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Abstract. In this paper, we show a sufficient condition under which the law
of sums of i.i.d. compact random sets in a separable type p Banach space
(resp. compact random upper semicontimuous functions) satisfies large devi-
ations if the law of sums of its corresponding convex hull of compact random
sets(resp. quasiconcave envelope of compact random upper semicontimuous
functions) satisfies large deviations.
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1 Introduction

The theory of large deviation principle (LDP) deals with the asymptotic es-
timation of probabilities of rare events and provides exponential bound on
probability of such events. Some authors have discussed LDP on random sets
and random upper semicontinuous functions. In 1999, Cerf [3] proved Cramér
type LDP for sums of i.i.d. compact random sets in a separable type p Ba-
nach space with respect to the Hausdorff distance dH . In 2006, Terán obtained
Cramér type LDP of compact random upper semicontinuous functions [9],
and Bolthausen type LDP of compact convex random upper semicontinuous
functions [10] on a separable Banach space in the sense of the uniform Haus-
dorff distance d∞H . In 2009, Ogura and Setokuchi [7] proved a Cramér type
LDP for compact random upper semicontiunous functions on the underling
separable Banach space with respect to the metric dQ (see [7] for the notation)
in a different method, which is weaker than the uniform Hausdorff distance
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d∞H . In 2010, Ogura, Li and Wang [6] also discussed LDP for random upper
semicontinuous functions whose underlying space is d-dimensional Euclidean
space R

d under various topologies for compact covex random sets and ran-
dom upper semicontinuous functions, Wang [12] considered functional LDP
of compact random sets, Wang and Li [11] obtained LDP for bounded closed
convex random sets and related random upper semicontiunous functions. In
fact, about these work above, some work of papers extended compact convex
random sets(resp. compact convex random upper semicontinuous functions)
to the non-convex case in a separable type p Banach space (see [3, 7, 9, 12]). So
we hope the LDP of the law of sums of i.i.d. compact random sets(resp. com-
pact random upper semicontimuous functions) still holds if the law of sums
of its corresponding convex hull of compact random sets(resp. quasiconcave
envelope of compact random upper semicontimuous functions) satisfies large
deviations. However, until now, all ideal of “deconvexification” comes from
Cerf’s basic work(Lemma 2 in [3]). In [3], Cerf gives a sufficient condition
for the case of compact random sets : E[exp{λ‖X‖K}] < ∞ for any λ > 0.
In [9], Terán gives a sufficient condition(see Lemma 4.4 in [9]) for the case
of compact random upper semicontinuous functions : E[exp{λ‖X0‖K}] < ∞
for some λ > 0. In [9], the author doesn’t give the proof of Lemma 4.4,
and he said the basic idea is the same as Cerf’s paper. I think, if the au-
thor use Cerf’s idea, the Lemma 4.4 can’t be obtained under the condition:
E[exp{λ‖X0‖K}] < ∞ for some λ > 0. So in our paper, we don’t use Cerf’s
idea and use another method to give another condition for compact ran-
dom sets: E[exp{λ‖X‖pK}] < ∞ for some λ > 0, and another condition for
compact random upper semicontinuous functions: E[exp{λ‖X‖pF}] < ∞ for
some λ > 0. Under these conditions, we prove the laws of sums of i.i.d.
compact random sets and compact random upper semicontimuous functions
satisfy large deviations if the laws of sums of its corresponding convex hull of
compact random sets and quasiconcave envelope of compact random upper
semicontimuous functions satisfy large deviations.

The paper is structured as follows. Section 2 will give some preliminar-
ies about compact random sets and compact random upper semicontinuous
functions. In section 3, we will give and prove our main results.

2 Preliminaries

Throughout this paper, we assume that (Ω,A, P ) is a complete probability
space, (X, ‖ · ‖X) is a real separable Banach space with its dual space X∗. We
suppose that X is of type p > 1, i.e., there exists a constant c such that

E
[
‖

n∑
i=1

fi‖pX
]
≤ c

n∑
i=1

E
[
‖fi‖pX

]
,
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for any independent random variables f1, f2, · · · , fn with values in X and
mean zero. Every Hilbert space is type 2; the space Lp with 1 < p < ∞ are of
type min (p, 2). However, the space of continuous functions on [0, 1] equipped
with supremum norm is of type 1 and not of type p for any p > 1.

Kk(X)(resp. Kc(X),Kkc(X)) is the family of all non-empty compact (resp.
convex, compact convex) subsets of X.

Let A and B be two non-empty subsets of X and let λ ∈ R, we can define
addition and scalar multiplication by A+B = cl{a+b : a ∈ A, b ∈ B}, λA =
{λa : a ∈ A}, where clA is the closure of set A taken in X. The Hausdorff
distance on Kk(X) is defined by

dH(A,B) = max
{
sup
a∈A

inf
b∈B

‖a− b‖X, sup
b∈B

inf
a∈A

‖a− b‖X
}
.

In particular, we denote ‖A‖K = dH({0}, A) = sup
a∈A

{‖a‖X}.
X is called compact random set (resp. compact convex random set), if

it is a measurable mapping from the space (Ω,A, P ) to (Kk(X),B(Kk(X))),
(resp. (Kk(X),B(Kkc(X)))) where B(Kk(X)) (resp. B(Kkc(X))) is the Borel
σ-field of Kk(X) (resp. Kkc(X)) generated by the Hausdorff distance dH .

In the following, we introduce the definition of a random upper semicon-
tinuous function. Let Fk(X) denote the family of all functions u : X → [0, 1]
satisfying the conditions: (1) the 1-level set [u]1 = {x ∈ X : u(x) = 1} �= ∅,
(2) each u is upper semicontinuous, i.e., for each α ∈ (0, 1], the α level set
[u]α = {x ∈ X : u(x) ≥ α} is a compact subset of X, (3) the support set
[u]0 = cl{x ∈ X : u(x) > 0} is compact.

The subfamily of all u such that [u]α is in Kc(X) for all α ∈ [0, 1] will be
denoted of Fc(X). Let Fkc(X) denote the subfamily of all u such that u is in
both Fk(X) and Fc(X). For every u ∈ Fk(X), denote by cou ∈ Fkc(X) the
quasiconcave envelope of u, we have [cou]α = co[u]α for all α ∈ (0, 1].

For any two upper semicontinuous functions u1, u2, define

(u1 + u2)(x) = sup
x1+x2=x

min{u1(x1), u2(x2)} for any x ∈ X.

Similarly, for any upper semicontinuous function u and for any λ ≥ 0 and
x ∈ X, define

(λu)(x) =

⎧
⎨
⎩

u(
x

λ
), if λ �= 0,

I0(x), if λ = 0,

where I0 is the indicator function of 0.
The following distance is the uniform Hausdorff distance which is ex-

tension of the Hausdorff distance dH : for u, v ∈ Fb(X), d∞H (u, v) =
supα∈[0,1] dH([u]α, [v]α), this distance is the strongest one considered in the
literatures.
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X is called a compact random upper semicontinuous function (or random
fuzzy set or fuzzy set-valued random variable), if it is a measurable mapping
X : (Ω,A, P ) → (Fk(X),B(Fk(X))) (where B(Fk(X)) is the Borel σ-field of
Fk(X) generated by the uniform Hausdorff distance d∞H ).

3 Main Results

Before giving our main results for random sets and random upper semicon-
tinuous functions, we define rate functions and LDP. We refer to the books of
Dembo and Zeitouni [4] and Deuschel and Stroock [5] for the general theory
on large deviations (also see Yan, Peng, Fang and Wu [13]).

Let E be a regular Hausdorff topological and {μn : n ≥ 1} be a family
of probability measures on (E, E), where E is the Borel σ-algebra. A rate
function is a lower semicontinuous mapping I : E → [0,∞]. A good rate
function is a rate function such that the level sets {x : I(x) ≤ α} are compact
subset of E. A family of probability measures {μn : n ≥ 1} on the measurable
space (E, E) is said to satisfy the LDP with speed 1

n and with the rate function
I if, for all open set V ⊂ E , lim infn→∞ 1

n lnμn(V ) ≥ − infx∈V I(x), for all
closed set U ⊂ E , lim supn→∞

1
n lnμn(U) ≤ − infx∈U I(x).

In the following, we give our main two results. We first present LDP for
(Kk(X), dH)-valued i.i.d. random variables.

Theorem 1. Let X be a Banach space of type p > 1. And X1, X2, . . . , Xn

be (Kk(X), dH)-valued i.i.d. random variables satisfying Eeλ‖X1‖p
K < ∞ for

some λ > 0. Let Sn = X1+X2+···+Xn

n , coSn = coX1+coX2+···+coXn

n . If the law
of the random set coSn satisfies a LDP with the good rate function I ′1, then
the law of the random set Sn also satisfies a LDP with the good rate function
I1(for x ∈ Kkc(X), I1(x) = I ′1(x), for x ∈ Kk(X)\Kkc(X), I1(x) = +∞,) i.e.,
Then for any open set U ⊂ (Kk(X), dH),

lim inf
n→∞

1

n
logP

{
X1 +X2 + · · ·+Xn

n
∈ U

}
≥ − inf

x∈U
I1(x),

any for any closed set V ⊂ (Kk(X), dH),

lim sup
n→∞

1

n
logP

{
X1 +X2 + · · ·+Xn

n
∈ V

}
≤ − inf

x∈V
I1(x).

In the following, we give LDP for (Fk(X), d
∞
H )-valued i.i.d. random variables.

Theorem 2. Let X be a Banach space of type p > 1. And X1, X2, . . . , Xn

be (Fk(X), d
∞
H )-valued i.i.d. random variables satisfying Eeλ‖X1‖p

F < ∞ for
some λ > 0. Sn = X1+X2+···+Xn

n , coSn = coX1+coX2+···+coXn

n . If the law of
the random set coSn satisfies a LDP with the good rate function I ′, then the
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law of the random set Sn also satisfies a LDP with the good rate function
I(for x ∈ Fkc(X), I(x) = I ′(x), for x ∈ Fk(X)\Fkc(X), I(x) = +∞,) i.e.,
Then for any open set U ⊂ (Fk(X), d

∞
H ),

lim inf
n→∞

1

n
logP

{
X1 +X2 + · · ·+Xn

n
∈ U

}
≥ − inf

x∈U
I(x), (1)

any for any closed set V ⊂ (Fk(X), d
∞
H ),

lim sup
n→∞

1

n
logP

{
X1 +X2 + · · ·+Xn

n
∈ V

}
≤ − inf

x∈V
I(x). (2)

In order to prove our two main theorems above, we need the following two
lemmas.

Lemma 3: Let X is of type p > 1 and X1, X2, · · · , Xn be (Kk(X), dH)-valued
i.i.d. random variables such that Eeλ‖X1‖p

K < ∞ for some λ > 0, then for any
δ > 0,

lim sup
n→∞

1

n
lnP (dH(

X1 +X2 + · · ·+Xn

n
,
coX1 + coX2 + · · ·+ coXn

n
) ≥ δ)

= −∞.

This proof is same as those of the following Lemma 4, so we omit it. But here
we state the inequality of Puri and Ralescu we use in our proofs of Lemma 3
and Lemma 4.

Let A belong to Kk(X), and its inner radius is r(A), and we know r(A) ≤
2‖A‖K. In [8], Puri and Ralescu extended a result of Cassels [2] and proved
the following inequality(we call it inequality of Puri and Ralescu): for any
A1, A2, · · · , An in Kk(X),

dH(A1 +A2 + · · ·+An, coA1 + coA2 + · · ·+ coAn)

≤ c
1
p (r(A1)

p + r(A2)
p + · · ·+ r(An)

p)
1
p .

Lemma 4: Let X is of type p > 1 and X1, X2, · · · , Xn be (Fk(X), d
∞
H )-

valued i.i.d. random variables such that Eeλ‖X1‖p
F < ∞ for some λ > 0, then

for some δ > 0,

lim sup
n→∞

1

n
lnP (d∞H (

X1 +X2 + · · ·+Xn

n
,
coX1 + coX2 + · · ·+ coXn

n
) ≥ δ)

= −∞.

Proof: We apply the definition of d∞H and the inequality of Puri and Ralescu
and for any A ∈ Kk(X), the inner radius has the property: r(A) ≤ 2‖A‖K,
then
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d∞H (
X1 +X2 + · · ·+Xn

n
,
coX1 + coX2 + · · ·+ coXn

n
)

=
1

n
sup

α∈[0,1]

dH(

n∑
i=1

[Xi]α,

n∑
i=1

[coXi]α)

≤ 1

n
· c 1

p sup
α∈[0,1]

(r([X1]α)
p + r([X2]α)

p + · · ·+ r([Xn]α)
p)

1
p

≤ 1

n
· 2c 1

p (‖X1‖pF + ‖X2‖pF + · · ·+ ‖Xn‖pF)
1
p .

In view of the condition of Lemma 4: Eeλ‖X1‖p
K < ∞ for some λ > 0, then for

this positive λ > 0, we have Eeλ‖X1‖p
K < ∞, so we can apply the chebyshev

exponential inequality , then we obtain

lim sup
n→∞

1

n
lnP (d∞H (

X1 +X2 + · · ·+Xn

n
,
coX1 + coX2 + · · ·+ coXn

n
) ≥ δ)

≤ lim sup
n→∞

1

n
lnP (‖X1‖pF + |X2‖pF + · · ·+ ‖Xn‖pF ≥ npδp

2pc
)

≤ lim sup
n→∞

1

n
ln[e−

λnpδp

2pc (Eeλ‖X1‖p
F )n]

= lim sup
n→∞

(−λnp−1δp

2pc
+ Eeλ‖X1‖p

F )

= −∞.

So we complete the proof of this lemma.
Since random sets are particular cases of those for fuzzy random variables,

then we omit the proof of Theorem 1, and only give the proof of Theorem 2.

Proof of theorem 2: Step 1: First we prove the upper bound of (1). Let
U be a closed subset of (Fk(X), d

∞
H ). For any ∀ δ > 0, let

Uδ = {x ∈ Fk(X) : d∞H (x,U) = inf
y∈U

d∞H (x, y) < δ}.

Then P (Sn ∈ U) ≤ P (coSn ∈ Uδ) + P (d∞H (Sn, coSn) ≥ δ). So

lim sup
n→∞

P (Sn ∈ U)

≤ max{lim sup
n→∞

P (coSn ∈ Uδ), lim sup
n→∞

P (d∞H (Sn, coSn) ≥ δ)}
= − inf

x∈Uδ

I(x).
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Since I(x) is a good rate function, by [1], we have

lim
δ↓0

inf
x∈Uδ

I(x) = inf
x∈U

I(x).

So (1) holds.
Step 2: we prove the lower bound of (2). Let U be an open subset of

(Fk(X), d
∞
H ). ∀ x ∈ U , then there exists a δ > 0 and an open subset V of

(Fk(X), d
∞
H ) such that x ∈ V ⊂ V δ ⊂ U . So

P (Sn ∈ U) ≥ P (Sn ∈ V δ) ≥ P (coSn ∈ V )− P (d∞H (Sn, coSn) ≥ δ).

Hence P (Sn ∈ V ) ≤ P (Sn ∈ U) + P (d∞H (Sn, coSn) ≥ δ). By Lemma 4, we
have

lim inf
n→∞ P (Sn ∈ U) ≥ − inf

x′∈V
I(x′) ≥ −I(x).

Taking the supermum over all elements x in U , we have

lim inf
n→∞ P (Sn ∈ U) ≥ − inf

x∈U
I(x).

This completes the proof of Theorem 2.

Remark: In 2010, Ogura, Li and Wang [6] have proved a Cramér type
LDP for compact convex random upper semicontinuous functions whose
underlying space is d-dimensional Euclidean space R

d under the condition
E[exp{λ‖X‖F}] < ∞, for some λ > 0 with respect to the metric dQ(see the
detailed notation in [6]). Since the d-dimensional Euclidean space Rd is type 2,
then if X1, X2, · · · , Xn are (Fk(R

d), d∞H )-valued i.i.d. random variables such

that Eeλ‖X1‖2
F < ∞ for some λ > 0, then Lemma 4 holds. And the condition

E[exp{λ‖X‖F}] < ∞ also holds for this positive λ. By Theorem 3.4 in [6],
we know the law of sums of quasiconcave envelope of compact random upper
semicontimuous functions satisfies large deviations, then in view of Theorem
2 in our paper, the law of sums of compact random upper semicontimuous
functions satisfies large deviations with the same rate function.
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