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Abstract. Fuzzy clustering, like the known fuzzy k-means method, allows to
incorporate imprecision when classifying multivariate observations into clus-
ters. In contrast to hard clustering, when the data are divided into distinct
clusters and each data point belongs to exactly one cluster, in fuzzy clustering
the observations can belong to more than one cluster. The strength of the as-
sociation to each cluster is measured by a vector of membership coefficients.
Usually, an observation is assigned to a cluster with the highest membership
coefficient. On the other hand, the refinement of the hard membership coef-
ficients enables to consider also the possibility of assigning to another cluster
according to prior knowledge or specific data structure of the membership
coefficients. The aim of the paper is to introduce a methodology to reveal
the real data structure of multivariate membership coefficient vectors, based
on the logratio approach to compositional data, and show how to display
them in presence of outlying observations using loadings and scores of robust
principal component analysis.

Keywords: Compositional biplot, compositional data, fuzzy clustering, ro-
bust principal component analysis.

1 Overview of Fuzzy Clustering

In fuzzy clustering, each assignment of an object is distributed proportionally
to all clusters through membership coefficients according to the similarity to

Karel Hron
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each of the clusters. The number of clusters k for the n objects needs to be
provided in advance. Then an objective function
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that contains only the similarity measure d(i, j) and the desired membership
coefficients uiv of the i-th object to the v-th cluster, needs to be minimized.
The measure d(i, j) can be chosen e.g. as squared Euclidean distance when
the fuzzy k-means method is applied [3, 4]; an alternative choice is described
in [10]. Each object is usually assigned to a cluster with the highest mem-
bership coefficient. On the other hand, the refinement of the hard clustering
result enables to consider also the possibility of assigning to another cluster
according to prior knowledge or specific data structure of the membership
coefficients. It means that although an observation belongs to a certain clus-
ter according to the classification rule, the data structure of the membership
coefficients implies its pertinence rather to another cluster.

Obviously, the sum of the membership coefficients equals 1 or 100 (in case
of proportions or percentages, respectively), so their sample space can be
considered to be a k-part simplex,

Sk = {u = (u1, . . . , uk)
′, ui > 0,

k∑

i=1

ui = 1}, (2)

the prime stands for a transpose. Here we have excluded the case of zero
membership values since then the predefined number of clusters obviously
needs to be revisited. The important difference of fuzzy clustering to hard
clustering methods is contained in the fact that with the latter we obtain a
detailed information about the data structure. On the other hand, with an
increasing number of the involved groups the results become quite complex
so that the obtained information cannot be easily processed further.

For this reason, in this paper we focus on the case of more clusters involved
into the analysis and provide a tool to display the multivariate data struc-
ture of the membership coefficients using a biplot of loadings and scores from
principal component analysis [9]. Hereat we consider in particular a specific
data structure of the coefficients, that contain naturally only relative infor-
mation, and can thus be identified with the concept of compositional data [1].
In addition, we apply a robust counterpart of principal component analysis to
ensure that the obtained diagnostics tool will not be influenced by outlying
observations. The next section provides a brief review on compositional data
and the log-ratio approach for their statistical analysis. Then we introduce
classical and robust principal component analysis to construct a biplot and
demonstrate how it can be applied in case of compositional data. Finally, the
theoretical results will be applied to a real-world example.
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2 Relative Information and Compositional Data

Each vector of membership coefficients contains exclusively relative informa-
tion, thus only ratios between its parts are informative. In the context of
fuzzy clustering, the coefficients are normalized to a prescribed constant sum
constraint (proportions, percentages). However, this is not a necessary con-
dition but rather a proper representation of the observations, also a positive
constant multiple of the vector would provide exactly the same information.
In addition, also the concept of relative scale plays an important role here:
if a membership coefficient of a certain group increases from 0.1 to 0.2 (two
times), it is not the same as an increase from 0.5 to 0.6 (1.2 times), although
the Euclidean distances are the same in both cases. All these above proper-
ties can be found in the concept of compositional data as introduced in the
early 1980s by John Aitchison [1]. The properties of this kind of observations
induce a special geometry of compositional data, the Aitchison geometry on
the simplex [6] that forms for k-part compositional data, a Euclidean space
of dimension k − 1. Then the main goal is to represent compositional data
in orthonormal coordinates with respect to the Aitchison geometry and to
perform usual multivariate methods for their statistical analysis. This con-
cept is closely connected with the family of isometric log-ratio (ilr) trans-
formations from the Sk to the (k − 1)-dimensional real space Rk−1 [5]. One
popular choice results for a composition u = (u1, . . . , uk)

′ in ilr coordinates
z = (z1, . . . , zk−1)

′, where

zi =

√
k − i

k − i+ 1
ln

ui

k−i

√∏k
j=i+1 uj

, i = 1, . . . , k − 1. (3)

Obviously, the ilr transformations move the Aitchison geometry on the sim-
plex isometrically to the usual Euclidean geometry in real space, i.e. to the
geometry that we are used to work in. This has also consequences for visu-
alization of the compositional data structure. Three-part compositions are
traditionally displayed in a ternary diagram. The ternary diagram is an equi-
lateral triangle U1U2U3 such that a composition u = (u1, u2, u3)

′ is plotted
at a distance u1 from the opposite side of vertex U1, at a distance u2 from
the opposite side of vertex U2, and at a distance u3 from the opposite side of
the vertex U3 (see, e.g., [1, 12]).

An example can be seen in Fig. 1 with the well-known Iris data set [8] that
contains measurements for 50 flowers from each of 3 species of iris. Fuzzy
k-means clustering was applied with k = 3. The ternary diagram (left) shows
the resulting membership coefficients, where the lines correspond to equal
coefficients in two groups. The lines can thus be considered as separation lines
for a hard cluster assignment. The plot symbols correspond to the true group
memberships. One of the clusters (circles) is clearly distinguishable, but the
other two clusters show some overlap that leads to a misclassification. The
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Fig. 1 Membership coefficients of the Iris data in the ternary diagram (left) and
after ilr transformation (right) are displayed together with borders (lines) for the
classification rule. The symbols correspond to the true memberships.

right plot panel shows the ilr-transformed results, again with the separating
lines. The misclassified observations are of course still the same, but the data
structure is much better visible in the overlapping region. In this plot the
distances are in terms of the usual Euclidean geometry, while in the ternary
diagram one has to think in the Aitchison geometry.

Although the ilr transformation has nice geometrical properties, an inter-
pretation of the orthonormal coordinates is sometimes quite complex. Thus,
for the purpose of a compositional biplot introduced in the next section, a
representation of compositions in a special generating system is more ap-
propriate. The resulting coordinates correspond to the centred logratio (clr)
transformation [1], given for a k-part composition u as

(y1, . . . , yk)
′ =

⎛

⎝ u1

k

√∏k
i=1 ui

, . . . ,
uk

k

√∏k
i=1 ui

⎞

⎠
′

. (4)

The clr transformation seems easier to handle than the ilr transformation,
however, it leads to a singular covariance matrix, because the sum of yi, i =
1, . . . , k, equals zero. This makes the use of robust statistical methods not
possible. In the next section we show how the ilr transformation can be
utilized in this case.



Robust Diagnostics of Fuzzy Clustering Results 249

3 Diagnostics Using a Robust Compositional Biplot

Unfortunately, for more than three-part compositional data it is not possible
to visualize them in a planar graph without dimension reduction. A proper
tool for this purpose seems to be the compositional biplot [2]. It displays
both samples and variables of a data matrix graphically in the form of scores
and loadings of the first two principal components [9]. Note that the well-
known principal component analysis is appropriate for this purpose, because
it explains most of the variability of the original multivariate data by only
few new variables (the mentioned principal components). Usually, samples
in the biplot are displayed as points while variables are displayed either as
vectors or rays. For compositional data, one would intuitively construct the
biplot for ilr-transformed data, however, due to the complex interpretation
of the new variables it is common to construct the compositional biplot for
clr-transformed compositions as proposed in [2]. The scores represent the
structure of the compositional data set in the Euclidean real space, so they
can be used to see patterns and clusters in the data. The loadings (rays) rep-
resent the corresponding clr-variables. In the compositional biplot, the main
interest is concentrated to links (distances between vertices of the rays); con-
cretely, for the rays i and j, i, j = 1, . . . , k, the link approximates the (usual)
variance var(ln ui

uj
) of the logratio between the compositional parts (clusters)

ui and uj. Hence, when the vertices coincide, or nearly so, then the ratio
between ui and uj is constant, or nearly so, and the corresponding clusters
are redundant. In addition, directions of the rays signalize where observa-
tions with dominance of the clusters are located. Although the dimension
reduction, caused by taking only the first two principal components, natu-
rally leads to some inconsistencies (observations from different clusters may
overlap, also the display of classification boundaries is not meaningful), the
biplot can be used to reconstruct the multivariate data structure and reveal
reasons for misclassification within fuzzy clustering.

However, through all the advantages of the compositional biplot, outliers
can substantially affect results of the underlying principal component analy-
sis and depreciate the predicative value of the biplot. For this reason, a robust
version of the biplot is needed. Because the principal component analysis is
based on the estimation of location and covariance, we need to find proper
alternatives to the standard choice, represented by the arithmetic mean and
the sample covariance matrix that can be strongly influenced by outlying
observations. Among the various proposed robust estimators of multivariate
location and covariance, the MCD (Minimum Covariance Determinant) es-
timator (see, e.g., [11]) became very popular because of its good robustness
properties and a fast algorithm for its computation [13]. The MCD estimator
looks for a subset h out of n observations with the smallest determinant of
their sample covariance matrix. A robust estimator of location is the arith-
metic mean of these observations, and a robust estimator of covariance is the
sample covariance matrix of the h observations, multiplied by a factor for



250 K. Hron and P. Filzmoser

consistency at normal distribution. The subset size h can vary between half
the sample size and n, and it will determine the robustness of the estimates,
but also their efficiency.

Besides robustness properties the property of affine equivariance of the
estimators of location and covariance plays an important role. The location
estimator T and the covariance estimator C are called affine equivariant, if
for a sample z1, . . . , zn of n observations (e.g. ilr-transformed membership
vectors) in RD−1, any nonsingular (D − 1)× (D − 1) matrix A and for any
vector b ∈ RD−1 the conditions

T (Az1 + b, . . . ,Azn + b) = AT (z1, . . . , zn) + b,

C(Az1 + b, . . . ,Azn + b) = AC(z1, . . . , zn)A
′

are fulfilled. The MCD estimator shares the property of affine equivariance
for both the resulting location and covariance estimator.

Because the robust statistical methods cannot work with singular data,
the robust scores and loadings must be computed from ilr-transformed com-
positions before their representation in the clr space. Below we provide some
technical details according to paper [7].

Given an n × k data matrix Un,k with n membership coefficient vectors
u′
i, i = 1, . . . , n, in its rows. Applying the clr transformation to each row

results in the clr-transformed matrix Y. The relation

Z = YV (5)

for the ilr-transformed data matrix Z of dimension n× (k − 1) follows from
the relation between clr and ilr transformations where the columns of the
k × (k − 1) matrix V contain orthonormal basis vectors of the hyperplane
y1 + · · · + yk = 0, V′V = Ik−1 (identity matrix of order k − 1) [5]. Using
the location estimator T (Z) and the covariance estimator C(Z) for the ilr-
transformed data, the principal component analysis transformation is defined
as

Z∗ = [Z− 1T (Z)′]Gz. (6)

The (k − 1)× (k − 1) matrix Gz results from the spectral decomposition of

C(Z) = GzLzG
′
z, (7)

where the matrix Lz is made up of the sorted eigenvalues of matrix C(Z).
If the original data matrix has rank k − 1, the matrix Z will also have

full rank k − 1, and an affine equivariant estimator like MCD can be used
for T (Z) and C(Z), resulting in robust principal component scores Z∗ and
loadings Gz. However, since these are no longer easily interpretable, we have
to back-transform the results to the clr space. The scores in the clr space,
Y∗, are identical to the scores Z∗ of the ilr space, except that the additional
last column of the clr score matrix has entries of zero. For obtaining the
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back-transformed loading matrix we can use relation (5). For an affine equiv-
ariant scatter estimator we have

C(Y) = C(ZV′) = VC(Z)V′ = VGzLzG
′
z V

′, (8)

and thus the matrix
Gy = VGz (9)

represents the matrix of eigenvectors to the nonzero eigenvalues of C(Y)
(with the property G′

yGy = Ik−1). The nonzero eigenvalues of C(Y) are
the same as for C(Z) and consequently the explained variance with the cho-
sen number of principal components remains unchanged. Finally, the robust
loadings and scores can be used to obtain a robust biplot for compositional
data.

The above introduced theoretical framework is applied to geochemical data
originated from a 120 km transect running through Oslo. In total, 360 samples
from nine different plant species (40 samples for each species) were analyzed
for the concentration of 25 chemical elements. The data set is available in the
R package rrcov as object OsloTransect. Here we only used the variables
with reasonable data quality, namely Ba, Ca, Cr, Cu, La, LOI, Mg, Mn, P,
Pb, Sr and Zn. Since the data set is of compositional nature itself, we first
used the ilr-transformation and afterwards applied fuzzy k-means clustering
with k = 9 (number of different plant species in the data set). This results in
nine-part membership coefficients, and thus their visualization in a ternary
diagram is no longer possible.
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Fig. 2 Biplot resulting from an application to the untransformed membership coef-
ficients (left), and robust biplot resulting from transformed membership coefficients
(right)
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Without being aware of the above approach based on compositional data
analysis, one would probably try to summarize the information contained
in the matrix of membership coefficients by principal component analysis
(PCA). This procedure is applied here for comparison, and the resulting
biplot is presented in Fig. 2 left. The symbols refer to the clusters that have
been found with k-means clustering. One can see that there is a certain
grouping structure, but there is a lot of overlap of the groups. This is due to an
application of PCA in a inappropriate space, the simplex sample space. Note
that a robust PCA applied in this space would not lead to an improvement.

Next we apply the procedure as proposed above, by first transforming the
membership coefficients, and then applying robust PCA. The resulting robust
compositional biplot is displayed in Fig. 2 right. This plot allows for a much
better visual inspection. In contrast to the previous biplot, here the first two
principal components explain more than 80% of the total variance. It can be
seen that fuzzy k-means clustering indeed gave membership coefficients that
correspond to relatively clearly separated groups. This also verifies that the
algorithm worked well, and that the clustering structure in the data is clearly
present. Here we do not further analyse if the correct groups (plant species)
were identified, since we are not evaluating the clustering procedure itself.
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