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Abstract. In this study, regional analysis based on a limited number of data,
which is an important real problem in some disciplines such as geosciences
and environmental science, was considered for evaluating spatial data. A com-
bination of fuzzy clustering and non-parametrical statistical analysis is made.
In this direction, the partitioning performance of a fuzzy clustering on differ-
ent types of spatial systems was examined. In this way, a regional projection
approach has been constructed. The results show that the combination pro-
duces reliable results and also presents possibilities for future works.
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1 Introduction

In spatial analysis, each observation is associated with a location and there
is at least an implied connection between the location and the observation.
Geostatistical (probabilistic) and soft computing methods can be applied for
assessing spatial distributions in a site [1]. When observations are made in
space, the data can exhibit complex correlation structures. The correlation
can be two-dimensional if the data are taken only over a spatial surface [11].
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It is obvious that the spatial patterns of individual sampling locations in
any study area have different patterns and observations depend on the rela-
tive positions of observed locations within the site. The classical geostatistical
tools such as variogram, although suitable for irregularly-spaced data, have
practical difficulties. One of the main drawbacks is that it is insufficient to
analyze the regional heterogeneous behavior of a spatial parameter [5]. In gen-
eral, spatial systems have heterogeneous properties rather than homogeneous
structures. Heterogeneity means that the properties observed at different lo-
cations do not have the same value, and that different zones are observed in
the site.

One of the practical problems encountered in spatial systems such as in
geosciences, ecology and geography is the limited number of data. Often, cor-
relations are estimated from a small number of observations. The correlation
coefficient is particularly important in cases with sparse data such as pollu-
tion and offshore petroleum data [10]. In these cases, because the measure
is expensive and time consuming, it may be necessary to work with limited
number of data. Hence, a regional analysis with limited data becomes an
important task in spatial systems.

The main objective of a cluster analysis is to partition a given data set of
data or objects into clusters [9]. Because most of the clustering algorithms
employ the distances between the observations, for a spatial system, the clus-
ters provided by clustering can be considered as distinguished regions [12].
Analyzing a spatial system based on structural properties is a difficult task
and applicability of clustering for this purpose should be examined. In this
study, the performance of the Fuzzy c-means Algorithm (FCM), which is
the well-known clustering algorithm, in conditioned spatial systems is in-
vestigated. The partitioning capacity of the algorithm with limited number
of data is appraised using Rank Correlation Method (RCM) that is also a
well-known non-parametric method.

The rest of the paper is structured as follows. Sect. 2 describes the basics of
weighted fuzzy arithmetic and the hybrid fuzzy least-squares regression. Con-
fidence interval-based approach for coefficients and predictions is presented
in Sect. 3. Finally, Sect. 4 gives the conclusions.

2 Methodology

Fuzzy clustering and non-parametric correlation analysis are well-known
methods. The algorithm proposed in this study aims a combination to ap-
praise a spatial system based on an areal analysis. In this section, a brief
review and the basis of the combination is presented.
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2.1 Fuzzy Clustering

The main purpose of clustering is to recognize natural groupings of data from
a large data set to produce a concise representation of a system’s behavior.
The FCM is a well-known data clustering method in which a data set is
grouped into clusters (regions) with every data point in the data set belonging
to every cluster to a certain degree. As a suitable algorithm, the FCM was
also proposed to make spatial evaluations [2].

Let {x1,x2, . . . ,xN} be a set of N data objects represented by p-dimensional
feature vectors xk = [x1k, . . . , xpk]T ∈ R

p. A set of N feature vectors is then
represented as p×N data matrix X. A fuzzy clustering algorithm partitions
the data X into M fuzzy clusters, forming a fuzzy partition in X. A fuzzy
partition can be conveniently represented as a matrix U, whose elements
uik ∈ [0, 1] represent the membership degree of xk in cluster i. Hence, the
i-th row of U contains values of the i-th membership function in the fuzzy
partition.

Objective function based fuzzy clustering algorithms minimize an objective
function of the type:

J(X;U,V) =
M∑

i=1

N∑

k=1

(uik)m
d2(xk,vi), (1)

where V = [v1,v2, . . . ,vM ], vi ∈ R
p is M -tuple centers which have to be

computed, and m ∈ (1,∞) is a weighting exponent which defines the fuzzi-
ness of the clusters. The conventional FCM uses Euclidean distance. The
optimization is constrained, amongst others, by the constraint

M∑

i=1

uik = 1, ∀k. (2)

2.2 Non-parametric Rank Correlation

Nonparametric statistics can be an effective tool when data is observed on
a discrete scale of values or when the assumptions required by parametric
statistics can not be satisfied. This time we cannot rely on the central limit
theorem which is a concept to justify use of parametric tests and we must
turn to a category of alternative procedures named nonparametric techniques.
The nonparametric tests use information of a lower rank, such as nominal or
ordinal observations. No assumptions about the form of the parent population
are required [6].
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Spearman’s rank correlation is one of the statistical tools to calculate non-
parametric correlations between pairs of samples. If we make two sets of
ordinal observations on a number of objects, we can designate one of the sets
as x and the other as y. We then rank each observation and call the two
sets of ranks R(xi) and R(yi). Spearman’s coefficient measures the similarity
between these two ranks [4],

rs = 1 − 6
∑n

i=1 [R(xi) − R(yi)]
2

n(n2 − 1)
. (3)

The term inside the brackets of the numerator is simply the difference be-
tween the rank of property x and the rank of property y as observed on
the i-th object. The following assumptions can be given for conducting the
implementation.

• The correlation between the variables should be linear.
• The two variables have been reduced to an ordinal scale of observation.
• If a test of significance is applied, the sample has been selected randomly

from the population.

The rank correlation rs, is analogous to simple correlation r in that it varies
from +1.0 (perfect correspondence between the ranks) to −1.0 (perfect in-
verse relationship between the ranks). A rank correlation of rs = 0 shows
that the two sets of ranks are independent. Note that the rank correlation
analysis is insufficient, if the number of observations is bigger than 60 [8].

2.3 Regional Appraisal with Memberships

Generally, in natural world spatial systems have heterogeneous property and
different zones are observed in a site. Due to these available separate regions,
from a clustering algorithm a better partition is expected for heterogeneous
sites rather than homogeneous sites. From this point, it could be anticipated
that the correlations provided between the clusters should be bigger for a
heterogeneous system than a homogeneous system.

In some circumstances, a relatively small sample, whose size cannot be
increased and whose underlying population may be distinctly non-normal,
has to be studied. When the sample size is small, the uncertainty about
the value of the true correlation can be very large, particularly when the
estimated correlation is low [10]. Considering this condition, to measure the
correlations between the clusters, membership values and their ranks could be
used on the ground of a non-parametric correlation analysis. The algorithm
of the analysis can be presented by a flowchart as in Fig. 1.
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Fig. 1 Flow chart of the
analysis

3 Simulation Studies

3.1 Data Set

Experimental studies have been carried out using two simulated data sets.
In the applications, the effectiveness and partitioning capacity of the FCM
algorithm on different types of spatial systems has been investigated. The
spatial real data set (108 observations) used in [13] was handled. This data
set comprised of Elasticity Modulus (EM) values of rock samples collected
from an Andesite quarry in Ankara.

To perform the simulation studies, the real set was conditioned by a geosta-
tistical simulation technique which is lower-upper (LU) decomposition tech-
nique [7]. For the first case study two simulated sets, one of which has ho-
mogeneous and other has heterogeneous properties, were provided based on
conditional simulation. In the heterogeneous site, the EM values generate
different zones and the spatial variability of the site can be modeled by a
function such as Spherical or Gaussian type functions.

Each simulation is conducted on a 21× 21 regular grid, yielding a total of
441 values. After that, a similar procedure was followed for the second case
study. This time, a simulation was carried out on a 20 × 20 regular grid and
a total of 400 values.

3.2 Simulation Study 1

Two sample sets (49 records) were randomly drawn from the simulated
data sets, each of them including 441 observations. To illustrate the dif-
ferent spatial characteristics, a semi-variance analysis, which is a well-known
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Fig. 2 Spatial behaviors for homogeneous (left) and heterogeneous (right) data
sets (simulation study 1)

geostatistical analysis, has been performed. Figure 2 shows the variogram
models provided for the sampled distinguished sets. As can be seen in the
Fig. 3, although the homogeneous site can not show a spatial relationship
(pure nugget model), the heterogeneous site has a Gaussian character. To
specify the regions in the sites, fuzzy clustering applications have been per-
formed both for homogeneous and heterogeneous data sets. These different
data sets used by the clustering algorithm have the same coordinates and
different EM values. Therefore, data matrix X contains three dimensions
(spatial positions and EM). As a result of the clustering validity studies [3],
the optimal number of clusters was defined as four for both sites.

Statistically, if the coefficient of skewness Sf is zero, then the distribu-
tion is symmetrical and must be zero for the normal distribution. Similarly,
if the Kurtosis is zero, then the distribution of data is approximately nor-
mal [14]. Based on these criteria, the memberships have been appraised and
use of a nonparametric rank correlation analysis method is decided. Table 1
summarizes the non parametrical (cross) correlation coefficients with the av-
erage values for both homogeneous and heterogeneous sets. The values under
N(0, 1) describe the approximated values of the coefficients required from the
large number of data.

Table 1 Rank correlation coefficients among the clusters

Cross Correlation Homogeneous Homogeneous N(0, 1) Heterogeneous Heterogeneous N(0, 1)

r12 −0.380 −2.630 0.101 0.696
r13 −0.023 −0.158 −0.487 −3.370
r14 0.028 0.192 0.168 1.162
r23 0.042 0.288 −0.089 −0.619
r24 0.132 0.913 −0.482 −3.338
r34 −0.377 −2.610 0.010 0.072

Average Correlation −0.096 −0.668 −0.130 −0.900
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Fig. 3 Spatial behaviors for homogeneous (top) and heterogeneous (bottom) data
sets (simulation study 2)

3.3 Simulation Study 2

For the second application, a similar procedure to the one followed in the first
application is performed. Firstly, two data sets (each of 25 records) were ran-
domly sampled from the simulated data sets, including 400 observations each
one. In order to measure the spatial variability of the observations variogram
models have been obtained. Figure 3 illustrates the models. In the homoge-
neous site, no meaningful spatial dependence is recorded. On the other hand,
the heterogeneous site shows a spatial model that is Gaussian.

Based on clustering validity, the optimal number of clusters has been deter-
mined as four for both data structures. By using the memberships provided
from the clustering application, the nonparametric rank correlation analysis
method is applied. Table 2 indicates the cross correlation coefficients with
the average values for both data sets.

Table 2 Absolute rank correlation coefficients among the clusters

Cross Correlation Homogeneous Heterogeneous

r12 0.439 0.132
r13 0.070 0.125
r14 0.013 0.476
r23 0.237 0.402
r24 0.350 0.066
r34 0.385 0.335

Average Absolute Correlation 0.249 0.256

3.4 Results and Discussion

Because limited number of data may not be increased and the underlying
population may be distinctly non-normal in spatial environmental systems,
the applications were conducted in the proposed manner. First application
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showed that the clustering algorithm has a capability to separate the regions.
Both the average correlation coefficients are negative and the value obtained
for the heterogeneous site is bigger than the homogeneous site. This point
indicates the expected result that more clear partition should be carried out
for a heterogeneous site.

To test the study, a null hypothesis can be established that the clusters
are independent (i.e. ρ = 0). The alternative hypothesis is ρ �= 0, so the test
is two-tailed, with either very large positive or very large negative correla-
tions leading to rejection. Our analysis shows that the null hypothesis is not
rejected both for the homogeneous and the heterogeneous case, indicating
independence of clusters.

Second case study was performed by relatively small data sets. Both the
average correlation coefficients address the inverse correlations and the clus-
tering algorithm has a capability to determine the regions. In this application,
to overcome a possible compensation that may be resulted from pairs close
to +1 and −1, the study has been carried out using the absolute values. The
null hypothesis is that cluster memberships are independent, or that ρ = 0.
The alternative hypothesis is ρ �= 0, the test is one-tailed. Again, it is found
that the null hypothesis is not rejected. Depending on the limited number of
data, a crisp difference between two data sets has not been recorded.

4 Conclusions

The partitioning performance of a fuzzy clustering algorithm on different
type spatial systems is examined. To appraise the conditioned spatial sys-
tems via limited number of data, fuzzy clustering and non-parametric rank
correlation method is integrated. By this way, a regional projection method
has been constructed. In conclusion, the combination of fuzzy clustering and
non-parametric correlation analysis has produced some reliable results and
provide possibilities for future studies in depth.
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