inevi-
table functional decline in advanced aging and help in the early diagnosis and
therapy of neurodegenerative disorders (Wang et al. 2012).

3 MEG in Pathological Aging

3.1 Evoked Fields in the AD Continuum

3.1.1 Preconscious Auditory/Somatosensory Processing and Sensory
Memory

In a very elegant series of studies, Pekkonen and his colleagues were the first to
use MEG to show impaired profiles of magnetic brain activity at early stages of
auditory processing in AD. For example, they recorded auditory evoked magnetic
fields (AEFs) elicited by monaurally presented tone stimuli from ten healthy young
and ten elderly participants (Pekkonen et al. 1995). These AEFs are the result of
averaged brain signals and provide information aboput the polarity (‘‘P’’ for
positive or ‘‘N’’ for negative) and latency (expresed in miliseconds after the
stimulus onset). As an example P50 m will express a positive component with a
latency around 50 ms after the stimulus onset. The ‘‘m’’ is indicating their mag-
netic origin to differentiate it from the EEG P50. Pekkonen et al. found that the
amplitude of the P50 m component in primary auditory cortex was larger in older
participants. Regarding the N100 m response, interhemispheric latency difference
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(ipsilateral peak latency minus contralateral peak latency) increased as a function
of age. The authors concluded that early auditory processing in the ipsilateral
hemisphere is progressively delayed with increasing age. This study established a
normative profile for subsequent studies in AD. Thus, Pekkonen et al. (1996) used
similar methodology to record AEFs in AD patients and healthy elders. Peak
latencies for P50m and N100m responses were significantly longer in AD patients
in the ipsilateral, but not in the contralateral auditory cortex. This finding was
replicated in a subsequent study with a larger sample of patients (Pekkonen et al.
1999). No inter-group differences in amplitude were found for N100m or P50m.
Notably, scores on standardized language tests correlated with N100m latency
recorded in the left (presumably dominant for language functions) hemisphere in
the AD group.

To demonstrate that these profiles were related to a cholinergic system
dysfunction, Pekkonen et al. (2001a, 2005) injected 0.3 mg of scopolamine
(a cholinergic antagonist) prior to the recording session in healthy young (Pekkonen
et al. 2001a) and older adults (Pekkonen et al. 2005). The scopolamine effect was
associated with increased P50 amplitude in young subjects and a delayed latency of
the P50m and N100m in response to tone stimuli in healthy elderly subjects.
Another set of studies—using the Mismatch Negativity (MMN) paradigm—
indicated that neurophysiological processes associated with sensory memory may
be impaired in normal aging as well as in AD. This response takes place within the
first 200 ms or so after stimulus onset and originates within the auditory cortex on
the supratemporal plane. MMNm was significantly delayed in the left hemisphere
ipsilaterally to the stimulated ear in AD patients (Pekkonen et al. 2001b). A sub-
sequent report, however, indicates that MMNm was not affected by scopolamine
injection in older healthy adults (Pekkonen et al. 2005). Recently, Cheng et al.
(2012) assessed the M50 and MMNm responses during a passive oddball paradigm.
The results showed larger cortical activation of standard-evoked M50 in AD
patients compared to young and elderly controls. In contrast, the MMNm latency
was longer in AD patients than in elderly controls. Thus, this report complements
the scopolamine findings by Pekkonen et al., by providing support for the increased
power of the signal found at early stages of processing as an indicator of disruption.
Finally, Osipova et al. (2006), using a steady-state paradigm, showed that auditory
stimulation at 40 Hz generates increased steady-state response in AD patients.

All these findings suggest that alterations in brain function in AD may take
place at much more basic stages of stimulus processing. Together with the link
established between early magnetic responses and cholinergic function, opens up
the possibility of assessing the efficacy of new drugs, by evaluating their ability to
modify the delay of this early response in AD patients.

Finally, Stephen et al. (2010) reported on differences in the early somatosensory
magnetic response. MCI patients exhibited a larger amplitude response than
healthy elders or patients with AD. These investigators also reported a relationship
between neuropsychological test results and the amplitude of primary somoto-
sensory responses. This report generalizes the idea that multiple sensory systems
can be affected at early stages of the disease.
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3.1.2 Memory Task

In a series of studies, comparing AD and age-matched healthy participants, using a
modified version of the Sternberg paradigm (a continuous recognition memory
task), Maestu et al. prospectively determined biomagnetic profiles that differenti-
ated AD from healthy controls (Maestu et al. 2001) and elderly patients with major
depression (Maestu et al. 2004). In these studies, patients with AD showed lower
numbers of activity sources over the left parieto-temporal regions between 400 and
800 ms after stimulus onset. These findings correlated with performance on neu-
ropsychological tests; the lower the number of dipoles for the posterior regions, the
lower the score on the Minimental State Examination. In addition, the spatio-
temporal profiles of neuromagnetic activity correlated with the degree of atrophy
in MTL (Maestu et al. 2003), and with the metabolic changes detected by
MR-Spectroscopy (Maestu et al. 2005). Thus, the greater the atrophy in MTL, the
lower the number of activity sources over parieto-temporal regions in that particular
time window. Furthermore, when an ROI for the analysis of MR-Spectroscopy was
placed over these parieto-temporal regions, AD patients showed an increased ratio
between myoinositol/N-acetyl-aspartate, indicating an increased glial proliferation
and a loss of neurons over these regions. This biochemical finding correlates, in this
sample of participants, with the loss of activity sources in these brain regions. In
fact, the combination of biochemical and biomagnetic profiles was a better pre-
dictor of scores on the neuropsychological tests than either of these approaches
separately. This series of studies made possible a description of particular MEG
profiles that differentiated between AD and healthy elders. More importantly, the
comparison between atrophy of the MTL and the biochemical profiles provided
new insights about the interpretation of the MEG profiles. Thus, it seems as though
the reduction of biomagnetic activity over the parieto-temporal regions could be
due to a disconnection between the MTL and these neocortical regions, as well as
due to a loss of neurons, as suggested by MR-spectroscopy.

Along similar lines, Walla et al. (2005) conducted a study in which participants
were given an incidental verbal learning task (i.e., they were not instructed to learn
the items), under two conditions (shallow and deep processing of the stimuli).
After a short delay, their memory of previously presented items was tested, using a
recognition memory paradigm. Recordings obtained over posterior brain regions
revealed clear differences between correctly recognized repeated words (hits) and
correctly rejected new words (correct rejections) in healthy elderly participants in
the time window between 300 and 400 ms after stimulus onset. AD patients did
not show differences between conditions for any brain region.

In two subsequent studies, Maestú et al. evaluated whether biomagnetic profiles
could differentiate between MCI patients and controls. Contrary to their initial
expectations, the MCI patients showed higher activity over the ventral pathway
between 600 and 900 ms (Maestu et al. 2008). The ventral pathway consists of the
ventral prefrontal region, the MTL, the mid-temporal gyrus and the inferior
parietal lobe. This pathway is well known for its involvement in recognition
memory; thus, hyperactivation of this pathway appears to be related to a
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compensatory mechanism in the initial stages of the disease. A similar interpre-
tation was developed by Dickerson et al. (2005) in an fMRI study where they
describe an increased hemodynamic response in the MTL of MCI patients, in
comparison to a control group. In a subsequent study, five control participants that
developed MCI after two years of follow-up showed lower numbers of activity
sources in the medial temporal lobe (Maestu et al. 2006). These results indicate
that brain activity is reduced at a very preliminary stage of the disease. They also
imply that when elders progress to MCI their activity is increased as a compen-
satory mechanism for the progressive lack of efficiency of the memory networks. It
is of great interest to note that an independent study found similar results using
MEG. Püregger et al. (2003) recorded brain magnetic activity from 10 MCI
patients and 10 controls during a shallow (nonsemantic) and deep (semantic) word
encoding task. Between 250 and 450 ms after stimulus onset, brain magnetic
activity associated with nonsemantic and semantic word encoding differed sig-
nificantly mainly over left frontal and left temporal regions. MCI patients showed
increased activity during shallow encoding as compared to deep encoding. Con-
trols did not show such a profile of activation. The authors interpreted this hy-
peractivation as a compensatory mechanism. Thus, the increased profile of
activation seems to be a general finding that could constitute a biomarker for the
early stages of the disease that can be found as well in elders with subjective
memory complaints (SMC) as reported by Maestú et al. (2011a). However, in this
last study MCI patients and SMC did not show differences between them sug-
gesting that similar physiological mechanisms may underlie SMC and MCI. Later
we shall see how the use of functional connectivity measures allows one to detect
clear differences between these two groups. Aine et al. (2010) showed that
enhanced activity in a group of MCI/AD patients correlated with lower IQs and
poorer performance on verbal/visual memory tests. Thus, correlations could
indicate that increasing brain activity does not indicate better functioning.

Two recent studies have evaluated memory related activity in the frequency
domain using a modified version of Sternberg’s paradigm in AD (Kurimoto et al.
2012) and in MCI (Aurtenetxe et al., 2013) patients. Kurimoto et al. (2012) found
significant differences in the beta and gamma frequency bands. Patients with AD
showed reduced beta event-related desynchronization (ERD) in the right central
area compared to controls. Aurtenetxe et al. (2013) showed increased theta, lower
beta reduction and decreased alpha and gamma power in frontal, temporal and
parietal areas of MCI subjects, during early and late latencies. Their results point
towards a dual pattern of activity (increase and decrease of frequency power) in
MCI patients which is specific to certain time windows, frequency bands and brain
regions. It may be that these results represent two neurophysiological sides of
MCI. These two papers indicate that, along the AD process, a common neuro-
physiological disruption exists—the lack of beta band desynchronization (an
electrophysiological phenomenon associated with successful memory perfor-
mance). This neurophysiological sign is already present at the MCI stage and
seems to be underlying early cognitive impairment. However, at the MCI stage,
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theta band increases and predicts memory test performance. This phenomenon
does not seem to be present at the AD stage, indicating that compensatory
mechanisms are present for a limited period of time.

3.2 Resting State Activity

Along with the approach for studying profiles of brain magnetic activity during
memory tasks there is also an approach for looking at the spontaneous brain
activity (resting state). The studies focusing on resting state examine brain activity
mainly in the frequency domain. In a seminal study, Berendse et al. (2000) showed
that the absolute low frequency magnetic power was significantly increased in
fronto-central regions. Conversely, high frequency power values were decreased
over the occipital and temporal areas.

In a series of studies, Fernandez et al. reported specific profiles of increased and
decreased oscillatory activity in AD patients. Fernandez et al. (2002) showed an
increase of delta and theta activity over the temporal and parietal lobes bilaterally.
Notably, increased slow wave activity in these regions was associated with
reduced performance in neuropsychological and daily living measures. In parallel
with the memory studies carried out by Maestú et al. (2003, 2005), Fernandez et al.
characterized the spontaneous findings in relation to MR-volumetry and
MR-spectroscopy. A relationship between the presence of focal low-frequency
magnetic activity and left hippocampal volume was found (Fernandez et al. 2003).
When MEG and MR-volumetry were combined, left medial temporal lobe volume
and the left temporal theta activity, correctly classified 87.1 % of the participants
in their respective diagnostic groups. Furthermore, myoInositol/N-acetyl-aspartate
rate scores in combination with MEG slow magnetic activity classified AD
patients and controls with 90 % sensitivity and 100 % specificity (Fernandez et al.
2005). Osipova et al. (2005) found that the lower alpha rhythm was enhanced over
the right temporal lobe in AD patients, while in age-matched controls alpha
sources were found near the parieto-occipital sulcus. To evaluate whether this
effect is due to a cholinergic deafferentation, it is useful to consider some classical
studies (Riekkinen et al. 1991) in which a significant correlation between AChE
activity of the cerebrospinal fluid (CSF) and delta power in patients with AD was
detected. This correlation was further supported by EEG and MEG studies where
scopolamine infusions generated changes in background activity, including
reduced alpha and beta and increased delta and theta, that mirrored those found in
AD patients (Osipova et al. 2003; Kikuchi et al. 2000). Thus, it might be proposed
that low-frequency activity may function as an early indicator of neural dys-
function in AD and cognitive impairment. Besga et al. (2010) evaluated the
combined contribution of MR-volumetry and MEG in MCI and AD patients. As
expected, there were between groups differences in the volume of the medial
temporal lobe. MEG showed inter-group differences, with AD patients exhibiting
higher theta and delta activity than MCI and controls. Thus, left parietal theta
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classified controls versus MCIs with an accuracy of 78.3 %. Right occipital theta
and the left parietal delta allowed the discrimination of controls versus ADs, with
81.8 % rate of correct classification. Left parietal theta discriminated between ADs
and MCIs with 56.6 % accuracy rate. Finally, the combination of MEG and
MR-volumetry significantly improved the rate of correct classification, indicating
that use of multidisciplinary techniques may improve diagnostic capabilities.

Findings were not always limited to the slow frequency bands. Ishii et al. (2010;
see also Kurimoto et al. 2008), revealed that the averaged alpha event-related
synchronization (ERS) after eye closing was enhanced over prefrontal regions in
AD patients (Kurimoto et al. 2008). An interesting finding that supports the
interpretation of this result was the fact that this frontal ERS source in the alpha
band was negatively correlated with Mini-Mental State Examination scores in the
AD patient group (Ishii et al. 2010).

3.3 Functional Networks in the Alzheimeŕs Continuum

A breakthrough for MEG and dementia was the introduction of functional con-
nectivity measures and the use of graph theory metrics to better understand AD as
a disconnection syndrome. The first study with MEG showing loss of connectivity
between brain regions was published by Berendse et al. (2000). In this early study,
AD patients present lower inter- and intrahemispheric coherence in all frequency
bands compared to controls. Stam et al. (2002) used a non-linear method to
evaluate functional connectivity (synchronization likelihood) and showed lower
synchronization values in AD patients in the upper alpha band (10–14 Hz), the
upper beta band (18–22 Hz), and the gamma band (22–40 Hz) (see Verdoorn et al.
2011 for a different finding). Again, differences between groups were mainly found
in posterior regions. In a subsequent confirmatory study (Stam et al. 2006), AD
patients showed a loss of left fronto-temporal/parietal long distance intrahemi-
spheric interactions in the alpha1 and beta band. However, local connections were
preserved in AD showing a local increase in synchronization in the theta band
(centro-parietal regions), beta and gamma bands (occipito-parietal regions). All
these changes could be related to reduced cholinergic activity. To assess this
hypothesis, Osipova et al. (2003) recorded MEG activity before and after the
injection of scopolamine in healthy elders. Scopolamine administration resulted in
a desynchronization of the alpha band (8–13 Hz), in the posterior regions. In
addition, interhemispheric and left intrahemispheric coherence was significantly
decreased in the theta band (4–8 Hz). Another interesting study that assesses
connectivity in AD is one published by Franciotti et al. (2006). They showed that
coherence in the alpha band was disrupted in AD and Lewy Body Dementia
patients, which mainly involved long connections. This paper is still one of the few
comparing biomagnetic activity in different types of dementia syndromes (see
Babiloni et al. 2005).
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One study that had a major impact on current thinking was carried out by Stam
et al. (2009). This study was the first to apply graph theory to MEG data in AD
patients. On this occasion the investigators used Phase Lag Index to evaluate
functional connectivity to avoid crosstalk in sensor space (spurious synchroniza-
tion) due to volume conduction effects. They then characterized the functional
network by calculating the mean clustering coefficient and path length. AD
patients showed a decrease in the clustering coefficient and path length in the
lower alpha band. This was an indication of the loss of small world architecture,
which represents the most efficient functional organization. Through a computa-
tional model, Stam et al. were able to demonstrate that these network changes in
the lower alpha band were explained by attacking targeted links in the network. As
a conclusion, the authors highlight the idea that the functional architecture of the
lower alpha band in AD showed a more random structure than age-matched
controls. This result can be attributed to the loss of densely connected regions
(hubs) as explained by the computational model.

In a subsequent study (De Haan et al. 2012a), the same group of investigators
assessed the role of functional sub-networks (modules) in AD patients. The overall
modular strength and the number of modules changed significantly in Alzheimer
patients. The parietal cortex showed the strongest intramodular losses; however,
intermodular connectivity losses were strongly related to cognitive impairment. In
line with the previous study, De Haan et al. (2012b) assessed network connectivity,
synchronizability, and node centrality. Their results demonstrate a global loss of
network connectivity and disrupted synchronizability. Centrality analysis indicates
disruption of hubs at parietal and temporal regions. More specifically, the low
centrality of the left temporal region in the theta band in AD patients was strongly
related to the mini mental state examination. Finally, De Haan et al. (2012c)
recently developed a functional network computational model based on the notion
that increased brain activity in certain cortical hubs could be a risk factor for the
accumulation of beta amyloid. This model aims to evaluate whether increased
activity in hub regions can induce hub vulnerability in AD. The model confirms
the existence of high hub region activity, and the authors associate this finding
with the high resting state activity in the Default Mode Network. Another inter-
esting insight from this study was the modeling of what they term ‘Activity
dependent degeneration’ (ADD), which was achieved by lowering synaptic
strength and comparing the result to random degeneration. The model was able to
mirror the majority of the previous findings in the literature of MEG-AD, such as
oscillatory slowing, loss of spectral power and long-range synchronization, hub
vulnerability, and disrupted functional network topology. This series of robust
studies by De Haan et al. highlights the importance of viewing the AD continuum
as a functional network disorder.

Based on these ideas, Bajo et al. (2010) assess the integrity of functional net-
works in the early stages of the disease; Mild Cognitive Impairment (MCI) and
Subjective Memory Complaints (SMC). All these studies examine the functional
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connectivity profiles during performance of a memory task. They showed
increased synchronization over the prefrontal and central regions in several fre-
quency bands in MCI patients (Bajo et al. 2010). It is of interest that 16 out of 19
MCI patients showed this pattern of increased synchronization over prefrontal
cortex, indicating that this profile was not just a group effect. In fact, this increased
synchronization pattern achieved 82 % correct classification of the MCI patients in
the beta band. Whether or not this increased synchronization represents compen-
satory activity was tested by evaluating the functional architecture of the func-
tional network by using a graph theory approach. MCI subjects show an
enhancement of the strength of connections, together with an increase in the
outreach parameter, suggesting that memory processing in MCI subjects is asso-
ciated with higher energy expenditure and a tendency toward random structure,
which breaks the balance between integration and segregation. All features were
reproduced by an evolutionary network model that simulates the degenerative
process from a healthy functional network to that associated with MCI (Buldú
et al. 2011). This study provides a new interpretation of the hypersynchronization
found in MCI patients. The organization of the functional network in MCI patients
reveals a tendency toward a random structure with a high energy cost which is not
ideal architecture for information processing and it suggests an early network
disruption in the continuum of AD. In a subsequent study, Bajo et al. (2012a; see
also Maestú et al. 2011a) went one step beyond evaluating functional connectivity
in ‘‘healthy’’ elders with SMC, that is, elderly people who complain about their
memory but achieve normal performance on neuropsychological memory tests.
The question here was whether MEG functional connectivity profiles reveal an
early sign of network disruption that cannot be seen by neuropsychological tests
alone. The study included three groups: MCI patients with memory complaints and
memory impairment revealed by a neuropsychological assessment; healthy elders
with memory complaints but without memory impairment as evaluated by per-
formance on memory test; and healthy elders without memory complaints and
without memory impairment. The three groups showed differences relative to each
other. MCI showed higher synchronization in comparison to the other two groups
mirroring the findings described in Bajo et al. (2010). More importantly, the
comparison between the two groups of ‘‘healthy’’ elders revealed weaker syn-
chronization in the alpha 2, beta 1 and beta 2 frequency bands in frontal regions of
the SMC participants as well as along the left hemisphere. These findings permit
the development of a functional connectivity model of the AD continuum as
expressed in Fig. 2. Thus, it seems that at the early stages of the disease, when
neuropsychological test results are still not able to detect cognitive impairment, the
network experienced diminished synchronization values followed by a random
increase in synchronization, at the MCI stage, which ultimately resulted in a loss
of synchronization when diagnosed as AD.

Towards the Understanding of Healthy and Pathological Aging Through MEG 627



3.4 Profiles Leading to the Prediction of the Development
of Dementia

One remaining question that needs to be answered is whether MEG profiles can
predict who will develop dementia. Three MEG papers have addressed this
question using different signal analysis approaches. Maestú et al. (2011b) used the
technique of evoked fields to longitudinally follow MCI patients and tested them to
determine who did and did not develop dementia. Thus, by using a retrospective
analysis they were able to look for certain brain activity profiles that were different

Fig. 2 This figure represents a functional connectivity model of the Alzheimer disease process.
Upper panel indicates sensors where the profile represented in the lower panel was mainly found.
Dashed red line in the lower panel represents the average synchronization value for the healthy
elders. The solid line represents the increased or decreased synchronization values in comparison
to controls values (dashed line) in different stages of the disease: Subjective Memory Complaints
(SMC), Mild Cognitive Impairment (MCI) and Alzheimer Disease (AD) stage. PMCI indicates
Progressive MCI and SMCI Stable MCI. Dashed green line indicates differences between PMCI
and SMCI. Note that PMCI showed higher synchronization in comparison to the control group.
(Modified from Bajo et al. 2012a,b, Age)
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at the time that Progressive MCI (PMCI) and Stable MCI (SMCI) constituted a
single MCI group. This procedure made the development of a prospective model
possible. The comparison of the PMCI and SMCI showed reduced power activity
during performance on a memory task over the posterior regions of the brain.
A higher degree of activation for the PMCI group was evident in the right pre-
frontal (between 0 and 100 ms after stimulus onset), right inferior parietal lobe
(between 100 and 300 ms), left parieto-occipital cortex (between 300 and 400 ms)
and ventral prefrontal regions (between 600 and 900 ms). The PMCI participants
also showed differences between the AD group, which indicates that at the time of
testing they showed a non-AD neurophysiological profile. SMCI showed higher
activity than the AD and control groups but lower activity than the PMCI group.
Thus, it seems that the higher the degree of the activity, the higher the likelihood of
the development of AD-type dementia. Fernandez et al. (2006), who examined
slow frequency activity during a resting state condition, indicate that the left
parietal delta dipole density permitted a reliable classification of AD and MCI
patients. Thus, the MCI patients were divided into 2 groups based on the median
left parietal delta dipole density, and were followed for 2 years. The estimated
relative risk of conversion to AD was increased by 350 % in those MCI patients
with high left parietal delta dipole density scores. Finally, Bajo et al. (2012b)
analyzed data recorded during a memory task using a functional connectivity
approach. They reported increased synchronization values in the alpha 1 and 2
frequency bands over the posterior parieto-occipital regions and in prefrontal
regions in the PMCI group, in comparison with SMCI. These three studies provide
converging evidence about the role of the parieto-occipital regions, in PMCI and
SMCI, by showing increased activity or synchronization during a memory task or
increased slow frequency activity during resting state. During a memory task, an
additional profile emerged—bilateral hyperactivity of the prefrontal regions. This
excessive activation-synchronization over regions that are considered as anatom-
ical-functional hubs is consistent with the findings achieved by investigators using
other imaging modalities, in which atrophy or high accumulation of amyloid in the
precuneus predicts who will developed dementia (Forsberg et al. 2008). Addi-
tionally, these posterior regions revealed the loss of hub structure in AD patients.
Thus, these MEG profiles could serve as a potential biomarker for the prediction of
the development of dementia.

4 Conclusion

The use of MEG in the study of healthy and pathological aging emerged in the
mid-nineties and has continued to become more widespread to this day (based on
the number of publications). This field continues to develop due to the clear
evidence indicating that MEG is a powerful method for evaluating the integrity of
functional networks.
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To date, studies describing the neurophysiological mechanisms underlying
progressive cognitive decline in healthy elders have mainly focused on memory
functions. More specifically, they focused on mechanisms of forgetting. Solesio-
Jofre et al. (2011, 2012) demonstrate in a series of studies that, although elderly
people show increases of frontal lobe activity at the encoding stage, interference
with the memory trace during the maintenance stage acts to disrupt this potential
compensatory mechanism, thereby resulting in a decline in brain activity in pos-
terior and frontal regions during the maintenance and recognition stages. These
results suggested that age-related deficits in inhibitory mechanisms were associ-
ated with under-recruitment of posterior-frontal networks. On the other hand, the
absence of differential interference-related neural recruitment (distraction and
interruption), at least at the maintenance stage, suggests that both types of inter-
ference affect the elderly equally. These findings need to be compared with the
models in the field of cognitive neuroscience of aging. However, these cognitive
neuroscience models have been developed based on findings using fMRI. fMRI
and MEG would not necessarily be expected to obtain similar findings. The higher
temporal resolution of MEG allows cognitive processes to be tracked in a more
detailed manner, thus providing a more complete understanding of all dynamic
brain activity associated with cognitive processing. In a DMS task in which three
different stages of cognitive processing (encoding-maintenance/interference-
recognition) occur in a short period of time, fMRI cannot track all the millisecond
activity noted across parallel sub-networks that underlie good performance. Thus,
MEG is opening up new possibilities in terms of highlighting the neurophysio-
logical mechanisms associated with the aging process. In the future, a detailed
examination of functional networks should provide useful new information
regarding differences between young and elderly subjects. With regards to this,
Schlee et al. (2012) began examining such parameters in a resting state condition.
They found decreased and increased inflow of activity in some posterior regions
which correlated with cognitive performance. Concerning the field of pathological
aging, the advances achieved in the last ten years have been considerable. MEG
was used successfully to describe impaired information processing in primary-
sensory and in higher-cognitive functions; from sensory to working and declara-
tive memory. In addition, MEG was used to describe different profiles of
impairment at different stages of the disease from SMC to MCI and AD. These
profiles may prove very useful for: (1) tracking the progression of the disease; (2)
providing evidence of disease at the neurophysiological level even when neuro-
psychological tests are unable to detect memory impairment; (3) providing a
measure of neuronal dysfunction; (4) evaluating pharmacological and non-phar-
macological treatments; and (5) providing new insights into the pathophysiology
of the disease by examining the disruption of pertinent functional networks.

A common finding among the literature of MEG and pathological aging is the
fact that at early stages of the disease there appears to be increased activity in some
brain regions (Dickerson et al. 2005). For example, during memory tasks, MCI
subjects showed increased activation over different brain regions including anterior
and posterior cortex (Puregger et al. 2003; Maestú et al. 2008; Aine et al. 2010;
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Maestú et al. 2011a). Frequency analysis also revealed an increase of theta power at
the right frontal pole in MCI patients, associated with better memory test perfor-
mance (Aurtenetxe et al. 2013). Connectivity analysis reflected increased syn-
chronization of the prefrontal regions for MCI during performance of a memory
task. fMRI models of cognitive neuroscience of aging predict an increase of activity
over the anterior regions of the brain which is interpreted as reflecting compensatory
activity (HAROLD, PASA, see introduction section for a detailed description of
these models). Following the perspective proposed by these models, the increased
activation found in MEG studies could be compensatory(i.e. MCI patients are
overusing a network activated as well by healthy elders; see García-Pacios et al.
2013). However, there are some findings that argue against this hypothesis. Buldú
et al. (2011) demonstrated that the increase of synchronization in MCI patients leads
to a random network structure. Furthermore, Bajo et al. (2012a,b) demonstrated that
those MCI showing higher synchronization over parietal and frontal regions were
those that developed dementia within two years of follow-up. Finally, at the initial
stages of the disease, SMC subjects showed an opposite response; decreasing
connectivity (Bajo et al. 2012a). Thus, it is hard to say that this increased activity
improved the efficiency of the information processing. It may be part of a dedif-
ferentiation process or a non-successful compensatory mechanism (Grady 2012).
Aine et al. (2011) provided an interesting alternative explanation involving the idea
of a maturation process rather than a compensatory or a dedifferentiation process.It
is difficult to say which of these interpretations is correct. However, recent findings
in animal models provide new insights into the pathological nature of this increased
activity. Cirrito et al. (2008; also see Bero et al. 2011) showed that the hyperacti-
vation of certain brain regions facilitates the accumulation of amyloid in animal
models of the disease. Furthermore, the reduction of this hyperactivation by anti-
epileptic drugs improves cognition (Sanchez et al. 2012). Thus, it seems that this
hyperactivation is underlying a pathological process and that it is not improving the
functioning of the cognitive system. Instead, it seems to be facilitating the patho-
physiological process of the disease. If MEG were able to detect this early sign of
impairment (hypersynchronization) it would be a very useful tool for identifying
candidates for early cognitive or pharmacological treatment.

Although all these MEG findings may be important clinical biomarkers linked
with the pathophysiology of the disease, there is still much left to do before MEG
is used in daily clinical practice in the field of dementia. This is our view for the
following reasons. First, 90 % of the findings have been found by two or three
groups studying different stages of the disease or using different signal analysis
approaches. Thus, it seems necessary to establish a multicenter study to assess
whether profiles of magnetic activity are reproducible across centers and to
establish a blinded protocol with classification carried out on a single subject basis
instead of depending on group effects. Second, it is necessary to evaluate the
sensitivity and specificity of the MEG profiles found in AD in direct comparison
with other types of dementia. Third, MEG should be compared with measures of
amyloidosis (cerebrospinal fluid, CSF and/or PET-PIB) and brain injury as
required by the new criteria (Sperling et al. 2011). Fourth, it would be necessary to
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test whether a relationship exists between magnetic profiles and genotypes of the
disease. Fifth, an extensive evaluation of very early stages of the disease such as
SMC is required, since there is still a discrepancy between clinical symptoms and
an objective measure of impairment (neuropsychological test). Sixth, the ability to
detect changes induced by pharmacological and non-pharmacological treatments
should be demonstrated. Seventh, a robust model must be found for the prediction
of the development of dementia, or at least for the detection of converters from
MCI to AD. Eighth, an easy protocol needs to be established for the recording and
analysis of brain activity, and this must be accessible to PhDs and MDs, who do
not have an extensive background in computer programming.

It is useful to consider the progress made to date regarding each of the eight
points raised above. First regarding a multicenter study, there have been at least
two independent initiatives that have tried to fill this gap. Verdoorn et al. (2011), in
a two-center study, provided evidence for the benefits of a multicenter approach
and interesting test / retest results. However, it seems that a much larger consor-
tium would be necessary to obtain enough cross-center reliability and a fully
blinded study with patients enrolled from different countries and continents.
A different initiative ‘‘The MagnetoencephaloGraphy International Consortium for
the study of AD’’ (MAGIC-AD), has been working over the last two years to
achieve the aims declared in a position paper (see Zamrini et al. 2011). This
consortium involves eight MEG centers from three different continents. The
consortium has already conducted a preliminary analysis of blinded data and the
results will be shared with the community soon. Second, profiles of biomagnetic
activity have been described in other types of dementia such as Parkinson disease
(see Stam et al. 2010 for a review), Lewy Body Dementia (Francciotti et al. 2006)
or vascular dementia (Babiloni et al. 2005). However, there is still a lack of direct
comparison between multiple dementia subtypes to test sensitivity and specificity.

Regarding the rest of the items listed above none or few achievements has been
made. Although genetics have been compared with electrical profiles in the EEG
field, there is still a lack of such comparison for MEG, at least in AD patients.
There is one report indicating the relations between APOE and MEG. Deeny et al.
(2008) assessed whether physical exercise level modifies the relationship between
APOE genotype and neurocognitive function in a single group comprised of young
adults and healthy elderly people (50–70 years old). Regarding the pharma-MEG
or the evaluation of the effects of a particular medication is a field that is rapidly
developing (Hall et al. 2011). However, there are still no reports about the effects
of medication on biomagnetic profiles of AD/MCI/SMC subjects., MEG signal
analysis is still difficult for researchers that are not involved in the field (and still
for some who are). There is a lack of agreement regarding: types of sensors to
record brain activity; source reconstruction techniques; and methods for estab-
lishing functional or effective connectivity. Even more importantly, the application
of the majority of these methods requires some background on signal processing—
a field not frequently covered at institutions granting health-related degrees. This
makes MEG a non-accessible method for many, which continues to be a great
barrier for the general use of this technique.
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It is probably true that connectivity analysis and characterization of the func-
tional networks of the brain represent both the present and future of MEG. As our
understanding of aging points more and more towards a process of progressive
synaptic and neuronal malfunctioning, MEG could be an ideal tool for evaluating
the progressive loss of efficiency of the neuronal networks in normal aging and the
dysfunctions at the synaptic level that occur at early stages of pathological aging.
One example that illustrates the usefulness of all of this rather well is the com-
putational model provided by De Haan et al. (2012), which is based on MEG
findings. The increased interhemispheric synchronization in MCI patients (Bajo
et al. 2010) and the prediction of subjects who will develop dementia (Bajo et al.
2012a,b), in conjunction with the characterization of the functional networks at the
early (Buldu et al. 2011) and late (Stam et al. 2009) stages of AD, are all
increasing the knowledge of the pathophysiology of this disease and providing
new non-invasive biomarkers.

MEG has a long road ahead in the study of aging, but every step forward will be
better than providing multiple pieces of an impossible jigsaw puzzle. To ensure
sustained progress in our understanding, a model of aging based on MEG findings
is clearly needed.
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Current Status and Future Prospects
of Perinatal MEG

Ronald T. Wakai

Abstract Neurodevelopment is a vast and critically important area of neurosci-
ence, yet there is a paucity of functional imaging research during the perinatal and
infant period when development is most rapid and significant. MEG offers com-
pelling advantages over EEG and other neuroimaging methods for perinatal
research. Over the last few decades, interest in this area has vacillated, but it is
likely to reemerge in the coming years as neurodevelopmental disorders attract
greater attention. This short contribution comments on the current status and future
prospects of fetal and neonatal MEG, and highlights the SERF (spin exchange
relaxation-free) magnetometer as an important new technology.

Neurodevelopment is a vast and critically important area of neuroscience, yet there
is a paucity of functional imaging research during the perinatal and infant period
when development is most rapid and significant. There are several reasons for this.
First, the studies are difficult to perform due to the inability of the subjects to
cooperate and the need to make serial measurements. Second, only techniques
believed to be completely safe and noninvasive can be used.

MEG offers compelling advantages over EEG and other neuroimaging methods
for perinatal research, and has the potential to become the preferred technique.
Over the last few decades, interest in this area has vacillated, but it is likely to
reemerge in the coming years as neurodevelopmental disorders attract greater
attention. This short contribution comments on the current status and future
prospects of fetal and neonatal MEG, and highlights the (SERF) spin exchange
relaxation-free magnetometer as an important new technology.
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1 Fetal MEG

Intrauterine evaluation of human fetal brain function has been a long-standing and
elusive goal, due largely to the inaccessibility of the fetal brain. The main
approaches have been indirect. Researchers have studied such outputs of brain
function as fetal heart rate variability, fetal body and fetal breathing movements;
however, there is little evidence that any method in current use has the specificity
to be employed as an effective screening tool for detection of abnormal fetal
neurological functioning. The impetus to make progress in this area is the dire
prognosis of babies born with cerebral palsy and severe mental retardation, which
afflicts more than 10,000 babies per year in the US.

Fetal MEG is one of the few functional brain imaging technologies that can be
applied to the fetus, and it is more direct than other techniques. It also provides one
of the best examples of the potential advantages of magnetic, versus electric,
detection. Fetal electric signals are much weaker than one would expect due to the
presence of the vernix caseosa, which forms on the fetal skin and impedes the
transmission of electrical currents to the maternal surface. Fetal magnetic signals,
in contrast, are much less dependent on volume conduction and thus are relatively
unaffected. A number of groups have demonstrated the feasibility of using MEG to
detect evoked and spontaneous fetal brain activity. But despite the aforementioned
advantages of MEG, the modest quality and success rate of fetal recordings pre-
clude routine clinical application and limit the veracity of basic studies. Further
advancement will likely require technological improvements. Research in this
area, however, should not be abandoned.

2 Neonatal MEG

The neonatal period is a fascinating time to study electrical brain activity. The
developmental changes are so rapid that they can be seen from week to week.
Furthermore, brain activity in neonates can exhibit striking differences, compared to
what is seen in adults. In neonates, the auditory evoked response is dominated by a
single component that corresponds to surface positivity of the evoked potential,
whereas in adults the response is biphasic and the dominant component, the N1,
corresponds to surface negativity. In neonates, the auditory ‘‘off’’ response can be
larger than the ‘‘on’’ response, whereas in adults the ‘‘off’’ response is always smaller.
In early infancy, sleep spindles are strongly associated with slow wave sleep,
whereas in adults spindling exhibits a negative association with slow wave sleep.

The true value of MEG for neonatal studies lies in its high sensitivity to
developmental changes in brain activity, combined with its ability to serially track
changes in the underlying sources with high spatiotemporal resolution. In princi-
ple, EEG is also capable of high resolution source localization in the neonate.
In practice, however, the localization accuracy is confounded by the fontanels,
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which effect EEG topography much more than MEG topography. Thus, the simple
transmission properties of magnetic signals again confer a significant advantage to
MEG.

The neonatal brain provides an invaluable opportunity to study the development
of brain rhythms. Some brain rhythms, such as sleep spindles, can be studied from
their genesis. Over the last decade, connectivity has become a popular area of
brain research. Neonatal studies may allow researchers to observe of the formation
of brain networks and to correlate changes in connectivity with changes in evoked
and spontaneous MEG activity and behavior.

3 The SERF Magnetometer: A Major Breakthrough

Since the introduction of whole-head systems, MEG has not benefitted from any
major advances in sensor technology. Although the magnetic field resolution of
SQUID magnetometers is sufficient for the vast majority of applications, the cost
has remained stubbornly high. A recent advance that seems likely to have a major
impact on MEG and other areas of biomagnetism is the so-called SERF atomic
magnetometer (AM), which has achieved a breakthrough in sensitivity. The main
advantage of AMs is low cost, which can make MEG much more affordable and
widely available. For neonatal MEG, an additional advantage is that the positions
of the channels can be adjusted to accommodate different head shapes and sizes.
This is not possible with SQUID arrays because the channels are confined within a
cryogenic dewar.

Several groups have used AMs to record brain evoked responses, but the results
shown were obtained by averaging many more trials than is typically required
using a SQUID magnetometer. Recently, we recorded adult auditory evoked
responses using an AM fabricated by Vishal Shah at QuSpin, Inc. The recordings
were made in a standard shielded room and were compared with recordings made
during the same session with a SQUID magnetometer, using the same stimuli
(50 ms, 1 kHz tones, 1–3 s ISI) and acquisition parameters. As exemplified in
Fig. 1, which shows the average of 150 trials for the AM and a representative
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Fig. 1 Comparison of
auditory evoked responses
obtained from the same
subject by a SQUID and a
SERF magnetometer. The
stimuli consisted of 50 ms,
1 kHz tones; 150 trials were
averaged
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SQUID channel, the responses were remarkably similar in quality and appearance.
Although development of a commercial system may take several or more years,
there are no fundamental obstacles that prevent the realization of low-cost, high-
performance AM systems for MEG.
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Technological Challenges of Pediatric
MEG and Potential Solutions: The Aston
Experience

Caroline Witton, Paul L. Furlong and Stefano Seri

Abstract Magnetoencephalography (MEG) offers significant opportunities for the
localization and characterization of focal and generalized epilepsies, but its
potential has so far not been fully exploited, as the evidence for its effectiveness is
still anecdotal. This is particularly true for pediatric epilepsy. MEG recordings on
school-age children typically rely on the use of MEG systems that were designed
for adults and children’s smaller head-size and stature can cause significant
problems. Reduced signal-to-noise ratio when recording from smaller heads,
increased movement, reduced sensor coverage of anterior temporal regions
and incomplete insertion into the MEG helmet can all reduce the quality of
data collected from children. We summarize these challenges and suggest some
practical solutions.

Keywords MEG � Children � Pediatric epilepsy � Clinical applications � Brain
maturation

1 Introduction

The magnetoencephalography (MEG) community has seen a slow but steady
increase in the number of laboratories taking up the challenge of translating the
significant wealth of technological and scientific developments of recent years into
clinically viable protocols and paradigms. The principal clinical application in
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which MEG has established itself as a useful technique capable of offering
non-redundant diagnostic information is in the pre-surgical evaluation of patients
with refractory epilepsy. In these patients, MEG offers the unsurpassed temporal
resolution that is necessary to deconvolve the rapidly spreading nature of
paroxysmal epileptiform discharges combined with high spatial sampling and
localization accuracy.

Children are at a substantially higher risk for epilepsy than young and middle-
aged adults (Hauser 1995) and are most likely to benefit from access to MEG
investigations. This is because, in children, neocortical epilepsies associated with
cortical dysplasia and low-grade neoplasms are most prevalent. For these patients,
one of the main positive prognostic factors is complete resection of the epilepto-
genic lesion and MEG can make a significant contribution to the accurate char-
acterization of seizure generation and propagation that is critical for the decision of
surgical amenability (Jeha et al. 2007). Preliminary evidence also suggests that
MEG may be superior to existing diagnostic tools in the characterization of elo-
quent cortex for pre-surgical assessment (Gaetz et al. 2009). By measuring direct
neural processes, MEG does not suffer from the limitations in reliability of fMRI
measures of eloquent cortex function due to the distortion of BOLD signal asso-
ciated with some structural lesions in patients with epilepsy (Wellmer et al. 2009).

Noninvasive measures are of particular potential importance in pediatric
patients, where lack of compliance affects the reliability of WADA assessment,
cortical stimulation during awake craniotomy or other invasive techniques, and
therefore limits the likelihood of early surgical intervention. But despite the
increased risk for epilepsy in children, and the enhanced benefits of surgical
intervention in reducing cognitive impairment and delayed educational milestones,
reports characterizing the application and value of MEG in pediatric age remain
scarce. Based on our experience of recording over 300 children in the period
2004–2013 with two different whole-head MEG systems designed for use
with adults (a 275-channel VSM-MedTech system, and more recently with a
306-channel Elekta Triux system), we will discuss how the evidence-base for the
use of MEG in assessment of pediatric epilepsy has been restricted by some of the
limitations of currently available technology, propose some practical solutions and
discuss how future developments could significantly enhance the application of
MEG in this and other pediatric clinical groups.

2 Key Challenges of Recording from School-Age Children

In this section, we describe some of the main difficulties associated with recording
good-quality MEG data from children. We focus on those in ‘school-age’, i.e.,
between the ages of about 4 and 11 years. Tailored MEG systems for infant
recordings have been designed and marketed (Okada et al. 2006; Johnson et al.
2010), but recordings from children above the age of 4 typically rely on the use of
an MEG system designed to accommodate adults.
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2.1 Head Size

Head size reaches approximately adult-like proportions at a relatively young age.
This has led to the assumption that an adult MEG system will provide equivalent
signal-to-noise ratio for pediatric recordings. However experience shows that this is
not the case. In our laboratory we systematically digitize the shape of the head with a
Polhemus 3-D Space TrackerTM system for coregistration purposes. These data have
offered us invaluable insight in evaluating differences between adult and children
positioning and the overall fit within the MEG helmet. Data suggest that typically
developing 9-year-old children do not differ from adults in head width, with a mean
of 15.3 and 15.5 cm respectively. But the children’s heads are significantly smaller
than adults’ in the anterior-posterior dimension (16.6 vs. 19 cm; p \ 0.001, n = 35)
and younger patients have even smaller head measurements. Helmet dimensions of
the most common adult MEG systems are broadly similar to each other; our current
Elekta MEG system measures about 22 cm in the anterior-posterior dimension, and
about 18 cm from left to right. So it is clear that our pediatric patients—and to a
lesser extent our adult patients—have room to spare, in both the anterior-posterior
dimension and from left to right. This observation has at least 3 implications;
increased margin for head movement, reduced sensor coverage especially in ante-
rior regions, and reduced signal to noise ratio for the smallest heads.

Firstly, head movement: with plenty of extra space in the helmet, a child has
much more freedom to move around during the recording than an adult. Child
patients often find that they can twist their head from right to left and tilt their head
back and forwards quite freely, unlike an adult who experiences a physical
restriction by the boundaries imposed by the helmet. This additional freedom of
movement makes software systems for tracking and compensating for head-
movements extremely valuable in pediatric clinical MEG. Elekta’s signal-space
separation method provides one framework for head movement compensation
(Nenonen et al. 2012) and a different implementation for CTF MEG systems
(Wilson 2004) has also been made available. Head position is usually tracked
during a MEG recording through the positions of at least 3 small active coils
affixed to the patient’s head. Without movement compensation, it is typical to
reject any dataset in which the coils move more than 5 mm from their starting
positions. In practical terms, depending on the age and compliance of the child,
this could mean rejecting a significant proportion of datasets with the net effect of
prolonging the duration of a recording session beyond tolerable limits, which in
turn further reduces the chance of the child to remain completely still. Prior to
the availability of head movement-correction software, for clinical patients in the
seated position, we rarely recorded more than 2 min at any one time, to ensure that
valuable data containing epileptiform activity were not spoiled by head move-
ments which would have compromised localization accuracy. A downside of this
practice is the introduction of gaps in the acquisition during which interictal
abnormalities or even seizures can occur. With young children we have used a hat
with inflatable cushions to restrict head position within the MEG helmet, but this
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has not usually been well tolerated. Our current system, due to the benefit of head-
movement compensation, allows recording longer epochs and we have in some
cases encouraged the patient to move, to enhance signal-to-noise in different areas
of cortex during the recording. We routinely encourage our children to hyper-
ventilate, using toy windmills to encourage participation. In the event that the child
becomes drowsy, we also allow them to doze or sleep. Both processes are intended
to facilitate the occurrence of interictal activity, but without movement compen-
sation technology it would be challenging or impossible to retain spatial accuracy
of localization. Importantly, we can also record brain activity during a seizure such
as the example in Fig. 1, providing valuable information about seizure onset
and propagation—something that has been extremely challenging to achieve in
the past in patients with seizures characterized by significant concomitant motor
manifestations.

To make the best of head movement-compensation systems during recordings,
it is important to ensure that the coils remain within the MEG sensor-space and as
close to the sensors as possible. This can be challenging when working with the

Fig. 1 An absence seizure recorded during hyperventilation. Top 8 s of MEG data maxfiltered
using tSSS with motion correction, displayed on left frontal channels showing seizure onset
during hyperventilation. The sources of MEG activity at seizure onset was calculated using a joint
minimum-variance beamformer and spike-detection algorithm, a procedure called SAM(g2)
(Kirsch et al. 2006). The beamformer output at a target location has the same temporal resolution
as the recorded MEG signals, and is therefore often referred to as a virtual electrode (Robinson
and Vrba 1999) and can be seen as a morphologic characterization of the regional electrical
activity. Spike-like activity is identified from the estimated source data in terms of excess
kurtosis. Two virtual electrodes yielded by this analysis (VE1 and VE2) are displayed beneath.
Bottom Source localization of the two virtual electrodes showing regions of high kurtosis
bilaterally in the frontal lobe is shown
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youngest children. When inserted as far as possible into the MEG system, children
may find that their vision is obscured by the front of the helmet, and have a
tendency to lean forwards and downwards, resting their upper forehead against the
forward edge of the helmet, in order to see out. In doing so, they may bring any
coils been placed on the forehead outside of the sensor space, making head
position estimation, and therefore correction, impossible. Encouraging the child to
‘keep their chin up’ is therefore important; future modifications to proprietary head
motion correction systems should aim to account for this.

The second implication of recording from smaller heads in addition to an
increased distance is a reduction in sensor coverage of the anterior temporal lobes,
and this also provides another reason to encourage a school-age patient to lean
back in the MEG helmet. The anterior temporal lobes lie only a few centimeters
behind the eyes, and are easily brought outside the sensors if the head is pitched
forward and down. Figure 2 shows examples of auditory N1 field patterns recor-
ded from an adult, and from two children using a CTF MEG system with axial
gradiometers, illustrating this loss of signal from the smaller heads. The source of
the auditory N1 is in the planum temporale, just posterior to the Heschl’s gyrus,
yet half of the field pattern is lost. Clearly, depending on its orientation, temporal-
lobe epileptiform activity could be lost in the same way and this problem may at
least in part explain the reported relative low sensitivity in the mesial temporal
lobe (e.g. Agirre-Arrizubieta et al. 2009; Leijten et al. 2003).

The most critical implication of recording from smaller heads is that if the brain
surface is further from the sensors, the recorded signal will be smaller.
Acknowledging that overall head growth incorporates changes in the size of the
cranium as well as of brain-size, we can safely assume that the cerebral cortex is
several millimeters, often centimeters, further from the MEG sensors in our
youngest patients compared to the adults for whom the system was designed. This
can affect signal-to-noise quite considerably (Gaetz et al. 2008). Simulated data
have previously shown that whilst superficial MEG sources have in general a high
detection probability, the maximum detection probability starts to fall off very
dramatically when the minimum source-sensor distance is larger than 6.5 cm
(Hillebrand and Barnes 2002). Thus, signal from the anterior and inferior frontal
and temporal lobes are sub-optimal in adult heads and may become undetectable in
smaller children.

2.2 Stature

Children’s smaller stature poses some additional problems for successful MEG
recordings, including the suitability of seating arrangements, and the ability to
fully insert the child’s head into the MEG helmet. Recording while seated, rather
than supine, has many benefits, most importantly that the child can feel much more
at ease. The child can see the room around them and be reassured by the ease of
making eye contact with a parent or other adult figure accompanying them in the
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magnetically shielded room. When the patient is seated, it is also much easier for
them to use response-devices such as joysticks or button-boxes, which can be
placed on a table in front of them and easily visible.

However, like MEG helmet sizes, the adjustable chairs supplied with MEG
systems were designed with adult patients in mind. With both the MEG systems
we have used at Aston, limits to the maximum height of the seat meant that our
younger school-age patients, with the seat at maximum height, are not fully
inserted into the MEG helmet. The addition of cushions is not ideal, because
cushions have a tendency to compress with time, so the child sinks below the
sensors during the recording. Booster seats intended for use in cars have offered
some success, but are not always comfortable, because we are using them with
children much older than those for whom the seats were designed. Improved
seating arrangements should be easy to achieve and a cost-effective priority for
MEG manufacturers seeking to optimize their systems for use with children.

Whether seated or supine, children of very small stature may also be impossible
to insert fully into the helmet for anatomical reasons (Fig. 3). The depth of the
helmet, around 22—24 cm (depending on the manufacturer) may be longer than
the distance between a very young child’s shoulders and the crown. This means
that, as the child’s head is positioned within the helmet, their shoulders will come
into contact with the lower limits of the helmet before their head reaches the top of
the helmet, leaving a gap between the top of their head and the upper MEG sensors
(see Fig. 3a). Our calculations based on population-level anthropometric data
(Snyder et al. 1975) suggest that this is a problem even for the shallowest MEG
helmets (22 cm) for typically developing children between about 4 and 6 years of
age (Fig. 3b).

A very important observation, in relation to the design of MEG systems
and accessories for use with children, is that pediatric patients are smaller than

Fig. 2 Three field patterns from a CTF 275-channel MEG system, for evoked responses elicited
by an auditory click. The field patterns reflect the activity at about 100-ms after presentation, for
the response known as the N1m which originates in planum temporale, just posterior to primary
auditory cortex and about mid-way along the temporal lobe. ‘a’ shows data for a typical adult,
with red and blue mirror-image dipolar field patterns in the left and right hemisphere, highlighted
by the yellow box. In ‘b’, the recording is from a child and the anterior portion of the field pattern
in each hemisphere is lost (indicated by the red and blue arrows). ‘c’ shows another child
recording, where the field patterns are also incomplete. These field patterns illustrate the relative
lack of sensitivity to temporal lobe sources in child patients, compared to adults, when recorded
in an adult MEG system
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typically developing children—often considerably so. Figure 4 shows how pedi-
atric epilepsy patients referred for presurgical assessment at the Birmingham
Children’s Hospital for MEG investigations compare to typically developing
children of the same age. Some of the patients’ heights fall in the range expected
for children who are 2 or even 3 years younger. A lower age limit, based on size,
of about 4 years in typically developing children could translate in a lower age
limit of up to 7 years for this patient group.

2.3 Compliance and Engagement

A frequent challenge in obtaining good quality data from school-age children is
ensuring that the child is compliant enough to tolerate the recording process and
engage with any task at hand. Minimizing preparation time is a key strategy to
maximize compliance during the MEG recording. MEG compares very favorably
with EEG in terms of preparation time. The longest preparation time is due to the
need to affix coils to the patient’s head and record their positions (i.e., coil posi-
tions are digitized prior to the recording) for localization and movement tracking.
In our laboratory we use a surface-matching process for coregistration with a
structural MRI (Adjamian et al. 2004), which provides improved accuracy com-
pared to coregistration methods based on fiducials, but requires the digitization of
the head surface as well as other key positions. This is time consuming and
necessitates personal contact of staff with the child. During this procedure the child
is required to sit still and we often find that compliance with this process is more
challenging than that with the MEG recording itself. In the future, non-contact
digital imaging may afford a valuable alternative (Woods et al. 2012) which,
combined with alternative methods of locating and digitizing the position of head

Fig. 3 Panel A Illustration of how stature affects insertion into the MEG helmet. An adult, on the
left panel, can be fully inserted into the helmet; but for a child, the shoulders touch the lower edge
of the helmet before the crown of the head reaches the top (arrows). Panel B The distance from
shoulder to crown in TD children, as a function of age: data from Snyder et al. (1975). The Elekta
MEG system helmet has a depth of about 22 cm and the CTF of about 23.5 cm. Children with a
smaller shoulder-crown distance than this depth will not be fully inserted into the helmet.
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tracking coils, may significantly reduce the time required and improve the
reliability of head tracking and subsequent coregistration with MRI data.

Task engagement is a final challenge. While a passive recording with low levels
of arousal or even during sleep may provide ideal recording conditions for
localizing epileptiform abnormalities, mapping eloquent cortex requires the patient
to actively engage with a task. Obtaining good-quality evoked or induced
responses depends in part on an optimal level of arousal and compliance, over a
number of stimulus or response repetitions. This can be challenging when working
with young children, particularly those with cognitive impairments or behavioral
difficulties. However this challenge has already been addressed in other fields of
research, where good-quality data depend on the active participation of young
children. In ‘‘Rocket Ship Psychophysics’’, Abramov et al. (1984) describe how
children as young as 5 years of age can be engaged in a series of challenging
visual psychophysics experiments through the use of a narrative about astronaut
training, complete with space-noises, ‘space-rations’, and a ‘space-pass’ where

Fig. 4 A graph showing the ages and heights of three groups of our pediatric MEG participants
(not selected on any basis other than their participation in MEG recordings between January and
December 2010), plotted with mean and standard deviation for the population (www.dined.com).
The red squares show participants with developmental dyslexia, who are not expected to differ in
stature from typically developing children. They fall within the expected normal range and
indicate that the norms are an appropriate comparison for our British patient groups. The green
triangles show children from our epilepsy pre-surgical mapping program, and many of these
patients are significantly below the mean height for their age group. The blue diamonds indicate
children with liver disease who also participated in MEG recordings, and are also significantly
smaller than typically developing children
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points were accumulated. Simple computer games are now routinely used for
measuring sensory thresholds in the behavioral context (Sutherland et al. 2012;
Barry et al. 2010), and their adaptation for use in the context of MEG recordings
can provide a useful tool for clinicians needing to encourage task participation.

3 Implications

In the previous sections we have outlined the key challenges of recording good-
quality clinical data from school-age children, and some solutions. Here we consider
how these challenges may impact on the evidence-base for MEG in clinical
applications. The benefits of MEG over EEG for epilepsy work in adults, particu-
larly in the frontal lobe (Ossenblok et al. 2007; Knowlton et al. 1997), are attributed
to MEG’s significantly improved signal-to-noise-ratio for sources in this region (de
Jongh et al. 2005). For temporal lobe spikes the reported value of MEG detection is
varied. Recent studies have reported a high level of accuracy in spike detection in
lateral and basal temporal lobe validated with ECoG (Agirre-Arrizubieta et al. 2009)
or in comparison with simultaneous EEG (Lin et al. 2003). Data on detection rate for
spikes located in mesial temporal lobe are still controversial. Some authors have
reported poor detectability (Agirre-Arrizubieta et al. 2009; Wennberg et al. 2011),
whereas one study has reported that 16 % of patients with mesial temporal lobe
epilepsy with non-localizing ictal scalp EEG had well-localized spikes on MEG
(Kaiboriboon et al. 2010). Leijten et al. (2003) attributed poor spike yield in mesial
temporal lobe epilepsy to inadequate coverage of the temporal lobes by the MEG
helmet. There are no equivalent systematic comparisons of spike detection and yield
in pediatric patients. Given the increased distance of inferior frontal and temporal
lobe sources from sensors in children (see Fig. 2), detection rates and yield are likely
to be impoverished in comparison to adult evaluation, but further study in this
domain are necessary to accurately characterize the relative detection rates of spikes
in pediatric age from the key cortical structures for which current adult MEG
systems are sub-optimal.

4 Conclusions and Future Developments

An optimal MEG system designed for school-aged children would ideally incor-
porate a smaller head shell design with a shallower profile to enable full head
insertion and optimize sensor coverage for accurate source reconstruction in
frontal and temporal lobes. The prohibitive costs of re-engineering a system make
it unlikely that a mainstream MEG manufacturer will develop their device for this
purpose, at least in the near future. On the other hand, new software developments
are likely to bring about significant improvements in signal to noise ratio for all
types of recording. A likely focus on reducing noise (especially sensor-noise),
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rather than increasing signal, constitutes an alternative approach to improving
detection of brain activity from small children recorded in adult MEG systems
(Elekta Neuromag, personal communication), and should have considerable
benefits for clinicians working with this age group. Other developments in head-
motion compensation, particularly focused on the problem created by small heads,
which can easily move beyond the limits of the sensor array (Elekta Neuromag,
personal communication), will also be beneficial.

The recent refinement of motion correction algorithms has enabled the incor-
poration of standard diagnostic protocols such as hyperventilation and recording
during spontaneous sleep to become part of routine MEG evaluations. Further-
more, reliable measures can now be made at the onset of most convulsive seizures
using MEG (Kakisaka et al. 2012) and the time-locked video-MEG recording
of ictal events may well further improve the sensitivity and clinical value of
MEG studies (Medvedovsky 2012) and lead to the future adoption of MEG as a
gold-standard for pediatric epilepsy work-up.
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Cognitive Decline Associated with Aging,
Alzheimer’s Disease and Cerebrovascular
Risk: Advantages of Dynamic Imaging
with MEG

Cheryl J. Aine, John C. Adair, Janice E. Knoefel, Lori Sanfratello
and Julia M. Stephen

Abstract Recent studies examining Alzheimer’s disease (AD) and aging have
noted a strong association between cerebrovascular risk and cognitive decline, and
suggest that AD may in part be attributed to vascular insufficiency. Based on our
recent results we suggest that cognitive decline associated with cerebrovascular
pathology should be characterized and if possible separated from neurodegener-
ation caused by amyloid plaques and neurofibrillary tangles (i.e., traditional
AD-related pathology) since the progression of cerebrovascular pathology can be
stopped or slowed down. Furthermore, because cerebrovascular pathology (e.g.,
hypertension and type 2 diabetes) co-exists in most AD patients, neuroimaging
techniques dependent on ‘uncompromised’ neurovascular coupling (e.g., fMRI)
will have more potential confounds to deal with in this area of study, in addition to
difficulties associated with being an indirect measure of neural activity. We assert
that functional measures (e.g., dynamic cortical networks, oscillatory activity and
cross-frequency coupling), as opposed to structural measures (e.g., diffusion tensor
imaging–DTI), will enable earlier diagnosis of AD and mild cognitive impairment
(MCI) and that MEG in particular can make important contributions to this field. A
new potential area of study that relates MEG single trial results to models of
diffusion parameters in extracellular space is introduced.
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1 Introduction

One goal of our research effort is to accurately differentiate between Alzheimer’s
disease (AD), mild cognitive impairment (MCI), normal aging, and healthy suc-
cessful aging. Interest in this area was motivated by our previous neuroimaging
studies demonstrating that a majority of a sample of MCI and AD patients revealed
moderate to severe MRI abnormalities [e.g., white matter hyperintensities
(WMHs), suggestive of chronic white matter ischemia, and volume loss], as
determined by a board-certified neuroradiologist (Aine et al. 2010). In addition,
approximately 1/3 of our elderly control group also had moderate to severe MRI
abnormalities and they generally performed worse on the behavioral tasks and
neuropsychological tests of memory, compared to elderly with no or mild MRI
abnormalities. Recent literature on WMHs indicate that their presence is typically
associated with hypertension and/or type 2 diabetes (Inzitari 2000; Dufouil et al.
2001; Cook et al. 2002; De Groot et al. 2002; Awad et al. 2004; Kuo and Lipsitz
2004; Manschot et al. 2006).

Indeed, numerous epidemiological studies have recently linked cardiovascular
risks in midlife (e.g., hypertension) with increased likelihood of developing
dementia, including AD, later in life [see review by Qiu et al. (2005)]. DeCarli and
colleagues (2001), for example, found that individuals with MCI had an increased
prevalence of WMHs and elevated midlife diastolic blood pressure that increased
the risk for MCI to at least the same degree as apolipoprotein E e4 (APOE-4)
genotype. Schmidt and colleagues (2000) showed that individuals who developed
AD had higher systolic blood pressure than nondemented counterparts 10–15 years
prior to disease onset. It has even been shown that antihypertensive medication can
protect against dementia in some cases (Forette et al. 2002). And finally, recent
results from a meta-analysis (Debette and Markus 2010) suggest that WMHs should
be used as an intermediate biomarker of brain health since they are usually asso-
ciated with small vessel disease. Consequently, careful documentation of brain
health for studies of aging and AD is very important because: (1) we need to
separate pathological aging (e.g., cognitive decline associated with cerebrovascular
risk) from healthy successful aging in order to better understand aging processes per
se; and (2) we need to sort out effects due to cerebrovascular pathology from those
attributed to AD processes (e.g., plaques and tangles) in order to better understand
and treat this disease. Cerebrovascular-related cognitive decline (e.g., due to
hypertension and/or type 2 diabetes) can usually be prevented or controlled by
changes in lifestyle (diet and exercise) or medication, thereby providing patients
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with a possible opportunity to delay the progression of dementia-like symptoms or
cognitive decline and enhance the quality of their lives.

The clinical syndrome called dementia consists of an acquired memory
impairment and impairment in at least one other cognitive domain, which dimin-
ishes the sufferer’s ability to cope with activities of daily living for at least 6 months
(Eschweiler et al. 2010). AD, the most common form of dementia, ranks among the
top public health problems confronting developed countries (Arrieta and Artalejo
1998), with an estimated 14.5 million people in the U.S. to become afflicted with the
disease by the middle of next century. Although there is general consensus on the
clinical course and neuropathology of AD, there is limited information on its causes
and pathogenesis. Current data suggest that various possible causes and predis-
posing factors most likely reflect an interaction of biological and environmental
influences (Small 1998). The gene coding for the amyloid precursor protein (APP),
whose cleavage product (beta amyloid) forms the cores of senile plaques in AD,
was localized to chromosome 21 (Walker 1997; Small 1998). However, it was soon
discovered that APP mutations rarely caused AD. Other genetic mutations causing
early-onset familial AD have been identified, but they account for a very small
proportion of AD cases. For late-onset AD (dementia beginning after age 60),
APOE-4 has been confirmed to be a major susceptibility gene for AD (Hof et al.
1992; Small and Leiter 1998; Small 1998). However, the genes identified thus far
for late-onset AD account for only 50 % of the genetic variability in AD. More
recently, AD and other dementias have been linked to cardiovascular problems
since AD and other dementias typically co-exist with hypertension (60 %), coro-
nary heart disease (30 %), congestive heart failure (28 %) and diabetes (21 %)
[2008 Alzheimer’s disease Facts and Figures, Alzheimer’s Association].

Interestingly, when Alois Alzheimer first described AD, dementia was most
often attributed to vascular insufficiency or syphilis (Iadecola 2010) and Scheibel
(1989) even referred to AD as a capillary dementia. Regardless of its etiology,
early detection strategies for AD are essential since any soon-to-be-developed anti-
dementia treatments are not likely to reverse existing neuronal damage, but rather
slow further progression. Unfortunately, many studies indicate that significant
medial temporal lobe atrophy occurs before the diagnosis of mild AD and that
neurofibrillary changes and plaque deposition may begin even before age 30
(Braak and Braak 1997; Price and Morris 1999; Petersen et al. 2006).

2 Neurobiological Changes in Normal Aging and AD

Normal Aging. There is a wealth of cross-validation studies relating measures of
cognitive performance to neurodegenerative markers (e.g., changes in microscopic
structure, decreases in synaptic density, neuronal density, mean neuronal size, the
number of neuritic plaques, etc.), or rather, microscopic brain changes (Huttenlocher
1979; Anderson et al. 1983; Kemper 1984; Burke and Barnes 2006). However, a
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broad range of similar neuropathological findings can also be observed in older
people with normal cognitive performance (Klunk et al. 2004; Aizenstein et al. 2008;
Jack et al. 2009). Generally speaking, brain weight declines with age (by about 10 %
from early adult life to the ninth decade); the ventricles and sulci enlarge in volume;
and both gray (GM) and white matter (WM) volumes appear to shrink [see review
(Kemper 1984)]. Atrophic changes have been reported most frequently in the con-
vexities of the frontal lobes, parasagittal regions and the temporal and parietal lobes.
Although past studies reported substantial neuronal loss (Coleman and Flood 1987;
Kemper 1993; Rosene 1993; Albert and Moss 1996) recent investigations suggest
that there is only an overall loss of*9.5 % of neurons with age (Voytko 1998; Peters
and Rosene 2003) and that it is a misconception to think that dramatic cell loss and
morphological changes in neurons occur in normal aging (Burke and Barnes 2006).
Instead, age-related changes result in myelin loss and structural changes within
the myelin sheaths which has the potential to disrupt communication among neurons
(Willott 1997; Peters et al. 2000). WM fiber tracts provide high-density connectivity
between cortical and subcortical GM structures, thereby coordinating activity across
disparate GM regions and creating widely distributed, functionally integrated
circuitry. Similarly, a decrease in number of dendritic branches and reduction in
dendritic lengths have also been noted in elderly humans (Scheibel et al. 1975),
which affects the number of synaptic contacts that can be made with other neurons
(Willott 1997).

AD. The pathologic hallmarks of AD are senile plaques and neurofibrillary
tangles which are selectively distributed; their concentrations are highest in the
temporal-parietal regions, hippocampus, entorhinal cortex, and the amygdala
(Hyman et al. 1984; Katzman 1986; Van Hoesen and Damasio 1987; Hof et al.
1992; Steffens 1997; Willott 1997; Jack et al. 1998; Small 1998). Synaptophysin, a
marker of neuronal connections, is decreased in areas that are affected by the
disease (e.g., hippocampus) but not in regions that are behaviorally or neuropa-
thologically uninvolved (Honer et al. 1992). Dementia severity of AD patients
correlated with synapse counts in biopsy tissue and synaptophysin concentration in
postmortem tissue (DeKosky and Scheff 1990; Terry et al. 1991) suggesting that
synapse loss is the major correlate of cognitive impairment (Terry et al. 1991).
Quantitative MRI studies in AD have documented a general increase in CSF
volume in the sulci, ventricles and the combination of sulci and ventricles (Alavi
et al. 1993). Other MRI studies showed a regionally specific decrease in volume of
the medial temporal lobe and hippocampal formation (Kesslak et al. 1991; Jack
et al. 1992; Murphy et al. 1993; Steffens 1997). MCI patients, who are at risk for
developing AD (Petersen 2004), are believed by some to have AD neuropathology
and that medial temporal atrophy in these patients predicts subsequent progression
to AD (Jack et al. 1999).

Jack and colleagues (2010) recently summarized five of the most widely studied
biomarkers of AD pathology and ordered the temporal relationships among the
biomarkers with clinical disease stage. Amyloid (Aß) imaging (PET-PIB) abnor-
malities, for example, may precede clinical/cognitive symptoms by as much as 2–3
decades since approximately 20–40 % of cognitively normal elderly have evidence
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of significant brain Aß deposition. Other biomarkers included CSF Aß42, another
index of Aß deposition, CSF tau, a putative marker of neuronal damage, and FDG-
PET, an indicator of synaptic dysfunction. Unfortunately, these tests are either
prohibitively expensive (i.e., requiring a PET scanner and cyclotron) or invasive
(i.e., requiring lumbar puncture or exposing patients to ionizing radiation) so that
their use is limited in clinical practice and restricted mainly to research studies.
Structural MRI, listed as the 5th biomarker, provides a good measure of medial
temporal volume loss that coincides with cognitive symptoms. While more clini-
cally practical, structural MRI changes appear later in the temporal sequence than
other biomarkers. Therefore, we need to identify neural signatures earlier, within
the 2–3 decades that amyloid burden accumulates, in order to stop or defer disease
progression.

3 Posterior Versus Anterior Patterns of Effects
Differentiate Between AD and Normal Aging

Since AD is characterized by the presence of cortical amyloid plaques and neu-
rofibrillary tangles in entorhinal and parahippocampal cortex in mild stages of AD,
it is generally believed that the pathology has a more posterior distribution. The
medial temporal lobe (MTL), a site where neurofibrillary tangles dominate first, is
densely interconnected with posterior regions such as parietal cortex (Klunk et al.
2004; Buckner et al. 2005). Consequently, recall and recognition memory (e.g.,
recognizing a list of words) become increasingly impaired as the number of tangles
increases. In contrast, there is a separate anterior pattern of changes associated
with normal aging. Cognitive processes such as working memory and executive
control are supported by the prefrontal lobes, and are among the first to decline
with age [e.g. (Moscovitch and Winocur 1995; West 1996; Tisserand and Jolles
2003)]. Similarly, WM degenerates with an anterior-to-posterior gradient (i.e.,
prefrontal lobe dysfunction occurs first) (Head et al. 2005; Delano-Wood et al.
2012). Therefore, neuroimaging studies originally focused on differentiating
between these anterior changes associated with normal aging (working memory/
executive function deficits) versus posterior patterns associated with MCI/AD
(word recall/recognition deficits).

However, a meta-analysis conducted by Gunning-Dixon and Raz (2000), along
with other studies (Oosterman et al. 2004; Tullberg et al. 2004), have also shown
that WMHs are: (1) more abundant in frontal regions; (2) associated with cognitive
decline (e.g., executive dysfunction); and (3) associated with hypertension and type
2 diabetes (DeCarli et al. 1999; Gunning-Dixon and Raz 2000; Artero et al. 2004;
Awad et al. 2004; Elias et al. 2004; Kuo and Lipsitz 2004; Schmidt et al. 2004; Qiu
et al. 2005; Nordahl et al. 2006; Pantoni et al. 2007; Helzner et al. 2009). This
cerebrovascular-related cognitive decline is believed to be due to demyelination and
axonal degeneration (van Swieten et al. 1991; Taylor et al. 2003) in regions con-
necting frontal cortex and subcortical structures (Kuo and Lipsitz 2004).
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Consequently, cerebrovascular-related cognitive decline also has an anterior pattern
of changes since frontal areas are the first to reveal WMHs, followed by periven-
tricular and parietal regions (Artero et al. 2004; Head et al. 2004). In each stage, the
density of lesions increases until finally temporal and occipital regions are involved
(creating an anterior-posterior gradient). Working memory and executive control
functions are targeted first in this group. Since normal aging is also known to affect
frontal lobe structures supporting working memory and executive functions, then
cerebrovascular-related cognitive decline appears to be a serious confound for aging
studies in general and certainly for studies attempting to differentiate between AD
and normal aging.

In our most recent ongoing studies, we postulated that cerebrovascular risk
factors (e.g., hypertension, hyperglycemia, hypercholesterolemia) underlie at least
some of the apparent frontal lobe deficits seen in normal aging (Aine et al. 2011,
2013). This is similar to conclusions reached by Kennedy and Raz (2009) who
suggested that: (1) elevation of arterial pulse pressure is linked to deterioration of
WM tract integrity in frontal regions and (2) vascular risk may drive the expansion
of WM damage from anterior to posterior regions. Burgmans and colleagues
(2010) also examined effects of hypertension on white matter integrity (DTI,
WMHs, WM volume) and concluded that diffusion-based indices of WM integrity
may be more sensitive indicators of global and regional declines in the aging brain.
Our initial results [behavioral and MRI/DTI; Aine et al. (2013)] show highly
significant effects between cerebrovascular-related health status and cognitive
decline. Cerebrovascular risk factors account for at least some, so-called normal
aging effects. At least two issues remain: (1) how can we diagnose AD earlier in
time; and (2) what do neuroimaging results tell us about the etiology of cognitive
decline associated with aging and MCI/AD?

4 Advantages of Functional Neuroimaging with MEG

Currently, it is believed that neurodegenerative diseases and neuropsychiatric
illnesses target specific networks, causing disruption and consequent cognitive
decline (Seeley et al. 2009). Thus the elucidation of neuroimaging methods that
can uniquely characterize these networks across anatomical and functional levels
for each of the pathologies facilitates clinical diagnosis. While it is useful to know
lesion localization via structural imaging, functional measures should be able to
provide information about cognitive decline earlier than anatomical measures. The
temporal evolution of biomarkers in AD discussed earlier asserts that changes in
activity levels (e.g., FDG-PET hypometabolism) occurs months or years before
structural changes within the brain are detectable. As noted above, structural MRI
was listed as the 5th biomarker that provides a good measure of hippocampal
volume that coincides with cognitive symptoms. However, we need to identify
neural signatures prior to significant volume loss or symptom onset to maintain
quality of life for those who are susceptible to AD-related cognitive decline.
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Recently, Hedden and colleagues (2009) and Sheline and colleagues (2010)
examined network connectivity in the default mode network (DMN) using fMRI in
a group of cognitively normal elderly who were either classified as PIB+ or PIB-

from the PET amyloid imaging exam (i.e., they either showed evidence of amyloid
deposition when imaged with 11C-labeled Pittsburgh Compound B or not). The
PIB+ groups from both studies revealed a disruption of functional connectivity
within the DMN that could not be explained by increased age or structural atrophy.
The pattern of disruption was similar to that shown in AD patients in other studies
(Greicius et al. 2004; Zhang et al. 2009). For example, connectivity between
precuneus and hippocampus (i.e., a posterior pattern of effects) was significantly
lower in individuals with amyloid deposition versus those without cerebral amy-
loid. We suggest that functional connectivity measures are far more likely to
provide sensitive measures of disease processes, and earlier in time than structural
measures. In addition, by using functional measures with enhanced timescales (i.e.,
milliseconds rather than seconds) that are less affected by neurovascular coupling
issues (e.g., MEG/EEG) should increase the chances for successful differential
diagnosis.

Issues Associated with Neurovascular Coupling for fMRI Studies of Age-related
and AD Pathology. As mentioned previously even Alois Alzheimer attributed AD
to vascular insufficiency or syphilis (Iadecola 2010). Later, AD was associated
primarily with posterior degenerative pathology. Thus, it appears that views of AD
are beginning to come around full circle since recently there are numerous studies
indicating interaction between neurodegenerative and vascular factors in the
pathogenesis of dementia (Farrall and Wardlaw 2009; Iadecola 2010; Warsch and
Wright 2010) and some are outright suggesting that AD is a microvascular dis-
order [reviewed in (Jellinger 2002; Zlokovic 2005; Bell and Zlokovic 2009;
Schneider and Bennett 2010)]. In a study of 300 AD autopsy cases, 98 % were
found to have cerebral amyloid angiopathy (CAA) (i.e., deposition of Aß in
arteries, arterioles, and less frequently in capillaries and veins) and 100 % showed
microvascular degeneration (Kalaria and Ballard 1999). It is rather interesting that
amyloid burden is most prevalent in frontal lobes even though AD is thought of as
predominantly affecting medial temporal lobes. For example, a recent study
examining cognitively normal elderly with PIB+ suggests that a frontal network
associated with working memory was affected first by amyloid deposits (Oh et al.
2011). Theories that suggest cerebrovascular dysfunction precedes cognitive
decline and the onset of neurodegenerative changes in AD [e.g. (Zlokovic 2005,
2008; Bell and Zlokovic 2009)] indicate that cerebral hypoperfusion impairs the
clearance of Aß from the brain, which is normally performed by the cells in the
neurovascular unit. Therefore, Aß accumulates on blood vessels (i.e., CAA) and in
brain parenchyma. In support of this hypothesis, MR-based arterial spin labeling
(ASL) showed widespread hypoperfusion in AD (Johnson et al. 2005). There is
also increasing evidence that the effect of vascular lesions are more pronounced in
the early stages of AD (Esiri et al. 1999) and that ischemic lesions and vascular
risk factors accelerate disease progression of dementia (Helzner et al. 2009).
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A recent meta-analysis covering aging, vascular dementia, AD, lacunar stroke,
and leukoaraiosis indicates that the blood-brain-barrier (BBB) permeability in
these conditions is altered (Farrall and Wardlaw 2009). In other words, the neu-
rovascular unit itself is altered [e.g. Bell and Zlokovic (2009)]. Therefore, one
potential barrier to using fMRI methods for examining AD is that neurovascular
coupling may be altered in these groups and consequent interpretations of the
BOLD changes may be incorrect (D’Esposito et al. 2003). Neurovascular coupling
is defined as the relationship between a change in neuronal activity and the sub-
sequent hemodynamic response reflected by a BOLD signal change. The primary
determinant of the BOLD signal, deoxyhemoglobin within each voxel, is dictated
by the venous blood volume, arterial blood flow and blood oxygenation, and any
disease or medication that modifies the responsiveness or the baseline values of
these parameters are likely to modify BOLD contrast even in absence of any
modulation of neural activity (Iannetti and Wise 2007). Unfortunately, Lee and
colleagues (2009) found patterns of hypo- and hyper-perfusion for their group of
38 healthy elderly leading them to believe that there are problems with neuro-
vascular coupling in many elderly as well. Therefore, Iannetti and Wise (2007)
offer several suggestions/steps for improving the interpretability of BOLD fMRI
results in cases where the neurovascular coupling may be compromised. For one,
they suggest acquiring an independent measure such as electrophysiological
responses (e.g., EEG and MEG).

Figure 1 shows the utility of using MEG time-course information derived from
inverse procedures to capture differences between diagnostic categories. As men-
tioned above, MCI and AD have a more posterior pattern of deficits (i.e., temporal
lobe). Several recent studies have noted the importance of mapping anterior tem-
poral (ANT) lobe activity as well. Studies monitoring cortical atrophy rates for MCI
and AD in longitudinal designs consistently note early changes in the anterior MTL
(Bozzali et al. 2006; Smith et al. 2007; Whitwell et al. 2007). Whitwell and col-
leagues (2007), for example, found changes in the anterior temporal lobe that
occurred three years previous to a diagnosis of AD. At the time of diagnosis of AD,
atrophy in the temporal lobes had spread to include the middle temporal gyrus and
the entire extent of the hippocampus. Our auditory delayed verbal recognition task
(Aine et al. 2010) is good for evoking activity in the anterior temporal lobe since
this region has been identified as an auditory word form area (Cohen et al. 2004).
Most healthy controls showed activation in ANT (blue tracing in top portion of
Fig. 1 is the average time-course across participants which show ANT activity).
MCI and some AD patients also revealed activity in ANT (red tracing), but they
showed hyperactivity in this region. However, we could not localize activity in this
region for some AD patients. Dickerson and colleagues (2008) reviewed three
fMRI studies that also demonstrated greater MTL activation in MCI patients
compared to controls. They consider hyperactivation as a predictive marker in MCI.
Hypoactivation of MTL occurs at a later stage of the disease resulting in an inverted
U-shaped curve describing blood oxygenation changes in MTL with progression
from MCI to AD [(Dickerson and Sperling 2008) see also Maestú et al., this
volume]. That is, hyperactivation of MTL circuits occurs early in the course of MCI
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while these same regions failed to activate in AD. It was suggested that entorhinal
and perirhinal cortices were most likely devastated by neurofibrillary pathology and
cell loss early in the course of AD, effectively disconnecting the hippocampal
formation from neocortical afferents and efferents. Our averaged MEG evoked
response data corroborate these fMRI findings.

The bottom portion of Fig. 1 shows time-course effects associated with
hypertension. In this case we used a visual working memory task (Sternberg
variant) to evoke activity in MTL. Single-subject data are shown for two healthy
middle-aged controls (red and green tracings) and one middle-aged hypertensive
patient (blue tracing). All participants were 35–45 years of age. In contrast with

Fig. 1 Top MEG time-courses of sources localized to anterior temporal lobe, averaged together
for the healthy controls (blue tracing) and MCI/AD patients (red) tracing. MRI at right reveals
anterior temporal lobe. Bottom Time-courses of sources for 3 middle-aged participants localized
to medial temporal lobe (see MRI at the right). Participants denoted by red and green tracings
were healthy controls. Blue tracing denotes a hypertensive participant. These time-courses appear
noisy because we did not want to eliminate high frequency activity (e.g., gamma band)
superimposed on the slower activity
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the ANT activity shown above, the hypertensive patient, representative of our
hypertensive group, revealed lower amplitude signals and prolongation of peak
activity. In this case, MCI and hypertension appear to operate in opposite direc-
tions (MCI have greater amplitude signals and no peak delays in ANT), at least
initially, but AD and hypertension may have a similar trajectory (reduced
amplitude, delayed peaks until activity in this region can no longer be localized).
This is just one example of how MEG source locations and time-courses can be
used to characterize various diseases and disorders. It should also be emphasized
that MEG easily permits the examination of single subject data, a necessity for
clinical intervention.

MEG/EEG: Oscillatory Activity and Frequency Domain Analyses. Certainly,
we are interested in finding alternative ways of analyzing data for our clinical
research on aging and dementia, that may be faster and/or geared toward very
specific questions (e.g., slowing of activity in temporal regions). Characterizing
altered neural oscillations and synchrony in pathophysiology as a potential bio-
marker provides an additional way to achieve classification specificity for brain
disorders (Uhlhaas and Singer 2010). Recently, there has been increased interest in
understanding oscillating networks since they appear to provide important links
between single neuron activity, population activity, and behavior. The existence of
an oscillatory hierarchy, which controls neuronal excitability (Buzsaki and
Draguhn 2004; Lakatos et al. 2005), has been described in animal studies where
higher frequency oscillations are nested within lower frequencies. Lakatos and
colleagues (2005), for example, nicely show in monkey auditory cortex that a
succession of negative and positive voltage fluctuations, comprising the oscilla-
tion, reflected an underlying 7 Hz alternation of net inward and outward trans-
membrane current flow, which produced extracellular current sinks and sources,
respectively. The corresponding multiunit activity indicated that current flow
alternation reflected shifts between net depolarized and hyperpolarized states in the
local neuronal ensemble (i.e., increases in firing and decreases in firing). Studies
on cross-frequency coupling in the hippocampus and other brain regions suggest
that these nested oscillatory patterns may be capable of storing multiple memories
within a single network (Lisman and Idiart 1995). In addition, there is a correlation
between the distance over which synchronization is observed and the frequency of
the oscillations such that higher frequency oscillations (gamma band activity) are
believed to be confined within small neuronal space (i.e., shorter distance) whereas
slower oscillations such as beta band activity carry information over longer dis-
tances (e.g., large networks) (Kopell et al. 2000; Buzsaki and Draguhn 2004;
Uhlhaas et al. 2010). Only coherently oscillating neuronal groups (i.e., phase
locked) can interact effectively across distance. In sum, oscillations constitute
rhythmic modulations in neuronal excitability that affects both the likelihood of
spike output and sensitivity to input, which also permits coherently oscillating
neuronal groups across regions to communicate effectively and efficiently with
each other (Fries 2005).

Unfortunately, after decades of research on oscillatory activity there is no
unified theory on oscillatory activity as seen in surface EEG or MEG, although
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there have been numerous studies attempting to determine the role of oscillations
in perceptual binding (Engel et al. 1992; Singer and Gray 1995; Roelfsema et al.
1997). However, MEG recordings are better suited for examining oscillatory
activity for two reasons. First, the abnormal MEG patterns noted for AD are very
specific to sensor groupings (e.g., temporal regions) rather than being generalized
across the head (EEG). This is important since much of the abnormal activity is in
the same frequency range as muscle and other related artifacts. MEG can separate
out abnormal brain activity from muscle artifact based on different spatial patterns.
Second, we have noticed bursts of high frequency signals associated with WMHs
and bursts of slow-waves associated with volume loss. Luckily, the skull does not
act as a low-pass filter for MEG as it does for EEG (Hamalainen et al. 1993).
Clearly this is an exciting area where MEG/EEG studies have a definite advantage
over fMRI measures. For those interested in learning more about oscillatory
activity and frequency domain analyses, please see chapters (this volume) by
Schoeffelen and Gross, Brookes and colleagues, and de Pasquale and Marzetti.

What makes cortical frequencies change? Some frequency changes are asso-
ciated with development [see Uhlhass et al. for a review (2010)]. But, pathology
can also affect regional frequencies. For example, Fernandez and colleagues
(2002) found abnormal slow wave activity for AD patients in temporoparietal
regions (see a review by Maestú and colleagues—this volume). In general, dif-
fusion parameters of the extracellular space such as volume fraction and diffusion
barriers modulate neuronal signaling, neuron-glia communication and extrasy-
naptic volume transmission (Sykova 2004). Significant decreases in extracellular
space volume fraction (e.g., due to astrocytosis) and increases in diffusion barriers
(e.g., plaques) may occur in AD as the result of pathology. If ion homeostasis is
not maintained in the extracellular space, increased neuronal excitability and
synchronization may occur, as noted in epileptiform spike generation (Broberg
et al. 2008). Interestingly, several neurodegenerative diseases such as AD are
associated with increased incidence of seizures (Palop et al. 2006). Cell swelling
and concomitant reduction of extracellular space volume occurs in a number of
pathologic conditions, causing an imbalance in the neuronal environment. Plaques,
in contrast, disrupt the synchrony of convergent inputs thereby reducing the suc-
cessful integration and propagation of information by neurons (Stern et al. 2004);
it affects network properties and causes an increase in response variability with a
net result of reduced synchrony of converging synaptic inputs.

It is clear that pathology affects neuronal signaling but how exactly the depo-
sition of plaques, cell volume changes and changes in the extracellular ion con-
centration affect signal generation and propagation remain unclear. Our single-trial
MEG data shown in Fig. 2 suggest at least 3 different patterns of activity asso-
ciated with pathology: (1) bursts of slow-wave activity some of which are time-
locked to the stimulus; (2) bursts of high frequency spike-like activity that is not
time-locked to the stimulus; and (3) abnormal rhythmic patterns (see Fig. 3: a
fronto-temporal dementia case). High frequency bursts were often seen in single-
trial data from participants who revealed moderate to severe WMHs on their MRIs
(bottom panel of left column) resulting in source time-courses that were extremely
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variable across participants in terms of peak latencies and amplitudes (bottom
panel of middle column). In contrast, bursts of slow-wave patterns were evoked by
auditory stimuli from participants with evidence of volume loss on their MRIs
(middle panel of left column ‘‘M#030 Temporal/Parietal Atrophy’’). Their corre-
sponding averaged time-courses showed enhanced amplitudes, but the peak
latencies were similar to those seen in normal controls (compare middle and top
panels of middle column). As this longitudinal study progressed across years, it
became possible to predict the MRI and neuropsychological results based on the
number of epochs evidencing slow-wave bursts or high frequency activity in the

Fig. 2 Left Column (Top) Single-trial MEG responses from a healthy control evoked by a tone.
This 1,000 ms segment (100 ms pre-stimulus and 900 ms post-stimulus) shows low-amplitude,
de-synchronized activity from 275 sensors grouped by head regions; green and blue tracings
represent left and right hemispheres, respectively. Middle Slow-wave activity is evident for this
participant with MR abnormalities. Bottom High frequency activity over right temporal and
frontal regions for another participant with MRI abnormalities. Middle Column Averaged time-
courses localized to the superior temporal gyrus (STG) for (Top) 2 healthy controls and (Middle)
3 patients revealing moderate-severe volume loss and (Bottom) for 3 patients revealing moderate-
severe white matter ischemia. Right Column (Top) Sample neuropsychological test results are
shown for each patient and control. Bottom Predictions relating diffusion parameters of
extracellular space to characteristics seen in the MEG data. MSE mini-mental status exam; CVLT
Trial 5 of the California Verbal Learning Test; REYD Delayed recall on the Rey complex Figure
Test
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single-trial data (unpublished results). We also see cases where both high fre-
quency bursts and slow-wave activity are present within the same individual and
their MRIs show the presence of both WMHs and volume loss. Relating single-
trial data to models of diffusion parameters in extracellular space is likely to
provide new information on the etiology of cortical pathology and cognitive
decline associated with aging, MCI and AD. This is an untapped area of research
that is uniquely suited for MEG.

5 Conclusions

If various causes and predisposing factors of AD reflect an interaction of biological
and environmental influences (Small 1998), then health of the elderly, in addition
to those suspected of probable AD, should be documented in research studies. Yet,
most research participants do not complete neurological exams, blood tests, and
even when the protocol requires the acquisition of MRIs, they are often not read by
a neuroradiologist nor are subjects excluded from the study when MRIs reveal
abnormalities for studies of healthy aging. Certainly, many more insults could
have occurred in the brains of the elderly group, compared to the young, and in the
brains of those suffering from cognitive impairment compared to normal elderly.
At minimum, perhaps a structured interview could help determine the suitability of
potential applicants for each study by asking a standard set of questions (e.g., have
you ever experienced loss of consciousness for greater than 5 min? Did your
doctor ever tell you that you have high blood pressure?).

As mentioned earlier, several recent studies found that WMHs associated with
cardiovascular disease (e.g., hypertension and diabetes) target prefrontal cortex
and affect working memory (DeCarli et al. 1999; Gunning-Dixon and Raz 2000;

Fig. 3 Abnormal Rhythmic Patterns in Frontal-Temporal Dementia. MMSE Mini-mental status
Exam; REYI Immediate recall on the Complex Figure Test; REYD Delayed recall on the Complex
Figure Test; CVLT Trial 5 of the California Verbal Learning Test. MRI results were still within
normal limits
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Artero et al. 2004; Jeerakathil et al. 2004; Kuo and Lipsitz 2004; Schmidt et al.
2004; Tullberg et al. 2004; Nordahl et al. 2006; Pantoni et al. 2007; Burgmans et al.
2010). WM lesions, for example, affect performance on higher cognitive tasks via
the disruption of neural transmission in functional networks (Peters and Rosene
2003; Filley 2005). The use of MEG-derived oscillatory characterizations should
help tease out subtle differences in the spatio-temporal patterns of connectivity
noted between cerebrovascular-related cognitive decline, neurodegenerative cog-
nitive decline and normal cognition in healthy elderly. For example, it is likely that
frequency differences associated with the nodes of the networks and cross-
frequency coupling between nodes in the circuit will be evident earlier in time than
structural or hemodynamic changes. Appropriate timing within the circuit is critical
for proper functional connectivity. This is an area ripe for new studies, particularly
if it can be related to models of diffusion parameters in extracellular space. In
addition, this new area of research represents a unique niche for MEG methods.
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Part V
Basic and Clinical Studies



MEG Auditory Research

Alexander Gutschalk

Abstract This chapter reviews auditory research performed with magnetoen-
cephalography (MEG) in normal listeners, with an emphasis on the auditory
cortex. The first section provides an overview of basic characteristics of auditory
evoked fields and their classification. The second section reviews the relationship
between a selection of basic auditory features—including lateralization, period-
icity, and spectral content—and auditory evoked fields generated in auditory
cortex. The final section highlights recent MEG research in the field of auditory
scene analysis, focusing specifically on auditory stream segregation, selective
attention, and informational masking.

Keywords Auditory cortex � Auditory evoked fields � Selective adaptation �
Pitch � Sound lateralization � Vowel � Auditory scene analysis � Stream segre-
gation � Selective attention � Informational masking � Perceptual awareness

1 Introduction

Acoustic signals unfold on a multitude of timescales, ranging from the sub-mil-
lisecond processes supporting sound localization to the multi-second intervals
necessary for music perception and speech comprehension. Sounds impinging on
the ear are transformed into a frequency-specific neural code in the cochlea. This
neural code in the auditory nerve has a sub-millisecond temporal precision and can
phase-lock to periodic sound waves up to 5,000 Hz (Young and Sachs 1979).
Frequency specificity is maintained in the ascending auditory pathway up to the
auditory cortex, with an orderly mapping of frequency that is called tonotopy.
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While the ability to phase lock to the acoustic stimulus degrades along the
ascending auditory pathway, some aspects of coding in human primary auditory
cortex still maintain a millisecond precision and phase-locking capability up to at
least 100 Hz (Brugge et al. 2009).

MEG is an excellent tool for studying the human auditory system for several
reasons. First and foremost, MEG’s temporal resolution matches the resolution
with which the brain responds to sound. Second, owing to the situation of auditory
cortex on the superior temporal plane, with dipole sources oriented primarily
tangential to the head surface, MEG is particularly sensitive to activity generated
there and can straight-forwardly discriminate activity arising from the left and
right hemispheres. Third MEG acquisition is silent, a clear advantage when
compared with modern fMRI acquisition sequences. The first auditory evoked
response in MEG was published in the late 1970s (Reite et al. 1978). Using dipole
source analysis, other early studies clearly demonstrated that these auditory-
evoked fields were generated in the auditory cortex (Hari et al. 1980), and dem-
onstrated tonotopy in the human auditory cortex (Romani et al. 1982). Today,
more than 1,000 published studies of the auditory system have used MEG.

This review summarizes aspects of basic auditory neuroscience using MEG in
healthy adult listeners. The chapter focuses on activity in the auditory cortex, with
less focus on activity in other brain areas. The chapter starts in Sect. 2 with a
classification of the different aspects of activity evoked by auditory stimuli as seen
by MEG. Section 3 reviews the relationship between specific acoustic features and
the MEG response, while Sect. 4 focuses on the perception of more complex
auditory scenes. The selection of studies reviewed here is strongly biased towards
studies using MEG because of the scope of this book; studies using EEG, a method
very related to MEG, as well as intracranial EEG and fMRI studies, are mentioned
only occasionally.

2 Classification of Auditory Evoked MEG Activity

The classification of auditory responses used in this chapter is primarily one that is
based on the anatomical site of their generation, and as such is a view from source
space. Three sites are dissociated: brainstem, auditory cortex, and multi-modal areas
beyond auditory cortex. Most auditory studies using MEG have focused on auditory
cortex, and therefore activity generated there comprises the largest part of this
section. Traditionally, auditory evoked (magnetic) fields (AEF) have been subdi-
vided into three latency ranges, in accordance with the classification of auditory
evoked potentials (AEP) in EEG (Picton et al. 1974). In this chapter, the division of
auditory evoked fields into early (up to 8 ms), middle (15–50 ms), and long-latency
([50 ms) ranges is introduced alongside the generator-based view. Still other types
of activity are not covered by the latency classification, such as steady-state
responses and induced activity (i.e., activity that is not precisely phase locked to
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stimulus presentation). Each of these classifications has its own limitations, but
some basic knowledge of how they have been used is helpful before discussing
research that addresses questions of auditory neuroscience more specifically.

2.1 Brainstem

Occurring in the first 8 ms post stimulus onset, the early auditory-evoked field
(EAEF) is also referred to as the auditory brainstem response (ABR). The ABR
typically comprises five subsequent peaks, known as waves I–V. These components
are small relative to either the ongoing MEG or later auditory evoked components,
and therefore require large numbers of trials (thousands) in order to achieve an
adequate signal to noise ratio. The typical stimuli used to evoke the ABR are clicks
presented with inter-stimulus intervals (ISI) in the range of 50–100 ms. Waves I–V
of the ABR have prominent spectral power in the range from 700 to 1,200 Hz. High
sampling rates are therefore required to record the ABR and the low-pass filter
should not be set below 1,000 Hz (better still 1,500 Hz). Highpass filters up to
200 Hz are typically used to suppress the low-frequency components of the later
cortical responses that overlap the ABR because of the short ISI. There exist only a
few published studies that have used MEG to study the ABR (Lütkenhöner et al.
2000; Parkkonen et al. 2009). These studies show that waves I–V can be recorded in
MEG and that the estimated generators are consistent with their EEG counterparts
(Scherg and von Cramon 1985). In brief, waves I and II are thought to be generated in
the auditory nerve just beyond the cochlea, while wave V, with a latency of 5–6 ms
post stimulus, is generated below the inferior colliculus, the obligatory auditory-
midbrain nucleus, and probably reflects neuronal input to this structure.

2.2 Auditory Cortex

Both the middle- and long-latency AEF (MAEF and LAEF, respectively) are
primarily generated in the auditory cortex (Fig. 1), and their separation at 50 ms is
arbitrary. Historically, the MAEF peaks have been denoted with letters (e.g., Nam,
Pam, Nbm, and Pbm), and the LAEF peaks with numbers (P1m, N1m, and P2m).
Alternatively, these peaks are labeled with their prototypical peak latency. In this
nomenclature, the MAEF peaks are N19m, P30m, N40m and P50m; the LAEF
peaks are known as P50m, N100m, and P200m. Denoting these peaks as negative
(N) or positive (P) was originally in reference to the scalp vertex in EEG, but can
be easily adopted with reference to the surface of the auditory cortex in MEG. The
P50m has been considered both middle- (Pbm) and long-latency (P1m), indicating
one of the limitations of the latency-based nomenclature. Nevertheless, the dis-
sociation of MAEF and LAEF is often useful and therefore these peaks will be
introduced in separate paragraphs below.
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2.2.1 Middle-Latency Auditory Evoked Fields

Most of the spectral energy of the early MAEF lies in the (lower) gamma band
around 30–60 Hz, with a maximum around 40 Hz. For recording of the MAEF, the
low-pass filter cutoff should therefore not be set below 100 Hz. A high-pass filter
with cutoff frequencies in the range of 10–30 Hz is often used to suppress over-
lapping LAEF components (Fig. 2), because the typical ISI to record the MAEF is
around 100–200 ms, and thus shorter than the LAEF. The most prominent peak of
the MAEF is the P30m (Pelizzone 1987; Mäkelä et al. 1994; Pantev 1995). The
preceding N19m is smaller, but has been consistently localized in Heschl’s gyrus
and close to the generator of the P30m (Hashimoto et al. 1995; Gutschalk et al. 1999;
Rupp et al. 2002b; Parkkonen et al. 2009). It has been suggested that the N19m and
the P30m share the same macroscopic generator in medial Heschl’s gyrus, whereas
the P50m is generated more lateral along Heschl’s gyrus (Scherg et al. 1989; Yvert
et al. 2001), a view that is supported by depth electrode recordings in patients with
epilepsy (Liegeois-Chauvel et al. 1991; Liegeois-Chauvel et al. 1994).

With reference to microscopic anatomy, the sources of the N19m and P30m are
in the auditory core area (Galaburda and Sanides 1980), most likely in the primary
auditory cortex field A1. A less-likely alternative is that the N19m and the P30m
are generated in the more medial core field CM (Hackett et al. 2001). The more
lateral localization of the P50m would better match with a generator in the lateral
core field R, but this is more speculative, and it is likely that other fields addi-
tionally contribute to the P1m peak measured in MEG (Yvert et al. 2001). Laminar
recordings of click-evoked activity in monkey A1 show a peak N8 that is gen-
erated in deep cortical layers (4 and 5), and a subsequent P24 which is generated
predominantly in layer 3 (Steinschneider et al. 1992). One hypothesis is that
human N19m is also generated by thalamocortical input into the granular layer 4.

2.2.2 Long-Latency Auditory Evoked Fields

Traditionally, the earliest peak of the LAEF is the P1m, which has already been
mentioned in the context of the MAEF. The earliest latency of the P1m in response
to pure-tone stimuli is typically in the range of 50 ms—hence P50m—(Pantev
et al. 1996b). There is at least a second subcomponent of the P1 m with a peak
latency around 70 ms (Yvert et al. 2001), and for clicks-train stimuli P1m latencies
around 60–80 ms are typically observed (Gutschalk et al. 2004a). One reason for
P1m variability is that the peak, especially when it is later than 50 ms, overlaps
with the onset of the larger N1m, which may reduce the P1m amplitude and latency
(Königs and Gutschalk 2012).

By far the most prominent peak of the AEF is the N1m, which comprises a
number of subcomponents (Näätänen and Picton 1987) whose specific features are
reviewed in more detail below. Optimal recording of the N1m requires an ISI of
500 ms or longer. The spectral content of the N1m lies primarily in the theta band
and the lower alpha band (approximately 3–10 Hz), such that low-pass filters
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Fig. 1 Schematic of the human auditory cortex. The view is from the top on the superior temporal
plane, which is buried inside the Sylvian fissure in the intact brain. The macroscopic anatomy is
labeled on the left: Most lateral is the superior temporal gyrus (STG), most of whose surface extends
to the lateral surface not seen in this view. Heschl’s gyrus extends from postero-medial to anterior-
lateral, where it meets the STG. The border between Heschl’s gyrus and the STG is not sharply
defined, and in some brains it appears as if the anterior STG is the continuation of Heschl’s gyrus.
Many subjects have more than one Heschl’s gyrus, especially in the lateral part. The Planum
temporale starts posterior from Heschl’s gyrus and extends up to the temporo-parietal junction.
There is no sharp border between the Planum temporale and the STG.A simplified schematic of
histological auditory cortex fields is provided on the right: The core area (also primary auditory
cortex, koniocortex, or Brodman Area 41) roughly coincides with the borders of Heschl’s gyrus.
Most anatomists subdivide the core region in at least two to three subregions. The nomenclature
used here is adopted from the nomenclature used in the monkey (Hackett et al. 2001). The most
medial field CM is not always considered a core field. The field A1 is often considered ‘‘primary
auditory cortex’’ sensu stricto, but cannot be easily separated from the more lateral field R based on
histology. These two fields have opponent tonotopic organizations (Formisano et al. 2003); in A1,
high frequencies are localized postero-medially and low frequencies more antero-laterally, and vice
versa in R, so that both fields share a common low-frequency border. An alternative nomenclature
for the core fields is, from medial to lateral, Te1.1, Te1.0, and Te1.2 (Morosan et al. 2001). The
lateral belt is located in the Planum temporale and extends to the lateral surface of the STG (Braak
1978). It can also be subdivided in at least two to three subfields oriented parallel to the core region,
but there is only little information available from human anatomy (Rivier and Clarke 1997).
Alternative names for areas that overlap with the lateral-belt definition are parakoniocortex,
Brodman Area 42, or Te2 (Morosan et al. 2005). The anterior belt field is located in the circular
sulcus, anterior from Heschl’s gyrus. This area is also referred to as Prokoniokortex (Galaburda and
Sanides 1980). The belt cortex is probably surrounded by the putative parabelt, which includes but
may not be limited to Brodman Area 22 or Field Te3 (Morosan et al. 2005); these fields extend far
into the lateral STG not seen on the view used here. Note that the different nomenclatures don’t map
on each other easily and that there is considerable inter-individual variability
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down to 20 Hz cutoff frequency can usually be applied without any appreciable
effect on component morphology (Fig. 3). High-pass filters are typically chosen in
the range of 0.3–3 Hz, depending on the low-frequency noise level and whether
later, slower components are also of interest.

The best-studied subcomponent of the N1m, termed the N100m, peaks at a
latency around 100 ms and is generated on the superior temporal plane (Hari et al.
1980). Based on co-registration with anatomical MRI, both Heschl’s gyrus (Eulitz
et al. 1995) and the planum temporale, just posterior to Heschl’s gyrus (Lütkenhöner
and Steinstrater 1998), are thought to be generators of this subcomponent. One
important feature of the N100m is the large ISI range—up to 10 s—below which it
will not reach its maximal amplitude (Hari et al. 1982; Pantev et al. 1993; Sams et al.
1993b; McEvoy et al. 1997). This effect is diminished for other N1m subcompo-
nents, which peak at slightly longer latencies (130–150 ms). One subcomponent
was localized to the superior temporal gyrus (STG) (Lü et al. 1992), and might be
identical to a radial N150 component described in EEG (Scherg and Von Cramon
1986). Another N1m subcomponent has been consistently observed about 1 cm
anterior to the main N100m peak and with a latency around 130 ms (Sams et al.
1993b; Loveless et al. 1996; McEvoy et al. 1997; Gutschalk et al. 1998). Note that
the latencies of these N1m subcomponent are not fixed but vary considerably with
the onset and fine-structure of the stimuli used.

Fig. 2 Middle-latency auditory-evoked fields (MAEF). The data shown are source waveforms
based on dipoles in medial Heschl’s gyrus—supposedly in A1—averaged across six listeners.
The stimuli were clicks presented with a randomized ISI in the range 95–135 ms (for the data
plotted in solid lines). A comparison of two filter settings is shown for the upper (20–150 Hz) and
lower (0.03–330 Hz) traces. As can be seen, the peaks N19m and P30m are clearly observed with
both setting. The subsequent peaks N41m and P50m are elevated by a slower positivity; the latter
is not clearly definable and because of the fast repetition rate might comprise a mixture of slower
components. This positive shift has been removed by high-pass filtering in the upper traces. The
dotted lines show the waveforms deconvolved from a steady-state response (SSR) with seven
different rates (19–31 ms) in the same listeners. Note the high similarity between the early peaks
and the traditionally obtained MAEF (Gutschalk et al. 1999)
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The latency of the subsequent P2m is around 150–250 ms (P200m). Sometimes the
P2m has been studied together with the N1m by using a peak-to-peak measure. The
few studies that specifically studied the P2m found that the generator of the response is
typically located anterior to the N100m (Hari et al. 1987; Pantev et al. 1996a).

For tones longer than about 50 ms, the P2m is followed by a negative wave—
the so-called sustained field—whose duration is directly linked to the stimulus
duration. To obtain sustained fields, high-pass filters below 0.5 Hz or direct-
coupled recordings should be used. The sustained field can be fitted by a dipole
source that is typically located anterior to the N100m in auditory cortex (Hari et al.
1980; Hari et al. 1987; Pantev et al. 1994; Pantev et al. 1996a). Based on para-
metrical variation of sound features such as temporal regularity (see Sect. 3.4) or
sound intensity, at least two subcomponents of the sustained field can be separated
in lateral Heschl’s gyrus and the planum temporale, similar to the N1m subcom-
ponents (Gutschalk et al. 2002). With respect to microscopic anatomy, the sources
of the N1m and the sustained field subcomponents are probably distributed across
core and belt fields (Fig. 1).

Importantly, components of the N1m are not only evoked at sound onset from
silence, but by all kinds of changes within an ongoing sound (Mäkelä et al. 1988;
Sams et al. 1993a). Finally, sounds that are played for a second or longer will also
evoke an offset response. This offset response comprises mainly peaks N1m and

Fig. 3 Long-latency auditory-evoked fields (LAEF) from a single listener. The stimuli were
100-ms long pure tones with frequencies in the range 500–3,000 Hz, presented with a fixed ISI of
800 ms; frequency was randomly changed after 10 s. a Two dipoles were fitted to the averaged
data in the time range 80–100 ms. b Time-frequency plots for the time range -100–400 ms and
the frequency range 4–30 Hz. The plot shows the enhancement of power in comparison to the
baseline in the time interval 100 ms before tone onset. Most of the signal power is in the theta
band. c The averaged evoked response is shown for the same time range as the time-frequency
analysis (low-pass filter = 30 Hz, no high-pass filter). The most prominent component is the
N100m. These source waveforms as well as the time-frequency plots are based on the dipoles
shown in (a)
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P2m, whose amplitude varies with sound duration like the onset peaks vary with
the silent ISI (Hari et al. 1987; Pantev et al. 1996a).

2.2.3 Selective Adaptation and the Mismatch Negativity

As was briefly noted in the previous paragraph, the N1m amplitude is determined
in part by the ISI between the serial tones that are used to evoke the response (Hari
et al. 1982; Imada et al. 1997). This observation is based on simple paradigms,
where the same sound is repeated once or continuously. The response to each tone
is reduced or adapted by the previous tone(s) of the sequence, and more so when
the ISI is short. When two different tones are alternated instead, the adaptation of
the N1 depends additionally on how different these tones are from each other, as
has been shown by several EEG studies (Butler 1968; Näätänen et al. 1988): when
pure tones are used, the adaptation is strong when the frequencies of the two tones
are near to each other; much less adaptation is observed when the tones are an
octave or more apart. This phenomenon is referred to as selective or stimulus-
specific adaptation. Selective adaptation is not limited to the N1m, and has more
recently been demonstrated for the P1m (Gutschalk et al. 2005).

Another classical auditory stimulus paradigm that uses two tones dissociated by
their tone frequency (or other features) is the auditory oddball paradigm (Näätänen
et al. 1978). In contrast to the paradigm used to evaluate selective adaptation, the
two tones are not simply alternated, but are presented at different probabilities. The
more frequent tone is referred to as the standard, whereas the rare tone is referred
to as the deviant. The ISI between subsequent tones is typically chosen around
300 ms, where the N1m is almost completely suppressed. In this setting, a
prominent negative response with peak latency around 130–200 ms is evoked by
the rare deviants, but not by the frequent standard tones. This negative wave,
called the mismatch negativity (MMN), is separated from other response com-
ponents by subtracting the response to standards from the response to deviants.
Many studies have examined the MMN and cannot be reviewed here in detail;
extensive reviews on this component are already available (Garrido et al. 2009;
May and Tiitinen 2010; Näätänen et al. 2011). Briefly, the MMN is not only
evoked by differences in tone frequency, but by any sound difference between
standard and deviant that is above the listener’s threshold. Originally, the MMN
was considered to be a component that is distinct from the other LAEF compo-
nents reviewed in the previous section. However, this view has recently been
challenged: a number of studies suggest that the MMN is identical to the anterior
N1m subcomponent, which is reduced in response to the standards but not in
response to the deviants due to selective adaptation (May et al. 1999; Jääskeläinen
et al. 2004; May and Tiitinen 2010). This view is supported by microelectrode
studies in monkey, which suggest that—at least in A1—there is no evidence of an
additional evoked component in the context of deviants presented in an oddball
paradigm (Fishman and Steinschneider 2012). The associated debate of whether
the MMN reflects (bottom-up) selective adaptation (May and Tiitinen 2010), or
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(top-down) predictive coding (Garrido et al. 2009; Wacongne et al. 2012) is
ongoing.

Finally, the MMN itself is not a single component with a stable topography, but
comprises at least two subcomponents in the auditory cortex (Imada et al. 1993;
Kretzschmar and Gutschalk 2010). Moreover, it has been suggested that the MMN
receives contributions from generators in the frontal cortex (Schönwiesner et al.
2007). Second, a subsequent slow negativity that persists for 600 ms is addition-
ally evoked by the oddball paradigm, which is also generated in the more anterior
aspect of the auditory cortex along with the generator of the classical MMN
(Kretzschmar and Gutschalk 2010).

2.2.4 Auditory Steady-State Responses

The auditory cortex is able to time-lock to periodic stimuli, a phenomenon that has
been studied in particular at rates around 40 Hz (Romani et al. 1982; Mäkelä and
Hari 1987) (Fig. 4). A periodic brain response that is imposed by a periodic stimulus
is referred to as steady- state response (SSR) in EEG and MEG research. Steady-
state responses require an evoked component whose inherent spectral power
overlaps with the rate of the periodic repetition. As a result, the spectral repre-
sentation of an SSR is a narrow band at the frequency of the periodic stimulus and
sometimes its harmonics. Accordingly, a relationship between the 40-Hz SSR and
the early MAEF peaks, whose spectral maximum is close to 40 Hz, was suggested
early on (Galambos et al. 1981; Hari et al. 1989), and steady-state responses in the
range of 30–50 Hz can be explained by assuming an identical response convolved
with the periodic pulse train used as the stimulus. Conversely, when the underlying
response is deconvolved on the basis of this assumption (Gutschalk et al. 1999), it
shows high similarity with the early MAEF peaks recorded with a transient stimulus
paradigm (Fig. 2). The main source of the 40-Hz SSR is in the medial half of
Heschl’s gyrus, and thus most likely in the primary area A1 (Fig. 1). This has been
demonstrated by source analysis of MEG data (Pantev et al. 1996b; Gutschalk et al.
1999; Brookes et al. 2007), and was confirmed by intracranial recordings (Brugge
et al. 2009) and fMRI (Steinmann and Gutschalk 2011). Note that other aspects of
the 40-Hz SSR are not readily explained by ongoing, non-refractory MAEF
activity. For example, the 40-Hz SSR shows a buildup of activity over about
250 ms before it reaches its constant amplitude (Ross et al. 2002), and this process
starts over when, for example, a short sound in another frequency band is presented
in parallel (Ross et al. 2005b). Potentially, these effects are related to secondary,
more lateral generators of the 40-Hz SSR along Heschl’s gyrus (Gutschalk et al.
1999) up to the superior temporal gyrus (Nourski et al. 2013).

Steady-state responses are not limited to the 40-Hz range: Higher frequency
SSRs are observed in relationship to the ABR, known as the frequency following
response, but this application has so far been limited to EEG research. In the lower
frequency range, it has been demonstrated that SSRs power decreases with
increasing modulation rate between 1.5 and 30 Hz (Wang et al. 2012); at the single
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subject level, a reliable SSR was generally obtained at 1.5, 3.5, and 31.5 Hz, but
only variably at 7.5 and 15.5 Hz stimulation rate. The apparently latency was in
the range of 100–150 ms, and there was only a weak dependence on the bandwidth
of the stimulus carrier. For an SSR at 4 Hz, it was independently demonstrated that
the SSR is stronger for stimuli with a non-sinusoidal amplitude modulation and a
more rapid sound onset (Prendergast et al. 2010).

2.2.5 Auditory Non-phase-locked Activity

Separating auditory evoked fields from the background activity by response
averaging is based on the assumption that there is little or no jitter between
subsequent trials. Stronger jitter may blur the shape of the evoked response in the
lower frequency (theta) range. In the higher frequency (gamma) range, jitter may
easily exceed the phase duration of a single cycle, such that the variable phase
relationship between stimulus and response may results in a cancelation of the
response by the averaging procedure. Similar response cancelation by averaging
occurs for rhythmic activity that appears in a circumscribed time window but not

Fig. 4 Auditory 40-Hz steady-state response (SSR) from a single listener. The stimuli were 800-
ms long trains of short tone pulses (500 Hz or 1,000 Hz) presented at a rate of 40 Hz. The
waveforms are estimated for a dipolar source in the left auditory cortex; highly similar responses
were observed on the right (not shown). a Time-frequency plots for the time range
-200–1,100 ms and the frequency range 1–80 Hz. The plot shows the enhancement of power
in comparison to the baseline in the time interval 200 ms before the train onset. The SSR is seen
as narrow activity band at 40 Hz, which persists for the whole stimulus duration. The onset
response is reflected by a transient increase of power in the theta band. b Source waveform for the
averaged evoked response filtered from 0–80 Hz. In this setting, the LAEF and the SSR are
mixed. Because of the broad frequency separation between these components demonstrated in A,
they are separated well with different filter settings. c SSR in the frequency range 20–80 Hz,
otherwise identical to B. d LAEF in the frequency range 0–20 Hz. Note the strong sustained field
that is not captured by the time-frequency analysis
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tightly locked to the auditory stimulus. Techniques other than response averaging
are required to evaluate such non-phase-looked activity. One possibility is to
perform time-frequency analysis on a single-trial level and remove phase infor-
mation before summation across trials. The increase in response power is typically
plotted relative to a pre-stimulus baseline (Figs. 3 and 4). This technique is equally
sensitive for phase-locked and non-phase locked activity.

Traditionally, gamma activity in the auditory cortex has been evaluated in a
narrow frequency band around 40 Hz (Pantev 1995). More recently, activity in the
auditory cortex has been observed in a wide frequency range of 70–250 Hz: this
high-gamma activity in human auditory cortex has been clearly demonstrated in
intracranial recordings on the superior temporal gyrus (Crone et al. 2001; Edwards
et al. 2005; Dykstra et al. 2011) as well as in medial Heschl’s gyrus (Brugge et al.
2009). It has been suggested that high-gamma activity covaries more closely
with spiking activity than with evoked potentials in the lower spectral range
(Steinschneider et al. 2008; Ray and Maunsell 2011). Measuring gamma activity
in the auditory cortex with MEG is more difficult than in the visual system
(Kahlbrock et al. 2012; Millman et al. 2013). However, some recent MEG studies
raise hope that high-gamma activity can indeed be evaluated non-invasively based
on MEG recordings (Todorovic et al. 2011; Sedley et al. 2012).

2.3 Beyond the Auditory Cortex

While activity in the auditory cortex is modulated by active listening, as discussed
in more detail in Sect. 4, all response components reviewed so far are readily
recorded in a passive mode, where the subject is not attending to the auditory
stimulation and may even be involved into reading a book, watching a silent
movie, or another task unrelated to the auditory stimulation. Once a task is added
that is directly related to the auditory stimulation, however, additional activity can
be elicited, the generators of which are supposedly located in multimodal areas
beyond the auditory cortex. The most-frequently-studied response elicited during
auditory tasks is the P3 or P300. Sources of the P3 have been studied with depth
electrodes in patients suffering from epilepsy (Halgren et al. 1998), and in com-
bined EEG-fMRI studies (Linden 2005), suggesting, amongst others, generators in
parietal, prefrontal, and cingulate cortex. So far, only a few MEG studies have
explored the generators of the P3m, suggesting mostly sources in the temporal and
frontal lobes (Rogers et al. 1991; Anurova et al. 2005; Halgren et al. 2011). It
remains to be determined, whether P3 generators in other sites are also accessible
to MEG. Cortical activity related to auditory cognition beyond the auditory cortex
is certainly not limited to the P3, but an extensive review of this topic is beyond
the scope of this chapter. The near future will likely bring a wealth of new
contributions on the functional relationship between the auditory cortex and areas
in the frontal and parietal lobe for auditory cognition.
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3 Stimulus Specificity of Auditory MEG Activity

This section reviews a selection of basic sound features and how they are reflected
in MEG activity originating in the auditory cortex. Only a brief introduction to the
background and psychophysics is provided along with each paragraph, and the
reader is referred to the available textbooks on psychological acoustics (Moore
2012), phonetics (Stevens 2000), or auditory physiology (Schnupp et al. 2011) for
more details and references to the original publications.

3.1 Temporal Resolution and Integration

Temporal coding of sound is differently reflected in the MAEF and LAEF. The
early MAEF peaks are very robust to fast stimulus repetition: When two pulses are
repeated at ISIs between 1–14 ms (Rupp et al. 2000), a clear response to the
second pulse is observed at ISIs [= 4 ms, and the response is nearly completely
recovered at ISIs [= 14 ms. The continuous time-locking capability of the MAEF
is also demonstrated by the 40-Hz SSR (Gutschalk et al. 1999; Brugge et al. 2009),
which shows phase-locking to inter-click intervals of less than 20 ms.

A classical psychoacoustic paradigm to test temporal resolution is gap detec-
tion, where a short interruption in an ongoing sound is used as the stimulus. For
example, listeners are able to detect interruptions of few milliseconds duration in a
continuous broadband noise. When this stimulus is applied in MEG, gaps as short
as 3 ms are sufficient to evoke a significant MAEF response (Rupp et al. 2002a),
which is in accordance with psychoacoustic thresholds. Moreover, the higher
perceptual thresholds observed at the beginning of a noise burst (5 or 20 ms after
onset) are paralleled by a lack of MAEF (Rupp et al. 2004).

The subsequent P1m and N1m are distinctly different with regard to their
suppression at short ISI: when periodic click trains are interrupted by omission of
one or more clicks, the onset response after the interruption does not show a
significant P1m when the interruption is 12 and 24 ms. At gap durations of 48 ms,
the P1m is partly recovered, and it has regained almost completely at gaps of
196 ms (Gutschalk et al. 2004b). The time interval required for complete recovery
is even longer for the N1m: Some recovery, especially of the anterior N1m gen-
erator, is observed between 70–150 ms in a two-tone paradigm (Loveless et al.
1996). With ongoing stimulation, the N1m is reliably observed at ISIs of 300 ms
and more (Carver et al. 2002), but some reduction of the response is observed up to
5–10 s (see Sect. 2.2.2). Note that the N1m can also be evoked by all sorts of
transients and transitions in ongoing sound, and not only by sound onset. For
example, short gaps of 6 ms in an ongoing noise produce not only a P30m, but also
a prominent N1m (Rupp et al. 2002a). This should not be mistaken as evidence that
the N1m shows similarly fine and fast time-locking as the P30m, but rather reflects
the perceptual salience of the transient gap. In contrast to the N19m-P30m, the
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N1m may also reflect auditory events integrated over longer time intervals. Early
studies suggested that the N1m integrates over a time interval of approximately
30–50 ms (Joutsiniemi et al. 1989), because the response amplitude increases with
the tone duration for intervals up to this length. More recent studies indicate that
temporal integration at the level of the N1m is not captured by a fixed time window
and depends on parameters such as the onset dynamics (Biermann and Heil 2000)
and temporal structure of the eliciting stimulus (Krumbholz et al. 2003).

3.2 Stimulus Lateralization

Spatial hearing in the horizontal plane is based on two main cues: one is the
difference of sound intensity between the ears caused by the head shadow, the
interaural level difference (ILD). The other is the timing difference between
the ears, or interaural time difference (ITD). For humans, ITD is predominantly
used for lower frequencies, whereas ILD is more important for higher frequencies.
The relationship between perceived lateralization and the exact physical param-
eters is variable, depending on the shape and size of the head and ears. To produce
spatial hearing perception, arrays of speakers grouped in some distance around the
listener in an anechoic room are the gold standard. In MEG, insert earphones are
typically used, in which case one relies on direct manipulation of ITD and ILD.
Note, however, that this sound delivery produces somewhat non-ecological per-
cepts of sound sources inside of the head. More exact perceptual lateralization with
earphones can be achieved with head-related transfer functions, for which the
exact physical parameters are measured with microphones placed at the position of
the ears. The simplest method of sound lateralization with earphones is monaural
presentation, which is again not an ecological stimulus for normal hearing sub-
jects, but can be viewed as an extreme variant of ILD. Moreover, monaural
presentation is easy to implement and has a long tradition in experimental psy-
chology and audiology.

Important processing steps of binaural lateralization cues occur early in the
brainstem, and are not readily accessible by MEG. Many MEG studies of sound
lateralization have instead focused on its effect on the inter-hemispheric balance
between the left and right auditory cortex. It was established early on that the N1m
evoked by monaural sounds is around 15–30 % larger for contralateral compared to
isopilateral stimulation, and that the latency of the N1m is 7–12 ms shorter for
contralateral stimulation (Reite et al. 1981; Pantev et al. 1986; Mäkelä et al. 1993).
For the P1m, similar amplitude but smaller latency differences in the range of 1–5 ms
were reported (Mäkelä et al. 1994). A stronger modulation of response amplitude in
the range of 50 % for contra- in comparison to ipsilateral ear stimulation has been
observed for the P30m at the sensor level (planar gradiometers), although the effect
was smaller in dipole source waveforms (Mäkelä et al. 1994). However, an EEG
source analysis study of the N19-P30 found only an amplitude lateralization in the
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range of 6 % and no latency difference (Scherg and Von Cramon, 1986). Currently,
little additional data is available to resolve this discrepancy.

ITDs around the maximal physiological range (700 ls) produce lateralization
of N1m-peak amplitudes that can be almost as strong as with monaural presen-
tation (McEvoy et al. 1993; Gutschalk et al. 2012). Moreover, earlier N1m
latencies are observed in the auditory cortex contralateral to the perceptual lat-
eralization (McEvoy et al. 1993). In contrast, no significant effect of ITD is
observed for the P30m (McEvoy et al. 1994). Recent MEG studies on the coding
of ITD in the auditory cortex support a model with a population rate code for
opponent left and right channels, in accordance with earlier work in cat (Stecker
et al. 2005), by demonstrating that selective adaptation of the N1m depended more
strongly on whether the adapter and probe were in the same hemifield than on the
actual difference in azimuth (Salminen et al. 2009).

So far, the review of contralateral representation in the auditory cortex is
simplified, because the balance of activity between the left and right auditory
cortex is not symmetric for left- and right-ear stimulation. An amplitude bias
towards the right hemisphere has been observed first for the N1m (Mäkelä et al.
1993), but is even more prominent for the 40-Hz SSR and the sustained field (Ross
et al. 2005a): lateralization by ear modulates these responses more strongly in the
right AC, and as a result the hemispheric bias is strongly lateralized towards the
right auditory cortex for left-ear stimulation and almost counterbalanced for right-
ear stimulation (Ross et al. 2005a; Gutschalk et al. 2012). This lateralization bias is
not limited to monaural presentation. For example, a combination of ILD and ITD
cues, or the use of head-related transfer functions, produces stronger effects on
N1m lateralization than either cue alone (Palomaki et al. 2005), but most promi-
nently in the right auditory cortex. Potentially, this right-hemisphere bias is related
to a dominant role of the right hemisphere for spatial processing (Kaiser et al.
2000; Spierer et al. 2009). On the other hand, the bias towards the right may be
limited to situations where stimuli are presented in quiet, whereas a lateralization
bias towards the left has been observed when sounds are presented under per-
ceptual competition (Okamoto et al. 2007a; Elhilali et al. 2009; Königs and
Gutschalk 2012). Finally, the interpretation of hemispheric balance is complicated
by anatomical asymmetry in the auditory cortex: stronger cortical folding in the
left hemisphere produces stronger signal cancelation in left auditory cortex. The
cancelation reduces the MEG signal over the left auditory cortex and biases
the MEG response towards larger right-hemisphere responses when in fact equally
strong generators can be assumed in both sides (Shaw et al. 2013).

3.3 Sound Frequency

The spectral content of sound is decomposed during sensory transformation in the
cochlea, and the resulting tonotopic representation is maintained throughout the
ascending auditory pathway, including the auditory cortex. The first demonstration
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of a tonotopic map in human auditory cortex made use of MEG, applying dipole
source analysis to 32-Hz SSRs evoked by amplitude-modulated pure tones
(Romani et al. 1982). This study revealed that the source of the SSR is more
medial for higher, and more lateral for lower tone frequencies. The direction of
tonotopy, as well as the mapping of dipole locations on structural MRI (Pantev
et al. 1996b), is in accordance with a generator of the 40-Hz SSR in the primary
auditory cortex field A1. Tonotopy has also been studied for other response
components. Studies of the N1m (Pantev et al. 1988; Pantev et al. 1996b) and the
sustained field (Pantev et al. 1994) revealed similar high-low frequency gradients
from medial to lateral cortex, as was demonstrated for the SSR. However, it is
likely that current source localization techniques are insufficient for modeling
synchronous activity in multiple tonotopic fields of the auditory cortex. While the
40-Hz SSR is probably generated in an area focal enough to reflect only one
tonotopic gradient, LAEF components are more likely generated in multiple
regions of the auditory cortex.

Another reflection of stimulus frequency is by the peak latency of the AEF:
because of the propagation delay in the cochlea, AEF latencies are shorter for
higher compared to lower stimulus frequencies (Scherg et al. 1989; Roberts and
Poeppel 1996). Chirp stimuli (frequency glides from low to high) have been
designed to compensate for the propagation delay of the cochlea (Dau et al. 2000).
The N19m-P30m evoked by such a chirp is larger than the response evoked by a
click or a reversed chirp, because the chirp synchronizes the activity in high and
low frequency channels (Dau et al. 2000; Rupp et al. 2002b).

Finally, MEG allows for studying the interaction between stimuli, depending on
their frequency separation. One approach that has already been mentioned
(Sect. 2.2.3), frequency-selective adaptation, reveals the frequency specificity of
cortical processing by reduced adaptation between serial tones when the adapter and
probe tones are different in frequency. Another involves tagging simultaneously-
presented tones with different amplitude-modulation rates (John et al. 1998).
Applying this technique to record the SSR at multiple amplitude-modulation rates
around 40-Hz revealed a reduction of amplitude that is more broadly tuned than
would have been predicted based on cochlea tuning (Ross et al. 2003). This inter-
action between simultaneous tones may persist for alternating tones presented at
fast repetition rates (20–40 Hz): the alternation of two different tones produces a
smaller SSR when the tones are separated by more than a critical band compared to
the repetition of identical tone bursts (Gutschalk et al. 2009). Note that the latter
finding is opposite to selective adaptation of the P1m and N1m, where stronger
responses are observed for larger frequency separation between alternating tones.
A potential source of the SSR reduction is lateral inhibition. However, a study that
explored evidence of lateral inhibition in the auditory cortex found evidence for it
only at the level of the N1m, but not for the SSR (Pantev et al. 2004).
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3.4 Pitch and Sound Regularity

Pitch perception is associated with periodic sounds, such as those typically pro-
duced by the human voice or musical instruments. In music, pitch is the basic
perception required to form melodies. While pure tones evoke a unique pitch
percept directly corresponding to their sound frequency, the situation is more
complex for everyday periodic sounds in our environment. Briefly, two neural
mechanisms supporting pitch perception have been proposed: temporal models
that are based on phase-locked neural discharges, primarily in the auditory nerve
and spectral-based models relying on distinct loci of maximal displacement of the
basilar-membrane. While temporal models assume that pitch is extracted purely in
the temporal domain, spectral models estimate pitch based on regular spacing of
basilar-membrane maxima from a periodic stimulus’ harmonic structure. Many
present-day models rely on both spectral and temporal sound features.

One approach to study pitch specificity is to compare regular, periodic sounds
with irregular, non-periodic sounds that are otherwise matched in their spectral and
temporal envelope. For example, regular click trains are associated with a salient
pitch; this pitch can be reduced when the interval between successive clicks is
jittered, to the degree that the pitch perception is even completely suppressed
(Gutschalk et al. 2002): Regular click trains evoke a much more prominent sustained
field than irregular click trains, and source analysis shows that the sustained field
evoked by irregular click trains is best explained by dipoles in the planum temporale.
Assuming that the components of the sustained field evoked by irregular click trains
are also evoked by regular click trains, the pitch-specific component of the sustained
field can be separated by calculating the difference between the responses evoked by
regular and irregular click trains. This pitch-specific difference response is best
explained by dipoles in lateral Heschl’s gyrus. In addition to the anatomical sepa-
ration, these two sources reveal a functional double dissociation: Manipulation of
sound intensity predominantly modulates sustained activity in the more posterior
source in planum temporale. Conversely, manipulation of click-train regularity
predominantly modulates activity in the more anterior source in Heschl’s gyrus
(Fig. 5).

Another stimulus used to study pitch is so-called iterated rippled noise (Yost et al.
1996); here, a noise is repeatedly copied to itself with a fixed time delay, which
equals the inverse of the fundamental frequency (f0). At the transition from a mat-
ched noise to an iterated rippled noise stimulus, a prominent N1m-like response is
evoked, whose peak latency is longer for lower f0 (Krumbholz et al. 2003); this
response has been referred to as the pitch-onset response (POR). The same transient
response is evoked at the transition from irregular to regular click trains (Gutschalk
et al. 2004a), at the onset of a binaural (Huggins) pitch (Chait et al. 2006), or at the
transition between different types of IRN (Ritter et al. 2005). The source of the pitch-
onset N1m is also located in lateral Heschl’s gyrus, whereas the sound-onset N1m
observed for irregular click trains or noise maps to the planum temporale. This
dissociation is similar to the source configuration of the sustained field, mentioned
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earlier. Moreover, spatio-temporal dipole modeling allows for separating the pitch-
onset and sound-onset components of the N1m in situations where the periodic sound
is presented out of silence (Gutschalk et al. 2004a). Both, the pitch-onset N1m as
well as the sustained pitch response reflect the stimulus history. The amplitude of the
pitch-onset N1m increases with the directly preceding ISI; the sustained field varies
depending on the ratio of regular and irregular stimuli occurring in a stimulus
sequence on a time scale of seconds to minutes (Gutschalk et al. 2007b).

Specificity for pitch in lateral Heschl’s gyrus had also been suggested based on
fMRI (Patterson et al. 2002), but this has recently been questioned because it was
shown that the fMRI signal evoked by iterated rippled noise is dominated by the
presence of temporal fluctuations that are unrelated to pitch (Barker et al. 2012).
Note, that these fluctuations evoke ongoing activity in the theta-band in MEG,
whereas the N1m and sustained field components evoked by periodicity are similar
for click trains and iterated rippled noise (Steinmann and Gutschalk 2012).

As a final note, it should be mentioned that the interpretation of these regu-
larity-specific responses in terms of pitch perception might be too exclusive.

Fig. 5 a Influence of click-train regularity—and supposedly pitch salience—on the sustained
field and N1m (exemplary listener). The 1000-ms long click trains were either regular (inter-click
interval 5 ms) or irregular (inter-click interval 2.5–7.5 ms); only the regular click trains produce a
salient periodicity pitch. One set of dipoles was fitted to the sustained field evoked by irregular
click trains (black, in Planum temporale). The other set of dipoles was fitted to the difference
between the sustained fields evoked by regular minus irregular click trains (white, in lateral
Heschl’s gyrus), supposedly representing pitch- or regularity-specific activity. As can be seen in
the source waveforms, the N1m and sustained field imaged by the anterior source are only observed
for regular click trains, whereas the N1m and sustained field in the posterior source are identical for
regular and irregular click trains. b Effect of click train intensity on the sustained-field strength in
the anterior (left) and posterior (right) sources (mean ± standard error, N = 12). Intensity only
affects activity in the posterior source significantly. c Effect of click train regularity (ISI
range = 5 ms ± 5 ms * irregularity scalar) on the sustained-field strength in the anterior (left) and
posterior (right) sources (mean ± standard error, N = 11). Regularity only affects activity in the
anterior source significantly. Panels A and B reproduced with permission from Elsevier (Gutschalk
et al. 2002); panel C represents unpublished data obtained in the same listeners
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A number of studies suggest that these responses could also be related to a more
general processing of stimulus regularity: a prominent N1m is, for example,
evoked at the transition from random tones (duration = 15, 30 or 60 ms) to a
constant tone, whereas a much weaker response was observed when the transition
was from constant to random (Chait et al. 2007). With respect to the sustained
field, it was demonstrated that the periodic repetition of frozen noise evokes
stronger sustained fields than random white noise down to repetition rates of 5 Hz
(Keceli et al. 2012), which is well below the lower limit where musical pitch is
typically observed (Pressnitzer et al. 2001).

3.5 Vowels and Other Speech Sounds

Vowels are one of the basic elements of speech, and their classification for speech
is determined by formants, which are basically peaks in certain parts of the
spectrum. The spectral shape of the human voice in general, and thus also of
vowels, is formed by the upper vocal tract. MEG studies demonstrated that the
N1m evoked by vowel onset cannot be explained by a linear superposition of their
frequency content (Diesch and Luce 2000). It has been suggested instead that the
source localization and latency of the N1m represent abstract phonological features
such as place of articulation (Obleser et al. 2004).

As mentioned in Sect. 3.4, the human voice is a prototype of a periodic sound
source, due to the periodic pulsations of the vocal folds during voiced speech.
Speech periodicity may be disturbed, for example in whispering, or in hoarse,
pathological speech, and in this case the sustained field is reduced (Yrttiaho et al.
2009). However, the sustained field does not only reflect the vowels’ periodicity,
but is also enhanced by spectral formant features that determine the phonological
vowel quality: This was first shown with the comparison of pure tones and sine
vowels (Eulitz et al. 1995). Using damped sine pulses, the periodicity pitch and the
vowels formant structure can be separately violated, producing sounds that have
periodicity pitch and/or vowel quality or neither. This way, the sustained field
components evoked by pitch, formant structure, and the control sound can be sep-
arately evaluated. The source-analysis results showed that the sustained field evoked
by the periodicity pitch and the one evoked by the formant structure are
co-located in lateral Heschl’s gyrus, whereas the residual sustained field was located
more posterior (Gutschalk and Uppenkamp 2011). This result raises the possibility
that lateral Heschl’s gyrus plays a general role in speech sound extraction, or is
alternatively related to a more general mechanism of regularity extraction (see
Sect. 3.4). This question is of considerable interest, because fMRI studies typically
do not find enhanced activity in auditory cortex for speech in contrast to non-speech
sounds; for example, the same vowel and non-vowels stimuli evaluated in fMRI
evoke enhanced activity only in the superior temporal sulcus (Uppenkamp et al.
2006). This discrepancy between MEG and fMRI can probably be explained by the
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finding that sustained fields in MEG have only a weak (Gutschalk et al. 2010) or no
(Steinmann and Gutschalk 2012) correlate at all in BOLD fMRI.

Vowels are only one category of speech-specific (phonetic) elements. Topo-
graphical differences between N1m responses have also been found for different
consonants, which depended not only on the physical sound’s structure but also on
its intelligibility (Obleser et al. 2006). In summary, findings accumulated with
MEG and other techniques indicate that the transformation of sound into basic
speech-specific (phonological) categories starts in the auditory cortex on the
superior temporal plane, and it remains to be determined how much of this process
is already completed there.

4 Auditory Scene Analysis

Most of the studies reviewed so far explored the processing of sounds emanating
sequentially from a single source. This is not the most frequent constellation in
ecological environments, where multiple sounds sources are often active inter-
leaved or at once. The title of the seminal monograph ‘‘auditory scene analysis’’
(Bregman 1990) provides the heading for research that explores how the brain
separates multiple sound sources. The subsequent sounds emanating from one
source, for example the speech from one person, or the melody played on a
musical instrument, are herein referred to as auditory streams. Auditory streams
are of similar importance for auditory cognitive neurosciences as the conception of
objects for the visual neurosciences.

4.1 Auditory Stream Segregation

One of the basic and most commonly used paradigms to study auditory scene
analysis is the stream-segregation or streaming paradigm. In the simplest version of
this paradigm, two pure tones A and B are alternated (ABAB...) at a rate of around
5–10 Hz with the frequency separation Df. When Df is small (up to a few semitones),
the sequence is heard as a stream of alternating tones, a trill (Miller and Heise 1950).
The streaming phenomenon is observed at larger Df: here, A and B tones are
perceived as two separate streams, each with its own beat and rhythm. This can be
well demonstrated with the ABA_ triplet paradigm (Van Noorden 1975), where the
underscore stands for a pause whose duration is equal to the tones. When the triplets
are heard as one stream, they are associated with a characteristic galloping rhythm.
In contrast, two isochronous streams are perceived in the case of streaming. When
ABA_ tone triplets are presented in MEG, the response strength of B tones depend on
the Df (Gutschalk et al. 2005): the P1m is strongly suppressed by the preceding
A tone when the tones are close in frequency. For Df = 4–6 semitones, there is less
adaptation (or suppression) caused by the A tones, and the P1 m evoked at Df = 12
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semitones is almost the size of the P1m evoked by B tones in the absence of any
A tones (Fig. 6). This effect is similar to the selective-adaptation phenomenon dis-
cussed in Sect. 2.2.3 for the N1m. In fact, selective adaptation of the N1m was also
observed, but for the fast repetition rates typically used for streaming, the N1m
remains relatively small overall. Importantly, selective adaptation of the response in
auditory cortex was correlated with the listeners rating of how easy it was for them
to hold to the two-stream perception, suggesting that the selective adaption observed
in MEG is linked to neurophysiological processes important for streaming percep-
tion. Similar results were obtained by other investigators (Snyder et al. 2006;
Chakalov et al. 2012).

Selective adaptation of the P1m in streaming contexts is not limited to situations
where Df is the segregation cue. Selective release of P1m adaptation has also been
observed when streaming was based on periodicity pitch, using stimuli that were
prepared such that they did not provide spectral cues that can be resolved by
frequency analysis in the cochlea (Gutschalk et al. 2007a). Finally, selective
release of P1m adaptation was observed with streaming based on lateralization by
ITD and was stronger for conditions where streaming was more frequently
observed (Carl and Gutschalk 2013). In both cases, for streaming based on pitch
and based on ITD, the sources of selective adaption are located in the same area
around Heschl’s gyrus including core as well as belt areas of the auditory cortex
(Schadwinkel and Gutschalk 2010). It therefore appears that the separation of
sound sources based on different segregation cues converges at the level of the
auditory cortex, potentially providing a general mechanism for sound source
separation.

A more direct way to study the relationship between neurophysiology and
perception is based on perceptual bistability. The relationship between for example
Df and streaming perception is not deterministic; the same sequence can alterna-
tively be perceived as one or two streams, especially in the intermediate Df range
(Van Noorden 1975), and the perception may flip back and forth between the two
perceptual organizations. When listeners indicate the reversal towards one stream
with one key, and the reversal towards two streams with another key, the MEG
activity evoked by an ongoing sequence with fixed Df can be averaged with respect
to the perception. The results show that the response evoked by the B tones is
stronger in intervals where listeners heard two streams compared to intervals
where they heard one stream (Gutschalk et al. 2005). This result is similar to the
growth of the P1m evoked by B tones with larger Df, albeit the effect size in the
bistability experiment was smaller than in the Df experiment.

4.2 Auditory Selective Attention

Two separate streams of tones are also presented in another classical paradigm, but
with a different focus: the ISI between subsequent tones is randomized and one
stream is presented to the left and another one to the right ear. Within each stream
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there are standards and deviants, like in the oddball paradigm introduced in Sect.
2.2.3, and the listeners task is to monitor the occurrence of deviants in only one of
the two streams. This paradigm has not been used to study if one or two streams
are perceived—the latter was rather implicitly assumed by the setup—but to
evaluate how selectively listening to one of the streams modulates the auditory
evoked activity. An early EEG study demonstrated that the N1 is prominently

Fig. 6 Relationship between streaming perception and frequency selective adaptation of the P1m
and N1m (modified from Gutschalk et al. 2005). a Auditory cortex source waveforms of the
response evoked by sequences of repetitive ABA_ triplets (average across listeners; n = 14). The
frequency (Df) difference between A and B is indicated on the left. The P1m and N1m evoked by
B tones are strongly suppressed for Df = 0 and 2 semitones, which were not perceived as two
streams. There is a marked release of this adaptation for Df = 4 semitones and beyond, which can
be perceived as one or two streams. At Df = 10 semitones, the amplitude of the response is
almost the same size as the response evoked by B tones without any interfering A tones. b Ease of
streaming for the sequences used in panel a and similar sequences with a longer ISI (n = 13).
Listeners tried to hear two streams and indicated after the end of the sequence how easy it was to
hear two streams on a continuous scale between 0 and 1 (0 = impossible, 1 = very easy).
c Scatter plot of the average, normalized MEG amplitudes (P1m and N1m) versus the average
ease of streaming. The correlation was r = 0.91 (p \ 0.0001) for the P1m and r = 0.83
(p \ 0.001) for the N1m
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larger for the tones (standards as well as deviants) in the ear that the listener
attended to (Hillyard et al. 1973). Later on, it was demonstrated in MEG that the
attentional enhancement of vertex-negative responses originates in the auditory
cortex (Rif et al. 1991; Woldorff et al. 1993). One of these studies (Rif et al. 1991)
used a setup where the two streams were not separated by ear, but only by their
frequency (1,000 vs. 3,000 Hz). The enhancement of surface-negative activity in
the auditory cortex was observed in the time interval of the N1m, or alternatively in
the latency range of the P2m when a longer ISI was used (Rif et al. 1991). There
has been some discussion of whether the enhanced negative response evoked by
attended streams reflects enhancement of the N1m or a separate response com-
ponent called the processing negativity (Näätänen 1982) or the late negative dif-
ference wave (Hansen and Hillyard 1980). In any case, there is no doubt that
auditory cortex activity in the N1m latency range can be enhanced by selectively
listening to one stream in certain stimulus configurations.

It is less well settled whether attention also modulates response components
that are associated with earlier processing stages, such as the P1m and the 40-Hz
SSR. In the P1m interval, one study found that the response in this interval was
more negative with attention, supposedly reflecting the early onset of N1m
enhancement (Rif et al. 1991). Two other studies found an enhanced positive
response in the time interval 20–50 ms (Woldorff et al. 1993; Poghosyan and
Ioannides 2008), potentially reflecting enhancement of processes related to the
P1m. A few reports also suggest that the 40 Hz SSR is modulated by intra-modal
auditory versus visual attention (Ross et al. 2004; Saupe et al. 2009). However, the
effect size of attentional amplitude enhancement for the 40-Hz SSR is generally
small, and it has been pointed out that the effect is much stronger for the N1m and
the sustained field (Okamoto et al. 2011). One intracranial study suggests that the
20-Hz SSR is modulated when one of two concurrent amplitude-modulated tones
is selectively attended (Bidet-Caulet et al. 2007). A recent dichotic MEG study
found that the 40-Hz SSR in right auditory cortex was reduced for attended targets
in the ispilateral, right ear, and non-significantly enhanced for attended targets in
the contralateral, left ear (Weisz et al. 2012). In summary, these studies suggest
that the 40 Hz SSR in primary auditory cortex can be modulated by attention in
certain contexts, but that the effect size of the attentional modulation is small in
comparison to the response amplitude, as well as compared to the modulation
observed at later processing stages.

Response enhancement by selective attention is not limited to simple tone
stimuli, but can also be observed for more complex sounds, for example when two
competing speakers are played to the left and right ear, and the listeners are
instructed to report the information from one ear only. This classical dichotic
paradigm (Cherry 1953), typically cited in the context of the cocktail party phe-
nomenon, was recently adapted for MEG with an elegant analysis method: instead
of averaging from tone onset, Ding and Simon extracted the envelope of each
speaker and deconvolved the time course of activity in the auditory cortex using
crosscorrelation between the signal envelope and the MEG time series (Ding and
Simon, 2012b). The results revealed a response similar to the classical evoked
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response with peaks P1 m and N1m. Moreover, when the listeners selectively
listened to one of the speakers, the associated N1m like response was prominently
enhanced. This effect is not limited to the dichotic paradigm, but was also
observed when two speakers, for example a male and a female, were presented to
both ears without spatial separation, and the listeners were instructed to selectively
listen to one of the speakers (Ding and Simon 2012a).

One model for the selective response enhancement observed for attended
streams is a simple gain model, which assumes that the response to the attended
signal is enhanced. However, the response modulation in the auditory cortex by
attention may be more selective. For example, it has been shown that selectively
attending to a spatial cue modulates activity in more posterior areas of the auditory
cortex, whereas attention to phonetic content predominantly modulates activity in
more anterior areas of the auditory cortex (Ahveninen et al. 2006). It has also been
suggested that attention towards a tone sharpens the spectral tuning in auditory
cortex: When a pure tone is presented in a notch-filtered noise, the attentional
enhancement is larger for narrow than for broader notches (Okamoto et al. 2007b),
and no response enhancement is observed for tones presented without a concurrent
masker (Ahveninen et al. 2011). The authors of the study suggested that this is
because the notched noise adapts the broadly tuned activity evoked by pure tones
in the absence of attention, but not the sharpened, more focal activation when the
tone is attended to.

Directing attention involves a number of areas outside the auditory cortex, such
as the frontal eye fields and the temporo-parietal junction (Larson and Lee 2012),
as well as more dorsal parietal areas (Sieroka et al. 2003). The exact role of each of
these areas is still being explored, and is not reviewed here in detail.

4.3 Auditory Perceptual Awareness

The streaming and attention paradigms reviewed above are typically designed such
that the presence of each stream is easily noted, even though smaller details or
changes of the target stream may sometimes be missed because of interference
from the competing streams. Thus, listeners are typically able to deploy their
attention towards a specific stream without major efforts. The situation may be
different when more complex soundscapes are used, where multiple streams
compete for the listeners processing capacity, such that the listener is not aware of
each stream’s presence at a time. This phenomenon is known as informational
masking (Durlach et al. 2003). In contrast to energetic masking, where two sounds
that overlap in their spectrum compete for sensory transformation in the cochlea,
informational masking is thought to originate in the central nervous system. To
avoid additional energetic masking, a spectral separation between target and
masker (the protected region) is typically used. Accordingly, once a stream has
been detected in the presence of an informational masker, the perception of the
stream is salient, because the target tones are clearly above the sensory threshold.
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An informational masking stimulus that has been adapted for MEG research is
illustrated in Fig. 7 (Gutschalk et al. 2008): the target is a regular tone stream, with
fixed frequency and ISI. The masker comprises multiple tones, which are arranged
in several frequency bands and whose ISI is independently randomized. This type of
masker is called a multi tone masker; the randomization of the masker onsets was
introduced for application in MEG, to cancel out responses that are phase locked to
masker tones, and be able to evaluate selectively the neural response evoked by
targets. Because the target frequency varied in subsequent trials, listeners cannot
simply monitor a fixed frequency region, but need to listen (search) for the regular
target stream. Listeners were instructed to press a mouse button whenever they
heard out the regular target stream, and these behavioral responses were used to
dissociate epochs where the listeners were aware of the target stream, and those
where they were not aware of the target’s presence. MEG revealed a prominent
negative response in the auditory cortex in the latency range 50–250 ms, with apeak
latency around 120–200 ms after tone onset. No late negativity was evoked by target
tones in epochs where listeners were not aware of their presence.

In contrast, the 40 Hz SSR (Gutschalk et al. 2008) and the P1m (Königs and
Gutschalk 2012) were evoked by detected and undetected target tones alike. More-
over, the results from an fMRI and MEG study show that stronger activity for detected
compared to undetected targets is observed in medial Heschl’s gyrus, and thus most
probably in the primary auditory cortex (Wiegand and Gutschalk 2012). These results
suggest that there is a coexistence of two types of neural activity in the (primary)

Fig. 7 Relationship between auditory perceptual awareness versus informational masking and
MEG activity in the auditory cortex. Streams of target tones are presented for 10.4 s with a
stimulus-onset asynchrony of 800 ms and in the context of a random multi-tone masker. The
target-tone frequency was randomly chosen for each 10 s sequence (range 489–2924 Hz).
Listeners indicated with a mouse button when they detected a regular target stream. Considering
that at least two tones were heard before each button press, about half of the target tones were
heard and the other half was masked. When the response time locked to target tones was
averaged, no significant evoked response was observed for undetected targets (lower trace). In
contrast, detected targets evoked a prominent negative response in auditory cortex in the time
interval 50–250 ms, the awareness related negativity (ARN). Example stimuli are available along
with the original, open access online publication (Gutschalk et al. 2008)
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auditory cortex: one type (40 Hz SSR) is more closely related to the physical stimulus
and the other type (ARN) reflects the perception rather than the sound input.

The source location of the ARN was not statistically different from the N1m
evoked passively when the targets were presented in silence in one study (Gutschalk
et al. 2008) and only about 5 mm apart in another study (Königs and Gutschalk
2012). Moreover, the hemispheric balance of both, the ARN and the N1m, is mod-
ulated to similar amounts by sound lateralization (Königs and Gutschalk 2012). It
is therefore possible, that the generators of the ARN and N1m are—at least in
part—identical. As has been noted in the previous sections, the N1m is an automatic
response and shows little or no modulation by attention in situations where tones
are presented without competing auditory stimuli e.g. (Ahveninen et al. 2011).
In contrast, the ARN is not evoked at all when attention is distracted to a different
task, e.g. in a dichotic paradigm (Gutschalk et al. 2008). Another study that applied
informational masking in MEG found that the SSR evoked by a 4 Hz target stream
was enhanced when listeners detected frequency deviants within that stream, but not
when they detected a temporal elongation of tones within the multi-tone masker
(Elhilali et al. 2009).

While a clear attentional modulation of the N1m is already observed, for
example, when one of two interleaved streams is selectively attended (Rif et al.
1991) or when an attended tone is presented within a simultaneous noise masker
(Okamoto et al. 2007b), the N1m is still evoked automatically by the unattended
stream in these cases, and the listener is typically aware of the unattended stream’s
presence. One explanation for these different observations could be that processes
reflected by the N1m/ARN are only modulated by attention under sensory com-
petition (Desimone and Duncan 1995; Lavie 2006), and that at high levels of
sensory competition the reduction of these neural processes is so prominent that
they are insufficient for perceptual awareness. The latter case would then produce
informational masking. At this point, we don’t know if informational masking can
already be overcome by bottom-up activity in the auditory cortex, or if the
deployment of attentional resources directed by the frontal lobe is additionally
required. The relative role of modality specific sensory cortex on the one hand, and
activity in prefrontal areas for perceptual awareness, on the other hand, is still
diversely discussed across sensory modalities (Dehaene & Changeux 2011; Meyer
2011), and remains an important topic for future research.
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MEG Studies on Music

Sibylle C. Herholz and Christo Pantev

Abstract In this chapter we describe and discuss studies that have used musical
stimuli or musically trained subjects in order to investigate different aspects of
sensory processing and cognition, including auditory and sensorimotor function
and multisensory integration. We also include studies that have used music and
musical training to study human neuronal plasticity, and clinical applications in
conditions such as tinnitus. We highlight the methodological advantages of MEG
that are specific for research on auditory processing and for detecting changes
through training.

Keywords MEG � Music � Auditory processing � Mismatch negativity � Mental
imagery � Multisensory integration � Training-related plasticity � Tinnitus

1 Music and the Brain: A New Field of Research

In the last decades the neuroscience of music and musical training has developed
into a thriving research field probing various aspects of human sensation, cogni-
tion, and training-related plasticity (Pantev and Herholz 2011; Zatorre 2005).
MEG as a method is particularly well-suited for auditory neuroscience for several
reasons. It has high temporal resolution allowing for investigation of the time
course of neuronal responses to stimuli. The localization of sources of neuronal
activity can be estimated, allowing conclusions about neuroanatomical correlates
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of brain functions and behavior and about lateralization of activity. Furthermore,
its complete non-invasiveness allows testing various populations as well as
repeated measurements. Finally, it is especially suited for the investigation of
auditory and music processing, because the technique is acoustically noise-free.
While the aim of this chapter is to give an overview on music neuroscience
research using MEG, we will also touch upon many related topics of cognitive
neuroscience such as memory, learning, multisensory integration and lateralization
of cognitive functions. Music and neuroscience have the potential to be mutually
informative for each respective field of research. By using music as a stimulus for
neuroscience research, we can improve our understanding of neuronal function and
its interaction with the environment. Conversely, by investigating how music is
processed in the human brain, we can also arrive at a better understanding of music
and musical structures, for example why certain sequences of tones and chords
might be perceived as more pleasing than others.

Music is typically considered more than a simple sequence of tones. For
example, a classical musical performance that is aesthetically pleasing and emo-
tionally rewarding isn’t a strict execution of what is notated on the sheet.
Expressive music relies on subtle variations in timbre, timing and pitch, and on
dynamics and on interactions between performers. However, for methodological
reasons in the research on the cognitive processes underlying music perception and
performance, this huge variability in the stimulus material has to be reduced.
Therefore, in most cases researchers focus on certain aspects of music that are
under investigation while keeping other variables as constant as possible, for
example by means of a series of notes presented by a computer in a regular
sequence. Thus far, in many studies in the field of music neuroscience, the stimuli
that are used can be quite different from everyday music.

2 Melody and Rhythm: On Knowing
and Breaking the Rules

Imagine the beginning of a very popular piece of music, Ludwig van Beethoven’s
sonata no. 14 for piano, also known as the moonlight sonata. Its initial bars in the
right hand consist of a repeated triplet of tones, a broken c sharp minor chord,
accompanied by bass octaves in the left hand (c.f. Fig. 1). After the first four
repetitions of the triplet, several subtle changes in the accompaniment and in the
triplet pattern are introduced. These deviations from the previous pattern of tones
create tension and elicit an emotional response in many people.

Unexpected deviations from a regular sound pattern are a powerful tool in
musical composition, but they are also common in everyday life and often convey
important information. Consider a crack of a branch standing out in the acoustic
environment of a nightly scene in the woods that might indicate the approach of a
predator, or a sudden change in the ongoing, regular noise of a car engine that
might indicate an engine malfunction. Research on the encoding of sounds at the
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level of the auditory cortices has shown that we automatically encode various
types of regularities in our acoustic environment, and that neuronal networks
automatically detect deviations from regularities (Kujala et al. 2007; Näätänen
et al. 2007). The mismatch negativity (MMN or MMNm) is a component of
auditory evoked responses in EEG and MEG, respectively, that is sensitive to such
deviant sounds in a sequence of regular sounds and to violations of expectancies
that have been created by the preceding acoustic context. It occurs approximately
150–250 ms after the onset of the deviant sound, with a similar field distribution as
the N1m component (auditory evoked response at approx. 100 ms latency), and it
is superimposed on the auditory evoked field elicited by the sound. The MMN is a
widely used tool in basic and clinical neuroscience that is also useful for research
on music processing (Kujala et al. 2007; Näätänen et al. 2007).

Several MEG studies have looked at how we process short melodies that consist
of a few consecutive tones. By using the MMN as an indicator, we can investigate
which types of sound changes are detected at the level of the auditory cortices. We
can also deduce what information from the stimulus is encoded, because the
violation of a rule or regularity can only be detected if the underlying rule that is
being broken was encoded in the first place. Classic MMN studies employ
so-called oddball paradigms, in which one sound is presented with high probability
and another sound is presented more rarely (Näätänen and Alho 1995). This
deviant sound can be a tone of different pitch, duration, timbre, loudness or another
physical parameter. If the difference between the standard and deviant sounds is
large enough, a MMN response is observed in the magnetic field in response to the

Fig. 1 First five bars of the first movement of sonata no. 14 (‘‘Moonlight’’) by Ludwig van
Beethoven (Op. 27, No. 2). The excerpt shows the characteristic triplet pattern in the right hand
and the deviations from the pattern within the first bars. (Music typeset and published in the
public domain by Chris Sawer, www.mutopia-project.org)
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deviant event. For research on music, this basic approach can be adapted to more
complex stimuli such as tone sequences. Here, the standard that is being repeated
is not a single tone, but a short melody, and the deviant melody differs in some
aspect. Both unfamiliar tone sequences (Boh et al. 2011; Fujioka et al. 2004) and
familiar melodies (Hashimoto et al. 2000; Yasui et al. 2009) have been used in
melody mismatch studies, and these studies have shed light on the complexity of
material that can be stored, on the types of deviations that can be detected and on
the capacity of the memory store underlying the deviance detection mechanism.

Fujioka et al. (2004) investigated the processing of melodies under passive
listening conditions while participants watched a soundless movie. They presented
simple five note melodies that varied in key from trial to trial. Deviant melodies
either contained notes that changed the contour of the melody, or that differed only
in the size of the musical interval between the tones, without a contour change.
They found that while musicians showed clear MMN responses to both types of
changes, nonmusicians only showed very weak responses. This was not due to a
generally lower MMN response though, since both groups showed a similar MMN
response in a simple oddball paradigm, indicating that the complexity of the
material was a challenge for the automatic encoding in the nonmusicians.

In order to estimate the capacity of the auditory short-term memory storage
underlying the mismatch detection mechanism for unfamiliar material in both
musicians and nonmusicians, we designed a melody oddball study using unfa-
miliar melodies (Boh et al. 2011). In several conditions, we presented melodies of
different lengths ranging from 4 to 8 tones. Deviant tones were equally likely to
occur at all positions of the melody, and therefore the whole melody had to be
encoded and stored in order to detect the deviants. We found that under such
challenging circumstances the average capacity of auditory memory underlying
the mismatch detection for musically untrained people is approximately 4 tones.
For musicians however, this capacity was at least 8 tones, since they showed
significant MMN responses to deviants even in the longest melodies (Fig. 2). The
improved detection of melody deviants in complex, unfamiliar musical material is
most probably due to their long-term musical training.

Even people without musical training automatically encode repeatedly pre-
sented short familiar melodies without having to attend to the stimuli. Hashimoto
et al. (2000) presented participants without musical background with familiar
melodies. Half of the melodies contained an incorrect note that was out of key of
the original melody. These notes elicited an early mismatch response that was
recorded with a limited number of channels over right auditory areas. Yasui et al.
(2009) also used familiar melodies as stimuli. In a series of three experiments they
differentiated the processing of lyrics and melody in familiar songs, and elucidated
the role of long-term memory in the detection of unexpected events. They were
able to show a respective right- and left-lateralization for melody and lyrics
deviants in mismatch responses that were similar, but not identical in latency and
source location compared to pitch MMN. Additionally, they asked participants to
memorize new melodies and again they found the same mismatch responses
to unexpected tones in these newly memorized melodies as in the melodies that
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were familiar from childhood. These findings indicate that not only short-term
knowledge about regularities gained from the most recent auditory context but also
long-term familiarity with melodies can be the basis for automatic deviance
detection.

Some investigators have also looked at processing of musical chords and chord
progressions using MEG. In most musical cultures and styles musical harmonies
are organized in a musical syntax. People acquire knowledge about these rules via
passive exposure in everyday life. This is evident from findings indicating that no
special musical training is required to automatically detect untypical chords
(Maess et al. 2001) and to distinguish major from minor chords (Brattico et al.
2009). Brattico et al. (2009) investigated the processing of chords in an MMN
paradigm, where general musical context, in terms of mostly consonant major
Western chords, was presented, but without a particular music-syntactic sequence
or order of the chords. In this context, both musically trained and untrained par-
ticipants showed a MMN response to rarely presented minor chords, indicating
that even without a context of musically meaningful chord progressions such

Fig. 2 MMN responses to pitch deviants in melodies of different lengths in musicians and
nonmusicians in an MEG study by Boh et al. (2011). The grey traces show the group averaged
source waveforms in both hemispheres, and the black traces show the lower confidence intervals
as estimated from a bootstrap procedure. Nonmusicians show significant MMN responses only in
the control condition (standard oddball paradigm) and in response to deviants in the four tone
melody, whereas musicians show significant responses in all conditions. This result suggests that
long-term musical training might lead to an increase of the capacity of auditory short-term
memory for complex auditory patterns (Boh et al. 2011)
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distinctions are automatically made. Maess et al. (2001) presented their subjects
sequences of chords that followed Western musical rules of harmony. Infre-
quently, they presented chords that were consonant but did not quite fit at this
position of the chord sequence. Such chords elicited the magnetic equivalent of
another early response to unexpected sounds, the early right anterior negativity
(ERAN). Importantly, the sources of the mERAN were estimated to be located in
Broca’s area and its right homologue, and thus differed from typical sources of the
MMN in the temporal lobes. This indicates that the syntactic processing and the
detection of deviations in a musically meaningful harmonic context relies—at least
partly—on a different network than the detection of deviant tones in unfamiliar
tone sequences.

Another MEG study using the MMN as a marker for auditory processing
investigated musical versus phonological processing (Tervaniemi et al. 1999).
MEG provided the possibility to disentangle the respective contributions of the
two hemispheres for processing of the two different stimulus types. Tervaniemi
et al. (1999) showed that in the right hemisphere, the MMN to an unexpected
chord was stronger than the MMN to a phoneme change, whereas there was no
difference between the MMN amplitudes in the two stimulus categories in the left
hemisphere. Furthermore, in an analysis of the source locations of the corre-
sponding equivalent current dipoles, they found that the MMN sources of the two
stimulus categories were distinct, indicating a specific neuronal network for pro-
cessing of musical versus speech stimuli.

Apart from the spectral and pitch aspect of music that is most evident in the
instrumental timbres and in the melodic and harmonic structure of music, another
crucial component of music is the rhythmic and metrical structure of a piece.
Vuust et al. (2005) investigated rhythm and meter processing in jazz musicians and
in persons without musical background. They found that jazz musicians are
especially sensitive to subtle deviations in a rhythmic sequence of percussion
sounds that did not change the meter underlying the rhythm, whereas nonmusi-
cians were only able to detect the more obvious violation of the meter. Interest-
ingly, the deviance detection was right-lateralized in nonmusicians, but left-
lateralized in musicians, again most probably due to the long-term musical training
that resulted in changes in functional brain organization.

In summary, these studies demonstrate automatic detection mechanisms on the
level of the auditory cortices that respond to unexpected or deviant auditory input.
These mechanisms might also be related to some of the effects that make music
interesting and beautiful. Although this has not been shown directly, the early and
automatic detection of expectancy violations might contribute to emotional
responses to unexpected changes in melody, harmony, dynamics or orchestration
in music. However, more work is required to fully understand how the processes
that detect regularities and expectancy violations have been shaped by nonmusical
survival requirements, how music might rely on these evolutionary old mecha-
nisms, and how it interacts with other systems such as language and cognitive
systems that model regularities in our environment as a basis for expectancies and
planning that are needed for adaptive behavior.
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3 Higher-Order Cognition: Music in the Mind

In the beginning of the previous section we invited you to imagine some familiar
music as an illustration of repeated tone patterns in music. If you know the piece or
if you were able to sight-read it from the score, then you probably had an auditory
impression that was a different experience from actual listening to music, but that
nevertheless contained important aspects of the musical piece, such as the melody
and accompanying chords, the piano timbre, the tempo and the dynamics, maybe
even characteristic details of a particular recording that you remember.

Several MEG studies investigated what happens in the brain during higher-
order musical cognition such as imagining and remembering music. In one study
on auditory imagery (Herholz et al. 2008), we used a musical imagery task that
involved listening to the beginnings of familiar melodies and then continuing them
mentally in order to investigate musical imagery. The challenge in investigating
phenomena such as mental imagery lies in the requirement of an overt behavior
that indicates if the participant is doing the task. We tested participants’ musical
imagery by presenting another tone after the silent imagery period that was either a
correct or an incorrect continuation of the imagined melody at that point in time.
The participant had to judge this tone and could give a correct answer only if he or
she had correctly imagined the melody during the silent gap. Our results showed
that musicians were able to detect the incorrect tones behaviorally and that they
had a different auditory evoked response to incorrect than to correct continuations
of the melody. Since it had also been evoked in response to an expectancy vio-
lation, we termed this response imagery MMN (iMMN), in analogy to the classic
MMN that had a very similar latency and field distribution. The differential
response indicated correct mental imagery of the melody, probably based on
cortical activity in networks including the auditory cortices that was strong enough
to serve as a basis for the neural comparison mechanism underlying the MMN
(Herholz et al. 2008). In a recent replication of our imagery MMN study using
more simple tone patterns, we observed a classic MMN to deviants in tone patterns
when they were actually presented, but we did not replicate our finding of an
iMMN that was based on previous imagery of the tone sequence (Kuchenbuch
et al. 2012). This indicates that the stimulus material plays an important role in the
investigation of auditory and music imagery. Familiar melodies that elicit more
semantic and musical associations, episodic memories and a lyrics component
might be better suited for musical imagery tasks.

Gunji et al. (2007) investigated the neuronal processes occurring during mental
imagery of music in comparison to musical production. They compared mental
imagery to overt speaking, singing and humming of the tune ‘‘Happy Birthday’’ in
the MEG scanner. The authors used synthetic aperture magnetometry (SAM) to
analyze both event-related synchronization and desynchronization in different
frequency bands, and showed similar patterns of activity both in the singing,
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humming and imagining conditions, indicating overlapping brain networks for
perception, action and imagery, in line with studies using other neuroimaging
techniques (Zatorre and Halpern 2005).

4 Sensorimotor Integration and Training-Induced
Plasticity

Playing a musical instrument involves processing within and coordination among
several sensory, motor and cognitive systems. This multimodality integration is a
crucial aspect of music and music making, and several studies have used MEG to
understand the multimodal interactions as well as their influence on learning and
plasticity. We have previously mentioned several MEG studies on auditory cog-
nition in which musicians show advantages, including processing of tone
sequences (Boh et al. 2011; Fujioka et al. 2004) and rhythm (Vuust et al. 2005).
The most plausible explanation for these differences is that the long-term musical
training has led to lasting changes in the networks for auditory processing.
However, in a cross-sectional design such as the comparison of musicians and
nonmusicians, other factors like genetic predisposition or socioeconomic con-
founds cannot be excluded. In order to investigate the causal relationship of
musical training and auditory discrimination abilities we conducted two short-term
training studies (Lappe et al. 2008, 2011). Participants were randomly assigned to
two groups, a piano training group, and an auditory group. Whereas the piano
group learned to play a short musical piece over the course of 8 training sessions,
the auditory group merely listened attentively to the recordings of a participant in
the piano group, and they had to detect errors in the performance in order to ensure
their attention. Before and after the training period participants performed melody
discrimination tasks and the melody MMN was measured with MEG, as shown in
Fig. 3. Piano training resulted in stronger increases in the melody MMN both
regarding pitch deviants (Lappe et al. 2008) and rhythmic deviants (Lappe et al.
2011). Interestingly, the enhanced effects of piano training were right-lateralized
for the training focusing on pitches (Lappe et al. 2008), whereas no lateralization
of the effects were found for the rhythmic training (Lappe et al. 2011). Since the
auditory input was the same in both the auditory and the piano training groups, we
were able to conclude that the multisensory aspect of musical training is crucial for
enhancing training-related plasticity in the auditory domain.

Auditory-motor interactions in music and musical performance have been
investigated using various methods (Zatorre et al. 2007). In MEG, coactivation of
auditory and motor areas during perception of music has been shown in pianists
(Haueisen and Knösche 2001), and during isochronous beat perception in non-
musicians (Fujioka et al. 2012). Another recent study by Krause et al. (2010) used
a sensorimotor integration task that involved finger tapping in synchrony to an
auditory stimulus. While all subjects showed activity in an auditory-motor
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network, drummers and pianists showed increased synchronization compared to
nonmusicians in a network involving premotor cortex, thalamus and posterior
parietal cortex (Krause et al. 2010).

Fig. 3 Illustration of the effect of two weeks of piano training compared to auditory training on
neural correlates of rhythm discrimination, from an MEG study by Lappe et al. (2011).
Participants passively listened to a melody oddball paradigm with a short standard melody (panel
A, left) and a more rarely presented deviant melody (panel A, right). The MMN response to the
rhythmic deviation was enlarged after training compared to before training in the piano training
group whereas the auditory group showed no such increase due to training, although both groups
received identical auditory input during the training (panel B). This result demonstrates that
multimodal (sensorimotor-auditory) training results in stronger MMN responses, suggestive of
greater functional plasticity, than unimodal (auditory) training (Figure adapted from Lappe et al.
2011)
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Not only auditory-motor, but also other multimodal integration processes are
enhanced in musicians. Schulz et al. (2003) tested processing of simultaneously
presented tactile and auditory stimuli in trumpet players and in nonmusicians. They
showed that the neural response in trumpeters to a combined trumpet tone and
touch on the lips was larger than the sum of the single-modality responses, indi-
cating enhanced processing of the combined stimulus. We have recently shown that
musicians also show increased audio-visual integration compared to nonmusicians
as evidenced by an increased response to audio-visual incongruence in short
melodies that were simultaneously presented as visual symbols (Paraskevopoulos
et al. 2012b). In another recent study we aimed at testing experimentally whether
multisensory musical training enhances multisensory processing (Fig. 4). To this
end, we again compared two groups that underwent different kinds of musical
training (Paraskevopoulos et al. 2012a). One group of randomly assigned partici-
pants learned to play melodies on the piano from simple visual representations,
while the other group merely listened to the playing while viewing the visual
representations. Thus, both groups learned about the audio-visual rules but only one
group actively performed the music. In pre- and post-training MEG sessions we
measured the MMN to audio-visual incongruities of the learned rules. Participants
of the piano group showed stronger increases, indicating that active multisensory
training not only enhances unisensory processing as shown in our previous
training studies (Lappe et al. 2008, 2011), but also multisensory processing
(Paraskevopoulos et al. 2012a).

Fig. 4 Illustration of an effect of short-term piano training on neuronal correlates of audiovisual
integration, from an MEG study by Paraskevopoulos et al. (2012a). Participants who received
audio-visual-sensorimotor piano training (AVS group) showed stronger training-related changes,
indicating stronger functional plasticity in auditory association cortex in the right superior
temporal gyrus (as seen in panel A) compared to participants who received audiovisual training
only (AV group). The statistical interaction is shown in panel B. MEG responses elicited by
audiovisual incongruencies were analyzed using the LORETA method. The data show that active
musical training results in stronger functional changes in correlates of multisensory processing in
the human cortex than mere audiovisual sensory training (Paraskevopoulos et al. 2012a)
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MMN studies can also inform us on how we gradually acquire knowledge about
the acoustic environment during passive listening. In typical oddball studies, the
standard sound or sequence is presented very frequently, with typical percentages
of standards of 80 % and higher. However, in music as in other acoustic envi-
ronments, regularities can be much more subtle and hidden. We were interested if
a regular pattern of tones could be detected even if its relative frequency among
other stimuli was relatively low. Three recent studies from our lab indicate that
musicians might be at an advantage for such short-term auditory learning. In order
to study the acquisition of knowledge about rules and regularities in auditory
processing, we used stimuli where the regularities inherent in a presented tone
sequence were not evident right away. For two studies we created stimulus
sequences within which the probability of the standard was low (Herholz et al.
2009, 2011), and in another study we presented several short tone patterns in a
randomized sequence, resulting in a relatively low probability for each of these
individual patterns among the others (Paraskevopoulos et al. 2012c). Importantly,
the regularities underlying the tone sequences in each of these studies were not
based on familiar musical motives from Western musical repertoire or based on
rules of harmony. Therefore, knowledge about the regularities had to gradually
emerge from listing to the actual tone sequence. Musicians showed enlarged MMN
(Herholz et al. 2009, 2011) and P1 responses (auditory evoked response at approx.
50 ms latency; Paraskevopoulos et al. 2012c) to violations of these regularities that
appeared within the sequences, indicating that they were better able to pick up the
underlying rules. Such enhancement of short-term learning by previous experience
has been labeled meta-plasticity to indicate that plasticity or learning is altered at a
different rate, and that the potential for new learning is dependent on the previous
learning history (Abraham 2008). It has also been described in the context of
motor plasticity (Rosenkranz et al. 2007) and tactile learning (Ragert et al. 2004)
that are enhanced in musicians. While we don’t know yet which mechanisms
underlie these observations in the context of auditory learning and musical
training, further exploring and investigating the interactions of short- and long-
term learning and plasticity is a promising avenue for future research.

5 Clinical Applications: Music as a Cure

Musical training or music listening can be used in the rehabilitation of neuro-
logical disorders and in aging (Wan and Schlaug 2010). One example of successful
transfer of basic neuroscience studies to clinical application is the use of notch-
filtered music listening to alleviate tinnitus (Okamoto et al. 2010). The finding that
ultimately led to a new treatment to tinnitus stemmed from two threads of basic
research. On the one hand, animal models had shown that tinnitus goes along with
maladaptive reorganization of neuronal networks in auditory cortex, and that
tinnitus patients show similar pathological changes in the neural responses to their
tinnitus frequency (Eggermont 2007). On the other hand, the cortical responses to
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specific pitches are plastic and can be modulated by altered acoustic input. Pantev
et al. (1999) had shown that three hours of exposure to notch-filtered music that
was modified to exclude specific frequency bands reduced the amplitude of
auditory evoked responses that lay within the missing frequency bands. This
modulation of neuronal responses in healthy young subjects was short lasting and
reverted to baseline over night, but it opened a perspective for a treatment of
tinnitus using musical stimulation. In a longitudinal study over twelve months,
Okamoto et al. (2010) showed that listening to notch-filtered music that was
tailored to the individual tinnitus frequency improves both the subjective suffering
and the neural correlates of tinnitus as measured by means of auditory evoked
fields to tinnitus and to other control frequencies. Control group subjects that
received placebo treatment showed no such improvements. These findings open
the door for future clinical use and studies of music listening to alleviate tinnitus,
for example involving active music making, with MEG measurements as a means
for objective evaluation of the changes on a neuronal level that accompany the
subjective improvements.
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Sensorimotor Integration

Toshiaki Wasaka and Ryusuke Kakigi

Abstract A motor program for controlling one’s own movement requires sensory
signals from the target body parts. The information for movement is provided by
sensory feedback, as well as the integration of sensory information and motor
command, all of which are critical for motor control. Recent studies suggested that
cortical activity related to sensory response and perception is modified by movement
executing mechanisms. However, this raises the question of how this system inte-
grates motor command and sensory information whenever the intended movement is
in progress. In this chapter, we review findings of sensorimotor integration and
introduce results of our own studies using magnetoencephalography.

Keywords Corollary discharge � Efference copy � Motor command � Somato-
sensory information � Visual information

1 Introduction

Movement is the only way of interacting with the world. Indeed, all communication,
including speech, gestures and writing, is mediated via the motor system. The motor
areas play a crucial role in the coordination of movement, and the sensory areas have
a functional role in monitoring the state of movement. To control our action, the
human brain uses sensory signals to determine future actions. The existence of

T. Wasaka (&)
Nagoya Institute of Technology, Gokiso, Syowa, Nagoya, Aichi 466-8555, Japan
e-mail: wasaka.toshiaki@nitech.ac.jp

T. Wasaka � R. Kakigi
Department of Integrative Physiology, National Institute for Physiological Sciences,
38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan

S. Supek and C. J. Aine (eds.), Magnetoencephalography,
DOI: 10.1007/978-3-642-33045-2_34, � Springer-Verlag Berlin Heidelberg 2014

727



interactions between motor commands and sensory information processing has
been investigated using electroencephalography, magnetoencephalography (MEG)
and functional magnetic resonance imaging (fMRI).

Sensory feedback from body parts is used to adjust and correct movement in
course to the varying environmental constraints. Preceding and during movement,
the motor and higher-order brain systems regulate sensory information at several
processing stages. This chapter will begin with an explanation of the neural model
concerning sensorimotor integration. This will be followed by research topics of
neural modulation in the sensory system, especially somatosensory areas, during
execution of voluntary movement including our own recent findings. Finally, the
functional role of sensorimotor integration will be discussed.

2 The Neural Mechanism of Sensorimotor Integration

Cortical mechanisms such as corollary discharge (Sperry 1950) and efference copy
(von Holst and Mittelstaedt 1950) modify sensory information processing during
movement generation and execution. These mechanisms are used to keep track of
the expected result of the motor command, and to update the current state. The
central idea of corollary discharge is that the oculomotor system sends some
information about the motor signal to the visual system when it initiates a
movement, and this signal blocks the transient shift of the retinal image of the
visual world during saccadic periods. Corollary discharge also plays an important
role in auditory, vocalization, skeletomotor and somatosensory systems (Crapse
and Sommer 2008). Human studies have provided insights into its functional role
in two operations: resolving ambiguity in the origin of sensory information and
enabling proper motor performance.

Corollary discharge transiently modulates self-generated sensory responses and
can help distinguish between self-generated and externally generated sensory
information. Recently, interesting research was conducted on the somatosensory
system. Everyone knows you cannot tickle yourself, yet if someone else touches
your side, you may suddenly feel ticklish. The neural mechanism of this phenom-
enon was examined using brain imaging techniques. Compared to self-produced
stimuli, more activity in somatosensory areas was found when the stimulus was
externally delivered (Blakemore et al. 1998). When a movement is self-produced,
its sensory consequences can be accurately predicted, and this prediction can be
used to attenuate the sensory effects of the movement. The sensory prediction is
made by an internal forward model of the motor system (Wolpert et al. 1998). By
comparing the predicted with the actual sensory feedback, it is possible to distin-
guish the sensory consequences of our movements from sensory signals due to
changes in the outside world. This neural mechanism has a functional role in con-
trolling voluntary movement based on sensory information.
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3 Sensorimotor Integration in the Somatosensory Areas

When we execute voluntary movement, somatosensory information processing,
during its course from the peripheral to the somatosensory areas, is influenced by
many mechanisms mediated by a network comprising motor and higher-order
brain systems. This phenomenon has been reported as changes in the short- and
long-latency components of somatosensory evoked potentials (SEPs) and
somatosensory evoked magnetic fields (SEFs).

Sensorimotor integration in the somatosensory areas occurs via two major
mechanisms: (1) modulation of SEPs/SEFs can be carried out by inhibitory
interaction between the given sensory signals and the efferent signals induced by
the motor command from the motor related areas (centrifugal mechanism), and
(2) modulation can be exerted by interaction between the given sensory afferents
that produce SEPs/SEFs and the afferent signals evoked by the movement, i.e.,
afferent signals from the muscles and joints (centripetal mechanism) (Jones et al.
1989).

With regard to the modulation of somatosensory cortices produced by voluntary
movement, change in SEP/SEF amplitude was found not only during movement
(Rushton et al. 1981; Kakigi et al. 1995; Nakata et al. 2003; Nakajima et al. 2006)
but also just prior to it (preparatory period) (Cohen and Starr 1987; Kida et al.
2004, 2006). In previous studies, pre-movement modulation of somatosensory
information processing has been investigated using reaction time tasks (Starr and
Cohen 1985; Bocker et al. 1993; Murase et al. 2000). However, a reaction time
task evokes various cognitive brain activities, such as expectancy, motivation and
attention, which may change the sensorimotor activities. In fact, the neuronal
effect of attention on somatosensory information processing has been addressed
with various methods, including single unit recordings in monkeys (Hyvarinen
et al. 1980; Iriki et al. 1996), SEPs/SEFs (Desmedt and Tomberg 1989; Garcia-
Larrea et al. 1995; Mauguiere et al. 1997; Mima et al. 1998) and fMRI (Johansen-
Berg et al. 2000; Staines et al. 2002). By using a self-initiated voluntary movement
task without external cues, one can observe the temporal modulation of somato-
sensory cortical activities with respect to movement onset and elucidate the neural
interactions between somatosensory and motor areas in detail.

Our research has focused on the neural mechanisms of sensorimotor integration
in the somatosensory areas, especially the centrifugal modulation in the primary
somatosensory area (SI) and the secondary somatosensory area (SII), during the
preparatory period of self-initiated voluntary movement. The hypothesis is that if
motor commands interact with sensory inputs in the central nervous system,
neurons in the motor and sensory areas should show a change of activities when
these commands are issued.
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4 Modulation in the SI During the Preparatory Period
of Voluntary Movement

Previously, we reported differential pre-movement modulation of SEP components
estimated to be in the SI. There was no significant change in amplitude for the M20,
the primary component associated with SI, but there was attenuation of the M35, a
subsequent component localized to SI, just before movement onset (Fig. 1) (Wasaka
et al. 2003). The change in the amplitude of the M20 during the preparatory period
has been controversial. Some authors reported that the amplitude did not change
before movement (Starr and Cohen 1985; Murase et al. 2000), while others reported
attenuation just before movement (Hoshiyama and Sheean 1998). In contrast,
attenuation of the amplitude of the M35 just before movement has consistently been
reported (Starr and Cohen 1985; Cohen and Starr 1987; Hoshiyama and Sheean
1998). In general, the M20 is considered to be generated in Brodmann’s area 3b of
the SI (Desmedt et al. 1987; Allison et al. 1991; Inui et al. 2004). However, the
generator for the M35 remains unknown. Inui et al. (2004) reported overlapping
activities among multiple cortical areas such as Brodmann’s areas 3b, 4 and 1,
around 20–30 ms following stimulation of the dorsum of the hand. Source modeling
analysis suggested that area 4 of the primary motor area (MI) was involved in
generating the M35 (Kawamura et al. 1996). Furthermore, the modulation of SEF
components caused by the effect of the interstimulus interval suggested that another
potential mechanism responsible for the M35 was inhibitory postsynaptic potentials
in the deeper layers in area 3b (Wikstrom et al. 1996). Although we estimated the
source of M35 around the SI, further study will be needed to elucidate the generator.

Interestingly, the time course of the M35 modulation, starting from 1500 ms
before the movement and the remarkable attenuation just prior to the movement,
was similar to that of the activities of movement-related cortical potentials that
reflected the neural activities of movement preparation in motor-related areas. In
addition, our previous study showed that the extent of the centrifugal mechanism
for SEPs was dependent on the amplitude of the negative slope. This result sug-
gested that the centrifugal modulation in the SI was related to the activities of motor
related areas (Wasaka et al. 2005b). Subdural recording showed that the supple-
mentary motor area (SMA) and the MI activities in this period were recorded from
the cortex of humans (Ikeda et al. 1992). Motor related areas, such as SMA and MI,
have extensive cortico-cortical connections to other cortices such as the SI (Jones
et al. 1978) and possibly other sensory associated cortices. Intracortical microsti-
mulation of the neurons in the MI in monkeys caused a profound decrease in the
magnitude of the short-latency component of somatosensory evoked potentials
(Jiang et al. 1990), suggesting that the activities in the motor related areas just
before movement could modulate the response in the SI, especially the generator
for the M35 component. It is assumed that these electrophysiological changes
are associated with a decrease in tactile sensitivity commonly observed before
the onset of movement of the limb that received the sensory stimulation (Schmidt
et al. 1990).
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5 Modulation in the SII During the Preparatory Period
of Voluntary Movement

There is no consensus as to the function of the SII concerning sensorimotor inte-
gration during voluntary movement. Enhancement of SII activation was observed
(Huttunen et al. 1996; Forss and Jousmaki 1998; Lin et al. 2000) and it was assumed
that this phenomenon reflects tuning of the SII neurons to relevant somatosensory
information from the regions of contracting muscle. On the other hand, some
researchers reported an attenuation of SII activation (Avikainen et al. 2002; Inoue
et al. 2002). Using a self-initiated movement task to investigate the preparatory
period, whereby the centripetal effect on the SEF response can be eliminated, one
can mainly examine the centrifugal effect. We showed an enhancement of SII
activation in the 0 to –500 ms sub-period (Fig. 2) (Wasaka et al. 2005a).

It is generally agreed that attention to somatosensory information enhances acti-
vation of the SII cortex (Hari et al. 1990; Mauguiere et al. 1997; Fujiwara et al. 2002).
Although it is hard to eliminate the attentional effect, we instructed the subjects to
concentrate on self-initiated finger extension and not to pay attention to electrical
stimulation. Subjects reported that they concentrated on the finger extension and did
not turn their mind to the electrical stimulation throughout the recording session.
Therefore, although it is possible that attention contributed in a small way to the
enhancement of SII activation, the activation of motor related areas prior to voluntary
movement enhances the cortical effects of the SII either by increasing synchronicity
or by increasing the number of neurons active via the centrifugal process.

6 Differential Modulation in the SI and SII Preceding
Voluntary Movement

In the period of 500 ms before the onset of self-initiated movement, an attenuation
of activation in the SI and enhancement in the SII was found. The opposite effects
of movement on SI and SII cortices indicated that the motor and higher-order brain

Fig. 1 The premovement subperiods and the onset of the rectified EMG. The preparatory period
was divided into five subperiods from the onset of EMG to 4000 ms before movement. The time
scale is expressed in minus values before the onset of movement. Stimulation of the median nerve
was applied at random and the MEG signals following stimulation were averaged separately
depending on each subperiod to obtain the premovement somatosensory evoked magnetic fields
(SEFs). The sources were located in the posterior bank of the central sulcus in the hemisphere
contralateral to the side stimulated. The graphs show the mean and standard deviation of the ECD
moments of the M20 and M35 components in the rest condition and premovement subperiods. **
p \ 0.01; Statistical significance compared with the values in the rest condition, # p \ 0.05, ##
p \ 0.01; Statistical significance compared with the values for the 4,000–3,000 ms subperiod
before EMG onset. Two periods for the M35 showed a significant reduction as compared with the
rest condition and/or the 4,000–3,000 ms subperiod before EMG onset. The M20 showed no
significant change. Adapted from Wasaka et al. (2003)
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systems regulate sensory information at several processing stages by the centrif-
ugal process. Motor commands can facilitate or suppress sensory responsiveness
and, thus, probably perception, depending on temporal and behavioral constraints.

Removal of the SI area seriously impaired the processing of tactile information in
the SII in macaques (Pons et al. 1987). However, deactivation of the SI did not have
clear effects on the responsiveness of the SII (Zhang et al. 1996). In addition, tactile
information could be directly conveyed to both SI and SII cortices from overlapping

Fig. 2 The premovement subperiods and the onset of the rectified EMG. The preparatory period
was divided into five subperiods from the onset of EMG to 3000 ms before movement. The time
scale is expressed in minus values before the onset of movement. The dipole for the 80 ms
response was identified in the temporal region, corresponding to the SII cortices. The graph
shows the mean and standard error of the dipole moment of the SII contralateral to electrical
stimulation in the premovement subperiods. * p \ 0.05, ** p \ 0.01; Statistical significance
within two pairs. The dipole moment for the SII was significantly larger in the 0–500 ms
subperiod than the 1500–2000 ms or 2000–3000 ms subperiod before EMG onset. Adapted from
Wasaka et al. (2005a)
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regions within the ventral posterior nucleus of the thalamus (Zhang et al. 2001). In
humans, MEG responses from SII increased with active attention, while little effect
of attention was observed in the SI (Mima et al. 1998; Fujiwara et al. 2002).
Moreover, the responses in the SI and SII are modulated differently depending on
the intensity of the electrical stimulation (Torquati et al. 2002; Lin et al. 2003). From
these results, it appears that somatosensory information processing, concerning
sensorimotor integration in SII, may be independent of that in SI.

Our sensory systems are constantly bombarded by numerous sensory stimuli,
from which we must extract the few stimuli important to the control of our
movement. One can therefore recognize that an attenuation of SI activation is
involved in filtering information. Although much attention has been given to sen-
sorimotor integration in the SI, there is little evidence of such a phenomenon in the
SII and the role of the SII in motor execution has not been fully elucidated in
humans. Compared with the SI, SII is speculated to serve a higher level of cognitive
function in somatosensory information processing, such as attention, decision-
making, object recognition, and the integration of nociceptive and non-nociceptive
inputs (Mima et al. 1998; Steinmetz et al. 2000; Romo et al. 2002; Inui et al. 2003;
Qiu et al. 2004). Our results showed that these cortical areas play a different
functional role in sensorimotor integration. When we are moving, the sensory
threshold is attenuated. By contrast, exploration using fingertips is sensitive during
movement execution (active touch). This neural mechanism can be explained by an
enhancement of SII activation. To clarify the function of SII concerning sensori-
motor integration, we conducted further research.

7 Crossmodal Interaction Between Somatosensory
and Visual Information

Crossmodal interaction occurs when neural activity from one sensory modality
modulates activity in another (Macaluso et al. 2000; Kida et al. 2007). Crossmodal
links between visual and somatosensory information have shown the critical role
of vision in determining limb position and localizing tactile sensations (vanBeers
et al. 1996; Botvinick and Cohen 1998; Graziano 1999). For example, viewing a
body part improves tactile perception and facilitates the amplitude of long-latency
components of event-related potentials (Taylor-Clarke et al. 2002; Cardini et al.
2011). In addition, there is evidence that vision of the body is crucial for locali-
zation of tactile stimuli (Eimer et al. 2004; Sambo et al. 2009).

Although less attention has been devoted to the effect of observation of move-
ment on information processing in somatosensory areas, some studies have reported
neural modulation in SI and SII. Previous studies showed that viewing another
person’s gestures modulates the excitability of somatosensory areas (Avikainen
et al. 2002; Rossi et al. 2002; Mottonen et al. 2005; Pihko et al. 2010). These results
indicate that the somatosensory areas are involved in the mirroring of actions.
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8 Somatosensory and Visual Interaction During
the Execution of Voluntary Movement

Recognizing one’s own movement is essential to the control of voluntary move-
ment. Movement causes changes to sensory inflow as well as changes in the
position of body parts. The movement of one’s body parts is perceived not only by
visual information but also by somatosensory feedback from muscles, skin and
tendons which provide information on the status of each part being moved in a
moment. Under normal conditions, the visual estimate of limb position is con-
gruent with the somatosensory estimate and motor command, and movement is
usually achieved automatically without awareness of the component processes. By
contrast, in novel motor tasks or situations which produce conflict or incongruence
between intentions and sensorimotor consequences, the mismatch between the
actual sensory feedback and predicted movement of the body part disrupts motor
execution. A crucial issue is elucidating the brain mechanisms that integrate the
multi-sensory information and motor commands for motor control.

It has been suggested that a copy of the motor signal, known as an efference
copy, is created so that sensory signals generated from external stimuli can be
distinguished from reafferent signals from body movement (von Holst and Mit-
telstaedt 1950; Wolpert et al. 1998). Corollary discharges are produced only if the
motor commands interact with unpredicted sensory inputs and inhibit the neural
response to self-generated sensory signals (Sperry 1950). More activity in
somatosensory areas was found when an unpredicted stimulus was externally
delivered (Hesse et al. 2010). Since crossmodal interaction between somatosen-
sory and visual inputs exists in the somatosensory areas, there is considerable
validity to the notion that the prediction of visual feedback of movement modu-
lates the somatosensory areas.

We investigated whether activation in somatosensory areas was affected by
discordance between an intended and executed action. A mirror box creates
unintended visual feedback of body movement (Fig. 3). Subjects inserted their
hands into the mirror box with the forearm supine (Mirror condition). The position
of the right hand was adjusted so that the mirror image precisely overlapped the
view of the masked left hand. Since the actual visual information on the left hand
was masked by the mirror, a mirror image of the right hand was provided. In the
Normal and Mirror conditions, subjects experienced the appropriate somatosen-
sory feedback, but in the Mirror condition, what they watched was incongruent
with the expected visual feedback which produced a state of cognitive conflict.
The motor task was a self-paced thumb movement of the left hand. Electrical
stimulation for the recording of somatosensory responses was delivered to the
median nerve at the left wrist. Subjects watched the stationary image of the hand
while they performed the self-paced movement of the left thumb. In this situation,
subjects felt that the movement was not controlled by themselves or the moving
body part did not belong to them. The cortical response showed that neural acti-
vation in the SII and parietal cortex was strongly affected by the unexpected visual
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feedback (Fig. 4) (Wasaka and Kakigi 2012a; Wasaka and Kakigi 2012b). The SII
showed significantly higher activation with unpredicted visual feedback of
movement, whereas the opposite was true of the parietal activation. These results
provide evidence that the visual information modulates activation in somatosen-
sory areas during voluntary movement.

The parietal cortex has been implicated in mediating multisensory integration in
different modalities (Andersen et al. 1997) while a fronto-parietal network has
been shown to be involved in selecting behaviorally relevant stimuli (Posner and
Petersen 1990; Corbetta et al. 1998; Burton et al. 1999). The parietal area inte-
grates the predicted proprioceptive and visual feedback to calculate how the
commands affected the state of the body (Shadmehr and Krakauer 2008). The new
finding was that the SII had crossmodal functions in the somatosensory and visual
modalities during motor execution, and the visual information plays a crucial role
in sensorimotor integration of the SII during motor execution. Modulation in the
SII during conflicting visual feedback might be involved in computing the motor
errors by comparing the actual hand location to the estimated location for con-
trolling movement.

The forward model of the motor system predicts the behavior of a body seg-
ment in response to a motor command. In this model, a motor plan is updated
continuously by internal feedback loops, and the parietal cortex and cerebellum
appear to play a crucial role. In the Mirror condition, subjects faced the surprise of
seeing their hand not responding as expected, and our results showed a modulation
of activation in the parietal area. We assume that this modulation during con-
flicting visual feedback might be involved in computing the motor errors by
comparing the actual hand location to the estimated location for controlling
movement.

Fig. 3 Schema of the experimental paradigm. In the Mirror condition, subjects inserted their
hands into a mirror box with the forearm supine. The position of the right hand was adjusted so
that the mirror image precisely overlapped the view of the masked left hand. A mirror image of
the right hand was presented instead of the left hand. Subjects performed self-paced continuous
and repetitive flexion-extension of the left thumb in the normal visual feedback (Normal
condition) and the incongruent non-veridical visual feedback condition (Mirror condition).
Electrical stimulation for the recording of somatosensory responses was delivered to the median
nerve at the left wrist. Adapted from Wasaka et al. (2012a)
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9 Sensorimotor Integration Related to the Feeling
of Agency

There is evidence that humans are normally not consciously aware of sensory
feedback from movement (Fourneret and Jeannerod 1998), and are aware that their
arms and legs belong to them through somatosensory and visual inputs. This
feeling of self-attribution is impaired when the predicted sensory information
estimated from motor intention does not match the actual sensory information. In
our study, the Mirror condition corresponded to this situation. Some subjects
reported feeling that movement was not controlled by themselves or the body did
not belong to them in the Mirror condition. We showed a significant enhancement
of a SII component at around 150 ms and reduction of parietal activation in the
non-veridical visual feedback of movement (Wasaka and Kakigi 2012a). Our
group reported simultaneous activation in the SII and insula peaking at 90 to
160 ms after electrical stimulation. We assumed that the late component peaking
at 150 ms in the SII may involve the activity of the neighboring insula (Inui et al.
2003). Studies in patients and recent neuroimaging results in healthy subjects
suggest a prominent role for the posterior parietal cortex (Farrer et al. 2008) and
insula (Farrer et al. 2003; Karnath et al. 2005) in the sense of limb ownership as
well as the self-awareness of limb actions, the sense of agency. Further study will
be needed to clarify the functional role of these areas in sensorimotor integration.

10 Conclusions

The sensory information for movement is provided by visual and somatosensory
feedback. It has been postulated that the integration between motor commands and
sensory information plays an important role in motor control. Efferent neural sig-
nals created by central motor networks in parallel with the motor commands are
used to predict the sensory consequences of own motor acts. In this process, this
signal modulates information processing in sensory areas. Preceding and during
voluntary movement, it has been reported that information processing in

Fig. 4 Superimposed MEG waveforms and topographical maps. a Superimposed root sum
square (RSS) waveforms from 102 sensors. b Map of the topography of the RSS at the peak
components. The first cortical activation was identified around the central area contralateral to the
hemisphere of the side stimulus (M20 and M35). Then, bilateral activations were identified in
temporal areas at around 80–100 ms (SII). PC activity was identified in the centro-parietal area
located posterior to the SI activity. c The location of equivalent current dipoles in each
component superimposed on 3D images. d The modulation of RSS components with voluntary
movement in the Mirror and Normal conditions. A significant difference was observed in the
components in the SIIc (M85 and M150) and PC (M95). The ratios of the M85 and M150 in the
SIIc were significantly larger in the Mirror than Normal Condition. By contrast, the ratio of
the M95 was significantly smaller in the Mirror condition than Normal condition. * p \ 0.05, **
p \ 0.01; Statistical significance within two pairs. Adapted from Wasaka et al. (2012a)
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somatosensory areas is modulated by the effect of efferent signals. Activities in the
SI show a reduction with voluntary movement, whereas those in the SII are
enhanced. The functional role for this difference in modulation in somatosensory
areas may be the regulation of motor control by facilitating the appropriate infor-
mation and/or suppressing inappropriate information. Compared with SI, SII is
speculated to serve a higher level of somatosensory information processing, such
as decision-making, objective recognition and integration of nociceptive and non-
nociceptive inputs. Our research showed that neural responses in SII was strongly
affected by the unexpected visual feedback during movement execution. This result
provides evidence that the visual information plays a crucial role in sensorimotor
integration in the SII.
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Organizational Neuroscience: A New
Frontier for Magnetoencephalography?

Sven Braeutigam

Abstract Organizational neuroscience is an emerging field of research aimed at the
neuro-scientific study of human behavior in organizations. The purpose of this short
chapter is to provide a brief overview of the field and to make an informed guess
about the role magnetoencephalography might play by exploiting the strengths of
this technology. Also, some of the broader conceptual challenges and ethical con-
siderations are touched upon that have been raised by recent neuro-technologies and
that will most likely be relevant to organizational neuroscience as well.

Keywords Organizational neuroscience � Neuroeconomics � Neuromarketing �
Magnetoencephalography � Decision making

1 Introduction

Organizational neuroscience, ON for short, is an emerging, highly interdisciplinary
area of research that explores the implications of brain science for workplace
behavior. ON builds on key theories and methods of behavioral, cognitive, and
social psychology and attempts to incorporate advances in neuroscience that have
failed to reach organizational and/or business research as yet. The broad aim is a
better understanding, explanation and prediction of human behavior in organiza-
tional relevant situations, which might ultimately provide evidence-based recom-
mendations for practice. It is hoped that neuroscience methodology will help to push
organizational research in exciting new directions such as how and why managers
make appropriate decisions or how serial entrepreneurs might perceive and act upon
risk differently than others (Becker et al. 2011; Senior et al. 2011; Lee et al. 2012).
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As an area of research, ON is distinct from but nevertheless related to two
established neuro-technologies, namely neuroeconomics and neuromarketing. The
former combines neuroscience, psychology and economics for the study of how
people evaluate gains, losses and rewards in economic decision-making (Camerer
2008). The latter specifically adopts imaging tools to investigate customer choices
for marketing purposes such as TV commercials (Ariely and Berns 2010). Note
some protagonists refer to OCN (organizational cognitive neuroscience) in order to
emphasize the role of cognitive processes, however, this distinction is not made in
this paper.

2 A Role for MEG

From a neurophysiological perspective, organizational researchers are intrigued by
the superior temporal resolution of MEG, which, in conjunction with powerful
source estimation approaches, allows the detailed mapping of brain activity
associated with complex cognitive processes. In particular, rapid responses that
occur at the edge between perception and cognition are deemed powerful markers
in the quest for better models of decision-making and judgment under uncertainty
(Senior et al. 2011). As an illustrative example taken from the neuroeconomics
literature, a recent study utilized MEG to study the neural mechanisms associated
with buying decisions that have potentially long-term consequences (Hedgcock
et al. 2010).

In a real estate scenario, the subjects were given the choice to buy an expensive
apartment (high monthly mortgage) located in a safe neighborhood or to buy a
cheap apartment located in a less safe area with a modest crime rate. The authors
found that neural responses over frontal and parietal cortices correlated with trial
outcome as early as a 500 ms after presentation of choice options, and several
seconds before the buying decision was communicated. The significance of such
early neuronal activity is currently unresolved, as to what processes may be
occurring during the time between divergence of neuronal response and the
decision. These neuronal responses, however, appear to reflect higher-order cog-
nitive processes outside awareness, raising the possibility that economically rel-
evant behavior is, to some extent, decided upon long before it becomes manifest. If
so, a deeper understanding of these neuronal systems might yield insight into why
individuals often seem unaware of the relative importance of different choice
attributes that affect their perceptions regarding the attractiveness of their choice
options (Dhar and Simonson 2003; Braeutigam 2012).

From an organizational perspective, research on leadership and associated
management training programs have been highlighted as areas of particular
interest to ON. A relevant scenario might be to use MEG in order to study the
neuronal mechanisms supporting the interaction and relationship aspects of a
leader and his/her team (Becker et al. 2011). Clearly, it would be impossible to
reduce leader-team interactions to individual brains, however, contextual effects
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can be reliably quantified at the level of neuronal processes with the help of well
known marker signals such as the N400 response. This response is observed at
about 400 ms after stimulus onset and can be elicited by a broad range of
meaningful stimuli, including but not restricted to auditory and visual words,
pictures, sign language, faces and environmental sounds (Kutas and Federmeier
2011). It is generally assumed that the N400 indexes neuronal processes related to
semantic memory. Moreover, it has been suggested that neuronal responses at
400 ms reflect gender specific cognitive strategies in choice making in real life
situations (Braeutigam et al. 2004). Thus, it is conceivable that MEG could build
towards a better understanding of how the human brain responds to and utilizes
contextual information within an organizational setting. In particular, one might be
able to shed some light on why a declaration of intent of a leader may in some
situations be taken as invigorating, while in others as merely ridiculous.

3 Challenges

Important challenges have been posed regarding the validity and generalizability
of the insight gained from neuroscience-based approaches such as neuroeconomics
and neuromarketing. It is likely that organizational neuroscientists, as time pro-
gresses, will have to face similar conceptual issues, but will also be able to draw on
accepted methods in order to overcome limitations.

Specifically, a criticism has been made that all that neuroeconomic research has
been able to identify so far has been the brain regions that appear to be activated in
response to certain decisions and choices, or responses to reward stimuli.
Accordingly, the evidence is of correlation, making the interpretation of causality
difficult, if not impossible (Harrison 2008; Birnberg and Granguly 2012). Despite
this being a deeply fundamental even philosophical issue, a mathematical
framework known as Bayesian inference can be utilized in order to maximize the
insight gained from individual studies. Accordingly, a large number of correla-
tions, if available, can be exploited to support reverse inference, i.e., inferring the
likelihood of a cognitive process from a pattern of brain activity (Poldrack 2011;
Braeutigam 2012). An example often cited in the neuroeconomics literature is the
probability that a reward process is present given nucleus accumbens activation.

The nucleus accumbens is part of the ventral striatum implicated in the processing
of reward, novelty, and salience. Using meta-analytical techniques based on over
1,000 studies in conjunction with Bayesian inference, it can be shown that there is a
moderate, almost strong, evidence to infer reward-related processes when observing
nucleus accumbens activation, although nucleus accumbens activation is not nec-
essarily observed in studies utilizing a reward task (Poldrack 2011). In general,
Bayesian approaches are strong, meaning that, under suitable conditions, unknown
or difficult to estimate quantities become irrelevant and final inferences robust. This
is important as, for example, there is a plethora of N400 studies (many using MEG)
that could potentially be exploited for leadership studies indicated above.
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The issue of ecological validity is also relevant. Invariably, most of the neu-
roimaging results will be produced under controlled laboratory conditions, and it
might not be straightforward to extrapolate to a genetically and culturally diverse
population of people in a vast variety of organizational situations. It is likely that
OCN will follow a recent trend and make use of virtual-reality technologies in
order to boost generalizability of the insight gained from MEG studies. Strongly
related to this will be an increased reliance on paradigms with broader real-life
content as already employed in some areas of neuroeconomics and neuromar-
keting. Of particular interest are approaches addressing the issue of drawing
conclusions about real decisions based on hypothetical reports of intended
behavior often utilized in experiments when implementing real choice is consid-
ered impractical or unethical.

A relevant example is a functional magnetic resonance imaging study that
required the subjects to make hypothetical (trial did not count) and real (trial
would be implemented as real) purchasing decisions (Jeong-Kang et al. 2011).
Interestingly, the authors observed neuronal activity in the orbitofrontal cortex and
the ventral striatum that correlated with behavioral measures of the stimulus value
of the consumer goods in both types of decision. Despite apparent differences in
other regions, the substantial overlap in neural activity between the two conditions
suggests that conclusions about neural circuitry drawn from hypothetical choice
might generalize to real choice when making purchasing decisions.

4 Ethical Considerations

It is important to note that existing neuromarketing and, to a lesser degree neu-
roeconomics research has been subject to controversy within the scientific press,
including editorials in high impact journals such as Lancet Neurology (2004,
3:71) and Nature Neuroscience (2004, 7:683). There is no doubt that brain-
imaging technology will increasingly be used in commercial, organizational and
governmental settings raising concerns neuroscience methodologies might be used
in ways that infringe on personal privacy to an unacceptable degree. In response,
researchers have begun to outline guidelines and recommendations aimed at the
protection of individual autonomy, averting harm and exploitation caused by the
research and maintaining public trust in neuroscience. The ethical issues at hand
are non-trivial, however, it has been argued that there is currently no evidence that
any advanced neuroscience-based technology permits the types of insights and
subsequent manipulations that critics envisage. Ultimately, one has to observe and
consider the implications that such a development might have and by which
means it might be sensibly managed or regulated (Murphy et al. 2008; Fisher
et al. 2010).

746 S. Braeutigam



5 Conclusion

Despite challenges, concerns and possible adverse implications, the potential role
MEG can play in new applications aimed at the level of groups, organizations or
even societies appears huge. ON is still in its nascent state but it is likely to gain
momentum rapidly offering an excellent opportunity for MEG researchers to be at
the forefront of charting new territory. Importantly, neuroeconomics and, to a
lesser degree neuromarketing are increasingly recognized by clinicians as poten-
tially powerful frameworks for investigating, amongst others, mental disorders,
addiction and ageing (Brown and Ridderinkhof 2009; Hasler 2012). Assuming this
trend continues, embarking on the ON venture is likely to strengthen the standing
of MEG in clinical sciences.
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Pain- and Itch-Related Magnetic Fields

Hideki Mochizuki, Koji Inui and Ryusuke Kakigi

Abstract Pain and itch are unpleasant somatic sensations, and, in particular,
severe problems for patients with chronic pain and itch. It is important to under-
stand how these sensations are perceived/modulated in the brain in order to
develop treatments for chronic pain and itch. Magnetoencephalography (MEG)
can be used to investigate pain- and itch-related cerebral processing with high
temporal resolution (ms). Many pain researchers have investigated the temporal
profiles of cortical activities evoked by noxious stimuli and discussed how neural
signals associated with pain are processed in the brain. In addition, pain modu-
lation by physical and physiological factors has also been of interest for pain
researchers and has been investigated to understand the pain modulation system in
the brain. Until recently, it was considered impossible to measure itch-related
processing in the brain using MEG, because no itch stimulus was shown to be
useful for MEG. However, a new stimulus to evoke the itch sensation by applying
electrical stimuli to the skin was developed. This electrical method is reproducible
and produces a steep rise in the itch sensation and, therefore, it is suitable for MEG
recording. A MEG study using electrical itch stimuli demonstrated that the tem-
poral profile of cortical activity evoked by itch stimuli was partly different from
that evoked by pain.

Keywords Pain � Itch � Pain modulation � Magnetic response � Oscillation
activity � Alpha oscillation � Gamma oscillation � The primary somatosensory
cortex � The secondary somatosensory cortex � The precuneus
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1 Introduction

Pain and itch are unpleasant somatic sensations. Why do we have such sensations?
What happens if these sensations are lost? There are patients who cannot perceive
pain sensations, referred to as congenital analgesia and congenital pain insensi-
tivity. Even if a part of the body, for example the back, is burned, a patient with
this disorder cannot perceive it. As a result, these patients can have severe burns,
and a worst case scenario, it can result in death. The itch sensation was also shown
to be affected (little or not perceived) in most patients with this disorder (Tomioka
et al. 2002). Thus, the perception of pain and itch sensations are important warning
signals to become aware of dangers that occurred in the body in order to avoid
further damage of the body. Thus, these sensations are necessary functions. On the
other hand, pain and itch are serious problems for patients with chronic pain and
itch (pain: including neuropathic pain, cancer pain, hernia, and cingulum; itch:
including allergic diseases, liver diseases, and neuropathic itch). The unpleasant-
ness caused by pain and itch evoke negative emotions and stress, which decrease
activities in daily life, work, and education and sometimes lead to depression and
suicidal thoughts. Moreover, itch evokes not only unpleasantness, but also the
desire to scratch. Scratching itchy skin causes damage. This damage worsens the
skin condition, resulting in the exacerbation of itch. However, chronic itch patients
can not stop scratching. The phenomenon is called the itch-scratch-cycle. There-
fore, it is important to control itch and pain in these patients. The unpleasantness of
pain and itch and the desire to scratch are generated in the brain. How are these
mental events generated in the brain? These issues have been the focus of study for
researchers. Positron emission tomography (PET), functional magnetic resonance
imaging (fMRI), electroencephalography (EEG), and magnetoencephalography
(MEG) can noninvasively observe or visualize physiological activity such as
neural activity and/or the activity of neurotransmitters in living human brains.
Thus, the development of these apparatuses has markedly changed and expanded
the understanding of the cerebral mechanisms of itch and pain. The merit of MEG
and EEG is higher temporal resolution (unit: ms) than PET and fMRI (unit; min or s).
Since neural signals are processed and transmitted in the order of ms, MEG and EEG
are strong tools for visualizing information flow in the brain. Pain studies using MEG
started in the 1980’s (Hari et al. 1983; Huttunen et al. 1986; Kakigi et al. 1995). Since
then, many researchers have investigated the cerebral mechanisms of pain sensation.
In contrast, itch studies using MEG began in 2009 (Mochizuki et al. 2009). In this
chapter, we have introduced what high spatial resolution apparatuses, mainly MEG,
have unveiled regarding the cerebral mechanisms of pain and itch.
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2 Noxious Stimuli-Evoked Magnetic Responses

2.1 Source Localization

The pain sensation is mediated by Ad- and C-fibers. The activation of Ad-fibers
evokes a sharp pain sensation while that of C-fibers evokes a burning sensation.
The ideal pain stimulation for MEG is pain-specific, controllable, safe, and
repeatable. Laser beam stimulation such as CO2 and Tm: YAG to the skin and
electrical stimulation satisfy all of the above. Thus, they have frequently been used
in pain studies using MEG. Figure 1 shows the typical magnetic responses while
the dorsum of the left hand was stimulated by laser. The source location of the
magnetic responses observed in the central area (Fig. 1A) was estimated to be the
primary somatosensory cortex (SI). Since laser stimuli were applied to the left
hand, the contralateral SI (i.e., the right SI) was activated. The source location of
the magnetic responses observed in the bilateral fronto-temporal areas (Fig. 1B
and C) was estimated to be the secondary somatosensory cortex (SII). Kakigi et al.
(1995) reported that dipoles for stimulating the arm and those for the leg were
located in the Sylvian fissure including SII and insula (IC), although there was no
consistency in somatotopical organization for the arm and leg among subjects in
the Sylvian fissure, their locations differed by less than 2 cm, which suggested the
existence of somatotopy in the Sylvian fissure for noxious processing. A precise
investigation was performed by Baumgärtner et al. (2010) using high spatial
resolution fMRI. They found hand-foot somatotopy in the contralateral anterior
and posterior IC and in the contralateral parietal operculum for heat stimuli.

SI consists of three cytoarchitectural subdivisions, areas 3, 2, and 1. Anatomical
studies have demonstrated that information from the deep body tissues such as
muscles and joints reach areas 3a and 2, while areas 3b and 1 receive information
from the skin (Hyvärinen and Poranen 1978; Iwamura et al. 1993; Powell and
Mountcastle 1959; Kandel 2000). Consistent with these anatomical studies, MEG
studies showed that source localizations in SI for tactile stimuli were estimated to
be area 3b and 1 (Ploner et al. 2000; Kakigi et al. 2000; Kida et al. 2007). Area 3b
responded to innocuous somatosensory stimuli 20–30 ms after the stimulus onset
(Wood et al. 1985; Allison et al. 1989a, b; McCarthy et al. 1991) and area 1
responded later than area 3b (Ploner et al. 2000; Inui et al. 2003). In contrast, pain
studies using MEG reported that only area 1 responded to noxious stimuli (Ploner
et al. 1999; Kanda et al. 2000; Inui et al. 2003). However, single unit recordings in
monkeys showed nociceptive SI neurons in areas 3b and 1 (Kenshalo and Isensee
1983). One possibility to explain why the magnetic response in area 3b was not
observed in previous MEG studies may be due to the lower number of neurons in
area 3b than in area 1 (Chudler et al. 1990). In previous MEG studies that observed
area 3b response to tactile stimuli, median nerve stimulation was used as the tactile
stimuli. On the other hand, pain studies using MEG used laser stimuli. The area to
be stimulated was a tiny spot for laser stimuli, while a much larger skin area was
stimulated for the median nerve stimulation. Thus, the total number of neurons in

Pain- and Itch-Related Magnetic Fields 751



area 3b that responded to the nerve stimulation may have been much higher than
that responding to the laser stimuli. This may be another reason for the lack of a
clear response in area 3b to noxious stimuli. Unfortunately, there is currently no
clear evidence to explain the discrepancy between single unit recordings and pain
studies using MEG.

2.2 Peak Latency

The peak latency of painful stimuli-evoked magnetic responses in the contralateral
SI, contralateral SII, and ipsilateral SII reported in previous MEG studies were
164–217, 160–212, and 169–213 ms, respectively (Ploner et al. 1999, 2000, 2002;
Kanda et al. 2000; Nakata et al. 2004). A human microneurography study
demonstrated that the conduction velocity (CV) of Ad-fibers was about 19 ms
(Adriaensen et al. 1983). In a monkey study, the CV of the spinothalamic tract
(STT) was found to be 8.0 ms by determining STT neurons with antidromic
activation in the contralateral posterior part of the ventral medial nucleus in the
thalamus (Dostrovsky and Craig 1996). Similar CVs were reported in a human
study in which the CV of the STT using laser-evoked potentials was estimated to
be approximately 8–10 ms (Kakigi and Shibasaki 1991). In addition, the CV of

Fig. 1 Typical magnetic responses obtained when noxious stimuli were applied and their source
localizations (Single subject). Adopted from Nakata et al. (2004). cSI contralateral SI, cSII
contralateral SII, iSII ipsilateral SII, L left, R right. This figure has been reproduced with the
permission of the International Association for the Study of Pain (IASP). The figure may not be
reproduced for any other purpose without permission
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thalamocortical fibers was estimated to be 33 ms based on the somatosensory
evoked potentials of electric stimulation (Desmedt and Cheron 1980). Based on
CVs, it takes over 110 ms for the signals evoked by laser to be transmitted from
the hand to the cerebral cortex. On the other hand, the CV of C-fibers and STT
associated with C-fibers are 1.2–2.4 ms (Towell et al. 1996; Magerl et al. 1999;
Tran et al. 2001) and 2.9 ms (Tran et al. 2002), respectively, based on laser-evoked
potential studies. Thus, it takes over 500 ms for signals to be transmitted from the
hand to the cerebral cortex. The peak latency of the magnetic responses observed
in the previous MEG studies was about 200 ms. Thus, magnetic responses are
suggested to be derived from the excitation of Ad-fibers. Kakigi et al. (1995)
compared the peak latency and source location (i.e., dipole) of painful stimuli-
evoked magnetic responses when a CO2 laser was applied to the arm compared to
when it was applied to the leg. They observed that the peak latency for the
stimulation of the leg was 50 ms longer than that of the arm. This difference was
attributed to the distance between the leg and brain being longer than that between
the arm and brain. In all previous pain studies using MEG, peak latency was
shorter for the contralateral SII than for the ipsilateral SII (e.g., Yamasaki et al.
1999; Ploner et al. 2000, 2002; Kanda et al. 2000; Nakata et al. 2004, 2008, 2009).
The difference in latency between contralateral and ipsilateral SII was 1–25 ms
(mean: 13.8 ms) in these studies. Ploner et al. (2000) reported that differences in
peak latency between the contralateral and ipsulateral SII for tactile and laser
stimuli were 11 and 15 ms, respectively. Similar values were also observed in
other MEG studies (e.g., Mauguière et al. 1997). The difference in peak latency
has been interpreted to reflect the time to transmit a neural signal from the con-
tralateral SII to the ipsilateral side.

2.3 Intensity Coding of SI and SII

Pain is a complex sensation composed of sensory-discriminative and motivational-
affective components. SI and SII are considered to be the main regions for the
sensory-discriminative component. Animal studies have demonstrated that there
are neurons responsive to nociceptive stimuli in SI and most of the neurons encode
the stimulus intensity of noxious stimuli (Chudler et al. 1990; Kenshalo and
Isensee 1983; Kenshalo et al. 1988). Unit recoding studies in monkeys have
demonstrated that the intensity coding of neurons responsive to noxious stimuli in
SII appeared to be poorer than that in SI (Dong et al. 1989, 1994). Analogous to
these animal studies, a MEG study observed that the relationship between SI
activity and stimulus intensity closely matched the subjects’ pain ratings, while SII
activity exhibited an S-shaped function with a sharp increase in amplitude only at a
stimulus intensity well above the pain threshold (Timmermann et al. 2001).
Similar results were also reported in human fMRI and intracranial recoding studies
(Bornhövd et al. 2002; Frot et al. 2007).
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2.4 Parallel or Serial Processing?

Noxious stimuli, as well as innocuous tactile stimuli, activate SI and SII. However,
the temporal profiles of SI and SII activations for noxious stimulation clearly differ
from those for tactile stimulation. Intracranial and MEG recordings have dem-
onstrated that the activation of SI precedes the activation of SII in innocuous
tactile processing (Allison et al. 1989a, b; Hari et al. 1993; Mima et al. 1998;
Schnitzler et al. 1999). These temporal patterns of SI and SII activations for tactile
stimulation are not inconsistent with anatomical projections from SI to SII
(Gardner and Kandel 2000). Thus, SI and SII have been suggested to have serial
processing for innocuous tactile stimuli. In pain studies using MEG, the activation
of SI was almost the same as that of SII (e.g., Ploner et al. 1999; Kanda et al. 2000;
Nakata et al. 2004, 2009). Thus, serial processing cannot explain the activations of
SI and SII for noxious stimuli. Ploner et al. (1999) described that the simultaneous
activation of SI and SII for noxious stimuli contributed to independent anatomical
and functional pathways from the thalamus to SI and SII, such as the pathways
from the ventroposterior lateral thalamic nucleus (VPL) to SI and from the ven-
troposterior inferior thalamic nucleus (VPI) to SII (Gingold et al. 1991; Friedman
and Murray 1986; Stevens et al. 1993; Apkarian and Hodge 1989; Apkarian and
Shi 1994; Dong et al. 1989; Kenshalo and Willis 1991). Thus, some researchers
have proposed that SI and SII have parallel processing for noxious stimuli.
However, Inui et al. (2003) reported that the activation of SI for noxious stimuli
occurred earlier than that of SII. The peak latency of SI in previous MEG studies
reported the simultaneous activations of SI and SII for noxious stimuli were later
than 160 ms (Ploner et al. 1999, 2000, 2002; Kanda et al. 2000; Nakata et al.
2004). Inui et al. (2003) observed magnetic responses for noxious stimuli in SI at
not only around 160 ms, but also 88–100 ms after the stimulus onset. Source
localizations for the earlier (i.e., 88–100 ms) and later (i.e., around 160 ms)
responses were estimated to be area 1. In other words, the responses originated
from the same area. Interestingly, the peak latency of the first response in SI was
earlier than that of the response in the contralateral SII, indicating that serial
processing cannot simply be ruled out. Another MEG study suggested that the
magnetic response in SI reported in previous pain studies using MEG may be the
response in the posterior parietal cortex (PPC) (Nakata et al. 2008). In most
previous MEG studies, noxious stimuli were applied to the hand. One of the
magnetic responses to noxious stimuli is commonly observed from MEG sensors
around the top of the head (Fig. 1). Previous MEG studies estimated the source
location of the response to be SI. Anatomically, SI and PPC are located adjacent to
each other. Therefore, it is not easy to distinguish the magnetic response in SI from
that in PPC. In a MEG study conducted by Nakata et al. (2008), noxious stimuli
were applied to the thigh, which is easier to distinguish anatomically from PPC.
The distribution of the magnetic responses in the central areas when noxious
stimuli were applied to the hand (Fig. 1) was clearly different from when noxious
stimuli were applied to the thigh (Fig. 2a). As shown in Fig. 2b, two dipoles were
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observed in the post central gyrus when the thigh was stimulated. On the other
hand, only one dipole was observed when the hand was stimulated. These results
indicate that the activation of SI and PPC cannot be distinguished when the hand is
stimulated. Interestingly, in the thigh stimulation condition, the peak latency of the
magnetic response in SI was 151 ms and significantly shorter than that in SII,
while that in PPC was 183 ms, which was almost the same latency as that in SII.
Based on this finding, they suggested that there may be serial processing for
noxious stimuli and the findings of previous MEG studies may not be SI, but PPC.
It has not yet been clarified whether noxious processing is parallel or serial.

2.5 Magnetic Responses to Noxious Stimuli Associated
with C-Fibers

The pain sensation induced by the excitations of C-fibers evokes aching, burning,
throbbing and dull sensations. They are clearly different perceptions from the pain
induced by the excitation of Ad-fibers, which evokes sharp and pricking sensa-
tions. Noxious stimuli using laser stimuli and electrical stimuli activate both Ad-
and C-fibers or selectively activate Ad-fibers. However, the cerebral responses to
noxious stimuli that can be measured are commonly associated with Ad-fibers.
Thus, findings observed in the pain studies discussed in the previous sections were
all associated with the pain sensation mediated by Ad-fibers. It is difficult to
measure cerebral responses to noxious stimuli associated with C-fibers by just

Fig. 2 Magnetic responses when noxious stimuli were applied to the thigh. a The grand average
of magnetic responses and their source localizations. A anterior, P posterior, L left, R right, iSII
ipsilateral secondary somatosensory cortex, cSII contralateral secondary somatosensory cortex.
b Source localizations in the post central gyrus. Adopted from Nakata et al. (2008)
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applying laser and electrical stimuli to the skin because of the suppression of
cortical responses associated with C-fibers by those associated with Ad-fibers. One
of the methods used to investigate the cerebral processing of C-fiber pain has been
a physical block of the conduction of A-fibers by the compression of nerve fibers.
Ploner et al. (2002) used this method and observed the activations associated with
C-fiber pain in bilateral SII and ACC. Meanwhile, a novel method using CO2 and
YAG lasers to selectively stimulate C-fibers was developed (Tran et al. 2001,
2002; Qiu et al. 2003; Qiu et al. 2006). This method involves placing an aluminum
plate with many tiny holes on the skin where laser stimuli are applied (Fig. 3).

The peak latencies of the magnetic responses in SI and SII were longer than
700 ms when the stimuli were applied to the hand (Kakigi et al. 2003), which
was clearly a different latency from noxious stimuli associated with Ad-fibers.
A microneurographic study confirmed that the novel method selectively excited
C-fibers (Qiu et al. 2003). Forss et al. (2005) compared cortical processing
between Ad-fiber-and C-fiber-related pain. They reported that the peak latencies of
the magnetic response to laser stimuli were much shorter for Ad-fiber pain than for
C-fiber pain, while the source localizations were not significantly different. Thus,
they suggested that nociceptive inputs mediated by Ad- and C-fibers are processed
in a common cortical network in different time windows. A pain study using fMRI
reported significant differences in the activities in the anterior cingulate cortex
(ACC) and IC between Ad- and C-fibers (Qiu et al. 2006). These different per-
ceptions between Ad- and C-fibers may contribute to motivational-affective
components such as ACC and IC rather than sensory-discriminative components
such as SI and SII.

Fig. 3 The aluminum plate used for evoking C-fiber pain using laser. a Thin (0.1 mm in depth)
aluminum plate (40 mm in length and 60 mm in width) with many tiny holes. b The plate was
attached to the skin and laser stimuli were applied to the skin through the plate. The array of holes
allowed the 2 mm laser beam to pass through one to four holes to reach the skin. Adopted from
Kakigi et al. (2003)
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3 Pain Modulation

The pain sensation can be modulated by psychological factors such as the manip-
ulation of attention to pain, relaxation, and mental stress or physiological factors
such as the interference of pain perception by applying noxious and innocuous
somatosensory stimuli or movements. Qiu et al. (2004) investigated the underlying
mechanism of pain inhibition by distracting attention from pain using MEG and
EEG. To distract attention from pain, subjects were asked to perform a mental
arithmetic task while noxious laser stimuli were applied to the dorsum of their
hands. All subjects reported that the subjective pain sensation decreased during the
distraction task. They observed that noxious stimuli-related responses in the con-
tralateral SI, bilateral SII, cingulate cortex, and medial temporal areas were mark-
edly diminished while subjects performed the distraction task. Similar results were
also reported in other studies (Yamasaki et al. 1999; Schlereth et al. 2003). It has
been demonstrated that attention such as shifting attention between stimuli and
sustaining attention to or distracting attention from stimuli, is controlled by several
brain regions, such as the prefrontal, cingulate, and parietal cortices, thalamus, and
reticular formation (the attention control system) (Coull 1998; Raz 2004). Thus,
these regions are considered to play important roles in attention-related neural
activity changes in the brain regions associated with pain (Peyron et al. 2000; Lenz
and Treede 2002; Villemure and Bushnell 2002). Some researchers reported that the
analgesic effect by distraction was associated with the activation of descending
inhibitory control (Tracey et al. 2002; Valet et al. 2004). Simply said, descending
inhibitory control is accomplished by inhibiting the pain-related ascending neural
signal at the spinal level by descending neural signals from the periaqueductal grey
and rostral medulla (Millan 2002). However, since the task to distract attention from
pain modulates not only attention, but also stress and mood levels, it is still con-
troversial whether high cognitive demanding tasks are an appropriate method to
investigate the neural mechanism of pain modulation by attention (e.g., Villemure
and Bushnell 2002). Another well-known pain modulation system is the gate control
theory, in which excitation of the thin fibers conducting the tactile sensation (e.g.,
Ab-fibers) inhibits nociceptive ascending signals conducted by thick fibers (e.g.,
Ad- and C-fibers) in the spinal cord through the interneurons of substantia gela-
tinosa. Following this model, pain sensation is not inhibited if noxious ascending
signals pass through the spinal dorsal horn before ascending signals mediating the
tactile sensation reach there or noxious stimuli are applied after ascending signals
mediating tactile sensation reach the brain. Inui et al. (2006) investigated the issue
using MEG. They attached electrodes for noxious electrical stimuli and tactile
stimuli to the right side of the back 4 cm lateral to the ninth thoracic vertebral
spinous process. The electrical noxious stimulus (i.e., intra-epidermal electrical
stimulation (IES)) was current constant double pulses at 100 Hz with a 0.5 ms
duration (Inui et al. 2002). The tactile stimulus (TS) was double pulses at 100 Hz
with 0.5 ms duration. They randomly changed the timing to apply the conditioning
stimulus (i.e., the tactile stimulus) relative to the test stimulus (i.e., IES). The

Pain- and Itch-Related Magnetic Fields 757



conditioning-test intervals (CTIs) were -500, -300, -100, -60, -40, -20, 0, 50,
100, 300, and 500 ms. Interestingly, the pain sensation was reduced when TS was
applied 20–60 ms earlier than IES and even when IES was applied much later (e.g.,
500 ms) than TS. The magnetic response supported the behavioural results. As
shown in Fig. 4, the magnetic response associated with IES was reduced to less than
60 % of the control (IES 500 s before TS). They suggested that cortical responses to
noxious stimuli can also be inhibited by innocuous tactile stimuli at the cortical
level. These findings strongly demonstrate that the underlying mechanism of pain
inhibition by tactile stimuli is not only the gate control theory.

4 Oscillatory Activity and Pain

It has recently been demonstrated that time frequency information (i.e., oscillatory
activity) encodes or reflects several mental states such as cognition, emotion,
perception, and thought. For example, several researchers reported an association
between alpha oscillation (around 10 Hz) and pain perception. Kakigi et al.
(2005a, b) reported that the power of the alpha band increased while a Yoga master
in meditation did not feel the pain sensation. Nir et al. (2010) reported that subjects
with higher frequency, which was maximum in power within the alpha range (i.e.,
8–12 Hz) during the resting state, perceived noxious stimuli as being more intense.
Other studies demonstrated that the gamma frequency range (40–100 Hz) reflected
pain perception. Gross et al. (2007) showed that gamma power at a frequency
between 60 and 95 Hz in the contralateral SI (i.e., SI in the left hemisphere)
increased when laser stimuli were applied to the right hand. Pain-induced gamma
oscillations were observed around 100–300 ms after the stimulus onset, indicating
the excitation of Ad-fibers. The power of gamma oscillations increased with
increments in stimulus intensity and subjective pain sensation. Interestingly, they
reported that laser-evoked magnetic responses in SI were observed regardless of

Fig. 4 Amplitude changes in
the IES- and TS-evoked
responses. Each value is the
percentage of the area under
the curve during a latency
period of 50–300 ms relative
to that in the control
condition (500 ms condition
for TS and -500 ms
condition for IES). Adopted
from Inui et al. (2006)
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whether subjects perceived stimuli as painful or not, whereas the power of gamma
oscillations in the region was observed only when stimuli were painful for sub-
jects. It was reported that the power of gamma oscillations was modulated by the
manipulation of subjects’ attention to pain (Hauck et al. 2007). Alpha and gamma
oscillations are not specific to pain. These oscillations are also observed in other
modalities. However, at least, these oscillations may be useful for the evaluation of
subjective pain sensation and assessment of chronic pain.

5 Itch Stimuli-Evoked Magnetic Responses

Itch is an unpleasant sensation with the desire to scratch. It has been hypothesized
for a long time that itch is induced by the low-frequency excitation of nociceptors
also mediating the pain sensation. However, phenomena conflicting this hypoth-
esis have also been reported such as morphine used for pain relief evoking itch
sensation. Several researchers recently reported direct evidence that itch is not just
a weak pain. For example, Schmelz et al. (1997, 2003) found C-fibers selective for
histamine, which is a representative substrate to evoke itch. Andrew and Craig
(2001) reported that some STT neurons responded to the application of histamine,
but not to mustard oil which evokes the pain sensation. More recently, it was found
that STT neurons expressing gastrin- releasing peptide receptor transfer neural
signals associated with itch to the brain (Sun et al. 2009). Thus, it is generally
accepted in the itch and pain research fields that itch is a sensation independent of
pain and has a different mechanism from pain. In fact, ones can distinguish them as
different sensations such as ‘‘itch’’ and ‘‘pain’’. Several researchers have attempted
to identify how the brain distinguishes these sensations. To the best our knowl-
edge, the first study to investigate the brain mechanism of itch perception was
reported by Hsieh et al. in 1994. It was a PET study. Since then, several
researchers have conducted PET and fMRI studies and reported that histamine- or
cowhage-induced itch activates several brain regions including the prefrontal
cortex, primary motor cortex, supplementary motor area, premotor cortex, parietal
cortex, SI and SII, cingulate cortex, IC, basal ganglia, and cerebellum (Darsow
et al. 2000; Drzezga et al. 2001; Leknes et al. 2007; Mochizuki et al. 2007; Herde
et al. 2007; Papoiu et al. 2012). However, it was still unclear how these regions
interact with each other. To visualize itch-related information flow in the brain, it
was necessary to measure neural activity in the brain in the order of ms, since
neural signals are transmitted in that order. However, it was necessary to develop
an itch stimulus which could repeatedly evoke short duration-itch sensations
(i.e., *a few s) to measure itch-related brain activity using EEG and MEG.
Histamine or cowhage do not satisfy these conditions. The application of electrical
stimulus to the skin can evoke the itch sensation (Edwards et al. 1976; Shelley and
Arthur 1957; Tuckett 1982). Ikoma et al. (2005) then established a stimulus
condition to evoke the itch sensation with an electrical current. The stimulus can
easily control the duration of the itch sensation and repeatedly apply itch stimuli.
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Thus, Mochizuki et al. (2008) developed electrodes for the electrical itch stimulus
and confirmed that the itch sensation evoked by electrical itch stimuli is associated
with C-fibers and the cerebral responses to the electrical itch stimuli can be
measured using EEG. Using the stimulus and MEG, Mochizuki et al. (2009) first
visualized cerebral responses to the itch stimuli in the order of ms. They reported
that magnetic responses to the itch stimuli were mainly observed in the bilateral
fronto-temporal areas and centro-parietal area (Fig. 5a). The mean source local-
izations of the magnetic responses obtained from subjects were the bilateral
opercular cortex (OPC) and precuneus (Fig. 5b). The peak latency of the magnetic
responses in the contralateral OPC was significantly shorter than that in the ipsi-
lateral OPC (contralateral side: 740 ± 76 ms, ipsilateral side: 785 ± 76 ms). This
difference in latency would reflect the transmission of neural signals from the
contralateral to ipsilateral OPC. The peak latency of the magnetic response in the
precuneus was between the contralateral and ipsilateral OPC. Interestingly, no

Area No.1

Area No.2

Area No.3

Area No. 1 Area No. 2 Area No. 3

R

(a)

(b)

Fig. 5 Magnetic responses and source localizations for itch. a The typical magnetic responses
when electrical itch stimuli were applied (single subject). Adopted from Mochizuki et al. (2009).
b Mean coordinate of the dipole of each magnetic response on the MNI brain template. R right
hemisphere
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previous pain or tactile studies using MEG and EEG reported dipoles in the
precuneus (e.g., Forss et al. 2005; Inui et al. 2003; Kakigi et al. 2005a, b; Kanda
et al. 2000; Nakata et al. 2008; Opsommer et al. 2001; Ploner et al. 1999, 2000),
which implied that some differences exist in parietal processing between itch and
pain. However, some pain and tactile studies using PET and fMRI also observed
activation of the precuneus (de Leeuw et al. 2006; Iadarola et al. 1998; Kitada
et al. 2005; Niddam et al. 2008). Thus, activation of the precuneus is not specific to
itch in somatosensory processing. Unfortunately, the precise role of the precuneus
in somatosenory processing is not fully understood. Some neuroimaging studies
concerning pain reported that the precuneus was associated with empathy for pain,
pain hallucination, and the modulation of pain by hypnosis, and speculated that the
precuneus may play some role in the interaction between internal or psychological
states and somatic sensations (Bär et al. 2002; Faymonville et al. 2006; Jackson
et al. 2006; Ochsner et al. 2008; Schulz-Stübner et al. 2004).

6 Conclusion

MEG is a strong tool to investigate information flow in the brain with high tem-
poral resolution. Several aspects of the cerebral processing of pain have been
unveiled. For example, SI and SII respond to noxious stimuli mediated by Ad-
fibers about 100–200 ms after the stimulus onset, while those mediated by C-fibers
respond much later. Pain inhibition by tactile stimuli occurs not only in the spinal
cord (i.e., the gate control theory), but also in the brain. The intensities of the
responses of SI and SII to noxious stimuli are closely related to the stimulus
intensity and subjective pain rating, which supported these regions being associ-
ated with the sensory-discriminative component of pain. Oscillation studies have
reported that oscillation activity is a good indicator to evaluate subjective pain
sensation. At the same time, new questions have also been raised. For example, it
is still unclear whether SI and SII have a serial or parallel pathway, what mech-
anism underlies pain inhibition by tactile stimuli, and why is subjective pain
sensation reflected by oscillation activity? Studies investigating the itch sensation
using MEG have been too few to discuss the cerebral processing of itch. There are
still many questions that remain to be answered in the pain and itch research fields.
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Selection of Stimulus Parameters
for Visual MEG Studies of Sensation
and Cognition

Cheryl J. Aine, Selma Supek, Lori Sanfratello and Julia M. Stephen

Abstract Historically, MEG investigations of the visual system either attempted
to: (1) corroborate findings from invasive monkey or basic psychophysical studies
as an indirect way to validate MEG results or (2) enhance previously demonstrated
clinical event-related potential findings (ERPs) (e.g., multiple sclerosis patients
reveal longer ERP peak latencies). We focused on the former with the ultimate
goal of developing/testing new stimulus paradigms and clinical applications for
assessing cognitive functions such as working memory since several neuropsy-
chiatric and neurological disorders such as schizophrenia and dementia reveal
deficits in working memory circuits. However, characterization of neural circuits
involved in disorders of the nervous system (i.e., neuromagnetic mapping of
networks of regions and their temporal dynamics) presents a tremendous technical
challenge. In this chapter we will discuss some of the technical issues we
encountered while developing and testing paradigms for basic vision, attention and
working memory, and will highlight ways to avoid some of these potential con-
founds. We will also briefly review the organization of the visual system to pro-
vide an overall appreciation for the intricacies of the visual system as well as
providing some historical context for the manner in which certain studies have
been designed.
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1 Overview of the Functional Organization of the Visual
System: Sensation to Cognition

Considerable knowledge of the visual system has been gained from the numerous
anatomical, electrophysiological, and lesion studies in monkeys, thereby providing
a rich database from which to formulate new and interesting hypotheses for MEG
studies, including clinical studies in cognition. But, MEG investigations of the
human visual system are challenged by the overwhelming complexity of this
system in terms of the number of visual areas active (Fig. 1), the overlapping
nature of the signals across brain regions (both synchronous and asynchronous),
and the almost complete reciprocity between the connections (feedforward and
feedback activity). Felleman and Van Essen (1991) identified 32 different visual
areas in monkey brains and each of these visual areas are believed to provide
representations of the visual field that process information in slightly different
ways (Zeki 1978). For example, visual area 4 (V4) in monkeys contains a large
proportion of color selective cells from the central visual field while the medial
temporal area (MT) is quite sensitive to moving stimuli particularly in the
peripheral field (Albright 1984; Maunsell and van Essen 1983; Zeki 1973, 1978,
1980). While it remains unclear how many visual areas exist in human brains,
discoveries of commonalities between human and nonhuman primate brains
continue to grow. Measures of regional cerebral blood flow and positron emission
tomography (PET) in monkeys during working memory tasks suggest that the
same general areas in monkeys and humans are involved in spatial working
memory (Inoue et al. 2004). Spectral analysis in monkeys reveals spatially tuned
elevated power in the gamma band during working memory (Pesaran et al. 2002),
similar to human studies. MRI conducted in humans and the great apes indicate
that humans do not have disproportionately larger frontal lobes in comparison to
the great apes when equating for size of the primates (Semendeferi et al. 2002) and
great apes even reveal a left hemisphere asymmetry in BA 44 which is a part of
Broca’s area in humans (Cantalupo and Hopkins 2001). While it has been difficult
in the past to relate global MEG measures in humans to single unit activity in
monkeys, more neuroimaging studies are currently being conducted in monkeys
and great apes which will greatly aid in understanding the differences between
these scales of measurement.
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Most early MEG studies of basic vision [see review by Aine and Stephen
(2002)] focused on examining properties (e.g., spatial or temporal frequency
tuning properties) of a single visual area (e.g., primary visual cortex or V1) or have
examined the retinotopic organization of visual areas (i.e., the point-to-point
projection of visual field onto cortical areas). By carefully selecting stimulus
parameters (e.g., color, size, motion), it is possible to identify and characterize
different visual areas in the human brain similar to the methods employed in
monkey studies. More recently, visual MEG studies have examined cognitive
processes such as the representation of language in the brain, as well as memory
and imagery. These studies rely less on the invasive results in monkeys and more
on results from other functional neuroimaging methods such as PET and functional
magnetic resonance imaging (fMRI) for corroboration [See review of fMRI visual
studies in Courtney and Ungerleider (1997)].

Contemporary views of higher cognitive functions (e.g., cognitive neuro-
science) date back to the late 1980s which emphasize that a number of different
neural systems participate in the representation of an object or event (Kosslyn
1988; Squire 1986). A paradigm shift occurred away from the predominant view at
that time that feature integration relies on convergent hierarchical processing, i.e.,
the visual system can be viewed as a series of processing stages that represent a
progressive increase in complexity of neuronal representations that are dependent
upon the output of preceding stages (De Yoe et al. 1994; Van Essen 1985; Van
Essen and Maunsell 1983; Zeki 1978). While no investigator would argue that
serial hierarchical processing does not occur within the visual system, a new
emphasis was placed on ‘‘networks’’ or ‘‘systems.’’ The earliest example of a
systems approach was the overwhelming evidence for the existence of at least
two functionally specialized processing streams in the visual system (e.g., ‘‘dorsal’’
and ‘‘ventral’’—see Fig. 1) operating in parallel (De Yoe and Van Essen 1988;

Fig. 1 Multiple visual areas in monkey cortex and two processing streams, dorsal and ventral.
Adapted from Farah et al. (1999)
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Merigan and Maunsell 1993; Ungerleider 1995; Ungerleider and Mishkin 1982;
Van Essen and Maunsell 1983). Basically, attributes of stimuli are not believed to
be stored as a unified percept in a single cortical location; but rather, appear to be
stored in a distributed cortical system in which information about specific features
are stored close to the regions of cortex that mediate the perception of those features
(Goldman-Rakic 1988; Mesulam 1998; Ungerleider 1995). Memory retrieval,
therefore, means that a cue triggers a pattern of neural activity which is the same as
the one elicited during the initial processing of the retrieved material (Alvarez and
Squire 1994; Damasio 1989; Fuster 2001; Mesulam 1998; Mishkin 1982; Squire
and Zola-Morgan 1991; Tulving 1995; Wheeler et al. 2000). Memories essentially
consist of networks ranging from simple sensory memories or cell assemblies in
sensory or parasensory areas to perceptual-motor associations consisting of reci-
procal long-fiber connections linking perceptual memory networks of the posterior
cortex with the prefrontal motor networks (Fuster 1997). The current results
demonstrating consistent networks of activity during rest (e.g., default mode net-
work or DMN) underline this view that brain activity during rest and task related
activities involve broad cortical network activation.

Prefrontal cortex (PFC) was shown to be a key player in maintaining perceptual
representations during working memory tasks and providing feedback to posterior
cortex, thereby biasing activity in favor of behaviorally relevant stimuli (Baylis
and Rolls 1987; Fuster 1973; Goldman-Rakic 1995). In monkeys, an elevated
discharge in PFC during a delay interval was the most characteristic effect of the
‘sample’ stimulus (during encoding) on prefrontal cells suggesting that short-term
memory basically consists of the continued facilitation of neural activity in
cerebral structures recently engaged in sensory processing (Fuster 1973; Fuster and
Jervey 1981; Miller et al. 1991; Richmond et al. 1983; Wilson et al. 1993). The
monkey studies also showed that cooling of either PFC or inferotemporal cortex
(ITC) interrupted loops of reverberating activity between them, a likely mecha-
nism of the continued facilitation (Fuster 2001). Chafee and Goldman-Rakic
(2000) found similar patterns of neuronal activity in PFC and parietal neurons in
monkeys and demonstrated their interdependence via cortical cooling. These
studies and others (Tomita et al. 1999) indicate that PFC-parietal and PFC-ITC
regions share reciprocal projections and that these circuits are necessary for the
transmission of receptive field properties and other dimensions of task-related
activity when these areas are recruited to a common task. Our earliest memory
study (Aine et al. 2003), designed to parallel the Delayed-Match-to-Sample (DMS)
working memory studies conducted in monkeys, revealed strikingly similar results
as those obtained in monkeys. Figure 2 (top row) shows similar time-courses for
V1 in the monkey and humans. Walsh Stimuli (upper right) were used in both
cases. The bottom row (left) shows an example from monkey area V4 when the
monkey was attending a preferred stimulus versus attending a non-preferred
stimulus. At the right, an effect of attention or working memory in humans also
reveals elevated and sustained activity in several brain regions including the
prefrontal region (Aine et al. 2003).
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Cortical Feedback Connections. Although little is known about the physical
nature or development of feedback connections, many believe that feedback
projections from prefrontal cortex play a major role in modifying responses in
lower-order brain regions during controlled or effortful processing, such as that
required for attention and working memory tasks. Studies in nonhuman primates
have revealed the existence of massive feedback projections that carry information
from higher-order to lower-order regions. Although feedback connections can
theoretically modulate early portions of the initial visual response (Hupe et al.
2001), most studies show that attentional modulations lag the earliest response
(*250–300 ms in monkeys) (Haenny and Schiller 1988; Lamme et al. 1998;
Mehta et al. 2000a; Motter 1994; Roelfsema et al. 1998; Seidemann and Newsome
1999). The late sustained activity allows information from feedback connections to
be incorporated into the response to increase and sharpen the neural responses
(Gilbert et al. 2001; Lamme and Roelfsema 2000). Our early attention studies
using MEG were the first to suggest that attention can modulate V1 of humans via
feedback from higher-order areas (Aine et al. 1995). These conclusions were based
on the observations that: (1) attention-related effects in area V1 occurred later in
time (*150 ms) than the earliest V1 activity and (2) this later attention-related
activity showed a *1808 difference in net direction of current flow relative to the
initial feedforward response around 80 ms. Previously, when ERPs were utilized

Fig. 2 Top row Monkey V1 responses are compared to time-courses localized to occipital cortex
in a human participant. Sample stimuli (Walsh patterns) used in both studies are shown in the
upper right panel. Bottom row Effects of attention are shown for monkey V4 and for human
prefrontal cortex. Activity in both monkey and human participants was elevated and sustained.
Compare solid lines (attended) with dashed lines (not attended). Each tracing in the human time-
course represents an average of 250 responses. Adapted from (a) Richmond et al. (1990);
(b) Reynolds and Desimone (1999); and (c) Aine et al. (2003)
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to examine visual selective attention, concepts of ‘‘early in time’’ were often
confused with ‘‘early levels of the visual system’’ suggesting that if attention had
its effect early in time, then it must have occurred at the level of V1 or V2 and that
if the attention-related effect occurred later in time, then it must have occurred at a
higher level within the visual system (e.g., extrastriate regions). More recently, the
attention effect in V1 was examined using both ERPs and fMRI (Di Russo et al.
2003; Martinez et al. 1999; Noesselt et al. 2002) and these studies supported the
conclusions reached in Aine et al. (1995), as well as providing more definitive
evidence. Additionally, fMRI studies (Brefczynski and DeYoe 1999; Tootell et al.
1998a) routinely show that attention can affect activity at the level of primary
visual cortex and invasive studies show that it is via feedback influence which
occurs later in time (Lamme and Roelfsema 2000; Mehta et al. 2000a, b). In
general, MEG provides a unique tool for characterizing the spatio-temporal
dynamics of neuronal activity that can even be used in certain circumstances (e.g.,
imagery) to differentiate feedforward activation sequences from feedback activity
(Aine et al. 2003). Feedback connections are crucial for the establishment of
neural circuits.

Feature Integration. How features and attributes of stimuli become integrated
across widespread cortical regions has been an issue of intense interest and debate.
Evidence indicates that (1) local field potentials (LFPs), which provide a measure
of mainly postsynaptic dendritic responses, show strong sub-threshold synchrony
of ongoing fluctuations in the cell’s membrane potentials (Lampl et al. 1999) and
(2) coordinated sub-threshold excitability changes have been demonstrated to
modulate local networks (Engel et al. 2001). From this perspective, induced
oscillations are part of different cell assemblies that are activated to temporally
bind different stimulus characteristics or to bind the activation of a system of
distributed areas necessary for the task at hand. While the specific roles these
rhythmic activities play are still debated (i.e., is it an epiphenomenon?), the
existence of oscillatory activity is not (Salinas and Sejnowski 2001; Tallon-Baudry
et al. 2004). But, as Tallon-Baudry et al. (2004) suggest, it is important to establish
the behavioral relevance of oscillatory activity by showing that it is associated
with behavior such as correct performance. Along these lines, Jensen and Tesche
(2002) presented a list of digits similar to the original Sternberg design and found
that MEG theta band activity over frontal regions increased parametrically with
the number of items retained in working memory and there was stronger theta
during the memory task compared to a control task. There was also a systematic
increase in RT with increase in memory load. EEG and fMRI studies also suggest
that an increase in frontal theta, associated with an increase in memory load,
corresponds to a decrease in BOLD in DMN regions (Scheeringa et al. 2009).
These studies suggest a functional role for oscillatory activity, but the conditions
under which gamma, theta, beta or alpha activity is involved as well as their
specific roles is still unclear. For example, does synchronization in theta band
reflect episodic memory encoding (Klimesch 1999) or does it play a role in holding
a stimulus in mind over the course of a brief delay (Lee et al. 2005)? MEG
methods are uniquely suited for this exciting area of study.
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As mentioned above, memories are formed through associations; brain regions or
neural systems that are repeatedly active at the same time will tend to become
associated (i.e., the principle of synchronous convergence) (Aertsen et al. 1989;
Fuster 1997). Some investigators refer to the correlated activity across cortical areas
as functional connectivity (Friston 1994) and others refer to it as temporal binding
(Engel et al. 1992; Gray 1999; Roelfsema et al. 1997; Singer and Gray 1995). The
former emphasizes the observed temporal correlation between two neurophysio-
logical measurements from different parts of the brain (Gerstein and Perkel 1969)
and the latter denotes the linking together of different features and attributes of
stimuli through the selective synchronization of distributed neuronal activities
(Bressler 1995; Gray 1999; Milner 1974; Singer and Gray 1995). Attention has been
shown to enhance synchronization across different areas of cat brain (visual, parietal
and motor cortex); with close to zero time lag (Roelfsema et al. 1997). While most
studies in humans examine connectivity via coherence analysis using sensor mea-
surements (sensor space), we have used our localized time-courses (source space)
for cross-correlational analyses. Figure 3 shows a cross-correlation analysis
(50–480 ms) conducted on the DMS data for three brain regions (medial occipital,
medial temporal lobe or MTL, and PFC) and 4 participants. Similar to the Roelf-
sema study, attention or task relevance increases synchronicity across distributed
cortical regions in healthy human participants (Aine et al. 2003). Activity in MTL
and PFC regions covaried with each other (e.g., compare time-courses for one
participant at left for MTL and PFC and cross-correlation plots for 4 participants at

Fig. 3 Cross-correlation plots for three cortical regions. Post hoc comparisons revealed that the
maximum cross-correlation value for medial temporal and prefrontal time-courses were
significantly greater than the other two comparisons [occipital and medial temporal time-courses
(p \ 0.05) and the occipital and prefrontal time-courses (p \ 0.01)]
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the right—green tracings). The maximum peak of the PFC and MTL correlation is
near the zero lag while the maximum peak of the PFC and occipital correlation
(shown in blue in the plots at the right) is not near zero. Lags and cross-correlation
coefficients can be compared with behavioral performance measures to determine
the relatedness of these brain regions. For a more thorough review of the functional
organization of the visual system and of visual MEG studies in general, please refer
to Aine and Stephen (2002).

2 Basic Differences Between ERPs and ERFs

Although some ERP manuals readily provide normative values for amplitudes and
peak latencies of ERP waveforms, similar tables will not be created here since: (1)
the shape of MEG waveforms change dramatically across small cortical distances
and (2) net amplitudes depend critically upon the net orientation of the sources of
activity. Newcomers to MEG from the ERP field will notice immediately that
averaged event-related fields (ERFs) do not look the same across subjects even
though the same stimuli were presented to evoke them (Fig. 4). Investigators using
ERPs know that whole-head ERP topography maps appear quite similar across
participants and consequently, averaging data across subjects was used as an easy
data-reduction approach. However, as Fig. 5 shows, MEG is extremely sensitive to
the primary source of neuronal activity, in particular the orientation of sources,
which is why it is not justified to average ERFs across subjects. In Fig. 5, the
averaged ERFs, superimposed across 122 sensors for 2 subjects, appear different.
However, once sources are localized to occipital cortex and other brain areas, then
time-courses and locations can appear remarkably similar across participants, as in
this example (see Fig. 5b and c, respectively). Consequently, our data reduction
strategy has been, in some studies, to localize the sources of activity first, and then
average time-courses from similar brain regions across participants.

Because MEG signal strength is sensitive to net dipole orientation, signals may
appear to have reduced amplitudes for some subjects relative to others which do
not necessarily indicate pathology. Figure 6 shows an example where the source
moment is the same for three subjects in our realistic simulated data but the
resultant waveform amplitudes are not (Stephen et al. 2003). Two spikes (upper
right plot) separated by 10 ms were generated in left and right premotor cortices
(shown in yellow on the MRI at the left) and embedded in real spontaneous
activity from each participant. Considerable differences in signal-to-noise ratio
(SNR) can be seen across patients as a result of: (1) cancellation of signals across
gyri and sulci and (2) the net orientation of the active patch (radial vs. tangential).
The background activity in each case is fairly similar in this example. It was the
differences in the cortical geometry of the sources that contributed to these overall
differences in SNR.

Figure 7a shows how cortical geometry differences can exist across participants
even for a prominent fissure in cortex such as the calcarine fissure. Sample MRIs
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for two participants show how the fissures differ (i.e., follow the fissure from the
black arrows starting at the occipital pole up to the parieto-occipital sulcus). In this
example, the MRIs were placed into Talairach space, a space used for roughly

Fig. 5 a MEG waveforms are shown for 2 subjects. b Time-courses localized to left medial
occipital cortex are shown. c Locations of active sources for 2 participants. Time-courses were
taken at source locations marked with blue asterisks

Fig. 4 A grating stimulus presented to the same position in the visual field for 2 subjects reveals
radically different field distributions for this small region at the back of the head. Aine et al. (1995)
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equating brain regions across subjects. However, there is about a 2 cm difference,
between subjects, in terms of where the calcarine fissure meets the occipital pole
(black arrows). The MRI at right shows that even within a single participant, MEG
waveforms and contour plots may appear radically different across hemispheres
given the asymmetry of some calcarine fissures. In general, the pattern of sum-
mation and cancellation may differ across hemispheres and participants.

Do ERP methods share similar problems with ERFs regarding amplitude
measures? Both EEG and MEG are source orientation dependent (i.e., scalar
product and vector product, respectively of two vector quantities). It holds only for

Fig. 6 Realistic simulated data for 3 study participants using the same source moment
(135 nAm) for left and right premotor sources (1 cm2 patches on the MRI). The first and second
sources were separated by 10 ms as shown in the upper right plot. Adapted from Stephen et al.
(2003)

Fig. 7 MRIs from 2 subjects show Talairach bounding boxes to reveal differences in calcarine
fissures. The black arrows show where the calcarine fissures meet at the occipital pole. The right
panel shows that even within a single subject, calcarine fissures can be very asymmetric across
hemispheres (see white arrows)
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a spherical volume conductor assumption that EEG ‘‘sees’’ only radial sources and
MEG ‘‘sees’’ only tangential sources. In realistic head volumes the two techniques
have preferential but not exclusive sensitivity to radial and tangential sources,
respectively. However, because MEG primarily measures intracellular current
flow rather than return currents, significant differences in field patterns across
sensor locations from subject to subject is usually evident due to the variable
orientations of the sources contributing to the field patterns. EEG, reflecting pri-
marily volume currents, tends to show a more similar pattern of activity across
subjects, regardless of differences in functional neuroanatomy across subjects.

In general, EEG and MEG are both sensitive to differences in cortical geometry
across subjects and cancellation/summation of potentials/fields within active cor-
tical patches. EEG and MEG are also both sensitive to the stimulating parameters
used to evoke responses. Camisa and Bodis-Wollner (1982) report, for example,
that using a horizontal grating instead of a vertical grating or by changing the
luminance of the stimulus changed the number of subjects classified as being
normal using ERPs. As a general strategy, when one wishes to compare amplitude
measures across subjects one could make within-subject comparisons across dif-
ferent experimental conditions first (e.g., attend versus not attend or passive versus
active tasks). In this way, within-subject comparisons act as a control for indi-
vidual absolute amplitude measures since one is comparing relative effect sizes
across subjects (e.g., the effect of attention). As a final note, normative ERP
measures for one laboratory are typically not used by other laboratories since ERP
amplitudes (and ERF amplitudes) are dependent upon the stimulus parameters and
equipment used to evoke them. When one adds the variability of cortical geometry
normally witnessed across individuals to the above, it becomes very difficult to
defend the use of absolute ERP/ERF peak amplitudes as a clinical diagnostic
measure.

ERP Peaks. Early ERP studies labeled peaks in the evoked responses either as
components 1, 2, and 3 (CI, CII, CIII) or as peaks denoted by polarity (negative
versus positive) and latency (N70, P100, N200, P200, P300), depending on the
type of stimulation (e.g., pattern reversal, pattern onset, flash stimulation) and the
country in which in the studies were conducted (e.g., UK vs. USA). Considerable
effort was expended on attempts at localizing the source of each individual peak
either qualitatively (Jeffreys and Axford 1972a, b; Michael and Halliday 1971) or
quantitatively via source localization procedures [e.g. Butler et al. (1987), Darcey
et al. (1980), Maier et al. (1987), Ossenblok and Spekreijse (1991)], but it even-
tually became clear that single peaks/components in the waveforms (e.g., P100) do
not necessarily reflect activity from a single cortical area. Each peak can reflect
activity from a number of different sources.

ERF Peaks and Origins. The neural origin of the P100 visual response, which
was so elusive in the ERP studies, became a focus of several early MEG studies.
Seki et al. (1996) used a single-dipole model to account for activity occurring
within a 90–135 ms time window to pattern reversals of full-field, half-field, and
quadrant-field stimulation. In each of these cases, the MEG correlate of P100
localized to the bottom of the calcarine fissure. However, source locations were
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often variable in these early studies since peaks were analyzed using single-dipole
models even though many investigators were aware that multiple generators
contribute to the peaks in the MEG waveforms even as early as 130 ms (Ahlfors
et al. 1992; Aine et al. 1995). Most MEG studies focused on localizing the sources
of different components of the visual ERPs and showed various localizations
around the calcarine fissure for the 1st through 3rd components (Harding et al.
1994, 1991; Hashimoto et al. 1999; Seki et al. 1996; Shigeto et al. 1998).

In Supek et al. (1999) we set out to determine if we could find evidence for
retinotopic organization of extrastriate areas in humans, as documented by inva-
sive monkey studies, and to examine the linearity of the evoked magnetic fields. In
the latter case, it was assumed that responses to paired stimuli should equal the
sum of responses evoked by single stimulus presentations, at least for retinotop-
ically organized visual areas. Two-dimensional, difference of Gaussians (DOGs),
as shown in the top portion of Fig. 8a, was used to test this hypothesis. In general,
the paired presentation of stimuli reflected superposition of the responses evoked
by single stimuli but only for early activity up to 150 ms poststimulus; under-
summation was evident later in time. This study also nicely demonstrated the
retinotopic organization of 3 brain regions, using multidipole modeling, the first
MEG study to do so (Fig. 8b). Later we moved away from using DOG stimuli in
order to evoke additional visual areas simultaneously using circular sinusoids (e.g.,
bulls-eye targets); higher-order areas such as area V4 prefer stimuli that contain
higher spatial frequency content. In addition, the circular sinusoids allowed us to
examine spatial frequency without having to use large stimulus sizes (e.g., grating
stimuli); i.e., in order to examine spatial frequency, stimuli should contain at least
2 cycles.

The results of Stephen et al. (2002) helped confirm that the human visual
system is as complicated as the monkey visual system by identifying many of the
homologous visual areas including, V1, V2/V3, V4, putative MT, intraparietal
sulcus (IPS), medial parietal cortex and frontal eye fields, using circular sinusoids.
The timing and onset of the different visual areas are consistent with previous
monkey results suggesting that cortical areas in the dorsal visual stream are
activated more quickly than cortical areas along the ventral visual stream. The
results also suggested that stimuli with characteristics that are preferred by the
dorsal or ventral visual stream still activate both dorsal and ventral visual areas
with the largest difference appearing to be timing associated with that activation.
This study is discussed more completely under ‘‘Retinotopy.’’

More recently, Aine et al. (2003) characterized temporal response profiles from
several cortical areas during a working memory task. Response profiles from pri-
mary visual cortex revealed initial ‘‘spike-like’’ activity followed by ‘‘slow-wave’’
activity. Similar to findings by Hashimoto and colleagues (Hashimoto et al. 1999),
the ‘‘spike-like’’ activity appeared to have different physiological properties than
the ‘‘slow-wave’’ activity even though both of these activities were generated from
the same cortical region; it was hypothesized that the former predominantly reflects
afferent or feedforward activity and the latter reflects a mixture of afferent and
efferent activity. As suggested in recent monkey studies, the late sustained activity
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does indeed allow information from feedback connections to be incorporated into
the response to increase and sharpen the neural responses (Gilbert et al. 2001;
Lamme and Roelfsema 2000). Effects of attention are also typically found later
when feedback into lower cortical regions is evident. The overall shape of the visual
time-courses in the working memory task was quite different than the time-courses
identified in Stephen et al. (2002), when there was no task associated with the visual
stimuli. The simple sensory responses tend to have more peaks with an overall
shorter duration response than visual responses evoked by a memory task sug-
gesting again that the visual system is inherently involved in memory tasks.

ERF Norms. Armstrong et al. (1991) attempted to establish norms for MEG
responses to visual stimuli similar to what had been done with ERPs, using a
2nd-order gradiometer in an unshielded environment. They studied 100 subjects

Fig. 8 a DOG stimuli were presented individually to 3 locations in the lower right field as well
as in pairs to examine both retinotopy of extrastriate regions and superposition of evoked fields.
Fixation point is shown as a white ‘‘+’’. The lower portion reveals 2 sensor locations showing the
averaged evoked fields to the 2.5� and 12.5� stimuli, when presented individually, and when
the two were presented as pair. Every subject revealed sensor locations where the response to the
paired stimuli were nulled (sensor 2) and showed the opposite relationship between stimulus
conditions (sensor 5). b Two subjects reveal 3 regions of activation in response to DOG stimuli
when a multidipole model was used and each region showed a systematic shift in brain location
as a function of location in the visual field (i.e., retinotopy). Adapted from Supek et al. (1999)
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aged 18–87 years and found that pattern reversal stimuli evoked a major positive
component between 90 and 120 ms while flash stimulation produced a major
positive component between 90 and 140 ms. They noted that the latencies were
considerably more variable in MEG than in EEG. This may be due to the fact that
MEG primarily measures intracellular current flow rather than the return currents,
which can cause significant differences from subject to subject in the field patterns
at each sensor location, due to the variable orientations of the sources contributing
to these components. Alternatively, some investigators suggest that MEG sees
fewer sources than EEG. If several sources contribute to a given component and
MEG does not see all of them, then it is possible that the overall latency would be
more variable for MEG than EEG. In addition to the possible contributors to
variability mentioned above, ERP signals are generally more distributed across the
head, due to the conductivity properties of the skull and scalp, whereas MEG
responses tend to be more focal. Therefore, every source is more likely to be seen
in more of the sensors using ERPs leading to less variability to timing in the
overall waveforms. However, every source will not contribute to every sensor in
MEG. If the multiple sources are not accounted for when modeling the MEG data,
then there will be more variability in reported onset times, overall. In addition to
the fact that some sources may have a larger or smaller contribution to the
waveform due to differences in cortical geometry, this will also lead to variability
in the timing for MEG. These factors can be better accounted for using a proper
source model to differentiate the timing of individual sources.

3 Experimental Design Parameters

Stimulus Location–Retinotopy. Figure 9 reveals a portion of the classical model of
V1 retinotopic organization. V1 in monkeys contain a point-to-point representation
of the entire contralateral visual hemifield (Felleman and Van Essen 1991; Van
Essen 1979). This is true for humans as well, as shown initially from lesion studies
(Holmes 1945; Horton and Hoyt 1991; Spector et al. 1981) and then by nonin-
vasive neuroimaging studies (Engel et al. 1997; Fox et al. 1987; Maclin et al. 1983;
Tootell et al. 1998b). The classical model of retinotopy based on lesion data
suggests that the representation of the horizontal meridian (HM) is at the base of
the calcarine fissure (see white arrow in Fig. 9a—HM is represented along the fold
of the calcarine fissure). Lower field stimuli are expected to activate regions in the
upper bank of the calcarine fissure and vice versa. Furthermore, there is a sys-
tematic relationship between the depths of sources in the calcarine fissure and the
eccentricity of stimuli in the visual field (i.e., peripheral placements activate
regions deeper within the fissure). Finally, left hemifield stimuli project to the right
hemisphere and vice versa. Figure 9c shows a hypothetical stimulus located at 208
eccentricity in the lower right visual field (see small circle at 3158). Figure 9b
shows its theoretical representation in flattened visual areas V1, V2, and V3.
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In our MEG retinotopy studies (Aine et al. 1996), we found that area V1 is not
synonymous with the calcarine fissure as many investigators assume. In essence,
the classical model is a simplified depiction of retinotopic organization. Human
anatomical studies on cadavers have identified V1 via the stria of genari and these
studies showed that only 55 % of V1 was found in the calcarine fissure of 52
human hemispheres (Stensaas et al. 1974) and that the anterior boundary of V1 is
ordinarily found in the lower lip of the fissure (Polyak 1957). The latter finding
suggests that in some cases, particularly for more eccentric placements in the
lower field paralleling HM, lower field stimuli do not activate regions above the
calcarine fissure. Areas V2 and V3 (shown in Fig. 9b also have retinotopic
organization that are mirror images of each other. However, these areas cannot be
identified by anatomical features. Retinotopic and functional mapping must be
conducted for each individual, which is likely to be quite variable when using
MEG due to differences in the folding of cortex. In addition, the process itself
is tedious when multiple sites within the visual field have to be stimulated
and analyzed. While our MEG studies demonstrated retinotopic organization of
extrastriate cortex (Supek et al. 1999), extensive retinotopic mapping can be
accomplished more easily using fMRI (Sereno et al. 1995); however, the time-
courses of these regions will not be characterized as well as they could be via the
use of MEG methods and appropriate modeling strategies.

Stimulus Location—Differences in Onset Latencies. At least two parallel
streams of visual processing begin as early as the level of the retina and continue
through primary and higher-order visual areas. The dorsal stream (Fig. 1) is
characterized primarily by faster conducting large cell types (magnocellular)

Fig. 9 a Left medial view of occipital lobe with idealized V1 superimposed. Horizontal
meridian (HM) is located along the fold of the calcarine fissure (see white arrow). b Calcarine
fissure is unfolded and three visual areas are demarcated, both upper and lower fields. c. There is
a systematic point-to-point representation between the visual field and it’s projections onto areas
V1, V2 and V3. A theoretical stimulus (small circle) is positioned in the lower right field and it’s
projections to the upper portions of V1, V2 and V3 can be seen in B. HM is denoted by dashed
lines and vertical meridians are denoted by dotted lines. The representations of V1 and V2 are
mirror images of each other as are the representations of V2 and V3. Adapted from Horton and
Hoyt (1991)
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which are more pronounced in the peripheral retina and project primarily to MT
and posterior parietal cortex while the ventral stream is characterized primarily by
slowly conducting small cell types (parvocellular) which are more pronounced in
the central retina and project to inferior temporal areas (De Monasterio and Gouras
1975; De Yoe and Van Essen 1988; Livingstone and Hubel 1987; Nowak and
Bullier 1997; Shipp and Zeki 1985; Ungerleider and Desimone 1986). Figure 10a
shows averaged MEG waveforms indicating earlier onsets associated with more
eccentric or peripheral placements of the stimulus in the visual field (compare
onset of activity for 1.7 versus 12 degrees along the dashed vertical line demar-
cating 100 ms poststimulus).

In general, dorsal stream structures have been related to motion processing or
spatial vision and ventral stream structures have been related to the processing of
features such as color and spatial frequency or object and face processing. Because
peripheral stimulation may excite more large cell types than central field stimu-
lation and peripheral field representations have more direct projections to parietal
cortex, we hypothesized that peripheral stimulation would result in earlier onset
latencies in dorsal stream structures than central stimulation (Stephen et al. 2002).
Figure 10b shows that activation of IPS and the superior lateral occipital gyrus or
S. LOG (dorsal stream structures) onset earlier for peripheral field stimulation. The
table shown below indicates that visual areas reveal a systematic increase in onset
latency for central field stimulation as one progresses from V1 to inferior lateral

Fig. 10 a Eccentric placements in the visual field yield earlier onset latencies as demonstrated in
the surface waveforms obtained from lower field stimulation. The vertical dashed line marks
100 ms. b Onset latencies of time-courses of sources localized to V1 and intraparietal sulcus
(IPS—a dorsal stream structure) differ depending upon whether stimuli are presented to central
(2.3�) or peripheral locations (24�). The table below shows quantified values and statistical
differences
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occipital gyrus (I. LOG) through IPS. In contrast, peripheral field stimulation
results in similar onset latencies throughout the structures with IPS and S. LOG
onsetting earlier, compared to when central field stimulation evoked the activity.
These results are consistent with results from nonhuman studies (Nowak and
Bullier 1997).

Stimulus Location—Cortical Magnification Factor. Stimulus location is usually
described as retinal eccentricity which is the angle between the primary visual axis
(fixation point) and the line of sight from the eye to the object. If stimuli are to be
placed in different locations of the visual field then the cortical magnification
factor should be considered since in monkey striate cortex there is at least a
10-fold reduction in the area of cortex representing a corresponding area of the
retina C 158 from the fixation point (Daniel and Whitteridge 1961). For example,
if the goal of the study is to place a 2� square at different eccentricities of the visual
field (e.g., 58 and 108) and to compare responses, then squares placed in more
peripheral locations should be scaled larger in size in order to activate the same
amount of tissue in primary visual cortex that is activated by a square placed in
more central areas (Perry and Cowey 1985; Rovamo and Virsu 1979). Cortical
magnification describes the scale of retinotopic mapping by indicating how many
millimeters of cortex represent 18 of visual angle at any given eccentricity.
Unfortunately, the cortical magnification factor based on cell densities in the retina
of monkeys and humans has been estimated for primary visual cortex only. Cell
densities are greater at the fovea where receptive field sizes are small and they
decrease in the periphery as receptive field sizes become larger. In addition, the
upper field representation of the retina has fewer cells than lower field. A formula
or series of formulas for the different visual field quadrants can be used to estimate
the sizes of the stimuli necessary for activating equivalent amounts of tissue. Also,
cortical magnification factors for striate and extrastriate cortex in humans have
been estimated using fMRI (Sereno et al. 1995). Figure 11 shows an example of
stimulus sizes scaled by the cortical magnification factor used in some of our basic
visual studies (Stephen et al. 2002, 2006). See also different sizes of DOG stimuli
in Fig. 8a.

Stimulus Intensity, Contrast and Spatial Frequency Content—Onset Latencies
and Amplitudes. In general, ERP studies have shown that higher intensity and
higher contrast stimuli shorten onset and peak latencies and reaction times
(Armington 1964a, b; Campbell and Kulikowski 1972; Okada et al. 1982; Robson
1966) and increase amplitudes (e.g., peak to trough) until they reach a saturated
level. However, complex interactions may occur when varying contrast, intensity,
spatial and temporal frequency, stimulus size and location of the stimulus in the
visual field, as discussed below.

Spatial frequency relates to the amount of detail cells can process and is
inversely related to cell size (Enroth-Cugell and Robson 1966). Both cat and
monkey studies show, as mentioned previously, that the ratio of small versus large
cells changes from central to peripheral retina; that is, there are a greater number
of small cells in the central retina and a greater number of large cells in the
peripheral retina (Stone and Johnston 1981; Wright and Ikeda 1974). This physical
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arrangement implies that conduction velocities will vary across the retina as well
as preferred temporal and spatial frequencies (larger cell sizes prefer lower spatial
frequencies and faster temporal frequencies). ERP studies found that small check
sizes for example, evoked the greatest amplitude response when stimuli were
presented to the foveal retina and that the check size producing the largest
amplitude response increased as the peripheral retina was stimulated (Harter
1971). Okada et al. (1982) systematically examined peak-to-peak amplitudes (e.g.,
the amplitude from the maximum positive to the maximum negative peak of the
initial occipital response) of visual ERPs and ERFs to different spatial frequencies,
temporal frequencies and contrast levels using vertical, contrast-reversal gratings.
The results showed: (1) greater amplitudes for higher spatial frequencies presented
at low temporal frequencies; (2) higher temporal frequencies revealed greater
amplitudes to low spatial frequencies; and (3) latencies of the ERFs increased with
higher spatial frequency and decreased when contrast was increased. The char-
acteristics of these transfer functions agreed well with both ERPs (Campbell and
Kulikowski 1972; Campbell and Maffei 1970; Regan 1978) and the psychophys-
ical contrast function (Kelly 1966; Robson 1966). Although many of these results
had been shown previously (Kaufman and Williamson 1980; Williamson et al.
1978), this was the first study to quantitatively document the linear relation
between the steady-state magnetic field and electrical potential for both phase and
amplitude. Nakamura et al. (2000) also found, similar to many ERP studies, that
check size (spatial frequency) significantly affected the latency and amplitude of
the 100 ms peak in the transient response (i.e., longer latencies and reduced
amplitudes for higher spatial frequencies).

If a proposed study intends to examine the spatial frequency content of stimuli
then the use of sinusoidal stimuli (Fig. 11) may be preferable since square wave
stimuli contain high spatial frequency content due to the sharp edges (Perry and
Childers 1969). Furthermore, the stimuli should contain at least 2 cycles in order
for the stimulus to be perceived at the desired spatial frequency (Regan 1989). In
addition, psychophysical studies using a constant-luminance patterned stimulus
(i.e., pure contrast stimulus) generally keep the mean luminance of the total
stimulus field constant (see Fig. 11 for example—the entire background was the
same as the gray surrounding the circular sinusoids which equaled the mean
luminance of the circular sinusoids). Early ERP studies suggest that using pure
contrast patterned stimuli will avoid unnecessary contamination by large lumi-
nance-related components (Jeffreys 1977) and will still yield amplitudes as large

Fig. 11 Example of circular sinusoids scaled by the Cortical Magnification Factor for these right
field stimuli. (Note the fixation point at the left). Stephen et al. (2002, 2006)
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as, or larger than those evoked by luminance related or unpatterned stimuli (Regan
1972). These studies suggest that pattern and non-pattern related components have
two distinct types of cortical processes contributing to the CI, CII, and CIII
components of the evoked response and that they have different sources that are
essentially independent of each other. Contrast specific mechanisms (patterned)
contribute to CI while luminance related mechanisms (or unpatterned) predomi-
nantly contribute to CII and CIII but also contribute to CI. Responses to sinusoidal
gratings of less than 1 cycle per degree (cpd) are also considered for the most part
to be luminance responses (Kulikowski 1974). Since the early studies focused on
careful analysis of waveforms they attempted to simplify the responses as much as
possible to eliminate alternative interpretations of the data. Some investigators
may be wondering why this information is considered to be important, when they
are interested in cognition and not basic vision. If two different stimuli are used in
a cognitive study (e.g., high spatial frequency content of a house vs low spatial
frequency content of a landscape) then changes in the MEG response may be
associated with one condition versus another, due to differences in basic visual
properties (e.g., differences in spatial frequency content), rather than being due to
the cognitive factors under study. If the cognitive study is not well-controlled, it
may lead to an alternative interpretation of the data.

As a final note, if the study involves the examination of spatial frequency and
color, then the investigator should become aware of potential artifacts associated
with chromatic aberration. A spatial frequency of 4 cpd or lower could be selected
rather than a higher spatial frequency in order to minimize artifacts associated with
chromatic aberration (Howarth and Bradley 1986).

Stimulus Duration and Temporal Frequency—Off-Response and Overlapping
Signals. The visual system is sensitive to changes in luminance over the visual
field. When stimuli are turned on, a sequential set of peaks emerge in the response.
The visual system is also sensitive to when the stimulus is turned off and again a
set of peaks emerge in the response. Although several early ERP studies examined
human cortical on- and off-responses, there are no studies that we are aware of that
have systematically examined the sources of these responses. However, ERP
investigators have hypothesized that the CI component, believed to be generated
from V1, is a large contributor of the off-response and they note that the off-
response varies less with retinal location (Jeffreys 1977). Also, the resultant
response to stimuli presented\25 ms in duration is not a simple linear sum of the
onset and off-responses (Regan 1972). Figure 12 shows examples of two stimulus
durations and consequent off-responses associated with them. In the top row, long
stimulus durations permit one to choose whether or not to include the off-response
in the analysis interval. A pronounced off-response in the bottom row makes the
waveforms and time-course appear more complicated. The medial occipital region
(MO—putative V1) was the only region in this particular analysis to reveal the off-
response. Note that off-responses take about 100–150 ms to become evident after
the stimulus goes off and they are smaller in amplitude than on-responses.

As stimulus repetition frequency is increased, the responses in both ERPs and
ERFs overlap to an increasing extent. Stimulation rates for typical transient ERPs/
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ERFs range from 1 stimulus per every few seconds to a more common average rate
of one per second (1 Hz). At higher repetition rates (e.g., 10 Hz), ERP and ERF
waveforms begin to entrain where no individual response cycle can be associated
with a particular stimulus cycle (steady-state). When this state is reached it is no
longer appropriate to describe the response as amplitudes across time but rather as
amplitudes and phases of the various harmonic components of the ERP/ERF
versus stimulus repetition frequency (Regan 1972). Fourier analysis decomposes
the ERP/ERF waveforms into constituent harmonic components and describes
each component by specifying its amplitude and phase. Pattern reversal frequen-
cies exceeding 5 Hz can usually be adequately described by two harmonics. Since
our group is interested in localizing sources of activity and understanding the
temporal dynamics between brain regions, we used a pseudo steady-state design to
determine which visual areas were engaged in frequency following (Stephen et al.
2002). Figure 13 shows waveform and time-course samples (i.e., localized to MO)
using our pseudo steady-state design. Although it was hypothesized that dorsal
stream structures would follow higher frequencies better than ventral stream
structures, these results indicate that MO (putative V1), common to both streams,
is very capable of following at low and high frequencies.

In general, careful consideration should be given to the timing of the stimuli.
Does it matter if you have overlapping on- and off-responses due to the stimulus
duration chosen or residual activity from one stimulus averaged with responses
from the next cycle, which occurs with short interstimulus intervals (ISIs)? Early
ERP studies of basic vision attempted to assure clean baseline measures (e.g., no
overlapping activity from previous trials) since all amplitude measurements were
dependent upon these baseline measures and it was assumed that interruption of
a response by another stimulus contaminates the response. There is empirical

Fig. 12 a Effects of 2 different stimulus durations are shown. b On- and Off-responses are shown
in the averaged MEG waveforms and in the time-courses. c Long-duration stimuli permit one to
analyze data before the off-response appears (upper right time-course) whereas short duration
stimuli change the appearance of the time-courses (lower time-course)
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evidence that response tails of each response overlap and add as the frequency of
stimulation is increased beyond 3 Hz (Perry and Childers 1969).

There are a couple of other ways to help assure that: (1) the baseline returns to a
state of rest between successive trials and (2) the SNR is maximal. First, ran-
domization of the ISI (e.g., 500 ms: the ISI varies between 800 and 1200 ms for an
average ISI of 1 Hz) helps eliminate an anticipatory response or the contingent
negative variation (CNV) which is a slow negative wave identified in ERPs that
precedes a stimulus to which a response must be made (Walter et al. 1964). S1, S2
paired designs are notorious for producing slow negative shifts just preceding the
presentation of S2. Slow ramping behavior in baselines has been identified in ERFs
as well. Second, randomization of the stimulus conditions may also help prevent
habituation of the responses (reduction of signal due to repetitive stimulation).
Inclusion of short rest breaks also helps. While MEG studies routinely rely on
inverse procedures for localizing sources, purity of the data will ultimately help in
analysis and consequent interpretation.

Stimulus Size—Focal versus Extended Sources. In the past, many ERP and ERF
studies were conducted using full field and half field stimuli. Localization of the
sources of activity using inverse algorithms was not a primary goal of these
studies. When designing visual studies one should keep in mind the tradeoffs
between stimulus size and the ability to localize sources (i.e., spatial resolvability
and whether or not the basic assumptions of the localization algorithm are vio-
lated). There is an ongoing debate about how much of cortex is activated even
when small stimuli are utilized, particularly when higher-order cognitive functions
are involved. However, if large stimuli are utilized then it is well known that large
extended regions of cortex will be active in multiple brain regions. Resolvability
of the sources will be more difficult and appropriate algorithms should be used.

Fig. 13 Circular sinusoids were contrast reversed at different rates for 1 s. The averaged
waveforms shown in the left column reveal frequency following behavior. Sources localized
to medial occipital (MO) cortex also revealed frequency following effects. Stephen et al.
(2002, 2006)

Selection of Stimulus Parameters 787



For example, depending on source extent, dipole models have proven to be quite
robust. Hillebrand and Barnes (2002) found that when equivalent current dipoles
(ECDs) were used to fit a range of source extents, localization error increased from
*2 mm for a 60 mm2 source area to *4 mm for a 260 mm2 source area. Jerbi
et al. (2004) examined the ability of ECD and multipole models to fit a range of
orientations and source extents. For source depths \ 6 cm, localization errors
ranged from 2 mm for 50 mm2 areas to *6 mm for a 500 mm2 patch size. If the
investigator has good reasons to believe that extended activity will be produced in
excess of the sizes enumerated above, then perhaps a distributed current approach
should be considered.

The most convincing evidence, however, that higher-cognitive functions such
as language are represented as focal and distributed regions of activity, as opposed
to extended sources, comes from intracortical recordings of language processing
largely carried out by Ojemann et al. (1989). In a study of language localization of
117 left hemisphere dominant patients, during object naming, language centers
were found to be very focal (1–2 cm2). There was a frontal focus as well as one or
two in temporoparietal areas. Ojemann suggests that the discrepancy between his
results and studies using blood flow or metabolic measurement techniques such as
PET (which suggest larger language areas) is likely due to: (1) the large variability
in the location of these focal sources across subjects and (2) the fact that functional
imaging studies may indirectly indicate where neurons participate in language but
not whether these neurons are essential for the language functions. Stimulation and
lesion methods indicate areas that are essential for language.

Inter-Subject Averaging. Steinmetz and Seitz (1991) compared Ojemann’s
results with their PET results and they also concluded that the variability in the
PET results was due to: (1) variability in the exact location of language function
across subjects and (2) strict anatomical variability across subjects. In the former
case, variability in the location of function was affected by numerous factors such
as gender, verbal intelligence and the strategy used by the subjects during the task.
They strongly discouraged inter-subject averaging and strongly encouraged intra-
subject averaging as a resolution to this problem.

Figure 7 provides a concrete example of the anatomic variability often wit-
nessed across subjects. In order to average data across subjects, PET methods
typically require transforming PET brain coordinates for each individual into
coordinates within an anatomical reference such as Talairach space. As discussed
previously, the brains in the first two panels of Fig. 7 were placed into Talairach
space and the grids show differences in where the calcarine fissure meets the
occipital pole. If a small stimulus was presented in the central field, then an
average of the active regions around the occipital pole (across subjects) would
either reveal no activity due to low SNR for each subject or it would reveal a larger
region of activation due to the smearing of foci across subjects. The anatomic
variability and variability in functional loci can be enormous. Ojemann and col-
leagues indicate that some patients revealed only a frontal or only a temporopa-
rietal language module while others showed both a frontal and temporoparietal
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module of varying locations. Given the enormous individual variability, is it
reasonable to average regions of source activity across subjects?

fMRI and MEG Language Studies. Figure 14 shows recent fMRI and MEG
results when examining language functions such as verb or word generation or
when participants had to make decisions regarding whether the word presented
was concrete or abstract. Unlike many earlier fMRI results, these fMRI results
look consistent with each other and with Ojemann’s findings, while the MEG
results look quite different and are clearly dependent on the type of language task
and modeling method used. The two fMRI studies were clinical applications
geared toward determining the language dominant hemisphere. In one MEG study,
words were presented visually and participants determined whether they were
concrete or abstract (Dhond et al. 2007). The second MEG study (Kamada et al.
2007) was a verb generation task to determine which hemisphere was dominant for
language (clinically oriented). This figure highlights the importance of task dif-
ferences, intended purpose of the study (e.g., research versus clinical application),
and the modeling approach used (including basic assumptions about the source and
head model). The upper right plot reveals results from a research study where the
investigators generally believe that higher cognitive functions necessarily result in
extended activity across cortex. Therefore, a distributed current model was used to
analyze these data. In the lower right plot, a clinical study was conducted and the
purpose was to determine the language dominant hemisphere for this patient,
similar to a Wada test. The purpose of this figure is not to show how radically
different MEG results are, but rather to emphasize that the investigator needs to
consider many factors before conducting experiments and choosing an analysis
method.

Summary and Conclusions. MEG is very sensitive to even the slightest changes
in the stimulus parameters discussed above. As mentioned previously, careful
design of the study is important for the consequent ease of analysis and inter-
pretation of the results. In addition, these parameters (intensity, contrast level,
pattern or no pattern, spatial frequency, size of stimulus and its relation to the
fixation point, stimulus duration and ISI) should be measured and reported for
publications and grant applications and most importantly, they need to be con-
sistent across participants.

Some investigators feel that since they are examining higher cognitive func-
tions such as memory, that sensory-related activity is not as important. However,
given the recent studies indicating that functional neural circuits are involved (i.e.,
sensory-related regions involved in the initial perception of a past event are
members of this circuit) and attention and working memory help to maintain these
activities, there is a good possibility that sensory-related activity affects the overall
cognitive response through efferent or feedback activation. In our working
memory studies we design the stimuli so that the same set of stimuli is presented
for the different experimental conditions so that it is the task instruction that differs
between experimental conditions. In this way, if there are differences noted
between conditions they are due to task instructions themselves, and not due to any
of the stimulus parameters known to affect EEG/MEG responses. For example, our
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delayed-match-to-sample studies used a set of Walsh function stimuli that have
been well-characterized in monkey studies (see Fig. 2). The visual stimuli used are
members of the 8 9 8 Walsh function set that are composed of black and white
squares with the characteristic that each member has an equal amount of black and
white allowing for equal luminance across the stimulus set (Richmond and Optican
1987; Richmond et al. 1990). Although the spatial frequency varies across the 64
stimulus set DMS choice pairs were chosen to be within a small and medium range
of spatial frequencies to create different levels of difficulty for our aging popu-
lation. The different experimental conditions are active versus passive tasks with
the exact same stimuli being presented in both conditions. In another study, we are
examining the neural circuits associated with verbal and spatial working memory
(Aine et al. 2011). Again, the same set of stimuli is utilized across experimental
conditions (Fig. 15). In the spatial task, subjects attend to the locations of red
digits in this variant of the Sternberg task. In the verbal task, subjects attend to the
digits. Distracting stimuli may also be placed in the delay interval, but since we are
more interested in responses to the ‘‘target’’ stimuli, differences between distracter
stimulus types is not an issue. We also keep the matrices relatively small in size
(B48 visual angle) since we use multi-dipole, spatial temporal modeling which
assumes point sources of activity.

Another issue worth mentioning is not actually a problem related to stimulus
parameters but rather how individuals utilize stimulus parameters to conduct the
task at hand. We have been studying different strategies that individuals use, some
of which differ due to changes in health status (e.g., normal aging versus mild
cognitive impairment and Alzheimer’s disease) and some of which differ for other
reasons (Aine et al. 2010, 2011). Steinmetz and Seitz (1991) were also aware of

Fig. 14 a fMRI studies
examining language
dominance (verb or word
generation tasks). Both reveal
bilateral frontal and posterior
regions of activation. b MEG
studies examining language
(abstract and concrete words
versus verb generation). A
distributed current model was
used in the upper plot while
multiple single dipoles were
applied in the lower plot
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the potential problem associated with averaging hemodynamic based measures
across subjects. If participants use different strategies, which there is evidence of,
then different neural systems are activated and averaged across subjects leaving a
result that isn’t characteristic of any one of the strategies utilized (Sanfratello et al.
2014).

4 Averaging MEG Data Across Participants

Pooling Data—Averaging Time-courses in Source Space. Because MEG is sen-
sitive to the cortical geometries of each participant, averaging raw waveform data
across participants would cause spurious cancellation/summation across subjects
and is, therefore, inappropriate. However, we have found very good consistency in
time-course morphology across participants with our analysis methods [CSST: a
multidipole, spatio-temporal approach (Ranken et al. 2004): see Sanfratello et al.
this volume, for more information on this analysis method] which enable us to
average time-courses across subjects for specific brain regions. Figure 16 reveals
consistency in morphology across participants and differences in morphology
across cortical regions. Similarities across participants, associated with working
memory, may also be seen in the left portion of this figure. Blue tracings in the left
panel reflect responses to stimuli while participants were actively engaged in the
working memory task while red tracings reflect activity evoked by the passive
task. We carefully examine the internal consistency of our data on the first few
subjects when we begin a new study before continuing with data acquisition (pilot
study) in order to be certain that the parameters are what we wanted (e.g., stimulus
markers occur where they are supposed to occur) and that the quality of data is
appropriate for our analysis methods.

Fig. 15 Matrices (4�) are presented sequentially to the central field
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5 Concluding Remarks

We have attempted to highlight the most important issues confronting visual
studies gleaned from our 25 + year history of conducting MEG studies. Histori-
cally, visual studies were initially avoided since it was clear that sources associated
with the multiple visual areas needed to be modeled adequately, in contrast to
early studies examining auditory cortex with single dipole models. While it
remains true that the visual system is rich in terms of the numbers of active
sources, it is also true that many of these sources are reasonably spaced so that the
resolvability of the visual sources is not onerous. Furthermore, it later became
clear that auditory cortex does not contain a single area of activation but it too
consists of multiple regions that are located in a small region of cortex typically
situated in the temporal lobe, a region that poses problems when using a spherical
head model. The point to be made here is that the complexity of the visual system
initiated an early search for methods that went beyond the traditional single dipole
model. Consequently, we are now in a position to fully characterize the richness of
the visual system in terms of identifying numerous visual areas, characterizing the
timing within and between these visual areas, and in assessing the functional
integrity of neural circuits hypothesized to be deficient in clinical populations.

However, there are many parameters that should be considered when designing
visual protocols that can severely limit the interpretability of the data if they are
not controlled. We have illustrated several of these potential confounds. Despite
the complexities of MEG data, high quality data and appropriate analysis methods
allow MEG to offer both good spatial and excellent temporal resolution, which
no other method currently offers. In this chapter, we have demonstrated that
MEG studies further our understanding of human sensation and cognition, with
sensitivity at a single-subject level, paving the way for individualized medicine
and clinical applications.

Fig. 16 Time-courses from 3 participants (rows) are shown for 4 cortical regions (columns). The
upper left panel superimposes time-courses from ‘‘Active’’ (blue tracing) and ‘‘Passive’’ tasks
(red tracing) during a working memory experiment. Clear differences in time-course morphology
can be seen across brain regions while consistency in time-course morphology can be see across
subjects during a working memory task
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MEG Imaged Pathways of Stuttering

Susan M. Bowyer and Jennifer Peacock

Abstract Knowledge of the underlying mechanism of stuttering may be useful for
finding the best individual treatment for this persistent disorder. Stuttering is a dis-
ruption in speech production, characterized by repetitions, blocks, and/or prolon-
gations. MEG neuroimaging techniques provide an excellent tool for establishing
and evaluating reliable protocols to detect the underlying mechanisms of stuttering
which in the future will help clinicians assess responses to treatments. Detection of
neuronal network abnormalities in the default mode network of patients who stutter
can also provide further brain regions for evaluation of pre and post treatment. This
chapter reviews the use of MEG in past and present studies of stuttering. Areas for
future research and refinement of MEG protocols for stuttering are also presented.

Keywords Stuttering �Magnetoencephalography (MEG) � Resting state � Evoked
responses � Broca’s area � Wernicke’s area � Fiber tracks � Neuronal networks �
Adults who stutter (AWS) � Children who stutter (CWS) � People who stutter
(PWS) � Language processing � Treatment � Inferior frontal gyrus � Premotor �
Auditory � Visual

1 Introduction

1.1 Stuttering Background

Stuttering is a disorder that disrupts the forward flow of speech. Approximately 5 %
of people have stuttered at one point in time in their lives (World_Health_Orga-
nization 1992). Approximately 1 % of these children will continue to stutter into
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adulthood (Guitar 1998). In America there are 3 million adults who stutter (AWS)
(Bloodstein 1995). Four times more boys than girls are effected by this disorder
(Yairi et al. 1996). Although stuttering is a very debilitating communication dis-
order, many can continue to lead very successful lives. Examples of famous people
who stuttered (PWS) include Marilyn Monroe, James Earl Jones, Winston Chur-
chill and of course King George VI of England whose stuttering woes were depicted
in the award wining movie ‘‘The King’s Speech’’ (Howell 2011).

The primary characteristics of stuttering include repetitions, prolongations and/
or blocks. Repetitions typically consist of sounds, syllables or whole words that are
repeated (‘‘c-c-c-can’’, ‘‘for-for-forgive’’, ‘‘I…I see you’’). Prolongations are
characterized as sounds that are pulled out, often in an effortful manner (‘‘I
wwwwwwant’’ or ‘‘Llllllllike’’). Blocks are complete disruptions in the flow of air
as the person attempts to vocalize words. Stuttering also encompasses secondary
behaviors, which are the physical components that arise from a person’s reaction
to the stuttering (Guitar 1998). Secondary behaviors (i.e. eye-blinking, head jerks,
body movements, etc.) vary dramatically among individuals in their physical
presentation as well as the severity of their effect on communication.

Many children go through a period of normal disfluency as they grow their
vocabulary and increase the length and complexity of their sentence structures.
The primary characteristics that differentiate developmental stuttering from normal
disfluency include: higher number of disfluencies, a higher number of ‘‘stuttering-
like’’ disfluencies, higher number of repeated units, and an emergence of sec-
ondary behaviors (Zebrowski 1995).

Stuttering most commonly presents in young childhood during language
development (developmental stuttering). However, it can also occur as the result of
a neurological incident (neurogenic stuttering) or a psychological incident (psy-
chogenic stuttering).

There are many theories about the causes of developmental stuttering, but
research has not found one core factor that is both necessary and sufficient to cause
stuttering. Instead, stuttering results from a complex interaction of a number of risk
factors (Gordon 2002). The risk factors include but are not limited to a combi-
nation of neurological, genetic, speech-language functioning, temperament and
environment (Anderson et al. 2003; Zebrowski and Buhr 2005).

Of the studies exploring risk factors, genetic studies have shown the most
conclusive findings (Bennett 2006). Stuttering has been found in several family
members, suggesting that genetic factors are involved (Kang and Drayna 2011).
Past studies have revealed genetic predisposition and excess dopamine as potential
causes of this developmental disorder (Gordon 2002; Movsessian 2005; Kang and
Drayna 2011). Genetic mutations in genes such as GNPTAB and NAGPA,
responsible for lysosomal enzyme transport (where digestive enzymes break down
toxic substances, digest bacteria that invade the cell, and recycle worn-out cell
components), as well as FOXP2 and CNTNAP2, which play critical roles in gene
expression, have revealed the inherent flaws in cortical metabolism of PWS
(MacDermot et al. 2005; Newbury and Manaco 2010; Drayna and Kang 2011).
Excess dopaminergic neurotransmission in the basal ganglia arising from
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dysfunctional DRD2 and SLC6A3 genes has also been observed as a contribution
to the stuttering condition (Lan et al. 2009). Genetic factors make up a small
number of stuttering cases, but this provides an avenue for research investigations
into the substrates and mechanisms that underlie stuttering.

Neurogenic stuttering usually occurs after a stroke, head trauma, or other type
of brain injury. With neurogenic stuttering, the brain has difficulty coordinating the
different components involved in speaking because of signaling problems between
the brain and nerves or muscles. In some cases, diseases such as epilepsy, stroke,
trauma, brain tumor, and Parkinson’s, which interfere with normal frontal lobe and
basal ganglia function, lead to acquired stuttering (Theys et al. 2008; Watkins et al.
2008; Kaplan et al. 2011). In other cases, stuttering can often be a secondary
manifestation of conditions such as dyslexia, autism, Down’s syndrome, and
Tourette’s syndrome (De Nil et al. 2005; Van Borsel and Tetnowski 2007).

Psychogenic stuttering is caused from long-term stress or an emotional trauma.
This type of stuttering is very rare. The stuttering behaviors are similar to those of
developmental stuttering, but are often not consistent in speech production. Sec-
ondary behaviors tend to be unusual or will be present even when stuttering
behaviors are not being displayed (Guitar 1998).

1.2 Models of Neurological Activation in Speech-Language
Functions

Researchers have been attempting to identify the neural processes underlying
stuttering, with a growing emphasis on brain imaging research. In a review of the
literature, Ludlow (2000) suggests a ‘‘dynamic interplay among complex cortical
and subcortical systems’’, involving areas of planning, production and monitoring.
Ingham (2001), Ingham et al. (2004) supports this claim in his reviews of neu-
roimaging studies. Although there is agreement that there are likely many neural
subsystems that comprise the disorder of stuttering, there has not been agreement
about what subsystems are involved and how they are connected (Braun et al.
1997; Salmelin et al. 2000; Ingham 2001; Brown et al. 2005).

1.3 Functional Imaging Language Studies

Ever since the first language models were developed by Wernicke and Geschwind
(Geschwind 1970), neurologists and neuropsychologists have been attempting to
determine how the brain processes language and which cortical areas underlie
specific language functions. A number of theoretical models have been proposed for
both language production (Fromkin 1971; Garret 1975, 1980; Shattuck-Hufnagel
1979, 1987; Stemberger 1985; Dell 1986; MacKay 1987; Levelt 1989, 1998) and
comprehension in normal readers (Liberman 1967; Marslen-Wilson and Tyler 1980;
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McClelland 1986, 1991; Frazier 1987; Friederici 2002; Hagoort 2003). There is
ongoing debate about whether the language subprocesses of semantics, syntax, and
phonology are accessed simultaneously [e.g. production: Dell (1986); e.g. com-
prehension: Marslen-Wilson and Tyler (1980)] or in some hierarchical order [pro-
duction: e.g., Levelt (1999); comprehension: e.g., Friederici (1999, 2002)]. Serial
models (hierarchical) rely on a predictable and sequential pattern of processes
engaged for successful understanding and production.

A review paper by Heim (2005) explored neuroimaging results from PET,
fMRI, EEG and MEG to determine which models of language processing provide
a basis for the interpretation of these neuroimaging results. The results are not
conclusive, yet they do shed light on the cortical processing steps involved in
language processing. They do account for a dual-route model featuring one direct
and one indirect route which involve phonological processing.

MEG has been used in a number of studies to study brain activation during normal
speech production in a variety of nonverbal and verbal tasks, including overt picture
naming (Helenius et al. 1998; Levelt et al. 1998; Simos et al. 1998, 2001; Tarkianine
et al. 1999; Hari et al. 2000; Greenwald and Bowyer 2003). These studies all provide
a refined view of the dual stream model of language neuroanatomy (Hickok 2009)
where the ventral stream, for speech comprehension, is bilateral and flows into the
temporal lobes and the dorsal stream, for sensory-motor integration, is left dominant
and involves the parietal temporal junction and frontal lobe.

1.4 Differences Seen with Language Processing
in People Who Stutter

Many techniques have been used over the years to attempt to localize the brain
regions involved in stuttering. Some of the earlier research was completed with
positron emission tomography (PET) studies (Fox et al. 1996, 2000; Braun et al.
1997; De Nil et al. 2000; Ingham et al. 2004). Although PET scans give valuable
information on localization, they lack the temporal resolution needed to assess the
dynamic system of connected speech.

Another neuroimaging technique utilized frequently to study stuttering is
functional magnetic resonance imaging (fMRI) (Watkins et al. 2008; Chang et al.
2009; Loucks et al. 2011). Several studies using fMRI have found task-to-brain-
area-activation correlations for various stuttering experiments (Fox et al. 2000; De
Nil et al. 2008; Chang et al. 2009; Lu et al. 2010). No single region fully
responsible for stuttering has been found, but the basal ganglia, cerebellum, and
motor cortex are among those suspected. Functional MRI detects oxygen con-
sumption and can measure neural activity that lasts at least tens of milliseconds
(Liu et al. 2006). Though fMRI provides higher temporal resolution than PET, it
still does not provide the temporal resolution that is necessary for connected
speech to be examined.
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A meta analysis of speech production studies (PET and fMRI) on controls and
AWS (Brown et al. 2005) identified activation in inferior frontal gyrus, superior
temporal gyrus, primary motor cortex, premotor cortex, supplementary motor area,
Rolandic operculum, lateral cerebellum, and auditory areas during single-word
reading by control subjects who did not stutter. In AWS similar areas were
involved but the motor areas were over-activated during the same task. These
neuroimaging techniques offer an increasingly comprehensive view of brain
activity and may point to certain areas of concern during monitored task execution.

Electroencephalographic recordings of event-related brain potentials (ERPs),
used by Weber-Fox (2001, 2004) provide excellent temporal resolution of speech
production, however, ERPs do not provide good localization information (Liu
et al. 2006) due to the complex inverse solution problem.

Magnetoencephalography (MEG) has been used to localize brain regions
activated during language processing in normal subjects (Simos et al. 1998;
Bowyer et al. 2004; Salmelin 2007), and has been used to evaluate stuttering
(Salmelin et al. 1998, 2000; Biermann-Ruben et al. 2005; Bowyer et al. 2010; Beal
et al. 2011; Kikuchi et al. 2011; Walla et al. 2004).

The earliest MEG research in stuttering was done by Salmelin et al. (1998).
They looked at auditory feedback in people who stuttered (PWS). They showed
differences in cortical organization of the auditory response between AWS and
fluent speakers. This study used the equivalent current dipole (ECD) method to
localize brain activity. They found functional deficits in the auditory system which
may affect speech fluency during speech production in AWS.

MEG was then used to detect speech production during reading aloud of single
words to detect the cortical processing area differences in AWS compared to con-
trols (Salmelin et al. 2000). Using the ECD method they mapped the cortical acti-
vation sequences and found differences in evoked responses time-locked to word
presentation and mouth movement onset. Within the first 400 ms after seeing the
word, processing in fluent speakers advanced from the left inferior frontal cortex
(articulatory programming) to the left lateral central sulcus and dorsal premotor
cortex (motor preparation). This sequence was reversed in the AWS, who showed an
early left motor cortex activation followed by a delayed left inferior frontal signal
(See Fig. 1). This same study found a task-related suppression of the motor cortical
20 Hz oscillations during overt reading, which may indicate mouth movement
cortical areas did not develop normally in AWS. Though this study found significant
differences in single word reading they acknowledged that more detailed studies
(specifically, more realistic speech production conditions) were required to deter-
mine the functional roles of the areas affected.

The third MEG study performed on stuttering subjects was by Walla et al. This
MEG study looked at the lack of focused anticipation of verbal information in
AWS during visually presented single words (Walla et al. 2004). When fluent
readers spoke the word aloud, immediately after word presentation, neural acti-
vation (in the normalized MEG waveforms) was seen in the motor speech area
before speech onset. They used a two-dipole model to approximate the sources for
this pre speech activity. Pre speech brain activity was not detected in AWS.
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Indicating that this brain activity (also named Bereutschafts field 2) might reflect
preparatory activity known to occur for many other voluntary movements, and
may be the link to disfluent speech in AWS.

A fourth MEG study of speech perception indicated language processing in the
auditory modality differs for AWS and normally fluent readers. Biermann-Ruben
et al. (2005), detected alternate language processing pathways during speech per-
ception prior to overt repetition of a spoken word and sentence, and a sentence
transformation task. AWS had greater activation of left inferior frontal areas, thought
to be important for speech preparation, during the temporal window of 95–145 ms
post-word and sentence onsets. In addition, between 315 and 1,000 ms post-stimu-
lus, activations of the right rolandic areas, thought to be involved in sensorimotor
processing, were larger for single-word compared to sentence tasks for the fluent
readers, but the opposite pattern was seen for the AWS. Their results suggest that
activation in the left inferior frontal and right rolandic areas in AWS differs from that
in controls during speech perception. These findings may reflect differences due to

Fig. 1 Source areas of
individual subjects showing a
positive non-zero signal
(P \ 0.001) within those
regions of interest (ROI) and
time of interest (TOI) where
activation strengths differed
significantly between fluent
speakers (left) and stutterers
(right). The symbols are filled
with grey in that subject
group which showed on
average less activation in
each ROI/TOI (Salmelin
et al. 2000)
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the paradigm set up as there was a delay prior to speaking. In a previous MEG study in
fluent readers, which did not require speaking following speech perception, also did
not elicit activation in the temporo-parietal, inferior-frontal, and rolandic areas
(Helenius et al. 1998). This suggests the possibility that the differences between the
AWS and fluent readers may be just due to activations for preparing to speak.

Our group (Bowyer et al. 2010) identified cortical activity in Wernicke’s area
(posterior section of the superior temporal gyrus) activated at the same time in
controls and AWS. Activation was located in the supramarginal gyrus (SMG) in
the latency interval 230 ± 20 ms across all 14 subjects. This indicated that
comprehension was normal in both groups during the early language components
in a verb generation task. Visual activation was detected in all subjects at
101 ± 10 ms after stimulus onset during all language task runs, indicating that
visual processing was normal across all subjects. Using a one word speaking aloud
task differences were noted in Broca’s activation. AWS had delayed motor speech
activation (434 ± 20 ms) compared to normal fluent readers (378 ± 36 ms) in the
inferior frontal gyrus [p \ 0.0001]. Also using an overt Verb Generation task
AWS had delayed motor speech activation (450 ± 22 ms) compared to normal
fluent readers (350 ± 29 ms) in the inferior frontal gyrus [p \ 0.0001] (Fig. 2).

This study used a current distribution technique [MR-FOCUSS (Moran et al.
2005)] to localize brain activity during these language tasks. This MEG technique
is different from the ECD method used in the previous MEG studies in that it
allows the identification of simultaneous brain activity that is occurring across the
brain to be displayed, where as the ECD method only allows one location in the
brain to be displayed. Figure 3 depicts the MR-FOCUSS results for one individual
AWS and one fluent reader. The inferior frontal gyrus in the Left hemisphere is
active in both subjects but at different latencies. The MEG waveforms depict a
large amplitude wave at *100 ms representing visual processing. The line is
located at the latency where Broca’s area (inferior frontal gyrus) was active.

Two recent MEG studies have investigated the auditory system in AWS which
has implications for treatment, which we will discuss further later in this chapter.
Kikuchi et al. (2011) found auditory sensory gating (P50m suppression) was

Fig. 2 Mean latencies of the
groups during the verb
generation task and the
speaking aloud task. Broca’s
activation in AWS was
significantly higher than that
of control subjects
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impaired in the left hemisphere during basic auditory input processing and that
some error signals in the auditory cortex could result in abnormal speech pro-
cessing. The tonotopic organization in the right hemisphere of AWS is expanded
compared with that of the controls, along with a significant increase in the gray
matter volume of the right superior temporal gyrus, consistent with the right
tonotopic expansion. This study used the ECD model to localize brain activity.
They hypothesize that the functional and structural reorganization of the right
auditory cortex maybe a compensatory mechanism for impaired left auditory
cortex function in AWS.

Beal et al. (2011) found speech induced suppression of auditory evoked fields in
children who stutter (CWS). They examined the auditory P50m response in
children as it most likely reflects a motor-to-auditory relation. This group used an
event related vector beamformer to localize brain activation. See Fig. 4. Both
CWS and those that do not stutter demonstrated speech-induced suppression of the
auditory P50m. However, CWS had a delayed auditory M50 peak latency to vowel
sounds compared to children who do not stutter indicating a possible deficiency in
their ability to efficiently integrate auditory speech information for the purpose of
establishing neural representations of speech sounds.

The millisecond temporal resolution and millimeter spatial resolution of these
seven MEG studies provided significant information on how the stuttering brain is
processing higher order cognitive language functioning differently than fluent

R
Adult who Stutters 

Fluent speaker 

(a)

(b)

Fig. 3 MEG results during the overt verb generation task. Broca’s area activity is indicated by a
circle on the MRI. Scale is in nanoAmp-meters. a Maximum peak activity was seen at 440 ms in
the evoked MEG waveform after word onset in this AWS. b Maximum activity was seen at
336 ms after word onset in this fluent reader. AWS had a much high current distribution seen in
Broca’s area compared to fluent readers
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speaking control subjects. Though these studies all used either a single visual or
auditory word or sentence task, the results provided a more integrated image of the
neuronal processing that underlies stuttering. Advances in MEG signal processing
and artifact removal techniques make it easier to collect realistic speech and ana-
lyze the location of corresponding brain activity more effectively than 10 yeas ago.
The refinement of protocols to look at continuously connected speech will also
provide an abundant amount of data to investigate in more detail the underlying
brain regions activated in the stuttering process. There is currently no other imaging
technique available providing combined high temporal resolution and high spatial
resolution in a safe, noninvasive imaging modality for studying children.

1.5 Studying PWS Across Their Development

When studying stuttering it is extremely important to understand how age effects
the results. Researchers have been suggesting for many years that drawing con-
clusions about the cause and nature of developmental stuttering in CWS from
studies of AWS is unwise (Conture and Kelly 1991; Yairi 1993) because it

Fig. 4 a Group averaged
source images of the auditory
evoked magnetic fields for
the speak vowel task overlaid
on the MNI canonical brain.
b Group averaged source
magnitude variations from
200 ms prestimulus to
800 ms post stimulus
corresponding to those
sources and c a detailed view
of the early components (Beal
et al. 2011)
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disregards the ‘‘influence of development, learning history, and experience’’
(Conture 1990).

Although limited, there have been some studies exploring the neural processes
involved in children. In a study examining CWS (Chang et al. 2008), differences
were found in Broca’s area but no differences were found in the right hemisphere
regions. These findings supported the suggestions from many studies completed
with AWS that right hemisphere involvement may be the result of compensatory
reactions (De Nil et al. 2000; De Nil and Kroll 2001; Fox and Raichle 2007; Chang
et al. 2008; Loucks et al. 2011). Weber-Fox et al. (2008) found that neural pro-
cesses related to phonological processing in CWS were different than children who
do not stutter (CWNS). It is also noteworthy that, when compared to a similar
study done with AWS (Weber-Fox et al. 2004), the differences were qualitatively
different and more pronounced in the CWS.

Although the research completed by Weber-Fox et al. (2008) and Chang et al.
(2008), are steps in the right direction of exploring stutter in children, both studies
were completed with school-aged children, with the youngest being 9 years old.
The onset of stuttering typically occurs in young children when rapid cognitive,
linguistic and motor development is occurring (Fox et al. 2000). This stage typi-
cally occurs during the preschool years, between the ages of two and five
(Ambrose and Yairi 1999). To explore the underlying neurophysiology of devel-
opmental stuttering and the likely causes of it, it is important to study children
close to the point of recovery or persistency (Loucks et al. 2011) to avoid con-
tamination ‘‘by time-related adjustments to internal and external responses’’ (Yairi
1993). Many have avoided completing neuroimaging studies with young children,
however, because there are many challenges to studying young children, including
a reluctance to participate and a shorter time period for tolerance of the protocol
(Loucks et al. 2011).

When looking at the above research, it becomes clear that exploring stuttering
across the continuum of development is essential to tell the story of the devel-
opmental and cortical contributions to stuttering. Studying different age groups in
different stages of stuttering will give comparative data on the neurophysiology of
stuttering. That data may then be evaluated to give a better picture of the causal
versus resultant neural processes involved in stuttering.

1.6 Network Activity Seen in PWS

Recently resting state MEG data has been used to evaluate the default mode
network (DMN) in different disorders such as Epilepsy (Elisevich et al. 2011). The
DMN is a network of brain regions that are active when the individual is not
focused on the outside world and the brain is at wakeful rest. fMRI and MEG
provide neuroimaging techniques that can look at the source location of the
coherent brain oscillations during rest. Although the DMN has not been a main
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area of focus for stuttering research studies in the past, high areas of coherent
activity in the inferior frontal gyrus and auditory cortex during the resting state in
AWS was hypothesized to create an abnormal DMN and cause decreased effi-
ciency in accessing those areas for AWS (Bowyer et al. 2010).

Guitar (1998) suggested that atypical neurological organization predisposes
certain people to stuttering, however, those atypical organizations do not appear to
be consistent from person to person. In fact, he hypothesizes that patterns of neural
activity develop in unique ways and may account for the wide variety of symptoms
seen in people who stutter.

Our group investigated the resting state, when no langauge processing was
occurring, and found Broca’s areas had significantly higher coherence in PWS
(0.31 ± 0.08) compared to controls (0.13 ± 0.04) [p \ 0.0001]. Figure 5 displays
one PWS and one fluent speaking control subject’s resting state results. These
MEG resting state results possibly indicate continuous brain activity is occurring
in the motor speech area thus providing competition for brain resources resulting
in stuttering.

This finding was supported by a recent fMRI resting state study in 44 male
AWS compared to 46 aged matched fluent speakers. (Xuan et al. 2012). Increased
low frequency fluctuations were found in the left Inferior frontal gyrus as well as in
the Left auditory and bilateral prefrontal cortices in PWS. This study also found
that functional connectivity within anterior and posterior speech- and language-
associated areas was increased in PWS compared to controls.

However, more extensive MEG studies will be needed to further explore how
these results can be used for diagnois and detection of treatment responses. The
nice thing about this type of task is that even infants can preform a task where they
lay quietly for a few minutes with their eyes open.

Fig. 5 a DMN coherence of a PWS. Highly coherent activity was found in Broca’s area
(Brodmann’s Area 45) during resting state. b DMN coherence of a fluent speaking control subject
finds little or no coherent activity in Broca’s area
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1.7 Treatments

Currently, there are no cures for stuttering, although pharmacological and clinical
avenues for potential treatments are being pursued (Bothe et al. 2006a, b; Blomgren
2010; Ratner 2010). The nature of the treatment will differ, based upon a person’s
age, communication goals, and other factors. Therapy for stuttering is primarily
done by a certified speech-language pathologist.

For very young children, early treatment may prevent developmental stuttering
from becoming a lifelong problem. Certain strategies can help children learn to
improve their speech fluency while developing positive attitudes toward com-
munication. Health professionals generally recommend that a child be evaluated if
he or she has stuttered for at least 6 months, exhibits awareness of the stuttering
and/or struggle behaviors associated with stuttering, or has a family history of
stuttering or related communication disorders.

The two therapy techniques most commonly used for pre-teens though adult-
hood focus on strategies for improved fluency (fluency enhancing techniques) and
strategies for modifying the stutter (stuttering modification techniques). It is
widely upheld that a more integrated approach, utilizing a combination of the two
techniques to address the behaviors, thoughts and feelings associated with stut-
tering, is the best practice for clinicians to treat PWS (Bennett 2006).

Drug therapies with Risperidone and Asenapine, which are dopamine-antagonist
agents, have been shown to moderately improve a patients’ stuttering frequency
(Maguire et al. 2011; Tavano et al. 2011). However, better treatment methods are
being sought as dopamine antagonists can lead to severe side-effects including
Parkinson’s disease and other conditions characterized by dopamine-deficiency.

Multiple studies have affirmed that choral speech (speaking in unison with
others) and singing can greatly reduce the frequency of stuttering in affected
patients (Howell et al. 2004; Toyomura et al. 2011). This finding suggests that
timing can play a role in reducing stuttering. Fluency devices have been designed
to capitalize on these concepts. These devices use altered auditory feedback (AAF)
that digitally replays a slightly delayed or altered version of the wearer’s voice into
the ear to aid in fluency. Although these devices have been shown to be very
effective in many PWS, they are by no means a cure. The devices do not take into
consideration any of the emotional or psychological components of the stuttering.
Therefore, treatment by a certified speech-language pathologist along with use of
any device is essential.

1.8 Imaged Effects of Treatment Responses

One device that uses AAF is called the SpeechEasy�. The SpeechEasy� is an in-
the-ear auditory feedback device that is reported to enhance fluency in people who
stutter. It combines delayed auditory feedback (DAF) with frequency altered
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feedback (FAF) to create a choral effect. The choral effect occurs when people
who stutter speak or sing in unison with others, resulting in dramatically reducing
or even eliminating the stutter. The SpeechEasy� is one of the few devices that has
been made portable and inconspicuous enough for people to wear outside of the
therapy room and in their daily lives.

fMRI research has looked at the results of DAF on cortical functioning. Results
suggest that there may be two biological subgroups of AWS, (1) those with
anomalous anatomy of the auditory cortex, and (2) those considered to have
typical anatomy of the auditory cortex. Those with anomalous anatomy of the
auditory cortex were found to have a greater percentage of dysfluencies (Foundas
et al. 2004). This same group also showed a greater response to DAF as well.

Our group used MEG to image the location of cortical processes of stuttering
with and without the SpeechEasy� device, to determine the latency and sequence
of activation of the cognitive neural pathways involved in stuttering. These results
indicated that during both the overt verb generation (VG) and reading aloud (RA)
task, activation in Wernicke’s area, supramarginal gyrus (SMG), was similarly
active regardless of the use of the SpeechEasy� device in PWS [with VG:
250 ± 16 ms; RA: 247 ± 7 ms and without VG: 249 ± 25 ms; RA:
245 ± 15 ms].

Broca’s area activation was significantly delayed in PWS (434 ± 20 ms)
compared to controls (378 ± 36 ms) [p \ 0.0001] during the reading aloud task,
but when the SpeechEasy� device was used the latency of Broca’s activation
appeared to normalize the in PWS (375 ± 22 ms) to the point that no statistically
significant comparison could be achieved with controls [p \ 0.05]. The same
normalization of the latency was found in the overt verb generation task where
AWS delayed motor speech activation (450 + 22 ms) compared to normal fluent
readers (350 + 29 ms) normalized to (373 + 36 ms) [p \ 0.05].

When looking at cortical activity in AWS, we found an increase in activity in
the inferior frontal gyrus (Broca’s area) while using the SpeechEasy� device

Speaking word 

100ms 

100ms 

Fig. 6 148 MEG channel
butterfly plots. MEG
averaged evoked responses
during speaking words aloud.
Initial peak is visual
processing, second peak is
Wernicke’s activation, and
third peak is Broca’s
activation. Note in bottom
trace Broca’s activation is
clearly seen with the use of
the SpeechEasy device
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compared to the MEG measurement without the SpeechEasy� in place. Without
the SpeechEasy�, there was no clear peak in Broca’s area, indicating low levels of
activation see Fig. 6. When the SpeechEasy� was being used, there was a clear
peak, showing higher levels of activation see Fig. 6. It is hypothisized that because
AWS showed lower activation in Broca’s area, the stuttering is a result of
decreased motor speech functioning. Therefore the increased activity with the
SpeechEasy�, may help focus the neurons in that area to complete the motor
speech tasks necessary for increased levels of fluency.

The increased cortical activation with the SpeechEasy� device in place
(*0.200 nAm) was still lower compared to control subjects (*0.380 nAm),
which explains why, although the SpeechEasy� may improve fluency, it does not
create complete fluency and why it has varied effects from person to person.

An additional finding included high areas of coherent activity in the inferior
frontal gyrus and auditory cortex during the resting state while the subject was not
speaking. This data shows an abnormal default mode network (DMN) involving
the inferior frontal gyrus area as well as the auditory cortex. During resting state in
AWS, these areas were highly active, where control subjects showed very low
levels of activation. Therefore, it is thought that when AWS need to access these
areas, they are more difficult to access because they are already being activated
(during the resting state) and need to be redirected to the task at hand. Looking at
the combination of the resting state data and the evoked data, it appears that AWS
may have a defect in the cortical activation of Broca’s area. Therefore, it is
hypothesized that when the SpeechEasy� is utilized, it may disrupt the DMN,
creating the ability to more effectively activate Broca’s area for motor speech and
creating improved fluency.

1.9 Future Direction and Needs

Currently researchers are working to help speech-language pathologists determine
which children are most likely to outgrow their stuttering and which children are at
risk for continuing to stutter into adulthood. Advances in the study of the under-
lying neuronal bases for stuttering may lead to an objective biological marker for
clinicians to identify these two groups. Brain imaging studies with PET, fMRI and
MEG have indicated that there are connectivity differences in the left inferior
frontal and premotor cortices in people who stutter. The deficiencies in these
communicating brain regions hinder the efficient planning and execution of sound
production.

Biomarkers that can detect changes in children who have recovered from
stuttering will provide significant targets for detecting the effects of treatment.
Future research on how treatments affect the brain networks and regional activa-
tions, in a child who stutters compared to one who has recovered, may lead to
treatments that normalize the brain function of stuttering children.
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Several research studies have indicated the possibility of subgroups within the
stuttering populations. If neuroimaging methods can identify or classify groups of
PWS then more focused approaches (i.e. tailored treatments) may be successful.
There are clear gender differences within this patient population where males are
four times more likely to stutter than their female counterparts. Research has
shown females who stutter have more bilateral brain activation during language
processing, which may help them recover from stuttering. Research into the
influence of genetic factors on brain development patterns may also provide an
understanding of the causes of stuttering.

Past studies on stuttering have been performed predominantly on adults or older
children who have stuttered for many years. In these studies, neuroimaging
techniques may be detecting the compensatory mechanisms that individuals have
invoked to cope with their stuttering disorder instead of the cause of the stuttering.
Research performed on children close to the onset of the stuttering could provide
answers to how the speech processing network differs from those children who do
not stutter. This would lead to an understanding how remediation could change the
stuttering brain networks.

Understanding developmental stages of language network processing is nec-
essary to identify the point when language processing development veers off the
normal path. On the whole a more extensive understanding of normal and aberrant
language pathways as well as of regions that are critical for plasticity will be
extremely valuable. Further illumination is necessary of brain-behavior relation-
ships and of disorders for which language impairment is central. Autism, speech
and language impairment, and prior to epilepsy surgery are examples of clinical
ailments where language network changes may have occurred during development
of these disorders. Neuroimaging advances will lead to better clinical diagnoses
and subgroup classification of stuttering, which in turn will lead to better treat-
ments and hopefully long-term cures for these devastating afflictions.
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MEG in Epilepsy and Pre-surgical
Functional Mapping

Masaki Iwasaki and Nobukazu Nakasato

Abstract Magnetoencephalography (MEG) is routinely used in pre-surgical
evaluation of epilepsy. Magnetic source imaging (MSI) of epileptic spikes pro-
vides additional information to those provided by other non-invasive measures,
including fluorodeoxyglucose-positron emission tomography (FDG-PET) and ictal
single-photon emission computed tomography (SPECT), especially in neocortical
epilepsy and in MRI-negative epilepsy. MSI may guide additional electrode
coverage for intracranial EEG and area of resection when planning surgery; both
of these approaches are associated with better seizure outcome. Mono-focal spike
localization strongly indicates the epileptogenic zone. Complete removal of the
MEG focus often results in the patient being seizure free, post-operatively. Sim-
ilarities and differences between MEG and EEG should be well recognized when
using MEG. Although the overall sensitivity of MEG to epileptic spikes is similar
to that of EEG, such sensitivity can depend primarily on the orientation of
equivalent current dipoles (ECD) of spikes. Favorable areas for MEG include the
orbito-frontal, opercular, interhemispheric, temporo-lateral, and rolandic regions.
MEG is less sensitive to deep regions, such as mesial temporal structures. MEG is
also utilized for functional brain mapping. Somatosensory evoked fields to median
nerve stimulation lead to an accurate, within a few millimeters, identification of
the central sulcus. MEG analysis of event-related potentials or event-related
de/synchronization in response to language tasks provides more than 80 % sen-
sitivity and specificity in language lateralization for intra-carotid amobarbital
procedures. MEG is a non-invasive alternative for pre-surgical determination of
the language-dominant hemisphere.
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Somatosensory evoked potential � Event related potential � Event related desyn-
chronization � Language dominance � Intracarotid amobarbital procedure

1 Introduction

Localization of epileptic discharges and pre-surgical functional brain mapping are
the most common clinical applications of magnetoencephalography (MEG).
During the last 40 years, MEG instrumentation has evolved from a single-channel
sensor system to whole-head systems with more than 300 channels that scan over
the entire head surface. Currently, the majority of ‘‘MEG centers’’ provide clinical
services (Bagic et al. 2009). In this chapter, the current status of clinical MEG in
epilepsy and presurgical mapping is reviewed.

2 Epilepsy

2.1 Role of MEG in Evaluation of Epilepsy

In clinical settings, MEG is used principally to map sources of epileptic activities
in pre-surgical evaluation of epilepsy. An epileptic seizure is defined as a transient
occurrence of signs and/or symptoms due to abnormal excessive or synchronous
neuronal activity in the brain. Epilepsy is a disorder of the brain characterized by
an enduring predisposition to generate epileptic seizures (Fisher et al. 2005).
Epilepsy has a prevalence of 4–10 per 1,000 individuals in industrialized countries,
and the epileptic seizures of approximately 30 % of patients are not adequately
controlled by antiepileptic medications (World Health Organization 2009). Sur-
gery is a most important treatment option for such drug-resistant epilepsy, and
MEG plays an important role in the pre-surgical evaluation of epilepsy.

The goal of pre-surgical evaluation of epilepsy is to identify the epileptogenic
zone. The epileptogenic, or ‘‘icto-genic’’, zone is the brain region that is indis-
pensable for generating a patient’s epileptic seizures. Removal of the epileptogenic
zone results in total control over or ‘‘cure’’ of a patient’s epilepsy. However, we have
no gold standard, or single measure, for identifying the epileptogenic zone (Table 1).
The epileptogenic zone is usually determined by a consensus among the findings of
multiple evaluations, including magnetic resonance imaging (MRI), electroen-
cephalography (EEG), seizure symptomatology, fluorodeoxyglucose positron
emission tomography (FDG-PET), MEG and so on. Theoretically, the diagnostic
accuracy of MEG itself is hard to assess (Burch et al. 2012). However, it is well
accepted that MEG or magnetic source imaging (MSI) of epileptic discharges
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provides important and additional information for the estimation of the epileptogenic
zone. Together with FDG-PET and single-photon emission computed tomography
(SPECT), MEG should be considered when MRI is unremarkable or discordant with
clinical and EEG data (Duncan 2010). These supplemental imaging data can inform
strategies for intracranial EEG evaluations. Comprehensive reviews of the use of
MEG in pre-surgical evaluation of epilepsy are also available elsewhere (Barkley
and Baumgartner 2003; Baumgartner and Pataraia 2006; Lau et al. 2008; Leijten and
Huiskamp 2008; Schwartz et al. 2010; Shibasaki et al. 2007; Stefan et al. 2011a). As
MEG/MSI technology was considered sufficiently mature for routine use in pre-
surgical evaluations of patients with epilepsy, clinical practice guidelines were
issued by the American Clinical MEG Society in 2009 (Bagić et al. 2011a, b, c; Bagić
2011; Burgess et al. 2011a, b).

Although the use of MEG is often limited to pre-surgical evaluation of drug-
resistant epilepsy, MEG is occasionally used for ‘‘routine’’ diagnostic purposes in
clinical epilepsy. Additional diagnostic information can be provided by MEG,
especially in patients with inconclusive routine EEG findings (Colon et al. 2009).

2.2 Added Clinical Value of MSI

Several recent prospective studies have established the added clinical value of
MSI. In terms of pre-surgical management of refractory focal epilepsy, MSI

Table 1 Six zone concept in pre-surgical evaluation of epilepsy

Definition Measures

Irritative zone Area of cortex that generates
interictal spikes

EEG, MEG

Ictal onset zone Area of cortex where seizures are
generated

EEG, MEG

Epileptogenic lesion Structural abnormality of the brain
that is the direct cause of the
epileptic seizures

MRI, Tissue pathology

Symptomatogenic zone Portion of the brain that produces
the initial clinical
symptomatology

Video monitoring, Patient report

Functional deficit zone Cortical area of non-epileptic
dysfunction

Neurological examination,
Neuropsychological testing,
EEG, MEG, PET, SPECT

Epileptogenic zone Area of brain that is necessary and
sufficient for initiating seizures
and whose removal or
disconnection is necessary for
abortion of seizures

Theoretical concept

The epileptogenic zone is a theoretical concept, and each evaluation plays a role in the estimation
of this zone. MEG primarily measures the irritative zone and measures the ictal onset zone.
(Modified from Lüders et al. (1993) with permission)
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supplies additional information in 20–30 % of cases and offers information crucial
to final decision making in 10–20 % of cases (Stefan et al. 2003; Sutherling et al.
2008; De Tiège et al. 2012). One prospective study of patients with non-localizing
MRI found that MEG spike localization had 82–90 % positive predictive value for
seizure localization in intracranial EEG. Thus, MEG can potentially replace
intracranial EEG for seizure localization (Knowlton et al. 2006). Two prospective
studies examined whether MSI changed surgical decisions about patients with
intractable neocortical epilepsy which potentially required intracranial EEG
evaluation. One study showed that MSI provided non-redundant information in
33 % of patients, including 13 % for additional intracranial EEG coverage and
20 % for surgical decisions (Sutherling et al. 2008). Another study showed that
MSI indicated additional intracranial EEG coverage in 23 % of patients. In 39 %,
the additional coverage indicated by MSI contributed to revealing seizure-onset
patterns via intracranial EEG, which significantly contributed to a seizure-free
outcome (Knowlton et al. 2009).

2.3 Recording and Source Estimation of Epileptiform
Discharges

2.3.1 MEG Recording in Patients with Epilepsy

MEG is used primarily for recording and localizing interictal epileptiform dis-
charges (IEDs), because of limitations caused by recording duration and vulner-
ability to artifacts due to the subject’s movement during seizure (Iwasaki and
Burgess 2008). The neural substrates that generate IEDs are not necessarily
identical to the epileptogenic zone. However, localization or distribution of IEDs
provides an important hint that the epileptogenic zone is nearby. Sedative agents
may be used to maintain the immobility of patients, especially children or those
with mental retardation, during MEG recording. General anesthesia with propofol,
etomidate, sevoflurane or dexmedetomidine is acceptable for recording IEDs
(Balakrishnan et al. 2007; König et al. 2009). Etomidate may increase IED fre-
quency (Stefan et al. 2010). Continuous infusion of midazolam may not be
appropriate because of suppressive effects (Szmuk et al. 2003).

There are increasing opportunities to use MEG with patients receiving vagus
nerve stimulation (VNS). VNS is an adjunctive treatment for patients with
intractable epilepsy who are not suitable for resective surgery. An implanted
electrical pulse generator and battery cause major magnetic artifacts. Although
temporal explantation of VNS had been necessary to record MEG to avoid artifacts
(Donahue et al. 2007), MEG can now be recorded in subjects receiving VNS by
applying a noise cancellation algorithm such as temporally extended signal-space
separation (tSSS) (Carrette et al. 2011; Kakisaka et al. 2013; Song et al. 2009;
Tanaka et al. 2009b).
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2.3.2 Interictal Spikes

Magnetic fields picked up by the sensor coils are sampled at several hundreds to
thousands Hz as discrete time signals, and these constitute multiple traces of
‘‘brain waves’’ measured at each sensor location (Salmelin and Hari 1994). Similar
to EEG reading, MEG signals must be ‘‘read’’ in the first step of the analysis to
identify epileptic spikes. Epileptic spikes should be appropriately discriminated
from artifacts by human interpreters, usually with help from simultaneously
recorded EEG. Expertise in EEG and an understanding of clinical neurophysiology
are necessary for reliable interpretation (Burgess et al. 2011a). Special knowledge
about and experience with the visual inspection of MEG may be important for
accurate interpretation (Fernandes et al. 2005).

The generator of the selected spike is estimated by using a source analysis
algorithm. It should be recognized that source estimation in MEG requires solving
an ill-posed biomagnetic inverse problem with errors (e.g. location, distribution and
amplitude) associated with each source estimation algorithm (Iwasaki and Burgess
2008). The classic and most popular method is an equivalent current dipole (ECD)
model. This model assumes that epileptic spikes emanate from a single dipole
located at a certain point in the brain (a point source). The model can be extended to
localizing a few point sources as well (multiple dipoles). It has been empirically
established that the ECD model provides a good approximation for localizing
epileptic spikes in many cases. However, the ECD model can result in larger errors
when attempting to localize multi-focal or extended sources underlying spike
activity and, any epileptic spike may be more or less distributed. Moreover, the
ECD approach can be biased by the analyzer’s guess about the number and location
of the initial dipoles selected to start the search algorithm. Objective criteria and
automated methods for spike detection and source estimation have been used to try
to overcome this problem (Bowyer et al. 2003; Ossadtchi et al. 2004).

A number of distributed source modeling approaches has been developed in
addition to the ECD model. Distributed source modeling provides objective
(unbiased), but spatially blurred results regarding spike localization (Shiraishi
et al. 2005, 2011). Reasonable correlation between the results of distributed source
modeling and those of the ECD model have been reported with regard to the
localization of epileptic spikes (Slater et al. 2012; Uda et al. 2012). Although a
simple calculation of the magnetic field gradient is useful for estimating the
location of epileptic spikes (Hashizume et al. 2007; Shirozu et al. 2010), both the
localization and the orientation of current sources should be considered when
interpreting MEG. The orientation of the ECD provides an important clue for
determining the epileptogenic side of opposing cortices in the cerebral sulcus
(Salayev et al. 2006). At their peak, epileptic spikes usually generate dipolar
current oriented to the basal side of the cortex. For example in rolandic epilepsy,
anteriorly oriented dipoles suggest activation of the anterior bank (‘‘frontal or
motor side’’) of the central sulcus, whereas posteriorly oriented dipoles suggest
activation of the parietal side; this phenomenon can be diagnostically important
(Kakisaka et al. 2009, 2011b).
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2.3.3 Ictal MEG

Because long-term recording is technically difficult for MEG, ‘‘ictal’’ MEG
recording is limited to patients with frequent seizures (Assaf et al. 2003). However,
when recorded, ictal MEG may provide more specific localizing information about
the epileptogenic zone. Ictal-onset MEG is localized closer to the seizure onset zone
than is interictal MEG (Fujiwara et al. 2012; Medvedovsky et al. 2012). Ictal
activities are more distributed than are interictal spikes, rendering distributed source
modeling superior to ECD source representation (Tanaka et al. 2009a). Movement
compensation algorithms are useful for recording ictal events (Kakisaka et al.
2012b).

2.4 Comparison with Scalp EEG and Intracranial EEG

The neurophysiological processes that generate the MEG signal are essentially the
same as that producing the EEG signal (Barth 1993). The clinical value of MEG is
often compared with that of scalp EEG in terms of costs and benefits. EEG and MEG
are thought to play complementary roles in detecting IEDs (Ebersole and Ebersole
2010). MEG preferentially records tangential sources, whereas EEG is better at
recording radial ones. However, sources that are completely tangential or radial are
rare; the cortical area to which MEG is sensitive largely overlaps with that to which
EEG is sensitive (Hillebrand and Barnes 2002). Therefore, in most cases, epileptic
spikes are captured by both MEG and EEG, but the detectability (the number or
signal-to-noise ratio of spikes) may differ significantly (Iwasaki et al. 2005). The
sensitive volume, the brain volume that a sensor scans, is relatively smaller for
whole-head MEG recordings than for scalp EEG recordings using the standard
10–20 electrode placement (Malmivuo et al. 1997), rendering MEG more sensitive
to small sources located in the surface brain area. Although MEG is more limited in
its sensitivity to deep activity than scalp EEG, one can use magnetometers, which
have greater sensitivity to deep sources than gradiometers (Enatsu et al. 2008).

The findings of previous studies comparing MEG with EEG are consistent with
the above theoretical differences. When MEG and EEG are simultaneously
recorded, the number of epileptic spikes can be higher in either modality (Iwasaki
et al. 2005; Lin et al. 2003), but the overall concordance in interpretation is high
(85 %) (Kirsch et al. 2007a). In a blinded review of spike detection, more spikes
were unique to MEG than to EEG or the combination of both modalities
(Ramantani et al. 2006). MEG had slightly higher overall sensitivity for detecting
IEDs than did scalp EEG (72 versus 61 %) (Knake et al. 2006).

It is noteworthy that epileptic spikes are detected uniquely by MEG on a few
occasions (Fig. 1). Epileptic activities generated in the fissural cortex may produce
exclusively tangential dipoles that are not visible on scalp EEG. Such cases have been
described in epilepsy of the orbito-frontal lobe and opercular regions, and in Landau-
Kleffner syndrome (Iwasaki et al. 2003; Kakisaka et al. 2012a, d; Rodin et al. 2004).
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Fig. 1 Case examples of opercular MEG spikes not detected on scalp EEG. Waveforms of
simultaneous scalp EEG and MEG (top) and corresponding contour maps (middle) are shown.
ECDs estimated at MEG spike peaks are co-registered on the patient’s MRI (bottom). Solid and
broken lines on contour maps indicate magnetic field efflux and influx from the head surface,
respectively. Circles and bars on MRI indicate estimated locations and orientations of each
individual dipole. Exclusively tangential dipoles generated in the opercular surface can be
detectable with MEG, not with scalp EEG (Modified from Kakisaka et al. 2012a)
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MEG’s sensitivity to epileptic spikes is probably higher in extratemporal or
neocortical epilepsy than in temporal lobe epilepsy (TLE). The combination of
MEG and EEG is useful for detecting more interictal spikes in patients with
extratemporal epilepsy (Park et al. 2004). Simultaneous M/EEG is especially
successful in detecting epileptic spikes in patients with MR-negative epilepsy,
because of the neocortical predominance of the epileptogenic zone (Heers et al.
2010a). The signal-to-noise ratio of MEG is greater in the frontal lobe, and MEG
spike yield and localization is superior to that of EEG in frontal lobe epilepsy (De
Jongh et al. 2005; Ossenblok et al. 2007). On the other hand, exclusively vertical
dipoles may be missed by MEG. Mislocalization of MEG spikes owing to loss of
fissures in the cortical structure has been described in cases of polymicrogyria
(Bast et al. 2005). The sensitivity of MEG has also been compared with that of
intracranial EEG. Favorable areas for MEG include the orbito-frontal, inter-
hemispheric, temporo-lateral and central regions (Huiskamp et al. 2010). In one
study, 56 % of all interictal ECoG spikes had a MEG counterpart. The association
between the two was [90 % in the interhemispheric and frontal orbital region,
75 % in the superior frontal, central and lateral temporal regions; and only 25 % in
the mesial temporal region (Agirre-Arrizubieta et al. 2009).

MEG is also advantageous in the presence of cranial defects because the
magnetic field is not distorted by the inhomogeneity of electrical impedance. MEG
has been successfully used in patients with previous craniotomy for purpose of
spike localization (Lee et al. 2010a; Mohamed et al. 2007; Yoshinaga et al. 2008).

2.5 Focal Epilepsy

2.5.1 Temporal Lobe Epilepsy

The role of MEG in mesial TLE is relatively limited because MEG spike locali-
zation does not pinpoint the epileptogenic zone or seizure-onset zone in the mesial
temporal region, including the hippocampus. Simultaneous recordings of intra-
cranial EEG and extracranial EEG/MEG have shown that classical anterior or mid-
temporal spikes in scalp EEG or MEG were generated in anterior and lateral
temporal neocortical structures and did not propagate from or to the mesial tem-
poral region (Fig. 2). Extracranial EEG or MEG, along with their source locali-
zation techniques have been unable to detect the true mesial temporal spikes that
are detected by intracranial electrodes (Wennberg et al. 2011). Although a debate
on the ability of MEG to detect mesial temporal spikes persists (Kaiboriboon et al.
2010; Stephen et al. 2005), MEG source estimation is only partially correlated with
electrocorticography findings. Moreover, the whole-head MEG helmet insuffi-
ciently covers the basal temporal region (Leijten et al. 2003).
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MSI can identify subcompartments of the temporal lobe involved in epileptic
activity and may be helpful in non-invasively differentiating among subtypes of
TLE (Pataraia et al. 2005). The spikes localized in the anterior temporal neocortex,
including those in the temporal tip with a horizontal orientation to the temporal
lobe axis, and those in the superior or basal temporal cortex with a vertical ori-
entation, are relatively specific to mesial TLE. Spikes localized vertically in the
posterior temporal region are seen frequently in patients with seizures originating
from the lateral temporal lobe (Iwasaki et al. 2002). In patients with epileptogenic
lesions (lesional TLE), monofocal localization of MEG spikes reliably identifies
the epileptogenicity of the lesion (Heers et al. 2010b) (Fig. 3).

Fig. 2 MSI in a 30 year old female with mesial TLE with left hippocampal sclerosis. a Pre-
operative T2 weighted image shows atrophy of the left hippocampus (arrow) and no other
abnormalities. b Volume segmentation of the hippocampus shows significant volume loss on the
left side. c Single ECD model was used for source estimation of epileptic spikes. ECDs of her left
temporal MEG spikes were localized in the left anterior temporal lobe. Circles and bars indicate
locations and orientations of dipoles. The three-dimensional brain image co-registered with
dipoles (yellow spheres) shows that spike sources are not localized in the mesial temporal
structure, but in the anterior temporal neocortex. This dipole pattern is relatively specific to the
mesial TLE, whereas MSI does not pinpoint the epileptogenic zone in the mesial temporal region.
d Post-operative MRI. The patient received selective amygdalo-hippocampectomy (arrow) and
became free from seizures. Note that the area of MEG spike localization was not included in the
resection
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2.5.2 Extratemporal Lobe Epilepsy

In neocortical epilepsy, monofocal MEG spike localization or ‘‘a single dipole
cluster’’ is correlated with the ictal onset zone, and complete resection leads to
better seizure outcome (Iida et al. 2005a; Stefan et al. 2011b). Multiple clusters of
MEG spikes suggest multiple or extensive epileptogenic zones, which should be

Fig. 3 MSI in a 16 year old female with left TLE with multiple lesions. a Pre-operative fluid
attenuated inversion recovery (FLAIR) images show atrophy of the left hippocampus and two
isolated increased T2 lesions, one anteriorly in the inferior temporal gyrus (arrow, left) and
another posteriorly at the bottom of the superior temporal sulcus (arrow, right), suggesting
cortical dysplasia. b ECDs of her left temporal MEG spikes were localized in the anterior part of
the left temporal lobe. The ECD location was relatively close to the anterior lesion (red circles).
c Interictal spike map from implanted intracranial electrodes. Four depth electrodes, including
two in the hippocampus, one in the anterior lesion, and one in the posterior lesion, were
implanted. The subdural electrodes were also implanted to cover the whole temporal lobe and
extratemporal region. Electrodes are represented by green circles. Red circles show locations of
epileptic spikes. Epileptic spikes were distributed in the antero-mesial-basal temporal region,
corresponding to the MEG findings. No epileptic activities were recorded from depth electrodes
inserted in the posterior lesion (blue circle). The patient received anterior temporal lobectomy
including resection of the inferior temporal gyrus lesion (orange circles). The posterior lesion
was not removed, but the patient became seizure free
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completely delineated by intracranial EEG before planning surgery (Oishi et al.
2006). Similarly, a high coverage of MEG spikes by resection volume and a small
distance to the resection volume are both correlated with a favorable outcome
(Fischer et al. 2005).

MEG is diagnostic in rolandic epilepsy because tangential dipoles generated in
the central sulcus are detected and localized by MEG better than by scalp EEG.
Epileptic spikes are characterized by anteriorly-oriented dipoles localized in the
central sulcus in benign rolandic epilepsy, or benign childhood epilepsy with
centro-temporal spikes (BECCT) (Ishitobi et al. 2005). In these patients, spikes
originate in the pre-central gyrus, or ‘‘motor cortex’’. Posteriorly oriented spikes
are atypical for benign rolandic epilepsy, and are associated with poorer prognosis
for seizures and cognitive functioning (Kakisaka et al. 2009). Moreover, dipole
localization can differentiate between benign and atypical rolandic epilepsy. Spike
dipoles are localized ventro-laterally around the oro-facial level in benign rolandic
epilepsy, and dorso-medially around the hand level in atypical rolandic epilepsy
(Kakisaka et al. 2011b; Perkins et al. 2008).

2.5.3 MRI-Negative Epilepsy

Surgical treatment is challenging in intractable focal epilepsy with no evident MRI
abnormality (MRI-negative epilepsy). Under these circumstances, MEG helps to
identify the epileptogenic zone and guide intracranial electrode implantation
(Zhang et al. 2011). In combination with SPECT or FDG-PET findings, monofocal
MEG spikes suggest an epileptogenic zone with excellent post-operative outcome
(Wu et al. 2013). Compared with subtraction ictal SPECT co-registered to MRI
(SISCOM), MEG is more advantageous in predicting seizure-free post-operative
outcome (Schneider et al. 2013). MEG provides information that is useful over and
above that provided by intracranial EEG alone. When sublobar concordance is
observed between MEG and intracranial EEG, complete resection of both regions
is predictive of post-operative seizure-free outcome (Schneider et al. 2012a). In
pediatric populations, MEG and SISCOM are better tools for lobar localization
than is SPM analysis of FDG-PET (Seo et al. 2011). Postoperative freedom from
seizure is less likely in children with bilateral MEG dipole clusters or only scat-
tered dipoles (Ramachandrannair et al. 2007).

MEG can identify epileptogenic regions associated with cortical dysplasia.
Alterations in tissue microstructure beyond the MRI visible cortical dysplasia are
revealed by diffusion-tensor imaging at the area of MEG spikes (Widjaja et al.
2009). The best surgical outcome is obtained after complete removal of areas
containing clustered MEG spike sources and MR lesions (Widjaja et al. 2008)
(Fig. 4).
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2.6 Generalized Epilepsy and Other Epilepsy Syndromes

MEG can successfully localize the primary focus of secondary bilaterally syn-
chronized spikes which appear as generalized in scalp EEG (Chang et al. 2009; Yu
et al. 2004). MEG may reveal early and focal sources in generalized epileptiform
discharges in patients with infantile spasms and Lennox-Gastaut syndrome
(Kakisaka et al. 2011a, 2010; Ramachandrannair et al. 2008; Sakurai et al. 2007).
In a subset of patients, focal MEG findings may lead to resective surgery followed
by excellent seizure outcome (Chang et al. 2009).

Tuberous sclerosis complex often presents as intractable multi-focal or gen-
eralized epilepsy due to multiple epileptogenic lesions (cortical tubers). Even
when multiple cortical tubers are seen, epileptogenicity may reside in one or few
tubers, i.e. epileptogenic tubers, in some patients. Resective epilepsy surgery is
often challenging, but MEG has an important role in pre-surgical evaluation, i.e.,

Fig. 4 MSI in a 20 year old male with intractable epilepsy due to cortical dysplasia in the right
parietal paracentral lobule. a Pre-operative FLAIR image shows increased signal, indicating a
lesion in the medial parietal region (arrow). b ECDs of of the MEG spikes were localized in the
parietal interhemispheric area and oriented to the right side, suggesting spike sources in the right
medial parietal cortex. c Co-registration of MRI-identified lesion and MEG spikes on three-
dimensional brain image. MEG spikes were located deeper than the MRI-identified lesion.
Intracranial EEG revealed epileptic activities distributed in the lesion as well as in the MEG spike
area. d Post-operative MRI. Tailored cortical resection including both the MRI-identified lesion
and the MEG spike area led to significant improvement in his seizures. Histopathological
examination of the surgical specimen obtained from the MEG spike area revealed cortical
dysplasia with dysmorphic neurons
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to identify the most epileptogenic tuber (Evans et al. 2012; Iida et al. 2005b; Wu
et al. 2006). Epileptogenic sources identified by MEG are closer to the presumed
epileptogenic tuber than are similar sources identified by EEG. Moreover, spike
consensus is greater with MEG (Jansen et al. 2006).

MEG has been used to reveal the initial focal component of generalized epi-
leptiform discharges in idiopathic or primary generalized epilepsies (Sakurai et al.
2010; Stefan et al. 2009; Westmijse et al. 2009). Local frontal and/or parietal
activation is found before the onset of the generalized pattern, and the site of initial
activation can be dependent on the type of epilepsy (Stefan et al. 2009).

3 Pre-surgical Functional Mapping

Accurate localization of the functionally ‘‘eloquent’’ cortex is crucial in planning
surgical procedures near the functional area. Along with functional MRI, MEG is
a non-invasive alternative for mapping brain functions (Mäkelä et al. 2006;
Stufflebeam et al. 2009). In a subset of neurosurgical patients, the lesion is located
within or near eloquent cortices, causing a distortion of neuroanatomy and ham-
pering topographical localization of eloquent areas in relation to the mass lesion.
In these patients, functional mapping of eloquent brain areas is crucial. MEG
provides functional mapping with excellent temporal and reasonable spatial
accuracy. Central sulcus localization and the mapping of auditory, visual and
language cortices are feasible with MEG.

3.1 Somatosensory Evoked Fields for Central Suclus
Localization

Somatosensory evoked magnetic fields (SEFs) in response to electrical stimulation
of the median nerve at the wrist allows reliable identification of the central sulcus.
The first cortical component of the median nerve SEF is called N20m, as it is the
magnetic counterpart of the N20 of the somatosensory evoked potentials (SEPs).
The ECD of N20m is localized on the posterior bank of the central sulcus with an
accuracy of a few millimeters, corresponding to area 3b of the primary somato-
sensory cortex (Kawamura et al. 1996). Although the central sulcus is usually
recognized by the sulcal and gyral pattern on anatomical MRI (Berger et al. 1990),
SEF can provide critical information when the central sulcus is anatomically
displaced or distorted by a structural lesion or brain edema (Nakasato and
Yoshimoto 2000). Spatial accuracy can be increased by combining information
from simultaneously-recorded EEGs (Bast et al. 2007).

Somatotopic organization of the primary somatosensory cortex is examined by
combining multiple stimulation points in SEFs. The first cortical component of the
posterior tibial nerve stimulation at the ankle is called P38m. The ECD of P38m is
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localized at the highest part of the central sulcus, corresponding to the ‘‘foot-level’’
primary somatosensory cortex. The first component of lip stimulation identified as
N15m, is localized on the lower part of the central sulcus, corresponding to the
‘‘face-level’’ primary somatosensory cortex (Nagamatsu et al. 2001). Knowledge
of the somatotopic organization and the locations of critical functions is important
for surgical planning especially when maximum brain resection is required such as
for malignant gliomas and medically intractable epilepsy. Neurological deficits are
minimal or transient after unilateral resection of the oro-facial primary sensori-
motor areas because functional compensation by the contralateral cortex can be
expected (Kirsch et al. 2007b).

3.2 Auditory Evoked Fields for Presurgical Mapping

Bilateral auditory cortical responses are obtained by applying monaural or binaural
stimuli. The most prominent cortical auditory evoked field (AEF) is named
N100m, the magnetic counterpart of N100 in AEPs. The ECD of N100m is
localized in the posterior part of the superior temporal plane, corresponding to the
Heschl’s gyrus. Reliable source estimation is possible using a two dipole model for
whole-head data. Delayed N100m latency can be observed in patients with brain
tumors involving the posterior temporal lobe (Nakasato et al. 1997) or with focal
epilepsy arising in the primary auditory cortex (Kubota et al. 2007). Abnormally
large-amplitude (giant) N100m is observed in some patients with autosomal
dominant lateral temporal lobe epilepsy (ADTLE), possibly reflecting hyperex-
citability or loss of inhibition in the pathological temporal cortex (Usui et al. 2009).

3.3 Language Mapping with MEG

When language stimuli are presented acoustically or visually, early responses from
the primary auditory and visual areas may be followed by late responses from the
language areas, typically after 200 ms and up to 1,000 ms from stimulus onset.
Amplitude asymmetry of the late event-related fields can predict the language-
dominant hemisphere. The language-related activation can be quantified by the
number of fitted ECDs localized near the frontal and posterior temporal language
areas (Papanicolaou et al. 2004). Other source modeling is also applicable to
language-related source localization, and yields clinically relevant results (Bowyer
et al. 2004, 2005; McDonald et al. 2009; Tanaka et al. 2013). Although several
language tasks have been proposed, relatively simple tasks, such as those
involving passive listening, are sufficient for lateralizing language function
(Pirmoradi et al. 2010). Passive auditory language mapping during sleep is pos-
sible in children who are not cooperative during conventional language testing
(Van Poppel et al. 2012).
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MEG is currently used as a non-invasive alternative for lateralization of the
language-dominant hemisphere (Abou-Khalil 2007; Pelletier et al. 2007). In terms
of language lateralization, MEG is concordant with the intra-carotid amobarbital
procedure (IAP), the gold standard for language lateralization, in 86 % of cases
with sensitivity and specificity values of 80 and 100 %, respectively (Doss et al.
2009; Merrifield et al. 2007; Papanicolaou et al. 2004). Good test-retest reliability
has also been confirmed (Lee et al. 2006).

Language activation can also be measured as event-related changes in MEG
oscillation (i.e., event-related desynchronization, ERD, or event-related synchro-
nization, ERS) (Lee et al. 2010b). Beta to low gamma-range band desynchroni-
zation in the left frontal area and alpha to beta-range desynchronization in the left
parietotemporal areas show 85 % concordance with IAP (Hirata et al. 2010)
(Fig. 5). A recent study showed that power decrease in the beta band was espe-
cially sensitive and specific to IAP (Findlay et al. 2012).

Fig. 5 Event-related synchronization and desynchronization for a silent naming task involving
visually presented nouns. Time-frequency representation of signal source strength in the left
inferior frontal gyrus (upper panel) shows a decrease (color-coded in blue) in beta-range activity
and an increase (red) in gamma-range activity around 500 ms from onset. Voxels showing
statistically significant changes in beta desynchronization were mapped onto the left frontal
language area (lower panel). Left-hemisphere language dominance was suggested
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4 Conclusions

In pre-surgical evaluation of epilepsy, magnetic source imaging (MSI) of epileptic
spikes provides additional information to those provided by other non-invasive
measures especially in neocortical epilepsy and in MRI-negative epilepsy. MSI
guides additional electrode coverage for intracranial EEG and area of resection
when planning surgery. Mono-focal spike localization strongly indicates the epi-
leptogenic zone, and complete removal of the MEG focus often results in the
patient being seizure free, post-operatively.

MEG is also utilized for functional brain mapping. Somatosensory evoked
fields to median nerve stimulation lead to an accurate, within a few millimeters,
identification of the central sulcus. MEG is a non-invasive alternative for pre-
surgical determination of the language-dominant hemisphere. MEG analysis of
event-related responses to language tasks provides more than 80 % sensitivity and
specificity in language lateralization for intra-carotid amobarbital procedures.
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Bagić AI, Barkley GL, Rose DF, Ebersole JS (2011a) American clinical magnetoencephalog-
raphy society clinical practice guideline 4: qualifications of MEG-EEG personnel. J Clin
Neurophysiol 28:364–365
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Towards Brain Connectivity in Epilepsy
Using MEG

Seung-Hyun Jin and Chun Kee Chung

Abstract In recent years, there has been a growing interest in the area of brain
connectivity. In particular, brain connectivity analyses using either functional or
effective connectivity have been performed to look at functional integration
between various cortical areas in the field of brain research. MEG has been widely
used as a tool for presurgical mapping of epilepsy. But attempts to take advantage
of technical advances of brain connectivity have been made and provided valuable
information in addition to the conventional technique. Here, we discussed what we
have learned from recent studies on the investigation of brain connectivity in
epilepsy using MEG and future directions for this field.
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1 Introduction

MEG has established as a reputation for a presurgical evaluation tool in clinical
practice. In particular, there is a large body of evidence showing the feasibility of
MEG as a useful tool for presurgical mapping of epilepsy, including localization of
the epileptic focus and eloquent cortex evaluation (Stefan et al. 2011a, b; Colon
et al. 2009; Stufflebeam et al. 2009). The inherent advantages of MEG over EEG
including its being contactless and reference free and having limited influence on
the volume conduction effect are well recognized (Stefan et al. 2011a). Yet its
greatest advantage of high temporal resolution is still well maintained, which
cannot be achieved with other neuroimaging modalities such as fMRI, PET and
SPECT.

One of the contributions of this high temporal resolution is that it allows us to
investigate connectivity in the brain at a high temporal resolution (Stufflebeam
2011). Let us consider functional segregation and integration. These two concepts
are the two major organizational principles of the cerebral cortex (Zeki 1978; Zeki
and Shipp 1988; Tononi et al. 1994; Friston 2002, 2005, 2009). They look like two
sides of the same coin because we cannot understand brain function looking at
only one aspect between these two features (Jin and Chung 2012). Functional
segregation implies how a brain region is statistically distinct from another
(Friston 2009) and it is a multi-scale phenomenon, ranging from specialized
neurons to neuronal populations and cortical areas (Sporns 2011). However,
considering that the brain is a large-scale network consisting of millions of neu-
ronal elements that are interconnected in characteristic patterns, analyzing the
interactions, that is, looking at the functional integration between various cortical
areas, may be essential in understanding brain functions as complex network
architecture. Because functional integration can be characterized in terms of
functional and effective connectivity (Friston 2009), connectivity analysis has a
central role in neuroscience fields such as neuroanatomy, neurodevelopment,
electrophysiology, and the neural basis of cognition (Sporns 2011). This chapter
will discuss what we have learned from recent studies on the exploration of brain
connectivity in epilepsy using MEG.

2 Messages from the Brain Connectivity
in Epilepsy Using MEG

2.1 From Functional Connectivity Perspective

Functional connectivity indicates the statistical dependencies among remote
neurophysiological events (Sporns 2011) and is believed to reflect communication
between different brain areas (Bullmore and Sporns 2009; Reijneveld et al. 2007).
Many studies have reported on altered functional connectivity and its network in
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mesial temporal lobe epilepsy (Liao et al. 2010), juvenile myoclonic epilepsy
(Glerean et al. 2012) and idiopathic generalized epilepsy (Zhang et al. 2011) with
the fMRI method. However, brain oscillatory activity from the perspective of
functional connectivity can be better reflected with electrophysiological approa-
ches. In fact, patients with tumor-related epilepsy showed altered functional
connectivity in the theta band, suggesting the possibility of theta band functional
connectivity as a hallmark of tumor-related epilepsy (Douw et al. 2010). In
addition, 5 epileptic patients with absence seizures presented a rich connectivity
with a clear modular structure in the brain networks, especially in the 5–14 Hz
range (Chavez et al. 2010). These studies suggest the possibility of applying
functional connectivity and its network to epileptic brain analysis, which might
provide an electrophysiological biomarker of epilepsy.

2.2 From Effective Connectivity Perspective

Effective connectivity referring to the causal interaction between distant structures
in the brain (Friston et al. 1997; Sporns 2011) is another way to unveil functional
integration. Functional and effective connectivity could be considered comple-
mentary properties of brain function. Thus, effective connectivity can be viewed as
an extension of functional connectivity given some underlying neuroanatomic
assumptions. In fact, effective connectivity attempts to go beyond functional
connectivity by identifying causal influence among the components of a network,
and thus, its beauty comes from the fact that it endeavors to reveal the causes
driving observed patterns of neural activity (Jin and Chung 2012). Recently, a
study by Jin et al. (2013) showed its possible potential value as a presurgical
evaluation of effective connectivity using MEG. The main contribution of this
study is that it shows the usefulness of effective connectivity analysis in the
detection of the potential epileptogenic focus of multiple MEG interictal spike
clusters in focal cortical dysplasia with discordant multimodal presurgical evalu-
ations. Similarly, effective connectivity analysis of MEG in order to estimate the
primary sources of epileptiform activities was performed based on directed
transfer function (Dai et al. 2012). Through these applications, it seems that
effective connectivity could provide important information when determining
the epileptogenic zone in terms of information flow in both the interictal spike
(Dai et al. 2012) and interictal spike-free MEG signals (Jin et al. 2013).

3 Future Challenges

Although the neuroimaging of connectivity is indicated for the next 20 years as a
leading research topic in disclosing the brain architecture (Friston 2011), attempts
to use these technical advances in epilepsy research with MEG have not been
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popular as of yet relative to other clinical populations. In order to take advantage
of the recent advances in connectivity research, basic studies on how brain con-
nectivity in epilepsy using MEG is reorganized due to the pathologic origin and
how brain connectivity is correlated with clinical factors should be done to ensure
the feasibility and utility of these methods. Attempts to discover the core elements
of functional connectivity and its relation to the epileptogenic zone would be an
attractive future research theme. Effective connectivity analysis with core elements
revealed by functional connectivity will provide additional information on the
relationships among core elements, demonstrating the information source region.
Especially, these applications would exert a strong influence in the case of non-
lesional neocortical epilepsy because it is a clinical challenge to determine the
potential region when surgically resected without a definite MRI lesion, but MEG
as a useful diagnostic tool in non-lesional epilepsy has been reported (Funke et al.
2011). Development of a new measure to determine the epileptogenic zone based
on brain connectivity would be one of the challenges of a useful clinical appli-
cation. In particular, an approach combining functional and effective connectivity
would allow us to understand the dynamic mechanisms underlying the epileptic
brain architecture and the generation of seizures (Fig. 1).

Of course, since structural connectivity referring to a set of anatomical con-
nections liking neural elements (for instance, from DTI) would provide structural

Fig. 1 Conventional MEG technique for source localization of interictal spike (left panel) and
challengeable approach combining functional and effective connectivity (right panel) in epilepsy
using MEG
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information (Engel et al. 2013), combining structural connectivity and brain
connectivity derived from MEG will enhance our understanding of fundamental
mechanisms of epilepsy and greatly help in determining the epileptogenic zone
using a multi-modal prognostic tool from a connectomics perspective.

4 Conclusion

The conventional source localization technique has been a large part of the clinical
application of MEG in epilepsy; however, recent advances in connectivity research
with MEG will open a new era in terms of how the epileptogenic focus can interact
with other regions from the perspectives of functional and effective connectivity.
One of the benefits of using MEG in brain connectivity is that frequency dependent
connectivity can be pursued, which is the greatest advantage of the electrophys-
iological approach using MEG. In summary, brain connectivity studies in epilepsy
using MEG have been growing, which are expected to provide a better under-
standing of the epileptic brain. These studies will eventually contribute to develop
the electrophysiological biomarkers of epilepsy in the near future.
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Review of Schizophrenia Research Using
MEG

Donald C. Rojas

Abstract Schizophrenia is a severe form of mental illness characterized by
hallucinations, delusions, changes in affect and serious cognitive and social dys-
function. MEG has made contributions to our understanding of the disorder in many
areas, although the most significant contributions have been in four areas. First,
MEG has suggested that schizophrenia may be characterized by alteration in
cerebral lateralization, particularly in auditory evoked responses. Second, auditory
evoked responses suggest significant impairment in early auditory perceptual
processes. Third, in one of these sensory deficits in particular, the underlying source
configuration of sensory gating abnormalities has provided us with information
about the localization of the deficit that was not apparent from EEG studies. Finally,
spectrotemporal abnormalities are evident in the disorder, particularly for low
frequency oscillations, and MEG has contributed to our understanding of the
regional distribution of those anomalies. These and other interesting, but less well
characterized electrophysiological phenomena studied using MEG methods in
schizophrenia and related psychopathologies, are reviewed in this chapter.

Keywords Schizophrenia � Bipolar disorder � Psychosis � Cerebral asymmetry �
Sensory gating � Delta � Alpha � Beta � Gamma � M100 � M50

1 Introduction to Schizophrenia

Schizophrenia is a serious mental disorder characterized behaviorally by symp-
toms indicating a disconnection from reality as well as significant cognitive and
social disability. Although it had been previously described, the Swiss psychiatrist
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Eugen Bleuler first named the disorder schizophrenia in 1911 (Bleuler 1911), the
Greek origin of the word schizophrenia denoting ‘‘split mind’’. Bleuler’s use of
this term was meant to suggest a split from reality in the affected individual rather
than a split in personalities, as is often unfortunately assumed among laypersons
when thinking about the meaning of the disorder’s name. Schizophrenia has a
worldwide prevalence of 1 % (Gottesman 1991), which makes it more prevalent
than other nervous system disorders such as Alzheimer’s disease, multiple scle-
rosis and Parkinson’s disease.

Symptoms in schizophrenia are commonly divided into positive and negative
symptoms. The positive symptoms of schizophrenia, those typically not present in
healthy individuals, include hallucinations and delusions, disorganized behavior
and disorganized or illogical speech. Negative symptoms, which are those in
which there is an absence of a normal behavior, include flattened affect, alogia and
avolition. These symptoms are codified in the Diagnostic and Statistical Manual of
Mental Illness, 4th edition (American Psychiatric Association 1994) and Interna-
tional Classification of Disease, version 10 (World Health Organization 1992).

The etiology of schizophrenia is not well understood despite years of dedicated
research into the underlying biological and environmental contributions. It is clear
that schizophrenia has a significant genetic component, evidenced by twin studies
demonstrating 50 % concordance in monozygotic twins and 17 % concordance in
dizygotic twins (Gottesman 1991). Although there are a number of mutations that
convey risk for the disorder, there are few if any genes with large effects identified.
Schizophrenia may be a complex polygenic disorder with many risk genes of small
effect, and/or a collection of disorders with shared symptomatology but distinct
etiologies perhaps with convergence on particular molecular pathways (Gejman
et al. 2011). There are also clearly associated environmental factors, including
season of birth effects, perinatal/obstetric risks and associations with viral infection
during pregnancy (Tsuang 2000).

Schizophrenia treatment remains essentially unchanged over the past 30 years of
drug development. The revolution of the first generation of antipsychotic medica-
tions in the 1970s was followed by a subsequent development of so-called second
generation, or atypical, antipsychotic medications. Despite differences in receptor
affinity profiles, particularly with respect to serotoninergic, 5-HT2A-receptor
antagonism, a common mechanism for clinical efficacy shared by all currently
approved antipsychotic medications is antagonism of the D2 dopamine receptor.
Despite early marketing claims, modern studies have failed to find significant dif-
ferences in efficacy between first- and second-generation drugs (Lieberman and
Stroup 2011), and there has been a call to abandon the terminology altogether (Tyrer
and Kendall 2009). Although such medications are generally effective for treatment
of positive symptoms in the disorder, few if any have shown promise in treating
the cognitive deficits and negative symptoms, which is important since they are
more closely associated with prognosis (Rabinowitz et al. 2012; Green 2006). Thus,
the search for effective pharmacological and behavioral treatments in schizophrenia
has shifted towards cognitive disability.
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2 Historical Overview of MEG Applications
in Schizophrenia Research

The first MEG paper published on schizophrenia was in 1988 (Reite et al. 1988),
which focused on localization of the M50 auditory evoked magnetic field com-
ponent in six men with schizophrenia. A single channel, second-order gradiometer
was used, combined with simultaneous EEG recordings from the scalp vertex.
Mapping the topography of the field distribution, which took several days of work
for each subject, was accomplished by employing a grid outlined on a swim cap
and 28–43 serially repeated measurements of 128 trials per location with the
gradiometer positioned over each grid point. There was no comparison group in
the study, so it served primarily as a proof of concept study that MEG could be
applied to a severely impaired patient population. The first published paper with a
direct comparison between schizophrenia patients and a control group appeared
the following year, in 1989, from the same group (Reite et al. 1989). Somewhat
surprisingly, the observations from these earlier MEG technologies have generally
replicated using more modern methods and machines (see Sect. 3.1).

From those earlier studies, MEG publications on schizophrenia slowly
increased in the 1990s and is currently showing a strong increasing trend (see
Fig. 1), probably reflecting the wider installed MEG system base as well as the
relative ease of conducting whole head, high-density MEG recordings, compared
to the earlier days of limited channel arrays. The increase in publications using
MEG also seems to track the larger overall trend of increasing numbers of
published papers in schizophrenia.

3 Evoked Magnetic Fields in Schizophrenia

3.1 Cerebral Lateralization of the Location of Auditory
and Somatosensory Evoked Fields

Some of the earliest studies employing MEG in schizophrenia focused on an
asymmetry between the left and right hemisphere location of the auditory compo-
nents of the evoked response. The M100 (also termed the N100 m) is generated
within the auditory cortices on the supratemporal plane (Pantev et al. 1998; Reite
et al. 1994) and its location is generally relatively more anterior in the right com-
pared to the left hemisphere (Nakasato et al. 1995; Mäkelä et al. 2004). Reite et al.
(1989) reported in a preliminary study of 6 male patients and 6 controls that the
schizophrenia group exhibited reduced interhemispheric asymmetry compared to
controls. Although the original study used repeated measurements of a single-
channel MEG instrument, the finding has been replicated using larger array devices,
both by the original research group and independently by other investigators using
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different MEG devices (Tiihonen et al. 1998; Rojas et al. 2002; Rockstroh et al.
2001; Edgar et al. 2006; Reite et al. 1997). Reduced M100 asymmetry has been
compared directly between patients with schizophrenia and those with schizoaf-
fective disorder, with both patient groups exhibiting reduced asymmetry compared
to controls, but these groups were not significantly different from each other (Teale
et al. 2000).

Two studies have compared reduced M100 location asymmetry in schizo-
phrenia directly to samples of persons with dyslexia, a developmental disorder
defined by reading disability (Edgar et al. 2006; Heim et al. 2004). In both studies,
reduced anterior-posterior asymmetry in both clinical groups was reported relative
to control samples, suggesting that the asymmetry reduction might reflect a non-
specific neurodevelopmental biomarker. Supportive of this interpretation, reduced
asymmetry has also been observed in other neurodevelopmental disorders,
including Fragile X syndrome (Rojas et al. 2001) and autism (Rojas et al. 2008;
Schmidt et al. 2009).

It has also been suggested that the reduced asymmetry in schizophrenia may be
a finding specific to males (Reite et al. 1997; Rojas et al. 1997). However, other
investigators examining gender differences have not observed changes in location
in schizophrenia, but have noted gender specific alterations in M100 dipole ori-
entation instead (Hajek et al. 1997a, b). Gender differences, if any, may be
important in schizophrenia because of the observation of later onset and possibly
less severe psychopathology in women with the disorder (Goldstein 1988; Aleman
et al. 2003).
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The abnormality in asymmetry is not limited to source locations based on the
M100, or even to auditory evoked field locations. The very first schizophrenia
paper published suggested reduced asymmetry of the location of the auditory M50
source (Reite et al. 1988), and more recently there has been evidence published
that the auditory-steady state source also exhibits this phenomenon in schizo-
phrenia patients (Teale et al. 2003). Outside of the auditory cortex, reduced
location asymmetry of the somatosensory M20 and M50 components have been
described in schizoaffective disorder and schizophrenia, respectively (Reite et al.
1999b, 2003).

Reduced laterality of the location of auditory and somatosensory responses has
also been examined in two studies of early onset psychotic disorders including
schizophrenia. Wilson et al. (2008) did not find significant differences in lateral-
ization of the auditory steady state response in children and adolescents with a
heterogeneous sample of various early onset psychoses. In a separate study,
however, somatosensory M50 dipole location asymmetry was found to be reduced
in study of children ages 8–16 years with various early onset psychotic disorders
including schizophrenia, mood disorders with psychotic features and psychosis
NOS (Wilson et al. 2007). In that study, the location asymmetry for the M50
dipole was left more anterior than right hemisphere for both groups, but this left to
right shift was reduced in the psychotic group. Although the increased symp-
tomatic heterogeneity in combined psychotic disorder samples may lead to
increased variability in sources, a study in bipolar disorder, directly comparing
currently euthymic patient samples with and without a history of psychosis, found
that reversed somatosensory M20 anterior-posterior localization was specific to the
patients with a positive history psychosis, operationally defined as a history of
hallucination and/or delusions (Reite et al. 1999a). In contrast to healthy control
subjects and non-psychotic bipolar groups, both of which exhibited right hemi-
sphere locations anterior to the left hemisphere locations, the psychotic bipolar
group exhibited right hemisphere M20 locations posterior to the ones in the left
hemisphere. This suggests that the dimension of psychosis rather than the speci-
ficity of the diagnosis is a key factor. The developmental trajectory of location
lateralization for auditory and somatosensory cortices has not yet been studied,
however, and more evidence is needed to define both the development and the
symptom dimension associations. No studies have yet reported significant corre-
lations between various symptoms of schizophrenia/psychosis and location
asymmetry. Reduced M100 amplitude asymmetry to monaural stimulation,
between the contralateral and ipsilateral responses, has also been reported
(Rockstroh et al. 1998).

Evidence of altered cerebral lateralization in location of auditory and somato-
sensory function from MEG is part of a larger literature on changes in structural
and functional lateralization in schizophrenia. For example, a meta-analysis of
various aspects of lateralization in the schizophrenia indicates increased odds ratio
of non-right-handedness, increased odds of reduced right-ear advantage in dichotic
listening to consonant-vowel sounds, and increased odds of reduced asymmetry of
brain structure in schizophrenia, especially in temporal lobe/Sylvian fissure
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regions, compared to controls (Sommer et al. 2001). It should be noted, however,
that abnormality of the localization of function does not necessarily imply an
underlying structural abnormality. In one study comparing locations of the audi-
tory M100 to the location of Heschl’s gyrus, asymmetry (right anterior to left) in
the location of Heschl’s gyrus was observed in both schizophrenia and control
samples (Rojas et al. 1997). Although there were no significant differences
between groups in anterior-posterior position of the structure, M100 location
asymmetry was significantly different between groups (Rojas et al. 1997). MEG
information on location of function may be additive, rather than simply a reflection
of an underlying anatomical difference.

3.2 MEG Studies of Auditory Processing

Deficient auditory processing is consistently observed in behavioral studies of
schizophrenia. Frequency-matching performance, for example, is commonly
reported to be worse in subjects with schizophrenia than in comparison groups
(Holcomb et al. 1995; Rabinowicz et al. 2000; Javitt et al. 2000). There is an
extensive body of EEG and MEG research on impairment of the mismatch neg-
ativity (MMN) in schizophrenia (reviewed in Naatanen and Kähkönen 2009).
Similar to the widely replicated reduction in MMN observed in schizophrenia
patients using EEG, MEG studies of the magnetic analog (variously termed
MMNm or MMF), have also revealed smaller mismatch responses in patients
(Kircher et al. 2004; Kreitschmann-Andermahr et al. 1999; Pekkonen et al. 2002;
Kasai et al. 2003; Jordanov et al. 2011).

Some MEG studies, however, have tended to capitalize more on source
localization strategies than EEG studies, and some interesting results have
emerged. Kircher et al. (2004) reported that for duration mismatch responses,
schizophrenia patients were significantly less right lateralized compared to healthy
controls. Pekkonen et al. (2002) found that while patients with schizophrenia had
significantly reduced MMNm amplitudes in both hemispheres compared to control
subjects, MMNm latency was only significantly delayed in the left hemisphere.
Simple dipole analyses of MMNm, however, may not be as likely to succeed for
individual patients with schizophrenia as with healthy control subjects, probably
due to a reduction in signal strength in the patient group (Yamasue et al. 2004;
Ahveninen et al. 2006). To avoid this, one study fixed the dipole location for the
MMNm using a priori information on the location of the primary auditory cortex
(Thonnessen et al. 2008). In this latter study, MEG and EEG mismatch responses
were directly compared using the fixed dipole locations and MEG sources out-
performed the EEG sources in terms of significant group differences across a
number of experimental manipulations (Thonnessen et al. 2008). In a recent study,
Dima et al. (2012) examined connectivity and MMNm in schizophrenia,
employing a dynamic causal modeling (Friston et al. 2003) approach to fixed
dipole locations within primary auditory, secondary auditory and inferior frontal

854 D. C. Rojas



cortices. Dima et al. (2012) reported an abnormal reversal of connectivity (i.e.,
reversal of information directional flow) between frontal and superior temporal
sources during the MMNm. Whereas healthy individuals exhibited the predicted
negative modulation of temporal lobe from frontal lobe (i.e., bottom up rather than
top down), schizophrenia patients exhibited greater bottom up modulation from
the temporal lobe to frontal lobe.

MMNm studies have also been published concerning risk for schizophrenia and
its genetics. Shin et al. (2009) studied 16 individuals at high risk for schizophrenia
based on the presence of attenuated symptoms (i.e., the schizophrenia prodrome)
and found that MMNm dipole amplitude was reduced in the right hemisphere and
latency was prolonged, relative to 18 healthy controls. Ahveninen et al. (2006)
examined MMN and MMNm in a twin design, including monozygotic twins
discordant for schizophrenia (N = 10 pairs) and dizygotic twins discordant for
schizophrenia (N = 13 pairs) as well as control MZ and DZ twin pairs. Although
the EEG MMN component was significantly reduced in the schizophrenia patients
and their unaffected twins, the MEG MMNm did not exhibit significant differences
between groups, in contrast to the more recent study of Thonnessen et al. (2008),
described above. Both EEG and MEG responses exhibited genetic influence rel-
ative to the degree of relatedness to schizophrenia (Ahveninen et al. 2006).

Aside from the MMNm component, other evoked magnetic components have
been studied with respect to sensory representations and processing in schizo-
phrenia. Two studies have examined tonotopy, or the spatial mapping of frequency
to the auditory cortex, using the auditory M100 response (Rosburg et al. 2000b;
Rojas et al. 2002). Both found evidence of frequency effects on M100 dipole
location location for healthy controls, similar to other MEG studies published
using only healthy samples (Romani et al. 1982; Pantev et al. 1995). Although
both studies also reported differences in the patient group, the specifics differed
between studies. Rosburg et al. (2000b) reported frequency-dependent differences
in location in the anterior-posterior coordinate, which were slightly greater in
patients than controls in the right hemisphere but much greater in controls than in
patients in the left hemisphere. In contrast, Rojas et al. (2002) found frequency
differences in location on the medial-lateral coordinate for the M100, as well as a
reduction in this difference, in both hemispheres, in patients with schizophrenia.
Relative to the head coordinate systems used, Heschl’s gyrus, the nominal struc-
tural correlate of the primary auditory cortex, has an oblique angle. Frequency
gradients along it may be anterior-posterior, medial-lateral, or both, depending on
the specific anatomy. Future comparisons may benefit from an accounting of this
variability by expressing location coordinates within an anatomically derived
framework (Jordanov et al. 2010).

In addition to dipole location, several studies have examined auditory evoked
field latency and amplitude in schizophrenia under various experimental manip-
ulations. M100 amplitude is known to exhibit stimulus-specific refractoriness and
habituation to repeated stimulation (Hari et al. 1982). Rosburg et al. (2000a) did
not find differences in this behavior in 20 patients with schizophrenia when
comparing latency and amplitude of the M100 to repeated stimulation over several
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trial blocks. Overall both controls and schizophrenia patients showed increased
latency and decreased amplitude of the M100 as trial blocks increased. There was,
however, a significantly higher degree of habituation in a small sub-group of
patients taking clozapine, the dose of which correlated with amplitude habituation.
As pointed out by the authors, clozapine may be more effective than other anti-
psychotics at relieving a deficit in rapid habituation termed sensory gating in
schizophrenia (Adler et al. 2004). Yet another study used M100 refractory
behavior to examine frequency specific tuning of the M100 and found reduced
frequency specificity of the habituation in M100 amplitude in schizophrenia
patients (Rojas et al. 2007). Additional reported findings indicating an impairment
of early auditory processes include earlier M50 responses (Pekkonen et al. 1999)
and reduced amplitude of the M100 (Kreitschmann-Andermahr et al. 1999; Rojas
et al. 2007; Edgar et al. 2012). Reduced M100 amplitude appears to be associated
with thinner underlying auditory cortex, both in persons with schizophrenia (Edgar
et al. 2012) and in subjects at high risk for the disorder based on having a first
degree relative and/or prodromal symptoms (Shin et al. 2012).

3.3 Sensory Gating

One of the most widely replicated and highly studied EEG evoked potential
findings in schizophrenia is the so-called sensory gating deficit (Adler et al. 1982).
Normally studied using the EEG auditory P50 response to closely spaced paired
clicks, healthy individuals tend to exhibit reduced amplitude to the second click
(i.e., gating), while individuals with schizophrenia do not exhibit suppression of
the second click response amplitude (Patterson et al. 2008). It is sometimes
observed that reduced amplitudes of responses to the first, rather than the second
click, explain the usual gating ratio for P50 and M50-based sensory gating
impairment in schizophrenia (Blumenfeld and Clementz 2001). Impaired sensory
gating has been linked to mutations of the cholinergic alpha-7 receptor (CHRNA7)
on chromosome 15 (Freedman et al. 2003).

MEG studies have added useful information to this extensive literature. EEG
researchers commonly measure P50 sensory gating at vertex (Cz), referenced to
linked mastoids or ears and therefore have no information about lateralization of
the response. Thoma et al. (2003) first reported that the sensory gating deficit
appeared to be lateralized to auditory M50 sources in the left hemisphere. The left,
but not right hemisphere gating in MEG was correlated to the vertex P50 gating
response. The lateralized left hemisphere M50 gating deficit correlates with neg-
ative symptoms (Thoma et al. 2005), attention and working memory deficits
(Thoma et al. 2003; Smith et al. 2010) and long-term memory (Smith et al. 2010).
A recent study also extended the MEG sensory gating deficit for the M50 to human
voices rather than clicks, finding that the left-lateralized deficit was associated with
auditory hallucinations (Hirano et al. 2010). Simulations of changes in dipole
location, orientation and interhemispheric latency differences have shown that
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source configuration is important to consider in sensory gating studies in schizo-
phrenia (Edgar et al. 2003). Indeed, source modeling of the M50 response has also
been shown to improve the reliability of sensory gating measures, compared to
Cz-only EEG approaches (Lu et al. 2007). An MEG study that did not examine
sensory gating per se found that M50 responses had higher signal-to-noise ratios
than P50 responses, suggesting another potential advantage to MEG (Thonnessen
et al. 2008).

One MEG study examined the proportion of variance in the vertex EEG
explained by bilateral auditory dipoles modeled using MEG data. Huang et al.
(2003) found that dipoles in the left and right auditory cortices account for
approximately 97 % of the variance in healthy individuals observed at a vertex
EEG electrode for the time period including the P50 responses, but a smaller
amount, 86 %, in persons with schizophrenia. In that study, the residual variance
waveform for the dipole had a peak frequency of 40 Hz, suggesting unaccounted
for variance in the gamma-band in schizophrenia subjects. Indeed, an early
combined EEG and MEG sensory gating paper suggested that the gating effect was
stronger for gamma-band signals overlapping the P50/M50 response temporally
(Clementz et al. 1997). Other spectrally-focused MEG studies of sensory gating
have implicated theta, alpha and beta abnormalities as well (Edgar et al. 2008; Ho
et al. 2008; Popov et al. 2011).

Gating is not specific to the auditory M50 response. The M100 response also
exhibits reduced amplitude to the second of two paired sounds, although histori-
cally this has been considered in the context of refractoriness or habituation (see
Sect. 3.2). Hanlon et al. (2005a) reported M100 gating deficits in schizophrenia, in
addition to the M50-based deficit. The M100, unlike the M50, showed bilateral
deficits in the patients. One MEG study examining M100 suppression effects in
schizophrenia found that when using monaural stimulation, instead of the usual
binaural stimuli, ipsilateral but not contralateral response gating was worse in
patients compared to controls (Blumenfeld and Clementz 1999). Similarly, Dale
et al. (2010) found that M100 response suppression to the second of two closely
spaced syllables was impaired in schizophrenia. Another study examined the
generality of sensory gating deficits across sensory modalities in 27 patients with
schizophrenia and 21 control subjects (Edgar et al. 2005). Deficits were replicated
for the auditory M50 gating response, but were not present in the somatosensory
system using the M20 response to median nerve stimulation. The lack of
somatosensory gating deficit in schizophrenia does not imply an intact somato-
sensory system, however, as another MEG study found abnormalities in evoked
responses to median nerve stimulation in schizophrenia in the context of a
somatosensory oddball task (Huang et al. 2010). Additionally, a follow-up study of
secondary somatosensory cortical responses (the M20 is generated in primary
somatosensory cortex) found evidence for gating deficits in these later responses in
patients with schizophrenia (Thoma et al. 2007).

As with the M100 response, M50 and gating measures derived from it are
correlated with structural changes in the brain in schizophrenia. An early study
reported that M50 gating was negatively correlated with anterior hippocampal
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volumes in a hemisphere-specific manner, such that gating in the left correlated
with left hippocampus and gating in the right correlated with right hippocampus
(Thoma et al. 2008). This is an important observation given the putative role for
the hippocampus in some models of sensory gating and the general lack of imaging
evidence for a hippocampal generator. Other experimental paradigms more spe-
cific to hippocampal function have revealed hippocampal deficits in schizophrenia
using MEG (Hanlon et al. 2005b, 2011). In addition, Thoma et al. (2004) also
found that thinner auditory cortex in schizophrenia subjects was associated with
reduced sensory gating of the M50.

Finally, there are two additional points worth considering for MEG measures of
sensory gating in schizophrenia. The first is that while most studies do in fact
replicate the alteration in response amplitude ratios between first and second
stimuli, regardless of whether the specific change is to the first or the second
stimulus, at least one study using first-episode, medicated schizophrenia subjects
did not find evidence for sensory gating impairment in schizophrenia (Bachmann
et al. 2010). A significant number of patients, however, were taking clozapine,
which in separate studies has been shown to improve sensory gating in schizo-
phrenia, unlike other antipsychotic medications (Adler et al. 2004). Last, MEG-
based sensory gating may be a schizophrenia biomarker amenable to inclusion in
clinical trials. Popov et al. (2012) reported preliminary evidence of normalization
of M50 and gamma-band measures of sensory gating in a sample of schizophrenia
patients assigned to a 4 week cognitive remediation intervention.

3.4 Affect Processing in Schizophrenia

More recently, schizophrenia researchers have been focused on impairments in
social cognition in the disorder, and it has long been known that schizophrenia
patients have reduced affective expression. Several MEG studies have examined
aspects of affect processing in the disorder. Streit et al. (2001) examined visual
evoked magnetic fields to standardized pictures of facial affect in patients with
schizophrenia (N = 15) and control subjects (N = 12). They reported reduced
activations in brain regions including the inferior prefrontal, temporal, parietal and
occipital cortices in the schizophrenia group. Inferior prefrontal and fusiform gyrus
activity was correlated with behavioral categorization of emotional faces, which
was worse in the schizophrenia subjects. A follow-on study of the same dataset
examined interregional connectivity using mutual information metrics (Ioannides
et al. 2004), observing that schizophrenia subjects had generally weaker linkages
between regions involved in the task, including a missing link between right
amygdala and primary/secondary visual cortices. Another MEG study employed
stimuli from the International Affective Picture System (IAPS) and found that the
schizophrenia patients (N = 12) exhibited lower response differences between
emotional versus neutral stimuli in frontal and posterior regions of the brain
(Rockstroh et al. 2006). They also observed a shift in schizophrenia patients
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towards emotional valence responsiveness towards the right, rather than left,
hemisphere, compared to healthy control subjects. In a separate study involving only
neutral-face perception, patients with schizophrenia exhibited significantly greater
right hemisphere activation than left, compared to control subjects (Lopez-Ibor et al.
2008). A final MEG study involved a heterogeneous sample of patients including
schizophrenia (N = 15), depression (N = 19), drug addiction (N = 10), and bor-
derline personality disorder (N = 6), as well as healthy controls (Weber et al. 2009).
This study, which also employed emotional and neutral pictures from the IAPS,
examined the impact of early life stress on affective processing by focusing on the
visual early posterior negativity (EPN) between 160 and 210 ms. They reported that
the EPN response was smaller overall in patients with borderline personality and
depression than in schizophrenia patients. They also reported, however, that
schizophrenia patients had reduced EPN sensitivity to arousing stimuli. Overall,
early life stress was negatively correlated with EPN responses.

4 Spontaneous MEG in Schizophrenia

4.1 Abnormal Slow Wave Activity

Several studies have examined spontaneous low frequency oscillatory signals in
resting MEG recordings from schizophrenia patients. Canive et al. (1996) were the
first to report the presence of abnormal slow waves in a small sample of schizo-
phrenia subjects using MEG, reporting the presence of the activity in four
unmedicated patients out of 11 studied. Fehr et al. (2001) reported increased slow
wave activity (delta and theta band), measured via dipole densities, that tended to
cluster in frontal and temporal regions of the cortex in schizophrenia patients. In a
follow-on study by the same group that compared different mental states (mental
arithmetic and imagery) to rest, schizophrenia patients (N = 30) exhibited higher
densities of slow wave related dipoles compared to controls (N = 17) in the
temporal and parietal regions. Dipole density was correlated with a measure of
negative symptoms in the patient group (Fehr et al. 2003). Another MEG research
group replicated the increased slow wave result in schizophrenia patients, but
reported a relationship between dipole density and both positive and negative
symptoms in their sample (Sperling et al. 2002, 2003).

Three studies have examined the effects of medication on abnormal slow wave
activity in schizophrenia patients. In a cross-sectional comparison, Fehr et al.
(2003) reported that dipole density measure did not differ between medicated and
unmedicated patients, in contrast to the earlier report from Canive et al. (1996),
who reported that abnormal slow wave activity found in unmedicated patients was
not present in the same subjects after antipsychotic medication for 8 weeks.
Studies of medication effects within the context of repeated measurements on
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patients in a controlled trial are more convincing than cross-sectional comparisons.
One such study by Sperling et al. (2002) demonstrated that treatment with clo-
zapine or haloperidol had no effect on slow wave density, which also contrasted
with the Canive et al. (1996) report. Both medication trials had low numbers of
patients, however, and a larger trial would be needed to provide a definitive answer
to whether antipsychotic medications reduce slow wave dipole density in
schizophrenia.

The specificity of increased focal slow wave activity in schizophrenia has also
been examined in MEG studies. Wienbruch et al. (2003) published data from
25 patients with schizophrenia compared to 27 with major depressive disorder and
18 healthy controls. While the schizophrenia patients exhibited the same pattern of
increased delta/theta density in frontal regions compared to controls, there was a
significant reduction in slow wave activity in the depression sample, relative to
both the schizophrenia and control groups. A more recent examination by inves-
tigators from the same group confirmed these findings. In a very large sample of
76 schizophrenia/schizoaffective disorder patients, compared to 116 healthy sub-
jects and 42 with mood or somatoform disorders, elevation in slow wave activity
was seen in the schizophrenia sample but not in a group comprised of mood and
somatoform disorders (Rockstroh et al. 2007). In the Rockstroh et al. (2007) study,
the mood/somatoform disorder patient group had fewer slow wave dipoles than
either the schizophrenia or healthy control groups. Interestingly, however, in both
diagnostic groups, there was a relationship between affective symptoms and slow
wave activity, the specifics of which differed by diagnosis; in the schizophrenia
sample, affective flattening and slow wave activity were positively correlated,
while in the mood/somatoform group, higher depression scores were associated
with fewer frontal slow waves. This last point is intriguing given the authors’
choice to combine schizoaffective patients with the schizophrenia patients in the
analyses, since major mood symptoms, including major depressive and/or manic
episodes, are more characteristic of the former group. The number of schizoaf-
fective patients was too small in the Rockstroh et al. (2007) sample, but in future
studies it would be worth characterizing slow wave activity and symptom rela-
tionships separately for schizophrenia and schizoaffective patients, with a goal of
further sub-typing the schizoaffective sample by history of depression and mania
(i.e., depressive vs. bipolar subtype in the DSM-IV system).

4.2 Other Spectral, Connectivity and Complexity Studies
of Spontaneous MEG in Schizophrenia

Aside from the abnormal slow wave studies in schizophrenia, there are a smaller
number of papers that have examined spontaneous signals in higher frequency
bands. Activity in the alpha (8–12 Hz), beta (12–30 Hz) and gamma (30 Hz and
higher) bands has been examined. Sperling et al. (1999, 2002), using the same
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dipole density methods employed in the delta/theta studies described above, also
reported higher density for beta activity in schizophrenia patients, although no
significant differences in the alpha band were noted. A recent eyes-closed resting
state MEG study by Hinkley et al. (2011) of 30 patients and 15 controls rep-
licated the lack of group difference in alpha power. In this study, connectivity
analyses using coherence in the alpha band were conducted in source space after
reconstruction using a beamforming approach. Decreased connectivity in left
dorsolateral prefrontal cortex and right superior temporal cortex was seen in the
patient group relative to controls. Prefrontal connectivity was inversely related to
negative symptoms, such that low connectivity predicted higher symptoms
(Hinkley et al. 2011). In a sensor-level analysis of spontaneous activity during
rest and a mental arithmetic task, Kissler et al. (2000) found reduced task-related
increases in low-gamma (30–45 Hz) power in left frontal regions of schizo-
phrenia patients, and also significantly reduced high-gamma (60–71 Hz) across
both task conditions in the patient group. Another study employing beamforming
source reconstructions examined changes in a wide range of frequencies from
delta to very high gamma (80–150 Hz) in a study of 38 patients, 38 unaffected
siblings and 38 healthy controls (Rutter et al. 2009). Reduced gamma, particu-
larly between 30 and 70 Hz, was observed in the schizophrenia group within a
large cluster centered primarily in the precuneus region of the medial occipi-
toparietal cortex. Unaffected siblings demonstrated a similar reduction suggestive
of a possible heritable contribution to the deficit. Although the schizophrenia
sample was medicated, the presence of the gamma-band deficit in the unaffected,
and unmedicated relatives suggests that medication does not explain the
observation.

Two additional studies deserving mention in this section did not examine the
relative spectral power in different bandwidths directly. Fernandez et al. (2011)
calculated a measure of signal complexity (Lempel-Ziv complexity) on MEG
signals, in sensor space, that is an approximation of the number of frequency
components comprising the signal measured. In this study, 15 patients and 15
control subjects were studied, and the authors reported that the complexity mea-
sure was positive correlated with age in controls, but negatively correlated with
age in the schizophrenia subjects. This was interpreted as possible evidence for a
neurodegenerative process in schizophrenia, although the cross-sectional design
was recognized as a limitation in this respect. Longitudinal studies employing
complexity measures, as well as more traditional spectral and connectivity metrics,
could help answer the controversial question of whether schizophrenia is a neu-
rodegenerative disorder. In an earlier MEG study of complexity using a single
channel gradiometer system and a different metric involving non-linearity
dimensionality, it was reported that schizophrenia subjects also had lower com-
plexity than healthy controls (Kotini and Anninos 2002).
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4.3 Spectral Findings Associated with Hallucinations
in Schizophrenia

Tiihonen et al. (1992) first described latency delays in auditory evoked fields
during the hallucinating state in two patients with schizophrenia. Subsequent MEG
studies, however, have concerned themselves with spectral content rather than
evoked effects. One study employing the dipole density methodology described
above reported an increase in beta-band dipole density (12–30 Hz) in the left
auditory cortex of a single patient compared to a reference group of 13 healthy
controls (Ropohl et al. 2004). It was unclear in this study to what extent the
recordings were concomitant with the hallucinations, and there was no comparison
of the activity in periods of hallucination and no hallucination. A group study
involving eight hallucinating and eight non-hallucinating patients reported sig-
nificantly greater beta-band dipole density in the hallucinating patients in the
superior temporal region of both hemispheres (Reulbach et al. 2007). Although
Reulbach et al. did have patients indicate periods of hallucination with button-
presses, there is no direct, within-group comparison of the hallucinating versus
non-hallucinating state in that study (Reulbach et al. 2007). In another N = 1
study, Ishii et al. (2000) did examine hallucinating versus non-hallucinating
periods in a patient, observing that theta-band activity increased during periods of
hallucination. Using a frequency-based beamforming approach, these bursts
associated with the hallucinations were localized to posterior, superior temporal
areas of the left hemisphere. In a recent study involving 12 hallucinating patients
(10 with schizophrenia), van Lutterfield et al. (2012) had the participants indicate
periods of auditory hallucination with button-presses. They examined oscillatory
activity associated with precise timing to the button press in order to estimate
changes related to the onset of hallucinations in the patients. Beamformer images
were formed for delta, theta, alpha and beta bands and compared between hallu-
cinating and non-hallucinating segments. During hallucinations, compared to non-
hallucination time periods, patients exhibited reduced alpha power in right inferior
frontal gyrus and decreases in beta power in the left middle and superior temporal
gyrus region. Just prior to the onset of auditory hallucinations, a significant
increase in theta power was observed in the hippocampal-amygdala region. No
changes in delta were observed. These findings, taken together, suggest that
auditory-verbal regions of the cerebral cortex and subcortical regions including the
hippocampus are involved in auditory hallucinations, consistent with a larger lit-
erature on hallucinations using PET and fMRI methods (see meta-analysis of
Jardri 2011). Future studies should continue to explore possible event-related
oscillatory state-changes associated with hallucinations to separate hallucination
mechanisms from internally driven auditory-verbal perceptual activation, if
possible. For interested readers, a more comprehensive review of spontaneous
MEG findings in schizophrenia can be found in a recent paper by Siekmeier and
Stufflebeam (2010).
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5 Event Related Spectral Perturbance (ERSP)
in Schizophrenia

In the previous section, we reviewed MEG studies primarily concerned with so-
called resting-state, or spontaneous oscillations in schizophrenia. Since the brain is
never truly at rest, these studies are in effect examining patients’ brain activity
during periods of free association or stream of consciousness, in the absence of
defined external stimulation. Next, MEG studies of neuromagnetic oscillations
during the performance of various tasks are considered. Such studies can be
grouped under the term event-related spectral perturbances (Makeig et al. 2004).
Studies involving both event-related desynchronization (ERD) and event-related
synchronization (ERS) are reviewed in this section.

5.1 Alpha-Band and Working Memory

Several MEG studies have considered alpha-band ERD during performance of
working memory tasks in schizophrenia. MEG has been used extensively to
examine working memory in healthy individuals, primarily focusing on theta and
alpha band oscillations (Kaufman et al. 1992; Jensen and Tesche 2002; Jensen
et al. 2002; Rojas et al. 2000; Bonnefond and Jensen 2012). In the first such study
in schizophrenia, Reite et al. (1996) found that, during an auditory Sternberg
working memory task, schizophrenia participants exhibited reduced left hemi-
sphere duration of alpha suppression (ERD) elicited by memory probe items. No
differences were observed in the right hemisphere. This study was inherently
limited in spatial coverage by use of a 7-channel gradiometer system, but was
prepositioned over the M100 posterior field maximum so that signals might be
nominally interpreted as having a temporal lobe origin. Two recent studies using
large array systems have been published, however, using a visual rather than
auditory Sternberg working memory task. Canuet et al. (2010, 2011) have pub-
lished two studies involving individuals with schizophrenia and chronic interictal
psychosis, or schizophrenia-like psychosis of epilepsy (SLPE). Controversy exists
in terms of whether these patient groups can be considered distinct, either etiology-
or nosology-wise (Sachdev 1998). During the retention interval of the task, alpha
ERD and ERS were observed in both groups as well as in healthy controls and
nonpsychotic epilepsy patients. Schizophrenia and SLPE subjects, however, had
greater ERD in right dorsolateral prefrontal cortex (DLPFC) compared to healthy
controls and nonpsychotic epilepsy patients (Canuet et al. 2010). Subjects with
SLPE and schizophrenia were not directly compared. Higher DLPFC activation
may indicate relatively higher working memory loading (i.e., difficulty) for the two
psychotic clinical groups, as working memory is particularly impaired in persons
with schizophrenia compared across neuropsychological domains (Barch and
Ceaser 2012; Forbes et al. 2009). A follow-on study involving patients in the SLPE
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group from the earlier study showed correlations between DLPFC ERD and
symptoms of disorganization (Canuet et al. 2011). Finally, Ince et al. (2008, 2009)
have used support vector machine classification of working memory task perfor-
mance in a schizophrenia study to attempt diagnostic classification. Spectral
analysis of the selected classifier features indicated the best classification was
obtained in lower frequencies, including delta, theta and alpha.

Several additional studies of alpha ERSP have been published that do not concern
working memory directly. A study of visual steady-state responses using stimulation
frequencies between 8 and 10.5 Hz found reduced alpha power entrainment across
temporal, parietal and occipital, but not frontal sensors (Koudabashi et al. 2004).
Koh et al. (2011) studied alpha ERD and selective attention during an auditory
oddball task in 10 people with schizophrenia, 17 individuals at higher genetic and/or
symptomatic risk for developing schizophrenia, and 18 healthy controls. Alpha
ERD to tones (targets and standards were not separated) was reduced in the
schizophrenia and high-risk groups relative to control subjects. Source localization
was not employed in this study, but the sensors chosen for statistical analysis were
parieto-occipital. A separate auditory oddball study observed that rather than
showing differences in ERD, schizophrenia patients had reduced ERS between 700
and 1500 ms post-stimulus, compared to controls (Fujimoto et al. 2012). In this
study, which did localize the ERS/ERD sources, the alpha ERD activity was
localized to occipital and parietal regions. Finally, one study examined alpha
reactivity to eyes open and closed in an event-related manner (Ikezawa et al. 2011).
They found that the posterior-dominant alpha rhythm ERS on eye-closed events was
smaller in the schizophrenia subjects, with source localization suggesting the sig-
nificant difference was in left posterior temporal cortex. Earlier conceptualizations
of the functional significance of alpha synchrony were that it reflected a sort of
passive cortical idling rhythm when the cortex was unoccupied by sensory infor-
mation (Pfurtscheller et al. 1996). More recent evidence, however, suggests that it is
associated with top-down, active inhibition of sensory processing in various regions
of the cortex in which it is expressed (Klimesch et al. 2007; Bonnefond and Jensen
2012). Thus, differences in alpha synchronization in schizophrenia may reflect
inhibitory dysfunction in the disorder, for which there is considerable evidence in
the disorder (Lewis et al. 2005).

5.2 Beta-Band

In the same auditory oddball study that found alpha ERS differences (see
Sect. 5.1), Fujimoto et al. (2012) described alterations in beta-band in schizo-
phrenia. Significant decreases in beta ERS between 500 and 750 ms were noted in
the schizophrenia subjects in occipital cortex, while decreases between 750 and
1500 ms were evident in right frontal and anterior cingulate cortex. Beta ERD was
significantly increased in patients in right frontal, temporal and parietal cortices,
compared to healthy controls.
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With respect to working memory, beta has been explored using graph theo-
retical measures to examine network efficiency in schizophrenia (Bassett et al.
2009). In an interesting comparison between 28 people with schizophrenia and 29
controls, graph measures were assessed in an n-back working memory task.
Findings of the study included significantly lower cost efficiency, but higher global
efficiency in the schizophrenia group in the beta band during the task. This sug-
gests a shift in the schizophrenia group towards a more random network wiring
rather than a typical small-world network. The authors noted, however, that
efficiency was highly correlated with performance, and that when performance
differences between groups were accounted for, differences in efficiency remained
but were less significant (Bassett et al. 2009). Using a different method, support
vector machine classification, Ince et al. (2009) found discriminant features in beta
band (as well as lower frequencies) in a Sternberg working memory task.

Wilson et al. (2009) examined beta ERSP to tactile stimulation of the fingertip in
a mixed group of children and adolescents with psychoses including schizophrenia,
compared to healthy controls. Beta ERD was significantly higher in the psychotic
group in motor related regions of the brain including the cerebellum and precentral
gyrus. In a separate study with a similar group of patients, beta ERD/ERS was
examined during performance of a simple, visually-cued unimanual finger flexion
task (Wilson et al. 2011). Beta-band differences in pre-movement ERD, as well as
post-movement ERS (also known as the post-movement beta-rebound) were
observed. Patients exhibited higher beta ERD in pre-central and cerebellar regions,
similar to the findings of the tactile stimulation study. Beta ERS, however, was
reduced in patients within the cerebellum, supplementary motor cortex and parietal
lobe. Motor coordination deficits are one of the few early life predictors of later
psychotic disorder onset (Isohanni et al. 2001), and beta abnormalities may reflect
early abnormalities in motor circuitry. One recent MEG study has suggested a
relationship between the post-movement beta rebound and GABA concentration in
the somatomotor region (Gaetz et al. 2011). GABAergic dysfunction is one of
the hottest topics in schizophrenia (Benes 2012; Lewis et al. 2012).

Apart from its potential relationship with GABAergic dysfunction, motor beta
rhythms may be related to mirror neuron activity, which are neurons that respond
to action observation and are theoretically important to social disability in
schizophrenia. The beta rhythm has been shown to be reactive to action obser-
vations in addition to actual movements (Muthukumaraswamy and Johnson 2004).
Schurmann et al. (2007) studied beta-rhythm reactivity to action observation in 11
twin pairs discordant for schizophrenia. They reported that the post-movement
beta rebound was reduced to both action execution and observation in the twins
with schizophrenia compared to the twins without the disorder, suggesting that the
beta effect, while not specific to action observation, may be important for accurate
internal representation of the actions of others (i.e., theory of mind).
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5.3 Gamma-Band

Interest in gamma-band oscillations (30–150 Hz) in schizophrenia is very high and
relates to the observation that gamma-band activity is highly dependent on
inhibitory neurotransmission mediated by GABAergic neurons (Lewis et al. 2005;
Uhlhaas 2011). The circuitry for gamma-band generation in the cortex and hip-
pocampus is reasonably well characterized and represents the interaction of
pyramidal glutamatergic inputs to fast-spiking GABAergic interneurons that
recurrently inhibit the pyramidal cells (Bartos et al. 2007; Hájos and Paulsen
2009). It should be noted that this relationship, between GABA and gamma, is not
unique to gamma oscillations, because there is evidence for GABAergic
involvement in lower frequencies (e.g., beta-band) as well (Vierling-Claassen et al.
2008; Porjesz et al. 2002). Gamma-band abnormalities have received more
attention in this respect, however.

Reduced auditory gamma band activity in schizophrenia was first noted using
EEG and have been widely replicated (Kwon et al. 1999; Koenig et al. 2012;
Brenner et al. 2009) and is also present in first-degree unaffected relatives (Hong
et al. 2004). Auditory stimuli produce two types of gamma-band responses. An
early, obligatory transient gamma-band response is seen in typically developing
individuals to all types of sound stimuli within the first 30–80 ms post-stimulus
(Pantev et al. 1991). When stimuli are modulated in amplitude, either as part of a
train of clicks or by amplitude modulation, a later auditory steady-state response
(aSSR), beginning around 100 ms is produced at or near the frequency of modu-
lation, peaking around 40 Hz modulatory rates (Hari et al. 1989). Both types of
responses are highly phase-locked in typically developing individuals. The aSSR
reduction has been extended to magnetic responses in children and adults with
schizophrenia (Teale et al. 2008; Maharajh et al. 2010; Wilson et al. 2008; Vierling-
Claassen et al. 2008). Reductions in neuromagnetic aSSR have also been shown to
be specific to frequency of stimulation. Tsuchimoto et al. (2011) found that 40 and
80 Hz stimulation rates elicited evidence of reduced bilateral auditory power and
phase-locking in schizophrenia, but not stimulation at 20 and 30 Hz. This finding
was partly replicated by Hamm et al. (2011), who found reduced power at 80 Hz
rates in both hemispheres, but only in the right hemisphere at 40 Hz. Auditory
steady-state magnetic responses are typically larger in the right than in the left
hemispheres (Ross et al. 2005). In an interesting preliminary study that needs rep-
lication in a larger sample, schizoaffective disordered patients (N = 8) had higher
40 Hz aSSR responses in the right hemisphere compared to control subjects, while
schizophrenia patients exhibited a bilateral reduction in 40 Hz aSSR power and
phase-locking (Reite et al. 2010). Replication of this would be important because
many studies combine schizoaffective and schizophrenia groups, although there is
some evidence to suggest the two are distinct clinical entities (Abrams et al. 2008).

Transient magnetic gamma-band responses (tGBR) have also been reported as
reduced in schizophrenia. Hirano et al. (2008) found reduced evoked tGBR power
and phase-locking, as well as longer tGBR peak latency to speech, but not
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non-speech sounds in the left hemisphere of persons with schizophrenia (N = 20)
compared to healthy controls (N = 23). Teale et al. (2008) reported a trend for
reduced pure tone phase-locking of the tGBR specific to the left hemisphere, but
no differences in evoked power. In the first study of tGBR in MEG published,
Clementz et al. (1997) reported a significant reduction in tGBR suppression in
schizophrenia subjects in the context of a classic P50/M50 sensory gating para-
digm (discussed previously in Sect. 3.3).

6 Future Directions

Despite having made substantial contribution to our knowledge of the electro-
physiology of schizophrenia, more MEG research is still needed. MEG remains
advantageous for examining the relatively unexplored area between the spatial
resolving power of fMRI and the vast EEG literature in schizophrenia with poor
spatial resolution. In particular, combining the strength of high sensor density and/
or source analytic techniques with modern connectivity approaches such as mutual
information (Ioannides et al. 2004), graph theory (Bassett et al. 2009) and causal
modeling (Dima et al. 2012) are of high importance given the significant overall
interest in the field about brain network-level impairments in the disorder. The use
of machine learning and multivariate classification methods is also potentially
important (Ince et al. 2009) and could be used to identify subtle risk factors and
applied to populations at high risk for developing schizophrenia. With respect to
the latter point, more work with unaffected first degree relatives is recommended
(Rutter et al. 2009), both to identify heritable risk factors and to protect the
interpretation of findings against medication confounds. Finally, a comment should
be made about finding solutions to a significant barrier to MEG research in
schizophrenia, which is the relative difficulty of conducting large, multi-site
clinical trials due to the relatively low installed user base and differences in
technology employed between sites. Efforts to measure and reduce differences
between different MEG sites would allow MEG to participate as a technology in
future large scale behavioral and pharmacological intervention trials, as well as
providing the means to incorporate large samples in general into new and inter-
esting research studies.
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Neuropsychopharmacology: Recent MEG
Investigations

Ksenija Marinković

Abstract Neuroimaging methods can play an increasingly important role in a highly
complex drug development process by providing sensitive biomarkers of disease state
and the effects of therapeutic intervention. Based on the functional mapping of the
anatomical specificity of drug effects, neuroimaging methods can illuminate the basic
mechanisms of a disease and can assist in guiding the development of drugs with high
specificity and sensitivity in the context of clinical applications and the increased
reliance on personalized medicine. Magnetoencephalography (MEG) reflects syn-
aptic currents directly, it is free of vascular confounds, and its sources can be modeled
with increasingly sophisticated algorithms that often incorporate complementary
imaging modalities, making it highly applicable to neuropsychopharmacological
investigations. Indeed, numerous MEG studies have examined spontaneous or task-
related brain activity in response to neuromodulators and drugs of abuse. With
emphasis on the spectral analysis models, this chapter briefly reviews the MEG
studies manipulating GABA, acetylcholine, dopamine, glutamate and alcohol in
healthy cohorts, as well as the research on Parkinson’s disease, attention deficit
hyperactivity disorder, and anesthesia in epilepsy. These studies provide unique
insight into the spatiotemporal characteristics of the effects of pharmacological agents
on different neurofunctional systems in health and disease and can reveal their effects
on the oscillatory synchrony in real time and at the level of an interactive multifocal
system. The MEG is increasingly relevant for understanding the neuropharmacology
of psychoactive substances and for developing realistic neural models of the neuro-
psychiatric disorders and their sensitivity to pharmacological intervention.
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Parkinson’s disease � Amphetamine � Attention deficit hyperactivity disorder �
Epilepsy � Anesthesia � Cognition � Attention � Language � Memory �
Coherence � Oscillations � Theta alpha � Beta � Gamma � Frequency domain

1 Introduction

Neuropsychiatric conditions are the leading cause of disability and represent a
large burden on societies worldwide (WHO 2008; Bass et al. 2012). Despite a
remarkable array of existing medications, treatment options for many disorders are
currently inadequate (e.g., Alzheimer’s disease). Whereas the need for novel and
more effective medications is increasing, the pace of new drug development is
actually declining and is insufficient to meet the growing demands (Prajapati and
Dureja 2012). Reasons for this state of affairs are multidimensional and include
complex economic considerations and regulatory constraints bearing on exceed-
ingly long, costly, and safety-minded drug development process impeded by high
failure rates at different stages (Honig and Lalonde 2010). Several approaches
have been applied in an effort to streamline and accelerate the process, including
an intensified search for sensitive and reliable biomarkers. A biomarker is defined
as ‘‘a characteristic that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes, or pharmacologic responses to
a therapeutic intervention’’ (Atkinson et al. 2001). Different biomarkers are used at
successive stages of the drug development process. Disease-related biomarkers are
essential for monitoring disease progression and for assessing individual predis-
position and risks. Drug-related biomarkers are key to validating the specificity
and sensitivity of the drug, as well as for evaluating its safety. To the extent that
they predict responses to drugs, genetic biomarkers are increasingly used for
patient stratification and selecting treatment dosage. They are also helpful in
illuminating the basic mechanisms of a disease and in guiding the development of
drugs that have high efficacy, optimal pharmacokinetics, and minimal side effects
(Marrer and Dieterle 2007; Dieterle and Marrer 2008).

Despite the indispensable contributions of animal research especially in the
domain of drug pharmacodynamics and toxicity, human neuroimaging experiments
can provide crucial insight into drug effects on cognitive functions and clinical
features that are impossible to assess in animal models. Neuroimaging can play a
very important role throughout the multistage process of drug development as it can
delineate biomarkers of disease progression and the effects of treatment in the
context of a clinical presentation. It can provide functional mapping of the ana-
tomical specificity of drug effects in a dose-dependent manner which can serve as
sensitive biomarkers that could be targeted by pharmacological agents. Its clinical
relevance further derives from its capacity to objectively track the clinical efficacy
and outcome of therapeutic interventions over time (Borsook et al. 2009, 2011;
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Wong et al. 2009). This aspect is especially powerful when combined with phar-
macogenomics, i.e., accounting for the genetic variation in drug response. Tailoring
drug selection and titration to the individual characteristics of each patient is the
cornerstone of personalized medicine (Lesko and Atkinson 2001). Furthermore,
although the development of neuroleptics is of vital importance for the improved
treatment of psychiatric disorders, there has been some effort to develop nootropic
drugs (i.e., ‘‘smart drugs’’ or cognition enhancers) (Lanni et al. 2008). Evidence
suggests that certain cognitive functions such as attention and memory can be
improved with pharmacological agents (Lynch et al. 2011; Lanni et al. 2008),
although such applications raise ethical issues (Sahakian and Morein-Zamir 2011).

Diverse imaging methods have been applied in the neuropsychopharmacology
domain. Positron emission tomography (PET) and single-photon emission com-
puted tomography (SPECT) use molecular imaging tracers and are uniquely useful
in investigating neurotransmitter systems in health and disease. They can assess
regional differences in receptor densities and the engagement of targeted neural
systems by the drugs (Ametamey and Honer 2007). Methods based on magnetic
resonance imaging (MRI) methodology are noninvasive, repeatable, and have been
used increasingly in neuropharmacological studies (Borsook et al. 2011; Wong
et al. 2009). Magnetic resonance spectroscopy (MRS) is sensitive to certain
neurotransmitters such as glutamate and GABA and is well-suited to examine the
roles played by these major neurotransmitters in cognitive functions and their
alterations by the centrally active compounds (Ross et al. 2011). Given that a
number of commonly used psychotropic drugs modulate GABAergic and gluta-
matergic systems, the MRS has been applied in studies investigating a variety of
psychiatric disorders (Dager et al. 2008).

Functional MRI (fMRI), also termed pharmacological (phMRI) in the context
of pharmacological manipulations, is often used to investigate the effects of drugs
on the brain function. This is particularly essential for gaining an insight into the
neurophysiology underlying neuropsychiatric disorders. The non-invasive nature
of the MRI scans makes it suitable for tracking treatments over time in conjunction
with behavioral measures of cognitive functions and clinical features (Tracey
2001). The phMRI can also be applied to validate drug effects during clinical trials
as it provides evidence that the targeted neurofunctional system is indeed engaged
by the drug in the patient population. If the pharmacological intervention results in
a desired clinical outcome, the drug enters a new phase of development and further
clinical testing (Honey and Bullmore 2004; Borsook et al. 2009; Wise and Tracey
2006). Due to its high sensitivity and superior spatial resolution, T2*-weighted
blood oxygenation level dependent (BOLD) signal is the method of choice in
fMRI studies. However, it reflects neural changes only indirectly via neurovascular
coupling as it depends on regional changes in blood flow, volume, and oxygena-
tion rate (Buxton 2002). Therefore, the BOLD signal is sensitive to anything that
can alter hemodynamic response including pharmacological agents, disease, etc.
Even though the fMRI-BOLD is an excellent mapping tool, there is a caveat in
interpreting the observed magnitude changes since the neural activity may be
confounded with vascular changes when vasoactive drugs are administered. As a
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result, pharmacological studies present a particular challenge for functional
hemodynamic neuroimaging techniques. Additional imaging methods can be used
to provide quantification and validation of the observed magnitude changes and to
disentangle the neural from vascular influences (Rickenbacher et al. 2011).

2 Event-Related Potentials (ERPs) and Magnetic Fields
(ERFs): Time Domain Investigations

The principal advantage of electrophysiological methods including EEG and MEG
is their excellent temporal resolution as they reflect postsynaptic neural currents
directly and are free of vascular confounds (Hämäläinen et al. 1993). Numerous
pharmacological studies have used EEG methods to investigate effects of psy-
chotropic medications in clinical populations as well as in healthy volunteers with
an emphasis on drugs relevant to treatment of psychiatric disorders (Saletu et al.
2002a, 2006; Mucci et al. 2006; Leiser et al. 2011). Increased reliance on the MEG
technology has resulted in significant contributions to the field as MEG can pro-
vide further insight into the neural basis of the pharmacological effects on brain
and behavior. The pharmacodynamic profile of neural activity in the context of
sensorimotor or cognitive tasks holds direct relevance for drug development and
could be an important dimension in a multimodal biomarker approach (Polikar
et al. 2010). Other chapters in the current volume describe MEG signal generation,
acquisition, and analysis techniques in greater detail including multimodal imag-
ing approaches (e.g., combination with structural MRI) and a variety of sophis-
ticated source modeling algorithms. Many such models permit estimation of
spatiotemporal stages of processing from sensory and perceptual to cognitive
integration and motor execution. Time-domain analysis (i.e., averaging across
trials in a manner time-locked to a stimulus onset) has been used to investigate the
effects of various neurotransmitters on ERFs.

Extant reviews (Kahkonen and Ahveninen 2002; Kahkonen 2006; Kenemans
and Kahkonen 2011) encompass studies using pharmacological MEG and EEG and
provide excellent and thoughtful overviews of the questions, paradigms, and results
of those manipulations. This large body of evidence places particular emphasis on
psychotropic compounds that are used to treat psychiatric conditions via their
agonist or antagonist effects on one or more neurotransmitter systems. The reviews
include studies manipulating dopamine (DA), acetylcholine (ACh), serotonin (5-
HT), norepinephrine (NE), glutamate, GABA, and histamine among others, in
addition to caffeine and alcohol. These studies mainly used standard paradigms that
probe pre-attentional and attentional processing indexed by canonical components
such as N100, mismatch negativity (MMN) and P300 because they are impaired in
several psychiatric disorders and because they are modulated by pharmacological
agents. For the most part, the reviewed studies employed healthy volunteers and
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therefore provide insight into the neurophysiological effects of these drugs on
normal brain function. In other cases, reviews focused on a specific disorder. For
instance, Korostenskaja and Kahkonen (2009) provide a comprehensive review of
the effects of antipsychotic treatment in schizophrenia patients on ERPs and ERF as
biomarkers of pre-attentional (e.g., MMN) and attention-dependent processing
(e.g., P300). The MMN and the mismatch field (the magnetic counterpart to the
mismatch negativity, MMNm), have been used extensively to probe involuntary
attention drawn to an oddball stimulus in a repetitive sequence of sounds (Naatanen
et al. 1994). The evidence indicates that the MMN is relatively insensitive to
dopaminergic antipsychotic medications but it is modulated by drugs targeting the
glutamatergic system, making it a potential glutamate functional biomarker (Javitt
et al. 2008). In a study employing parallel ERP and ERF measures, Korostenskaja
et al. (2008) administered methylphenidate (MPH) to healthy volunteers as they
took part in a placebo-controlled standard MMN paradigm. MPH is a psycho-
stimulant which is used successfully to treat attention deficit and hyperactivity
disorder (ADHD). It augments the availability of catecholamines by reducing DA
reuptake and modulating NE release. In this study, MPH did not affect ERPs or
ERFs, confirming that catecholamines do not play an essential role in generating
MMN (Kahkonen and Ahveninen 2002; Leung et al. 2007).

One of the proposed vulnerability markers for schizophrenia is a deficit in
sensory gating of auditory stimuli (Cadenhead 2002). It is reflected in a failure to
suppress, or gate out a P50 ERP component to the second click presented in a pair.
Glutamatergic mediation of the sensory gating response has been investigated by
administering ketamine to healthy participants in a MEG study (Boeijinga et al.
2007). As a NMDA receptor antagonist, ketamine exerts analgesic, anesthetic, and
hallucinatory effects (Gunduz-Bruce 2009). Boeijinga et al. (2007) administered
three ketamine doses in a repeated measures placebo-controlled study and recor-
ded MEG and EEG during a paired-click sensory gating paradigm. Equivalent
current dipoles of the signal sources were estimated to the temporal cortices
bilaterally. The results indicate disrupted auditory gating by nonanesthetic doses of
ketamine, emulating the effects seen in schizophrenic patients. This suggests that
NMDA receptors are involved in auditory gating. In addition, they support other
evidence that psychotic symptoms may be mediated by the glutamatergic system.
In the clinical context of ketamine treatment of depression (Mathew et al. 2012),
Salvadore et al. (2009, 2010) recorded MEG signals from drug-free patients
diagnosed with major depression during a working memory task and in response to
fearful faces. They observed a correlation between the activity estimated to
originate in the anterior cingulate cortex and the antidepressant response to ket-
amine that was administered subsequent to the MEG recording.

Overall, the application of MEG methodology in psychopharmacological
studies is important as it provides insight into the biochemistry of well-known
evoked components and can lead to development of physiologically realistic and
clinically relevant models of drug effects on the brain.
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3 Spectral Analysis of the MEG Signals in the Frequency
and Time-Frequency Domain

Rhythmic oscillation is a fundamental characteristic and an emergent property of
brain activity (Buzsaki 2006). Different frequency bands have distinct neurofunc-
tional properties and mediate different states in response to cognitive tasks (Schomer
and Lopes da Silva 2010; Salmelin and Hari 1994). Neural co-oscillations are
believed to reflect interactions between distant brain areas (Varela et al. 2001),
making it possible to investigate oscillatory synchrony in real time and at the level of
an interactive multifocal system. Numerous EEG studies have outlined effects of
different psychotropic drugs on the EEG power spectrum (Saletu et al. 2002b, 2006;
Mucci et al. 2006). More recently, however, MEG-based methods relying on mul-
timodal integration and source modeling techniques have emerged, permitting
investigations of the spatiotemporal characteristics of different neurofunctional
systems under pharmacological challenge. Here we provide a brief overview of
recent lines of research focusing on the effects of neuromodulators and an addictive
substance in healthy cohorts and in patient populations using different models of
MEG spectral analysis. Since a comprehensive and all-encompassing review is
beyond the scope of this chapter, it merely endeavors to illustrate more recent
developments and applications of MEG in neuropsychopharmacology.

3.1 Gaba

As the primary inhibitory neurotransmitter, GABA exerts widespread effects on
neuronal excitability. Benzodiazepines increase GABA’s inhibitory effects and are
widely used in clinical settings due to their anxiolytic, anticonvulsant, and muscle
relaxant properties (Trimble and Hindmarch 2000). Several MEG studies have
investigated the effects of benzodiazepines on beta-band oscillations which are
associated with sensorimotor neural system (Baker 2007; Neuper and Pfurtscheller
2001). Jensen and colleagues (2005) recorded MEG signal during resting with eyes
closed before and after administrating a benzodiazepine to healthy volunteers.
Based on the minimum current estimation approach (Uutela et al. 1999), the sources
of beta band peaking at *20 Hz were estimated to be over bilateral sensorimotor
cortices and were enhanced by the benzodiazepine. These results suggest that the
motor cortex activity is characterized by beta oscillations during rest which are
sensitive to GABAergic manipulation. In a similar paradigm, Hall et al. (2010)
acquired MEG signals before and after administering a benzodiazepine to healthy
controls during isometric contraction and resting with eyes closed. Using the
synthetic aperture magnetometry (SAM) beamformer approach Hillebrand and
Barnes (2005) confirmed that the benzodiazepine enhanced power of beta band
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oscillations estimated to the motor cortex. In a subsequent study, Hall et al. (2011)
investigated the nature of motor cortex sensitivity to GABAergic manipulation by
recording MEG during a reaction time task and resting. Within the SAM analysis
approach, Morlet-wavelet analysis revealed the timecourse of the movement-
related power changes in a wide-band spectrum. The benzodiazepine increased
spontaneous beta oscillations and event-related desynchronization (beta-ERD) in
the motor cortex without affecting post-movement beta rebound, suggesting that
GABA differentially modulates these two phenomena. Instead of administering
benzodiazepine, Muthukumaraswamy et al. (2012) used tiagabine to enhance
GABA modulation in a placebo-controlled, but otherwise similar experiment.
Tiagabine binds with GABA reuptake transporter, resulting in increased synaptic
GABA levels (Dalby 2000). They recorded MEG signals during a movement task
and at regular intervals post-movement and employed the time-frequency SAM
beamformer analysis (Fig. 1). Their results indicate that increased GABA results in
elevated baseline beta power, augmented beta-ERD and decreased post-movement
beta rebound, without affecting movement-related gamma. This study largely
confirms previous findings and provides further refinement of the current under-
standing of the neuromodulatory basis of these two movement-related oscillatory
phenomena in beta frequency range. Clinical relevance of these types of insights
derives from their applicability to movement disorders such as Parkinson’s since
the stimulation-induced decrease of beta-band power brings symptomatic relief to
patients (Brown et al. 2004).

Even though the effects of benzodiazepines are particularly evident in increased
beta power over sensorimotor cortices (Jensen et al. 2005; Hall et al. 2010, 2011),
they modulate oscillatory changes in other frequency bands as well. Hall et al.
(2010) reported distributed power increases in alpha (7–14 Hz) and gamma
(30–80 Hz) bands, as well as theta power decrease (4–7 Hz) in frontal regions.
Ahveninen et al. (2007) administered a benzodiazepine drug to healthy controls in
a placebo-controlled design and recorded MEG during resting with eyes open or
closed. Focusing on the alpha frequency which dominates the resting spectrum,
they applied a distributed minimum norm inverse estimate (Lin et al. 2004). The
estimates were anatomically constrained with the realistic shape of the cortical
mantle obtained from MRI scans on the same subjects (Dale et al. 2000).
Benzodiazepine administration reduced power in the alpha band which was esti-
mated to originate in the medial occipital cortex. Indeed, it has been proposed that
alpha oscillations are subserved by GABAergic currents and that they play an
important role in modulating attentional processing (Mazaheri and Jensen 2010).
Taken together, MEG studies manipulating GABA provide important insight into
the neurochemistry underlying different functional states (e.g., motor activation
and rest) in healthy individuals, and can illuminate how the GABA function is
altered in disease when these paradigms are applied to patient cohorts.
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3.2 Acetylcholine

Acetylcholine is a major neurotransmitter in both the central and peripheral ner-
vous systems (Picciotto et al. 2012) with regulatory effects on vigilance, attention,
learning, and memory functions (Everitt and Robbins 1997; Sarter et al. 2005;
Hasselmo and Sarter 2011). Its contributions to cognition have recently begun to
be explored with the MEG. Bauer and colleagues (2012) examined the effects of
cholinergic modulation on oscillatory brain activity during a spatial visual atten-
tion task. They administered a cholinergic agonist (physostigmine) to healthy
volunteers in a placebo-controlled design. The MEG signals were analyzed with a
beamformer approach within the SPM environment (Van Veen et al. 1997).
Oscillations in lower (alpha and beta) frequency bands were affected by physo-
stigmine in the visual cortex only. In contrast, gamma-band power was selectively
enhanced by physostigmine in the prefrontal cortex (Fig. 2). The results suggest
that the cholinergic modulation may be expressed in a regionally- and function-
ally-specific manner across different frequency bands with particular relevance to
top-down attentional control. Given the importance of acetylcholine for cognition
(Klinkenberg et al. 2011), it is essential to expand and continue this line of
research in order to further delineate its functional, anatomical, and neurotrans-
mission specificity. This may be particularly relevant to the development of novel

Fig. 1 Left panel Grand-averaged source localization of beta-ERD (15–30 Hz) with the main
peak estimated to be in the left precentral gyrus (i.e., contralateral to the finger movement.
Uncorrected baseline (a) and baseline corrected (b) beta (15–30 Hz) envelopes time-locked to the
movement onset for the location with maximal beta-ERD as shown in the spatial map.
Timecourse estimates obtained before (Pre) and 1, 3, and 5 h after administration of tiagabine or
placebo are superimposed. Averaged values are plotted for the baseline period (c), active period
(b) and the active–baseline difference (e). There was beta power increase in the baseline and a
larger ERD (active–baseline) with tiagabine (Muthukumaraswamy et al. 2012, used with
permission)
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treatment options for dementia such as Alzheimer’s disease whose pathology is
linked to cholinergic transmission but which has been rather minimally responsive
to the available treatment including many of the currently available cholinergic
neuromodulators (Sivaprakasam 2006; Leon et al. 2013). Degeneration of the
cholinergic system has been shown to characterize Parkinson’s-related dementia as
well (Bohnen and Albin 2011). Drugs enhancing the cholinergic function have
been shown to ameliorate some of the cognitive and behavioral impairments in
Parkinson’s patients (Rolinski et al. 2012). Given the increasing prevalence of
neurodegenerative diseases and the severity of the accompanying deterioration of
cognitive abilities (WHO 2006), it is essential to intensify search for successful
biomarkers and treatments (Berg 2008; Caselli et al. 2006).

3.3 Dopamine

Dopamine is associated with memory and cognition functions (Goldman-Rakic
1998; Seamans and Yang 2004) and it plays a critical role in the neural circuitry of
reward and addiction (Koob and Volkow 2010). The notion that DA imbalance
underlies psychotic symptoms is the basis of the ‘‘dopamine hypothesis of
schizophrenia’’ (Curran et al. 2004; Brunelin et al. 2013) lending additional
importance to the neuroimaging investigations of DA function.

Modulatory effects of DA on memory have been examined with levodopa
administration in a recent pharmacological MEG study (Moran et al. 2011).
Levodopa is the catecholamine precursor resulting in increased dopamine avail-
ability (Olanow 2008). Moran et al. (2011) recorded MEG signals during a
working memory task as healthy volunteers participated in a placebo-controlled
acute levodopa (100 mg) challenge. They applied a dynamic causal modeling
(DCM) approach in the context of the macrocolumnar architecture framework
(Kiebel et al. 2009; Moran et al. 2009). The observed increased theta band activity
under levodopa was estimated to the superior frontal gyrus and was related to
behavioral performance within the DCM model of multidimensional synaptic
signaling. In a study relying on time-domain analysis, Eckart and Bunzeck (2012)
acquired MEG signals and administered levodopa (150 mg) or placebo to different
groups of healthy volunteers as they were shown images that differed in the degree
of novelty/familiarity. Sources of the ERF averages were estimated using the
Linearly Constrained Minimum Variance (LCMV) beamformer approach (Van
Veen et al. 1997) within the SPM8 environment. Increased levels of DA resulted in
short latency (\100 ms) novelty differences that were estimated to originate in the
medial temporal lobe. The results underscore prefrontal and temporal contribu-
tions to memory as a function of DA levels. Dopaminergic transmission is
impaired in Parkinson’s disease, additionally giving high relevance to this type of
study. MEG techniques can continue to provide insight into the basic mechanisms
of the impairment as well as guidance for drug development when employed in
healthy cohorts.
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3.4 Parkinson’s Disease

PD is a degenerative disease characterized by motor deficits mainly resulting from
the loss of DAergic neurons in substantia nigra (Bergman and Deuschl 2002). In
addition, there is a progressive deterioration of non-motor abilities such as cog-
nition which seems to be caused by other neurochemical (e.g., cholinergic) defi-
ciencies (Coelho and Ferreira 2012; Bohnen and Albin 2011). The currently
available treatment aims to restore DA levels and it commonly includes dopamine
agonists and precursors (e.g., levodopa) in conjunction with agents targeting other

Fig. 2 a–d: Gamma activity induced by the onset of visual gratings and averaged across both
hemispheres. Spatial attention was manipulated by cues indicating which hemifield to attend.
a Stimulus-induced gamma increases for both drug and spatial attention conditions during the
window marked in the time-frequency profiles are shown for the visual (peri-calcarine) cortex in
b under placebo and in c under physostigmine. d Shows timecourses of induced 50–70 Hz
gamma for the active drug and placebo conditions. e–h Induced gamma response for the frontal
areas that show an enhancement by the cholinergic antagonist. e Topography for the statistical
comparison between drug and placebo showing an increased gamma response over predomi-
nantly right frontal cortex. f Time-frequency profile of the response in area as marked in e under
placebo and in g under physostigmine. b and c clearly show enhanced gamma-band response
under physostigmine, which is confirmed with timecourses of induced 50–70 Hz gamma shown
in (h). Values plotted are z-values for post- versus pre-stimulus power. Topography maps are
thresholded at p \ 0.01. The figure is used with permission (Bauer et al. 2012)
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neurotransmitter systems to mitigate cognitive dysfunction, psychotic symptoms,
and treatment side-effects (Muller 2012).

MEG has been used in a series of ‘‘resting state’’ studies investigating oscil-
latory activity in PD patients across the span of the disease and as a function of
dopaminomimetic and cholinomimetic therapy. Bosboom, Stoffers, and colleagues
(Bosboom et al. 2006, 2009a, b; Stoffers et al. 2007, 2008a, b) recorded MEG
signals during ‘‘eyes closed’’ resting state from groups of PD patients in their early
or late disease stages as well as from healthy controls. The data were analyzed in
sensor space with wideband spectral signal decomposition. Evidence from their
group, as well as other groups consistently showed diffuse slowing of resting
oscillatory activity in Parkinson’s patients with and without dementia symptoms
(Bosboom et al. 2006; Stoffers et al. 2007; Kotini et al. 2005; Vardy et al. 2011). A
longitudinal study revealed that this slowing worsens over time and is related to
cognitive decline, but in a manner that is independent of aging effects (Olde
Dubbelink et al. 2013). Furthermore, even untreated de novo PD patients showed
significant slowing of the resting oscillatory activity that was expressed as a global
power increase in the low frequency (\10 Hz) range and a loss of gamma power.
These effects were not related to disease stage, duration, or other clinical indices
and were only slightly affected by acute administration of dopaminomimetic
medication (Stoffers et al. 2007). In contrast, cholinomimetic medication resulted
in a shift towards faster frequencies, partially restoring the oscillatory deficit
observed in PD patients (Bosboom et al. 2009a). Stoffers et al. (2007) interpreted
these observations as evidence against a major role of the DA system in subserving
the resting state brain oscillations in PD. Instead, they argue that other neuro-
transmitter systems including the cholinergic, noradrenergic, and serotonergic
systems are involved in oscillatory alterations observed in PD (Bosboom et al.
2003; Brooks 2007). In another study, Stoffers et al. (2008a) examined functional
connectivity in patients with PD and healthy controls by calculating temporal
correlation between MEG epochs recorded during eyes-closed rest across pairs of
sensors topographically grouped into regions of interest (Stam et al. 2002).
Compared to healthy controls, PD patients exhibited increased levels of connec-
tivity, which was related to motor symptoms (Stoffers et al. 2008a). Acute
administration of dopaminomimetic medications increased the functional con-
nectivity even further, which correlated with improved motor symptoms (Stoffers
et al. 2008b).

A study by Pollok et al. (2009) investigated the effects of levodopa on func-
tional connectivity during the parkinsonian resting tremor. They recorded MEG
and EMG signals simultaneously from PD patients in their ‘‘off-medication’’ state
(i.e., after overnight medication withdrawal) and immediately after an application
of a fast-acting levodopa during rest. They examined cerebro-muscular and
cerebro-cerebral coherence and applied the Dynamic Imaging of Coherent Sources
(DICS) beamforming method (Gross et al. 2001) to estimate the MEG signal
sources. The medication reduced the coupling strength within a thalamo-premotor/
motor network at 8–12 Hz range, and was accompanied by a decrease in tremor
and cerebro-muscular coherence. These results are taken as evidence of the drug-
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induced restoration of a normal functional interaction between the cortical and
motor cortical regions.

In the clinical context of deep brain stimulation treatment for PD, Litvak and
colleagues investigated the role of the basal ganglia and their functional connec-
tivity with cortical areas in a series of multimodal imaging studies. They acquired
MEG signals simultaneously with intracranial EEG (iEEG) recorded with depth
electrodes implanted in the subthalamic nucleus (STN) (Litvak et al. 2011, 2012;
Oswal et al. 2013). One study examined oscillatory synchronization between the
signal in the basal ganglia and in cortical networks during resting with eyes open
(Litvak et al. 2011). The coherence was estimated with Dynamic Imaging of
Coherent Sources (DICS) beamforming method (Gross et al. 2001). A frontal
network co-oscillated with the STN in the beta frequency range, whereas the
network estimated to be in the temporoparietal area and the brainstem co-oscillated
with the STN in alpha band. Acute effects of dopaminomimetic medications were
examined by comparing the recording obtained after overnight medication with-
drawal (OFF state) and after the usual dosage (ON state). The medication effects
were expressed as an increase in beta coherence between the prefrontal cortex and
STN. In another study, Litvak and colleagues used the same clinical setup and
obtained simultaneous MEG and iEEG recordings during a finger movement task
(Litvak et al. 2012). They examined movement-related oscillations estimated to
originate in the motor cortex and those recorded from STN and their coherence in
PD patients. Power and coherence in the gamma frequency range increased during
movement and the increase was more pronounced during the ON state. Further-
more, the medication-induced increase in gamma co-oscillations at 60–90 Hz
around the movement correlated with the improvement in motor symptoms, indi-
cating their facilitatory modulation of motor activity. A companion study based on
the same cohort and using the same paradigm reported effects in the alpha band that
were complementary to the gamma power and coherence (Fig. 3) (Oswal et al.
2013). The coherence between the MEG-recorded alpha oscillations estimated to
the right temporal cortex and the alpha in the STN was reduced after movement,
particularly in the ON—medication state. Alpha suppression that preceded move-
ment was unaffected by the medication state.

Overall, this type of research can provide essential insight into the neurophys-
iology of neural disorders and can track the effects of different pharmacological
treatments in a spatially- and temporally sensitive way. The rare opportunity to
obtain combined MEG and iEEG data is particularly valuable for developing
neurophysiologically realistic models of the basic mechanisms underlying motor
and cognitive impairments and their sensitivity to pharmacological intervention. In
this particular case, simultaneous recordings from the STN and the MEG estimates
of cortical activity are especially advantageous for understanding the cortico-sub-
cortical network and its sensitivity to pharmacological modulation in PD patients.
In general, studies of patient populations are important for delineating biomarkers
of the general and idiosyncratic features of the disease, for predicting treatment
efficacy, and for guiding treatment development.
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3.5 Attention Deficit Hyperactivity Disorder (ADHD)

ADHD is one of the most common neurobehavioral developmental disorders
affecting *5–7 % of children and persisting into adulthood (Willcutt 2012). It is
characterized by hyperactivity which is particularly prevalent in children, whereas
inattention and executive impairments are observed across the life span (Seidman
2006). Evidence from studies using MRI and EEG methods indicates structural
and functional aberrations in individuals with ADHD (Cubillo et al. 2012; Cher-
kasova and Hechtman 2009; Barry et al. 2003). ADHD is successfully treated with
stimulants such as methylphenidate (MPH) and amphetamine (AMP) which are
particularly beneficial for immediate symptom relief (Bitter et al. 2012; Wilens
et al. 2011), but nonstimulants and antidepressants are also prescribed (Wilens
2006). Both AMP and MPH increase DA synaptic availability but act at different
points of the DA release and reuptake sequence (Heal et al. 2012; Challman and
Lipsky 2000). They also modulate norepinephrine though to a lesser degree.

Fig. 3 Time-frequency images of power averaged across subjects for the STN (left column) and
the right superior temporal MEG source (right column) during OFF medication (top row) and ON
medication state (bottom row), recorded contralateral to movement. Power changes are expressed
as percentage change calculated with respect to the baseline period from -8 to -5 s prior to
movement. There is a beta desynchronization with onset prior to movement and gamma power
increase upon movement. Gamma power increase is more marked ON medication. For the STN
contacts, there was a significant reduction in alpha power from about 2 s before movement in
both drug conditions. The black bars indicate alpha band frequencies between 7 and 13 Hz. Used
with permission (Oswal et al. 2013)
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In an early MEG study investigating the effects of MPH treatment on resting
state activity, Wienbruch et al. (2005) recorded MEG signals from a group of
children diagnosed with ADHD. They performed a spectral analysis in sensor
space before and after administering MPH and observed an increase in theta power
over the left frontal region which correlated with improved scores on a test of
attention. The authors suggested that the MPH renders its behavioral effects by
increasing motor inhibition in ADHD patients.

In a recent series of studies, Wilson and colleagues (Franzen and Wilson 2012;
Wilson et al. 2012, 2013) have explored the neural basis of ADHD, as well as the
mechanisms underlying AMP treatment. They recorded MEG signals from adult
individuals diagnosed with ADHD in the OFF-medication state (i.e., *24 h after
the last dose), and again after their regular stimulant medication intake (i.e., ON
state). This paradigm allowed them to compare neural activity between the ADHD
patients and healthy controls in addition to examining effects of AMP. They
analyzed the MEG data in the frequency domain and estimated signal sources with
a beamformer approach (Van Veen et al. 1997). One study (Wilson et al. 2013)
examined broadband oscillations within the Default Mode Network (DMN)
(Raichle et al. 2001) during rest. The principal finding was a globally-reduced
wide-band power in unmedicated ADHD patients compared to controls in a higher
frequency range (i.e., 14–228 Hz) that was estimated to originate in the medial
prefrontal region. The only effect of medication was increased alpha power in the
medial prefrontal area (Wilson et al. 2013). Another study (Wilson et al. 2012)
investigated the neural basis of gamma activity induced by auditory stimuli in
adults with ADHD before and after medication administration and in a control
cohort. Binaural click trains presented at 40 Hz induced 40-Hz gamma activity
estimated to bilateral auditory cortices. The gamma power was significantly
attenuated in ADHD patients compared to control participants. However, admin-
istration of a regular dose of the AMP-based medication resulted in a significant
increase in gamma activity in ADHD patients (Fig. 4). These results suggest that
the commonly prescribed stimulant medication normalizes neural activity in
response to auditory 40 Hz stimulation. The authors speculated that abnormalities
in GABAergic transmission may underlie abnormally low responsivity in ADHD
patients in the off-medication state. By the same token, they propose that the
beneficial effects of the amphetamine-based medication derive from its modulation
of GABAergic circuitry (Wilson et al. 2012).

Employing an auditory oddball paradigm with frequent and target tones,
Franzen and Wilson (2012) recorded MEG signals from adult ADHD patients
before and after administering a standard dosage of amphetamine salts medication.
They again focused on the event-related gamma response (68–88 Hz) which was
desynchronized relative to baseline in the off-medication state and was estimated
to the medial prefrontal region. The stimulant medication attenuated gamma
desynchronization. These results suggest that the ADHD symptomatology may be
due in part to impaired coactivation of distributed cortical circuitry that underlies
cognitive processes (Uhlhaas et al. 2009). This line of research illustrates the MEG
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contributions to a better understanding of the basic mechanisms underlying the
ADHD disorder and the neural basis of the effects of a successful therapeutic
intervention.

3.6 Epilepsy and Anesthesia

Sophisticated models of the MEG signal source analysis have played a crucial role
in the non-invasive functional localization of epileptogenic zones. They have
assisted in guiding surgical evaluations and treatment, especially benefitting
patients with pharmacoresistant epilepsy (Bagic et al. 2009; Funke et al. 2009;
Rampp and Stefan 2007). The MEG is particularly helpful in diagnosing neo-
cortical epilepsy, outlining the eloquent cortex and lesional zones, which is crucial
for guiding surgical resections (Baumgartner and Pataraia 2006; Pirmoradi et al.
2010; Stufflebeam 2011; Makela et al. 2006). The debate on the relative advan-
tages of the MEG versus EEG notwithstanding (Barkley 2004; Baumgartner
2004), the two methods provide complementary information, as the MEG is a
valuable tool that can furnish unique information in certain clinical cases and
guide clinical decisions (Lesser 2004; Cappell et al. 2006). In the context of
pharmacological MEG applications, several studies have indicated that anesthesia
improves immobility and maintains or even increases rates of the detection of
epileptiform activity (Balakrishnan et al. 2007; Stefan et al. 2010). This protocol

Fig. 4 Left panel Generators of the 40 Hz gamma activity were estimated to the auditory
cortices and overlaid onto a 3D rendition of a representative ADHD subject. The source time
series (nAm) from each session (pre-drug and post-drug) show the stimulus onset (vertical line)
and the 40-Hz gamma response that is stronger after stimulant administration. Right panel Group
means of gamma activity. Unmedicated adults with ADHD exhibited significantly less gamma
activity relative to their healthy peers during the standard 200–500 ms time window (grey), and
during an earlier window from 50–200 ms post-stimulus (black). The administration of
amphetamine significantly increased gamma activity in participants with ADHD during both
time windows, and the magnitude of this increase eliminated group statistical differences in Run 2
(ON drug). Control subjects showed no significant effects from Run 1 to Run 2. These data
indicate that stimulant medication may modulate cortical gamma activation in adults with
ADHD. On the y-axis, gamma activity is shown in normalized unit relative to a -200 to 0 ms
pre-stimulus period (Wilson et al. 2012, used with permission)
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has been useful in pediatric seizure patients (Fujimoto et al. 2009; Konig et al.
2009) particularly at lower doses and with certain combinations of anesthetic
agents (Szmuk et al. 2003). In addition to the studies of anesthesia in the clinical
context, the MEG technique could potentially be instrumental in investigating
different levels of consciousness as a function of anesthetic dosage. It could
contribute to the evidence obtained with other neuroimaging techniques con-
cerning the neural basis of consciousness and the functional connectivity from
which it presumably emerges (Nallasamy and Tsao 2011).

3.7 Alcohol Intoxication

As the most common drug of abuse and a ‘‘gateway’’ to drug addiction, alcohol
exerts a costly burden on the society (Kirby and Barry 2012; Bouchery et al. 2011).
Although alcohol intoxication affects functioning at multiple levels of the neur-
axis, executive abilities in situations of increased complexity and novelty are
particularly disrupted (Koelega 1995; Marinković et al. 2001; Ridderinkhof et al.
2002). Alcohol may interfere with cognitive assessment of novel cues and the
capacity to inhibit impulsive responses. These impairments may contribute to the
socially important effects of acute intoxication such as traffic- or work-related
hazards and violence (CDCP 2011; Kuhns et al. 2011). Most of the MEG studies
investigating acute effects of alcohol intoxication on brain function focused on
ERFs during sensory and cognitive tasks, as well as spontaneous oscillations
during rest. This evidence has been included in the excellent and comprehensive
reviews of the pharmacological MEG literature (Kenemans and Kahkonen 2011;
Kahkonen 2005, 2006). More recently, our group has carried out a series of
crossover alcohol challenge studies using an anatomically-constrained MEG
approach which combines distributed source modeling with structural MRI
yielding estimated maps of oscillatory activity estimates across time (Dale et al.
2000). In a study investigating cognitive control, healthy volunteers performed the
Stroop task under moderately low alcohol and placebo conditions (Kovacevic et al.
2012). Acute intoxication selectively affected event-related theta power in the
anterior cingulate cortex (ACC) during the high conflict, incongruous condition
(Fig. 5). Spatial estimates were in concordance with fMRI-based observations of
the ACC importance for conflict processing (Marinković et al. 2012a; Botvinick
2007; Carter and van Veen 2007). The results indicate that the top-down regula-
tory capacity is selectively vulnerable to alcohol intoxication during conditions
that necessitate cognitive control. This evidence supports the view that impaired
self-control may underlie the development of alcohol abuse via its effects on the
ability to refrain from drinking (Field et al. 2010; Finn 2000; Lyvers 2000).

Another experiment manipulated lexical-semantic retrieval in a visual lexical
decision task in healthy participants who took part in both placebo, and alcohol
conditions (Marinković et al. 2012b). Event-related theta source power to standard
words (SW) and pseudowords (PW), meaningless but word-like pronounceable
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letter strings, was estimated with the anatomically-constrained MEG approach.
Theta oscillations were particularly sensitive to lexical-semantic retrieval (Fig. 6).
In contrast to the N400 which is usually larger to PW as it reflects attempts to
access and integrate a semantic representation into the current context (Halgren
1990; Holcomb et al. 2002; Kutas and Federmeier 2011), theta power was larger to
SW. This indicates that theta may be uniquely sensitive to the outcome of lexical-
semantic retrieval of word meaning, consistent with its engagement in memory
(Klimesch et al. 2001). This finding suggests that this measure is well suited for
investigating the neural basis of language. Alcohol specifically affected semantic
retrieval since it reduced theta to real words but not pseudowords that carry no
meaning. This type of study can delineate the neural circuits affected by acute
intoxication. In concert with studies on chronic alcoholics and populations at risk,
they can help parse out the effects of alcohol neurotoxicity, genetic susceptibility,
and environmental factors in vulnerability to addiction. This research could also be

Fig. 5 Group-averaged maps of event-related theta source power estimates in the 320–470 ms
time window after word onset under placebo (top row) and alcohol conditions (middle row). The
color scale depicts baseline-corrected noise-normalized source power. Bottom row timecourses
were estimated to originate in the dorsal anterior cingulate cortex (dACC), the strongest source of
theta power which was particularly sensitive to conflict. The estimated activity to incongruous
(INCONG, high conflict) trials is shown in the left column and the activity to congruous (CONG,
low conflict) trials in the right column. Alcohol may interfere with goal-directed behavior by
affecting decision-making, which results in poor self-control (Kovacevic et al. 2012, used with
permission)
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relevant to legislative and preventive initiatives regarding driving and it could
potentially inform and guide pharmacological research on possible agents that
might diminish alcohol’s effects by targeting the relevant circuits.

4 Conclusion

Recent developments in MEG methodology that rely on sophisticated source
modeling algorithms and multimodal integration have been successfully used to
study brain activity in response to pharmacological agents. In many such studies
psychotropic medications are administered to healthy volunteers in an effort to
delineate the spatiotemporal characteristics of their effects on different neuro-
functional systems. This chapter provides a brief overview of studies primarily
focusing on the spontaneous and task-related MEG oscillatory activity. This
includes pharmacological manipulations of GABA, acetylcholine, and dopamine
neurotransmitter systems during resting, motor activity, attention, and memory.
Such studies provide important insights into the neurochemistry underlying dif-
ferent functional states. They have also begun to delineate the neuroanatomical
specificity of drug effects as they are expressed in a regionally- and functionally-
specific manner across different frequency bands. Other lines of research have
examined neural responses to alcohol intoxication during cognitive tasks and the

Fig. 6 Group-averaged map of baseline-corrected event-related theta source power estimates in
the left hemisphere to standard words (SW) in the 370–520 ms time window (top row). Group
averaged timecourses of theta estimates to SW and pseudowords (PW) for alcohol and placebo
conditions are shown below for the lateral temporal (LT), anteroventral inferior prefrontal cortex
bordering the insula (aIPF), and posterolateral inferior prefrontal cortex (pIPF). Theta power is
sensitive to semantic retrieval as indicated by stronger theta to SW compared to PW. Alcohol
attenuated only theta to SW, suggesting that it specifically affects lexical-semantic retrieval and
not other aspects of verbal processing (Marinković et al. 2012b, used with permission)
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effects of pharmacological interventions in the clinical context of neuropsychiatric
disorders including ADHD and Parkinson’s disease, as well as the effects of
anesthesia administered to epilepsy patients. This type of MEG application can
provide essential insight into the basic mechanisms underlying motor and cogni-
tive impairments accompanying neural disorders and can track the effects of drugs
in spatially- and temporally-sensitive ways. It can estimate where the drug-induced
changes are occurring and elucidate the temporal sequence of the involved neural
components. Furthermore, analyses of co-oscillatory activity can estimate the
neural underpinnings of the pharmacological effects on the brain in real time and at
the level of an interactive multifocal system. Future clinical MEG applications in
patient cohorts hold high promise in delineating biomarkers of the general and
idiosyncratic features of the disease, for predicting treatment efficacy, and for
guiding treatment development.

Acknowledgments I am grateful to the National Institutes of Health (R01AA016624) for their
continued support and to Burke Rosen and Sanja Kovacevic for their kind assistance.

References

Ahveninen J, Lin FH, Kivisaari R, Autti T, Hämäläinen M, Stufflebeam S, Belliveau JW,
Kahkonen S (2007) MRI-constrained spectral imaging of benzodiazepine modulation of
spontaneous neuromagnetic activity in human cortex. Neuroimage 35(2):577–582

Ametamey SM, Honer M (2007) Pharmacological prerequisites for PET ligands and practical
issues in preclinical PET research. PET Chemistry 62:317–327

Atkinson AJ Jr, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, Oates JA,
Peck CC, Schooley RT, Spilker BA, Woodcock J, Zeger SL (2001) Biomarkers and surrogate
endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95

Bagic A, Funke ME, Ebersole J (2009) American Clinical MEG Society (ACMEGS) position
statement: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in
noninvasive presurgical evaluation of patients with medically intractable localization-related
epilepsy. J Clin Neurophysiol 26(4):290–293

Baker SN (2007) Oscillatory interactions between sensorimotor cortex and the periphery. Curr
Opin Neurobiol 17(6):649–655

Balakrishnan G, Grover KM, Mason K, Smith B, Barkley GL, Tepley N, Bowyer SM (2007) A
retrospective analysis of the effect of general anesthetics on the successful detection of
interictal epileptiform activity in magnetoencephalography. Anesth Analg 104(6):1493–1497

Barkley GL (2004) Controversies in neurophysiology. MEG is superior to EEG in localization of
interictal epileptiform activity: Pro. Clin Neurophysiol 115(5):1001–1009

Barry RJ, Clarke AR, Johnstone SJ (2003) A review of electrophysiology in attention-deficit/
hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin Neuro-
physiol 114(2):171–183

Bass JK, Bornemann TH, Burkey M, Chehil S, Chen L, Copeland JR, Eaton WW, Ganju V,
Hayward E, Hock RS, Kidwai R, Kolappa K, Lee PT, Minas H, Or F, Raviola GJ, Saraceno B,
Patel V (2012) A united nations general assembly special session for mental, neurological,
and substance use disorders: the time has come. PLoS Med 9(1):e1001159

Bauer M, Kluge C, Bach D, Bradbury D, Heinze HJ, Dolan RJ, Driver J (2012) Cholinergic
enhancement of visual attention and neural oscillations in the human brain. Curr Biol
22(5):397–402

Neuropsychopharmacology: Recent MEG Investigations 893



Baumgartner C (2004) Controversies in clinical neurophysiology. MEG is superior to EEG in the
localization of interictal epileptiform activity: Con. Clin Neurophysiol 115(5):1010–1020

Baumgartner C, Pataraia E (2006) Revisiting the role of magnetoencephalography in epilepsy.
Curr Opin Neurol 19(2):181–186

Berg D (2008) Biomarkers for the early detection of Parkinson’s and Alzheimer’s disease.
Neurodegenerative Dis 5(3–4):133–136

Bergman H, Deuschl G (2002) Pathophysiology of Parkinson’s disease: from clinical neurology
to basic neuroscience and back. Mov Disord 17(Suppl 3):S28–S40

Bitter I, Angyalosi A, Czobor P (2012) Pharmacological treatment of adult ADHD. Curr Opin
Psychiatry 25(6):529–534

Boeijinga PH, Soufflet L, Santoro F, Luthringer R (2007) Ketamine effects on CNS responses
assessed with MEG/EEG in a passive auditory sensory-gating paradigm: An attempt for
modelling some symptoms of psychosis in man. J Psychopharmacol 21(3):321–337

Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res
221(2):564–573

Borsook D, Beccera LR, Bullmore ET, Hargreaves RJ (eds) (2009) Imaging in CNS drug
discovery and development: implications for disease and therapy. Springer, New York

Borsook D, Hargreaves R, Becerra L (2011) Can functional magnetic resonance imaging improve
success rates in CNS drug discovery? Expert Opin Drug Discov 6(6):597–617

Bosboom JL, Stoffers D, Stam CJ, Berendse HW, Wolters E (2009a) Cholinergic modulation of
MEG resting-state oscillatory activity in Parkinson’s disease related dementia. Clin
Neurophysiol 120(5):910–915

Bosboom JL, Stoffers D, Stam CJ, van Dijk BW, Verbunt J, Berendse HW, Wolters E (2006)
Resting state oscillatory brain dynamics in Parkinson’s disease: an MEG study. Clin
Neurophysiol 117(11):2521–2531

Bosboom JL, Stoffers D, Wolters E (2003) The role of acetylcholine and dopamine in dementia
and psychosis in Parkinson’s disease. J Neural Transm Suppl 65:185–195

Bosboom JL, Stoffers D, Wolters E, Stam CJ, Berendse HW (2009b) MEG resting state
functional connectivity in Parkinson’s disease related dementia. J Neural Transm
116(2):193–202

Botvinick MM (2007) Conflict monitoring and decision making: Reconciling two perspectives on
anterior cingulate function. Cogn Affect Behav Neurosci 7(4):356–366

Bouchery EE, Harwood HJ, Sacks JJ, Simon CJ, Brewer RD (2011) Economic costs of excessive
alcohol consumption in the U.S., 2006. Am J Prev Med 41(5):516–524

Brooks DJ (2007) Imaging non-dopaminergic function in Parkinson’s disease. Mol Imag Biol
9(4):217–222

Brown P, Mazzone P, Oliviero A, Altibrandi MG, Pilato F, Tonali PA, Di Lazzaro V (2004)
Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s
disease. Exp Neurol 188(2):480–490

Brunelin J, Fecteau S, Suaud-Chagny MF (2013) Abnormal striatal dopamine transmission in
schizophrenia. Curr Med Chem 20(3):397–404

Buxton RB (2002) Introduction to functional magnetic resonance imaging. Cambridge University
Press, New York

Buzsaki G (2006) Rhythms of the brain. Oxford University Press, New York
Cadenhead KS (2002) Vulnerability markers in the schizophrenia spectrum: Implications for

phenomenology, genetics, and the identification of the schizophrenia prodrome. Psychiatr
Clin North Am 25(4):837–853

Cappell J, Schevon C, Emerson RG (2006) Magnetoencephalography in epilepsy: tailoring
interpretation and making inferences. Curr Neurol Neurosci Rep 6(4):327–331

Carter CS, van Veen V (2007) Anterior cingulate cortex and conflict detection: an update of
theory and data. Cogn Affect Behav Neurosci 7(4):367–379

Caselli RJ, Beach TG, Yaari R, Reiman EM (2006) Alzheimer’s disease a century later. J Clin
Psychiatry 67(11):1784–1800

894 K. Marinković
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Marinković K, Rickenbacher E, Azma S, Artsy E (2012a) Acute alcohol intoxication impairs top-
down regulation of Stroop incongruity as revealed by blood oxygen level-dependent
functional magnetic resonance imaging. Hum Brain Mapp 33(2):319–333
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Food Meets Brain

Maike A. Hege, Krunoslav T. Stingl and Hubert Preissl

Abstract Food intake is essential for the survival of a living organism. The brain
controls this complex behavior by integrating information of several systems to
achieve a stable body weight of the individual. Over the last decades, however, the
number of overweight people has been steadily increasing. These individuals are
often characterized by increased food consumption and thus, have been associated
with alterations in their control of food intake. In this chapter, we will review
knowledge about the systems involved in the control of eating behavior and
introduce how MEG can be used to learn more about the cognitive aspects of this
behavior.

Keywords Categorization � Cognitive inhibition � Eating behavior � Event-
related fields � Executive function � Food � Homeostatic control � Insulin �
Obesity � Prefrontal cortex � Resting state � Reward � Visual processing �
Working memory

1 Introduction

Obesity has become a major health problem with a steady increase in numbers of obese
people in our modern society. According to the World Health Organization, more than
1.4 billion adult people are overweight (body mass index (BMI) [ 25 kg/m2) and
about 500 million people are obese (BMI [ 30 kg/m2) (WHO 2012). Excessive
body weight is associated with various diseases, particularly cardiovascular diseases
(Hubert et al. 1983; Rexrode et al. 1997; Vega 2004), diabetes mellitus type 2 (Haslam
and James 2005) and certain types of cancer (Calle et al. 2003). For these reasons,
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obesity is associated with reduction of life expectancy and is currently the leading
preventable cause of death (Mokdad et al. 2004).

Obesity develops due to a combination of overeating and insufficient physical
activity and also shows aspects of a neurobehavioral disorder (Dagher 2012).
Several brain imaging studies investigating food-related processing showed
changes in brain regions involved in the control of eating behavior which depend
on the body mass index (DelParigi et al. 2004; Gautier et al. 2000, 2001; Karhunen
et al. 1997; Stoeckel et al. 2008). Eating behavior is a complex process which
requires integration of several internal and external signals. Besides the homeo-
static regulation of energy balance, the influence on food intake by the hedonic
system and the inhibitory control of hedonic feeding has gained considerable
attention in the last years. However, integration of information between these
systems is still not well understood. A deeper understanding of the interactions
between homeostatic and cognitive elements of eating behavior control might be
important for dealing with the obesity problem.

In this chapter, we will first introduce current knowledge about the control of
eating behavior in humans with the brain posited as being the central region for
controlling both homeostatic and cognitive systems. Secondly, we will focus on
insulin as a key hormonal signal in the homeostatic control of eating behavior and
discuss its role in obesity. This will lead us to establish obesity as a model for
cerebral insulin signaling deficiency. Finally, we will present MEG studies that
investigated the effects of insulin on cognitive aspects of eating behavior control.
Finally, implications for obesity treatment by the observed interaction effects and
future directions will be discussed.

2 Control of Eating Behavior

Food intake is a complex behavior, which requires sensing of internal energy-
balance signals and external cues of food availability and is determined by the
need of an organism to acquire adequate energy and nutrients (Seeley and Woods
2003). The central control region of this behavior is the brain. Different inter-
connected networks have to integrate homeostatic information about short- and
long-term energy stores with higher-level cognitive demands to adjust our eating
behavior according to dietary goals (see Fig. 1). Therefore, our eating behavior
and the interplay of these networks is modulated by physiological, psychological,
and cognitive factors (Dagher 2012).

2.1 Physiology of Homeostatic Control of Food Intake

Most adults are characterized by a relatively stable body weight, even if daily food
intake and energy expenditure (in the form of basal metabolism, adaptive thermo-
genesis, and physical activity) underlie huge variations. The balance between
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energy intake and expenditure is regulated by a complex physiological system with
the hypothalamus as a key structure for regulating appetite by integrating signals
from central and peripheral pathways (Suzuki et al. 2010; Mayer and Thomas 1967).

The hypothalamic network involved in the control of feeding and energy
metabolism is composed of interconnected neuronal populations located in the
arcuate nucleus, ventromedial nucleus, paraventricular nucleus, dorsomedial
nucleus, and lateral hypothalamus (Saper et al. 2002; Berthoud and Morrison
2008; Dietrich and Horvath 2009). This network receives peripheral signals that
can be divided into anorexic (reduction of food consumption) and orexic (increase
of food consumption) signals. These signals encode the amount of circulating
nutrients, such as glucose, fatty acids, or the amount of stored energy and are
conveyed by hormones like insulin, leptin, and ghrelin with their concentrations
directly connected to food intake, amount of adipose tissue, or gut peptide con-
centrations (Cummings et al. 2001; Woods and Seeley 2000). In addition, these
peripheral signals can also be conveyed by direct activation of the brainstem by
gut peptides via vagal afferents or by arcuate nucleus neurons with the ability of
sensing energy-rich nutrients directly (Suzuki et al. 2010). These peripheral signals

Fig. 1 Schematic diagram showing neural systems and flow of information involved in the
control of food intake and regulation of energy balance. Internal regulatory circuitry using neural
and hormonal feedback on hypothalamus and brainstem is shown at the bottom (dark grey boxes).
Sensory and cortico-limbic brain areas used for processing information from the environment are
shown in the upper half (light gray boxes). The extensive influence of circulating and neural
internal feedback signals on sensory processing and cortico-limbic systems concerned with
reward, emotion, learning and memory is emphasized (dashed lines) (Figure with permission
from Shin et al. 2009)
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are then integrated and the information is encoded by neuropeptides and other
neurotransmitters (Meister 2007) connected to circadian rhythm, thermoregulation
and arousal (Saper et al. 2002). In principle, the output of the hypothalamic net-
work is two-fold. For one, the hypothalamic network exhibits projections to
sympathic and parasympathic nuclei innervating the endocrine organs and the
gastrointestinal tract (Williams et al. 2001) to send feedback signals to the
periphery. Secondly, the hypothalamic network is interconnected with cortical and
mesolimbic control circuits controlling food reward to initiate or terminate food
intake (Hommel et al. 2006; Kampe et al. 2009).

2.2 Cognitive Elements of Eating Behavior

Food intake, however, is not regulated by this homeostatic system alone. For
actual behavioral activation to pursue food intake, integration of information from
other systems like sensory, reward, and cognitive networks is required. This results
in complex interactions between the systems, which so far are not well understood.

For a long time in evolution, food and especially high fat, energy-dense, pal-
atable food was scarce. Thus, consumption of such high palatable food had clear
homeostatic and social benefits. As a result, reward-driven or ‘‘hedonic’’ feeding
has developed. Besides increased motivation for obtaining highly palatable food,
hedonic feeding is also characterized by the consumption of this food beyond
current needs and saving it in form of fat (Berthoud 2007).

Reward-associated feeding is regulated by a complex reward circuitry,
involving interactions between several signaling systems, including opioid,
dopaminergic, and cannabinoid systems (Wynne et al. 2005). In hedonic feeding, a
differentiation between ‘‘liking’’, the sensory pleasure from eating a palatable
food, and the motivational process of ‘‘wanting’’ (an incentive value is attributed
to a food stimulus) has been suggested (Berridge 2007). As a neurophysiological
basis for liking of palatable food, opioid neurotransmission in the nucleus ac-
cumbens has been discussed (Kelley and Berridge 2002). Opioate antagonists
reduce food palatability in man (Yeomans et al. 1990) and reduce palatable food
intake in animals and their affective facial expressions in response to tasting
palatable food (Pecina and Berridge 2005). Wanting is thought to be mediated by
the mesolimbic system including dopaminergic projections from the ventral teg-
mental area to the nucleus accumbens (Kelley and Berridge 2002) and hyper-
dopaminergic mice have a higher motivation to consume palatable food without
changes in the pleasantness perceived for it (Pecina et al. 2003).

Interactions between the homeostatic and hedonic networks have been
addressed in several studies, but the picture is far from being complete. Cabanac
(1971) showed that sweetness is rated less pleasant after subjects had ingested
glucose syrup. Other studies were also able to show that subjective palatability is
different in the fed and in the fasted state (Berridge 1991). Therefore, the nutri-
tional status of a subject can influence the rewarding effects of food. Besides direct
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action of leptin, insulin, and ghrelin in the hypothalamic structure, they have also
been shown to influence neurons in the ventral tegmental area, nucleus accumbens,
and amygdale (Kampe et al. 2009, Shin et al. 2009). For instance, leptin can inhibit
firing of dopaminergic neurons and feeding-induced dopamine release in the
nucleus accumbens (Fulton et al. 2006; Hommel et al. 2006). Ghrelin on the other
hand, stimulates firing of dopaminergic neurons and dopamine release in the
nucleus accumbens (Abizaid et al. 2006). Functionally, also direct neuronal con-
nections between hypothalamic, cortical, and mesolimbic circuits exist (Hommel
et al. 2006). The neurons in the arcuate nucleus project to the insular and anterior
cingulate cortex via midline thalamic nuclei, while neurons in the lateral hypo-
thalamus project to the shell of the nucleus accumbens and the cerebral cortex
(Kampe et al. 2009).

In our modern society with high energy food easily accessible, hedonic feeding
would promote a positive energy balance in the long run. However, most indi-
viduals stay at a relatively stable body weight. Consequently, additional mecha-
nisms of executive control and decision making in the control of eating behavior
have been suggested (Appelhans 2009). Considered in the context of evolution,
cognitive control of hedonic feeding is a valuable mechanism allowing for con-
servation of food during periods of anticipated food shortage (Polivy and Herman
2006) or in social interactions. The second aspect is still traceable in our modern
society. In company of others, individuals match their food intake to those around
them, regardless of hunger or satiation (Herman et al. 2003).

Cognitive control of eating behavior is considered to involve networks
responsible for cognitive control of behavior in general. The primary neuroana-
tomical basis for self-regulation and executive function is the prefrontal cortex
(PFC). The PFC is considered to exert top-down control over automatic cognitive
and affective processes to inhibit responses to environmental cues with unfiltered
emotionally driven behaviors (Miller and Cohen 2001). Regarding inhibition of
hedonic feeding, the dorsolateral region of PFC (DLPFC) is activated after
ingestion of a meal (Gautier et al. 2001; Tataranni et al. 1999). It seems that
prefrontal cortex is important for inhibition of hedonic feeding; its interplay with
the homeostatic system, however, is not clear.

Finally, sensory processing channels allowing detection and interpretation of
environmental food cues interact with and are modulated by these neural systems
involved in control of eating behavior. In many cases, food is first perceived by the
visual system. The visual stimulus of food signals availability and provides infor-
mation about palatability and therefore, is a key factor in the initiation of a meal
(Cornier et al. 2007). Not only viewing of real food, but also viewing of food pictures
has been shown to activate distributed networks of brain regions involved in food
categorization and also in reward evaluation, such as amygdale and orbitofrontal
cortex as well as the hypothalamus (Berthoud 2004; Rolls 2005; Cornier et al. 2007).

In tasks assessing attention allocation, visual selective attention is preferably
directed towards food items (Nummenmaa et al. 2011). Activity in these networks
and the degree of attention allocation is highly dependent on motivational states,
either by the motivational significance of external cues or by the intrinsic current
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need state. For instance, only the attention capture effects of food items, but not
non-food items, as well as the memory performance for visually presented food
items is strongly modulated by an individual’s hunger level (Mogg et al. 1998;
Morris and Dolan 2001; Piech et al. 2010). Furthermore, in an electroencephalo-
graphic (EEG) study, Stockburger et al. (2008) showed that hunger state modu-
lated brain potentials selectively to food pictures. Food specific correlations
between regions involved in processing of visual food cues with states of hunger
and calorie content of the food cues were also found by means of functional
magnetic resonance imaging (fMRI) (Porubska et al. 2006; Siep et al. 2009; Fuhrer
et al. 2008; Cornier et al. 2007). It appears that the hunger state induces a change
in the salience of food stimuli as need-related cues.

3 Role of Insulin in Eating Behavior

Although individual systems of eating behavior control have been described to
some detail, interactions between them are still rather elusive. Manipulation of a
key hormonal signal and investigation of its effects on cognitive elements in eating
behavior might shed some light on these interactions in humans.

3.1 Cerebral Insulin Function

As previously described, one of the key signals is the hormone insulin, which reg-
ulates the metabolism of carbohydrates, lipids and amino acids. Insulin interferes
with the metabolism of all three types of nutrients; however, the most important
function of insulin is the regulation of glucose metabolism in peripheral tissues.
Since glucose uptake in neurons is independent of insulin, the central nervous system
has long been considered an insulin-independent tissue. However, insulin receptors
are expressed all over the brain with high concentrations in the olfactory bulb, the
primary olfactory cortex, the limbic and paralimbic system and the hypothalamic
nuclei (Baskin et al. 1987; Unger et al. 1991; Schulingkamp et al. 2000).

Currently, it is well established that insulin affects eating behavior and
metabolism by targeting the hypothalamic nuclei (e.g. ventromedial nucleus,
arcuate nucleus) (Woods et al. 1979; Schwartz et al. 2000; Benoit et al. 2002).
Furthermore, insulin is an essential neuronal growth factor and stimulator of
neuronal protein synthesis during development of the central nervous system
(Heidenreich and Toledo 1989; Robinson et al. 1994; Choi et al. 2005; Chiu and
Cline 2010). Insulin has also been shown to co-regulate neurotransmitters and/or
their receptors including norepinephrine (Boyd et al. 1985; Masters et al. 1987;
Figlewicz et al. 1993; Apparsundaram et al. 2001), acetylcholine through glucose
utilization (Lechin and van der Dijs 2006), glutamate receptors (Man et al. 2000;
Plitzko et al. 2001; Mielke et al. 2005; van der Heide et al. 2005), and GABA-ergic
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transmission (Wan et al. 1997; Ma et al. 2003; Vetiska et al. 2007). The majority
of these insulin effects on neurotransmission are localized in the hippocampus,
prefrontal cortex, and hypothalamus.

Thus, it is not surprising that an important role for insulin in high-level cog-
nition, memory, and synaptic plasticity has been suggested. Animal studies
demonstrated that rats which were injected intracerebroventricularly with insulin
after a training task showed increase in performance if tested for retention in
comparison to control animals (Park et al. 2000). Improvement of memory
function by insulin administration was also shown in humans (Craft et al. 2000;
Benedict et al. 2004).

3.2 Cerebral Insulin Resistance in Humans

For the investigation of insulin effects on cognitive elements of eating behavior,
there are in general two ways for manipulating insulin levels and action in the
human brain. One approach is to raise insulin levels in the body either by a
hyperinsulinemic euglycemic clamp, which increases the plasma concentration of
insulin without changing the glucose level, or by administration of intranasal
insulin. The advantage of intranasal insulin is that it raises insulin concentration in
the cerebrospinal fluid without relevant absorption in the systemic blood circula-
tion as it enters the brain via the olfactory nerve (Illum 2000; Born et al. 2002).
The other approach is to study eating behavior in a model with impaired insulin
function. Obesity is associated with peripheral insulin resistance. In addition, the
deletion of central insulin receptors in rats and mice is accompanied by hyper-
phagia and obesity (Bruning et al. 2000; Obici et al. 2002).

In a recent MEG study, we investigated insulin action in resting state networks/
spontaneous brain activity to evaluate association of cerebral insulin resistance and
BMI in humans. Spontaneous brain activity is characterized by the presence of
more or less regular oscillations in various frequency bands (d = 1–4 Hz,
0 = 4–8 Hz, a = 8–12 Hz, b = 12–30 Hz, c[ 30 Hz). These oscillations are
generated by specific brain areas and networks and are quite stable at rest. Any
input to the system and/or information exchange between spatially separated areas
is accompanied by power/and or phase synchronization in specific frequency
bands (Schnitzler and Gross 2005). This type of information transfer seems to be
affected in different neurological disorders, such as Alzheimer’s disease or
schizophrenia (Uhlhaas et al. 2008, Stam et al. 2009), as well as in type 1 diabetes
(van Duinkerken et al. 2009) and in obesity (Olde Dubbelink et al. 2008). We
hypothesized that alterations in insulin signaling may be one cause of dysfunction
in oscillatory networks in obese subjects.

Tschritter et al. (2006) used a hyperinsulinemic euglycemic clamp to assess
cerebrocortical insulin effects in resting state and modulation by body weight. For
lean subjects, we observed an increase in power in theta and beta band for an increase
in plasma insulin concentration. For obese subjects, on the contrary, no effect of
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insulin on beta activity was observed and even a decrease in theta activity was
evident. Furthermore, the insulin-induced changes in theta and beta activity were
closely correlated with BMI and percent body fat. Regarding peripheral insulin
sensitivity, these changes were positively correlated with insulin sensitivity of glu-
cose disposal. In summary, this means that cerebrocortical insulin action was posi-
tively correlated with peripheral insulin sensitivity and negatively with measures of
obesity.

Results of this study indicate that an increase in insulin levels in the brain has an
effect on resting state brain networks and that this effect is altered in obese subjects.
Therefore, we suggest that obese subjects are not only characterized by peripheral,
but also by central insulin resistance. This insulin resistance is most likely associ-
ated with overeating and the development of obesity and is of special interest when
investigating insulin effects on networks involved in eating behavior control.

4 Modulation of Neural Networks Related to Control
of Eating Behavior by Insulin and Obesity

Stingl et al. (2010a) explored the effects of intranasally administered insulin on the
small world dynamics of resting state magnetoencephalographic brain activity.
Insulin induced subject-specific changes of the weighted path length in the theta
band were observed. This change again showed a statistically significant positive
correlation with the body mass index of individual subjects supporting the
hypothesis of cerebral insulin resistance in obese individuals.

Weighted path length is a measure of global interconnectedness of a network
and its global efficiency. This confirms that insulin is a strong modulator of global
communication of the brain networks involved in satiation and the control of
eating behavior. However, this approach is not suitable to elucidate which net-
works or how the communication between these networks is modulated by insulin.

In general, these networks have a highly complex pattern of correlated activity
of multiple brain areas with interconnectivities and existing feedback loops. In this
respect, a method with high temporal resolution is advantageous for evaluation of
function or malfunction of individual components of these networks. Based on the
low sensitivity of MEG for activity in homeostatic control areas, MEG research
has to focus on cognitive elements of eating behavior including brain areas
involved in sensory processing and categorization and higher-order brain areas
involved in executive functions.

4.1 Visual Processing and Categorization

The visual system of the human cortex is hierarchically organized and processing of
visual stimuli starts in primary visual areas in the occipital lobe. In the following,
two functionally distinct pathways process different information about the stimulus
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separately. The dorsal occipito-temporal pathway is mostly concerned with the
perception of the spatial locations of objects, the perception of motion and the
guidance of movements towards objects. The ventral occipito-temporal pathway is
important for the perception of object identity—it has been shown to exhibit cate-
gory-specific activation (Ungerleider and Haxby 1994; Kawakami et al. 2000; Clark
et al. 1996). Categorization processes enable the brain to recognize objects on the
basis of common properties independently of their physical differences.

In humans, visual categorization is a very fast process occurring already
between 80 and 200 ms after stimulus onset (Thorpe et al. 1996; Antal et al. 2000;
Fabre-Thorpe et al. 2001; Thorpe and Fabre-Thorpe 2001; VanRullen and Thorpe
2001; Thierry et al. 2007). Food as a category is very inhomogeneous and differs
widely in structure, color, and cultural background. Nevertheless, it was shown
that food and non-food pictures result in significantly different cortical activation
already in early stages of visual processing with food inducing category-specific
activation (Stingl et al. 2010b; Toepel et al. 2009). Stingl et al. (2010b) showed
that a difference in brain responses between food and non-food objects were
observed already 120 ms after stimulus onset, even though stimuli were controlled
for differences in low-level visual features. Source reconstruction of these differ-
ences revealed sources of activity in primary visual areas. Additionally, we
observed activation differences around 160 ms post-stimulus, which were local-
ized in the inferior-occipital region. We suggested that they were related to cat-
egorization of the object. Event-related fields (ERFs) and source reconstruction of
food/non-food differences are displayed in Fig. 2.

It has also been shown that not only food versus non-food objects, but also
high-energy versus low-energy food stimuli elicit differences related to visual
categorization at around 160 ms (Toepel et al. 2009). Thus, information about
food as a category as well as the caloric content of it seems to be encoded very
early in neural information processing. Furthermore, Stockburger et al. (2008)
reported that hunger state modulated brain potentials selectively to food pictures
very early in the visual processing stream (already 170 ms post-stimulus).
Enhanced processing of food pictures in a hungry state was mainly found in
occipito-temporo parietal regions.

This suggests that early visual processing is already influenced by character-
istics of external cues and by intrinsic motivational states. To investigate whether
this modulation might be related to insulin action in the brain, intranasal insulin
was administered to lean and overweight subjects in a placebo controlled study
(Guthoff et al. 2011). In lean subjects, again the evoked component at around
160–170 ms, which is related to identification and categorization, was modulated.
This modulation was only observed for food pictures and once more source
localized to inferior-occipital regions. Modulation of the evoked components by
insulin administration is displayed in Fig. 3. This specific insulin-induced modu-
lation was also observed in an fMRI study (Guthoff et al. 2010). In obese indi-
viduals, however, the modulation of the magnetic evoked components was absent,
giving further support for the hypothesis that obese individuals suffer from cere-
bral insulin resistance.
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In conclusion, all of these studies indicate that our perception of the environment
is highly dependent on intrinsic motivation and might be modulated very early by
reward and homeostatic control networks. In particular, insulin seems to have an
effect not only on the hypothalamus as the homeostatic control region of eating
behavior, but also in the regulation of our eating behavior by modulating our
perceptions.

4.2 Executive Functions

Executive functions in general are neuropsychological processes (Miller and
Cohen 2001) including inhibitory control, attention control, and working memory.
As introduced earlier, these processes are also essential for the cognitive control of
eating impulses and the ability to maintain energy balance (Cummings 1995;
Tataranni et al. 1999; Gautier et al. 2001; Small et al. 2001; Appelhans 2009).
Investigation of differential activation of these functions in lean and obese indi-
viduals provides the opportunity to explore them in the presence of potential
deficiency in insulin signaling.

A well established paradigm for the investigation of executive functions is the
working memory task including executive and attention control of short-term
memory. In our previously mentioned studies by Stingl et al. (2010b) and Guthoff
et al. (2011), visual stimuli were incorporated in a visual working memory task;
however, only early effects between food and non-food stimuli were reported so
far. As shown in Stingl et al. (2010b), later magnetic components related to the
retrieval and encoding of memory representations also showed significant acti-
vation differences for food versus non-food objects. When a food stimulus was
presented, an increase in activity of later components correlated with an increase in
behavioral performance (faster reaction time and higher accuracy).

b Fig. 2 Differences in ERFs to food and non-food stimuli. Brain responses were obtained during
a one-back working memory task with four conditions depending on current and preceding
stimulus. FF food as preceding and current stimulus, FN food as preceding and non-food as
current stimulus, NF non-food as preceding and food as current stimulus, NN non-food as
preceding and current stimulus. A The waveforms of the grand average magnetic fields for all
experimental conditions (a FF, b NF, c FN, d NN). e Root mean square values of all channels for
all subjects and all conditions (red FF; purple NF; green NN; blue FN), quantified magnetic
evoked components M1-A, M1-B, M2, and M3. The latency for the maximum in the M1-A
response was 123, 162 ms for the M1-B response, 251 ms for the M2 response, and 355 ms for
the M3 response. B and C Topographic maps of the difference between NF and NN conditions at
123 ms (M1-A) and 162 ms (M1-B), respectively. a top 2D map of all sensors, bottom 3D map of
sensors viewed from the back; b source localization of the difference between NF and NN
conditions for the time interval between 110 and 130 ms and 150 and 170 ms, respectively. Only
activations significant with P \ 0.001 are shown. Maximal activation was observed in the
primary visual areas (B) and the left and right fusiform gyri (C) (Figure with permission from
Stingl et al. 2010b)
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The same paradigm was used to directly address alterations in working memory
performance in obese subjects. Stingl et al. (2012) reported a decrease in perfor-
mance with elevated BMI. Obese subjects showed an increase in reaction time and
a decrease in accuracy independent of stimulus category. Regarding brain acti-
vation, BMI correlated negatively with neuronal activity starting as early as
150 ms post-stimulus and localized in occipital areas. In addition, obese subjects
showed an increase in activity in right PFC for food objects only (differences in
activation between lean and obese individuals are displayed in Fig. 4), a region
activated in several tasks involving executive functions and considered to be
crucial for cognitive inhibition and control of hedonic feeding.

BMI dependent modulation of PFC has also been observed in previous studies.
A structural MRI study showed lower gray matter density in the middle frontal

Fig. 3 ERFs to food and non-food stimuli before and after insulin application in lean and obese
subjects. Time traces of ERFs quantified by root mean square for the measurements before (red
line) and after intranasal (green line) insulin application. In the upper row, the response of lean
(a) and obese (b) subjects to food stimuli are shown. In the lower row, the responses to non-food-
pictures are shown (c lean, d obese). Only for lean subjects, a statistically significant difference
between basal and insulin in the M2 component was found and only when they were viewing
food pictures (Figure with permission from Guthoff et al. 2011)
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Fig. 4 Differences in brain activity between obese and lean individuals during a one-back
working memory task. A Root mean square values of all channels for lean (blue) and obese group
(red) for every experimental condition a FF, b NF, c FN, d NN (see Fig. 2 for explanation of
conditions). Obese in comparison to lean individuals showed decreased root mean square values;
the time period in which there was a statistically significant difference between the two groups is
marked by brown color. B Areas activated during the working memory task for the period
100–350 ms for both groups and all conditions. C Differential activation for lean and obese group
for the period 100–350 ms. Obese individuals showed decreased activation in occipital areas and
increased activation in right prefrontal regions. Regression analyses revealed that activation in
occipital areas was negatively correlated with body mass index for all conditions, whereas
activation in right frontal region was only positively correlated for conditions with food as the
current stimulus (FF, NF). Cortical activity was rendered onto the surface of a standard
anatomical brain volume (Montreal Neurological Institute). All regional activations above initial
significance threshold P \ 0.05 (family wise error (FWE) corrected) (Figure with permission
from Stingl et al. 2012)
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gyrus of the PFC in obese versus lean individuals (Pannacciulli et al. 2006).
Similarly, Volkow et al. (2009) showed through the use of positron emission
tomography (PET) that greater BMI is correlated with lower baseline metabolism
in PFC. Increased recruitment of this area in obese subjects during our working
memory task may reflect a functional compensation to deal with deficits in the
inhibitory systems observed by lower metabolism at baseline. However, we didn’t
observe this modulation to correlate with better performance. Thus, it seems that
this increase in cortical activity for obese subjects does not present an efficient
recruitment of neural circuits form right PFC.

In the working memory task, inhibitory mechanisms are actually crucial to
determine which information enters the working memory and to suppress infor-
mation that is no longer needed (Hasher et al. 1997). Thus, any deficiency in this
system will have consequences on working memory performance. Behavioral
results from a go/nogo task investigating response inhibition also indicated an
inverse relation of BMI and behavioral inhibition (Nederkoorn et al. 2006a, b).

The reported results show specific and quantifiable differences between obese
and lean subjects. It seems that obesity is partially related to deficits in executive
functions and thus, in cognitive control of eating behavior. This leads to the
assumption that insulin has an effect on cognitive control of eating behavior, which
is altered in the presence of cerebral insulin resistance.

5 Conclusion and Future Directions

In this chapter, we discussed networks involved in the control of eating behavior
and alterations of these networks in obesity. We introduced insulin as a central
hormonal signal in the regulation of food intake and discussed evidence pointing to
a cerebral insulin resistance in overweight and obese individuals. Finally, we
showed that insulin has diverse effects not only on homeostatic control, but also on
cognitive elements of eating behavior and that these insulin effects are altered in
obese individuals. Insulin affected the cognitive process of food categorization and
overweight and obese, in comparison to lean individuals, showed decline in
cognitive function which was related to activation differences in brain areas
involved in behavioral inhibition.

Regarding the multitude of effects of insulin action, further exploration of its
role in eating behavior might reveal new approaches in obesity treatment. In
Tschritter et al. (2012), loss of body fat during a lifestyle intervention was asso-
ciated with high cerebral insulin sensitivity. Results of another MEG study (Hege
et al. 2013) indicated that successful weight loss during a diet was associated with
increased cognitive control over food intake. In line with cognitive effects of
insulin discussed in this chapter, investigation of the pathway connecting behav-
ioral inhibition and insulin resistance of CNS might be especially valuable in
developing new strategies for non-responders in weight loss programs.
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Presurgical MEG to Forecast Pediatric
Cortical Epilepsies

Douglas F. Rose and Hisako Fujiwara

Abstract Although multiple modalities (semiology, EEG, MEG, PET, SPECT,
fMRI) are useful for presurgical evaluation of patients with medication resistant
epilepsy, only EEG and MEG have the millisecond time resolution to track the onset
and spread of interictal discharges and ictal events. For good surgical outcome, both
seizure onset zones (SOZ) and regions of immediate spread, the epileptogenic zone
(EZ), need to be resected. Although for adults the main preoperative question may be
whether seizures arise in left or right mesial temporal lobe, the locations of SOZ can
be much more variable in children and adolescents. Recent studies indicate the most
common cause of medically intractable epilepsy in pediatrics is cortical dysplasias
functioning as epileptogenic regions. A child may have a single circumscribed
cortical dysplastic region, multiple regions throughout a lobe, cerebral hemisphere,
or even bihemispheric dysplastic regions. Sometimes seizures will start at just one
focal cortical dysplastic region and spread throughout the brain. For other patients,
multiple cortical dysplastic regions may independently generate seizures, more in the
context of a seizure network than a single seizure focus. The difficult task is to
anticipate the pattern of locations of cortical dysplasias and functional epileptogenic
regions for each pediatric patient. Addressing this task adequately presurgically for
each patient allows intracranial electrodes to be placed correctly to verify the loca-
tions where seizures start and to observe how the seizures spread in a single patient
during different clinical seizure patterns. MEG with mathematical models of the
head, brain and current source regions may be able to contribute significantly to the
presurgical identification of the pediatric patient’s seizure networks and to the pre-
diction of source locations that should be assessed with intracranial EEG recording.
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1 Introduction

In children with medically intractable seizures who are candidates for epilepsy
surgery, the most frequent etiology determined by postoperative pathology is
abnormal cortical development, termed cortical dysplasia (Becker et al. 2006;
Harvey et al. 2008). For evaluation of surgical candidates, no single recording or
imaging modality has been able to predict correctly the location of seizure onset
zones (SOZ) and epileptogenic zone (EZ) for all patients. Usually multiple
modalities (seizure history, seizure semiology, video/EEG, high density EEG,
MEG, MRI, EEG-fMRI, ictal SPECT, PET) are utilized to attempt to determine
first the hemisphere of seizure onset, then the lobe of onset. If multiple modalities
indicate the same hemisphere and lobe, there is some confidence that seizures may
start in that lobe. However, each modality has its limitations.

Video/EEG with 10–20 electrode positions can capture seizures with excellent
time resolution, but spatial resolution is limited. High density EEG with 128 or 256
scalp electrodes has improved spatial resolution over the scalp, though long
recordings of several days are not yet routine. Methods to assess impedance
tomography are not readily available to improve source localization with finite
element modeling to account for tissue inhomogeneities that alter the measured
electrical extracellular currents. MRI can provide superb anatomical resolution to
identify certain types of cortical dysplasia, but diffuse cortical dysplasias some-
times escape detection. The anatomical assessment does not indicate which cortical
dysplasias may be pathologically relevant for seizure onset or spread. EEG-fMRI
combines certainty of localization with timing of interictal discharges, but the blood
oxygen level dependent (BOLD) response may occur with a delay of up to 5 s. The
relative timing in the rapid evolution and spread of electrical activity during the
interictal discharge from one cortical region to another may be blurred and lost by
5 s later. The recording of ictal events may be limited because of associated patient
movement at seizure onset. Ictal SPECT has been very successful in highlighting
increased blood flow at seizure onset. However, because of timing of injection, the
highest signal region may not have been the region of first onset. Multiple regions
sometimes are activated, but relative timing can be difficult to ascertain. Finally, if
the patient has multiple seizure types, the ictal SPECT may have only captured one
of the types unless the test is repeated multiple times. PET scan does not have to
capture a seizure and can show hypometabolism in the hemisphere involved in
seizures, but spatial resolution may be limited to a lobe or hemisphere. MEG has
both excellent time resolution and good spatial resolution, but the generally short
recording times of 1–2 h means that primarily interictal discharges, not seizures,
are captured. However, if a seizure is captured, MEG may be useful to examine
signals at the very beginning of the clinical seizure, before the patient begins to
move. Continuous head localization with real time tracking of fiducial sources may
be able to track head movement even after the patient begins to move, although
presence of scalp muscle artifact can decrease signal to noise ratio (SNR), similar to
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EEG. If seizures are not captured, the question becomes how much information can
be extracted from captured interictal discharges and how closely the evolution of an
interictal discharge recapitulates the spread of a seizure (Lopes da Silva 2008).

2 Application of MEG Analysis to Interictal Discharges
for Presurgical Estimation of Seizure Localization:
Observations on General Limitations

Unlike adults, pediatric patients often have many interictal discharges captured
during a 1–2 h MEG recording session. Nonetheless, the first limitation occurs
when the pediatric patient does not have any interictal discharges from the
hemisphere from which seizures are recorded by other modalities, such as video/
EEG. The second limitation occurs when the patient has frequent interictal dis-
charges from both hemispheres. MEG can provide localizations for the interictal
discharges in each hemisphere, but cannot provide fundamental information
regarding whether seizures begin in one hemisphere, or independently in each
hemisphere. Unless actual seizures have also been captured for that patient by
MEG, MEG data must be interpreted in the context of seizures captured by other
modalities, such as video/EEG. Finally, both MEG and EEG must deal with the
uncertainty of the inverse problem. They must rely on other information such as
knowledge of brain anatomy to limit ictal onsets to regions of neurons rather than
ventricles or blood vessels, and to cortical surfaces rather than regions of primarily
white matter. Thus, interpretation of both modalities are dependent on MRI and
known physiologic characteristics regarding most likely locations for epileptiform
discharges to arise, either ictal or interictal. If these overall clinical limitations are
kept in mind for each patient, it may be possible to attend to interictal discharges in
the correct hemisphere to address issues of origin and spread.

3 Characterization of Interictal Discharges to Forecast
Ictal Discharges in Pediatric Patients

An on-going debate occurs whether interictal spikes and sharp waves, brief events
lasting perhaps 30–200 ms, arise anywhere near or within the SOZ and EZ or only
represent irritative zones far removed from the seizure onset zone. Some authors
note that interictal discharges, although brief, can spread rapidly through the brain
(Alarcon et al. 1994; Ossadtchi et al. 2005; Hara et al. 2007) and suggest that
elucidation of these propagation patterns may be similar to the pathways utilized
during ictal initiation spread. Other authors note a variability of the propagation
patterns during an interictal spike (Lantz et al. 2003; Sabolek et al. 2012), although
patients whose seizures seem to begin similarly but evolve in different patterns are
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well known. One group studying six patients with mixed patterns of cortical
dysplasia with EEG-fMRI, noted that for some types of cortical dysplasia, inter-
ictal and ictal activation involved the same MRI lesions, while for patients with
other types of cortical dysplasia, interictal discharges showed BOLD changes in
the MRI lesion, but ictal discharges showed more activity in the overlying cortex
(Tyvaert et al. 2008). Because interictal discharges can arise in the hemisphere
opposite to that suggested by the patient’s seizure semiology, care must be taken in
choosing the interictal discharges to be examined in detail. In addition, as with all
evaluative modalities in the patient’s presurgical examination, the interpretation of
the findings must be considered in light of the results from all the other evaluative
modalities. Since the seizure is the event to be treated, every effort should be made
to maximize the opportunity to capture one or more ictal events during the MEG
study, and particularly the first few seconds before the patient begins to move. The
same kinds of analysis for onset and propagation may be applied to the early ictal
onset as are applied to interictal discharges.

Ictal onsets recorded with intracranial electrodes often begin with low ampli-
tude high frequency repetitive activity that spreads locally and then more generally
as the seizure evolves. The ability to detect these higher frequencies with MEG by
examining higher bandwidths may improve analysis of cortical activities from
extracranial recordings (Xiang et al. 2009, 2010; Rampp et al. 2010). Simply
choosing a bandwidth of 20–70 Hz, instead of 1–70 Hz may eliminate much of the
interfering lower frequency activities and improve SNR. The goal then may be to
identify established abnormal networks of signal spread that occur in interictal
discharges, some of which may occur also as networks of favored signal spread
during ictal discharges.

From clinical experience, at least three patterns of cortical dysplasia may be
seen in pediatric patients with medically intractable epilepsy: (1) a single focal
region of cortical dysplasia from which seizures arise, (2) multiple regions of
cortical dysplasia that may seem separate and sometimes distant, albeit in the same
lobe, or different lobes in the same hemisphere, or (3) a diffuse region of cortical
dysplasia throughout one or more lobes in a hemisphere (the pathologic, rather
than functional, classification of cortical dysplasias has become more complex
(Blumcke et al. 2011; Kabat and Krol 2012)). The challenge, once MEG signals
are acquired at a high digitization rate, is which mathematical analysis algorithms
to apply to these signals to best characterize the features of the underlying path-
ologic cortical activity.

The combination of a single equivalent current dipole (ECD) as a source model
and the least squares approximation algorithm was among the first source locali-
zation methods used for MEG. Over the past 20 years this ECD algorithm has been
the one most often used in clinical epilepsy studies. By definition the single ECD
model is a point source. For presurgical evaluation of medically intractable epi-
lepsy, the single ECD model can be very appropriate to localize a single small
circumscribed region of abnormal cortex. The neurosurgeon, though, may prefer to
have additional information on the spatial extent of the functional pathology.
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Spikes are defined as lasting less than 70 ms with a peak amplitude at a halfway
point around 35 ms after onset. However, if conduction velocities in cortical axons
are such that a single impulse can cross from one hemisphere to another in perhaps
10 ms (Barth et al. 1982), then from onset to peak amplitude enough time has
expired for a signal to cross back and forth between the two hemispheres
3� times. Thus, we should not be surprised if several pathologic cortical regions
could become active during a single spike and contribute signals to the overall
spike signal recorded extracranially. Examples of spikes that are composites of
sequential activations in multiple cortical regions, corroborated by later intracra-
nial EEG recordings, have been published for scalp EEG (Alarcon et al. 1994) and
more recently for MEG (Rose et al. 2013).

The single ECD source localization algorithm evaluated at a spike peak, where
SNR is best, may identify the ‘center of gravity’ of a single contiguous cortical
activation. However, if the abnormal activity spreads rapidly to several more
disparate cortical regions, the single ECD source model would likely identify a
point located somewhere in the middle of disparate sources that may be located on
separate gyri or in separate lobes, whose activations nonetheless overlap in time
during a single spike. In such a case, the single ECD source model might not
correctly identify the locations of any of the sources.

The multiple ECD model may resolve this mislocalization. However, since the
prior source localizations may change as the model increases from single to
multiple dipoles as each new putative dipole is added, the putative locations have
been dependent on the examiner’s estimate as to how many different sources may
be involved, although more recently automated Bayesian approaches have been
published (Campi et al. 2011).

Algorithms that assess source signals at multiple evenly spaced locations
throughout the brain avoid examiners’ biases for number of sources. For example,
multiple signal classification, MUSIC (Mosher et al. 1992), scans evenly through
the brain at multiple locations and then evaluates results for the best source
location. A refinement of this method recursively solves for additional dipole
locations in the remaining signal (Mosher and Leahy 1999) and thereby removes
the requirement for an a priori choice of number of dipoles. Another approach is to
distribute multiple dipoles evenly throughout the brain and simultaneously solve
for the combination of sources that best fits the signal. Minimum norm estimation
(MNE) was perhaps the earliest method that applied this approach to MEG signals
(Hamalainen and Ilmoniemi 1994), but there have been many refinements sub-
sequently (Grech et al. 2008). A third approach, beamformer, essentially tunes the
magnetometer to a single location in the brain, obtains and evaluates the signal at
that location, repeats the process at locations spaced evenly throughout the brain,
then allows comparison of the resulting signals. For each of these approaches, the
examined locations or the placement of putative dipole sources can be restricted to
cortical surfaces, if the patient’s three dimensional magnetic resonance image
(MRI) has been constructed and the cortical surface has been segmented.

Although the singe ECD model has historically been most frequently utilized
for clinical presurgical epilepsy evaluations and other algorithms have been more
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frequently utilized in clinical research, studies have begun to appear comparing
the single ECD model to the other algorithms in clinical epilepsy applications
(Robinson et al. 2004; Ukai et al. 2004; Shiraishi et al. 2005a, b; Imai et al. 2007;
Tanaka et al. 2009; Elisevich et al. 2011; Shiraishi et al. 2011; Zhang et al. 2011;
de Gooijer-van de Groep et al. 2012).

4 The Rationale for Noninvasive Delineation of Multiple
Onset and Spread Locations in the Presurgical
Evaluation of Cortical Dysplasias

In the past 30 years, subdural electrodes became widely used in the United States
and elsewhere for intracranial EEG recordings, supplanting prior use of stereo-
taxic/tactic EEG (SEEG) with depth electrodes at many institutions (Wyler et al.
1984; Ryvlin and Rheims 2008). The subdural grids record primarily from the
surfaces of the brain, i.e., the crowns of the gyri. Since the grids are often placed
contiguously on the brain surface, perhaps only the perimeter of the surface to be
covered needs to be estimated presurgically to facilitate presurgical planning for
grid placement. The locations of gyral crowns that show epileptic activity relative
to normal gyral crowns are determined after the grids are placed. However, about
60 % of cerebral cortex is buried in sulci (Van Essen 2005) and therefore may not
be well sampled by surface grids (Ryvlin and Rheims 2008).

Recently, there has also been recognition that epilepsy arising from cortical
dysplasia may involve networks of cortical regions rather than just the prior
conception of a single epileptic focus (Kramer et al. 2010; Berg and Scheffer 2011;
Varotto et al. 2012; Terry et al. 2012; Bartolomei et al. 2008) and that the SOZs
may sometimes arise deep in sulci not well detected by surface grids (Wang et al.
2012). During the presurgical phase of invasive monitoring with intracranial EEG
and medication withdrawal, children often have frequent seizures in short time
duration. Assessment of possible seizure networks, in addition to determination of
the locations of one or more SOZs, must be made often over just several days.
Advance knowledge regarding possible epileptogenic regions and possible net-
works of spread may make complex results from intracranial EEG more easily
understood. Non-invasive studies, such as MEG, that can detect multiple sources
in interictal or ictal discharges, and the relative timing of activation of each source
region, may be helpful in interpreting relative activation of epileptic discharges at
the electrodes of cerebral surface grids.

Additionally, there has been a recently renewed interest in using SEEG
(Cardinale et al. 2013; Gonzalez-Martinez et al. 2013) for presurgical delineation
of SOZ and spread, particularly for patients whose seizure onsets were not well-
localized by surface grid recordings. For these studies, both gyral crowns and sulci
can be assessed by the depth electrodes. However, the targets for the depth
electrodes must be planned in advance, both to avoid the vascular rete of cerebral
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arteries and veins and to reach the SOZ and EZ. For this method of intracranial
EEG recording, extensive non-invasive recordings and source localization that
predict interictal or ictal onset and patterns of spread may be very important for
planning the depth electrode placement.

5 The Quest

In summary, children with intractable epilepsy, possibly caused by cortical dys-
plasias, may have more complex seizure networks than a single epileptogenic
cortical focus with local spread. The challenge for researchers and clinicians
helping these children is to determine whether there is a single SOZ or multiple
SOZs, and whether spread of epileptiform activity is to secondary regions that are
otherwise normal cortex, or to regions potentially epileptogenic themselves.

The improvement in MEG source localization algorithms over the past 35 years
has been steady and impressive. There are now multiple source localization
algorithms available and strategies regarding how best to apply the algorithms
clinically to the study of interictal spikes and ictal discharges, when the latter can
be captured in an MEG session (Yoshinaga et al. 2004; Yagyu et al. 2010;
Fujiwara et al. 2012). These range from independent component analysis (ICA)
(Ossadtchi et al. 2004) to spatiotemporal modeling of dipole scanning algorithms
such as MUSIC (Huiskamp et al. 2004) or distributed dipole algorithms such as
MNE (Tanaka et al. 2010, 2012; Chowdhury et al. 2013). Beamformer algorithms
may have special appeal in this regard because the general methodology is well-
positioned to improve SNR at multiple source locations throughout the brain and
then reconstruct the time series signal at those locations (Sekihara et al. 2001,
2002; Otsubo et al. 2012; Hong and Jun 2012).

Regardless of the algorithm used, the main task is to optimize the algorithm’s
ability to detect multiple sources, if present, and to delineate the time course of
activation of each source within the evolution of the overall interictal or ictal
discharge. The time courses of activation of different sources within the interictal
or ictal discharge may be sufficiently different that they are distinguishable by
visual inspection alone. However, if the timing differences of onset and peak
activation are less than 10 ms, visual inspection of the waveforms may be insuf-
ficient. Quantitative measures of coherence and phase differences may be required.
The beamformer algorithms are known to have difficulty resolving tightly corre-
lated sources that are spatially close (Brookes et al. 2007). However, modifications
of these algorithms have been shown to handle correlated sources well (Moiseev
and Herdman 2013; Belardinelli et al. 2012; Diwakar et al. 2011). Since the
authors of each of the multiple algorithms described above may have used different
starting assumptions, the safest approach may be to apply two or more different
algorithms to the interictal or ictal discharge and compare the findings.

Perhaps in the future with careful application of these algorithms to localization
of interictal and/or ictal events we will attain the quest of non-invasively mapping
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SOZs, EZs, and epileptic networks in children with single or multiple regions of
cortical dysplasia to guide placement of intracranial electrodes, subdural or SEEG,
for improved surgical treatment of their medication resistant epilepsy.
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Future Developments in Clinical MEG
and Its Combination with nTMS

Jyrki P. Mäkelä

Abstract Development of clinical MEG will provide biomarkers of neurode-
generative disorders by producing functional and effective connectivity measures
within and between distinct functional brain areas. It is highly probable that
neurodegenerative disorders damage these connections early in their course and
detection of such changes will be feasible with sophisticated signal analysis of
MEG data. Combining MEG and nTMS has already proven to be valuable in
clinical evaluations. Such combinations will assist us in understanding the com-
plex brain networks and the effective connectivity within them both in the healthy
and diseased brains.

Keywords Connectivity � Epilepsy � Neurodegenerative diseases � Navigated
transcranial magnetic stimulation (nTMS)

1 MEG in Clinical Connectivity Studies

The trend in the MEG community, as well as in the neuroscience community in
general, is to reveal the brain functions creating the unified perceptions of the world,
despite the parcellated presentation of its features in our brains. Higher level cog-
nitive functions such as attention, working memory and sensory awareness also
arise from activations in widespread cortical networks. The complete view/model of
these functional networks will require understanding of anatomical, functional and
effective connectivity within and between distinct functional brain areas. MEG,
with its excellent temporal and tolerable spatial accuracy will definitively play an
important role in this endeavor (e.g., Palva et al. 2010; Hipp et al. 2012).
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The advances of neuroscience and clinical applications of MEG have been linked
closely to progress of instrumentation and signal analysis methods. Development of
instrumentation provides new possibilities as ‘‘hypothesis generating’’ research,
complementing the traditional ‘‘hypothesis testing’’ approaches.

Studies of signal conduction between different brain areas using MEG were first
started in patients with epilepsy. Already the early efforts demonstrated that MEG is
able to identify source locations of epileptiform activity and map its spread to the
opposite hemisphere (Barth et al. 1982). More recent studies have convincingly
shown the usefulness of MEG studies in planning epilepsy surgery. MEG improves
the treatment plan in about 20–30 % of the patients (Sutherling et al. 2008;
Knowlton et al. 2009; de Tiege et al. 2012). However, source localization of the
earliest epileptiform activity, not a detailed analysis of its spread, has been the main
target of MEG studies in epilepsy (for a review, see, e.g., Mäkelä et al. 2006). The
significance of tracking the spread of epileptiform activity may increase along with
developments of epilepsy surgery planning, e.g., in increased use of stereotactic
EEG as opposed to subdural grid recordings.

Recent developments have made studies of such ‘‘clinical connectivity’’ more
precise. New, more comfortable gantries and continuous head position localization
have made ictal MEG recordings more convenient, and they localize ictal onset zone
with high sensitivity and specificity at the brain lobe level. Sources of ictal onset
MEG signals and interictal dipole clusters are essentially equally specific in esti-
mation of the ictal onset zone as defined by ECoG, but ictal MEG is more sensitive
(Medvedovsky et al. 2012). A combination of MEG with precisely time-locked
video recordings has enhanced the identification of ictal events and eased the rec-
ognition of artifacts (Zhdanov et al. 2013). These applications, developed in clinical
studies, will also definitively assist sophisticated basic research experiments, e.g., by
guiding the data analysis into precisely selected time windows of required behav-
iors and provide additional information for MEG ‘‘metadata’’ storage.

MEG may also provide tools to improve diagnostics of neurodegenerative
disorders. In these conditions, detection of functional disconnection between brain
regions will be crucial. For example, early AD pathology results in abnormal
interactions between neuronal systems even before the onset of clinical signs and
symptoms (Delbeuck et al. 2003; Brier et al. 2012). MEG is a useful tool to
identify a ‘‘signature’’ of altered functional connectivity that can distinguish
pathological processes from normal cognition (Stam et al. 2009). MEG studies
may provide unique information regarding the changes in brain function respon-
sible for the development of clinical dementia. This should help to direct the
development of treatment strategies (e.g., as an endpoint in clinical trials), and in
the tracking of disease progression. Because MEG is sensitive to dendritic activity
at the synaptic level (Murakami and Okada 2006), it may be able to detect
pathology even before there is evidence of other ‘‘positive’’ neuroimaging bio-
markers (e.g., in vivo amyloid imaging; for a review, see Zamrini et al. 2011).

The present connectivity analysis methods require relatively long recordings of
high-quality signals for providing meaningful results. Exquisite experimental
setups are needed to avoid problems related to varying vigilance. Moreover,
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sophisticated movement correction and artifact suppression are required for
complete realization of their clinical value. Fortunately, MEG noise suppression
methods have developed rapidly. The signal space separation algorithm (SSS)
allows the recognition of magnetic signals from different subspaces, e.g., from the
head and its surroundings (Taulu and Simola 2006). The removal of the signals
that appear statistically similar in both subspaces strongly suppresses the artifacts
generated even in the close vicinity of the sensors, e.g., by electric stimulation of
subthalamic electrodes in patients with Parkinson’s disease. This expands the
MEG applications into studies of effects of deep brain stimulation on spontaneous
brain activity in different neurodegenerative diseases (Airaksinen et al. 2012). The
present efficacy of the SSS method can probably be enhanced further by opti-
mizing the MEG sensor array to also include elements measuring the tangential
components of the extracranial magnetic field (Nurminen et al. 2013). Besides
external noise, random sensor noise may also deteriorate data quality. It is possible
to use SSS for simultaneous modeling of the correlated signals from the brain and
magnetic interference, and the uncorrelated part (from sensor noise) of a multi-
channel MEG signal, and thus aid in removing the uncorrelated part from the
source estimation. This approach decreases the white noise level with a factor of
about 2–4 while the physiological spectral peaks remain intact (Taulu et al. 2012).
This is particularly important in single-trial analysis of evoked responses, and in
analyzing high-frequency signals having relatively poor signal-to noise ratio. The
method may also have clinical relevance e.g., in detecting high-frequency epi-
leptiform signals (Helle et al. 2012). These developments will definitely assist in
obtaining more crisp data for connectivity analyses, and also aid in applying the
new analysis methods in the clinical diagnostics.

Time will tell, whether new MEG analysis methods searching for cortico-
cortical spatial (Schnitzler and Gross 2005), phase-related (Palva et al. 2010), and
temporal correlations (Montez et al. 2009) of spontaneous MEG networks in signal
or source spaces will produce robust biomarkers of disease in individual patients.
The complex methods used in data mining and complicated statistics associated
with them may be relatively impenetrable for clinical users. In order to further the
integration of clinical MEG results into routine patient flow, the analyses also need
to be fast and understandable to the clinical teams utilizing them. The hypotheses
and presumptions underlying the modeling need to be clear, and the effects of
various details of the models required for the completion of the final results need to
be thoroughly understood. Clinical decision making is seldom based on one
methodology only. Nevertheless, developers of new analysis methods for such
purposes may benefit by placing themselves into the clinical situation, i.e., as a
target for the planned procedures, or to consider their willingness to use preventive
medication for the next 20 years, based on data analysis results conducted by a
technician. Although solving such usability problems is not necessarily attractive
for researchers in basic neuroscience, it is highly important in clinical research and
particularly in MEG clinical applications.
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2 Combination of MEG with Navigated Transcranial
Magnetic Stimulation

The physics underlying noninvasive transcranial magnetic stimulation (TMS) can
be considered as the reverse of MEG; instead of picking up tiny magnetic signals
from the cortex, it utilizes fast, strong (about 2 T) magnetic pulses to modify
cortical activity. Navigated TMS (nTMS) displays a dynamic estimate of the
stimulus-induced electric field on the patient’s individual 3-D brain MRI recon-
struction, and enables selection of localized stimulation targets from it. The effects
of nTMS can be tested on the source areas selected from MEG. For example,
nTMS delivered to secondary somatosensory cortex area, pinpointed by MEG,
speeds up somatomotor reactivity (Raij et al. 2008), and rhythmic TMS to the
MEG-identified source areas of spontaneous oscillatory activity entrains these
oscillations at the stimulation frequency (Thut et al. 2011) (Fig. 1).

In the foreseeable future, TMS devices will develop towards more complex
delivery of pulses into multiple sites, monitoring the effects of TMS by electro-
physiological measures, and even guiding the TMS properties by the induced

Fig. 1 Comparison of mapping with MEG, nTMS and ECoG in a patient with epilepsy, depicted
on a 3-D reconstruction of the patient’s brain. Epileptiform region near the motor cortex, as
depicted by MEG, is colored yellow. Red dots indicate sites producing motor evoked potentials in
nTMS. Green dot indicates the anatomic indicator of the hand motor area. Red circles mark
electrodes where stimulation elicited typical seizures, dark blue circle indicates site producing
hand movements and a seizure, and light blue circles indicate sites producing hand and arm
movements. The surgeon removed the cortical area delineated by black lines. After the operation,
the patient has remained free of seizures. Modified from Vitikainen et al. (2009)
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modifications. Although simultaneous TMS and MEG recordings probably will
not be feasible, MEG will be a crucial tool in interpreting the electrophysiological
connectivity utilized in such studies. Combining MEG and nTMS has already
proven to be valuable in clinical evaluations (e.g. Vitikainen et al. 2009; Mäkelä
et al. 2013, see also Fig. 1). Such combinations will assist us in understanding the
complex brain networks, the effective connectivity within them both in the healthy
and diseased brains.
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Ultra-Low-Field MRI and Its
Combination with MEG

Lauri Parkkonen, Risto J. Ilmoniemi, Fa-Hsuan Lin
and Michelle Espy

Abstract Recent progress in SQUID instrumentation has demonstrated the fea-
sibility of using SQUID sensor arrays in MEG helmets to record also MRI data.
Here we describe the basic principles of MRI as well as the special requirements
and solutions needed to perform ultra-low-field MRI concurrently with MEG. We
consider it is feasible to build practical MEG–MRI instruments for scientific
experimentation and for clinical use. Acquiring an MRI with 2-mm spatial reso-
lution and sufficient signal-to-noise ratio and contrast appears achievable without
essentially lengthening the normal MEG measurement time.

Keywords MEG �MRI � ULF MRI � SQUID MRI �Magnetoencephalography �
Magnetic resonance imaging � Ultra-low-field MRI

1 Introduction

The availability of large arrays of highly sensitive SQUID magnetometers in
modern MEG devices enables one to measure magnetic fields other than those
produced by neuronal electrical activity. Perhaps the most promising such possi-
bility is to measure magnetic resonance imaging (MRI) signals in order to obtain
anatomical images of the head concurrently with neuromagnetic experimentation.
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As will be explained below, this would bring several benefits such as improved
registration of MEG and MRI, improved work flow, structural images with less
distortion, and information about the conductivity of the brain.

A combined MEG and MRI device would be highly desirable. Although MRI
provides excellent spatial resolution, functional MRI (fMRI) is limited by its poor
temporal resolution ([1 s) and by its inability to directly measure neuronal
activity. Based on blood volume or oxygenation changes, fMRI is only indirectly
related to neuronal function (Logothetis et al. 2001). MEG, on the other hand, has
excellent temporal resolution (in the millisecond scale). However, the ill-posed
inverse problem limits the spatial accuracy attainable with MEG. This limitation
can be mitigated to some extent by combining MEG with anatomical MRI to
provide constraints to the inverse problem as well as to visualize the estimated
source locations with respect to brain anatomy. Currently, this requires two costly
scanners and complex measurement procedures. Even when done carefully, the
combination of the MEG and MRI data may result in a biased inverse solution
because of errors in the registration of the two coordinate systems.

In principle, combining MEG and MRI is straightforward: simply build a
magnet as well as gradient and radiofrequency (RF) coils around an MEG sensor
array. The problem is that MEG devices are generally designed to measure fem-
totesla-level fields and have a dynamic range only up to some tens or hundreds of
nanoteslas while in MRI the fields go up to several tesla, i.e., 15 orders of mag-
nitude above the weakest fields measured by SQUIDs. One solution is ultra-low-
field MRI: the recordings are performed in a field of about 100 microtesla. If
conventional MRI approaches, including tuned inductive receiver coils, would be
used at these low fields, the resulting signal-to-noise ratio (SNR) would be very
low and the system practically unusable because the amplitude SNR is propor-
tional to the square of the field; the signal at 100 microtesla would be 9 orders of
magnitude weaker than at 3 T. Fortunately, we can use three methodologies to
counteract this problem. First, unlike tuned receivers, the sensitivity of SQUID
sensors is independent of frequency; second, we can use pre-polarization tech-
niques to magnetize the sample before the MRI data acquisition; third, we can gain
from parallel data acquisition made available by the large number (up to 306
currently) of SQUID sensors in a typical MEG array.

2 Basic Principles of Ultra-Low-Field MRI

Before we begin a discussion of the recent progress and opportunities in ultra-low-
field MRI combined with MEG, it is worth discussing the fundamental principles
of nuclear magnetic resonance (NMR) and MRI, paying special attention to the
unique features of SQUID-based ultra-low-field MRI. This will help us to better
understand the fundamental benefits and unique challenges of combining MEG
and MRI in a single device. We will present just a brief overview as there already
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are excellent texts on NMR and MRI, such as those by Callaghan (1991) and
Abragam (1961).

2.1 NMR

NMR can be performed on any nucleus that possesses a non-zero spin. The
simplest case is the spin-� nucleus of hydrogen (1H), which we discuss here. The
1H found in water is most commonly imaged in MRI. 1H also provides the highest
NMR sensitivity of any nuclei.

We can think of the spin as a magnetic moment or a tiny bar magnet. When
placed in an external magnetic field, B, two states corresponding to different
energy levels are possible: the lower level where the magnetic moment is aligned
with B, and the higher energy state where it is oppositely oriented. The energy gap
between these states is given by

DE ¼ hcB; ð1Þ

where h is the Planck’s constant (h = 6.626 9 10-34 J s); c is the nucleus-
dependent gyromagnetic ratio (for 1H, c = 42.6 MHz/T). We can also write

f ¼ cB; ð2Þ

where f is the characteristic Larmor frequency, a fundamental concept in NMR
and MRI; a photon at this frequency can induce a transition from the lower to the
higher energy state, or conversely, as we describe later, a nucleus emits a photon at
this frequency when switching from the higher to the lower energy state. For a 1H
nucleus in a 1-T magnetic field, the Larmor frequency is 42.6 MHz.

The equilibrium distribution of spins in an external magnetic field follows
Boltzmann statistics such that we find an excess of spins in the lower energy state.
If N0 is the total number of spins, this excess can be described as

DN

N0
¼ hcB

kT
; ð3Þ

where k is the Boltzmann constant (k = 1.381 9 10-23 J/K) and T is the absolute
temperature.

Here we meet the first challenge of ultra-low-field MRI. At room temperature
(300 K) and in the strong magnetic field of 1 T, this excess is only about 0.0007 %.
Thus, the resulting magnetization is very small and the signals measured are rather
weak. This explains why almost every practical implementation of NMR and MRI
involves a large magnetic field, and the overwhelming technological trend is
toward higher fields. For example, 3 T is now routinely used in clinical MRI.
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When the sample (or subject) is placed in an external magnetic field, the
magnetization takes some time to develop. This step is referred to as polarization.
To follow the usual NMR convention, we define the magnetic field to be along the
z axis. The magnetization will develop toward the equilibrium as

Mz tð Þ ¼ Mz;eq 1� e�t=T1
� �

: ð4Þ

The equilibrium magnetization is

Meq ¼
Nh2c2IðI þ 1ÞB

3kT
; ð5Þ

where N is the number of spins being measured, and I is the spin number (I = �
for 1H). For example, for 1 cm2 of water (N = 6.69 9 1022 proton spins) at 300 K
in a 1-tesla field, Meq * 3.2 9 10-9 J/T. Again, if the magnetic field is smaller by
a factor of 100, the magnetization (and thus signal amplitude) will also be smaller
by a factor of 100. As shown in Eq. (4), the magnetization (or sample polarization)
builds up inverse-exponentially. The characteristic time constant of this process is
known as the T1, or spin–lattice, relaxation time. T1 is a powerful probe of
chemical environment, providing means to discriminate between tissue types (e.g.,
Damadian et al. 1971). As we will discuss later, T1 depends on the magnetic field
strength as well, and hence may contain unique information in the ULF regime.

Once the sample is magnetized, one can manipulate this magnetization to
produce a measurable signal. The first step is to orient a proportion of the mag-
netization off the axis of the magnetic field. Any component of the spins tipped
off-axis will begin to rotate, or precess, at the Larmor frequency and emit a signal
at that frequency. For example, if the magnetic field is along the z axis, precession
will be in the x–y plane. During precession, the spins experience magnetic field
inhomogeneities associated with their chemical environment (as well as the local
ambient environment) that will slightly shift the local Larmor frequency and thus
cause spin dephasing and therefore loss of signal. The rate at which the transverse
signal decreases is

Mx tð Þ ¼ Mx;t¼0 cos xtð Þe�t=T2 : ð6Þ

Mx,t=0 is the initial magnetic moment transverse to the magnetic field, the cosine
term describes rotation at the Larmor frequencyðx ¼ 2pf Þ; and T2 is the charac-
teristic dephasing, or spin–spin, relaxation time.

There is a fundamental difference between ULF and high-field (HF: B [ 1 T for
this discussion) NMR and MRI. In HF, the process of polarization, magnetization
reorientation, spin evolution, and measurement all occur within a single magnetic
field provided (typically) by a large superconducting magnet. At ULF, however,
these fields may all be different and produced by different magnets.
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Because the magnetization and thus signal is proportional to the field, one
strategy is to use pre-polarization in a higher field (Bp * 1–200 mT) followed by
readout in a much lower measurement field (Bm * 1–200 lT). Thus, T1 in Eq. (4)
refers to T1 in the polarization field (Bp). However, T2 in Eq. (6) will be that in
the Bm field. Also, the values of precession are given by f = cBm, where Bm is the
lT-level measurement field.

There are also differences in approaches to spin re-orientation (e.g., how pre-
cession is started, or how subsequent manipulations of the magnetization are
accomplished) between conventional high-field (HF) MRI and the ULF MRI
approaches. In HF MRI, spin re-orientation is typically accomplished by a time-
varying magnetic field applied at the Larmor frequency, in a direction orthogonal
to the direction of magnetization. This field is usually designated as B1. The
relation between B1, the duration of its application tRF, and angular tip of the
magnetization H is given by

H ¼ 2pcB1tRF: ð7Þ

Note that in HF MRI, B1 is chosen to match the fixed Larmor frequency of the
scanner. But in ULF MRI, we can either perform the spin flip in Bp or Bm,
depending on the pulse sequence we have chosen.

Typically we aim at H = 90� to produce the maximum signal in the x–y plane,
where detection occurs. However, there is another method of spin reorientation
that takes advantage of the flexibility of ULF MRI magnetic field generation. In
many ULF-MRI configurations, Bp and Bm are orthogonal. Thus, one can simply
begin precession by a rapid (non-adiabatic, dBp/dt � cBm

2) shut-off of Bp. In a
non-adiabatic process, the magnetization cannot follow the field change, and is left
aligned orthogonal to Bm. Precession will then begin automatically, without a B1

pulse. Figure 1 illustrates both approaches.
Once precession has begun, detection of the magnetization can begin. In HF

MRI, the typical scanner strengths are 1.5 or 3 T. This translates to a proton
Larmor frequency of 64 or 128 MHz. A tuned induction coil is highly sensitive in
this range. However, in ULF MRI precession occurs in the Bm field, typically on
the order of 100 lT, corresponding to a Larmor frequency of 4.26 kHz.

In conventional MRI with a Faraday coil, the signal scales as B2, one order
arising from the magnetization being proportional to B and one for the induced
signal being proportional to the Larmor frequency. However, this relationship no
longer holds once we are limited by the body noise, which is typically above about
10 MHz (Myers et al. 2006). While pre-polarization is an approach to improve the
former factor (Macovski and Conolly 1993), using an ultra-sensitive detector such
as the SQUID is a way to mitigate the latter. SQUIDs, broadband detectors with
unsurpassed sensitivity of about 1 fT/HHz in the frequency range of ULF MRI, are
almost two orders more sensitive than a Faraday coil in this regime (Myers et al.
2006; Matlashov 2011). Because the SQUID is also the detector of choice for
MEG, the combination of MEG and ULF MRI in a single device becomes obvious.
We should, however, mention that getting a SQUID to work in the dynamic
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environment of MRI, even at ultra-low fields, is quite challenging. We will discuss
some of the basic hardware considerations in Sect. 2.3.

2.2 Basic Principles of Image Acquisition

The physical principles between ULF and HF MR imaging are quite similar. Here
we review a few basic concepts that will help us understand the differences. An
excellent and far more complete description of imaging principles in the context of
conventional MRI is provided by Callaghan (1991).

MRI is the spatial encoding of the NMR properties (e.g., T1, T2, or spin den-
sity). Encoding is based on the variation of the Larmor frequency within the
applied field, see Eq. (2). A magnetic field gradient G(t) (assumed to be spatially
linear for these discussions) is applied, causing the local Larmor frequency to vary
such that

xðr; tÞ ¼ x0 þ 2pcGðtÞ � r: ð8Þ

Fig. 1 Two methods for beginning precession. a The traditional 90� spin flip, possible both in
HF and ULF MRI. In ULF MRI, the fields for polarization, spin flip, and precession may be of
different amplitudes (and orientations, not shown here). In HF MRI, the fields are the same.
b After polarization Bp is removed non-adiabatically and Bm is applied orthogonally. Precession
begins immediately
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The NMR signal DS(t) from a single voxel (DV) will be (neglecting relaxation)

DS tð Þ / q rð Þ exp i
Zt

0

x r; t
0

� �
dt
0

 !
DV ; ð9Þ

where q(r) is the spin density, and x(r,t0) is the angular Larmor frequency. In
Eq. (9), we assume that B0 does not vary with time or position during the mea-
surement. However, the ability to manipulate the measurement field in strength
and orientation between measurements to extract different information from the
image is a feature of ULF MRI that is typically absent in high-field MRI.

The signal from the whole sample, assuming here uniform detector sensitivity,
becomes

S tð Þ ¼ exp iu tð Þð Þ
ZZZ

qðrÞexp i
Zt

0

2pcG t
0

� �
� rdt

0

 !
dV; ð10Þ

where q(r) is the spin density containing contrast information on local spin density
q(r) and, when a suitable preparatory sequence is used, relaxation times T1(r) and
T2(r), and/or diffusion coefficient D(r). The time-varying phase, u(t), is the inte-
gral over the main Larmor frequency. Here we assume that the signal is obtained
from the entire sample.

We next introduce the concept of the reciprocal space vector (Ljunggren 1983;
Twieg 1983)

k � c
Zt

0

G t
0

� �
dt
0 ð11Þ

and we re-write Eq. 10 as (Callaghan 1991)

SðkÞ ¼ expðiu tð ÞÞ
ZZZ

qðrÞexp i2pk � rð ÞdV ð12Þ

and

qðrÞ ¼ expðiu tð ÞÞ
ZZZ

S(rÞexp �i2pk � rð Þd3k: ð13Þ

Equations (12) and (13) are a fundamental formulation in MRI. They comprise
a Fourier transform pair showing that the signal and spin density are mutually
conjugate. The MRI pulse sequence can then be thought of as a trajectory through
k-space, where the gradient is analogous to velocity. How we apply the gradients
will determine the course through image acquisition (Callaghan 1991).

Arising from this formulation, we can next consider two concepts that are
critical to understanding image quality—spatial resolution and field of view
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(FOV). We will see that in addition to lower polarization leading to lower signal,
the lower strength of imaging gradients also poses a unique new challenge for ULF
MRI in terms of image acquisition time.

The Fourier transform pair (12) and (13) defines the relationship between the
spatial and frequency domains. It follows from the Nyquist theorem that for any
real signal (using the x, or readout, direction as an example)

Dx ¼ 1
kx;max � kx;min

ð14Þ

and

Dk ¼ 1
xmax � xmin

: ð15Þ

We can re-write (15) as

Lx ¼ xmax � xminð Þ ¼ 1
Dk

: ð16Þ

Equation (14) shows that the spatial resolution is related to the extent (kmin ...
kmax) of the image in the k-space. Equation (16) shows that the spatial extent of the
image (xmin ... xmax), or FOV, is related to the resolution in the k-space.

If the gradient does not change when it is switched on, the acquisition time ta,
Eq. (11) becomes

kx;max � kx;min ¼ cGxta: ð17Þ

Thus we can describe the spatial resolution as

Dx ¼ ðcGxtaÞ�1: ð18Þ

Spatial resolution in other directions can be derived similarly. As can be seen
from Eq. (18), to improve the spatial resolution, one either has to increase the
gradient or the acquisition (or encoding) time. The gradients in ULF MRI are
typically on the order of 10–4 T/m. This is about 1/100 of those used in HF MRI.
Thus, if we want to keep the same resolution as in HF MRI, with these weaker
gradients we must increase the acquisition time by a factor of 100.

Why don’t we just increase the gradients? There are two reasons, the first being
related to concomitant gradients. These are the unwanted magnetic fields, G\, that
inevitably arise in directions orthogonal to the measurement field Bm and to the
gradients which we deliberately apply for imaging, Gk. At a location within the
imaging volume, these fields shift the frequency by
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Df � cGk þ
1
2

c
B0 þ Gk

G2
?: ð19Þ

In HF MRI, these gradients can be neglected because the main magnetic field
(B0 [ 1 T) is typically much higher than the gradients (10-2 T/m) such that Gk/
B0 � 1, G\/B0 � 1, and thus frequency variations produced by the stray fields
are small. However, in ULF MRI the main magnetic field Bm & 10-4 T and the
gradients G & 10-4 T/m, which generates a magnetic field variation of
0.2 9 10-4 T in a 20-cm FOV. The concomitant fields, not in parallel with Bm, are
of similar order of magnitude as Gk. Thus, the frequency variations are non-
negligible and the total magnetic field experienced by the spin system is no longer
in a plane orthogonal to Bm. In general, concomitant gradients can be accounted
for with some effort (e.g. Volegov et al. 2005; Nieminen et al. 2010; Hsu et al.
2013), but they do pose a constraint.

The other reason that gradients cannot be arbitrarily strong is related to
bandwidth. Consider a simple case: a HF MRI system with B0 = 1 T and 10-2 T/
m gradients. A 20-cm object would have a central frequency of 42.6 MHz and a
frequency spread across the object of Df * 85.2 kHz. However, if Bm = 10-4 T
and G = 10-4 T/m, the central frequency is 4.26 kHz and the frequency spread
within a FOV of 20 cm is 852 Hz. If we turn up the gradients, we will further
widen the frequency spread across the object and consequently need to measure
part of the MRI signal in the challenging concomitant-field regime.

Thus, our only choice to maintain spatial resolution at ULF appears to be longer
acquisition times. But at ULF, the T1 and T2 times for many interesting tissues are
approximately of the length required for ta (Zotev et al. 2009), so we are also
running out of signal at the same time. We note that Eq. (18) is applicable only
when the SNR is sufficient, usually[5 (Matlashov et al. 2012). We can write SNR
as (Myers et al. 2006)

SNRvoxel � C � f geomð Þ � Bp � V �
ffiffiffiffiffiffiffiffi
ta

2SB

r
; ð20Þ

where C comprises the physical constants, f is a function of the geometry, SB is the
magnetic noise spectral density, Bp is the pre-polarization field, and V is the voxel
volume. We note again that SNR is proportional to Bp. As we mentioned previ-
ously, this is different from HF MRI where it scales as B2

p (i.e., x2
0). This is also

different than pulsed-field MRI using a Faraday coil (Matter et al. 2006), where
SNR scales as BpBm. The reason for this is the broad-band sensitivity of the
untuned SQUID. We are again reminded that higher pre-polarization (or lower
sensor noise) will increase SNR, and smaller voxels will decrease it.

Let us briefly return to the discussion of field-of-view (FOV). FOV is the spatial
extent of our image, and is related to the spatial resolution by the number of steps,
N. Again assuming the x-direction, we can write
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Lx ¼ ðNx � 1ÞDx ð21Þ

A simple way to speed up imaging is provided by parallel imaging methods
(Pruessmann et al. 1999). In this approach, the spatial sensitivity of an array of
SQUIDs is used to replace spatial encoding steps. Using less encoding steps speeds
up the acquisition but usually results in an aliased image. By using, for example,
the sensitivity maps from an array of coils, a full image may still be reconstructed.
In applications like combined MEG and MRI, where a SQUID array is available,
this has been demonstrated as a viable approach (Zotev et al. 2008a). Some of the
complications due to inductive coupling between tuned receiver coils in HF MRI
parallel imaging are greatly reduced with untuned SQUIDs. However, it should be
emphasized that parallel imaging accelerates the MRI acquisition at the cost of
SNR, which is already scarce in ULF MRI.

Before we move on to a discussion of the ULF MRI instrumentation, we would
like to mention briefly that in addition to providing a new regime of applications
due to lower magnetic fields (namely the combination of MEG and MRI), ULF
MRI also enables new opportunities for image contrast. As we mentioned, T1 is a
sensitive function of the magnetic field; there is evidence that T1 contrast at ULF is
different, and for some applications superior (Lee et al. 2005) to that at HF MRI.
Of course, it is not just contrast but contrast-to-noise that must be considered, as
we discuss at the end of Sect. 2.4.

2.3 ULF-MRI Instrumentation

In the discussion below we will generally assume that the application is for the
combination of ULF MRI and MEG. Thus, we are assuming that ULF MRI is
being done in the presence of a magnetically shielded room (MSR). We will also
assume that we have an array of SQUIDs. We note that for applications of ULF
MRI that do not include MEG, an MSR may not be required. For example, the
Clarke group at UC Berkeley operates in an aluminum eddy current shield only.
We also note that there has been progress using sensors other than SQUIDs
(namely the atomic magnetometer) both for MEG (Xia et al. 2006) and ULF MRI
(Savukov et al. 2009), which we will not discuss here.

In ULF MRI, one aims at the highest pre-polarization that can be tolerated
(while maintaining the benefits of the ULF regime) and at the most sensitive
sensor. The heart of any ULF MRI instrument is the SQUID sensor array. Large
(hundreds of sensors) SQUID arrays have been used for decades for MEG
(Hämäläinen et al. 1993). The noise level of a SQUID can be as low as 10-15 T,
enabling it to detect the very weak (10-12–10-15 T) magnetic fields from brain
activity from outside the head. A challenge for ULF MRI is that the changing
magnetic fields are many orders of magnitude larger than the dynamic range of
SQUIDs. Several strategies have been implemented to deal with this. One
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approach is to encapsulate the SQUID chips in sealed Pb boxes that have a critical
field of about 80 mT. The SQUID can also be locally shielded by Nb plates on the
chip (Luomahaara et al. 2011). In either case, the pick-up coil extends outside the
shield to detect the fields of interest. Thus, the input coil circuit also needs current
limiters. One can use externally controlled superconducting cryo-switches (Zotev
et al. 2007), which become resistive when heated above the critical temperature
and thereby make the pick-up coil much less sensitive to magnetic fields. Other
groups have used arrays of Josephson junctions (Hilbert et al. 1985) that become
resistive above the Josephson critical current and thereby limit the current.

To achieve a high pre-polarization field, a variety of magnet designs have been
proposed. In some sense, generating Bp is much simpler than at HF because the
fields are so much lower and the field homogeneity requirement is less stringent
(McDermott et al. 2002; Burghoff et al. 2005). Bp can be relatively (a few percent)
inhomogeneous compared to the parts-per-million or better requirement for B0 in
HF MRI.

However, there are considerations to producing (and removing) Bp. In fact,
some of the advantages (reduced homogeneity requirement, shorter T1 times) can
be disadvantages if not accounted for. The first consideration is that it is not trivial
to make a pulsed field at[50 mT. The coil will heat up, dissipated energy must be
removed, and the proximity of a large amount of conductor near the SQUIDs can
introduce Johnson noise. The Bp coil should be physically disconnected during the
measurement (via a relay) to reduce the antenna effect.

There have been several approaches to producing a pulsed Bp, including water-
cooled (Myers 2006), coolant (Fluorinert) and liquid nitrogen (LN) cooled coils
(Sims et al. 2010). The LN coil has the benefit of seven times lower resistance, but
requires an additional cryostat. Recently, a self-shielded (Nieminen et al. 2011)
pulsed superconducting coil (Vesanen et al. 2013) has been demonstrated for ULF
MRI; the Bp coil was integrated into the cryostat with the SQUIDs. The choice of
materials for Bp can be important. For example, we have found that multi-stranded
Litz wire performs much better than solid wire in terms of noise. According to
Vesanen et al. (2013), the superconducting wire magnetized if too high of a current
([12 A) was applied, producing spurious gradients that influenced the image
quality, limiting Bp in that work to \24 mT.

Perhaps the most challenging aspect of a pulsed Bp is how to turn it
off appropriately. When the Bp field changes transient eddy currents will be
induced in nearby conductors, which can impose a long dead-time if the magnetic
fields from the transients exceed the dynamic range of the SQUIDs.

There are two approaches to switching off Bp: adiabatic and non-adiabatic. In a
non-adiabatic ramp-down, dBp/dt � cBm

2 such that the magnetization is left
aligned with the original direction of Bp. If Bm is orthogonal to Bp, precession will
begin automatically. In principle, this approach can minimize the time between
beginning precession and measurement. In reality, however, the faster the ramp-
down of Bp, the larger are the transients that are induced in nearby conductors.
When measurements are made inside a conductive MSR, these transients can
become a serious confound as they may have components that persist for hundreds
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of ms (Vesanen et al. 2012) and are inherently low frequency and hard to de-
convolve from the MEG. Even in the absence of an MSR, anything conducting
nearby will also support transients that may impact the image and/or impose long
wait times. One added consideration in the non-adiabatic field removal is the non-
uniformity of Bp. Not requiring a uniform Bp greatly simplifies the magnet design,
but signal is lost because of this non-uniformity; when precession starts, the spins
are not all in phase. In addition, there are technical problems associated with the
requirement to dissipate the energy stored in the Bp coil.

If, instead, an adiabatic ramp (dBp/dt � cBm
2 ) is used, the final magnetization

will be aligned with the low Bm field, which is easy to make uniform. Further,
phase coherence is typically improved due to lack of transients. A spin-flip pulse is
then required to start precession. In an adiabatic ramp, dB/dt is lower and thus
there is less danger of heating metallic implants or affecting therapeutic electronic
devices the subject may be carrying. This is a special consideration when imaging
near metal. In an ULF MRI system, Bp is typically 10–200 mT and it is removed
within 10–100 ms (depending on the approach). Thus, the field change dB/dt may
range from 0.1 to 20 T/s. Even with relatively high pre-polarization, the dB/dt in a
ULF MRI system is typically lower than that produced by the switching gradients
in HF MRI systems. However, the adiabatic ramp-down takes longer, and signal is
lost due to T1 relaxation during that time.

The self-shielded design of Nieminen and colleagues (2011) is an especially
appealing approach because it largely eliminates the origin of the transients. The
pre-polarization field is reduced only by 10 %, but the fields at the walls of the
MSR are reduced by as much as 90 %. This approach is likely critical to achieving
successful field pulsing inside an MSR.

Before we leave our discussion of Bp, we note that a pulsed Bp field gives one
unique opportunity to access new information. For example, T1 dispersion (i.e.,
how T1 changes with field) can be measured easily compared to HF MRI where the
polarization field is fixed. The value of this possibility has already been shown in
more traditional field-cycling MRI applications (Ungersma et al. 2006), but ULF
MRI provides access to a unique new range of frequencies (Hartwig et al. 2011).
Nieminen and colleagues () have also shown that the Bp field could be temporally
varied to provide maximum image contrast between two tissues. This is a unique
feature of ULF that might hold some promise for future imaging applications.

The generation of the other magnetic fields required for imaging (Bm and
gradients) is relatively simple given their low field strengths. Typically, simple
wire-wound coils can be utilized. An example of a common coil topology is shown
in Fig. 2. A tetra-coil arrangement is used for Bm. The Bp coil is not shown.

An interesting and important aspect regarding the measurement and gradient
coils is how we power them. Because the noise level should be as low as possible
(*1 fT/HHz is a typical goal) at the frequencies of interest, the current noise of
the power supplies must also be as low as possible. While this sort of noise is not
an issue at the frequencies of HF MRI, at ULF it can be a problem. Typically this
has been dealt with by the use of batteries and heavily filtered circuits. Unfortu-
nately, these solutions limit the sorts of pulse sequences that can be used. For
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example, in projection imaging one can use different orientations of the gradient
field to traverse k-space without lengthy encoding times. However, projection
imaging requires Bm and all three gradients to be on. Instead, most ULF MRI
applications use a very simple pulse sequence shown in Fig. 3. In this case, only
Bm and a single gradient (the readout gradient Gx) are on during acquisition, ta.
This is the lowest-noise approach, but as one can see we must wait the encode
time, tg, for every step. This time is usually 30–50 ms, and valuable signal is being
lost due to T2 relaxation while we are encoding. Thus, it is likely that one critical
advance to ULF MRI instrumentation will be developing low-noise electronics
that enable flexible pulse sequences. For example, the Bm field could also be
oriented in any direction on the fly (enabling a totally new kind of projection
imaging that would provide maximum sensitivity in a helmet-like configuration
of sensors) but this approach also requires three Bm field coil sets to be on
simultaneously.

2.4 Contrast-to-Noise (CNR)

The spin–lattice relaxation time, T1, can be a sensitive probe of the chemical
environment. Only magnetic field fluctuations arising from the local chemical
environment at the Larmor frequency can cause T1 relaxation of the affected spins.
Thus, T1 depends on both the field strength and the chemical environment (via
molecular dynamics). In the ULF regime, where Larmor frequencies are on the
order of Hz–kHz, one is probing processes on a timescale of seconds to milli-
seconds. This is an interesting timescale for processes such as intramolecular
motion, diffusion, chemical reactions and chemical exchange, protein folding, and

Fig. 2 Schematic of the ULF
MRI system for MEG and
MRI at Los Alamos. For
simplicity, the Bp coil and
MEG cryostat are not shown
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even neuronal activity. This domain is different from what can be accessed with
high-field MRI where the Larmor frequencies are *100 MHz, and one is probing
processes at the microsecond-to-nanosecond time scales, which are primarily
dominated by intramolecular motion. The potential of new contrast information is
another driver for the ULF regime. For example, the PTB group observed unex-
pected relaxation behavior in water at frequencies\100 Hz (Hartwig et al. 2011),
and the UC Berkeley group has shown that for some tissues there might be contrast
that is only available at ULF (Lee et al. 2005).

But it is not just contrast that one has to consider in image quality. One has to
ensure that there is adequate SNR in the image such that the contrast information is
meaningful. We refer the reader to the work of Myers and colleagues (2006) for an
excellent discussion of how one might predict the SNR obtained with a ULF MRI
system. Here we will assume that we do have a notion of what the SNR is between
ULF and HF MRI. We assume we are only using thermally limited polarization, so
it is given that the SNR for ULF MRI will be lower. The issue at hand is whether
the benefit in contrast at ULF outweighs the lower SNR.

To do this, we introduce the notion of contrast-to-noise ratio (CNR). Assuming
we have two types of tissue in an image (A and B), we can write the CNR between
them as

CNR / SA � SBð Þ
r

tseq

� �1
2; ð22Þ

Fig. 3 An example pulse sequence for ULF MRI
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where tseq is a time factor that depends on the imaging sequence (Hendrick 1987)
and the signal for tissue A is

SA ¼ S � e�t�RA ð23Þ

and RA : 1/T1A. The signal from tissue B is defined similarly. The CNR tells us
how SNR (S/r) and relaxation are related. Note that for simplicity here we are
neglecting T2 relaxation for the moment.

Equation (22) also tells us that for any two such tissues there will be some
optimal time of maximum contrast (again neglecting T2 relaxation).

tc ¼
ln RA � ln RB

RA � RB

: ð24Þ

Now we can imagine a simple example, shown in Table 1, where we make the
assumption that for all tissue SNR � tseq = 1. We can see that the CNR at 0.23 T is
the highest, in agreement with the data of Fischer et al. (1990). However, we made a
clearly erroneous assumption. The SNR will not be the same at 3 T, 0.23 T, and
46 lT using Bp = 30 mT. For example, the SNR at 3 T will likely be much higher
than that at 0.23 T. Naively, one might expect this difference to be over hundredfold
if SNR really scales as x2

0. However, in 10–128 MHz, the main noise contribution
is from the human body (noise spectral density Sn = *4–5 9 10-17 T Hz-1/2; see
Myers et al. 2006), not from the pick-up coil. Nevertheless, one could expect the
SNR to be at least 10 times higher at 3 T due to the higher polarization field
strength, and thus the CNR at 3 T will remain better unless dramatic improvements
in the SNR at ULF are made.

However, there are exceptions to the above example. An agarose gel phantom,
designed to mimic the relaxation of biological tissue, yielded RA = 2.5 and
RB = 5 for 0.25 and 5 % agarose gels, respectively, at ULF ðf ¼ 1000 HzÞ; at f ¼
*12 MHz, the difference between RA and RB vanished (Lee et al. 2005). In such
cases, the CNR is always better at ULF, as long as the SNR is high enough to
produce a useful image.

Table 1 Comparison of CNR (see text for assumptions) at various fields

B0 = 3.0 T B0 = 0.23 T Bm = 46 lT
f ¼ 128 MHz f ¼ 9:8 MHz f ¼ 2:0 kHz
(Wright et al. 2008) (Fischer et al. 1990) (Zotev et al. 2009)

Grey matter T1 (s) 1.61 0.667 0.103
White matter T1 (s) 0.84 0.333 0.075
tc (s) 1.14 0.462 0.088
CNRmax 0.23 0.25 0.12
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3 History of Ultra-Low-Field MRI

Since the discovery of magnetic resonance (MR), in the form of NMR, there has
been interest in performing it at ultra-low fields (i.e., the microtesla regime). For
example, in their early work, Packard and Varian (1954) demonstrated NMR in the
Earth’s magnetic field. One can imagine that this was initially driven by the fact
that in these early days the generation of strong magnetic fields was a challenge.
However, there have always remained scientific drivers for ultra-low-field (ULF)
MR, perhaps the most interesting one arising from the magnetic field dependence
of T1 contrast. At low magnetic fields, and hence low Larmor frequencies, there
are typically many more mechanisms which can produce T1 relaxation than at high
magnetic fields, which makes ULF-MR a rich area for scientific exploration. For
example, a recent measurement of T1 relaxation at very low Larmor frequencies
(\100 Hz) gave new and unexpected insight into chemical exchange processes
(Hartwig et al. 2011).

While interest in NMR processes and relaxation contrast at ULF has always
persisted from a scientific standpoint, the overwhelming trend for almost all
practical applications of NMR and MRI has been towards ever higher magnetic
fields because the signal (and chemical shift effects) scales with the applied
magnetic field. However, several key developments led to a re-kindling of interest
in the ULF regime, even as this trend to higher and higher fields persists.

One such key development was the Macovski effort in pulsed-field MRI with
lower-frequency readout (Macovski and Conolly 1993). The motivation was to
simplify magnetic field production (and thus reduce cost) while retaining the signal
benefits of a higher magnetic field through pulsed pre-polarization. A key obser-
vation was that the requirements for magnetic field uniformity scaled with the
strength of the absolute magnetic field, and thus by using a lower readout magnetic
field, simpler magnets could be utilized. However, the performance of the highly
tuned inductive Faraday coils deteriorates when the frequency is lowered. To this
end, Seton brought to bear a SQUID sensor for magnetic field detection in a
*400-kHz MRI demonstration (Seton et al. 1995, 1997). While they did not use
pulsed-field methods, they did show that the ultra-sensitive SQUID could be used
in an MRI environment, and mitigated the poor performance of inductive receivers
at lower Larmor frequencies. Then, in the early years of the 2000s, John Clarke’s
group at UC Berkeley really pulled these advances together and showed that
SQUID-detected ULF NMR and MRI was possible using pulsed pre-polarization
methods. The work showed the promise of very narrow NMR linewidths, the
ability to image through metal, and interesting applications for unique contrast
(see, e.g., Clarke et al. 2007). Perhaps one of the most compelling arguments for
ULF MRI, however, was the sudden compatibility of anatomical imaging with
magnetoencephalography (MEG). Because the sensor for both ULF MRI and
MEG was the same, the SQUID, these two complementary but incompatible
methods seemed possible to integrate.
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The work at UC Berkeley was followed by several proof-of-concept demon-
strations at LANL that MEG and ULF MRI could be combined (Zotev et al.
2008b; Magnelind et al. 2011). The effort was quickly picked up by a European
project, which has made much progress in combining a full-scale whole-head
MEG system with ULF MRI (Vesanen et al. 2013). At the time of this writing,
many groups in Asia are also pursuing ULF NMR/MRI, including ULF MRI for
small animals which could be combined with MEG (Hatta et al. 2011). In the next
section, we will discuss the present state-of-the art in ULF MRI.

4 ULF-MRI Systems

4.1 UC Berkeley

Much of the pioneering work in ULF MRI has been done by the team of John
Clarke at UC Berkeley. Although their system is not in a mu-metal MSR, which
precludes combination with MEG, the Clarke group was keenly aware of the
potential of this application, as demonstrated in their early patent on the work
(Clarke et al. 2005). The UC Berkeley system, which operates inside an aluminum
shield, has been described extensively by Myers (2006b) and more recently by
Busch and others (2011).

The UC Berkeley system is the first one housed inside an aluminum shield to
reduce the influence of external magnetic fields down to the kHz range. The walls
were originally 6 mm thick but have been redesigned with 2-mm aluminum to
reduce the influence of eddy currents after Bp pulsing (Busch et al. 2011). The
system compensates the Earth’s magnetic field (*50 lT) in the two directions
orthogonal to Bm (*100 lT). A powerful water-cooled polarization coil can
achieve 150 mT. The UC Berkeley system uses an adiabatic ramp-down scheme in
which the Bp field is removed such that the spins are left aligned with Bm. As
discussed previously, this method reduces the need for homogeneous Bp and
improves phase coherence. The system relies on a single 2nd-order axial gradi-
ometer housed in a low-noise cryostat for signal detection. Busch (2011) has an
excellent description as well as the schematic of the UCB MRI system shown in
Fig. 4. In recent times, the work with this system has focused on utilizing the
unique contrast between benign and cancerous tissue to determine the percentage
of cancer in prostate tissue by changes in T1 (Busch et al. 2012).

4.2 PTB

The group at Physikalisch-Technische Bundesanstalt (PTB) in Berlin, Germany,
has developed instrumentation for ultra-low-field MRI as well as investigated
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NMR physics at extremely low fields. PTB hosts a very-high-performance mag-
netically shielded room, which facilitates such studies by providing a shielding
factor in excess of 108 at frequencies above 6 Hz and a white-noise contribution
from the shield less than 1.5 fT Hz-1/2 (Bork et al. 2001).

PTB has modified a single-channel biomagnetometer and a 304-channel MEG/
MCG system, both based on SQUIDs, for ULF-MRI. The white noise levels are
4.5 and 2.3 fT Hz-1/2 for the single- and multichannel systems, respectively
(Burghoff et al. 2007). In both systems, the compensated polarization coil system
produces a maximum field of 1 mT in the sample. The measurement field is
generated by a Helmholtz coil pair and it can be varied from 12 nT to 8.5 lT. A
more recent single-channel system reaches a white-noise level of 1.9 fT Hz-1/2 at
1 kHz and generates a Bp in excess of 50 mT at the center of the sample (Hilschenz
et al. 2013); see Fig. 5. The PTB systems reach spectral line widths well below
1 Hz.

Fig. 4 Top The UC Berkeley ULF MRI system. Bottom Contrast d versus percentage cancer for
excised prostate tissue
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The PTB group has exploited their exquisite measurement set-ups to study
relaxation and its dispersion at ultra-low fields (Hartwig et al. 2011), pure
J-coupling (Bernarding et al. 2006; Trahms and Burghoff 2010), and possibilities
of detecting neuronal currents with ULF MRI (Burghoff et al. 2010; Höfner et al.
2011; Hilschenz et al. 2013).

Fig. 5 Top The single-channel ULF-MRI system at PTB (Hilschenz et al. 2013). Bottom
Measured T1 (x) and T2 (+) relaxation dispersion of pure water (pH = 7.5). Dashed and solid
lines indicate fits of T1 and T2 data, respectively, to a conventional model. Reprinted from
Hartwig et al. (2011)
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4.3 LANL

The group at Los Alamos National Laboratory (LANL) was primarily pursuing
novel applications and systems for MEG (Kraus et al. 2002) when the first dem-
onstrations of ULF MRI with SQUIDs were made at UC Berkeley. The potential
for combined MEG and ULF MRI was immediately obvious. However, at LANL,
the first demonstration of MR at ULF was J-coupling spectroscopy to determine
enrichment fraction in UF6 (Volegov et al. 2006). Upon the successful demon-
stration of the ULF NMR signal, the team began to pursue MEG and MRI with
early proof-of-concept demonstrations (Volegov et al. 2004). These ultimately led
to a single system capable of MEG and MRI (Zotev et al. 2008b), and MEG co-
registered to the ULF MRI (Magnelind et al. 2011).

The LANL system, which demonstrated these results, has been described
extensively elsewhere (Zotev et al. 2007). A schematic of the coil set and
examples of data are shown in Fig. 6. Coming from an MEG motivation, the
system operates inside a two-layer mu-metal and aluminum MSR suitable for
MEG. The LANL system uses a 7-channel 2nd-order gradiometer array enabling
parallel imaging (Zotev et al. 2008a), LN-cooled pre-polarization coils capable of
achieving 50–100 mT, and a cryo-switch approach for the management of SQUIDs
during the pre-polarization (Matlachov et al. 2005). Most LANL ULF-MRI
applications use Bm fields from 50 to 100 lT. At the time of this writing, a second
system (Matlashov et al. 2012) is under development to accommodate a Neuro-
mag-122 MEG system (Ahonen et al. 1993) and enable the use of an array of
magnetometers separately optimized for MEG and MRI (Burmistrov et al. 2013).
The coils for this system are shown schematically in Fig. 2.

Fig. 6 Left Schematic of the LANL ULF-MRI system. Middle First ULF-MRI images of the
human brain at 46 lT (upper two) versus 1.5 T (lower two). Right Co-registration of auditory
MEG (red dot) to ULF MRI acquired in a single interleaved session at 94 lT (right column)
versus 3 T (left column)
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4.4 Aalto

Figure 7 shows the MEG-MRI prototype developed at Aalto University (Vesanen
et al. 2013). This system was built using several components of the Elekta whole-
head MEG device such as the dewar, framework for the 102 triple-sensor units,
and the data acquisition system. Major novelties, in addition to the helmet struc-
ture and large number of channels, included a superconducting pre-polarization
coil (Fig. 7c), compensation of the lowest multipole moments of the magnetic field
from the pre-polarization coil, and novel sensor-unit structures where the SQUID
is shielded with superconducting plates (Luomahaara et al. 2011) against the
strong magnetic fields used for MRI. The pre-polarization field was limited to
22 mT because higher fields resulted in field trapping in the superconducting coil
with adverse effects on measurement field homogeneity. Figure 8 shows the
images (voxel size 4 9 4 9 6 mm3) obtained with a 3D spin-echo sequence from
a human head measured at 50 lT; the measurement time was 92 min.

Fig. 7 The Aalto MEG-MRI system. a The dewar surrounded by MRI coils in a magnetically
shielded room. b MRI coil arrangement. The large circular coil is for the compensation of the
dipole moment of the superconducting pre-polarization coil (small circular coil). c Insert
containing the SQUID sensors and the superconducting pre-polarization coil
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4.5 Other Groups

Researchers at the Korean Research Institute of Standards and Science (KRISS)
have developed an ULF-MRI system which utilizes a double relaxation oscillation
(DROS) SQUID instead of a conventional dc-SQUID (Seok Kang et al. 2011).
This system can use measurement fields as low as a few lT. The group has also
demonstrated the use of Dynamic Nuclear Polarization (DNP) technique (Lee et al.
2010), which exploits the Overhauser double-resonance effect to increase the
effective polarization (Overhauser 1953).

A research team at National Taiwan University and National Taiwan Normal
University has successfully explored the use of high-Tc SQUIDs in a compact
ULF-MRI set-up (Yang et al. 2006; Chen et al. 2011). Their system is optimized
for small objects (sample volume 64 cm3), and it comprises a shield to enable
measurements outside of a conventional magnetically shielded room. The system
reaches spectral resolution better than 1 Hz.

Liu and colleagues (2012, 2013) have demonstrated MRI using a high-Tc

rf-SQUID with a tuned input circuit. At Bm = 213 lT ðf ¼ 9 kHzÞ, tuning
improved sensitivity from 40 to 50 fT Hz-1/2 to 6–7 fT Hz-1/2. In this system,
polarization is achieved using permanent magnets that produce about 1 T in the
sample.

Seton and colleagues (2007) have employed tuned low-Tc SQUIDs for signal
detection but at a considerably higher measurement field B0 = 20 mT, without a
separate pre-polarization field. According to their analysis, at the Larmor

Fig. 8 Left First brain images obtained with the Aalto MEG-MRI system. Right Corresponding
set of T2 images obtained with a 3-tesla magnet. Middle The 3-tesla images down-sampled to the
same resolution as on the left, confirming some of the details in the ULF-MRI images
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frequency (840 kHz) of their system, a tuned SQUID circuit outperforms both a
room-temperature tuned receiver and an unturned SQUID. The group at CEA,
France, utilizes ‘‘mixed sensors’’, which combine a superconducting input loop
and a giant magnetoresistive element (Pannetier et al. 2004), to perform low-field
MRI at B0 = *10 mT (Sergeeva-Chollet et al. 2011).

5 Potential Applications of ULF MRI

Despite rapid progress during the past few years, ultra-low-field MRI is still in its
infancy. Although it might be too early to define specific applications other than its
combination with MEG, ULF MRI clearly holds promise in many scientific and
clinical areas. We outline a few of these in the following.

5.1 Medical Imaging

As discussed in Sect. 2.4, MRI at ultra-low fields shows improved T1 contrast
compared to high fields, which may translate into a unique capability of ULF MRI
to help delineate certain tissue types better than high-field MRI. It has already been
shown that, for example, biopsies of prostate cancer tissue exhibit a significantly
shorter T1 time at Bm = 132 lT than healthy tissue (Clarke et al. 2007) and
cancerous versus normal rat liver shows similarly high contrast at Bm = 100 lT
(Liao et al. 2010). The complex behavior of the proton relaxation dispersion of
water when approaching zero field (Hartwig et al. 2011) may be the physical
background of the enchancement of T1 contrast between healthy tissue and tumors
at low fields.

The grey–white matter border has a relatively high T1 contrast. This border is
blurred at focal cortical dysplasias (FCDs), malformations generated during cor-
tical development. FCDs are highly epileptogenic and frequently cause intractable
epilepsy. Unfortunately, a considerable fraction of FCDs can not be discerned in
high-field MRI and are only detected in tissue microscopy after removal of the
cortical region. Thanks to its higher T1 contrast, ULF MRI may be able to visualize
FCDs better than high-field MRI.

High-field MRI cannot be applied to patients with pacemakers, stimulators or
metal in the body. However, there are no similarly strict restrictions with ULF
MRI, which is inherently much safer.
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5.2 Temperature Mapping

Vesanen et al. (2012) utilized the dependence of T1 relaxation time of agarose gel
to demonstrate the ability of ULF MRI to measure temperature. Although this
method can prove useful in special cases, one must bear in mind that in human
tissue, T1 is influenced much more by the detailed structure of the tissue than by
temperature. Therefore, this method can be used only for indicative purposes and
to monitor possible changes of temperature when other factors affecting T1 can be
assumed fixed.

5.3 Conductivity Imaging

If electric current is applied to a conducting object using two electrodes, the
current will distribute itself between different paths in proportion to the conduc-
tivities of the paths. It was shown by Nieminen et al. (2014) and Vesanen et al.
(2014) that the direction and amplitude of the current distribution can be measured
with low-field MRI, provided, of course, that the SNR is sufficient. This is not
possible with a high-field MRI device without the need to turn the head between
two measurements. So far, only simulation studies have been done. These indicate
excellent reconstruction accuracy but also the fact that the SNR of MRI mea-
surements must be significantly improved before electrical impedance tomography
can be done in humans with safe current strengths (on the order of 2 mA as those
in transcranial direct current stimulation or tDCS).

6 Future Directions

6.1 Improvements in Instrumentation

The present state of the art is not yet sufficient for scientific and clinical appli-
cations of combined MEG and ULF MRI. However, we can predict that ULF MRI
can be improved to a level that will provide acceptable image quality and allow
accurate registration of MEG and MRI coordinate systems. A great improvement
in SNR can be obtained by increasing the pre-polarization field strength and by
reducing SQUID and dewar noise further; Bp [ 100 mT and sensor noise level of
0.5 fT/Hz-1/2 seem possible even in a large array. The improvement in SNR may
enable us to measure the conductivity structure of the head as well (see Sect. 5.3).
However, problems arising from the highly sensitive SQUIDs in strong pulsed
magnet fields will become more severe. Thus, the task of building a practical
MEG-MRI system is far from trivial. Elaborate methods will be needed to handle
problems caused by eddy currents in the system and in nearby structures as well as
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the magnetization of materials. Optimized sequences and signal processing will be
needed to maximally utilize the recorded data. Next, we will give a glimpse of one
approach in developing signal processing.

6.2 Advances in Signal Processing

Conceivably, ULF MRI with up to hundreds of sensors for whole-brain imaging
will be developed in the next few years. In high-field MRI, such highly parallel
signal detection has been used to improve the spatiotemporal resolution at the cost
of SNR (Pruessmann et al. 1999; Sodickson and Manning 1997). The feasibility of
3-fold acceleration has been reported in an ULF-MRI study with a seven-channel
SQUID system (Zotev et al. 2008a). Although currently the SNR of ULF MRI is
too low to be compromized, we expect that with future SNR improvements offered
by higher pre-polarization field and more sensitive SQUID detectors, it might be
possible to trade off SNR for a shorter acquisition time. The SNR loss in parallel
MRI (pMRI) is the consequence of the loss of data samples and the noise
amplification in image reconstruction (Pruessmann et al. 1999). While the former
loss is inevitable in acceleration, the latter loss can be compensated for by regu-
larized reconstruction methods (Lin et al. 2004, 2005) and by increasing the
number of parallel detectors.

The SNR penalty of accelerated ULF MRI was recently investigated by sim-
ulating a helmet-shaped sensor array with up to 306 SQUID sensors (204 gradi-
ometers and 102 magnetometers; VectorViewTM, Elekta Oy, Helsinki, Finland)
(Lin et al. 2012). The g-factor, the SNR ratio between images reconstructed
from unaccelerated and accelerated data after normalizing the data samples
(Pruessmann et al. 1999), was used to quantify the relative SNR efficiency of
accelerated ULF MRI at different acceleration rates and array geometries. Typi-
cally, g [ 1. Four array geometries based on the whole-head Elekta system were
studied: 102 magnetometers (planar circular loops, ‘‘array102’’), 102 gradiometers
(planar figure-of-eight loops, ‘‘array102x’’ and ‘‘array102y’’), and the combination
of all three sets (‘‘array306’’).

It was found that all geometries have high SNR for voxels close to the scalp.
The gradiometer arrays (array102x and array102y) show very fast decay of the
SNR with distance from the scalp. This is because the gradiometers take the spatial
difference between two neighboring measurements and thus they are exquisitely
sensitive to the cortical signal (Hämäläinen et al. 1993). The results from arrays
using magnetometers only (array102) and magnetometers plus gradiometers
(array306) were visually indistinguishable (Fig. 9).

Arrays with gradiometer pick-up coils (array102x and array102y) show a
similar g-factor distribution to the array with magnetometer pick-up coils
(array102). A combination of both gradiometer and magnetometer pick-up coils
(array306) only slightly improves the g-factor at locations close to the sensors. In
all geometries, image locations away from pick-up coils show a larger g-factor in
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general (Fig. 10). These numbers suggest that, in a 3D ULF-MRI acquisition with
two phase-encoding directions, the highest acceptable acceleration rate R, which is
defined as the ratio between the planned accelerated acquisition data sample and
the non-accelerated acquisition data sample, may be from 9- to 16-fold (based on
an arbitrary threshold of average g = 1.4). Consider a 3D ULF-MRI acquisition
with 64 9 64 9 64 voxels. It needs 4,096 independent read-outs with 64 9 64
phase encoding steps. With repetition time TR = 1 s, this amounts to more than an
hour of acquisition time. Using an array of 102 sensors and 9-fold acceleration and
assuming that the SNR loss due to reduced samples is tolerable, the data acqui-
sition can be completed in approximately 7 min. However, as suggested by these
results, spatially varying noise amplifications (i.e., g-factor) could be significant at
9- and 16-fold acceleration, resulting in inhomogeneous image quality
deterioration.

In addition to or instead of aiming at achieving a higher resolution or shorter
measurement time, parallel MRI can be applied to ULF MRI to improve the SNR
by exploiting the redundancy among the receiver channels via enforcing k-space
data consistency among them and by adding a priori image sparsity constraint to
further suppress noise (Lin et al. 2013). Figure 11 shows experimental images of
the right hand of a subject. Notably, there was a clear vertical strip artifact in the
sum-of-squares (SoS) image, potentially due to elevated SQUID noise at 3 kHz.
Using the data consistency constraint alone reduced the vertical strip artifact and
the background noise significantly. Applying the data consistency constraint also
increased the peak SNR (pSNR) from 7.7 to 14.0. Further, the use of the sparsity
prior further improved the peak SNR (pSNR) to 57.6 because of the strong sup-
pression of background noise.

Six coronal slices of brain images from our ULF-MRI system (Vesanen et al.
2013) with 22-mT pre-polarization, 130-lT/m maximum gradient, and 90-min
imaging time (eight averages) are shown in Fig. 12. We found that the signal from

Fig. 9 The spatial
distribution of SNR in mid-
sagittal, mid-coronal, and one
axial slice with array102,
array102x, array102y, and
array306 geometries
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gray and white matter increased as the data consistency constraint was applied
(k = 0); the average pSNR across six images increased from 11 to 26. Further-
more, when the sparsity constraint was added (k = 0.1), the average pSNR dra-
matically increased to 296 due to strong suppression of the background noise.
However, applying the sparsity constraint also decreased the image intensity at the
FOV center.

These results demonstrate that the use of the data consistency constraint in
multi-sensor ULF MRI can increase the peak SNR of the reconstructed images.

Fig. 11 Left A sum-of-squares image of a hand. Middle The data consistency (DC) constraint
alone significantly reduces the vertical strip artifact. Right The sparsity prior improves the
reconstruction only marginally. The peak SNR is indicated below each image

Fig. 10 The spatial distribution of 1/g-factor in mid-sagittal, mid-coronal, and in one axial slice
with array102, array102x, array102y, and array306 geometries at acceleration rates R = 2 9 2,
3 9 3, 4 9 4, 6 9 6, 8 9 8, and 10 9 10 in 2D over the FOV of 256 9 256 9 256 mm3
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Note that this method is different from the signal-space projection (SSP) (Uusitalo
and Ilmoniemi 1997) and signal-space separation (SSS) (Taulu et al. 2004)
methods in MEG, both of which are spatial filtering methods to separate mea-
surements into signal and noise components and to remove the latter. The data
consistency constraint, however, is based on the k-space formulation, which is a
unique property in MRI (MEG does not have similar spatial encoding). However,
it can be expected that if this method is integrated with SSP and SSS, noise can be
suppressed even more, resulting in further improvements in image quality.

7 Conclusions

By performing MRI measurements with the large arrays of SQUID sensors
available in MEG helmets, one can realize combined MEG and MRI, which offers
unprecedented possibilities to obtain new kinds of information about the human
brain. MEG-MRI systems will be quiet, open, and safe. They will enable highly
accurate registration of MEG and MRI coordinate systems and, if imaging of
injected current density proves practical, the determination of the three-dimen-
sional conductivity distribution. This, in turn, would enable us to solve the inverse
problem of MEG (and EEG) using reliable knowledge of both measurement and

Fig. 12 Brain images reconstructed by the regularized SENSE method with no acceleration (left
columns). The data consistency constraint (k = 0) improves the image by showing a strong signal
in the brain parenchyma (middle columns). Further, the sparsity prior (k = 0.1) suppresses the
background noise significantly to better delineate the skull and the brain (right columns). The
pSNR is indicated below each image
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conductivity geometry. However, we are still far from constructing practical
devices. It will be necessary to improve the SNR considerably to attain MR image
quality that is sufficient for clinical and scientific applications.
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Neuronal Current Imaging
with Ultra-Low-Field NMR Techniques

Rainer Körber, Martin Burghoff and Lutz Trahms

Abstract Neuronal current imaging (NCI) aims at detecting the influence of
neuronal magnetic fields on an NMR signal which might be easier at ultra-low
fields (*lT) than at high fields (*T). In the so-called ‘DC effect’, long-lived
neuronal activity shifts the Larmor frequency of the surrounding protons and
changes the NMR line-shape. An alternative strategy is to use fast neuronal
activity as a tipping pulse. This so-called ‘AC effect’ requires the proton Larmor
frequency to match the frequency of the neuronal activity. Phantom studies vali-
dating both principal working mechanisms are described assessing the feasibility
of NCI at ultra-low fields. MRI on phantoms taken at Larmor frequencies of 100
and 731 Hz are also shown and discussed in an attempt to combine the AC effect
and ULF MRI. These frequencies are examples of brain activity triggered by
electrostimulation of the median nerve.

Keywords ULF NMR � ULF MRI � Neuronal currents � AC effect � DC effect �
Median nerve � Phantom

1 Introduction

A non-invasive technique for direct and tomographic imaging of neuronal current
flow within the brain with adequate temporal and spatial resolution is not available
at present. The functional variant of magnetic resonance imaging (fMRI) is an
indirect method for imaging neuronal activity as it relies on the cerebral metab-
olism via the blood-oxygen-level dependent (BOLD) effect and has a temporal
delay of the order of seconds (Goense and Logothetis 2008). Electro- and
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magnetoencephalography (EEG and MEG) directly monitor neuronal currents via
their accompanying electric and magnetic fields and track neuronal activity down
to the millisecond range (Häamäläinen et al. 1993). However, these techniques do
not give tomographical images of current distributions but rather infer the current
distribution from electric and magnetic field maps, and thus one has to solve the
inverse problem to estimate the dynamics and the locations of the brain currents
which can result in spatial uncertainties of up to the cm range.

Another approach which seeks to achieve high temporal and spatial resolution is
neuronal current imaging (NCI) where magnetic field changes of neuronal currents
are mapped directly onto an MR image. This approach relies on the interaction of
the precessing magnetization with the field generated by an active neuronal
ensemble. For conventional high-field MRI this concept has yielded controversial
results due to the obvious enormous difference of about nine orders of magnitude
between the applied imaging field in the tesla range and the field generated by the
neuronal generators (Hagberg et al. 2006) (hundreds of pT (Burghoff et al. 2010)).
Consequently, reducing the imaging field to the ultra-low-field (ULF) regime of lT
should alleviate the direct detection of neuronal activity.

The possibility of ULF NMR/MRI has been demonstrated by various groups
with imaging systems operating at Larmor frequencies of 2 kHz (Zotev et al.
2007), 5.6 kHz (Clarke et al. 2007), and 425 kHz (Seton et al. 1997). Human brain
anatomy was imaged at a frequency of about 2 kHz (Zotev et al. 2008). Here, we
describe the instrumentation and ULF-MR studies on phantoms which were per-
formed in order to validate the AC and DC effect and to demonstrate the capability
of imaging at Larmor frequencies as low as 100 Hz (Hilschenz et al. 2013). The
combination of ULF MRI and MEG (Magnelind et al. 2011; Vesanen et al. 2013)
is described elsewhere in this book.

2 Demonstration of the AC and DC Effects

Two different mechanisms were proposed to record the influence of evoked brain
currents by means of ULF NMR (Höfner et al. 2011; Cassará et al. 2009; Kraus
et al. 2007). For the so-called DC effect, long-lasting neuronal fields shift the
Larmor frequency of the protons around a neuronal activity and change the NMR
line-shape, whereas for the AC effect, an NMR signal itself is generated by using
the AC neuronal field as a tipping pulse. The fact that neuronal activities show
spectral components mainly in the frequency range from DC up to 1 kHz implies
that the AC effect can only be exploited if the imaging field is reduced to below
20 lT (Larmor frequency of 1 kHz). Note, contrary to the high-field-based NCI
modality, for the AC effect an actual change in the spin population of the system
forms the basis for the direct detection of the neuronal activity.

A suitable paradigm to exploit these two mechanisms is repetitive electrosti-
mulation of the median nerve above motor threshold. It evokes contralaterally both
fast activity, such as the N20 response (20 ms after stimulation) and slow activity
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(lasting up to seconds after stimulation), a so-called near -DC response. Equivalent
current dipoles (ECDs) are in the range of 15 nAm for the N20 and about 50 nAm
for near-DC activity with depths relative to the head surface of *15 and
*35 mm, respectively (Körber et al. 2011).

Phantom studies were performed in order to demonstrate the mechanism of the
two effects (Höfner et al. 2011). To this end, a 10-mm-long current dipole was
placed 4 mm away from the inner top surface inside a sphere of 78 mm diameter. It
was filled with saline solution (0.9 % NaCl, spin-spin relaxation time T2 = 2 s) for
investigating the AC effect. For experiments regarding the DC effect an aqueous
solution of CuSO4, NaCl and hydroxyehtylcellulose (HEC) with concentrations of
0.034, 0.166 and 2.0 wt%, respectively, with a T2 of 190 ms, was used. The
phantom was placed directly underneath a dewar containing a 3-channel SQUID
magnetometer system. It consists of three fully integrated helium-cooled multi-loop
DC SQUIDs (Drung 2003) with an intrinsic white noise of about 4 fT/Hz with a
1/f corner frequency below 2 Hz. The sensors record the magnetic field in the
z-direction and have a sensitive area of 3.6 mm in diameter.

In ULF MR two separate magnetic fields are used: a large polarizing field ~BP

(up to tens of mT) to boost the sample magnetization and a much smaller detection
field ~BD (*lT) in which the magnetization precesses. For the DC effect, ~BD was
perpendicular to the current dipole and ~BP was turned off non-adiabatically. For
the AC effect,~BD was parallel to the current dipole and~BP turned off adiabatically.
~BD was set to 1.93 lT corresponding to a Larmor frequency of 82 Hz which
matches the main frequency band of the evoked N20. A~BP of 5 mT was applied in
both cases.

In Fig. 1 the results of the DC and AC effect are shown. For the DC effect the
amplitude spectra of of the difference of the time domain signals (phantom on–
phantom off) are shown. The subtraction is necessary to reveal the minute effect on
the NMR line-shape. The amplitude of the residual signal scales with the applied
current dipole moment Q and we can infer a resolution limit of *200 nAm.

For the AC effect, applying two physiological N20 signals consecutively with
Q = 771 nAm clearly induces an NMR signal at 82 Hz. For a single N20 signal
with the same Q a signal cannot be identified reliably and we conclude, that a
resolution limit is likely to be about 1 lAm for a single N20 signal. Comparing
these resolution limits to the ECDs evoked by electrostimulation of the median
nerve it is evident that an increase of the signal to noise ratio (SNR) of at least 4 is
necessary to observe neuronal currents based on the DC effect. The AC effect
requires an increase in SNR of at least 67 and appears to be more difficult to
exploit.

It should be noted that the quoted resolution limits represent lower bounds. The
physiological ECDs are in fact deeper than current dipole in the phantom and the
NMR relaxation times are significantly longer, in particular for the study regarding
the AC effect, than the physiologically observed values for T2 of 106 ms (gray
matter) and 79 ms (white matter) (Zotev et al. 2009). An increase of the noise by a
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factor of 3 would arise if the excessively long measurement time of about 4.5 h
was reduced to 30 min. The final minimum resolution limits are then 600 nAm
and 3 lAm for the DC and AC effects, respectively.

3 Imaging Below 1 kHz

For the potential use of the AC effect in ULF MRI, initial 2D MRI experiments
were performed inside a custom designed magnetically shielded room (MSR)
whose design is based on the commercially available AK3b from Vacuum-
schmelze. After degaussing the residual field inside the central volume of 1 m3 is
at most 1.5 nT with a gradient below 20 pT/cm. For ULF MRI we used a current
sensor SQUID with additional positive feedback (APF) and integrated input coil
(Drung et al. 2007) connected to a 1st-order wire-wound axial gradiometer
(20 mm diameter and 120 mm baseline) with a noise spectral density of 1.9 fT/Hz.

Cylindrical phantoms with volumes of *5 ml, as shown at the left in Fig. 2,
were imaged at 100 and 733 Hz using a 2D Fourier gradient echo sequence. These
frequency ranges correspond to frequency bands stimulated by electrostimulation
of the median nerve. Different solutions were chosen to obtain various spin-lattice
and spin-spin relaxation times T1 and T2 for the phantoms: (a) tap water with a T2

of *2.0 s (b) aqueous solution of CuSO4 and NaCl with concentrations of
0.034 wt% and 0.166 wt%, respectively with a T2 of 220 ms and (c) sample as in
(b) but with additional 2 wt% hydroxethylcellulose (HEC) resulting in a T2 of
190 ms (All T2-values refer to the field of 17.17 lT). The images of the phantoms
are shown in the middle and on the right hand side of Fig. 2. They clearly display
the structure and arrangement of the phantom with a two dimensional pixel size of
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Fig. 1 Left Results for the DC effect phantom measurements (4,000 averages, total measurement
time: 4 h 27 min). The residual signal scales with Q and a resolution limit of *200 nAm was
obtained. Right Results for the AC effect phantom measurements (1,000 averages, total
measurement time: 4 h 10 min). Two consecutive N20 signals with Q = 771 nAm induced a
reliable resonant signal in contrast to the application of a single N20 trace. The resolution limit
was estimated to be *1 lAm
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1.8 9 1.4 mm2. Hence, by careful design imaging at frequencies as low as 100 Hz
can be performed which is essential for the combination of the AC effect and
ULF MRI.

4 Conclusion

Direct, non-invasive and tomographic imaging of current flow within the brain
with adequate spatial and temporal resolution remains a challenge. The AC and the
DC effect in ULF MR, which rely on fast and slow activity, respectively may
provide a way out of this predicament. In phantom studies both mechanisms were
demonstrated and evaluated. The increase in the SNR necessary to apply these
techniques to in vivo measurements should be achievable with current technology
as for instance by increasing ~BP from 5 to 50 mT as it was done in the MRI
experiments. The direct detection of neuronal currents using ULF-NMR tech-
niques might thereby become possible. In addition, magnetic resonance images
taken at Larmor frequencies below 1 kHz show that imaging is possible even at
such extremely low fields where the AC effect applies.
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Magnetic Relaxometry: A Comparison
to Magnetoencephalography

Edward R. Flynn

Abstract Magnetic relaxometry is a technology utilizing SQUID sensors and
superparamagnetic nanoparticles to target various diseases using antibodies or
other biomolecules specific to disease cells. The nanoparticles are magnetized in a
small field and the SQUID sensors are used to detect the nanoparticle decaying
field. The method has high sensitivity, more than 1000 times a mammogram for
breast cancer, high contrast as only nanoparticles bound to cells are measured, and
high specificity using specific biomarkers conjugated to the nanoparticles. Future
directions of magnetic relaxometry include diagnosis of neural diseases using
biomarkers specific to these diseases coupled to nanoparticles; this will comple-
ment ongoing diagnostic programs using magnetoencephalography.

Keywords SQUID � Magnetic relaxometry � Nanoparticles � Cancer

1 Introduction

The development of superconducting quantum interference detectors (SQUID)
sensor technology (Zimmerman 1966) opened up a number of new research areas
where the measurement of ultra-low magnetic fields provided new illumination
into underlying phenomenon. Some of the earliest of these programs were in the
area of measurement of magnetic fields from the heart (MCG) and brain (MEG) by
(Cohen 1968) followed by the measurement of evoked responses in the brain by
(Brenner 1975). These early efforts have been summarized in the review of
(Hämäläinen et al. 1993) where the details of the SQUID sensors and applications
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are described. These applications are based on the measurements of biomagnetic
magnetic fields emanating from currents involved in living tissue.

Magnetic relaxometry, or as defined here as superparamagnetic relaxometry
(SPMR) is a more recent emerging technology (Flynn 2005; Kötitz 1995; Romanus
et al. 2001) that is similar in many respects to MEG and MCG in its application and in
the procedures used to analyze the data. At Senior Scientific, SPMR has been used to
investigate various disease states, in particular cancer through the use of biomarkers
conjugated to the nanoparticles [NP]. The method has been shown to be very sen-
sitive for detecting cancer; for example, it is more than 1000 times more sensitive
than a mammogram for detecting breast cancer. Because of the unique nature of
superparamagnetic NP, very high contrast can be obtained between bound and
unbound NP, and high specificity to disease using biomarkers. As in MEG, SPMR
typically uses SQUID sensors to measure the low magnitude fields emitted by the NP
during their magnetic relaxation. Similarly, SPMR uses arrays of SQUID sensors to
localize sources of magnetic activity with the analysis normally performed with
inverse-theory algorithms of the same type as in MEG and MCG (see for example,
the inverse theory described by (Huang et al. 1998) for MEG. The resulting data are
also subject to filtering and noise-suppression methods developed for biomagnetism
measurements. As in MEG, the use of phantoms to calibrate and test the sensor
systems and develop the software analysis methods, is directly applicable to SPMR;
both MEG and SPMR taking advantage of the basic principles of electromagnetism.

The principal difference is that SPMR measures the relaxing magnetic fields
from magnetic nanoparticles (NP) that have been briefly magnetized in a magnetic
field and are not biomagnetic in nature. In MEG and MCG, the sources are
described in terms of current dipoles with units corresponding to picoamps,
whereas in SPMR, the sources are described in terms of magnetic moments with
units corresponding to pJ/T (picoJoule/Tesla). However many of the applications
of SPMR are directly related to biological phenomena. In the following discus-
sions, SPMR is applied to the measurement of specificity and sensitivity of various
antibodies to various cell types—in particular cancer cells, to the study of incu-
bation rates for attachment of NP to cells, to localization of tumors in living
animals, and to measurement of percentage of injected material delivered to
tumors and other targeted organs in living animals.

There are two important principals that SPMR methods utilize in their mea-
surements: (1) The high sensitivity of SQUID sensors for detecting extremely
small amounts of magnetite—the principal ingredients of NP used, and (2) the
special properties of superparamagnetic NP that yield high magnetic moments and
high contrast for bound NP. In this regard, the SQUID sensors are exactly the same
as used in MEG and the prototype system described here was originally used for
MEG measurements. The sensitivity required is somewhat less than MEG and this
fact combined with the method of measurement, allows most SPMR measurements
to be made without the need for shielded rooms. As in MEG, it is typical to use
gradiometers for the sensor configuration. An important difference between MEG
and SPMR in the SQUID sensor configuration considerations is that the magnetic
NP must be magnetized and this requires the presence of a pulsed magnetic field.
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This magnetizing field needs be only some tens of gauss due to the intrinsic
saturation properties of the NP and the magnetizing field is only applied for a
fraction of a second. However, this requires that the SQUID sensor system be
turned on and off during the pulsing and that the components of the system do not
respond to this magnetic pulse for any extended duration. The coil configuration
producing this magnetizing field also limits the configuration of the sensors such
that this field is relatively uniform in strength and direction over the sensor array;
thus a whole-head MEG system is not amenable to SPMR measurements whereas
a relatively flat array such as used in MCG works quite well.

2 The SPMR Method

In Fig. 1, the system used for SPMR measurements at Senior Scientific is illus-
trated. The SQUID sensor system, seen here as the dewar at the top with the sensor
snout below, is a replica of an early 7-channel 2nd-order gradiometer system used
in early MEG studies (Supek et al. 1999) and is operated here in an unshielded
environment without any background compensation; this condition along with
artifacts induced by the pulsing, limits the sensitivity to 20pT. As described later,
this system is being improved by several orders-of-magnitude in sensitivity. The
magnetizing field of 50 gauss is applied by the Helmholtz coils seen in this photo
and is in the direction parallel to the central gradiometer and relatively uniform over
the measurement volume of interest. Samples to be measured are placed on a stage
seen just below the sensor snout and can be moved in three dimensions. Samples
may consist of live cell cultures, phantom sources, and live animals (normally
mice). For single source samples, the 7-channel system is adequate for determining
the position and magnetic moment strength of the sample. For multiple sources,
such as with animals or phantoms, the stage is moved in the x-y plane in order to
obtain sufficient field measurements to solve the inverse problem. An important
difference here between MEG and SPMR is that the sources are aligned along the z-
direction (along the axis of the central sensor) so that only the coordinates and the
magnitude of the moments need be calculated and not the directions. This not only
simplifies the inverse-problem calculations but results in a significant increase in
spatial resolution over MEG (Flynn 1994) with localizations better than 0.5 mm
observed. The field from a magnetic dipole is given by

B l; rð Þ ¼ l0=4pð Þ ½ 3 l � rð Þ rÞ=r5�l=r3
� �

and since both l and r lie along the z-axis, this reduces to

Bz ¼ l0=2pð Þ l=z3
� �

where l is the magnetic moment which may be expressed in units of pJ/T. A
typical value of l observed for high quality NP is 1.27 9 10-07 pJ/T/np.
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To measure the moments using the SPMR method, the sample is placed under
the SQUID sensor system and a magnetizing field of approximately 50 gauss is
applied for 0.75 s during which time the sensors are turned off. After a short delay,
0.035 s, to allow any induced currents in the system to dissipate, the decaying
magnetic moment of the sample is measured by the SQUID sensor array. An
example of such a decaying moment is shown in Fig. 2. The initial decay follows
an exponential curve as predicted by Néel (1955). The field decay curve is mea-
sured for several seconds and the field magnitude calculated at the end of the
magnetizing pulse. The field from each sensor position is then used to derive the
source positions and magnitudes.

An important attribute of SPMR is that the decay time constants differ sub-
stantially between NP that are bound to a cell or some other substance and thus not
able to freely rotate, and NP that are unhindered (Adolphi et al. 2009, 2010). This
is shown clearly in Fig. 2 where the curve for NP bound to cells decays in seconds
whereas effectively no signal is seen for the same NP but not bound to cells. Néel
relaxation occurs due to thermal fluctuations of the direction of the magnetic
moment relative to the crystal orientation. The rate for Néel is given by

Fig. 1 Photograph of
magnetic relaxometry system
used at senior scientific for
studying disease using cell
cultures and small animals.
The upper structure is the
dewar containing the SQUID
sensors with gradiometers in
the protruding snout. The
Helmholtz coils are shown
above and below the
measurement stage
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sN ¼ s0eKV=kT

where K is a characteristic of the magnetic material, V is the volume of the NP, k
is the Boltzmann constant and s0 has a value of 10-9 s. In contrast, if the NP are
not bound, they decay by Brownian motion given by the rate

sB ¼ 3gVh=kBT

where g is the viscosity of the medium, Vh is the hydrodynamic volume, kB is
Boltzmann’s constant. The desired decay time for bound NP is several seconds
which according to the Néel formula requires a NP with a diameter of 25 nm.
Unbound NP of this diameter decaying by Brownian motion decay in less than one
msec. This very important feature of SPMR means that very high contrast is
achieved in imaging cancer cells in vivo that are targeted by the NP that have been
conjugated to antibodies specific to the cancer cells as NP circulating in the blood
give no signal in the SQUID sensor time window. There are some similarities in
this property of SPMR and MEG. PET is often used for both cancer detection and
for brain activity through targeting metabolic activity. However, PET isotopes are
decaying whether at the targeted site or anywhere in the blood stream. As stated
above this is not true of SPMR and also not true in MEG where only active
neuronal clusters are producing measurable magnetic fields.

The first important attribute of SPMR is the high sensitivity of the method for
detecting minute amounts of NP, less than ng of Fe required, because of the
SQUID sensor capabilities. The second important attribute are the characteristics
of the superparamagnetic NP that yield high magnetic moments, substantial dif-
ference between bound and unbound NP, and are not ferromagnetic so do not
cluster. The Néel time dependence on volume severely restricts the size of the NP
that can be used in SPMR since a diameter of just a few nm in either direction from
the ideal of 25 nm can be many orders-of-magnitude difference in decay time. For

Fig. 2 Magnetic relaxation
decay curves for NP bound to
cells through antibody
interactions and the same NP
without cells present
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this reason, substantial effort has gone into methods of producing NP with minimal
dispersity in size. Figure 3 is a recent result obtained at The Center for Integrative
Nanotechnology (CINT) (Huber 2012).

3 Applications of SPMR to Nanomedicine

The methodology of SPMR has been applied to a number of diseases in the area of
nanomedicine. T-cells have been labeled with NP conjugated to an antibody for
the specific T-cells responsible for rejecting transplanted organs and used to
measure transplant rejection in a mouse model (Flynn et al. 2007; Butler et al.
2013). A study of leukemia Minimal Residual Disease (MRD) has been carried out
using NP with antibodies (CD-34) specific to a number of leukemia types (Jaetao
et al. 2009). SPMR has also been applied to the study of solid tumors in breast
cancer (Hathaway et al. 2011; Adolphi et al. 2012a, b), ovarian cancer (Flynn et al.
2014), and prostate cancer. The results have also been compared to MRI imaging
in some detail using an animal model (Adolphi et al. 2012b). A further advantage
of the SPMR technique over many other biomedical methods is the transparency of
tissue and bone to low frequency magnetic fields. This implies, just as in the case
of MEG, that source localization is not affected by intervening tissue. For animal
studies this is quite important and is unlike the scattering that occurs in the use of
fluorescent markers resulting in loss of localization of source accuracy with depth.

Fig. 3 Plot of NP diameter
distribution as obtained from
analyzing a transmission
electron microscope photo of
NP placed on a slide

984 E. R. Flynn



3.1 Linearity of Response

Because the strength of the magnetic field is completely linear in relationship to
the source magnetic moment, the SPMR results are directly proportional to the
number of bound NP in the source. Again, a similarity to MEG where the magnetic
field strength observed can be directly related to the number of neurons involved.
This linearity is demonstrated in Fig. 4 for the case of ovarian cancer cells (Flynn
et al. 2014). Here the number of live ovarian cells in an in vitro sample was varied
with the strength of the magnetic moment measured. The inset to this figure shows
that the sensitivity with the present SPMR system shown in (Fig. 1) is 40,000 cells.
The present standard for detecting ovarian cancer is trans-vaginal sonography
(TVS) which requires over one billion cells indicating the excellent sensitivity of
the SPMR method. The linearity shown in this figure is useful for in vivo animal
studies of therapy. By using known amounts of cells and NP, it is possible to
convert magnetic moments to numbers of cells and then monitor the number of
cancer cells in a tumor as a function of applied therapy to see if the therapy is
working or not. This is not possible in MRI where saturation of signal occurs and
the response is not linear.

Fig. 4 Plot of the magnetic moment of cell cultures versus the number of cells illustrating the
moment is linear with the cell number. The insert is the lower cell count indicating the sensitivity
of the SPMR method for these cells
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3.2 Specificity

There are many types of antibodies, proteins and other bio-agents that can be linked
to the NP used in SPMR through conjugation procedures. By using various live cell
lines of cancer or T-cells, it is possible to determine the specificity of these various
agents to different cell lines by measuring the magnetic moment as a function of
time after mixing the conjugated NP with the cells. The resulting incubation curve
can be used for a variety of purposes. From a dynamic perspective, the rate of
binding of the antibody to the cells can be used to understand the chemical processes
involved. The relative magnitudes of the moments observed indicate the specificity
of the particular antibody for the cell line and can be used to determine biomarker
efficacy. The results also can be used as a calibration for in vivo studies to determine
what type of cancer is present. Figure 5 is an example of such a study using several
breast cancer cell lines and the antibody Her2 (Hathaway et al. 2011). The results at
the top of the figure show that the cell line MCF7/Her2-18 is significantly more
specific to the Her2 antibody than the MDA-MB-231 cell line, and even more so

Fig. 5 Specificity of the SPMR method is shown for different cell types in breast cancer
depending on the antibody chosen, Her2. The upper part of the figure shows incubation curves
for three different cell lines and no cells with the magnitude of each curve representing the
specificity of the Her2 antibody for that cell line. The lower part of the figure verifies this finding
by showing that the cells with the highest specificity are covered more completely with the NP as
visualized through Prussian Blue staiing
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than the non-specific cell line CHO. This comparison is verified by the microscopic
examination of the cells in the lower part of the figure where Prussian Blue staining
has stained the NP on the cell surface. The MCF7.Her2-18 cell line shows con-
siderable more NP are on the surface than the other cell lines. Fitting these curves
with a rate equation (Flynn et al. 2014) yields the number of NP/cell which may be
several million NP. The sensitivity for detecting these breast cancer cells in the
present SPMR system is about 100,000 cells. This may be compared to a mam-
mogram that requires 100 million cells. Because of the specific action of the anti-
body on the NP, only cancer cells are targeted and not benign tumors.

3.3 In Vivo Detection and Localization

Living animals containing tumors may be placed under the SPMR system and the
tumors localized and the number of cells determined. In Fig. 6, an example of such
an experiment is shown. The mouse is a xenograft mouse containing two human
breast cancer tumors. For this case, the NP + Her2 have been intra-tumorally
injected although intra-venous injections also may be used. The mouse was placed
under the system and the stage moved to obtain a total of 35 sensor positions. The

Fig. 6 Superposition of SPMR magnetic moment confidence limits on photographs of small
animals showing localization in animals containing xenograft human tumors. A shows the tumors
on the animal and C the superposition
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inverse problem was solved using a Levenberg-Marquadt algorithm similar to that
used in MEG (Huang et al. 1998) and the source locations and magnetic moments
extracted. The resulting confidence limits are then superimposed on a photograph of
the mouse using a grid to establish the correct geometric relationship. The upper left
hand corner of the figure shows the two tumors growing on the mouse; the lower left
corner shows the resulting confidence limits x and y coordinates, and the right photo
shows the superposition of these two measurements.

Through the use of phantoms containing vials of live cells, it has been shown
that spatial resolutions of approximately 0.5 mm for multiple sources can be
obtained (Hathaway et al. 2011). This is better than the resolution normally
obtained in MEG experiments. The principal reason for this is that in the inverse
problem only the coordinates and the magnitude of the source have to be deter-
mined since the sources are all aligned with the magnetizing field. In MEG, two
more factors are needed that determine the orientation of the source.

4 Future SPMR Systems

The SPMR system described here, and shown in Fig. 1, is limited in sensitivity and
resolution capabilities. It has no background sensors and operates in an unshielded
environment and is thus subject to considerable interference. It is currently oper-
ating at a 20 pT sensitivity level whereas the SQUID sensitivity is better than 5 fT/
HHz. System performing MCG measurements in unshielded environments often
exceed 10 fT/HHz noise thresholds so it is possible to improve the present system by
several orders of magnitude by addition of background sensors. Other consider-
ations to improve the performance of the system are removal of all metal compo-
nents and induced currents in the system due to the pulsing of the Helmholtz coils
which can be accomplished by reengineering the SQUID probe. Finally, improve-
ments in the NP themselves offer additional sensitivity increases due to the dis-
persity of the size of the NP. Because of the narrow range of NP diameters that fall in
the SPMR window, many of the NP coupled to cells fall outside of the window but
occupy sites on the cell thus reducing the effective magnetic moment of the cell.
Reduced dispersity of the NP is a major goal in the development of SPMR. Figure 7
is an illustration of the next generation system performance for detecting cells. In
this T-cells are shown but the performance increase is representative of all of the cell
lines for the various cancers being investigated.

5 Combining the Attributes of SPMR and MEG

Although the primary thrust of this manuscript has been on cancer and similar
diseases, there are many other diseases with biomarkers known that SPMR can be
applied to. These include several diseases of the brain and in the future the
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combining of MEG and SPMR in the diagnosis and treatment of neural diseases
will be quite promising. There are a number of biomarkers known for the tau and
amyloid plaque that build up in the brain of Alzheimer’s patients. There is also
increasing evidence for the role of tau in PTSD and CTE and it will be possible to
identify this with SPMR using the known biomarkers for tau. Recent MEG research
in these areas have identified methods for MEG biomarkers in brain disorders
(Georgopoulos et al. 2007), PTSD (Georgopoulos et al. 2010) and traumatic brain
injury (Huang et al. 2009). The combination of these approaches could be a sig-
nificant advance in understanding these increasingly common neural diseases.
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Optically-Pumped Magnetometers
for MEG

Svenja Knappe, Tilmann Sander and Lutz Trahms

Abstract Optically-pumped magnetometers (OPMs) have seen rapid progress
over the last decade in terms of performance and technology development. As
highly sensitive room-temperature magnetometers they present several advantages
over superconducting quantum interference device (SQUID) sensors, such as the
possibility for conformal geometries and low-maintenance systems. We review the
state of the art and different types of low-field OPMs, as well as the first mag-
netoencephalography (MEG) demonstrations with OPMs. Several challenges
remain, such as the demonstration of OPM multichannel systems, their limited
dynamic range, and the demonstration of gradiometric operation to name just a
few. Certainly OPMs present a promising technology to complement existing
SQUID-based installations.

Keywords Optically pumped magnetometer � Magnetoencephalography �
Superconducting quantum interference device � Magnetocardiography �
Multichannel � Electron spin resonance � Micro-electromechanical system �
Alkali-metal vapor cell � Atomic magnetometer � Optical magnetometer

1 Introduction

Rapid advances in atomic physics over the last decade have led to the design of
optical magnetometers Optically Pumped Magnetometer (OPM) capable of
recording biomagnetic signals; although the first attempts are much older (Livanov
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et al. 1981). Further motivation to develop room-temperature alternatives to low-
temperature SQUID magnetometers comes from the spiraling helium costs, which
complicate the operation of MEG systems. Optical magnetometers have demon-
strated sensitivities similar to those of the best SQUID magnetometers (Deng et al.
2010), at least over a narrow frequency band. At present, only laboratory proto-
types of OPMs exist, and few MEG measurements have been demonstrated (Xia
et al. 2006; Johnson et al. 2010; Sander, et al. 2012). Clearly these OPMs cannot
compete with sophisticated commercial SQUID-based MEG systems yet. Never-
theless, OPMs have the potential to complement SQUID-based systems or to
replace them for certain applications. This might soon be the case in magneto-
cardiography, where multi-channel OPM systems have been implemented (Bison
et al. 2009; Wyllie et al. 2012). Other applications of OPMs that have been
demonstrated include magnetic resonance imaging (Xu et al. 2006; Savukov et al.
2009) and magnetic relaxation measurements of nano-particles (Knappe et al.
2010).

OPMs are individually placeable room-temperature sensors, which entail several
advantages. First, without the need for a dewar, OPMs allow for a shorter distance
between sensor and scalp. This will enhance the MEG signal strength at the location
of the sensor, especially for sources at shallow depths beneath the skull and can
therefore result in a higher signal-to-noise ratio. Second, sensor placement con-
formal to the individual scalp reduces the distance between sensor and source
further, which can be especially advantageous for MEG measurements on children
and for flexible research systems. This would require, however, accurate detection
of the sensor arrangement for analysis purposes. Third, open geometries and room-
temperature operation simplify the combination with other modalities, such as
electroencephalography (EEG) or functional near-infrared spectroscopy in the same
system. Fourth, the operation of OPMs does not require a shielded room for the
measurements, although the practicability of biomagnetic measurements with
OPMs in an unshielded environment still must be demonstrated.

These advantages, nevertheless, come at a price. The OPMs used for MEG so
far have much smaller dynamic ranges and bandwidths compared to those of
SQUIDs. Furthermore, gradiometers with good common-mode rejection ratios
have not yet been demonstrated; cross-talk issues with neighboring sensors need to
be resolved, and multichannel devices need to be demonstrated.

2 Principle of Operation

The OPMs used for MEG recordings so far use electron-spin resonances in alkali
atoms in the vapor phase. These atoms have a single valence electron that
determines most of the properties of interest. Due to their electron spin and
magnetic moment, the spin precesses around a magnetic field at a well-defined
frequency, the Larmor frequency (see Fig. 1). Furthermore, a large macroscopic
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polarization can be produced in these atoms through optical pumping (Happer
1972). In its simplest form, the spin from near-resonant circularly polarized
photons is transferred to the atoms during absorption. Since these incident photons
all have spins in a specific direction, the spins of the atoms become oriented. This
process is very efficient, and can achieve atomic spin-polarizations close to unity.
A magnetic field changes the atomic spin orientation, which can be probed once
again with near-resonant light, making use of the absorption or dispersion of the
light. The light carries information about the external magnetic field.

For MEG measurements made thus far, only zero-field magnetometers have
been used. When operated in a regime of frequent atomic collisions and in low
magnetic fields, the decoherence mechanism through spin-exchange collisions can
be suppressed (Happer and Tang 1973). This so-called spin-exchange relaxation-
free (SERF) regime (Allred et al. 2002) allows for very high magnetometer sen-
sitivities, but limits the dynamic range of the magnetometer. In very small magnetic
fields, the spins are tilted by the magnetic field and a static reorientation results from
the balance between precession and continuous pumping. Again, the orientation of
the spins is measured with near-resonant light by detecting the transmission of
resonant light. Often it is more advantageous to monitor the polarization rotation
of a slightly detuned light beam, which is usually done with a balanced polarimeter.
This method can cancel intensity noise of the laser light and also tolerate much
higher optical thickness of the vapor, since the light is detuned from resonance. In
order to increase the signal-to-noise ratio, phase-sensitive detection can be
implemented. For the zero-field resonances, one parameter, such as the magnetic
field or the probe light polarization, is modulated and the same frequency com-
ponent of the light is detected at a fixed phase with the modulation. Typically,
OPMs measure the magnitude of the magnetic field, but the zero-field OPMs used
for MEG are operated to measure a magnetic-field component in a certain direction,
e.g., through external field modulation with an additional Helmholtz coil pair.

Fig. 1 Light from a circularly polarized laser beam optically pumps the Rb atoms, while light
from a second laser beam probes the magnetic field-dependent spin orientation through
polarization rotation. Both the transmission and polarimeter signal show a resonance as a function
of magnetic field
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All of the devices used for MEG demonstrations have been operated in an open-
loop configuration, where the dynamic range was limited by the linewidth of the
resonance to below 100 nT. While feedback systems have been demonstrated in
principle, they have not yet reached the same sensitivities (Seltzer and Romalis
2004). Furthermore, the response of the magnetometer shows the behavior of a
first-order low-pass filter with a width corresponding to the linewidth of the atomic
resonance. This usually limits the intrinsic bandwidth to below 1 kHz.

Figure 2a shows a chip-scale high-sensitivity OPM, which was manufactured by
use of a micro-electro-mechanical-system (MEMS) process (Mhaskar et al. 2012).
In the center of the cube is an alkali-vapor cell, heated to generate a sufficient atomic
density of the vapor (Knappe et al. 2005). A laser, on resonance with a transition of
the atoms, is circularly polarized and optically pumps the atoms. The same laser is
used to monitor the atomic polarization by detecting the transmitted light with a
photodiode (Dupont-Roc et al. 1969; Shah et al. 2007). This is only one of many
possible configurations with respect to polarization, sensor shape, and beam.

3 MEG with OPMs

Three different demonstrations of MEG measurements with OPMs on human
subjects have been published to this date. In the first one, Xia et al. used a
(7.5 cm)3 Pyrex cell filled with potassium vapor and heated to 180� C (Xia et al.
2006). It was placed on the left side of the head at a distance of 6.25 cm between
the scalp and center of the cell. The atoms were polarized with 500 mW circularly
polarized pump light, and the magnetic field was monitored through the polari-
zation rotation of linearly polarized probe light at a right angle, so that the OPM

Fig. 2 a Photograph of a chip-scale OPM sensor head. b Photograph of four chip-scale OPMs
attached to an EEG cap for MEG measurements. The fibers and wires needed to drive a sensor are
collected in a bundle leaving the head tangentially
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was sensitive to the component of the magnetic field normal to the scalp. The
probe light was detected by a 16 9 16 photodiode array and 256 parallel channels
of roughly 0.4 9 0.4 9 7.5 cm and spacing of 5 mm could be monitored simul-
taneously. Auditory evoked fields were recorded and the N100 m peak was clearly
visible in the data. Six subjects were measured.

In the second paper Johnson et al. demonstrated an OPM with a fiber-coupled
sensor head. Pump and probe beams were collinear and passed through a cylin-
drical Rb vapor cell of diameter 2.5 cm and length 2.5 cm (Johnson et al. 2010). A
balanced polarimeter consisted of a photodiode and a quadrant detector, which
allowed them to monitor four channels with a spatial distance of 5 mm simulta-
neously. The distance between cell and scalp was 2 cm, and one component of the
magnetic field tangential to the scalp was measured. Evoked fields were recorded
after auditory stimulation and after electrical stimulation of the median nerve in a
male subject. They were verified by consecutive SQUID measurements.

The third MEG measurement was performed with a fiber-coupled chip-scale
OPM (Sander et al. 2012). Here, the Rb vapor cell was of size (2 mm)3 and the
magnetometer was operated with a single laser beam and detection of the transmitted
light. The distance to the scalp was 4 mm and the sensor was attached to an EEG cap
for ease of placement similar to the four-channel configuration shown in Fig. 2b. The
magnetic field component normal to the scalp was measured in three subjects. The
sensor was operated with a modulation field of 1.8 kHz and the high-frequency
cutoff was optimized to achieve a bandwidth sufficient for the recording of brain
signals. By use of a coil to generate an AC magnetic field, it was verified that the -

3 dB cut-off for the sensor was at 150 Hz. This is sufficient to resolve the evoked
responses N20 and P50 m due to electrical stimulation of the median nerve at the
wrist, as can be seen in the typical MEG results shown in Fig. 3. The same responses
in the same subjects were identified in consecutive SQUID measurements.

B
 / 
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t / ms

S1

stim. art .   N20m   P50m

2 
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Fig. 3 Exemplary single-channel OPM recordings of the N20 and P50 m brain responses from
three subjects (S1–S3). Electrical stimuli were applied to the right median nerve and a total of
5,000 responses were recorded inside a seven-layer magnetically-shielded room. The averaged
responses show the stimulus artifact at 0 ms, the N20 m response (20 ms poststimulus), and the
P50 m at 50 ms (figure reprinted with permission from Sander et al. 2012, copyright OSA 2012)
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An OPM very similar to the one used in Xia et al. was demonstrated to measure
signals from a dipolar current source immersed in a saline solution MEG phantom
(Taue et al. 2010). A (3 cm)3 potassium cell was used to record the magnetic field
at several locations around the phantom with a single channel. From the measured
field map the location of the dipolar current source was estimated, and good
agreement was obtained with the known position.

4 Conclusions and Outlook

In the last decade several research groups have demonstrated the measurement of
MEG signals by use of single OPM sensor units. The head coverage was very
limited, but the signals obtained show that OPMs are suitable as MEG sensors. It is
still an open question whether multichannel OPM systems will achieve the same
sensitivity as the best multichannel SQUID systems with up to 300 sensors. The
reduced distance between the cortical source and OPM will certainly allow for
stronger signals.

For a rapid advance of OPMs the development focus should be on broadband
operation of multichannel devices with self-tuning capabilities. At least two types
of multichannel systems appear promising: a standalone multichannel OPM device
for weak shielding and a combined SQUID and OPM system for the most
demanding studies. A combined system could consist, for example, of a SQUID
helmet design with an additional OPM array to cover other positions difficult to
reach with a closed dewar, such as the base of the head or the forehead. Devel-
opment of multichannel devices can utilize experience gathered during the design
of multichannel SQUID systems, hopefully reducing development time and cost.
On a technical level, OPM gradiometers need to be demonstrated with dynamic
ranges high enough to achieve common-mode rejections sufficient to suppress
residual magnetic fields fluctuations inside the shielded room. Furthermore, three-
axis OPMs would be desirable. It appears sensible to commercialize single-unit
OPMs in order that system developers can buy sensors off the shelf to design
multichannel systems themselves.

The development of OPMs is accelerated by a current helium shortage, which
could also lead to a new generation of closed-cycle refrigeration systems suitable
to support SQUID MEG systems. OPMs nevertheless offer the advantage of a
flexible geometry, which might allow gathering a more complete picture of brain
function (see other chapters in the present book and Brookes and Singh (2013) for
more on challenges in MEG research). Overall, OPMs are an attractive candidate
for designing inexpensive low-maintenance MEG systems and judging from the
initial MEG demonstrations no obvious shortcomings could be identified, which
would prevent the successful use of OPMs in large-scale MEG systems.
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Spin Electronics Based Magnetic Sensors
for Biomagnetic Measurements

M. Pannetier-Lecoeur, C. Fermon, P. Campiglio, Q. Herreros
and G. Jasmin-Lebras

Abstract In this short chapter, we present an alternative approach for biomagnetic
signals detection using spin electronics based magnetic sensors. The principle of
these sensors is first given followed by examples of their use for magnetocardi-
ography and low field MRI.

Keywords Spin electronics � Magneto-cardiography � Magneto-encephalogra-
phy � MRI

1 Introduction

Magnetic sensors based on spin electronics principle are now used in a wide range
of applications due to their large sensitivity and high integration capabilities. Their
field equivalent noise is now in the range of tens to hundreds of picotesla at room
temperature. The use of mixed sensors, combining superconductivity and spin
electronics (Pannetier et al. 2004) has opened the possibility of entering in the
femtotesla range suitable for biomagnetism and low field Magnetic Resonance
Imaging (MRI). In this short chapter we present the principle of such sensors with
their main properties and limitations, and then we give some examples of bio-
magnetic signal detection and low field MRI images.
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2 Mixed Sensors Principle

Mixed sensors are fabricated from thin film technology, combining a Giant
Magneto-Resistive (GMR) element with a superconducting loop, which acts as an
efficient flux-to-field transformer (Fig. 1). To date, two types of mixed sensors have
been fabricated. The first combines a Niobium (Nb) loop and a GMR, and has to be
cooled at 4 K. The second uses a high-Tc superconductor -YBa2Cu3O7-d (YBCO)-
combined with a GMR and can be operated at liquid nitrogen temperature (77 K).
The GMR element consists of a spin valve with a hard magnetic layer whose
magnetic orientation is fixed, a copper spacer, and a free magnetic bilayer whose
magnetization rotates under small in-plane magnetic field. It is designed in a yoke-
shape (see Fig. 1) which maximizes the free layer magnetic homogeneity. The
superconducting loop is a large loop, 1–2 cm2 size, with a micron size constriction
placed on top or below the GMR element. The response of a mixed sensor is linear
up to several microteslas and becomes flat when the critical current in the con-
striction is reached. The amplification gain of the superconducting loop, i.e. the
ratio between the field applied to the loop and the field seen by the GMR element is
roughly given by the ratio between the loop size and the constriction width.

3 Detectivity

The detectivity, also called field equivalent noise, is the voltage noise of the sensor given
in V/

ffiffiffiffiffiffi
Hz
p

divided by the sensitivity given in V/T. It represents the field for which a
Signal-to-Noise Ratio (SNR) is one. This allows for an easy comparison between the
performance of various sensors that are at strengths similar to biomagnetic sources.

The detectivity of SQUIDs used in MEG is in the range of 2�5fT=
ffiffiffiffiffiffi
Hz
p

down
to several Hz. High-Tc SQUIDs made with YBCO have a detectivity of the order
of 30 fT/sqrt(Hz).

For mixed sensors, the noise is given by the GMR element; the superconducting
loop does not contribute to the noise since it operates in the purely non-resistive
state. The noise is comprised of two contributions; the thermal noise which is flat
in frequency and the low frequency noise (1/f noise) with a power spectral density
decreasing as 1/f. For that reason, mixed sensors are more sensitive at high fre-
quencies than at low frequencies. Figure 2 gives the detectivity of a small-size
YBCO sensor as function of frequency.

4 MCG and MEG Applications

As seen in the previous section, the detectivity of the present mixed sensors is
good enough to perform fast and reliable MCG measurements but is at the limit for
the detection of MEG signals. A clinical investigation of MCG recordings on
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healthy subjects has been performed in the shielded room of Neurospin in Saclay
(Pannetier-Lecoeur et al. 2011; Campiglio et al. 2012) with both Nb-based mixed
sensors and YBCO-mixed sensors. Figure 3 gives an example of MCG signals
recorded during that study.

In order to perform MEG measurements the detectivity of the mixed sensors
has to be improved to achieve the fT range at frequencies below 10 Hz. To achieve
this goal we choose to couple the mixed sensor with a Nb wire-made flux trans-
formers. First attempts to record an auditory evoked response are encouraging and
demonstrate that mixed sensors are capable of detecting MEG signals.

Fig. 1 Left panel Mixed sensor schematic; a superconducting loop (yellow) containing a
constriction reacts to the applied field Bext by generating a supercurrent (white arrows) which,
passing through a constriction, exhibits an amplified local field B’. This field can be detected by
the GMR element (light blue) placed on top or below the constriction. The GMR element is
designed in a yoke shape which allows reducing the magnetic domain noise. Right panel:
Photograph of a YBCO-mixed sensor. The YBCO appears in dark brown; the GMR contact pads
can be seen at the bottom of the figure (light grey squares)

Fig. 2 Equivalent field
sensitivity of the Nb-mixed
sensor coupled with a flux-
transformer obtained from the
power spectrum density,
calibrated using a test signal
of 25 pT at 30 Hz, generated
by an external coil. The main
power supply (50 Hz) signal
is of the order of 80 pT in the
MSR. At 10 Hz, the
detectivity is around
700 fT=

ffiffiffiffiffiffi
Hz
p
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5 MRI at Very Low Fields

Very low field MRI can offer solutions for portable, silent, open access systems,
with a lower price due to the fact that no superconducting coils are required for the
static field generation. Besides, spin relaxation mechanisms below 400 kHz offer a
new diagnosis perspective through enhanced contrast-to-noise ratio. Due to the
weakness of the resonant signal produced, very sensitive sensors, operating at low
field/low frequency should be used. Mixed sensors are therefore good candidates
because of their high sensitivity and robustness, which allows one to apply RF
pulses for NMR sequences without a need to isolate the sensors electrically.
Furthermore, the detectability of mixed sensors is much better at the Larmor
frequency, 426 kHz at 10 mT, due to the absence of 1/f noise and levels below
10 fT/sqrt (Hz) are achieved in this frequency range.

To avoid using a prepolarizing field, mixed sensors can be used in static fields of
1–10 mT, where the proton spin polarization is not too weak, and using standard
NMR sequences, without switching off the static field. This allows the use of fast
acquisition sequences. Based on these ideas, we have developed a low field MRI
setup operating between 5 and 10 mT with copper coils for both static field and
gradients (Dyvorne et al. 2009; Herreros et al. 2013). The detection of the signal is

Fig. 3 MCG signals
recorded simultaneously
using a YBCO (top) and a Nb
(bottom) -mixed sensors. The
two sensors are 5 cm apart,
center-to-center on a plane
parallel to the patient’s chest

Fig. 4 Sagittal (left) and
axial (right) slice of a finger
at 7.4 mT with a resolution of
4 9 1 9 1 mm3 for a total
acquisition time of 15 min.
Anatomical details like (1)
fat, (2) marrow or (3) tendon
can be identified
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achieved with a mixed sensor coupled to a copper flux transformer. The cooling
system for the sensor is a pulse-tube cryocooler. The field of view is 6 9 6 9 6 cm3.
Voxel resolution of about 1 mm3 is obtained (Fig. 4).

6 Conclusion and Perspectives

Spin electronics-based sensors offer a new alternative for biomagnetism and low
field MRI. They are competitive with SQUIDs at high frequencies but are still
limited at low frequencies due to their high 1/f noise. However, this technology is
rather new and a lot of improvements are possible. First, the sensitivity of the
magnetoresistive elements have been improving regularly, particularly due to the
development of tunnel magnetic junctions. This development has resulted in
improved sensitivity by a factor of 20, but they are more difficult to incorporate
with superconductors. Second, the use of intermediate flux transformers also needs
to be optimized for mixed sensors as it has been done for SQUIDs for decades.
Finally, switching of supercurrents to modulate the field seen by the GMR element
is a way to significantly reduce the 1/f contribution at low frequencies.
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