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Preface

We are proud to present the proceedings of the 6th International Conference
on Soft Methods in Probability and Statistics. The conference took place in
Konstanz, Germany, October 4–6, 2012. The SMPS conferences series started
in 2002 in Warsaw and moved from Oviedo (2004), Bristol (2006), Toulouse
(2008) to Mieres-Oviedo (2010). SMPS’2012 was organized by the Compu-
tational Intelligence group in Magdeburg and the Intelligent Data Analysis
group in Konstanz. The theme of SMPS2012 was “Synergies of Soft Com-
puting and Statistics for Intelligent Data Analysis”.

The main objective of the SMPS conference series is to strengthen the
dialogue between various research communities in the field of data analysis
in order to cross-fertilize the fields and generate mutually beneficial activ-
ities. In SMPS’2012 we were especially interested in bringing experts from
the areas of Soft Computing and Statistics together. Both branches have dif-
ferent intentions on data analysis as they stem from computer science and
mathematics, respectively. Soft computing is able to quickly produce low-cost
solutions using nature-inspired problem-solving strategies. Its ability to adapt
to different problems and models led to its success in real-world applications.
Also, its inherent necessity to construct understandable and interpretable so-
lutions made soft computing very popular in economical fields. The field of
statistics aims at much less subjective goals. It focuses on the need for math-
ematical methods that validate models and ensure their applicability based
on observations maximizing some kind of likelihood. It is our hope that the
synergies of both fields improve intelligent data analysis methods in terms of
robustness to noise and applicability to larger datasets, while being able to
efficiently obtain understandable solutions of real-world problems.

SMPS’2012 provided an attractive interdisciplinary forum for discussions
and mutual exchange of knowledge in the field of intelligent data analysis.
The 58 papers in this volume were carefully selected by an extensive review-
ing process. Every paper has been reviewed by three of 113 international
experts. We are delighted that Christian Borgelt, principal researcher at the
European Centre for Soft Computing, Lawrence O’Higgins Hall, professor of
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computer science at the University of South Florida, and Hannu T. Toivo-
nen, professor of computer science at the University of Helsinki, accepted our
invitation to present keynote lectures. Part I of the volume contains these
invited papers. Part II encloses contributions to the foundations of uncer-
tainty theories including imprecise probability, probability theory and fuzzy
set theory. Part III consists of a variety of papers dealing with soft statis-
tical methods ranging from statistical inference to statistical tests. Part IV
focuses on mathematical aspects of soft methods applied to probability and
statistics, e.g. copulas, decision making, partial knowledge and conditional
uncertainty measures. And Part V finally comprises application-orientated
papers devoted to engineering. The methods described here exploit infor-
mation mining, machine learning techniques and computational intelligence.
Most applications stem from bioinformatics, human sciences and automobile
industry.

The editors are very grateful to all contributing authors, invited speakers,
program committee members, and additional referees who made it possi-
ble to put together an attractive program for the conference. This confer-
ence has benefited from the financial support of the Spanish bank CajAstur,
which covered all the production and distribution costs of the proceedings.
We thank the editor of the Springer series Advances in Soft Computing,
Janusz Kacprzyk, and Springer-Verlag for the dedication to the production
of this volume. We are particularly grateful to the universities of Konstanz
and Magdeburg as well as the German Society of Computer Science and the
European Society for Fuzzy Logic and Technology for their continuous sup-
port. Finally, we thank Heather Fyson who did an outstanding job putting
the conference on the ground in Konstanz. Months before this conference,
she already started working on everything that made this conference run
smoothly and so enjoyable for all attendees.

Konstanz and Magdeburg Rudolf Kruse
July 2012 Michael R. Berthold

Christian Moewes
Maŕıa Ángeles Gil

Przemys�law Grzegorzewski
Olgierd Hryniewicz
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Michel Verleysen (Université catholique de Lovain, Louvain-la-Neuve,

Belgium)
Peter Winker (Justus-Liebig-Universität Gießen, Germany)
Marco Zaffalon (University of Lugano, Switzerland)

Additional Referees
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Manuel Montenegro

A Proposal of Robust Regression for Random Fuzzy Sets . . . . 115
Maria Brigida Ferraro, Paolo Giordani

Bootstrap Comparison of Statistics for Testing the
Homoscedasticity of Random Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . 125
Ana Belén Ramos-Guajardo, Maŕıa Asunción Lubiano,
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Soft Pattern Mining in Neuroscience

Christian Borgelt

Abstract. While the lower-level mechanisms of neural information process-
ing (in biological neural networks) are fairly well understood, the principles of
higher-level processing remain a topic of intense debate in the neuroscience
community. With many theories competing to explain how stimuli are en-
coded in nerve signal (spike) patterns, data analysis tools are desired by which
proper tests can be carried out on recorded parallel spike trains. This paper
surveys how pattern mining methods, especially soft methods that tackle the
core problems of temporal imprecision and selective participation, can help to
test the temporal coincidence coding hypothesis. Future challenges consist in
extending these methods, in particular to the case of spatio-temporal coding.

1 Introduction

Basically all information transmission and processing in humans and animals
is carried out by the nervous system, which is a network of special cells
called neurons or nerve cells . These cells communicate with each other by
electrical and chemical signals. While the lower-level mechanisms are fairly
well understood (see Section 2) and it is widely accepted in the neuroscience
community that stimuli are encoded and processed by cell assemblies rather
than single cells [17, 23], it is still a topic of intense ongoing debate how
exactly information is encoded and processed on such a higher level: there
are many competing theories, each of which has its domain of validity. Due
to modern multi-electrode arrays, which allow to record the electrical signals
emitted by hundreds of neurons in parallel [8], more and more data becomes
available in the form of (massively) parallel spike trains that can help to tackle
the challenge of understanding higher-level neural information processing.

Christian Borgelt
European Centre for Soft Computing, Edificio de Investigación, 33600 Mieres,
Asturias, Spain
e-mail: christian@borgelt.net

R. Kruse et al. (Eds.): Synergies of Soft Computing and Statistics, AISC 190, pp. 3–10.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

christian@borgelt.net


4 C. Borgelt

Fig. 1 Diagram
of a typical myeli-
nated vertebrate
motoneuron (source:
Wikipedia [27]), show-
ing the main parts
involved in its signaling
activity like the den-
drites, the axon, and
the synapses

After reviewing some of the main competing models of neural information
coding (Section 2), this paper focuses on the temporal coincidence coding
hypothesis. It explores how pattern mining methods can help in the search for
synchronous spike patterns in parallel spike trains (Section 3) and considers,
in particular, soft methods that can handle the core problems of temporal
imprecision and selective participation (Section 4). The paper closes with
an outlook on future work, especially tackling the challenge of identifying
spatio-temporal patterns under such conditions (Section 5).

2 Neural Information Processing

Essentially, neurons are electrically excitable cells that send signals to each
other. The mechanisms are well understood on a physiological and chemical
level, but how several neurons coordinate their activity is not quite clear yet.

Physiology and Signaling Activity. Neurons are special types of cells
that can be found in most animals. They connect to each other, thus forming
complex networks. Attached to the cell body (or soma) are several arbores-
cent branches that are called dendrites and one longer cellular extension
called the axon. The axon terminals form junctions, so-called synapses, with
the dendrites or the cell bodies of other neurons (see Figure 1) [14].

The most typical form of communication between neurons (this is a very
simplified description!) is that the axon terminals of a neuron release chemical
substances, called neurotransmitters, which act on the membrane of the con-
nected neuron and change its polarization (its electrical potential). Synapses
that reduce the potential difference between the inside and the outside of the
membrane are called excitatory, those that increase it, inhibitory. Although
the change caused by a single synapse is comparatively small, the effects of
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multiple synapses accumulate. If the total excitatory input is large enough,
the start of the axon becomes, for a short period of time (around 1ms), de-
polarized (i.e. the potential difference is inverted). This sudden change of the
electrical potential, called action potential, travels along the axon, with the
speed depending on the amount of myelin present. When this nerve impulse
reaches the end of the axon, it triggers the release of neurotransmitters. Thus
the signal is passed on to the next neuron [14]. The electrical signals can be
recorded with electrodes, yielding so-called spike trains.

Neural Information Coding. It is widely accepted in the neuroscience
community that stimuli and other pieces of information are not represented
by individual neurons and their action potentials, but that multiple neurons
work together, forming so-called cell assemblies. However, there are several
competing theories about how exactly the information is encoded. The main
models that are considered include, but are not limited to the following [23]:

• Frequency Coding [29, 12]
Neurons generate spikes trains with varying frequency as a response to
different stimulus intensities: the stronger the stimulus, the higher the
spike frequency. Frequency coding is used in the motor system, which
directly or indirectly controls muscles, because the rate at which a muscle
contracts is correlated with the number of spikes it receives. Frequency
coding has also been shown to be present in the sensory system.

• Temporal Coincidence Coding [21, 30, 19, 25]
Tighter coincidence of spikes recorded from different neurons represent
higher stimulus intensity, with spike occurrences being modulated by local
field oscillation [23]. A temporal coincidence code has the advantage that it
leads to shorter “switching times,” because it avoids the need to measure a
frequency, which requires to observe multiple spikes. Therefore it appears
to be a better model for neural processing in the cerebral cortex.

• Delay Coding [18, 9]
The input stimulus is converted into a spike delay (possibly relative to some
reference signal). A neuron that is stimulated more strongly reaches the
depolarization threshold earlier and thus initiates a spike (action potential)
sooner than neurons that are stimulated less strongly.

• Spatio-Temporal Coding [2, 1]
Neurons emit a causal sequence of spikes in response to a stimulus config-
uration. A stronger stimulus induces spikes earlier and initiates spikes in
other, connected cells. The sequence of spike propagation is determined by
the spatio-temporal configuration of the stimulus as well as the connectiv-
ity of the network [23]. This coding model can be seen as integrating the
temporal coincidence and the delay coding principles.

Among other models a spatio-temporal scheme based on a frequency code
[28] is noteworthy. In this model the increased spike frequencies form specific
spatio-temporal patterns over the involved neurons. Thus it can be seen as
combining spatio-temporal coding with frequency coding.
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3 Detecting Synchronous Activity

This paper focuses on the temporal coincidence coding hypothesis and thus
on the task to detect unusual synchronous spiking activity in recorded parallel
spike trains, where “unusual” means that it cannot be explained as a chance
event. In addition, we do not merely consider whether a parallel spike train
contains synchronous spiking activity (e.g. [31]) or whether a given neuron
participates in the synchronous spiking activity of a cell assembly (of oth-
erwise unknown composition) (e.g. [4]). Rather we concentrate on the most
complex task of identifying specific assemblies that exhibit(s) (significant)
synchronous spiking activity (e.g. [13, 3]). Tackling this task is computation-
ally expensive for (massively) parallel spike trains due to a combinatorial
explosion of possible neuron groups that have to be examined.

Other core problems are temporal imprecision and selective participation.
The former means that it cannot be expected that spikes are temporally
perfectly aligned, while the latter means that only a subset of the neurons
in an assembly may participate in any given synchronous spiking event, with
the subset varying between different such events. Note that both may be the
effect of deficiencies of the spike recording process (the spike time or even
whether a spike occurred is not correctly extracted from the measured profile
of the electrical potential) or may be due to the underlying biological process
(delays or even failures to produce a spike due to lower total synaptic input,
as neurons may receive signals coding different information in parallel).

The most common (or even: the almost exclusively applied) method of
handling temporal imprecision is time binning: given a user-specified bin
width, a spike train, which is originally a (continuous) point process of spike
times, is turned into a binary sequence: a 1 means that the corresponding
neuron produced a spike and a 0 that there is no spike in the corresponding
time bin. In this way the problem is essentially transformed into a frequent
item set mining problem [3]. The translation of the relevant notions to market
basket analysis (for which frequent item set mining was originally developed)
and to spike train analysis is shown in Table 1. Clearly, the problems are
structurally equivalent and thus can be attacked with the same means.

The standard problem of frequent item set mining—namely that a huge
number of frequent item sets may be found, most of them false discoveries—
is best addressed by randomization methods [22, 15]. In spike train analysis,
these methods take the form of surrogate data generation schemes, since
one tries to preserve as many properties (that are deemed biologically rele-
vant, e.g. inter-spike intervals) as possible, while destroying the coincidences.
A survey of such surrogate data generation methods can be found in [20].

In essence, an assembly detection method then works as follows: a sufficient
number of surrogate data sets (say, 1000 or 10,000) are created and mined
for frequent item sets, which are identified by their size (number of neurons)
and support (number of coincidences). Then the original data set is mined
and if patterns of a size and support (but ignoring the exact composition by
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Table 1 Translation of basic notions of frequent item set mining to market basket
analysis (for which it was originally developed) and to spike train analysis

mathematical problem market basket analysis spike train analysis

item product neuron

item base set of all products set of all neurons

— (transaction id) customer time bin

transaction set of products set of neurons
bought by a customer firing in a time bin

frequent item set set of products set of neurons
frequently bought together frequently firing together

neurons) can be found that do not show up in any of the surrogate data sets,
these patterns can be considered significant results.

4 Soft Pattern Mining

Accepting time binning for now as a simple (though deficient, see below)
method for handling temporal imprecision, let us turn to the problem of
selective participation. In the framework of frequent item set mining this
is a well-known problem for which many approaches exist (see, e.g., [5]).
The core idea is this: in standard frequent item set mining a transaction
(time bin) supports an item set (neuron set) only if all items in the set
are present. By relaxing the support definition, allowing for some items of a
given set to be missing from a transaction, we arrive at fault-tolerant item set
mining. The various algorithms for this task can be roughly categorized into
(1) error-based approaches, which allow for a maximum number of missing
items, (2) density-based approaches, which allow for a maximum fraction
of missing items, and (3) cost-based approaches, which reduce the support
contribution of a transaction depending on the number of missing items (and
may, in addition, restrict the number of missing items) [5].

However, such approaches suffer from the even larger search space (as more
item sets need to be examined) and thus can increase the computational costs
considerably. An alternative approach that avoids an exhaustive enumeration
relies on distance measures for binary vectors [10] and uses multi-dimensional
scaling [11] to a single dimension to group neurons together that exhibit sim-
ilar spiking activity [7]. The actual assemblies are then discovered by travers-
ing the neurons according to their image location and testing for dependence.
The approach of computing distances of time-binned spike trains has been
extended to various well-known clustering methods in [6].

All of the mentioned methods work on time binned data. However, the time
binning approach has several severe drawbacks. In the first place, the induced
concept of synchrony is two-valued, that is, spikes are either synchronous
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Fig. 2 Eight parallel spike trains with
three coincident spiking events (shown in
color), two of which are disrupted by time
bin boundaries (time bins indicated by gray
and white stripes)

(namely if they lie in the same time bin) or not. We have no means to
express that the spikes of some coincident event are better aligned than those
of another. Secondly, time binning leads to anomalies: two spikes that are
(very) close together in time, but happen to be on different sides of a time
bin boundary are seen as not synchronous, while two spikes that are almost
as far apart as the length of a time bin, but happen to fall into the same
time bin, are seen as synchronous. Generally, the location of the time bin
boundaries can have a disruptive effect. This is illustrated in Figure 2, where
two of the three coincidences of the eight neurons (shown in color) cannot be
detected, because they are split by badly placed time bin boundaries.

These problems have been addressed with the influence map approach
(see [24, 6]), which bears some resemblance to the definition of a distance
measure for continuous spike trains suggested in [26]. The core idea is to
surround each spike time with an influence region, which specifies how im-
precisely another spike may be placed, which is still to be considered as
synchronous. Thus one can define a graded notion of synchrony based on the
(relative) overlap of such influence regions. Unfortunately, a direct generaliza-
tion of binary distance measures to this case (using properly scaled durations
instead of time bin counts) seems to lose too much information due to the
fact that full synchrony can only be achieved with perfectly aligned spikes [6].

As a solution one may consider specific groups of spikes, one from each
neuron, rather than intersecting, over a set of neurons, the union of the
influence regions of the spikes of each neuron. This allows to define ε-tolerant
synchrony, which is 1 as long as the temporal imprecision is less than a user-
specified ε and becomes graded only beyond that. In addition, extensions to
the fault-tolerant case are possible by allowing some spikes to be missing.

5 Future Challenges

The methods reviewed in this paper were devised to detect synchronous ac-
tivity. However, attention in the neuroscience community shifts increasingly
towards spatio-temporal spike patterns as the more general concept, which
contains synchronous spiking as a special case. If the time binning approach
is accepted, frequent pattern mining offers readily available solutions, for ex-
ample, in the form of the Spade [33] and cSpade algorithms [32]. However,
these approaches require discretized time. Similarly, approaches developed in
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the neuroscience community (e.g. [2]) are based on time bins, and thus suf-
fer from the mentioned anomalies. In addition, these methods cannot handle
faults, in the sense of individual missing spikes: they only count full occur-
rences of the potential patterns. It is a challenging, but very fruitful problem
to extend these approaches (possibly with influence maps) to continuous time
or find alternative methods that can handle both faults and continuous time.
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Exploring Big Data with Scalable Soft
Clustering

Lawrence O. Hall

Abstract. Sky surveys for Astronomy are expected to generate 2.5 petabytes
a year. Electronic medical records hold the promise of treatment comparisons,
grouping patients by outcomes but will be contained in petabyte data stor-
age. We can store lots of data and much of it wont have labels. How can
we analyze or explore the data? Unsupervised clustering, fuzzy, possibilistic
or probabilistic will allow us to group data. However, the algorithms scale
poorly in terms of computation time as the data gets large and are imprac-
tical without modification when the data exceeds the size of memory. We
will explore distributed clustering, stream data clustering and subsampling
approaches to enable scalable clustering. Examples will show that one can
scale to build good models of the data without necessarily seeing all the data
and, if needed, modified algorithms can be applied to terabytes and more of
data.

1 Introduction

There is a deluge of electronic data currently available and more coming
available. This data comes from diverse sources such as Astronomy where
PAN-Starrs is expected to generate 2.5 petabytes of data per year, daily
collections of text from newspapers, blogs, etc., medical data that is being
collected digitally (including medical images), images of underwater plank-
ton, and more. There will be no class labels for most of this data. For some
data sets all of the data will be unlabeled. To explore and make sense of the
data, we need approaches such as clustering which groups data into clusters
of like data without requiring any class labels [8, 1].
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Very large data sets can be practically defined as any which exceed the
size of a computers memory. Once data exceeds the size of memory, algo-
rithms to cluster or group the data will run very, very slowly. There will be
lots of accesses to secondary storage, typically a disk drive, that will cause
the computation time to be bounded by the transfer speed of the disk. Un-
fortunately, this time is orders of magnitude slower than the speed at which
the CPU operates. Hence, we need to have clustering algorithms that are
designed for large data and minimize the number of disk accesses. Ideally, all
data is loaded into memory only one time. This will mean data is discarded
and summaries of it must be retained if all the data is accessed.

In this paper, we discuss variations of fuzzy c-means [7] (FCM) which is
an iterative clustering algorithm based on the venerable k-means clustering
algorithm [8]. The FCM algorithm is known to converge to a local minima
or saddle point [4] as do the variants of it discussed here [3]. In addition to
modified clustering algorithms to handle very large data sets, subsampling
the data can be explored. The subsample can be random or use intelligent
selection. The subsample needs to be smaller than the size of memory to
avoid significant slowdowns. Intelligently selecting samples from a very large
data set is often infeasible because one likely needs to examine all of the
examples, potentially accessing some multiple times.

In this paper, we will discuss the advantages, disadvantages and perfor-
mance of two large-scale fuzzy clustering algorithms and a subsampling ap-
proach that can be used with fuzzy c-means.

2 Single Pass and Online Fuzzy C-Means

One way to process all the data of a very large data set is to apply divide
and conquer principles. Load as much data as will fit in memory, cluster it,
and keep some type of model of the data for future use. We present two
extensions to FCM which work on subsets of the data in different ways.
They both rely on weighted examples. We can view each example x as a
feature vector of dimension s. The default weight for an example wi is 1.
FCM variants produce cluster centers or centroids which are representative
of the cluster. These centroids can be assigned weights based on the fuzzy
memberships of examples in the clusters. So, a cluster would have the weight
calculated as shown in Equation 1:

wci =

n∑

j=1

uij , (1)

where uij is the membership of example xj in the ith cluster ci. We can
then use the weighted examples representing cluster centers in the clustering
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process [2, 10]. The clustering is done with a weighted version of the classic
fuzzy c-means algorithm.

The single pass fuzzy c-means clustering (SPFCM) [6] algorithm clusters
a chunk of data, creates weighted cluster centers and then processes another
chunk of data together with the weighted cluster centers from the previous
chunk. The process continues until all the data has been processed. It makes
one pass through the data and outputs a set of cluster centers. To determine
the cluster each example belongs to a separate pass through the data may
be necessary. For newly encountered examples, just a comparison to the final
cluster centers is needed.

The online fuzzy c-means (OFCM) clustering algorithm [5] clusters a chunk
of data that will fit in memory and obtains weighted cluster centers. It stores
the weighted cluster centers. At the end of processing (or intermediate steps)
it clusters all of the weighted cluster centers to get a final set of cluster
centers. It is designed for streaming (i.e. never ending) data. It can also be
applied to existing data sets, where it has some potential advantages.

The SPFCM algorithm will perform poorly if the data is ordered by class,
for example. In that case, some chunks will likely have examples from only
one, or certainly less than all, class(es) in the data. Since the number of
clusters is fixed, this will likely cause a poor set of cluster centers to be
created. When there is more than one heavily weighted example from the
same cluster it tends to result in multiple final clusters from the same class.
Alternatively, the weighted example is assigned to a cluster that represents
another class where it will have a strong negative effect on the cluster center
location. The problem is exacerbated when clusters are close together.

On the other hand the OFCM clustering algorithm will simply have multi-
ple clusters that can later be combined into one cluster, as long as we choose
a fixed number of clusters greater than or equal to the true number. So,
in theory it should have less problems when the data for a chunk does not
contain a set of examples reflective of the true class distribution.

When applied to existing data, OFCM can be run in parallel on as many
processors as necessary (if available). Then the resulting weighted clusters can
be clustered. So, it can be completed with just 2 sequential applications of
the clustering algorithm, thus allowing for it to be fast in a parallel processing
environment.

3 Subsampling

One way of doing subsampling is to select random examples until the subset
passes a test [10]. Extensible Fast Fuzzy c-means (eFFCM) randomly samples
the dataset (with replacement) in an effort to obtain a statistically significant
sample. Statistical significance is tested for with the Chi-square (χ2) statistic
or divergence. If the initial sample fails testing, additional data is added to
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the sample until the statistical test is passed [9]. There is time required to
do the necessary statistical tests on the random data. However, there is only
one data set needed for fuzzy c-means clustering (assuming the size is less
than available memory, if not SPFCM or OFCM can be applied).

4 Experiments and Results

One way to evaluate the large data clustering approaches discussed here is
to evaluate how close their final cluster centers are to FCM applied to all the
data. If they are close or the same, then the speed-ups become important.
The algorithms have mostly been evaluated on large volumes of magnetic
resonance images of the human brain [6]. The images have 3 features and
between 3.8 and 4.3 million examples. The fast algorithm results generally
have very good fidelity to FCM. The fastest algorithm is usually SPFCM
(with a between 3 and 8 times speed-up depending on chunk size) and eFCM
also has a good speed-up and sometimes the best fidelity.

5 Conclusions

Mofications to fuzzy c-means can be used to effectively cluster very large
data sets. They have the advantage of convergence and inheriting the well
understood properties of FCM. OFCM needs to run in parallel to get the
most speed advantages on existing data. SPFCM and eFCM are effective on
large data sets with perhaps a little more speed-up using SPFCM. There is a
need for scalable clustering algorithms that can find very small clusters and
that is a challenge the FCM variants may not be up to.
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On Creative Uses of Word Associations

Hannu Toivonen, Oskar Gross, Jukka M. Toivanen, and Alessandro Valitutti

Abstract. The ability to associate concepts is an important factor of creativ-
ity. We investigate the power of simple word co-occurrence analysis in tasks
requiring verbal creativity. We first consider the Remote Associates Test, a
psychometric measure of creativity. It turns out to be very easy for computers
with access to statistics from a large corpus. Next, we address generation of
poetry, an act with much more complex creative aspects. We outline methods
that can produce surprisingly good poems based on existing linguistic cor-
pora but otherwise minimal amounts of knowledge about language or poetry.
The success of these simple methods suggests that corpus-based approaches
can be powerful tools for computational support of creativity.

1 Introduction

The ability to associate concepts, ideas, and problems is an important factor
of creativity. Creative people often are able to see or establish connections
and analogies where others could not, and this ability may lead to better
solutions to problems or new pieces of art.

We are interested in using computers to support or even accomplish tasks
involving verbal creativity. In this paper, we will more specifically look at
methods that use word associations derived from word co-occurrences in large
corpora. For instance, words ‘hand’ and ‘fist’ occur relatively often together,
indicating that they are semantically related.

More specifically, our goal is to explore the power of word co-occurrences
on tasks that require lexical creativity. We keep all other linguistic and world
knowledge at a minimum to test how far plain word associations can take
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us. On the other hand, the methods are less dependent on any particular
language and resources.

We address two specific tasks. The first one is the taking the Remote
Associates Test [10], a psychometric test of creativity. It directly measures
the ability to associate words. The second task is generation of poetry, an act
with much more complex creative aspects. Also in this case, word associations
can be used as a key component of a poetry generation system.

This paper is structured as follows. We first review some background in
Section 2. We then address the Remote Associates Test of creativity in Sec-
tion 3 and generation of poems in Section 4. We conclude in Section 5.

2 Background

We next provide a brief background for word associations: first the RAT
creativity test and then word co-occurrence measures.

Remote Associates Test. The Remote Associates Test (RAT) measures
the test subject’s ability to find associations between words. In the test, three
unrelated cue words are presented to the subject, e.g., ‘thread’, ‘pine’, and
‘pain’. The person then tries to identify a fourth word, the answer word,
which is related to each of the cue words. In this example, the solution is
’needle’.

The Remote Associates Test was developed by Mednick [10] in the 1960s
to test creativity defined as “the forming of associative elements into new
combinations, which either meet specified requirements or are in some way
useful”. The test is frequently used by psychologists even if some argue that
it is not a good measure of creativity.

In practice, RAT measures the ability to discover new associations between
concepts that are not typically connected. Performance on RAT also relates
to how well one can generate original ideas [5].

Log-likelihood Ratio. We now describe how we use log-likelihood ratio
(LLR) to measure how strongly two words are related in a give corpus. We
assume a corpus of unstructured documents, and we treat documents as bags
of sentences and sentences as bags of words. Instead of sentences, we can
consider all n-grams, i.e., sequences of n consecutive words.

The LLR as applied here is based on a multinomial model of co-occurrences
of words (see, e.g., Dunning [4]). The multinomial model of any pair {x, y}
of words has four parameters p11, p12, p21, p22, corresponding to the proba-
bilities of events {x, y}, {¬x, y} {x,¬y} {¬x,¬y}. The ratio of likelihoods of
two multinomial models is computed, a null model and an alternative model.
The null model assumes independence of words x and y. Their probabilities
are estimated as their frequencies in the data, and the probabilities of their
different combinations (p11, . . . , p22) are obtained by simple multiplication
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(assuming independence). The alternative model, in turn, is the maximum
likelihood model which assigns all four parameters from their observed fre-
quencies.

The log-likelihood ratio test is then defined as

LLR(x, y) = −2

2∑

i=1

2∑

j=1

kij log(pnullij /pij), (1)

where kij are the respective counts. LLR measures how much the observed
joint distribution of words x and y differs from their distribution under the
null hypothesis of independence, i.e., how strong the association between
them is in the given corpus.

Related work. Literature on measuring co-occurrences or collocations of
words is abundant. Standard techniques include the following.

Log-likelihood ratio is a non-parametric statistical test often used for co-
occurrence analysis [4]. Unlike some other measures, log-likelihood ratio does
not overestimate the importance of very frequent words.

Latent Semantic Analysis [3] aims to find a set of concepts (instead of
terms) in a corpus using singular value decomposition. The semantic similar-
ity (relatedness) of two words can then be estimated by comparing them in
the concept space. Latent semantic analysis has then evolved to Probabilistic
Latent Semantic Analysis [8] and later to Latent Dirichlet Allocation [1].

We are also interested in building networks of word associations. Concepts
maps, mind maps, and mental maps are some well-known examples of spe-
cific types of networks designed to help learning and creativity or to model
subjective information processing. As an example of work in this area, Tseng
et al. [15] proposed a two-phase concept map construction algorithm which
uses fuzzy sets and multiple types of rules to generate concept maps.

3 Solving the Remote Associates Test of Creativity

We now illustrate the power of simple word co-occurrence analysis for the
RAT test of creativity [7]. This is, admittedly, a narrow and specific con-
text. However, if the human capability to perform well in RAT is related to
creativity, then certainly the capability of a computer performing well is an
encouraging indication of its ability to potentially perform creative tasks, or
at least to help humans in tasks requiring creativity. The more complex task
of creating poetry will be addressed in the next section.

Data. We used 212 RAT items of Bowers et al. [2] and Mednick & Med-
nick [11], divided to a training set of 140 items and a test set of 72 items. As
a corpus, we use Google 2-grams [12]. We removed stopwords, i.e., common
and therefore uninformative English words, using the NLTK stopword list.
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3.1 Modeling RAT Items Computationally

Let quadruple r = (c1, c2, c3, a) denote a RAT item, where ci is the ith cue
word and a is the answer word. In a probabilistic formulation, the task is to
predict the most likely answer word a given cue words c1, c2, c3. Assuming
independence between the cue words, i.e., using the Näıve Bayes model, we
obtain

P (a|c1, c2, c3) ∝ P (a, c1, c2, c3) = P (a)

3∏

i=1

P (ci|a). (2)

We estimate the (conditional) probabilities from the relative frequencies of
the words in the Google 2-grams, and find the word a that maximizes Eq. 2.
For more details, see Gross et al. [7].

The problem is challenging. There are millions of words to choose from,
and even when only considering words that co-occur with each of the cue
words, there are thousands of possibilities.

3.2 Experiments

When tested on the RAT items from psychometric literature, the above model
provided the correct answer in 66% of cases both in the training and the test
sets. Clearly, computers can perform well in such limited tests of creativity
by simple co-occurrence analysis even if the search space is very large.

Looking at the 33% of unsuccessful cases, the system often answered with a
plural form when the correct answer was singular. Additionally, in some of the
test items, a cue word does not occur in the 2-grams at all as an individual
word, but only as part of a compound word (with the answer word, for
instance). Obviously, one could engineer the method to deal with such issues
with plurals and compound words, but the main point is already clear: the
performance of the system is better than that of an average person. Item-
wise solution rates are typically 30–70%, so the performance of 66% correct
solutions can actually be considered very good. This is a clear indication that
computers can solve some tasks that are considered to require creativity.

4 Creation of Poetry

We now move on to a much more demanding creative task, writing of poems.
We outline a corpus-based approach for this task; more details are given by
Toivanen et al. [14].

In the literature, several different methods and systems have been proposed
for poetry generation (e.g., [9, 6, 16, 13]). They use, among others, statistical
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approaches, case-based reasoning, and evolutionary algorithms. Many of the
best performing systems are based on explicitly coded knowledge about the
world (e.g., using formal logic) as well as rich linguistic knowledge (e.g., a
generative grammar or a tagged corpus of poetical text fragments). A differ-
ent family of approaches is based on Markov chains or n-grams. They learn
a model of word sequences from a given corpus and use this model to pro-
duce new poetry. The typical shortcoming of such approaches is that longer
sequences of text make no sense grammatically or semantically.

Our goal is to minimize all explicit knowledge about the world or the lan-
guage, and instead rely on given corpora for implicit knowledge about them.
Additionally, some off-the-shelf linguistic analysis tools are needed (lemma-
tizer, part-of-speech tagger, morphological analyzer and synthesizer). We take
corpora as input, just like Markov models, but the method is completely
different.

We use two corpora. The first one, called background corpus, is used to
analyze word co-occurrences and to construct a word association network.
This network is used to control the topic and semantic coherence of poetry.
The second corpus, called grammar corpus, is used as a set of grammatical
examples or templates in an instance-based manner.

Data. We currently generate poetry in Finnish. The background corpus is
Finnish Wikipedia, and the grammar corpus consists of older Finnish poetry.

4.1 Method

The input to the method essentially consists of three items: the background
corpus, the grammar corpus, and a topic word.

The contents and coherence of the poem are controlled by using words that
are related to the given topic word in the background corpus, as measured by
LLR. The grammatical correctness, in turn, is partially guaranteed by taking
a random fragment (e.g., a sentence or a poem) from the grammar corpus,
and using its grammatical structure in the generated poem.

More specifically, an example fragment of the desired length is chosen
from the grammar corpus. It is then analyzed morphologically for the part
of speech, case, verb tense, clitics, etc. of each word.

Then, words (especially verbs, nouns, adjectives and adverbs) in the frag-
ment are substituted independently, one by one, by words associated with
the given topic. The substitutes are of the same type with the original words
and are transformed to similar morphological forms. The original word is left
intact, however, if there are no words associated with the topic that can be
transformed to the correct morphological form. This can happen, e.g., if the
morphological form is rare or complex.
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4.2 Results

We next give some example poems generated by the method, translated from
Finnish originals. The first poem is about children’s play (in the left column).
The original text on which it is based (in the right column) is a fragment of
a poem by Uuno Kailas.

Computer-generated poem Text used as a template
How she played then how she played once
in a daring, daring whispering in a big green park
under the pale trees. under the lovely trees.
She had heard for fun She had watched for fun
how her whispering how her smile
drifted as jingle to the wind. fell down as flowers,

The following poem is about hand. The poem fragment used as a template
is by Edith Södergran.

Computer-generated poem Text used as a template

In a pale fist In a gloomy forest
in a well-balanced fist, In a dim forest
the buds are so pale flowers are so pale
in your image lies a dear child god. In the shadow lies a sick god

The last example is about snow. The text used as a template is by Eino
Leino.

Computer-generated poem Text used as a template

Lives got the frolic ways, Waves fared the wind’s ways,
snow the home of time, sun the track of time,
softly chimed abandoned homes, slowly skied for long days,
softly got frolics beloved – slowly crept for long nights –
ripening crop got the snows’ joys. day wove the deeds of moons

We evaluated the poetry using a panel of twenty random subjects. Each
of them evaluated 22 poems, of which 11 were computer-generated and 11
human-written. The poems were presented in a random order and the sub-
jects were not informed that some of the poems are computer-generated.
Each poem was evaluated qualitatively along six dimensions: (1) How typical
is the text as a poem? (2) How understandable is it? (3) How good is the
language? (4) Does the text evoke mental images? (5) Does the text evoke
emotions? (6) How much does the subject like the text? These dimensions
were evaluated on the scale from one (very poor) to five (very good).

On each of the dimensions, the 67% confidence intervals of the answers
for computer-generated vs. human-written poetry overlap a lot (Figure 1),
indicating that a large fraction of computer-generated poetry is as good as
human-written poetry, even if on average human-written poetry is better.
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Fig. 1 Subjective eval-
uation of computer-
generated and human-
written poetry along six
dimensions (see text).
Results are averaged over
all subjects and poems;
whiskers include one
standard deviation above
and below the mean.

This is a striking result given the simplicity of the methods, and again in-
dicates that simple text analysis methods can be powerful components of
verbally creative systems.

5 Conclusions

We have shown how word co-occurrence analysis can be used to perform acts
requiring verbal creativity. The Remote Associates Test directly measures the
capability to associate words, which is a relatively easy task for a computer
when it is given a large corpus. Generation of poetry is a much more complex
problem, but word associations together with existing poetry as templates
can give surprisingly good results.

The results indicate that word co-occurrence analysis can be a powerful
building block of creative systems or systems that support human creativity.
While 2-grams were sufficient for achieving a high score on RAT, more relaxed
co-occurrences are likely to provide more interesting semantic associations to
support or inspire creativity, as suggested by Gross et al. [7].

We have used statistical, co-occurrence-based associations of words. The
benefit is that their coverage is large, but at the same time they lack explicit
semantics. Our results on computational generation of poetry [14] show that
this does not prevent them from being used in tasks that demand higher
verbal creativity.

In this paper, we have only touched on some specific problems in verbal
creativity. We believe that corpus-based approaches can be powerful for many
other creative problems, too: they are adaptive and the methods are largely
independent of language and resources such as lexicons or knowledge-bases.

Acknowledgements. This work has been supported by the Algorithmic Data
Analysis (Algodan) Centre of Excellence of the Academy of Finland.
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Combining Imprecise Probability
Masses with Maximal Coherent
Subsets: Application to Ensemble
Classification

Sébastien Destercke and Violaine Antoine

Abstract. When working with sets of probabilities, basic information fusion
operators quickly reach their limits: intersection becomes empty, while union
results in a poorly informative model. An attractive means to overcome these
limitations is to use maximal coherent subsets (MCS). However, identifying
the maximal coherent subsets is generally NP-hard. Previous proposals ad-
vocating the use of MCS to merge probability sets have not provided efficient
ways to perform this task. In this paper, we propose an efficient approach to
do such a merging between imprecise probability masses, a popular model of
probability sets, and test it on an ensemble classification problem.

Keywords: Ensemble, inconsistency, information fusion, maximal coherent
subsets.

1 Introduction

When multiple sources provide information about the ill-known value of some
variable X it is necessary to aggregate these pieces of information into a
single model. In the case where the initial uncertainty models are precise
probabilities and where the aggregated model is constrained to be precise as
well, there are only a few options to combine the information (see [3] for a
complete review).

The situation changes when one considers imprecision-tolerant
uncertainty theories, such as possibility theory, evidence theory or imprecise
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probability theory (see [7]). As they extend both set-theoretic and probabilis-
tic approaches1, these theories can use aggregation operators coming from both
frameworks, i.e., they can generalise intersections and unions of sets as well as
averaging methods.

When there is (strong) conflict between information pieces, both conjunc-
tive (intersection) and disjunctive (union) aggregation face some problems:
conjunction results are often empty and disjunction results are often too
imprecise to be really useful. A theoretically attractive solution to these prob-
lems is to use maximal coherent subsets (MCS) [11], that is to consider subsets
of sources who are consistent and that are maximal with this property. Ag-
gregation can then be done by combining conjunction within maximal coher-
ent subsets with other aggregation operators, e.g., disjunction. Practically, the
main difficulty that faces this approach is to identify MCS, a NP-hard problem
in the general case.

Different solutions have been proposed to combine inconsistent pieces of
information within the framework of imprecise probability theory. In [10]
and [12], hierarchical models are considered. In [1] and [8], Bayesian-like
methods (i.e., using conditional probabilities) of aggregation are proposed.
In [9] and [14], non-Bayesian methods are studied (although [14] considers
that combination methods should commute with Bayesian updating). In the
two latter references, MCS are proposed as a solution to combine information
pieces that are partially inconsistent, but no practical methods are given to
identify MCS.

In this paper, we concentrate on imprecise probability masses and propose
a practical approach to apply MCS inspired combination methods to such
models. We work in a non-Bayesian framework. Section 2 recalls the neces-
sary background on imprecise probabilities and information fusion. Section 3
describes our approach, of which the most important part is the algorithm
to identify MCS. Finally, Section 4 presents an application to ensemble clas-
sification, in which resulting classification models are combined using MCS.

2 Preliminaries

The theory of imprecise probabilities [15] is a highly expressive frame-
work to represent uncertainty. This section presents the basics of imprecise
probabilities.

2.1 Imprecise Probabilities

Consider a variable X taking values in a finite domaine Dx of n elements
{x1, x2, . . . , xn}. Basically, imprecise probabilities characterize uncertainty
about X by a closed convex set P of probabilities defined on Dx. To this

1 Except possibility theory, that does not encompass probabilities as special cases.
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set P can be associated Lower and upper probabilities that are mappings
from the power set 2Dx to [0, 1]. They are respectively denoted P and P
and are defined, for an event A ⊆ Dx, as P (A) = infp∈P P (A) and P (A) =
supp∈P P (A). These two measures are dual, in the sense that P (A) = 1 −
P (Ac), with Ac the complement of A. Hence, all the information is contained
in only one of them.

Alternatively, one can start from a lower measure P and compute the
convex set PP = {P ∈ P(Dx)|P (A) ≥ P (A), ∀A ⊆ Dx} of dominating
probability measures (P(Dx) is the set of all probabilities on Dx). Note that
the lower value P∗(A) = infP∈PP P (A) need not coincide with P (A) in gen-
eral. If the equality P∗ = P holds, then P is said to be coherent. In this
paper, we will deal exclusively with coherent lower probabilities. Note that
lower probabilities are not sufficient to represent every possible convex sets
of probabilities.To represent any convex set P , one actually needs to consider
bounds on expectations (see [15]).

2.2 Imprecise Probability Masses (IPM)

Usually, the handling of generic sets P (and sets represented by lower prob-
abilities) represent a heavy computational burden. In practice using simpler
models alleviate this computational burden to the cost of a lower expressivity.
Imprecise probability masses [4] (IPM) are such simpler models.

IPM can be represented as a family of intervals L = {[li, ui], i = 1, . . . , n}
verifying 0 ≤ li ≤ ui ≤ 1∀i. The interval bounds are interpreted as probability
bounds over singletons. They induce a set PL = {p ∈ P(Dx)|li ≥ p(xi) ≥
ui, ∀xi ∈ Dx}. An extensive study of IPM and their properties can be found
in [4].

A set L of IPM is said to be proper if the condition
∑n

i=1 li ≥ 1 ≥∑n
i=1 ui

holds, and PL �= ∅ if and only if L is proper. Considered sets are always
proper, other types having no interest. To guarantee that lower and upper
bounds are reachable for each singleton xi by at least one probability in PL,
the intervals must verify:

∑

i�=j
lj + ui ≤ 1 and

∑

i�=j
uj + li ≥ 1 ∀i. (1)

If L is reachable, lower and upper probabilities of PL can be computed as
follows:

P (A) = max(
∑

xi∈A
li, 1−

∑

xi /∈A
ui), P (A) = min(

∑

xi∈A
ui, 1−

∑

xi /∈A
li). (2)

If L is not reachable, a reachable set L′ is obtained by applying Eq. (2) to
singletons.
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2.3 Basic Combinations of Imprecise Probabilities

When M sources provide information, there are three basic ways to combine
this information: through a conjunction, a disjunction or a weighted mean.
When information is given by credal sets Pi, i = 1, . . . ,M , computing these
basic combination results present some computational difficulties [9]. Com-
putations become much easier if we consider a set L1, . . . , LM of IPM. In this
case, if li,j , ui,j denote respectively the lower and upper probability bounds
on element xi given by source j, (approximated) combinations are as follows:

• Weighted mean (L∑): li,
∑ =

∑
j=1,M wj li,j , ui,

∑ =
∑

j=1,M wjui,j
• Disjunction (L∪): li,∪ = minj=1,M li,j , ui,∪ = maxj=1,M ui,j
• Conjunction (L∩):

li,∩ = max( max
j=1,M

li,j , 1−
∑

k �=i
min
j=1,M

ui,j), (3)

ui,∩ = min( min
j=1,M

ui,j, 1−
∑

k �=i
max
i=1,M

li,j)

In general, the bounds obtained by conjunction (3) may be non-proper, i.e.
may result in an empty PL∩. L1, . . . , LM have a non-empty intersection iff
the following conditions [4] hold:

max
j=1,M

li,j ≤ min
j=1,M

ui,j for every i ∈ [1, n] (4)

∑

i=1,n

max
j=1,M

li,j ≤ 1 ≤
∑

i=1,n

min
j=1,M

ui,j (5)

The first condition ensures that intervals have a non-empty intersection for
every singleton, while the second makes sure that the result is a proper prob-
ability interval.

3 Maximal Coherent Subsets (MCS) and IPM

This section describes the methods to identify and combine MCS.

3.1 Identifying MCS

When sources provide sets P1, . . . ,PM , finding MCS comes down to find every
subset K ⊆ [1,M ] such that

⋂
i∈K Pi �= ∅ and such that K is maximum with

this property (i.e., adding a new set would make the intersection empty).
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Fig. 1 Maximal coherent subsets on Intervals

Usually, identifying every possible coherent subset among P1, . . . ,PM is NP-
hard, making it a difficult problem to solve in practice.

A particularly interesting case where MCS can be found easily is when each
sources provide intervals [ai, bi], i = 1, . . . ,M . In this case, Algorithm 1 given
in [6] finds MCS. It requires to sort values {ai, bi|i = 1, . . . ,M} (complexity
in O(M logM)), and is then linear in the number of sources.

Algorithm 1. Maximal coherent subsets of intervals
Input: M intervals
Output: List of S maximal coherent subsets Kj

List = ∅, j=1, K = ∅ ;1

Order in an increasing order {ai|i = 1, . . . ,M} ∪ {bi|i = 1, . . . ,M} ;2

Rename them {ci|i = 1, . . . , 2M} with type(i) = a if ci = ak and type(i) = b if3

ci = bk ;
for i = 1, . . . , 2M − 1 do4

if type(i) = a then5

Add Source k to K s.t. ci = ak ;6

if type(i+ 1) = b then7

Add K to List (Kj = K) ;8

j = j + 1 ;9

else10

Remove Source k from K s.t. ci = bk ;11

This algorithm can be applied directly to IPM intervals to check MCS
satisfying Condition (4) (which is necessary for a subset of IPM to have a non-
empty intersection). Indeed, consider a singleton xi and the set of intervals
Li = [li,j , ui,j], j = 1,M : if K ⊆ [1,M ] is not a MCS of Li, then the credal
sets {Pj|j ∈ K} do not form a MCS. Hence, iteratively applying Algorithm 1
as exposed in Algorithm 2 allows to easily identify possible MCS among sets
PL1 , . . . ,PLM . In each iteration (Line 2), Algorithm 2 refines the MCS found
in the previous one (stored in List) by finding MCS for probaiblity intervals
of singleton xi (Line 5).
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Algorithm 2. MCS identification for IPM
Input: M IPM
Output: List of S possible maximal coherent subsets Kj

List = {{1, M}} ;1

for i = 1, . . . , n do2

K=∅;3

foreach subset E in List do4

Run Algorithm 1 on [li,j , ui,j ], j ∈ E ;5

Add resulting list of MCS to K;6

List= K;7

Example 1. Consider the IPM defined on Dx = {x1, x2, x3} and summarised
in Table 1. Running Algorithm 2 then provides successively the following
MCS: K = {{1, 2, 3}, {2, 3, 4}} after the first iteration (i = 1 in Line 2 of
Algorihm 2); K = {{1, 2}, {3}, {2, 4}} after the second iteration, and K is
not changed during the third iteration.

Table 1 Examples of IPM

Source1
x1 x2 x3

ui,1 0.6 0.5 0.2
li,1 0.4 0.3 0.

Source2
x1 x2 x3

ui,2 0.55 0.55 0.2
li,2 0.35 0.35 0.

Source3
x1 x2 x3

ui,3 0.5 0.2 0.6
li,3 0.3 0. 0.4

Source4
x1 x2 x3

ui,4 0.35 0.6 0.35
li,4 0.15 0.4 0.15

Some subsets K1, . . . ,KS of sources resulting from Algorithm 2 do not satisfy
Condition (5). If K� is such a set, then one can either make an (exponential)
exhaustive search of MCS within K�, or correct IPM in K� in a minimal way,
so that they satisfy (5). In this last case we can transform [9] bounds li,j and
ui,j , j ∈ K�, i ∈ [1, n] into l′i,j = εli,j and u′i,j = εui,j + (1 − ε) with ε the
minimal value such that

∑

i=1,n

max
j∈K�

l′i,j ≤ 1 ≤
∑

i=1,n

min
j∈K�

u′i,j. (6)

This strategy makes the identification of MCS easy. Roughly speaking, it ap-
plies Algorithm 1 to probabilistic (expectation) bounds coming from different
sources but bearing on common events (functions). Note that the same strat-
egy can be applied to models based on peculiar families of events (functions),
such as p-boxes [5].
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3.2 Combination with MCS

Once MCS K1, . . . ,KS of sources have been identified, they can be used to
combine inconsistent information. Without loss of generality, consider the
indexing such that |K1| ≥ . . . ≥ |KS | where |Ki| is the cardinality of Ki (i.e.,
the number of sources within it).

We then propose two ways of combining the probability sets PL1 , . . . ,PLM .
In both of them, we consider the IPM LK�

, � = 1, . . . , S obtained by com-
bining IPM in K� according to the conjunctive rule (3).

The first rule combines disjunctively the first n IPM LKi, that is

li,∪∩n = min
�=1,n

li,K�
, ui,∪∩n = max

�=1,n
ui,K�

(7)

where li,K�
, ui,K�

are the probability bounds given by LK�
on xi.

The second rule combines by a weighted mean the first n, LKi , that is

li,∪∩n =
∑

�=1,n

w�,nli,K�
, ui,∪∩n =

∑

�=1,n

w�,nui,K�
(8)

where w�,n = |K�|/∑i=1,n |Ki| is the importance of K� in number of sources (a
similar strategy is used in [9]). If n = S the rules simply combine every MCS.

4 Application to Ensemble Classification

Combination is an essential feature of ensemble classification. As classifiers
often disagree together, using a MCS based approach to combine the differ-
ent sources appears sensible. We have therefore tested our approach in the
following way: we have trained forest of decision trees; for a given instance
and for each decision trees, we have built an IPM model using the Imprecise
Dirichlet model (IDM) with an hyperparameter s = 4 (see [2] for details) and
taking the samples in the tree leaves as observations. We then combined the
different IPM with the two rules (7) and (8) (n=5) and selected the final class
according to the maximin and maximality criterion (see [13] for details). The
former results in a unique decision while the latter results in a set of possible
optimal decisions.

Classifier performances are estimated using discounted accuracy: assume
we have T observations whose classes xi, i = 1, . . . , T are known and for
which T (possibly imprecise) predictions X̂1, . . . , X̂T have been made. The
discounted accuracy d− acc of the classifier is then

d− acc =
1

T

T∑

i=1

Δi

f(|X̂i|)
, (9)
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with Δi = 1 if xi ∈ X̂ i, zero otherwise and f an increasing function such
that f(1) = 1. Set accuracy (s− acc) is obtained with f(|X̂i|) = 1.

Results are summarized in Table 2. Numbers of trees in the forest are
{10, 20, 50} and the data sets are Zoo, Segment and Satimage (taken from
UCI), all of them with 7 classes. Results were compared to a classical voting
strategy. We have also indicated the average CPU time needed to apply the
different combination rules. From the results, it appears that using a conjunc-
tive rule between provided imprecise probabilistic models does not improve
much the results of classical voting. This is not surprising as we use precise
decision trees and IDM to build our models, and it would be worthwhile to
check whether these conclusions still hold when using credal classifiers. The
interest of using imprecise probabilistic models appears when we allow for
some imprecision, that is when we adopt a partially disjunctive rule (Rule (7)
with n=5). In this latter case, allowing for imprecise classification increases
the percentage of well-recognized instances while not decreasing too much the
precision. Finally, we can notice that the average computational time does
not increase much when the number of sources increases.

Table 2 Results summary. d-acc: discounted accuracy, s-acc: set accuracy, acc:
standard accuracy (with maximin)

data Tree Single Votes Rule (7) (n=1) Rule (7) (n=5) Rule (8) (n=5) avg CPU
set nb tree d-acc s-acc acc d-acc s-acc acc d-acc s-acc acc time

Sat 10 0.81 0.88 0.87 0.88 0.87 0.64 0.98 0.81 0.87 0.89 0.87 15.16
20 0.81 0.89 0.88 0.89 0.88 0.61 0.98 0.82 0.88 0.90 0.88 23.80
50 0.81 0.89 0.89 0.90 0.89 0.63 0.97 0.85 0.89 0.90 0.89 61.28

Zoo 10 0.91 0.92 0.86 0.86 0.86 0.69 0.96 0.80 0.88 0.92 0.92 0.28
20 0.91 0.93 0.79 0.79 0.79 0.60 0.99 0.68 0.85 0.91 0.88 0.50
50 0.91 0.93 0.90 0.92 0.91 0.69 0.96 0.87 0.86 0.88 0.88 2.34

Seg 10 0.93 0.96 0.96 0.96 0.96 0.72 1.00 0.84 0.95 0.97 0.96 5.59
20 0.93 0.95 0.95 0.95 0.95 0.66 0.99 0.81 0.95 0.96 0.95 8.03
50 0.93 0.96 0.96 0.96 0.96 0.64 0.98 0.84 0.96 0.96 0.96 17.64

5 Conclusion

In this paper, we have proposed an efficient way to find MCS with impre-
cise probability masses, and have applied it to the combination of multiple
classifiers. First results indicate that using a disjunctive approach to combine
conjunctively merged MCS may quickly result in poorly informative models,
hence it may be safer in general to adopt other strategies (e.g., combining
only a limited number of MCS or using a weighted mean).

Note that the algorithms presented here can be applied to other imprecise
probabilistic models as well, as long as they are defined by probability bounds
bearing on the same events (or by expectation bounds bearing on the same
function).
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The Goodman-Nguyen Relation in
Uncertainty Measurement

Renato Pelessoni and Paolo Vicig

Abstract. The Goodman-Nguyen relation generalises the implication (inclu-
sion) relation to conditional events. As such, it induces inequality constraints
relevant in extension problems with precise probabilities. We extend this
framework to imprecise probability judgements, highlighting the role of this
relation in determining the natural extension of lower/upper probabilities
defined on certain sets of conditional events. Further, a generalisation of the
Goodman–Nguyen relation to conditional random numbers is proposed.

Keywords: Goodman-Nguyen relation, imprecise probabilities.

1 Introduction

It is well known that probability constraints depend essentially on relations
among events. In particular, the monotonicity requirement that

(E ⇒ F )→ μ(E) ≤ μ(F ), (1)

μ being a probability or a more general uncertainty measure, is a very minimal
one. In fact, E ⇒ F means that F is certainly true whenever E is true, but
might possibly be true even in cases when E is false: then obviously F must be
at least as likely as E. In fact, (1) holds also when μ is a coherent lower/upper
probability, or a capacity. In the latter case, it is generally taken as one of
the defining properties of capacities.

The implication relation ‘⇒’ also plays a role in the following problem,
a special case of de Finetti’s Fundamental Theorem [3]: given a coherent
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probability P on the set A(IP ) of all events (logically) dependent on a given
partition IP , which are its coherent extensions to an additional event E /∈
A(IP )? The well known answer is that P (E) must be chosen in a closed
interval, P (E∗) ≤ P (E) ≤ P (E∗), with E∗ = ∨{e ∈ IP : e ⇒ E}, E∗ =
∨{e ∈ IP : e ∧ E �= ∅}, E∗, E∗ ∈ A(IP ).

A generalisation of the implication relation to conditional events, the
Goodman-Nguyen (in short: GN) relation ≤GN was apparently first intro-
duced in [4], and some of its implications for precise conditional probabilities
were studied in [1, 2, 5].

The main purpose of this paper is to further explore the relevance of the
GN relation in more general cases. Precisely, we consider imprecise condi-
tional probabilities which are either coherent or C-convex. Some preliminary
material is recalled in Section 2, including a survey of known facts about the
GN relation. We then discuss the generalisation of the basic result (1) to

A|B ≤GN C|D → μ(A|B) ≤ μ(C|D) (2)

in Section 3, and the role of the GN relation in extension problems in Section
3.1. The main results here are Propositions 3 and 4; in particular, Proposition
4 determines the natural extension of a coherent lower probability (alterna-
tively the convex natural extension of a C-convex lower probability) assessed
on a structured set AC of conditional events. In Section 4 we explore the
possibility of further extending the GN relation to conditional random num-
bers, and hence to employ it with coherent lower previsions. To the best of
our knowledge, these questions have not been tackled yet in the relevant lit-
erature. By Proposition 5, the generalisation we propose ensures an analogue
of eq. (2), whilst it is less clear if and how it may be employed in extension
problems. Some final considerations are included in Section 5. Due to space
limitations, most proofs have been omitted.

2 Preliminaries

In the sequel, following [3, 4] and others, we employ the logical rather than
the set theoretical notation for operations with events. In terms of a truth
table, a conditional event A|B can be thought of as true, when A and B are
true, false when A is false and B true, undefined when B is false. It ensues
that A|B and A ∧B|B have the same logical values, i.e. A|B = A ∧B|B.

Given a partition IP , i.e. a set of pairwise disjoint events whose logical sum
(union) is the sure event Ω, an event E is logically dependent on IP iff E is
a logical sum of events of IP , E = ∨{ω ∈ IP : ω ⇒ E}. The set A(IP ) of all
events logically dependent on IP is a field (also called the powerset of IP ).

The precise or imprecise conditional probabilities considered in the sequel
will often be defined on AC = AC(IP ) = {A|B : A,B ∈ A(IP ), B �= ∅}.
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Given IP , a conditional random number X |B, B ∈ A(IP ) − {∅}, takes
up the values X(ω), for ω ∈ IP , ω ⇒ B, is undefined for ω ⇒ Bc. When
B = Ω, X |Ω = X is a(n unconditional) random number. The indicator IA of
an event A is the simplest non-trivial random number; we shall often denote
A and its indicator IA with the same letter A. Note that A⇒ B is equivalent
to IA ≤ IB . An arbitrary set of events S = {Ei : i ∈ I} does generally not
constitute a partition, but originates the partition IPg generated by S, whose
elements are the logical products ∧i∈IE

′
i, where for each i ∈ I the symbol E′

i

can be replaced by either event Ei or its negation Ec
i . By specifying E′

i for
each i in all possible ways, we get the elements (some of them, in general,
may be impossible) of IPg. The events in S belong to A(IPg).

A lower prevision P on a set S of (bounded, in what follows) conditional
random numbers is a map P : S 	−→ R. If S has the property X |B ∈
S → −X |B ∈ S, its conjugate upper prevision is defined as P (X |B) =
−P (−X |B). Because of conjugacy, we may employ lower or alternatively
upper previsions only.

Definition 1. A lower prevision P : S 	−→ R is W-coherent iff, for all n ∈
N, ∀X0|B0, . . . , Xn|Bn ∈ S, ∀ s0, s1, . . . , sn real and non-negative, defining
B∗ =

∨n
i=0 Bi and G =

∑n
i=1 siBi(Xi − P (Xi|Bi))− s0B0(X0 − P (X0|B0)),

the following condition holds: sup(G|B∗) ≥ 0.

This is essentially Williams’ definition of coherence [12], as restated in [8],
and is equivalent to Walley’s definition 7.1.4(b) in [11], if S is made up of a
finite number of conditional random numbers, each with finitely many values.
If X |B = X |Ω = X , ∀X |B ∈ S, it reduces to Walley’s (unconditional)
coherence ([11], Sec. 2.5.4 (a)).

A weaker concept than W-coherence is that of C–convex conditional lower
prevision, obtained from Definition 1 by introducing just the extra convexity
constraint

∑n
i=1 si = s0 (> 0) and requiring that P (0) = 0. These previsions

were studied in [7] and correspond to certain kinds of risk measures.
Coherent conditional previsions may be defined similarly:

Definition 2. P : S 	−→ R is a coherent conditional prevision iff, for all
n ∈ N, ∀ X1|B1, . . . , Xn|Bn ∈ S, ∀ si ∈ R (i = 1, . . . , n), defining G =∑n

i=1 siBi(Xi − P (Xi|Bi)), B
∗ =

∨n
i=1 Bi, it holds that sup(G|B∗) ≥ 0.

In the consistency concepts above, we may speak of (lower, upper or precise)
probability μ instead of prevision if, for any X |B ∈ S, X is (the indicator of)
an event. In all such cases, the following are necessary consistency conditions:

μ(A|B) ∈ [0; 1], μ(∅|B) = 0, μ(B|B) = 1. (3)

In general, results for upper probabilities follow from those for lower proba-
bilities by the conjugacy equality P (A) = 1− P (Ac).

Definition 3. (Goodman–Nguyen relation.) We say that A|B ≤GN C|D iff

A ∧B ⇒ C ∧D and Cc ∧D ⇒ Ac ∧B. (4)
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The GN relation was introduced in an equivalent form in [4], while investigat-
ing conditional event algebras. As observed in [1, 5, 6], the intuition behind
Definition 3 can be explained easily resorting to betting arguments, much
in the style of de Finetti [3]. In fact, (4) states that whenever we bet both
on A|B and on C|D (iff B ∧ D is true), if we win the bet on A|B, we also
win the bet on C|D (because A ∧ B ⇒ C ∧D), and losing the bet on C|D
implies also our losing the bet on A|B (because of Cc ∧D ⇒ Ac ∧B). When
B = D = Ω, just one of the implications in (4) is needed, because of the
tautology A⇒ C ↔ Cc ⇒ Ac.

Not surprisingly then, (2) should hold. In the case that μ is a conditional
probability P , (2) was stated without proof in [4] (assuming P defined on
AC), and proved in [1] (under general assumptions) and independently (in a
less general case) in [5]. The result ensues also from Proposition 1 in Section
3, supplying a unique proof for either precise or imprecise probabilities. The
GN relation in extension problems is explored in [1], showing that, given a
coherent probability P on a finite set of conditional events, the bounds on
its coherent extensions on one additional event C|D depend on the values
of P on two events, (C|D)∗ and (C|D)∗, determined by the GN relation.
We consider extension problems for arbitrary sets of events and precise or
imprecise probability assessments in Section 3.

3 The GN Relation with Imprecise Probabilities

Remark 1. If A|B ≤GN C|D, then necessarily the partition IPg generated by
A, B, C, D allows for at most 7 non-impossible events that imply B ∨ D:
ω1 = ABCD, ω2 = AcBCD, ω3 = ABcCD, ω4 = AcBcCD, ω5 = AcBCcD,
ω6 = AcBCDc, ω7 = AcBCcDc. This is easily seen from (4), using A ⇒
B ↔ A ∧Bc = ∅.

Example 1. If A ⇒ C ⇒ D ⇒ B, then A|B ≤GN C|D. Of the 7 events in
Remark 1, only 4 (at most, iff A �= ∅) are non-impossible: ω1, ω2, ω5, ω7.

We prove now equation (2) for C-convex probabilities.1

Proposition 1. Let μ be a C-convex lower (or upper) probability defined on
S = {A|B,C|D}. Then, A|B ≤GN C|D implies μ(A|B) ≤ μ(C|D).

Proof. Consider, in the lower probability case,

G|B∗ = G|B ∨D = B(A− μ(A|B)) −D(C − μ(C|D))|B ∨D. (5)

Assuming A|B ≤GN C|D, by Remark 1 G|B ∨D can take up at most 7
values, actually fewer distinct ones: G(ω1) = G(ω5) = μ(C|D) − μ(A|B),

1 Since any W-coherent or coherent probability is C-convex, Proposition 1 applies
to these probabilities too.
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G(ω2) = μ(C|D) − μ(A|B) − 1 ≤ 0, G(ω3) = G(ω4) = μ(C|D) − 1 ≤ 0,
G(ω6) = G(ω7) = −μ(A|B) ≤ 0. If either μ(A|B) = 0 or μ(C|D) = 1, (2) is
trivial. If not, maxG|B∗ = G(ω1) = μ(C|D) − μ(A|B) ≥ 0, i.e. (2) holds. A
similar line of reasoning applies to upper probabilities. �
Example 2. If A⇒ B1 ⇒ B0, it is easy to check that A|B0 ≤GN A|B1. This
is in fact a special case of Example 1. By Proposition 1,

μ(A|B0) ≤ μ(A|B1) (6)

if μ is either a probability (well known from the product rule P (A|B0) =
P (A|B1)P (B1|B0)) or an upper/lower probability which is W-coherent (es-
tablished in a different way in [10], Proposition 13) or C-convex. If B1 ⇒ B0,
the GN relation and hence (6) still hold if A ⇒ B1 ∨ Bc

0, while, when A is
arbitrary, (6) is replaced by

μ(A ∧B1|B0) ≤ μ(A|B1). (7)

To see this, use (6) and Proposition 1: A ∧B1|B0 ≤GN A ∧B1|B1 = A|B1.

3.1 The GN Relation in Extension Problems

An interesting feature of the GN relation is that it allows comparing con-
ditional events whose conditioning events are possibly different. This fact is
useful in the generalisations of the extension problem presented in the intro-
duction that we are going to discuss now.

Let IP be any partition. We wish to extend an uncertainty measure μ,
assessed on AC(IP ), to an arbitrary event C|D. We assume in what follows
C|D �= ∅|D, C|D �= D|D, ruling out limiting cases where the extension is
already known by (3).

Definition 4. Define m(C|D) = {A|B ∈ AC(IP ) : A|B ≤GN C|D},
M(C|D) = {A|B ∈ AC(IP ) : C|D ≤GN A|B}.
It is easy to see that

Proposition 2. The sets m,M are non-empty and have, respectively, a max-
imum (C|D)∗ and a minimum (C|D)∗ conditional event w.r.t. ≤GN ,

(C|D)∗ = (C ∧D)∗|[(C ∧D)∗ ∨ (Cc ∧D)∗],
(C|D)∗ = (C ∧D)∗|[(C ∧D)∗ ∨ (Cc ∧D)∗].

(8)

where (C∧D)∗ = ∨{e ∈ IP : e⇒ C∧D}, (Cc∧D)∗ = ∨{e ∈ IP : e∧Cc∧D �=
∅}, (C ∧ D)∗ = ∨{e ∈ IP : e ∧ C ∧ D �= ∅}, (Cc ∧ D)∗ = ∨{e ∈ IP : e ⇒
Cc ∧D}.
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It holds that

Proposition 3. Let P (·|·) be a coherent precise probability on AC . Any of
its extensions on AC ∪ {C|D} is a coherent precise probability iff P (C|D) ∈
[P ((C|D)∗);P ((C|D)∗)].

For extensions on an arbitrary set of conditional events, we have:

Proposition 4. Let P (P ) be a W-coherent, respectively C-convex lower (up-
per) probability defined on AC and E be an arbitrary set of conditional events.
Then, the extension of P (P ) on AC ∪ E, such that P (C|D) = P ((C|D)∗)
(P (C|D) = P ((C|D)∗)), ∀C|D ∈ E, is a W-coherent, respectively C-convex
lower (upper) probability.

In the special case of a coherent (precise) probability P , Propositions 3 and
4 show that both its extension P (C|D) = P ((C|D)∗), ∀C|D ∈ E , and its
extension P (C|D) = P ((C|D)∗), ∀C|D ∈ E , are surely again coherent precise
probabilities on AC ∪ E only when E is a singleton. In general, they are
either a lower (the former) or an upper (the latter) W-coherent probability on
AC ∪E . Like its unconditional counterpart, this extension problem naturally
generates imprecise uncertainty measures. When the initial measure is a lower
(upper) W-coherent probability P (P ), so is its extension by Proposition 4.
Let us term it GN-extension. Interestingly, as a straightforward consequence
of Propositions 1 and 2, the GN-extension is the least committal extension of
P (or P ): in fact, taking for instance P , for any other W-coherent extension
Q of P , Q(C|D) ≥ Q((C|D)∗) = P ((C|D)∗) = P (C|D) (for the first equality,
note that Q and P coincide on AC). As well known, this property identifies
the natural extension (cf. [11]) of P on AC(IP ) ∪ E . Similarly, when the
initial P (or P ) is C-convex the GN-extension is what is termed C-convex
natural extension in [7]. In both instances, computing the natural extensions
is straightforward using the GN-relation: we just have to detect (C|D)∗ (or
(C|D)∗).

The procedure requires that the starting P , P or P are defined on AC . If
they are assessed on an arbitrary set S of conditional events, we should first
extend P , P or P on some AC(IP ) ⊃ S to apply Proposition 4; a convenient
IP is the partition generated by S. Clearly, Proposition 4 does not add much,
operationally, in this case: we would still need an operational procedure for the
extension on AC(IP ). It is meaningful at a theoretical level, as an explanation
of how logical constraints determine our inferences on additional events.

4 A GN Type Relation with Imprecise Previsions

How could the GN relation ≤GN be defined and employed to compare con-
ditional random numbers? We next propose a possible generalisation.
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Definition 5. X |B ≤GN Y |D iff

BX(ω) + sup
B
X · BcD(ω) ≤ DY (ω) + inf

D
Y · BDc(ω), ∀ω ⇒ B ∨D. (9)

The motivation for this definition is very similar to the betting argument in
[5, 6], recalled in Section 2 to justify the GN relation. In fact:

a) if ω ⇒ B ∧D, (9) reduces to X(ω) ≤ Y (ω). This means: whenever we bet
both on X |B and on Y |D, we gain at least as much with the bet on Y |D;

b) for ω ⇒ Bc ∧D, it reduces to supB X = sup{X |B} ≤ Y (ω). For such ω,
we bet on Y |D but not on X |B. By the last inequality the gain from our
bet on Y |D is not less than our (potential) gain on X |B, had we bet on
it;

c) if ω ⇒ B ∧ Dc, (9) reduces to X(ω) ≤ infD Y = inf{Y |D}, whose inter-
pretation is specular to that in b) above.

When X |B �= ∅|B and Y |D �= D|D, Definition 5 generalises Definition
3: if X , Y are (indicators of) events, say X = A, Y = C, (9) becomes
AB + max{A|B} ·BcD ≤ CD + min{C|D} ·BDc, and it can be shown that
A|B ≤GN C|D (by Definition 3) iff this inequality holds.

The partial ordering among conditional random numbers of the generalised
GN relation induces an agreeing ordering on their uncertainty measures in
the cases stated by the next result:

Proposition 5. Let S = {X |B, Y |D}. Then

X |B ≤GN Y |D ⇒ μ(X |B) ≤ μ(Y |D) (10)

whenever μ is either a coherent precise prevision P or a W-coherent lower
(upper) prevision P (P ), defined on S.

Proposition 5 generalises Proposition 1, except for C-convex probabilities. It
is not clear at present whether the result applies to such previsions too.

As for the inferential use of the GN relation with conditional random
numbers, the problem is considerably more complex than with events and
largely to be investigated yet. Consider for this the following example:

Example 3. How does (7) in Example 2 generalise with random numbers? In-
tuitively, we should first check whether, replacing A with X , B1X |B0 ≤GN

X |B1 is still true, if B1 ⇒ B0. Ignoring the trivial case B0 = B1, by
Definition 5 this inequality is equivalent to B1B0X + supB0

X · (Bc
0B1) ≤

B1X + infB1 X · (B0B
c
1), which is equivalent (B1B0 = B1, Bc

0B1 = 0,
B0B

c
1 ≥ 0) to inf(X |B1) ≥ 0, a condition always fulfilled if X |B is a

conditional event. On the contrary, it is easy to check that X |B1 ≤GN

B1X |B0 iff sup(X |B1) ≤ 0. Hence, X |B1 and B1X |B0 are GN-incomparable
iff inf(X |B1) · sup(X |B1) < 0. In this example, the GN relation is sign
sensitive.
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5 Conclusions

With imprecise probabilities, the GN relation allows computing easily the
natural extension of a W-coherent (or C-convex) assessment on the special set
AC , a problem which may be viewed as a generalisation of de Finetti’s Fun-
damental Theorem. While the exact relevance of the GN relation with impre-
cise previsions remains an open question, it may be asserted that it supplies
bounds on uncertainty measures, in certain specific instances. One such case is
considered in Example 3. However, the bound it achieves is rather rough. For a
stricter bound under looser hypotheses, see Proposition 3.1 in [9]. For another
example, let X |B ≥ 0 take up a finite number of values x1, x2, . . . , xn. Then
W-coherence requires that P (X |B) = P (

∑n
i=1 xiei|B) ≥ ∑n

i=1 xiP (ei|B),
where ei is the event ‘X = xi’, i = 1, . . . , n. Applying Proposition 1 to each
P (ei|B), we get the lower bound P (X |B) ≥∑n

i=1 xiP ((ei|B)∗).
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The CONEstrip Algorithm

Erik Quaeghebeur

Abstract. Uncertainty models such as sets of desirable gambles and (con-
ditional) lower previsions can be represented as convex cones. Checking the
consistency of and drawing inferences from such models requires solving fea-
sibility and optimization problems. We consider finitely generated such mod-
els. For closed cones, we can use linear programming; for conditional lower
prevision-based cones, there is an efficient algorithm using an iteration of
linear programs. We present an efficient algorithm for general cones that also
uses an iteration of linear programs.

Keywords: Consistency, convex cones, feasibility, inference, linear program-
ming.

1 Introduction

Mathematically speaking, frameworks for modeling uncertainty consist of
rules that specify what constitutes a within the framework valid model and
rules to perform computations with such models. For a number of frame-
works under the imprecise probability umbrella [8, 9], checking validity—i.e.,
the consistency criteria of avoiding sure & partial loss and coherence—and
calculating an inference—i.e., natural extension—involves solving feasibility
and optimization problems.

We illustrate in Section 2 that the feasibility aspect of these problems es-
sentially boils down to checking whether some vector lies in a general convex
cone, called general cone from now on, a cone that may be closed, open,
or ajar, i.e., neither open nor closed. For models specified in a finitary way,
algorithms to do this for closed and specific general cases can be found in
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the literature. In Section 4 we present an efficient algorithm for all general
finitary instances. But to do this, we first need to make a small detour with
Section 3 to discuss how we can represent finitary general cones—and there-
fore the feasibility and optimization problems that interest us—in a way that
is conducive to algorithm formulation.

Concepts & Notation. We assume that the possibility space Ω is non-
empty and finite. Gambles are real-valued functions on Ω, i.e., elements of
L := [Ω → R]. The indicator 1B of an event B ⊆ Ω is 1 on B and 0 elsewhere;
1ω := 1{ω} for ω ∈ Ω. The finite subset relation is �. A set superscripted
with ‘∗’ denotes the set of all its finite subsets. Vector inequalities: � (≥) is
pointwise (non-)strict; > means “≥ but not =”.

2 Problems Solved in the Literature

In this section, we present a number of problems from and solved in the litera-
ture. On the one hand, they are meant to make a link with the literature, and
on the other hand, we use them to illustrate that these problems essentially
boil down to checking whether some vector lies in a cone.

Lower Previsions and Sets of Almost-Desirable Gambles. The most
basic consistency criterion for lower previsions and sets of almost desirable
gambles is avoiding sure loss [8, §2.4 & §3.7.1]. Checking whether a lower
prevision P ∈ [K → R], with K � L, or set of almost desirable gambles A � L
incurs sure loss amounts to solving the feasibility problem below, where in
the former case A := {h− Ph : h ∈ K}:

find λ ∈ RA,
subject to

∑
g∈A λg · g � 0 and λ ≥ 0.

We can get an equivalent feasibility problem that can however be solved using
linear programming [10, §2.4] by replacing the constraints by

∑
g∈A λg · g ≤ −1 and λ ≥ 0.

By introducing (slack) variables μ ∈ RΩ, these can also be written as

∑
g∈A λg · g +

∑
ω∈Ω μω · 1ω = 0 and λ ≥ 0 and μ ≥ 1,

which express that the origin must lie in a closed cone spanned by the ele-
ments of A and {1ω : ω ∈ Ω}.

A typical inference drawn from a set of almost desirable gambles A � L
(or the lower prevision it may be derived from) is the lower prevision for a
gamble f ∈ L. This is calculated using natural extension [8, §3.1], i.e., the
linear program below:
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maximize α ∈ R,
subject to f − α ≥∑

g∈A λg · g and λ ≥ 0.

By introducing variables μ ∈ RΩ, the constraints can be written as

∑
g∈A λg · g +

∑
ω∈Ω μω · 1ω + α = f and λ ≥ 0 and μ ≥ 0,

which express that f must lie in the closed cone spanned by the elements of
A, {1ω : ω ∈ Ω}, and {1Ω,−1Ω}. This problem is always feasible: take, for
example, λ = 0, α = min f , and μ = f − min f ; it will be unbounded if A
incurs sure loss.

On top of avoiding sure loss, a lower prevision P ∈ [K → R], with K � L,
may be required to be coherent [8, §2.5]. This can be checked by verifying
that for all f ∈ L the natural extension coincides with Pf , so we do not need
to investigate this further.

Conditional Lower Previsions. Moving from unconditional to condi-
tional lower previsions, the basic ideas stay the same, but become more in-
volved because we need to take the conditioning events into account.

Avoiding partial loss [8, §7.1.2–3 & Notes 7.1(7.)] replaces avoiding sure
loss. Checking whether a conditional lower prevision P ∈ [N → R], with
N � L ×Ω∗ non-empty, incurs partial loss amounts to solving the feasibility
problem below [3, (17)], in which B := {([h−P (h|B)] · 1B, B) : (h,B) ∈ N} :

find (λ, ε) ∈ RB × RB,
subject to

∑
(g,B)∈B λg,B · [g + εg,B · 1B] ≤ 0 and λ > 0 and ε� 0.

An algorithm for solving this bilinearly constrained feasibility problem using
a sequence of linear programs has been first presented by Walley et al. [10,
Alg. 2] for a subclass and made explicit for the general case by Couso and
Moral [3, Alg. 1]. By introducing variables ν ∈ RB × RB and μ ∈ RΩ, the
constraints can be written as

∑
(g,B)∈B λg,B · [νg,B,g · g + νg,B,B · 1B] +

∑
ω∈Ω μω · 1ω = 0

and λ > 0 and ν � 0 and μ ≥ 0,

which express that the origin must lie in a general cone spanned by elements
of

⋃
(g,B)∈B{(1 − δ) · g + δ · 1B : 0 < δ < 1} and {1ω : ω ∈ Ω}.

Inferring the lower prevision of a gamble f ∈ L conditional on an
event C ⊆ Ω from a given conditional lower prevision P ∈ [N → R] as
above is calculated using a generalization of the natural extension procedure
seen before [3, (21)]:
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maximize α ∈ R,
subject to f · 1C − α · 1C ≥

∑
(g,B)∈B λg,B · [g + εg,B · 1B]

and λ ≥ 0 and ε� 0.

Again, this problem can be solved using linear program iteration [10, Alg. 4]-
[3, Alg. 2]. By introducing variables ν ∈ RB×RB and μ ∈ RΩ, the constraints
can be written as

∑
(g,B)∈B λg,B · [νg,B,g · g + νg,B,B · 1B] +

∑
ω∈Ω μω · 1ω + α · 1C = f · 1C

and λ ≥ 0 and ν � 0 and μ ≥ 0,

which express that f · 1C must lie in a general cone spanned by elements of⋃
(g,B)∈B{(1−δ) ·g+δ ·1B : 0 < δ < 1}, {1ω : ω ∈ Ω}, and {1C ,−1C}. This is

always feasible: take, e.g., λ = 0, α = min(f ·1C), and μ = [f−min(f ·1C)]·1C .

3 Representation and Problem Formulation

In the previous section, we presented four problems from the literature that
can essentially be formulated in terms of (conditional) lower previsions and
that result in specific general cones. General sets of desirable gambles [8,
App. F]-[9, §6]-[4] take the form of far more general general cones, and in
generalizations of desirability [6] essentially any general cone could appear.
So we must be able to deal with the feasibility and optimization problems
that arise out of working with such models.

In this section, we will first discuss a representation for finitary general
cones. Then we use that representation to formulate the general problem we
want to tackle.

Representation of General Cones. We use the idea of Couso and Moral
[3, Thm. 13; the need for such a representation is illustrated in Examples 3
& 4] to represent a finitary general cone as a convex hull of a finite number
of finitary open cones. Formally, given a finite set of finite sets of gambles
R � L∗, the corresponding cone is

R := {∑D∈R λD ·
∑

g∈D νD,g · g : λ > 0, ν � 0}.

Whereas ‘finitary’ has a well-known meaning for open and closed cones—
pointwise strict and non-strict convex hulls of finite sets of rays—, it is a
concept we have fixed for ajar and therefore general cones by choosing a
representation. To justify this choice, we employ facets [11]—the closed cones
that are a closed cone’s maximally dimensional non-trivial faces—to give an
appealing polytope-theoretically flavored definition and then show that the
chosen representation satisfies it:
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Definition. An ajar cone C is finitary iff its closure cl C is finitary and the
intersection of C with each of cl C’s facets is a finitary (open, closed, or ajar)
cone.

Facet recursion is bound to stop in a finite number of steps: open and closed
cones are terminal, with each step the dimension strictly decreases, and ∅ is
clopen.

Theorem. R is a finitary general cone for every R � L∗.
Proof. Because R and its elements have finite cardinality, clR is finitary;
also clR = clE , with E :=

⋃R. Let F be one of its (finite number of) facets,
let S := {D ∈ R : D ⊂ F}, and let D := {D}. Then S = R ∩ F , because
D \ F �= ∅ implies D ∩ F = ∅ by definition of D and the fact that F is a
facet. The proof is complete by facet recursion (replacing R by S in the first
sentence). �
The approach of the proof also allows us to construct a canonical cone-in-
facet representation (cf. concept of zero-layers [2, Ch. 12]). We illustrate this
in Figure 1.

g10

g5

g2

g7

g6

g3

g4

g1

g9

g8

{gk : k = 1..10}

{g1, g2}

{g2}

{g2, g4}

{g2} {g4}

{g6} {g8, g9}

Fig. 1 On the left, we show the intersection of a cone R with a plane. It can be
represented by R :=

{{g3, g5, g10}, {g1, g2}, {g2, g7}, {g8, g9}, {g2}, {g4}, {g6}
}
. On

the right, we order the sets E—as defined in the proof of the Theorem—for each
facet encountered in the facet recursion of R according to facet inclusion. Then{{gk : k = 1..10}, {g1, g2}, {g2, g4}, {g6}, {g8, g9}, {g2}, {g4}

}
is the resulting cone-

in-facet representation for R. Note that in terms of set sizes, this representation is
not minimal, as

{{g5, g7, g10}, {g1, g2}, {g8, g9}, {g2}, {g4}, {g6}
}

also represents R.

We use the CONEstrip algorithm to check whether g3 and g1 lie in the cone
R of Figure 1. First g3: in the first iteration, τ{g2} = τ{g4} = τ{−g3} = 1 and
τ is zero for other indices; because possibly, e.g., μ{g3,g5,g10},g3 > 0, we might
need a second iteration—with S =

{{g2}, {g4}, {−g3}
}

—in which τ = 1, so
g3 ∈ R. Next g1: in the first iteration, τ{g2} = τ{g1,g2} = τ{−g1} = 1 and τ
is zero for other indices; because necessarily μ{g3,g5,g10},g10 > 0, we need a
second iteration—with S =

{{g2}, {g1, g2}, {−g1}
}

—which is infeasible, so
g1 /∈ R.
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0

g1

g2

h
0

g1

g2

h g1 + g2

Fig. 2 On the left, we show the blunt closed cone C := {λ1 · g1 + λ2 · g2 : λ > 0}
(thin lines) and its proxy C′ := {μ1 · g1 + μ2 · g2 : μ ≥ 0, μ1 + μ2 ≥ 1} (thick lines):
{κ · h : κ ≥ 1} ∩ C′ �= ∅ is equivalent to h ∈ C. On the right, we show the open cone
C := {ν1 ·g1+ν2 ·g2 : ν�0} (dashed lines) and its proxy C′ := {μ1 ·g1+μ2 ·g2 : μ ≥ 1}
(thick lines): {κ · h : κ ≥ 1} ∩ C′ �= ∅ is equivalent to h ∈ C.

Formulation of the General Problem. Given a general cone represented
by R � L∗ and a gamble h ∈ L, we wish to

find (λ, ν) ∈ RR ××D∈RR
D

or maximize an affine function of μ := (λD · νD,g : D ∈ R, g ∈ D),

subject to
∑

D∈R λD ·
∑

g∈D νD,g · g = h

and λ > 0 and ν � 0

and POLC on μ

whereas POLC stands for possibly other, linear constraints.
To appreciate the general applicability of this problem for consistency

checking and inference, let us look at how the problems discussed in Sec-
tion 2 fit:

Incurring sure loss (given A of Sec. 2): R :=
{{1ω : ω ∈ Ω}∪A\ {0}} and

h := 0.
Unconditional natural extension (given A and f of Sec. 2):
R :=

{{g} : g ∈ A} ∪ {{1Ω}, {−1Ω}, {0}
} ∪ {{1ω} : ω ∈ Ω}

and h := f ;
objective function expression μ{1Ω},1Ω − μ{−1Ω},−1Ω .

Incurring partial loss (given B of Sec. 2):
R :=

{{g, 1B} : (g,B) ∈ B \ [{0} ×Ω∗]
} ∪ {{1ω} : ω ∈ Ω}

and h := 0.
Conditional natural extension (given B, f , and C of Sec. 2):
R :=

{{g, 1B} : (g,B) ∈ B} ∪ {{1C}, {−1C}, {0}
} ∪ {{1ω} : ω ∈ Ω}

and
h := f · 1C ;
objective function expression μ{1C},1C − μ{−1C},−1C .

The inclusion and exclusion of {0} is essentially a way of selecting between
constraints λ ≥ 0 and λ > 0.

4 The CONEstrip Algorithm

Now that we have formulated the general problem and have a feel for the
general cone representation used in this formulation, we are ready to work
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towards the actual algorithm that will allow us to solve this general problem.
Before presenting the algorithm itself, we perform a supporting analysis of
the general problem.

Analysis of the General Problem. In the general problem formulation
we gave in Section 3, the (non-additional) constraints express that h must
lie in the general cone represented by R. For the feasibility problem, we can
actually assume in all generality that h = 0, because we allow additional
linear constraints on μ. To see this, consider the original feasibility problem
and write it as

find (λ, ν) ∈ RR∪{{−h}} ××D∈R∪{{−h}} R
D,

subject to
∑

D∈R∪{{−h}} λD ·
∑

g∈D νD,g · g = 0

and λ > 0 and ν � 0 and μ{−h},−h = λ{−h} · ν{−h},−h ≥ 1

and POLC on μ := (λD · νD,g : D ∈ R, g ∈ D),

whose feasible solutions μ can be related to those of the original problem by
dividing them by μ{−h},−h.

For this feasibility problem, checking whether or not 0 lies in the blunt clo-
sure of R can be done by solving the following linear programming feasibility
problem:

find μ ∈×D∈RR
D,

subject to
∑

D∈R
∑
g∈D μD,g · g = 0 and μ ≥ 0 and POLC on μ

and
∑

D∈R
∑
g∈D μD,g ≥ 1.

where the last constraint is a proxy for the blunting—i.e., using > instead of
≥—implied by the constraint λ > 0 (cf. Figure 2). If this problem is feasible,
then 0 lies either in the interior of R or in a facet. The interior case can be
checked by solving another linear programming feasibility problem:

find μ ∈×D∈RR
D,

subject to
∑

D∈R
∑

g∈D μD,g · g = 0 and μ ≥ 1 and POLC on μ,

where μ ≥ 1 is a proxy for the constraint ν � 0 (cf. Figure 2).
Now, if h lies in the closure, but not the interior, it must lie on a facet. From

the proof of the Theorem we know that we are then actually faced with the
same type of feasibility problem we started out with, but now withR replaced
by S ⊂ R. Based on this insight, we could construct a recursion algorithm.
However, this would involve facet enumeration, which is a computationally
expensive operation [1]. Nevertheless, the key insight is that, to solve the
feasibility problem, we must identify the facet containing 0. Put differently,
we must eliminate those elements from R that preclude 0 from lying in the
(relative) interior of R.
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The Algorithm for the Feasibility Problem. The idea is to relax the
general feasibility problem to a linear programming problem and detect which
elements D of R make the problems infeasible if λD > 0. This is done by
transforming it into a blunted closure-case optimization problem with an
objective that essentially rewards solutions that are close to interior-case
solutions. So, given the general feasibility problem of Section 3 with arbitrary
R � L∗ and h := 0, the algorithm is:

1.
maximize

∑
D∈R τD,

subject to
∑

D∈R
∑

g∈D μD,g · g = 0 and μ ≥ 0 and POLC on μ

and 0 ≤ τ ≤ 1 and ∀D ∈ R : τD ≤ μD and
∑

D∈R τD ≥ 1.

2. a. If there is no feasible solution, then the general problem is infeasible.
b. Otherwise set S := {D ∈ R : τD > 0}; τ is equal to 1 on S:

i. If ∀D ∈ R \ S : μD = 0, then the general problem is feasible.
ii. Otherwise, return to step 1 with R replaced by S.

We call this the CONEstrip algorithm because of step 2(b)ii, in which the
irrelevant parts of the cone (representation) are stripped away. The descrip-
tion of the algorithm on the cone of Figure 1 can be found there as well. It
is implemented in and tested with murasyp [5].

Proposition. The claims made in the CONEstrip algorithm are veracious
and it terminates after at most |R| − 1 iterations.

Proof. First the claim in step 2a: the feasibility requirements of the problem
in step 1 are weaker than those of the general problem for the current repre-
sentationR (

∑
D∈R τD ≥ 1 is a proxy for λ > 0). Next the claim in step 2b: if

μ is a solution, then μ/min{τD : D ∈ S} is a solution for which the claim can
be satisfied, which will be the case, because it increases the objective. Finally
the claim in step 2(b)i: if the condition of the claim is verified, then μ is a so-
lution to the general problem for the current representation R (take λ equal
to 1 and ν equal to μ for indices in S, and λ equal to 0 and ν arbitrary—e.g.,
1—for other indices).

Now let E := {g ∈ ⋃R : (∃D ∈ R : μD,g > 0)}; by step 2(b)ii we know
that E contains 0. Moreover, S = R∩E , so reiterating with R replaced by S
leads to an equivalent problem feasibility-wise. Each iteration, by step 2(b)ii,
we know that |S| < |R|, so at most |R|− 1 iterations are necessary to decide
feasibility of the original problem. �
The Algorithm for the Optimization Problem. The idea is to split
off the non-linear aspect of the feasibility part of the general optimization
problem and deal with it using the CONEstrip algorithm. The optimization
itself is then reduced to a linear programming problem. So, given the general
optimization problem of Section 3 with arbitrary R � L∗ and h ∈ L, the
proposed algorithm is:
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1. Apply the CONEstrip algorithm to R∪{−h} with μ{−h},−h ≥ 1 as an ad-
ditional constraint; if feasible, continue to the next step with the terminal
set S.

2.
maximize an affine function of μ ∈×D∈RR

D,
subject to

∑
D∈S

∑
g∈D μD,g · g = h

and μ ≥ 0 and POLC on μ,

where μ ≥ 0 is a proxy for μ� 0 by continuity of the linear objective.

5 Conclusion

We now have an efficient, polynomial time algorithm for consistency check-
ing and inference in uncertainty modeling frameworks using general cones:
the number of linear programs to solve has worst-case complexity linear in
the cardinality of the cone representation. The work of Walley et al. [10]
made me believe such an efficient algorithm was possible, the representation
of Couso and Moral [3] provided useful structure, and a variable-bounding
technique spotted in the ‘zero norm’-minimization literature [7, (1) to (2)]
made everything come together.

The CONEstrip algorithm—formulated in terms of linear programs—is
rather high-level. Integrating it with a specific linear programming solver
might allow for a practical increase in efficiency: e.g., the stripping step can
be seen as a form of column elimination. Also, heuristics could be found to
reduce the representation size.

The question may arise whether the representation and the algorithm are
also applicable when modeling uncertainty using general bounded polytopes,
such as non-closed credal sets (arising, e.g., when strict bounds on expec-
tations are allowed). Yes: such polytopes can be seen as intersections of a
general cone and a hyperplane.
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pointers and feedback. I thank the reviewers for their effort and a much appre-
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Towards a Robust Imprecise Linear
Deconvolution

Oliver Strauss and Agnes Rico

Abstract. Deconvolution consists of reconstructing a signal from blurred
(and usually noisy) sensory observations. It requires perfect knowledge of
the impulse response of the sensor. Relevant works in the litterature propose
methods with improved precision and robustness. But those methods are not
able to account for a partial knowledge of the impulse response of the sensor.
In this article, we experimentally show that inverting a Choquet capacity-
based model of an imprecise knowledge of this impulse response allows to
robustly recover the measured signal. The method we use is an interval valued
extension of the well known Schultz procedure.

Keywords: Choquet capacities, deconvolution, inverse problem, robustness.

1 Introduction

Discrete signals used in engineering applications are recorded through sen-
sors. The measured signal is usually a smeared version of the signal under
consideration that highly affects its resolution. Deconvolution consists in im-
proving the resolution of the signal by removing the smoothing effect of the
measuring instrument by using its resolution (or point spread) function.

The measured signal being discrete, deconvolution consists in inverting a
system of N linear discrete convolution equations:
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∀n ∈ {0, . . . , N − 1},mn =

K−1∑

k=0

hn−ksk + ηn, (1)

m being the measured signal, h the impulse response of the sensor, s the
signal under consideration, η a measurement noise, N the number of samples
of the measured signal and K the number of samples of the signal to be
reconstructed.

Equation (1) can be rewritten in matrix form:

M = AS + E, (2)

M being the measurement vector of length N , S being the signal vector of
length K, A being a N × K matrix, and E being an error vector of length
N . Deconvolution thus consists of inverting the matrix eq. (2) by minimizing
a risk function [10]. A very common risk function is the Euclidian distance:
JA(S,M) = ||M − AS||2. Minimizing this risk function leads to computing
the following solution:

Ŝ = A+M, (3)

where A+ is the pseudo inverse matrix of A. Without any noise nor uncer-
tainty, the least square solution leads to recovering S from M . It should also
be the case if the error vector E can be considered as a white gaussian ad-
ditive noise, and if the matrix A can be properly pseudo-inverted. However,
deconvolution is known as an ill-posed problem, i.e. small divergence in the
model can cause high divergence in the solution.

In the relevant literature, most work focusses on considering the measure-
ment noise properties and designing appropriate inversion algorithms [13, 7].
Regularizing the obtained algorithms to provide solutions that have a rel-
evant physical interpretation and stable behavior is the second track that
gathers many research effort [8]. Those work try and find methods with im-
proved precision and robustness. Improving the precision consists in trying
to reduce the distance between the sought after signal and the reconstructed
signal. Improving the robustness consists in keeping this distance as low as
possible even if there is deviation in the system and/or noise modeling.

However, few attention has been payed to considering an imprecise knowl-
edge in the sensor’s impulse response. The traditional approach, called blind
deconvolution, consider the shape of the impulse response to be known and es-
timate its parametric description during the reconstruction process [9]. There-
fore, within this kind of approach, the resolution of the sensor is supposed to
be completely unknown, while it is usually only imprecisely known.

In this paper, we consider an alternative technique that enables using
an imprecise knowledge of the impulse response of the considered sensor.
This technique is based on modeling this imprecise knowledge by means of a
concave Choquet capacity. Compared to blind deconvolution, this technique
can be can be thought as myopic, since it supposes the impulse response to be
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imprecisely known. For seek of simplicity, this work is restricted to positive
centered symmetric impulse responses.

The paper is structured as follows. The next section presents how filtering
can be seen as an expectation operation. Section 3 is devoted to the descrip-
tion of interval-valued extension of linear filtering. Section 4 focusses on the
extension of the Schultz iterative procedure. Before the conclusion, section 5
is devoted to illustrating how this method improves the robustness of a least
square inversion based signal deblurring.

2 Filtering Can Be Seen as an Expectation Operation

For seek of simplicity, we will consider that the number of measurement
samples equals the number of sought after signal values (i.e. N = K) which
is usually the case when considering the measured discrete signal as being a
blurred version of the original discrete signal. Let Ω = {0, · · · , N − 1}. In
classical representation, h being the impulse response of the measurement
device, each value mn (n ∈ Ω) is a linear combination of the signal values
(see Eq. (1)).

Let ζ =
∑

k∈Z
hk with hk ≥ 0 for all k and ρk = ζ−1hk. So ρ = (ρk)k∈Z can

be considered as a discrete probability distribution on Z. Let ρn = (ρnk )k∈Z be
the probability distribution defined by translating ρ in n: ρnk = ρn−k. Hence,
a noise free version of Eq. (1) can be re-written as follows:

mn = ζ
∑

k∈Ω
skρ

n
k = ζEPn(S), (4)

Pn being the probability measure induced by ρn and EPn being the expecta-
tion operator induced by Pn on Z.

Thus, filtering a signal with a linear filter whose impulse response is pos-
itive can be seen as an expectation operation multiplied by a constant real
value. This operation can be presented in matrix form:

M = ζAPS, (5)

where M and S respectively denote the measurement and the input signal
vector, and with AP defined by:

AP =

⎡

⎢⎢⎣

ρ00 ρ01 . . . ρ0N−1

ρ10 ρ11 . . . ρ1N−1

. . . . . . . . . . . .

ρN−1
0 ρN−1

1 . . . ρN−1
N−1

⎤

⎥⎥⎦ (6)
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3 Interval-Valued Extension of Linear Filtering

In [14], we have proposed to extend the measurement Eq. (4) to represent
an imprecise knowledge on the impulse response h. This extension is based
on replacing the probability measure in Eq. (4) by a more general confidence
measure called a concave capacity (see e.g. [1]). The use of a capacity to rep-
resent a confidence measure entails using a more general expectation operator
called the Choquet integral (see [2]).

Let P(Ω) be the set of all subsets of Ω and V be the set all the real
functions defined on Ω. A capacity (or non-additive or monotone or fuzzy
measure) ν is a set function ν : P(Ω)→ [0, 1] such that ν(∅) = 0, ν(Ω) = 1,
and ∀A ⊆ B ⇒ ν(A) ≤ ν(B). The conjugate νc of a capacity ν is defined as:
νc(A) = 1− ν(Ac), for any subset A of Ω, with Ac being the complementary
subset of A in Ω.

A capacity ν such that ∀A,B ∈ P(Ω), ν(A∪B)+ν(A∩B) ≤ ν(A)+ν(B)
is said to be concave or submodular or 2-alternating measure. The core of
a concave capacity ν, denoted core(ν), is the set of probability measures P
defined on Ω such that ∀A ∈ P(Ω), ν(A) ≥ P (A).

Let ν be a capacity on P(Ω), and X = {x0, . . . , xN−1} ∈ V be a finite
positive real function (or vector), then the Choquet integral [5] of X with
respect to ν is defined by: Čν(X) =

∑
n∈Ω x(n)(ν(A(n))− ν(A(n+1))), where

(.) indicates a permutation that sorts the xn in non-decreasing order: x(0) ≤
. . . ≤ x(N−1), and subsets A(i) being defined by: A(i) = {(i), . . . , (N − 1)},
and A(N) = ∅.

The expectation operator can easily be extended to concave capacities
(see [14]). Let ν be a concave capacity on P(Ω), then ∀X ∈ V , Eν(X) =
Čνc(X), Čν(X)]. By using the results proved by [3], it can be easily proved
that: ∀X ∈ V , ∀P ∈ core(ν), EP (X) ∈ Eν(X), and ∀X ∈ V , ∀Y ∈ Eν(X),
∃P ∈ core(ν) such that Y = EP (X).

Thus a concave capacity can represent a set of normalized impulse re-
sponses. Let ν be a concave capacity representing a convex set of normalized
impulse responses, the interval-valued extension of Eq. (4) is:

[mn] = ζEνn(S), (7)

[mn] being an interval-valued measure and νn being the capacity ν translated
in n.

Equation (7) can be rewritten in a simple way:

[M ] = ζAν(S), (8)

where [M ] = [M,M ] is an interval-valued vector and Aν is an interval valued
function that sums up the N imprecise measurement equations. [M ] is the
convex hull of all the values that could have been obtained by using Eq. (4)
and a probability measure P ∈ core(ν).
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Imprecise expectation can be extended to interval-valued inputs due to
the monotony of the Choquet integral. Let [X ] = ([x1, x1], · · · , [xN , xN ]) be

an interval-valued vector then Eν([X ]) = [Čνc(X), Čν(X)] where X is the
vector (x1, · · · , xN ) and X is the vector (x1, · · · , xN ). Hence Eq. (7) can be
extended to interval-valued inputs:

[mn] = ζEνn([S]), (9)

and this equation can be rewritten:

[M ] = ζAν([S]), (10)

In this context, a useful concave capacity is the possibility measure induced
by a centered symmetric triangular possibility distribution whose support is
[−Δ,Δ] (Δ ∈ R+). As shown in [11], the core of such a capacity includes
any finite positive normalized centered symmetric impulse response whose
support is included in [−Δ,Δ].

4 Inverting the Imprecise Filtering by Extending the
Schultz Iterative Procedure

Inverting Eq. (2) can be obtained by computing A+ the pseudo-inverse of
matrix A. The solution Ŝ = A+M is the standard solution of the regu-
larized equation (ATA)S = ATM . However, due to the ill-posedeness, the
matrix (ATA) is ill-conditioned. Thus direct estimation of Ŝ has to be re-
placed by other procedures, like the Schultz iterative procedure (often called
the Hotelling iterative procedure, see [6]). Starting from a wrong solution
(e.g. S0 = 0), the Schultz procedure iteratively corrects this value and con-
verges towards the least squares solution. A simplified version of the Schultz
procedure is given by:

Si+1 = Si + λAT (M −ASi), (11)

where Si is the estimation of S at the ith iteration and λ is a positive real
that ensures the convergence [4] (e.g. λ = 1/

∑
k∈Z

h2k). Note that, in our
case, the impulse response being centered and symmetric, A = AP = ATP .

In [16], we have proposed to extend the Schultz procedure in order to invert
Eq. (10). This extension can be written in that way:

[Si+1] = [Si] �Aν(M �Aν [Si]), (12)

where [Si+1] is the interval valued estimation of S at the ith iteration, �
is the term by term Minkowski interval extension of the subtraction defined
by: [a, a]� [b, b] = [a − b, a− b], and � is the term by term dual Minkowski
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interval extension of the addition defined by: [a, a]� [b, b] = [a+b, a+b]. Note
that the result of a � operation can be an improper interval (i.e. the lower
value is upper than the upper value). This situation has to be considered as
an intermediate calculus steps (see e.g. [15]).

5 Experiments

This experimental section aims at showing that such a method can help
to improve the robustness of a least square inversion when knowledge in
the impulse response of the sensor is imprecise. This experiment consists in
filtering an electrocardiogram (ECG) signal1 of 10000 samples [12] by using
different randomly chosen impulse responses (see Fig. 1) and computing the
Euclidian distance between the original signal and the reconstructed signals.

Original Signal

Blurred Signal

Fig. 1 Original and blurred ECG signals

In this experiment, we suppose that the only thing that is known about
the filter is that its impulse response is positive normalized centered sym-
metric with a bounded support included in [−15, 15]. We aim at comparing
a traditional deconvolution method using a wrong impulse response with
our method based on imprecise knowledge about the true impulse response.
For this experiment, 200 pairs of impulse responses with a bounded support
included in [−15, 15] have been randomly chosen. For each pair of impulse
responses, one is used to blur the signal and the other one is used to recon-
struct the signal by using the traditional least squares method. The blurred
signal is also reconstructed with our method by considering a capacity whose
core contains all the envisaged impulse responses. This capacity is a possibil-
ity measure based on the triangular possibility distribution whose support is
[−15, 15].

For both methods, the iterative reconstructing procedure is stopped when
the distance between the reconstructed signal and the original signal is

1 ECG data were courteously provided by the LTSI laboratory, Rennes.
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Fig. 2 Distances between the original and the reconstructed signal for the classical
method (in blue) and for the new interval valued method (in red)

minimal. Concerning our method, the distance between the interval valued
reconstructed signal and the original signal is computed by considering the
median signal, i.e. the signal S̃ such that ∀k ∈ {1, . . . , N}, s̃k = 1

2 (sk + sk).
Figure 2) shows the distances between the reconstructed signal and the

original signal for increasing Kullback-Leibler distances between the impulse
response that has been used for smoothing the signal and the impulse re-
sponse that has been used to reconstruct the signal. Distances for the classical
method are plotted in blue, while distances for the new method are plotted
in red.

When the two impulse responses are close one from one-other, the classical
method provides a reconstructed signal that is close from the original signal
(left part of Fig. 2). Though, when the two impulse responses are different
(right part of Fig. 2), then the classical solution is rather unstable, i.e. the
distance can be low or high, and this fact seems not to only depend on
the distance between the real and the considered impulse response. On the
other hand, the interval-valued method seems to be more robust, i.e. the
distance between the median of the interval valued reconstructed signal and
the original signal seems to be less affected by the choice of the smoothing
filter.

6 Conclusion

In this paper, we have presented a reconstruction method that is able to deal
with imprecise knowledge in the impulse response of the sensor that has been
used to measure the signal. One of the main feature of this method is that it
leads to reconstruct an interval-valued signal.

What is claimed and illustrated here is that, when knowledge about the
impulse response used to blur a signal is high enough for the deconvolution
kernel to be close from the blurring kernel, a better result is obtained by us-
ing a traditional deconvolution approach. But, when this knowledge is poor,
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using an imprecise kernel based representation leads to improved robustness
in the reconstruction : the median of the interval-valued reconstructed sig-
nal is closer from the signal to be reconstructed than a signal reconstructed
with a wrong precise kernel. In that sense, our method is more stable than
the classical method. Future work will consider imprecise knowledge in the
impulse response and noisy measurements.
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2D Probability-Possibility
Transformations

Alessandro Ferrero, Marco Prioli,
Simona Salicone, and Barbara Vantaggi

Abstract. Probability-possibility transformations are useful whenever prob-
abilistic information must be dealt with in the possibility theory. In this pa-
per, two-dimensional probability-possibility transformations of joint probabil-
ity densities are considered, to build joint possibilities such that the marginals
preserve the same information content as the marginals of the joint proba-
bility densities.

Keywords: Joint possibility distributions, metrology, probability-possibility
transformations, uncertainty.

1 Introduction

The probability-possibility transformations [5, 10, 13] allow one to build a
possibility distribution starting from a probability density function. These
transformations are useful whenever probabilistic information and statisti-
cal data must be dealt with in the possibility theory. The interest in these
transformations is not only from the mathematical and theoretical point of
view. An increasing interest comes also from the engineering field, and, in
particular, from the field of measurements, as here motivated.

In fact, the best practice in measurement requires that measurement un-
certainty is always associated to a measurement result. The mathematical
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theory that is actually referred to for evaluating and expressing measure-
ment uncertainty is the probability theory, as recommended by the Guide to
the Expression of Uncertainty in Measurement (GUM) [2], that represents the
present reference Standard document. Within this approach, a measurement
result, together with its associated measurement uncertainty, is represented
by a probability density function (pdf).

However, in the recent years, the limitations of this approach to uncer-
tainty evaluation have been outlined, and several Authors have proposed the
possibility theory as an alternative, more general method [7, 8, 9, 11, 12, 15]
to uncertainty evaluation and representation.

Within this theory, a measurement result, together with its associated
measurement uncertainty, is represented by a possibility distribution [11, 15].

This approach has similar limitation as the traditional one. As a matter of
fact, in the measurement field, two contributions to uncertainty of different
nature are recognized: the random contributions and the systematic ones. The
random contributions to uncertainty are associated with the fact that, when
a measurement is repeated several times, it will generally provide different
measured values. A random contribution to uncertainty “arises from unpre-
dictable or stochastic temporal and spatial variations of influence quantities.
The effects of such variations, ..., give rise to variations in repeated obser-
vations of the measurand” [2]. On the other hand, a systematic contribution
to uncertainty “arises from a recognized effect of an influence quantity on a
measurement result” [2]. Hence, in repeated observations of the measurand,
these contributions always show the same value and sign. In other words, the
measured value contains a bias, whose value is often unknown. Generally, the
effect of the unknown systematic uncertainty contribution on the measure-
ment result is given (i. e. by the calibration certificate or by the instrument
datasheet) in terms of an interval about the measured value, within which
the measurand will surely lie, but it is not known whereabout1.

According to the above definitions, the random contributions to uncer-
tainty distribute randomly and can be effectively mathematically represented
by random variables, that is, by pdfs. On the contrary, the unknown system-
atic contributions to uncertainty, whose behavior is not random, can be ef-
fectively mathematically represented by fuzzy variables, that is by possibility
distributions (PDs).

In general, a measurement result is affected by several contributions to
uncertainty: some of these contributions are random, others are systematic.

1 The best practice in measurement, reflected by the GUM [2], requires that “all
recognized significant systematic effects” have been corrected for, so that only
random contributions remain and can be handled by the probability theory [2].
However, the significance of an effect can be assessed, from a metrological point
of view, by stating whether its contribution to the final uncertainty leads to
exceed the given target uncertainty [3]; and this can be done only if a suitable
mathematical approach is defined to evaluate and propagate all different kinds of
uncertainty contributions.
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The systematic contributions are naturally mathematically represented by
PDs, and the probability-possibility transformations allow one to represent
also the random ones in terms of PDs.

Hence, also in the field of measurements, any time the available information
is given in terms of a pdf, it could be necessary to translate this information
within the possibility theory, in terms of a PD.

Many probability-possibility (p-p) transformations have been defined,
which transform a monovariate pdf into a monovariate PD. The aim of
this paper is to extend these transformations also to bivariate distributions.
In particular, this paper proposes a new 2D probability-possibility trans-
formation satisfying the principle of maximum specificity for the marginal
distributions, which appears to be a suitable choice for metrological
applications.

The paper is organized as follows. In Sec. 2, the definition of the 1D
probability-possibility transformations is briefly recalled, while in Sec. 3 pos-
sible extensions to two-dimensional ones are discussed.

2 One-Dimensional Probability-Possibility
Transformations

Let pX be a continuous probability density of X around x∗. For a given
confidence interval I∗γ around x∗, the associated confidence level γ is given by:

γ = P (X ∈ I∗γ ) =

∫

x∈I∗γ
pX(x)dx.

Varying the confidence level γ, different nested confidence intervals are ob-
tained (i.e. I∗γ ⊆ I∗β for γ ≤ β). The possibility distribution rX which encodes
the whole set of confidence intervals I∗γ is defined as [5, 10]:

rX(x) = 1− P (X ∈ I∗γ ).

Moreover, for any real interval I, the possibility measure on I, is defined as
zX(I) = supx∈I rX(x).

Let us now consider unimodal pdfs pX , with mode xm, such that pX(x) ≤
pX(x′) for any x ≤ x′ ≤ xm, and pX(x) ≥ pX(x′) for any xm ≤ x ≤ x′. For
such pdfs, it is possible to choose a family of intervals I∗γ in order to find the
corresponding maximally specific PDs.

The maximally specific PD rmsX associated to a given pdf is the PD that
preserves the maximum amount of information contained in the pdf [5, 10],
that is, the minimal possibility distribution dominating the pdf.
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From the mathematical point of view, a PD π(x) dominates a given pdf if,
for any real interval I, its associated possibility measure zX(I) satisfies to:

zX(I) ≥ P (X ∈ I)

The maximally specific PD rmsX is the smallest PD among the family of the
dominating possibilities π(x) (rmsX (x) ≤ π(x)).

Given a pdf, the corresponding PD rmsX is obtained choosing, as the con-
fidence intervals I∗γ , the cuts Ix of the pdf itself [5, 10]:

Ix = {ψ : pX(ψ) ≥ pX(x)}
rmsX (x) = 1− P (X ∈ Ix) (1)

Fig. 1 shows an example of the maximally specific p-p transformation applied
to a triangular pdf.
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Fig. 1 Example of application of (1). pX : red line; rmX : dashed blue line; a particular
Ix and its mapping on the α-cut of rms

X : green line

3 Two-Dimensional Probability-Possibility
Transformations

In order to define a 2D p-p transformation, let us now consider a convex
joint pdf pX,Y . The aim is to find the transformation that gives the joint PD
rX,Y whose marginal distributions coincide with the PDs obtained through
the 1D p-p transformation of the corresponding marginals of pX,Y . This is an
open problem since the joint PD obtained through the product or minimum
t-norm by two PDs maximally specific dominating the associated pdfs could
be not maximally specific and dominating the relevant joint pdf [14, 1].

Two possible 2D p-p transformations are considered in the following.
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3.1 A Natural Extension of the 1D p-p
Transformation

As recalled in Sec. 2, for monovariate distributions, the maximally specific
PD obtained from a given pdf is the one whose α-cuts are exactly the cuts
of the pdf. A possible two-dimensional p-p transformation can be defined
by naturally extending to two dimensions (1), which mean choosing, as the
α-cuts of the joint PD, the cuts of the joint pdf:

Axy = {(χ, ϕ) | pX,Y (χ, ϕ) ≥ pX,Y (x, y)}
rX,Y (x, y) = 1− P (X,Y ∈ Axy) (2)

The great advantage of this transformation is that the confidence areas (and
the associated levels of confidence) are strictly maintained, by definition, in
their shape and dimension. Moreover, the obtained joint PD rX,Y dominates
the joint pdf pX,Y (the proof is similar to that followed in [5]).

However, this transformation does not satisfy our requirement, that is, the
marginals of the obtained joint PD are not maximally specific with respect
to the marginals of the joint pdf.

Example 1. Let us consider a bivariate normal pdf of X and Y , with X and
Y independent and having standard normal distribution: pX,Y = N2(0, I).
The cuts Axy are given by: Axy = {(χ, ϕ) : χ2 + ϕ2 ≤ x2 + y2}.
From (2), it follows:

rX,Y (x, y) = 1− P (X,Y ∈ Axy) = e−
x2+y2

2 .

Then, the marginal possibility distributions are:

rX(z) = rY (z) = e−
z2

2 .

−4 −2 0 2 4

−4
−2

0
2

4
0

0.5

1

xy

α

Fig. 2 Joint PD rX,Y obtained by applying (2) to pX,Y of example 1; marginal
PDs rX and rY : blue lines; maximally specific PDs r̂X and r̂Y : red lines.
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On the other hand, from the marginal pdfs of pX,Y , the following maximally
specific marginal PDs are obtained applying (1). For any positive real z:

r̂X(−z) = r̂X(z) = 1− P (−z ≤ X ≤ z) = 1− (2φ(z)− 1) = 2− 2φ(z),

where φ is the cumulative distribution function. Then, the marginal PDs,
obtained by the joint PD rX,Y induced by the joint pdf through the natural
extension of the 1D p-p transformation, do not coincide with the PDs induced
by the marginal pdfs. This example is reported in Fig. (2).

3.2 An Ad-Hoc 2D p-p Transformation

3.2.1 The Transformation

A different transformation than (2) shall be defined to preserve the maximal
specificity for the marginal distributions [6]. Since the choice of a Cartesian
coordinate system is arbitrary, this condition must be satisfied for every pos-
sible choice of the Cartesian axes.

Let Θk be the 1 to 1 map on �2 related to a rotation of an angle ϑk around
the mean vector [μ1, μ2] of pX,Y , and Θk(X,Y ) =

(
Θ1
k(X,Y ), Θ2

k(X,Y )
)

be

the random vector associated to the rotation with joint pdf pϑk

X′,Y ′ .

From pϑk

X′,Y ′ it is possible to compute the marginal pdf pϑk

X′ of X ′. Note

that pϑk

X′ coincides with p
ϑj

Y ′ for ϑk = ϑj + π
2 . Then, it is enough to consider

only the pdf pϑk

X′ for ϑk varying in [0◦, 180◦].

By applying (1) to pϑk

X′ , it is possible to determine the corresponding max-

imally specific PD rϑk

X′ .

Let us define the surface rϑk

X′,Y ′(x′, y′) = rϑk

X′(x′) for any real y′. Since the

marginal PD of X ′ of the desired joint PD rX,Y must be rϑk

X′ , it follows that

rX,Y must be contained within the surface rϑk

X′,Y ′ .
As for the pdfs, also for PDs the dependence on the original coordinates

derives from the transformation Θk. Since, given ϑk, for any (x′, y′) there is a
unique point (x, y) such that Θk(x, y) = (x′, y′), we use, when it is possible,
the following abuse of notation rϑk(x, y) := rϑk(Θ1

k(x, y)). Then, we refer to
the original (x, y)-axes.

The joint PD rX,Y which satisfies the marginalization condition for every
ϑk is given by:

rX,Y (x, y) = inf
θk

[
rθk

(
Θ1
k(x, y)

)]
(3)

with ϑk varying in [0◦, 180◦].
From an operational point of view, a finite number of angles ϑk is taken,

so that a finite number n of surfaces rϑk

X′,Y ′ is identified.
The approximated joint PD is given by the intersection of the n considered

surfaces:
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rX,Y (x, y) = min
[
rθ1X′,Y ′(x, y), rθ2X′,Y ′(x, y), ..., rθnX′,Y ′(x, y)

]
(4)

Fig. 3 shows, as an example, four surfaces rϑk

X′,Y ′ and the final joint PD,
obtained by applying (4) to the joint pdf N2(0, I). The marginal PDs along
(x, y)-axes are also reported, which coincide, by definition, with the maxi-
mally specific PDs induced by the marginal pdfs.
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Fig. 3 Example of four surfaces rϑk
X′,Y ′ (for ϑk ∈ {0◦, 45◦, 90◦, 135◦}) and the final

joint PD rX,Y (obtained, with n = 40), induced by the joint pdf N2(0, I)

3.2.2 Some Further Properties

In the previous Section, a 2D probability-possibility transformation is defined.
An operative definition is also given, which allows a practical application and
provides an approximated joint PD. It is obvious that, in (4), the greater is
n, the better approximation is obtained. However, next theorem shows that,
when only the information about the sum and difference of two variables
needs to be preserved, it is sufficient to take n = 4.

Theorem 1. Let pX,Y be a pdf of (X,Y ) with convex cuts and rX,Y be the
corresponding PD defined as in (4) with n=4 and ϑk ∈ {0◦, 45◦, 90◦, 135◦}.
Let rX+Y and rX−Y be the the maximally specific PDs associated to the pdfs
pX+Y and pX−Y of X + Y and X − Y , respectively. Then, for any real z:

sup
(x,y):x+y=z

rX,Y (x, y) = rX+Y (z), (5)

sup
(x,y):x−y=z

rX,Y (x, y) = rX−Y (z). (6)

In Thm. 1, rX,Y is obtained imposing four marginal PDs, on axes rotated
of angles ϑk ∈ {0◦, 45◦, 90◦, 135◦} with respect to the original x-axis. Under
this hypothesis, since the cuts of the joint pdf are convex, the 2D α-cuts of
the joint PD are octagons, as shown in Fig. 4.

As it will be shown in the following proof, the information about the sum
X + Y is contained in the marginal PD at ϑ = 45◦, while the information
about the difference X − Y is contained in the marginal PD at ϑ = 135◦.
Fig. 4 shows an example, in case of variables X + Y and X − Y centered in
the origin and symmetric. Under this assumption, for a generic value α, the
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Fig. 4 Octagonal α-cut of rX,Y : blue line; lines x + y = ±z: green lines; lines
x− y = ±z: red lines; a point (a,b): black circle

two lines x+ y = ±z are obtained by imposing the marginal PD at ϑ = 45◦

and the values ±z are the left and right edges of the α-cut of the PD rX+Y ,
at the same level α. Similarly, lines x − y = ±z, obtained by imposing the
marginal PD at ϑ = 135◦, define the left and right edges of the α-cut of the
PD rX−Y . The marginal PDs at angles ϑk ∈ {0◦, 90◦} are considered as well
to maintain also the information about the marginal PDs on the main axes.

Proof. Let us consider Eq. (5) first.
Without loss of generality, let us suppose that X and Y have null means,

since the axes are centered in the means.
For any real z, the value rX+Y (z) corresponds to the probability of

P (X + Y ∈ Ic) where Ic = {ω : pX+Y (ω) ≤ pX+Y (z)}, which is equal to
rϑ=45◦
X′ ( z2 ) (note that the point ( z2 ,

z
2 ) is on the line x+ y = z).

For any point (x, y) such that x + y = z, rϑ=45◦
X′ ( z2 ) = rϑ=45◦

X′,Y ′ (x, y) by
construction, since the line x+ y = z is orthogonal to the line rotated of an
angle ϑ = 45◦ with respect to the original x-axis.

Let us consider the minimum octagonal α-cut Ĉ of rX,Y that has non

empty intersection with the line z = x+y. Since Ĉ has at least one point (a, b)
on the line x+ y = z, for such point rX,Y (a, b) = rϑ=45◦

X′,Y ′ (a, b) = rϑ=45◦
X′ ( z2 ) =

rX+Y (z). Since the point (a, b) belongs to the minimum α-cut Ĉ, the sup
value of (5) is given by the α-level of Ĉ: sup(x,y):x+y=z rX,Y (x, y) = rX,Y (a, b).

Thus, Eq. (5) follows. Equation (6) is proved in a similar way, by consid-
ering the marginal PD rϑ=135◦

X′ and the line x− y = z.

4 Conclusions

Two different 2D p-p transformations to build joint PDs starting from joint
pdfs are discussed.

The first transformation provides joint PDs dominating the original joint
pdfs, but their marginal distributions do not coincide with the PDs obtained
through the 1D p-p transformation of the corresponding marginal pdfs.
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On the other hand, the second transformation provides joint PDs which
generally do not dominate the original joint pdfs, but their marginal distribu-
tions coincide with the PDs obtained through the 1D p-p transformation of
the corresponding marginal pdfs. This second transformation appears more
suitable for metrological applications, even if it is an open problem to check
whether it dominates the joint pdf.

Moreover, a theorem has been proved, showing that a simplified p-p trans-
formation can be applied in the case it is not required the knowledge of the
whole joint PD, but its construction is only an intermediate step to compute
the sum and the difference of the considered variables. It would be interesting
to link our result with various results of imprecise probability dealing with
arithmetic operations.
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A Note on the Convex Structure of
Uncertainty Measures on MV-algebras

Tommaso Flaminio and Llúıs Godo Lacasa

Abstract. In this paper we address the issue of providing a geometrical char-
acterization for the decision problem of asking whether a partial assignment
β : fi �→ αi mapping fuzzy events fi into real numbers αi (i = 1, . . . , n)
extends to a generalized belief function on fuzzy sets, according to a suitable
definition. We will characterize this problem in a way that allows to treat it
as the membership problem of a point to a specific convex set.

Keywords: Belief functions, extendability problem, fuzzy sets, MV-algebras.

1 Introduction

The problem of deciding whether a partial assignment υ : fi �→ αi mapping
each event fi into a real number αi (for i = 1, . . . , s) extends to a probabil-
ity measure, is well known in the literature, and it is closely related with de
Finetti’s no-Dutch Book coherence criterion [5]. This criterion can be gener-
alized in mainly two ways: by moving from classical to non-classical events
(cf. [14, 16] for instance), or framing the problem out of the probabilistic
setting, by taking into account alternative theories of uncertainty.

In [14, 16] the authors extend de Finetti’s criterion for finitely-additive
measures on non-classical events, and in particular in the case of those fuzzy
events being representable as formulas of �Lukasiewicz calculus. Following
the proof of de Finetti’s no-Dutch Book theorem (cf. [16, Theorem 2]), in
[14, 16] extendible (i.e. coherent in de Finetti’s terminology) assignments were

Tommaso Flaminio · Llúıs Godo Lacasa
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characterized as Euclidean convex subsets of the finite dimensional space R
s,

s being the number of events the assignment is defined over.
A similar approach to extendible assignments, but framed into an idem-

potent, rather than additive, setting has been developed in [8] in the frame
of possibility theory. In particular, a geometrical characterization for the ex-
tendability problem of possibility and necessity assignments for fuzzy events
over a finite domain has been presented. It is worth recalling that in the
frame of possibility theory, extendible possibility and necessity assignments
are again characterized as convex sets, but the Euclidean geometry has to be
replaced by the min-plus geometry (see for instance [3]).

Belief functions are the measures used within Dempster-Shafer evidence
theory [17] to quantify the amount of uncertainty associated to events. Among
all the classical theories of uncertainty, Dempster-Shafer plays a pivotal role
since both probability theory, and possibility theory can be obtained as
particular cases. Belief functions have been recently extended to the MV-
algebraic setting to cope with spaces of events that can be organized as
MV-algebras of fuzzy subsets of a finite domain X = {x1, . . . , xn} [6, 11].

In this paper we will provide a geometrical characterization for the extend-
ability problem for events being (not necessarily normalized) fuzzy sets over a
finite domain in a generalized framework of belief function theory. In partic-
ular, we will show how a mixture of min-plus convex geometry and Euclidean
convex geometry can be applied to translate the extendability problem for
belief functions, into the membership problem of a point to a convex set.1

2 Preliminaries

In this section we will introduce the necessary preliminaries about the min-
plus convex geometry and MV-algebras. We will assume the reader to be
familiar with Euclidean convex geometry, reminding that in what follows,
given any subset S of R

s, co(S), and co(S) will respectively stand for the
convex hull of S and its topological closure (with respect to the Euclidean
metric). We invite the reader to consult [3] and [4] for all the unexplained
notions.

2.1 Preliminaries on Min-Plus Convexity

Let x1, . . . ,xn ∈ R
s, and for every i = 1, . . . , n and for every t = 1, . . . , s,

let us denote by xi(t) the t-th projection of xi. We then define the min-plus
convex hull generated by x1, . . . ,xn as the set

1 Due to space reasons we will omit the proof of all the presented results, with the
exception of Thm. 4 whose proof will be given below its statement. An extended
version of this paper that contains all the needed proof, can be downloaded from
http://www.iiia.csic.es/files/pdfs/Belief.pdf
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mp-co(x1, . . . ,xn) = {y ∈ R
s : ∃λ1, . . . , λn ∈ R,y = min

i≤n
(λi + xi)},

where y is a vector in R
s such that for every t, y(t) = mini≤n(λi + xi(t)).

In the particular case of x1, . . . ,xn ∈ [0, 1]s, and λ1, . . . , λn ∈ [0, 1], we call
bounded the combination mini≤n(λi ⊕xi) where the usual sum + is replaced
by the bounded sum ⊕, where for every a, b ∈ [0, 1], a⊕b = min{1, a+b}, and
on [0, 1]s is point-wise defined. Therefore, for x1, . . . ,xn ∈ [0, 1]s, we define
the bounded min-plus convex hull generated by x1, . . . ,xn as the set

bmp-co(x1, . . . ,xn) = {y ∈ [0, 1]s : ∃λ1, . . . , λn ∈ [0, 1],y = min
i≤n

(λi ⊕ xi)}.

A bounded min-plus convex combination is said to be normalized, if the
parameters λ1, . . . , λn satisfy maxi≤n λi = 1, and a bounded min-plus convex
hull is said to be normalized accordingly. We will denote by nmp-co(S) the
normalized bounded min-plus convex hull generated by a set S.

2.2 MV-algebras of Fuzzy Sets

An MV-algebra [1, 15] is an algebra (A,⊕,¬,⊥,�) of type (2, 1, 0, 0) such
that its reduct (A,⊕,⊥) is an abelian monoid, and the following equations
hold for every a, b ∈ A: ¬¬a = a, a⊕� = �, and ¬(¬a⊕b)⊕b = ¬(¬b⊕a)⊕a.

Let A and B be MV-algebras. A MV-homomorphism is a map h : A→ B
sending ⊥ and � of A in ⊥ and � of B respectively, and such that, for every
a, a′ ∈ A, h(a ⊕ a′) = h(a) ⊕ h(a′), and h(¬a) = ¬h(a). We will denote by
H(A,B) the class of homomorphisms between A and B.

Let X = {x1, . . . , xn} be a finite set of cardinality n, and consider the
class [0, 1]X of all fuzzy subsets of X , i.e. all functions from X into the real
unit interval [0, 1]. This set can obviously be identified with the direct product
[0, 1]n.2 The algebra obtained endowing [0, 1]n with the point-wise operations
a ⊕ b = min{1, a + b}, ¬a = 1 − a, and the two functions constantly equal
to 0 and 1, also denoted ⊥ and � respectively, is the typical example of
MV-algebra that we will consider in this paper as domain for uncertainty
measures.

We will equivalently denote by [0, 1]n or [0, 1]X both the domain, and
the MV-algebra above defined without danger of confusion, moreover, we
will always assume X to be finite. Notice that, whenever X consists of just
one element, [0, 1]1 is the (linearly ordered) MV-algebra over the real unit
interval. This algebra, that is usually named the standard MV-algebra, will
be denoted by [0, 1]MV .

2 The set X = {x1, . . . , xn} can be equivalently identified with the set of its indices
{1, . . . , n}. This allows in turn to identify each function f ∈ [0, 1]X as a point
〈f(1), . . . , f(n)〉 ∈ [0, 1]n and vice-versa.
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For every f = 〈f(1), . . . , f(n)〉 ∈ [0, 1]n, we will henceforth consider the
function ρf : [0, 1]n → [0, 1] mapping every b ∈ [0, 1]n into

ρf (b) = min
i≤n

(¬b(i)⊕ f(i)), (1)

Those mappings ρf can be regarded as generalized inclusion operators be-
tween fuzzy sets (cf. [6] for further details). For every f ∈ {0, 1}n (i.e.
whenever f is identified with a vector in [0, 1]n with integer components),
the map ρf : [0, 1]n → [0, 1] is a pointwise minimum of finitely many lin-
ear functions with integer coefficients, and hence ρf is a non-increasing Mc-
Naughton function [1, 15]. Letting R to be the MV-algebra generated by the
set {ρf : f ∈ [0, 1]n}, [1, Theorem 3.4.3] and [13, Theorem 2.5], allow to prove
the following result.

Theorem 1. There exists a one-to-one correspondence between the points of
[0, 1]n and the class H(R, [0, 1]MV ) of homomorphisms of R into the standard
MV-algebra [0, 1]MV .

Thanks to the above Thm. 1 we will henceforth identify points in [0, 1]n

(hence fuzzy subsets of X) with homomorphisms of R in the MV-algebra
[0, 1]MV without loss of generality. Moreover, the following holds:

Corollary 1. Let {τ1, . . . , τs} be a finite subset of R. Then {〈h(τ1), . . . ,
h(τs)〉 ∈ [0, 1]s : h ∈ H(R, [0, 1]MV )} = {〈τ1(a), . . . , τs(a)〉 : a ∈ [0, 1]n}.

3 Uncertainty Measures on MV-algebras of Fuzzy Sets

In this section we are going to recall how states [13] and necessity measures [7],
can be defined on MV-algebras (of fuzzy sets). In particular we will also
recall how the problem of extending a partial assessment can be geometrically
characterized in these frameworks.

A state on an MV-algebraA is a map s : A→ [0, 1] satisfying: (1) s(�) = 1;
(2) for every a, b ∈ A such that ¬(¬a ⊕ ¬b) = ⊥, s(a ⊕ b) = s(a) + s(b). A
state s is said to be faithful provided that s(a) = 0, implies a = ⊥.

States play the same role on MV-algebras as probability measures do on
Boolean algebras. In particular the well known de Finetti’s extension theorem
was generalized to the case of states and MV-algebras by Mundici [14]. Below
we recall it in the particular case of the MV-algebra being [0, 1]X .

Theorem 2. Let f1, . . . , fs be elements in [0, 1]X. Then a map σ : fi �→ αi ∈
[0, 1] extends to a state on [0, 1]X iff 〈α1, . . . , αs〉 ∈ co{〈h(f1), . . . , h(fs)〉 :
h ∈ H([0, 1]X , [0, 1]MV )}.
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As in Thm. 1, the class H([0, 1]X , [0, 1]MV ) is in one-to-one correspondence
with the set X = {x1, . . . , xn} and hence from Thm. 2 an assignment σ :
fi �→ αi extends to a state on [0, 1]X iff 〈α1, . . . , αs〉 ∈ co{〈f1(x), . . . , fs(x)〉 :
x ∈ X〉}3. The result is shown in Fig. 1.

(0, 0) (1, 0)

(0, 1) (1, 1)

p1

p2

p3

Fig. 1 Let X = {1, 2, 3}, consider two

elements f1, f2 ∈ [0, 1]3, and the assign-
ment σ(f1) = α1, and σ(f2) = α2. The
two functions f1, f2 : X → [0, 1] defines
three points in the unit square [0, 1]2,
namely:
p1 = (f1(1), f2(1));
p2 = (f1(2), f2(2));
p3 = (f1(3), f2(3)).
Therefore the assignment σ extends to
a state on [0, 1]3 iff the point 〈α1, α2〉
belongs to the triangle with vertices p1,
p2, and p3.

Necessity measures on MV-algebras like [0, 1]X have been introduced in [7]:
a map N : [0, 1]X → [0, 1] is a necessity measure, provided that N(�) = 1,
for every f, f ′ ∈ [0, 1]X , N(f ∧ f ′) = min{N(f), N(f ′)}, and for every f, r ∈
[0, 1]X , if r is the function constantly equal to r, then N(r⊕ f) = r⊕N(f).4

Necessity measures on [0, 1]X can be equivalently defined as follows: if
π : X → [0, 1] is a map called a possibility distribution, we define Nπ : f ∈
[0, 1]X �→ minx∈X{(1−π(x))⊕f(x)} ∈ [0, 1], and in this case we say that Nπ
is defined by π. In [7, Theorem 3.3] it is shown that for every necessity measure
N on [0, 1]X , there exists a (unique) possibility distribution π defining N .

A necessity measure N is said to be normalized provided that the possi-
bility distribution π defining N satisfies maxx∈X π(x) = 1. Notice that, if N
is not normalized, then N(⊥) > 0. On the other hand, normalized necessities
always satisfy N(⊥) = 0. We will denote by N ([0, 1]X) the class of necessity
measures on [0, 1]X . Normalization will always be clear by the context.

The following can be proved going through the lines of [8, Theorem 4].

Theorem 3. Let f1, . . . , fs ∈ [0, 1]X, and let η : fi �→ αi be an assessment.
Then the following hold:

3 Notice that since X is finite, so is F = {〈f1(x), . . . , fs(x) : x ∈ X〉}, and hence
its convex hull is the polytope generated by F which is already closed. In other
words, co(F ) = co(F ).

4 In [7, 8] necessity measures also satisfying the last condition on constant functions
were called homogeneous necessity measures. In this paper, since we will not
distinguish between homogeneous and non-homogeneous mappings, we will use
to call them necessity measures without danger of confusion.
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Fig. 2 Three points in the unit square [0, 1]2, p1, p2 and p3, and their min-plus
convex hull (left) and their normalized (right) min-plus convex hull

1. η extends to a necessity measure iff

〈α1, . . . , αs〉 ∈ bmp-co({〈f1(xi), . . . , fs(xi)〉 : 1 ≤ i ≤ n}).

2. η extends to a normalized necessity measure iff

〈α1, . . . , αs〉 ∈ nmp-co({〈f1(xi), . . . , fs(xi)〉 : 1 ≤ i ≤ n}).

Example 1. Let X = {1, 2, 3}, consider two elements f1, f2 ∈ [0, 1]3, and an
assessment σ(f1) = α1, and σ(f2) = α2. The two functions f1, f2 : X → [0, 1]
define three points in the unit square [0, 1]2, namely: p1 = (f1(1), f2(1)); p2 =
(f1(2), f2(2)); p3 = (f1(3), f2(3)). Therefore the assignment σ respectively
extends to a normalized (resp. non-normalized) necessity measure on [0, 1]3

iff the point 〈α1, α2〉 belongs to the normalized (resp. non-normalized) min-
plus convex polygon of vertices p1, p2, and p3, depicted respectively in Fig. 2
on the left and on the right.

Next result shows that the inclusion operators ρ(·)(b), with varying b ∈ [0, 1]X ,
generate the whole class of necessity measures on [0, 1]X , and will be useful
in the next section.

Lemma 1. (1) The class of all necessity measures on [0, 1]X coincides with
the class {ρ(·)(b) : f ∈ [0, 1]X �→ ρf (b) | b ∈ [0, 1]X}.

(2) The class of all normalized necessity measures on [0, 1]X coincides with
the class {ρ(·)(b) : f ∈ [0, 1]X �→ ρf (b) | b ∈ [0, 1]X ,maxx∈X b(x) = 1}.
Corollary 2. Let f1, . . . , fs ∈ [0, 1]X, and let η : fi �→ αi be an assessment.
Then:

1. η extends to a necessity in N ([0, 1]X) iff

〈α1, . . . , αs〉 ∈ {〈ρf1(b), . . . , ρfs(b)〉 : b ∈ [0, 1]X}.
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2. η extends to a normalized necessity in N ([0, 1]X) iff

〈α1, . . . , αs〉 ∈ {〈ρf1(b), . . . , ρfs(b)〉 : b ∈ [0, 1]X ,maxx∈X b(x) = 1}.

4 Belief Functions and the Extendability Problem

Let us recall from Sec. 2.2 that, the algebra R is defined as the MV-algebra
generated by all functions ρf defined as in (1). Then belief functions on [0, 1]X

can be defined along the proposals in [6, 11, 12].

Definition 1. A map Bel : [0, 1]X → [0, 1] is a belief function if there exists
a state s : R→ [0, 1] such that for every a ∈ [0, 1]X , Bel(a) = s(ρa).

Notice that, in general, belief functions on [0, 1]X fail to satisfy Bel(⊥) = 0.
In fact, for every b ∈ [0, 1]X such that maxx∈X b(x) < 1, ρ⊥(b) > 0, and
hence ρ⊥ does not coincide with the function constantly equal to 0. There-
fore, whenever s is faithful, Bel(⊥) = s(ρ⊥) > 0. We will henceforth call
normalized any belief function satisfying Bel(⊥) = 0. The following result
provides a geometrical characterization for the extendability problem for be-
lief functions on MV-algebras.

Theorem 4. Let f1, . . . , fs ∈ [0, 1]X, and let β : fi �→ αi be a [0, 1]-valued
mapping. Then the following hold:

1. β extends to a belief function Bel on [0, 1]X iff

〈α1, . . . , αs〉 ∈ co(bmp-co({〈f1(xi), . . . , fs(xi)〉 : i ≤ n})).

2. β extends to a normalized belief function Bel on [0, 1]n iff

〈α1, . . . , αs〉 ∈ co(nmp-co({〈f1(xi), . . . , fs(xi)〉 : i ≤ n})).

Proof. 1. The assignment β extends to a belief function Bel : [0, 1]X → [0, 1]
iff there exists a state s : R → [0, 1] such that, for every t = 1, . . . , s,
αt = s(ρft) = Bel(ft). From Thm. 2, this means that 〈α1, . . . , αs〉 ∈
co{〈h(ρf1), . . . , h(ρfs)〉 ∈ [0, 1]s : h ∈ H(R, [0, 1]MV )}. From Corollary 1,
this is equivalent to:

〈α1, . . . , αs〉 ∈ co{〈ρf1(b), . . . , ρfs(b)〉 ∈ [0, 1]s : b ∈ [0, 1]X}.
From (1) of Corollary 2, the set {〈ρf1(b), . . . , ρfs(b)〉 ∈ [0, 1]s : b ∈ [0, 1]X} co-
incides with the set of all the coherent necessity assignments over {f1, . . . , fs},
in other words y ∈ {〈ρf1(b), . . . , ρfs(b)〉 ∈ [0, 1]s : b ∈ [0, 1]X} iff there exists
a necessity measure N such that for every t, N(ft) = y(t). Finally Thm. 3
implies that the set of all coherent necessity assessments over f1, . . . , fs co-
incides with bmp-co({〈f1(xi), . . . , fs(xi)〉 : i ≤ n}), and hence our the claim
is settled.
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(0, 0) (1, 0)

(0, 1) (1, 1)

p1

p2

p3

(0, 0) (1, 0)

(0, 1) (1, 1)

p1

p2

p3

Fig. 3 Two convex polytopes in the unit square [0, 1]2 defined by vertices p1, p2
and p3.

2. The proof runs completely parallel to the previous one and is omitted.
�

Example 2. (Example 1 continued) Let X = {1, 2, 3}, consider two elements
f1, f2 ∈ [0, 1]3, and an assessment σ(f1) = α1, and σ(f2) = α2. Therefore the
assignment σ extends either to a normalized belief function, or to a belief
function in general, on [0, 1]3 iff the point 〈α1, α2〉 belongs respectively to the
convex polytope on the left in Fig. 3, or to the convex polytope on the right
of the same Fig. 3.
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Cumulative Distribution Function
Estimation with Fuzzy Data: Some
Estimators and Further Problems

Xuecheng Liu and Shoumei Li

Abstract. In this paper, we discuss two types of estimators for cumulative
distribution function (CDF) based on fuzzy data: substituting estimators
and nonparametric maximum likelihood (NPML) based estimators, both of
them are extensions of empirical distribution functions (EDF) of real-valued
(non-fuzzy) data. We also list some further problems.

Keywords: Cumulative distribution function, empirical distribution func-
tions, fuzzy data, nonparametric maximum likelihood, substituting function.

1 Introduction

Background: EDF and Its Properties. The CDF F for a real-valued
random variable X is defined as, for x ∈ R := (−∞,∞),

F (x) := Pr(X ≤ x). (1)

Given independent and identically distributed random variables X1, ..., Xn

with CDF F , the EDF, as an estimator of F , is defined as, for x ∈ R,

F̂n(x) :=
1
n

n∑

j=1

1(−∞,x](Xj). (2)
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By the strong law of large numbers (SLLN), for each x ∈ R, F̂n(x) con-
verges to F (x) almost surely. Glivenko and Cantelli in 1933 (see, e.g., [18])
gave a theorem on uniform-type convergence of F̂n, often called Glivenko-
Cantelli theorem:

sup
x∈R

|F̂n(x) − F (x)| →a.s. 0.

For each x ∈ R, define

Zn(x) :=
√

n(F̂n(x) − F (x)),

by the central limit theorem (CLT), for each x ∈ R, Zn(x) converges weakly
to N(0, F (x)(1 − F (x)). Donsker in 1952 proved a theorem of uniform-type
convergence of Zn, often called Donsker theorem,

Zn →w U(F ) in D(R),

where D(R) is the Skorokhod space and U a standard Brownian bridge in
the unit interval [0, 1], see [18] for details.

Aim of the Paper. In many applications, observed data are imprecise rather
than precise (i.e., real-valued). In this paper, we consider fuzzy number val-
ued (imprecise) data, often called fuzzy data. With fuzzy data, two uncer-
tainties, fuzziness and randomness, exist simultaneously. Fuzzy data are to
fuzzy random variables in the sense of [9, 10, 8], or equivalently, [16], see [6]
for overview discussion.

This paper is on CDF estimation with fuzzy data. We limit the estimated
CDF F̂ in the classical sense, i.e., F̂ (x) is real-valued for each x ∈ R. We will
discuss two types of estimators: substituting estimators and nonparametric
maximal likelihood (NPML) estimators. Another important component of
this paper is to list some further (open) problems, among which, the impor-
tant and very challengeable ones include point-wise or uniform-type conver-
gence theorems, i.e., the extensions of SLLN, Glivenko-Cantelli theorem, CLT
and Donsker theorems discussed above to estimators based on fuzzy data.

Notation of Fuzzy Numbers. A fuzzy number Ã with a membership func-
tion A : R → [0, 1] is a fuzzy set [20] on R such that its α-level sets

Aα := {x ∈ R; A(x) ≥ α} for α ∈ [0, 1]

are bounded closed intervals, where A0 is, by convention, the closure of the
set {x ∈ R; A(x) > 0}. We denote Ã’s α-level set by [Aα, A

α
] and call A0

and A1 the support and core of Ã.
A fuzzy set Ã on R with support [a, d] and core [b, c] is a fuzzy number if

and only if the two functions L and R of Ã’s membership function restricting
on [a, b) and (c, d] respectively satisfy that L is non-decreasing and right-
continuous and R is non-increasing and left-continuous.

We denote by F(R) the class of all fuzzy numbers.
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2 CDF Estimation with Fuzzy Data: Substituting
Estimators

In this section, we propose so called substituting estimators to the CDF F
based on fuzzy data X̃1, ..., X̃n. For X, x ∈ R in Eqn. (1), denote

I(X, x) := 1(−∞,x](X), (3)

or, equivalently, with logical (true) indicator function,

I(X, x) = 1[X ≤ x], (4)

the EDF with real-valued data defined in Eqn. (2) can be rewritten as

F̂n(x) =
1
n

n∑

j=1

I(Xj , x). (5)

The idea of substituting estimators based on the fuzzy data is that we sub-
stitute I(Xj , x) in Eqn. (5) by its fuzzy counterparts, denoted by I(f)(X̃j , x),
where I(f) is a function from F(R) × R to [0, 1]. With I(f), we can estimate
the CDF F as,

F̂ (f)
n (x) :=

1
n

n∑

j=1

I(f)(X̃j , x). (6)

Substituting Function. In order for such an I(f) to be used in estimating
the CDF F in Eqn. (6), it is much reasonable that it meets the following 4
requirements, for Ã, B̃ ∈ F(R) and x ∈ R,

• R1: I(f)(Ã, x), as a function of x, is non-decreasing and right continuous
with left limit;

• R2: If Ã ⊆ (x,∞) (i.e., A0 ⊆ (x,∞)), then I(f)(Ã, x) = 0;
• R3: If Ã ⊆ (−∞, x] (i.e., A0 ⊆ (−∞, x]), then I(f)(Ã, x) = 1;
• R4: If Ã ≤ B̃, then I(f)(Ã, x) ≥ I(f)(B̃, x), where the partial order Ã ≤ B̃

is defined as Aα ≤ Bα, A
α ≤ B

α
for all α ∈ [0, 1].

A function from F(R)×R to [0, 1] satisfying R1 to R4 is called a substituting
function. R4 says that, for two fuzzy random variables X̃, Ỹ such that X̃ ≤ Ỹ ,
Pr(X̃ ≤ x) should be at least Pr(Ỹ ≤ x). Functions satisfying all of R1, R2
and R3 may not satisfy R4, see below the counterexample in the discussion
of substituting functions based on fuzzy number ranks with center of gravity
defuzzification. Further, it is easy to see that R2 and R3 together imply
I(f)(a, x) = 1[a ≤ x] for all a, x ∈ R.

In the following, we propose 4 substituting functions from different view-
points of 1(−∞,x](Xj) and 1[Xj ≤ x] for real-valued random variables Xj and
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x ∈ R in Eqns. (3) and (4) respectively. Each of the substituting functions
corresponds to a substituting estimator in CDF estimation with fuzzy data.

Substituting Functions Based on Inclusion Measures of Fuzzy Sets.
With the notation in [1], an inclusion measure of a fuzzy set Ã in another
fuzzy set B̃ is

I(Ã, B̃) := inf
u

i(A(u), B(u)),

where i is any fuzzy implication operator, and usually we choose

i(y1, y2) = max(1 − y1, y2), y1, y2 ∈ [0, 1]. (7)

Inclusion measure based substituting functions focus on the inclusion rela-
tionship of X (regarding as a singleton) in (−∞, x] as in Eqn. (3). We inter-
pret the value I(f)(X̃, x) as the degree (valued in [0, 1]) of X̃ being a subset
of (−∞, x]. As an example, with the implication operator in Eqn. (7), for
Ã ∈ F(R) (with support [a, d] and core [b, c]) and x ∈ R,

I(f),IM(Ã, x) := I(Ã, (−∞, x])
= inf

u∈R

max(1 − A(u),1(−∞,x](u))

=

⎧
⎪⎨

⎪⎩

0, if x < c,

1 − A(x), if c ≤ x < d,

1, if x ≥ d.

We can show that I(f),IM is a substituting function under the condition that
the functions R of the fuzzy data are continuous (see the notation of fuzzy
numbers in Section 1).

Note that we could choose different inclusion measures (i.e., different im-
plication operators) to get different substituting functions.

Substituting Functions Based on Fuzzy Number Ranks. Fuzzy num-
ber rank based substituting functions focus on the order relationship between
X and x in Eqn. (4) for real-valued random variable X and x ∈ R. We view
the value of I(f)(X̃, x) as a degree (valued in [0, 1]) of a fuzzy random variable
X̃ is smaller than x.

With any defuzzification method of fuzzy numbers, it is possible to con-
struct a substituting function as

I(f),defuz(Ã, x) := 1[Ãd ≤ x], (8)

where Ãd is the defuzzification value of Ã.
For most of defuzzification methods discussed in [11] such as BOA (bisector

of area), MOM (mean of maximum, i.e., mean of the core), SOM (smallest
of the maximum), LOM (largest of maximum), the functions I(f),defuz are
substituting functions. However, for COG (center of gravity), the function
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I(f),defuz satisfies R1, R2 and R3, but not R4, and hence, it is not a substi-
tuting function, since, with COG, for Ã, B̃ ∈ F(R), Ã ≤ B̃ does not imply
Ãd ≤ B̃d. For example, considering Ã, B̃ ∈ F(R) with membership functions
A(x) := x1[0, 23 )(x) + 1[ 23 ,1](x) and B(x) := x1[0,1](x), we have Ã ≤ B̃ and
Ãd = 61

90 > 2
3 = B̃d.

Substituting Functions Based on Extension Principles. Substituting
functions based on extension principles are to apply extension principles to
the function I(X, x) in (3) or (4). We extend X to a fuzzy number X̃ , but keep
x ∈ R. Hence, for any Ã ∈ F(R) and x ∈ R, with any extension principle,
we get the fuzzy set I(Ã, x) on the universal set {0, 1}. We only use the
membership grade of I(Ã, x) at 1 in defining substituting functions.

As an example, with Zadeh’s extension principle, for Ã ∈ F(R) (with
support [a, d] and core [b, c]) and x ∈ R, we have

I(f),Zadeh(Ã, x) := I(Ã, x)(1)

=

⎧
⎪⎨

⎪⎩

0 if x < a,

A(x) if a ≤ x < b,

1 if x ≥ b.

It is easy to show that I(f),Zadeh is a substituting function.
Note that Zadeh’s extension principle is to T-norm “min” and T-conorm

“max”. We could study the possibilities of using extension principles with
other T-norms and their T-conorms.

Substituting Functions Based on Possibility-Probability Transfor-
mations. There are many literatures on possibility-probability transforma-
tion. See detailed discussion in this topic in, e.g., [3, 7]. We require here that
the support of the probability distribution is a subset of the support of the
possibility distribution.

Suppose that we have chosen a method of transformation from possibility
distributions to probability distributions, where the possibility distributions
are determined by the fuzzy numbers of the fuzzy data [22]. For a fuzzy
number Ã, denote by F Ã the CDF of the transformed probability distribution
from Ã, and define

I(f),PP(Ã, x) := F Ã(x).

Then we can show that I(f),PP is a substituting function.
As examples, we consider two types of transformations with interval

(fuzzy) data. With the re-scaled transform (i.e., the transformed probabil-
ity distribution from an observation [a, b] is the uniform distribution on the
interval [a, b]), I(f),PP is just the smoothed empirical distribution function
discussed in Chapter 6 of [19]; With the transformations of putting mass 1
on the left-end (respectively, right-end) point of each observation, I(f),PP is
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just the lower (respectively, upper) end-point of fuzzy histogram to the class
(−∞, x] discussed in Chapter 5 of [19].

3 CDF Estimation with Fuzzy Data: NPML Estimators

In this section, assuming that the CDF F is to a continuous variable, we
discuss NPML estimation with fuzzy data, adapted from the unpublished
work of [13].

Likelihood. Let X̃1, ..., X̃n be fuzzy data as above. By treating each fuzzy ob-
servation as a fuzzy event [21], under the condition that the joint membership
function of X̃1, ..., X̃n is decomposable in the sense of [2], the log-likelihood
of F given the fuzzy data is

�(F |X̃1, ..., X̃n) :=
n∑

j=1

log
[∫

R

Xj(x)dF (x)
]

.

When all X̃js are intervals [Xj , Xj ],

�(F |X̃1, ..., X̃n) =
n∑

j=1

log
[
F (Xj) − F (Xj−)

]
, (9)

where F (Xj−) is the left limit of F at Xj .

The NPML Estimation with Interval (Fuzzy) Data. In survival anal-
ysis, we model the time of an event of interest only known to have occurred
within an interval, bounded or not. Under the assumption that the time of
the event of interest is independent from the inspection process, the NPMLE
for interval censored data and the NPMLE for interval (fuzzy) data in this
paper share the same likelihood in Eqn. (9). Therefore, the estimator applied
to the NPMLE for interval censored data can be used to the NPMLE for
interval (fuzzy) data.

Applying NPML estimation with interval censored data to interval (fuzzy)
data, we know that the support of the NPMLE for interval (fuzzy) data is
the union of all maximal intersections (MIs) of the data, where an MI is the
non-empty intersection of some observations and the other observations do
not intersect it. (If an observation intersects none of the other observations,
this observation itself is also an MI.) When moving (probability) mass from
no MIs to MIs, intersected observations share mass as much as possible, hence
the likelihood improves. The number of MIs, m, is finite and no more than
n. Therefore, the NPML estimation is equivalent to the NPML estimation of
probability vector [p1, ..., pm]′, where pi’s are the probability masses to MIs.
Note that when a non-singleton MI receives positive mass, whatever the way
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the mass distributes inside the MI, the likelihood remains the same, we need
to make convention to remove such nonuniqueness. For detailed discussion,
see, e.g., [15, 17, 4].

An Approximate NPML Estimation with General Fuzzy Data. The
notion of MI for interval (fuzzy) data cannot apply to general fuzzy data. For
general fuzzy data, we propose an approximate estimator called synthesized
estimator to alpha-level sets (SEALS) in the following 4 steps:

1. (Selection of alpha-levels.) Select several α levels α1 = 0, ..., αK = 1. (For
example, with K = 6, we select α1 = 0, α2 = 0.2, α3 = 0.4, ..., α6 = 1);

2. (Extraction of alpha-level sets.) At each level of αk, k = 1, ..., K, find the
interval (fuzzy) data X̃αk

1 , ..., X̃αk
n ;

3. (Estimation with each alpha-level set.) For each of αk, k = 1, ..., K, find
the NPMLE of the interval (fuzzy) data X̃αk

1 , ..., X̃αk
n , denoted by p̂αk , and

let F̂αk
n denote the CDF to p̂αk with some convention of mass distribution

in each MI;
4. (Synthesization.) Synthesize F̂αk

n (k = 1, ..., K) into the final CDF esti-
mate as follows. We introduce a new CDF family

{w1F̂
α1
n + · · · + wK F̂αk

n ; all wk ∈ [0, 1] and w1 + · · · + wK = 1},

then, by treating w1, ..., wK as model parameters, search the CDF in this
new CDF family instead of the family of all CDFs) in maximizing the
likelihood. The parameters wk for k = 1, ..., K are certainly interpreted as
weights.

4 Remarks and Further Problems

As already used in Section 3, for any finite CDF estimators F̂ 1
n ...., F̂K

n , the
convex combination w1F̂

1
n + · · ·+wK F̂K

n (w1, ..., wK ∈ [0, 1], w1 + · · ·+wK =
1) is also a CDF estimator. This is a powerful approach to construct new CDF
estimators.

We did not discuss how to construct a confidence interval of CDF at any
given x ∈ R. When establishing a (possibly asymptotic) distribution of a
CDF estimator at x, we could construct a confidence interval based on it.
With unknown (asymptotic) distribution, (usually it is the case,) bootstrap
confidence intervals (by random sampling with replacement from the fuzzy
data set) could be used.

We list some further (open) problems.

• Search other CDF estimators with fuzzy data which extends EDF of real-
valued data;

• Find conditions for a CDF estimator with fuzzy data to satisfy SLLN and
CLT. For CLT, we also need to check the convergence rate of the estimator;
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• Extend Glivenko-Cantelli and Donsker theorems to CDF estimators with
fuzzy data;

• In this paper, the CDF estimators are to the set-class C0 := {(−∞, x]; x ∈
R}, (i.e., we estimate Pr(X ∈ C) for C ∈ C0). Generation to more general
classes, e.g., C0 ∪ {(x1, x2]; x1, x2 ∈ R, x1 ≤ x2} (a VC-class, see [18]) is
natural and useful.

• Work on more general sample spaces such as R
2. To bivariate interval

(fuzzy) data, we can borrow the NPML estimation with bivariate interval
censored data (see, for example, [4, 5, 12, 14]). To general bivariate fuzzy
data, copula modeling could help.

• Fuzzify CDF estimators with fuzzy data. Although in principle, Zadeh’s
extension principle could be applied for such fuzzification, when the sample
size gets large, it could be hard to manage the complexity of the resulting
estimator. It is worth for us to explore other fuzzification possibilities.

Acknowledgements. The authors would like to thank the two anonymous re-
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On Equations with a Fuzzy Stochastic
Integral with Respect to
Semimartingales

Marek T. Malinowski

Abstract. We consider some equations in a metric space of fuzzy sets with
basis of square integrable random vectors. These equations generalize the
single-valued stochastic differential equations and set-valued stochastic inte-
gral equations as well. A main object is a fuzzy stochastic trajectory integral
with respect to a semimartingale. We obtain the existence and uniqueness of
global solutions to fuzzy stochastic integral equations driven by continuous
semimartingales. Also, we present a stability of solutions under changes of
equation’s data.

Keywords: Fuzzy stochastic integral, fuzzy stochastic integral equation.

1 Introduction

A typical feature of real-world phenomena is uncertainty. This term is mostly
understood as stochastic uncertainty and the methods of probability theory
and stochastic analysis are utilized in its investigations (see e.g. [1, 21]). How-
ever, the term uncertainty has the second aspect: vagueness (sometimes called
imprecision, fuzziness, ambiguity, softness). This second type of uncertainty
is appropriately treated by fuzzy set theory.

The dynamical systems and differential equations subjected to two kinds
of uncertainties (fuzziness and randomness) are extensively studied nowa-
days [3, 4, 5, 6, 7, 8, 10, 11, 9, 13, 12, 16, 14, 15, 17, 18, 19, 20, 23]. In [18]
one can find the studies on stochastic fuzzy trajectory integral with semi-
martingale integrator. Also, a fuzzy stochastic integral equation driven by a
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Brownian motion (a particular semimartingale) was studied. Such equation
is understood in [18] as a family of set-valued stochastic differential inclusions
and its solution is a fuzzy set with basis of a set of probability measures. In
this paper we treat the fuzzy stochastic integral equations driven by semi-
martingales as the equations in a metric space of fuzzy sets with basis of
square integrable random vectors. Our approach is similar to that one pre-
sented in [12, 14]. Hence, we do not look for selections of the right-hand side
of the equation, but we solve the fuzzy stochastic integral equation directly.
In this way we consider the solutions being the fuzzy-set-valued mappings. To
obtain continuity of solutions we assume that the semimartingale integrator
is continuous. We present a stability property for the solutions.

2 Preliminaries

Let X be a separable Banach space, Kbc(X ) the family of all nonempty closed,
bounded and convex subsets of X . The Hausdorff metric HX in Kbc(X ) is
defined by

HX (A,B) = max
{

sup
a∈A

distX (a,B), sup
b∈B

distX (b, A)
}
,

where distX (a,B) = infb∈B ‖a− b‖X and || · ||X denotes a norm in X .
It is known that (Kbc(X ), HX ) is a Polish metric space.

2.1 Measurable Multifunctions

Let (U,U , μ) be a measure space. A set-valued mapping (multifunction)
F : U → Kbc(X ) is said to be U-measurable (or measurable, for short) if
it satisfies: {u ∈ U : F (u) ∩O �= ∅} ∈ U for every open set O ⊂ X .

A measurable multifunction F : U → Kbc(X ) is said to be LpU(μ)-integrably
bounded (p ≥ 1), if there exists h ∈ Lp(U,U , μ;R+) such that the inequality
‖|F |‖X ≤ h holds μ-a.e., where ‖|A|‖X = HX (A, {0}) = supa∈A ||a||X for
A ∈ Kbc(X ), and R+ = [0,∞).

Let (Ω,A, {At}t≥0, P ) be a complete filtered probability space satisfying
the usual hypotheses.

At this moment we put X = R
d, U = R+ × Ω, U = P , where P denotes

the σ-algebra of the predictable elements in R+ × Ω. A stochastic process
f : R+ ×Ω → R

d is called predictable if f is P-measurable.
A mapping F : R+×Ω → Kbc(Rd) is said to be a set-valued stochastic pro-

cess, if for every t ∈ R+ the mapping F (t, ·) : Ω → Kbc(Rd) is an A-measurable
multifunction. If for every fixed t ∈ R+ the mapping F (t, ·) : Ω → Kbc(Rd) is



Fuzzy Stochastic Integral Equations 95

an At-measurable multifunction then F is called {At}-adapted. A set-valued
stochastic process F is predictable if it is a P-measurable multifunction.

2.2 Fuzzy Stochastic Processes

By a fuzzy set u with basis of a space X we mean a function u : X → [0, 1]. By
F(X ) we denote the set of all fuzzy sets with basis X . For α ∈ (0, 1] denote
[u]α := {x ∈ X : u(x) ≥ α} and let [u]0 := clX {x ∈ X : u(x) > 0}, where clX
denotes the closure in (X , ‖ · ‖X ). The sets [u]α are called the α-level sets of
fuzzy set u, and 0-level set [u]0 is called the support of u.

Denote Fbc (X ) = {u ∈ F(X ) : [u]α ∈ Kbc(X ) for every α ∈ [0, 1]}. In this
set we consider two metrics: the generalized Hausdorff metric

DX (u, v) := sup
α∈[0,1]

HX ([u]α, [v]α), and the Skorohod metric

DX
S (u, v) := inf

λ∈Λ
max

{
sup
t∈[0,1]

|λ(t) − t|, sup
t∈[0,1]

HX (xu(t), xv(λ(t)))
}
,

where Λ denotes the set of strictly increasing continuous functions λ : [0, 1]→
[0, 1] such that λ(0) = 0, λ(1) = 1, and xu, xv : [0, 1]→ Kbc(X ) are the càdlàg
representations for the fuzzy sets u, v ∈ Fbc (X ), see [2] for details. The space
(Fbc (X ), DX ) is complete and non-separable, and the space (Fbc (X ), DX

S ) is
Polish.

For our aims we will consider two cases of X . Namely we will take X = R
d

or X = L2, where L2 = L2(Ω,A, P ;Rd) and we assume, from now on, that
σ-algebra A is separable with respect to probability measure P .

Definition 1. ([22]). By a fuzzy random variable we mean a function u : Ω →
Fbc (X ) such that [u(·)]α : Ω → Kbc(X ) is an A-measurable multifunction for
every α ∈ (0, 1].

It is known (see [2]) that for a mapping u : Ω → Fbc (X ) it holds:
• u is the fuzzy random variable if and only if u is A|BDX

S
-measurable,

• if u is A|BDX -measurable, then it is the fuzzy random variable; the oppo-
site implication is not true, where BDX

S
(BDX , respectively) is the σ-algebra

generated by the topology induced by DX
S (DX , respectively).

A fuzzy-set-valued mapping f : R+×Ω → Fbc (X ) is called a fuzzy stochastic
process if f(t, ·) : Ω → Fbc (X ) is a fuzzy random variable for every t ∈ R+.

The fuzzy stochastic process f : R+×Ω → Fbc (X ) is said to be predictable
if the set-valued mapping [f]α : R+ × Ω → Kbc(X ) is P-measurable for every
α ∈ (0, 1].

Let f : R+ × Ω → Fbc (X ) be a predictable fuzzy stochastic process. The
process f is said to be L2

P(μ)-integrably bounded, if ‖|[f]0|‖X ∈ L2
P(μ).
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2.3 Set-Valued Stochastic Trajectory Integral w.r.t.
Continuous Semimartingales

Let (Ω,A, {At}t≥0, P ) be a complete, filtered probability space with a filtra-
tion {At}t≥0 satisfying usual hypotheses, i.e. {At}t≥0 is right continuous and
A0 contains all P -null sets.

Let Z : R+×Ω → R be a semimartingale with the canonical representation

Z = A+M, Z0 = 0, A0 = 0, M0 = 0, (1)

where A : R+×Ω → R is an {At}-adapted cádlág stochastic process of finite
vatiation on each compact interval of R+, and M : R+ × Ω → R is a local
{At}-martingale.

If Z is continuous, so are the processes A,M . Also A is predictable and
representation (1) is unique.

Since A is of finite variation, almost each (w.r.t. to P ) trajectory A(·, ω)
generates a measure ΓA(·,ω) with the total variation on the interval [0, t]

given by |A(ω)|t =
∫ t
0
ΓA(·,ω)(ds). For a local martingale M one can define

the quadratic variation process [M ] : R+ × Ω → R (cf. [1]). Now we denote
by H2 the set of all semimartingales Z : R+×Ω → R with finite norm ‖ ·‖H2 ,
where

‖Z‖H2 :=
∥∥[M ]1/2∞

∥∥
L2 +

∥∥|A|∞
∥∥
L2 ,

where [M ]∞ = limt→∞[M ]t P -a.e. and |A(ω)|∞ =
∫∞
0 ΓA(·,ω)(ds).

It is known that for a continuous semimartingale Z ∈ H2 the process M
in (1) is a continuous square integrable martingale and E|A|2∞ <∞.

Let us consider two measures μA, μM defined on (R+×Ω,P) and induced
by the processes A,M from the representation (1) of the semimartingale Z.

The measure μA is defined as follows (see [18])

μA(C) :=

∫

Ω

(∫

R+

1C(t, ω)|A(ω)|∞ΓA(·,ω)(dt)

)
P (dω) for C ∈ P .

For f ∈ L2(R+×Ω,P , μA;Rd) one can define the stochasic Lebesgue–Stjeltjes

integral
∫ t
0 f(s)dAs trajectory-by-trajectory (cf. [21]).

The measure μM is the well-known Doléan-Dade measure (cf. [1]) such
that

μM ({0} ×A0) = 0, μM ((s, t]×A) = E1A(Mt −Ms)
2,

where A0 ∈ A0, 0 ≤ s < t, A ∈ As.
For f ∈ L2(R+ × Ω,P , μM ;Rd) and t ∈ R+ one can define the stochastic

integral
∫ t
0 f(s)dMs and we have (cf. [1])

∫

[0,t]×Ω
|f |2dμM = E

∫ t

0

|f(s)|2d[M ]s = E

∣∣∣
∫ t

0

f(s)dMs

∣∣∣
2
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For a semimartingale Z ∈ H2 with the representation (1) one can define a
finite measure μZ on (R+ ×Ω,P) as

μZ(C) := μA(C) + μM (C), C ∈ P .

Denote L2
P(μZ) := L2(R+×Ω,P , μZ ;Rd). For f ∈ L2

P(μZ) one can define the

single-valued stochastic integral
∫ t
0 f(s)dZs with respect to semimartingale Z

as follows ∫ t

0

f(s)dZs :=

∫ t

0

f(s)dAs +

∫ t

0

f(s)dMs.

Let F : R+ × Ω → Kbc(Rd) be a predictable set-valued stochastic process
which is L2

P(μZ)-integrably bounded. For such a process let us define the set
S2
P(F, μZ) := {f ∈ L2

P(μZ) : f ∈ F, μZ-a.e.}. Due to the Kuratowski and
Ryll-Nardzewski Selection Theorem we have S2

P(F, μZ) �= ∅.
Definition 2. ([18]) For a predictable and L2

P(μZ)-integrably bounded set-
valued stochastic process F : R+ ×Ω → Kbc(Rd) and for τ, t ∈ R+, τ < t the
set-valued stochastic trajectory integral (over interval [τ, t]) of F with respect
to the semimartingale Z is the following subset of L2(Ω,At, P ;Rd)

(S)

∫

[τ,t]

F (s)dZs :=
{∫ t

τ

f(s)dZs : f ∈ S2
P(F, μZ )

}
.

In the rest of the paper, for the sake of convenience, we will write L2 instead
of L2(Ω,A, P ;Rd) and L2

t instead of L2(Ω,At, P ;Rd). Moreover, since Z is
considered to be continuous, the integrals (S)

∫
[τ,t]

F (s)dZs, (S)
∫
(τ,t]

F (s)dZs

coincide. For their common value we will write (S)
∫ t
τ F (s)dZs. It is known

that (S)
∫ t
τ
F (s)dZs ∈ Kbc(L2

t ).

Theorem 1. ([18]) Let Fn : R+ × Ω → Kbc(Rd) be the predictable set-valued
stochastic processes such that F1 is L2

P(μZ)-integrably bounded and F1 ⊃
F2 ⊃ . . . ⊃ F μZ-a.e., where F :=

⋂∞
n=1 Fn μZ-a.e. Then for every τ, t ∈

R+, τ < t it holds (S)
∫ t
τ
F (s)dZs =

⋂∞
n=1(S)

∫ t
τ
Fn(s)dZs.

3 Fuzzy Stochastic Trajectory Integral w.r.t.
Continuous Semimartingales

Using Thm. 1 and the Representation Theorem of Negoita–Ralescu one can
define a notion of a fuzzy stochastic trajectory integral with a semimartingale
integrator.

Proposition 1. ([18]) Assume that f : R+×Ω → Fbc (Rd) is a predictable and
L2
P(μZ)-integrably bounded fuzzy stochastic process. Then for every τ, t ∈ R+,
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τ < t there exists a unique fuzzy set in Fbc (L2
t ) denoted by (F )

∫ t
τ f(s)dZs such

that for every α ∈ (0, 1] it holds
[
(F )

∫ t
τ f(s)dZs

]α
= (S)

∫ t
τ [f(s)]αdZs, and

[
(F )

∫ t
τ
f(s)dZs

]0
⊂ (S)

∫ t
τ
[f(s)]0dZs.

Definition 3. ([18]) The fuzzy set (F )
∫ t
τ
f(s)dZs ∈ Fbc (L2

t ) from Prop. 1 is
said to be the fuzzy stochastic trajectory integral (over interval [τ, t]) of f
with respect to the semimartingale Z.

Since Fbc (L2
t ) ⊂ Fbc (L2), we have (F )

∫ t
τ
f(s)dZs ∈ Fbc (L2).

The following properties will be useful in the context of the fuzzy equations
considered in the next section.

Theorem 2. Let f1, f2 : R+ × Ω → Fbc (Rd) be the predictable and L2
P(μZ)-

integrably bounded fuzzy stochastic processes. Then

(i) for every τ, a, t ∈ R+, τ ≤ a ≤ t it holds (F )
∫ t
τ
f1(s)dZs =

(F )
∫ a
τ f1(s)dZs + (F )

∫ t
a f1(s)dZs,

(ii) for every τ, t ∈ R+, τ < t it holds D2
L2

(
(F )

∫ t
τ
f1(s)dZs, (F )

∫ t
τ
f2(s)dZs

)
≤

2
∫

[τ,t]×Ω
D2

Rd(f1, f2)dμZ ,

(iii) for every τ ∈ R+ the mapping [τ,∞)  t �→ (F )
∫ t
τ
f1(s)dZs ∈ Fbc (L2) is

continuous with respect to the metric DL2 .

4 Fuzzy Stochastic Integral Equations Driven by
Semimartingales

In this section we consider equations with the fuzzy stochastic trajectory
integrals with a continuous semimartingale integrator.

We consider the following relation in the metric space
(Fbc (L2), DL2

)
and

call it the fuzzy stochasitc integral equation driven by continuous semimartin-
gale:

X(t) = X0 + (F )

∫ t

0

f(s,X(s))dZs for t ∈ R+, (2)

where f : R+ ×Ω ×Fbc (L2)→ Fbc (Rd) and X0 ∈ Fbc (L2
0).

Such the equations are generalizations of set-valued stochastic integral
equations driven by continuous semimartingales. The results presented in
this paper apply instantly to set-valued equations.

Definition 4. By a global solution to (2) we mean a DL2-continuous map-
ping X : R+ → Fbc (L2) that satisfies (2) for t ∈ R+.

Definition 5. A global solution X : R+ → Fbc (L2) to (2) is unique if X(t) =
Y (t) for every t ∈ R+, where Y : R+ → Fbc (L2) is any global solution to (2)
existing on R+.
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Remark 1. IfX : R+ → Fbc (L2) is a global solution to (2), then X(t) ∈ Fbc (L2
t )

for every t ∈ R+.

To obtain the existence of a global solution we assume that the nonlinearity
f : R+ ×Ω ×Fbc (L2)→ Fbc (Rd) satisfies:

(G1) it is a P ⊗ B
DL2

S
|B
DRd

S

-measurable mapping,

(G2) ∃ K > 0 ∀ (t, ω) ∈ R+ ×Ω ∀ u, v ∈ Fbc (L2)

DRd

(
f(t, ω, u), f(t, ω, v)

) ≤ KDL2(u, v),

(G3) ∃ C > 0 ∀ (t, ω) ∈ R+ ×Ω ∀ u ∈ Fbc (L2)

DRd

(
f(t, ω, u), θ̂

) ≤ C(1 +DL2(u, Θ̂)
)
.

The descriptions of the symbols θ̂, Θ̂ appearing in (G3) are as follows:
let θ, Θ denote the zero elements in R

d and L2, respectively, the symbols
θ̂, Θ̂ are their fuzzy counterparts, i.e. θ̂ ∈ Fbc (Rd) and [θ̂]α = {θ} for every
α ∈ [0, 1], also Θ̂ ∈ Fbc (L2) and [Θ̂]α = {Θ} for every α ∈ [0, 1].

Theorem 3. Let X0 ∈ Fbc (L2
0), and f : R+ × Ω × Fbc (L2) → Fbc (Rd) satisfy

conditions (G1)-(G3). Then Eq. (2) has a unique global solution.

A stability of solution with respect to initial value is a desired property. Now,
we give a result of this type. Therefore let us consider Eq. (2) and equation
with another initial value Y0 ∈ Fbc (L2

0), i.e.

Y (t) = Y0 + (F )

∫ t

0

f(s, Y (s))dZs, t ∈ R+, (3)

and let X,Y denote the solutions to (2) and (3), respectively.
By μΩZ we denote a measure on (R+, βR+) defined as μΩZ (B) = μZ(B ×

Ω) for B ∈ βR+ . In the rest of the paper we assume that a continuous
semimartingale Z is such that μΩZ is absolutely continuous with respect to
the Lebesgue measure.

Theorem 4. Let X0, Y0 ∈ Fbc (L2
0). Assume that f : R+ × Ω × Fbc (L2) →

Fbc (Rd) satisfies conditions (G1)-(G3). Then

DL2

(
X(t), Y (t)

) ≤
√

2e2K
2μΩ

Z ([0,t])DL2(X0, Y0) for every t ∈ R+.

Corollary 1. Under assumptions of Thm. 4 we have

sup
t∈R+

DL2

(
X(t), Y (t)

) ≤
√

2e2K
2μΩ

Z (R+)DL2(X0, Y0).

For a stability of a solution with respect to the nonlinearity f, let us consider
Eq. (2) and the following equations (for n = 1, 2, . . .)
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Xn(t) = X0 + (F )

∫ t

0

fn(s,Xn(s))dZs, t ∈ R+, (4)

and denote by X,Xn the corresponding solutions to (2) and (4).

Theorem 5. Let X0 ∈ Fbc (L2
0). Assume that f, fn : R+ × Ω × Fbc (L2) →

Fbc (Rd) satisfy conditions (G1)-(G3) with the same Lipschitz constant K.
If for every t ∈ R+ and every u ∈ Fbc (L2)

∫

[0,t]×Ω
D2

Rd

(
fn(s, u), f(s, u)

)
dμZ −→ 0, as n→∞,

then for every t ∈ R+

DL2

(
Xn(t), X(t)

) −→ 0, as n→∞.
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A Linear Regression Model
for Interval-Valued Response Based
on Set Arithmetic

Angela Blanco-Fernández, Ana Colubi,
Marta Garćıa-Bárzana, and Manuel Montenegro

Abstract. Several linear regression models involving interval-valued vari-
ables have been formalized based on the interval arithmetic. In this work,
a new linear regression model with interval-valued response and real predic-
tor based on the interval arithmetic is formally described. The least-squares
estimation of the model is solved by means of a constrained minimization
problem which guarantees the coherency of the estimators with the regression
parameters. The practical applicability of the estimation method is checked
on a real-life example, and the empirical behaviour of the procedure is shown
by means of some simulation studies.

Keywords: Interval data, least-squares estimation, linear regression, set
arithmetic.

1 Introduction

The statistical treatment of imprecise-valued data has been deeply investi-
gated over the last years. The consideration of experimental outcomes as-
sociated with not real values, but elements in a more flexible scale allows
us to better capture the inherent imprecision/diversity of certain data. The
scale of nonempty compact real intervals is commonly used when the char-
acteristic under study corresponds to the fluctuation of a magnitude over a
certain period of time, a numerical range, or when working with grouped or
censored data (see [3, 5, 8], among others). Real intervals are also useful for
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modelling exact values being imprecisely identified due to any reason (hidden
for confidentiality, uncertainty in the measurement, etc). In this case, the in-
terval that contains a representative data point instead of its precise value is
considered in the statistical processing (see, for instance, [7]).

The study of a functional dependence between interval variables may be
done by considering (interval-valued) functions of the (interval-valued) vari-
ables which relates suitably the interval data. In the case of considering a
linear function, it can be formalized in terms of the natural interval arith-
metic. Several linear regression models between interval data based on the
interval arithmetic have been proposed (see [2] for a detailed review).

Real-valued data can obviously be considered as real compact intervals
with equal endpoints. Thus, the interval linear models can also be applied
to situations in which one or several variables involved in the model are real
valued. However, it can be shown that these models are not able to express
suitably an interval variable in terms of a real predictor. In this paper a new
linear regression model for interval response and a real predictor is proposed,
which overcomes the drawbacks of the existing interval models. The rest of
the paper is organized as follows: In Sec. 2 some basic concepts and results for
intervals are recalled, and the basic linear model for interval data is presented.
Its limitations when the predictor is real valued are shown. The new proposed
linear model is introduced in Sec. 3. The main theoretical properties of the
model and a coherent least squares estimation of its parameters are studied.
Both the practical applicability and the empirical behaviour of the estimation
method are shown in Sec. 4. Finally, in Sec. 5 some concluding remarks and
future directions are highlighted.

2 Notations and Preliminaries

Let Kc(R) denote the space of nonempty compact real intervals, i.e. Kc(R) =
{[a, b] : a, b ∈ R, a ≤ b}. Each element A ∈ Kc(R) can be represented by
means of its endpoints as A = [inf A, supA], with inf A ≤ supA. If we define
midA = (supA+inf A)/2 and sprA = (supA−inf A)/2, then A can be equiv-
alently expressed as A = [midA± sprA]. Obviously, (midA, sprA) ∈ R× R

+

are the mid-point and the spread (radius) of A, respectively. In statistical
processing the (mid, spr)-representation for intervals is most commonly used
since it involves only a non-negativity condition for the spr. The order con-
straint between the components in the (inf, sup)-characterization is more
difficult to deal with in general.

Through the operations A + B = {a + b : a ∈ A, b ∈ B} and λA =
{λa : a ∈ A}, for every A,B ∈ Kc(R) and λ ∈ R, a natural arithmetic is
defined on Kc(R). Due to the general lack of symmetric element with respect
to the addition, the space is semilinear with these operations (see [2]). Thus,
A + (−1)B has not the usual sense of a difference operator. Sometimes it is
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possible to consider the so-called Hukuhara difference between intervals A
and B, defined as the element C ∈ Kc(R) (if it exists) such that B +C = A.
Whenever sprB ≤ sprA the Hukuhara difference between A and B exists. In
that case, it is denoted by A−H B.

The quantification of distances between intervals is also necessary for sta-
tistical developments. Among several metrics defined on Kc(R) (see, for in-
stance, [1, 9]), in [10] an L2-type metric with good operative and intuitive
properties is introduced. Moreover, it generalizes other well-known metrics
between intervals. Given θ > 0,

dθ(A,B) =
√

(midA−midB)2 + θ(sprA− sprB)2 , (1)

for every A,B ∈ Kc(R).
Formally, interval-valued random variables (or random intervals) can be

considered in an analogous manner to real-valued random variables associated
with a probability space (Ω,A, P ) i.e. mappings taking values onΩ and whose
outcomes are associated with elements of Kc(R) instead of those of the real
line, being (Bdθ |A)-measurable (Bdθ denoting the σ-field generated by the
topology induced by dθ on Kc(R)). A random interval X can be equivalently
defined through the real-valued random vector (midX, sprX) : Ω → R

2 such
that sprX ≥ 0 a.s. - [P].

The expected value of a random interval X is defined by means of the
Aumann expectation. It satisfies that

E(X) = [E(midX)± E(sprX)] ,

whenever those expected values exist, i.e. midX, sprX ∈ L1. For {Xi, Yi}ni=1

a random sample obtained from (X,Y ), the sample mean of X is formalized
in terms of the interval arithmetic as X = (X1 + . . .+Xn)/n and it verifies
that X = [midX ± sprX ].

2.1 Basic Linear Model for Random Intervals

A linear model between two interval-valued random variables has been pre-
viously formalized by means of different expressions. Mimicking the classical
simple linear model in the real-valued case, in [6] the basic linear model for
relating two random intervals X and Y based on the interval arithmetic has
been introduced as follows:

Y = aX + ε , (2)

where ε is an interval random error such that E(ε|X) = B ∈ Kc(R).
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Remark 1. The (interval-valued) independent term B in (2) is included as the
expectation of the error in order to allow the error to be an interval-valued
random set (see [6] for details).

The estimation of the linear model (2) has been solved in [6] by means of a
least squares criterion based on the well-known Bertoluzza-metric introduced
in [1] (which is equivalent to dθ when θ < 1). Moreover, the LS estimators of
the regression parameters are obtained by assuring their coherence with the
interval arithmetic. Let (â, B̂) be the LS estimators of (a,B) in (2) obtained

in [6]. The prediction of Y for any pair (X,Y ) is computed as Ŷ = âX + B̂.

Equivalently, the real components (midŶ , sprŶ ) are computed as mid Ŷ =

âmidX + mid B̂ and spr Ŷ = |â| sprX + spr B̂, respectively.
Since any real-valued random variable X can be considered as a random

interval with sprX = 0, the interval model (2) is applicable to predict the
random interval Y in terms of a real-valued predictor x. In this particular
case, the estimation of the model (2) leads to the predicted values for Y ,

mid Ŷ = â x+ mid B̂ and spr Ŷ = sprY , (3)

with â = σ̂x,midY /σ̂
2
x and B̂ = midY − â x. Thus, model (2) allows to predict

midY in terms of x equivalently to the classical linear model for these real-
valued variables, but it does not allow to predict sprY in terms of x. With the
aim of getting the possibility for x to predict both mid and spr components of
the interval Y , a new linear model for relating an interval response in terms
of a real-valued predictor is formalized.

3 A New Linear Model for Interval Response

Let x : Ω → R be a real random variable and Y : Ω → Kc(R) be a random
interval, both associated with the same probability space (Ω,A, P ). The val-
ues of Y can be modelled in terms of the corresponding values of x in a linear
fashion by means of the following relationship:

Y = Ax+ ε , (4)

where A ∈ Kc(R) and ε : Ω → Kc(R) with E(ε|X) = B ∈ Kc(R).
The expression in (4) is well-formalized in terms of the interval arithmetic.

Moreover, it is straightforward to show that from this interval model the
following relationships for the real components of Y are transferred:

midY = midA x+ midB and spr Y = sprA |x|+ sprB . (5)

Thus, the predictor variable x explains both components mid and spr of the
interval response.
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3.1 Least Squares Estimation of the Model

As usual, given {xi, Yi}ni=1 a random sample obtained from (x, Y ), the least
squares (LS) estimation of the model (4) consists in searching the optimal
values for the regression parameters (interval-valued in this case) minimizing
the squared distance between sample and estimated values, i.e. the aim is to
find D,C ∈ Kc(R) such that 1

n

∑n
i=1 d

2
θ(Yi, Dxi + C) has minimum value.

In [3] a least squares fitting of the affine function Y = Ax+B is presented,
without probabilistic assumptions for the data. However, the solution is only
valid for particular conditions on the observed data: xi must be non-negative,
for all i = 1, . . . , n, and the data set {xi, Yi}ni=1 must be cohesive, i.e. it
satisfies that

sprY
n∑

i=1

(xi − x)2 ≥ x
n∑

i=1

(xi − x)(sprYi − sprY ) ≥ 0 .

This condition restricts the application of the fitting method proposed in [3]
in many practical situations (see Rmk. 3).

Analogously to the estimation process developed in [6], some conditions are
included in the estimation process in order to obtain solutions being coherent
with the interval arithmetic. Namely, the existence of the residuals of the
model, which are computed as Hukuhara differences between sample and
estimated intervals, is guaranteed. Thus, the LS estimation of the model (4)
is solved through the problem

min
D,C∈Kc(R)

1

n

n∑

i=1

d2θ(Yi, Dxi + C)

subject to
Yi −H Dxi exists, for all i = 1, . . . , n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(6)

Before solving the minimization problem, the feasible set S = {D ∈ Kc(R) :
∃ Yi −H Dxi, ∀i = 1, . . . , n} has been studied. Since Yi −H Dxi exists if, and
only if, spr(Dxi) ≤ sprYi, it is easy to show that the conditions on S only
affect the value of sprD. Namely, S can be expressed as

S = {D ∈ Kc(R) : sprD ∈ [0, d0]} , (7)

where d0 = min

{
sprYi
|xi| : xi �= 0

}
.

As in the classical linear regression, the estimator of the independent pa-
rameter B can be obtained first, in terms of the other estimator Â by solv-
ing (6) for the unknown quantity C. If Â ∈ S, the minimum value is attained
in

B̂ = Y −H Â x . (8)
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By substituting C with B̂ in (6), the minimization of the objective function
for the unknown quantity D over the feasible set S has been solved, leading
to the optimal values for midD and sprD.

As a conclusion, the following analytic expressions for the regression esti-
mators of the linear model (4) are obtained:

Â = [midÂ± sprÂ] =

[
σ̂x,midY

σ̂2
x

±min
{
d0,max

{
0,
σ̂|x|,sprY
σ̂2
|x|

}}]
,

B̂ = [midB̂ ± sprB̂] =

[(
midY −midÂ x

)
±
(

sprY − sprÂ |x|
)]

.

4 Empirical Studies

The suitability of the estimation process presented in Sec. 3 is illustrated
by means of its application on a real-life example. Moreover, the empirical
behaviour of the regression estimators is analized by Monte Carlo method.

Example 1. The paired data in Tbl. 1 correspond to a part of the Retail
Trade Sales (in millions of dollars) and the number of employees by kind of
business of the U.S. in 2002. The complete data set is available in [4]. The
Retail Trade Sales are intervals in the period January 2002 - December 2002
and the number of employees is a real value on each individual. Thus, the
characteristics can be modelled by the random interval Y =“retail trade sale
of a kind of business in 2002” and the real random variable x =“number
of employees in that kind of business in 2002”, respectively. If the aim is to
relate linearly the retail trade sales in terms of the number of employees, the
model Y = Ax + ε is defined and the estimation process proposed in Sec. 3
based on the available sample data is applied, leading to the estimated model

Ŷ = [0.0168, 0.0193]x+ [−1739.35, 393.89] . (9)

Table 1 Retail Trade Sales and Number of Employees of kinds of Business in 2002

Kind of Business Retail Trade Sales Number of Employees

Automotive parts, acc., and tire stores 4638-5795 453468
Furniture stores 4054-4685 249807
Home furnishings stores 2983-5032 285222
... ... ...
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Remark 2. The model in [4] relates an LR fuzzy number in terms of real
variables. By considering the interval Y as a particular case of an LR fuzzy
number, the model is applicable to Example 1. In this case, separate linear
models for the three components characterizing the fuzzy number (midpoint,
left and right spreads) are formalized. Moreover, in order to assure the non-
negativity condition for the spreads, the corresponding linear equations are
defined not for the spreads, but for a transformation of them. Thus, non-linear
estimated models for the spreads of the response in terms of the explanatory
variables are obtained, but the inverse of the linear estimated models for the
considered transformations.

Remark 3. The sample data in Tbl. 1 is non-cohesive, so the linear fitting
proposed in [3] is not applicable to Example 1.

The estimation of the model is also illustrated in Fig. 1. The sample intervals
Yi are represented as vertical lines, where the crosses are the midpoints, each
of them on the corresponding sample value xi at the x-axis. The continuous
line represents the estimated model for midY in terms of x and the dashed
lines correspond to the estimated models for inf Y and supY , respectively,
transferred from the interval model (9).
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Fig. 1 Sample data and estimated linear relationships in Example 1

The empirical performance of the estimation process of the model (4) is
tested by studying the proximity of the estimates to the regression parameters
by means of a Monte Carlo simulation. Let x ∼ N(0, 1) be a real random
variable, and let ε be a random interval characterized by midε ∼ N(0, 1) and
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sprε ∼ χ2
1 independent from x. Thus, E(ε|x) = B = [−1, 1]. Let us define the

random interval Y linearly related with x through the interval model

Y = [1, 3] x+ ε . (10)

For different samples sizes n, k = 10, 000 random samples from (x, Y ) ver-
ifying (10) have been simulated, computing for each of them the regression

estimates of the model, Â and B̂. As a description of the performance of
the regression estimators, the estimated mean value and the estimated mean
squared error of the estimates based on the k iterations have been computed.
The results are shown in Tbl. 2. Clearly, the mean values of the estimates
are closer to the corresponding regression parameters as the sample size n
increases, which shows empirically the asymptotic unbiasedness of the esti-
mators. Moreover, the estimated MSEs go to zero as n increases, which agrees
with the empirical consistency of the regression estimators.

Table 2 Empirical validation of the estimation procedure

n ̂E( ̂A) ̂MSE( ̂A) ̂E( ̂B) ̂MSE( ̂B)

10 [1.2393,2.7568] 0.2038 [-1.1946,1.1928] 0.2359
50 [1.1337,2.8666] 0.0394 [-1.1042,1.1001] 0.0478
100 [1.0942,2.9048] 0.0194 [-1.0742,1.0747] 0.0234
500 [1.0408,2.9572] 0.0038 [-1.0321,1.0334] 0.0045

5 Conclusions

A linear regression model based on interval arithmetic to express an interval-
valued variable in terms of a real-valued predictor is studied in this work.
Contrary to what happens to the basic linear model for interval data previ-
ously considered in other works, the proposed model allows the real-valued
variable to predict both mid and spr components of the interval response.
The LS estimation of the model has been solved, valid for any sample data,
and leading to analytic expressions for the regression estimators being co-
herent with the interval arithmetic. Since the suitability of the estimation
process has been empirically shown, a deeper statistical analysis of the pro-
posed model will be addressed as future research; the theoretical study of the
main properties of the estimators, the development of inferential studies, the
analysis of linear independence, among other studies, could be investigated.

The study in this work could be extended to more complex situations like
multiple regression analysis. Moreover, alternative formalizations for a linear
model between interval- and real-valued variables could be considered.
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A Proposal of Robust Regression
for Random Fuzzy Sets

Maria Brigida Ferraro and Paolo Giordani

Abstract. In standard regression the Least Squares approach may fail to give
valid estimates due to the presence of anomalous observations violating the
method assumptions. A solution to this problem consists in considering ro-
bust variants of the parameter estimates, such as M-, S- and MM-estimators.
In this paper, we deal with robustness in the field of regression analysis for
imprecise information managed in terms of fuzzy sets. Although several pro-
posals for regression analysis of fuzzy sets can be found in the literature,
limited attention has been paid to the management of possible outliers in
order to avoid inadequate results. After discussing the concept of outliers for
fuzzy sets, a robust regression method is introduced on the basis of one of the
proposals available in the literature. The robust regression method is applied
to a synthetic data set and a comparison with the non-robust counterpart is
given.

Keywords: Imprecise Data, Outliers, Robust Regression.

1 Introduction

Statistical methods usually rely on several assumptions. Unfortunately, in
many practical situations data do not fulfill such theoretical assumptions. A
common situation is characterized by the presence of atypical observations
(outliers) that differ from the main part of the data set. In this case, the
performance of standard methods can be very poor. Generally speaking, it is
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desirable that statistical methods do not suffer from the presence of outliers.
In this connection, the idea of “robust statistics” arises [5, 6, 7].

In this paper, we shall limit our attention to robustness in regression anal-
ysis, where the linear relationship between a response variable Y and p ex-
planatory variables, X1, X2, . . . , Xp is studied. The linear regression model is
defined as

Y = X a′ + b+ ε, (1)

where X = (X1, X2, . . . , Xp) is the row-vector of length p of all the explana-
tory variables, the error term ε is a random variable with E(ε|X) = 0, a =
(a1, a2, . . . , ap), is the row-vector of length p of the parameters related to X
and b is the intercept. Given a sample of size n, {Yi, X1i, X2i, . . . , Xpi}i=1,...,n,

by means of the Least Squares (LS) approach the aim is to look for â and b̂
which minimize

n∑

i=1

(Yi − Y ∗
i )

2
=

n∑

i=1

r2i , (2)

where Yi, i = 1, . . . , n, is the i-th observed value, Y ∗
i = Xia

′ + b is the i-th
theoretical value being X i = (X1i, X2i, . . . , Xpi). Under the usual assump-
tions on the errors, the LS estimators of the regression parameters satisfy
several desirable statistical properties. Nonetheless, the LS estimators are
in general affected by the presence of outliers. Here the concept of outlier
refers to observations violating the method assumptions in terms of the re-
sponse variable (vertical outlier) and/or the explanatory variables (leverage
point). The presence of vertical outliers and, especially, leverage points leads
to inadequate LS estimates. In fact, LS estimators are strongly affected by
anomalous observations because they are characterized by large residuals that
noticeably increase the LS loss in (2).

In presence of outliers a robust approach can be considered. The so-called
M-estimator is obtained by minimizing the following loss function:

n∑

i=1

ρ
(ri
σ̂

)
, (3)

where σ̂ is a robust scale estimator of the residuals and ρ is a function such
that ρ(x) is a non-decreasing function of |x|, ρ(0) = 0, ρ(x) is increasing for
x > 0 such that ρ(x) < ρ(∞) and, if ρ is bounded, it is also assumed that
ρ(∞) = 1. An usual choice for ρ is the bisquare family (see, e.g., [5]). In
contrast with (2), the loss in (3) is a weighted sum of the residuals where the
weights are constructed in such a way to avoid that large residuals dominate
the resulting estimators (for more details see [7]). Also note that, differently
from (2), in (3) the residuals are normalized by σ̂ so that the regression
estimators are scale invariant. In order to obtain the minimum of the loss
function we have to differentiate it with respect to the regression parameters:
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⎧
⎪⎪⎨

⎪⎪⎩

n∑
i=1

ψ
(ri
σ̂

)
Xi = 0,

n∑
i=1

ψ
(ri
σ̂

)
= 0,

(4)

where ψ = ρ′. The above equations could also be written as

⎧
⎪⎪⎨

⎪⎪⎩

n∑
i=1

wi (Yi −Xia
′ − b)X i = 0,

n∑
i=1

wi (Yi −Xia
′ − b) = 0,

(5)

with wi = ψ
(ri
σ̂

)
/ri. In this way a robustified version of the normal equa-

tions is obtained and the solution can be found by Iteratively Reweighted
Least Squares (IRWLS). A peculiarity of IRWLS is that the weights of the
residuals are updated at every iteration according to the current estimate of
the regression parameters.

The robust estimate σ̂ in (3) can be found by an M-estimator of scale. In
practice, given the constant δ ∈ (0, ρ(∞)), this consists in finding σ̂ as the
solution of

1

n

n∑

i=1

ρ
(ri
σ

)
= δ. (6)

Such a solution can be found by an iterative procedure starting from an
appropriate value σ0. The so-called S-estimator for the regression coefficients
is a particular M-estimator using an M-estimator of scale as described above.
Furthermore we can get an MM-estimator according to the following steps.
First we find an S-estimator for the regression coefficients and then the M-
estimator of scale σ̂ as the solution of (6) considering the residuals based on
the S-estimator already found. Finally, we perform IRWLS to determine an
M-estimator for the regression coefficients using σ̂ as robust scale estimator
and the previously found S-estimator as the starting point of the algorithm. It
can be shown that the performance of the MM-estimator is better than that
of M- and S-estimators with respect to both robustness and efficiency [7].

2 Robustness in Case of Imprecise Data

In several occasions, the available information may be affected by imprecision.
In these cases it is sensitive to manage such an imprecision in terms of fuzzy
sets [10]. In this work, for the sake of simplicity, we limit our attention to

the class of symmetric LR fuzzy numbers FS . A fuzzy number Z̃ can then
be expressed by two parameters, namely the center Zm and the spread Zs,
and by the following membership function:
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μZ̃(z) =

{
L
(
Zm−z
Zs

)
z ≤ Zm, Zs > 0,

1{Zm}(z) z ≤ Zm, Zs = 0,
(7)

where the function L is a particular non-increasing shape function from R
+

to [0, 1] such that L(0) = 1 and L(z) = 0, ∀z ∈ R \ [0, 1], 1I is the indicator
function of a set I. The membership function value μZ̃(z) gives the extent

to which z ∈ U (where U denotes a universe of elements) belongs to Z̃. If

L(z) = 1−z, for 0 ≤ z ≤ 1, then Z̃ is a triangular fuzzy number. The center of
a fuzzy number expresses its location, whereas the spread represents its size.
In a fuzzy framework, to assess whether a generic observation is anomalous,
one should inspect not only the location, but also the size. It is reasonable to
conclude that every observation can be an outlier with respect to its center,
its spread or both. In this connection an example is reported in Fig. 1 where
the scores of 21 observations on two symmetric fuzzy variables (Ỹ and X̃) are
displayed. Since a pair of fuzzy variables is involved data are represented as
rectangles drawn from the point (Xm, Y m) and having a width of 2Xs and
a height of 2Y s (in the plot we did not draw the membership function infor-
mation). Suppose we are in a fuzzy regression framework aiming at studying

the (linear) relationship between a fuzzy-valued response variable (Ỹ ) and a

set of fuzzy explanatory variables (in this case, one variable, X̃). In general,
this consists in assessing the dependence between response and explanatory
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Fig. 1 Fuzzy data set with one leverage point
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variables in terms of both the centers and spreads. Although from the figure
it is not straightforward to draw conclusions about how, respectively, Xm’s
and Xs’s affect, respectively, Y s’s and Y m’s, some preliminary results can
be derived. In particular, twenty regular observations such that a positive
relationship between Xm’s and Y m’s exists and with Xs values noticeably
smaller than the Y s ones can be found. One observation (dotted rectangle)
deviates and can be considered as outlier. It is a leverage point with respect
to the location (Y m consistent with those of the remaining observations and

Xm higher than what expected) and the imprecision (high spread of X̃ in
comparison with those of the remaining observations). If we apply standard
regression methods for fuzzy data such as the one recalled in the next section,
the features of the anomalous observation lead to misleading results (further
details shall be given in Sect. 4). In this case a robust approach should be
adopted. The circumstance reported in Fig. 1 is not the only one in which
the LS approach fails. For instance, we can have leverage points with respect
to either the center or the spread of X̃. With a similar reasoning, we could
encounter vertical outliers due to the centers and/or the spreads of Ỹ . For
further details on outliers in fuzzy regression analysis see [1].

3 A Robust Regression Method for Imprecise and
Random Data

3.1 The Regression Model

Ferraro and Giordani [4] introduce a linear regression model with impre-
cise and random elements. In particular, suppose that a symmetric LR
fuzzy response variable Ỹ and p symmetric LR fuzzy explanatory vari-
ables X̃1, X̃2, . . . , X̃p are observed on a random sample of n observations,

{Ỹi, X̃1i, X̃2i, . . . , X̃pi}i=1,...,n. A suitable way to cope simultaneously with
imprecision and randomness is given by the concept of Fuzzy Random Vari-
able (FRV). A particular case of FRV is the LR symmetric FRV defined as

the random vector X̃ : Ω → FS , where (Ω,A, P ) is a probability space [8].
See also [2, 3] in which a regression model with fuzzy response and non-fuzzy
explanatory variables is developed. The shapes of the membership functions
are considered fixed, so the fuzzy response and the fuzzy explanatory variables
are determined only by means of the centers and the spreads (for instance,
the two elements characterize the response, i.e., the center Y m and the spread
Y s). We introduce an invertible function g : (0,+∞) −→ R, in order to avoid
the non-negativity constraint of Y s and make it assuming all the real values.
Therefore, every fuzzy datum can also be expressed in terms of its center and
its transform of the spread by means of g. The model is then formalized as
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{
Y m = X a′m + bm + εm,
g(Y s) = X a′s + bs + εs,

(8)

where X = (Xm
1 , X

s
1 , . . . , X

m
p , X

s
p) is the row-vector of length 2p of all the

components of the explanatory variables, εm and εs are real-valued random
variables with E(εm|X) = E(εs|X) = 0, am = (a1mm, a

1
ms, . . . , a

p
mm, a

p
ms) and

as = (a1sm, a
1
ss, . . . , a

p
sm, a

p
ss) are row-vectors of length 2p of the parameters

related to X for the center model and the spread model, respectively. Finally,
bm and bs denote the intercepts for the center and spread models, respectively.
The idea underlying the model is to explain the center and the spread of Ỹ
by the centers and the spreads of X̃1, X̃2, . . . , X̃p. Therefore, differently from
standard regression, we put emphasis on the spread information in order
to discover the existing relationship between the response variable and the
explanatory ones. For more details refer to [4].

3.2 The Robust Method

In [4] the estimation problem of the regression parameters is faced by means
of the LS criterion minimizing the sum of the squared distances between the
observed and theoretical values of the fuzzy response variable. A suitable
squared distance for fuzzy data has been proposed by Yang and Ko [9]. Since
we express fuzzy numbers in terms of the pair (center, g(spread)), a variant
of the Yang and Ko distance is considered. Given two symmetric LR fuzzy
numbers Ã and B̃, it is

D2
λ((Am, g(As)), ((Bm), g(Bs))) = 3(Am−Bm)2 +2λ2(g(As)−g(Bs))2, (9)

where λ =
∫ 1

0
L−1(ω)dω is used to take into account the membership function

information (in the triangular case λ = 1
2 ). Accordingly, the parameters of

model (8) are estimated by looking for âm, âs, b̂m and b̂s which minimize

Δ2
λ =

n∑
i=1

D2
λ((Y mi , g(Y si )), ((Y mi )∗, g(Y si )∗))

=
n∑
i=1

3(Y mi − (Y mi )∗)2 + 2λ2(g(Y si )− g(Y si )∗)2

=
n∑
i=1

r̃2i ,

(10)

where Y m and g(Y s) are the n × 1 vectors of the observed values, (Y m)∗

= Xa′m + 1bm and g(Y s)∗ = Xa′s + 1bs are the theoretical ones being X =
(X1, X2, . . . , Xn)′ the n × 2p matrix of the explanatory variables and r̃i =
Dλ((Y mi , g(Y si )), ((Y mi )∗, g(Y si )∗)) is the residual of the i-th observation. We
obtain the following solution:
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â′m = (Xc′Xc)−1Xc′Y mc,
â′s = (Xc′Xc)−1Xc′g(Y s)c,

b̂m = Y m −X â′m,
b̂s = g(Y s)−X â′s,

(11)

where Y mc = Y m − 1Y m and g(Y s)c = g(Y s) − 1g(Y s) are the centered
values of the response variables and Xc = X− 1X is the centered matrix of
the explanatory variables, being Y m, g(Y s) and X the sample means of Y m,
g(Y s) and X, respectively. For our purpose, it can be proved that the loss
function in (10) can be written in terms of a single squared Euclidean norm

‖·‖2. Let (X, 1) be the matrix obtained juxtaposing 1 next to X and 0 be a
matrix of order (n× p+ 1) with zero elements. After a little algebra we have

Δ2
λρ =

∥∥∥∥∥∥∥∥

(
3

1
2Y m

(2λ2)
1
2 Y s

)
−
(

3
1
2 (X, 1) 0

0 (2λ2)
1
2 (X, 1)

)
⎛

⎜⎜⎝

am
bm
as
bs

⎞

⎟⎟⎠

∥∥∥∥∥∥∥∥

2

= ‖U −Vw‖2 = ‖U − U∗‖2 =
2n∑
j=1

(
Uj − U∗

j

)2
=

2n∑
j=1

r2j ,

(12)

where U , U∗, V and w are implicitly defined in (12). We can thus state that,
in the symmetric LR case, the minimization problem reduces to a standard
regression problem in which the response variable is the non-fuzzy vector U
and the explanatory variables plus the intercept are stored in the non-fuzzy
matrix V. The regression parameters of the models are in the vector w of
length 2(p + 1) containing the regression coefficients of model (8). In other
words, we suppose to have a sample with 2n ‘observations’, namely n real-
valued centers and n real-valued transforms of the spreads. For the generic
‘observation’ j, we can compute the associate residual rj according to (12).
A high value of rj denotes an ‘observation’ (center or spread) violating the
model assumptions as described in Sect. 2. In this case, the LS solution in
(11) can be inadequate and a preferable choice is to obtain M-estimates for
the regression parameters. Taking into account (12), robust estimates for the

parameters of model (8) can be found by looking for âRm, âRs , b̂Rm and b̂Rs which
minimize

Ψ2
λ =

2n∑
j=1

ρ
(rj
σ̂

)
. (13)

The same reasoning adopted for the classical case can be followed and, hence,
the M-, S- and MM-estimators of the regression parameters of the fuzzy
regression model in (8) can be found.

It is worth noticing that an alternative could be to compute n residuals,
one for each fuzzy observation, taking into account the center and the spread.
However, this choice leads to a loss of information. Suppose for instance that
an observation is regular with respect to the center and anomalous with
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respect to the spread. If so, the regular center plays a less relevant role in
comparison with centers belonging to regular observations for both the center
and the spread values because the corresponding residual is down-weighted
due to the corresponding anomalous spread.

4 An Application

This section is devoted to an application of the fuzzy regression model intro-
duced in the previous section to the data set of Fig. 1. Bearing in mind (8)
the regular data were constructed as

{
Y m = 1.5Xm + 0.4Xs + 1 + εm,
g(Y s) = log(Y s) = −0.1Xm − 0.7Xs + 0.5 + εs,

(14)

where the centers and the spreads of X̃ were generated randomly from N(0, 1)
and U [0, 0.5], respectively, and both the centers and the spreads of the noise

from N(0,0.1). The center of X̃ for the outlier is equal to 6.0, which is out
from the range of values for the regular observations (−1.5, 2.4). Similarly,

the spread of X̃ is 1.3, which is noticeably higher than the spreads of the
remaining observations.

If we fit the model to the regular observations, very good results are ob-
tained. According to (11), we get:

{
Ŷ m = 1.48Xm + 0.65Xs + 0.94,
̂log(Y s) = −0.10Xm − 0.63Xs + 0.47,

(15)

hence the existing relationships are essentially recognized. Problems due to
the presence of the outlier arise. In this case we have

{
Ŷ m = 0.97Xm − 5.80Xs + 2.47,
̂log(Y s) = −0.04Xm + 0.11Xs + 0.29.

(16)

From (16) we can see that the LS estimates are fully inappropriate. To some
extent, we could say that the estimates for the spread model are better than
the ones for the center model. Thus, the outlier mainly affects the analysis
of the relationship between Y m and X̃ . By considering the robust approach,
the MM estimation applied to (13) leads to the following estimated model:

{
̂Y mR = 1.48Xm − 0.64Xs + 0.93,
̂log(Y sR) = −0.11Xm − 0.65Xs + 0.47,

(17)

which is a reasonable estimate of the unknown one.
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5 Concluding Remarks

In this work, we proposed a robust regression method for fuzzy data exploit-
ing [4] in order to handle situations characterized by the presence of outliers.
The obtained results are encouraging and stimulate to further investigate the
empirical behavior of the technique by means of real and synthetic data. For
instance, it can be interesting to study the sensitivity of the solution with
respect to the use of alternative distances.
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Bootstrap Comparison of Statistics
for Testing the Homoscedasticity
of Random Fuzzy Sets

Ana Belén Ramos-Guajardo, Maŕıa Asunción Lubiano,
and Gil González-Rodŕıguez

Abstract. The problem of testing the equality of variances of k random fuzzy
sets has been recently developed on the basis of Levene’s classical procedure.
Asymptotic and bootstrap approaches have been carried out in this frame-
work, and the proposed test was compared with a Bartlett-type test. In this
work, a deeper comparison between some bootstrap statistics based on both
Levene’s and Bartlett’s classical procedures for testing the homoscedasticity
of several random fuzzy sets is analyzed. The empirical behaviour of those
statistics is investigated by means of simulation studies concerning both type
I and type II errors.

Keywords: Bartlett test, bootstrap approach, homoscedasticity, Levene
test, random fuzzy sets.

1 Introduction

The concept of random fuzzy set (for short RFS) in Puri and Ralescu’s sense
(see [12]) is an extension of the notion of random set. It was introduced to
formalize imprecise experimental data which can be described by means of
fuzzy sets.

While the Aumann’s mean of an RFS has been introduced as a fuzzy-
valued measure to summarize the “central tendency” of the variable (see [1]),
the stochastic variability of the fuzzy values of an RFS can be measured by
means of the real Fréchet variance inspired on Körner [7] and defined in terms
of a generalized metric introduced in [16].

Ana Belén Ramos-Guajardo · Maŕıa Asunción Lubiano ·
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A procedure for testing the equality of variances (or homoscedasticity) of
k populations based on ANOVA techniques has been introduced in Ramos-
Guajardo et al. (see [14]). The statistic proposed there is a slight modifi-
cation of the classical Levene’s test (see [9]) which entails the application
of an ANOVA methodology on the mean-based residuals considering the
square of these residuals. Another strategy tackled in the literature (see,
for instance, [3, 5, 8, 15]) consists in involving the estimated fourth moment
(related with the kurtosis) in a Bartlett-type test.

In this work several statistics based on both Levene’s and Bartlett’s ap-
proaches are empirically compared by applying bootstrap techniques since
the theoretical study of most of the proposed statistics is not easy to handle.
In addition, the behaviour of the bootstrap approach is analyzed by means
of simulation studies.

In Sect. 2 some preliminaries about fuzzy sets and RFS’s are gathered.
Some Levene’s- and Bartlett-based statistics for testing the homoscedasticity
of k RFS’s are presented in Sect. 3 and the bootstrap approach is introduced
in Sect. 4. Some simulation studies are carried out in Sect. 5 in order to
compare empirically the behaviour of the proposed statistics. Section 6 closes
the paper with some remarks and some current lines of research.

2 Preliminaries

Let Kc(Rp) be the family of all non-empty compact convex subsets of R
p

and let Fc(Rp) denote the class of fuzzy sets U : R
p → [0, 1] such that

Uα ∈ Kc(Rp) for all α ∈ (0, 1]. The α-levels of U are defined as Uα =
{x ∈ R

p|U(x) ≥ α} if α ∈ (0, 1].
The studies will be focused here on the space of fuzzy sets

F2
c (R

p) = {U ∈ Fc(R
p) : sU ∈ L2(Sp−1 × (0, 1], λp × λ)},

where λp and λ denote the uniform surface measure on S
p−1 and the

Lebesgue measure on (0, 1], respectively, and sU : S
p−1 × (0, 1] → R is

the support function of U ∈ Fc(Rp) (see, for instance, [11]) which satis-
fies sU (u, α) = sup

v∈Uα

〈u, v〉, where S
p−1 is the unit sphere in R

p (that is,

S
p−1 = {u ∈ R

p||u| = 1}).
The usual arithmetic between fuzzy sets in F2

c (Rp) is based on Zadeh’s
extension principle and it agrees levelwise with the Minkowski addition and
the product by a scalar for elements of Kc(Rp).

If ‖ · ‖2 denotes the usual functional L2-norm with respect to the measure
λp, then the distance between U , V ∈ F2

c (Rp) (introduced in [16]) is given
by

(

Dϕ
θ (U, V )

)2
=

∫

(0,1]

(‖midUα −midVα‖22 + θ‖sprUα
− sprVα

‖22
)

dϕ(α),
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where midUα(u) =
(
sU (u, α)− sU (−u, α)

)
/2 is the mid point of the α-level

Uα and sprUα
(u) =

(
sU (u, α) + sU (−u, α)

)
/2 is its radius (or spread). A more

operational expression for the distance is (Dϕ
θ (U, V ))

2
= ‖sU −sV ‖2θ,ϕ, where

‖ · ‖θ,ϕ is a norm on the Hilbert space L2(Sp−1 × (0, 1]).
In both expressions of the distance, θ > 0 determines the relative weight of

the distance of the spreads against the distance of the mids of the α-levels. In
addition, ϕ is associated with a square integrable bounded density measure
and with support (0, 1] which allows us to weigh the importance of each
α-level.

Let (Ω,A, P ) be a probability space. A random fuzzy set (also called fuzzy
random variable) in Puri and Ralescu’s sense (see [12]) can be defined as the
element X satisfying that sX is a L2(Sp−1 × (0, 1])-valued random element
(see [6]). It can also be shown that an RFS is a Borel measurable mapping
with respect to Dϕ

θ on F2
c (Rp) (see, for instance, [4, 16]).

The expected value of an RFS [12] is defined by means of the general-
ized Aumann integral [1] as the unique fuzzy set E(X ) ∈ F2

c (Rp) such that
sE(X ) = E(sX ), whenever E(‖sX ‖θ,ϕ) < ∞ is fulfilled and where the last
expectation is given in Bochner’s or Pettis’ sense.

On the other hand, if E(‖sX ‖2θ,ϕ) < ∞, then the Fréchet variance of an
RFS (see, for instance, [7]) is defined as

σ2
X = E

(
Dϕ
θ (X , E(X ))

)2
.

3 Statistics for Testing the Homoscedasticity of k
RFS’s

For the hypothesis testing problem proposed in this work it is useful to de-
fine some sample moments of the fuzzy sets. Consider k populations and k
independent RFS’s, X1, . . . ,Xk, associated with them. From each Xi, a sim-
ple random sample {Xi1, . . . ,Xini}ni

j=1 is drawn, where the total sample size
equals N .

• The sample mean associated with the i-th variable, Xi·, and the total
sample mean, X··, are defined as usual on the basis of the fuzzy arithmetic.

• The variance in the i-th sample is defined as σ̂2
Xi

=

∑ni

j=1D
ϕ
θ (Xij ,Xi·)
ni

.

• The quasi-variance in the i-th sample (unbiased and consistent estimate

of the population variance as shown in [10]) is Ŝ2
Xi

= niσ̂
2
Xi
/(ni − 1).

• The total sample variance can be expressed as σ̂2 = 1
N

∑k
i=1 niσ̂

2
Xi

.
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To test the hypotheses

{
H0 : σ2

X1
= . . . = σ2

Xk
vs.

H1 : ∃ i, j ∈ {1, . . . , k} s.t. σ2
Xi

= σ2

Xj

(3.1)

the following statistics are proposed.
Firstly, inspired by the classical Levene’s theory [9] the statistic proposed

in [14] is considered, namely,

T
[1]
L =

k∑

i=1

ni

(
σ̂2
Xi

− 1

N

k∑

l=1

nlσ̂
2
Xl

)2

k∑

i=1

1

ni

ni∑

j=1

[(
Dϕ

θ

(
Xij ,Xi·

))2
− σ̂2

Xi

]2 . (3.2)

Remark 1. In [14] the asymptotic distribution of the previous statistic is an-
alyzed, which is a combination of normal variables.

In the same way, a statistic inspired on the classical Levene’s statistic for
RFS’s can be established as follows:

T
[2]
L =

(N − k)

k∑

i=1

ni

(
σ̂2
Xi

− 1

N

k∑

l=1

nlσ̂
2
Xl

)2

(k − 1)
k∑

i=1

ni∑

j=1

[(
Dϕ

θ

(
Xij ,Xi·

))2
− σ̂2

Xi

]2 , (3.3)

which coincides with T
[1]
L when equal sample sizes are considered.

On the other hand, based on the classical Bartlett’s statistic [2] we can
defined the following one for RFS’s:

T
[3]
B = (N − k) ln

(

1

N − k

k
∑

i=1

(ni − 1)̂S2
Xi

)

−
k

∑

i=1

(ni − 1) ln ̂S2
Xi

. (3.4)

An extension of the Bartlett-type statistic developed by [15] for RFS’s is con-
sidered. Taking into account Appendix 1 in Shoemaker [15] and Proposition
2 in [13], a Shoemaker-based statistic is proposed to be as follows:

T
[4]
S =

k∑

i=1

⎛

⎜
⎜
⎜
⎜
⎝

niσ̂
4
Xi

(
ln Ŝ2

Xi
− 1

k

∑k
i=1 ln Ŝ2

Xi

)2

1

ni

ni∑

j=1

[(
Dϕ

θ

(
Xij ,Xi·

))2
− σ̂2

Xi

]2
+

2σ̂4
Xi

ni − 1

⎞

⎟
⎟
⎟
⎟
⎠

. (3.5)

Finally, a slight modification of T
[4]
S is established by considering that

2σ4
Xi
/(ni − 1) converges to 0 as ni →∞.
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T
[5]
S =

k∑

i=1

⎛

⎜
⎜
⎜
⎜
⎝

niσ̂
4
Xi

(
ln Ŝ2

Xi
− 1

k

∑k
i=1 ln Ŝ2

Xi

)2

1

ni

ni∑

j=1

[(
Dϕ

θ

(
Xij ,Xi·

))2
− σ̂2

Xi

]2

⎞

⎟
⎟
⎟
⎟
⎠

. (3.6)

4 Bootstrap Approach

Due to the difficulties in handling the asymptotic distributions of the pre-
vious statistics, bootstrap techniques are applied to approximate those
distributions.

Let X1, . . . ,Xk be k independent RFS’s and let {Yi}ki=1 = {σ̂2Xi/σ̂2
Xi
}ki=1

be the bootstrap population satisfying σ̂2
Yi

= σ̂2 for i ∈ {1, . . . , k}, which
is the null hypothesis in (3.1). Let {Xij}ni

j=1 a simple random sample from

Xi and calculate {Yij}ni

j=1 = {σ̂2Xij/σ̂2
Xi
}ni

j=1. Let {X ∗
ij}ni

j=1 and {Y∗
ij}ni

j=1 be

bootstrap samples from the previous ones so that {Y∗
ij}ni

j=1 = {σ̂2X ∗
ij/σ̂

2
Xi
}ni

j=1

for i ∈ {1, . . . , k}. If σ̂2
X ∗

i
=

∑ni

j=1

(
Dϕ
θ

(X ∗
ij ,X ∗

i·
))2

/ni, the corresponding

bootstrap statistics are defined as follows:

T
[1∗]
L =

k∑

i=1

ni

[
σ̂2
X∗

i

σ̂2
Xi

− 1

N

k∑

l=1

nl

( σ̂2
X∗

l

σ̂2
Xl

)]2

k∑

i=1

1

niσ̂4
Xi

ni∑

j=1

((
Dϕ

θ (X ∗
ij ,X ∗

i·)
)2 − σ̂2

X∗
i

)2
, (4.7)

T
[2∗]
L =

(N − k)

k∑

i=1

ni

[
σ̂2
X∗

i

σ̂2
Xi

− 1

N

k∑

l=1

nl

( σ̂2
X∗

l

σ̂2
Xl

)]2

(k − 1)

k∑

i=1

1

σ̂4
Xi

ni∑

j=1

((
Dϕ

θ (X ∗
ij ,X ∗

i·)
)2 − σ̂2

X∗
i

)2
, (4.8)

T
[3∗]
B = (N − k) ln

(
1

N − k

k∑

i=1

(ni − 1)
Ŝ2
X∗

i

σ̂2
Xi

)

−
k∑

i=1

(ni − 1) ln

(
Ŝ2
X∗

i

σ̂2
Xi

)

, (4.9)
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k
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ln

(
Ŝ2
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i

σ̂2
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i·)
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i

)2
+

2σ̂4
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i
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⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (4.10)
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⎞
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⎟
⎟
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. (4.11)
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The Monte Carlo method can be applied to approximate the unknown dis-
tributions of the bootstrap statistics as usual. In practice, the bootstrap ap-
proach can be applied as follows. Let {Xij}ni

j=1 be a realization of a simple
random sample from Xi for each i ∈ {1, . . . , k}.
Step 1. Compute the value of the statistic T .
Step 2. For each i ∈ {1, . . . , k}, obtain a bootstrap sample from {Xij}ni

j=1

and compute the value of the bootstrap statistic T ∗.
Step 3. Repeat Step 2 a large number B of times to get a set of B values

of the bootstrap estimator, denoted by {T ∗
1 , . . . , T

∗
B}.

Step 4. Compute the bootstrap p-value as the proportion of values in the
set {T ∗

1 , . . . , T
∗
B} which are greater than T .

5 Simulation Studies

Some comparative simulations are developed to illustrate the behaviour of
the test by taking into account the previous statistics (although it should
be remarked that the methodology proposed in this work can be applied
to different real-life situations, as it has been shown, for instance, in [14]).
We will consider trapezoidal fuzzy numbers which are characterized by four
values: the infimum and the supremum of the 1-level (c and d), the left spread
(l, the distance between the infima of the 0-level and the 1-level) and the right
spread (r, the distance between the suprema of the 0-level and the 1-level).
A trapezoidal fuzzy number is denoted by Π(l, c, d, r).

Consider three trapezoidal RFS’ss with independent parameters, Xi ≡
Π(Li, Ci, Di, Ri) for i ∈ {1, 2, 3}, where Ci, Di, Li, Ri are real random
variables modeling the corresponding extremes of the 1-level and the spreads,
such that:

• L1 ≡ χ2
3, C1 ≡ U(0, 1), D1 ≡ U(1, 2) and R1 ≡ χ2

8;
• L2 ≡ χ2

8, C2 ≡ U(−2,−1), D2 ≡ U(1, 2) and R2 ≡ χ2
3;

• L3 ≡ χ2
5, C3 ≡ U(1, 2), D3 ≡ U(2, 3) and R3 ≡ χ2

6.

Bootstrap techniques have been applied for testing the equality of variances
of X1, X2 and X3 by using all the test statistics proposed in Sec. 3. In addition,
the values chosen for θ and ϕ for computing the sample variances and quasi-
variances are θ = 1/3 (which is the weight associated with the Lebesgue
measure λ on [0, 1] when the equivalence of Bertoluzza’s metric and Dϕ

θ is
considered [16]) and ϕ = λ (which assigns all α-levels the same importance).

In this context, 10,000 simulations of the bootstrap tests have been carried
out at the significance level ρ = .05 and with 1,000 bootstrap replications,
which entails a sampling error of 0.427% with a 95% confidence level. The
results corresponding to the application of the proposed statistics for equal
and different sample sizes are gathered in Table 1.
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Table 1 Empirical percentages of rejections under H0 (Bootstrap approach)

n T
[1]
L = T

[2]
L T

[3]
B T

[4]
S T

[5]
L (n1, n2, n3) T

[1]
L T

[2]
L T

[3]
B T

[4]
S T

[5]
L

10 2.9 10.27 6.79 3.57 (10,15,20) 3.2 3.48 10.64 5.82 4.68

30 3.76 9.74 5.8 5.54 (30,40,30) 3.84 4 9.22 5.44 5.18

50 4.08 7.92 5.19 4.96 (75,55,45) 4.12 4.24 7.46 5.12 5.1

100 4.68 7.28 5.24 5.32 (100,100,150) 5.1 5.04 7.44 5.98 5.96

200 5 6.28 5.2 5.18 (100,180,230) 4.3 4.32 5.90 4.84 4.84

Table 1 shows that in general moderate/large and balanced sample sizes
are required in both cases to obtain a percentage of rejections under H0

close to the nominal significance level. However, the bootstrap version of the

Bartlett-based test, T
[3]
B shows a bad behaviour since the convergence to the

nominal significance level is quite slow in both situations. On the other hand,

Levene-based versions, T
[1]
L and T

[2]
L , are more conservative although the sec-

ond one approximates better the nominal significance level when different
sample sizes are considered. It should be remarked that the same occurs in
the real framework, since the classical Bartlett test presents a lack of ro-
bustness under non-normality while the Levene test behaves better. These
differences in robustness would open a new line of research that can be tack-

led in the future. Finally, Shoemaker-based statistics, T
[4]
S and T

[5]
S , show a

good behaviour and the second one approximates the nominal significance
level quite good for n ≥ 50.

Finally, the power function of the homoscedasticity test for RFS’s con-
sidering the Levene- and Bartlett-based statistics proposed in this work has
been empirically analyzed for equal sample sizes (n = 100 and n = 200) and
for ρ = .05. In this case, the variable X3 has been chosen to have a trapezoidal
distribution such that L3 ≡ χ2

5, C3 ≡ U(1, 2), D3 ≡ U(2, 3) and R3 ≡ χ2
10.

1, 000 replications of the bootstrap test and 5, 000 simulations have been car-
ried out, involving a sampling error of .604% with a 95% confidence level.
The results are gathered in Table 2.

Table 2 shows that the Levene-based test is more powerful in this specific
case than the corresponding to the Shoemaker’s versions taking into account
the considered sampling error. However, the Bartlett-based test is the most

Table 2 Empirical percentages of rejections at level .05 (Power of the bootstrap
tests)

n T
[1]
L = T

[2]
L T

[3]
B T

[4]
S T

[5]
S

100 30.22 34.60 28.46 28.40

200 55.16 56.28 53.58 53.60
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powerful although its behaviour under the null hypothesis is not good as it
has been shown in Tbl. 1. It could be interesting to develop theoretical results
for testing the variance of RFS’s based on the classical Bartlett test and its
versions.

6 Concluding Remarks

An empirical comparison between several statistics used for testing the
equality of variances of k RFS’s inspired by some classical tests has been
established. Bootstrap techniques have been employed to approximate the
distribution of the statistics and some simulations have been carried out
which showed their suitability for moderate/large sample sizes. The extension
of the Bartlett’s and Shoemaker’s test for RFS’s will be developed theoreti-
cally, as well as tests based on other techniques. In this context, a comparison
in robustness of the Levene-based and Bartlett-based statistics is required.
It could also be interesting to develop a deeper sensitivity analysis taking
into account different choices for θ and ϕ, as well as the shape of the in-
volved distributions and the fuzzy sets chosen for describing the imprecise
valuations/perceptions.
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Fuzzy Rating vs. Fuzzy Conversion
Scales: An Empirical Comparison
through the MSE

Sara de la Rosa de Sáa, Maŕıa Ángeles Gil,
Maŕıa Teresa López Garćıa, and Maŕıa Asunción Lubiano

Abstract. The scale of fuzzy numbers have been used in the literature to
measurement of many ratings/perceptions/valuations, expectations, and so
on. Among the most common uses one can point out: the so-called ‘fuzzy
rating’, which is based on a free fuzzy numbered response scheme, and the
‘fuzzy conversion’, which corresponds to the conversion of linguistic (often
Likert-type) labels into fuzzy numbers. This paper aims to present an empir-
ical comparison of the two scales. This comparison has been carried out by
considering the following steps: fuzzy responses have been first freely simu-
lated; these responses have been ‘Likertized’ in accordance with a five-point
measurement and a plausible criterion; each of the five Likert class has been
transformed into a fuzzy number (two fuzzification procedures will be ex-
amined); the mean squared error (MSE) has been employed to perform the
comparison. On the basis of the simulations we will conclude that for most
of the simulated samples the Aumann-type mean is more representative for
the fuzzy rating than for the fuzzy conversion scale.

Keywords: Fuzzy conversion scale, fuzzy rating scale, Likert scale, random
fuzzy sets.

1 Introduction

In many studies the scale of fuzzy numbers has been applied to express some
qualitative elements in human thinking like valuations, ratings, perceptions,
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judgements, etc. This motivates the interest of such scale in Psychology, Med-
ical Diagnosis, and many other fields.

The most frequent application, the fuzzy conversion scale, has consisted of
converting each verbal valuation/response within a prefixed list of possible
ones (usually a list defined on the basis of a Likert scale) into a fuzzy number
by following different conversion/fuzzification procedures.

One of the outstanding reasons supporting such a conversion lies in the
fact that fuzzy numbers reflect the inherent imprecision associated with ver-
bal valuations/responses. Furthermore, since fuzzy numbers are real-valued
functions one can better handle, explore and exploit mathematically the in-
formation contained in them.

Among the many developments involving the fuzzy conversion approach,
one can mention the so-called fuzzy SERVQUAL (see, for instance, Aydin
and Pakdil [1], Chou et al. [6], and Hu et al. [14]), or the fuzzification of
verbal/linguistic inputs/expressions (see, for instance, Bocklisch et al. [4, 5],
Herrera [9], Lalla et al. [15], and Turksen and Willson [19]). In all these
papers one can find several proposals to convert the most usual labels or
verbal ratings into fuzzy numbers.

An essentially different approach is the one based on the so-called fuzzy
rating scale and introduced by Hesketh and Hesketh along with collaborators
(cf. [10, 11, 12, 13]). The key difference with the previous approach lies in
the whole freedom to describe ratings, valuations, etc. by means of fuzzy
numbers. Thus, the rating assessment will not be assumed to be constrained
to a prefixed list of potential fuzzy numbered values or responses.

The fuzzy rating scale shares with the fuzzy conversion the ability to reflect
the intrinsic imprecision associated with the values/responses. Moreover, new
relevant skills for the fuzzy rating scale which are derived from the freedom
in valuating should be remarked, namely, the diversity and variability (and
hence the subjectivity) of the assessments is definitely much bigger in case
we consider the fuzzy rating scale. Consequently, one can better explore and
exploit statistically the information contained in them, which could be lost
to some extent in case we use the pre-specified list.

In this way, one should emphasize that in spite of the richness of natural
languages one could not build a continuous or extremely wide scale by simply
using linguistic modifiers and more or less subtle nuances. The potentiality
of the whole scale of fuzzy numbers in this respect is really difficult to be
improved.

In accordance with practitioners of the fuzzy rating scale, the lack of a
statistical methodology to analyze data based on it seems to limit the devel-
opments of studies using this approach. In this way, just some few statistical
analysis have been carried out, often by considering separate analysis of cer-
tain real-valued data characterizing fuzzy numbered data.

The currently available methodology for the statistical analysis of fuzzy
data (see, for instance, http://bellman.ciencias.uniovi.es/SMIRE), along
with methods to be introduced in the future, will allow us to analyze this
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type of data in a much deeper way. In fact, in such an analysis each fuzzy
datum is treated as a whole, instead of as a triple (in the triangular case),
as a 4-tuple (in the trapezoidal case), and so on. With the SAFD package
(see http://cran.r-project.org/web/packages/SAFD/index.html), most
of the apparent computational complexities associated with the statistical
analysis are overcome, and in case one can consider the fuzzy rating scale the
exploited information is definitely richer, diverse and more accurate.

Of course, in many contexts (e.g., when surveys are conducted on the
street, by phone, etc.) it would be infeasible to make use of the fuzzy rating
scale, and we would be necessarily forced to employ simpler ones like Likert-
type or their fuzzy conversion. However, in contexts where the statistical con-
clusions are quite relevant and it is possible to apply the fuzzy rating scale,
we are claiming it is statistically advisable to do it. As an introductory dis-
cussion on this matter we will present in this paper an empirical comparison
between the two approaches involving the scale of fuzzy numbers, in which
the representativeness of the Aumann-type mean of the values/responses is
examined by considering a measure of the mean squared error (MSE) based
on Bertoluzza et al.’s metric between fuzzy numbers [2]. Conclusions are no-
ticeable: the Aumann type mean is much more representative in case we
consider the fuzzy rating scale than in case we use the fuzzy conversion.

2 Preliminaries on the Fuzzy Rating and Conversion
Scales

The scale of (bounded) fuzzy numbers is the class F∗
c (R) of the nonempty

compact, convex and normalized fuzzy sets of R, that is, the space of the
mappings Ũ : R → [0, 1] such that for each α ∈ [0, 1], the α-level Ũα is a

nonempty compact interval, where Ũα = {x ∈ R : Ũ(x) ≥ α} for α > 0 and

Ũ0 = cl{x ∈ R : Ũ(x) > 0}.
On one hand, a fuzzy conversion scale of verbal values/responses is often

either explicitly or implicitly based on the Likert k-point scale, and it consists
on converting each of the k points point into a fuzzy number. A conversion
scale means a finite subset of F∗

c (R). Many conversion scales can be found in
the literature. Some of them consider special easy-to-draw and easy-to-handle
shapes for the fuzzy numbers, like triangular or trapezoidal (see, for instance,
[1, 6, 9, 14, 15]). Other ones lie on more sophisticated bases, frequently related
to the aggregation of experts’ conversions (see, for instance, [4, 5, 19]).

On the other hand, by combining the expertise in computing with that
in psychometric evaluation Hesketh and Hesketh have introduced [10, 11,
12, 13] the fuzzy rating scale (and its computerized graphic version) as an
extension of the semantic differential. This scale provides us with a common
method of rating a variety of stimuli and analyzing/comparing the responses
meaningfully across the stimuli. This rating consists of choosing in accordance
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with a free-response scheme the fuzzy number which ‘best’ represents or
describe the response. To ease the posterior analysis, Hesketh and Hesketh
have asked the respondents to elicit their responses by using triangular fuzzy
numbers for which the “∨” pointer (upper vertex) means the ‘preferred point’
and the left and right spreads indicate how far to the left or the right a
particular rating can be possible/compatible (or, as Hesketh and Hesketh
referred to, they determine the tolerable range of preferences).

However, because of the ease and extent of the applicability of the available
and ongoing advances in the statistical analysis of fuzzy data (and also of the
computational R developments around by Trutschnig et al. [18]), there is no
need for the values/responses to be triangular. Thus, the preferred point in
the fuzzy rating scale can be extended to be the interval of values which are
considered to be fully compatible with the respondent rating. From now on,
the use of the fuzzy rating scale will be then understood without constraining
to triangular fuzzy numbers.

In this paper we aim to show empirically an important statistical advantage
of the use of the fuzzy rating scale.

3 Preliminaries on Statistics with Fuzzy Data

Although the fuzzy rating scale has been viewed as a valuable tool, offer-
ing clear benefits and odds w.r.t. Likert’s or their fuzzy conversion scales,
potential users often ignore there is a rather recently introduced statistical
methodology which allows us to explore and exploit appropriately the infor-
mation in fuzzy datasets. This statistical methodology is based on:

• the usual fuzzy arithmetic;
• the choice of a suitable distance between fuzzy numbers (this would be

probably enough for a descriptive purpose);
• the well-formalized concept of random fuzzy numbers (or one-dimensional

fuzzy random variables in Puri and Ralescu’s sense [16]) allowing us to
develop inferential procedures.

In conducting statistical analysis of fuzzy data the two basis operations from
the arithmetic of fuzzy numbers are the sum and the product by scalars, both
based on Zadeh’s extension principle [20] which can be equivalently stated so

that for Ũ , Ṽ ∈ F∗
c (R), γ ∈ R, and whatever the level α ∈ [0, 1] may be,

(Ũ + Ṽ )α =
[
inf Ũα + inf Ṽα, sup Ũα + sup Ṽα

]
,

(γ · Ũ)α =

⎧
⎪⎪⎨

⎪⎪⎩

[
γ · inf Ũα, γ · sup Ũα

]
if γ ≥ 0

[
γ · sup Ũα, γ · inf Ũα

]
if γ < 0
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It is well-known that when F∗
c (R) is endowed with this arithmetic we don’t

have a linear but a semilinear space, so one cannot establish a convenient
definition for the difference between fuzzy numbers.

This drawback has been mostly overcome by using a suitable metric be-
tween fuzzy numbers. In this paper we will consider the L2 metric introduced
by Bertoluzza et al. [2]. For Ũ , Ṽ ∈ F∗

c (R) this metric is given by

D(Ũ , Ṽ ) =

∫

[0,1]

∫

[0,1]

(
Ũ [λ]
α − Ṽ [λ]

α

)2
dλ dα,

where Ũ
[λ]
α = λ sup Ũα + (1− λ) inf Ũα.

The probabilistic model we consider to formalize the random mechanism
generating fuzzy numbered values/responses is stated as follows: given a
probability space (Ω,A, P ), a mapping X : Ω → F∗

c (R) is said to be a
random fuzzy number (for short RFN) if for all α ∈ [0, 1] the mapping
Xα : Ω → P(R) (with Xα(ω) =

(X (ω)
)
α

) is a compact random interval (i.e.,
a Borel-measurable mapping w.r.t. the Borel σ-field generated on F∗

c (R) by
the topology associated with D). The Borel-measurability implies that one
can properly refer to the distribution induced by an RFN, the statistical in-
dependence of RFNs, and so on. The Aumann-type mean of an RFN has
been defined by Puri and Ralescu [16] as the fuzzy number Ẽ(X ) ∈ F∗

c (R)
such that for all α ∈ [0, 1]

(
Ẽ(X )

)

α
= [E(inf Xα), E(supXα)] .

Ẽ preserves all the main properties of the mean of a random variable. Several
statistical developments, especially inferential ones, about the Aumann-type
means of RFNs have been already developed (see, for instance, [3]).

4 Empirical Comparative Study between Fuzzy Rating
and Fuzzy Conversion Scales: The Mean Squared
Error Associated with the Aumann-Type Mean

To compare fuzzy rating and conversion scales from a statistical perspective,
we mimic the situation in which a person is simultaneously allowed to give
a free response in the scale of fuzzy numbers (fuzzy rating), and to classify
it in accordance with a five-point Likert scale. Later, the Likert labels are
converted into fuzzy ones by using one of the two fuzzy conversion scales in
Figure 1. The one on the left side (I) corresponds to a strong fuzzy triangular
partition of the interval [1,5] which is quite frequently considered in the liter-
ature (cf. [7, 9]). The one on the right side (II) is an example of a conversion
in a fuzzy SERVQUAL study (see [1]).
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Fig. 1 Examples of fuzzy conversion scales of 5-point Likert labels (Scale I on the
left, and Scale II on the right).

The general simulation process is structured as follows: 1000 iterations
of samples containing n trapezoidal fuzzy numbers are simulated (n ∈
{10, 30, 50, 100, 300}). To generate each trapezoidal fuzzy response, we have
followed the steps in De la Rosa and Van Aelst [8], and Sinova et al. [17]. In
this way,

• One value of the nonstandard (i.e., re-scaled and translated standard) beta
distribution 4 · β(p, q) + 1 is generated at random, with (p, q) varying to
cover six different situations of distributions with values in [1, 5], namely,
uniform, symmetrical weighting extreme values, symmetrical weighting
central values, and three asymmetric ones. The generated value is the
centre of the 1-level, mid Ũ1.

• To avoid unrealistic fuzzy values/responses, some constraints on the values
have been imposed,by following ideas in [8]; the trapezoidal fuzzy number
is finally built from the generated mid-point and deviations.

Once the fuzzy responses are generated, they are ‘Likertized’ so that if Ũ
is the generated fuzzy number, the criterion associates with it the integer
number

ı(Ũ) = arg min
j∈{1,...,5}

D(Ũ ,1{j}).

The comparative analysis has been based on examining the representativeness
of the Aumann type mean, the D-mean squared error (MSE) being considered
to quantify this representativeness in the fuzzy case. It should be pointed out
that the D-MSE minimizes at the Aumann type mean so, as for the real-
valued case, the D-MSE w.r.t. the Aumann type mean provides clues as to
how representative this mean is of the individual fuzzy data/values. Thus,
for each sample we have computed:

- the FRMSE, where if x̃1, . . . , x̃n are the values of X in the sample, then

FRMSE(sample) =
1

n

n∑

i=1

[
D(x̃i, x̃)

]
, x̃ =

1

n
· (x̃1 + . . .+ x̃n);

- the LMSE, which is the MSE of the Likertized sample;
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- the FCIMSE, which corresponds to the sample D-MSE for the fuzzy con-
version with the scale I of the Likertized sample;

- the FCIIMSE, which corresponds to the sample D-MSE for the fuzzy
conversion with the scale II of the Likertized sample.

Along the 1000 simulated samples we have computed the percentage of sam-
ples for which the FRMSE was lower than the other ones, which have been
gathered in the following table:

Table 1 Percentages of simulated samples for which the use of the fuzzy rating
scale produces an MSE lower than that of the Likert and two fuzzy converted scales

mid Ũ1 ∼ 4β(p, q) + 1

% FRMSE % FRMSE % FRMSE
(p, q) n < LMSE < FCIMSE < FCIIMSE

10 72.9 74.2 83.1
30 86.9 90 95.5

(p, q) = (1, 1) 50 93.4 95.3 98.7
100 97.3 99.1 99.9
300 100 100 100

10 78.5 72.6 84
30 93.4 84.7 96.3

(p, q) = (.75, .75) 50 96.9 92.6 99.2
100 100 97.5 100
300 100 100 100

10 74.7 72.5 82.7
30 89.2 86 95.2

(p, q) = (2, 2) 50 93.6 94.1 98.4
100 99.6 98.9 99.9
300 100 100 100

10 67.9 78.5 84.4
30 79.1 90.9 96

(p, q) = (4, 2) 50 87.5 96 99.6
100 95.4 99.5 99.9
300 99.7 100 100

10 97.1 72.8 83.2
30 100 86.4 96

(p, q) = (6, 1) 50 100 90.7 99.1
100 100 98 100
300 100 100 100

10 82.4 85.9 93.5
30 93 96.9 99.7

(p, q) = (6, 10) 50 98.2 99 100
100 99.9 99.9 100
300 100 100 100
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Empirical conclusions from the results in Table 1 are very clear: the mean
value is mostly better represented by using the fuzzy rating than by using
Likert or fuzzy conversion scales.
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ful comments and discussions. The research in this paper has been partially sup-
ported by/benefited from the Spanish Ministry of Science and Innovation Grant
MTM2009-09440-C02-01, and the COST Action IC0702. De la Rosa de Sáa would
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A Law of Large Numbers
for Exchangeable Random Variables
on Nonadditive Measures

Li Guan and Shoumei Li

Abstract. In this paper, we use the relationship between set-valued random
variables and capacity to prove a strong law of large numbers for exchangeable
random variables with respect to nonadditive measures.

Keywords: Law of large numbers, nonadditive measure, set-valued random
variables.

1 Introduction

The classical laws of large numbers (LLN) play an important role in prob-
ability theory and its applications. All the classical results are under the
assumption that the measures are additive. But the additive property for
measures is not always satisfied because of uncertainty. In recent years, more
and more people are interested in nonadditive measures. The pioneer work is
Choquet’s work [5] in 1953, where nonadditive measures are called capacities.

In 1989 [20], using nonadditive measures and Choquet’s expectation utility,
Schmeidler successfully explained the Allais paradox and Ellsberg paradox.
Maccheroni and Marinacci [16] proved a strong law of large numbers(SLLN)
for capacities by using the result on set-valued random variables. In [16]
the random variables are assumed to be bounded, pairwise independent and
identically distributed. In [4], Chen and Wu proved some strong laws of large
numbers for Bernoulli experiments on an upper probability space. In [19],
Rebille proved some laws of large numbers for nonadditive measures under
weak negatively dependent conditions.
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It is not always reasonable to assume the random variables are indepen-
dent. However it can usually be assumed to be permutation invariant with
respect to distributions. This concept of permutation invariance with respect
to distributions is formally called exchangeable. Exchangeable random vari-
ables are widely used in statistics as pointed out by Inoue in [13] and [12].
Thus it is important to study strong law of large numbers for exchangeable
random variables. For convergence theorems of set-valued random variables,
Taylor et al. [21] obtained some strong laws of large numbers by using a mea-
sure of non-orthogonality provided by de Finetti’s theorem for arrays where
each row consists of an infinite sequence of exchangeable random variables.
Also, Patterson and Taylor [18] used reverse martingale techniques to prove
the same laws of large numbers. In [13] and [12], some strong laws of large
numbers were obtained for weighted sums of exchangeable set-valued and
fuzzy set-valued random variables. In this paper, we are concerned with the
laws of large numbers for rowwise exchangeable random variables under non-
additive measures. We will prove a SLLN for rowwise exchangeable random
variables by using the method of [16].

This paper is organized as follows. In Section 2, we briefly recall some
concepts and notations on set-valued random variables. In Section 3, we
summarize the relationship of set-valued random variable and capacity. In
Section 4, we prove the SLLN of rowwise exchangeable random variables
under nonadditive measures.

2 Preliminaries on Set-Valued Random Variables

Throughout this paper, we assume that (Ω,A, μ) is a nonatomic complete
probability space, (X, ‖ · ‖) is a real separable Banach space, R is the of all
real numbers, N is the set of natural numbers, Kk(X) is the family of all
nonempty compact subsets of X, and Kkc(X) is the family of all nonempty
compact convex subsets of X.

For A,B ⊂ X and λ ∈ R, we define

A+B = {a+ b : a ∈ A, b ∈ B},

λA = {λa : a ∈ A}.
The Hausdorff metric on Kk(X) is defined by

dH(A,B) = max{sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖}, A, B ∈ Kk(X).

For A ∈ Kk(X), we set ‖A‖K = dH({0}, A). The metric space (Kk(X), dH)
is complete and separable, and Kkc(X) is a closed subset of (Kk(X), dH) (cf.
[15], Theorems 1.1.2 and 1.1.3).
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For any A ∈ Kkc(X), the support function of A is defined as

s(x∗, A) = sup
a∈A

< x∗, a >, x∗ ∈ X∗,

where X∗ is the dual space of X.
A set-valued mapping F : Ω → Kk(X) is called a set-valued random vari-

able (or a random set, or a multifunction) if, for each open subset O of X,
F−1(O) = {ω ∈ Ω : F (ω) ∩O �= ∅} ∈ A.

In fact, set-valued random variables can be defined as a mapping from Ω
to the family of all closed subsets of X. Since our main results only deal with
compact set-valued random variables, we limit the above definition to the
compact case. For the definition of general set-valued random variables and
equivalent characterizations, please refer to [2], [10] and [15].

A set-valued random variable F is called integrably bounded (cf. [10] or
[15]) if

∫
Ω
‖F (ω)‖Kdμ <∞.

Let L1[Ω,A, μ;Kk(X)] denote the space of all integrably bounded random
variables, and L1[Ω,A, μ;Kkc(X)] denote the space of all integraly bounded
random variables taking values in Kkc(X). For F,G ∈ L1[Ω,A, μ;Kk(X)],
F = G if and only if F (ω) = G(ω) a.e.(μ).

For each set-valued random variable F , the expectation of F , denoted by
E[F ], is defined as

E[F ] =
{∫

Ω

fdμ : f ∈ SF
}
,

where
∫
Ω
fdμ is the usual Bochner integral in L1[Ω,X], the family of in-

tegrable X-valued random variables, and SF = {f ∈ L1[Ω;X] : f(ω) ∈
F (ω), a.e.(μ)}. This integral was first introduced by Aumann [1], called Au-
mann integral in literature.

3 Relationship between Set-Valued Random Variables
and Capacity

First we recall the definition of the capacity. Let B(Ω) be the family of all
the Borel sets of Ω.

Definition 1. We call ν : B(Ω)→ [0, 1] a capacity, if it satisfies the following
conditions:

(1)ν(∅) = 0, ν(Ω) = 1;
(2) For any A ⊆ B and A,B ∈ B(Ω), we have ν(A) ≤ ν(B).

Definition 2. We call a capacity ν totally monotone , if

ν(

n⋃

i=1

Ai) ≥
∑

∅�=I⊆{1,··· ,n}
(−1)|I|+1ν(

⋂

i∈I
Ai), ∀n ≥ 2, ∀{A1, · · · , An} ⊆ B(Ω).
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Definition 3. We call a capacity ν infinitely alternating, if

ν(
n⋂

i=1

Ai) ≤
∑

∅�=I⊆{1,··· ,n}
(−1)|I|+1ν(

⋃

i∈I
Ai), ∀n ≥ 2, ∀{A1, · · · , An} ⊆ B(Ω).

For any set-valued random variable F and A ∈ B(Ω), we define

F−1(A) = {ω ∈ Ω : F (ω) ∩ A �= ∅},

F−1(A) = {ω ∈ Ω : F (ω) ⊂ A}.
Obviously, we have F−1(A) = Ω − F−1(A).

Furthermore, for A ∈ B(Ω), we define the following two capacities,

νF (A) = μ(F−1(A)),

νF (A) = μ(F−1(A)).

Here we call νF (A) and νF (A) the upper distribution and lower distribution
of F respectively. And we obviously have the following dual relation

νF (A) = 1− νF (Ac), A ∈ B(Ω).

νF (A) and νF (A) are also belief function and plausible function respectively.
For any X-valued random variable x, the Choquet integral of a bounded

random variable x with respect to a totally monotone capacity ν is defined
as ∫

xdν =

∫ +∞

0

ν{x > t}dt+

∫ 0

−∞
[ν{x > t} − 1]dt.

The Choquet integral is positively homogeneous, monotone and translation
invariant(i.e.,

∫
x+cdν =

∫
xdν+c if c is constant). It reduces to the standard

integral when ν is an additive probability measure.

Theorem 1. (cf.[3]) Let (Ω,A, μ) be a probability space, X a Polish space,
and F : [0, 1] −→ Kk(Ω) a set-valued random variable. Then for each X-
valued random variable x : Ω → X,

∫
x ◦ Fdμ =

{∫
x ◦ fdμ : f ∈ SF

}
.

If μ is nonatomic, the integral
∫
x◦Fdμ is convex (cf.[15]), and then we have

∫
x ◦ Fdμ =

{∫
xdμf : f ∈ SF

}
.
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For any measurable selection f ∈ SF , there is an induced measure μf such
that μf (A) = μ{f ∈ A} for any Borel subsets A of X. Since νF ≤ μf ≤ νF
for any f ∈ SF . Then when x is both lower and upper Weierstrass, we have

∫
x ◦ FdP =

{∫
xdPf : f ∈ SF

}
=

[
(C)

∫
xdνF

, (C)

∫
xdνF

]
.

The following lemma is from [3], [16].

Theorem 2. A set function ν : B(Ω)→ [0, 1] is a totally monotone capacity
if and only if there exists a set-valued random variable F : [0, 1] → Kk(Ω)
such that ν = μ

F
.

4 Main Results

In this section, we shall give a strong law of large numbers with respect to
nonadditive measures. First we give the definition of exchangeable random
variables with respect to nonadditive measures.

Definition 4. The family of X-valued random variables {xi : 1 ≤ i ≤ n} is
called exchangeable with respect to a nonadditive measure ν, if for any per-
mutation π = (π1, π2, · · · , πn) of (1, 2, ..., n), and any Borel sets B1, · · · , Bn
of X, we have

ν{x1 ∈ B1, · · · , xn ∈ Bn} = ν{xπ1 ∈ B1, xπ2 ∈ B2, · · · , xπn ∈ Bn}.

The array {xnk : n ≥ 1, 1 ≤ k ≤ n} is called rowwise exchangeable random
variables with respect to a nonadditive measure ν, if for any fixed n, {xnk :
1 ≤ k ≤ n} is exchangeable.

The next theorem is the strong law of large numbers for rowwise exchange-
able set-valued random variables in the sense of dH (cf. [11],[8]), which will
be used later for the proof of our main result .

Theorem 3. Let {Fni : 1 ≤ i ≤ n} be a rowwise exchangeable array of set-
valued random variables taking values in Kkc(X), and ‖Fni‖K be bounded
by h(ω) ∈ L1[Ω,X]. Let {An} and {an} be random variables where an is a
symmetric function of (Fn1, · · · , Fnn). Then if

(1) E‖Fn1‖K → 0 as n→∞,
(2) ‖Fn1‖K ≥ ‖Fn+1,1‖K ≥ · · · ,
(3) ‖an‖K/An < 1

n ,
we have

dH

( 1

An

n∑

i=1

anFni, {0}
)
→ 0, a.e.(μ).

Theorem 4. Let {Kn : n ≥ 1} be a sequence in Kk(X) s.t. dH(Kn, [α, β])→
0. Then
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α ≤ lim inf
n

kn ≤ lim sup
n

kn ≤ β

for each sequence {kn} in X such that kn ∈ Kn for all n ≥ 1.

Proof. The proof is similar to the proof in [16].

The next theorem is a strong law of large numbers for rowwise exchangeable
random variables with respect to nonadditive measures.

Theorem 5. Let ν be a totally monotone capacity , {xni : n ≥ 1} be X-
valued rowwise exchangeable random variables with respect to ν such that
‖xni‖ ≤ h(x) ∈ L1[Ω,X]. Assume that {An}, {an} are random variables and
an is a symmetric function of {xn1, · · · , xnn}. If

(1) xn1 is essential bounded, i.e. ‖xni‖∞ = inf{c ≥ 0 : μ{|xni| > c} = 0};
(2) ‖xn1‖ ≥ ‖xn+1,1‖ ≥ · · · ;
(3) ‖an‖

An
< 1

n ;
then we have

ν
{
ω : lim inf

n

1

An

n∑

j=1

anxnj(ω) = lim sup
n

1

An

n∑

j=1

anxnj(ω) = 0
}

= 1.

Proof. By Theorem 2, we know that there exists a set-valued random variable
F : [0, 1] → Kk(Ω) such that ν = λF , where λ is the Lebesgue measure of
[0,1]. Since

(xni ◦ F )−1(A) = F−1(x−1
ni (A)), ∀A ⊂ X.

Thus xni ◦ F is set-valued random variable.
Now we prove that the sequence {xni ◦F : 1 ≤ i ≤ n} is exchangeable with

respect to λ. Indeed, for any Borel sets B1, · · · , Bn ∈ B(Kk(X)), we have

λ
{
xn1 ◦ F ∈ B1, · · · , xnn ◦ F ∈ Bn

}
= λ

{
F ⊂ x−1

n1 (B1), · · · , F ⊂ x−1
nn(Bn)

}

= λF

{
x−1
n1 (B1), · · · , x−1

nn(Bn)
}

= 1− ν
{
x−1
n1 (B1), · · · , x−1

nn(Bn)
}

= 1− ν
{
x−1
πn1

(B1), · · · , x−1
πnn

(Bn)
}

= λF

{
x−1
πn1

(B1), · · · , x−1
πnn

(Bn)
}

= λ
{
F ⊂ x−1

πn1
(B1), · · · , F ⊂ x−1

πnn
(Bn)

}

= λ
{
xπn1 ◦ F ∈ B1, · · · , xπnn ◦ F ∈ Bn

}
.

Furthermore {co(xni ◦ F ) : 1 ≤ i ≤ n} is also exchangeable with respect to λ
(cf.[13]). We also have ‖co(xni ◦F )‖K = supf∈F ‖xni ◦ f‖ ≤ h(ω) ∈ L1[Ω,X].
Since ‖xn1‖ ≥ ‖xn+1,1‖ ≥ · · · , so for any f ∈ F , we have ‖xn1 ◦ f‖ ≥
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‖xn+1,1◦f‖ ≥ · · · , thus we have supf∈F ‖xn1◦f‖ ≥ supf∈F ‖xn+1,1◦f‖ ≥ · · · ,
that is ‖co(xn1 ◦ F )‖K ≥ ‖co(xn+1,1 ◦ F )‖K ≥ · · · . Hence by theorem 3, we
can have

dH

( 1

An

n∑

j=1

anco(xnj ◦ F ), {0}
)
−→ 0, a.e.λ

Then by lemma 3.1.4 of [15], we can have

dH

( 1

An

n∑

j=1

an(xnj ◦ F ), {0}
)
−→ 0, a.e.λ

Let bn(ω) = 1
An

n∑
j=1

anxnj(ω). Set

S1 =
{
s ∈ [0, 1] :

1

An

n∑

j=1

anxnj(F (s))→ {0}
}
,

S2 =
{
s ∈ [0, 1] : lim inf

n
bn(ω) = lim sup

n
bn(ω) = 0, ∀ω ∈ F (s)

}
,

Ω2 =
{
ω ∈ Ω : lim inf

n
bn(ω) = lim sup

n
bn(ω) = 0

}
.

By theorem 4, we know that S1 ⊂ S2. Notice that

ν(Ω2) = λ{s ∈ [0, 1] : F (s) ⊂ Ω2} = λ{S2}

Therefore ν(Ω2) = λ(S2) ≥ λ(S1) = 1. This completes the proof of the result.

Acknowledgements. We thank the referees for their helpful comments on the
first version of this paper. The research of the authors is supported by Beijing
Natural Science Foundation(Stochastic Analysis with uncertainty and applications
in finance), PHR (No. 201006102), NSFC(No. 11171010).

References

1. Aumann, R.: Integrals of set valued functions. J. Math. Anal. Appl. 12, 1–12
(1965)

2. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions.
Lecture Notes in Mathemathics, vol. 580. Springer, Berlin (1977)

3. Castaldo, A., Maccheroni, F., Marinacci, M.: Random correspondences as bun-
dles of random variables. Ind. J. Stat. 66, 409–427 (2004)

4. Chen, Z., Wu, P.: Strong Laws of Large Numbers for Bernoulli Experiments
under Ambiguity. In: Li, S., Wang, X., Okazaki, Y., Kawabe, J., Murofushi, T.,
Guan, L. (eds.) Nonlinear Maths for Uncertainty and its Appli. AISC, vol. 100,
pp. 19–30. Springer, Heidelberg (2011)



152 L. Guan and S. Li

5. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)
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Credibility Theory Oriented Sign Test
for Imprecise Observations and
Imprecise Hypotheses

Gholamreza Hesamian and Seyed Mahmood Taheri

Abstract. This paper extends the sign test to the case where the available
observations and underlying hypotheses about the population median are
imprecise quantities, rather than crisp. To do this, the associated test statistic
is extended, using some elements of credibility theory. Finally, to reject or
accept the null hypothesis of interest, we extend the concept of classical
p-value.

Keywords: Credibility measure, fuzzy variable, p-value, sign test statistic.

1 Introduction

Nonparametric tests are statistical tests used to analyze data for which an
underlying distribution is not assumed. They are advantages over their para-
metric counterparts because they have fewer underlying assumptions (e.g.,
data normality, equal variance, etc). A particular class of non-parametric
tests is used for the location parameter. The well-known sign test seems to
be a good nonparametric alternative to parametric tests for single popula-
tion location problem [5, 6]. Such tests are commonly based on crisp (precise)
observations. But, in the real world, there are many situations in which the
available data are imprecise rather than precise. In such cases, we are often
faced with two sources of uncertainty; randomness and fuzziness. Randomness
is related to the uncertainties in the outcomes of an experiment; fuzziness,
on the other hand, involves uncertainties in the meaning of the data. For
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instance, the life of a tire a company recently developed, under some un-
expected situations, cannot be measured precisely. We can just obtain the
tire life around a number such as “about 3200 miles”, “approximately 33000
miles”, etc. Therefore, to deal with both types of uncertainties, it is necessary
to incorporate uncertain concept into statistical technique.

After introducing fuzzy set theory, there are a lot of attempts for devel-
oping statistical methods in imprecise/fuzzy environments. Concerning the
purposes of this article, we refer the reader to [2, 7, 8, 9, 11, 10, 12, 13, 20, 21].
It should be mentioned that the method introduced in [2], [10] and [20] are
based on a concept of p-value, while the methods investigated in [7, 8, 9,
11, 13] are based on critical regions. For more on fuzzy statistic in fuzzy
environment, see, for example, [1, 14, 17, 22].

The present paper, using the elements of credibility measure, aims to de-
velop sign test with imprecise observations and imprecise hypotheses, based
on the concept of p-value.

This paper is organized as follows: In Sec. 2, we review the classical sign
test. In Sec. 3, we recall some definitions and results from credibility theory. In
Sec. 4, based on an index for ranking fuzzy variables, we introduce a method
to extend the sign test statistic to imprecise observations. Inside, we also
extend the concept of classical p-value. Finally, at a given (crisp) significance
level, we introduce a method for testing imprecise hypotheses. To explain the
proposed method, we provide a numerical example. Section 5 concludes the
paper.

2 Sign Test: A Brief Overview

Suppose that a random sample X1, X2, . . . , XN is drawn from a population
FX with an unknown median M , where FX is assumed to be continuous
and strictly increasing, at least in the vicinity of M . In other words, the N
random variables are independent and identically distributed, with unique
median. The hypothesis to be tested concerns the value of the population
median H0 : M = M0 where M0 is a specified value, against a corresponding
one or two-sided alternative. The number of observations larger than M0,

Table 1 p-value for sign test

Alternative Hypothesis: H1 p − value

M > M0 p− value =
∑N

i=kN

(N
i

)

(0.5)N

M < M0 p− value =
∑kN

i=0

(N
i

)

(0.5)N

M �= M0 2min{∑kN
i=0

(N
i

)

(0.5)N ,
∑N

i=kN

(N
i

)

(0.5)N }
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denoted by kN , is used to test the validity of the null hypothesis. At a given
significance level δ, we reject H0 if p − value < δ and otherwise, we accept
it, in which the corresponding p-value for given alternative hypotheses are
shown in Tbl. 1 (for more details, see [5]).

3 Credibility Measure

To perform the sign test based on imprecise observations, we need a suitable
method of ranking fuzzy data. Here, we introduce a method for ranking such
data using credibility theory, which will be used in this article.

First, let us remark some elementary concepts of credibility theory.

Definition 1. (Liu [15]) Let Ω be a nonempty set, and A the power set of
Ω. Each element in A is called an event. A set function Cr : A → [0, 1] is
called a credibility measure if it satisfies the following four axioms,

1. Axiom 1. (Normality) Cr{Ω} = 1.
2. Axiom 2. (Monotonicity) Cr{A} ≤ Cr{B} whenever A ⊆ B.
3. Axiom 3. (Self-Duality) Cr{A} + Cr{Ac} = 1 for any event A, where Ac

denotes Ω −A.
4. Axiom 4. (Maximality) Cr{∪iAi} = supiCr{Ai} for any events {Ai} with

supiCr{Ai} < 0.5.

The (Ω,A, Cr) is called a credibility space.

Definition 2. (Liu [15]) A fuzzy variable is a measurable function from a
credibility space (Ω,A, Cr) to the set of real numbers.

We briefly say that a fuzzy variable Ã is normal if and only if supx∈R
μÃ(x) =

1. Since a fuzzy variable Ã is a function on a credibility space, note that for
any set C of real numbers, the set

{Ã ∈ C} = {w ∈ Ω : Ã(w) ∈ C}, (1)

is always an element in A.

Definition 3. (Liu [15], p. 179) Let Ã be a fuzzy variable defined on the
credibility space (Ω,A, Cr). Then its membership function is defined based
on the credibility measure by

μÃ(x) = min{2Cr{Ã ∈ {x}}, 1}, x ∈ R. (2)

By a trapezoidal fuzzy variable we mean the fuzzy variable fully determined
by the quadrulpe (al, ac, as, ar) (briefly, Ã = (al, ac, as, ar)T ) of crisp numbers
with al < ac < as < ar, whose membership function is given by
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μÃ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x < al,
x−al
ac−al al ≤ x < ac,

1 ac ≤ x < as,
ar−x
ar−as as ≤ x ≤ ar,
0 x > ar.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∀x ∈ R. (3)

If ac = as, it is called a triangular fuzzy number and is denoted by Ã =
(al, ac, ar)T . For more on fuzzy numbers, we refer the reader to [15].

Definition 4. (Liu [15], p. 178) Let f : R2 → R be a function, and Ã and B̃

be fuzzy variables on the credibility space (Ω,A, Cr). Then C̃ = f(Ã, B̃) is

a fuzzy variable defined as C̃(w) = f(Ã(w), B̃(w)), for any w ∈ Ω.

Lemma 1. ([15], p. 189) Let Ã and B̃ be two normal fuzzy variables with
membership functions μÃ and μB̃, and f : R2 → R a function. Then for any

set C of real numbers, the credibility Cr{f(Ã, B̃) ∈ C} is
1

2
( sup
f(x,y)∈C

min{μÃ(x), μB̃(y)}+ 1− sup
f(x,y)/∈C

min{μÃ(x), μB̃(y)}). (4)

As an special case of the above equation, let f(x, y) = x− y and C = (0,∞).

Therefore, the credibility measure of Ã− B̃ ∈ (0,∞) is obtained as follows

Cr{Ã−B̃ ∈ (0,∞)} =
1

2
(sup
x>y

min{μÃ(x), μB̃(y)}+1−sup
x≤y

min{μÃ(x), μB̃(y)}).
(5)

Example 1. ([16], p. 168) Let Ã be a normal fuzzy variable and μB̃(x) =
I(x = k), k ∈ R. Then, the given credibility measure in Eq. (5) reduces as
follows

Cr{Ã ∈ (k,∞)}} =
1

2
(sup
x>k

μÃ(x) + 1− sup
x≤k

μÃ(x)). (6)

Example 2. Let Ã = (al, ac, as, ar)T be a triangular fuzzy number and k be

a real number. Then, the credibility of {Ã ∈ (k,∞)} is

Cr{Ã ∈ (k,∞)} =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if k ≤ al,
1
2 (2 − k−al

ac−al ) if al < k < ac,
1
2 if ac ≤ k ≤ as,
1
2 ( a

r−k
ar−as ) if as < k < ar,

0 if k ≥ ar.

(7)

Therefore, Cr{Ã ∈ (k,∞)} > 0.5 if and only if k < ac.

Remark 1. For two normal fuzzy variables Ã and B̃, it is well known that the
degree of necessity to which Ã is larger than B̃ is fulfilled by Nec (Ã 
 B̃)
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= 1− supx,y;x≤y min{μÃ(x), μB̃(y)} [3]. In addition, the degree of possibility

to which B̃ is “larger than or equal to” the Ã is defined to be Pos (B̃ � Ã) =

1−Nec (Ã 
 B̃). Since the necessity index has some appropriate properties,
natural interpretation, and effectiveness in applied statistical problems, it
is employed in many applications based on imprecise observations (see, for
example [2, 11, 12]).

To compare Nec and Cr indices, it is worth noting that, we have Nec (Ã 

B̃) = 1 and Cr{Ã − B̃ ∈ (0,∞)} = 1 if and only if br < al. In addition, we
can observe that the Nec doesn’t have the self-duality property while Cr
does. From Example 1, we can also observe that Cr{Ã − B̃ ∈ (0,∞)} =
1
2 (Pos (Ã 
 B̃) +Nec (Ã 
 B̃)), and Cr{Ã − B̃ ∈ (0,∞)} ≥ Nec (Ã 
 B̃).

Remark 2. For two trapezoidal fuzzy variables Ã = (al, ac, as, ar)T and

B̃ = (bl, bc, bs, br)T with bs < ac, it is natural to say that “Ã is larger B̃”

with a reasonable degree. In this case, we have Cr{Ã − B̃ ∈ (0,∞)} > 0.5,
however for a such case the necessity index may not has power enough to
interpret the sentence “larger than” between Ã and B̃. For instance, consider
two trapezoidal fuzzy variables Ã = (−1, 3.3, 4.3, 5.3)T and B̃ = (1, 2, 3, 4)T .

Then, we observe that Nec (Ã 
 B̃) � 0, while Cr{Ã − B̃ ∈ (0,∞)} � 0.5
(> 0.5).

Definition 5. Let Ã and B̃ be two fuzzy variables with membership func-
tions μÃ and μB̃. Then, Ã is said to be larger than B̃, denoted by Ã 
Cr B̃,

if and only if Cr{Ã− B̃ ∈ (0,∞)} > 0.5.

Example 3. Suppose that Ã = (al, ac, ar)T and B̃ = (bl, bc, br)T , where ac >
bc, are two triangular fuzzy numbers. If br ≤ al, then it is readily seen that
Cr{Ã− B̃ ∈ [0,∞)} = 1. If br > al, then it is easy to verify that supx>y min{
μÃ(x) , μB̃(y)} = 1 and supx≤y min{ μÃ(x), μB̃(y)} = br−x∗

br−bc , where x∗ =
br(ac−al)+al(br−bc)

(ac−al)+(br−bc) . Therefore, from Example 1

Cr{Ã− B̃ ∈ (0,∞)} =
br − 2bc + x∗

2(br − bc) . (8)

For instance, if Ã = (1.2, 2, 2.3)T and B̃ = (0.5, 1, 1.5)T , then Cr{Ã − B̃ ∈
(0,∞)} = 0.88. Therefore, based on Def. 5, Ã is larger than B̃.

The following theorem shows that the proposed ranking method has the tran-
sitivity property.

Theorem. Let Ã, B̃, and C̃ be some fuzzy variables. Then, Ã 
Cr B̃ and
B̃ 
Cr C̃ imply Ã 
Cr C̃.

Proof. Write E = {Ã − B̃ ∈ (0,∞)} and F = {B̃ − C̃ ∈ (0,∞)}, then

E ∩ F ⊆ {Ã− C̃ ∈ (0,∞)}. Since Ã 
Cr B̃ and B̃ 
Cr C̃, we have
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Cr{E} > 0.5, Cr{F} > 0.5.

Thus, by self-duality of credibility measure, we obtain

Cr{Ec} = 1− Cr{E} < 0.5, Cr{F c} = 1− Cr{F} < 0.5.

It follows from monotonicity and maximality of credibility measure that

Cr{Ã− C̃ ∈ (0,∞)} ≥ Cr{E ∩ F} = 1− Cr{Ec ∪ F c}
= 1−max{Cr{Ec}, Cr{F c}} > 1−max{0.5, 0.5} = 0.5.

Therefore, Ã 
γCr C̃.

4 Sign Test with Imprecise Observations and Imprecise
Hypotheses

In this section, we extend the classical sign test to the case when the available
observations are imprecise rather than crisp and the hypotheses of interest
are precisely presented.

As we mentioned in Sec. 2, in the classical approach to test the null hy-
pothesis H0 : M = M0, the observed sign statistic is given by

tN =

N∑

i=1

I(xi > M0), (9)

where, I is the indicator function,

I(ρ) =

{
1 if ρ is true,
0 if ρ is false.

Now, based on imprecise observations x̃1, x̃2, . . . , x̃n, suppose we want to test
the imprecise null hypothesis H0 : M is M̃0, where M̃0 is a fuzzy variable.
This situation corresponds to imprecisely formulated hypotheses of the type
“the population median is about M̃0”.

To verify the null hypothesis H0 : M is M̃0, we have to count those
imprecise observations x̃i, i = 1, 2, . . . , n, for which “x̃i is larger than M̃0”.
Since expression “larger than” is univocal in fuzzy environment, so we apply
the proposed ranking method in this paper for realizing whether x̃i could be
regarded as “larger than” M̃0. Since, for every α > 0.5, the value

n∑

i=1

I(Cr{x̃i − M̃0 ∈ (0,∞)} ≥ α), . (10)
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is a candidate of a test statistic, therefore we have a set of values for the
classical sign test statistics as follows

t̃N = {t̃LN , t̃LN + 1, . . . , t̃UN}, (11)

in which

t̃LN = inf
α>0.5

n∑

i=1

I(Cr{x̃i − M̃0 ∈ (0,∞)} ≥ α), (12)

t̃UN = sup
α>0.5

n∑

i=1

I(Cr{x̃i − M̃0 ∈ (0,∞)} ≥ α)}. (13)

Now, to make a decision rule to accept or reject the null hypothesis H0 :
M is M̃0, for imprecise observations, we apply a decision rule based on the
concept of p-value (similar to that of Grzegorzewski [10]). However, since
our extended sign test statistic is a set, hence p-value corresponding to the
output of the extended sign test is an interval. Therefore, for various kinds
of alternative hypotheses, and as a counterpart of the traditional p-value, we
consider an interval p̃− value = [p̃L − value, p̃U − value] as follows

• for testing H0 against the alternative hypothesis H1 : M 
Cr M̃0 (i.e.,

Cr{M̃0 −M ∈ (−∞, 0) > 0.5),

p̃L − value =

N∑

i=k̃UN

(
N

i

)
(0.5)N , p̃U − value =

N∑

i=k̃LN

(
N

i

)
(0.5)N , (14)

• for testing alternative hypothesis H1 : M̃0 
Cr M (i.e., Cr{M̃0 −M ∈
(0,∞) > 0.5),

p̃L − value =

k̃LN∑

i=0

(
N

i

)
(0.5)N , p̃U − value =

k̃UN∑

i=0

(
N

i

)
(0.5)N , (15)

• for testing alternative hypothesis H1 : M̃0 =Cr M (i.e., M 
Cr M̃0 or

M̃0 
Cr M),

p̃L − value = min
w∈t̃N

2 min{
w∑

i=0

(
N

i

)
(0.5)N ,

N∑

i=w

(
N

i

)
(0.5)N}, (16)

p̃U − value = max
w∈t̃N

2 min{
w∑

i=0

(
N

i

)
(0.5)N ,

N∑

i=w

(
N

i

)
(0.5)N}. (17)

Remark 3. If the imprecise observations x̃1, x̃2, . . . , x̃n reduce to the crisp
values x1, x2, . . . , xn,, then, for any α ∈ (0.5, 1], we observe that Cr{x̃i−M̃0 ∈
(0,∞)} = 1

2 (I(xi > M0) + 1 − I(xi ≤ M0)) ≥ α if and only if xi ≥ M0. So,
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k̃LN = k̃UN =
∑N

i=1 I(xi > M0) = kN and therefore, p̃− value = p− value. In

such a case, therefore, the exteded sign test statistic k̃N and p̃−value reduce
to the classical sign test statistic kN and p− value, respectively (Sec. 2).

Now, consider the problem of the hypothesis testH0 : M is M̃0 with imprecise
observations at a given crisp significance level. One can expect that, for the
case of testing H0 versus H1 : M 
Cr M̃0 (i.e., Cr{M̃0 −M ∈ (−∞, 0)} >
0.5), if the observed p̃ − value is bigger than a given significance level δ,
then H0 should be accepted; otherwise, H0 should be rejected, (the similar
argument can be stated for other two cases). Since the proposed p̃− value is
an interval, by modifying the proposed method given by Grzegorzewski [10],
a degree of reject the null hypothesis H0 would be given as follows at any
significance level δ,

φδ(x̃1, x̃2, . . . , x̃n) =

⎧
⎨

⎩

0 if δ < p̃L,
δ−p̃L
p̃U−p̃L if p̃L ≤ δ ≤ p̃U ,
1 if δ > p̃U .

(18)

Therefore, we accept H0 with degree of 1 − φδ(x̃1, x̃2, . . . , x̃n) and reject it
with degree of rejection φδ(x̃1, x̃2, . . . , x̃n).

Remark 4. Using a concept of fuzzy test statistic, Grzegorzewski [9, 11] inves-
tigated median tests for vague data with crisp hypotheses tests. He utilized
the necessity-index suggested by Dubois and Prade [3], for ranking fuzzy
data. At a crisp significance level, he constructed a fuzzy test based on the
classical critical region, in which the result of a test is presented by two
possibility-necessity-based indices, while our method leads to the classical
binary decision. However, as we investigated in Remarks 1 and 2, it seems
our proposed ranking method is complied better concerning our intuition to
interpret “larger than” to rank imprecise observations.

He also proposed a modification of the classical one-sided upper sign test
to cope with vague data modeled by intuitionists fuzzy set for testing crisp or
imprecise hypotheses [10]. Let μG(x̃i) shows the degree to which observation

x̃i is absolutely greater than M̃0 and νG(x̃i) represents the degree to which
the above mentioned relationship is not satisfied. Based on his approach, the
output of the sign test statistic is an interval T̃ (x̃1, x̃2, . . . , x̃n) = [TL, TU ],
where TL =

∑n
i=1 μG(x̃i) and TU =

∑n
i=1 νG(x̃i). As a counterpart of the

traditional p-value, he considered an interval p̃ = [p̃L, p̃U ], where

p̃L =

N∑

i=�TL�

(
N

i

)
(0.5)N , p̃U =

N∑

i=�TU�

(
N

i

)
(0.5)N ,

in which, �x� is the biggest integer smaller or equal to x, while �x� stands

for the smallest integer greater than or equal to x (see also, [4, 18, 19] for
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other approaches to define a concept of p-value in fuzzy environment). For
any assumed significance level δ, he made the following decision rules:

if p̃U ≤ δ, then we reject H0,
if p̃U > δ, then we accept H0,
if p̃L ≤ δ < p̃U , then our test is not decisive.

Note that, using the proposed credibility measure in this paper, we have
νG(x̃i) = Cr{x̃i − M̃0 ∈ (0,∞)}, and therefore T̃ (x̃1, x̃2, . . . , x̃N ) = TL =

TU =
∑n
i=1 Cr{x̃i − M̃0 ∈ (0,∞)}. Based on the proposed ranking method

in this paper, we considered those observations x̃i in which μG(x̃i) > 0.5,
and we suggested a different method to that of Grzegorzewski’s method by
defining a set T̃ (x̃1, x̃2, . . . , x̃N ) = {TL, . . . , TU} of the sign test statistics,
where

TL = inf
α>0.5

n∑

i=1

I(Cr{x̃i − M̃0 ∈ (0,∞)} ≥ α),

TU = sup
α>0.5

n∑

i=1

I(Cr{x̃i − M̃0 ∈ (0,∞)} ≥ α).

Finally, for making decision to reject or accept a given imprecise null hypoth-
esis, we proposed a modified version of Grzegorzewski’s method by extending
the concept of p-value.

Table 2 Data set in Example 4

x̃1 = (60, 65, 65, 70)T x̃2 = (60, 65, 65, 75)T x̃3 = (80, 85, 85, 90)T x̃4 = (55, 60, 70, 75)T

x̃5 = (65, 70, 75, 80)T x̃6 = (60, 75, 75, 80)T x̃7 = (70, 80, 80, 90)T x̃8 = (75, 85, 85, 90)T

x̃9 = (60, 65, 65, 75)T x̃10 = (75, 80, 85, 90)T x̃11 = (80, 90, 90, 100)T x̃12 = (40, 50, 55, 75)T

x̃13 = (50, 55, 55, 70)T x̃14 = (60, 65, 65, 70)T x̃15 = (70, 75, 75, 80)T x̃16 = (60, 65, 75, 80)T

Example 4. The performance evaluation in an aerospace firm is made by us-
ing a system based on a fuzzy scale. According to this system, the evaluator
assigns a fuzzy value of performance to each worker by taking into account
some certain criteria such as experience, responsibility, mental, and physi-
cal efforts, and so forth. A random sample of 16 workers was selected. The
imprecise evaluation values are given in Tbl. 2 [13].

Suppose that we wish to test the hypothesis H0 : M is M̃0 = (70, 80, 90)T
versus the alternative hypothesis H1 : M ≺Cr M̃0, at the significance level of
δ = 0.01. Using Example 1, from Eqs. (11) and (13), we get t̃N = {1, 2, 3},
and so, from Eq. (15), we obtain
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p̃− value = [
1∑

i=0

(
16

i

)
(0.5)16,

3∑

i=0

(
16

i

)
(0.5)16] = [0.0002, 0.0106].

Let δ = 0.01 be the given significance level. From Eq. (18), therefore, we
reject H0 with degree of φδ(x̃1, x̃2, . . . , x̃N ) = 0.01−0.0002

0.0106−0.0002 = 0.94, and we
accept it with degree of 0.06.

5 Conclusions

As a natural generalization of the sign test, we proposed a method based
on imprecise observations, when the underlying hypotheses are imprecise,
too. To do this, the usual concepts of the sign test statistic and p-value are
extended, using some concepts of credibility theory. For rejecting or accepting
the null hypothesis of interest, we proposed a method to compare the observed
p-value and a given significance level. The proposed method is general and it
can be used for other nonparametric rank-based tests.
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A Note on Large Deviations
of Random Sets and Random Upper
Semicontinuous Functions

Xia Wang

Abstract. In this paper, we show a sufficient condition under which the law
of sums of i.i.d. compact random sets in a separable type p Banach space
(resp. compact random upper semicontimuous functions) satisfies large devi-
ations if the law of sums of its corresponding convex hull of compact random
sets(resp. quasiconcave envelope of compact random upper semicontimuous
functions) satisfies large deviations.

Keywords: Large deviations, random sets, random upper semicontinuous
functions.

1 Introduction

The theory of large deviation principle (LDP) deals with the asymptotic es-
timation of probabilities of rare events and provides exponential bound on
probability of such events. Some authors have discussed LDP on random sets
and random upper semicontinuous functions. In 1999, Cerf [3] proved Cramér
type LDP for sums of i.i.d. compact random sets in a separable type p Ba-
nach space with respect to the Hausdorff distance dH . In 2006, Terán obtained
Cramér type LDP of compact random upper semicontinuous functions [9],
and Bolthausen type LDP of compact convex random upper semicontinuous
functions [10] on a separable Banach space in the sense of the uniform Haus-
dorff distance d∞H . In 2009, Ogura and Setokuchi [7] proved a Cramér type
LDP for compact random upper semicontiunous functions on the underling
separable Banach space with respect to the metric dQ (see [7] for the notation)
in a different method, which is weaker than the uniform Hausdorff distance
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d∞H . In 2010, Ogura, Li and Wang [6] also discussed LDP for random upper
semicontinuous functions whose underlying space is d-dimensional Euclidean
space R

d under various topologies for compact covex random sets and ran-
dom upper semicontinuous functions, Wang [12] considered functional LDP
of compact random sets, Wang and Li [11] obtained LDP for bounded closed
convex random sets and related random upper semicontiunous functions. In
fact, about these work above, some work of papers extended compact convex
random sets(resp. compact convex random upper semicontinuous functions)
to the non-convex case in a separable type p Banach space (see [3, 7, 9, 12]). So
we hope the LDP of the law of sums of i.i.d. compact random sets(resp. com-
pact random upper semicontimuous functions) still holds if the law of sums
of its corresponding convex hull of compact random sets(resp. quasiconcave
envelope of compact random upper semicontimuous functions) satisfies large
deviations. However, until now, all ideal of “deconvexification” comes from
Cerf’s basic work(Lemma 2 in [3]). In [3], Cerf gives a sufficient condition
for the case of compact random sets : E[exp{λ‖X‖K}] < ∞ for any λ > 0.
In [9], Terán gives a sufficient condition(see Lemma 4.4 in [9]) for the case
of compact random upper semicontinuous functions : E[exp{λ‖X0‖K}] <∞
for some λ > 0. In [9], the author doesn’t give the proof of Lemma 4.4,
and he said the basic idea is the same as Cerf’s paper. I think, if the au-
thor use Cerf’s idea, the Lemma 4.4 can’t be obtained under the condition:
E[exp{λ‖X0‖K}] < ∞ for some λ > 0. So in our paper, we don’t use Cerf’s
idea and use another method to give another condition for compact ran-
dom sets: E[exp{λ‖X‖pK}] < ∞ for some λ > 0, and another condition for
compact random upper semicontinuous functions: E[exp{λ‖X‖pF}] < ∞ for
some λ > 0. Under these conditions, we prove the laws of sums of i.i.d.
compact random sets and compact random upper semicontimuous functions
satisfy large deviations if the laws of sums of its corresponding convex hull of
compact random sets and quasiconcave envelope of compact random upper
semicontimuous functions satisfy large deviations.

The paper is structured as follows. Section 2 will give some preliminar-
ies about compact random sets and compact random upper semicontinuous
functions. In section 3, we will give and prove our main results.

2 Preliminaries

Throughout this paper, we assume that (Ω,A, P ) is a complete probability
space, (X, ‖ · ‖X) is a real separable Banach space with its dual space X∗. We
suppose that X is of type p > 1, i.e., there exists a constant c such that

E
[
‖

n∑

i=1

fi‖pX
]
≤ c

n∑

i=1

E
[
‖fi‖pX

]
,
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for any independent random variables f1, f2, · · · , fn with values in X and
mean zero. Every Hilbert space is type 2; the space Lp with 1 < p <∞ are of
type min (p, 2). However, the space of continuous functions on [0, 1] equipped
with supremum norm is of type 1 and not of type p for any p > 1.
Kk(X)(resp. Kc(X),Kkc(X)) is the family of all non-empty compact (resp.

convex, compact convex) subsets of X.
Let A and B be two non-empty subsets of X and let λ ∈ R, we can define

addition and scalar multiplication by A+B = cl{a+b : a ∈ A, b ∈ B}, λA =
{λa : a ∈ A}, where clA is the closure of set A taken in X. The Hausdorff
distance on Kk(X) is defined by

dH(A,B) = max
{

sup
a∈A

inf
b∈B
‖a− b‖X, sup

b∈B
inf
a∈A
‖a− b‖X

}
.

In particular, we denote ‖A‖K = dH({0}, A) = sup
a∈A
{‖a‖X}.

X is called compact random set (resp. compact convex random set), if
it is a measurable mapping from the space (Ω,A, P ) to (Kk(X),B(Kk(X))),
(resp. (Kk(X),B(Kkc(X)))) where B(Kk(X)) (resp. B(Kkc(X))) is the Borel
σ-field of Kk(X) (resp. Kkc(X)) generated by the Hausdorff distance dH .

In the following, we introduce the definition of a random upper semicon-
tinuous function. Let Fk(X) denote the family of all functions u : X→ [0, 1]
satisfying the conditions: (1) the 1-level set [u]1 = {x ∈ X : u(x) = 1} �= ∅,
(2) each u is upper semicontinuous, i.e., for each α ∈ (0, 1], the α level set
[u]α = {x ∈ X : u(x) ≥ α} is a compact subset of X, (3) the support set
[u]0 = cl{x ∈ X : u(x) > 0} is compact.

The subfamily of all u such that [u]α is in Kc(X) for all α ∈ [0, 1] will be
denoted of Fc(X). Let Fkc(X) denote the subfamily of all u such that u is in
both Fk(X) and Fc(X). For every u ∈ Fk(X), denote by cou ∈ Fkc(X) the
quasiconcave envelope of u, we have [cou]α = co[u]α for all α ∈ (0, 1].

For any two upper semicontinuous functions u1, u2, define

(u1 + u2)(x) = sup
x1+x2=x

min{u1(x1), u2(x2)} for any x ∈ X.

Similarly, for any upper semicontinuous function u and for any λ ≥ 0 and
x ∈ X, define

(λu)(x) =

⎧
⎨

⎩
u(
x

λ
), if λ �= 0,

I0(x), if λ = 0,

where I0 is the indicator function of 0.
The following distance is the uniform Hausdorff distance which is ex-

tension of the Hausdorff distance dH : for u, v ∈ Fb(X), d∞H (u, v) =
supα∈[0,1] dH([u]α, [v]α), this distance is the strongest one considered in the
literatures.
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X is called a compact random upper semicontinuous function (or random
fuzzy set or fuzzy set-valued random variable), if it is a measurable mapping
X : (Ω,A, P )→ (Fk(X),B(Fk(X))) (where B(Fk(X)) is the Borel σ-field of
Fk(X) generated by the uniform Hausdorff distance d∞H ).

3 Main Results

Before giving our main results for random sets and random upper semicon-
tinuous functions, we define rate functions and LDP. We refer to the books of
Dembo and Zeitouni [4] and Deuschel and Stroock [5] for the general theory
on large deviations (also see Yan, Peng, Fang and Wu [13]).

Let E be a regular Hausdorff topological and {μn : n ≥ 1} be a family
of probability measures on (E, E), where E is the Borel σ-algebra. A rate
function is a lower semicontinuous mapping I : E → [0,∞]. A good rate
function is a rate function such that the level sets {x : I(x) ≤ α} are compact
subset of E. A family of probability measures {μn : n ≥ 1} on the measurable
space (E, E) is said to satisfy the LDP with speed 1

n and with the rate function
I if, for all open set V ⊂ E , lim infn→∞ 1

n lnμn(V ) ≥ − infx∈V I(x), for all
closed set U ⊂ E , lim supn→∞

1
n lnμn(U) ≤ − infx∈U I(x).

In the following, we give our main two results. We first present LDP for
(Kk(X), dH)-valued i.i.d. random variables.

Theorem 1. Let X be a Banach space of type p > 1. And X1, X2, . . . , Xn

be (Kk(X), dH)-valued i.i.d. random variables satisfying Eeλ‖X1‖p
K < ∞ for

some λ > 0. Let Sn = X1+X2+···+Xn

n , coSn = coX1+coX2+···+coXn

n . If the law
of the random set coSn satisfies a LDP with the good rate function I ′1, then
the law of the random set Sn also satisfies a LDP with the good rate function
I1(for x ∈ Kkc(X), I1(x) = I ′1(x), for x ∈ Kk(X)\Kkc(X), I1(x) = +∞,) i.e.,
Then for any open set U ⊂ (Kk(X), dH),

lim inf
n→∞

1

n
logP

{
X1 +X2 + · · ·+Xn

n
∈ U

}
≥ − inf

x∈U
I1(x),

any for any closed set V ⊂ (Kk(X), dH),

lim sup
n→∞

1

n
logP

{
X1 +X2 + · · ·+Xn

n
∈ V

}
≤ − inf

x∈V
I1(x).

In the following, we give LDP for (Fk(X), d∞H )-valued i.i.d. random variables.

Theorem 2. Let X be a Banach space of type p > 1. And X1, X2, . . . , Xn

be (Fk(X), d∞H )-valued i.i.d. random variables satisfying Eeλ‖X1‖p
F < ∞ for

some λ > 0. Sn = X1+X2+···+Xn

n , coSn = coX1+coX2+···+coXn

n . If the law of
the random set coSn satisfies a LDP with the good rate function I ′, then the
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law of the random set Sn also satisfies a LDP with the good rate function
I(for x ∈ Fkc(X), I(x) = I ′(x), for x ∈ Fk(X)\Fkc(X), I(x) = +∞,) i.e.,
Then for any open set U ⊂ (Fk(X), d∞H ),

lim inf
n→∞

1

n
logP

{
X1 +X2 + · · ·+Xn

n
∈ U

}
≥ − inf

x∈U
I(x), (1)

any for any closed set V ⊂ (Fk(X), d∞H ),

lim sup
n→∞

1

n
logP

{
X1 +X2 + · · ·+Xn

n
∈ V

}
≤ − inf

x∈V
I(x). (2)

In order to prove our two main theorems above, we need the following two
lemmas.

Lemma 3: Let X is of type p > 1 and X1, X2, · · · , Xn be (Kk(X), dH)-valued
i.i.d. random variables such that Eeλ‖X1‖p

K <∞ for some λ > 0, then for any
δ > 0,

lim sup
n→∞

1

n
lnP (dH(

X1 +X2 + · · ·+Xn

n
,
coX1 + coX2 + · · ·+ coXn

n
) ≥ δ)

= −∞.

This proof is same as those of the following Lemma 4, so we omit it. But here
we state the inequality of Puri and Ralescu we use in our proofs of Lemma 3
and Lemma 4.

Let A belong to Kk(X), and its inner radius is r(A), and we know r(A) ≤
2‖A‖K. In [8], Puri and Ralescu extended a result of Cassels [2] and proved
the following inequality(we call it inequality of Puri and Ralescu): for any
A1, A2, · · · , An in Kk(X),

dH(A1 +A2 + · · ·+An, coA1 + coA2 + · · ·+ coAn)

≤ c 1
p (r(A1)p + r(A2)p + · · ·+ r(An)p)

1
p .

Lemma 4: Let X is of type p > 1 and X1, X2, · · · , Xn be (Fk(X), d∞H )-
valued i.i.d. random variables such that Eeλ‖X1‖p

F <∞ for some λ > 0, then
for some δ > 0,

lim sup
n→∞

1

n
lnP (d∞H (

X1 +X2 + · · ·+Xn

n
,
coX1 + coX2 + · · ·+ coXn

n
) ≥ δ)

= −∞.

Proof: We apply the definition of d∞H and the inequality of Puri and Ralescu
and for any A ∈ Kk(X), the inner radius has the property: r(A) ≤ 2‖A‖K,
then
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d∞H (
X1 +X2 + · · ·+Xn

n
,
coX1 + coX2 + · · ·+ coXn

n
)

=
1

n
sup
α∈[0,1]

dH(

n∑

i=1

[Xi]α,

n∑

i=1

[coXi]α)

≤ 1

n
· c 1

p sup
α∈[0,1]

(r([X1]α)p + r([X2]α)p + · · ·+ r([Xn]α)p)
1
p

≤ 1

n
· 2c 1

p (‖X1‖pF + ‖X2‖pF + · · ·+ ‖Xn‖pF)
1
p .

In view of the condition of Lemma 4: Eeλ‖X1‖p
K <∞ for some λ > 0, then for

this positive λ > 0, we have Eeλ‖X1‖p
K < ∞, so we can apply the chebyshev

exponential inequality , then we obtain

lim sup
n→∞

1

n
lnP (d∞H (

X1 +X2 + · · ·+Xn

n
,
coX1 + coX2 + · · ·+ coXn

n
) ≥ δ)

≤ lim sup
n→∞

1

n
lnP (‖X1‖pF + |X2‖pF + · · ·+ ‖Xn‖pF ≥

npδp

2pc
)

≤ lim sup
n→∞

1

n
ln[e−

λnpδp

2pc (Eeλ‖X1‖p
F )n]

= lim sup
n→∞

(−λn
p−1δp

2pc
+ Eeλ‖X1‖p

F )

= −∞.

So we complete the proof of this lemma.
Since random sets are particular cases of those for fuzzy random variables,

then we omit the proof of Theorem 1, and only give the proof of Theorem 2.

Proof of theorem 2: Step 1: First we prove the upper bound of (1). Let
U be a closed subset of (Fk(X), d∞H ). For any ∀ δ > 0, let

Uδ = {x ∈ Fk(X) : d∞H (x,U) = inf
y∈U

d∞H (x, y) < δ}.

Then P (Sn ∈ U) ≤ P (coSn ∈ Uδ) + P (d∞H (Sn, coSn) ≥ δ). So

lim sup
n→∞

P (Sn ∈ U)

≤ max{lim sup
n→∞

P (coSn ∈ Uδ), lim sup
n→∞

P (d∞H (Sn, coSn) ≥ δ)}
= − inf

x∈Uδ

I(x).
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Since I(x) is a good rate function, by [1], we have

lim
δ↓0

inf
x∈Uδ

I(x) = inf
x∈U

I(x).

So (1) holds.
Step 2: we prove the lower bound of (2). Let U be an open subset of

(Fk(X), d∞H ). ∀ x ∈ U , then there exists a δ > 0 and an open subset V of
(Fk(X), d∞H ) such that x ∈ V ⊂ V δ ⊂ U . So

P (Sn ∈ U) ≥ P (Sn ∈ V δ) ≥ P (coSn ∈ V )− P (d∞H (Sn, coSn) ≥ δ).

Hence P (Sn ∈ V ) ≤ P (Sn ∈ U) + P (d∞H (Sn, coSn) ≥ δ). By Lemma 4, we
have

lim inf
n→∞ P (Sn ∈ U) ≥ − inf

x′∈V
I(x′) ≥ −I(x).

Taking the supermum over all elements x in U , we have

lim inf
n→∞ P (Sn ∈ U) ≥ − inf

x∈U
I(x).

This completes the proof of Theorem 2.

Remark: In 2010, Ogura, Li and Wang [6] have proved a Cramér type
LDP for compact convex random upper semicontinuous functions whose
underlying space is d-dimensional Euclidean space R

d under the condition
E[exp{λ‖X‖F}] <∞, for some λ > 0 with respect to the metric dQ(see the
detailed notation in [6]). Since the d-dimensional Euclidean space Rd is type 2,
then if X1, X2, · · · , Xn are (Fk(Rd), d∞H )-valued i.i.d. random variables such

that Eeλ‖X1‖2
F <∞ for some λ > 0, then Lemma 4 holds. And the condition

E[exp{λ‖X‖F}] < ∞ also holds for this positive λ. By Theorem 3.4 in [6],
we know the law of sums of quasiconcave envelope of compact random upper
semicontimuous functions satisfies large deviations, then in view of Theorem
2 in our paper, the law of sums of compact random upper semicontimuous
functions satisfies large deviations with the same rate function.
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Conditional Density Estimation Using
Fuzzy GARCH Models

Rui Jorge Almeida, Nalan Baştürk,
Uzay Kaymak, and João Miguel da Costa Sousa

Abstract. Time series data exhibits complex behavior including non-linearity
and path-dependency. This paper proposes a flexible fuzzy GARCH model
that can capture different properties of data, such as skewness, fat tails and
multimodality in one single model. Furthermore, additional information and
simple understanding of the underlying process can be provided by the lin-
guistic interpretation of the proposed model. The model performance is il-
lustrated using two simulated data examples.

Keywords: Conditional volatility, density estimation, fuzzy GARCH, fuzzy
model, time series analysis.

1 Introduction

A conditional density of a random variable is an estimate of the probabil-
ity distribution of the current value of that variable, given its past values
or other variables. Conditional density estimation has an important role in
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quantitative finance and risk management. Estimating an accurate model for
the distribution of financial returns is not a simple task, as financial time-
series typically possess non-trivial statistical properties, such as asymmetric
distributions and non-constant variability of returns. Many statistical quan-
tiles such as Value-at-Risk or Expected Shortfall, which are directly linked to
the tail of the return distribution of a portfolio of financial assets are widely
accepted financial risk management tools [9].

Different types of approaches have been proposed for estimating condi-
tional density of returns. A popular approach where volatility changes dy-
namically is the Generalized Autoregressive Heteroskedasticity (GARCH)
model [2]. Extended GARCH models are proposed in the literature to cap-
ture different aspects of data behavior: Student-t GARCH models to capture
fat tails [3], GJR-GARCH [4] models to capture skewness, regime-switching
GARCH models to capture multimodality [1]. These models can be extended
to capture all complex data behavior in one model, but the estimation and
identification of such models are not trivial [1].

Fuzzy systems have been combined with GARCH models to analyze dy-
namic processes with time-varying variance. In [10, 7, 6, 8] fuzzy GARCH
models are proposed, where linguistic descriptors are combined with GARCH
models in a rule-base system and each rule corresponds to an individual
GARCH model. In [5] a GARCH model with error terms obtained from a set
of fuzzy rules has been proposed.

This paper proposes a flexible fuzzy GARCH model that can capture dif-
ferent properties of data, such as skewness, fat tails and multimodality in one
single model. Furthermore, the linguistic interpretation of the model can pro-
vide a simple understanding of the underlying returns process. This proposed
model is more flexible than the standard GARCH model and previously pro-
posed fuzzy GARCH models. This model can capture data behavior even if
the underlying data distribution is misspecified. This is illustrated using sim-
ulated data. Specifically, we show that the fuzzy GARCH model can explain
data generated from general GARCH-type models, such as the student-t and
regime switching GARCH models.

2 Fuzzy GARCH Models

The standard GARCH (p, q) model for t = 1, . . . , T observations is:

yt | ht ∼ N(0, ht); ht = α0 +

q∑

i=1

αiy
2
t−i +

p∑

j=1

βjht−j , (1)

where yt is the data, ht is the unobserved conditional variance, and N(μ, σ2)
denotes independent normal distribution with mean μ and variance σ2. The
following restrictions provide positive variance terms ht at every period
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α0 > 0, αi ≥ 0, βj ≥ 0,

q∑

i=1

αi +

p∑

j=1

βj < 1, i = 1, . . . , q. j = 1, . . . , p . (2)

A fuzzy GARCH model, similar to a probabilistic fuzzy system [11], combines
two different types of uncertainty, namely fuzziness or linguistic vagueness,
and probabilistic uncertainty. This model consists of a set of IF-THEN rules,
where the antecedent of each rule are fuzzy sets and the consequents are
GARCH models, consisting of l-th rules [10, 7, 6, 8]

Rl : If x is Fl then hlt = αl0 +

q∑

i=1

αliy
2
t−i +

p∑

j=1

βljht−j , (3)

where x ∈ R
n is an input vector, Fl : X −→ [0, 1] is a multidimensional

fuzzy set defined on a continuous sample space X . Parameter restrictions (2)
should hold for every rule to ensure positive conditional variance hlt. The
combination of hlt in (3) provides the unobserved conditional variance ht.
The density of output yt is based on ht

ht =
L∑

l=1

gl,th
l
t , (4)

yt | ht, xt ∼ N(μ, ht) , (5)

where gl,t = ul,t/
∑L
l=1 ul,t are membership functions with ul,t ≥ 0 for l =

1, . . . , L,
∑L
l=1 ul,t > 0, and by definition gl,t ≥ 0 and

∑L
l=1 gl,t = 1. This

model can capture changing conditional variance, but not skewness or mul-
timodality.

In [10] the parameters of the model were estimated in a two step ap-
proach. First the antecedents were obtained using a fuzzy clustering heuris-
tic, followed by the estimation of the GARCH parameters using maximum
likelihood estimation. In this work, the GARCH models were constrained,
such that βj = 0 in the variance term hlt (GARCH(p,0)) or the conditional
variance is not given by a GARCH model but constant over time hlt = hl, ∀t.
In [7, 6] the parameters of the fuzzy GARCH model are obtained using a ge-
netic algorithm, while in [8] particle swarm optimization is used. The objec-
tive function, as defined in all these work, is the mean squared error between
the output density

√
htεt and observation yt. To the best of our knowledge,

the calculation of this objective function is not possible.
In this paper we propose a different type of fuzzy GARCH model where

the output yt and conditional variance ht are defined by each of l-th fuzzy
rule
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Rl : If x is Fl then ylt | xt, hlt ∼ N(μl, hlt) , (6)

with hlt = αl0 +

q∑

i=1

αliy
2
t−i +

p∑

j=1

βljht−j , (7)

where ht is given by (4). Using (7) and (6), the output of the system is

yt ∼
L∑

l=1

gl,tN(μl, hlt) . (8)

Parameter restrictions (2) provide positive variance terms ht at every period,
and (a positive) mean of the variance term ht to exist.

The proposed model is more general than the existing fuzzy GARCH mod-
els: In (6) and (7), output y shows a smooth transition between normal
densities, with possible different mean and variances. Hence the density of
each observation might be multimodal or skewed, while in the previous fuzzy
GARCH models the output density in (5) is a unimodal and symmetric nor-
mal density. In the proposed model the combination of normal densities in
the rule output can lead to unimodal or skewed distributions depending on
model parameters:

1. If μl = μl
�

for all l, l� ∈ {1, . . . , L}, output y comes from a normal distri-
bution and conditional variance h changes over time. This case leads to
the the previous fuzzy GARCH models as defined in (5).

2. If mean parameters μl are relatively different and hlt are relatively small
and similar across l = {1, . . . , L}, output y is likely to have a multimodal
distribution,

3. If mean parameters μl are relatively close to each other and hlt are rela-
tively different across l = {1, . . . , L}, output y is likely to have a skewed
distribution.

We illustrate the difference between both fuzzy GARCH model definition
using simulated data. Figure 1 shows the conditional density of output y for
simulated data from the proposed model (6) and model (3) from [7]. The
latter model leads to unimodal and symmetric conditional densities while
simulated data from the proposed model has a more complex behavior with
skewed, asymmetric and bimodal conditional densities.

It is possible to estimate the model in (6) by maximum likelihood method,
given that input xt is included in the information set at time t − 1, i.e. x
is predetermined with respect to y. More specifically, xt can for instance
take past y values or can be an exogenous variable. Given that the type and
number of membership functions gl,t are known, the log-likelihood of data
y = {yt� , . . . , yT } is:

ln �(y | It−1) = ln
T∏

t=t�

�(yt | xt, ht) =
T∑

t=t�

ln

(
L∑

l=1

gl,tφ(yt, μ
l, hlt)

)
, (9)
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Fig. 1 Conditional distributions of simulated data from Fuzzy GARCH models

where ht is calculated from (7), and t� = max (p+ q) + 1. In the remaining
of this paper we consider that gl,t are trapezoidal membership functions but
other types of parametric membership functions can be used.

Given trapezoidal membership functions, the likelihood in (9) is optimized
with respect to all model parameters (GARCH and fuzzy membership), using
a gradient search method. We constrain the search space to solutions satisfy-
ing the positive variance condition and membership functions that cover the
universe of the input variables in the antecedent space.

3 Applications

In this section we illustrate the capabilities to estimate the conditional data
density using the proposed fuzzy GARCH model with two applications. In
both applications the underlying process is not a fuzzy GARCH model or an
individual rule in the model. We show that the combination of the rule-base
system in the fuzzy GARCH model however, overcomes this misspecification
problem. In both applications we apply the fuzzy GARCH model where the
antecedent xt = yt−1, the previous value in the time series data. This an-
tecedent is a natural choice, since the GARCH model builds on the relation
between the data density and its past value. We compare the performance
of the proposed model with that of the standard GARCH model as defined
in (1). Since both these models estimate an output density rather than a point
estimate, an intuitive model validation method is to consider the quantiles
of the estimated output distribution, and compare it with the actual num-
ber of observations within the estimated quantiles. Due to space limitations,
we focus on the model performance instead of parameter estimates and the
linguistic description.
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3.1 Student-t GARCH Data

The purpose of this section is to show that the fuzzy GARCH model can
approximate a GARCH model with Student-t errors. We simulate data
with 3000 observations, from a single Student-t GARCH(1,1) model with
(α0, α1, β1) = (0.5, 0.07, 0.8) and with 4 degrees of freedom.

The data is divided to a training sample of first 2500 observations and the
forecast sample of last 500 observations. We apply the fuzzy GARCH model
in (6) defining L = 2 rules and a trapezoidal membership function. The left
panel in Fig. 2 shows the 10%, 5% and 1% tails of the estimated output y
density in the forecast sample using the fuzzy GARCH model. Fig. 2 shows
that estimated tails of the density are quite different across time, indicating
the complex data behavior and follow the extreme data values quite closely
in the forecast sample.
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a) Student-t GARCH(1,1) data b) Regime switching GARCH(1,1) data

Fig. 2 Forecast data and fuzzy GARCH model quantile estimates

Table 1 summarizes the estimated output density using the fuzzy GARCH
model and the standard GARCH model. For the standard GARCH model,
none of the observations fall below the estimated 1% tail in the forecast sam-
ple. Hence the misspecified GARCH model overestimates the data variance.
The fuzzy GARCH model, however, leads to substantially close percentage of
observations in the respective estimated distribution tails. We conclude that
the standard GARCH model cannot capture the tails of the distribution. The
fuzzy GARCH model on the other hand, captures the data distribution ac-
curately despite the misspecification in each rule which assumes error terms
with normal distribution. We note that the combination of the rules in the
proposed fuzzy GARCH model leads to error terms which are not necessarily
normal distributed.
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Table 1 Simulated data from a Student-t GARCH model: percentage of observa-
tions in respective distribution tails

Fuzzy GARCH model

1 % tail 5 % tail 10 % tail

training sample 0.02 0.04 0.07
forecast sample 0.01 0.04 0.09

standard GARCH model

1 % tail 5 % tail 10 % tail

0.01 0.03 0.07
0.00 0.03 0.09

3.2 Regime-Switching GARCH Data

In this section we analyze simulated data from a different misspecified
GARCH model, namely a regime-switching GARCH(1,1) model, and show
that the Fuzzy GARCH model can capture the data behavior despite the
original misspecification. The data is simulated from the following model:

ht = 0.8 + 0.13y2t−i + 0.8ht−j (regime 1 ) ,

ht = 0.4 + 0.13y2t−i + 0.5ht−j (regime 2 ) , (10)

εt ∼ N (0, 1) , yt =
√
htεt ,

where the data comes from regime 1 for T = 1, . . . , 200, 501, . . . , 900 and
from regime 2 for T = 201, . . . , 500, 901, . . . , 1100.

We apply the Fuzzy GARCH model with L = 2 rules on this data. The
training and forecast samples consist of the first 700 and last 400 observa-
tions, respectively. The forecast sample and estimated 1%, 5% and 10% tails
of the output distribution obtained by the Fuzzy GARCH model are given in
the right panel of Fig. 2. Although the underlying GARCH model is misspec-
ified, estimated distribution’s tail values adjust to the high and low variance
regimes at the beginning and the end of the forecast sample, respectively.

Table 2 summarizes the estimated output density using the fuzzy GARCH
model and the standard GARCH model. For the standard GARCH model,
none of the observations fall below the estimated 1% tail in the training and
forecast samples and the percentage of observations in the 5% tails of the esti-
mated distribution are 2%, substantially smaller than the target value. Hence
the misspecified GARCH model overestimates the data variance. The fuzzy
GARCH model on the other hand leads to similar percentage of observations
in the respective estimated distribution tails. We conclude that although the
underlying GARCH model is misspecified, fuzzy GARCH model can capture
the data properties accurately. The misspecified GARCH model on the other
hand, is not appropriate for this data. Note that in both applications consid-
ered, the proposed fuzzy GARCH model uses only two rules, and it captures
the varying data properties accurately.
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Table 2 Simulated data from a regime switching GARCH model: percentage of
observations in respective distribution tails

Fuzzy GARCH model

1 % tail 5 % tail 10 % tail

training sample 0.02 0.05 0.11
forecast sample 0.01 0.05 0.08

Standard GARCH model

1 % tail 5 % tail 10 % tail

0.00 0.02 0.08
0.00 0.02 0.07

4 Conclusion

We propose a new fuzzy GARCH model that can capture complex data be-
havior, such as skewness, multimodality and fat tail distributions where all
model parameters are estimated using the maximum likelihood approach.
We illustrate the model capabilities using two simulated datasets, exhibiting
different data properties. We show that the proposed model captures the un-
derlying data distribution in both cases. In future work, we plan to generalize
the model to multiple inputs and discuss the linguistic interpretation of the
model.
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LP Methods for Fuzzy Regression
and a New Approach

Bekir Çetintav and Firat Özdemir

Abstract. Linear Programming (LP) methods are commonly used to con-
struct fuzzy linear regression (FLR) models. Probabilistic Fuzzy Linear Re-
gression (PFLR) [9] and Unrestricted Fuzzy Linear Regression (UFLR) [3]
are two of the mostly applied models that employ LP methods. In this study,
a modified fuzzy linear regression model which use LP methods is proposed.
PFLR, UFLR and proposed model compared in terms of mean squared error
(MSE) and total fuzziness by using two simulated and one real data set.

Keywords: Fuzzy linear regression, linear programming methods.

1 Introduction

Regression analysis is a commonly used methodology for analyzing relation-
ships between a response variable, also called dependent variable, and one or
more explanatory variables, independent variables. In classical linear regres-
sion model; the deviation between the observed value and estimated value of
dependent variable Y i is generally regarded as error and that error is nor-
mally distributed with zero mean. Among several methods, the least square
method is frequently used for estimation of parameters.

After improvements of fuzzy set theory, it has been successfully demon-
strated in many applications, such as: reliability, quality control, economet-
rics, engineering applications, etc. The common point of these different areas
is that there are data with vagueness (or fuzzy data). So special tools for
applications of these data are needed. Because the original vagueness is not
taken into account in the analysis when the fuzzy data is analyzed through
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nonfuzzy techniques and it makes the model inaccurate. Therefore Fuzzy Re-
gression (FR) models have been constructed to restore regression analysis for
fuzzy space. Although it makes the model precise, FR models could be used
for analyzing the crisp data. Because the crisp data is also a kind of fuzzy
data (Even though it is degenerated). For example some FR models could be
used when some properties of CLR are not maintained.

Recent years, many kinds of fuzzy regression models have been constructed
to restore regression analysis. These models can be roughly categorized into
three groups, linear programming (LP) methods, multi-objective (MO) tech-
niques and least square (LS) methods. The LP methods are commonly used
for fuzzy linear regression (FLR) because they are simple and easy to ap-
ply. Also it needs nearly no assumption. But it doesn’t mean these methods
are appropriate for all kinds of data sets. They also have some weaknesses;
(i) they are extremely sensitive to outliers [2]; (ii) when there is an outlier
they don’t allow all observations for estimation and (iii) estimated fuzziness
per unit increases as number of observations increase [7]. The multi-objective
(MO) techniques are proposed to solve some of these weaknesses [4], but these
techniques are not as simple as LP methods. Also they are not as good as
the other methods (especially LS methods) for predictability. In this study;
a new LP model which is more predictable is proposed.

In Sec. 2, we try to introduce some of frequently-used LP models and their
characteristics. A new FLR model is proposed in Sec. 3. Its application and
comparison with other models by numerical examples are in Sec 4. Section 5
gives our conclusions.

2 LP Methods for FLR

The LP methods are the first approaches for FLR. Therefore they are the
most famous ones. As can be understood from the name, the LP models are
used to estimate the parameters in these methods and the main aim is to
minimize the fuzziness of the estimated regression model. Therefore they are
also called The Minimum Uncertainty methods. (Since this study focuses on
the predictability of LP methods, the details of the models which are about
outlier problem[6, 1, 2] are ignored.)

2.1 Tanaka’s Models

Tanaka et al. [10] proposed the first FLR model in 1982. According to that ar-
ticle, the deviation between the observed value and estimated value of depen-
dent variable Yi can be defined as fuzziness and it depends on the fuzziness
of the system structure [10]. That is also the main idea of the LP methods.
The fuzzy model is;(for i = 1, . . . , n ( is # of ind. variables) and j = 1, . . . , N
(is # of obs.))
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Y∗
i = Ai ·Xij (1)

The model consists of fuzzy parameters such as Ai = (ai, ci) and dependent
variable Yi = (yi, ei). They both have triangular membership functions. ai
is the center and ci is the fuzziness of the fuzzy parameter Ai and observed
Yi has center yi and fuzziness ei .Also estimated Y ∗

i is similar. Tanaka [10]
proposed a linear programming model to obtain the estimations of param-
eters. Basic ideas of this model; (i)It should minimize the total fuzziness of
the parameters. (Sum of ci), (ii)The (membership function of) estimated Y ∗

i

should include the (membership function of) observed Yi.(iii)There should be
a threshold value H, which presents the degree of fitting value of estimated
Y ∗
i to observed Yi.(iv)The fuzziness of a parameter should be nonnegative.

Tanaka modified his first model in 1987 and 1989 [8, 9]. The total fuzziness
of the parameters (sum of ci) was minimized in the first model. On the con-
trary, the second model try to minimize the total fuzziness of the model .That
model is called Possibilistic Fuzzy Linear Regression (PFLR).They modified
only the objective function by multiplying fuzziness of the parameters (ci) to
absolute value of independent variable(s) (xi). All other parts are the same
with his first model.That modification reduced the fuzziness of the model
significantly and brought it to the level required to be. But Tanaka’s basic
ideas (approach) did not change. The linear programing model:

min z =

N∑

i=1

(c0 · |x0|) + (c1 · |x1|) + · · ·+ (cn · |xn|) (2)

subject to

atxi + (1−H) · ct |xi| ≤ yi + (1 −H) · ei (3)

atxi − (1−H) · ct |xi| ≥ yi − (1 −H) · ei (4)

ci ≥ 0 [for i = 1, 2, . . . , N.] (5)

The first two constraints are density constraints which make the estimated
Y ∗
i to include observed Yi in the model. So they should be generate for all

data (total number of data is N).The last one is constraint of sign that makes
the fuzziness parameters ci nonnegative.

2.2 Lee and Chang’s Model (UFLR)

Another problem in PFLR is conflicting trends. In the cases where shrinking
or expanding trends in the observations exist, PFLR frequently misinterprets
the model. In order to avoid that problem Lee and Chang suggested canceling
the constraint of sign (ci > 0 ) in the PFLR model and called new model
Unrestricted in Sign Fuzzy Linear Regression (UFLR) [3]. The UFLR Model
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is very similar with PFLR. Only difference is there is no constraint for fuzzi-
ness of parameters (ci), those could be negative in this model. That means
some independent variables could affect the fuzziness of the model negatively.
In other word some independent variables decrease the total fuzziness of the
model. With that change model could capture the different trends.

UFLR model works well in the data sets which have trend; however there
is confusion about negative fuzziness and also outliers create problems like in
the PFLR model.

3 Proposed New Model

Since it is simple and easy to apply, the most widely used approach while con-
structing FLR models is linear programming. However, there are some points
that should be discussed in detail: Redden and Woodall [7] have stated that
(i) they are extremely sensitive to outliers; (ii) when there is an outlier, they
don’t allow all observations for estimation (iii) as the number of observa-
tions increase, estimated fuzziness per unit also increases. Peter’s and Chen’s
models which were given in Chap. 2 have tried to solve this problem.

Although prediction and estimation are the two main goals in regression
analysis, these two models are not satisfactory enough in this respect [5]. And
that makes them a little bit inadequate.

In FLR based on LP methods, the deviation between the observed value
and estimated value of dependent variable Yi can be defined as vagueness and
it depends on the fuzziness of the system structure. In other words, vagueness
results from the system parameters included in the model. The main goal of
LP methods (for FLR) is to minimize that vagueness. However, there might
be several problems in a linear regression model like model specification,
variable selection or lack of fit. Vagueness caused by problems given above
and some other similar problems may be defined as unexplained vagueness.
In literature, FLR models based on LP methods ignore this unexplained part
and focus on vagueness resulted from the parameters in the model. But it is
not fair.

3.1 Fair Fuzzy Linear Regression (FFLR)

Proposed model FFLR divides total vagueness into two parts as explained
and unexplained. Explained vagueness (or fuzziness) is caused by independent
variables which are included in the model. And unexplained vagueness (or
fuzziness) is caused by problems mentioned above.

A new parameter F is added to the model to represent the unexplained
vagueness part. It has a triangular membership function with center 0 and
fuzziness f , F = (0, f). Then the regression function becomes as follows.
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Y∗
i = Ai ·Xij + F (6)

FFLR and other LP based models in the literature are very similar in estimat-
ing the model parameters. The only difference is that boundary constraints
are modified and there is an additional constraint for the new parameter F.
The LP model is as follows;

min z =

N∑

i=1

(c0 · |x0|) + (c1 · |x1|) + · · ·+ (cn · |xn|) (7)

subject to

atxi + (1−H) · ct |xi|+ (1−H)f ≤ yi + (1−H) · ei (8)

atxi − (1−H) · ct |xi| − (1−H)f ≥ yi − (1−H) · ei (9)

N · f ≤
N∑

i=1

(ci · |xi|) (10)

ci ≥ 0 [for i = 1, 2, . . . , N.] (11)

3.2 Some Remarks on FFLR Model

FFLR can be introduced as a modified version of PFLR and UFLR. Although
the objective function of the FFLR is the same with these two model’s ob-
jective functions, it only tries to minimize the explained vagueness not the
unexplained one represented by F .

In general, a model can minimize the vagueness caused by its independent
parameters (explained vagueness). Therefore the proposed FFLR model aims
to minimize explained vagueness but optimize the remaining unexplained
vagueness part. That is why the objective function does not include f , the
vagueness of the unexplained part.

Except for the new parameter f, the boundary constraints of FFLR are
similar to PFLR and UFLR. The main idea doesn’t change. All models aim
to get the estimated Y ∗

i to include observed Yi.
There is a new constraint (10) which makes the model meaningful by

limiting F in that the unexplained vagueness part could not be greater than
the explained vagueness part.

The constraint of sign is optional. It could be used if the vagueness of the
parameters are considered nonnegative as in the PFLR model, or it may be
cancelled to catch the trend (if it exists), as in Lee and Chang’s UFLR model.
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4 Numerical Examples

In this section, two simulated data sets and one real-world data set are used
to illustrate how the proposed model (FFLR) performs. In first data set, all
parameters are positive. There is a negative parameter in the second one.
The third data set is from Tanaka’s article to see how it works for real-world
data. There are different kinds of independent variables and we have no idea
which kind of distribution they have.

The results of FFLR model are compared with Tanaka’s PFLR and Lee
and Chang’s UFLR models. For simplicity, the observations are assumed to
be symmetric triangular fuzzy numbers and are denoted by Yi = (yi, ei). Also
estimated fuzzy parameters are same as, Ai = (ai, ci). The threshold value is
H = 0, 5 for all models.

NOTE: All details about these applications and data sets can be provided by first
author.(bekir.cetintav@deu.edu.tr)

Example 1

The data set is obtained by a simulation study with R program. The distri-
butions of independent variables are X1, X2 ∈ N(2, 1) and X3 ∈ N(4, 1). The
dependent variable is calculated from following equation, Y = 2 ∗ X1 + 3 ∗
X2 + 2 ∗X3 + e where e ∈ N(0, 1). The fuzziness of the independent variable
is ei ∈ N(4, 1).

There are two cases for comparisons of predictability and fuzziness, FFLR-
PFLR and FFLR-UFLR. Because the fuzzy part of the parameters (ci) are
must be nonnegative in PFLR model, but they are unrestricted in UFLR.
Proposed FFLR model modifies PFLR and UFLR models on their own con-
ditions. Final results are given.

Table 1 Comparison PFLR-FFLR, data set-1

n SST(PFLR) MSE(PFLR) Vag(PFLR) SST(FFLR) MSE(FFLR) Vag(FFLR)

10 7.341 0.744 62.921 6.399 0.640 59.467
13 6.476 0.498 88.552 5.905 0.454 84.770
16 8.835 0.552 109.181 8.303 0.519 104.506
18 9.347 0.519 125.071 8.919 0.496 119.163
20 9.740 0.487 138.759 0.107 0.005 132.258

aSST:Total Sum of Squares, MSE:Mean Squared Error, Vag:Total Vagueness of Model

The results are compared for different number of data size. n = 10 means
that the first ten observations in the data set are used and there is no de-
scending or ascending order in the data set.
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Table 2 Comparison UFLR-FFLR, data set-1

n SST(UFLR) MSE(UFLR) Vag(UFLR) SST(FFLR) MSE(FFLR) Vag(FFLR)

10 6.470 0.647 62.158 7.584 0.758 58.781
13 11.555 0.889 86.437 7.938 0.611 83.569
16 10.425 0.652 108.026 10.189 0.637 103.776
18 10.935 0.607 123.678 10.548 0.586 117.910
20 11.697 0.585 137.725 11.165 0.558 131.323

aSST:Total Sum of Squares, MSE:Mean Squared Error, Vag:Total Vagueness of Model

As can be shown below; proposed FFLR model gives better results from
PFLR for both predictability and fuzziness. Also FFLR model gives better
results from UFLR for sample sizes 13, 16, 18, 20. Only for sample size 10,
UFLR model is better than FFLR for predictability.

Example 2

The data set, as in Tbl. 2, is obtained by a simulation study with R program,
too. The distributions of independent variables are X1, X2, X3 ∈ N(2, 1) .The
dependent variable is calculated from following equation, Y = 2 ∗ X1 − 3 ∗
X2 + 4 ∗X3 + e where e ∈ N(0, 1). The fuzziness of the independent variable
is ei ∈ N(4, 1). Different from data set-1, there is an independent variable
which has negative effect on the dependent variable.

Table 3 Comparison PFLR-FFLR, data set-2

n SST(PFLR) MSE(PFLR) Vag(PFLR) SST(FFLR) MSE(FFLR) Vag(FFLR)

10 29.627 2.963 71.675 12.267 1.227 63.705
13 11.341 0.872 97.442 9.560 0.735 89.748
16 15.415 0.963 121.750 11.428 0.714 110.332
18 15.525 0.862 141.638 12.468 0.693 126.424
20 16.644 0.832 157.089 13.196 0.660 140.760

aSST:Total Sum of Squares, MSE:Mean Squared Error, Vag:Total Vagueness of Model

As can be shown below; proposed FFLR model gives better results from
PFLR for both predictability and fuzziness. Also FFLR model gives better
results from UFLR for sample sizes 13, 16, 18, 20. Only for sample size 10,
UFLR model is better than FFLR for predictability.
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Table 4 Comparison UFLR-FFLR, data set-2

n SST(UFLR) MSE(UFLR) Vag(UFLR) SST(FFLR) MSE(FFLR) Vag(FFLR)

10 13.088 1.309 66.818 16.644 1.664 61.066
13 11.052 0.850 96.603 9.542 0.734 87.583
16 15.415 0.963 121.750 11.981 0.749 109.320
18 16.052 0.892 141.614 12.799 0.711 126.021
20 17.294 0.865 156.926 15.043 0.752 140.535

aSST:Total Sum of Squares, MSE:Mean Squared Error, Vag:Total Vagueness of Model

Table 5 ComparisonS, data set-3

Model SST MSE Vag Model SST MSE Vag

PFLR 2,099,050 139,936.7 19,107.68 UFLR 1,692,787 112,852.5 16,617.56
FFLR 1,754,053 116,936.9 19,107.68 FFLR 1,692,787 112,852.5 16,617.57

aSST:Total Sum of Squares, MSE:Mean Squared Error, Vag:Total Vagueness of Model

Example 3

Data set-3 is from [10] which is the first article of FLR. There are 5 inde-
pendent variables (X1 represents the constant), which are rank of material,
first floor space (m2), second floor space (m2), number of rooms, number of
Japanese-style rooms. Independent variable Y is fuzzy prices of the houses.

Proposed FFLR model gives better results from PFLR for both predictabil-
ity and fuzziness. However it gives same results with UFLR for data set-3.

5 Conclusions

In this study, a new LP model is proposed for FLR. This new model modifies
previous LP models by dividing total vagueness into two parts as explained
and unexplained and aims to minimize only explained vagueness. So the
estimations of parameters (centers of parameters) and unexplained vagueness
are optimized. The results from three examples indicate that the proposed
method generally has better performance than PFLR and UFLR in terms of
MSE and total fuzziness and it also improves predictability of LP methods.
It gives same results with other models only for a few cases and it may be a
subject of a future study to find which conditions cause it.
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Fuzzy Least Squares Estimation
with New Fuzzy Operations

Jin Hee Yoon and Seung Hoe Choi

Abstract. This paper deals with fuzzy least squares estimation of the fuzzy
linear regression model with fuzzy input-output data that has an error struc-
ture. The paper proposes fuzzy least squares estimators (FLSEs) for regres-
sion parameters based on a suitable metric, and shows that the estimators
are fuzzy-type linear estimators. To find these estimators, we first defined
a notion of triangular fuzzy matrices whose elements are given as triangular
fuzzy numbers, and also provided some operations among all triangular fuzzy
matrices. Simple computational examples of this applications are given.

Keywords: Fuzzy least squares estimator, fuzzy random variable, triangular
fuzzy matrix.

1 Introduction

The least squares method is the most widely used statistical technique to find
the unknown parameters of regression model. But there are many situations
where observations cannot be describe accurately. To record these data, we
need some approach to handle the uncertainty. Zadeh [23] first introduced
the concept of fuzzy sets to explain such uncertainty or vagueness. Tanaka et
al. [18] introduced fuzzy concept to regression analysis.

Diamond [5] introduced fuzzy least squares estimations for triangular fuzzy
numbers. He considered two types of fuzzy linear regression models:the fuzzy
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input-output regression model and the crisp input, fuzzy output model. Af-
ter that many authors have addressed and attempted to resolve the fuzzy
least squares problems. But many studies have emphasized the fuzziness of
the response alone, so they deal with crisp input, fuzzy output model. Some
authors have discussed the situation in which both the response and the ex-
planatory variables are fuzzy [2, 17, 21]. A common characteristic of these
studies is that they treated the regression coefficients as fuzzy numbers. But
this approach has a weakness because the spread of the estimated responses
widens as the magnitude of the explanatory variables increases, even though
the spreads of the observed responses remain roughly constant, or even de-
crease. So some authors have been studying the fuzzy input-output model
with crisp parameters of the model [1, 5, 6, 9, 10, 11, 12, 13, 14, 19, 20].

It is not easy to express the least squares estimators in one formula. Some
authors use α−level sets to express the estimators [11, 16, 17, 19, 20], and
others separate the estimators into three parts, the mode and two spreads [3,
4, 22]. Moreover, some authors do not express the estimators. They find
the estimates directly from normal equations in each cases, not from the
estimators [5, 14] because it is hard to express the estimators in one compact
form. It is important to express the estimators in one formula because that
makes it easy to prove the optimal properties or asymptotic theories [13] of
the estimators. To overcome this problems, we introduce some operations
which are defined later. With the operations, we express the estimators in
one compact formula. To find the least squares estimators of the model, we
define a new matrix whose elements are triangular fuzzy numbers. It will be
called the triangular fuzzy matrix. We also have provided suitable operations
among all triangular fuzzy matrices. Using the operations, we express the
estimators of the fuzzy regression model in one formula.

Note that model fuzzy regression simultaneously considers two different
kinds of uncertainty, vagueness and randomness. As such, experimental data
can be regarded as sampled from a fuzzy random variable which has both
fuzziness and randomness. Taking the new model into account, we introduce
some definitions [5, 7, 8, 23] regarding the fuzzy sets and the fuzzy numbers,
as well some basic results of the fuzzy theory.

2 Preliminaries

A fuzzy subset of R is a map, so called the membership function, from R into
[0, 1]. Thus fuzzy subset A is identified with its membership function μA(x).
For any α ∈ (0, 1] the crisp set Aα = {x ∈ R : μA(x) ≥ α} is called the α-cut
or α-level set of A. The set of all fuzzy numbers will be denoted by Fc(R). In
fact, there are no general rules to obtain the membership function of a fuzzy
observation. As a special case, we often use the following parametric class of
fuzzy numbers, the so called LR-fuzzy numbers:
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μA(x) =

{
L ((m− x)/l) if x ≤ m,
R ((x−m)/r) if x > m

for x ∈ R,

where L,R : R+ → [0, 1] are fixed left-continuous and non-increasing func-
tions with R(0) = L(0) = 1 and R(1) = L(1) = 0. L and R are called left
and right shape functions of X , m the mode of A and l, r > 0 are left, right
spread of X . We abbreviate an LR-fuzzy number by A = 〈m, l, r〉LR. The
spreads l and r represent the fuzziness of the number and could be symmetric
or non-symmetric. If l = r = 0, there is no fuzziness of the number, and it is
a crisp number. The α-cuts of the fuzzy numbers are given by the intervals

Aα = [m− L−1(α)l, m+R−1(α)r], α ∈ (0, 1].

We denote the set of all LR-fuzzy numbers as FLR(R). In particular, if L(x) =
R(x) = [1−x]+ in A = 〈m, l, r〉LR then A is called a triangular fuzzy number
and denoted by A = 〈m, l, r〉�.

Basic operations of fuzzy numbers are defined via the well known Zadeh’s
extension principle [23]. The advantage of LR-fuzzy numbers is that ⊕ and
· can be expressed by simple operations w.r.t. the parameters m, l, r as
following.

〈m1, l1, r1〉LR ⊕ 〈m2, l2, r2〉LR = 〈m1 + m2, l1 + l2, r1 + r2〉LR
and

λ〈m, l, r〉LR =

⎧
⎪⎨

⎪⎩

〈λm, λl, λr〉LR if λ > 0,

〈λm,−λr,−λl〉LR if λ < 0,

〈0, 0, 0〉LR if λ = 0.

Diamond [5] introduced a metric in the set of all triangular fuzzy numbers. Let
FT (R) denote the set of all triangular fuzzy numbers in R. For X,Y ∈ FT (R),
define

d2(X,Y ) = D2
2(suppX, suppY ) + [m(X)−m(Y )]2, (1)

where suppX denotes the compact interval of support of X , and m(X) its
mode. If X = 〈x, ξl, ξr〉�, Y = 〈y, ηl, ηr〉�, then

d2(X,Y ) = [y − ηl − (x− ξl)]2 + [y + ηr − (x + ξr)]2 + (y − x)2. (2)

3 Triangular Fuzzy Matrices and Their Operations

Let A be a triangular fuzzy number, then A = 〈m, l, r〉�, where m is the
mode, l and r are the left and the right spreads of A. We have another
representation, A = (la, a, ra), of A. In this case, m = a and la and ra are the
left and the right end points of A. The latter expression will be called vector
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representation of A. To define fuzzy element matrices and their operations,
we use vector representations of fuzzy numbers.

We denote MR as the set of all n× n real crisp matrices. Let R
+ be a set

of all non-negative real numbers. Then, we define FT (R+) is the set of all
triangular fuzzy numbers on the non-negative real numbers and MFT (R+) is
the set of all fuzzy element matrices on FT (R+). From now on, we denote
simply FT (R+) by FT andMFT (R+) byMFT . We define two types of products
in FT as following.

Definition 1. For X = (lx, x, rx) ∈ FT and Y = (ly, y, ry) ∈ FT ,

X 	 Y = lxly + xy + rxry ,

X ⊗ Y = (lxly, xy, rxry).

Clearly, X 	 Y ∈ R
∗ and X ⊗ Y ∈ FT . Note that a triangular fuzzy number

can be regarded as a vector in R
3, so we define the multiplications of a crisp

vector and a triangular fuzzy number. That is, even though X is a crisp
vector and Y is a triangular fuzzy number, we also define 	 and ⊗ as above.

We also define operations of among the matrices. For the convenience, we
express only the case of n× n.
Definition 2. A triangular fuzzy matrix (t.f.m.) is the matrix whose elements
are triangular fuzzy numbers. For given two n × n t.f.m’s, Γ̃ = [Xij ], and

Λ̃ = [Yij ], their addition Γ̃ ⊕ Λ̃ is defined by the n × n t.f.m. Σ̃ = [Zij ],

where Zij = Xij ⊕ Yij . And two products Γ̃ 	 Λ̃ and Γ̃ ⊗ Λ̃ are defined,
respectively, as follows:

Γ̃ 	 Λ̃ = [

n∑

k=1

Xik 	 Ykj ], Γ̃ ⊗ Λ̃ = [

n⊕

k=1

Xik ⊗ Ykj ].

Moreover, the product of crisp matrix A = [aij ] and t.f.m. Γ̃ , AΓ̃ , and scalar

multiplication, kΓ̃ (k ∈ R), are defined respectively as follows:

ÃΓ̃ = [
n⊕

k=1

aikXkj ], kΓ̃ = [kXij ].

Note that Γ̃ ⊕ Λ̃, Γ̃ ⊗ Λ̃, ÃΓ̃ ∈MFT and Γ̃ 	 Λ̃ ∈MR∗ .
Here we define three types of fuzzy scalar multiplications of crisp matrix.

Definition 3. For given X ∈ FT , Ã = [Aij ] ∈ MR∗ and Γ̃ = [Xij ] ∈ MFT ,

we define three fuzzy scalar multiplications, XA, X 	 Γ̃ and X ⊗ Γ̃ .

XÃ = [aijX ], X 	 Γ̃ = [X 	Xij ], X ⊗ Γ̃ = [X ⊗Xij ].

Note that XÃ, X ⊗ Γ̃ ∈MFT and X 	 Γ̃ ∈MR∗ .
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4 Fuzzy Least Squares Estimation

Now we consider the multiple regression model

Yi = β0 ⊕ β1Xi1 ⊕ · · · ⊕ βpXip ⊕ Φi, i = 1, · · · , n, (3)

where Xij , Yi (j = 1, · · · , p) are fuzzy random variables respectively, βj
are unknown regression crisp parameters to be estimated on the basis of
fuzzy observations on Yi and Xij . And Φi are assumed to be fuzzy error
terms, which express randomness and fuzziness. They are represented by
Xij = (lxij , xij , rxij ) and Yi = (lyi , yi, ryi) for i = 1, · · · , n, j = 1, · · · , p.
We assume that Φi are the fuzzy random errors for expressing fuzziness and
randomness, which are represented by Φi = (θli, εi, θ

r
i ) with crisp random

variables εi, θ
l
i, θ

r
i , and we regard εi, θ

l
i, θ

r
i as crisp random variables [13].

And Φi = (θli, εi, θ
r
i ) is constrained that the spreads of Yi to be positive a.s.

Note that in (1), there are 2p distinct representations of
∑p

j=0 βjXij which
depend on the signs of βj for j = 1, · · · , p. We can encompass all cases by

lxij =

{
xij − ξlij if βj ≥ 0,

xij + ξrij if βj < 0

rxij =

{
xij + ξrij if βj ≥ 0,

xij − ξlij if βj < 0,

where ξlij and ξrij are the left and right spreads of Xij , respectively.
On the other hand, by the metric d in (2) and (3), we obtain

d2

⎛

⎝Yi,
p∑

j=0

βjXij

⎞

⎠ =

⎛

⎝lyi −
p∑

j=0

βj lxij

⎞

⎠
2

+

⎛

⎝yi −
p∑

j=0

βjxij

⎞

⎠
2

+

⎛

⎝ryi −
p∑

j=0

βjrxij

⎞

⎠
2

for i = 1, · · · , n. In case of j = 0, lx0i ≡ x01 ≡ rx0i ≡ 1. Now, we want to
minimize following objective function Q = Q(β0, β1, · · · , βp).

Q(β0, β1, · · · , βp) =

n∑

i=1

d2

⎛

⎝Yi,
p∑

j=0

βjXij

⎞

⎠
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For k = 0, 1, · · · , p, we obtain

∂Q

∂βk
= 2

n∑

i=1

⎛

⎝lyi −
p∑

j=0

βj lxij

⎞

⎠ lxik
+ 2

n∑

i=1

⎛

⎝yi −
p∑

j=0

βjxij

⎞

⎠xik

+ 2
n∑

i=1

⎛

⎝ryi −
p∑

j=0

βjrxij

⎞

⎠ rxik
.

For each k = 0, 1, · · · , p, ∂Q
∂βk

= 0 results the normal equation, which has β̂j
as solutions,

p∑

j=0

β̂j

n∑

i=1

(
lxik

lxij + xikxij + rxik
rxij

)
=

n∑

i=1

(lxik
lyi + xikyi + rxik

ryi) . (4)

Here, we define the design matrix X̃ as [(lxik
, xik, rxik

)]n×(p+1), i.e.,

X̃ =

⎡

⎢⎢⎢⎢⎢⎣

(1, 1, 1) (lx11 , x11, rx11) · · · (lx1p , x1p, rx1p)

...
...

. . .
...

(1, 1, 1) (lxn1 , xn1, rxn1) · · · (lxnp , xnp, rxnp)

⎤

⎥⎥⎥⎥⎥⎦
,

and define ỹ as [(lyi , yi, ryi)]n×1 = [(ly1 , y1, ry1), · · · , (lyn , yn, ryn)]t. Then, the
coefficient matrix of the system of normal equations which consists of (5) can
be represented by

X̃t 	 X̃ =

[
n∑

i=1

(lxik
lxij + xikxij + rxik

rxij )

]

(p+1)×(p+1)

.

And the right-hand side of the system is represented by

X̃t 	 ỹ =

[
n∑

i=1

(lxik
lyi + xikyi + rxik

ryi)

]

(p+1)×1

for k = 0, 1, · · · , p. Consequently, if det(X̃t 	 X̃) �= 0, we have

β̂ = (X̃t 	 X̃)−1X̃t 	 ỹ. (5)

Next, we apply above estimation to some examples and compare our method
with several methods through R-square and RMSE (Root Mean Squared
Error) that will be proposed.

Example 1. A simple example is taken from [17]. We compare the perfor-
mance of the estimators of some various methods: Kao and Chyu [11, 12],
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Nasrabadi and Nasrabadi [15], Bargiela et al. [1] and our proposed least
squares estimation. The estimated models are followings, respectively.

YKC = 3.565 + 0.522X + (−0.962,−0.011, 0.938),

YNN = 3.5767⊕̃(0.5467, 1) ·X,
YBPN = 3.4467 + 0.5360X

and we get
Y = −4.2047⊕ 1.569X

using our proposed least squares estimation.

We introduce the coefficient of determination [6] for fuzzy regression model
as a measure of the quality of the best fit which is given by

R2 = 1−
∑n

i=1 d
2(
∑p

j=0 β̂jXij , Yi)
∑n
i=1 d

2(Yi, Y )
, (6)

with Y = 1
n

⊕n
i=1 Yi.

Using (6), the calculated R-squares of Kao and Chyu [11, 12], Nasrabadi
and Nasrabadi [15], Bargiela et al. [1] and our proposed estimations are
0.4314, 0.4684, 0.4596 and 0.8289, respectively. In addition to, for a mea-
sure of the prediction accuracy, we modify RMSE in [1] for fuzzy regression
models as follows.

RMSE =

√√√√ 1

n

n∑

i=1

d2(Yi, Ŷi), (7)

where d(Yi, Ŷi) is the residual error.

Table 1 Numerical data with RMSE and R-square for Example 1

Input Output Residual Errors
(lxi

, xi, rxi
) (lyi , yi, ryi ) Kao(’03) Nasrabadi(’04) Bargiela(’07) Proposed

(3.5, 4.0, 4.5) (1.5, 2.0, 2.5) 6.387 6.519 6.228 0.421
(5.0, 5.5, 6.0) (3.0, 3.5, 4.0) 5.164 5.341 5.024 1.652
(6.5, 7.5, 8.5) (4.5, 5.5, 6.5) 3.474 3.836 3.469 3.662
(6.0, 6.5, 7.0) (6.5, 7.0, 7.5) 1.010 0.226 0.349 1.789
(8.0, 8.5, 9.0) (8.0, 8.5, 9.0) 1.338 0.479 0.922 1.166
(7.0, 8.0, 9.0) (9.5, 10.5, 11.5) 4.845 4.472 4.834 3.814
(10.0, 10.5, 11.0) (10.5, 11, 11.5) 3.550 2.915 3.351 2.236
(9.0, 9.5, 10.0) (12.0, 12.5, 13.0) 6.980 6.460 6.869 3.142

RMSE 20.891 19.531 19.853 6.287
R-square 0.4314 0.4684 0.4596 0.8289

The RMSEs of Kao and Chyu [11, 12], Nasrabadi and Nasrabadi [15],
Bargiela et al. [1] and our proposed estimations are 20.891, 19.531, 19.853
and 6.287, respectively, which show the excellence of our proposed estimation.
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Fig. 1 Fuzzy linear regression in Example 1

Table 2 Numerical data with RMSE and R-square for in Example 2

Example 2.

Input Output Residual Errors
(lxi1

, xi1, rxi1
) (lxi2

, xi2, rxi2
) (lyi , yi, ryi ) Wu(’03) Proposed

(151, 274, 322) (1432, 2450, 3461) (111, 162, 194) 19.504 9.720
(101, 180, 291) (2448, 3254, 4463) (88, 120, 161) 30.411 23.812
(221, 375, 539) (2592, 3802, 5116) (161, 223, 288) 38.392 27.741
(128, 205, 313) (1414, 2838, 3252) (83, 131, 194) 6.192 10.478
(62, 86, 112) (1024, 2347, 3766) (51, 67, 83) 12.972 14.280
(132, 265, 362) (2163, 3782, 5091) (124, 169, 213) 39.006 28.600
(66, 98, 152) (1687, 3008, 4325) (62, 81, 102) 19.600 13.025
(151, 330, 463) (1524, 2450, 3864) (138, 192, 241) 53.405 42.753
(115, 195, 291) (1216, 2137, 3161) (82, 116, 159) 20.988 22.883
(35, 53, 71) (1432, 2560, 3782) (41, 55, 71) 7.627 6.873
(307, 430, 584) (2592, 4020, 5562) (168, 252, 367) 25.550 38.570
(284, 372, 498) (2792, 4427, 6163) (178, 232, 346) 39.796 54.705
(121, 236, 370) (1734, 2660, 4094) (111, 144, 198) 41.324 32.086
(103, 157, 211) (1426, 2088, , 3312) (78, 103, 148) 14.206 9.938
(216, 370, 516) (1785, 2605, 4042) (167, 212, 267) 49.749 40.106

RMSE 990.866 823.202
R-square 0.9223 0.9355

Wu [20] designed an example for multiple fuzzy linear regression as in
Table 2. The estimated model of Wu is

YWu = 3.4526 + 0.4960X1 + 0.0092X2

and our estimated model is

Y = 23.2368⊕ 0.4917X1 ⊕ 0.0039X2.

Using the proposed R-square in (6), we get 0.9223 for estimated model of Wu
and 0.9355 for our proposed estimation. Additionally, the RMSE of Wu’s is
990.866 and 823.202 for our proposed estimation which performs better.
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Fig. 2 Fuzzy linear regression in Example 2

5 Conclusions

Many authors have proposed fuzzy least squares estimators in different ways,
but it is hard to represent those estimators concisely. For this purpose, this
paper defined a suitable matrix which called the triangular fuzzy matrix
(t.f.m), and defined some operations for t.f.m. If we use t.f.m and the proposed
operations, we can represent the fuzzy least squares estimators briefly and
we can also represent the estimators as fuzzy-type linear estimators. And we
presented some examples in other papers and compared them with our results
through r-squares. We discussed the case of fuzzy input-output model, but
if we expand our study to general case, then we can apply these estimators
to various models. So, further research needs to generalize the model and we
need to investigate more properties of these estimators.
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Efficient Calculation of Kendall’s
τ for Interval Data

Olgierd Hryniewicz and Karol Opara

Abstract. Calculation of the strength of dependence in the case of interval
data is computation-wise a very demanding task. We consider the case of
Kendall’s τ statistic, and calculate approximations of its minimal and maxi-
mal values using very easy to compute heuristic approximations. Using Monte
Carlo simulations and more accurate calculations based on an evolutionary
algorithm we have evaluated the effectiveness of proposed heuristics.

Keywords: Dependence measure, heuristics, interval data.

1 Introduction

Statistical analysis of dependencies between random variables requires calcu-
lation of appropriate statistics. Except for the case of the bivariate normal
distribution, nonparametric statistics, like Spearman’s ρ or Kendall’s τ , are
recommended for the analysis of monotone (not only linear!) dependence.
These statistics are based on the idea of ranks, and thus belong to a general
class of rank statistics.

In case of imprecise statistical data, described by fuzzy sets, the problem of
the calculation of fuzzy-valued rank statistics becomes very hard. The exact
algorithm proposed in Hébert et al. [5] is effective only for very small samples.
Denœux et al. [2] presented a general approach for the calculation of fuzzy
rank statistics using imprecise data, and proposed to use for this purpose
the algorithm for the random generation of linear extensions of a partial
order originally introduced by Bubley and Dyer. Unfortunately, this improved
algorithm performs well only for relatively small samples (not larger than 30,
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according to the authors of [2]). The usage of faster computers and more
efficient numerical algorithms (e.g. parallelization) may extend this limit,
but not too much due to the complexity of the problem.

Hryniewicz and Szediw [7] calculated of Kendall’s τ statistic for imprecise
autocorrelated data. It was used in an application of this statistic requiring
relatively large samples (not less than 50 observations). For this application
they proposed a heuristic algorithm for the calculation of approximate values
of both, lower and upper, limits of Kendall’s τ in the case of interval data.
Monte Carlo experiments have shown that those approximations are usually
sufficient from a practical point of view.

In this paper we use the same approach as in [7] for the calculation of the
approximate values of lower and upper limits of Kendall’s τ assuming inde-
pendence of the pairs of observations. We consider 28 different heuristics (14
for the calculation of the lower limit, and 14 for the calculation of the upper
limit) that are described in the second section of the paper. The necessity to
use such many heuristics stems from the fact that neither of them dominates
the others. This have been shown in simulation experiments presented in the
third section of the paper.

The heuristics used for the calculation of the interval values of Kendall’s
τ consist in generation of certain sets of crisp data that belong to intervals
constituting original imprecise interval data. These artificial sets of data may
be used as the initial population for the calculation of more precise limits
using biologically inspired optimization algorithms such as evolutionary al-
gorithms. The paper is concluded in the last section where the directions for
future work are also indicated.

2 Calculation of the Interval-Valued Kendall’s τ

Analysis of statistical dependence is one of the most important areas of
mathematical statistics. For data given by a p-dimensional random vector
X1, X2, . . . , Xp the full description of statistical dependencies between the
components of this vector is implied by the knowledge of its p-dimensional cu-
mulative distribution function F (x1, x2, . . . , xp). In his seminal paper Sklar [11]
has proved that for every two-dimensional cumulative probability distribu-
tion function H(x, y) with one-dimensional marginal cumulative probability
functions denoted by F (x) and G(y), respectively, there exists a unique func-
tion C, called a copula, such that H(x, y) = C(F (x), G(y)). Later on, the
concept of the copula has been generalized for the case of any p-dimensional
probability distribution. The formal definition of the copula can be found in
many sources, such as e.g. the monograph by Nelsen [8].

The coefficient of association (dependence) τ was introduced by Kendall.
Let (Xi, Yi), i = 1, . . . , n be a random sample representing n indepen-
dent pairs of observations of dependent random variables X and Y . Then,
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Kendall’s τn sample statistic which measures the association between random
variables X and Y is given by the following alternative formula proposed by
Genest and Rivest [4]

τn =
4

n− 1

n−1∑

i=1

Vi − 1, (1)

where

Vi =
card{j : Xj < Xi, Yj < Yi}

n− 2
, i = 1, . . . , n. (2)

When the vectors (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) are mutually inde-
pendent, the pairs of observations (Xi, Yi), i = 1, . . . , n are also independent,
and the probability distribution of (1) is known. Its expected value is equal

to E(τn) = 0, and its variance is equal to V ar(τn) = 2(2n+5)
9n(n−1) . For sufficiently

large sample size n Kendall’s τn has the normal distribution with these pa-
rameters. Its easy to show that (1) is also a rank statistic.

Genest and MacKay [3] considered the population version of the Kendall’s
τ . Let, for a given copula C(x, y), K(t) be the cumulative probability function
of the random variable T = C(U1, U2), where U1 and U2 are random variables
uniformly distributed on [0, 1]. The following relation links a copula with
Kendall’s τ :

τ = 3− 4

∫ 1

0

K(t)dt (3)

The special cases of (3) for different specific copulas are given in many papers
and textbooks, such as e.g. [8].

Now, let us assume that instead of crisp values of (Xi, Yi), i = 1, . . . , n we
observe imprecise values (Xi,Yi), i = 1, . . . , n where Xi : [Xi,L, Xi,U ] and
Yi : [Yi,L, Yi,U ]. For such observed data the observed value of Kendall’s τ will
be also imprecise, and given as the interval τn = [τn,L, τn,U ], where the values
of τn,L and τn,U are obtained by inserting in (1) instead of Vi the respective
values

Vi,L = min
Xj∈[Xj,L,Xj,U ]

Yj∈[Yj,L,Yj,U ]

card{j : Xj < Xi, Yj < Yi}
n− 2

, (4)

Vi,U = max
Xj∈[Xj,L,Xj,U ]

Yj∈[Yj,L,Yj,U ]

card{j : Xj < Xi, Yj < Yi}
n− 2

. (5)

An example of imprecise data considered in this paper is shown in Fig. 1.
Each of four rectangles represents a pair of interval data vectors (xi,yi),
while diamonds, circles and asterisks denote observations from three possible
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Fig. 1 Interval data for n = 4 imprecise observations and three possible crisp
observations resulting in different values of Kendall’s τ

crisp data vectors. Each of these vectors represents four points (xi, yi) such
that xi ∈ xi and yi ∈ yi for i = 1, . . . , 4 and each gives a different value
of Kendall’s τ . Optimization tasks considered in this study (4)–(5) consist
in finding such possible crisp observations, which yield minimal and maxi-
mal value of the correlation coefficient, i.e. τn,L and τn,U . The search space
contains all possible crisp observations ([x1,L, x1,U ]× · · · × [xn,L, xn,U ]) ×
([y1,L, y1,U ]× · · · × [yn,L, yn,U ]) ⊂ R

2n. This is a 2n-dimensional continuous
optimization problem with box constraints, which can be solved with general
purpose black-box optimization algorithms.

Denœux et al. [2] represented this problem in the form of integer pro-
gramming, exploiting the fact that Kendall’s τ is a rank statistic with a
finite number of possible values. This allows for exact calculation of minimal
and maximal values of the correlation coefficient for small samples. Finding
approximate solutions for larger samples requires, however, implementing a
problem-specific combinatorial optimization algorithm.

3 Heuristic Solutions

Hryniewicz and Szediw [7] have found that specific patterns depicting strongly
correlated observations can be used for the construction of heuristic algo-
rithms that find minimal and maximal values of measures of dependence
in presence of interval data. Close look at (1)–(2) reveals that in the case
of strongly positively correlated data there exists a permutation of observed
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vectors (x(i), y(i)), i = 1, . . . , n such that both sets x(1), . . . , x(n) and
y(1), . . . , y(n) form either decreasing (or nearly decreasing) or increasing (or
nearly increasing) sequences of points. Similarly, in the case of strongly nega-
tively correlated data one of these permuted sets form an decreasing sequence
of points, and the second one forms an increasing sequence. If we look at (4)–
(5) we can see that we have to find similar sets of points x�(1), . . . , x

�
(n) and

y�(1), . . . , y
�
(n) such that for all i = 1, . . . , n x�(i) ∈ xi = [x(i),L, x(i),U ] and

y�(i) ∈ yi = [y(i),L, y(i),U ]. This can be done using a simple algorithm, whose
pseudocode is presented below.

Algorithm 1. Minimization (maximization) heuristic—finding τ̂n,L (τ̂n,U )

Step 1: order first interval variable to obtain Ot
p

x�
(i)
← sort first variable xi = [x(i),L, x(i),U ] decreasing for i = 1, . . . , n

Step 2: compute values for the second interval variable to obtain T t

y�
(1)
← y(1),U

(

for maximization use y�
(1)
← y(1),L

)

for k = 1, 2, . . . , n− do

y′ ← y�
(k)
− ε

(

for maximization use y′ ← y�
(k)

+ ε
)

y′′ ← min
(

y′, y(k+1),U

)

y�
(k+1)

← max
(

y′′, y(k+1),L

)

end for
return pair of series

(

x�
(i)

, y�
(i)

)

for i = 1, . . . , n as (Ot
p, T

t)

In this algorithm we first order pairs of interval data vectors (xi,yi)
in such a way that certain points x�(1), . . . , x

�
(n) (or y�(1), . . . , y

�
(n)) form a

non-increasing (non-decreasing) series. Then we find the respective values
y�(1), . . . , y

�
(n) (or x�(1), . . . , x

�
(n)). Let’s denote the n-dimensional variable or-

dered according to some defined values by Otp. The lower index p can take
three values: u (if the upper limit of the data interval is taken), c (if the center
of the data interval is taken), and l (if the lower limit of the data interval is
taken). The upper index t can take two values: d (if points are ordered in a
non-increasing series), and a (if points are ordered in a non-decreasing series).
The variable whose values are computed using our algorithm is denoted by
T t, where the upper index indicates the direction of the trend (d or a).

For finding the maximal value of the interval-valued τ statistic we con-
sidered six types of heuristics described as: (Otp, T

t) (where p = u, c, l and
t = d, a). Because of symmetric usage of variables X and Y we have used
altogether 12 heuristics of these types. Moreover, we used heuristics (T t, T t)
(where t = d, a), described together as (T, T ), for which the values of both
variables have been calculated using our heuristic algorithms. For finding
the minimal endpoint of τ we considered the following heuristics: (Oap , T

d),

(Odp , T
a), and (T a, T d). Because of symmetric usage of variables X and Y we

have used altogether 14 heuristics of these types.
Calculation of approximate minimal and maximal value of Kendall’s τ

using the heuristics described above is very simple. Therefore, in practice
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one can use all of them, and find the best solution. However, it may be in-
teresting to investigate their effectiveness in different settings. In order to
do so we have performed exhaustive simulation experiments. The crisp data
were simulated from several copulas (normal, Clayton, Gumbel, Frank, FGM)
with standard normal marginals. Parameter setting of the copulas ensured
obtaining requested strength of dependence measured by Kendall’s τ . Then,
the crisp data were replaced with intervals of random length and different
location around crisp points. The level of imprecision was defined by set-
ting the maximum width of an interval, measured as the multiplicity z of
the standard deviations of the marginals. In the experiment we calculated
percentages of cases in which proposed heuristics yielded the optimal (i.e.,
respectively, minimal and maximal) results. These percentages can be used
for the indication of the effectiveness of the proposed heuristics in given set-
tings. The simulation experiment revealed that the type of copula does not
influence the effectiveness of considered heuristics. However, this effectiveness
strongly depends upon the strength of dependence, sample size, and the level
of imprecision.

Table 1 Percentages of best results for different heuristics; Clayton copula, n = 100

τ z (Od
u, T

d) (Od
c , T

d) (Ol
l , T

d) (Oa
u, T

a) (Oa
c , T

a) (Oa
l , T

a) (T, T )

M
in
.

0.8 2.0 2.2 38.8 2.9 3.6 49.7 2.8 0.0
0.8 0.5 9.9 22.5 9.9 13.3 30.6 13.8 0.0
−0.1 0.5 15.4 9.2 15.3 12.6 7.7 13.4 26.4
−0.8 2.0 0.9 0.1 0.7 0.1 0.0 0.3 99.2

M
a
x
. 0.8 2.0 0.4 0.0 0.2 0.2 0.0 0.2 99.0

−0.1 0.5 16.5 10.9 16.2 18.8 13.2 19.8 4.6
−0.8 2.0 1.6 16.1 1.3 6.2 72.1 2.7 0.0

Consider, for example, the data generated using the Clayton copula(
C(u, v) = max

(
[u−α + v−α − 1]

−1/α
, 0
)
, α ∈ [−1,∞) \ 0

)
. Table 1 shows

the percentages of best results for calculation of the maximal endpoint of the
interval τ and a few parameter settings. It seems that neither of the consid-
ered types of heuristics is significantly better than others. However, in special
cases (e.g. for strong dependencies) some of them are significantly better.

4 Comparison of Efficiency

In the case of large samples of imprecise data, calculating the exact value of
correlation coefficient τ has unacceptable computational complexity. There-
fore, in order to evaluate the efficiency of the proposed heuristic solutions
it is necessary to compare them with other approximate solutions obtained
with larger computational effort, and thus more accurate. For this purpose
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Table 2 Estimates of τ = [τn,L, τn,U ] obtained by heuristic, evolutionary algorithm
and Monte Carlo search; the best results are typed in bold; Clayton copula, n = 100

Minimal endpoint τ̂n,L Maximal endpoint τ̂n,U

τ z Heur. Heur. DE Only DE Only MC Heur. Heur. DE Only DE Only MC

−0.8 0.5 −0.86 −0.86 −0.85 −0.84 −0.81 −0.76 −0.76 −0.77
2.0 −0.85 −0.85 −0.70 −0.65 −0.51 −0.35 −0.35 −0.41

−0.1 0.5 −0.17 −0.20 −0.20 −0.18 −0.13 −0.09 −0.09 −0.11
2.0 −0.13 −0.26 −0.26 −0.19 0.03 0.14 0.14 0.07

0.1
0.5 0.12 0.07 0.07 0.08 0.15 0.17 0.17 0.15
2.0 0.00 −0.13 −0.13 −0.06 0.17 0.23 0.24 0.18

0.8
0.5 0.78 0.73 0.73 0.74 0.84 0.84 0.83 0.81
2.0 0.51 0.39 0.40 0.45 0.77 0.77 0.73 0.68

we compared results of the heuristic solution with uniform random sampling
and an evolutionary algorithm. We used a variant of a state-of-the-art opti-
mization method [1] called Differential Evolution (DE) [10]. Description of
this algorithm and parameter setting used in this study is given in paper [9]
as DE/rand/∞/bin (except for population size, which was increased to 4 · n
to account for higher problem dimension).

Performance of each of these methods was tested on eight test problems
generated with use of Clayton copula for sample size n = 100, crisp origins
of interval data τ ∈ {−0.8,−0.1, 0.1, 0.8} and uncertainty parameter z ∈
{0.5, 2}. Table 2 presents estimates of endpoints of interval τ coefficient for:

• the best of 14 heuristic solutions (Heur.),
• optimization with evolutionary algorithm initialized with use of heuristic

solutions (Heur. DE),
• evolutionary algorithm initialized randomly (Only DE),
• uniform random (Monte Carlo) samping (Only MC).

Since both Differential Evolution and Monte Carlo are nondeterministic
methods, in Table 2 we report medians over 100 independent runs of each.
Variability of final values was however small both absolutely and relatively.
In each case the interquartile range of final τn,L and τn,U estimates was lower
than 0.02 and in most of them lower than 0.005. Consequently, to save space
we do not report it in Table 2. The stopping criterion of both DE and MC
methods was set to exceeding 4 · 104 calculations of Kendall’s τ for a pair of
crisp vectors. This accounted to 100 generations of an evolutionary algorithm.

Statistical significance of differences between reported median values was
tested with Wilcoxon rank sum test adjusted for multiple comparisons with
Bonferroni correction, i.e. at confidence level 1 − 0.05

4 . The best results are
typed in bold. In most cases, they were obtained by either variants of Dif-
ferential Evolution, followed by Monte Carlo sampling. This suggests, that
using heuristics for initialization of evolutionary algorithm do not improve
performance significantly, except for the case of strong negative (positive) de-
pendence and heuristic for finding the value of minimal (maximal) endpoint
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of τ . In these cases the approximate results obtained using our heuristics are
exactly the same as the optimal ones found by evolutionary algorithm with
much larger computational effort. This result should be credited to heuristic
(T, T ), as it nearly always outperforms others in case of strong dependencies,
see Table 1. For weak dependences, both positive and negative, the proposed
heuristics do not perform well. It is understandable, as their construction
mimics the behavior of strongly dependent data.

5 Conclusions

We proposed very easy to compute approximate solutions of the problem
of the estimation of Kendall’s τ statistic for data having imprecise, interval
form. Simulation experiments (only few of which are described here due to
space limitation) show their applicability in case of strongly dependent data.

Acknowledgements. K. Opara’s study was supported by research fellowship
within “Information technologies: research and their interdisciplinary applications”
agreement number POKL.04.01.01-00-051/10-00.
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Continuous Gaussian Estimation
of Distribution Algorithm

Shahram Shahraki and Mohammad Reza Akbarzadeh Tutunchy

Abstract. Metaheuristics algorithms such as Estimation of Distribution Al-
gorithms use probabilistic modeling to generate candidate solutions in opti-
mization problems. The probabilistic presentation and modeling allows the
algorithms to climb the hills in the search space. Similarly in this paper, Con-
tinuous Gaussian Estimation of Distribution Algorithm (CGEDA) which is
kind of multivariate EDAs is proposed for real coded problems. The proposed
CGEDA needs no initialization of parameters; mean and standard deviation
of solution is extracted from population information during optimization pro-
cessing adaptively. Gaussian Data distribution and dependent Individuals are
two assumptions that are considered in CGEDA. The fitting task model in
CGEDA is based on maximum likelihood procedure to estimate parameters
of assumed Gaussian distribution for data distribution. The proposed algo-
rithm is evaluated and compared experimentally with Univariate Marginal
Distribution Algorithm (UMDA), Particle Swarm Optimization (PSO) and
Cellular Probabilistic Optimization Algorithm (CPOA). Experimental results
show superior performance of CGEDA V.S. the other algorithms.

Keywords: Evolutionary algorithms, particle swarm optimization.

1 Introduction

Many important problems in science, commerce and industry can be expressed
into the optimization problems categories. These problems would be solved
if we can find a solution that maximizes or minimizes some important and
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measurable properties or attributes, such as cost or profit function. Evolution-
ary search algorithms are important population based optimization techniques
in the recent years as a consequence of computation ability increment to solve
this kind of problems. Compared to traditional optimization methods, these
techniques have demonstrated their potentials through many areas such as
machine learning or industry and also show that they are robust and global.
These techniques search through many possible solutions which operate on a
set of potential individuals to get better estimation of solution by using the
principle of survival of the fittest, as in natural evolution. Genetic algorithms
(GAs) developed by Fraser [3], Bremermann [1], and Holland [4], evolution-
ary programming (EP) developed by Fogel [2], and evolution strategies (ES)
developed by Rechenberg [6] and Schwefel [7] establish the backbone of evolu-
tionary computation which have been formed for the past 50 years. Estimation
of Distribution Algorithms (EDAs), or Probabilistic Model-Building Genetic
Algorithms, or Iterated Density Estimation Algorithms have been proposed by
Mühlenbein and Paaß [5] are as an extension of genetic algorithms which are
one of the main and basic methods in evolutionary techniques. EDAs generate
their new offspring based on the probability distribution defined by the selected
points Instead of performing recombination of individuals. The main advan-
tages of EDAs over genetic algorithms are the explanatory and transparency
of the probabilistic model that guides the search process. In traditional version
of EDAs, they are inherently defined for problems with binary representation.
So, for the problem in the real domain it must be first mapped to a binary cod-
ing before being optimized for real coded problems. This approximation might
lead to undesirable limitations and errors on real coded problems [8]. The bot-
tleneck of EDAs lies in estimating the joint probability distribution associated
with the population that contains the selected individuals. Accordingly EDAs
can be essentially divided to univariate, bivariate or multivariate approaches.
As interdependencies between the variables that are captured increase, expo-
nentially complexity and computations of EDAs increase as well. In this paper
a new kind of multivariate EDAs is announced called Continuous Gaussian
Estimation of Distribution Algorithm (CGEDA). CGEDA has been designed
for real coded problems. The proposed algorithm assumed Gaussian distribu-
tion of data to model and estimate the joint distribution of promising solutions
based on maximum likelihood technique on every dimension of search space.
This type of probabilistic representation of CGEDA allows the algorithm to
escape from local optimums and move free through fitness function.

2 Continuous Gaussian Estimation of Distribution
Algorithm

Continuous Gaussian Estimation of Distribution Algorithm (CGEDA) which
is a subset of multivariate EDAs and has been designed for real coded
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problems is introduced in this paper. The most important and crucial step of
EDAs is the construction of probabilistic model for estimation of probability
distribution, to do this step of CGEDA, Gaussian distribution of individuals
is assumed to model and estimate the joint distribution of promising solu-
tions in every dimension of the problem. The following estimation is used to
generate new candidate solutions.

f (X) =
1

2πk/2|Σ|1/2
e[−

(x−μ)T Σ−1(x−μ)
2 ] (1)

Where μ is mean and Σ is covariance matrix which can be written for k -
dimensional random vector X = [X 1, X 2. . .Xk ] in the following notation:

Σ = E
[
(x− μ) (x− μ)

T
]

=

⎡

⎣
E[(x1 − µ1) (x1 − µ1)] · · · E[(x1 − µ1) (xk − µk)]

...
. . .

...
E[(xk − µk) (x1 − µ1)] · · · E[(xk − µk) (xk − µk)]

⎤

⎦

(2)
For two-dimensional problems Eq. (1) is reduced to:

f (x, y) =
1

2πδxδy
√

1 − ρ2
× e

[− 1
2(1−ρ2)

[
(x−μx)2

δ2x
+

(y−μy)2

δ2y
− 2ρ(x−μx)(y−μy)

δxδx
]

(3)

Where ρ is the correlation between x and y.
So, mean and standard deviation parameters of promising population are

required which computed adaptively by maximum likelihood technique to
model the data (population).

One of the advantages of EDAs against other EAs is in exploration of
search space. But CGEDA can reinforce the exploitation of EDAs by different
Gaussian distribution estimations for every dimensions of solution.

The proposed algorithm has two implicit parameters: mean and standard
deviation, where extracted from promising population adaptively, this means
that no need to set manually the parameters in CGEDA.

The procedure of proposed algorithm is described as below:

Step 1 Initializes first generation randomly with uniform distributed ran-
dom numbers in all dimensions.

Step 2 Evaluates the fitness function of all the real valued individuals.
Step 3 Is the main loop of algorithm. Continue until termination condition

(max generation production) meets.
Step 4 In this step, based on truncation selection model, top evaluated

of individuals are selected to estimate parameters of distribution
over them for achieving better offspring. On the other hand, weak
individuals are eliminated to not participate in the estimation.
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Step 5 Distribution parameters are estimated based on maximum likeli-
hood estimation technique.

Suppose a training set with n patterns X = (x1, x2, . . . , xn),
characterized by a distribution function p(X | θ), where θ is a pa-
rameter vector of the distribution (e.g. in our case the mean and
standard deviation vector of a Gaussian distribution). An interest-
ing approach of obtaining sample estimates of the parameter vector
θ is to maximize p(X | θ), which viewed as a function of θ and is
called the likelihood of θ for the given training set.

Step 6 Based on the estimated mean and standard deviation for every
dimension, a new population is sampled as

xij= G(μi, Σi) (4)

Where μ,Σ, are estimated parameters of population based on top
evaluated individuals and G(., .) is a Gaussian random number gen-
erator. In addition, i = 1, 2, . . . , d (d dimensions problem) is the
dimension indicator and j = 1, 2, . . . , k (max population size is k)
is the population size indicator.

Step 7 This is consistency check step.

xij =

{
xij li < xij < ui

G (μi, Σi) else
(5)

Step 8 In this step all the real valued individuals are evaluated by the
fitness function.

Step 9 So far, two generations are created, one is current generation and
the other one is the offspring of them based on CGEDA procedure.
Next generation will be selected from specified populations based
on truncation selection model.

This type of probabilistic representation of CGEDA allows the algorithm to
escape from local optimums. CGEDA is guided to global optimum based
on adaptive estimated standard deviation. Clearly high values of standard
deviation make CGEDA focuses on exploration and low values of standard
deviation make it focuses on exploitation of search space and so CGEDA
decides to emphasize on exploration or exploitation of search space based on
problem conditions and estimated standard deviations. In fact one of the su-
periority of CGEDA is due to the adaptive Gaussian distribution parameters
extraction.

Because of the fact that no coding or decoding procedure is essential in
CGEDA, it is a faster algorithm versus classic EDA or GA or other algorithms
which code their populations
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3 Experimental Result

In this paper the dimension of the problems is set to m = 50, 100. The
population size for all of the experiments is set to 36, and the maximum
generation termination condition which is used, equals 50. All results are av-
eraged over 20 runs. To measure our work with other evolutionary algorithm
we implement CPOA (Cellular Probabilistic Optimization Algorithm) and
PSO (Particle Swarm Optimization) and UMDA (Univariate Marginal Dis-
tribution Algorithm) which is a univariate type of EDAs. Parameters that
are used in this algorithms are δS , α, β, Rmu, Rdel, S and Mutate for CPOA
and w, c1 and c2 are used for PSO, It is obvious that the best parameters
for every algorithm are problem dependent, these parameters which are set
by an expert and experiment, are summarized in Tab. 1. The parameters of
PSO are equivalent for all problems and are equal to:

W = 0.9, C1 = 0.1, C2 = 0.2. (6)

In this paper, the benchmark problems that have been used to evaluate our
algorithm are numerical function optimization problems that contain Schwe-
fel, Ackley, Griewank, Rosenbrock, G1, Kennedy, Rastrigin, and Michalewics.

Table 2, summarizes the experimental results of PSO, CGEDA, UMDA
and CPOA for specified benchmark functions. Note that discussed functions
are proposed for minimization and have a global minimum with some local
minimum, in spite the proposed algorithm is designed for maximization. As a
result, we redefine them to maximize f(x). As it seems in most of benchmark

Table 1 Parameter settings for specified algorithms

CPOA

δS α β Mutate Rmu Rdel S
Schwefel 0.3 0.05 0.03 0.005 0.002 0.002 6
Ackley 0.3 0.05 0.03 0.005 0.002 0.002 6
Griewank 0.3 0.5 0.03 0.005 0.002 0.002 6
Rosenbrock 0.3 0.5 0.2 0.005 0.002 0.002 6
G1 0.3 0.05 0.03 0.005 0.002 0.002 6
Kennedy 0.3 0.05 0.03 0.005 0.002 0.002 6
Rastrigin 0.3 0.03 0.03 0.005 0.002 0.002 6
Michalewics 0.3 0.05 0.03 0.005 0.002 0.002 6

Table 2 Result for 100 Dimension Problems, Averaged Over 20 runs, Best results
mark as BOLD

PSO CGEDA

MEAN STD BEST Worst MEAN STD BEST Worst

Schwefel -4.173e+04 16.58 -4.17e+04 -4.18e+04 -4.17 e+04 4.3 -4.14 e+04 -4.195 e+04
Ackley -9.12 0.91 -7.84 -10.65 -0.95 0.065 -0.0263 -1.076

Griewank -1.12 0.03 -1.08 -1.16 -1.0053 0.12 -1.0012 -1.1087
Rosenbrock -8.168e+05 3.15e+05 -3.66e+05 -1.26e+06 -1.895e+04 1.37e+03 -5.32e+03 -1.054e+04

G1 18.53 0.02 18.55 18.5 18.542 0.0009 18.55 18.535
Kennedy -3.96e+04 2.68e+04 -7.37e+03 -1.011e+05 -598.469 15.67 -292.46 -894.4765
Rastrigin -1.51e+03 100 -1.36e+03 -1.66e+03 -964.02 59.64 -875.69 -996.367

Michalewicsz 9.095 0.9596 10.558 7.47 9.34 1.152 11.22 7.254
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UMDA CPOA

MEAN STD BEST Worst MEAN STD BEST Worst

Schwefel -4.172e+04 3.1 -4.17e+04 -4.181e+04 -4.1933 e+04 1.00025 -4.19 e+04 -4.2082 e+04
Ackley -2.3 1.1 -1.01 -5.91 -1.5987 0.58 -0.96 -2.689

Griewank -1.14 0.05 -1.1 -1.16 -1.616 0.05 -1.55 -1.69
Rosenbrock -2.36e+04 4.36e+4 -1.84e+04 -3.6e+04 -2.28e+06 9.434e+04 -2.154e+06 -2.474e+06

G1 18.26 0.09 18.534 18.06 18.035 0.7724 18.549 16.86
Kennedy -2.78e+03 1.06e+03 -2.53e+03 -2.96e+03 -1.69e+05 3.12e+04 -1.738e+05 -3.41e+05
Rastrigin -1.53e+3 186 -1156 -2.658e+3 -1.69e+03 43.32 -1.60e+03 -1.76e+03

Michalewicsz 8.67 1.01 9.56 6.642 8.94 1.27 12.3207 8.017

Fig. 1 Function evaluation for CGEDA and PSO and CPOA for 100 dimensions
over 50 function evaluations

functions, the performance of CGEDA is better than PSO and is very close
in Michalewics. In addition the performance of CGEDA in all the problems
is better than CPOA. In Tab. 2, best results are marked as Bold and as it
shows, CGEDA could find best results in all problems.

Experimental results show that initially CGEDA has a good speed versus
the other algorithms (see Figs. 1 and 2).

While closing to the global optimum, CGEDA tries to find the best solu-
tion with its power in local search or exploitation. This superiority is due to
the adaptive Gaussian distribution parameters extraction, and this type of
probabilistic representation of the algorithm. Standard deviation often has
large value at first, but as the algorithm close to the global optimal, its value
decreases adaptively. This means that CGEDA has more exploration at first
and more exploitation at later. Also CGEDA has better performance than
algorithms which are designed for binary coded problems [9] such as UMDA.
Also Fig. 1 illustrates that PSO has faster convergence than CGEDA which
may causes premature convergence. Figure 2 illustrates the best and av-
erage of the best solutions in every function evaluation for CGEDA, PSO
and CPOA. PSO with twice function evaluation cannot reach as good as re-
sult of CGEDA which is shown in Fig. 2. The proposed algorithm will trap
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Fig. 2 Function evaluation for CGEDA and PSO and CPOA for 100 dimensions
over 100 function evaluations

in local optimum on more conditions with less probability than the others
because of probabilistic nature and Gaussian parameters of CGEDA. There-
fore, standard deviation is an important parameter which set adaptively.

Finding best parameter for EAa is hard work for beginners and can be a
new optimization problem to solve. A way to find optimal parameters is to
use prior information of data if it is possible which CGEDA did, in the other
hand, in this algorithm standard deviation is extracted from information of
population adaptively that can be regarded as strength of CGEDA.

4 Conclusion

This paper proposed a novel EA, inspired by the Estimation of distribution
algorithms. The Continuous Gaussian Estimation of Distribution Algorithm
(CGEDA) is designed for real codec problems. This presentation of EDAs
can improve exploitation of search space that is corporate with great nature
exploration of EDAs. To achieve this ability in CGEDA, different Gaussian
distribution estimation is used for every dimension of individuals, so to repre-
sent the individuals, means and standard deviations of Gaussian distributions
are used. These are estimated by maximum likelihood technique to reach as
real as results. Then based on this information, new population is sampled.
The next generation is generated with these two populations: the current
generation and the sampled population.

The probabilistic representation of the CGEDA enables it to climb up or
down the hills in the search space. This type of probabilistic representation
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allows the algorithm to escape from local optimums. CGEDA is guided to
global optimum based on adaptive estimated standard deviation. Clearly high
values of standard deviation make CGEDA focuses on exploration and low val-
ues of standard deviation make it focuses on exploitation of search space and
so CGEDA decides to emphasize on exploration or exploitation of search space
based on problem conditions and estimated standard deviations. Experimen-
tal results shows superior performance of CGEDA against other famous EA
algorithms such as Particle Swarm Optimization (PSO) and Cellular Proba-
bilistic Optimization Algorithm (CPOA) and also a univariate EDA named
Univariate Marginal Distribution Algorithm (UMDA).
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Regional Spatial Analysis Combining
Fuzzy Clustering and Non-parametric
Correlation

Bülent Tütmez and Uzay Kaymak

Abstract. In this study, regional analysis based on a limited number of data,
which is an important real problem in some disciplines such as geosciences
and environmental science, was considered for evaluating spatial data. A com-
bination of fuzzy clustering and non-parametrical statistical analysis is made.
In this direction, the partitioning performance of a fuzzy clustering on differ-
ent types of spatial systems was examined. In this way, a regional projection
approach has been constructed. The results show that the combination pro-
duces reliable results and also presents possibilities for future works.

Keywords: Fuzzy clustering, rank correlation, spatial data.

1 Introduction

In spatial analysis, each observation is associated with a location and there
is at least an implied connection between the location and the observation.
Geostatistical (probabilistic) and soft computing methods can be applied for
assessing spatial distributions in a site [1]. When observations are made in
space, the data can exhibit complex correlation structures. The correlation
can be two-dimensional if the data are taken only over a spatial surface [11].
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It is obvious that the spatial patterns of individual sampling locations in
any study area have different patterns and observations depend on the rela-
tive positions of observed locations within the site. The classical geostatistical
tools such as variogram, although suitable for irregularly-spaced data, have
practical difficulties. One of the main drawbacks is that it is insufficient to
analyze the regional heterogeneous behavior of a spatial parameter [5]. In gen-
eral, spatial systems have heterogeneous properties rather than homogeneous
structures. Heterogeneity means that the properties observed at different lo-
cations do not have the same value, and that different zones are observed in
the site.

One of the practical problems encountered in spatial systems such as in
geosciences, ecology and geography is the limited number of data. Often, cor-
relations are estimated from a small number of observations. The correlation
coefficient is particularly important in cases with sparse data such as pollu-
tion and offshore petroleum data [10]. In these cases, because the measure
is expensive and time consuming, it may be necessary to work with limited
number of data. Hence, a regional analysis with limited data becomes an
important task in spatial systems.

The main objective of a cluster analysis is to partition a given data set of
data or objects into clusters [9]. Because most of the clustering algorithms
employ the distances between the observations, for a spatial system, the clus-
ters provided by clustering can be considered as distinguished regions [12].
Analyzing a spatial system based on structural properties is a difficult task
and applicability of clustering for this purpose should be examined. In this
study, the performance of the Fuzzy c-means Algorithm (FCM), which is
the well-known clustering algorithm, in conditioned spatial systems is in-
vestigated. The partitioning capacity of the algorithm with limited number
of data is appraised using Rank Correlation Method (RCM) that is also a
well-known non-parametric method.

The rest of the paper is structured as follows. Sect. 2 describes the basics of
weighted fuzzy arithmetic and the hybrid fuzzy least-squares regression. Con-
fidence interval-based approach for coefficients and predictions is presented
in Sect. 3. Finally, Sect. 4 gives the conclusions.

2 Methodology

Fuzzy clustering and non-parametric correlation analysis are well-known
methods. The algorithm proposed in this study aims a combination to ap-
praise a spatial system based on an areal analysis. In this section, a brief
review and the basis of the combination is presented.
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2.1 Fuzzy Clustering

The main purpose of clustering is to recognize natural groupings of data from
a large data set to produce a concise representation of a system’s behavior.
The FCM is a well-known data clustering method in which a data set is
grouped into clusters (regions) with every data point in the data set belonging
to every cluster to a certain degree. As a suitable algorithm, the FCM was
also proposed to make spatial evaluations [2].

Let {x1,x2, . . . ,xN} be a set of N data objects represented by p-dimensional
feature vectors xk = [x1k, . . . , xpk]T ∈ R

p. A set of N feature vectors is then
represented as p×N data matrix X. A fuzzy clustering algorithm partitions
the data X into M fuzzy clusters, forming a fuzzy partition in X. A fuzzy
partition can be conveniently represented as a matrix U, whose elements
uik ∈ [0, 1] represent the membership degree of xk in cluster i. Hence, the
i-th row of U contains values of the i-th membership function in the fuzzy
partition.

Objective function based fuzzy clustering algorithms minimize an objective
function of the type:

J(X;U,V) =
M∑

i=1

N∑

k=1

(uik)m
d2(xk,vi), (1)

where V = [v1,v2, . . . ,vM ], vi ∈ R
p is M -tuple centers which have to be

computed, and m ∈ (1,∞) is a weighting exponent which defines the fuzzi-
ness of the clusters. The conventional FCM uses Euclidean distance. The
optimization is constrained, amongst others, by the constraint

M∑

i=1

uik = 1, ∀k. (2)

2.2 Non-parametric Rank Correlation

Nonparametric statistics can be an effective tool when data is observed on
a discrete scale of values or when the assumptions required by parametric
statistics can not be satisfied. This time we cannot rely on the central limit
theorem which is a concept to justify use of parametric tests and we must
turn to a category of alternative procedures named nonparametric techniques.
The nonparametric tests use information of a lower rank, such as nominal or
ordinal observations. No assumptions about the form of the parent population
are required [6].



222 B. Tütmez and U. Kaymak

Spearman’s rank correlation is one of the statistical tools to calculate non-
parametric correlations between pairs of samples. If we make two sets of
ordinal observations on a number of objects, we can designate one of the sets
as x and the other as y. We then rank each observation and call the two
sets of ranks R(xi) and R(yi). Spearman’s coefficient measures the similarity
between these two ranks [4],

rs = 1 − 6
∑n

i=1 [R(xi) − R(yi)]
2

n(n2 − 1)
. (3)

The term inside the brackets of the numerator is simply the difference be-
tween the rank of property x and the rank of property y as observed on
the i-th object. The following assumptions can be given for conducting the
implementation.

• The correlation between the variables should be linear.
• The two variables have been reduced to an ordinal scale of observation.
• If a test of significance is applied, the sample has been selected randomly

from the population.

The rank correlation rs, is analogous to simple correlation r in that it varies
from +1.0 (perfect correspondence between the ranks) to −1.0 (perfect in-
verse relationship between the ranks). A rank correlation of rs = 0 shows
that the two sets of ranks are independent. Note that the rank correlation
analysis is insufficient, if the number of observations is bigger than 60 [8].

2.3 Regional Appraisal with Memberships

Generally, in natural world spatial systems have heterogeneous property and
different zones are observed in a site. Due to these available separate regions,
from a clustering algorithm a better partition is expected for heterogeneous
sites rather than homogeneous sites. From this point, it could be anticipated
that the correlations provided between the clusters should be bigger for a
heterogeneous system than a homogeneous system.

In some circumstances, a relatively small sample, whose size cannot be
increased and whose underlying population may be distinctly non-normal,
has to be studied. When the sample size is small, the uncertainty about
the value of the true correlation can be very large, particularly when the
estimated correlation is low [10]. Considering this condition, to measure the
correlations between the clusters, membership values and their ranks could be
used on the ground of a non-parametric correlation analysis. The algorithm
of the analysis can be presented by a flowchart as in Fig. 1.
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Fig. 1 Flow chart of the
analysis

3 Simulation Studies

3.1 Data Set

Experimental studies have been carried out using two simulated data sets.
In the applications, the effectiveness and partitioning capacity of the FCM
algorithm on different types of spatial systems has been investigated. The
spatial real data set (108 observations) used in [13] was handled. This data
set comprised of Elasticity Modulus (EM) values of rock samples collected
from an Andesite quarry in Ankara.

To perform the simulation studies, the real set was conditioned by a geosta-
tistical simulation technique which is lower-upper (LU) decomposition tech-
nique [7]. For the first case study two simulated sets, one of which has ho-
mogeneous and other has heterogeneous properties, were provided based on
conditional simulation. In the heterogeneous site, the EM values generate
different zones and the spatial variability of the site can be modeled by a
function such as Spherical or Gaussian type functions.

Each simulation is conducted on a 21× 21 regular grid, yielding a total of
441 values. After that, a similar procedure was followed for the second case
study. This time, a simulation was carried out on a 20 × 20 regular grid and
a total of 400 values.

3.2 Simulation Study 1

Two sample sets (49 records) were randomly drawn from the simulated
data sets, each of them including 441 observations. To illustrate the dif-
ferent spatial characteristics, a semi-variance analysis, which is a well-known
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Fig. 2 Spatial behaviors for homogeneous (left) and heterogeneous (right) data
sets (simulation study 1)

geostatistical analysis, has been performed. Figure 2 shows the variogram
models provided for the sampled distinguished sets. As can be seen in the
Fig. 3, although the homogeneous site can not show a spatial relationship
(pure nugget model), the heterogeneous site has a Gaussian character. To
specify the regions in the sites, fuzzy clustering applications have been per-
formed both for homogeneous and heterogeneous data sets. These different
data sets used by the clustering algorithm have the same coordinates and
different EM values. Therefore, data matrix X contains three dimensions
(spatial positions and EM). As a result of the clustering validity studies [3],
the optimal number of clusters was defined as four for both sites.

Statistically, if the coefficient of skewness Sf is zero, then the distribu-
tion is symmetrical and must be zero for the normal distribution. Similarly,
if the Kurtosis is zero, then the distribution of data is approximately nor-
mal [14]. Based on these criteria, the memberships have been appraised and
use of a nonparametric rank correlation analysis method is decided. Table 1
summarizes the non parametrical (cross) correlation coefficients with the av-
erage values for both homogeneous and heterogeneous sets. The values under
N(0, 1) describe the approximated values of the coefficients required from the
large number of data.

Table 1 Rank correlation coefficients among the clusters

Cross Correlation Homogeneous Homogeneous N(0, 1) Heterogeneous Heterogeneous N(0, 1)

r12 −0.380 −2.630 0.101 0.696
r13 −0.023 −0.158 −0.487 −3.370
r14 0.028 0.192 0.168 1.162
r23 0.042 0.288 −0.089 −0.619
r24 0.132 0.913 −0.482 −3.338
r34 −0.377 −2.610 0.010 0.072

Average Correlation −0.096 −0.668 −0.130 −0.900
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Fig. 3 Spatial behaviors for homogeneous (top) and heterogeneous (bottom) data
sets (simulation study 2)

3.3 Simulation Study 2

For the second application, a similar procedure to the one followed in the first
application is performed. Firstly, two data sets (each of 25 records) were ran-
domly sampled from the simulated data sets, including 400 observations each
one. In order to measure the spatial variability of the observations variogram
models have been obtained. Figure 3 illustrates the models. In the homoge-
neous site, no meaningful spatial dependence is recorded. On the other hand,
the heterogeneous site shows a spatial model that is Gaussian.

Based on clustering validity, the optimal number of clusters has been deter-
mined as four for both data structures. By using the memberships provided
from the clustering application, the nonparametric rank correlation analysis
method is applied. Table 2 indicates the cross correlation coefficients with
the average values for both data sets.

Table 2 Absolute rank correlation coefficients among the clusters

Cross Correlation Homogeneous Heterogeneous

r12 0.439 0.132
r13 0.070 0.125
r14 0.013 0.476
r23 0.237 0.402
r24 0.350 0.066
r34 0.385 0.335

Average Absolute Correlation 0.249 0.256

3.4 Results and Discussion

Because limited number of data may not be increased and the underlying
population may be distinctly non-normal in spatial environmental systems,
the applications were conducted in the proposed manner. First application
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showed that the clustering algorithm has a capability to separate the regions.
Both the average correlation coefficients are negative and the value obtained
for the heterogeneous site is bigger than the homogeneous site. This point
indicates the expected result that more clear partition should be carried out
for a heterogeneous site.

To test the study, a null hypothesis can be established that the clusters
are independent (i.e. ρ = 0). The alternative hypothesis is ρ �= 0, so the test
is two-tailed, with either very large positive or very large negative correla-
tions leading to rejection. Our analysis shows that the null hypothesis is not
rejected both for the homogeneous and the heterogeneous case, indicating
independence of clusters.

Second case study was performed by relatively small data sets. Both the
average correlation coefficients address the inverse correlations and the clus-
tering algorithm has a capability to determine the regions. In this application,
to overcome a possible compensation that may be resulted from pairs close
to +1 and −1, the study has been carried out using the absolute values. The
null hypothesis is that cluster memberships are independent, or that ρ = 0.
The alternative hypothesis is ρ �= 0, the test is one-tailed. Again, it is found
that the null hypothesis is not rejected. Depending on the limited number of
data, a crisp difference between two data sets has not been recorded.

4 Conclusions

The partitioning performance of a fuzzy clustering algorithm on different
type spatial systems is examined. To appraise the conditioned spatial sys-
tems via limited number of data, fuzzy clustering and non-parametric rank
correlation method is integrated. By this way, a regional projection method
has been constructed. In conclusion, the combination of fuzzy clustering and
non-parametric correlation analysis has produced some reliable results and
provide possibilities for future studies in depth.
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The p-value Line: A Way to Choose
from Different Test Results

Alfonso Garćıa-Pérez

Abstract. It is common practice to perform an Exploratory Data Analysis
to decide whether to use a classical or a robust test; i.e., to choose between
a classical or a robust result. What is not so clear is how to choose among
the results provided by different competing robust tests. In this paper we
propose to use the function p-value line, that we shall define later, to com-
pare the results obtained by different tests in order to choose one: the result
with largest p-value line. This function takes into account the usual trade-off
between robustness and power that is present in most, if not all, robust tests,
trade-off that is expressed thought a parameter fixed in a subjective way.
With our proposal we can fix it in an objective manner. We shall apply this
proposal to choose the trimming fraction in the location test based on the
trimmed mean.

Keywords: Robust tests, von Mises expansion.

1 The p-value Line: Definition and Properties

In the paper we consider tests for the null hypothesis H0 : θ ∈ Θ0 against the
alternative H1 : θ ∈ Θ1 , being Θ = Θ0 ∪Θ1 the parameter space, tests that
reject H0 for large values of the test statistic Tn = Tn(X1, ..., Xn) (although
the results can be extended to other situations) and where the observable
random variables Xi, for i = 1, ..., n, follow the model Fθ, θ ∈ Θ.

Alfonso Garćıa-Pérez
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Although in this section we write Tn, it must be understood as its stan-
dardized version that we use in the computation of the test, i.e., (Tn −
E[Tn])/σ(Tn), as we shall do in the applications section.

The ordinary p-value pn, i.e., the p-value that we compute in the daily
use of statistical methods, is defined as the maximum probability, under the
null hypothesis, of observing a value of the test statistic at least as extreme
as the one obtained tn = Tn(x1, ..., xn), where (x1, ..., xn) is the observed
sample; i.e., pn = supθ∈Θ0

Pθ{Tn > tn} = supθ∈Θ0
(1−Fn;θ(tn)) , where Fn;θ

is the cdf of Tn under Fθ. We compute pn in a test because it is a measure
of evidence against the null hypothesis.

On the other hand, the random variable p-value Pn is defined as Pn =
supθ∈Θ0

(1−Fn;θ(Tn)) and, although this is a random variable with uniform
distribution on [0, 1] if the null hypothesis is true, we use only one of its values
(the observed one pn) to accept or reject the null hypothesis.

For a fixed alternative θ1 ∈ Θ1, we propose to use one value of 1−Fn;θ1(Tn)
(the observed one Pθ1{Tn > tn}) to choose from different results because this
quantity is a measure of evidence against the null hypothesis assuming that
θ1 ∈ Θ1 is true.

Hence if we have two results sn and tn on the same test, we should choose
result tn instead of sn if Pθ1{Tn > tn} > Pθ1{Sn > sn}.

In general, because H1 could be composite, we propose to use the function
of the alternative θ1 ∈ Θ1 l(θ1) = Pθ1{Tn > tn} that we call the p-value
line, to choose from different results. Namely, we propose to choose the result
with largest p-value line because this is a measure of evidence against the null
hypothesis assuming that the alternative is true.

Moreover, the p-value line is very important in robustness studies because,
as we shall see in the next paragraphs, it takes into account the usual trade-
off between robustness and power that is present in most, if not all, robust
tests, balance that is expressed through a parameter that is usually fixed in
a very complicated and/or subjective manner and that can fixed objectively
with the p-value line.

1.1 Power Function and the p-value Line

The p-value line is very closely related to the power function of a test. Let
us call θ0 to the boundary case in the null hypothesis Θ0, i.e., the param-
eter value where the size α of the test is reached, i.e., Pθ0{Tn > kαn} =
supθ∈Θ0

Pθ{Tn > kαn} = α , so being kαn the critical value.

Proposition 1. The p-value line of a test is its power function when we
consider the particular significance level Pθ0{Tn > tn}.
Hence, when we obtain results tn and sn from two competing tests and com-
pare the associated p-value lines, we are really comparing the power functions
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of the tests where the results come, in particular (and usually different) signif-
icance levels. And, on the power function comparison of tests with different
significance levels, theory says that we should prefer the test with steeper
ascent to power 1, from the boundary of the null hypothesis, because the
steeper the power function the better it will be to detect the alternative.
Hence, we should match them at θ0 in order to choose easily the p-value line
with steepest ascent, i.e., with the largest slope.

In this paragraph we have supposed, in fact, that the ordinary p-values
pn of the competing tests are somewhat similar. If this were not the case it
would be very likelihood to think that some outliers should be present in the
data and we would be in the next paragraph situation.

1.2 Test Robustness and the p-value Line

If there are no outliers in the sample and, for instance, we are testing H0 :
θ = θ0 = 0 against H1 : θ > 0 , the usual situation of p-value lines is shown
in the left side of Figure 1, in which the solid line would represent the most
powerful test (the classical) and the dashed line other least powerful one (the
robust): at θ0 both p-value lines are very similar and for θ > θ0 the most
powerful has steepest ascent to power 1.

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p−value  lines. No outliers

theta

 

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p−value  lines. Outliers

theta

 

Fig. 1 Usual classical (solid) and robust (dashed) p-value lines

If there are outliers in the sample, these will affect more to tn (the classi-
cal statistics) than sn (the robust one). If we consider first the situation in
which outliers affect the test statistic value by increasing it, these will affect
the p-value line of a classical test Pθ{Tn > tn} (decreasing it) more than the
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robust one Pθ{Sn > sn}, changing even the sign of the expected inequality
from Pθ{Tn > tn} > Pθ{Sn > sn} to Pθ{Tn > tn} < Pθ{Sn > sn} if
outliers are very influential.

Hence, if there are outliers in the sample the typical situation is shown
in the right side of Figure 1 and, again, if we match them at θ0, we should
choose the p-value line with steepest ascent, i.e., with largest slope.

In some practical cases (e.g., tests on the regression coefficients) the test
statistics are used in absolute value and outliers affect them only by increasing
them.

In the application of hypothesis testing problems, we establish the two
hypotheses to test because of the observed values of the test statistics. For
instance, we test that the location parameter is 0 against the alternative
that it is greater than 0, if the observed values of the two (standardized)
statistics tn and sn that we consider, take values around 0 or greater than 0.
Hence, only outliers with positive influence should be considered; otherwise
we should change the hypotheses to test and we should have the symmetric
situation.

Next we establish our proposal to choose from different competing test
results, robust and/or classical, on a common null hypothesis.

Proposal:

To choose among the results obtained from several competing tests of H0 :
θ ∈ Θ0 against the alternative H1 : θ ∈ Θ1 , that reject H0 for large values
of the test statistic, we propose to match all the p-value lines at θ0 (the
boundary case in the null hypothesis) and choose the result with steepest
ascent from θ0.

As with standard p-values (i.e., at the null hypothesis), sometimes the
decision could be complicated and perhaps impossible if the p-value lines
cross. Moreover, if the selected p-value line is the classical one, we can also
conclude that there are no influential outliers in the sample because otherwise
we would not conclude with the classical one.

2 Computation

One advantage of using the p-value line to decide among several results is
that it is easier to compute than the power function, mainly because it does
not depend on the significance level. Nevertheless, we saw before that the
p-value line is very closely related with the power function and hence, in
some cases its computation is not easy, especially if we consider small sam-
ple sizes. In this situation, a great effort has been made in recent years to find



The p-value Line 233

accurate approximations for the ordinary p-value; see for instance, [3, 6, 4].
Nevertheless, nearly nothing has been made in the computation of the power.
Next, in the computation of p-value lines we propose to use the ideas given
in [2] to transfer computations under the alternative hypothesis to computa-
tions under the null.

If we use expression (1) in Corollary 2 of [2], considering as distribution G
the underlying model under the null hypothesis, G ≡ Fθ0 , and as distribution
F the underlying model under an alternative θ ∈ Θ1, F ≡ Fθ, we have (in
the general case of non iid models)

p-valueH1
= P(F1,...,Fn)θ{Tn(X1,X2, ...,Xn) > tn}
� (1− n)P(F1,...,Fn)θ0

{Tn(X1,X2, ...,Xn) > tn}

+

∫

X
P(F2,...,Fn)θ0

{Tn(x,X2, ...,Xn) > tn} dF1;θ(x)

+ · · ·+
∫

X
P(F1,...,Fn−1)θ0

{Tn(X1, ...,Xn−1,x) > tn} dFn;θ(x)

that allows an approximation of the tail probability under the alternative
hypothesis, knowing the value of this tail probability under the null.

And, with the same arguments as in Section 3 of [2], in the case that F1;θ,..,
Fn;θ are location families

p-valueH1
� (1− n)p-valueH0

+ PF1;θ0
,...,Fn;θ0

{Tn(X1 + (θ − θ0),X2, ...,Xn) > tn}

+ · · ·+ PF1;θ0
,...,Fn;θ0

{Tn(X1, ...,Xn−1,Xn + (θ − θ0)) > tn}

= (1− n)PF1;θ0
,...,Fn;θ0

{Tn(X1, ...,Xn) > Tn(x1, ...,xn)}

+PF1;θ0
,...,Fn;θ0

{Tn(X1, ...,Xn) > Tn(x1 − (θ − θ0), ...,xn)}

+ · · ·+ PF1;θ0
,...,Fn;θ0

{Tn(X1, ...,Xn) > Tn(x1, ...,xn − (θ − θ0))}.

Hence, the p-value under the alternative can be approximated by computing
(1 − n) times the usual p-value under the null, i.e., the p-value with the
observed data set, plus n p-values (always under the null) computed for n
shifted data, all of them usually given by common statistical software, mainly
the R statistical software [5].

As we argued in [2], the previous linear approximation is accurate when
θ is close to θ0. If we want to extend the approximation to θ’s away from
θ0, we can use an iterative procedure as in Section 4 of [2] obtaining, with k
iterations,
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p-valueH1
� p-valueH0

+

k+1∑

j=1

[
PH0 {Tn(X1 + c2j ,X2 + c1j , ...,Xn + c1j) > tn}

+ · · ·+ PH0 {Tn(X1 + c1j , ...,Xn−1 + c1j ,Xn + c2j) > tn}

−nPH0 {Tn(X1 + c1j , ...,Xn + c1j) > tn}
]

= PF1;θ0
,...,Fn;θ0

{Tn(X1, ...,Xn) > Tn(x1, ...,xn)}

+

k+1∑

j=1

[
PF1;θ0

,...,Fn;θ0
{Tn(X1, ...,Xn) > Tn(x1 − c2j ,x2 − c1j , ...,xn − c1j)}

+ · · ·+ PF1;θ0
,...,Fn;θ0

{Tn(X1, ...,Xn) > Tn(x1 − c1j , ...,xn−1 − c1j ,xn − c2j)}

−nPF1;θ0
,...,Fn;θ0

{Tn(X1, ...,Xn) > Tn(x1 − c1j , ...,xn − c1j)}
]

(1)

where c1j = (j − 1)(θ − θ0)/(k + 1) and c2j = j(θ − θ0)/(k + 1).

3 Applications

In this section we shall use the p-value line to fix the parameter that rep-
resents the usual trade-off between robustness and power and is present in
robust tests, because the p-value line orders them considering these two fac-
tors. In this paper we shall consider the location test based on the trimming
mean, choosing the result (the trimming fraction ) with highest p-value line,
but other applications, as the location test based on the Huber statistic, or
tests in robust Generalized Linear Models or robust Generalized Additive
Models are possible, because the proposal is based on transferring compu-
tations under the alternative to computations under the null, for which we
have available libraries of R, such as robustbase or rgam.

We shall also consider here the null hypothesis H0 : θ = θ0 = 0, against
H1 : θ > 0 and a contaminated normal distribution (1− ε)N(θ0, 1) + εN(θ, 1)
as underlying model, although other hypotheses and models are possible.

3.1 The Trimmed Mean

To test the two hypotheses mentioned before, let us consider the test statis-

tic Tn = (Xα − E[Xα])/

√
V̂ (Xα) , where Xα is the trimmed mean. It is

known [7, p. 156] that if the underlying model follows a normal distribu-
tion, and H0 : E[Xα] = 0, then Tn follows asymptotically a Student’s t
distribution.
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And, although with the previous results, we transfer computations under
the alternative to computations under the null, the null hypothesis here is
H0 : θ = 0 and the underlying model, (1− ε)N(0, 1) + εN(θ, 1), not a normal
distribution. Nevertheless, in [1] a linear approximation to the trimmed mean
was obtained, especially useful for small sample sizes.

Under the null hypothesis the test statistic is Tn = (Xα − ε θ)/
√
V̂ (Xα)

and we can use the iterative linear approximation obtained by [1] to compute
the tail probabilities under the null, probabilities that are included in (1).
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Fig. 2 Comparison of p-value lines for several trimming fractions with no contam-
inated data (left) and contaminated data (right)

To show some numerical results, let us assume as underlying model
0.95N(θ0, 1) + 0.05N(θ, 1), and that there are no outliers in the observed
sample, that we suppose is

-0.04243192 0.35124862 1.79327771 -1.01262733 1.37481913

0.76204004 1.53280552 -0.50457646 0.41478589 0.61417601

We see in the left side of Figure 2 (with only 15 iterations) that the p-value
line of the usual sample mean is higher than other p-value lines (matched at
the null hypothesis), suggesting no trimming at all in the sample.

If we now artificially replace the last value of the previous sample by
6.14176014, we observe in the right side of Figure 2 (with 15 iterations
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again) the p-value lines of different sample trimmed means, concluding with
the use of the trimming fraction of 0.2.

4 Conclusions

With the function p-value line defined in the paper we can compare the results
obtained by different competing tests in order to choose one of them. Because
most of the robust tests depend on a parameter that represents the trade-off
between robustness and power, these can be considered as competing tests
depending of this parameter, which can be selected with the p-value line.

The methodology is applied successfully to the location test based on the
trimmed mean, fixing the trimming fraction objectively.

Because the computation of the p-value line is based on transferring com-
putations under the alternative to computations under the null, we can apply
this methodology to other robust tests in more complex problems, if we are
able to compute the standard p-value (i.e., under the null) in these problems.
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Outlier Detection in High Dimension
Using Regularization

Moritz Gschwandtner and Peter Filzmoser

Abstract. An outlier detection method for high dimensional data is pre-
sented in this paper. It makes use of a robust and regularized estimation of
the covariance matrix which is achieved by maximization of a penalized ver-
sion of the likelihood function for joint location and inverse scatter. A penalty
parameter controls the amount of regularization.

The algorithm is computation intensive but provides higher efficiency than
other methods. This fact will be demonstrated in an example with simulated
data, in which the presented method is compared to another algorithm for
high dimensional data.

Keywords: Outliers, regularization, robust statistics.

1 Introduction

Outlier detection is a well known field in today’s statistics. In order to in-
crease the efficiency and outcome of statistical analysis methods, it is often
necessary to prepend a data preparation step, in which outliers are either
excluded from the data, or downweighted, in order to avoid the bias of sub-
sequent algorithms.

The higher the dimension of the data is, the more complex the challenge
of outlier detection gets. This can easily be understood by means of the
following example: Consider the unit square [0, 1]× [0, 1] in the two dimen-
sional Euclidean vector space. 100 uniformly distributed observations will be
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enough in order to sample the square. If we repeat the experiment in a ten
dimensional space [0, 1]10, we would need many more observations in order
to achieve the same level of covering. This phenomenon, which is referred to
as Curse of Dimensionality, also affects statistical methods. Especially the
case where the dimension exceeds the number of observations (n < p) is a
topic of main interest. Thus, it is crucial for the field of robust statistics to
develop outlier detection methods which can handle this case.

In this article we want to investigate in more detail a method which was
proposed in [1] and [2], respectively. It is based on the regularization of the
estimated data covariance matrix. The regularization is achieved by the appli-
cation of an L1 penalty term in the log-likelihood function of joint location
and inverse scatter. The penalty term leads to a sparse inverse covariance
matrix, which can be an advantage if many noise variables are included in
the data. It also results in a lower number of parameters to be estimated,
and this may yield more stability and efficiency for outlier detection in high
dimension. In addition, a robustness parameter controls the number of ob-
servations which are included in the maximization of the likelihood function.

The rest of the article is organized as follows: The following section provides
a description of the investigated method, which is referred to as RegMCD.
In Sect. 3, a comparison of RegMCD and another outlier detection method
PCOut is given by means of a simulated data example. A brief description of
PCOut is provided as well. Finally, Sect. 4 concludes the article.

2 The RegMCD Method

The RegMCD estimator was introduced in [2] and is further characterized
in [1] as a regularized extension of the well-known MCD estimator [6]. As
described in [2], it can be used as an outlier detection tool. This chapter
summarizes the most important facts.

2.1 Basics

The maximum likelihood method is a well known parameter estimation ap-
proach. Given a data sample {x1, . . . ,xn}, with xi ∈ R

p, the likelihood func-
tion is maximized in order to derive an estimation for the unknown parameter
that is most likely in case of the given data. The L1 penalized log-likelihood
function of joint location and inverse scatter can be written as

L(µ,Θ) = log det(Θ)− 1

n

n∑

i=1

(xi − µ)�Θ(xi − µ)− λ‖Θ‖1, (1)



Outlier Detection in High Dimension Using Regularization 239

where µ denotes the p dimensional mean vector of the data and Θ = Σ−1 is
the inverse covariance matrix. λ > 0 is a penalty parameter which controls
the amount of regularization and ‖ · ‖ denotes the L1 Norm:

‖Θ‖1 =
∑

i,j

|θij |, (2)

where θij are the elements of the matrix Θ. For λ = 0, this coincides with
the classical log-likelihood function. Larger values of λ lead to sparse esti-
mations of Θ, which means that Θ contains many zeroes. The maximization
of (1) cannot be done analytically, but requires an iterative regression based
algorithm called glasso (see [5]).

As a matter of fact, solutions of the maximization problem are not robust.
This is due to the fact that the sum in Eq. (1) contains all observations xi
equally-weighted. The RegMCD algorithm counteracts this fact by searching
for a data subset H0 of size h < n, for which the maximized likelihood value
is larger than for any other subset of size h:

L(µ,Θ, H) = log det(Θ)− 1

h

∑

x∈H
(x− µ)�Θ(x− µ)− λ‖Θ‖1 → max (3)

The additional robustness parameter h is typically chosen as h = 0.75 · n,
which has turned out to be a good compromise between robustness and effi-
ciency, see [6]. In order to solve the maximization problem (3) and to obtain
the estimations Θ̂ and µ̂, the RegMCD algorithm uses an iterative concen-
tration step procedure as it was suggested in [6].

2.2 The Penalty Parameter

While the robustness parameter h can be set to h = 0.75 · n for most set-
tings, the penalty parameter λ has to be chosen more carefully. The proposed
method uses an adapted BIC criterion:

BIC(λ) = −2 · L̃(H0, Θ̂, µ̂) + κ(λ) log h, (4)

where L̃(H0, Θ̂, µ̂) denotes the likelihood value without the penalty term,
and κ(λ) measures the total number of estimated parameters:

κ(λ) = k · p+
∑

i<j

1{θ̂ij �=0}, (5)

where θ̂ij is the element (i, j) of the matrix Θ̂, and 1 denotes the indicator
function. Finally, λ0 can be chosen as

λ0 = arg min
λ
BIC(λ). (6)
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Note that the term (4) consists of two parts. First, the likelihood term
−2 · L̃(H0, Θ̂, µ̂) will be small for small values of λ and increase with an
increasing λ. The second part, though, measures the sparseness and will be
smaller for large values of λ, as the entries in the inverse covariance matrix
are more strongly penalized. The final value of λ0 will therefore be somewhere
in between small and large values and the criterion (6) can be regarded as a
compromise between likelihood and sparseness.

2.3 Outlier Detection

A well known distance measure for multivariate data is the squared Maha-
lanobis distance:

d2(x,µ,Σ−1) = (x − µ)�Σ−1(x− µ), (7)

where Σ−1 is the inverse covariance matrix. In contrast to the Euclidean
distance, the Mahalanobis distance takes the covariance structure of the data
into account. If the data is distributed according to a multivariate normal
distribution, the Mahalanobis distance will follow a chi-square distribution
with p degrees of freedom.

Using the RegMCD estimates Θ̂ and µ̂, robust Mahalanobis distances di
can be computed:

d2i (xi, µ̂, Θ̂) = (xi − µ̂)�Θ̂(xi − µ̂) (8)

An observation xi is classified as an outlier, if

d2i (xi, µ̂, Θ̂) > χ2
p,0.975, (9)

with χ2
p,q being the q-quantile of the χ2

p distribution.

3 Simulation Studies

In this section, the proposed method is compared to another outlier detection
method called PCOut, which shall briefly be described.

3.1 PCOut

PCOut was introduced in [4] and is available in the R package mvoutlier [3].
The main idea of PCOut is to give weights to the observations xi, indicating
if one is likely to be an outlier or not. The weights consist of two parts:
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• a location weight w1i ≤ 1, indicating if the observation is a location outlier
• a scatter weight w2i ≤ 1, indicating if the observation is a scatter outlier

Both weights are combined to receive an overall weight wi for an observation
xi:

wi =
(w1i + s)(w2i + s)

(1 + s)2
(10)

An observation is classified as an outlier, if wi < 0.25. The scaling constant
s is typically chosen s = 0.25. This assures that a small weight wi is only
received, if both w1i and w2i are small themselves.

PCOut was chosen as the competing method as it is known to work well in
the high-dimensional setting. PCOut is more efficient than other methods for
high-dimensional outlier detection, and at the same time it is fast to compute,
see [4].

3.2 Simulation Setup

The data setup is closely related to the one in [4] and was produced as
follows: In the p-dimensional vector space, n = 100 clean observations xi were
created according to a multivariate normal distribution N(0,Σ∗

p), where Σ∗
p

denotes the p × p identity matrix with additional covariance σ∗
12 = σ∗

21 =
0.7 between the first and the second variable. The remaining variables do
not contain any covariance information and can thus be regarded as noise
variables, which favors the application of the RegMCD method. The data
was then contaminated with nout = 10 outliers, distributed according to
N(µout, σout · Ip), where Ip denotes the p× p identity matrix.

In order to receive a large variety of settings, the parameters p, µout, and
σout were varied in the following way:

• p ∈ {30, 50, 100, 200}
• µout ∈ {(0, . . . , 0)�, (2, . . . , 2)�, (5, . . . , 5)�}
• σout ∈ {0.1, 0.5, 1, 2, 5}
The values of µout and σout assure that both location and scatter outliers are
included in the simulation.

For each combination of the three parameters, the simulation was exe-
cuted ten times and the proposed outlier detection methods were applied.
As a measure of performance, the average false negative (FN) and false pos-
itive (FP) rates were computed. False negative means that an observation is
classified as a regular observation, although it is in fact an outlier. A false
positive denotes a clean observation which is classified as an outlier instead.
The simulation was fully executed in R.

The results are shown in Table 1. There we can see that for both methods
the percentages of false negatives are mostly 100% for µout = (0, . . . , 0)� and
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Table 1 RegMCD vs. PCOut: Average percentage of false negatives (FN) and
false positives (FP). n = 100, nout = 10, 10 iterations.

σout = 0.1 σout = 0.5 σout = 1 σout = 2 σout = 5

Method μout %FN %FP %FN %FP %FN %FP %FN %FP %FN %FP

p = 30

RegMCD (0, . . . , 0)� 100.0 4.2 100.0 0.0 - 3.0 50.0 2.0 0.0 0.0
PCOut (0, . . . , 0)� 100.0 8.0 100.0 13.0 - 14.0 30.0 8.0 0.0 11.0

RegMCD (2, . . . , 2)� 0.0 0.0 0.0 2.0 0.0 1.0 0.0 0.8 0.0 2.0
PCOut (2, . . . , 2)� 0.0 2.0 0.0 7.0 0.0 5.0 0.0 4.0 0.0 7.0

RegMCD (5, . . . , 5)� 0.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
PCOut (5, . . . , 5)� 0.0 11.0 0.0 8.0 0.0 5.0 0.0 8.0 0.0 6.0

p = 50

RegMCD (0, . . . , 0)� 100.0 2.0 100.0 0.0 - 0.0 10.0 0.0 0.0 0.0
PCOut (0, . . . , 0)� 100.0 10.0 100.0 9.0 - 25.0 10.0 7.0 0.0 4.0

RegMCD (2, . . . , 2)� 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
PCOut (2, . . . , 2)� 0.0 6.0 0.0 7.0 0.0 6.0 0.0 8.0 0.0 8.0

RegMCD (5, . . . , 5)� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
PCOut (5, . . . , 5)� 0.0 5.0 0.0 6.0 0.0 10.0 0.0 8.0 0.0 4.0

p = 100

RegMCD (0, . . . , 0)� 100.0 0.9 100.0 0.0 - 0.1 10.0 0.0 0.0 0.0

PCOut (0, . . . , 0)� 100.0 6.0 100.0 7.0 - 7.0 60.0 8.0 0.0 8.0
RegMCD (2, . . . , 2)� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PCOut (2, . . . , 2)� 0.0 6.0 0.0 3.0 0.0 5.0 0.0 3.0 0.0 2.0
RegMCD (5, . . . , 5)� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PCOut (5, . . . , 5)� 0.0 5.0 0.0 6.0 0.0 0.0 0.0 3.0 0.0 1.0

p = 200

RegMCD (0, . . . , 0)� 100.0 0.0 100.0 0.0 - 0.0 0.0 0.0 0.0 0.0
PCOut (0, . . . , 0)� 100.0 6.0 90.0 2.0 - 2.0 20.0 4.0 0.0 4.0

RegMCD (2, . . . , 2)� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PCOut (2, . . . , 2)� 0.0 3.0 0.0 0.0 0.0 5.0 0.0 3.0 0.0 4.0

RegMCD (5, . . . , 5)� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PCOut (5, . . . , 5)� 0.0 3.0 0.0 3.0 0.0 1.0 0.0 3.0 0.0 7.0

σout ∈ {0.1, 0.5}. This is due to the fact that in these cases the outliers are
perfectly masked by the rest of the data. For µout = (0, . . . , 0)� and σout = 1,
the outliers are distributed like the non-outliers, which makes a comparison
meaningless. For this reason we do not report the corresponding results of FN.
For the remaining settings (containing either shift and/or location outliers),
we can see that most of the time, the RegMCD method performs better than
PCOut, especially as far as the false positives are concerned. We also want to
point out the fact that both methods perform very well for high dimensional
data.
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Fig. 1 Distance Distance Plot showing robust squared Mahalanobis distances com-
puted by means of RegMCD and PCOut. Outliers are flagged with an ’o’ symbol.
The horizontal and vertical lines denote the 0.975-quantile of the χ2

50 distribution.
p = 50, µout = (0, . . . , 0)�, σout = 2.

For the configuration p = 50, µout = (0, . . . , 0)�, and σout = 2, we created
an additional distance-distance plot, which is shown in Fig. 1. The robust
distances of the RegMCD method were computed according to equation (8),
whereas the PCOut distances were computed according to

d2i (xi, µ̂, Σ̂
−1) = (xi − µ̂)�Σ̂−1(xi − µ̂) . (11)

In this case, µ̂ and Σ̂ denote the classical mean and covariance matrix based
on those observations xi where wi > 0.25 (i.e. those that were flagged by the
PCOut procedure as regular observations). The horizontal and vertical lines
denote the 0.975-quantile of the χ2

50 distribution. Outliers are plotted with
an ’o’ symbol.

The image confirms the results from Table 1: Some of the non-outliers
have large distances in terms of PCOut, which corresponds to the higher rate
of false positives. The RegMCD method, though, identifies all non-outliers
correctly. As far as the false negatives are concerned, both methods perform
equally well.

4 Conclusion

We have investigated in detail the RegMCD method for outlier detection; the
method is based on a robust and regularized estimation of the inverse covari-
ance matrix. The regularization parameter λ can be chosen according to an
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adapted BIC criterion in order to achieve optimal results. The method han-
dles high dimensional data well, even if n < p, where other approaches fail.

Although in the simulations we used only up to twice as many variables
than observations, this is not a restriction to the method; p can be much
higher than n. There is only a limitation with respect to the computation
time, which increases exponentially with p. For the simulation setup, a single
run of the method takes about one second for p = 50, about seven seconds for
p = 100, and up to three minutes for p = 200. These times were measured on
an Intel Core2 Duo processor with 3GHz and a total of 4Gb random access
memory.

We have illustrated the performance of the algorithm by means of a sim-
ulated data example. Furthermore, we have compared the method to the
PCOut procedure. Although both methods perform well, there is a visible
advantage for the RegMCD procedure.
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Robust Diagnostics of Fuzzy
Clustering Results Using the
Compositional Approach

Karel Hron and Peter Filzmoser

Abstract. Fuzzy clustering, like the known fuzzy k-means method, allows to
incorporate imprecision when classifying multivariate observations into clus-
ters. In contrast to hard clustering, when the data are divided into distinct
clusters and each data point belongs to exactly one cluster, in fuzzy clustering
the observations can belong to more than one cluster. The strength of the as-
sociation to each cluster is measured by a vector of membership coefficients.
Usually, an observation is assigned to a cluster with the highest membership
coefficient. On the other hand, the refinement of the hard membership coef-
ficients enables to consider also the possibility of assigning to another cluster
according to prior knowledge or specific data structure of the membership
coefficients. The aim of the paper is to introduce a methodology to reveal
the real data structure of multivariate membership coefficient vectors, based
on the logratio approach to compositional data, and show how to display
them in presence of outlying observations using loadings and scores of robust
principal component analysis.

Keywords: Compositional biplot, compositional data, fuzzy clustering, ro-
bust principal component analysis.

1 Overview of Fuzzy Clustering

In fuzzy clustering, each assignment of an object is distributed proportionally
to all clusters through membership coefficients according to the similarity to
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each of the clusters. The number of clusters k for the n objects needs to be
provided in advance. Then an objective function

k∑

v=1

∑n
i=1

∑n
j=1 u

2
ivu

2
jvd(i, j)

2
∑n

j=1 u
2
jv

, (1)

that contains only the similarity measure d(i, j) and the desired membership
coefficients uiv of the i-th object to the v-th cluster, needs to be minimized.
The measure d(i, j) can be chosen e.g. as squared Euclidean distance when
the fuzzy k-means method is applied [3, 4]; an alternative choice is described
in [10]. Each object is usually assigned to a cluster with the highest mem-
bership coefficient. On the other hand, the refinement of the hard clustering
result enables to consider also the possibility of assigning to another cluster
according to prior knowledge or specific data structure of the membership
coefficients. It means that although an observation belongs to a certain clus-
ter according to the classification rule, the data structure of the membership
coefficients implies its pertinence rather to another cluster.

Obviously, the sum of the membership coefficients equals 1 or 100 (in case
of proportions or percentages, respectively), so their sample space can be
considered to be a k-part simplex,

Sk = {u = (u1, . . . , uk)′, ui > 0,

k∑

i=1

ui = 1}, (2)

the prime stands for a transpose. Here we have excluded the case of zero
membership values since then the predefined number of clusters obviously
needs to be revisited. The important difference of fuzzy clustering to hard
clustering methods is contained in the fact that with the latter we obtain a
detailed information about the data structure. On the other hand, with an
increasing number of the involved groups the results become quite complex
so that the obtained information cannot be easily processed further.

For this reason, in this paper we focus on the case of more clusters involved
into the analysis and provide a tool to display the multivariate data struc-
ture of the membership coefficients using a biplot of loadings and scores from
principal component analysis [9]. Hereat we consider in particular a specific
data structure of the coefficients, that contain naturally only relative infor-
mation, and can thus be identified with the concept of compositional data [1].
In addition, we apply a robust counterpart of principal component analysis to
ensure that the obtained diagnostics tool will not be influenced by outlying
observations. The next section provides a brief review on compositional data
and the log-ratio approach for their statistical analysis. Then we introduce
classical and robust principal component analysis to construct a biplot and
demonstrate how it can be applied in case of compositional data. Finally, the
theoretical results will be applied to a real-world example.
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2 Relative Information and Compositional Data

Each vector of membership coefficients contains exclusively relative informa-
tion, thus only ratios between its parts are informative. In the context of
fuzzy clustering, the coefficients are normalized to a prescribed constant sum
constraint (proportions, percentages). However, this is not a necessary con-
dition but rather a proper representation of the observations, also a positive
constant multiple of the vector would provide exactly the same information.
In addition, also the concept of relative scale plays an important role here:
if a membership coefficient of a certain group increases from 0.1 to 0.2 (two
times), it is not the same as an increase from 0.5 to 0.6 (1.2 times), although
the Euclidean distances are the same in both cases. All these above proper-
ties can be found in the concept of compositional data as introduced in the
early 1980s by John Aitchison [1]. The properties of this kind of observations
induce a special geometry of compositional data, the Aitchison geometry on
the simplex [6] that forms for k-part compositional data, a Euclidean space
of dimension k − 1. Then the main goal is to represent compositional data
in orthonormal coordinates with respect to the Aitchison geometry and to
perform usual multivariate methods for their statistical analysis. This con-
cept is closely connected with the family of isometric log-ratio (ilr) trans-
formations from the Sk to the (k − 1)-dimensional real space Rk−1 [5]. One
popular choice results for a composition u = (u1, . . . , uk)′ in ilr coordinates
z = (z1, . . . , zk−1)′, where

zi =

√
k − i

k − i + 1
ln

ui

k−i

√∏k
j=i+1 uj

, i = 1, . . . , k − 1. (3)

Obviously, the ilr transformations move the Aitchison geometry on the sim-
plex isometrically to the usual Euclidean geometry in real space, i.e. to the
geometry that we are used to work in. This has also consequences for visu-
alization of the compositional data structure. Three-part compositions are
traditionally displayed in a ternary diagram. The ternary diagram is an equi-
lateral triangle U1U2U3 such that a composition u = (u1, u2, u3)′ is plotted
at a distance u1 from the opposite side of vertex U1, at a distance u2 from
the opposite side of vertex U2, and at a distance u3 from the opposite side of
the vertex U3 (see, e.g., [1, 12]).

An example can be seen in Fig. 1 with the well-known Iris data set [8] that
contains measurements for 50 flowers from each of 3 species of iris. Fuzzy
k-means clustering was applied with k = 3. The ternary diagram (left) shows
the resulting membership coefficients, where the lines correspond to equal
coefficients in two groups. The lines can thus be considered as separation lines
for a hard cluster assignment. The plot symbols correspond to the true group
memberships. One of the clusters (circles) is clearly distinguishable, but the
other two clusters show some overlap that leads to a misclassification. The
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Fig. 1 Membership coefficients of the Iris data in the ternary diagram (left) and
after ilr transformation (right) are displayed together with borders (lines) for the
classification rule. The symbols correspond to the true memberships.

right plot panel shows the ilr-transformed results, again with the separating
lines. The misclassified observations are of course still the same, but the data
structure is much better visible in the overlapping region. In this plot the
distances are in terms of the usual Euclidean geometry, while in the ternary
diagram one has to think in the Aitchison geometry.

Although the ilr transformation has nice geometrical properties, an inter-
pretation of the orthonormal coordinates is sometimes quite complex. Thus,
for the purpose of a compositional biplot introduced in the next section, a
representation of compositions in a special generating system is more ap-
propriate. The resulting coordinates correspond to the centred logratio (clr)
transformation [1], given for a k-part composition u as

(y1, . . . , yk)′ =

⎛

⎝ u1

k

√∏k
i=1 ui

, . . . ,
uk

k

√∏k
i=1 ui

⎞

⎠
′

. (4)

The clr transformation seems easier to handle than the ilr transformation,
however, it leads to a singular covariance matrix, because the sum of yi, i =
1, . . . , k, equals zero. This makes the use of robust statistical methods not
possible. In the next section we show how the ilr transformation can be
utilized in this case.
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3 Diagnostics Using a Robust Compositional Biplot

Unfortunately, for more than three-part compositional data it is not possible
to visualize them in a planar graph without dimension reduction. A proper
tool for this purpose seems to be the compositional biplot [2]. It displays
both samples and variables of a data matrix graphically in the form of scores
and loadings of the first two principal components [9]. Note that the well-
known principal component analysis is appropriate for this purpose, because
it explains most of the variability of the original multivariate data by only
few new variables (the mentioned principal components). Usually, samples
in the biplot are displayed as points while variables are displayed either as
vectors or rays. For compositional data, one would intuitively construct the
biplot for ilr-transformed data, however, due to the complex interpretation
of the new variables it is common to construct the compositional biplot for
clr-transformed compositions as proposed in [2]. The scores represent the
structure of the compositional data set in the Euclidean real space, so they
can be used to see patterns and clusters in the data. The loadings (rays) rep-
resent the corresponding clr-variables. In the compositional biplot, the main
interest is concentrated to links (distances between vertices of the rays); con-
cretely, for the rays i and j, i, j = 1, . . . , k, the link approximates the (usual)
variance var(ln ui

uj
) of the logratio between the compositional parts (clusters)

ui and uj. Hence, when the vertices coincide, or nearly so, then the ratio
between ui and uj is constant, or nearly so, and the corresponding clusters
are redundant. In addition, directions of the rays signalize where observa-
tions with dominance of the clusters are located. Although the dimension
reduction, caused by taking only the first two principal components, natu-
rally leads to some inconsistencies (observations from different clusters may
overlap, also the display of classification boundaries is not meaningful), the
biplot can be used to reconstruct the multivariate data structure and reveal
reasons for misclassification within fuzzy clustering.

However, through all the advantages of the compositional biplot, outliers
can substantially affect results of the underlying principal component analy-
sis and depreciate the predicative value of the biplot. For this reason, a robust
version of the biplot is needed. Because the principal component analysis is
based on the estimation of location and covariance, we need to find proper
alternatives to the standard choice, represented by the arithmetic mean and
the sample covariance matrix that can be strongly influenced by outlying
observations. Among the various proposed robust estimators of multivariate
location and covariance, the MCD (Minimum Covariance Determinant) es-
timator (see, e.g., [11]) became very popular because of its good robustness
properties and a fast algorithm for its computation [13]. The MCD estimator
looks for a subset h out of n observations with the smallest determinant of
their sample covariance matrix. A robust estimator of location is the arith-
metic mean of these observations, and a robust estimator of covariance is the
sample covariance matrix of the h observations, multiplied by a factor for
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consistency at normal distribution. The subset size h can vary between half
the sample size and n, and it will determine the robustness of the estimates,
but also their efficiency.

Besides robustness properties the property of affine equivariance of the
estimators of location and covariance plays an important role. The location
estimator T and the covariance estimator C are called affine equivariant, if
for a sample z1, . . . , zn of n observations (e.g. ilr-transformed membership
vectors) in RD−1, any nonsingular (D − 1)× (D − 1) matrix A and for any
vector b ∈ RD−1 the conditions

T (Az1 + b, . . . ,Azn + b) = AT (z1, . . . , zn) + b,

C(Az1 + b, . . . ,Azn + b) = AC(z1, . . . , zn)A′

are fulfilled. The MCD estimator shares the property of affine equivariance
for both the resulting location and covariance estimator.

Because the robust statistical methods cannot work with singular data,
the robust scores and loadings must be computed from ilr-transformed com-
positions before their representation in the clr space. Below we provide some
technical details according to paper [7].

Given an n × k data matrix Un,k with n membership coefficient vectors
u′
i, i = 1, . . . , n, in its rows. Applying the clr transformation to each row

results in the clr-transformed matrix Y. The relation

Z = YV (5)

for the ilr-transformed data matrix Z of dimension n× (k − 1) follows from
the relation between clr and ilr transformations where the columns of the
k × (k − 1) matrix V contain orthonormal basis vectors of the hyperplane
y1 + · · · + yk = 0, V′V = Ik−1 (identity matrix of order k − 1) [5]. Using
the location estimator T (Z) and the covariance estimator C(Z) for the ilr-
transformed data, the principal component analysis transformation is defined
as

Z∗ = [Z− 1T (Z)′]Gz. (6)

The (k − 1)× (k − 1) matrix Gz results from the spectral decomposition of

C(Z) = GzLzG
′
z, (7)

where the matrix Lz is made up of the sorted eigenvalues of matrix C(Z).
If the original data matrix has rank k − 1, the matrix Z will also have

full rank k − 1, and an affine equivariant estimator like MCD can be used
for T (Z) and C(Z), resulting in robust principal component scores Z∗ and
loadings Gz. However, since these are no longer easily interpretable, we have
to back-transform the results to the clr space. The scores in the clr space,
Y∗, are identical to the scores Z∗ of the ilr space, except that the additional
last column of the clr score matrix has entries of zero. For obtaining the
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back-transformed loading matrix we can use relation (5). For an affine equiv-
ariant scatter estimator we have

C(Y) = C(ZV′) = VC(Z)V′ = VGzLzG
′
z V

′, (8)

and thus the matrix
Gy = VGz (9)

represents the matrix of eigenvectors to the nonzero eigenvalues of C(Y)
(with the property G′

yGy = Ik−1). The nonzero eigenvalues of C(Y) are
the same as for C(Z) and consequently the explained variance with the cho-
sen number of principal components remains unchanged. Finally, the robust
loadings and scores can be used to obtain a robust biplot for compositional
data.

The above introduced theoretical framework is applied to geochemical data
originated from a 120 km transect running through Oslo. In total, 360 samples
from nine different plant species (40 samples for each species) were analyzed
for the concentration of 25 chemical elements. The data set is available in the
R package rrcov as object OsloTransect. Here we only used the variables
with reasonable data quality, namely Ba, Ca, Cr, Cu, La, LOI, Mg, Mn, P,
Pb, Sr and Zn. Since the data set is of compositional nature itself, we first
used the ilr-transformation and afterwards applied fuzzy k-means clustering
with k = 9 (number of different plant species in the data set). This results in
nine-part membership coefficients, and thus their visualization in a ternary
diagram is no longer possible.
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Fig. 2 Biplot resulting from an application to the untransformed membership coef-
ficients (left), and robust biplot resulting from transformed membership coefficients
(right)
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Without being aware of the above approach based on compositional data
analysis, one would probably try to summarize the information contained
in the matrix of membership coefficients by principal component analysis
(PCA). This procedure is applied here for comparison, and the resulting
biplot is presented in Fig. 2 left. The symbols refer to the clusters that have
been found with k-means clustering. One can see that there is a certain
grouping structure, but there is a lot of overlap of the groups. This is due to an
application of PCA in a inappropriate space, the simplex sample space. Note
that a robust PCA applied in this space would not lead to an improvement.

Next we apply the procedure as proposed above, by first transforming the
membership coefficients, and then applying robust PCA. The resulting robust
compositional biplot is displayed in Fig. 2 right. This plot allows for a much
better visual inspection. In contrast to the previous biplot, here the first two
principal components explain more than 80% of the total variance. It can be
seen that fuzzy k-means clustering indeed gave membership coefficients that
correspond to relatively clearly separated groups. This also verifies that the
algorithm worked well, and that the clustering structure in the data is clearly
present. Here we do not further analyse if the correct groups (plant species)
were identified, since we are not evaluating the clustering procedure itself.
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Rank Tests under Uncertainty:
Regression and Local
Heteroscedasticity

Jana Jurečková and Radim Navrátil

Abstract. Data are often affected by unknown heteroscedasticity, which can
stretch the conclusions. This is even more serious in regression models, when
data cannot be visualized. We show that the rank tests for regression signifi-
cance are resistant to some types of local heteroscedasticity in the symmetric
situation, provided the basic density of errors is symmetric and the score-
generating function of the rank test is skew-symmetric. The performance of
tests is illustrated numerically.

Keywords: Heteroscedasticity, linear regression, rank test.

1 Introduction and Basic Assumptions

Consider the model

Yi = β0 + x�
niβ + σniUi, i = 1, . . . , n (1)

where Yn = (Y1, . . . , Yn)� is the vector of observations, xni ∈ Rp, 1 ≤
i ≤ n are known or observable regressors, β0 ∈ R1, β ∈ Rp and σn =
(σn1, . . . , σnn)� ∈ R

+
n are unknown parameters and Un = (U1, . . . , Un)�

are the i.i.d. errors with the joint but unknown distribution function F. The
problem is to test the hypothesis H : β = 0 with β0, σ unspecified. An
alternative for H is not only β �= 0; one must consider also some structure
for σ. In practical problems, many authors consider the regression in scale of
the form
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σni = exp{z�niγ}, i = 1, . . . , n (2)

with known or observable zni ∈ Rq, 1 ≤ i ≤ n, and unknown parame-
ter γ ∈ R

q. Such model was considered by Akritas and Albers [1], who
constructed an aligned rank test on some components of parameter β, with
γ replaced by a suitable R-estimator. Gutenbrunner [4] constructed a test of
heteroscedasticity, i.e. of H∗ : γ = 0, when zni in (2) was partitioned as
z�ni = (1,x�

ni, ξ
�
ni)

�, with xni from (1) and ξni was an an external vector, i =
1, . . . , n. His test was based on a combination of regression rank scores for the
ξni and regression quantile estimator of β. This test was then modified in [3],
see also the review paper [7]. Estimation problem in model (1) was studied by
Dixon and McKean [2], who modeled the scale as σni = exp{θh(x�

niβ)}, i =
1, . . . , n, with a known function h; they estimated β and θ iteratively by
means of suitable R-estimates.

In model (1) with scale (2), we want to test the hypothesis

H0 : β = 0, β0 and γ unspecified.

We try to use the rank tests for H0, profiting from their wide invariance
properties. Tests of H0 : β = 0 under a nuisance heteroscedasticity, based
on regression rank scores, are studied by authors in [6], along with the tests
of H∗ : γ = 0 of no heteroscedasticity, with β unspecified.

In the present paper, we consider standard rank tests and investigate, up
to which extent the ignorance of heteroscedasticity affects the result of the
test. We consider the local heteroscedasticity, meaning that γn = n−1/2δ, 0 �=
δ ∈ Rq. It turns out that the local heteroscedasticity does not worsen the
asymptotic efficiency of the test, provided that either the x- and z-regressors
are orthogonal, or the errors Ui have a symmetric density f, and the score
function of our rank test is skew-symmetric.

Hence, we assume that F has an absolutely continuous symmetric density
f and finite Fisher’s informations with respect to the location and scale,

0 < I(f) =

∫ (
f ′(x)

f(x)

)2

f(x)dx <∞ (3)

0 < I1(f) =

∫ [
−1− xf

′(x)

f(x)

]2
f(x)dx <∞.

Let Xn =

⎡

⎣
x�
n1

· · ·
x�
nn

⎤

⎦ , X̃n =

⎡

⎣
(xn1 − x̄n)�

· · ·
(xnn − x̄n)�

⎤

⎦ , Zn =

⎡

⎣
z�1
· · ·
z�n

⎤

⎦

be (n × p) and (n × q) matrices, respectively, x̄n = 1
n

∑n
i=1 xni. We assume

that the regressors satisfy
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max
1≤i≤n

‖xni‖ = o(n
1
2 ), max

1≤i≤n
‖zni‖ = o(n

1
2 ) as n→∞,

lim
n→∞ D̃n = lim

n→∞
1

n
X̃�
n X̃n = D̃, lim

n→∞Qn = lim
n→∞

1

n
Z�
nZn = Q,

lim
n→∞

1

n
X̃�
nZn = B (4)

lim
n→∞

[
max
1≤i≤n

{
(xni − x̄n)�(X̃�

n X̃n)−1(xni − x̄n)
}]

= 0,

lim
n→∞

[
max
1≤i≤n

{
z�ni(Z

�
nZn)−1zni

}]
= 0

where D̃ and Q are positive definite (p×p) and (q×q) matrices, respectively,
and B is a (p× q) matrix.

2 Rank Tests and Local Heteroscedasticity

The homoscedasticity in model (1) and (2) means that γ = 0. We speak on
the local heteroscedasticity, when

γ = γn = n− 1
2 δ, δ ∈ Rq, δ �= 0, ‖δ‖ ≤ C <∞. (5)

We intend to use a rank test for H0 based on the ranks Rn1, . . . , Rnn of
Y1, . . . , Yn. If we are not aware of the heteroscedasticity, we use the standard
rank test based on the vector of linear rank statistics

Sn = n− 1
2

n∑

i=1

(xni − x̄n)an(Rni) = n− 1
2

n∑

i=1

(xni − x̄n)ϕ

(
Rni
n+ 1

)
(6)

where ϕ : (0, 1) �→ R1 is a nondecreasing and square-integrable score-
generating function. The test criterion for H0 is the quadratic form in Sn,

T 2
n =

S�
n D̃

−1
n Sn

A2(ϕ)
, A2(ϕ) =

∫ 1

0

ϕ2(t)dt− ϕ̄2, ϕ̄ =

∫ 1

0

ϕ(t)dt. (7)

The test rejects H0 in favor of β �= 0 if T 2
n > Cα where Cα is the critical

value such that

IPH0

(T 2
n > Cα

)
+ τIPH0

(T 2
n = Cα

)
= α, 0 ≤ τ < 1.

In the absence of heteroscedasticity, the null distribution of the test criterion,
and hence Cα, does not depend on the specific f. The critical value Cα
can be obtained by calculating T 2

n for all or for an appropriate fraction of
the n! permutations of {1, . . . , n} in the role of ranks. For large number
n of observations, we use the asymptotic distribution: Under (3) and (4),
the asymptotic null distribution of T 2

n , as n → ∞, is χ2-distribution with
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p degrees of freedom. The asymptotic Pitman efficiency of the test follows
from [8], Chapter 5. Our problem of interest is to find how the eventual
heteroscedasticity affects the efficiency of this test.

Under hypothesis H0 and under heteroscedasticity (2), the random vector
Y has density

qn,γ(y1, . . . , yn) =

n∏

i=1

exp{z�niγ}f
(
yi exp{z�niγ}

)
. (8)

Under the local heteroscedasticity (5), the sequence of densities {qnγ} is con-
tiguous to the sequence {qn0}, corresponding to γ = 0 (for contiguity see [5],
Chapter VI). It further follows from [5] and from [8], that the asymptotic dis-

tribution of Sn under H0 and under (5) is normal Np
(
μδ, A

2(ϕ) D̃
)
, where

μδ = B δ

∫ 1

0

ϕ(u)ϕ1(u, f)du,

ϕ1(u, f) = −1− F−1(u)
f ′(F−1(u))

f(F−1(u))
, 0 < u < 1. (9)

Hence, the criterion T 2
n has, under H0 and under the local heteroscedasticity,

asymptotically noncentral χ2
p distribution with noncentrality parameter

η2 = δ�B�D−1Bδ
[
∫ 1

0
ϕ(u)ϕ1(u, f)du]2

A2(ϕ)
. (10)

Particularly, the noncentrality parameter vanishes if either Zn is asymptoti-
cally orthogonal to X̃n, i.e. X̃�

nZn → 0 as n → ∞, or if f is symmetric and
ϕ is skew-symmetric, i.e.

f(x) = f(−x), x ∈ R1 and ϕ(u) = −ϕ(1− u), 0 < u < 1.

If this happens, the asymptotic distribution of T 2
n is still central χ2

p distri-
bution, regardless γ. Hence, if the heteroscedasticity in model (1) is only
local, the asymptotic distribution of T 2

n under H0 is not changed if either
the x-regressors are orthogonal to the z-regressors, or if f is symmetric and
ϕ skew-symmetric. In such case, we reject H0 if T 2

n ≥ χ2(α) where χ2(α)
is the (1 − α)-quantile of the central χ2

p distribution. It further follows from
the behavior of tests under contiguous alternatives (see [5]), that then even
the asymptotic relative efficiency of the test, corresponding to small values
of ‖]boldgreekβ]| = O(n−1/2), does not change, either.

If we can expect a symmetry of f or orthogonality of X̃ and Z, then we
take the rank test with a skew-symmetric score generating function, e.g. the
Wilcoxon ϕ(u) = 2u− 1, or the median ϕ(u) = sign(u− 1

2 ), 0 ≤ u ≤ 1. For a
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more general case, we can recommend tests based on regression rank scores;
this is a subject of the forthcoming study [6].

3 Numerical Illustration

The following simulation study illustrates how the procedures work in finite
sample situation for various choices of score function ϕ and for various model
errors Ui.

Consider the model of regression line with a possible heteroscedasticity

Yi = β0 + βxi + exp {ziγ}Ui, i = 1, . . . , n,

and the problem of testing H0 : β = 0 against two-sided alternative β �= 0,
considering β0 and γ as nuisance parameters. Nuisance β0 does not affect
power of the tests, because rank tests are invariant to the location, so that
further on it will be considered fixed: β0 = 2.

We take the following three choices of score function ϕ:

ϕ(1)(t) = 2t− 1 Wilcoxon scores,

ϕ(2)(t) = Φ−1(t) van der Waerden scores,
ϕ(3)(t) = sign(t− 1/2) median scores,

where Φ−1(t) is quantile function of standard normal distribution N(0, 1).
First we compared the powers of the test (7) for these score functions. The
regressors xi and zi were generated from independent samples of sizes n = 100
from uniform (−2, 10) distribution. Model errors Ui were generated from nor-
mal, logistic, Laplace and t-distribution with 6 degrees of freedom, respec-
tively, always with 0 mean a variance 3/2. The empirical powers of tests were

Table 1 Percentage of rejections of hypothesis H0 : β = 0 for various model errors
Ui by Wilcoxon, van der Waerden and median tests - (in this order), γ = 0.05

β \ Ui normal logistic Laplace t-distribution

0 4.94 4.32 5.26 5.05 5.21 5.13 5.05 4.21 5.14 5.07 4.51 5.52

−0.03 10.03 8.92 8.75 11.13 9.87 9.92 13.28 11.10 15.00 11.10 9.76 9.89

0.03 10.29 9.20 9.31 10.70 9.20 9.60 13.02 10.59 14.70 11.01 9.72 9.74

0.05 19.33 17.84 15.46 21.76 19.13 18.03 27.73 22.80 30.49 22.92 20.03 19.87

0.07 33.26 31.12 25.38 37.49 33.62 31.04 47.62 40.44 50.46 40.02 35.89 32.89

0.1 59.59 57.55 45.42 65.17 60.46 55.05 76.17 68.45 76.70 67.22 62.39 56.66
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Table 2 Percentage of rejections of hypothesis H0 : β = 0 for various model errors
Ui by Wilcoxon, van der Waerden and median tests - (in this order), γ = −0.05

β \ Ui normal logistic Laplace t-distribution

0 5.01 4.22 5.20 4.84 4.38 4.98 4.82 4.33 5.02 5.03 4.41 5.54

−0.03 16.62 15.20 13.55 18.79 16.44 16.02 23.98 19.71 26.46 19.52 17.18 16.56

0.03 16.70 15.07 13.91 18.25 15.97 15.41 23.28 18.88 25.99 19.17 16.67 16.35

0.05 37.88 35.27 28.52 41.40 37.10 34.26 52.08 44.48 55.09 43.65 39.03 36.81

0.07 63.09 60.77 48.94 68.16 63.87 58.23 78.68 71.25 80.00 71.26 66.70 61.02

0.1 90.25 89.54 77.51 93.11 90.83 85.61 96.85 94.25 96.34 94.03 92.03 87.60

Table 3 Percentage of rejections of hypothesis H0 : β = 0 by Wilcoxon test

γ\β 0 0.01 0.03 0.05 0.07 0.1

0 5.03 6.21 16.92 38.33 63.91 90.86

−0.01 4.97 6.50 17.54 40.83 66.82 92.69

0.01 4.76 6.01 15.31 35.92 60.80 88.76

−0.02 4.81 6.30 19.36 45.54 70.28 94.39

0.02 4.88 5.68 15.35 32.97 55.97 86.09

−0.03 4.38 5.86 20.09 45.79 73.97 95.64

0.03 5.02 5.79 14.40 31.03 53.63 83.38

computed as percentages of rejections of H0 among 10 000 replications, at
significance level α = 0.05. The results are summarized in Tbl. 1 (γ = 0.05)
and Tbl. 2 (γ = −0.05).

Notice that the power of Wilcoxon test is comparable with that of the
van der Waerden test, even for normally distributed errors. The median test
shows better performace for Laplace model errors, for which it is optimal,
though the power of Wilcoxon test is only slightly smaller even in this case.
Generally, Wilcoxon test achieves the best results for all choices of model
errors, despite its simple form.

Table 3 compares the empirical powers of Wilcoxon test for various β and
γ. Design of the simulation is considered the same as in the previous situation,
model errors Ui were generated from standard normal distribution N(0, 1).

Since all the considered score functions are skew-symmetric and all the
model errors are symmetric, the rank tests preserve prescribed probability
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of the error of the first kind α. However, in the finite-sample situation, the
powers of tests can still depend on the nuisance parameter γ, compared with
the homoscedastic situation γ = 0. As we have chosen regressors zi symmetric
around 4, rather than around 0, the variance of the model errors is higher for
γ positive than for γ negative, what has an effect on the power.
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Robustness Issues in Text Mining

Marco Turchi, Domenico Perrotta, Marco Riani, and Andrea Cerioli

Abstract. We extend the Forward Search approach for robust data analysis
to address problems in text mining. In this domain, datasets are collections of
an arbitrary number of documents, which are represented as vectors of thou-
sands of elements according to the vector space model. When the number of
variables v is so large and the dataset size n is smaller by order of magnitudes,
the traditional Mahalanobis metric cannot be used as a similarity distance
between documents. We show that by monitoring the cosine (dis)similarity
measure with the Forward Search approach it is possible to perform robust
estimation for a document collection and order the documents so that the
most dissimilar (possibly outliers, for that collection) are left at the end. We
also show that the presence of more groups of documents in the collection is
clearly detected with multiple starts of the Forward Search.

Keywords: Cosine similarity, document classification, forward search.

1 Introduction

In text mining, where large collections of textual documents are analyzed by
automatic tools such as document classifiers or indexers to help human beings
to better understand their contents, the most used document representation
schema is the vector space model (VSM), introduced by [11] in information
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retrieval. This model transforms a text in a machine readable vector assign-
ing words to numeric vector components. Datasets are collections with an
arbitrary, sometimes large, number of units n (the documents) and each unit
is identified by dozens of thousands of VSM variables (the v document word
identifiers). In several text mining applications there is the need of estimating
a centroid for a given document collection, and to define an ordering of the
documents with respect to the centroid, from the most to the least repre-
sentative one. This ordering can be used to identify documents which have a
weak semantic relation with the dominant subject(s) in the collection.

Outlying documents are likely to be present in most text mining applica-
tions, either because they correspond to documents which are inconsistent
with the rest of the collection, or because of human mistakes in document la-
beling. Three popular strategies for robust estimation in presence of outliers
are the following (see, e.g. [7] for a review):

1. Use a reduced number of units in order to exclude outliers from the esti-
mation process;

2. Down-weight each unit according to its deviation from the centroid;
3. Optimize a robust objective function.

Disadvantages of these approaches are the fact that the percentage of units
to be discarded needs to be fixed in advance (strategy 1), that there is no
universally accepted way to down-weight observations (strategy 2) and that
optimization of complex functions may cause severe computational problems
(strategy 3). In addition, these strategies cannot be easily extended to het-
erogeneous datasets, with the purpose of identifying subgroups of similar
documents in the collection. A different approach is followed by a fourth ro-
bust strategy, the Forward Search (FS) [1, 3]: instead of choosing just one
subsample, a sequence of subsets of increasing size is fit and a problem-specific
diagnostic is monitored in order to reveal if a new observation is in agreement
with those previously included. Outliers are left at the end of the subset se-
quence and the effect of each unit, once it is introduced into the subset, can
be measured and appraised.

With VSM, where the number of variables v is so large and the dataset
size n is perhaps smaller by order of magnitudes, none of the above strategies
can use traditional metrics such as the Mahalanobis distance to measure
the similarity between documents, as well as the distance from an estimated
centroid of the collection and any of the documents. The same drawback
also affects other robust distance-based methods for cluster analysis, like
TCLUST [5]. In this work, we extend the FS method to VSMs by adopting
the cosine similarity [14], a metric widely used in text mining. This metric is
the cosine of the angle between two vectors, which is therefore non-negative
and bounded between 0 and 1. It is also independent of the vector length.
More precisely, we propose to monitor the progression of the complement
to one of the minimum value of the cosine similarity between the subset
centroid and all units outside the subset. We will refer to this diagnostic as
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to the minimum cosine dissimilarity. Documents will be ordered with the FS
in such a way that the most dissimilar (possibly outliers, for that collection)
are left at the end of sequence. We will see that the extended FS algorithm
preserves the good properties shown by the FS in more traditional statistical
domains, such as regression [1], multivariate analysis and clustering [3].

The paper is structured as follows. Section 2 introduces the practical mo-
tivations for the work and gives details of the data. For our demonstrations,
we have used documents from a very rich source: the EuroVoc corpus. Then,
since the work relies on two choices, the VSM to represent documents and
the cosine similarity to measure their distance, Sect. 3 describes such choices
and some related work. Section 4 provides the results and shows the poten-
tial of the FS for text mining applications. In particular, Sect. 4.1 contex-
tualises the FS approach to text mining. All computations and simulations
have been performed by extending the robust routines included in the FSDA
toolbox of Matlab, downloadable from http://www.riani.it/matlab.htm

and http://fsda.jrc.ec.europa.eu [10].

2 The EuroVoc Corpus

This research is driven by a real need in the development of the JRC Eu-
roVoc Indexer (JEX) [13], a freely available multi-label categorization tool1.
JEX is a system which automatically assigns a set of category labels from a
thesaurus to a textual document. This software is based on the supervised
profile ranking algorithm proposed by [9], which uses the EuroVoc thesaurus.

The EuroVoc thesaurus2 is a multilingual, multidisciplinary thesaurus with
currently about 6800 categories, covering all activities of the European Union
(EU). EuroVoc’s category labels have been translated one-to-one into cur-
rently 27 languages. It was developed for the purpose of manual (human) cate-
gorisation of all important documents in order to allow multilingual and cross-
lingual search and retrieval in potentially very large document collections. As
EuroVoc has been used to classify legal documents manually for many years,
there are now tens of thousands of manually labelled documents per language
that can be used to train automatic categorisation systems [9]. This collection
of documents is available for download at http://eur-lex.europa.eu/.

The number of documents inside each category is highly unbalanced and
follows the Zipf’s law distribution: few categories contain more than 3000
documents, and a large number of categories has few documents. Categories
belong to different domains and they can be very specific (e.g. Fishery Man-
agement) or very generic (e.g. Radioactivity). In both cases, we cannot ex-
clude the presence of groups in the documents.

1 http://langtech.jrc.ec.europa.eu/JRC_Resources.html
2 http://Eurovoc.europa.eu/

http://www.riani.it/matlab.htm
http://fsda.jrc.ec.europa.eu
http://eur-lex.europa.eu/
http://langtech.jrc.ec.europa.eu/JRC_Resources.html
http://Eurovoc.europa.eu/
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Each English document of the corpus has to be preprocessed with an or-
dered series of operations. These include lowercasing each word (e.g. “The
White House, the”→ “the white house, the”), tokenizing the text (“the white
house, the” → “the white house , the”) and removing high frequent words
(stopwords) using an external list of more than 2500 words (“the white house
, the” → “white house”). This process reduces the vocabulary size and the
sparseness in the data. Then we translate the documents into their VSM
representations. For this purpose we count all the words in the full collection
after pre-processing and we keep a variable for each corpus term, including
those with zero frequency. The pre-processing work for the EuroVoc corpus
thus results in a VSM vector of 119, 112 variables, which is still sparse.

Models for thousands of categories are trained using only human labelled
samples for each category. The training process consists in identifying a list of
representative terms and associating to each of them a log-likelihood weight,
with the training set used as the reference corpus. A new document is repre-
sented as a vector of terms with their frequency in the document. The most
appropriate categories for the new document are found by ranking the cate-
gory vector representations (called profiles), according to their similarity to
the vector representation of the new document.

Despite the good performance provided by JEX, human label documents
are affected by the presence of outliers: documents which are either wrongly
assigned to a category or weakly correlated to the other documents into the
category. The main motivation of the proposed extension of the FS is the
automatic detection of these outliers, which have to be removed from the
training data used by JEX.

3 Similarity in the Vector Space Model

In information retrieval the VSM was proposed to automatically retrieve doc-
uments which are similar to an input query [11]. In the VSM, a document
d is represented in a high-dimensional space, in which each dimension cor-
responds to a term in the document. Formally, a document is a vector of v
components d = (t1, t2, ..., tv)′. A component, called term weight, measures
how a term is important and representative. In general, v can be the vo-
cabulary containing all terms of a natural language or all specific terms in
a collection of documents. This representation produces very sparse vectors,
which have only few non-zero terms.

Different options for the term weight are possible, most of which are dis-
cussed in [12]. The most used is the frequency count of a term in a doc-
ument (term frequency). The higher the count the more likely it is that
the term is a good descriptor of the content of the document. Other, more
complex, approaches exist that take into account the distribution of a term
in all the available documents. However, despite its limitations, the term
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frequency measure is easy to compute and is still the most popular choice
in text mining applications. Therefore, we restrict ourselves to a VSM where
each component of d is defined as a frequency count. Similarly, in this work
we do not explore possible extensions of the basic model, such as the Phrase-
based VSM [8], or the Context VSM [4].

[12] arguments that the similarity between two documents may be ob-
tained, as a first approximation, by applying the standard dot product
formula on the boolean vector representation of the two documents. This
representation would measure the number of terms that jointly appear in the
two documents. In practice, it is preferable to use weights lying in the range
[0, 1], in order to provide a more refined discrimination among terms, with
weights closer to 1 for the more important (frequent) terms. This naturally
yields to take as a similarity measure the cosine of the angle between two
VSM vectors:

cos(d1, d2) =

∑v
i=1 d1(i)d2(i)√∑v

i=1 d
2
1(i)

√∑v
i=1 d

2
2(i)

. (1)

Index (1) is called the cosine similarity between d1 and d2, while 1 −
cos(d1, d2) represents the cosine dissimilarity. The value of cos(d1, d2) is 0
if the two vectors are orthogonal, and 1 if they are identical. By definition,
the numerator takes into account only the non-zero terms of both vectors,
while the denominator is affected by all components of the vectors. Note that
the cosine similarity between large documents in general results in small val-
ues, because they have poor similarity values (a small scalar product and a
large dimensionality).

Since its introduction, the cosine similarity has been the dominant docu-
ment similarity measure in information retrieval and text mining (see e.g. [6]).
A key factor for its success is its capacity of working with high-dimensional
vectors, as it projects the vectors into the first quadrant of the circle of radius
one. This goes at the expenses of the information lost in the drastic reduc-
tion of dimensionality. A potential drawback of working with the pairwise
measure (1) is its lack of invariance under different correlation models for
the v term frequencies appearing in d1 and d2. However, a Mahalanobis-type
approach is unfeasible in text mining applications, except in very particular
situations. This is the price to pay when we work with v � n.

4 Data Analysis with the Forward Search

4.1 Steps of Forward Search for Text Mining

The FS builds subsets of increasing size m, starting from a small number of
units (the VSM vectors), e.g. m0 = 5, until all units are included. The subsets
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are built using this ordering criterion: at step m, compute the centroid of the
m units in the subset and select for the next subset the m + 1 units with
smaller cosine dissimilarity from the centroid. Then, as m goes from m0 to
n, we monitor the evolution of the minimum cosine dissimilarity. In absence
of outliers we expect a rather constant or smoothly increasing statistic pro-
gression. On the contrary the entry of outliers, which by construction will
happen in the last subsets, will be revealed by appreciable changes of the
minimum cosine dissimilarity trajectory. A similar behaviour is observed in
presence of different groups when we look at the data from the perspective
of a centroid fitted to one group. While for outlier detection a single forward
search from a good starting subset is sufficient to reveal possible isolated out-
liers, for cluster identification many searches are needed. Those starting in a
same group, will reveal the group presence in the form of converging group
trajectories, such as those highlighted in Fig. 2. The precise identification
of outliers and groups, with given statistical significance, is possible using
confidence envelopes for the cosine dissimilarity, that can be found along the
lines of [2]. Refer to [2] also for details on the key concepts recalled in this
section.

4.2 Synthetic Data

The distribution of the terms in a corpus, which typically follows a power
law (Zipf’s distribution), can be easily estimated once the documents are
translated into their VSM representation. Based on the estimated distribu-
tion parameters of the EuroVoc corpus, we have built synthetic datasets of
100 units and 119112 variables having cosine similarity for each pair of vec-
tors around 0.8. Such synthetic datasets are used to study the properties of
the proposed statistical analysis for a collection of documents with features
mimicking those of the EuroVoc corpus.

The left panel of Fig. 1 shows the monitoring of the minimum cosine dis-
similarity trajectories of 500 randomly started forward searches, for one of
these synthetic datasets. A prototype trajectory is displayed by a black solid
line. It is uneventful and well included within the bootstrap bands obtained
by random selection of the starting point. Therefore, this plot provides ev-
idence of what we can expect from the FS under the null hypothesis of an
homogeneous collection of documents.

On the right panel of Fig. 1 five units of the same dataset have been
shuffled. In the VSM this corresponds to considering 5 documents with com-
pletely different cosine similarity values from the rest of the documents in the
collection. Outlyingness of these observations is clearly reflected in the plot
by the large peak at the end of the searches, when the anomalous units enter
into the fitting subset regardless of the actual starting point. It may also oc-
casionally happen that a search is randomly initialised with one of such units,
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Fig. 1 500 random start forward searches for a synthetic dataset, homogeneous
(left panel) and with 5 shuffled units (right panel)

but then the algorithm is immediately able to recover and to substitute the
anomalous observations in the fitting subset with uncontaminated ones. In
the parlance of the FS, we say that interchanges have occurred in the first
steps of the algorithm.

4.3 EuroVoc Data

Figure 2 shows the minimum cosine dissimilarity trajectories of 500 randomly
started forward searches, for two EuroVoc datasets. The left panel is about
category C7, formed by 26 units and 119112 variables. The structure of this
plot is very different from what we have seen in Figure 1, both for the case of
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Fig. 2 500 random start forward searches for two EuroVoc datasets, classified by
professional librarians to categories identified with C7 (left panel) and C174 (right
panel)
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Fig. 3 Individual trajectories of the cosine dissimilarity measures for all the docu-
ments from their overall mean in one of the runs that clarifies the group structure
in Figure 2. Left panel: category C7; right panel: category C174.

uncontaminated data and when outliers are present. Specifically, at step 18
there are only three groups of 418, 15 and 67 trajectories (respectively from
the top to the bottom one). Each group is formed by trajectories that, starting
from different initial subsets of documents, converge to the same path. This
behaviour provides clear evidence of a cluster structure, because the searches
that start in individual groups continue to add observations from the group
until all observations in that cluster have been used in estimation. There is
then a sudden change in the cosine dissimilarity measure as units from other
clusters enter the subset used for estimation. We conclude that category C7
of the EuroVoc corpus cannot be considered homogeneous, but displays three
different substructures. This analysis can be supplemented by a forward plot
of the individual trajectories of the cosine dissimilarity measures for all the
documents from their overall mean in one of the runs that clarifies the group
structure in Figure 2. This plot is shown in the left panel of Figure 3. Despite
the reduced sample size, three groups of trajectories with different shapes
emerge, with one of them “crossing” the other two.

Our analysis is repeated for category C174. Here the pictures are even
clearer, thanks to the increased sample size (n = 81 documents, again on
119112 variables) and to the presence of only two groups. These clusters are
identified, at step 40, by two bunches of 39 and 461 trajectories, respectively,
of the minimum cosine dissimilarity in the right panel of Figure 2. They
are also clearly visible in the right panel of Figure 3, where the individual
trajectories from the two groups are well separated.

The practical relevance of these results consists in being able to distinguish
between rather homogeneous sets of documents, possibly contaminated by
isolated outliers, and sets formed by different groups. Depending on the final
application, outliers and subgroups can be treated differently. For instance,
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groups can be used to build a committee of classifiers rather than a single
one for the entire dataset.

5 Summary

In this paper we have extended the Forward Search approach for robust data
analysis to address some relevant issues in text mining, such as the detec-
tion of outlying documents or the identification of possible clusters in the
data. This achievement has been reached by replacing the traditional Maha-
lanobis metric of multivariate analysis, which cannot be applied in situations
where the sample size is smaller by order of magnitudes than the number of
variables, with the cosine dissimilarity measure.

It is well known that when using the VSM, documents can talk about the
same theme even using very different set of terms, resulting in low cosine
similarity. In this case our approach would identify different groups in the set
of documents. This effect can be limited by the adoption of more sophisticated
text representation schemes such as the Concept VSM, where each component
of the numeric vector represents a concept that is identified by a group of
semantically similar terms. As the cosine similarity is a reasonable distance
also for concept vectors, our Forward Search extension to text mining would
be still applicable.
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An Alternative Approach
to the Median of a Random
Interval Using an L2 Metric

Beatriz Sinova, Gil González-Rodŕıguez, and Stefan Van Aelst

Abstract. Since the Aumann-type expected value of a random interval is not
robust, the aim of this paper is to propose a new central tendency measure
for interval-valued data. The median of a random interval has already been
defined as the interval minimizing the mean distance, in terms of an L1

metric extending the Euclidean distance, to the values of the random interval.
Inspired by the spatial median, we now follow a more common approach to
define the median using an L2 metric.

Keywords: Interval-valued data, L2 metric, median, robustness.

1 Introduction and Motivation

Interval data are usually obtained from random experiments involving in-
trinsically imprecise measurements. Many examples can be found in research
studies (from very different fields) which pay more attention to the range of
values that a variable can take along a period than to the detailed records.

To analyze the information given by random intervals (that is, interval-
valued random elements) some central tendency measures based on the inter-
val arithmetic have been proposed. Although the most often used measure,
the Aumann-type expected value, possesses very good properties from both
a probabilistic and a statistical point of view, its high sensitivity to data
changes or the existence of great magnitude data motivates the search for a
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more robust central tendency measure. Inspired by the real case, we define
the median of a random interval. The definition of the median as a ‘mid-
dle’ position value cannot be extended because there is not any universally
accepted total order criterion in the space of non-empty compact intervals.
However, it can still be defined as the element of the space minimizing the
mean distance to all the values that the random interval can take (w.r.t. an
L1 metric extending the Euclidean distance in R). The two considered choices
for the L1 metric are the generalized Hausdorff metric (see Sinova et al. [5])
and the metric based on the 1-norm, as introduced by Vitale [9] (see Sinova
and Van Aelst [6]).

The new proposal uses an L2 metric instead of an L1 metric in the defini-
tion of the median, similarly as in the spatial median also called mediancen-
tre wich is a well-known generalization of the median to multivariate settings
(see, for instance, Gower [4] or Milasevic and Ducharme [2]). We use the L2

metrics introduced by Bertoluzza et al. [1] (as expressed by Gil et al. [3]; see
also Trutschnig et al. [8] for a recent review), a wide and valuable family of
metrics for interval data. Furthermore, one of its particular cases was proven
to be equivalent to the well-known Vitale L2 metric (cf. Vitale [9]). One of
the advantages of this metric is that it weights squared distances between
data location (mid-points/centers) and squared distances between data im-
precision (spread/radius), similarly as the generalized Hausdorff metric used
in [5] to define the median. In Sect. 2 the notation and basic operations and
concepts in the space of interval data are recalled. The definition of the three
medians and some details about the computation of the new proposal are
presented in Sect. 3. In Sect. 4, the three approaches to the median of a
random interval are compared by means of some simulation studies. Finally,
Sect. 5 presents some conclusions and open problems.

2 The Space of Intervals Kc(R): Preliminaries

In this section, the notation used in the paper is established, as well as the
basic concepts involving nonempty compact intervals and random intervals
in. Each interval K ∈ Kc(R), where Kc(R) denotes the class of nonempty
compact intervals in R, can be characterized in terms of its infimum and
supremum, K = [inf K, supK], or in terms of its mid-point and spread or
radius, K = [midK − sprK,midK + sprK], where

midK =
inf K + supK

2
, sprK =

supK − inf K

2
.

The usual interval arithmetic provides the two most relevant operations from
a statistical point of view, the addition and the product by a scalar:
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• The Minkowski sum of two nonempty compact intervals, K,K ′ ∈ Kc(R),
is defined as the interval

K +K ′ = [inf K + inf K ′, supK + supK ′]

= [(midK+midK ′)−(sprK+sprK ′), (midK+midK ′)+(sprK+sprK ′)].

• The product of an interval K ∈ Kc(R) by a scalar γ ∈ R is defined as the
element of Kc(R) such that

γ ·K =

{
[γ · inf K, γ · supK] if γ ≥ 0

[γ · supK, γ · inf K] otherwise

= [γ ·midK − |γ| · sprK, γ ·midK + |γ| · sprK].

With these two operations the space is only semilinear (with a conical struc-
ture) and, to overcome the nonexistence of a difference, distances play a
crucial role in statistical developments. We first recall the definition of the
medians introduced earlier, based on two L1 distances between intervals:

• The generalized Hausdorff metric (Sinova et al. [5]), which is partially
inspired by the Hausdorff metric for intervals and the L2 metrics in
Trutschnig et al. [8], is defined as follows. Given two intervals K,K ′ ∈
Kc(R) and any θ ∈ (0,∞), their generalized Hausdorff distance is defined
as:

dH,θ(K,K
′) = |midK −midK ′|+ θ · |sprK − sprK ′|.

• The 1-norm metric, introduced by Vitale [9]. Given any two intervals
K,K ′ ∈ Kc(R), their 1-norm distance is defined as:

ρ1(K,K ′) =
1

2
| inf K − inf K ′|+ 1

2
| supK − supK ′|.

The L2 distance that will also be used to generalize the median is the follow-
ing:

• The dθ metric (by Bertoluzza et al. [1] and Gil et al. [3]) is defined as:

dθ(K,K
′) =

√
(midK −midK ′)2 + θ · (sprK − sprK ′)2,

where K,K ′ ∈ Kc(R) and θ ∈ (0,∞) (it is often supposed that θ ≤ 1).

The generalization of the concept of random variable as the process of ran-
domly generating elements of the space Kc(R) is the random interval, usually
defined as a Borel measurable mapping X : Ω → Kc(R), where (Ω,A, P ) is a
probability space, w.r.t. A and the Borel σ-field generated by the topology in-
duced by the Hausdorff metric or any of the previous metrics, since all of them
are topologically equivalent. It can also be defined in terms of real-valued ran-
dom variables: X is a random interval iff both functions inf X : Ω → R and
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supX : Ω → R (or equivalently, midX : Ω → R and sprX : Ω → [0,∞)) are
real-valued random variables.

The most common central tendency measure to summarize the informa-
tion given by a random interval is the Aumann expectation. This mean value
is indeed the Fréchet expectation with respect to the dθ metric and admits
an alternative expression as the interval whose infimum and supremum equal
the expected values of inf X and sup X, respectively (and, hence, the mid-
point and spread equal the expected values of midX and sprX, respectively).
Although this measure inherits many very good probabilistic and statisti-
cal properties from the expectation of a real-valued random variable, it also
preserves its high sensitivity to data changes or extreme data.

3 The Median of a Random Interval

As it has already been explained in Sect. 1, the idea of extending the concept
of median to overcome the fact that the Aumann expectation of a random in-
terval is not robust enough can be put into practice by defining it as the value
with the smallest mean distance (w.r.t. a metric extending the Euclidean one)
to the values of the random interval. Till now, the distances used were of the
L1 kind (see Sinova et al. [5] and Sinova and Van Aelst [6]):

Definition 1. The dH,θ-median (or medians) of a random interval X : Ω →
Kc(R) is (are) defined as the interval(s) Me[X ] ∈ Kc(R) such that:

E(dH,θ(X,Me[X ])) = min
K∈Kc(R)

E(dH,θ(X,K)), (1)

if these expected values exist.

Definition 2. The ρ1-median (or medians) of a random interval X : Ω →
Kc(R) is (are) defined as the interval(s) Med[X ] ∈ Kc(R) such that:

E(ρ1(X,Med[X ])) = min
K∈Kc(R)

E(ρ1(X,K)), (2)

if these expected values exist.

The main advantage of these medians is that there exists a very practical
result that guarantees their existence and simplifies their computation:

Proposition 1. Given a probability space (Ω,A, P ) and an associated ran-
dom interval X, the minimization problems (1) and (2) both have at least one
solution, given by a nonempty compact interval such that

(1) mid Me[X ] = Me(midX), spr Me[X ] = Me(sprX)

(2) inf Med[X ] = Me(inf X), sup Med[X ] = Me(supX).
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It should be pointed out that the solution for (1) does not depend on the
value chosen for θ, although the mean error does. One remark is that if
either Me(midX) or Me(sprX) (which are medians of real-valued random
variables) are not unique, then the dH,θ-median will not be unique, but any
of the possible choices gives a solution to the problem. However, to guarantee
that Med(X) is nonempty, it is necessary to establish a criterion in case of
nonuniqueness of the medians of inf X or supX , like the criterion consisting
of choosing the mid-point of the interval of possible medians.

Both medians preserve most of the elementary operational properties of
the median in real settings (see Sinova et al. [6]). However, inspired by the
spatial median (or mediancentre) as extension of the median to higher di-
mensional Euclidean spaces and even Banach spaces, we now introduce a
new definition of median of a random interval based on an L2 type distance
between intervals. In this paper we use the class of dθ distances because, as
mentioned in Sect. 1, it provides a wide class of metrics for interval data:

Definition 3. The dθ-median (or medians) of a random interval X : Ω →
Kc(R) is (are) defined as the interval(s) M[X ] ∈ Kc(R) such that:

E(dθ(X,M[X ])) = min
K∈Kc(R)

E(dθ(X,K)), (3)

if these expected values exist.

Since this is an empirical study on the behavior of the dθ-median, its existence
and uniqueness will not be proven here, but in a paper in preparation [7].
In fact, the dθ-median will be computed for finite samples and for the time
being we only use its sample version:

Definition 4. The sample dθ-median (or medians) of a simple random sam-
ple (X1, . . . , Xn) from a random interval X : Ω → Kc(R) is (are) defined as

the interval(s) M̂[X ] ∈ Kc(R) which is (are) the solution(s) of the following
optimization problem:

min
K∈Kc(R)

1

n

n∑

i=1

dθ(Xi,K) (4)

= min
(y,z)∈R×R+

1

n

n∑

i=1

√
(midXi − y)2 + θ · (sprXi − z)2. (5)

We now explain the most natural algorithm to compute the sample dθ-
median. Surely, more efficient algorithms to compute the sample dθ-median
can be developed, but this is a topic for further research.

It is easy to notice that the objective function in the minimization problem
(5) is differentiable at any point of the domain R×R+ except at the sample
points {(midXi, sprXi)}ni=1. Hence, the minimum will be reached either by
a sample point or by the point in which both partial derivatives are equal to
zero. That is, at the point (y0, z0) which satisfies:
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y0 =

∑n
i=1

midXi√
(midXi−y0)2+θ·(sprXi−z0)2

∑n
i=1

1√
(midXi−y0)2+θ·(sprXi−z0)2

, z0 =

∑n
i=1

sprXi√
(midXi−y0)2+θ·(sprXi−z0)2

∑n
i=1

1√
(midXi−y0)2+θ·(sprXi−z0)2

In this case the mid-point and the spread of the sample dθ-median thus are
a weighted mean of the mid-points and the spreads of the intervals in the
sample, respectively. Then, the algorithm used follows these steps:

Algorithm to Compute the Sample dθ-Median:

Step 0. If the data intervals are specified in terms of their inf/sup charac-
terization, then first compute their mid-point and spread:

midXi =
inf Xi + supXi

2
, sprXi =

supXi − inf Xi

2
, for i = 1, . . . , n.

Step 1. Fix the maximum number of iterations, the tolerance of the approx-
imation and set m = 1. Moreover, fix a seed (ym, zm) ∈ R × R+ and the
weight θ > 0, and calculate the corresponding error

Errorm =
1

n

n∑

i=1

√
(midXi − ym)2 + θ · (sprXi − zm)2. (6)

Step 2. Compute the weights and update the estimate:

vi =

1√
(midXi−ym)2+θ·(sprXi−zm)2∑n

j=1
1√

(midXj−ym)2+θ·(sprXj−zm)2

for all i = 1, . . . , n

ym+1 =

n∑

i=1

vi ·midXi, zm+1 =

n∑

i=1

vi · sprXi.

Step 3. For the new estimate (ym+1, zm+1), compute the corresponding error
Errorm+1 as given by (6). If the difference Errorm − Errorm+1 exceeds the
specified tolerance and the number of iterations is lower than the maximum,
then increase m by 1 and return to Step 2. Otherwise, go to Step 4.

Step 4. Compare the final error Errorm+1 obtained in Step 3 with the errors
Error(Xj) corresponding to each sample interval Xj, where

Error(Xj) =
1

n

n∑

i=1

√
(midXi −midXj)2 + θ · (sprXi − sprXj)2

If Errorm+1 < minj Error(Xj) then return the solution (ym+1, zm+1). Oth-
erwise, return the solution (midXj0 , sprXj0) where Xj0 is a solution of
minj Error(Xj).
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4 Preliminary Empirical Study on the dθ-Median

In our empirical studies we calculate the sample medians for a randomly
generated sample of n = 10000 observations from a random interval charac-
terized by the distribution of two real-valued random variables, midX and
sprX . Both cases where the two random variables are independent (Case 1)
and dependent (Case 2) have been considered. The sample has been split into
two subsamples, one of size n ·cp associated with a contaminated distribution
(hence cp represents the proportion of contamination) and the other one, of
size n · (1− cp), without any perturbation. A second parameter, CD, has also
been included to measure the relative distance between the distribution of
the two subsamples. In detail, for different values of cp and CD the data for
Case 1 are generated according to

• midX � N (0, 1) and sprX � χ2
1 for the non contaminated subsample,

• midX � N (0, 3) + CD and sprX � χ2
4 + CD for the contaminated sub-

sample,

while for Case 2 we use

• midX � N (0, 1) and sprX �
(

1

(midX)2+1

)2

+ .1 · χ2
1 for the non con-

taminated subsample,

• sprX � N (0, 3) +CD and sprX �
(

1

(midX)2+1

)2

+ .1 · χ2
1 +CD for the

contaminated subsample.

Table 1 Monte Carlo approximation (1000 iterations) of the three medians in
Case 1

cp cD dθ -median dH,θ -median ρ1-median

.0 0 [−0, 6555071, 0, 6555835] [−0, 4552839, 0, 4554768] [−0, 7381633, 0, 7386939]

.0 1 [−0, 6550019, 0, 6544749] [−0, 4545302, 0, 4543579] [−0, 7378337, 0, 7373728]

.0 5 [−0, 6557143, 0, 6551791] [−0, 4555520, 0, 4550171] [−0, 7381773, 0, 7380322]

.0 10 [−0, 6553301, 0, 6554320] [−0, 4547221, 0, 4549639] [−0, 7382577, 0, 7386385]

.1 0 [−0, 6548555, 0, 6552054] [−0, 4551417, 0, 4551000] [−0, 7377625, 0, 7381397]

.1 1 [−0, 6554750, 0, 6546888] [−0, 4556005, 0, 4547448] [−0, 7382113, 0, 7376722]

.1 5 [−0, 6556373, 0, 6553330] [−0, 4549310, 0, 4549547] [−0, 7386306, 0, 7381864]

.1 10 [−0, 6555189, 0, 6548982] [−0, 4553185, 0, 4546387] [−0, 7379289, 0, 7379623]

.2 0 [−0, 6556167, 0, 6554632] [−0, 4556358, 0, 4553282] [−0, 7383702, 0, 7384272]

.2 1 [−0, 6553042, 0, 6554212] [−0, 4548549, 0, 4552123] [−0, 7387323, 0, 7382399]

.2 5 [−0, 6546356, 0, 6553408] [−0, 4545946, 0, 4554151] [−0, 7373326, 0, 7379313]

.2 10 [−0, 6553221, 0, 6559287] [−0, 4548740, 0, 4553467] [−0, 7380468, 0, 7393618]

.4 0 [−0, 6552048, 0, 6551526] [−0, 4549726, 0, 4549666] [−0, 7378274, 0, 7379544]

.4 1 [−0, 6552756, 0, 6559164] [−0, 4550163, 0, 4553629] [−0, 7383721, 0, 7387192]

.4 5 [−0, 6553724, 0, 6555041] [−0, 4547553, 0, 4554061] [−0, 7384876, 0, 7377935]

.4 10 [−0, 6554173, 0, 6556545] [−0, 4550900, 0, 4554940] [−0, 7380930, 0, 7384071]

.4 100 [−0, 6544593, 0, 6553595] [−0, 4545915, 0, 4549898] [−0, 7372087, 0, 7384379]
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The population medians have been approximated by a Monte Carlo approach
using their sample versions. The results for Case 1 are shown in Table 1.

Then, the behavior of these medians is very similar under contamination
effects, also in Case 2 (those results are not explicitly shown because of space
limitations). In Sinova and Van Aelst [6], the robustness of the dH,θ and
the ρ1-median had been proved with the finite sample breakdown point, so
empirically it seems that the dθ-median will be as robust as these L1-medians.

5 Concluding Remarks about Open Problems

As this study is a preliminary contribution, there are a lot of open problems:
the theoretical study of the dθ-median and its properties (which includes the
study of its robustness using tools like the finite sample breakdown point),
more simulation studies comparing it with other central tendency measures
like trimmed means or its extension to the fuzzy-valued case.
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Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds.) Combining Soft Computing
and Statistical Methods in Data Analysis. AISC, vol. 77, pp. 575–583. Springer,
Heidelberg (2010)



An L2-Median for Random Intervals 281

6. Sinova, B., Van Aelst, S.: Comparing the Medians of a Random Interval Defined
by Means of Two Different L1 Metrics. In: Borgelt, C., Gil, M.Á., Sousa, J.M.C.,
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Comparing Classical and Robust
Sparse PCA

Valentin Todorov and Peter Filzmoser

Abstract. The main drawback of principal component analysis (PCA) espe-
cially for applications in high dimensions is that the extracted components
are linear combinations of all input variables. To facilitate the interpretabil-
ity of PCA various sparse methods have been proposed recently. However all
these methods might suffer from the influence of outliers present in the data.
An algorithm to compute sparse and robust PCA was recently proposed by
Croux et al. We compare this method to standard (non-sparse) classical and
robust PCA and several other sparse methods. The considered methods are
illustrated on a real data example and compared in a simulation experiment.
It is shown that the robust sparse method preserves the sparsity and at the
same time provides protection against contamination.

Keywords: Principcal component analysis, robust statistics.

1 Introduction

Principal component analysis (PCA) is a widely used technique for dimension
reduction achieved by finding a smaller number q of linear combinations of
the originally observed p variables and retaining most of the variability of the
data. It is important to be able to interpret these new variables, referred to

Valentin Todorov
United Nations Industrial Development Organization (UNIDO), Vienna, Austria
e-mail: v.todorov@unido.org

Peter Filzmoser
Department of Statistics and Probability Theory,
Vienna University of Technology, Vienna, Austria
e-mail: p.filzmoser@tuwien.ac.at

R. Kruse et al. (Eds.): Synergies of Soft Computing and Statistics, AISC 190, pp. 283–291.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

v.todorov@unido.org
p.filzmoser@tuwien.ac.at


284 V. Todorov and P. Filzmoser

as principal components, especially when the original variables have physical
meaning. The link between the original variables and the principal compo-
nents is given by the so called loadings matrix used for transforming the data
and thus it should serve as a means for interpreting the PCs. However, PCA
usually tends to provide PCs which are linear combinations of all the original
variables (by giving them non-zero loadings). Regarding the interpretability
of the results it would be very helpful to reduce not only the dimensionality
but also the number of used variables (ideally to relate each PC to only a
few variables). It is not surprising that vast research effort was devoted to
this issue and various proposals have been introduced in the literature. A
straightforward informal method is to set to zeros those PC loadings which
have absolute values below a given threshold (simple thresholding). In [6]
SCoTLASS was proposed which applies a lasso penalty on the loadings in
a PCA optimization problem. Recently a reformulated PCA as a regression
problem has been proposed [13] that uses the elastic net to obtain a sparse
version (SPCA).

Despite more or less successful in achieving sparsity, all these methods
suffer a common drawback - all are based on the classical approach to PCA
which measures the variability through the empirical variance and is essen-
tially based on computation of eigenvalues and eigenvectors of the sample
covariance or correlation matrix. Therefore the results may be very sensitive
to the presence of even a few atypical observations in the data. The outliers
could artificially increase the variance in an otherwise uninformative direc-
tion and this direction will be determined as a PC direction. To cope with
the possible presence of outliers in the data, recently a method has been pro-
posed [1] which is sparse and robust at the same time. It utilizes the projection
pursuit approach where the PCs are extracted from the data by searching the
directions that maximize a robust measure of variance of data projected on
it. An efficient computational algorithm was proposed in [2]. Another robust
sparse PCA algorithm was proposed by [9] maximizing the L1-norm variance
instead of the classical variance but unfortunately no R implementation was
available and in the short time we could not include it in the comparison.

The paper [13] defined the (minimal) requirements for a good sparse
method as follows: (i) without any penalty constraint the method is equiva-
lent to standard PCA; (ii) the method is computationally efficient for both
large n and large p and (iii) it avoids misidentifying important variables. To
these requirements we will add one more: (iv) the method should attain the
properties (i) to (iii) even in the presence of outliers in the data.

The remainder of the paper is organized as follows. Section 2 presents
briefly the sparse and robust methods considered. Section 3 illustrates these
methods on real data examples and Section 4 compares them on simulated
data sets. The final Section 5 concludes.
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2 Methods and Algorithms

Consider an n× p data matrix X. Without loss of generality we can assume
that the column means of X are all zeros. Note that in the context of robust
PCA, the centering has to be done also in a robust way - [2]. We are looking
for linear combinations tj that result from a projection of the centered data
on a direction pj ,

tj = Xpj (1)

such that
pj = argmax

p
Var(Xp) (2)

subject to ‖pj‖ = 1 and Cov(Xpj ,Xpl) = 0 for l < j and j = 1, . . . , q with
q ≤ min (n, p). The solutions of these maximization problems are obtained by
solving a Lagrangian problem, and the result is that the principal components
of X are the eigenvectors of the covariance matrix Cov(X), and the variances
are the corresponding eigenvalues lj = Var(Xpj). Classical PCA is obtained
if the sample covariance matrix S is used. The vectors tj are collected as
columns in the n× q scores matrix T , and the vectors pj as columns in the
loadings matrix P . The eigenvalues lj are arranged in the diagonal of the
q × q diagonal matrix Λ.

The most straightforward way to robustify PCA is to replace S by a robust
version like for example MCD (see [12]). Another approach to robust PCA
uses projection pursuit (PP) and calculates directly the robust estimates of
the eigenvalues and eigenvectors. Directions are sought for, which maximize
the variance of the data projected onto them. The advantage of this approach
is that the principal components can be computed sequentially, and that one
can stop after q components have been extracted. Thus, this approach is ap-
pealing for high-dimensional data, in particular for problems with p � n.
Using the empirical variance in the maximization problem would lead to
classical PCA, and robust scale estimators result in robust PCA. Suitable
robust measures are the squared median absolute deviation (MAD) or the
more efficient Qn. A tractable algorithm in these lines was proposed in [3].
When solving the maximization problem the algorithm does not investigate
all possible directions but considers only those defined by a data point and
the robust center of the data. The robust variance estimate is computed for
the data points projected on these n directions and the direction correspond-
ing to the maximum of the variance is the searched approximation of the first
principal component. After that the search continues in the same way in the
space orthogonal to the first component. An improved version of this algo-
rithm, being more precise especially for high-dimensional data, was proposed
in [2]. The space of all possible directions is scanned more thoroughly. This
is done by restricting the search for an optimal direction on a regular grid in
a plane.
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To introduce sparseness in PCA the authors of [1] add an L1 constraint in
the definition (2) which yields

pj = argmax
p

Var(Xp)− λj ‖p‖1 (3)

where λj is a tuning parameter. To solve this optimization problem, again the
grid algorithm [2] can be used as described in detail in [1] and implemented in
the R package pcaPP. All versions of these algorithms (standard and sparse
classical, standard and sparse robust) are provided with a unified interface in
the R package rrcovHD. In the following we will denote these by the obvious
abbreviations PCA, SPCA-grid, RPCA-grid and RSPCA-grid.

One of the most popular sparse PCA algorithms is the SPCA proposed
in [13]. It relies on the fact that PCA can be rewritten as a regression-type
optimization problem which is solved by the sparse elastic net regression. The
main drawback of this algorithm is that orthogonality of the components is
not guaranteed. The algorithm fits the situation when p � n but might be
computationally very expensive when requiring a large number of nonzero
loadings. Therefore the authors propose a variant of the algorithm based on
soft thresholding suitable for such cases. Both versions of the algorithm are
available in the R package elasticnet.

3 Example

We will use a real data example to compare the standard and robust sparse
methods. The bus data set [4] which is also available in the R package rrcov
was used to study methods for automatic vehicle recognition [11], see also [8],
page 213, Example 6.3. This data set from the Turing Institute, Glasgow,
Scotland, contains measures of shape features extracted from vehicle silhou-
ettes. The images were acquired by a camera looking downward at the model
vehicle from a fixed angle of elevation. Each of the 218 rows corresponds to a
view of a bus silhouette, and contains 18 attributes of the image. The median
absolute deviations (MAD) of the columns vary from 0 (for variable V9) to
34.8. Therefore we remove V9 from the analysis and divide each variable by
the corresponding MAD. The first four classical PCs explain more than 97%
of the total variance and the first four robust PCs explain more than 85%,
therefore we decide to retain four components in both cases. Next we need
to choose the degree of sparseness which is controlled by the regularization
parameter λ. Since the sparse PCs have to provide a good trade-off between
sparseness and achieved percentage of explained variance we can proceed sim-
ilarly as in the selection of the number of principal components with the scree
plot - we compute the sparse PCA for many different values of λ and plot the
percent of explained variance against λ. We choose λ = 1.64 for classical PCA
and λ = 2.07 for robust PCA, thus attaining 92 and 84 percent of explained
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variance, respectively, which is only an acceptable reduction compared to the
non-sparse PCA. Retaining k = 4 principal components as above and us-
ing the selected parameters λ, we can construct the so called diagnostic plots
which are especially useful for identifying outlying observations. The diagnos-
tic plot is based on the score distances and orthogonal distances computed for
each observation. The diagnostic plot shows the score versus the orthogonal
distance, and indicates with a horizontal and vertical line the cut-off values
that allow to distinguish regular observations (those with small score and
small orthogonal distance) from the different types of outliers: bad leverage
points with large score and large orthogonal distance, good leverage points
with large score and small orthogonal distance and orthogonal outliers with
small score and large orthogonal distance (for detailed description see [5]). In
Figure 1 the classical and robust diagnostic plot as well as their sparse alter-
natives are presented. The diagnostic plots for the standard PCA reveals only
several orthogonal outliers and identifies two observations as good leverage
points. These two observations are identified as bad leverage points by the
sparse standard PCA which is already an improvement, but only the robust
methods identify a large cluster of outliers. These outliers are masked by the
non-robust score and orthogonal distances and cannot be identified by the
classical methods. It is important to note that the sparsity feature added to
the robust PCA did not influence its ability to detect properly the outliers.

4 Simulation

In order to compare different methods for extraction of sparse features from
data sets with varying degree of contamination we should be able to gener-
ate data sets with known sparseness. Most of the simulation studies in the
literature follow the simulation example in [13] which use a fixed configu-
ration with three underlying factors and three blocks of variables, each of
them revealing one of the factors. In [1] a contamination model has been
proposed to be superimposed on the so generated data. The most straight-
forward method to generate data with sparse structure in Rp is to choose the
leading q, (q < p), p1, . . . ,pq eigenvectors of the covariance matrix Σ, which
are sparse and orthonormal [10]. The covariance matrix Σ is decomposed as
Σ = PDP T where D = diag(d1, . . . , dp) is a diagonal matrix containing the
positive eigenvalues of Σ on the main diagonal sorted in decreasing order.
The matrix P is the orthogonal loadings matrix. The first q, q ≤ p eigenvec-
tors are chosen to be sparse and the remaining p−q are arbitrary. We start by
forming the full rank matrix P by randomly drawing its elements from say,
U(0, 1) and replacing the first q columns with the pre-specified sparse vectors
p1, . . . ,pq. Then the matrix P is rendered orthonormal by applying Gram-
Schmidt orthogonalization to it (the matrix Q of the QR-decomposition of
P ).
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Fig. 1 Distance-distance plots for standard and sparse PCA and their robust ver-
sions for the bus data

The generated data sets X will consist of n observations drawn from a
p-variate zero-mean normal distribution X ∼ N(0,Σ). Different proportions
of contamination will be added to this data sets by replacing ε percent of
the observations in X, ε = 0, 10, 20, 30, with normally distributed p-variates
x̃ ∼ N(μ, σIp) with μ = (2, 4, 2, 4, 0,−1, 1, 0, 1, . . . , 0, 1,−1)T and σ = 20.

To compare the performance of the different methods for each generated
data set we estimate the first q principal components by each method and
compute the angles between the estimated leading eigenvectors and the cor-
responding true vectors p1, . . . ,pq as well as the maximal angle between
the subspace spanned by the first q estimated principal components and the
subspace spanned by the first q eigenvectors of Σ. This angle between sub-
spaces, which we will call maxsub, can be computed by a method proposed
by Krzanowski [7]. We want that these angles are as close to zero as possible.
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For our example we take n = 150, p = 10, q = 2, i.e. the data sets will
be generated in R10 and two sparse leading eigenvectors will be chosen with
degree of sparseness 6, as:

p̃1 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0) and p̃2 = (0, 0, 0, 0, 1, 1, 1, 1, 0, 0).

The eigenvalues are d = (400, 200, 1, ..., 1) and thus the first two eigenvectors
explain almost 90 percent of the total variance. With all methods we will
extract the true number of principal components, q = 2. Since SPCA has
no automatic method for selecting the degree of sparseness we will use for
all sparse methods the true one and will refer to this as the oracle method.
We average the computed measures by performing the complete procedure
m = 100 times and taking the median of the corresponding angles.

Table 1 Comparison of PCA, sparse PCA and robust (sparse) PCA methods: me-
dian angle between the true and extracted subspaces (maxsub) and median angles
between the true and extracted first two loading vectors for clean data and two
levels of contamination (ε = 0, 10 and 20 percent).

ε = 0% ε = 10% ε = 20% ε = 30%
maxsub PC1 PC2 maxsub PC1 PC2 maxsub PC1 PC2 maxsub

PCA 0.07 0.03 0.07 0.93 0.93 1.00 0.93 0.93 1.01 0.93
RPCA-grid 0.09 0.06 0.09 0.18 0.13 0.20 0.19 0.15 0.18 0.22
SPCA 0.06 0.04 0.07 0.93 0.93 1.00 0.93 0.93 1.01 0.93
SPCA-grid 0.02 0.01 0.02 0.94 0.93 1.00 0.94 0.93 1.00 0.94
SRPCA-
grid

0.06 0.04 0.05 0.16 0.12 0.12 0.20 0.14 0.22 0.21

The results are presented in Table 1. When there is no contamination
all methods perform reasonably well. Since the generated data have sparse
structure, all sparse methods result in lower median angles than the standard
PCA and the best performer is SPCA-grid (sparse PCA computed by the grid
method). The robust non-sparse method RPCA-grid performs only slightly
worse than the classical PCA but the robust sparse (SRPCA-grid), while
worse that SPCA-grid is still better than the classical PCA.

The picture changes drastically when we add even only 10% of contam-
ination. All non-robust methods produce median angles close to one (the
vectors, respectively the subspaces are almost perpendicular) while with the
robust methods only slight change is observed. It is important to note that
the advantage of using a sparse method disappears in the presence of con-
tamination while the robust sparse method is still better than the robust
non-sparse one. If we increase the contamination to 20% and even 30% al-
most nothing changes - maxsub remains below 0.22 for the robust methods
and is above 0.93 for the non-robust ones.
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An important characteristic of any algorithm is the computational effi-
ciency. Due to the space restrictions we are not going to present here a com-
parison of the computation times of the algorithms but some observations
are in order. The speed of all methods computed by the grid algorithm does
not depend on the degree of sparseness. However, it depends on the selected
variance estimator (the sample variance is much faster (but not robust) than
the median absolute deviation (MAD), which in turn is faster (but not sta-
tistically efficient) than Qn estimator). It depends also on the number of
extracted principal components, and the possibility to extract only the nec-
essary components is a great advantage in high dimensional settings. The
computation time of SPCA depends on the selected degree of sparseness but
not on the selected number of principal components. It could be prohibitive
to use this algorithm on high dimensional data but here the soft-thresholding
version comes handy. The sparse non-robust and robust versions of the grid
algorithm are faster than SPCA, when providing comparable degree of sparse-
ness and extracting a reasonable number of components.

5 Summary and Conclusions

In this article we investigated several methods for sparse PCA in terms of
their efficiency and their resistance to the presence of outliers in the data.
Standard PCA, several sparse methods, robust PCA, and robust sparse PCA
recently proposed in [1] are compared on a simulation experiment. The robust
sparse method attains the requested sparseness and at the same time provides
adequate principal components even when the data are contaminated with as
much as 30%, while all the non-robust methods break down. All considered
methods and data sets are available in the R package rrcovHD. There are var-
ious other sparse PCA methods and algorithms as well as other issues which
were not investigated in this work: selecting the number of PCs, selecting the
tuning parameter (the degree of sparseness) as a trade-off between explained
variance and interpretability, considering more types of contamination. These
could be in the focus of a more extended comparative study.

Acknowledgements. The views expressed herein are those of the authors and
do not necessarily reflect the views of the United Nations Industrial Development
Organization.
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An Exact Algorithm for
Likelihood-Based Imprecise Regression
in the Case of Simple Linear
Regression with Interval Data

Andrea Wiencierz and Marco E.G.V. Cattaneo

Abstract. Likelihood-based Imprecise Regression (LIR) is a recently intro-
duced approach to regression with imprecise data. Here we consider a robust
regression method derived from the general LIR approach and we establish
an exact algorithm to determine the set-valued result of the LIR analysis in
the special case of simple linear regression with interval data.

Keywords: Interval data, likelihood inference, robust regression.

1 Introduction

In [3], Likelihood-based Imprecise Regression (LIR) was introduced as a very
general theoretical framework for regression analysis with imprecise data.
Within the context of LIR, the term imprecise data refers to imprecisely
observed quantities. This means that one is actually interested in analyzing
the relation between precise variables, but the available data provide only the
partial information that the values each lie in some subset of the observation
space. In the general formulation of LIR, the imprecise observations can be
arbitrary subsets of the observation space, including as special cases actually
precise data (where the subset is a singleton) and missing data (where the
subset is the entire observation space).

The aim of a LIR analysis is to identify plausible descriptions of the rela-
tion between the unobserved precise quantities on the basis of the imprecise
observations. This is achieved by applying a general methodology for likeli-
hood inference with imprecise data to the regression problem with imprecise
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data as a problem of statistical inference. The mathematical details of the
LIR approach are set out in [3].

In this paper, we deal with the implementation of the robust regression
method derived from the general LIR approach in [3]. There, a grid search
was proposed as a first implementation, which served to obtain the (approx-
imate) result of the LIR analysis for a quadratic regression problem with
interval data. Here, we consider the special case of simple linear regression
with interval data and we derive an exact algorithm to determine the set-
valued result of the LIR analysis in this particular situation. In the following
section, we review the relevant technical details of the robust LIR method,
before we establish the exact algorithm in Sect. 3.

2 LIR in the Case of Simple Linear Regression with
Interval Data

In the case of simple linear regression, the relation between two real-valued
variables, X and Y , shall be described by means of a linear function.
Thus, the set of regression functions considered here can be written as
F = {fa,b : (a, b) ∈ R

2} with fa,b : R → R, x �→ a + b x. Furthermore,
we here focus on the particular case of interval data, where the imprecise
data V ∗

i := [Xi, Xi] × [Y i, Y i], i = 1, . . . , n are (possibly unbounded) rect-
angles. To keep the notation simple, throughout the paper, we write [I, I] for
the set of all real numbers z such that I ≤ z ≤ I. This is not the standard
notation if I = −∞ or I = +∞. Figure 1 gives an example of such a data
set containing 17 observations with varying amounts of imprecision.

The robust regression method we consider in this paper is based on
a fully nonparametric probability model. It is only assumed that the n

Fig. 1 Example data
set containing 17 ob-
servations with varying
amounts of imprecision:
there is one actually
precisely observed data
point V ∗

i = [1, 1]×[1, 1] =
{(1, 1)}, there are two line
segments (one of which is
unbounded towards +∞
in the X dimension), and,
finally, there are 14 rect-
angles of different sizes
and shapes (one of which
is unbounded towards
−∞ in the Y dimension).
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random objects (Vi, V
∗
i ), i = 1, . . . , n (where Vi := (Xi, Yi) are the unob-

served precise values) are independent and identically distributed, and that
P (Vi ∈ V ∗

i ) ≥ 1− ε, for some ε ∈ [0, 1]. If ε > 0, this assumption implies that
an imprecise observation may not cover the precise value with probability
at most ε. Apart from this assumption, there is no restriction on the set of
possible distributions of the data.

The relation between X and Y shall be described by a linear function.
Which linear function is a suitable description of the relation when no par-
ticular structure of the joint distribution of X and Y is assumed? The basic
idea behind the robust LIR method is that a possible description f can be
evaluated by the p-quantile, p ∈ ]0, 1[, of the distribution of the corresponding
(absolute) residual |Y −f(X)|. The closer to zero the p-quantile is, the better
the associated function describes the relation between X and Y . Therefore,
the linear function for which the p-quantile of the residual’s distribution is
minimal can be considered as the best description of the relation of interest.
This linear function can be characterized geometrically as the central line
of the thinnest band of the form f ± q, q ≥ 0, that contains (X,Y ) with
probability at least p.

This idea is very similar to the idea behind the robust regression method
of least quantile of squares (or absolute deviations) regression, introduced
in [5] as a generalization of the method of least median of squares regression
(corresponding to the choice p = 0.5). Therefore, the LIR method can be
seen as a generalization of these robust regression methods to the setting
with imprecise data, where not only the optimal line is estimated, but a
whole set of plausible descriptions is idenified.

To see how the robust LIR method works in detail, consider V ∗
1 =

A1, . . . , V
∗
n = An as (nonempty) realizations of the imprecise data. Apply-

ing the general methodology for likelihood inference with imprecise data on
which the LIR method is based, likelihood-based confidence regions for the
p-quantile of the distribution of the precise residuals Rf,i := |Yi−f(Xi)|, i =
1, . . . , n, are determined for each considered regression function f ∈ F . The
confidence regions are obtained by cutting the (normalized) profile likelihood
function for the p-quantile induced by the imprecise data at some cutoff
point β ∈ ]0, 1[. The confidence regions cover the values of the p-quantiles
corresponding to all probability distributions that give at least a certain prob-
ability to the observations, i.e. whose likelihood exceeds the threshold β.

To obtain the confidence regions, for each f ∈ F lower and upper (abso-
lute) residuals are defined as follows

rf,i = min
(x,y)∈Ai

|y − f(x)| and rf,i = sup
(x,y)∈Ai

|y − f(x)|, i = 1, . . . , n.

Let 0 =: rf,(0) ≤ rf,(1) ≤ . . . ≤ rf,(n) ≤ rf,(n+1) := +∞ be the ordered
lower residuals and 0 =: rf,(0) ≤ rf,(1) ≤ . . . ≤ rf,(n) ≤ rf,(n+1) := +∞
be the ordered upper residuals. Furthermore, define i = max(�(p− ε)n	 , 0)
and i = min(
(p+ ε)n� , n) + 1. According to Corollary 1 of [3] the profile



296 A. Wiencierz and M.E.G.V. Cattaneo

likelihood function for the p-quantile of the distribution of the residuals cor-
responding to some function f ∈ F is a piecewise constant function whose
points of discontinuity are given by rf,(0), . . . , rf,(i), rf,(i), . . . , rf,(n+1). To ob-

tain the confidence region Cf it thus suffices to identify the (k+1)-th ordered
lower residual and the k-th ordered upper residual, which correspond to the
points where the profile likelihood function jumps above and below the cho-
sen threshold β, provided the condition (max{p, 1− p}+ ε)n ≤ β holds. The
values of k and k are determined on the basis of the explicit formula for the
profile likelihood function given in [3]. They depend on n, on the choice of p
and β, as well as on ε, which is part of the assumed probability model.

Thus, if (max{p, 1 − p} + ε)n ≤ β is fulfilled, for each function f ∈ F
the likelihood-based confidence region is the interval Cf := [rf,(k+1), rf,(k)]

(see Corollary 2 of [3]). In order to find the best description of the relation
between X and Y it is possible to follow a minimax approach and minimize
the upper endpoint of the confidence interval over all considered regression
functions. When there is a unique f ∈ F that minimizes sup Cf , it is optimal
according to the Likelihood-based Region Minimax (LRM) criterion (see [1])
and therefore called fLRM . If we consider the closed bands Bf,q defined for
each function f ∈ F and each q ∈ [0,+∞[ by

Bf,q =
{

(x, y) ∈ R
2 : |y − f(x)| ≤ q} ,

the function fLRM can be characterized geometrically. The closed band
BfLRM ,qLRM

(where qLRM := supCfLRM ) is the thinnest band of the form

Bf,q containing at least k imprecise data, for all f ∈ F and all q ∈ [0,+∞[.
Thus, to determine the function fLRM it suffices to adapt to the case of im-
precise data an algorithm for the least quantile of squares regression, as we
do in Sect. 3.1. Figure 2 shows fLRM (solid line) for the LIR analysis of the

Fig. 2 Function fLRM

(solid line) for the LIR
analysis of the example
data set introduced in
Fig. 1 with p = 0.5, β =
0.8, ε = 0 (implying k = 7

and k = 10) and band

BfLRM ,qLRM
(dashed

lines).
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example data set introduced in Fig. 1, as well as the closed band BfLRM ,qLRM

of width 2 qLRM (dashed lines).
However, fLRM is not regarded as the final result of the LIR analysis.

The aim of a LIR analysis is to describe the whole uncertainty about the
relation between X and Y , including the statistical uncertainty due to the
finite sample as well as the indetermination related to the fact that the quan-
tities are only imprecisely observed. Therefore, the set of all functions that
are plausible in the light of the data is considered as the set-valued result
of the LIR analysis, which describes the entire uncertainty involved in the
regression problem with imprecise data. A regression function f ∈ F is re-
garded as plausible, if the corresponding confidence interval Cf is not strictly
dominated by another one. Thus, the result of the LIR analysis is the set

{f ∈ F : min Cf ≤ qLRM} = {f ∈ F : rf,(k+1) ≤ qLRM}.

The undominated functions can be characterized geometrically by the fact
that the corresponding closed bands Bf,qLRM

(i.e. the bands have width
2 qLRM ) intersect at least k + 1 imprecise data. This characterization is the
basis of the second part of the algorithm presented in the next section.

3 An Exact Algorithm for LIR

As a first implementation of the robust LIR method, we suggested in [3] a
grid search over the space of parameters identifying the considered regression
functions, while we considered a random search in [2]. Here, we derive an
exact algorithm to determine the result of the robust LIR analysis in the
case of simple linear regression with interval data. The algorithm consists of
two parts: first, we find the optimal function fLRM , which is then used to
identify the set of all undominated regression lines. It can be proved that
the computational complexity of the algorithm is O(n3 logn), i.e. it is of
the same order as the complexity of the initial algorithm for least median of
squares regression (see [6]).

3.1 Part 1: Finding the LRM Line

Analogously to what is shown in [6] for the case with precise data, it is
possible to prove that, if the slope bLRM of the function fLRM is different from
zero, the band BfLRM ,qLRM

is determined by three imprecise observations V ∗
i

for which rfLRM ,i = qLRM . Figure 3 illustrates this fact for the example of
Fig. 2. From this property follows that bLRM is either zero or given by the
slope of the line connecting the corresponding corner points of two of the
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Fig. 3 Band
BfLRM ,qLRM

(dashed
lines) for the LIR analysis
considered in Fig. 2. The
three imprecise data de-
termining BfLRM ,qLRM

in this case are high-
lighted.
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observations. Thus, in order to identify candidates for bLRM it suffices to
consider the four slopes between the corresponding vertices of each pair of
(nonidentical) bounded imprecise observations. In this way, we obtain a set
of at most 4

(n
2

)
+ 1 candidates for the slope of fLRM .

For a given slope b, it is easy to determine the intercept a for which the
width of the resulting closed band around fa,b (containing at least k impre-
cise data) is minimal (over all linear functions with slope b). Consider the
transformed data Z∗

i := [Zi, Zi], i = 1, . . . , n obtained as

Zi =

{
Y i − bXi , b > 0
Y i − bXi , b ≤ 0

and Zi =

{
Y i − bXi , b > 0
Y i − bXi , b ≤ 0

.

Then finding the thinnest band containing (at least) k of the imprecise data
V ∗
i corresponds to finding the shortest interval containing (at least) k of the

transformed imprecise data Z∗
i . Since the bands Bf,q are symmetric around

f , the optimal intercept for a fixed candidate slope is given by the center of
the shortest interval containing (at least) k of the transformed imprecise data
Z∗
i . It can be proved that this shortest interval is one of the n−k+1 intervals

going from the j-th ordered lower endpoint Z(j) to the k-th of those ordered
upper endpoints whose corresponding lower endpoints are not smaller than
Z(j), for j = 1, . . . , n− k + 1. The interval with the shortest length provides
the optimal intercept by its midpoint and the corresponding bandwidth by
its length.

In this way, we obtain for each of the candidate slopes the associated
optimal intercept and the resulting upper endpoint of the confidence interval,
which corresponds to half of the width of the associated closed band. The
function fLRM is then given by the function with the minimal upper endpoint.
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3.2 Part 2: Identifying the Set of All Undominated
Lines

Once fLRM and the associated qLRM are known, the actual result of the
LIR analysis is determined, which is the set of all regression lines that are
not strictly dominated by fLRM . For each b ∈ R there is a (possibly empty)
set Ab consisting of all intercept values a such that the function fa,b is not
strictly dominated by fLRM .

To determine Ab, we make use of the fact that the closed band of width
2 qLRM around an undominated regression line intersects at least k+1 impre-
cise data. Consider again the transformed data Z∗

i , then finding the centers
of all bands of width 2 qLRM that intersect (at least) k + 1 of the imprecise
data V ∗

i reduces to finding the centers of all intervals (of length 2 qLRM ) that
intersect (at least) k + 1 of the transformed imprecise data Z∗

i . Thus, for
each b we look for the values a such that the intervals [a− qLRM , a+ qLRM ]
intersect at least k + 1 of the Z∗

i , i = 1, . . . , n. For each subset of k + 1
transformed imprecise data, Z∗

i1 , . . . , Z
∗
ik+1

, the set of undominated interval
centers is the interval

[
max

i∈{i1,...,ik+1}
Zi − qLRM , min

i∈{i1,...,ik+1}
Zi + qLRM

]
.

If the lower interval endpoint exceeds the upper one, the set of undominated
interval centers associated with the considered subset of imprecise data is
empty. This means that there is no interval of length 2 qLRM intersecting all
of the considered imprecise data.

Employing this idea, we can prove that for each b the set Ab can be
obtained as the union of the intervals [Z(k+j) − qLRM , Z(j) + qLRM ], j =

1, . . . , n − k, where Z(i) and Z(i) are the i-th ordered lower and upper

Fig. 4 Set of param-
eters corresponding to
the set of undominated
regression lines for the
LIR analysis considered
in Fig. 2.
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Fig. 5 Set of undom-
inated regression func-
tions for the LIR analysis
considered in Fig. 2
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endpoints of the imprecise data, respectively. Finally, the whole set of pa-
rameters (a, b) identifying the undominated functions is given by the union
of the sets Ab×{b} over all b ∈ R. It can be shown that this set is polygonal,
but it is not necessarily convex nor connected. Figure 4 shows the complex
shape of this set in our example and in Fig. 5 the corresponding regression
functions are plotted.

4 Conclusions

We presented an algorithm to determine the set-valued result of a robust LIR
analysis in the case of simple linear regression with interval data. The algo-
rithm is directly derived from the geometrical properties of the LIR results
and it is exact. The proofs will be given in an extended version of this pa-
per. The presented algorithm can be seen as a generalization of an algorithm
developed for the least median of squares regression (see [5, 6]), from which
it inherits the computational complexity O(n3 logn). The algorithm can be
further generalized to multiple regression and to other kinds of imprecise
data.

So far, we have implemented the algorithm as a general function using the
statistical software environment R (see [4]). In future work, we intend to set
up an R package for linear regression with LIR.
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Evolution of the Dependence
of Residual Lifetimes

Fabrizio Durante and Rachele Foschi

Abstract. We investigate the dependence properties of a vector of residual
lifetimes by means of the copula associated with the conditional distribution
function. In particular, the evolution of positive dependence properties (like
quadrant dependence and total positivity) are analyzed and expressions for
the evolution of measures of association are given.

Keywords: Association measures, copulas, positive dependence, residual
lifetimes.

1 Introduction

In the present note, we are interested in multivariate stochastic models re-
lated to a system composed by several components, whose behaviour can be
represented by a random vector X = (X1, X2, . . . , Xd) defined on a suitable
probability space and taking values in R

d
+. Specifically, each Xi is a continu-

ous and positive random variable having the meaning of lifetime. For instance,
in reliability theory, Xi’s represent the lifetimes of certain disposals working
in the same system; in credit risk, Xi’s may represent the times-to-default of
some companies. Regardless of their specific interpretation, it has been long
recognized that the behaviour of X depends on both the individual behaviour
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of each component and the dependence structure of X as interpreted by its
copula C (see [10] and the references therein).

Here we are interested in the evolution of the dependence structure when
one knows that all the components of X have survived up to time τ > 0. For
such a situation, the following facts can be revealed:

• the evolution of the dependence has “no jumps”, in the sense that it evolves
smoothly and does not admit drastic changes (as it would be in presence
of exogenous shocks);

• the evolution of the dependence is stable with respect to misspecification,
in the sense that “small” errors in selecting the dependence structure at
time τ = 0 do not amplify;

• some “weak” positive dependence among the components of X may dis-
appear when τ increases. Contrarily, a “stronger” positive dependence is
preserved at any time τ .

In the following, we clarify how these facts can be described rigorously in
terms of copulas and present some additional results, especially concerning
association measures, and relevant examples.

2 Copulas of Residual Lifetimes

For sake of simplicity, we treat only the case d = 2 (most of the considerations
can be easily extended to the general case). Thus, let us consider a pair
(X1, X2) of lifetimes whose copula is given by C. We denote by C the class
of bivariate copulas.

As known (see [4]), the dependence properties of the family of distribution
functions (Fτ )τ≥0 of

[X1 − τ,X2 − τ | X1 > τ,X2 > τ ]

can be described by means of a suitable copula process (Cτ )τ>0. Moreover, it
is convenient to reparametrize the latter copula process in terms of a param-
eter t ∈ (0, 1], obtaining the process (Ct)t∈(0,1]. In other words, C1 represents
the dependence structure of Fτ when τ = 0 and, as t tends to 0, Ct represents
the limiting dependence structure of Fτ as τ tends to ∞.

The following result allows us to derive some analytical properties of the
copula process (Ct)t∈(0,1].

Proposition 1 ([4]). For every t ∈ (0, 1], Ct is completely described by the
restriction of the copula C to [0, t]2. Specifically, one has

Ct(u, v) =
C(h−1

t (uht(t)), k
−1
t (vkt(t)))

C(t, t)
, (1)

where ht(u) = C(u, t) and kt(u) = C(t, u) for all t ∈ [0, 1].



Evolution of the Dependence of Residual Lifetimes 307

Formally, the transformation (1) can be described in terms of the following
mapping:

Ψ : (0, 1]× C → C, Ψ(t, C) = Ct.

Such a Ψ has the following features:

• Let C ∈ C. The mapping Ψ(·, C) : (0, 1] → C, t �→ Ct, is continuous, i.e.,
Ct converges uniformly to Ct0 when t tends to t0. Roughly speaking, the
evolution of the dependence has no jumps (see [4]).

• Let t ∈ (0, 1]. The mapping Ψ(t, ·) : C → C is continuous with respect to
the L∞–norm. In other words, if the copulas C and C′ are sufficiently close
each other (with respect to a suitable norm), then, for any t, Ct and C′

t

are sufficiently close each other (see [1]). Roughly speaking, the evolution
of the dependence is stable with respect to misspecification of C1.

Moreover, notice that Ψ can be interpreted as the action of a suitable semi–
group ((0, 1], ∗) on C. In particular, for all t, s ∈ (0, 1], we have (Ct)s =
Ψ(s, Ct) = Ct∗s (see [8, 9]).

It can be easily seen that the limit of Ct, as t tends to 0, may not exists.
To this end, it is enough to consider a special kind of ordinal sum of copulas
or a copula with fractal support (see, for instance, [1, Remark 3.3]). However,
when such a limit exists, it follows that the limiting copula is invariant under
the transformation defined in Eq. (1). For example, the independence copula
Π(u, v) = uv and the comonotone copula M(u, v) = min(u, v) are invariant;
moreover copulas belonging to the Clayton family of copulas {CClθ },

CClθ (u, v) =
(
max

(
0, u−θ + v−θ − 1

))−1/θ
, θ ≥ −1, θ �= 0, (2)

are invariant (for more details, see [5, 6]).

3 Dependence of Residual Lifetimes

Now, suppose that C ∈ C satisfies some positive dependence property. Our
aim is to investigate whether the positive dependence is preserved by the
process (Ct)t∈(0,1]. First we introduce some definitions (see, e.g., [11]).

Definition 1. Let C ∈ C.
• C is PQD (positive quadrant dependent) if and only if C(u, v) ≥ uv for

all u, v ∈ [0, 1].
• C is TP2 (totally positive of order 2) if and only if for all u, u′, v, v′ in

[0, 1], u ≤ u′, v ≤ v′,

C(u, v)C(u′, v′) ≥ C(u, v′)C(u′, v). (3)
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• C is PLR (positively likelihood ratio dependent) if and only if it is abso-
lutely continuous and its density satisfies (3).

Notice that PLR implies TP2; moreover, if C is TP2, then C is PQD. The
following result also holds.

Proposition 2 ([4]). Let C ∈ C.
• If C is TP2, then Ct is TP2 for all t ∈ (0, 1].
• If C is PLR, then Ct is PLR for all t ∈ (0, 1].

If C is PQD, instead, Ct may not be PQD for some t (see e.g. [4, Example 10]).
In order to guarantee that positive quadrant dependence of C is preserved
by any Ct, we need some stronger conditions, as specified in the following
result.

Proposition 3 ([4]). Let C ∈ C. Then Ct is PQD for all t ∈ Λ ⊆ (0, 1] if
and only if, for all u, v, t ∈ Λ, u, v ≤ t,

C(u, v)C(t, t) ≥ C(u, t)C(t, v). (4)

In particular, C is said to be hyper-PQD if C satisfies (4) for Λ = (0, 1].
Another way to look at the dependence evolution of the process (Ct)t∈(0,1]

consists in introducing a suitable way to compare the copulas at different
times. To this end, we consider the following definitions.

Definition 2. Let C1, C2 ∈ C. C1 is smaller than C2 in the PQD order (writ-
ten C1 �PQD C2) if C1(u, v) ≤ C2(u, v) for all u, v ∈ [0, 1].

Definition 3. Let C ∈ C. Then (Ct)t∈(0,1] is increasing (in the PQD order)
if Ct′ �PQD Ct′′ for any t′ < t′′.

The following example shows that, regardless of the specific positive depen-
dence of C ∈ C, the dependence may evolve in different ways.

Example 1. Given a continuous and increasing function f : [0, 1]→ [0, 1] such

that f(1) = 1 and f(t)
t is decreasing on (0, 1], consider the copula

C(u, v) = min(u, v)f(max(u, v))

(see [3, 7] for more details about this construction). Such a copula C is TP2
(see [3]). Therefore, as follows by condition (4), C is hyper-PQD. Further-
more, by Prop. 2,

Ct(u, v) = min(u, v)
f(tmax(u, v))

f(t)

is TP2 for any t ∈ (0, 1]. The evolution of the strength of the dependence,
instead, is influenced by the choice of f . In particular, the following cases can
be considered.
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• If f(t) = tα, α ∈ [0, 1], then C is a Cuadras–Augé copula (see [2]) and
Ct = C for every t ∈ (0, 1] (see also [1, Example 4.1]).

• If f(t) = αt + (1 − α), α ∈ [0, 1], then C is a Fréchet copula and,
for all t1, t2 ∈ (0, 1], t1 ≤ t2, we have Ct1 �PQD Ct2 . In particular,
limt→0+ Ct(u, v) = min(u, v).

• If f(t) = min(αt, 1), α ≥ 1, then C is an ordinal sum of the copu-
las Π(u, v) = uv and M(u, v) = min(u, v) with respect to the parti-
tion ([0, 1/α], [1/α, 1]). Thus, for all t1, t2 ∈ (0, 1], t1 ≤ t2, we have
Ct1 �PQD Ct2 . In particular, limt→0+ Ct(u, v) = uv.

Thus, depending on f , the mapping t �→ Ct may be constant, increasing or
decreasing in the PQD order. �

4 Measures of Association of Residual Lifetimes

The analysis of the dependence properties of Ct can be sometimes compli-
cated because of technical difficulties in computing Eq. (1). In such a case, it
could be convenient to consider some suitable association measures that are
related to copulas.

Here, we concentrate on the most widespread Kendall’s tau and Spear-
man’s rho, which measure the concordance between two random variables.
As known (see e.g. [12]), for every copula C, they are given by:

τK(C) = 4

∫

[0,1]2
C(u, v) dC(u, v) − 1,

ρS(C) = 12

∫

[0,1]2
(C(u, v)− uv) du dv.

To compute such measures for Ct, we assume here that C is absolutely con-
tinuous and, hence, Ct is absolutely continuous for all t ∈ (0, 1] (see [4,
Proposition 17]).

Proposition 4. Let C be an absolutely continuous copulas. For every t ∈
(0, 1], one has

• τK(Ct) =
4

C(t, t)2

∫

[0,t]2
C(x, y)∂212C(x, y) dxdy − 1;

• ρS(Ct) =
12

C(t, t)4

∫

[0,t]2
(C(x, y)C(t, t) − C(x, t)C(t, y))∂1C(x, t)∂2C(t, y)

dxdy.

Proof. By the formula for calculating Kendall’s τ , one has

τK(Ct) = 4

∫

[0,1]2
Ct(u, v)∂212Ct(u, v)dudv − 1.
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Therefore, by the change of variable x = h−1
t (uht(t)) and y = k−1

t (vkt(t)),

τK(Ct) = 4

∫

[0,t]2

C(x, y)∂212C(x, y)

∂1C(x, t)∂2C(t, y)
· ∂1C(x, t)∂2C(t, y)

C(t, t)2
dxdy − 1.

Analogously,

ρS(Ct) = 12

∫

[0,1]2
(Ct(u, v)− uv)dudv

= 12

∫

[0,t]2

(
C(x, y)

C(t, t)
− C(x, t)C(t, y)

C(t, t)2

)
∂1C(x, t)∂2C(t, y)

C(t, t)2
dxdy,

which concludes the proof. �
Notice that the measures of association of Ct only depend on the value of C
on the subdomain [0, t]2.

Finally, together with τK and ρS , a measure of dependence may be consid-
ered for the process (Ct)t∈(0,1]. Here we consider the Schweizer-Wolff’s index
σ (see [13]), given by

σ(C) = 12

∫ 1

0

∫ 1

0

|C(u, v)− uv|dudv.

By the same arguments in the proof of Prop. 4, it straightly follows that

σ(Ct) =
12

C(t, t)4

∫ t

0

∫ t

0

|C(u, v)C(t, t)−C(u, t)C(t, v)|∂1C(u, t)∂2C(t, v)dudv.

It is immediate that, if C is PQD, then σ(C) = ρS(C). Therefore, when C
is hyper-PQD, σ(Ct) = ρS(Ct). However, in general, σ(Ct) is not directly
obtained from ρS(Ct) (see [11, Examples 5.18, 5.19]).

Example 2. Let us consider the copula

C(u, v) = uv + uv(1− u)(1− v).

In view of Prop. 4, for every t ∈ (0, 1], we have

τK(Ct) =
2t2

9(2− 2t+ t2)2
.

In particular, τK(Ct) → 0 as t → 0+. Analogously, for every t ∈ (0, 1], we
have

ρS(Ct) =
t6

3
,
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and ρS(Ct)→ 0 as t → 0+. Intuitively, the residual lifetimes are asymptoti-
cally (as the time τ tends to infinity) uncorrelated.

A stronger conclusion can be achieved by means of the σ index. Since C
is TP2 and hence hyper-PQD, σ(Ct) = ρS(Ct) for any t. Thus we also have
σ(Ct)→ 0 as t→ 0+, implying that the residual lifetimes are asymptotically
independent. �

5 Conclusions

We have considered a copula process that allows to study the dependence
behaviour of a random vector of lifetimes X, knowing that all the components
are surviving up to time τ . The study of such a copula process provides
a way for looking at the tail dependence of the joint distribution of the
vector. Moreover, the association measures related to the process may provide
another way for expressing how the residual lifetimes evolve when the time
increases.

Acknowledgements. The first author acknowledges the support of Free Uni-
versity of Bozen-Bolzano, School of Economics and Management, via the project
“Stochastic Models for Lifetimes”.
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A Spatial Contagion Test for Financial
Markets

Fabrizio Durante, Enrico Foscolo, and Miroslav Sabo

Abstract. By using some ideas recently introduced by Durante and Jaworski,
we present a test for spatial contagion among financial markets. This test is
based on a comparison between threshold copulas associated with a given
pair of random variables representing two financial markets. Moreover, the
described methodology is used in order to check the presence of contagion
among European markets in the recent financial crisis.

Keywords: Financial crisis, spatial contagion, threshold copulas.

1 Introduction

Financial contagion is usually referred to the process that describes the spread
of financial difficulties from one economy to others in the same region and
beyond. Nowadays, it is an ubiquitous terms in the financial literature, which
has been applied to a variety of different situations. For instance, Pericoli
and Sbracia [9] have listed five different definitions of contagion stressing the
different perspectives that have been adopted in the literature. For a recent
overview about contagion, see [7].

Following [9], we say that “contagion is a significant increase in comove-
ments of prices and quantities across markets, conditional on a crisis occur-
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ring in one market or group of markets”. In other words, financial contagion
is related to a change in the positive association (interconnectedness) among
markets, when a group of markets is affected by panics (i.e., noticeable distur-
bances).

Checking the presence of contagion among a group of markets has an
impact in the estimation of the risk of a portfolio of assets. In fact, inter-
national investors may be concerned with the benefits of diversification, i.e.
they aim at reducing the risk by investing in a variety of assets. However, if
cross-country correlations of asset prices are significantly higher in periods
of crisis, portfolio diversification may fail to deliver exactly when its benefits
are needed most.

The standard approach to check for contagion is to draw a distinction be-
tween normal comovements, due to simple interdependence among markets,
and excessive comovements in prices and quantities due to some structural
break in the data. This issue is usually addressed by comparing cross-country
correlations in tranquil and crisis periods. Specifically, contagion is said to
have occurred if there is a significant increase in correlation during the crisis
period. This phenomenon is also referred to as correlation breakdown. From
this viewpoint, a test for contagion appears usually in the form:

H0 : ρ̃ ≤ ρ no contagion

against H1 : ρ̃ > ρ contagion

where ρ̃ and ρ represent the correlation coefficient in crisis and untroubled
periods, respectively.

However, these tests present (at least) two pitfalls. First, Pearson (linear)
correlation does not completely describe the dependence among random vari-
ables (see, for instance, [4]); secondly, correlation breakdown can be biased by
heteroscedasticity effects (see, for instance, [5]). We will see in the following
how these two aspects will be considered.

In this note, we review the basic ideas about contagion described in [3]
(Sect. 2). Then, we present a new test for financial contagion that aims at
reducing bias introduced by heteroscedasticity of the univariate time series
(Sect. 3). The procedure is used in order to check the presence of contagion
among European markets in the recent financial crisis (Sect. 4).

2 Definition of Financial Contagion via Copulas

For basic definitions and properties about copulas, we refer the reader to [6].
Let (X,Y ) be a pair of continuous random variables (=r.v.’s) on (Ω,F ,P).

It is well known that the dependence of (X,Y ) can be conveniently described
by means of the copula associated with it. Actually, this idea also extends to
conditional distribution functions (=d.f.’s).
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Definition 1. Let B be a Borel set in R
2

such that P((X,Y ) ∈ B) > 0. We
denote by HB the conditional d.f. of (X,Y ) given (X,Y ) ∈ B, defined, for
all (x, y) ∈ B, by

HB(x, y) = P (X ≤ x, Y ≤ y | (X,Y ) ∈ B) .

We call threshold copula related to (X,Y ) and to the Borel set B the unique
copula CB of HB.

Here, we are interested on the conditional d.f. of [X,Y | (X,Y ) ∈ B] where

the set B ⊂ R
2

is of the following type:

• Tα1,α2 = [−∞, qX(α1)]× [−∞, qY (α2)]
• Mβ1,β2 = [qX(β1), qX(1− β1)]× [qY (β2), qY (1− β2)],

for some α1, α2 ∈
]
0, 12

[
and β1, β2 ∈

[
0, 12

[
. Here qX and qY are the quantile

functions associated with X and Y , respectively. Specifically, Tα1,α2 is called
tail set, and it is usually related to a “risky scenario”. It includes the obser-
vations of X (respectively, Y ) that are less than a given threshold. The set
Mβ1,β2 is called central set (or mediocre set), and it is refereed to an “un-
troubled scenario”. It is used when one wants to focus on observations that
are not extremal.

Let X and Y be the r.v.’s representing the log–returns of two financial
markets and let C be the associated copula. Spatial contagion can be intro-
duced in terms of a suitable comparison between threshold copulas. To this
end, let us introduce the following definition.

Definition 2. Let C1 and C2 be two bivariate copulas. we say that C1 is less
than C2 in the positive quadrant dependence order (one writes: C1 � C2)
when C1(u, v) ≤ C2(u, v) for all (u, v) ∈ [0, 1]2. In particular, we write C1 ≺
C2 when C1 � C2 and C1(u, v) �= C2(u, v) for at least one (u, v) ∈ [0, 1]2.

Let α, β ∈ ]
0, 12

[
, α ≤ β. Following [3], the following definition of (asymmet-

ric) contagion can be given.

Definition 3. Let X and Y be the r.v.’s representing the returns of two
financial markets. There is contagion from market X to market Y with respect
to Tα,1 and Mβ,0 if

CMβ,0
≺ CTα,1

where Mβ,0 = [qX(β), qX(1− β)] × R, Tα,1 = [−∞, qX(α)] × R.

Therefore, following [1], contagion is based on the comparison between the
dependence in a tail region and in a central region of the joint d.f. of (X,Y ).
For such a reason, it is usually denoted as spatial contagion.

Some preliminary comments are needed here: first, contagion is based
on copulas and, as such, it is more informative than other methods based
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Pearson’s correlation coefficient or tail dependence coefficients; secondly, con-
tagion appears when there is a strict order between the copulas. For instance,
two markets that are perfectly comonotone (i.e., one market is an increas-
ing function of the other) exhibit no contagion, since their dependence does
not change at any time. These markets are simply interdependent (compare
with [5]).

Most noticeably, contagion depends on some suitable thresholds α and
β, which should be chosen taking into account suitable definitions of tran-
quil/panic periods (usually, α = β). In our approach we restrict to such
situations:

• α = β = 0.05: extreme contagion
• α = β = 0.10: moderate contagion
• α = β = 0.25: weak contagion

To clarify the notation, “extreme contagion” refers to the fact that the de-
pendence between markets shifts upward only in presence of very extreme
losses in one market. Weak contagion, instead, means that small losses in one
market are sufficient to strength the comovements between the markets.

3 Test for Financial Contagion

A test for contagion based directly on a comparison of copulas as in Def. 3
could be difficult to implement. In fact, in general, the calculation of threshold
copulas is not easily manageable. Moreover, it is always difficult to find an
appropriate copula model to the data at disposal. In order to avoid such
troubles, a non-parametric procedure should be preferred.

The idea is based on the following fact. Given two copulas C and D,
if C ≺ D, then ρ(C) ≤ ρ(D), where ρ is the Spearman’s rank-correlation
coefficient, given, for any copula C, by

ρ(C) = 12

∫

[0,1]2
C(u, v)du dv − 3

(for more details, see [10]). Then, we might check the absence of contagion
by comparing not the copulas, but the values of the associated Spearman’s
rank-correlation.

In order to describe the test for contagion, for i ∈ {1, 2} let P it be a time
series from a stock market index. Let Lit be the time series of the log-returns
defined as log(P it /P

i
t−1). The joint model of (L1

t , L
2
t ) may be determined in

two steps (see, for instance, [2, 8]): first, we select a model for the marginal
times series; then, we choose a suitable copula between them. Here we suppose
that, for i ∈ {1, 2}, Lit is modelled by a AR(1)–GARCH(1,1) process with
innovation distribution being Student distribution; while the innovations are
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Fig. 1 Illustration of the procedure for selecting tail and central regions

assumed to be independent and identically distributed with a common copula
C. Now, the following hypothesis test can be performed:

H0 : ρ(CT ) ≤ ρ(CM ) (no contagion)

against H1 : ρ(CT ) > ρ(CM )

where CT and CM are the copulas associated with C (the copula associated
with the residuals) and suitable tail and central sets T and M , respectively.

We would like to stress that we apply a contagion test to the copula linking
the innovations of the time series, because we would like to remove the effects
of heteroscedasticity on the univariate time series and avoid possible bias in
the test (see [5] for a discussion about this latter point).

Practically, after applying the AR–GARCH filter to each univariate time
series, the obtained residuals (R1

t , R
2
t ) will be rescaled to [0, 1]2 by obtain-

ing the sample (S1
t , S

2
t ). Such a rescaling has no effect in the calculation of

Spearman’s ρ that is invariant under rank transformation. Therefore, we may
calculate:

• the empirical version ρ̂(CT ) by using the points (S1
t , S

2
t ) such that S1

t ≤ α;
• the empirical version ρ̂(CM ) by using the points (S1

t , S
2
t ) when α ≤ S1

t ≤
1− α.

For an illustration see Fig. 1.
Now, we define Δρ = ρ(CT )− ρ(CM ) and Δρ̂ = ρ̂(CT )− ρ̂(CM ) its empir-

ical estimation. Under some technical assumptions on the involved threshold
copulas, as the length of the time series N → +∞,
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√
N (Δρ̂−Δρ)

d→ N (0, σ2
T,M ). (1)

Moreover, the variance can be estimated by means of a bootstrap procedure
as shown in [3].

By using the Gaussian approximation in Eq. (1) a contagion test could be
easily implemented via standard techniques (see, for instance, [3]).

4 Financial Contagion in EU Markets

We apply our approach to check the effects of the contagion from the Greek
market to the whole Europe. We consider the stock market indices reported
in the first row of Tbl. 1.

Table 1 p–values of diagnostic tests on residuals after applying the AR–GARCH
filter

ATHEX FTSE MIB DAX IBEX 35 Euro Stoxx 50 CAC 40 FTSE 100

AR(5) 0.33 0.61 0.44 0.70 0.48 0.39 0.35
ARCH(5) 0.23 0.09 0.08 0.00 0.11 0.10 0.43
KS (Student) 0.18 0.00 0.00 0.01 0.02 0.02 0.01

We focus on daily log-returns of the indices in the period 2003–2011
(data from Datastream). As described, to each univariate time series an AR–
GARCH model has been applied. The adequacy of the fit has been checked
via standard tests in order to check the residual uncorrelatedness and ho-
moscedasticity (see Tbl. 1).

Then, we test an asymmetric contagion originated from the Greek stock
market towards the other markets listed above. As for the choice of the thresh-
olds, we consider α = β ∈ {0.05, 0.10.0.25}. An example of the different values
assumed by the Spearman’s ρ in the tail and central set is given in Fig. 2.

Tables 2, 3 and 4 present the results of the performed tests. There is some
evidence of weak contagion (at a significance level of 5%). Thus, the comove-
ments between Greek market and the other European markets tend to appear
more frequently when Greece is doing moderately badly. In other words, the
link between the Greek stock exchange and the other stock exchange shifts
upwards already when Greek market is having weak losses.

On the other hand, the absence of contagion is not rejected when we restrict
to moderate or extreme contagion. The linkage between the two markets
under consideration does not shift upwards when one market (the Greek
stock markets) is having severe losses. Notice that this does not mean that
the markets are weakly connected, but simply that their relation does not
jump when we know that one market is doing quite badly.
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Fig. 2 Spearman’s rho of the tail and the central set (for different threshold α)
related to FTSE ATHEX 140 and EURO STOXX 50, respectively

Table 2 p–value of the asymmetric contagion test (α = 0.05) from ATHEX to the
other markets

FTSE MIB DAX 30 IBEX 35 Euro Stoxx 50 CAC 40 FTSE 100

0.9989 0.9992 0.9996 0.9999 0.9987 0.9834

Table 3 p–value of the asymmetric contagion test (α = 0.10) from ATHEX to the
other markets

FTSE MIB DAX 30 IBEX 35 Euro Stoxx 50 CAC 40 FTSE 100

0.5942 0.6201 0.5077 0.6994 0.7641 0.7216

Table 4 p–value of the asymmetric contagion test (α = 0.25) from ATHEX to the
other markets

FTSE MIB DAX 30 IBEX 35 Euro Stoxx 50 CAC 40 FTSE 100

0.0036 0.0007 0.0114 0.0031 0.0070 0.0115
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5 Conclusions

We have presented the notion of spatial contagion based on the comparison
between threshold copulas. Moreover, we have described a test for contagion
that tries to remove the bias induced by the presence of heteroscedasticity.
An application to European financial markets is provided.
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On Copulas and Differential Inclusions

Piotr Jaworski

Abstract. We construct a class of differential inclusions such that their so-
lutions are horizontal sections of copulas. Furthermore we show that the
horizontal sections of any copula can be obtained in such a way.

Keywords: Copulas, discontinuous differential equations, horizontal sec-
tions of copulas.

1 Introduction

The objective of this paper is to study the generalized solutions of first order
ordinary differential equations with discontinuous right side

z′ = F (x, z). (1)

Namely, we are dealing with absolutely continuous functions z(x), such that
almost everywhere in their domain they fulfill a differential inclusion

z′(x) ∈ [lim inf
y→z

F (x, y), lim sup
y→z

F (x, y)]. (2)

Our aim is to show that for a certain class of such equations the general
solution consists of horizontal sections of some copula. Since, vice versa, every
copula can be obtained in such a way we get a kind of a correspondence.

The paper is organized as follows. Section 2 is important from the point
of view of self consistency of the paper. We present here the basic facts con-
cerning the notion of an absolutely continuous solution of ordinary differential
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equations and differential inclusions. In Section 3 we state the main theorem.
The proofs and auxiliary results are collected in Section 4.

2 Notation

We are going to deal with differential equations with discontinuous right side.
Therefore we apply the notion of an absolutely continuous solution, known
in the literature under the name Filippov solution ([11]).

Definition 1. Let f be a real valued function (may be discontinuous)

f : I× [y1, y2] −→ R,

where I is an interval (closed, half-closed or open). We say that a function
g(x) defined on the interval I with values in [y1, y2] is a generalized solution
of the differential equation

y′ = f(x, y),

if g is absolutely continuous and almost everywhere satisfies the differential
inclusion

g′(x) ∈ [lim inf
y→g(x)

f(x, y), lim sup
y→g(x)

f(x, y)].

The basic facts about the differential inclusions and their solutions the reader
may find for example in [11]. Note, that the absolute continuity of g implies
that its derivative exists almost everywhere. Moreover

∫ b

a

g′(t)dt = g(b)− g(a)

for any a < b from I ([8] Theorem 7.4.4). Furthermore, if h is any integrable
function on [a, b] then the function

g(x) =

∫ x

a

h(t)dt

is absolutely continuous on [a, b] and ([8] Theorem 7.1.7 and formula 7.1.14
below)

g′(x) = h(x) a.e.

As a consequence, the generalized solutions are closely related with so called
weak solutions in the Sobolev space W 1,1(I) (compare [1] Theorem 8.2).
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3 Main Results

Definition 2. Let Δ be a triangle Δ = {(x, z) ∈ [0, 1]2 : z ≤ x}. By F we
denote the set of real valued functions F , F : Δ −→ R, such that:
F1. For fixed z ∈ [0, 1] the functions Fz = F (·, z) : [z, 1]→ R are measurable;
F2. F fulfill the boundary conditions

∀x ∈ (0, 1] F (x, 0) = 0, F (x, x) = 1;

F3. The functions F (x, z) are nondecreasing in the second variable

∀x ∈ (0, 1] ∀0 ≤ z1 ≤ z2 ≤ x F (x, z1) ≤ F (x, z2).

Note that the conditions F1 and F3 imply that each F ∈ F is a measurable
function of two variables (see [12] Theorem 11). For notational simplicity for
x ∈ [0, 1] we put F (x, z) = 0 for z < 0 and F (x, z) = 1 for z > x.

Theorem 1. For every F ∈ F, there exists a unique function C : [0, 1]2 →
[0, 1] such that for fixed y ∈ [0, 1] :
1. Cy(x) = C(x, y) is absolutely continuous and C(x, y) ≤ x;
2. C(1, y) = y and

∂C(x, y)

∂x
∈ [F (x,C(x, y)−), F (x,C(x, y)+)] a.e.

Furthermore:
3. The function C(x, y) is a copula;
4. If F1, F2 ∈ F are equal almost everywhere to each other, then the corre-
sponding solutions C1 and C2 coincide

∀x, y ∈ [0, 1] C1(x, y) = C2(x, y);

5. If F1, F2 ∈ F and F1(x, z) ≥ F2(x, z) almost everywhere, then C2 is bigger
than C1

∀x, y ∈ [0, 1] C1(x, y) ≤ C2(x, y).

We recall that a bivariate copula is a restriction to [0, 1]2 of a distribution
function whose univariate margins are uniformly distributed on [0, 1]. Specif-
ically, C : [0, 1]2 → [0, 1] is a copula if it satisfies the following properties:

(C1) C(x, 0) = C(0, x) = 0 for every x ∈ [0, 1], i.e. C is grounded,
(C2) C(x, 1) = C(1, x) = x for every x ∈ [0, 1],
(C3) C is 2–increasing, that is, for every x1, y1, x2, y2 ∈ [0, 1], x1 ≤ x2 and
y1 ≤ y2, it holds

C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1).

For more details about the copula theory we refer to [10, 7, 6].
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Example 1. Let for x ∈ (0, 1]

F (x, z) =

⎧
⎨

⎩

0 for 0 ≤ z < x
2

0.3 for z = x
2

1 for x
2 < z ≤ x

The extended general solution C is piecewise linear, for x ∈ [0, 1]

C(x, y) =

⎧
⎨

⎩

y for 0 ≤ y ≤ 1
2x,

1
2x for 1

2x < y < 1
2 (2 − x),

y + x− 1 for 1
2 (2 − x) ≤ y ≤ 1.

We obtain a copula, which describes the singular probability distribution,
where the probability mass is uniformly distributed on two segments
Conv{(0, 0), (1, 0.5)} and Conv{(0, 1), (1, 0.5)} (the rotated letter V, compare
[10] Example 3.3).

Theorem 1 describes all horizontal sections of bivariate copulas. Indeed:

Theorem 2. For any bivariate copula C there exists FC ∈ F such that for
every fixed y ∈ [0, 1]

∂C(x, y)

∂x
= FC(x,C(x, y)) a.e.

4 Proofs and Auxiliary Results

The existence of the solutions of the Cauchy problem

z′ ∈ [F (x, z−), F (x, z+)], z(1) = y, (3)

follows from Theorem 4.7 in [11]. Note that for x ∈ (0, 1] F (x, 0) = 0 and
F (x, x) = 1 hence there is a constant minimal solution

gmin(x) = 0, x ∈ [0, 1].

and a linear maximal solution

gmax(x) = x, x ∈ [0, 1].

Therefore, if g is any solution of (3), then g is defined on the interval [0,1]
and

∀x ∈ [0, 1] 0 = gmin(x) ≤ g(x) ≤ gmax(x) = x. (4)

The uniqueness of the solutions is due to the monotonicity of F in the second
variable. Indeed:
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Lemma 1. Let F1, F2 ∈ F and F1(x, z) ≥ F2(x, z) almost everywhere on Δ.
If for some point x0 ∈ (0, 1) and any two generalized solutions g1 and g2,
respectively of z′ = F1(x, z) and z′ = F2(x, z),

g1(x0) > g2(x0),

then
∀x ∈ [x0, 1] g1(x) − g2(x) ≥ g1(x0)− g2(x0).

Proof
F1 and F2 are measurable functions and F1(x, z) ≥ F2(x, z) almost every-
where in Δ. Therefore for x almost everywhere in (0, 1], for every two points
z1, z2 ∈ [0, x], z1 > z2, we can select a point z∗ ∈ (z2, z1) such that

F1(x, z∗) ≥ F2(x, z∗).

Due to the monotonicity of the functions Fi(x, z) in z we get

F2(x, z+2 ) ≤ F2(x, z∗) ≤ F1(x, z∗) ≤ F1(x, z−1 ).

Let
x1 = inf{x ∈ [x0, 1] : x = 1 ∨ g1(x) ≤ g2(x)}.

Since gi are continuous, x1 > x0 and on [x0, x1] g1 is greater or equal to g2.
Hence we have for t ∈ [x0, x1]

g′2(t) ≤ F2(t, g2(t)+) ≤ F1(t, g1(t)−) ≤ g′1(t).

g1(x) − g2(x) = g1(x0)− g2(x0) +

∫ x

x0

g′1(t)dt−
∫ x

x0

g′2(t)dt

≥ g1(x0)− g2(x0) > 0.

Therefore x1 = 1, which proves the thesis of Lemma. �

Corollary 1. Let F1(x, z) ≥ F2(x, z) almost everywhere on Δ. If for any two
generalized solutions g1 and g2, respectively of z′ = F1(x, z) and z′ = F2(x, z),
g1(1) = g2(1), then g1(t) ≤ g2(t) for t ∈ [0, 1].

Putting F1(x, z) = F2(x, z) = F (x, z), we obtain the uniqueness of solutions.

Corollary 2. If for any two generalized solutions g1 and g2 of z′ = F (x, z)
g1(1) = g2(1), then g1 = g2.

Putting together the existence and uniqueness of solutions we obtain the
existence and uniqueness of the function C fulfilling the first two points of
Theorem 1.
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Corollary 3. There is a unique function C : [0, 1]2 → [0, 1] such that

∀x ∈ [0, 1] C(x, y) = g(x),

where g is a generalized solution of the Cauchy problem

z′ = F (x, z), z(1) = y.

Proposition 1. The function C(x, y) defined in Corollary 3 is a copula.

Proof
First, we show that C fulfills the boundary conditions C1 and C2.
Directly from the definition and formula (4) we have that

C(0, y) = 0 and C(1, y) = y.

To prove the other two equalities we observe that gmin and gmax

gmin(x) = 0, gmax(x) = x, x ∈ [0, 1],

are solutions of (3) for respectively y = 0 and y = 1. Hence

C(x, 0) = gmin(x) = 0 and C(x, 1) = gmax(x) = x.

The last condition – C3 is a direct corollary of Lemma 1 applied for F1(x, z) =
F2(x, z) = F (x, z) and g2(1) = y1 ≤ y2 = g1(1). Indeed, then also g2(x1) ≤
g1(x1) and for x2 ≥ x1 we get from the same Lemma applied for x0 = x1 and
x = x2

C(x1, y1) + C(x2, y2)− C(x1, y2)− C(x2, y1)

= g2(x1) + g1(x2)− g1(x1)− g2(x2) ≥ 0.

�
To accomplish the proof of Theorem 1 it is enough to observe that Corollary
1 implies the remaining two points (4 and 5) of the thesis.

To prove Theorem 2 we construct FC basing on the conditional copulas
and so called Dini derivatives.

If C is the copula of the pair (X,Y ), then the copula of the conditional
distribution function of (X,Y ) with respect to the condition X ≤ x, where
P{X ≤ x} = α ∈ (0, 1] is called a conditional copula and denoted by C[α]

(compare [9, 3]). We recall (for a proof see [4], [5] or [9]):

Proposition 2. Let C(x, y) be a copula. The functional equation

H

(
α, ξ,

C(α, y)

α

)
=
C(αξ, y)

α
, ξ, y ∈ [0, 1], α ∈ (0, 1] (5)

has a unique solution H(α, ξ, z), which for fixed α is equal to the conditional
copula C[α](ξ, z).
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Next step is to differentiate formula (5) at ξ = 1. Since H may not be
differentiable, we apply the left-side Dini upper derivative. We recall that
the concept of Dini derivative (or Dini derivate) generalizes the classical
notion of the derivative of a real-valued function. Let a, b ∈ R, a < b, and let
f : (a, b]→ R be a continuous function. Let x be a point in (a, b]. The limit

D−f(x) = lim sup
h→0+

f(x)− f(x− h)

h
. (6)

is called left-side upper Dini derivative of f at x. For more details, we refer to
[8] and [2]. Note that if fy(x) is a continuous family of continuous functions
then the Dini derivative may not be continuous but nevertheless it is a Borel
function.

Definition 3. For a copula C, we define FC as a partial Dini derivative of
H(x, t, z/x) with respect to t at t = 1, where H is the family of copulas
introduced in Proposition 2.

FC(x, z) = D−
t H(x, t,

z

x
)|t=1 = lim sup

t→1−

H
(
x, 1, zx

)−H (x, t, zx
)

1− t , (7)

where (x, z) ∈ Δ.

Proposition 3. FC has the following properties:

1. For fixed y ∂C(x,y)
∂x = FC(x,C(x, y)) almost everywhere.

2. FC belongs to F.

Proof.
To prove the first point we substitute in equation (5) ξ = t and α = x. We
fix x and y and compute the Dini derivative at t = 1

lim sup
t→1−

H
(
x, 1, C(x,y)

x

)
−H

(
x, t, C(x,y)

x

)

1− t (8)

= lim sup
t→1−

C(x, y)− C(tx, y)

x(1− t) = lim sup
ξ→x−

C(x, y) − C(ξ, y)

x− ξ .

Since C is Lipschitz, its Dini derivative is equal almost everywhere to the
usual derivative. Therefore for fixed y

FC(x,C(x, y)) =
∂C(x, y)

∂x
a.e.

To prove point (2) we observe that H is a continuous family of copulas.
Therefore Dini derivatives are Borel functions and (F1) is valid. Moreover,
since H(x, t, 0) = 0 and H(x, t, 1) = t, we get the boundary conditions (F2).
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The monotonicity in z (condition (F3)) follows from the two-nonde-
creasingness of copulas – condition (C2). Indeed, let 0 ≤ z1 ≤ z2 ≤ x. Since
copulas are two-nondecreasing, we have for 1 > t > 0

H
(
x, 1,

z1
x

)
−H

(
x, t,

z1
x

)
≤ H

(
x, 1,

z2
x

)
−H

(
x, t,

z2
x

)
.

Therefore, having Dini-differentiated H with respect to the second variable
we get

FC(x, z1) = D−
t H

(
x, t,

z1
x

)

|t=1
≤ D−

t H
(
x, t,

z2
x

)

|t=1
= FC(x, z2).

�
Formula (8) implies the following characterization of FC :

Corollary 4. The function FC is equal to a composition of the partial left-
side upper Dini derivative of copula C with respect to the first variable and
any family of right-inverses of the vertical sections of C

FC(x, z) = D−
ξ C(ξ, ψx(z))|ξ=x, C(x, ψx(z)) = z.
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An Analytical Characterization of the
Exchangeable Wide-Sense Geometric
Law

Jan-Frederik Mai, Matthias Scherer, and Natalia Shenkman

Abstract. The exchangeable d-variate wide-sense geometric law is uniquely
characterized by (d+ 1)-monotone sequences of parameters in [3]. The proof
of sufficiency in [3] requires a probabilistic model. We provide an alternative,
purely analytical proof of sufficiency of the (d+1)-monotonicity of a sequence
to define admissible parameters of a d-variate wide-sense geometric law.

Keywords: d-monotone sequences, exchangeability, lack of memory, multi-
variate geometric law, rectangular inequalities.

1 Introduction

It is well known that the univariate geometric distribution allows for a unique
characterization by means of the discrete lack-of-memory (LM) property, i.e.
a random variable τ with values in N follows a geometric distribution if and
only if P(τ > n + m | τ > m) = P(τ > n) for all n,m ∈ N0. A possible d-
variate extension of the univariate discrete LM property for a random vector
(τ1, . . . , τd) is the local discrete LM property, given by the functional equation

P(τi1>ni1+m, . . . , τik>nik+m | τi1>m, . . . , τik>m) = P(τi1>ni1 , . . . , τik>nik),

for k = 1, . . . , d, 1 ≤ i1 < . . . < ik ≤ d, m, ni1 , . . . , nik ∈ N0. (1)
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Recently, it was shown in [3] that (1) uniquely characterizes the parametric
family of wide-sense geometric distributions, see Theorem 1. The definition
of the wide-sense geometric distribution in terms of its survival function is
provided in Definition 1.

Definition 1 (Wide-sense geometric distribution). Let (Ω,F ,P) be a
probability space supporting an N

d-valued random vector (τ1, . . . , τd). The
distribution of (τ1, . . . , τd) is called d-variate wide-sense geometric with pa-
rameters {pI}I⊆{1,...,d} if and only if its discrete survival function F̄W is given
by

F̄W(n1, . . . , nd) := P(τ1>n1, . . . , τd>nd) =

d∏

k=1

( ∑

I⊆{1,...,d}
πn(i)/∈I ∀ i=k,...,d

pI

)n(k)−n(k−1)

,

(2)
for some parameters pI ∈ [0, 1], I ⊆ {1, . . . , d}, with

∑
I pI = 1,

∑
I:k/∈I pI <

1 for k = 1, . . . , d, and where n(0) := 0 and πn : {1, . . . , d} → {1, . . . , d} is
a permutation depending on n := (n1, . . . , nd) such that nπn(1) ≤ nπn(2) ≤
. . . ≤ nπn(d) and n(1) ≤ . . . ≤ n(d) denotes the ordered list of n1, . . . , nd.

In (2), the permutation πn is independent of k and sorts the indices of the
vector (n1, . . . , nd) such that nπn(1) ≤ nπn(2) ≤ . . . ≤ nπn(d). More intuition
behind Equation (2) can be gained through studying the stochastic model of
the multivariate wide-sense geometric law. A probabilistic construction based
on waiting times for outcomes in a sequence of multinomial trials was first
introduced in [1] and is revisited in [3], where an alternative characterization
in terms of the survival function is provided.

Theorem 1 (Local LM of the wide-sense geometric distribution).
The distribution of an N

d-valued random vector (τ1, . . . , τd) satisfies the local
discrete LM property (1) if and only if it is a d-variate wide-sense geometric
distribution.

Proof. See [3]. ��
The condition in (1) requires each subvector (τi1 , . . . , τik) of (τ1, . . . , τd) of
length k ∈ {1, . . . , d} to satisfy the local discrete LM property. By Theorem 1,
this suffices to uniquely characterize the d-variate wide-sense geometric law.
An alternative requirement is to postulate iteratively for all lower-dimensional
marginal distributions of (τ1, . . . , τd) to be geometric in the wide sense to-
gether with

P(τ1>n1 +m, . . . , τd>nd +m | τ1>m, . . . , τd>m) = P(τ1>n1, . . . , τd>nd)

for all m,n1, . . . , nd ∈ N0.
Restriction to exchangeable wide-sense geometric distributions, i.e. distri-

butions invariant under all permutations of their components, allows for an
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interesting and very convenient analytical characterization by d-monotone
sequences. A simple exchangeability criterion for the wide-sense geomet-
ric survival functions is given in [3]: the survival function (2) (and, hence,
the corresponding distribution) is exchangeable if and only if its parameters
{pI}I⊆{1,...,d} satisfy the condition pI1 = pI2 for all sets I1, I2 ⊆ {1, . . . , d}
with the same cardinality |I1| = |I2|. An important conclusion is that ex-
changeable wide-sense geometric distributions are parameterized by d pa-
rameters {βk}dk=1 only. Indeed, the survival function simplifies to

F̄W(n1, . . . , nd) =
d∏

k=1

β
n(d−k+1)−n(d−k)

k , (3)

βk =

d−k+1∑

i=1

(
d− k
i− 1

)
pi, (4)

where pi := p{1,...,i−1} for i = 2, . . . , d and p1 := p∅.
A full characterization of finite exchangeability is only known for distribu-

tions on {0, 1}d and is discussed in [4], where a new characterization based
on d-monotone functions on {0, 1, . . . , d} is provided.

2 Characterization by d-monotonicity

The exchangeable d-variate wide-sense geometric distribution can be uniquely
characterized by (d+ 1)-monotone sequences of parameters. This result was
first established by [3], who show that (d + 1)-monotonicity of the sequence
(1, β1, β2, . . . , βd) in (4) is a necessary and sufficient condition for F̄W in
(3) to define a survival function. Their proof of sufficiency is based on a
probabilistic construction due to [1]. We provide an alternative analytical
proof of sufficiency using the definition of a multivariate distribution func-
tion via its analytical properties. More precisely, we exploit the specific form
of {F̄W(n1, . . . , nd)}n1,...,nd∈N0 related to exchangeability and the local LM
property to reduce the necessary and sufficient conditions (in particular,
rectangular inequalities) for {F̄W(n1, . . . , nd)}n1,...,nd∈N0 to define a survival
function to (d+1)-monotonicity conditions on the sequence (1, β1, β2, . . . , βd).
This is interesting, since verifying that a multivariate function is a survival
function via the analytical properties is usually very difficult or even impos-
sible. The proof of Theorem 2 illustrates how (d + 1)-monotonicity arises
naturally in order to verify rectangular inequalities for the survival function.

Lemma 1 gives a characterization of an arbitrary d-variate survival function
of an N

d-valued random vector by its analytical properties. The result of
Lemma 1 is only secondary in this article. However, not knowing a reference
for this result, we include the proof for the sake of completeness.
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Lemma 1 (Analytical characterization of a survival function). The
multi-indexed sequence {F̄ (n1, . . . , nd)}n1,...,nd∈N0 is a d-dimensional survival
function of an N

d-valued random vector if and only if

(i) F̄ (0, . . . , 0) = 1;
(ii) limnk→∞ F̄ (n1, . . . , nd) = 0, k = 1, . . . , d;
(iii) rectangular inequalities: for all (ñ1, . . . , ñd), (n1, . . . , nd) ∈ N

d
0 with

ñk < nk, k = 1, . . . , d, it holds that

2∑

i1=1

. . .
2∑

id=1

(−1)i1+...+id F̄ (x1,i1 , . . . , xd,id) ≥ 0,

where xj,1 = nj, xj,2 = ñj.

Proof. We establish the claim by making use of a characterization of a multi-
variate discrete distribution function by its analytical properties. Appealing
to Section 1.4.2 in [2], the necessary and sufficient conditions for a discrete
function {F (n1, . . . , nd)}n1,...,nd∈N0 to define a distribution function of an
N
d-valued random vector are:

(i′) F (0, n2, . . . , nd) = F (n1, 0, . . . , nd) = . . . = F (n1, . . . , nd−1, 0) = 0;
(ii′) limnk→∞∀ k F (n1, . . . , nd) = 1;
(iii′) rectangular inequalities: for all (ñ1, . . . , ñd), (n1, . . . , nd) ∈ N

d
0 with

ñk < nk for k = 1, . . . , d, it holds that

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+idF (x1,i1 , . . . , xd,id) ≥ 0,

where xj,1 = ñj , xj,2 = nj .

We show that these conditions can be rewritten in terms of the corresponding
survival function F̄ as (i)− (iii). To this end, let (τ1, . . . , τd) ∼ F . (i) and (i′)
are both equivalent to (τ1, . . . , τd) having components greater than or equal to
1. (ii) and (ii′) are both equivalent to (τ1, . . . , τd) being almost surely finite.
Denoting by F̄I the I-marginal of F̄ , i.e. F̄I(xj,ij , j ∈ I) = P(τj > xj,ij , j ∈ I),
the equivalence of (iii) and (iii′) follows from

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+idF (x1,i1 , . . . , xd,id)

=

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id
( d∑

k=1

∑

∅�=I⊆{1,...,d}
|I|=k

(−1)kF̄I(xj,ij , j ∈ I)
)

=

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id(−1)dF̄ (x1,i1 , . . . , xd,id), (5)
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where the last equality is due to

d−1∑

k=1

∑

∅�=I⊆{1,...,d}
|I|=k

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id(−1)kF̄I(xj,ij , j ∈ I) = 0.

More precisely, let k ∈ {1, . . . , d− 1}, ∅ �= I ⊆ {1, . . . , d} with |I| = k. Then
∃ l ∈ {1, . . . , d} ∩ Ic and, hence,

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id(−1)kF̄I(xj,ij , j ∈ I) =

2∑

il=1

(−1)il · const = 0,

where const is independent of il. Finally, note that multiplication with the
coefficient (−1)d in (5) is equivalent to setting xj,1 = nj and xj,2 = ñj in (iii).

��
We are now in a position to analytically characterize the subclass of exchange-
able wide-sense geometric distributions by d-monotonicity of their parameter
sequences. Definition 2 recalls the notion of a d-monotone sequence.

Definition 2 (d-monotone sequence). A finite sequence {xk}d−1
k=0 ∈ R

d is
said to be d-monotone if it satisfies

∇jxk :=

j∑

i=0

(−1)i
(
j

i

)
xk+i ≥ 0,

for k = 0, 1, . . . , d−1, j = 1, 2, . . . , d−k−1. The set of d-monotone sequences
{xk}d−1

k=0 starting with x0 = 1, x1 < 1 is denoted by Md.

Theorem 2 shows that (d + 1)-monotonicity of the sequence (1, β1, . . . , βd)
in (4) is sufficient for {F̄W(n1, . . . , nd)}n1,...,nd∈N0 in (3) to define a survival
function. The proof presented here is purely analytic and involves interest-
ing combinatorial ideas. Furthermore, it illustrates how (d+ 1)-monotonicity
arises naturally in order to verify the rectangular inequalities in Lemma 1
(iii).

Theorem 2 (Exchangeable wide-sense geometric distribution). The
multi-indexed sequence {F̄ (n1, . . . , nd)}n1,...,nd∈N0 , given by

F̄ (n1, . . . , nd) =

d∏

k=1

β
n(d−k+1)−n(d−k)

k , n1, . . . , nd ∈ N0,

is a d-dimensional survival function if (1, β1, . . . , βd) ∈ Md+1. In this case,
{F̄ (n1, . . . , nd)}n1,...,nd∈N0 defines a survival function of an exchangeable
wide-sense geometric distribution.
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Proof. We show that (1, β1, . . . , βd) ∈ Md+1 is sufficient for (i) - (iii) in
Lemma 1. To this end, denote β0 := 1 and assume that {βk}dk=0 ∈ Md+1.
Trivially, (i) holds. (ii) is an immediate consequence of β1 < 1 and ∇1βk ≥ 0
for k = 1, . . . , d− 1. The condition in (iii) can be simplified by decomposing
a d-dimensional cuboid into d-dimensional cubes with unit edge length, i.e.

2∑

i1=1

. . .
2∑

id=1

(−1)i1+...+id F̄ (x1,i1 , . . . , xd,id)

=

n1−1∑

j1=ñ1

. . .

nd−1∑

jd=ñd

( 2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id F̄ (j1 + x̃1,i1 , . . . , jd + x̃d,id)
)
,

where x̃k,1 = 1, x̃k,2 = 0. Therefore, for exchangeable functions F̄ , (iii) is
equivalent to proving that

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id F̄ (j1 + x̃1,i1 , . . . , jd + x̃d,id) ≥ 0,

for all jk ∈ N0 with j1 ≥ j2 ≥ . . . ≥ jd, and where x̃k,1 = 1, x̃k,2 = 0. This is
shown in three steps. First, consider the case j1 = j2 = . . . = jd =: j. Using
(3) and the exchangeability of F̄ , we obtain with x̃k,1 = 1, x̃k,2 = 0,

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id F̄ (j + x̃1,i1 , . . . , j + x̃d,id)

=

(
d

0

)
(−1)dF̄ (j + 1, . . . , j + 1) +

(
d

1

)
(−1)d−1F̄ (j + 1, . . . , j + 1, j)

+ . . .+

(
d

d− 1

)
(−1)1F̄ (j + 1, j, . . . , j) +

(
d

d

)
(−1)0F̄ (j, . . . , j)

= βjd

((d
0

)
(−1)dβd+

(
d

1

)
(−1)d−1βd−1+ . . .+

(
d

d− 1

)
(−1)1β1+

(
d

d

)
(−1)0β0

)

= βjd

d∑

i=0

(−1)i
(
d

i

)
βi = βjd∇dβ0 ≥ 0.

Second, consider the case j1 > j2 > . . . > jd. Then, for x̃k,1 = 1 and x̃k,2 = 0,
j1 + x̃1,i1 ≥ j2 + x̃2,i2 ≥ . . . ≥ jd + x̃d,id , and, hence,
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2∑

i1=1

. . .
2∑

id=1

(−1)i1+...+id F̄ (j1 + x̃1,i1 , . . . , jd + x̃d,id)

=

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id
(
β
j1+x̃1,i1−j2−x̃2,i2
1 · · ·βjd−1+x̃d−1,id−1

−jd−x̃d,id

d−1 β
jd+x̃d,id

d

)

= (βj1−j2−1
1 · · ·βjd−1−jd−1

d−1 βjdd )×

×
2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id
(
β
x̃1,i1−x̃2,i2+1
1 · · ·βx̃d−1,id−1

−x̃d,id
+1

d−1 β
x̃d,id

d

)

= (βj1−j2−1
1 · · ·βjd−1−jd−1

d−1 βjdd )

d∏

i=1

∇βi−1 ≥ 0,

where the last equality is proved by induction. More precisely, to show that

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id
(
β
x̃1,i1−x̃2,i2+1
1 · · ·βx̃d−1,id−1

−x̃d,id
+1

d−1 β
x̃d,id

d

)
=

d∏

i=1

∇βi−1

holds in low dimensions (d ≤ 3) is an easy exercise, see also Remark 1. The
induction step is carried out as follows:

2∑

i1=1

. . .
2∑

id=1

(−1)i1+...+id
(
β
x̃1,i1−x̃2,i2+1
1 · · ·βx̃d−1,id−1

−x̃d,id
+1

d−1 β
x̃d,id

d

)

=

2∑

id=1

(−1)idβ
1−x̃d,id

d−1 β
x̃d,id

d

2∑

i1=1

. . .

2∑

id−1=1

(−1)i1+...+id−1

(
β
x̃1,i1−x̃2,i2+1
1 · · ·βx̃d−1,id−1

d−1

)

=

2∑

id=1

(−1)idβ
1−x̃d,id

d−1 β
x̃d,id

d

( d−1∏

i=1

∇βi−1

)
=(βd−1 − βd)

d−1∏

i=1

∇βi−1=

d∏

i=1

∇βi−1.

Finally, consider the most general case j1 = . . . = jk1 > jk1+1 = . . . = jk2 >
. . . > jkn−1+1 = . . . = jkn , where kn = d. Let k0 := 0. For l ∈ {1, . . . , n},
denote by x̃[kl−1+1,ikl−1+1] ≥ x̃[kl−1+2,ikl−1+2] ≥ . . . ≥ x̃[kl,ikl ] the descending

ordered list of x̃kl−1+1,ikl−1+1
, x̃kl−1+2,ikl−1+2

, . . . , x̃kl,ikl . Then
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2∑

i1=1

. . .
2∑

id=1

(−1)i1+...+id F̄ (j1 + x̃1,i1 , . . . , jd + x̃d,id)

=

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id ×

×βx̃[1,i1]−x̃[2,i2]

1 · · ·βx̃[k1−1,ik1−1]−x̃[k1,ik1
]

k1−1 β
jk1+x̃[k1,ik1

]−jk1+1−x̃[k1+1,ik1+1]

k1

×βx̃[k1+1,ik1+1]−x̃[k1+2,ik1+2]

k1+1 · · ·βx̃[k2−1,ik2−1]−x̃[k2,ik2
]

k2−1

×βjk2+x̃[k2,ik2
]−jk2+1−x̃[k2+1,ik2+1]

k2

× . . .× β
x̃[kn−2+1,ikn−2+1]−x̃[kn−2+2,ikn−2+2]

kn−2+1 · · ·β
x̃[kn−1−1,ikn−1−1]−x̃[kn−1,ikn−1

]

kn−1−1

×β
jkn−1

+x̃[kn−1,ikn−1
]−jkn−1+1−x̃[kn−1+1,ikn−1+1]

kn−1

×β
x̃[kn−1+1,ikn−1+1]−x̃[kn−1+2,ikn−1+2]

kn−1+1 · · ·βx̃[kn−1,ikn−1]−x̃[kn,ikn
]

kn−1 β
jkn+x̃[kn,ikn

]

kn

= (β
jk1−jk1+1−1

k1
· · ·βjkn−1

−jkn−1+1−1

kn−1
β
jkn
kn

)×

×
2∑

i1=1

. . .

2∑

ik1=1

(−1)i1+...+ik1β
x̃[1,i1]−x̃[2,i2]

1 · · ·βx̃[k1−1,ik1−1]−x̃[k1,ik1
]

k1−1 β
x̃[k1,ik1

]

k1

×
2∑

ik1+1=1

. . .

2∑

ik2=1

(−1)ik1+1+...+ik2β
1−x̃[k1+1,ik1+1]

k1

×βx̃[k1+1,ik1+1]−x̃[k1+2,ik1+2]

k1+1 · · ·βx̃[k2−1,ik2−1]−x̃[k2,ik2
]

k2−1 β
x̃[k2,ik2

]

k2

× . . .×
2∑

ikn−1+1=1

. . .

2∑

ikn=1

(−1)ikn−1+1+...+iknβ
1−x̃[kn−1+1,ikn−1+1]

kn−1

×β
x̃[kn−1+1,ikn−1+1]−x̃[kn−1+2,ikn−1+2]

kn−1+1 · · ·βx̃[kn−1,ikn−1]−x̃[kn,ikn
]

kn−1 β
x̃[kn,ikn

]

kn
.

The first sum

2∑

i1=1

. . .
2∑

ik1=1

(−1)i1+...+ik1β
x̃[1,i1]−x̃[2,i2]

1 · · ·βx̃[k1−1,ik1−1]−x̃[k1,ik1
]

k1−1 β
x̃[k1,ik1

]

k1
=∇k1β0

has already been computed in step 1. The remaining sums can be simplified
to
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2∑

ikl−1+1=1

. . .
2∑

ikl=1

(−1)ikl−1+1+...+iklβ
1−x̃[kl−1+1,ikl−1+1]

kl−1

×β
x̃[kl−1+1,ikl−1+1]−x̃[kl−1+2,ikl−1+2]

kl−1+1 · · ·βx̃[kl−1,ikl−1]−x̃[kl,ikl
]

kl−1 β
x̃[kl,ikl

]

kl

=

(
kl − kl−1

0

)
(−1)kl−kl−1βkl +

(
kl − kl−1

1

)
(−1)kl−kl−1−1βkl−1

+ . . .+

(
kl − kl−1

kl − kl−1 − 1

)
(−1)1βkl−1+1 +

(
kl − kl−1

kl − kl−1

)
(−1)0βkl−1

=

kl−kl−1∑

i=0

(−1)i
(
kl − kl−1

i

)
βkl−1+i = ∇kl−kl−1βkl−1

for l = 2, . . . , n. Overall, this gives

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+id F̄ (j1 + x̃1,i1 , . . . , jd + x̃d,id)

= (β
jk1−jk1+1−1

k1
· · ·βjkn−1

−jkn−1+1−1

kn−1
β
jkn
kn

)

n∏

i=1

∇ki−ki−1βki−1 ≥ 0.

Hence, (1, β1, . . . , βd) ∈ Md+1 is sufficient for F̄ to define a survival function.
Finally, it is easy to see that if F̄ defines a survival function, then the corre-
sponding distribution has geometric marginals and satisfies the local discrete
LM property. Hence, it is an exchangeable wide-sense geometric distribution,
and the theorem follows. ��
To provide more intuition behind Theorem 2, we illustrate the proof in the
bivariate case.

Remark 1 (Theorem 2 in d = 2). The major concern in the proof of Theorem
2 is to show that (1, β1, . . . , βd) ∈ Md+1 suffices to guarantee the triangular
inequalities in (iii). In dimension d = 2, these are

F̄ (n1, n2)− F̄ (ñ1, n2)− F̄ (n1, ñ2) + F̄ (ñ1, ñ2) ≥ 0 (6)

for all (n1, n2), (ñ1, ñ2) ∈ N
2
0 with ñ1 < n1, ñ2 < n2.

The first idea of the proof is to resolve the rectangular with coordinates
(ñ1, ñ2), (n1, ñ2), (ñ1, n2), (n1, n2) into (n1− ñ1)(n2 − ñ2) squares with unit
edge length. Then, (6) is equivalent to showing that for each unit square with
coordinates (j1, j2), (j1 + 1, j2), (j1, j2 + 1), (j1 + 1, j2 + 1), j1, j2 ∈ N0,

F̄ (j1 + 1, j2 + 1)− F̄ (j1, j2 + 1)− F̄ (j1 + 1, j2) + F̄ (j1, j2) ≥ 0. (7)

The ansatz is intuitive and is justified by the σ-additivity of a probability
measure:
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F̄ (n1, n2)− F̄ (ñ1, n2)− F̄ (n1, ñ2) + F̄ (ñ1, ñ2)

= P(ñ1<τ1≤n1, ñ2<τ2≤n2) =

n1−1∑

j1=ñ1

n2−1∑

j2=ñ2

P(j1<τ1≤j1 + 1, j2<τ2≤j2 + 1)

=

n1−1∑

j1=ñ1

n2−1∑

j2=ñ2

(
F̄ (j1 + 1, j2 + 1)− F̄ (j1, j2 + 1)− F̄ (j1 + 1, j2) + F̄ (j1, j2)

)
.

The second idea of the proof is to make use of exchangeability of F̄ , i.e.
F̄ (j1, j2) = F̄ (j2, j1) for all j1, j2 ∈ N0, to reduce the inequalities in (7) to
the case j1 ≥ j2, j1, j2 ∈ N0. Thus, the inequalities in (7) have to hold only
for the unit squares below the identity line.

The third idea of the proof is to exploit the local lack-of-memory of F̄ ,
i.e. F̄ (j1 +m, j2 +m) = F̄ (j1, j2)F̄ (m,m) for all j1, j2,m ∈ N0. Then, in the
case j1 = j2, it suffices to verify (7) just for the unit square with coordinates
(0, 0), (1, 0), (0, 1), (1, 1):

F̄ (j1+1, j1+1)−F̄(j1, j1+1)−F̄(j1+1, j1)+F̄ (j1, j1)

=F̄ (j1, j1)
(
F̄ (1, 1)−2F̄(1, 0)+F̄(0, 0)

)
= βj12 (β2 − 2β1 + 1) = βj12 ∇2β0.

Finally, in the case j1 > j2, the problem of verifying rectangular inequalities
reduces to proving (7) only for the unit square with coordinates (1, 0), (1, 1),
(2, 0), (2, 1):

F̄ (j1+1, j2+1)−F̄(j1, j2+1)−F̄(j1+1, j2)+F̄ (j1, j2)

= F̄ (j2, j2)
(
F̄ (j1−j2+1, 1)−F̄(j1−j2, 1)−F̄(j1−j2+1, 0)+F̄(j1−j2, 0)

)

= βj22 β
j1−j2−1
1

(∇β0∇β1
)
.
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HMM and HAC

Weining Wang, Ostap Okhrin, and Wolfgang Karl Härdle

Abstract. Understanding the dynamics of a high dimensional non-normal
dependency structure is a challenging task. This research aims at attacking
this problem by building up a hidden Markov model (HMM) for Hierarchical
Archimedean Copulae (HAC). The HAC constitute a wide class of models for
high dimensional dependencies, and HMM is a statistical technique for de-
scribing time varying dynamics. HMM applied to HAC flexibly models high
dimensional non-Gaussian time series. Consistency results for both parame-
ters and HAC structures are established in an HMM framework. The model
is calibrated to exchange rate data with a VaR application, and the model’s
performance is compared to other dynamic models.

Keywords: Hidden Markov model, hierarchical Archimedean copulae, mul-
tivariate distribution.

1 Introduction

Modelling high-dimensional time series is an often underestimated exercise
of routine econometrical and statistical work. This slightly pejorative atti-
tude towards day to day statistical analysis is unjustified since actually the
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calibration of time series models in high dimensions for standard data sizes
is not only difficult on the numerical side but also on the mathematical side.
Computationally speaking, integrated models for high dimensional time series
become more involved when the parameter space is too large. An example
is the multivariate GARCH(1,1) Baba-Engle-Kraft-Kroner (BEKK) model
developed in [6], that for even two dimensions has an associated parameter
space of dimension 12. For moderate sample sizes, the parameter space di-
mension might well be in the range of the sample size or even bigger. This
data situation has evoked a new strand of literature on dimension reduction
via penalty methods.

In this paper we take a different route, by calibrating an integrated dy-
namic model with unknown dependency structure among the d dimensional
time series variables. More precisely, the unknown dependency structure may
vary within a set of given dependencies. The specific dependence at each time
t is unknown to the data analyst, but depends on the dependency pattern
at time t− 1. Therefore, HMM naturally come into play. This leaves us with
the problem of specifying the set of dependencies.

An approach based on assuming a multivariate Gaussian or mixed normal
is handicapped in capturing important types of data features such as heavy
tails, asymmetry, and nonlinear dependencies. Such a simplification might
in practice be too restrictive an assumption and might lead to biased re-
sults. Copulae are one possible approach to solving these problems, see [12].
Moreover, copulae allow us to separate the marginal distributions and the
dependency model, see [17]. In recent decades, copula-based models have
gained popularity in various fields like finance, insurance, biology, hydrology,
etc. Nevertheless, many basic multivariate copulae are still too restrictive
and a simple extension by putting in more parameters would lead to the
extreme of a totally nonparametric approach that runs into the problem of
the curse of dimensionality. A natural compromise is the class of hierarchical
Archimedean copulae (HAC). An HAC allows a rich copula structure with a
finite number of parameters. Recent works which have shown their flexibility
are [11, 13, 18].

Many attempts have been made to obtain insights into the dynamics of
the copulae: [3] assumes the underlying sequence is Markovian; [14] consid-
ers an asset-allocation problem with a time-varying parameter of bivariate
copulae; [16] studies financial contagion using switching-parameter bivariate
copulae. A likelihood based local adaptive method is an alternative approach
for understanding the time evolution, see [8, 9]. This suggests to us a different
path of modeling the dynamics: instead of taking a local point of view, we
adopt a global dynamic model (HMM) for the change of both the tree struc-
ture and the parameters of the HAC along the time horizon. Under HMM, a
stochastic process Y with a not directly observable underlying Markov pro-
cess X is needed to determine the state of distributions of Y . This has been
widely applied to speech recognition, see [15], molecular biology, and digital
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communications over unknown channels. For estimation and inference issues
in HMM, see [1, 7], among others.

In this paper, we propose a new type of dynamic model, called HMMHAC,
by incorporating HAC into an HMM framework. The theoretical problems
such as parameter consistency and structure consistency are solved. The ex-
pectation maximization (EM) algorithm is developed in this framework for
parameter estimation. See Sect. 2 for the model description, Sect. 3 for theo-
rems about consistency. EM algorithm and computation issues are in Sect. 4.
Section 5 is for applications.

2 Model Description

An HMM is a parameterized Markov random walk with an underlying Markov
chain viewed as missing data, as in [10, 1]. Specifically, in our HMM HAC
framework, let {Xt, t ≥ 0} be a stationary Markov chain on a finite state space
D = {1, 2, . . . ,M}, with transition probability matrix P = {pij}i,j=1,...,M

and initial distribution π = {πi}i=1,...,M .

P (X0 = i) = πi, (1)

P (Xt = j|Xt−1 = i) = pij (2)

= P (Xt = j|Xt−1 = i,Xt−2 = xt−2, . . . , X0 = x0),

for i, j = 1, . . . ,M . Let {Yt, t ≥ 0} be the associated observations, and they
are adjoined with {Xt, t ≥ 0} in such a way that given Xt = i, i = 1, . . . ,M ,
the distribution of Yt is fixed:

P (Xt|X1:(t−1), Y1:(t−1)) = P (Xt|Xt−1) (3)

P (Yt|Y1:(t−1), X(1:t)) = P (Yt|Xt), (4)

where Y1:(t−1) stands for {Y1, . . . , Yt−1}, t < T . As can be seen for simplicity
we consider only order one models.

Let fj{·; θ(j), s(j)} be the conditional density of Yt given Xt−1, Xt = j
with θ ∈ Θ, s ∈ S, j = 1, . . . ,M being the unknown parameters. That is,
{Xt, t ≥ 0} is a Markov chain, given X0, X1, . . . , XT , with Y0, Y1, . . . , YT
being independent. Note that θ = (θ(1), . . . , θ(M)) ∈ RdM are the unknown
dependency parameters, s = (s(1), . . . , s(M)) are the unknown HAC structure
parameters, and its true value is denoted by θ∗ and s∗.

For given d dimensional time series yt ∈ Rd with t = 1, . . . , T and yt =
(y1t, y2t . . . , ydt)

T connected with unobservable (or missing) x1, . . . , xT from
the given HMM, define πxt as the πi for x0 = i (i = 1, . . . ,M), and pxt−1xt =
pji for xt−1 = j and xt = i. The full likelihood function given one realization
of {xt, yt}Tt=1 is
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pT (y1, · · · , yT ;x1, . . . , xT ) = πx0

T∏

t=1

pxt−1xtfxt(yt; θ
(xt), s(xt)) (5)

The novelty of our approach lies in a special parametrization of fi(.), which
helps to properly understand the dynamics of a multivariate distribution.
Up to now, typical parameterizations have been mixtures of log-concave or
elliptical symmetric densities, such as those from Gamma or Poisson families,
which are not flexible enough to model high dimensional time series. The
advantage of the copula is that it splits the multivariate distribution into
its margins and a pure dependency component. In other words, it captures
the dependency between variables eliminating the impact of the marginal
distributions.

Furthermore, we incorporate this procedure into the HMM framework. We
denote the underlying Markov variable Xt as a dependency type variable. If
xt = i, the parameters (θ(i), s(i)) determined by state i = 1, . . . ,M take
values on S ×Θ, where S is a set of discrete candidate states corresponding
to different dependency structures of the HAC, and Θ is a compact set in
R

d−1 wherein the HAC parameters take their values. Therefore,

fi(·) = c{Fm
1 (y1), Fm

2 (y2), . . . , Fm
d (yd), θ(i), s(i)}fm

1 (y1)fm
2 (y2) · · · fm

d (yd),
(6)

with fm
i (yi) the marginal densities, Fm

i (yi) the marginal cdf, c(·) the copula
density.

Let θ(i) = (θi1, . . . , θi,d−1)T be the dependency parameters of the copu-
lae starting from the lowest up to the highest level connected with a fixed
state xt = i and the fi(.). The multistage maximum likelihood estimator is

developed and discussed in [13]. The marginal densities f̂m
m(·) are estimated

according to the cdfs, and wit is the weight associated with state i and time
t, see (9). [4, 13] provide the asymptotic behavior of the estimates.

2.1 Likelihood Estimation

For the estimation of the HMM HAC model, we adopt the EM algo-
rithm [5]. In the context of HMM, the EM algorithm is also known as the
Baum–Welch algorithm which suggests estimating a sequence of parameters
g(i) ≡ (P(i), s(i), θ(i)) (for the ith iteration) by iterative maximization of
Q(g; g(i)) ≡ E g(i)

{log pT (Y1:T ;X1:T )|Y1:T }. Namely, one carries out the fol-
lowing two steps:

• (a) E-step: compute Q(g; g(i)),
• (b) M-step: choose the update parameters g(i+1) = arg maxgQ(g; g(i)).

The essence of the EM algorithm is that Q(g; g(i)) can be used as a surrogate
for log pT (y1, . . . , yT ;x1, . . . , xT ; θ), see [2].
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In our setting, we may write Q(g; g(i)) as:

Q(g; g(i)) =
M∑

i=1

Pg(i)
(X0 = i|Y1:T ) log{πifi(y0)}

+

T∑

t=1

M∑

i=1

Pg(i)
(Xt = i|Y1:T ) log fi(yt)

+

T∑

t=1

M∑

i=1

M∑

j=1

Pg(i)
(Xt−1 = i,Xt = j|Y1:T ) log{pij}, (7)

where fi(·) is as in (6). The E-step, in which Pg(i)
(Xt = i|Y1:T ), Pg(i)

(Xt−1 =
i,Xt = j|Y1:T ) are evaluated, is carried out by the forward-backward algo-
rithm and the M -step is explicit in the pij and the πi. Adding constraints to
(7) yields

L(g, λ; g′) = Q(g; g′) +

M∑

i=1

λi(1−
M∑

j=1

pij) (8)

For the M -step, we need to take the first order partial derivative, and plug
into (8). So, the dependency parameters θ and the structure parameters s

need to be estimated iteratively, for θ(i):

∂L(g, λ; g′)
∂θij

=

T∑

t=1

P (Xt = i|Y1:T )∂ log fi(yt)/∂θij , (9)

where, j = 1, . . . , d − 1. To simplify the procedure, we adopt the HAC esti-
mation method from [13] with weights in terms of wit ≡ P (Xt = i|Y1:T ). We
also fix πi, i = 1, . . . ,M as it influences only the first observation X0 which
may be considered also as given and fixed. The estimation of the transition
probabilities pij follows:

∂L(g, λ; g′)
∂pij

=
T∑

t=1

P (Xt−1 = i,Xt = j|Y1:T )

pij
− λi (10)

∂L(g, λ; g′)
∂λi

= 1−
M∑

j=1

pij . (11)

Equating (10) and (11) yields:

p̂i,j =

∑n
t=1 P (Xt−1 = i,Xt = j|Y1:T )

∑n
t=1

∑M
j=1 P (Xt−1 = i,Xt = j|Y1:T )

(12)
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Theorem 1. Under regularity conditions, we find the corresponding struc-
ture:

lim
T→∞

max
i∈1,...,M

P (ŝ(i) = s∗(i)) = 1, ∀i. (13)

Moreover, Assuming {Yt}Tt=1 being i.i.d and generated from an HAC HMM

model with parameters {s∗(i), θ∗(i), π∗, {p∗ij}i,j}. The parameter θ̂
(i)

satisfies,
∀ε > 0:

lim
T→∞

min
i∈1,...,M

P (|θ̂(i) − θ∗(i)| > ε|ŝ(i) = s∗(i)) = 0. (14)

The proof can be sent upon request.

3 Applications

To see how HMM HAC performs on a real data set, application to financial
data is offered. A good model for the dynamics of exchange rates gives insights
into exogenous economic conditions, such as the business cycle. We demon-
strate the forecast performance of the proposed technique by estimating the
VaR of the portfolio and compare it with multivariate GARCH model such as
DCC. The backtesting results show that the VaR calculated from HMMHAC
performs significantly better.

The data set consists of the daily values for the exchange rates JPY/EUR,
GBP/EUR and USD/EUR. The covered period is [4.1.1999; 14.8.2009], re-
sulting in 2771 observations [9].

To eliminate intertemporal conditional heteroscedasticity, we fit to each
marginal time series of log-returns a univariate GARCH(1,1) process. The
residuals exhibit the typical behavior: they are not normally distributed,
which motivates nonparametric estimation of the margins. From the results
of the Box–Ljung test, whose p-values are 0.73, 0.01, and 0.87 for JPY/EUR,
GBP/EUR and USD/EUR, we conclude that the autocorrelation of the resid-
uals is strongly significant only for the GBP/EUR rate. After this intertem-
poral correction, we work only with the residuals.

A VaR estimation example is to show the good performance of HMMHAC.
We generate N = 104 paths with T = 2219 observations, and |W | = 1000
combinations of different portfolios, where W = {(1/3, 1/3, 1/3)

⋃
[w =

(w1, w2, w3)]}, with wi = w′
i/

∑3
i=1 w

′
i, w

′
i ∈ U(0, 1). The Profit Loss (P&L)

function of a weighted portfolio based on assets ytd is Lt+1 ≡
∑3

d=1 wi(yt+1d−
ytd), with weights w = (w1, w2, w3) ∈ W . The VaR of a particular portfolio
at level 0 < α < 1 is defined as V aR(α) ≡ F−1

L (α), where the α̂w is esti-

mated as a relative fraction of violations α̂w ≡ T−1
∑T

t=1 I{Lt < V̂ aRt(α)},
and the distance between α̂w and α is ew ≡ (α̂w − α)/α. If the portfolio
distribution is i.i.d., and a well calibrated model is properly mimicking the
true underlying asset process, α̂w is close to its nominal level α.
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We considered four main models: HMMHAC for 500 observation windows
for Gumbel and rotated Gumbel; multiple rolling window with 250 obser-
vations windows; locap change point detection, see [9](LCP) with m0 = 20
and m0 = 40 with Gumbel copulae; and DCC based on 500 observation
windows. For all the models we made an out of sample forecast. To bet-
ter evaluate the performance, we calculated the average and SD of eW as

AW = 1
|W |

∑
w∈W ew and DW =

{
1

|W |
∑

w∈W (ew −AW )2
}1/2

.

Table 1 show the backtesting performance for the described models. One
concludes that HMMHAC performs better than the concurring moving win-
dow, LCP, or DCC, as Aw and Dw are typically smaller.

Table 1 Robustness relative to AW (DW )

Window\α 0.1 0.05 0.01

HMM, RGum 500 -0.0204 (0.013) 0.0147 (0.012) 0.2827 (0.064)
HMM, Gum 500 -0.0191 (0.008) 0.0233 (0.018) 0.3521 (0.029)
Rolwin, RGum 250 0.0375 (0.009) 0.0576 (0.012) 0.5076 (0.074)
Rolwin, Gum 250 0.0426 (0.009) 0.0772 (0.030) 0.6210 (0.043)
LCP, m0 = 40 468 -0.0270 (0.010) 0.0391 (0.018) 0.4553 (0.037)
LCP, m0 = 20 235 0.0344 (0.009) 0.0735 (0.026) 0.6888 (0.050)
DCC 500 -0.2573 (0.015) -0.2140 (0.015) 0.6346 (0.091)

4 Conclusion

In this project, we propose a dynamic model for multivariate time series with
non-Gaussian dependency. The idea has an easy extension to HMM for gen-
eral copula models, and leads to a rich field for further work on dynamic
models with dependency structures. This method is helpful in studying fi-
nancial contagion at an extreme level over time, and naturally it can help
in deriving conditional risk measures. As we have shown, dynamic copula
models are good enough to mimic financial markets as well as nature.
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8. Giacomini, E., Härdle, W.K., Spokoiny, V.: Inhomogeneous dependence mod-
eling with time-varying copulae. Journal of Business and Economic Statis-
tics 27(2), 224–234 (2009)
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Some Smoothing Properties
of the Star Product of Copulas

Wolfgang Trutschnig

Abstract. Three indications for the fact that the star product of copulas is
smoothing are given. Firstly, it is shown that for every absolutely continuous
copula A and every copula B both A∗B and B ∗A are absolutely continuous.
Secondly, an example of a singular copula A such that the absolutely contin-
uous component of A ∗ A has support [0, 1]2 and mass at least 1/4 is given.
Finally, it is shown that for every copula B of the form B = (1− α)A+ αS,
whereby A is an absolutely continuous copula, S is a singular copula and
α ∈ [0, 1), there exists an absolutely continuous idempotent copula B̂ such

that B̂ is the Cesáro limit of the sequence (B∗n)n∈N of iterates of the star
product of B with respect to the metric D1 introduced in [15].

Keywords: Copula, star product.

1 Introduction

Since its introduction by Darsow et al. in 1992 (see [1]) the so-called star
product of copulas has been studied in various papers. In 1996 Olsen et al.
showed that the space (C, ∗) of (two-dimensional) copulas with the star pro-
duct as binary operation and the space (M, ◦) of Markov operators with the
composition as binary operation are isomorphic (see [10] and Section 2) and
that every copula A ∈ C can be written in the form A = Bt ∗C whereby B,C
are so-called completely dependent (or, equivalently, left invertible) copulas
(see [10]) and Bt denotes the transpose of B. Using the above mentioned
isomorphism Sempi (see [13]) showed in 2002 that there is a one-to-one
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correspondence between the class of ∗-idempotent copulas Cip (i.e. copulas
with A ∗ A = A) and the subclass of M consisting of conditional expecta-
tions. In 2007 Durante et al. (see [4]) studied two product-like constructions
for copulas, one being a generalized version of the star product. In 2010
Darsow et al. (see [2]) classified idempotent copulas in non-atomic, atomic
and totally atomic ones and, for each of the three types, gave a complete
characterization of all of its members. Furthermore, based on these char-
acterizations, they answered the question posed in [1] whether idempotent
copulas are necessarily symmetric with ’yes’. In the current paper we give
three indications for the fact the star product can be considered as smooth-
ing: Firstly we will prove that for every absolutely continuous copula A ∈ C
and every copula B both A∗B and B ∗A are absolutely continuous. Secondly
we will construct an example of a singular copula A for which A ∗ A has
an absolutely continuous component with support full [0, 1]2. And thirdly we
will show that for every copula B of the form B = (1 − α)A + αS, whereby
A is an absolutely continuous copula, S is a singular copula and α ∈ [0, 1),

there exists an absolutely continuous idempotent copula B̂ such that

lim
n→∞D1(s∗n(B), B̂) = 0,

holds, whereby s∗n(B) := 1
n

∑n
i=1B

∗i for every n ∈ N, B∗i is the i-times star

product of B with itself, i.e. B∗1 = B, B∗2 = B ∗B, and B∗(n+1) = B ∗B∗n

for every n ≥ 2, and D1 is the metric introduced in [15]. Moreover, it will be

proved that in case the density kA of A is strictly positive on [0, 1]2 B̂ has to
coincide with the product copula Π .

The rest of this short paper is organized as follows: Section 2 gathers some
preliminaries and notations that will be used later on. Section 3 contains the
above mentioned results. Finally, Section 4 discusses open points and possible
future work.

2 Notation and Preliminaries

As already mentioned before C will denote the family of all (two-dimensional)
copulas, i.e. distribution functions on [0, 1]2 with uniform marginals, see [5],
[9], [14]. For every A ∈ C, μA will denote the corresponding doubly stochastic
measure and PC the class of all these doubly stochastic measures. λ and λ2
will denote the Lebesgue measure on [0, 1] and [0, 1]2 respectively, B([0, 1])
and B([0, 1]2) the Borel σ-fields in [0, 1] and [0, 1]2. A Markov kernel from R to
B(R) is a mapping K : R×B(R)→ [0, 1] such that x �→ K(x,B) is measurable
for every fixed B ∈ B(R) and B �→ K(x,B) is a probability measure for
every fixed x ∈ R. Suppose that X,Y are real-valued random variables on a
probability space (Ω,A,P), then a Markov kernel K : R × B(R) → [0, 1] is
called regular conditional distribution of Y given X if for every B ∈ B(R)
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K(X(ω), B) = E(1B ◦ Y |X)(ω) (1)

holds P-a.s. It is well known that for each pair (X,Y ) of real-valued random
variables a regular conditional distribution K(·, ·) of Y given X exists, that
K(·, ·) is unique PX -a.s. (i.e. unique for PX -almost all x ∈ R) and that K(·, ·)
only depends on PX⊗Y . Hence, given A ∈ C we will denote (a version of) the
regular conditional distribution of Y given X by KA(·, ·) and refer to KA(·, ·)
simply as regular conditional distribution of A or as the Markov kernel of
A. Note that for every A ∈ C, its conditional regular distribution KA(·, ·),
and every Borel set G ∈ B([0, 1]2) we have (Gx := {y ∈ [0, 1] : (x, y) ∈ G}
denoting the x-section of G for every x ∈ [0, 1])

∫

[0,1]

KA(x,Gx) dλ(x) = μA(G), (2)

so in particular ∫

[0,1]

KA(x, F ) dλ(x) = λ(F ) (3)

for every F ∈ B([0, 1]). On the other hand, every Markov kernel K :
[0, 1]×B([0, 1])→ [0, 1] fulfilling (3) induces a unique element μ ∈ PC([0, 1]2)
via (2). For more details and properties of conditional expectation, regular
conditional distributions, and disintegration see [6] and [7].

A linear operator T on L1([0, 1]) := L1([0, 1],B([0, 1]), λ) is called Markov
operator (see [1] and [10]) if it fulfills the following three properties:

1. T is positive, i.e. T (f) ≥ 0 whenever f ≥ 0

2. T (1[0,1]) = 1[0,1]

3.
∫
[0,1](Tf)(x)dλ(x) =

∫
[0,1] f(x)dλ(x)

As mentioned in the introduction M will denote the class of all Markov
operators on L1([0, 1]). It is straightforward to see that the operator norm
of T is one, i.e. ‖T ‖ := sup{‖Tf‖1 : ‖f‖1 ≤ 1} = 1 holds. According to [1]
and [10] there is a one-to-one correspondence between C andM - in fact, the
mappings Φ : C →M and Ψ :M→ C, defined by

Φ(A)(f)(x) : = (TAf)(x) :=
d

dx

∫

[0,1]

A,2(x, t)f(t)dλ(t),

(4)
Ψ(T )(x, y) : = AT (x, y) :=

∫

[0,x]

(T1[0,y])(t)dλ(t)

for every f ∈ L1([0, 1]) and (x, y) ∈ [0, 1]2 (A,2 denoting the partial derivative
w.r.t. y), fulfill Ψ ◦Φ = idC and Φ ◦ Ψ = idM. Note that in case of f := 1[0,y]

we have (TA1[0,y])(x) = A,1(x, y) λ-a.s. According to [15] the first equality
in (4) can be simplified to

(TAf)(x) = E(f ◦ Y |X = x) =

∫

[0,1]

f(y)KA(x, dy) λ-a.s. (5)
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Expressing copulas in terms of their corresponding regular conditional distri-
butions the metric D1 on C can be defined as follows:

D1(A,B) :=

∫

[0,1]

∫

[0,1]

∣∣KA(x, [0, y])−KB(x, [0, y])
∣∣dλ(x) dλ(y) (6)

It can be shown that (C, D1) is a complete metric space and that, given co-
pulasA,A1, A2 . . . and their corresponding Markov operators TA, TA1 , TA2 . . .,
the following two conditions are equivalent:

(a)limn→∞D1(An, A) = 0
(b)limn→∞ ‖TAnf − TAf‖1 = 0 for every f ∈ L1([0, 1]),

i.e. D1 is a metrization of the strong operator topology on M (see [15]).
Given A,B ∈ C the star product A ∗B ∈ C is defined by (see [1], [4])

(A ∗B)(x, y) :=

∫

[0,1]

A,2(x, t)B,1(t, y)dλ(t) (7)

and fulfills
TA∗B = ΦA∗B = Φ(A) ◦ Φ(B) = TA ◦ TB, (8)

so the mapping Φ in (4) actually is an isomorphism (see [10]). A copula A ∈ C
is called idempotent if A ∗ A = A, the family of all idempotent copulas will
be denoted by Cip. A ∈ C is called symmetric if At = A whereby At(x, y) :=
A(y, x) for all x, y ∈ [0, 1]. The following result, stating that the Markov
kernel of A ∗ B is just the standard composition of the Markov kernels of A
and B, will prove useful in the sequel:

Lemma 1 ([17]). Suppose that A,B ∈ C and let KA,KB denote regular
conditional distributions of A and B. Then the Markov kernel KA ◦ KB,
defined by

(KA ◦KB)(x, F ) :=

∫

[0,1]

KB(y, F )KA(x, dy), (9)

is a regular conditional distribution of A ∗B.

As mentioned in the introduction, for every copula A and every n ∈ N we set

s∗n(A) =
1

n

n∑

i=1

A∗i. (10)

According to the following theorem s∗n(A) is always convergent w.r.t. D1:

Theorem 1 ([16]). For every copula A there exists a copula Â such that

lim
n→∞D1

(
s∗n(A), Â

)
= 0. (11)

This copula Â is idempotent, symmetric, and fulfills Â ∗A = A ∗ Â = Â.
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3 Three Simple Results Indicating That the Star
Product Is Smoothing

Lemma 2. Suppose that A ∈ C is absolutely continuous. Then A ∗B as well
as B ∗A are absolutely continuous for every copula B ∈ C.
Proof: W.l.o.g. we may assume that the probability density kA of μA fulfills

∫

[0,1]

kA(x, y)dλ(x) = 1 ∀y ∈ [0, 1] and

∫

[0,1]

kA(x, y)dλ(y) = 1 ∀x ∈ [0, 1].

(12)

Hence KA(x,E) :=
∫
E
kA(x, y)dλ(y) (x ∈ [0, 1] and E ∈ B([0, 1])) is a regular

conditional distribution of A.
Fix an arbitrary B ∈ C. For every N ∈ B([0, 1]2) with λ2(N) = 0 there

exists a Borel set Λ ∈ B([0, 1]) with λ(Λ) = 1 such that

0 = λ(Nx) =

∫

[0,1]

KB(z,Nx)dλ(z)

for every x ∈ Λ. Consequently, for each x ∈ Λ, we have KB(z,Nx) = 0 for
λ-almost every z ∈ [0, 1], which implies

μA∗B(N) =

∫

[0,1]

KA∗B(x,Nx)dλ(x) =

∫

[0,1]

∫

[0,1]

KB(z,Nx)KA(x, dz)dλ(x)

=

∫

[0,1]

∫

[0,1]

KB(z,Nx)kA(x, z)dλ(z)dλ(x)

=

∫

Λ

∫

[0,1]

KB(z,Nx)kA(x, z)dλ(z)dλ(x) = 0.

Furthermore, for every x ∈ Λ, we have

KA(z,Nx) =

∫

Nx

kA(z, y)dλ(y) = 0

for every z ∈ [0, 1], so

μB∗A(N) =

∫

[0,1]

∫

[0,1]

KA(z,Nx)KB(x, dz)dλ(x)

=

∫

Λ

∫

[0,1]

KA(z,Nx)KB(x, dz)dλ(x) = 0.

Since N was arbitrary absolute continuity of A ∗B and B ∗A follows. �

Lemma 2 has the following immediate consequence:
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Theorem 2. Suppose that A is an absolutely continuous copula, that S is a
singular copula, and that α ∈ [0, 1). Then for the copula B := (1−α)A+αS

the D1-limit B̂ of s∗n(B) is absolutely continuous.

Proof: Suppose that Bi := (1−α)Ai+αiSi, i ∈ {1, 2}, whereby Si is singular,
Ai is absolutely continuous, and αi ∈ [0, 1] for every i ∈ {1, 2}. Then it follows
directly from Lemma 2 that the singular component of B1 ∗ B2 has at most
mass α1α2. Suppose now that B satisfies the assumption of Theorem 2, then
it follows immediately that the singular component of B∗n has at most mass
αn for every n ∈ N. Consequently the singular component of s∗n(B) has at
most mass mn := 1

n

∑n
i=1 α

i. According to Theorem 1

s∗n(B) ∗ B̂ = B̂

holds for every n ∈ N, so, using Lemma 2, the singular component of B̂ has
at most mass mn. Since n was arbitrary and limn→∞mn = 0 absolute conti-
nuity of B̂ follows. �

In case the density kA of A in Theorem 2 is strictly positive on [0, 1]2 it

can be shown that the limit copula B̂ has to be Π . To do so we will use
the following lemma, in which D([0, 1]) denotes the family of all probability
densities in L1([0, 1]):

Lemma 3. Suppose that A is absolutely continuous and that kA > 0 every-
where on [0, 1]2, then:

1. For all densities f1, f2 ∈ D([0, 1]) with ‖f1 − f2‖1 > 0 we have

‖TAf1 − TAf2‖1 < ‖f1 − f2‖1.

2. If B1, B2 ∈ C with B1 �= B2 then D1(A ∗B1, A ∗B2) < D1(B1, B2).

Proof: Suppose that f1, f2 ∈ D([0, 1]) and that ‖f1 − f2‖1 > 0 as well as
‖TAf1 − TAf2‖1 > 0 holds. Then, using Scheffé’s theorem (see [12]) and
setting G := {x ∈ [0, 1] : TAf1(x) > TAf2(x)}, we have

‖TAf1 − TAf2‖1 = 2

∫

G

(
TAf1(x) − TAf2(x)

)
dλ(x)

= 2

∫

G

(∫

[0,1]

(f1(y)− f2(y)) kA(x, y)dλ(y)

)
dλ(x)

= 2

∫

[0,1]

(
(f1(y)− f2(y))

∫

G

kA(x, y)dλ(x)

)
dλ(y) =: I

and, using the fact that, by assumption kA(x, y) > 0 for all x, y ∈ [0, 1]
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I = 2

∫

{f1−f2>0}

(
(f1(y)− f2(y))

∫

G

kA(x, y)dλ(x)

︸ ︷︷ ︸
∈(0,1) for every y∈[0,1]

)
dλ(y)

−2

∫

{f1−f2<0}

(
(f2(y)− f1(y))

∫

G

kA(x, y)dλ(x)

︸ ︷︷ ︸
∈(0,1) for every y∈[0,1]

)
dλ(y)

< 2

∫

{f1−f2>0}
(f1(y)− f2(y))dλ(y) = ‖f1 − f2‖1.

follows. Setting fi := TBi1[0,y] for i ∈ {1, 2} and y ∈ (0, 1), and assuming
B1 �= B2 this implies (both functions have the same integral so, up to a
common scalar, they are densities)

ΦA∗B1,A∗B2(y) :=

∫

[0,1]

∣∣KA∗B1(x, [0, y])−KA∗B2(x, [0, y])
∣∣ dλ(x)

= ‖TAf1 − TAf2‖1 < ‖f1 − f2‖1
= ‖TB11[0,y] − TB21[0,y]‖1 =: ΦB1,B2(y).

Hence (see [15]) D1(A ∗B1, A ∗B2) < D1(B1, B2) follows. �

Theorem 3. Suppose that A is an absolutely continuous copula, that there
exists an index j ∈ N such that the density kA∗j of A∗j is strictly positive,
that S is a singular copula, and that α ∈ [0, 1). Then for the copula B :=

(1 − α)A + αS the D1-limit B̂ of s∗n(B) is Π. Furthermore Π is the only
idempotent absolutely continuous copula with strictly positive density.

Proof: It follows from Theorem 2 that B̂ is absolutely continuous. W.l.o.g
we may assume that the density kB̂ of B̂ fulfills (12). Using the fact that the

density kA∗j∗B̂ of A∗j ∗ B̂ satisfies

kA∗j∗B̂(x, y) =

∫

[0,1]

kB̂(x, z)kA∗j (z, y)dλ(z) > 0

for all x, y ∈ [0, 1] and the fact that, according to Theorem 1, B∗j ∗ B̂ = B̂

holds, it follows that kB̂(x, y) > 0 for all x, y ∈ [0, 1]. If D1(B̂,Π) > 0,

then applying Lemma 3 yields D1(B̂,Π) = D1(B̂ ∗ B̂, B̂ ∗Π) < D1(B̂,Π),

so B̂ = Π . The second assertion of the Theorem easily follows. �

In the following we construct the example mentioned in the introduction.

Example 1. According to [2] and [3] (also see [8]) we can find λ-preserving
functions f, g : [0, 1]→ [0, 1] such that (same notation as in [2], [3])



356 W. Trutschnig

Π(x, y) = λ
(
f−1([0, x]) ∩ g−1([0, y])

)
:= Af,g(x, y)

holds for all x, y ∈ [0, 1]. Set B := 1
2 (Af,id + Aid,g), then B is as convex

combination of two singular copulas singular too (in fact B lives on the graphs
of two measurable functions, see [15]). Since B ∗ B is the following convex
combination of four copulas

B ∗B =
1

4

(
A∗2
f,id + Af,g + Aid,g ∗Af,id + A∗2

id,g

)
(13)

B ∗B has an absolutely continuous component with mass at least 1
4 . It is not

difficult to verify that Af,g is the only absolute continuous summand in (13),
so the absolutely continuous component of B ∗B has exactly mass 1/4.

4 Future Work

Some first smoothing properties of the star product have been mentioned.
It seems interesting to find more general conditions under which the limit
copula B̂ in Theorem 1 is absolutely continuous or even coincides with Π .
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12. Scheffé, H.: A useful convergence theorem for probability distributions. Ann.

Math. Statist. 18, 434–438 (1947)
13. Sempi, C.: Conditional expectations and idempotent copulae. In: Cuadras,

C.M., et al. (eds.) Distributions with Given Marginals and Statistical Mod-
elling, pp. 223–228. Kluwer, Netherlands (2002)



Some Smoothing Properties of the Star Product of Copulas 357

14. Sempi, C.: Copulae: Some mathematical aspects. Appl. Stoch. Model. Bus 27,
37–50 (2011)

15. Trutschnig, W.: On a strong metric on the space of copulas and its induced
dependence measure. J. Math. Anal. Appl. 384, 690–705 (2011)
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Statistical Hypothesis Test for the
Difference between Hirsch Indices of
Two Pareto-Distributed Random
Samples

Marek Gagolewski

Abstract. In this paper we discuss the construction of a new parametric
statistical hypothesis test for the equality of probability distributions. The
test bases on the difference between Hirsch’s h-indices of two equal-length
i.i.d. random samples. For the sake of illustration, we analyze its power in case
of Pareto-distributed input data. It turns out that the test is very conservative
and has wide acceptance regions, which puts in question the appropriateness
of the h-index usage in scientific quality control and decision making.

Keywords: Aggregation operators, Hirsch index, hypotheses testing, scien-
tometrics.

1 Introduction

The process of data aggregation [7] consists in a proper synthesis of many
numerical values into a single one, representative for the whole input in some
sense. It plays a key role in many theoretical and practical domains, such
as statistics, decision making, computer science, operational research, and
management.

Particularly, in scientific quality control and research policy one often com-
bines citation numbers in order to assess or just rank scientists, institutes, etc.
Among the most notable and popular citation indices we have the Hirsch’s
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h-index, which continues to be a subject of intensive and interesting debate
since its introduction in 2005. Of course, the usage of the h-index is not solely
limited to this particular domain of interest [6].

In this paper we deal with a highly important problem of comparing h-
index values of two equal-length inputs and determining whether they differ
significantly. We propose and analyze a statistical hypothesis test that may
give us more insight into the very nature of the h-index.

2 The h-index and Its Distribution

Let us first recall the definition of Hirsch’s h-index [8].

Definition 1. Let n ∈ N. The h-index is a function H : Rn0+ → {0, 1, . . . , n}
such that

H(x) =

{
max{h = 1, . . . , n : x(n−h+1) ≥ h} if x(n) ≥ 1,
0 otherwise,

(1)

where x = (x1, . . . , xn) ∈ R
n
0+ and x(i) denotes the ith order statistic, i.e. the

ith smallest value in x.

Interestingly, the h-index is a symmetric maxitive aggregation operator [6].
It is because (1) may be equivalently written as H(x) =

∨n
i=1�x(n−i+1)� ∧ i.

Therefore, if x ∈ N
n
0 then H reduces itself to an ordered weighted maximum

(OWMax) operator [2, 7], which in turn is equivalent to Sugeno integral of x
w.r.t. some fuzzy (nonadditive) measure; see [4] for the proof. Please note that
basic statistical properties of OWMax operators have already been examined
in [5]: it turns out that they are asymptotically normally distributed and they
are strongly consistent estimators of a distribution’s parameter of location.

The exact distribution of H is given by the following theorem.

Theorem 1. Let X = (X1, . . . , Xn) be a sequence of i.i.d. random vari-
ables with a continuous c.d.f. F defined on R0+. Then the c.d.f. of H(X) for
x ∈ [0, n) is given by Dn(x) = I (F (�x+ 1�−0

)
;n− �x�, �x�+ 1

)
, where

I(p; a, b) is the regularized incomplete beta function.

Proof. For i = 1, 2, . . . , n the c.d.f. of the ith order statistic, X(i), is given by
F(i)(x) = Pr(X(n) ≤ x) = I(F (x); i, n−i+1) (cf. [1]). Note that supp H(X) ⊆
{0, 1, . . . , n}. Hence, Dn(x) = 1 for x ≥ n. By (1) we have:

Pr(H(X) < 1) = Pr(X(n) < 1) = I(F (1−0);n, 1),
Pr(H(X) < 2) = Pr(X(n−1) < 2) = I(F (2−0);n− 1, 2),

. . . . . .
Pr(H(X) < n) = Pr(X(1) < n) = I(F (n−0); 1, n), QED. 
�
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As a consequence, for all h = 0, . . . , n− 1 it holds Dn(h) = Pr(Z ≤ h), where
Z ∼ Bin(n, 1 − F (h + 1−0)). We see that the values of the c.d.f. and the
p.m.f. of the h-index in most cases may only be determined numerically. For
convenience, they have been implemented in the CITAN package [3] for R.

3 Test for the Difference between Two h-indices

Given two equal-length vectors of observations, one may be interested whether
their Hirsch’s indices differ significantly. More formally, let Θ = (0, n) be a pa-
rameter space that induces an identifiable statistical model (R0+, {Prθ : θ ∈
Θ})n in which E θH = θ for all θ ∈ Θ, and Prθ(H = i) is a continuous function
of θ for all i. Moreover, let X = (X1, . . . , Xn) i.i.d Prθx and Y = (Y1, . . . , Yn)
i.i.d Prθy , where θx, θy ∈ Θ. We would like to construct a statistical test ϕ
which verifies at given significance level α the null hypothesis H0 : θx = θy
against the alternative H1 : θx = θy.

The most natural test statistic is of course T (X,Y) = H(Y)−H(X). Obvi-
ously, under H0 the distribution of T is symmetric around 0. Unfortunately,
it may not be independent of the values of unknown parameters θx = θy. We
therefore expect that by setting an acceptance region with bounds determined
by functions of only α and n (an approach traditionally used in mathematical
statistics) we will not obtain test of satisfactory power in result.

Denote by B the set of all 0–1 symmetric square matrices B = (bij),
i, j ∈ {0, . . . , n}, such that (i) bii = 0 for all i, and (ii) bij = 1 =⇒ bi,j+1 = 1
for i < j < n. Each B ∈ B generates a statistical hypothesis test

ϕB(X,Y) = bH(X),H(Y). (2)

Such test bases on the test statistic T and has acceptance regions that depend
on the value of the h-index in one of the samples. E.g. if we observed H(x) = i
and H(y) = j then bij = 1 would indicate that H0 should be rejected.

Please note that there is a bijection between B and the set of integer-valued
sequences {(v0, . . . , vn) : (∀i) 0 ≤ vi ≤ n − i}, as we may set vi =

∑n
j=i bij

for i = 0, . . . , n and bij = bji = I(j − i ≤ vi) for 0 ≤ i ≤ j ≤ n. Therefore the
acceptance region of T is given by [−vH(X)∧H(Y); vH(X)∧H(Y)]. Additionally,
we have |B| = (n+ 1)!

The power function of a test ϕB , reflecting the probability of rejecting H0

for given θx, θy ∈ Θ, is given by

πB(θx, θy) =

n∑

i=0

n∑

j=0

bij Pr
θx

(H = i) Pr
θy

(H = j). (3)

Let Bα = {B ∈ B : supθ∈Θ πB(θ, θ) ≤ α} denote the set of all matrices
which generate tests at significance level α. Our main task may be formulated
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formally as an optimization problem. We would like to find the matrix B∗ ∈
Bα which minimizes expected probability of committing Type II error, i.e.

B∗ := arg min
B∈Bα

EL(B) = arg min
B∈Bα

∫∫

Θ2

(1 − πB(θx, θy))w(θx, θy) dθx dθy, (4)

where w is a prior distribution. If prior w is uniform (assumed by default
when we have no knowledge of or preference for the underlying distribution
parameters) then it may be shown that it holds:

EL(B) =

n∑

i=0

n∑

j=0

(1 − bij)
∫

Θ

Pr
θ

(H = i) dθ

∫

Θ

Pr
θ

(H = j) dθ. (5)

Note that if the uniformly most powerful (UMP) test (in this class of tests)
ϕB∗∗ exists then ϕB∗∗ = ϕB∗ for any w such that supp w = Θ2. Unfortu-
nately, as the whole search space is O(n!), in practice we may only seek for
an approximate solution of (4), B+, which may be computed in a sensible
amount of time.

Let us introduce the following strict partial ordering relation over B. We
write B ≺ B′ iff B = B′, (∀i, j) b′ij = 0 =⇒ bij = 0, and bij = 1 =⇒ b′ij = 1.
Intuitively, if B ≺ B′ then B′ may be obtained from B by substituting some
“1”s for “0”s. In such case eq. (3) implies that (∀θx, θy ∈ Θ) πB(θx, θy) ≤
πB′(θx, θy).

For brevity, we will also write B≺1B′ iff B ≺ B′ and
∑

i

∑
j≥i bij =∑

i

∑
j≥i b

′
ij − 1. We propose the following algorithm for obtaining an ap-

proximation of B∗.

1. Calculate upper bound matrix B(0): For given i < j we set b
(0)
ij = 0 iff

maxθ
∑n
k=j Prθ(H = i) Prθ(H = k) > α/2, as surely is such case rejection

of H0 would lead to violation of given significance level.
2. If B(0) ∈ Bα then return B∗ := B(0) as result (it is easily seen that B(0)

is UMP).
3. Otherwise we generate a sequence B(0) �1 B(1) �1 · · · �1 B(k) such that
B(k−1) ∈ Bα and B(k) ∈ Bα by applying:

for k := 1, 2, . . . do

if (∃B ≺1 B(k−1) : B ∈ Bα)

B(k) := arg min
B∈Bα,B≺1B(k−1)

EL(B);

proceed to Step #4;
else

B(k) := arg min
B∈B,B≺1B(k−1)

∫

Θ

πB(θ, θ) I(πB(θ, θ) > α) dθ;

4. Improve B(k): Find B+ � B(k) such that B+ ∈ Bα and (∀B � B+)
B ∈ Bα by applying:
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B+ := B(k);
while (∃B �1 B+ : B ∈ Bα) do

B+ := arg min
B∈Bα,B�1B+

EL(B);

return B+ as result;

This procedure successively substitutes “1”s for “0”s in the initial upper
bound matrix B(0) at positions which result in the greatest overall reduction
of “oversized” power, down to the desired value α. This greedy approach —
although quite fast to compute (we approximate the integrals by probing
the power function at sufficiently many points in Θ) — does not of course
guarantee convergence to optimal solution. However, the numerical results
presented in the next section suggest that, at least in the considered cases,
the solutions are close to optimal in terms of loss. The problem of finding
accurate approximation of EL(B∗) is left for further research.

4 Numerical Results

We say that a random variable X follows a Pareto distribution with shape
parameter k > 0, denoted X ∼ Par(k), if its cumulative distribution func-
tion is given by F (x) = 1 − 1/(1 + x)k for x ≥ 0. Although F is contin-
uous, it is quite often used by bibliometricians to model citation distribu-
tion (or different non integer-valued paper quality metrics). Note we have
H(X) = H(�X�). For any n, we apply a reparametrization of the shape pa-
rameter and set θn(k) := E kH(X1, . . . , Xn) (it is a decreasing bijection). It
may be shown that in result we obtain a statistical model that fulfills the
assumptions stated in Sec. 3.
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Table 1 Computed acceptance region bounds; n = 25, α = 0.05

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

v+i 1 2 2 3 3 4 5 4 5 6 5 5 6 5 6 5 5 5 5 4 4 3 3 2 1 0

Table 2 Computed acceptance region bounds; n = 50, α = 0.05. Values improved
in Step #4 of the algorithm are marked in bold.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

v+i 1 2 2 3 3 4 4 4 5 5 6 6 6 6 7 7 7 7 7 8 8 8 7 8 8 8

i 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

v+i 9 8 8 8 8 8 7 8 7 8 7 6 7 7 6 6 5 5 5 4 3 3 2 1 0
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From now on, let us fix α = 0.05. For n ≤ 5 it holds B(0) ∈ Bα, therefore
ϕB(0) is uniformly most powerful in this class of tests (EL(B(0)) = 0.677).
However, e.g. for n = 6 we have B(0) ∈ Bα. In this case there are two maximal
tests ϕB′ and ϕB′′ (the latter is outputted by the above algorithm) in the
sense that it holds ¬(B′ ≺ B′′), ¬(B′′ ≺ B′), (B � B′) ∨ (B � B′′) ⇒
B ∈ Bα, and B ∈ Bα ⇒ (B � B′) ∨ (B � B′′). As a consequence, the UMP
test in this class does not exist (cf. Fig. 1). We have EL(B′) = 0.691 and
EL(B′′) = 0.647. Obviously, if we assume no prior knowledge of θ then ϕB′′

is the preferred choice for practical purposes.
We will study more deeply the two following cases. For n = 25 we get

k = 20 and EL(B(k)) = EL(B+) = 0.336 (see Tab. 1 for the resulting
acceptance region bounds), On the other hand, for n = 50 we have k = 110,
EL(B(k)) = 0.251, and EL(B+) = 0.247 (cf. Tab. 2). Fig. 2 shows the plots
of πB(i)(θ, θ) for i = 0, . . . , k (cf. Step #3 of the algorithm). Additionally, in
Fig. 3 we depict the plot of πB(i)(θ, θ + δ) and πB(+)(θ, θ + δ) for different
values of δ. We see that the improvement of B(110) for n = 50 does not result
in a drastic decrease of expected loss.
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Let us compare the power of the computed h-tests with some other tests
for equality of distribution parameters. The parametric F-test bases on a test
statistic T (X,Y) =

∑n
i=1 log(1+Xi)/

∑n
i=1 log(1+Yi) which, under H0, has

Snedecor’s F distribution with (2n, 2n) degrees of freedom. We also consider
3 non-parametric tools: the Wilcoxon rank sum test, the discretized Wilcoxon
test (computed on �X� and �Y�), and the Kolmogorov-Smirnov test.

The plots of the examined tests’ estimated power functions values, gen-
erated using M = 25000 Monte Carlo samples, are depicted in Fig. 4. The
constructed h-tests are outperformed by the F-test and Wilcoxon’s test, and
often by the KS test. We also observe that their power is quite small for θ � n,
which is due to the property H(X ∧ n) = H(X): here the h-index “ignores”
some important information. What is more, we see that in the considered
cases discretization of observations did not result in a significant reduction
of power of the Wilcoxon test.

5 Conclusion

We should be very cautious while using the Hirsch index in decision making.
For example, let us consider two authors A and B with 25 papers each, and
whose h-indices are 12 and 16, respectively. Then — assuming that their
citation counts follow Pareto distributions — at 0.05 significance level we
cannot state that their output quality differs significantly, as T = (16−12) ∈
[−v+12; v+12] = [−6; 6].

In future work we will consider the construction of h-tests in non-
identifiable statistical models, and for samples of non necessarily equal
lengths.
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How to Introduce Fuzzy Rationality
Measures and Fuzzy Revealed
Preferences into a Discrete Choice
Model

Davide Martinetti, Antonio Lucadamo, and Susana Montes

Abstract. The work presents a novel approach to discrete choice models.
Random utility models are used to describe the utility that every individual
associates to each alternative and are usually decomposed into a deterministic
part and a stochastic component. Our proposal is to include in the random
utility model the observations of past choices through revealed fuzzy prefer-
ences and to modify the effects of the stochastic component, by adding some
measure of rationality.

Keywords: Choice function, discrete choice model, rationality measure, re-
vealed preference.

1 Introduction

Discrete choice models are statistical tools used to model and forecast the
behavior of a decision maker over a discrete bundle of alternatives. They
have been used to examine the choice of mode to work [3] or the choice of the
residential location [9], among numerous other applications. These models
relate the observable choices made by the decision-maker to the attributes of
the alternatives and of the decision-maker itself and estimate the probability
that an alternative will be chosen. The usual way of representing the tastes
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over the alternatives is to assume that the decision-maker is able to assign to
any alternative in the choice set an utility and then the choice is performed
by just taking the alternative with the highest utility. This utility is often
represented by using random utility models, called in this way due to the
fact that they are composed of two components: a deterministic part and a
stochastic component. The deterministic part is a function of all observable
variables, while all discrepancies of the predicted model from the observed
utility are explained with a random variable. Our proposal is to modify both
the deterministic and the stochastic part. For the first intervention, we will
make use of revealed preference theory, in its fuzzy version, recently proposed
in [6]. The idea is that the preferences of the decision-maker can be inferred
by observing his past choices over a family of subsets of the bundle of alterna-
tives. The result is a fuzzy preference relation (a multi-valued version of the
classic preference), that contains valuable information about the preferences
of the decision-maker over every pair of alternatives. Furthermore, for the
intervention on the stochastic part of the random utility model, we will refer
to some works on rationality of fuzzy preference relations [5, 6, 7]. In fact, one
of the basic assumption of random utility models is that the decision-maker
is perfectly rational (he always picks up the alternative with the highest util-
ity) and that his behavior is purely probabilistic, while recent studies on real
stated preferences (see [8]) have proved that these assumptions are sometimes
too restrictive, or, at least, too faraway from reality. Our proposal is to include
in the random utility model a further component, aside to the stochastic one,
that represent the measured rationality of the decision-maker. In this way, the
inconsistencies in the behavior of the decision-maker are explained by both
a stochastic and a psychometric component. The work is divided into six
sections: after this brief introduction, we will introduce fuzzy revealed pref-
erence theory (Section 2), fuzzy rationality measures (Section 3) and random
utility models applied to discrete choice models (Section 4). Sections 5 and 6
contain our proposals and future prospects.

2 Fuzzy Revealed Preference Theory

Revealed preference theory, in its original version by Sen, Arrow and Suzu-
mura [1, 12, 13], has been firstly proposed in order to lay bare the connections
between two different ways of representing preferences of decision-makers:
choice functions and binary preference relations. Both formalizations con-
tains information about the choices and preferences of individuals, but they
express it in different ways: preference relations are represented through n×n
matrices and express the binary preference between any pair of alternatives,
while choice functions are operators that assign to any non-empty subsets
of the choice space another set, called choice set, containing the chosen al-
ternatives. Nevertheless, since both formalism are used to represent choice,
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some connection between them is expected. Revealed preference has then
been defined as the binary preference relation that correspond to a given
choice function. Rationality is doubtless the most intriguing property: in fact
it is relatively easy to determine whenever a binary preference relation is
rational (studying properties such as completeness, reflexivity, transitivity
and acyclicity), while is not trivial to define an equivalent concept for choice
functions. On the other hand it has been proved in [11] that when the un-
certainty is represented by a convex set of probabilities (instead of a single
probability distribution), then coherent choice functions does not reduce to
binary comparison. A milestone in this theory is the Arrow-Sen theorem,
that establishes a set of properties of the choice function that are equiva-
lent to the rationality of the revealed preference relation. Recent works by
Banerejee and Georgescu [2, 6] have renewed the research on the field by us-
ing a fuzzy approach. Their proposal is substantially based on a fuzzification
of the concept of choice function, revealed preference and the related prop-
erties, like transitivity or acyclicity. Despite the fact that fuzzy preference
relation are commonly used and widely accepted, fuzzy choice functions are
a relatively new and unexplored concept. They first appeared in the liter-
ature in [2, 10]. Banerjee claims that fuzzy choice functions are potentially
observable, as long as the decision maker is able to tell to an interviewer the
degree of his inclination for one alternative (or a set of them) when faced to
a choice problem. Hence, while there may be problems of estimation, fuzzy
choice functions are, in theory, observable. In this contribution we only need
some basic definitions, while the interested reader can find an appropriate
discussion on the subject in [6]. Let X = {x1, . . . , xn} be a finite set of al-
ternatives and B ⊆ 2X a family of non-empty fuzzy subsets of X . In [6], the
elements of B are usually denoted by capital letters like S or T and are called
available sets. The value S(xi) can be considered as the degree of availability
of the alternative xi with respect to the set S. A fuzzy choice function is a
function C : B ×X → [0, 1], such that, for every S ∈ B there exists at least
one alternative xj ∈ X such that C(S)(xj) > 0 and for every xi ∈ X , it hold
C(S)(xi) ≤ S(xi). The value of C(S)(xi) can be interpreted as the extent to
which xi belongs to the set of chosen alternatives, when the set of available
ones is S. Given a fuzzy choice function C, a fuzzy binary preference relation
R can be revealed from it, using

R(xi, xj) = sup
S∈B

(T (C(S)(xi), S(xj))) ∀xi, xj ∈ X (1)

where T denotes a left-continuous t-norm. A fuzzy binary preference relation
R is considered rational when it shows one of the following properties:

T -transitivity if T (R(xi, xj), R(xj , xk)) ≤ R(xi, xk), for every xi, xj , xk ∈
X ;

Acyclicity for all m ≥ 2 and (x1, . . . , xm) ∈ X such that R(xi, xi+1) >
R(xi+1, xi), for all i ∈ {1, . . . ,m− 1}, it holds R(x1, xn) ≥ R(xn, x1).
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For the present work, the theory just described is useful since it allows to
reconstruct preference-like information starting from choice-like information,
that is usually easier and cheaper to gather. Once fuzzy revealed preference
is constructed, measurements over the rationality of the decision-maker can
be performed, as we will see in the next Section 3.

3 Fuzzy Rationality Measures

According to [5], when we deal with fuzzy preference relations, also notions
like acyclicity, transitivity and rationality in general, should be treated as
fuzzy concepts. The possibility of assigning a degree of rationality is really
attractive since it allows to differentiate between decision-makers that are
often irrational and other that are mainly coherent in their behavior, gain-
ing much more insight compared to the case of a crisp differentiation. For a
matter of space we will not introduce here the formalism of these fuzzy ratio-
nality measures. The interested reader can enjoy the reading of [5], in which
the properties of such measures are defined and can find many examples of
fuzzy rationality measures. Also Georgescu in [6, 7] proposed new measures
of rationality, in the sake of clarifying the connections between the rational-
ity concept used for fuzzy preference relations and the one that applies to
fuzzy choice functions. We just recall here the main characteristics of a fuzzy
rationality measure ρ : P(X)→ [0, 1], where P(X) indicates the space of all
fuzzy preference relations over a fixed and finite set of alternatives X :

• ρ(R) = 1, for any crisp linear order. It indicates the maximum degree of
rationality possible;

• ρ(R) = 0 indicates an absolutely incoherent decision-maker, while ρ(R) ∈
(0, 1) indicates a decision-maker that has an intermediate degree of ratio-
nality;

• moreover, ρ is invariant over permutations of the labels of alternatives in
X , it assigns the same value to opposite preference relations, it does not
allow to increase the degree of rationality by just adding more alternatives
and it behave well when the preference relation changes only w.r.t. a pair
of alternatives x, y, while the others remain unchanged.

4 Random Utility Models Applied to Discrete Choice

Discrete choice models are statistical tools used to predict the choices of a
decision-maker over a bundle of alternatives and that assign to every alter-
native a probability of being chosen. Since the choice of the decision-maker
depends on many factors, some of which are observable and others that do
not, the analyst needs an instrument that can describe the effects of both
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observable and unobservable factors. Hence, utility models are introduced:
the idea is that the decision-maker assigns to every alternative xi an utility
Ui according to the features of xi and to his own feelings and then he choses
the one with higher utility. To deal with unobservable factors, the utility is
designed as a random variable Ui = Vi + εi, where Ui is the real value of the
utility of alternative xi, Vi is the deterministic (or representative, or system-
atic) part computed by the analyst taking into account all observable factors
and εi is the disturbance or random component. Then, the probabilities for
every alternatives are computed by

P (xi is chosen) = P (Ui ≥ Uj, ∀j �= i)

= P (Vi + εi ≥ Vj + εj , ∀j �= i)

= P (Vi − Vj ≥ εj − εi, ∀j �= i) . (2)

The analyst has two main tasks: first of all, the specification of the determin-
istic part, i.e. he needs to create a function Vi that faithfully connects the
observable variables with the real utility and he has to choose which variables
to take into account. Usually, Vi is represented like Vi(yi, yDM , β), where yi
represents a vector of measurable features of the alternative xi, yDM repre-
sents a vector of measurable features of the same decision-maker and β is a
set of parameter that needs to be estimated. The functional form of V can go
from a simple linear model to much more complex specification. The second
task of the analyst is the specification of the random component, i.e. he has
to establish the distribution of the component εi in order to capture the ef-
fect of all unobservable factors, like unobserved attributes of alternatives and
decision-maker, taste variations, measurement errors, instrumental variables,
etc. Choosing the distribution of εi usually face the analyst with the problem
of selecting between an accurate fitting or an easy-to-compute distribution.
Well known discrete choice models are logit, probit, nested logit and mixed
logit, among many others (see [3, 14]).

5 A Novel Approach

According to the separation in deterministic and stochastic part just de-
scribed, the main goal of the analyst will be to capture as much utility as
possible into the deterministic part, letting the random component quite sim-
ilar to a white noise. Our proposal goes in this direction: we first suggest an
intervention into the deterministic component in order to take into account
the information that can be gathered through a revealed preference study.
On the other hand we propose to change the way in which uncertainty is
treated, by introducing a component that measures the rationality of the
decision-maker, aside the stochastic component already mentioned.
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5.1 Intervention in the Deterministic Part

Let start by an example: consider one client of a supermarket that always
choses the same brand of cereals, no matter its price, the possible offer on
other brands, etc. This kind of information can only be captured by a prefer-
ence relation study, since the utility model alone will vary the utility of that
brand of cereals according to modifications of its price and other observable
variables. In order to capture similar situations with a discrete choice model,
it seems reasonable to introduce a new variable into the deterministic compo-
nent that represents the observed preferences of the decision-maker over the
set of alternatives, but how to do that? One way should be to ask directly to
the decision-maker to express his preferences for every pair of alternatives in
the set X , but this approach has evident limitations, such as the cardinality
of X or the cost of such a survey in a market with a lot of decision-makers.
Another possible approach is to reveal the preferences of the decision-maker
from his past choices. Imagine the case of a supermarket that keeps track
of the purchases of its clients or a web-page that tracks data of its visitors.
With this kind of data, choices are easy to observe and much cheaper com-
pared to a direct survey. Then, a fuzzy choice function C can be constructed
starting from this kind of data, where the available set can be defined a pri-
ori by an expert or constructed with a clustering algorithm. The choice of
the decision-maker over the different bundles of alternatives can be counted
and the relative frequencies can be considered as the degree of choice of the
decision-maker of any alternative within a bundle of alternatives. Once the
choice function has been computed, a fuzzy preference relation R can be re-
vealed from it using Eq. 1, one for every decision maker. To introduce this
information into the deterministic component of the random utility model,
we propose to modify the function Vi described in Section 4, in order to in-
clude a new variable yRP , that indicates a value or a vector of values that
supply information on the revealed preference. In the following we list some
proposals: Vi(yi, yDM , yRP , β) where yRP can be

• the value of R(xi, xj), for any xj �= xi, if Eq. 2 is used to compute the
probability of Ui ≥ Uj.

• the degree of dominance of alternative xi in X according to revealed pref-
erence R, DR

X(xi) (for the details on the computation of DR
X , see Chapter

8.2 of [6]);

5.2 Intervention in the Random Component

Quoting Ben-Akiva [3] is probably the best way to introduce our pro-
posal:”[...]In choice experiments individuals have been observed not to se-
lect the same alternative in repetitions of the same choice situations. [...] A
probabilistic choice mechanism was introduced to explain these behavioral
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inconsistencies. One can argue that human behavior is inherently proba-
bilistic. It can also be argued, however, that behavior which is probabilistic
amounts to an analyst’s admission of a lack of knowledge about individuals’
decision process. If it were possible to specify the causes of these inconsisten-
cies, the deterministic choice theory (opposite to random choice theory, N/A)
could be used. These causes, however, are usually unknown, or known but
not measurable.” Focusing on the last sentences, we glimpse that the choice
of describing incoherent behavior with a probabilistic approach is just one
possible solution, likely the easiest, but for sure not the only one, neither the
most correct. In this sense we make our second proposal: in fact, we think
that inconsistencies in human behavior can also be explained by irrationality
of the decision-maker, as it has been proved, e.g., by Garćıa-Lapresta in [8].
Our idea is that the difference between expected utility and observed utility
(i.e. εi) can be explained by both a rationality component and a stochastic
one: εi = f(rDM , si), ∀i, where rDM is an indicator of the degree of rational-
ity of the decision-maker, si is the stochastic component, as before, while f
is a function that properly combines the two components. The value of rDM

can be chosen among the fuzzy rationality measures detailed in Section 3.
Which choice can we make for the function f? Our intuition is that an high
level of rationality shifts all the inconsistency into the stochastic part, i.e. if a
person is strongly coherent, we expect that his deviation from the predicted
utility is mainly due to unobservable and/or unpredictable factors, that are
well-modeled by the stochastic component. On the other hand, for a strong
incoherent decision-maker, the deviation from the predicted utility should be
explained by both a stochastic component and another factor that accounts
for that irrationality and in general, his behavior is expected to be more
unpredictable. For the function f we propose the following properties:

• f(1, si) = si;
• f(rDM , si) ≥ f(r′DM , si), whenever rDM ≤ r′DM .

5.3 Justification

To justify our intuition that rationality plays an important role in decision
problems, we considered a relatively small data-set, called Catsup, that con-
tains the purchases of four brands of ketchup. The sales are recorded in the
database registering the price of the four available products, the chosen one
for that sale and an identifier for every client. In this way the data set can
be divided with respect to client’s ID and their past choices can be observed.
Starting from these choices, we constructed a fuzzy preference relation for
every client and we computed a rationality index for all of them. Three dis-
crete choice models have been computed using BIOGEME [4]: the first one
uses the complete data-set, the second one uses only rational clients and the
last one the remaining non-rational clients. The prices of the four brands are
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considered explicative variable. The models have been trained over the 90%
of the available data and tested on the remaining 10%. The results on the
correctness of the predictions are the following: full data-set, 55,0%; only no-
rational clients, 57,7%; only rational clients 66,6%. The results are strongly
encouraging, since they lay bare the importance that rationality assumes in
choice problems.

6 Future Work

As stated in Section 1, all the proposed methods haven’t been proved yet,
neither in theoretical nor in practical sense. Hence, in the immediate future,
we are planning to test the efficacy of the proposals explained earlier, also
by using different databases in order to prove their reliability. Among the
problems that we will inevitably have to face we mention:

• Construction of the choice space: revealed preference theory and discrete
choice models use different, but though similar, choice spaces, so a common
starting point need to be formalized;

• we have different possible interventions to apply to an already existing
model: this implies a choice among several proposals, that need to be
tested and justified;

• Finding several appropriate data sets, in order to test the novel approach.
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Fuzzy Rule-Based Ensemble
Forecasting: Introductory Study

David Sikora, Martin Štěpnička, and Lenka Vavř́ıčková

Abstract. There is no individual forecasting method that is generally for
any given time series better than any other method. Thus, no matter the
efficiency of a chosen method, there always exists a danger that for a given
time series the chosen method is inappropriate. To overcome such a problem
and avoid the above mentioned danger, distinct ensemble techniques that
combine more individual forecasting methods are designed. These techniques
basically construct a forecast as a linear combination of forecasts by individ-
ual methods. In this contribution, we construct a novel ensemble technique
that determines the weights based on time series features. The protocol that
carries a knowledge how to combine the individual forecasts is a fuzzy rule
base (linguistic description). An exhaustive experimental justification is pro-
vided. The suggested ensemble approach based on fuzzy rules demonstrates
both, lower forecasting error and higher robustness.

Keywords: Ensembles, fuzzy rules, time series.

1 Introduction

In time series forecasting we are given a finite sequence y1, y2, . . . , yt of re-
als that is called a time series and our task is to determine future values
yt+1, yt+2, . . . , yt+h, where h is a forecasting horizon.
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Distinct mainly statistical time series forecasting methods have been de-
signed and are nowadays widely used [24]. However, it is a known fact there
is no method that would be superior to any other. Thus, relying on a single
method is a highly risky strategy which may lead to a choice of an inappro-
priate method for a given series. We stress that even searching for methods
that outperform any other for narrower specific subsets of time series have
not been successful yet, see [5]:

“Although forecasting expertise can be found in the literature, these sources
often fail to adequately describe conditions under which a method is expected

to be successful”.

Based on the above observations, so called ensemble techniques have started
to be designed and successfully applied. The main idea of “ensembles” con-
sists in an appropriate combination of more forecasting methods in order
to avoid the risk of choosing a single inappropriate one. Typically, ensemble
techniques are constructed as a linear combination of the individual ones. So,
if we are given a set of M individual methods and j-th individual method
prediction is denoted by

ŷ
(j)
t+1, ŷ

(j)
t+2, . . . , ŷ

(j)
t+h, j = 1, . . . ,M

the ensemble forecast is given as follows

ŷt+i =
1

∑M
j=1 wj

·
M∑

j=1

wj · ŷ(j)t+i, i = 1, . . . , h (1)

where wj ∈ R is a weight of the j-th individual method. Usually, the weights
are normalized (their sum equals to unity).

Let us recall works that firstly showed gains in accuracy through ensemble
techniques [7] and also lower error variance then of individual forecasts [25]
which may be interpreted as a higher robustness (decreasing the danger of
inaccurate forecasts). For other sources, we refer to [6]. Nevertheless, how to
determine appropriate weights in (1) is still to large extent an open question.
One would expect sophisticated approaches to dominate but taking a simple
average – the so called “equal weights approach” – usually outperforms taking
a weighted average [10]. In other words, equal weights that is an arithmetic
mean, is a benchmark that is hard to beat1 and finding appropriate non-equal
weights rather leads to a random damage of the main averaging idea that is
behind the robustness and accuracy improvements [11].

1 This does not mean that equal weights or ensembles generally provide better re-
sults than any individual methods for any given time series. Vice-versa, usually,
there are, say, one or two individual methods that outperform a given ensemble.
However, so far there is no way how to determine which methods are these desir-
able ones in advance. Thus, one often chooses a wrong one. This is mirrored on
results measured on sets of time series where the ensemble approach outperform
the individual ones.
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Although the equal weights performs as accurately as mentioned above,
there are works that promisingly show the potential of more sophisticated
approaches. We recall [21] that is based on distinct features of time series
such as: measure of the strength of trend, measure of the strength of season-
ality, skewness or kurtosis. Given time series as elements of the feature space
were clustered by the k-means algorithm and individual methods were ranked
according to their performance on each cluster. Three best methods for each
cluster were combined using convex linear weights. For a given new time se-
ries, first the closest cluster is determined and then the given combination
of the three best methods determined the ensemble forecast. This approach
performed very well on a sufficiently big set of time series. The main motiva-
tion is that [21] demonstrates a dependence between time series features and
accuracy of forecasting methods that allows to efficiently determine weights.

The second major motivation comes from the so called Rule-Based Fore-
casting [5, 11]. These authors came up with linguistically given (IF-THEN)
rules that encode an expert knowledge “how to predict a given time series”.
Only some of them rules from [5, 11] do set up weights however, mostly they
set up rather a specific model parameter, e.g. the smoothing factors of the
Brown’s exponential smoothing with trend. The rules very often use proper-
ties that are not crisp but rather vague, e.g. “unstable recent trend; recent
trend is long”, in antecedents. For such cases, using crisp rules, as in [11],
that are either fired or not and nothing between seems to be less natural than
using fuzzy rules. Similarly, the use of crisp consequents such as: “add 10%
to the weight”, seems to be less intuitive than using vague expression that
are typical for fuzzy rules.

By following the main ideas of rule-based forecasting [11] and of using time
series features (meta-learning) [21], we aim at obtaining an interpretable and
understandable model that besides providing an unquestionable forecasting
power helps to understand “when what works”, nonchalantly said.

2 Implementation

To develop and validate the model we have used data from the known M3
data-set repository that contains 3000 time series from the M3 forecasting
competition [23] and that serves as a generally accepted benchmark database.
We have chosen 99 time series from fields such as Microeconomics, Industry,
Macroeconomics, Finance and Demography for the model identification and
different 99 time series constitute the testing set used in order to test whether
the determined knowledge encoded in the fuzzy rules works generally also for
other time series.

The global performance of a forecasting model is evaluated by an error mea-
sure. It should be noted that very popular measures such as Mean Absolute
Error or (Root) Mean Squared Error are inappropriate for comparison across
more time series because they are scale-dependent and therefore, we use scale
independent Symmetric Mean Absolute Percentage Error [19]:
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SMAPE =
1

h

T+h∑

t=T+1

|et|
(|yt|+ |ŷt|)/2

× 100%, (2)

where et = yt − ŷt for t = T + 1, . . . , T + h.
We have chosen the most often used forecasting methods that are at

disposal to the widest community: Decomposition Techniques (DT), Ex-
ponential Smoothing (ES), seasonal Autoregressive Integrated Moving Av-
erage (ARIMA), Generalized Autoregressive Conditional Heteroscedasticity
(GARCH) models, Moving Averages (MA) and finally, Random Walk process
(RW) and Random Walk process with a drift (RWd). For details about the
methods, we only refer to the relevant literature [9, 16, 24].

In order to avoid any bias from a naive implementation of the above listed
methods, we adopted implementations of these methods by professional soft-
ware package: ForecastPro� for ES, ARIMA and MA; Gretl� for GARCH
and RWd and NCSS� for DT. These tools executed fully automatic parame-
ter selection and optimization which made possible to concentrate the inves-
tigation purely on the combination technique. Furthermore, their arithmetic
mean (AM), that represents the equal weights, was also used as a benchmark.

We are fully aware of the potential of recent computational intelligence
methods, e.g. neural networks [13], evolutionary computation [12], fuzzy tech-
niques [30] or their combinations [29], for time series forecasting. However,
the implementation of such techniques is not sufficiently standardized yet
and at disposal to the widest community. In order to keep the main direction
of the paper that is the ensemble technique and not the individual method
setting and optimization, we leave this direction for future research.

From the given time series, the following features were extracted: trend,
seasonality, length of the time series, skewness, kurtosis, coefficient of varia-
tion, stationarity, forecasting horizon and frequency.

Most of them are standard and we only briefly describe some of them.
Stationarity assumes that the mean and the autocovariances of a time series
do not change in time and it may be determined by many tests. We employ
the Augmented Dickey-Fuller test [14] that under the null hypothesis assumes
that a given time series is stationary, under the alternative hypothesis that
time series is non-stationary. Trend and seasonality are similarly determined
on such tests. Forecasting horizons are adopted from the M3 competition
instructions. Since the range of each feature can significantly vary, it is crucial
to normalize the range of features to the interval [0,1].

3 Fuzzy Rule-Based Ensemble

In this section, we briefly describe how we reach the goal – an identification of
a fuzzy rule base that serves as a flexible model determining ensemble weights
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purely based on the chosen time series features and thus, describing the depen-
dence of forecasting efficiency of individual time series on the features.

The desired fuzzy rule base may be identified by distinct approaches. Be-
cause of the missing reliable expert knowledge mentioned above, from the
very beginning we omit the identification by an expert and we focus on data-
driven approaches that vice-versa, may bring us the interpretable knowledge
that is hidden in the data.

At this first stage, we employ the multiple linear regression for determin-
ing relationships among two or more variables. We used the linear regression
on the training set of time series to estimate relationship between features
of the time series and normalized SMAPE errors for each individual fore-
casting method. In this way we obtain seven regression models – one for
each forecasting method – that model the relationships between features and
forecasting errors of each forecasting method.

For the sake of clarity and simplicity, only significant features were con-
sidered. For the choice of statistically significant features we applied forward
stepwise regression. This algorithm begins with no variables (features) in a
model and then it selects a feature that has the largest R-squared value. This
step is repeated until all remaining features are not significant. Only the
statistically significant features were used in the multiple regression which
estimated the unknown parameters by ordinary least squares. Furthermore,
only in the case that a p-value of an parameter estimated in the multiple
regression was smaller than a certain threshold of significance we rejected
the null hypothesis and the estimated parameter was found statistically sig-
nificant. For each method, different features played the significant role.

Because the ensemble weights should be (proportionally) higher if a given
method is supposed to provide lower SMAPE error, SMAPE values were re-
placed by (1− SMAPE) values and the obtained models were sampled. This
way we obtained nodes in the reduced features spaces with only significant
features and (1−SMAPE) errors. These nodes served as learning data for the
so called linguistic learning algorithm [8] that automatically generates linguis-
tic descriptions (fuzzy rule bases with linguistic evaluating expressions) that
jointly with a specific fuzzy inference method Perception-based Logical De-
duction2 [27] may derive conclusions based on imprecise observations. Thus,
we obtained seven linguistic descriptions – each of them determining weights
of a single individual method based on transparent and interpretable rules,
such as:

2 Perception-based Logical deduction models fuzzy rules with use of the �Lukasiewicz
implication but it does aggregate them with the conjunction (as in the standard
fuzzy relational approach) but views them as a list of independent rules. The im-
plemented “perception” chooses the most appropriate rule from such a list. This
approach performs well only if antecedents and consequents are evaluative lin-
guistic expressions[26] which underlines the linguistic nature of the whole model.
This is the reason why we have chosen this approach. Of course, it does not mean
that fuzzy relational approach would not perform well.
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IF Trend is Big AND Variation is Small THEN WeightARIMA is ExBig.

At this stage of investigation, the above described construction of fuzzy rule
bases is the only one that has been already experimentally justified however,
other approaches that are supposed to be combined with the above one are
starting to be developed and tested as well.

Naturally, we focus on fuzzy clustering. If we consider each time series as a
point in a feature space extended by another feature: (1−SMAPE) of a single
individual method on the given time series fuzzy cluster analysis may then
provide us with clusters of time series that have similar features and a similar
forecasting performance by the chosen method. By a projection of clusters on
individual feature axes we may obtain antecedent fuzzy sets; by a projection
on (1− SMAPE) axis we may obtain consequent fuzzy sets determining the
weight of the chosen method.

Fuzzy clustering is a very natural approach however, it brings some com-
plications (choosing the particular cluster algorithm; determination of the
number of clusters). So, we also employ linguistic associations mining [2].
This approach firstly introduced as GUHA method [17, 18] finds distinct
statistically approved associations between attributes of given objects. Par-
ticularly, we employ the fuzzy variant of this method [20, 28] and search for
implicative associations that may be directly interpreted as fuzzy rules.

No matter the origin of fuzzy rules, such an ensemble technique will be
naturally called “Fuzzy Rule-Based Ensemble” (FRBE).

4 Results, Conclusions and Future Work

In order to judge its performance, the fuzzy rule-based ensemble was applied
on the 99 time series from a testing set. Table 1 shows that in both the
average and the standard deviation of SMAPE values, the suggested ensemble
outperforms all the individual methods and moreover, even highly suggested
equal weights method (AM) has been outperformed as well.

One might consider the improvement to be rather low. To some extent
it is true but it is evident that fuzzy rule-based approach performed very
well. The fact that the victory has been reached not only in the accuracy but
also in the robustness (standard deviation of the SMAPE error) definitely is
worth noticing. In order to support our claim about the potential of FRBE
approach, we proceeded the One-Sample t-test in order to test the null hy-
pothesis that the mean of (SMAPEAM− SMAPEFRBE) is equal to 0. This
hypothesis has not been rejected on the significance level 0.05 however, it
has been rejected on the level 0.1 and we accepted the alternative hypothesis
that the mean is higher than 0, which demonstrates, that on this level of
significance, AM is not as good as FRBE which was found more accurate.
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Table 1 Average of the SMAPE forecasting errors and standard deviation of the
SMAPE forecasting errors over the testing set

Methods Average Error Methods Error Std. Deviation

DT 21.59 DT 24.52
GARCH 17.27 GARCH 21.22
RWd 15.95 RWd 20.62
RW 15.26 RW 19.43
MA 15.11 MA 19.27
ARIMA 14.44 ARIMA 20.31
ES 14.43 ES 18.39
AM 14.40 AM 18.42

FRBE 14.18 FRBE 18.03

One should also note that this is an introductory study that opens this
topic for further steps. The other techniques for fuzzy rule base identifications
(fuzzy cluster analysis, linguistic associations mining etc.) are supposed to be
experimentally evaluated in order to improve the results shortly. Furthermore,
deep redundancy [15] and/or consistency analysis of obtained fuzzy rule bases
is highly desirable in order to improve the knowledge that is linguistically
encoded in them, is also highly desirable.

Thus, it may be concluded that in this introductory study, we have clearly
stated the motivations and main ideas and mainly we have demonstrated
the promising potential of the fuzzy rule-based forecasting that entitles us to
continue in the foreshadowed future work.
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Hybrid Models: Probabilistic
and Fuzzy Information

Giulianella Coletti and Barbara Vantaggi

Abstract. Under the interpretation of fuzzy set as coherent conditional prob-
ability, we study inferential processes starting from a probability distribution
(on a random variable) and a coherent conditional probability on “fuzzy con-
ditional events”. We characterize the coherent extensions and we analyze an
example proposed by Zadeh.

Keywords: Coherent conditional probability, fuzzy sets, inference.

1 Introduction

Randomness and fuzziness may act jointly, this fact generate new problems
in combining probabilistic and fuzzy information (see e.g. [15, 13, 14]).

We refer to the interpretation of a fuzzy set E∗
ϕ as a pair (Eϕ, μϕ(x))

with μϕ(x) = P (Eϕ|X = x), where X is a variable with range CX , ϕ any
property related to X, Eϕ the event “You claim that X is ϕ” and P a
coherent conditional probability (see Section 3, for details, see, e.g., [4, 5, 6],
for a similar semantic see [12, 13]). In this context it has been proved in [4]
that, under the hypothesis of logical independence between Eϕ and Eψ , the
membership functions μϕ∨ψ and μϕ∧ψ of the fuzzy sets E∗

ϕ∪E∗
ψ and E∗

ϕ∩E∗
ψ

are extensions of the coherent conditional probabilities μψ and μϕ. Among
the coherent extensions there are the extensions computed by a t-conorm
and its dual t-norm of the Frank class. In this context logical independence
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is not a strong condition: in fact, for instance Eϕ and E¬ϕ (which differs
from ¬Eϕ) are logical independent, in fact You can claim both X is ϕ and
X is ¬ϕ or claim only one of them or none. Starting from a family of fuzzy
sets C = {E∗

ϕi
} related to a variable X , with Eϕi logical independent, let us

consider the closure 〈C〉 of C with respect to the union and intersection of
fuzzy sets ruled by Frank t-norms and t-conorms. Given C and a probability
distribution on X , the main aim is to study coherent conditional probability
on the “conditional fuzzy events” A|B, where A and B are the events related
to the elements of 〈C〉. The possibility of defining this conditional probability
assessment in the class of interest is assured by coherence.

In previous papers [2, 4, 5, 6] we studied the above problem in a finite
ambit, in this paper we consider also variables with infinite range. The frame-
work of reference is the general one of finitely additive conditional probabil-
ities [9, 10, 1]. We show trough an example proposed by Zadeh, the simple
applicability of the above interpretation of fuzzy sets.

2 Coherent Conditional Probability

The framework of reference is coherent conditional probability, that is a func-
tion defined on an arbitrary set C = {Ei|Hi}i∈I of conditional events, con-
sistent (or coherent) with a conditional probability defined on C′ = E × H,
where E is the algebra spanned by the events Ei, Hi and H the additive set
spanned by events Hi (see for instance [4] and [8] for a seminal work).

In the literature many characterizations of a coherent conditional proba-
bility assessment are present, we recall the following (see e.g. [3]) working for
arbitrary (possibly infinite) families of conditional events: coherence for an
infinite set of conditional events can be reduced to check the coherence on
any finite subset. In the infinite case it is not possible to give a representa-
tion of a coherent conditional probability in terms of a class of probabilities,
but it is necessary to involve charges (a finite additive measure, which is
not necessarily bounded, see [1]), so in the following the integrals are in
the sense of Stieltjes or Daniel (since we consider bounded positive functions
T2-measurable) with respect to finitely additive measures.

Theorem 1. Let C be an arbitrary family of conditional events and consider
the relevant set E(C) = {E ∧ H,H : E|H ∈ C}. For a real function P on C
the following statements are equivalent:

(a) P is a coherent conditional probability on C;
(b) there exists a class {mα} of functions, such that
- each {mα} is defined on Bα ⊆ E(C), and is the restriction of a positive

charge defined on the algebra generated by Bα; Bα ⊂ Bβ for α > β;
- for any conditional event E|H ∈ C there exists a unique mα with 0 <

mα(H) =
∫
H dmα < ∞ and, for every β ≤ α, P (E|H) is solution of all the

equations
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mβ(E ∧H) = x ·mβ(H)

(c) for any finite subset F = {E1|H1, . . . , En|Hn} of C, denoting by Ao
the set of atoms Ar generated by the events E1, H1, . . . , En, Hn, there exists
a class of probabilities ¶ = {P0, P1, . . . Pk}, (k ≤ n) and a relevant class of
sets Aα ⊆ A0 such that:

- each probability Pα is defined on Aα; Aα ⊂ Aβ for α > β;
- for any Ei|Hi ∈ C there exists a unique α such that Pα(Hi) > 0 and, for

every β ≤ α, P (Ei|Hi) is solution of all the equations

Pβ(Ei ∧Hi) = x · Pβ(Hi).

Any class {mα} satisfying condition (b) is said to agree with the coherent
conditional probability P.

The above characterization gives rise to a sufficient conditions [2]. For
this aim we recall that, given a partition H = {Hi}j∈J , the events Ei (i =
1, ..., n) , are said logically independent with respect to H if, for any Hj ∈ H,∧n
i=1 E

∗
i ∧ Hj = ∅, implies E∗

i ∧ Hj = ∅ for some i = 1, ..., n, where E∗

stands either for E or for its contrary Ec. Note that logical independence
with respect to a partition is stronger than logical independence.

Corollary 1. Let C = {Ei|Hj : Ei ∈ E , Hj ∈ H} where E = {Ei}ni=1 and
H = {Hj}j∈J is a (not necessarily countable) partition of Ω, moreover the
events Ei are logically independent with respect to H. Let po(·) be a coherent
probability on H. Then for every function P : C → [0, 1] with P (Ei|Hj) =
0 if Ei ∧Hj = ∅ and P (Ei|Hj) = 1 if Hj ⊆ Ei, the global assessment

¶ = {P (Ei|Hj), po(Hj)}1=i,...,n;j∈J
is a coherent conditional probability assessment.

Concerning coherence, we recall moreover the following fundamental result
for conditional probability (essentially due to de Finetti [8]):

Theorem 2. Let C = {Ei|Hi} be any family of conditional events, and C′ ⊇
C. Let P be an assessment on C; then there exists a (possibly not unique)
coherent conditional probability assessment extending P to C′ if and only if
P is a coherent conditional probability assessment on C.
When C′ = C ∪ {E|H} the possible coherent values p = P (E|H) are all the
values of a suitable closed interval [p, p] ⊆ [0, 1], with p ≤ p.

By Theorems 1 and 2 it is possible to prove the following theorem [7]:

Theorem 3. Let E = {E|Hi}i∈I be an arbitrary set of conditional events
such that the set H0 = {Hi}i∈J of conditioning events is a partition of Ω.
Denote by F0 the σ-field spanned by H0, F0

0 = F0\{∅} and K = {E|H : H ∈
F0

0}. Let p : E → [0, 1] be any function such that p(E|Hi) = 0 if E ∧Hi = 0
and p(E|Hi) = 1 if Hi ⊆ E .
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The following statements are equivalent:

• there exists a coherent conditional probability P extending p on K;
• there exists a class {mα : α ∈ W} (with |W | ≤ |J |) of positive (not

necessarily bounded) charges defined on suitable σ-fields {Fα}α∈W defined
by suitable families Bα with Bα ⊂ Bβ for α > β and mβ(H) = 0 iff
H ∈ Bα, and for any conditional event E|H ∈ K there is a unique α such
that H ∈ Bα \ Bα+1, with 0 < mα(H) < ∞, and P (E|H) = x is solution
of the equation

x

∫

H

d(mα(y)) =

∫

H

p(E|y)d(mα(y)). (7)

3 Fuzzy Sets as Coherent Conditional Probabilities

We adopt the interpretation of fuzzy sets in terms of coherent conditional
probabilities, introduced in [4, 5, 6]. We briefly recall here the main concepts.

Let X be a (not necessarily numerical) variable, with range CX , and, for
any x ∈ CX , let us denote by x the event {X = x}, for every x ∈ CX .

We consider any property ϕ related to the variable X and refer to the
state of information of a real (or fictitious) person that will be denoted by
“You”. Then Eϕ is the Boolean event {You claim that X is ϕ}.

By Corollary 1, it follows that You may assign to each of these condi-
tional events a degree of belief (subjective probability) P (Eϕ|x), without any
syntactical restriction. So we can define a fuzzy subset E∗

ϕ of CX as a pair
(Eϕ , μEϕ) with μEϕ(·) = P (Eϕ|·).

By referring to [5] we recall the operations between fuzzy subsets: under
the hypothesis of logical independence between Eϕ and Eψ with respect to
X (i.e. with respect the partition {x}x∈CX ), the binary operations of union
and intersection and that of complementation can be obtained directly by
using the rules of coherent conditional probability. By defining μϕ∧ψ(x) =
P (Eϕ ∧ Eψ |x) and μϕ∨ψ(x) = P (Eϕ ∨ Eψ|x), it has been proved that the
coherent values for μϕ∧ψ(x) and μϕ∨ψ(x), for any given x of X , can be
obtained by any Frank t-norm and its dual t-conorm.

Given a family of logically independent events Eϕi , consider the algebra
B spanned by them, any Frank’s t-norm and its dual t-conorm are apt to
compute any union and intersection between the relevant fuzzy sets (Eϕi , μi).
Coherence rules the extension of the conditional probability P (·|x) to the
other events of the algebra (for instance to the events Ecϕ), which do not
support a fuzzy set.

Note furthermore that two events Eϕ, Eψ can be logically independent and
have the relevant μϕ, μψ with disjoint support.

We finally recall that in this context the complement of a fuzzy set is
defined as
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(E∗
ϕ)′ = (E¬ϕ , μ¬ϕ) = (E¬ϕ , 1− μϕ). (1)

Obviously E¬ϕ �= (Eϕ)c , moreover E¬ϕ and Eϕ are logically independent
with respect to X (see [5]). Then, while Eϕ∨(Eϕ)c = Ω, one has Eϕ∨E¬ϕ �

Ω and so μϕ∨¬ϕ(x) = μϕ(x) + μ¬ϕ(x)− μϕ∧¬ϕ(x).
The case of two fuzzy subsets E∗

ϕ, E
∗
ψ , corresponding to the random vari-

ables Z1 and Z2, respectively, the following choice for the membership of
conjunction and disjunction is coherent:

μϕ∨ψ(z, z′) = P (Eϕ∨Eψ|Az∧Az′), μϕ∧ψ(z, z′) = P (Eϕ∧Eψ |Az∧Az′) (2)

with the only constraints

max{μϕ(z) + μψ(z′)− 1 , 0} ≤ μϕ∧ψ(z, z′) ≤ min{μϕ(z) + μψ(z′)} (3)

μϕ∨ψ(z, z′) = μϕ(z) + μψ(z′)− μϕ∧ψ(z, z′) . (4)

4 Combining Probabilistic and Fuzzy Information

First of all notice that in this context the concept of fuzzy event, as introduced
by Zadeh, is nothing else than an ordinary event of the kind

Eϕ = “You claim that X is ϕ”.

When a probability po on the variable X is given, according to Corollary 1
the assessment {μϕ(x), po(x)}x is coherent and according to condition b of
Theorem 3 (po coincides with mo), the only coherent value for the probability
of Eϕ is

P (Eϕ) =

∫
μϕi(x)dpo(x) .

This formally coincides with the definition proposed by Zadeh in [15], but
actually differs from it since po is in general a finitely additive (non necessarily
σ-additive) probability.

Now let C be a finite family of fuzzy subsets E∗
ϕi

= (Eϕi , μϕi) of X (with
the events Eϕi logically independent with respect to X), denote by 〈C�〉 its
closure with respect to intersection and union, moreover F〈C�〉 stands for the
sets of events Eϕi related to the elements of 〈C�〉.

From the aforementioned results (see also [5]) the next result follows:

Theorem 4. Let C be a finite family of fuzzy subsets E∗
ϕi

= (Eϕi , μϕi) of
X, with the events Eϕi logically independent with respect to X. For every
t-norm � in the class of Frank, and for any probability distribution po on X,
the assessment {P�(Eϕi), P�(Eϕi ∧Eϕj )} with

P�(Eϕi) =

∫
μϕi(x)dpo(x) ; P�(Eϕi ∧ Eϕj ) =

∫
(μϕi � μϕj )(x)dpo(x) (5)

is a coherent probability.
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Moreover, the only coherent extension to the event Eϕi ∨Eϕj is such that

P�(Eϕi∨Eϕj )=

∫
(μϕi⊕μϕj )(x)dpo(x) = P�(Eϕi)+P�(Eϕj )−P�(Eϕi∧Eϕi),

where ⊕ is the dual t-conorm of �.
Proof. From results given in [5], for any t-norm � in the Frank class ([11]),
the assessment {P�(Eϕi ∧ Eϕj |x)}x is coherent with C since the events Eϕi

are logically independent with respect to X . From Corollary 1 it follows
that any probability po on X is coherent with the above assessment and
from Theorem 3 the equation (5) follows. From additivity P�(Eϕi ∨Eϕj) =
P�(Eϕi)+P�(Eϕj )−P�(Eϕi ∧Eϕi) and furthermore the only coherent value
on {P�(Eϕi ∨ Eϕj |x)}x∈CX is given through the dual t-conorm ⊕ of � (see
again [5]), so by Theorem we have 3 P�(Eϕi∨Eϕj ) =

∫
(μϕi⊕μϕj)(x)dpo(x).

The above assessment P� is a coherent conditional probability, so from The-
orem 2 it can be furthermore extended to any conditional event A|B (with
B �= ∅), where A,B are events of the algebra B generated by F〈C�〉 ∪ {x :
x ∈ CX}. In general this extension is not unique while for the events A = Eϕi

and B = Eϕj (i �= j), with P�(Eϕj ) =
∫
μj(x)dpo(x) > 0 the only coherent

extension (called in the following coherent �-extension) is:

P�(Eϕi |Eϕj ) =

∫
(μϕi � μϕj )(x)dpo(x)
∫
μϕj (x)dpo(x)

. (6)

When P�(Eϕj ) = 0 to obtain a unique extension for Eϕi |Eϕj we need ei-
ther a charge mβ belonging to a class {mα} of charges on the algebra AX
generated by X, agreeing with po and such that

∫
μϕj (x)dmβ(x) > 0 or equiv-

alently a conditional probability P (·|C), with C a suitable event of the alge-
bra AX such that

∫
μϕj (x)dP (x|C) > 0. The coherence of the assessments

{P (·|·), P (Eϕj |·)} and {{mα(·)}, P (Eϕj |·)} is assured by a simple extension
of Corollary 1. In this case P�(Eϕi |Eϕj ) is obtained through equation (5),
by replacing po either with P (·|C) or with the mβ .

Remark 1. The values P�(Eϕi |Eϕj ) through equation (6) are coherent only
when the events Eϕi and Eϕj are logically independent with respect to X. For
instance, the same formula cannot be used for the coherent extension of P�
to Eϕj |Eϕj ∧ Eϕi (or Eϕj |Eϕj ), which is necessarily 1, independently of the
Frank t-norm used for computing the coherent values of P�(Eϕi ∧ Eϕj ).

Theorem 5. Let X be a variable with countable range CX and let E∗
ϕi
, E∗

ϕj

two fuzzy subsets of CX . Given a strictly positive probability distribution po on
X and a strict t-norm �, if P�(Eϕi |Eϕj ) coherently extending the assessment
{P�(Eϕi |·), P�(Eϕj |·), po(·)} is equal to 1, then Eϕi and Eϕj are not logically
independent with respect to X.
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Proof. If Eϕi and Eϕj were logically independent with respect to X , the
relevant coherent conditional probability would be computed by equation
(6). Then, P�(Eϕi |Eϕj ) = 1 implies, for any x ∈ CX , μϕi �μϕj (x) = μϕj (x),
since po is strictly positive, and this contradicts the fact that � is strict.
Then, the two events cannot be logically independent with respect to X .

For every t-norm �, by construction of 〈C�〉, any pair of not logically inde-
pendent events Eϕ, Eψ in F〈C�〉 is such that either Eϕ ⊆ Eψ or Eψ ⊆ Eϕ.
Thus, the coherent values of the relevant (conditional) events are univocally
determined through the min t-norm (as shown in the next result).

Theorem 6. Let C = {E∗
ϕi
}i be a finite family of fuzzy subsets on CX, with

Eϕi logical independent with respect to X and let po be any probability distri-
bution on X. Then, the assessment

{po(x), P�(A|x), P�(A|B) : x ∈ CX , A,B ∈ F〈C�〉 with P�(B) > 0},
where � is the minimum t-norm and P�(A|B) is computed by (6), is coherent.

Proof. By construction 〈C〉 involves events Eϕi related to the elements of C
and the union and intersection of them. Then, by Corollary 1 the assess-
ment ¶1 = {P (Eϕi |x), po}x∈CX , is coherent since the events Eϕi are logically
independent with respect to X .

Moreover, from Theorem 4 P�(B|x), P�(B) are coherent with ¶1 (coher-
ence holds for any Frank t-norm and so also for minimum t-norm).

In order to prove that P�(A|B) is coherent with the previous assessment,
recall that B and A are logically dependent on C (i.e. they are union of
some atoms generated by C), so their coherent values are obtained through
minimum t-norm and t-conorm as well as P�(A ∧B), so the following cases
can occur:

- A and B logically independent,
- A ⊆ B (or B ⊆ A).

In all these cases the extension P�(A∧B) = min{P�(A), P�(B)} is coherent
and then P�(A|B) is given by equation (6) and so P�(A|B) = 1.

5 Example

Consider the following problem posed on [16] by Zadeh: “Usually it takes
Robert about an hour to get home from work. Usually Robert leaves office
at about 5pm. What is the probability that Robert is home at 6:15pm.”

Let us consider the variable X= “time taken by Robert to get home from
work” and Y=“ time that Robert leaves office”, and for X the property
ϕ = “about an hour” and for Y the property ψ = “about at 5pm”. Now we
are able to define the fuzzy subsets E∗

ϕ of CX and E∗
ψ of CY with μϕ(x) =

P (Eϕ|x), triangular function centered in 60′ and support A = [45′, 90′] and
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μψ(y) = P (Eψ |y), again triangular function centered in 5pm and support
B = [4 : 45pm, 5 : 15pm], respectively.

The problem now is to compute

P (X + Y ≤ 6.15|Eϕ ∧ Eψ),

which is solvable by supposing any (finitely additive) probability on the alge-
bra spanned by (X,Y ). Nevertheless in this case we could suppose indepen-
dent the two variables and having X normal distribution with mean in 5pm
and Y exponential distribution. Then, chosen any Frank t-norm �, we can
compute

P�(Eϕ ∧ Eψ) =
∫
A×B μϕ∧ψ(x, y)fX(x)fY (y)dxdy,

where μϕ∧ψ(x, y) = μϕ(x) � μψ(y) and the integral is the Riemann’s one.
Similarly we can compute P�(Eϕ ∧ Eψ |X + Y ≤ 6.15) and then the result
through Bayes formula, since P�(Eϕ ∧ Eψ) > 0.

We would note that, even if X and Y are supposed independent, the proba-
bility P�(Eϕ∧Eψ) generally differs from the product of P�(Eϕ) and P�(Eψ).
They coincide when the product t-norm is considered.
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Conjunction, Disjunction and Iterated
Conditioning of Conditional Events

Angelo Gilio and Giuseppe Sanfilippo

Abstract. Starting from a recent paper by S. Kaufmann, we introduce a
notion of conjunction of two conditional events and then we analyze it in
the setting of coherence. We give a representation of the conjoined condi-
tional and we show that this new object is a conditional random quantity,
whose set of possible values normally contains the probabilities assessed for
the two conditional events. We examine some cases of logical dependencies,
where the conjunction is a conditional event; moreover, we give the lower
and upper bounds on the conjunction. We also examine an apparent paradox
concerning stochastic independence which can actually be explained in terms
of uncorrelation. We briefly introduce the notions of disjunction and iterated
conditioning and we show that the usual probabilistic properties still hold.

Keywords: Conditional events, conditional random quantities, conjunction,
disjunction, iterated conditionals.

1 Introduction

In probability theory and in probability logic a relevant problem, largely dis-
cussed by many authors (see, e.g., [2, 3, 7]), is that of suitably defining logical
operations among conditional events. In a recent paper by Kaufmann ([8]) a
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theory for the compounds of conditionals has been proposed. In this paper,
based on the work of Kaufmann, we develop a similar theory in the framework
of coherence. We show that conjunction and disjunction of conditional events
in general are not conditional events but conditional random quantities. We
give representations for such compounds and we study the coherent exten-
sions of a probability assessment (x, y) on two conditional events {A|H,B|K}
to their conjunction (A|H)∧ (B|K) and their disjunction (A|H)∨ (B|K). In
particular, by considering the conjunction, we show cases of logical depen-
dencies in which the combination reduces to a conditional event. For reason
of space we only give a short introduction to disjunction and iterated con-
ditioning. We give the lower and upper bounds for conjunction, disjunction
and iterated conditional and we show that the usual probabilistic properties
still hold in terms of previsions. We also discuss an apparent paradox where
A|H,B|K seem to be stochastically independent, by giving an explanation
in terms of uncorrelation between random quantities.

2 Preliminary Notions

We denote events and their indicators by the same symbol and we write
r.q. (resp., c.r.q.) for random quantity (resp., conditional random quantity).
We recall that n events are said logically independent when there are no
logical dependencies among them, which amounts to say that the number of
constituents is 2n. A conditional event A|H , where H �= ∅, is a three-valued
logical entity which is true, or false, or void, according to whether AH is
true, or AcH is true, or Hc is true. In the setting of coherence, given an
event H �= ∅ and a finite r.q. X ∈ {x1, x2, . . . , xn}, agreeing to the betting
metaphor the prevision P(X |H) of X |H is defined as the amount μ you agree
to pay, by knowing that you will receive the amount X if H is true, or you will
receive back the amount μ if H is false (bet called off). Then, still denoting
by X |H the amount that you receive, it holds that X |H = XH + μHc and,
in what follows, based on the assessment P(X |H) = μ, we will look at the
c.r.q. X |H as the unconditional r.q. XH + μHc. Operatively, what you pay
is your prevision for X |H ; then by linearity P(X |H) = μ = P(XH + μHc) =
P(XH) + μP (Hc), from which it follows P(XH) = P (H)μ = P (H)P(X |H).
In particular, when X is an event A, the prevision of X |H is the probability of
A|H and, if you assess P (A|H) = p, then for the indicator of A|H , denoted by
the same symbol, we have A|H = AH+pHc ∈ {1, 0, p}. Therefore A|H �= A,
but ”conditionally on H being true”, i.e. for H = 1, we have A|H = A ∈
{1, 0}, while A|H = p for H = 0.

Some authors look at the conditional “if A then C”, denoted A→ C , as
the event Ac ∨C (material conditional), but since some years it is becoming
standard to look at A→ C as the conditional event C|A (see e.g. [4, 9]).
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In [8], based on a complex procedure (which exploits the notion of Stalnaker
Bernoulli space), by assuming P (A) positive it is proved that P (A → C) =
P (AC)
P (A) = P (C|A). Then, by defining truth values of A→ C (like conditional

events) as: V (A→ C) = 1, or 0, or P (C|A), according to whether AC is true,
or ACc is true, or Ac, is true, it is verified that the expectation of V (A→ C)
is P (C|A). Moreover, assuming P (A ∨ C) > 0, Kaufmann obtains for the
conjunction of A→ B and C → D the formula

P [(A→ B) ∧ (C → D)] = P (ABCD)+P (B|A)P (AcCD)+P (D|C)P (ABCc)
P (A∨C) .

Based on this result, Kaufmann suggests a natural way of defining the values
for the conjunction of conditionals. We will generalize the approach of Kauf-
mann in the setting of coherence in a direct and simpler way. Notice that
in our paper the conjoined conditional will explicitly appear as a conditional
random quantity; hence, we will speak of previsions (and not of probabilities).

3 Conjunction of Conditional Events

We preliminarily deepen an aspect of coherence and we exploit linearity of
prevision to directly obtain the general compound prevision theorem.

Given any event H �= ∅ and any random quantities X and Y , if XH = Y H
(that is, for H = 1 it holds that X |H = Y |H), then coherence requires that
P(X |H) = P(XH |H) = P(Y H |H) = P(Y |H). In other words

XH = Y H =⇒ X |H = XH+P(X |H)Hc = Y H+P(Y |H)Hc = Y |H . (1)

Theorem 1. Given two events H �= ∅,K �= ∅ and a r.q. X , if the assessment
(x, y, z) on {H |K,X |HK,XH |K} is coherent, then z = xy.

Proof. We have

X |HK = XHK+y(HK)c = XHK+yKc+yHcK = (XH+yHc)K+yKc ;

moreover, by setting P[(XH + yHc)|K] = μ, we have

(XH + yHc)|K = (XH + yHc)K + μKc = XHK + yHcK + μKc .

As we can see: (i) (XH + yHc)|K = XH + yHc when K = 1; (ii) (XH +
yHc)|K = μ when K = 0; moreover: (a) X |HK = XH + yHc when K = 1;
(b) X |HK = y when K = 0; that is, for K = 1, both X |HK and (XH +
yHc)|K coincide with XH + yHc. Then, by the same reasoning as in (1), by
coherence μ must coincide with y and by linearity of prevision:

μ = y = P(XH |K) + yP (Hc|K) = z + y(1− x) ;

hence: z = xy; that is: P(XH |K) = P (H |K)P(X |HK). 	
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We now introduce the notion of conjunction, by first giving some logical
and probabilistic remarks. Given any events A,B,H , with H �= ∅, let us
consider the conjunction AB, or the conjunction (A|H) ∧ (B|H) = AB|H .
We have:AB = min {A,B} = A·B ∈ {0, 1}; moreover, if we assess P (A|H) =
x, P (B|H) = y, then A|H = AH + xHc, B|H = BH + yHc and for H = 1,
i.e. conditionally on H being true, we have:

A|H = AH + xHc = A ∈ {0, 1} , B|H = BH + yHc = B ∈ {0, 1} ,

AB|H = min {A|H,B|H}|H = min {AH + xHc, BH + yHc}|H ∈ {0, 1} .
By defining X = min {A|H,B|H} = min {AH + xHc, BH + yHc}, we have
X ∈ {1, 0, x, y} and, for H = 1, X |H = AB|H ∈ {0, 1}. Then, defining
P(X |H) = μ, P (AB|H) = z, as in (1) by coherence μ = z, so that for H = 0
we have X |H = AB|H = z. In other words, min {A|H,B|H}|H and AB|H
are the same conditional random quantity. Then

(A|H) ∧ (B|H) = min {A|H,B|H} |H = min {A|H,B|H} | (H ∨H) . (2)

In particular, for B = A, we have A|H = (A|H)|H , where (A|H)|H is looked
at as the c.r.q. (AH + xHc)|H ; this equality still holds from the viewpoint
of iterated conditionals introduced in Section 6. Based on formula (2), we
introduce below the notion of conjunction among conditional events.

Definition 1 (Conjunction). Given any pair of conditional events A|H and
B|K, with P (A|H) = x, P (B|K) = y, we define their conjunction as

(A|H) ∧ (B|K) = min {A|H,B|K} | (H ∨K) = (A|H) · (B|K) | (H ∨K) .

Notice that, defining Z = min {A|H,B|K} = (A|H) · (B|K), the conjunction
(A|H) ∧ (B|K) is the c.r.q. Z | (H ∨K).

Interpretation with the betting scheme. If you assess P[(A|H) ∧ (B|K)] = z,
then you agree to pay the amount z by receiving the amount min {A|H,B|K}
if H ∨ K is true, or the amount z if the bet is called off (H ∨ K false).
That is, you pay z and you receive the amount

(A|H) ∧ (B|K) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, AHBK true
0, AcH ∨BcK true
x, HcBK true
y, AHKc true
z, HcKc true ;

therefore, operatively, (A|H) ∧ (B|K) can be represented as:

(A|H) ∧ (B|K) = 1 · AHBK + x ·HcBK + y · AHKc + z ·HcKc .
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Then, by linearity of prevision, it follows

P[(A|H)∧(B|K)] = z = P (AHBK)+xP (HcBK)+yP (AHKc)+zP (HcKc) ,

and we obtain zP (H ∨ K) = P (AHBK) + xP (HcBK) + yP (AHKc) . In
particular, if P (H ∨K) > 0, we obtain the result of Kaufmann

P[(A|H)∧ (B|K)] =
P (AHBK) + P (A|H)P (HcBK) + P (B|K)P (AHKc)

P (H ∨K)
.

Some particular cases. We examine below the conjunction of A|H and B|K
when there are some logical dependencies among A,B,H,K and/or for spe-
cial assessments (x, y) on {A|H,B|K}. We set P (A|H) = x, P (B|K) =
y,P[(A|H) ∧ (B|K)] = z.

1. If x = y = 1, then (A|H) ∧ (B|K) = 1 ·AHBK + 1 ·HcBK + 1 ·AHKc+
+z · HcKc = (AH ∨ Hc) ∧ (BK ∨ Kc)|(H ∨ K) = C(A|H,B|K), where
C(A|H,B|K) is the quasi conjunction (see, e.g., [3, 5]) of A|H and B|K.

2. K = AH . As “conditionally on H being true we have (A|H) ∧ (B|AH) =
AB|H”, from (1) it follows

(A|H) ∧ (B|AH) = 1 ·ABH + z ·Hc = AB|H = C(A|H,B|AH) .

Then, by applying Theorem 1 to the family {A|H,B|AH,AB|H}, we have

P[(A|H)∧(B|AH)] = P (AB|H) = P (A|H)P (B|AH) = P(A|H)P(B|AH) ,

which means, as will see in Sec. 5, that A|H and B|AH are uncorrelated.
3. A|H ⊆ B|K, where ⊆ denotes the inclusion relation of Goodman and

Nguyen. In this case, coherence requires x ≤ y; moreover, A|H ≤ B|K, so
that min {A|H,B|K} = A|H . Then AHKc = ∅ and we have

(A|H) ∧ (B|K) = AH + xHcBK + zHcKc , (3)

from which it follows zP (H ∨K) = x[P (H) + P (HcBK)]. By observing
that HBcK = ∅, we have H ∨K = H ∨HcK = H ∨HcBK; then zP (H ∨
K) = xP (H ∨K), from which it follows z = x if P (H ∨K) > 0. Then, by
the continuity property of coherence with respect to passages to the limits,
the evaluation z = x is coherent also for P (H ∨K) = 0. By the methods
of coherence, it can be shown that the extension P[(A|H)∧ (B|K)] = z of
the assessment (x, 0) on {A|H,H ∨K}, where A|H ⊆ B|K, is coherent if
and only if z = x. Then, from (3), as HcBcK = ∅ we obtain

(A|H)∧(B|K) = AH+x(HcBK+HcBcK+HcKc) = A|H+xHc = A|H .
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4 Lower and Upper Bounds for (A|H) ∧ (B|K)

We will now determine the coherent extensions of the assessment (x, y) on
{A|H,B|K} to their conjunction (A|H)∧(B|K). We recall that the extension
z = P (AB|H) of the assessment (x, y) on {A|H,B|H}, with A,B,H logically
independent, is coherent if and only if: max{x+ y − 1, 0} ≤ z ≤ min{x, y}.
The same results holds for (A|H) ∧ (B|K)! We have

Theorem 2. Given any coherent assessment (x, y) on {A|H,B|K}, with
A,H,B,K logically independent, and with H �= ∅,K �= ∅, the extension
z = P[(A|H)∧ (B|K)] is coherent if and only if the Fréchet-Hoeffding bounds
are satisfied, that is

max{x+ y − 1, 0} = z′ ≤ z ≤ z′′ = min{x, y} . (4)

For reasons of space we give the proof in the appendix; here we only give a
sketch of the proof by the following steps:

1) by the logical independence of the events A,H,B,K, it can be verified
that the assessment (x, y) is coherent for every (x, y) ∈ [0, 1]2;

2) the values z′, z′′ are determined by studying the coherence of the assess-
ment P = (x, y, z) on F = {A|H, B|K, (A|H) ∧ (B|K)}, by means of a
geometrical approach (see, e.g., [5]);

3) the points associated with the constituents generated by F and contained
in H ∨ K are: Q1 = (1, 1, 1), Q2 = (1, 0, 0), Q3 = (0, 1, 0), Q4 = (0, 0, 0),
Q5 = (1, y, y), Q6 = (0, y, 0), Q7 = (x, 1, x), Q8 = (x, 0, 0);

3) we consider the convex hull I of Q1, . . . , Q8; then, we study the solvability
of the linear system representing the condition P ∈ I, which is necessary,
and in our case also sufficient, for the coherence of P ;

4) finally we obtain that, for any given pair (x, y) ∈ [0, 1]2, the assessment P
is coherent if and only if max{x+ y − 1, 0} = z′ ≤ z ≤ z′′ = min{x, y} ; i.e.

max{P (A|H) + P (B|K)− 1, 0} ≤ P[(A|H) ∧ (B|K)] ≤ min{P (A|H), P (B|K)} .

We remark that for quasi conjunction the inequalities (4) do not hold; indeed,
the extension γ = P [C(A|H,B|K)] of the assessment (x, y) is coherent if and
only if γ′ ≤ γ ≤ γ′′, where γ′ = z′ = max{x + y − 1, 0} and γ′′ = SH

0 (x, y),
where SH

0 (x, y) = x+y−2xy
1−xy if (x, y) �= (1, 1), SH

0 (x, y) = 1 if (x, y) = (1, 1)

(Hamacher t-conorm). We observe that: γ′′ ≥ max{x, y} ≥ min{x, y} = z′′.

5 An Apparent Paradox on (A|H) ∧ (B|K)

In this section1 we consider the case HK = ∅, where it seems that A|H
and B|K are stochastically independent; this appears unreasonable; is it?

1 The study of this case was stimulated by a discussion between D Edgington and
A Gilio.
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Actually, assuming HK = ∅, the constituents contained in H ∨ K are
C1 = AHKc, C2 = AcHKc, C3 = HcBK,C4 = HcBcK and, given
the assessment P (A|H) = x, P (B|K) = y, P[(A|H) ∧ (B|K)] = z, the
associated vectors of numerical values for A|H,B|K, (A|H) ∧ (B|K) are
Q1 = (1, y, y), Q2 = (0, y, 0), Q3 = (x, 1, x), Q4 = (x, 0, 0). Let I be the
convex hull of Q1, . . . , Q4. In our case, the condition P ∈ I, which is neces-
sary for the coherence of P , is also sufficient and after some computation on
the associated linear system it can be verified that P is coherent if and only
if z = xy and (x, y) ∈ [0, 1]2. Therefore, coherence requires that

P[(A|H) ∧ (B|K)] = P (A|H)P (B|K) = P(A|H)P(B|K) . (5)

Does (5) mean that A|H and B|K are stochastically independent? The an-
swer, as shown below, is negative. Indeed, we observe that:

(i) by Definition 1, (A|H)∧ (B|K) = (A|H) · (B|K) | (H ∨K) is a conditional
random quantity, not a conditional event; then the correct framework for giv-
ing a meaning to equality (5) is that of random quantities; moreover, in our
case we have: (A|H) ∧ (B|K) = xHcBK + yAHKc + zHcKc;

(ii) (A|H)·(B|K) = (AH+xHc)(BK+yKc) = xHcBK+yAHKc+xyHcKc;

(iii) as z = xy, we have (A|H) ∧ (B|K) = (A|H) · (B|K); that is, the con-
junction is the product of the conditional random quantities A|H,B|K.

Then, (5) only means that A|H and B|K are uncorrelated, and does not mean
that they are independent. Hence, by the previous reasoning we have proved

Theorem 3. Given any events A,B,H,K, with H �= ∅,K �= ∅, HK = ∅, it
holds that P[(A|H) ·(B|K)] = P(A|H)P(B|K); that is, the random quantities
A|H and B|K are uncorrelated.

We remark that, as shown in case 2, Section 3, where B = AH , A|H and
B|K could be uncorrelated even if HK �= ∅. Indeed, by formula (1), we have

(A|H) · (B|AH) = ABH + xy ·Hc = ABH + z ·Hc = (A|H) ∧ (B|AH) ,

and then P[(A|H) · (B|AH)] = P[(A|H) ∧ (B|AH)] = P(A|H)P(B|AH).

6 Disjunction and Iterated Conditioning

We define below the notions of disjunction and of iterated conditioning; in [6]
we are working on an expanded version of this paper. A notion of conditioning
among random quantities has been studied in [1].

Definition 2 (Disjunction). Given any pair of conditional events A|H and
B|K, we define (A|H) ∨ (B|K) = max {A|H,B|K} | (H ∨K).
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By assessing P (A|H) = x, P (B|K) = y,P[(A|H) ∨ (B|K)] = γ, we have
(A|H) ∨ (B|K) = 1 · (AH ∨ BK) + x · HcBcK + y · AcHKc + γ · HcKc.
By coherence, it can be proved that the prevision sum rule holds, that is
P[(A|H) ∨ (B|K)] = P(A|H) + P(B|K)− P[(A|H) ∧ (B|K)], and from (4)

max{P (A|H), P (B|K)} ≤ P[(A|H)∨(B|K)] ≤ min{P (A|H)+P (B|K)−1, 1}

Definition 3 (Iterated conditioning). Given any pair of conditional events
A|H and B|K we define the iterated conditional (B|K)|(A|H) as

(B|K)|(A|H) = (B|K) ∧ (A|H) + μAc|H ,

where μ is the prevision of (B|K)|(A|H) and represents the amount you agree
to pay, with the proviso that you will receive the quantity (B|K)|(A|H).

If P (A|H) = x, P (B|K) = y,P[(A|H)∧(B|K)] = z, the values of (B|K)|(A|H)
are 1, 0, y, μ, x+μ(1− x), μ(1− x), z +μ(1− x), respectively associated with
the constituents AHBK,AHBcK,AHKc, AcH,HcBK,HcBcK,HcKc. By
linearity of prevision: P[(B|K)|(A|H)] = μ = P[(B|K)∧ (A|H)] +μP (Ac |H);
that is: μ = z + μ(1− x), from which it follows

P[(B|K) ∧ (A|H)] = P[(B|K)|(A|H)]P (A|H) . (6)

Then, assuming x = P (A|H) > 0, P (H∨K) > 0, one has: P[(B|K)|(A|H)] =

μ = P[(B|K)∧(A|H)]
P (A|H) = z

x = P (AHBK)+P (A|H)P (HcBK)+P (B|K)P (AHKc)
P (A|H)P (H∨K) , which

coincides with the result of Kaufmann. If we only assign x and y, then
max{0, x+ y − 1} ≤ z ≤ min{x, y}, and it follows μ ∈ [μ′, μ′′], with μ′ = 0,
μ′′ = 1 for x = 0, and with μ′ = max{0, x+y−1

x }, μ′′ = min{1, yx} for x > 0.
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Ockham’s Razor in Probability Logic

Gernot D. Kleiter

Abstract. The paper investigates the generalization, the composition, and
the chaining of argument forms in conditional probability logic. Adding
premises to probabilistic argument forms does not necessarily improve the
information transmitted to the conclusions, but quite contrary, usually leads
to probabilistic less informative conclusions. Selecting the one or two most
relevant premises results in a good Ockham razor in probability logic. The
consequences for modeling human uncertain reasoning and human judgment
and decision making are discussed.

Keywords: Generalized inference rules, imprecise probabilities, probability
logic.

1 Introduction

Assume your orthopedist recommends a replacement surgery of one of your
hips. You feel very uncertain and remember the advice to get a second opin-
ion. Will the second opinion reduce your uncertainty? Consider two prob-
abilistic arguments about the same decision. Is the combination of the two
arguments better than the better one, worse than the worse one, or a com-
promise of the two arguments? Often simple models are doing better than
more complex ones—less can be more. The principles guiding an Ockham
razor to select and use information efficiently in judgment under uncertainty
and decision making were extensively investigated in psychology [4, 7].

Probability logic investigates the propagation of probability assessments
from premises to conclusions. This includes the study of the probabilistic
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properties and the logical properties of the arguments. Typical argument
forms are the modus ponens or the modus tollens, a well-known prob-
abilistic property is p-validity [2], and a logical property is nonmonotonic-
ity. The probability assessments of the premises are assumed to be coherent
and usually assumed to be precise (point probabilities). The probability of
the conclusion is usually imprecise (an interval probability). The export of
typical argument forms from classical to probability logic leads, with a few
exceptions, to interval probabilities of the conclusions.

The present paper is based on the work of Gilio [6]. It investigates proba-
bilistic argument forms like modus ponens or modus tollens containing
more than the usual two premises. Such arguments have, say, n premises and
involvem propositional variables or events. If the basic events in the inference
rules are logically independent, then 2m−1 probabilities are required to infer
the point probability of the conclusions (which are logically dependent on the
basic events). Adding a new event (variable) requires to double the number of
given probabilities attached to the premises to infer a precise probability for
the conclusion again. If not 2m−1 but only n = m probabilities are specified,
as in many generalized argument forms, then the degree of incompleteness
increases rapidly as m increases. In this case 2m− (m+1) constraints remain
unspecified. As a consequence, conclusions become more and more imprecise.
After the inclusion of only a few additional events the conclusions may obtain
any probability in the interval between zero and one. An attractive property
of probability logic is that it may be interpreted as a nonmonotonic inference
system [5]. It allows to retract old conclusions in the light of new evidence.
The rapidly growing incompleteness in the light of new evidence, however,
signals a strong nonmonotonicity.

2 Pseudodiagnosticity

The pseudodiagnosticity task [3, 11] belongs to the standard repertoire in the
psychology of uncertain reasoning. Imagine a medical scenario with a disease
H and two symptoms E1 and E2. You know the prevalence of the disease,
P (H), and one likelihood, P (E1|H). These two values describe the status quo.
You may acquire the value of one more probability. The options are (i) the
likelihood of the first symptom under the alternative hypothesis, P (E1|Hc),
(ii) the likelihood of the second symptom given the disease H , P (E2|H), or
(iii) the likelihood of the second symptom given the alternative disease Hc,
P (E2|Hc). Most subjects prefer P (E2|H) to P (E1|Hc). This is not a good
choice since it does not provide the probabilities for the application of the
standard form of Bayes’ Theorem but only for an incomplete version of it.
The incomplete version leads to an interval posterior probability where the
lower probability is lower than in the status quo. Here additional information
leads to a less informative conclusion. The fact that more information does
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not improve the inference but, quite to the contrary, make it worse seems
highly counter-intuitive.

For the first symptom in the scenario Bayes’ Theorem has the form

P (H) = α, P (E1|H) = β1, P (E1|Hc) = λ1

P (H |E1) = γ = αβ1
αβ1+(1−α)λ1

.

If λ1 is not given it may have any value between 0 and 1 and P (H |E1) is in
the interval γ ∈ [γ′, 1], where

γ′ =
αβ1

αβ1 + 1− α
.

If there are n symptoms with the likelihoods P (E1|H) = β1, . . . , P (En|H) =
βn and the likelihoods P (E1|Hc), . . . , P (En|Hc) under the alternative Hc

are not given, and if conditional independence is assumed, then the lower
probability P (H |E1, . . . , En) decreases monotonically with increasing n,

γ′ =
α
∏n

i=1 βi

α
∏n

i=1 βi + 1− α
.

If the conditional independence assumption is dropped, the lower probability
γ′ is obtained from the minimum numerator, P (H)P (E1, . . . , En|H), so that

γ′ =
ατ ′

ατ ′ + 1− α
, where τ ′ = max

{

0,

n∑

i=1

βi + 1− n

}

for the case of n symptoms. The upper probability is γ′′ = 1. Here τ ′

is the lower probability of a conjunction when only the probabilities of
its elements are given, P (A1, . . . , An|H) ∈ [max{0,∑n

i=1 P (Ai|H) + 1 −
n},min{P (A1|H), . . . , P (An|H)}].
Example 1. If P (H) = .5 and P (E1|H) = .7 are available only, then
P (H |E1) ∈ [.41, 1]. If in addition P (E2|H) = .7 is included as a third premise,

then γ′ = .5(.7+.7−1)
.5(.7+.7−1)+.5 = .29 and γ ∈ [.29, 1]. We see that the interval of

P (H |E1, E2) is wider than the interval of P (H |E1).

With the inclusion of additional “confirmatory” likelihoods the posterior
probability gets worse and approaches the completely non-informative [0, 1]
interval. This is a “less is more” situation. Even if βi = 1 the result does not
improve but only stay at its previous level.

3 Nonmonotonicity in Generalized Arguments

Classical logic is monotone. Adding premises to a valid argument preserves
its conclusion. If p follows from X , then p follows from the union of X and
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an arbitrary q. Commonsense inference, however, can be nonmonotone. Of-
ten conclusions are withdrawn in the light of new evidence. Several logical
systems were proposed to account for nonmonotone reasoning. Well known is
system p. It admits a probabilistic interpretation [8, 5]. The rules of system
p replace valid inference rules of classical logic by p-valid rules of conditional
probability logic [2]. Gilio [6] investigated the propagation of probabilities in
generalized system p rules. In these generalized rules the interval probabili-
ties of the conclusions get wider and wider approaching the non-informative
[0, 1] interval as more and more premises enter the premise set. This property
is the same as in the pseudodiagnosticity task.

Disjunction. For the or rule it is sufficient to consider the case of only two
premises and compare the probability of the conclusion with the case of one
premise. For two premises we have [6]

P (B|A1) = α1, P (B|A2) = α2

P (B|A1 ∨ A2) ∈ [γ′, γ′′]
,

where γ′ = 1
1+u with u = 1−α1

α1
+ 1−α2

α2
and γ′′ = v

1+v with v = α1

1−α1
+ α2

1−α2
.

We see that α1 and α2 are both inside [γ′, γ′′]. If the number of events in the
disjunction increases, the interval approaches [0, 1]. We lose information.

Predictive probabilities. The probability of a success in trial n + 1 after
having observed r successes and s failures in the preceding n trials, is
called a predictive probability (corresponding to cautious monotonicity
in system p). In the special case of identical probabilities of the events,
P (Ei) = α, i = 1, . . . , n+ 1, the conditional probability for the next success,
P (En+1|E1, . . . , Er, Er+1, . . . , En), is in the interval [γ′, 1], where for r = n

γ′ = max

{
0,

(n+ 1)α− n

nα+ 1− n

}
, if nα+ 1− n > 0

and γ′ = 0 if nα + 1 − n ≤ 0. If r < n, i.e., if there is at least one failure, then
the predictive interval is non-informative, γ ∈ [0, 1] [13].

Example 2. If α = .9, then after n successes in n trials the lower probabilities
that the next observation will be a success are for n = 0, 1, . . . , 8 equal to
.9, .875, .857, .833, .8, .75, .667, .5, 0. The upper probability is always 1.

If α = .5, then before any observations are made the predictive probability is
.5 by definition, but after one or more observations the predictive probability
may have any value between 0 and 1. If no information about dependence
or independence of the events is available, predictions are impossible. Even
“gambler’s fallacy” is coherent in this case, that is, for example, favoring
failure after a series of successes.

Modus ponens. The probabilistic form of the modus ponens (a special
case of the cut rule of system p) is:



Ockham’s Razor in Probability Logic 413

P (A) = α, P (B|A) = β

P (B) ∈ [γ′, γ′′]
,

where γ′ = αβ and γ′′ = 1 − α + αβ. The following generalization of the
modus ponens is given by Gilio [6]:

P (E1) = α1, P (E2) = α2, . . . , P (En) = αn, P (H |E1, E2, . . . , En) = β

P (H) ∈ [γ′, γ′′]
,

where γ′ = max{0, β[1−∑n
i=1(1−αi)]} and γ′′ = min{1, 1− (1−β)[1−∑n

i=1(1−αi)]}.
This and all other results in the paper are obtained by the elementary rules
of probability (as best illustrated by Gilio [6]) or by solving linear equations.

If the conditional probability β in the premises is kept constant and if the
number of categorical premises increases, then the interval of the conclusion
gets wider and wider. The reason for this degradation is the import of events
without simultaneously importing information about their interdependencies.

Example 3. For α = .7 and β = .9 we obtain γ ∈ [.63, .93]. If we have two
categorical premises with identical α1 = α2 = .7, and assume the same β = .9,
then we obtain the interval γ ∈ [.36, .96]. With three categorical premises and
α1 = α2 = α3 = .7, and as before, β = .9, we obtain γ ∈ [.09, .99].

Modus tollens. The elementary probabilistic modus tollens is:

P (Bc) = α, P (B|A) = β

P (Ac) ∈ [γ′, 1]

γ′ =

⎧
⎨

⎩

max{0, 1− α
1−β

} if α+ β ≤ 1 and (α, β) �= (0, 1)

1− 1−α
β

if α+ β > 1 or (α, β) = (0, 1)

(Thanks to one of the reviewers for the compact representation!) The gener-
alized form has n categorical premises, P (Ec

i ) = αi, i = 1, . . . , n, and the condi-
tional premise P (E1, . . . , En|H) = β. Let α∗ = max{α1, . . . , αn}. The probability
of the conclusion P (Hc) is in the interval [γ′, 1], where

γ′ =

⎧
⎨

⎩

max{0, 1−
∑n

i=1 αi

1−β
} if α∗ + β ≤ 1 and (α∗, β) �= (0, 1)

1− 1−α∗
β

if α∗ + β > 1 or (α∗, β) = (0, 1) .

If α∗+β > 1, then of all categorical premises only the one with the maximum
probability is relevant.
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Example 4. If there are 4 premises with α1 = .2, α2 = .4, α3 = .6, and α4 = .8,
respectively, and if β = .4, then γ ∈ [.5, 1]. Here α∗ = .8 so that 1 − (1 −
.8)/.4 = .5. The premises with the probabilities .2, .4, and .6 are irrelevant.
If α1 = .02, α2 = .04, α3 = .06, and α4 = .08 the sum is

∑n
i=1 αi = .2

and γ ∈ [.667, 1]. The interval is wider than for any of the single categorical
premises alone; they are [.966, 1], [.933, 1], [.9, 1], and [.866, 1], respectively.

4 Composition of Arguments

Classical logic and commonsense reasoning accept the and rule of the conse-
quence relation: If p follows from X and p follows from Y , then p follows from
the union of X and Y . Does an analog rule hold in probabilistic inference?

Modus ponens. The composition of two modi ponentes results in taking two
times the best, one time for the lower and one time for the upper probability:

P (A1) = α1, P (B|A1) = β1 P (A2) = α2, P (B|A2) = β2If
P (B) ∈ [z′1, z

′′
1 ]

and
P (B) ∈ [z′2, z

′′
2 ]

,

P (A1) = α1, P (A2) = α2, P (B|A1) = β1, P (B|A2) = β2then
P (B) ∈ [z′3, z

′′
3 ]

,

where z′3 = max{z′1, z′2} and z′′3 = min{z′′1 , z′′2} holds. The interval of the
composition is tighter than that any of the single arguments.

Modus Tollens. We have

P (Bc) = α1, P (B|A) = β1 P (Cc) = α2, P (C|A) = β2If
P (Ac) ∈ [γ′

1, 1]
and

P (Ac) ∈ [γ′
2, 1]

P (Bc) = α1, P (Cc) = α2, P (B|A) = β1, P (C|A) = β2then
P (Ac) ∈ [γ′

3, 1]
,

where γ′3 = max{γ′1, γ′2}. The composition of the two arguments is obtained
by the conjunction of BcCc and ofBC|A, respectively. The result corresponds
to the take-the-best strategy in the psychology of decision making [4].

Example 5. If α1 = .6, β1 = .8, α2 = .4, β2 = .9, for the first argument we
have γ1 ∈ [.5, 1], for the second one we have γ2 ∈ [.33, 1]; the composition
results in γ3 ∈ [.5, 1]. The best argument wins.
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5 Chaining Arguments

Forward chaining. Consider three events A,B, and C. P (A), P (B|A), and
P (C|B) are known and we want to determine P (C). We apply the modus
ponens two times in succession, first to infer P (B) from P (A) and P (B|A)
and second to infer P (C) from P (B) and P (C|B). The result of the first
step is an interval, so that the second step applies the modus ponens for
premises with interval assessments:

P (A) ∈ [α′, α′′], P (B|A) ∈ [β′, β′′]
P (B) ∈ [α′β′, 1− α′ + α′β′′]

Combining the modus ponens result for point probabilities and for interval
probabilities leads to the result for forward chaining:

P (A) = α, P (B|A) = β1, P (C|B) = β2

P (C) ∈ [αβ1β2, 1− β2 + α1β1β2] .

Backward chaining. Consider three events A,B, and C. Assume P (A) = α,
P (B|A) = β1, and P (C|B) = β2 are given. We determine the probability
P (A|BC) = γ. Using Bayes’ Theorem we have P (A|BC) = P (ABC)

P (ABC)+P (AcBC)
.

The probability of ABC is factorized, P (ABC) = P (A)P (B|A)P (C|AB). If A
and C are conditionally independent given B, P (C|AB) may be replaced by
P (C|B), so that the factorization simplifies to P (A)P (B|A)P (C|B) = αβ1β2.
As no information about the constituents involving Ac is given, P (AcBC)

may have any value between zero and one and we obtain γ ∈
[

αβ1β2

αβ1β2+1−α , 1
]
.

Now we drop the conditional independence assumption. As a consequence,
the probability of the conjunction becomes an interval probability [ω′, ω′′].
The values of ω′ and ω′′ are obtained by solving a system of linear equations
involving the eight constituents ABC,AcBC, . . . , AcBcCc and the constraints
α, β1, β2. In the present context only ω′, the value of the lower probability of
the conjunction, is relevant. We obtain ω′ = max{0, β2(1−α(1− β1))− (1−
α)}. The upper probability ω′′ is not needed as we already know that the

upper value of the ratio P (ABC)
P (ABC)+P (AcBC) is 1 (if P (AcBC) = 0, assuming

P (ABC) > 0). The lower value of the ratio is obtained when the probability
of ABC obtains its minimum.

To sum up, for backward chaining we obtain:

P (A) = α, P (B|A) = β1, P (C|B) = β2

P (A|BC) ∈ [ ω′
ω′+1−α

, 1]
,

where ω′ = max{0, β2(1−α(1−β1))− (1−α)}. When the length of the chain
increases, the lower probability is quickly approaching zero.

Example 6. If α = .5, β1 = .9, β2 = .7, ω′ = .165, then P (A|BC) ∈ [.248, 1].
If α = .5, β1 = .7, β2 = .7, ω′ = .095, then P (A|BC) ∈ [.16, 1]. In the first
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step of the pseudodiagnosticity example (Section 2) we had, for comparison,
α = .5, β1 = .7, P (AB) = ω′ = .35, P (A|B) ∈ [.412, 1].

6 Discussion

Probability logic is a weak inference system. This is the price of nonmono-
tonicity. The informativeness of conclusions decrease as more premises are
added. This was also observed by Adams [1, p. 9]: “... the more premisses
there are, each with its ‘quantum of uncertainty’, the less sure we can be of
the conclusions arrived at, and these quanta can ‘accumulate’ as the num-
ber of premisses increases, even to the point of absurdity ... ”. The proba-
bilities of the aggregation of several arguments need not be located in the
middle between the values of the original arguments but may be at the max-
imum/minimum values or even outside the range of the original arguments.

Probability logic has been used as a framework for modeling human rea-
soning [10]. In human reasoning not only elementary arguments with just two
premises, but the more complex argument forms that we have discussed here,
are relevant. Often people reject the idea that more information can make
inferences worse. Noisy information is considered to be irrelevant and dis-
carded before it enters inferences. This may lead to a take-the-best strategy.
Although such a strategy conflicts with the principle of total evidence there
are claims saying that take-the-best strategies are often efficient and often
actually employed [4]. Ockham’s razor can be a rational principle in proba-
bility logic, a principle where probability logic and human judgment meet.
Unfortunately, though, probability logic is dumb about correlation, depen-
dence or independence. Conditional probability logic (such as system p [8]
or the work of Adams [2]) consists of two parts, a probabilistic part and a
logical part. The probabilistic part investigates the propagation of probabil-
ities from premises to conclusions. Some of these inferences are considered
to be “acceptable”, some not. p-valid inferences are, for example, considered
to be acceptable because they preserve high probabilities. While dependence
and independence have extensively been studied in probability theory, they
have not been investigated in standard first order logic. Thus probability logic
inherits this weakness from classical logic. As dependence and independence
are highly important in everyday reasoning probability logic can at best be
half of a frame of reference of artificial or human reasoning. Only very re-
cently logicians started to study independence and dependence systematically
[12, 9].
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Conglomerable Coherent Lower
Previsions

Enrique Miranda and Marco Zaffalon

Abstract. Walley’s theory of coherent lower previsions builds upon the for-
mer theory by Williams with the explicit aim to make it deal with conglom-
erability. We show that such a construction has been only partly successful
because Walley’s founding axiom of joint coherence does not entirely capture
the implications of conglomerability. As a way to fully achieve Walley’s orig-
inal aim, we propose then the new theory of conglomerable coherent lower
previsions. We show that Walley’s theory coincides with ours when all condi-
tioning events have positive lower probability, or when conditioning partitions
are nested.

Keywords: Coherent lower previsions, conglomerability, sets of desirable
gambles, Williams’ coherence.

1 Introduction

There are two main behavioural theories of coherent lower previsions (these
are lower expectation functionals): Walley’s [3] and Williams’ [4]. The main
difference between them lies in the notion of conglomerability. This is the
property that allows us to write an expectation as a mixture of conditional ex-
pectations. De Finetti discovered in 1930 that conglomerability can fail when
finitely additive probabilities, as well as infinitely many conditioning events,
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enter the picture [1]. Walley developed his theory by modifying Williams’ so
as to account for conglomerability in such non-finitary setting. It is contro-
versial that conglomerability should always be imposed; however, we have
argued elsewhere [5] that this should be the case when one establishes right
from the start that conditional probabilities will be used to determine future
behaviour.

From this discussion, it may seem that Walley’s theory should be the
one to use when conglomerability is required. However, some recent research
has shown that a basic procedure to construct rational models in Walley’s
theory does not fully consider the implications of conglomerability [2]. In this
paper we take a closer look at this problem by analysing the core of Walley’s
theory: his notion of self-consistency for coherent lower previsions, which is
called joint coherence. This can be regarded as the single axiom of Walley’s
theory.

To this end, we need to work with the theory of coherent sets of desirable
gambles, which generalise coherent lower previsions. We review these theo-
ries and present some preliminary results in Section 2. We start our actual
investigation in Section 3. We define the new theory of conglomerable coher-
ent lower previsions based on desirable gambles and conglomerability. The
founding axiom of this theory is called conglomerable coherence. We argue
that this is the axiom one should use whenever conglomerability is required.
Then we give the relationships about the several consistency notions in Wal-
ley’s, Williams’, and our new theory, with special regard to conglomerability.
Most importantly, we show in Example 1 that Walley’s joint coherence is not
equivalent to conglomerable coherence, which is stronger. In our view, this
implies that Walley’s theory should be regarded as an approximation to the
actual theory to use under conglomerability.

This approximation becomes exact in some important cases, which we dis-
cuss in Section 4: when either (i) every conditioning event has positive lower
probability or (ii) we consider nested partitions, that is, partitions that are
finer and finer, then joint coherence coincides with conglomerable coherence.
These two outcomes are important because working with conglomerable co-
herence can be much more difficult than with Walley’s joint coherence.

2 Coherent Lower Previsions and Sets of Desirable
Gambles

Given a possibility space Ω, a gamble f is a bounded real-valued function
on Ω. L(Ω) (or L) denotes the set of all gambles on Ω, and L+(Ω) (or just
L+) the set of so-called positive gambles: {f ∈ L : f � 0} (where f � 0 is
a shorthand for f ≥ 0 and f �= 0). A lower prevision P is a real functional
defined on L. From any lower prevision P we can define an upper prevision
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P using conjugacy: P (f) := −P (−f). Precise previsions, which are those for
which P (f) = P (f), are denoted by P (f).

Given B ⊆ Ω, the real value P (f |B) denotes the lower prevision of f
conditional on B. Given a partition B of Ω, then we shall represent by P (f |B)
the gamble on Ω that takes the value P (f |B)(ω) = P (f |B) iff ω ∈ B. The
functional P (·|B) is called a conditional lower prevision. We say that it is
separately coherent (or just a linear prevision, in the precise case) when for
all B ∈ B, P (f |B) is the lower envelope of the expectations obtained from a
set of finitely additive probabilities. We shall also use the notationsG(f |B) :=
B(f −P (f |B)) and G(f |B) :=

∑
B∈BG(f |B) = f −P (f |B) for all f ∈ L and

all B ∈ B (note how B is used also as the indicator function of event B). In
the case of an unconditional lower prevision P , we shall let G(f) := f −P (f)
for any gamble f in its domain.

Definition 1. Let P (·|B1), . . . , P (·|Bm) be separately coherent conditional
lower previsions. They are called (jointly) coherent if for every fi ∈ L, i =
0, . . . ,m, j0 ∈ {1, . . . ,m}, B0 ∈ Bj0 and given H1 :=

∑m
i=1G(fi|Bi) and

H2 := G(f0|B0), it holds that supω∈B[H1 − H2](ω) ≥ 0 for some B ∈
∪mi=1Si(fi) ∪ {B0}, where Si(fi) := {Bi ∈ Bi : Bifi �= 0}.
A number of weaker conditions are of interest for this paper.

Definition 2. Under the above conditions, P (·|B1), . . . , P (·|Bm) are said to:

• avoid partial loss when supω∈B H1(ω) ≥ 0 for some B ∈ ∪mi=1Si(fi);
• be weakly coherent when supω∈Ω[H1 −H2](ω) ≥ 0;
• be Williams-coherent when the coherence condition holds for the particu-

lar case when Si(fi) is finite for i = 1, . . . ,m.

Weak and strong coherence are equivalent in the particular case of two con-
ditional lower previsions, if we assume in addition a positivity condition:

Lemma 1. If P (·|B1) and P (·|B2) are weakly coherent with some coherent
lower prevision P such that P (B2) > 0 ∀B2 ∈ B2 and P (B1) > 0 ∀B1 ∈ B1
different from a given B′

1 ∈ B1, then P (·|B1) and P (·|B2) are coherent.

We also have the following characterisation of weak coherence:

Lemma 2. P (·|B1), . . . , P (·|Bm) are weakly coherent if and only if there is
some coherent lower prevision P such that for all j = 1, . . . ,m, it holds that

P (G(f |Bj)) = 0 and P (G(f |Bj)) ≥ 0 ∀f ∈ L, Bj ∈ Bj .

The equality P (G(f |Bj)) = 0 is called the Generalised Bayes Rule (GBR).
Condition P (G(f |Bj)) ≥ 0 represents a condition of conglomerability of P
with respect to the conditional lower prevision P (·|Bj). More precisely, we
have the following:
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Definition 3. Let P be a coherent lower prevision, and B a partition of Ω.
We say that P is B-conglomerable if whenever f ∈ L and B1, B2, . . . , are
different sets in B such that P (Bn) > 0 and P (Bnf) ≥ 0 for all n ≥ 1, it
holds that P (

∑∞
n=1Bnf) ≥ 0.

A coherent lower prevision P is B-conglomerable if and only if there is a
separately coherent conditional lower prevision P (·|B) such that P , P (·|B)
are (jointly) coherent (see [3, Theorem 6.8.2(a)]).

The above theory of coherent lower previsions is generalised by the theory
of coherent sets of desirable gambles, which we summarise next. GivenR ⊆ L,
let us denote posi(R) := {∑n

k=1 λkfk : fk ∈ R, λk > 0, n ≥ 1}.
Definition 4. A set R ⊆ L is called coherent when R = posi(R ∪ L+) and
0 /∈ R. It is said to avoid partial loss when it is included in a coherent set,
and given a partition B of Ω, the set R is said to be B-conglomerable when
for any gamble f , Bf ∈ R ∪ {0} for all B ∈ B implies that f ∈ R ∪ {0}.
Given R ⊆ L that avoids partial loss, its smallest coherent superset is called
its natural extension, and its smallest coherent and B-conglomerable superset
(provided it exists), its B-conglomerable natural extension. The interior R of
a coherent set R (in the topology of uniform convergence) is called a set
of strictly desirable gambles. A set of gambles induces a conditional lower
prevision by

P (f |B) := sup{μ : B(f − μ) ∈ R}. (1)

The set of strictly desirable gambles induced by P (f |B) is the smallest co-
herent set of gambles on B that induces P (f |B). This allows us to establish
the following characterisation.

Theorem 1 ([2, Theorem 3]). Let R be a coherent set of desirable gambles,
and let P be the coherent lower prevision it induces by means of Eq. (1). Then
P is B-conglomerable if and only if R is B-conglomerable.

3 Conglomerable Coherent Lower Previsions

A separately coherent conditional lower prevision P (·|Bi) induces the follow-
ing sets of gambles:

RBi

i := {G(f |Bi) + εBi : f ∈ L(Ω), ε > 0} ∪ {f ∈ L(Ω) : f = Bif � 0}, (2)

where Bi ∈ Bi. Similarly, a collection of separately coherent conditional
lower previsions P (·|B1), . . . , P (·|Bm) induces the set of desirable gambles
∪mi=1 ∪Bi∈Bi RBi

i . Using this set, we can re-formulate one of Williams’ basic
results [4, Section 1.1] in our language, where lower previsions are conditional
on partitions:
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Theorem 2. Let P (·|B1), . . . , P (·|Bm) be separately coherent conditional
lower previsions. Consider E := posi(L+(Ω) ∪ (∪mi=1 ∪Bi∈Bi RBi

i )).

1. If P (·|B1), . . . , P (·|Bm) are Williams-coherent, then E is coherent.
2. E induces P (·|B1), . . . , P (·|Bm) by means of (1).

In contrast to Williams’, here we are concerned with the additional require-
ment of conglomerability. This is the motivation behind the following notions,
which modify some of the consistency conditions in [3, Chapter 7].

Definition 5. Let R be a set of desirable gambles and B a partition of Ω.
We say that it avoids B-conglomerable partial loss if it has a B-conglomerable
coherent superset.

Definition 6. Let B1, . . . ,Bm be partitions of Ω. A set of desirable gambles
that is conglomerable with respect to all the partitions B1, . . . ,Bm, shall be
called B1:m-conglomerable.

Definition 7. Conditional lower previsions P (·|B1), . . . , P (·|Bm) are called
conglomerable coherent if there is a B1:m-conglomerable coherent set of desir-
able gambles that induces them. They are said to avoid conglomerable partial
loss if they have dominating conglomerable coherent extensions.

Let us illustrate the relationships between the notions of avoiding (conglo-
merable) partial loss for desirable gambles and coherent conditional lower
previsions.

Theorem 3. Let P (·|B1), . . . , P (·|Bm) be separately coherent conditional lower
previsions. Let R := ∪mi=1 ∪Bi∈Bi RBi

i , where the sets of gambles RBi

i are de-
termined by Eq. (2).

1. If P (·|B1), . . . , P (·|Bm) avoid partial loss, then R avoids partial loss.
2. P (·|B1), . . . , P (·|Bm) avoid conglomerable partial loss if and only if the con-

glomerable natural extension F of R exists. Moreover, the smallest domi-
nating conglomerable coherent extensions are induced by the conglomerable
natural extension F of R.

Now we move on to characterise the different forms of coherence. We start
by a preliminary result: we detail how the coherence properties of a set of
desirable gambles affect those of the conditional lower previsions it induces.

Theorem 4. Let R be a coherent set of desirable gambles, and for every
i = 1, . . . ,m, Bi ∈ Bi, let P (·|Bi) denote the conditional lower prevision it
induces by (1).

1. P (·|Bi) is separately coherent for all i = 1, . . . ,m.
2. P (·|B1), . . . , P (·|Bm) are Williams-coherent.
3. [3, Appendix F3] If R is in addition B1:m-conglomerable, then the condi-

tional lower previsions P (·|B1), . . . , P (·|Bm) are coherent.
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Let us take now the inverse path, where we start from separately coherent con-
ditional lower previsions P (·|B1), . . . , P (·|Bm). For every i = 1, . . . ,m,Bi ∈
Bi, let RBi

i be given by Eq. (2). The Bi-conglomerable natural extension

of the sets RBi

i (Bi ∈ Bi) is the smallest Bi-conglomerable coherent set
of desirable gambles that extends the originating sets, and is given by
Fi := L ∩ {∑Bi∈Bi

Bifi : Bifi ∈ RBi

i ∪ {0}} \ {0} (see [5, Proposition 4]).
Obviously, it need not be Bj-conglomerable for another partition Bj , and we
can show the following:

Lemma 3. Fi is Bj-conglomerable iff RBi

i is Bj-conglomerable ∀Bi ∈ Bi.
The natural extension of the union of the related sets F1, . . . ,Fm is equal to
F1 ⊕ · · · ⊕ Fm := {∑m

i=1 fi : fi ∈ Fi, i = 1, . . . ,m}, taking into account that
all of these sets are coherent. We shall denote by F the B1:m-conglomerable
natural extension of ∪mi=1∪Bi∈BiRBi

i , provided that it exists. It can be checked
that this set F is also the B1:m-conglomerable natural extension of ∪mi=1Fi.
Theorem 5. 1. P (·|B1), . . . , P (·|Bm) are conglomerable coherent if and only

if the B1:m-conglomerable natural extension F of ∪mi=1Fi exists and it in-
duces them by means of Eq. (1).

2. If P (·|B1), . . . , P (·|Bm) are conglomerable coherent, then Fi is Bj-conglo-
merable for all i, j in {1, . . . ,m}, and P (·|B1), . . . , P (·|Bm) are coherent.

At this point we have characterised some important relationships between
coherence and conglomerable coherence. Yet, we have not addressed the most
important issue: whether or not these two notions are equivalent. The next
example settles the problem showing that they are not, and hence—using
Theorem 5—that conglomerable coherence is indeed stronger than coherence.

Example 1. Consider Ω := N, and a coherent lower prevision P which is
not B-conglomerable for some partition B of Ω but such that there exists a
dominating B-conglomerable linear prevision with P (B) > 0 for all B ∈ B
(one such P is given in [2, Example 5]).

Let us define Ω1 := Ω ∪−Ω, and the partitions of Ω1 B1 := {Ω,−Ω} and
B2 := {B ∪ −B : B ∈ B}. Define P (·|B1) on L(Ω1) by P (f |Ω) := P (f1) and
P (f | −Ω) := P (f2), where

f1 : Ω → R

ω ↪→ f(ω)
and

f2 : Ω → R

ω ↪→ f(−ω).
(3)

It follows from the coherence of P that P (·|B1) is separately coherent.
From the linear prevision P on L considered above we can derive a linear

prevision P1 on L(Ω1) by P1(f) := P (f1), where f1 is given by Eq. (3). Then
P1 is a linear prevision satisfying P1(B∪−B) = P (B) > 0 for any B ∈ B, and
moreover P1(Ω) = 1. Define P1(·|B2) by GBR. Then it can be checked that
P1, P1(·|B2) are coherent. On the other hand, consider P 1(·|−Ω) := P (·|−Ω)
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and define P1(·|Ω) from P1 by GBR. Then P1, P 1(·|B1) are coherent, and
applying Lemma 1 we deduce that P 1(·|B1), P1(·|B2) are coherent.

Similarly, if we consider the linear prevision P2 on L(Ω1) given by P2(f) :=
P (f2), we can repeat the above reasoning and define P2(·|B2) and P2(·| −
Ω) by GBR, and let P 2(·|Ω) be equal to P (·|Ω) and we conclude that
P 2(·|B1), P2(·|B2) are coherent. By taking lower envelopes, we obtain co-
herent Q(·|B1), Q(·|B2) (see [3, Theorem 7.1.6]), and the above construction
implies that Q(·|B1) = P (·|B1).

Now, assume ex-absurdo that P (·|B1), Q(·|B2) are conglomerable coher-
ent. Then Theorem 5(2) implies that the set F1 induced by P (·|B1) is B2-
conglomerable, and Lemma 3 implies then that RΩ1 is B2-conglomerable. But

RΩ1 = {G(f |Ω) + εΩ : f ∈ L(Ω1), ε > 0} ∪ {f ∈ L(Ω1) : f = Ωf � 0}

is in a one-to-one correspondence with the set of strictly desirable gambles
induced by P . From Theorem 1, since P is not B-conglomerable its associated
set of strictly desirable gambles is not B-conglomerable; from this we can
deduce that RΩ1 is not B2-conglomerable, whence neither is F1 and as a
consequence P (·|B1), Q(·|B2) cannot be conglomerable coherent. �

This finding is important because it tells us that Walley’s notion of coherence
does not entirely capture the implications of conglomerability (as they would
follow, for example, from the axioms in [3, Appendix F1]), and in this sense it
is an approximation to the theory of conglomerable coherent lower previsions.
In the next section we show that such an approximation becomes exact in
some important special cases.

4 Particular Cases

From Lemma 2, if P (·|B1), . . . , P (·|Bm) are weakly coherent, then there is an
unconditional lower prevision P that is pairwise coherent with them. This
connects weak coherence and conglomerability:

Theorem 6. P (·|B1), . . . , P (·|Bm) are weakly coherent if and only if there are
coherent sets R,F1, . . . ,Fm and a coherent lower prevision P such that for
all i = 1, . . . ,m R∪Fi is Bi-conglomerable coherent and it induces P , P (·|Bi).
However, since the coherence of P (·|B1), . . . , P (·|Bm) is a stronger notion that
their weak coherence, we have that conglomerable coherence implies weak
coherence by Theorem 5(2) and that the converse is not true by Example 1.

Now, if the lower prevision P satisfies P (B) > 0 for all B ∈ B1 ∪
· · · ∪ Bm (whence B1, . . . ,Bm can at most be countable), we deduce that
P (·|B1), . . . , P (·|Bm) are conglomerable coherent:
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Theorem 7. Let P (·|B1), . . . , P (·|Bm) be separately coherent conditional
lower previsions which are weakly coherent with some coherent lower pre-
vision P satisfying that P (B) > 0 for all B ∈ B1 ∪ · · · ∪ Bm. Then:
1. Fi is Bj-conglomerable for i, j = 1, . . . ,m.
2. F1 ⊕ · · · ⊕ Fm is B1:m-conglomerable.
3. P (·|B1), . . . , P (·|Bm) are conglomerable coherent.

Another interesting case where coherence and conglomerable coherence are
equivalent is when we condition on partitions that are nested. Let B1, . . . ,Bm
be partitions of Ω such that Bj is finer than Bj−1 for all j = 2, . . . ,m, and
let P (·|B1), . . . , P (·|Bm) be separately coherent conditional lower previsions.

Theorem 8. P (·|B1), . . . , P (·|Bm) are coherent if and only if for all gam-
bles f ∈ L, Bj−1 ∈ Bj−1, Bj ∈ Bj, it holds that P (G(f |Bj)|Bj−1) = 0
and P (G(f |Bj)|Bj−1) ≥ 0. Moreover, if P (·|B1), . . . , P (·|Bm) are coherent,
then Fi and F1 ⊕ · · · ⊕ Fm are B1:m-coherent for all i = 1, . . . ,m, and
P (·|B1), . . . , P (·|Bm) are conglomerable coherent.

5 Conclusions

This paper allows us to say a few conclusive words about the quest for a
general behavioural theory of coherent (conditional) lower previsions. Now
we know that Walley’s theory does not consider all the implications of con-
glomerability and should better be understood as an approximation to the
theory of conglomerable coherent lower previsions we have proposed here.

On the other hand, we have shown that in some special cases we can use
Walley’s theory in order to obtain the same outcomes as with conglomerable
coherence: when the conditioning events have positive lower probability, or
when the conditioning partitions are nested. Both cases are important in the
applications of probability.

In our view, the most important next step to do is to try to make the new
theory of practical use in general, not only in the cases already addressed in
this paper. To this end, there is a main obstacle to overcome: the computation
of the conglomerable natural extension of a set of desirable gambles. We know
from [2] that we can approximate it by a sequence of sets, but we neither know
whether it is attained in the limit nor whether the sequence is finite. This is
the main challenge that has to be faced in future work.

Acknowledgements. Work supported MTM2010-17844 and by the Swiss NSF
grants nos. 200020 134759 / 1, 200020 137680 / 1, and the Hasler foundation grant
n. 10030.



Conglomerable Coherent Lower Previsions 427

References
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Evidential Networks from a Different
Perspective

Jǐrina Vejnarová

Abstract. Bayesian networks are, at present, probably the most popular rep-
resentative of so-called graphical Markov models. Naturally, several attempts
to construct an analogy of Bayesian networks have also been made in other
frameworks as e.g. in possibility theory, evidence theory or in more general
frameworks of valuation-based systems and credal sets. We collect previously
obtained results concerning conditioning, conditional independence and ir-
relevance allowing to define a new type of evidential networks, based on
conditional basic assignments. These networks can be seen as a generaliza-
tion of Bayesian networks, however, they are less powerful than e.g. so-called
compositional models, as we demonstrate by a simple example.

Keywords: Conditional independence, conditioning, evidence theory, evi-
dential networks, multidimensional models.

1 Introduction

Bayesian networks are, at present, probably the most popular representa-
tive of so-called graphical Markov models. Naturally, several attempts to
construct an analogy of Bayesian networks have also been made in other
frameworks as e.g. in possibility theory [5], evidence theory [4] or in the more
general frameworks of valuation-based systems [11] and credal sets [7].

In this paper we bring an alternative to [4], which does not seem to us
to be satisfactory, as graphical tools well-known from Bayesian networks are
used in different sense. An attempt, using the technique of the operator of
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composition [9] was already presented in [13], but in that paper we concen-
trated ourselves only on structural properties of the network, the problem of
definition of conditional basic assignments was not solved there. After solving
this problem [15], in this paper we present a new concept of evidential net-
works, which can be seen as a generalization of Bayesian networks. However,
simultaneously we show, that these evidential networks are less powerful than
e.g. so-called compositional models.

The paper is organized as follows. After a brief summary of basic notions
from evidence theory (Section 2), in Section 3 we recall recent concepts impor-
tant for introduction of evidential networks, such as conditioning, conditional
independence and irrelevance. In Section 4 we present a theorem allowing a
direct generalization of Bayesian networks to evidential framework as well as
a simple example demonstrating the potential weakness of these networks.

2 Basic Notions

In this section we will briefly recall basic concepts from evidence theory [10]
concerning sets and set functions.

2.1 Set Projections and Joins

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be a system of variables,
each Xi having its values in a finite set Xi. In this paper we will deal with
multidimensional frame of discernment XN = X1 × X2 × . . . × Xn, and

its subframes (for K ⊆ N) XK =×i∈KXi. When dealing with groups of
variables on these subframes, XK will denote a group of variables {Xi}i∈K

throughout the paper.
For M ⊂ K ⊆ N and A ⊂ XK , A↓M will denote a projection of A into

XM :
A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M},

where, for M = {i1, i2, . . . , im},

x↓M = (xi1 , xi2 , . . . , xim) ∈ XM .

In addition to the projection, in this text we will also need an opposite opera-
tion, which will be called a join. By a join1 of two sets A ⊆ XK and B ⊆ XL

(K,L ⊆ N) we will understand a set

A �� B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.
Let us note that for any C ⊆ XK∪L naturally C ⊆ C↓K �� C↓L, but generally
C �= C↓K �� C↓L.

1 This term and notation are taken from the theory of relational databases [1].
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2.2 Set Functions

In evidence theory [10] (or Dempster-Shafer theory) two dual measures are
used to model the uncertainty: belief and plausibility measures. Both of them
can be defined with the help of another set function called a basic (probability
or belief) assignment m on XN , i.e. ,

m : P(XN ) −→ [0, 1],

where P(XN ) is the power set of XN , and
∑

A⊆XN
m(A) = 1. Furthermore,

we assume that m(∅) = 0. A set A ∈ P(XN ) is a focal element if m(A) > 0.
Belief and plausibility measures are defined for any A ⊆ XN by the equal-

ities

Bel(A) =
∑

B⊆A

m(B), P l(A) =
∑

B∩A �=∅
m(B),

respectively. It is well-known (and evident from these formulae) that for any
A ∈ P(XN )

Bel(A) ≤ Pl(A), P l(A) = 1−Bel(AC), (1)

where AC is the set complement of A ∈ P(XN ). Furthermore, basic assign-
ment can be computed from belief function via Möbius inverse:

m(A) =
∑

B⊆A

(−1)|A\B|Bel(B), (2)

i.e. any of these three functions is sufficient to define values of the remaining
two.

For a basic assignment m on XK and M ⊂ K, a marginal basic assignment
of m on XM is defined (for each A ⊆ XM ):

m↓M (A) =
∑

B⊆XK

B↓M=A

m(B).

3 Conditioning, Independence and Irrelevance

Conditioning and independence belong to the most important topics of any
theory dealing with uncertainty. They are cornerstones of Bayesian-like mul-
tidimensional models.
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3.1 Conditioning

In evidence theory the “classical” conditioning rule is so-called Dempster’s
rule of conditioning, nevertheless a lot of alternative conditioning rules for
events have been proposed [8].

However, from the viewpoint of evidential networks conditioning of vari-
ables is of primary interest. In [14] we presented two definitions of condi-
tioning by variables, based on Dempster conditioning rule and focusing, we
proved that these definitions are correct, nevertheless, their usefulness for
multidimensional models is rather questionable, as thoroughly discussed in
the above-mentioned paper.

Therefore, in [15] we proposed a new conditioning rule defined as follows.

Definition 1. Let XK and XL (K ∩ L = ∅) be two groups of variables with
values in XK and XL, respectively. Then the conditional basic assignment of
XK given XL ∈ B ⊆ XL (for B such that m↓L(B) > 0) is defined as follows:

mXK |PXL
(A|PB) =

∑

C⊆XK∪L:

C↓K=A&C↓L=B

m(C)

m↓L(B)
(3)

for any A ⊆ XK .

It is evident that the conditioning is defined only for focal elements of the
marginal basic assignment, but we do not consider it a substantial disadvan-
tage, because all the information about a basic assignment is concentrated in
focal elements. Its correctness is expressed by Theorem 1, proven in [15].

Theorem 1. Set function mXK |PXL
defined for any fixed B ⊆ XL, such that

m↓L(B) > 0 by Definition 1 is a basic assignment on XK .

3.2 Independence and Irrelevance

In evidence theory the most common notion of independence is that of ran-
dom set independence [6]. It has already been proven [12] that it is also the
only sensible one.

This notion can be generalized in various ways [3, 11, 12]; the concept of
conditional non-interactivity from [3], based on conjunctive combination rule,
is used for construction of directed evidential networks in [4]. In this paper
we will use the concept introduced in [9, 12], as we consider it more suitable
(the arguments can be found in [12]).
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Definition 2. Let m be a basic assignment on XN and K,L,M ⊂ N be
disjoint, K �= ∅ �= L. We say that groups of variables XK and XL are
conditionally independent given XM with respect to m (and denote it by
K ⊥⊥ L|M [m]), if the equality

m↓K∪L∪M(A) ·m↓M (A↓M ) = m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M ) (4)

holds for any A ⊆ XK∪L∪M such that A = A↓K∪M �� A↓L∪M , and m(A) = 0
otherwise.

It has been proven in [12] that this conditional independence concept satisfies
so-called semi-graphoid properties taken as reasonable to be valid for any
conditional independence concept and it has been shown in which sense this
conditional independence concept is superior to previously introduced ones
[3, 11].

Irrelevance is usually considered to be a weaker notion than independence
[6]. It expresses the fact that a new piece of evidence concerning one variable
cannot influence the evidence concerning the other variable.

More formally: group of variables XL is irrelevant to XK (K ∩ L = ∅) if
for any B ⊆ XL such that Pl↓L(B) > 0 (or Bel↓L(B) > 0 or m↓L(B) > 0)

mXK |XL
(A|B) = m↓K(A) (5)

for any A ⊆ XK .2

Generalization of this notion to conditional irrelevance may be done as
follows. Group of variables XL is conditionally irrelevant to XK given XM

(K,L,M disjoint, K �= ∅ �= L) if

mXK |XL∪M
(A|B) = mXK |XM

(A|B↓M ) (6)

is satisfied for any A ⊆ XK and B ⊆ XL∪M (whenever both sides are
defined).

Let us note that the conditioning in equalities (5) and (6) stands for an ab-
stract conditioning rule [8]. However, the validity of (5) and (6) may depend
on the choice of conditioning rule, as we showed in [14] — more precisely irrel-
evance with respect to one conditioning rule need not imply irrelevance with
respect to the other. Nevertheless, when studying the relationship between
(conditional) independence and irrelevance based on Dempster conditioning
rule and focusing we realized that they do not differ too much from each
other [14].

However, the new conditioning rule introduced by Definition 1 exhibits
much suitable properties as expressed by the following theorem proven in
[15].

2 Let us note that somewhat weaker definition of irrelevance can be found in [2],
where equality is substituted by proportionality. This notion has been later gen-
eralized using conjunctive combination rule [3].
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Theorem 2. Let K,L,M be disjoint subsets of N such that K,L �= ∅. If XK

and XL are independent given XM (with respect to a joint basic assignment
m defined on XK∪L∪M), then XL is irrelevant to XK given XM under the
conditioning rule given by Definition 1.

4 Evidential Networks

However, in Bayesian networks also the reverse implication plays an impor-
tant role, as for the inference, the network is usually transformed into a de-
composable model. Unfortunately, in the framework of evidence theory the
reverse implication is not valid, in general, as was shown in [15]. Nevertheless,
the following assertion holds true.

Theorem 3. Let K,L,M be disjoint subsets of N such that K,L �= ∅ and
mXK |PXL∪M

be a (given) conditional basic assignment of XK given XL∪M

and mXL∪M be a basic assignment of XL∪M . If XL is irrelevant to XK given
XM under the conditioning rule given by Definition 1, then XK and XL

are independent given XM (with respect to a joint basic assignment m =
mXK |PXL∪M

·mXL∪M
3 defined on XK∪L∪M).

Proof. Irrelevance of XL to XK given XM means that for any A ⊆ XK and
any B ⊆ XL∪M such that m↓L∪M (B) > 0

mXK |PXL∪M
(A|B) = mXK |PXM

(A|B↓M ).

Multiplying both sides of this equality by m↓L∪M (B)·m↓M (B↓M ) one obtains

mXK |PXL∪M
(A|B) ·m↓L∪M(B) ·m↓M (B↓M )

= mXK |PXM
(A|B↓M ) ·m↓L∪M (B) ·m↓M (B↓M ),

which is equivalent to

m(A×B) ·m↓M (B↓M ) = m↓K∪M (A×B↓M ) ·m↓L∪M (B).

Therefore, the equality (4) is satisfied for C ⊆ XK∪L∪M such that C = A×B,
where A ⊆ XK and B ⊆ XL∪M . Due to Theorem 1 it is evident, that

∑

A⊆XK ,B⊆XL∪M

m(A×B) = 1,

and therefore equality (4) is trivially for satisfied also for any other C =
C↓K∪M �� C↓L∪M , and m(C) = 0 otherwise as well. Therefore, XK and XL

3 Let us note that due to Theorem 1 mXL∪M is marginal to m and mXK |P XL∪M

can be re-obtained from m via Definition 1.
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are independent given XM with respect to a joint basic assignment m =
mXK |XM

·mXL∪M . �

This theorem makes possible to define evidential networks in a way analo-
gous to Bayesian networks, but simultaneously brings a question: are these
networks advantageous in comparison with other multidimensional models
in this framework? The following example brings, at least partial, answer to
this question.

Example 1. Let X1, X2 and X3 be three binary variables with values in Xi =
{ai, āi}, i = 1, 2, 3, and m be a basic assignment on X1×X2×X3 defined as
follows

m(X1 ×X2 × {ā3}) = .5,
m({(a1, a2, ā3), (ā1, ā2, a3)}) = .5.

Variables X1 and X2 are conditionally independent given X3 with respect to
m. Therefore also X2 is irrelevant to X1 given X3, i.e.

mX1|X23
(A|B) = mX1|X3

(A|B↓{3}),

for any focal element B of m↓{23}. As both m↓{23} and m↓{3} have only two
focal elements, namely X2 × {ā3} and {(a2, ā3), (ā2, a3)} and {ā3} and X3,
respectively, we have

mX1|PX23
(X1|X2 × {ā3}) = mX1|PX3

(X1|{ā3}) = 1,

mX1|PX23
(X1|{(a2, ā3), (ā2, a3)}) = mX1|PX3

(X1|X3) = 1.

Using these conditionals and the marginal basic assignment m↓{23} we get a
basic assignment m̃ different from the original one, namely

m̃(X1 ×X2 × {ā3}) = .5,
m̃(X1 × {(a2, ā3), (ā2, a3)}) = .5.

Furthermore, if we interchange X1 and X2 we get yet another model, namely

m̂(X1 ×X2 × {ā3}) = .5,
m̂(X2 × {(a1, ā3), (ā1, a3)}) = .5.

♦

From this example it is evident, that evidential networks are less powerful
than e.g. compositional models [9], as any of these threedimensional basic
assignments can be obtained from its marginals using the operator of com-
position (cf. e.g. [9]).

5 Conclusions

We presented a conditioning rule for variables which is compatible with
our notion of conditional independence — in other words, if we use this
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conditioning rule, we obtain conditional irrelevance concept, which is implied
by this conditional independence. We also proved a theorem showing that
under some specific conditions conditional irrelevance implies conditional in-
dependence. However, by a simple example we revealed the weakness of con-
ditional basic assignments in comparison with the joint ones and therefore
also the fact that evidential networks are less powerful in comparison with
e.g. compositional models.
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M.Á., Grzegorzewski, P., Hryniewicz, O. (eds.) Combining Soft Computing and
Statistical Methods in Data Analysis. AISC, vol. 77, pp. 619–626. Springer,
Heidelberg (2010)
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Generalised Median Polish Based
on Additive Generators

Balasubramaniam Jayaram and Frank Klawonn

Abstract. Contingency tables often arise from collecting patient data and
from lab experiments. A typical question to be answered based on a contin-
gency table is whether the rows or the columns show a significant difference.
Median Polish (MP) is fast becoming a prefered way to analyse contingency ta-
bles based on a simple additive model. Often, the data need to be transformed
before applying the MP algorithm to get better results. A common transfor-
mation is the logarithm which essentially changes the underlying model to a
multiplicative model. In this work, we propose a novel way of applying the MP
algorithm with generalised transformations that still gives reasonable results.
Our approach to the underlying model leads us to transformations that are
similar to additive generators of some fuzzy logic connectives. We illustrate
how to choose the best transformation that give meaningful results by propos-
ing some modified additive generators of uninorms. In this way, MP is gen-
eralied from the simple additive model to more general nonlinear connectives.
The recently proposed way of identifying a suitable power transformation based
on IQRoQ plots [3] also plays a central role in this work.
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1 Introduction

Contingency tables as in Table 1 often arise from collecting patient data
and from lab experiments. The rows and columns of a contingency table
correspond to two different categorical attributes. A typical question to be
answered based on data from a contingency table is whether the rows or the
columns show a significant difference. For the example of the contingency,
one would be interested in finding out whether the education of the father or
the regions have an influence on the infant mortality.

Table 1 Infant Mortality vs Educational Qualification of the Parents in deaths per
1000 live births in the years 1964-1966 (Source: U.S. Dept. of Health, Education
and Welfare)

≤ 8 9− 11 12 13 − 15 ≥ 16

North-West 25.3 25.3 18.2 18.3 16.3

North-Central 32.1 29.0 18.8 24.3 19.0

South 38.8 31.0 19.3 15.7 16.8

West 25.4 21.1 20.3 24.0 17.5

Hypothesis tests with non-parametric tests like the Wilcoxon-Mann-Whit-
ney-U test, Analysis of variance (ANOVA) and the t-test are some of the
common options. However, each of them has its own drawbacks. For more on
this, please refer to [3] and the references therein.

Median polish [2] – a technique from robust statistics and exploratory
data analysis – is another way to analyse contingency tables based on a sim-
ple additive model. We briefly review the idea of median polish in Section 2.
Although the simplicity of median polish as an additive model is appealing,
it is sometimes too simple to analyse contingency table. Very often, especially
in the context of gene, protein or metabolite expression profile experiments,
the measurements are not taken directly, but are transformed before further
analysis. In the case of expression profile, it is common to apply a logarith-
mic transformation. The logarithmic transformation is a member of a more
general family, the power transformations which are explained in Section 3.

However, it is not clear whether the MP applied to the transformed data
would still unearth the interesting characteristics of the data, since the log-
arithmic transformation essentially changes the underlying model to a mul-
tiplicative model. In this work, we propose a novel way of applying the MP
algorithm that still gives reasonable results. Our approach to the underlying
model leads us to transformations that are similar to additive generators of
some fuzzy logic connectives. In fact, we illustrate how to choose the best
transformation that give meaningful results by proposing some modified ad-
ditive generators of uninorms. The recently proposed way of identifying a
suitable power transformation based on IQRoQ plots [3] also plays a central
role in this work.
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2 Median Polish

The underlying additive model of median polish is that each entry xij in the
contingency table can be written in the form

xij = g + ri + cj + εij .

• g represents the overall or grand effect in the table. This can be interpreted
as general value around which the data in the table are distributed.

• ri is the row effect reflecting the influence of the corresponding row i on
the values.

• cj is the column effect reflecting the influence of the corresponding column
j on the values.

• εij is the residual or error in cell (i, j) that remains when the overall, the
corresponding row and column effect are taken into account.

For a detailed explanation of the MP algorithm please refer to [2]. Table 2
shows the result of median polish applied to Table 1.

Table 2 Median polish for the Infant Mortality data

Overall: 20.775

≤ 8 9− 11 12 13 − 15 ≥ 16 RE

NW -1.475 0.075 0.0125 -1.075 0.625 -1.475 -

NC 1.475 -0.075 -3.2375 1.075 -0.525 2.375

S 10.900 4.650 -0.0125 -4.800 0.000 -0.350

W -3.200 -5.950 0.2875 2.800 0.000 0.350

CE 7.4750 5.9250 -1.1125 0.0750 -3.6250

The result of median polish can help to better understand the contingency
table. In the ideal case, the residuals are zero or at least close to zero. Close
to zero means in comparison to the row or column effects. If most of the
residuals are close to zero, but only a few have a large absolute value, this
is an indicator for outliers that might be of interest. Most of the residuals
in Table 2 are small, but there is an obvious outlier in Southern region for
fathers with the least number of years of education.

3 Median Polish on Transformed Data

Transformation of data is a very common step of data preprocessing (see for
instance [1]). There can be various reasons for applying transformations be-
fore other analysis steps, like normalisation, making different attribute ranges
comparable, achieving certain distribution properties of the data (symmet-
ric, normal etc.) or gaining advantage for later steps of the analysis. The
logarithm is a special instance of parametric transformations, called power
transformations (see for instance [2]) that are defined by
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tλ(x) =

{
xλ−1
λ if λ �= 0,

ln(x) if λ = 0.

It is assumed that the data values x to be transformed are positive. If this
is not the case, a corresponding constant ensuring this property should be
added to the data.

We restrict our considerations on power transformations that preserve the
ordering of the values and therefore exclude negative values for λ. In this
way, properties like rank correlation are preserved.

3.1 The Non-additive Model

When we choose λ = 0, i.e. the logarithm for the power transformation, we
obtain the following model:

ln(xij) = g + ri + cj + εij . (1)

Transforming back to the original data yields the model

xij = eg · eri · ecj · eεij .
So it is in principle a multiplicative model (instead of an additive model as
in standard median polish) as follows:

xij = g̃ · r̃i · c̃j · ε̃ij
where g̃ = eg, r̃i = eri , c̃j = ecj , ε̃ij = eεij . The part of the model which
is not so nice is that the residuals also enter the equation by multiplication.
Normally, residuals are always additive, no matter what the underlying model
for the approximation of the data is.

Towards overcoming this drawback, we propose the following approach.
We apply the median polish algorithm to the log-transformed data in order
to compute g (or g̃), ri (or r̃i) and cj (or c̃j). The residuals are then defined
at the very end as

εij := xij − g̃ · r̃i · c̃j . (2)

Let us now rewrite Eq. (1) in the following form:

ln(xij) = ln(g̃) + ln(r̃i) + ln(c̃j) + ln(ε̃ij).

Assuming that the residuals are small, we have

ln(xij) ≈ ln(g̃) + ln(r̃i) + ln(c̃j).

Transforming this back to the original data, we obtain

xij ≈ exp (ln(g̃) + ln(r̃i) + ln(c̃j)) .
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A natural question that arises is the following: What happens with other power
transformations, i.e., for λ > 0? In principle the same, as we obtain

xij ≈ t−1
λ (tλ(g̃) + tλ(r̃i) + tλ(c̃j)). (3)

Let us denote by ⊕λ the corresponding, possibly associative, operator ob-
tained as follows:

x⊕λ y = t−1
λ (tλ(x) + tλ(y)) . (4)

Now, we can interpret Eq. (3) as xij ≈ g ⊕λ r̃i ⊕λ c̃j .
Thus the problem of determining a suitable transformation of the data

before applying the median polish algorithm essentialy boils down to finding
that operator ⊕λ which minimises the residuals in (2), viz.,

εij = xij − g ⊕λ r̃i ⊕λ c̃j .

3.2 A Suitable Transformation Based on IQRoQ
Plots

As stated earlier, power transformations are the most commonly used trans-
formations on data. Recently Klawonn et al. [3] have proposed a novel way
of finding the particular λ of a power transformation to be applied on the
data such that applying the Median Polish on that still reveals interesting
characteristics of the data. In the following we briefly detail their technique.

An ideal result for median polish would be when all residuals are zero or
at least small. The residuals get smaller automatically when the values in
the contingency table are smaller. This would mean that we tend to put a
high preference on the logarithmic transformation (λ = 0), at least when the
values in the contingency table are greater than 1.

Neither single outliers of the residuals nor of the row or column effects
should have an influence on the choice of the transformation. What we are
interested in is being able to distinguish between significant row or column
effects and residuals. Therefore, the spread of the row or column effects should
be large whereas at least most of the absolute values of the residuals should
be small.

To measure the spread of the row or column effects, [3] uses the interquar-
tile range which is a robust measure of spread and not sensitive to outliers
like the variance. The interquartile range is the difference between the 75%-
and the 25%-quantile, i.e. the range that contains 50% percent of the data in
the middle. They use the 80% quantile of the absolute values of all residuals
to judge whether most of the residuals are small. One should not expect all
residuals to be small. There might still be single outliers that are of high
interest.
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Finally, they compute the quotient of the interquartile range of the row or
column effects and divide it by the 80% quantile of the absolute values of all
residuals. They call this quotient the IQRoQ value (InterQuartile Range over
the 80% Quantile of the absolute residuals). The higher the IQRoQ value, the
better is the result of median polish. For each value of λ, the corresponding
power transformation is applied to the contingency table and calculate the
IQRoQ value. In this way, we obtain an IQRoQ plot, plotting the IQRoQ
value depending on λ.

4 Transformations and Additive Generators of Fuzzy
Logic Connectives

It is very interesting to note the similarity between the operator ⊕λ and
t-norms / t-conorms [4] in fuzzy logic.

On the one hand, the above family of power transformations closely resem-
ble the Schweizer-Sklar family of additive generators of t-norms. In fact, the
power transformations are nothing but the negative of the additive genera-
tor of the Schweizer-Sklar t-norms. Note that additive generators of t-norms
are non-increasing, and in the case of continuous t-norms they are strictly
decreasing, which explains the need for a negative sign to make the function
decreasing.

On the other hand, given continuous and strict additive generators, one
constructs t-norms / t-conorms precisely by using Eq. (4).

However, it should be emphasised that additive generators of t-norms or
t-conorms cannot be directly used here. The additive generator of a t-norm
is non-increasing while one requires a transformation to maintain the mono-
tonicity in the arguments. In the case of the additive generator of a t-conorm,
though monotonicity can be ensured, their domain is restricted to just [0, 1].
This can be partially overcome by normalising the data to fall in this range.
However, this type of normalisation may not be reasonable always. Further,
the median polish algorithm applied to the transformed data do not always
remain positive and hence determining the inverse with the original generator
is not possible.

The above discussion leads us to consider a suitable modification of the
additive generators of t-norms / t-conorms that can accommodate a far larger
range of values both in their domain and co-domain. Representable uninorms
are another class of fuzzy logic connectives that are obtained by the additive
generators of both a t-norm and a t-conorm. In this work, we construct new
transformations by suitably modifying the underlying generators of these
representable uninorms [4].
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4.1 Modified Additive Generators of Uninorms

Let us assume that the data x are coming from (−M,M). Consider the follow-
ing modified generator of the uninorm obtained from the additive generators
of the Schweizer-Sklar family of t-norms and t-conorms. Let e ∈ (−M,M)
be any arbitrary value. Then the following is a valid transformation with

hλ : [−M,M ]→
[

(−M)λ − eλ
λ

,
1

λ

]
, for all λ ∈ [−∞, 0[ ∪ ]0,∞].

hλ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xλ − eλ
λ

, x ∈ [−M, e]

1−
⎛

⎝
M − x
M − e

⎞

⎠

λ

λ , x ∈ [e,M ]

;

(hλ)−1 (x) =

⎧
⎪⎨

⎪⎩

(xλ+ eλ)
1
λ , x ≤ 0

M − (M − e) [(1− xλ)]
1
λ , x ≥ 0

.

Note that hλ is monotonic for all λ ∈ [−∞, 0[ ∪ ]0,∞] and increases with
decreasing λ.

That this modified generator is a reasonable transform can be seen by
applying on the following data. Consider the 10× 10 table generated by the
following additive model. The overall effect is 0, the row effects are 10, 20,
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Fig. 1 IQRoQ plots for the column and row effects of the Artificial data with
Modified Schweizer-Sklar generator
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30, . . . , 100, the column effects are 1, 2, 3, . . . , 10. To each of these
entries is added a noise from a uniform distribution over the interval [-0.5,
0.5]. From the IQRoQ plots for this data given in Figure 1, it can be seen
that the global maxima occur at λ = 1. So the IQRoQ plots propose to apply
the above transformation with λ = 1 which is a linear transformation of the
data.

4.2 Finding a Suitable Transformation

In this section we present the algorithm to find a suitable transformation of
the given data such that the MP algorithm performs well to elucidate the
underlying structures in the data. We only consider a one parameter family
of operators with the parameter denoted by λ.

The proposed algorithm is as follows. Let ⊕λ denote the one parameter
family of operators whose domain and range allow it to be operated on the
data given in the contingency table. Then for each λ the following steps are
performed:

1. Apply the transformation ⊕λ to the contingency table.
2. Apply the median polish algorithm to find the overall, row and column

effects, viz., g̃, r̃i, c̃j for each i, j.
3. Find the residuals εij = xij − g ⊕λ r̃i ⊕λ c̃j for each i, j.
4. Determine the IQRoQ values of the above residuals.

Finally, we plot λ versus the above IQRoQ values to get the IQRoQ plots for
the column and row effects.
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Fig. 2 IQRoQ plots for the column and row effects of the Infant Mortality data
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Clearly, the operator corresponding to the λ at which the above IQRoQ
plots peak is a plausible transformation for the given contingency table.
Though, a rigorous mathematical analysis and support for the above state-
ment is not immediately available, an intuitive explanation is clear from the
earlier work of Klawonn et al. [3]. Further, we illustrate the same by applying
the above hλ transformations on some real data sets and present our results
in the next section.

4.3 Some Illustrative Examples

Let us consider the data given in the Contingency table Table 1. Applying
the above algorithm with the transformation hλ we obtain the IQRoQ plots -
Figures 2(a) and (b) - which suggest a value of around λ = −0.5. The ’median
polished’ contingency table for λ = −0.5 is given in Table 3.

Table 3 Median polish on the hλ-transformed Infant Mortality data with λ = −0.5

Overall: 0.2919985

≤ 8 9− 11 12 13− 15 ≥ 16 RE

NW 0.00025312 0.0027983 -0.00025004 -0.010879 0.0000000 -0.010113225

NC -0.00025312 -0.0027983 -0.01200293 0.010879 0.0078014 0.006694490

S 0.01098492 0.0091121 0.00025004 -0.044525 -0.0035433 -0.001558958

W -0.01102793 -0.0305895 0.00456985 0.014641 0.0000000 0.001558958

CE 0.0318984143 0.0293532152 -0.0112376220 0.0002531186 -0.0294192135
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Fig. 3 IQRoQ plots for the column and row effects of the Spleen data
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We finally consider two larger contingency tables with 14 rows and 97
columns that are far too large to be included in this paper. The tables con-
sist of a data set displaying the metabolic profile of a bacterial strain after
isolation from different tissues of a mouse. The columns reflect the various
substrates whereas the rows consist of repetitions for the isolates from tumor
and spleen tissue. The aim of the analysis is to identify those substrates that
can be utilized by active enzymes and to find differences in the metabolic
profile after growth in different organs.

The corresponding IQRoQ plots shown in Figures 3(a) and (b) suggest
that we choose a value of around λ = 0.4. The ’median polished’ contingency
table for λ = 0.4 shows that the number of residuals that are larger than the
absolute value of most of the row or column effects is roughly 50%.

5 Conclusions

In this work, we have shown that that the Median Polish algorithm does
not always give interpretable results when applied to raw contingency tables.
This necessitates a transformation of the data. However, both the choice of
the transformation and the fact that the transformation leads to changing
the underlying model of the data from a simple additive to a multiplicative
model become an issue. We have proposed a novel way of applying the MP
algorithm even in this case that still gives reasonable results. Our approach to
the underlying model leads us to transformations that are similar to additive
generators of some fuzzy logic connectives. Further, we have illustrated how
to choose a suitable transformation that gives meaningful results.
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Grasping the Content of Web Servers
Logs: A Linguistic Summarization
Approach

Janusz Kacprzyk and S�lawomir Zadrożny

Abstract. Analyses of Web log servers are needed in many applications and
can be useful to designers and analysts of computer networks, and are also
an interesting research problem. Traditionally, some statistics are computed
and used for analytic and design purposes. We present the use of verbaliza-
tion of results of Web server log data analysis/mining through linguistic data
summaries based on fuzzy logic with linguistic quantifiers. Linguistic sum-
maries of both static and dynamic analyses are presented, with an emphasis
on the latter. Examples of potentially interesting linguistic summaries are
shown.

Keywords: Fuzzy logic, linguistic summarization, time series, web log.

1 Introduction

Web server logs comprise of information on accesses to resources served by a
Web server considered, and the amount of such information is clearly huge.
These data can be interesting and useful for many purposes, including both
research and technical analyses and design of computer systems. Surveys of
recent results can be found in, e.g., [17, 15, 5]. The use of various compu-
tational intelligence tools has been proposed in, e.g., [18, 16, 1, 19, 2, 3].
The use of linguistic data summaries based on fuzzy logic has been proposed
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by Zadrożny and Kacprzyk [24, 25]. Information on the available software
can be found in, e.g., www.dmoz.org/Computers/Software/Internet/Site_
Management/Log_Analysis/Freeware_and_Open_Source/.

This paper is an extension of our previous works in which linguistic data
summaries are employed to grasp the contents of Web server log data. Seman-
tically, its very essence is similar to the use of statistical tools and techniques,
i.e. indicating what usually holds or happens. Our approach makes it possible
to present the (huge amount of) numerical data in a more comprehensible
and compressed form of short linguistic statements.

We adopt two perspectives: static and dynamic. The former views the
Web server log as a database table with rows corresponding to the particular
entries in the log file, and the latter views the log file data as a time series. We
apply here techniques proposed by us and presented, e.g., in Kacprzyk, Yager
and Zadrożny [11], Kacprzyk and Zadrożny [12, 13] for the static case, and
by Kacprzyk, Wilbik and Zadrożny [7, 8, 9] for the case of dynamic analyses.
We extend our previous works, cf. Zadrożny and Kacprzyk [24, 25], notably
with respect to new dynamic analyses. As for a similar approach, to some
extent Abraham [18, 1, 19] considers access trend analyses via fuzzy, neural,
etc. tools but without a relation to natural language.

2 Log Files

Each request to a Web server is put in one or more log files. Information
recorded comprises very often the fields as in Table 1 (cf. common log file
format at http://www.w3.org/Daemon/User/Config/Logging.html); some
extended forms are also used but not in this paper.

Table 1 Content of the web server log file

Field no. Content

1 requesting computer name or IP address

2 username of the user triggering the request

3 user authentication data

4 the date and time of the request

5 HTTP command related to the request which
includes the path to the requested file

6 status of the request

7 number of bytes transferred as a result of the request

8 software used to issue the request

www.dmoz.org/Computers/Software/Internet/Site_Management /Log_Analysis/Freeware_and_Open_Source/
www.dmoz.org/Computers/Software/Internet/Site_Management /Log_Analysis/Freeware_and_Open_Source/
http://www.w3.org/Daemon/User/Config/Logging.html
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A lot of software is available, both commercial and open-source (cf., e.g.,
AWStats at http://awstats.sourceforge.net/) to produce various statis-
tics which primarily include the number of requests (or requested Web pages):
per month, week, day, hour, per country or domain of the requesting com-
puter, and often for requests from specific sources, notably search engines,
statistics are generated, as well as parameters of the requesting agent, as the
browser type or the operating system are analyzed. They may be computed
in terms of the number of requests and/or the number of bytes transferred,
and also concerns the sessions, i.e., a series of requests from the same agent
which can help model agent behavior, identify navigational paths, etc.

3 Linguistic Data Summarization

We use the linguistic data summaries proposed by Yager (cf. Yager [21]) and
further developed by Kacprzyk, Yager and Zadrożny [10, 11, 12]. Basically,
we have: (1) Y = {y1, . . . , yn} is a set of objects (records) in a database,
e.g., the set of requests to a Web server; (2) A = {A1, . . . , Am} is a set of
attributes characterizing yi’s from Y , e.g., time of the request or size of the
requested file, and Aj(yi) is a value of attribute Aj for object yi.

A linguistic summary of a data set is a natural language like expression
exemplified by: “Most request in the morning concern small files”. The char-
acteristic feature is here the use of linguistic quantifiers (e.g., most) and
linguistic values (e.g., small). The following components of the linguistic
summary should be distinguished:

• a summarizer P , i.e. an attribute Aj with, in general, a linguistic value
defined on the domain of Aj (e.g. “small size”); in particular a summarizer
may be composed of an attribute accompanied by a crisp value (e.g. “status
code = 200”),

• a quantity in agreement Q, i.e. a linguistic quantifier (e.g. most);
• truth (validity) T of the summary, i.e. a number from [0, 1] (e.g. 0.7);
• optionally, a qualifier R, i.e. another attribute Ak with, in general, a lin-

guistic value defined on the domain of Ak determining a (fuzzy) subset of
Y (e.g. “morning request”); again, in a special case, a qualifier may be an
attribute accompanied by a crisp value.

Hence the core of a linguistic summary is a linguistically quantified proposition
in the sense of Zadeh [22] written according to one of the following protoforms :

Qy’s are P (1)

QRy’s are P (2)

The truth (validity) T thus may be calculated by using, e.g., original Zadeh’s
calculus of linguistically quantified propositions (cf. [22]), due to (5) for (1),
and (6) for (2).

http://awstats.sourceforge.net/


452 J. Kacprzyk and S. Zadrożny

The linguistic data summaries can be extended to the dynamic context,
notably to the linguistic summarization of time series as proposed in a series
of our papers: Kacprzyk, Wilbik and Zadrożny [8, 9], in which the analysis of
how trends concerning some numerical attributes evolve over time, how long
some types of behavior last, how rapid changes are, etc.

As pointed out in Zadrożny and Kacprzyk [24, 25]), various user inten-
tions related to their needs for specific information have implied the use of
different protoforms of linguistic summaries. In the dynamic context, i.e. of
linguistic summaries of time series (cf. Kacprzyk, Wilbik and Zadrożny [8, 9],
Kacprzyk and Wilbik [6], Wilbik and Kacprzyk [20]), we focus on trends, i.e.
linear segments extracted from the time series, obtained via a piecewise lin-
ear segmentation (cf. Keogh et al. [14]), and we consider the following three
features of (global) trends in time series: (1) dynamics of change (the speed
of change of the consecutive values of time series), (2) duration (the length
of a single trend), and (3) variability (how much scattered the times series
data are); all are expressed as linguistic values from a limited dictionary using
granulation (cf. Batyrshin [4]) as, e.g., increasing, slowly increasing, constant,
slowly decreasing, decreasing, . . . equated with fuzzy sets.

Zadeh’s [23] protoforms as a convenient tool for dealing with linguistic
summaries have been proposed in Kacprzyk and Zadrożny [12]. A protoform
is defined as a more or less abstract prototype (template) of a linguistically
quantified proposition, and in the context of linguistic summaries of time
series (of trends, in fact), the first, basic protoforms used (cf. Kacprzyk,
Wilbik and Zadrożny [8, 9]) were:

• a simple form (e.g., “Among all segments, most are slowly increasing”):

Among all segments, Q are P (3)

• an extended form (e.g., “Among all short segments, most are slowly in-
creasing”):

Among all R segments, Q are P (4)

Among various quality measures of a linguistic summary, the most impor-
tant is its degree of truth (from [0, 1]) which is calculated, using the basic
Zadeh’s calculus of linguistically quantified propositions [22], for the simple
and extended form as, respectively:

T (Among all y’s, Q are P ) = µQ

(
1

n

n∑

i=1

µP (yi)

)
(5)

T (Among all Ry’s, Q are P ) = µQ

(∑n
i=1 µR(yi) ∧ µP (yi)∑n

i=1 µR(yi)

)
(6)

where ∧ is the minimum operation (or, for instance, a t-norm).
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Kacprzyk and Wilbik [6] have etended the protoforms (3) and (4) through
a temporal term ET like: “recently”, “initially”, “in the spring of 2011”, etc.
yielding:

• a simple temporal protoform (e.g., “Recently, among all segments, most
are slowly increasing”):

ET among all segments, Q are P (7)

• an extended temporal protoform (e.g., “Initially among all short segments,
most are slowly increasing”):

ET among all R segments, Q are P (8)

The truth value computed very similarly to the previous case. We only need
to consider the temporal expression as an additional external qualifier, as it
just limits the universe of interest only to the trends (segments) that occur
on the time axis described by ET . We compute the proportion of segments in
which “trend is P” and occurred in ET to those that occurred in ET . Next
we compute the degree to which this proportion is Q.

The truth value of the simple temporal protoform (7) and of the extended
temporal protoform (8) are, respectively:

T (ET among all y’s, Q are P ) = µQ

(∑n
i=1 µET (yi) ∧ µP (yi)∑n

i=1 µET (yi)

)
(9)

where µET (yi) is degree to which a trend (segment) occurs during the time
span described by ET ;

T (ET among all Ry’s, Q are P ) = µQ

(∑n
i=1 µET (yi) ∧ µR(yi) ∧ µP (yi)∑n

i=1 µET (yi) ∧ µR(yi)

)

and µET (yi) can be interpreted as the average membership degree of ET over
an assumed time span [a, b] (cf. Kacprzyk and Wilbik [6]).

4 Linguistic Summaries of the Content of a Web
Server Log File

A Web server log file may be directly interpreted as a table of data with the
columns corresponding to the fields listed in Table 1 and the rows correspond-
ing to the requests. On the other hand the content may be obviously viewed
as a time series as each request is timestamped. The timestamp, the fourth
field (cf. Table 1), plays a special role as it may be used to form summaries
like “Most of large files requests take place on Thursdays” which are static,
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but also summaries like “Most of decreasing trends in the number of requests
are very short” which are dynamic. In Zadrożny and Kacprzyk [24, 25] a
new approach for the static and dynamic case was proposed which will be
extended here.

We denote by Y the set of all requests analyzed and assume the request
attributes as in Table 2 which correspond to the fields listed in Table 1.

Table 2 Attributes of the requests used for their linguistic summarization

Attribute name Description

domain Internet domain extracted from the requesting computer name (if given)

hour hour the request arrived; extracted from the date and time of the request

day of the month as above

day of the week as above

month as above

filename name of requested file (including path) extracted from HTTP command

extension extension of the requested file extracted as above

status the status of the request

failure =1 if status code is of 4xx or 5xx form and =0 otherwise

success =1 if status code is of 2xx form and =0 otherwise

size number of bytes transferred as a result of the request

agent name of major browser (‘other” otherwise) used to issue request

We can distinguish simple summaries, where the qualifier R is absent.
These may be exemplified by: “Most of requests come from the Firefox
browser” or “Almost all requested files are small”.

More interesting may often be extended summaries, e.g. “Almost all failures
concern files with the extension ppt” or “Most of the requests concerning
large files occur in the evening”. The first summary may indicate that the
maintenance of the archive of Powerpoint presentations should be carried
out more carefully while the second may suggest that large reports available
at the Web server should be updated in the afternoon rather than in the
morning.

In the dynamic case, we deal with a numerical attribute such as the size
of the requested files or the number of requests aggregated over, e.g., hours
or days. The (partial) trends are linear segments in a piecewise linear ap-
proximation of the time series, cf., e.g., [14]. The trends are characterized
by three attributes (cf. Kacprzyk, Wilbik and Zadrożny [8, 9]): dynamics of
change, duration and variability. Again this attribute is treated as a linguistic
variable and expressed using linguistic values (labels) such as “high”, “low”,
etc.
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We also distinguish simple and extended linguistic summaries. The dy-
namic linguistic summaries are classified into frequency and duration based.
The former describe the partial trends using just the basic attributes (dynam-
ics of change, duration, variability) while the latter explicitly refer to the time
scale inherent in the data. For instance, a simple frequency based summaries
is “Most of trends regarding the number of requests are decreasing”, i.e. here
we assume that the entity measured over time is the number of requests.

If the access data are aggregated day by day and the log file covers several
months, then such a summary indicates a steady decline in the number of
requests served by the Web server.

In the case of simple frequency based temporal type summaries (cf. 7),
an interesting summary may be: “In late hours of the days, among trends
regarding the number of requests most are decreasing” while an extended
temporal protoform (cf. 8) may be: “In late hours of the days, among long
trends regarding the number of requests most are decreasing”. They indicate
that in late hours in the period considered, in the case of trends, both for all
and long, respectively, regarding the number of requests, most are decreasing,
i.e. there is a diminishing volume of requests.

These are just some more illustrative linguistic summaries. Many more
have been obtained in a numerical experiment run on the access log of one
of Apache Web servers of our institute on a sample of 352 543 requests. The
access log was preprocessed to obtain the data listed in Table 2. Basically, in
the static case, we looked for a subclass of linguistic summaries that may be
obtained using efficient algorithms for association rules mining (cf. Kacprzyk
and Zadrożny [12]), with the condition and conclusion parts of an association
rules corresponding to the qualifier R and summarizer S, respectively, and the
truth value of the summary corresponds to the confidence measure; then we
employed our FQUERY for Access software to run the experiments. For the
dynamic case, we used a truth value and degree of focus based generation of
linguistic summaries of time series as proposed by Kacprzyk and Wilbik [6].

We obtained many interesting linguistic summaries as, e.g.: “All requests
with the status code 304 (“not modified”) referred to small files” (T = 1.0),
“Most files with the gif extension were requested from the domain pl”
(T = 0.98). But, at the same time it does not hold that “Most files were
requested from the domain pl” (true to degree 0.4 only). Another example:
“Most files with the gif extension successfully fetched (with the status code
equal 200) were requested from the domain pl (T = 1)”

In the dynamic case, the corresponding summaries may be: “In the
late evening, all requests with the status code 304 (“not modified”) referred
to small files” (T = 1.0), “In almost all days, in evening hours, most files
with the gif extension were requested from the domain pl” (T = 1), “In
recent days, almost all files with the gif extension successfully fetched (with
the status code equal 200) were requested from the domain pl” (T = 1).

For lack of space we cannot quote more and provide a deeper analysis
which will be given in a future paper. On can clearly seen that the addition
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of the simple and extended temporal protoforms of linguistic data summaries
of time series data, the main extension of our previous papers (Zadrożny and
Kacprzyk [24, 25]), has considerably extended the scope and usefulness of
our analyses.

5 Conclusions

We have proposed an extension of the linguistic summary based analysis
of Web server logs presented in our former papers to the analysis of time
series of requests to a Web server by adding the simple and extended tem-
poral protoforms of linguistic data summaries of time series. The approach
proposed provides means for deeper analyses of Web logs that can be very
useful both for the designers of the computer network and its extensions and
persons responsible for maintenance. The resulting knowledge may help im-
prove navigation paths, better organize paid search advertising, personalize
Web site access etc. As to future work, one can mention the use of more
structured information related to, e.g., session tracking, keywords present in
search engine queries triggering access to given Web site etc.
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Automatic Tuning of Image
Segmentation Parameters by Means
of Fuzzy Feature Evaluation

Arif ul Maula Khan, Ralf Mikut, Brigitte Schweitzer,
Carsten Weiss, and Markus Reischl

Abstract. Manual image segmentation performed by humans is time-
intensive and inadequate for the quantification of segmentation parameters.
Automatic feed-forward segmentation techniques suffer from restrictions in
parameter selection and combination and are difficult in quantifying the di-
rect parametric effect on segmentation outcome. Here, we introduce an au-
tomatic feedback-based image processing method that uses fuzzy a priori
knowledge to adapt segmentation parameters. Therefore, a fuzzy evaluation
of segment properties is performed for each parameter combination. The
method was applied to biological cell imaging. An automatic tuning of the im-
age segmentation process yields an optimal parameter set such that segments
match known properties (a priori knowledge e.g. cell size, outline etc.).

Keywords: Automatic segment labeling, biological cell imaging, feedback,
fuzzy feature evaluation, image segmentation.

1 Motivation and Overview

Image segmentation is an integral part of image analysis that divides an in-
put image into different regions [6]. According to objective evaluation of the
segmentation outcome, an image segmentation procedure can be called as
supervised or unsupervised, based on the presence of reference a priori knowl-
edge [14]. A priori knowledge can be explicit (i.e. based on known objects)
or implicit (i.e. using certain set of rules or examples).
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Manual supervised image segmentation performed by humans delivers, in
general, good results as a human brain bridges information known about
the image (e.g. noise) with the information of segments (e.g. segment size
and intensity etc.) to obtain a plausible outcome with respect to the posed
problem. However, human image segmentation is downright time-inefficient
when dealing with huge image datasets containing a variety of information.

Automatic supervised image segmentation techniques with manually tuned
parameters (e.g. threshold values etc.) suffer from restrictions in parame-
ters: Basically, the manual tuning seeks to optimize features like segment
size, roundness etc. but the parameters only affect parameters like brightness
threshold, filter size etc. Therefore, the tuning does not directly affect the
features to be optimized.

The optimal parameters of an image segmentation procedure are often
affected by side effects (e.g. blurriness, noise, inconsistent background illu-
mination etc.) [12]. Computer routines additionally suffer not only from re-
strictions in the parameters but also from the combinatorial problem due to
an increased number of parameters [1]. Thus, the optimal parameter set may
not be found manually, while the tuning is very time-intensive and subject
to repetitions on the arrival of a new dataset.

The parameters should be adjusted automatically in an iterative manner
for improvement of segmentation results based on a priori knowledge. There
has been an adequate work on feedback-based automatic image segmentation
techniques such as [1, 2, 5, 8, 12, 13]. However, these techniques are limited
in terms of well-formulated reference knowledge about object characteristics
and types. Therefore, we propose a new method for an automatic feedback-
driven segmentation for tuning processing parameters using fuzzy a priori
knowledge. Since biomedical image processing is currently a quite challenging
domain for image analysis, we chose two datasets of images containing living
and dying cells for the evaluation of our segmentation technique. To quantify
the outcome, we introduced a fuzzy evaluation criterion and built an inference
machine to obtain a scalar output fed back to manipulate the segmentation
routine to obtain optimal parameter set.

The paper is organized as follows: The methodology of image segmenta-
tion, subsequent feature calculation and an evaluation criterion is given in
Section 2. The results of our proposed technique are given in Section 3 using
two biological image datasets followed by conclusions given in Section 4.

2 Methods

The proposed scheme for feedback-based automatic image segmentation is
shown in Fig. 1. It includes segmentation of a grayscale image by transforming
it into a binary image containing so called binary large objects (BLOBs),
which are the segments found by an image segmentation technique. An image
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Fig. 1 Employed feedback-based automatic image segmentation scheme

pre-processing step such as image filtering using convolution etc. is included
before performing binary image segmentation. The image segmentation is
performed for different parameter combinations and the desired features of
BLOBs are calculated. Segmentation evaluation with respect to these features
is performed accordingly using given a priori reference features in an iterative
fashion. An optimal parameter set is adopted based on a quality criterion and
optimum segmentation is performed using this optimal parameter set.

Image segmentation: As an example, we used a basic sequential image
processing routine consisting of a convolution filter, a thresholding and an
opening routine followed by an image filling (see [7]). The convolution is done
using a symmetric r × r matrix having elements equal to 1

r2 , a threshold
value t is set and the opening routine uses a disc of size s as a structuring
element. Therefore, the image segmentation depends upon the parameter
vector p = (r, s, t)T .

(a) (b) (c) (d)

Fig. 2 Segmentation results using manual selection of p, where Fig. 2(a) Original
grayscale image and Fig. 2(b), Fig. 2(c) and Fig. 2(d) show segmentation outcome
using p = (1, 1, 33700)T , (3, 3, 34000)T and (5, 15, 34000)T respectively.

Features calculation: With respect to p, the objects delivered by the seg-
mentation process not only differ in size, extent, etc. but in the underlying
pixel values as well. The setting of p1, however, is crucial for the segmentation
process (Fig. 2). To find optimal values for p, a criterion needs to be calcu-
lated based on the feature vector xT

i = (xi1, ..., xim), considering j = 1...m
number of features for each segment i where i = 1...n, and the total number

1 Heuristic selection of p in Fig. 2 was based on the image intensity histogram.
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of segments found denoted as n. These features may be related to geometry
(area, sphericity, etc.), intensity distribution (brightness, noise, etc.), and/or
the content (e.g. number of sub-fragments etc.) of each segment.

Segmentation evaluation: Generally, a segmentation outcome is evaluated
with respect to two different criteria i.e. whole image and each single segment.
A variety of metrics can be used as a quality measure of features with respect
to given a priori knowledge. In this paper, we propose fuzzy a priori reference
features that are described by a set of membership functions to encompass
a considerable level of feature variations in the reference set. Trapezoidal
membership functions μj(xj) with four parameters (i.e. a-d defining x-values
of edges of a trapezoid) were used to formulate reference features. Fuzzy
membership μ of each segment i for each feature j is denoted as μij . It is
reasonable to calculate a product of fuzzy membership μij of all m features
since it is desirable in our case to classify each segment based on the presence
of each feature (i.e. μij > 0 ∀ j ) in its overall classification. Moreover, the
total number of expected segments n in an image was also formulated as
a feature of a single image segmentation process using a trapezoidal fuzzy
membership function denoted as μc. Therefore, a criterion

Qfuzz(p) = μc(p) · 1

n(p)

n(p)∑

i=1

(

m∏

j=1

μij(p)), (1)

based on aforementioned logic, is introduced to express the quality of auto-
matic image segmentation.

Parameters/Structure adaptation: The criterion (1) needs to be maxi-
mized in order to obtain

popt,fuzzy = arg max
p

Qfuzz(p). (2)

In this paper, popt,fuzzy was computed based on exhaustive enumeration.
However, more sophisticated optimum search methods such as genetic algo-
rithms, constraint optimization etc. could be used as well.

3 Results

Benchmark dataset Human HT29 Colon Cancer 1: This benchmark
dataset [3] was published in the Broad Bioimage Benchmark Collection2. It
contains microscope images (showing cells) Bk where k = 1...6, shown in
Fig. 3. The ground truth for Bk was only the average total number nref of
cells based on two observers. For cell detection and counting, the benchmark
has to be evaluated by

2 http://www.broadinstitute.org/bbbc/

http://www.broadinstitute.org/bbbc/
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σGD =
‖n− nref‖

nref
. (3)

By using Qfuzz = 1 − min(σGD, 1), to transfer this given criterion into a
fuzzy evaluation, popt was adopted by (3). The results for Bk are given in
Fig. 1 in terms of deviation σGD from ground truth. In addition, a feed-
forward automatic segmentation technique proposed by Otsu was applied [11]
resulting in a threshold t. However, the results could not be directly compared
based just on the consideration of the total number of segments n since
in Otsu’s method some segments can be considered as insignificant due to
their size being considerably smaller than the normal segments. To solve this
problem, an image opening (opening filter size s = 3 and s = 5) was applied
in case of Otsu’s method in order to remove erroneous small segments. With
the addition of an image opening operation, the parameter vector for Otsu’s
method is described as pOtsu = (s, t)T .

Table 1 Reference cells detection and cell count results from Bk using our method
in comparison to Otsu’s method using s = 3 and s = 5

Images
Our method Otsu’s method (s = 3) Otsu’s method (s = 5)

σGD (%) x1,mean σGD (%) x1,mean σGD (%) x1,mean

B1 12 112 8 101 45 112

B2 15 132 16 97 58 116

B3 18 116 18 99 63 129

B4 13 101 12 94 54 121

B5 21 124 23 96 68 117

B6 12 124 14 96 55 110

μ 15 118 15 97 38 118

The results obtained from our feedback-based parameter adaptation tech-
nique were comparable to original Otsu’s feed-forward method as can be seen
from values of σGD and mean cell area x1,mean in pixels in Tab. 1. The ag-
gregated results using mean value μ in Tab. 1 show that our scheme was able
to detect cell numbers comparable to those detected by Otsu’s method but
with larger mean cell area, the direct relevance or comparison of which is not
stated in a priori reference of Bk. The μ of σGD was equal to 15 in case of our
method and Otsu’s method with s = 3. However, visual results with respect
to human observation seem much more plausible when using our proposed
method. This is indicated by larger value of μ of x1,mean equal to 118 in case
of our method as opposed to Otsu’s method with s = 3 having μ of x1,mean

equal to 97. This effect is demonstrated in Fig. 3, where the demarcation of
detected cells were seen to be inside the cell boundaries yielding smaller cell
areas in case of Otsu’s method with s = 3. Using values of s larger than 3
causes more deviation from the ground truth as can be seen from higher σGD

in Tab. 1 in case of Otsu’s method with s = 5.
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Fig. 3 Cell detection of B2 using our feedback technique (left) in comparison to
Otsu’s method (s = 3) (right) with zoomed sections in the middle

Therefore, it can be inferred that our method not only detects and counts
the cells comparable in numbers to Otsu’s method that uses an image opening
filter manually, but is also able to select image opening filter size automati-
cally. Moreover, it yields much better results from subjective point of view.

Cell detection based on an heterogeneous cell dataset: A biological
dataset with images Pl where l = 1...4 was used as shown in Fig. 2(a). This
dataset consists of images showing human lung cells (A549) treated with
the anticancer drug cis-platin for 24 hours and representative images were
acquired as described previously in [4]. We selected three features namely, the
area x1, the roundness factor (ratio between major axis and sum of major and
minor axes) x2 and the mean of the brightness x3 for each segment.Since we
need to find specific cell classes within an image, therefore, it is recommended
to define a range of confidence over which our selected features can vary. The
segments for normal looking cells were labeled manually in image P1. A priori
knowledge was described using μj(xj) for xT

ref as shown in the Fig. 4. It can
be seen from Fig. 4(a), that for a normal cell, the area lies roughly between
330 to 600 pixels. Its roundness factor (0.5 for perfectly round segments) is
between 0.52 to 0.62 as shown in Fig. 4(b) and its brightness can vary from
34000 to 34300 as shown in Fig. 4(c). Moreover, the number of cells, that
can be found in each image of the given dataset, can be between 60 to 190
as represented by a fuzzy function in Fig. 4(d).

Furthermore, labeling of reference cells of Pl based on parameter adapta-
tion using fuzzy feature evaluation was also performed. Only P1 was labeled
for normal looking cells (nref = 76) and additional normal cells n were sought
after in whole Pl. The results for Pl are given in Tab. 2 in terms of n, σGD

and criterion value Qfuzz. The value of σGD was given only for P1 since only
P1 was labeled for reference cells. The results in Tab. 2 show that we were
not only able to detect reference normal cells with good accuracy but addi-
tional normal cells as well in the whole Pl. P4 with n, given as an example
in Fig. 5(b), shows that our algorithm was able to label normal cells auto-
matically based on a priori knowledge. P1 in Fig. 5(a) shows demarcation of
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(a) (b) (c) (d)

Fig. 4 µj(xj) and µc for reference cells based on manual inspection and labeling of
Pl, where Fig. 4(a) µ1(x1) with (a,b,c,d) = (239, 330, 600, 878), Fig. 4(b) µ2(x2)
with (a,b,c,d) = (0.49, 0.52, 0.62, 0.68), Fig. 4(c) µ3(x3) with (a,b,c,d) = (33626,
34000, 34300, 34544) and Fig. 4(d) µc with (a,b,c,d) = (10, 60, 190, 220).

labeled reference normal cells by an outline and n by bright stars. Among
these n, 73 reference normal cells were found and are shown in Fig. 5(a) by
segments having both an outline and a star. On the right side of both images
in Fig. 5(a) and Fig. 5(b), a zoomed image was shown for a selected section.
It can be seen from Fig. 5(b) that n are only normal cells while the dying cells
with high mean brightness were not detected. Moreover, a very dull cell near
the top right corner of the zoomed image, indicated by an arrow in Fig. 5(b),
was also not detected. Similar trend can also be observed in Fig. 5(a).

Table 2 Reference cell detection and automatic labeling results from Pl

Images Qfuzz σGD (%) n

P1 0.73 3.95 99

P2 0.76 - 104

P3 0.78 - 80

P4 0.68 - 19

Hence, it was seen that the introduced fuzzy criterion in (1) was able to
detect not only the labeled cells in Pl but to label additional normal looking
cells based on fuzzy a priori knowledge.

All algorithms are implemented in MATLAB using the Image Processing
Toolbox and the open source Gait-CAD Toolbox [10] for data mining.

(a) P1 with n = 99 (b) P4 with n = 19

Fig. 5 An example of automatic cell labeling using Pl
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4 Conclusions

It was shown from our results that feedback-oriented algorithms using a fuzzy
criterion have the capability to fulfill the goals of segment classification using
a human reference. The presented scheme was able to produce good results,
using two biological image datasets, in terms of number and quality of seg-
ments found. Moreover, the automatic labeling of the whole dataset was
performed. This saves a lot of time compared to manual labeling.

In the future, the techniques will be adapted for optimizing normalization
in the same way as proposed in [9]. Exhaustive enumeration for finding the op-
timal parameter set would be replaced by nonlinear optimization. Moreover,
new benchmarks would be tested even for the quality of segment features
based on a priori knowledge.
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gram of the Helmholtz Association for funding this research work.
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Modified Sequential Forward Selection
Applied to Predicting Septic Shock
Outcome in the Intensive Care Unit

Rúben Duarte Pereira, João Sousa, Susana Vieira,
Shane Reti, and Stan Finkelstein

Abstract. Medical databases often contain large amounts of missing data.
This poses very strict constraints to the use of exclusively computer-based
feature selection techniques. Moreover, in medical data there is usually no
unique combination of features that provides the best explanation of the out-
come. In this paper we propose a modified Sequential Forward Selection (SFS)
approach to the problem of selecting sets of physiologic variables from septic
shock patients in order to predict their outcome. We were able to achieve ten
different combinations of only three physiological numerical parameters, all
performing better than the best set suggested up to now. The performances
of these sets are higher than 0.97 for AUC and up to 0.97 for accuracy.

Keywords: Fuzzy systems, medical data, modified sequential forward selec-
tion, septic shock.

1 Introduction

Severe sepsis (acute organ dysfunction secondary to infection) remains both
an important clinical challenge and an economic burden in health care. This
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is especially so for septic shock, which is characterized by the persistence of
a sepsis-induced hypotensive state, despite adequate fluid resuscitation [5].
Cost-of-illness studies in the US focusing on direct costs per sepsis patient
support the premise of increasing global health care costs [4].

A review of the literature highlights previous studies in this area that
have applied knowledge-based soft computing techniques to various scenarios
associated with septic shock [3, 9, 10, 13].

Further than discussing the quality of the data, work developed in [3] made
use of a set of 16 variables recommended by physicians to predict the outcome
of septic shock patients. From the initial results it was clear that the dataset
resulting from the selected features and the amount of missing data were
imposing very strict restrictions to the number of patients available for study
and respective samples. It also denoted the low influence of the classification
method used in the prediction performance and the importance of feature
selection and missing data treatment.

In [9] the 12 most frequently measured parameters were used to predict the
outcome of septic shock patients. Though the performance was still similar to
previous studies, the use of a different set of features and a different approach
to dealing with missing values brought new insights to this area of study.

In [10], by testing different medical standard sets of variables to predict the
outcome of septic shock, the group concluded that it was possible to deliver
performance comparable to the use of medical scores using only 3 variables.
These variables are the Arterial Systolic and Diastolic Blood Pressures and
the Thrombocytes measurements.

The aim of this study is to select sets of variables related to the septic
shock outcome, by making use of available medical knowledge and referring
to the quality of the data available, and refine the search using computational
feature selection.

The motivation for data-driven management in the health care field is that
it can contribute for the prevention and cost reduction of hospital admissions,
especially in the Intensive Care Units (ICU), which are the most complex and
most prone to human error environments in health care.

The methodology used in this study will be described in Section 2, includ-
ing a brief discussion on the modeling techniques. The results and discussion
are presented in Section 3, and Section 4 concludes the paper.

2 Methodology

This study makes use of the publicly available MEDAN database [6], already
partially preprocessed by the authors [6], [11].

We focused on a group of numerical physiologic variables most frequently
acquired in the ICU and most commonly associated to septic shock. Only
139 patients were found to meet these inclusion criteria. All the variables
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comprised by these patients were used to perform the work described through
the subsequent sections.

2.1 Preprocessing

From the analysis of the database we find variables present in the majority of
the patients, in contrast with others that were only acquired for a much re-
duced number of patients. Work developed around the optimal ratio between
the number of samples and the number of predicting features to use in order
to achieve statistically robust results, [7], suggests using at least 3 times more
patients than features for non-linear models. We used a ”greedy” approach
for selecting a set of features comprising at least 5 times more patients. By
discarding the variable with the lowest number of patients comprising it un-
til the ratio between the number of patients available and the number of
variables is achieved we have access to at least 100 patients for the study.

Variables corresponding to medication or other external influences to the
patient were left out of the study in the interest of the study for the medical
staff to direct therapy towards ”safe” physiological values.

First, we normalized the data from the filtered cohort basing on the mean
and standard deviation calculated for all the values observed throughout
each of the features. In this case the value 0 was attributed to the value
corresponding to the mean minus the standard deviation and value 1 to the
mean added the standard deviation. All values were then rescaled accordingly.

In [9], data from a suitable normal distribution (noise) was inserted ran-
domly. In particular, the aim was to prevent situations where data with miss-
ing value replacements might be alternatively classified [1]. Contrastingly, the
Zero-Order-Hold (ZOH) method was used in [13], proving to improve the per-
formance of the models, and thus used in this work. This method constitutes
a suitable preprocessing technique for medical data records as we are dealing
with time-dependent signals, many of them with low changing frequencies,
and it resembles the basis of (expert) empiric decision inference performed
by physicians.

In order to model and predict the ICU survival outcome of each patient
we used the mean value of the last 3 hours of measurements in each variable.
This approach implicitly results in a complete dataset.

2.2 Modeling

The study presented deals with a binomial classification problem (single out-
put) based on non-linear combinations of multiple inputs. The aim is to
develop models to perform as accurately as possible in classifying test sets.
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Takagi-Sugeno (TS) fuzzy models have been proven to behave as univer-
sal approximators in non-linear studies using Multiple Input Single Output
(MISO) problems [16]. A TS fuzzy model [14] is a fuzzy rule-based model
where the rule consequents are functions of the model input. Each rule k has
a different function yielding a different value yk for the output. The simplest
consequent function is the linear affine form:

Rk : If x is Ak then yk =
(
ak

)T
x + bk , (1)

Where Rk denotes the k-th rule, x is the vector of antecedent variables,
Ak and yk are the (multidimensional) antecedent fuzzy sets and the one
dimensional consequent variable of the k-th rule, respectively. ak is a vector
of parameters and bk is a scalar offset that relate the antecedent fuzzy sets
with the consequents. In this study we based on the regular Fuzzy C-means
(FCM) algorithm to build the TS inference models. FCM is a clustering
method which allows one piece of data to belong to two or more clusters with
different degrees [2].

The genfis3 function from the fuzzy toolbox of MatLab software [8] can
be used to build linear TS Fuzzy Inference Systems (FIS). This algorithm
initially performs FCM clustering using the output as one of the attributes,
allowing the model to define the membership functions in the input features
that will implicitly be related to the output. Next, the mathematic matrix
division between the input, X, and output, Y, matrices is calculated such
that if X is an m-by-n matrix, with m �= n, and Y is a column vector with
m components, then this division is the solution in the least squares sense to
the under- or over-determined resulting system of equations. In other words,
a minimizes the length of the vector a.X−Y (i.e.: |a.X−Y|).

In order to assess and optimize the number of clusters that should be used
to cluster the dataset we used the Xie-Beni index as validation measure [15]:

sXB =

∑C
i=1

∑N
k=1 (µik)

m
D2 (xk,vi)

N (mini,j,i�=jD2 (vi,vj))
, (2)

Where C is the number of clusters, N is the number of data points, µik is the
membership degree of patient k to the cluster i, xk is the array of features
corresponding to patient k, and vi is the array of features corresponding
to the center of the cluster i. D2 was computed as the Euclidean distance.
Parameter m allows different weighting of the membership degrees in the
index calculation. Studies comparing several clustering validation measures
[12] concluded that the Xie-Beni index provides the best response over a wide
range of choices for the number of clusters (2 to 10). Calculations suggest that
the best choice for m is probably in the interval [1.5, 2.5], whose mean and
midpoint, m = 2, have often been the choice for many users of FCM [12].

The Xie-Beni index is a measure of the entropy of the system, which we
want to minimize. It balances the membership degrees to each cluster rela-
tively to the distance between clusters.
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2.3 Performance Measures

Models for assessing the relation of the set of features with the outcome were
iteratively built and evaluated from 100 random configurations of the dataset
(100 folds), for statistical purposes. In each fold patients were randomly di-
vided in two datasets (d0 and d1, 50%-50%) maintaining proportion between
classes as in the whole. We then train on d0 and test on d1, followed by train-
ing on d1 and testing on d0. This is a variation on k-fold cross-validation,
called k × 2 cross validation.

The performance of the models was evaluated in terms of accuracy (cor-
rect classification rate), sensitivity (true positive classification rate) and
specificity (true negative classification rate), and area under the ROC (Re-
ceiver Operating Characteristic) curve (AUC).

2.4 Modified Sequential Forward Selection

To select combinations of variables from the preprocessed dataset we used a
modified Sequential Forward Selection (SFS) method, with criteria based on
the predicting performance of each set evaluated. The regular SFS method
sequentially adds features to the best set previously evaluated until a stopping
criterion is achieved (e.g. no improvement in performance). It considers only
the best set obtained in the previous step to advance to the next step. Here,
we propose the addition of two criteria through which we allow more than
one set to be evaluated at the next step and/or restrict the search.

At each iteration i, inside step k, we evaluate all the additions of each of
the remaining features to the set used to initialize i. Thus, the number of
iterations in k corresponds to the number of sets transiting from k − 1. The
algorithm is composed of the following steps:

set(k) = setInitialization
While set(k) �= ∅
set(k−1) = set(k)

set(k) = ∅
For i = 1 : Length

(
set(k−1)

)

s = p
(
set

(k−1)
i

)
1

For j = 1 : Length
(
features /∈ set

(k−1)
i

)

set
(k)
i = set

(k)
i ∪

(
set

(k−1)
i ∪ featurej

)

end
If p

(
best

(
set

(k)
i

))
> s

1 The performance associated to the initialization set is set accordingly (e.g. All
performance criteria are set to 50%).
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set(k) = set(k)∪
{
∀set(k)i,j ∈ set

(k)
i : p

(
best

(
set

(k)
i

))
− p

(
set

(k)
i,j

)
< t

}

end
end

end
The step improvement criterion, s, is the minimum increment in performance,

p(·), to be observed for any of the sets, set
(k)
i , comparing to the performance

of the set considered to initialize that iteration, set
(k−1)
i . By increasing the

step improvement we are restricting the advance of the search, and, therefore,
of the number of features returned.

The parameter t is a threshold to allow as much sets as intended to advance
to the next step. This parameter is set to 0 in the regular SFS method. The
simplest definition for this parameter is a constant value. By increasing its
value we allow more sets to be evaluated in the next step.

More restrictively we can consider the two parameters in relation to the
best performance obtained for all the iterations at each step instead of only
considering sets implicated in each iteration.

Usually the increment in performance tends to decrease as more variables
are added and, therefore, also the minimum improvement required and the
lower boundary for considering sets can be balanced in each step. These
two parameters have to be selected based on initial tests to determine the
differences in performance and the respective variation at each step.

The results were compared with the regular SFS and the ones obtained for
models using the set of variables described in [10].

3 Results and Discussion

The selection of features based on the quantity of signals was performed
directly on the MEDAN database, resulting in a total of 20 variables, all
comprised by 107 patients. The consequent clustering studies and feature
selection were performed with the ZOH preprocessed dataset. Assessing the
optimal number of clusters through the Xie-Beni index we found that for any
number of clusters higher than 2 the entropy is much higher and is not stable
for several repetitions. This means the distribution of the patients along the
clusters is not consistent and there might be redundancy in some clusters.

We used accuracy to evaluate the modified SFS since it is very representa-
tive of the overall performance. In this case, it is difficult to differentiate sets
basing on AUC variability. Based on initial tests we defined the minimum
step improvement in accuracy equal to 5%, resulting in the model to stop
at step 2. The threshold was defined as 10% of the difference in performance
between the best set evaluated in each iteration and the set considered to
initialize it.
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Table 1 presents the mean values for AUC and accuracy for the different
datasets considered, as well as for the respective sensitivity and specificity.
At each step we present the variables that were evaluated in the next step.

Working with the minimum possible number of variables (in this case we
studied up to 3 variables per set) allows reaching higher statistical significance
in each evaluation. We found two ”base sets” in the step 1 composed by the
Diastolic Arterial Blood Pressure and either the Thrombocytes (”Base Set
1”) or the Urea (”Base Set 2”) levels, suggesting they denote very significant
information. Here we show all the combinations based on each of these sets
performing above 0.95 in accuracy in step 3 (end of the search).

Table 1 Mean values for AUC, Accuracy, Sensitivity and Specificity

AUC Acc Sens Spec

All 20 variables: 0,962 0,938 0,932 0,943

Modified SFS:
Step 1: Step 2: Step 3:
Diastolic ABP 0,962 0,897 0,887 0,905

Diastolic ABP
Thrombocytes 0,977 0,947 0,939 0,954
(BS1)

BS1+pH 0,977 0,951 0,954 0,949
BS1+O2Sat 0,976 0,955 0,941 0,968
BS1+Leucocytes 0,977 0,951 0,942 0,959
BS1+Urea 0,979 0,956 0,955 0,956

Diastolic BP
Urea 0,974 0,950 0,950 0,950
(BS2)

BS2+Systolic ABP 0,981 0,955 0,962 0,949
BS2+pH 0,981 0,958 0,969 0,950
BS2+Thrombocytes 0,979 0,957 0,957 0,957
BS2+PTT 0,980 0,971 0,969 0,972
BS2+GOT (or ASAT) 0,977 0,964 0,970 0,958
BS2+Total Bilirubin 0,976 0,958 0,944 0,970

BS2+Blood Sugar 0,977 0,953 0,955 0,951

Regular SFS:
BS2+PTT+GOT 0,980 0,972 0,965 0,977

Ref. [10]:
Systolic ABP
Diastolic ABP 0,968 0,948 0,936 0,958
Thrombocytes

Abreviations : BS1: Base Set 1; BS2: Base Set 2; ABP: Arterial Blood Pressure; O2Sat:
Oxygen Saturation; PTT: Partial Thromboplastin Time; GOT (or ASAT): Glutamate
Oxaloate Transaminase (or Aspartate Aminotransferase);
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The mean AUC above 0.97 obtained in step 2 is evidence that two variables
alone can be used to classify several train-test configurations of the dataset.
In fact, adding some variables, such as the Systolic Arterial Blood Pressure,
in [10], can decrease the performance comparing to the corresponding base
set.

4 Conclusion

The set obtained through the regular SFS to predict the ICU outcome of sep-
tic shock patients includes four variables from the initial available set. Though
this poses a unique set for study, smaller and alternative sets are more use-
ful for the medical practice, avoiding excessive number of measurements and
providing simple explanations of the disease mechanisms. The striking ad-
vantage of the methodology used here is it spans the forward search space,
increasing the chances to achieve better performances using fewer predic-
tors without performing backward selection techniques. Further studies are
focusing on applying the techniques shown here to build and improve real-
time monitoring systems in health care, demonstrating the opportunities to
increase prevention and risk prediction in clinical settings.
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Possibilistic Local Structure
for Compiling Min-Based Networks

Raouia Ayachi, Nahla Ben Amor, and Salem Benferhat

Abstract. Compiling graphical models has recently been triggered much re-
search. First investigations were established in the probabilistic framework.
This paper studies compilation-based inference in min-based possibilistic
networks. We first take advantage of the idempotency property of the min
operator to enhance an existing compilation-based inference method in the
possibilistic framework. Then, we propose a new CNF encoding which fits
well with the particular case of binary networks.

Keywords: Compilation, inference, possibilistic reasoning.

1 Introduction

Knowledge compilation e.g., [2] is an important topic in many on-line ap-
plications that involve hard tasks. It transforms knowledge bases into new
structures, with the intent being to improve problem-solving efficiency. One
of the most prominent successful applications of knowledge compilation is in
the context of inference in Bayesian networks [3, 5]. In [1], a direct possi-
bilistic adaptation of the basic compilation-based inference method [5] was
proposed. The main idea consists in encoding the network into a Conjunc-
tive Normal Form (CNF) base using the so-called local structure strategy.
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The resulting encoding is then compiled to efficiently compute the effect of
an evidence on a set of variables. In the present paper, we propose a new
possibilistic compilation-based inference method strictly more compact than
the possibilistic adaptation. In fact, we will first refine the encoding phase by
analyzing parameters values using a new encoding strategy: possibilistic local
structure which goes beyond the so-called local structure used in probabilistic
networks [3]. We also show that such strategy is exclusively useful in qualita-
tive possibilistic framework. Then, we will improve CNF encodings, for the
particular case of binary networks. Experimental results show that explor-
ing both of possibilistic local structure and binary variables in the encoding
phase has a significant improvement on inference time.

The remaining paper is organized as follows: Section 2 presents a brief
refresher on possibility theory and knowledge compilation. Section 3 presents
the compilation-based inference method that exploits possibilistic local struc-
ture. Section 4 describes the inference approach for the particular case of
binary networks. Section 5 is dedicated to the experimental study.

2 Basic Background

Let V = {X1, ..., XN} be a set of variables. We denote by DXi the domain
associated with the variable Xi. By xi (resp. xij), we denote any of the in-
stances of Xi (resp. the jth instance of Xi). When there is no confusion we use
xi to mean any instance of Xi. In the n-ary case, DXi = {xi1, xi2, . . . , xin}.
In the binary case, we will simply write DXi as {xi,¬xi}. Ω denotes the
universe of discourse, which is the cartesian product of all variable domains
in V . Each element ω ∈ Ω is called an interpretation of Ω.

2.1 Possibility Theory

This subsection briefly recalls some elements of possibility theory; for more
details we refer the reader to [7, 8]. One of the basic concepts in possibility
theory is the concept of a possibility distribution, denoted by π, which is a
mapping from the universe of discourse to the unit interval [0, 1]. This scale
can be interpreted in two ways: a quantitative one when values have a real
sense and a qualitative one when values only reflect a total pre-order between
the different states of the world. This paper focuses on the qualitative inter-
pretation of possibility theory which uses the min as a conjunction operator.
Given a possibility distribution π, we can define a mapping grading the pos-
sibility measure of an event φ ⊆ Ω by Π(φ) = maxω∈φπ(ω). This measure
evaluates the extent to which φ is consistent with the available beliefs.



Possibilistic Local Structure for Compiling Min-Based Networks 481

Conditioning is a crucial notion in possibility theory. It consists in revising
our initial knowledge π by the arrival of a new certain piece of information
φ ⊆ Ω. The qualitative interpretation of the possibilistic scale leads to the
well known definition of min-conditioning [7, 10], expressed by:

Π(ψ | φ) =

{
Π(ψ ∩ φ) if Π(ψ ∩ φ) < Π(φ)
1 otherwise

(1)

2.2 Min-Based Possibilistic Networks

Min-based possibilistic networks can be viewed as the possibilistic counter-
part of Bayesian networks [11] when we consider the qualitative interpretation
of the possibilistic scale. A min-based possibilistic network over a set of N
variables V = {X1, X2, ..., XN}, denoted by ΠGmin, is composed of:

• A graphical component composed of a Directed Acyclic Graph (DAG)
where nodes represent variables and edges encode links between variables.
The parent set of any variable Xi is denoted by Ui = {Ui1, Ui2, ..., Uim}
where Uij is the jth parent of Ui and m is the number of parents of Xi. In
what follows, we use xi, ui, uij to denote, respectively, possible instances
of Xi, Ui and Uij .

• A numerical component that quantifies different links. Uncertainty of
each node Xi is represented by a local normalized conditional possibil-
ity table (denoted by CPTi) in the context of its parents. The set of
all CPTi is denoted by CPT . Conditional possibility tables should re-
spect the normalization constraint for each variable Xi ∈ V expressed by:
∀ui,maxxi Π(xi|ui) = 1.

2.3 Compilation Concepts

Knowledge compilation is an artificial intelligence area related to a map-
ping problem from intractable logical theories (typically, from propositional
knowledge bases in a CNF form) into suitable target compilation languages
from which transformations and queries can be handled in a polynomial time
with respect to the size of compiled bases [2]. There are several compilation
languages as it has been studied in the knowledge map of [6]. The Negation
Normal Form (NNF) language represents the pivotal language from which a
variety of target compilation languages give rise by imposing some conditions
on it. In this paper, we are in particular interested in Decomposable Negation
Normal Form (DNNF) [4] since it is considered as one of the most compact
target languages. DNNF is a subset of NNF by satisfying the decomposabil-
ity property stating that conjuncts of any conjunction share no variables [4].
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DNNF supports a rich set of polynomial-time operations which can be per-
formed simply and efficiently. We restrict our attention to conditioning and
forgetting operations:

- Conditioning: Let α be a propositional formula and let ρ be a consistent
term, then conditioning α on ρ, denoted by α|ρ generates a new formula in
which each propositional variable Pi ∈ α is set to � if Pi is consistent with ρ
and ⊥ otherwise.

- Forgetting: The forgetting of Pi from α is equivalent to a formula that
do not mention Pi. Formally: ∃Pi.α = α|Pi ∨ α|¬Pi.
In [9], authors have generalized the set of NNF languages by the Valued Nega-
tion Normal Form (VNNF) which offers an enriched representation of func-
tions. Within VNNF’s operations, we cite max-variable elimination which
consists in forgetting variables using the max operator.

3 Compilation-Based Inference in Possibilistic
Networks

Emphasis has been recently placed on compilation-based inference in graphi-
cal models, in particular Bayesian networks. This topic has been the focus of
several researches [3, 5]. In [1], we proposed a direct (and naive) adaptation of
the idea of compiling Bayesian networks [5] into the possibilitic framework, in
particular to compile min-based possibilistic networks. This adaptation did
not take into account specific features of possibility theory such as the ordinal
nature of uncertainty scale. As a consequence, the size of possibilistic com-
piled knowledge base is the same as the one obtained in probability theory. In
this section, We propose an enhancement of this adaptation, particularly for
encoding min-based possibilistic networks in a more compact manner using
a new strategy dedicated for qualitative approaches.

The principle of encoding is to first transform the initial network into a
Conjunctive Normal Form (CNF). To this end, we need to represent instances
of variables and also parameters using a set of propositional variables. More
precisely, instances indicators are associated to different instances of the net-
work variables and parameter variables are relative to possibility degrees.
In the probabilistic framework, [3] proposed the so-called local structure to
decrease the number of parameter variables by associating a unique proposi-
tional variable per equal parameters per CPTi. In this section, we propose to
go one step further by taking advantage of the idempotency property of the
min operator (i.e., min(a, a) = a) by associating a unique propositional vari-
able per equal parameters per all conditional possibility tables (CPT). This
encoding strategy, that we call possibilistic local structure, reduces the num-
ber of propositional variables required to encode the possibilistic network. We
denote the method improved by possibilistic local structure as Π-DNNFCPT .
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The new refined CNF encoding of ΠGmin, denoted by CPLSmin , needs two types
of propositional variables, namely:

• ∀Xi ∈ V , ∀xij ∈ DXi , we associate an instance indicator λxij (when there
is no ambiguity, we use λxi).

• ∀Xi ∈ V , ∀Π(xi|ui), we associate a parameter variable s.t.:

⎧
⎪⎨

⎪⎩

θj if occ(Π(xi|ui), CPT ) > 1

θxi|ui
if occ(Π(xi|ui), CPT ) = 1.

(2)

where occ(Π(xi|ui), CPT ) is the occurrence number of Π(xi|ui) in CPT .

Definition 1 outlines the new CNF encoding of ΠGmin.

Definition 1. Using the set of instance indicators and parameter variables,
the CNF encoding CPLSmin contains:

• Mutual exclusive clauses: ∀Xi ∈ V , we have:

λxi1 ∨ λxi2 ∨ · · ·λxin (3)

¬λxij ∨ ¬λxik
, j 
= k (4)

• Parameter clauses: ∀Xi ∈ V :

– ∀ θxi|ui
, we have:

λxi ∧ λui1 ∧ . . . ∧ λuim → θxi|ui
(5)

θxi|ui
→ λxi (6)

θxi|ui
→ λui1 , · · · , θxi|ui

→ λuim (7)

– ∀ θj, we have:
λxi ∧ λui1 ∧ . . . ∧ λuim → θj (8)

An inconsistent theory can be involved by applying possibilistic local struc-
ture and keeping clauses (6) and (7) for redundant values per CPT. For in-
stance, if we encode both of these equal degrees Π(a2|b1) = Π(a1) = 0.3 by
θ1, then we will obtain from clauses (6) and (7), θ1 → λa1 and θ1 → λa2 which
is inconsistent. To avoid this problem, redundant values per CPT should be
encoded using only one clause (8), however each value appearing once per
CPT can be encoded using clauses (5) ,(6) and (7). Aside from equal param-
eters, each Π(xi|ui) equal to 0, can be encoded by a shorter clause involving
only indicator variables, namely: ¬λxi ∨¬λui1 ∨· · ·∨¬λuim , without the need
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for a propositional variable. Once ΠGmin is encoded into CPLSmin , this latter
is then compiled into the most succinct target compilation language DNNF.
The resulting compiled base is finally transformed into a valued representa-
tion corresponding to a min-max circuit, denoted by CPLSMinMax. Formally,

Definition 2. A min-max circuit CPLSMinMax of a DNNF sentence CDNNF is
a valued sentence where ∧ and ∨ are substituted by min and max, respec-
tively. Leaf nodes correspond to circuit inputs (i.e., indicator and parameter
variables), internal nodes correspond to max and min operators, and the root
corresponds to the circuit output.

Evaluating CPLSMinMax consists in applying min and max operators in a
bottom-up way. Inference is guaranteed to be established in polytime since it
corresponds to a simple propagation from leaves to root. Note that such
computation corresponds to max-variable elimination.

We show now that in the particular case of binary networks, we can propose
a more refined encoding.

4 Inference in Binary Networks

The idea of this new compilation-based inference method, called Bin-Π-
DNNF, is to reduce CNF parameters using the fact that a binary variable Xi

can be encoded by a unique propositional variable. Moreover, we show that
we can provide a further improvement by analyzing parameters values. Bin-
Π-DNNF follows the same reasoning: from encoding to inference by going
through compilation.

4.1 Encoding and Compilation Phase

Encoding a binary possibilistic network ΠGmin using the CNF encoding of
Definition 1 yields supplementary propositional variables and clauses since
the opportunity presented by binary variables is not taken into consideration.
For this reason, we propose to associate one instance indicator (i.e., λxi) in-
stead of two (i.e., λxi1 and λxi2) where the positive (resp. negative) instance
is represented by λxi (resp. ¬λxi). Moreover, each parameter Π(xi|ui) (resp.
Π(¬xi|ui)) will be also encoded using θxi|ui

(resp. ¬θxi|ui
). It is worthwhile

to point out that by taking advantage of the opportunity presented by binary
variables, we halve the number of instance indicators and network parame-
ters but also release the need for mutual exclusive clauses and some network
parameters clauses. The new auxiliary encoding specific to binary networks
is outlined by Definition 3.

Definition 3. Let ΠGmin be a binary possibilistic network, λxi (resp. ¬λxi)
(i = 1, . . . , N) be the set of instance indicators and θxi|ui

(resp. ¬θxi|ui
) be the
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set of parameter variables. Then ∀Xi ∈ V , its binary encoding Cbmin contains
the following clauses:

∧

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λxi ∧ λui1 ∧ . . . ∧ λuim → θxi|ui1,...,uim

¬λxi ∧ λui1 ∧ . . . ∧ λuim → ¬θxi|ui1,...,uim

.

..
.
..

.

..
λxi ∧ ¬λui1 ∧ . . . ∧ ¬λuim → θxi|ūi1,..., ¯uim

¬λxi ∧ ¬λui1 ∧ . . . ∧ ¬λuim → ¬θxi|ūi1,..., ¯uim

(9)

The encoding Cbmin is in a CNF form where each clause encodes the fact that
the possibility degree of xi|ui (resp. ¬xi|ui) represented by the propositional
formula literal(λxi) ∧ literal(λui1) ∧ . . . ∧ literal(λuim) is equal (⇒ in the
logical setting) to Π(xi|ui) (resp.Π(¬xi|ui)) represented by the propositional
variable θxi|ui

(resp. ¬θxi|ui
) where literal(λxj) is expressed by:

literal(λxj) =

{
λxj if xj ∈ {xi, ui}
¬λxj if x̄j ∈ {xi, ui} (10)

If we emphasize on CPLSmin and Cbmin, we can point out that in the binary case,
we only resort to clauses (9) which represent the binary counterpart of clause
(5) while omitting clauses (6) and (7). The question that may arise is: why
did we drop clauses (6) and (7) in the binary encoding? In fact, in the binary
case, these clauses lead to a contradictory encoding since from a logical point
of view, ¬θxi|ui

implies θx̄i|ui
∨θxi|ūi

∨θx̄i|ūi
, however, in our case, we assume

that ¬θxi|ui
only implies θx̄i|ui

. Hence, we exclude such clauses since from a
logical point of view ¬θxi|ui

implies neither ¬λxi nor λui . This means that
we move from a logical equivalence ⇔ to a logical implication ⇒.

The binary CNF encoding Cbmin can benefit from possibilistic local struc-
ture, i.e., instead of using θxi|ui

and ¬θxi|ui
for each pair (xi, ui), we can

increasingly reduce the number of propositional variables associated to net-
work parameters by according one propositional variable θj for each set
of equal parameters. Moreover, each network parameter θxi|ui

or ¬θxi|ui

equal to 0 can be dropped by replacing its clause by a shorter one, namely:
¬literal(λxi) ∨ ¬literal(λui1) ∨ · · · ∨ ¬literal(λuim). We denote the binary
method refined by possibilistic local structure as Bin-Π-DNNFCPT .

Once the encoding phase is achieved, the resulting CNF encoding (i.e.,
Cbrmin) is then compiled into a min-max circuit, denoted by CbrMinMax, which
will be used in the inference phase.

4.2 Inference Phase

The inference consists in efficiently computing the effect of the evidence e on
the set a variables X ⊆ V using CbrMinMax, i.e. Π(x|e). Using equation (1), it
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is clear that we should compute both of Π(x, e) and Π(e). The computation
process is described in the following steps in which we will compute Πc(y)
s.t. y = {(x, e); (e)}.
1. First, CbrMinMax should be conditioned on y by setting λxi (resp. ¬λxi) to

1 if xi ∈ y (resp. x̄i ∈ y) and λxi (resp. ¬λxi) to 0 if xi /∈ y (resp. x̄i /∈ y).
2. Then, the conditioned representation, denoted by CbrMinMax|y should be

valued by setting for each parameter variable the possibility degree it en-
codes. The resulting representation is denoted by CvMinMax.

3. Finally,Π(y) is efficiently computed by applying max and min of CvMinMax

in a bottom-up way. This efficiency is due to max-variable elimination.

5 Experimental Study

Our target through the current experimental study is to emphasize on the
behavior of possibilistic local structure and local structure on CNF encod-
ings of Π-DNNF [1], Π-DNNFCPT and Bin-Π-DNNFCPT . To this end, we
consider randomly generated possibilistic networks by setting the number of
nodes to 50, the maximum number of parents per node to 3 and the variable
cardinality to 2. We also vary possibility distributions (except for the nor-
malization value 1) using the parameter (EPCPT (%)): the percent of equal
parameters per CPT. For each experimentation, we generate 100 possibilistic
networks. Our experimental results are shown in Table 1.

It is clear from Table 1 that Bin-Π-DNNFCPT <cnf Π-DNNFCPT <cnf
Π-DNNF1. These results prove the interest of using possibilitic local structure
in general and the interest of applying the binary encoding to the particular
case of binary networks.

Table 1 Π-DNNF vs Π-DNNFCPT vs Bin-Π-DNNFCPT (better values are in
bold)

EPCPT Π-DNNF Π-DNNFCPT Bin-Π-DNNFCPT

variables clauses variables clauses variables clauses

0 262 821 89 356 84 334
30 220 504 87 360 81 348
50 192 422 85 356 81 340
70 190 410 84 344 79 341
100 1560 380 84 338 76 300

1 Π-DNNFCPT <cnf Π-DNNF means that the CNF encoding of Π-DNNFCPT

is more compact than the one of Π-DNNF w.r.t. the number of variables and
clauses.
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6 Conclusion

In this paper, we improved the possibilistic compilation-based inference
method of [1] by proposing a new encoding strategy, namely possibilistic lo-
cal structure, especially for qualitative networks. Such strategy goes beyond
the standard local structure used in Bayesian networks. It takes advantage
of the idempotency property of the min operator by associating a unique
propositional variable per equal parameters per CPT. Moreover, we refined
the CNF encoding to deal with binary min-based possibilistis networks. With
regard to future work, we would like to investigate the decision aspect under
compilation.
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Näıve Bayes Ant Colony Optimization
for Experimental Design

Matteo Borrotti and Irene Poli

Abstract. In a large number of experimental problems the high dimension-
ality of the search space and economical constraints can severely limit the
number of experiment points that can be tested. Under this constraints, op-
timization techniques perform poorly in particular when little a priori knowl-
edge is available. In this work we investigate the possibility of combining
approaches from advanced statistics and optimization algorithms to effec-
tively explore a combinatorial search space sampling a limited number of ex-
perimental points. To this purpose we propose the Näıve Bayes Ant Colony
Optimization (NACO) procedure. We tested its performance in a simulation
study.

Keywords: Ant colony algorithm, combinatorial cptimization, näıve Bayes
classifier.

1 Introduction

In this work we address the problem of developing a novel approach for com-
binatorial optimization in the context of experimental design. This approach
should also improve the exploration of high dimensional spaces characterized
by many interactions between variables.

More precisely we are interested in development of a new approaches for
effectively exploring enzyme sequence space to improve or redesign enzyme
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functionality. Similar problems are presented in [1, 2]. In these works we
designed a library of 95 different amino-acid sequences (i.e. words), that are
subsequently assembled to yield a full-length enzyme (i.e. string) of length
4. To this regard, we can consider an enzyme as a string composed by 4
words. For each position in the string we can select an element from the set
of 95 words, with repetition. The words are non-ordered discrete elements.
The ultimate aim is to find the ”most informative” string in according with
a specific function.

Starting from this application, this work endeavours to define a new ap-
proach within statistical Design of Experiments for optimization based on
Evolutionary Model Based Experimental Design [4]. In our case we have de-
veloped the Näıve Bayes Ant Colony Optimization (NACO) approach. NACO
is a mixed approach that combines different methods from statistics and
computer science. More precisely: (i) Näıve Bayes Classifier [6]; and (ii) Ant
Colony Optimization [3], specifically MAX −MIN Ant System [7]. In the
next sections a brief description of the two approaches is given.

Our strategy identifies which elements mostly affect the response of the
systems and then it adopts this information to help the metaheuristc algo-
rithm in choosing the next set of candidate solutions.

2 Näıve Bayes Classifier

The Näıve Bayes Classifier [6] is a classification procedure based on the
Bayes’ rule. It assumes that the set of variables X1, ..., Xn, we consider
for classification, are all conditionally independent of one another, given the
response Y .

We describe the conditional probability of X = 〈X1, ..., Xn〉 on Y as:

P (X1, X2, . . . , Xn | Y ) =

n∏

i=1

P (Xi | Y )

This equation follows directly from the definition of conditional independence.
Starting from this point, it is possible to understand how the Näıve Bayes
Approach works. Assuming in fact that Y is any discrete valued variable, and
the attributes X1, . . . , Xn are any discrete or real valued variables, the goal
of Näıve Bayes method is to train a classifier that will output the probability
distribution over possible values of Y, for each new instance X that we want
to classify.

The probability that Y will take on its k-th possible value, according to
the Bayes’ Rule, is

P (Y = yk | X1, . . .Xn) =
P (Y = yk)P (X1, . . . , Xn | Y = yk)∑
j P (Y = yj)P (X1, . . . , Xn | Y = yj)
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where the sum is taken over all possible value yj of Y . Assuming that Xi are
conditionally independent given Y , we can write

P (Y = yk | X1, . . . Xn) =
P (Y = yk)

∏
i P (X1, . . . , Xn | Y = yk)∑

j P (Y = yj)
∏
i P (Xi | Y = yj)

(1)

Equation (1) is the base for the Näıve Bayes Classifier. Given a new instance
Xnew = 〈X1, ..., Xn〉, it is possible to calculate the probability that Y will
take on any given value. If we want to know the most probable value of Y ,
we obtain the Näıve Bayes’ Rule:

Y ← argmax
yk

P (Y = yk)
∏
i P (X1, . . . , Xn | Y = yk)∑

j P (Y = yj)
∏
i P (Xi | Y = yj)

This approach reduces the complexity for learning Bayesian classifier by mak-
ing a conditional independence assumption that dramatically reduces the
number of parameters to be estimated when modeling P (X | Y ).

3 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) [3] is a population-based, general-purpose
stochastic search technique for the solution of difficult combinatorial prob-
lems, which is inspired by the pheromone trail laying and following foraging
behaviour of some real ant species.

In ACO, each “ant” builds a solution starting from an initial state selected
according to some problem dependent criteria. A solution is expressed as
minimum cost (shortest) path through the states of the problem in accordance
with the problem’s constraints. A single ant is able to build a solution but
only the cooperation among all the agents of the colony, concurrently building
different solutions, is able to find high quality solutions.

In the algorithm an environment is simulated by a graph composed of a
set N of states, representing nodes, and a set E of arcs fully connecting the
nodes N . Let dij be the length of the arc (i, j) ∈ E, that is the distance
between nodes i and j, with i, j ∈ N . The aim of the optimization in ACO
is to find on the graph G = (N,E) the minimal length path connecting nest
to the source.

ACO uses two different types of information: pheromone and a priori
problem-specific information (heuristic values). The combination of available
pheromone and heuristic values defines ant-decision tables, that are, proba-
bilistic tables used by the ants’ decision policy to direct their search towards
the most interesting regions of the search space.
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The ant-decision table Ai = [aij(t)]|Ni| of node i is obtained by the com-
position of the pheromone trail values with heuristic values as follow:

aij =
[τij(t)]

α[ηij ]
β

∑
l∈Ni

[τij(t)]α[ηij ]β
∀j ∈ Ni (2)

where τij(t) is the amount of pheromone trail on arc (i, j) at time t; ηi,j =
1/dij is the heuristic value to move from node i to node j; Ni is the set
of neighbours of node i; and α and β are two parameters that control the
relative weight of pheromone trail and heuristic information.

The probability with which an ant k chooses to go from node i to node
j ∈ Nk

i while building its tour at the t-th algorithm iteration, is:

pkij(t) =
aij(t)∑

i∈Nk
i
aij(t)

(3)

where Nk
i ⊆ Ni is the set of nodes in the neighbourhood of node i that ant

k has not visited yet.
After all ants have completed their tour, pheromone evaporation on all

arcs is applied in according with the pheromone trail decay coefficient (or
evaporation factor) ρ, ρ ∈ (0, 1].

In our case, we apply the MAX −MIN Ant System (MMAS), pro-
posed by Stützle and Hoos in [7] because it is demonstrated that MMAS is
able to reach a strong exploitation of the search space by adding pheromone
only to the best solution during the pheromone trail update. Moreover they
applied a simple method for limiting the strength of the pheromone trails
that effectively avoids premature convergence of the search.

4 The NACO Approach

We introduce a novel approach for optimization called Näıve Bayes Ant
Colony Optimization (NACO) by combining Ant Colony Optimization tech-
nique and Näıve Bayes Classifier. NACO extracts the information from the
data using the Näıve Bayes Approach and explores the search space by the
ACO algorithm. At the same time, the most informative variables and inter-
actions are identified.

In our problem we are considering a specific problem caracterized by a
discrete search space where a solution is a string composed by 4 words. The
words are selected from a set of 95 discrete elements with repetition. We
need to reformulate the problem as a path search problem to apply ACO
algorithm. For this purpose, we create a graph where each node represents
a specific word. A solution is a path with length 4 composed of 4 nodes
connected by 3 arcs, as shown in Fig. 1. In the biological application [1],
each node corresponds to an amino-acid sequence from the initial dataset
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. 

. 

. 

Fig. 1 A new representation of the graph where ants move. A solution is a path composed
by 4 nodes and 3 arcs.

and an arc to the connection between amino-acid sequence i in position k
and amino-acid sequence j in position k + 1. A candidate solution is a path
composed by 4 amino-acid sequences which represents a full-length enzyme.
The total number of nodes is 95× 4 = 380 with equal size intervals.

Candidate solutions’ response is calculated and subsequently discretized
in according with a certain constant threshold (γ, with γ ∈ R) fixed by
the experimenter. The candidate solutions (strings) are assigned to class 1
if the responses exceed the threshold otherwise to class 0. The Näıve Bayes
Classifier is applied on each position of the sequence or string with class equal
to 1. It calculates the maximum likelihood estimate for each word in each
position given the training sequences or strings. We obtain a set of probability
distributions, one for each position. These probability distributions are used
to weigh the arcs on the ACO algorithm.

The following steps summarize the NACO approach:

1. Random generation and evaluation of an initial population (set of candi-
date points);

2. Identification of the Iteration Best Solution (best solution in the current
iteration);

3. Calculation of the Näıve Bayes Classifier on the available evaluated solu-
tions (N). At each iteration, it focuses on values of the response greater
than a problem-specific threshold γ, with γ ∈ R;

4. Updating the probabilities with which an ant k chooses to go from element
i to element j using the information extracted in points 2 and 3;

5. Selection of the next population of candidate solutions using the principle
of MAX −MIN Ant System;

6. Evaluation of the new set of candidate solutions and inclusion of the new
set in the set of solutions that has already been evaluated;

7. If stop criterion is reached, then stop. Otherwise repeat points from 2 to
6;

Fig. 2 describes point number 4. At iteration t, agents move over the graph
according to the best paths identified in the previous steps (Fig. 2 (a)).
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Next State of the Graph 

Previous State of the 
Graph 

(a) 

Naive Bayes 
Classification 

(b) 

Iteration Best Solution 

(c) 

Fig. 2 Updating Phase of the Näıve Bayes Ant Colony Optimization

Following candidate solution evaluation, the Iteration Best Solution is iden-
tified and the corresponding pheromone path is updated (Fig. 2 (c)). At
this point, using the Näıve Bayes Classifier the best variables are identified,
namely those that are anticipated to yield a fitness value higher than the
chosen fitness treshold γ (Fig. 2 (b)). For any given arc connecting variable
(node) i with variable j, the weight λij is changed according to the Näıve
Bayes Classifier. The set of {λij} is called Näıve Information. Now, the ant-
decision table Ai = [aij(t)]|Ni| of node i will be obtained by the composition of
the pheromone trail values with heuristic values and with Näıve Information
as follows:

aij =
[τij(t)]

α[ηij ]
β [λij ]

δ

∑
l∈Ni

[τij(t)]α[ηij ]β [λij ]δ]
∀j ∈ Ni

where τij(t) is the amount of pheromone trail on arc (i, j) at time t; ηi,j =
1/dij is the heuristic value of moving from node i to node j; λij is the Näıve
Information on arc (i, j) at time t. Ni is the set of neighbors of node i; and α,
β and δ are parameters that control the relative weight of pheromone trail,
heuristic information and Näıve Information. The probability, which an ant
k chooses to go from element i to element j, is then calculated according to
Equation (3).

Generally, NACO will extract information from few data and it will indi-
viduate the best connection between variables.
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5 Monte Carlo Simulations

In this work we develop simulative studies with the aim of testing the per-
formance of the NACO approach. In these simulations the experiments are
generated by the model y = ϕh(x) + ε, ε ∼ N(0, σ2

h), where h = 1, 2 denotes
two different response surfaces, ϕ1(x) and ϕ2(x), taken from [2]. ϕ1(x) is
called Polynomial Regression Model (PRM) and it represents a fitness land-
scape dominated by strong interactions, which occurs when the effect of one
variables depends on the presence of another. The second formal structure,
ϕ2(x), is called Polynomial Sparse Regression Model (PSRM) and it repre-
sents the situation where only few variables highly influence the response of
the system and the others are close to 0. This kind of fitness landscapes is
characterized by ruggedness and local optima. ϕ1(x) and ϕ2(x) simulate a
search space of 954 experimental points.

In both simulations, we computed 50 Monte Carlo runs with the aim to
maximize the deterministic function ϕh.

In Fig. 3, we compare the convergence of our method with the basic
MMAS. The parameter settings for MMAS is: population size (N) 100,
number of generations or experimental batches 50, evaporation factor (ρ)
0.96 and weight for the pheromone (β) 1. In this case no heuristic informa-
tion is used. NACO includes two more parameters: δ that controls the weight
of Näıve Information and γ that is the threshold considered by the Näıve
Bayes Classifier. In our case δ and γ are equal to 2 and 80%, respectively.
The parameter setting is chosen in accordance with preliminary studies [1].

Our empirical results (Fig. 3) show remarkable efficiency of the proposed
method. The main difference between NACO and MMAS is that the last
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Fig. 3 Convergence behavior for Experiment 1 (ϕ1(x), left side) and Experiment 2
(ϕ2(x), right side) of the NACO (solid lines) and MMAS (dashed lines) methods. The
vertical bars are 95% Monte Carlo confidence intervals.
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one does not benefit from the information obtained using the Näıve Bayes
Classifier. Our results show that the inclusion of the Näıve Bayes Classifier
boosts the convergence rate. This is visible after few iterations of the NACO
algorithm and is due to the fact that the Näıve Bayes Classifier extracts
useful information on the main variables that influence the response. The
information extrapoleted from the Näıve Bayes Classifier compensates for
the absence of heuristic information.

In term of computational time the two approaches do not show significante
difference.

6 Conclusions

In this work, we have explored the possibility of tackling problems charac-
terized by a very large experimental space combining bio-inspired algorithms
with advanced statistical techniques. To achieve this aim, we have developed
an algorithmic approach which combines some powerful features of known
approaches: the Näıve Bayes Ant Colony Optimization (NACO).

We have shown that the Näıve Bayes Ant Colony Optimization (NACO)
approach improves upon the limits of the individual techniques, enabling us to
deal with very large experimental spaces. In fact, the Näıve Bayes Approach
has a strong assumption and it assumes that the attributes X1, . . . , Xn are
all conditionally independent of one another, given the response Y . It has the
advantage of simplifying the representation of the probability of X given Y
but with the Näıve Bayes Classificator it is not possible to understand the
relations between the attributes. This aspect can be extremely important in
some experimental problems.

The combination of ACO and Näıve Bayes Classifier can describe the rel-
ative network between variables. ACO, in fact, is based on probabilistic ma-
trices where the best path has a higher probability of being chosen. A path is
composed of nodes and arcs. In our problem nodes can be seen as variables
and an arc, connecting a variable to the next one, can be seen as the rela-
tion that exists between the two variables. Then, ACO implies the sequential
relationship between variables.

At last, NACO can be used in the context of combinatorial optimization in
absence of heuristc information since Näıve Bayes Classifier is used to extract
information from the available data.
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classifier for protein function prediction. Silico Biol. 9, 23–34 (2009)

6. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
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Inferences in Binary Regression
Models for Independent Data with
Measurement Errors in Covariates

Vandna Jowaheer, Brajendra C. Sutradhar, and Zhaozhi Fan

Abstract. When responses along with covariates are collected from a group
of independent individuals in a binary regression setup, in some practical
situations the observed covariates may be subject to measurement errors
differing from the true covariates values. These imprecise observed covariates,
when used directly, the standard statistical methods such as naive likelihood
and quasi-likelihood methods yield biased and hence inconsistent regression
estimates. Because there does not exist a corrected score function for this
binary measurement error model, a considerable attention is given in the
literature to develop approximate unbiased estimating equation in order to
obtain consistent regression estimate. In this paper, we review some of these
widely used approaches and suggest a softer (approximate) quasi-likelihood
approach for consistent regression parameters estimation.

Keywords: Bias correction, binary response, consistency, first order bias
correction, measurement errors in covariates.

1 Introduction

In the independence set up, the estimation of the regression effects involved
in binary measurement-error models with normal measurement errors in co-
variates has been studied extensively in the literature. For i = 1, . . . ,K,
let yi denote the binary response variable for the ith individual, and xi =
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(xi1, . . . , xip)
′ be the associated p−dimensional covariate vector subject to

normal measurement errors. Let zi = (zi1, . . . , zip)
′ be the unobserved true

covariate vector which may be fixed constant or random, and β be the re-
gression effect of zi on yi. We consider the measurement error model

xi = zi + δvi, (1)

with vi ∼ Np(0, Λ = diag[σ2
1 , . . . , σ

2
p]).

Note that if for a sample (yi, xi)(i = 1, . . . ,K) the covariates {zi} are
unknown constants, a functional error-in-variables model (also known as
Berkson error model) is obtained; if {zi} are independent and identically
distributed random vectors from some unknown distribution, a structural
error-in-variables model is obtained (see [2], ch. 29 and [7]). In this paper
we consider the functional measurement error models. Nakamura [4] has pro-
posed a corrected score (CS) estimation approach in functional setup, which
provides closed form estimating equation for β for the Poisson regression
model, but, the binary logistic regression model does not yield a corrected
score function which is a limitation to this approach.

Stefanski and Carroll [7] proposed a method based on conditional scores
(CNS). In this approach, unbiased score equations are obtained by condition-
ing on certain parameter dependent sufficient statistics for the true covari-
ates z, and the authors have developed the approach in both functional and
structural setups. The conditional score equations have a closed form for gen-
eralized linear models such as for normal, Poisson and binary logistic models.
Obtaining a closed form unbiased equation for logistic regression parameter
by this conditional approach is an advantage over the direct corrected score
approach [4] which does not yield corrected score function.

Note that as in the absence of measurement errors, regression parameters
involved in generalized linear models such as for count and binary models,
may be estimated consistently and efficiently by using the first two moments
based quasi-likelihood (QL) approach [10], there has been a considerable at-
tention to modify the naive QL approach (that directly uses observed covari-
ates ignoring measurement errors) in order to accommodate measurement
errors in covariates and obtain bias corrected QL (BCQL) estimates. Some
of these BCQL approaches are developed for both structural and functional
models, some are developed for the functional models and others are more
appropriate for structural models only. Stefanski [5] proposed a small mea-
surement error variance based QL (SVQL) approach for structural models,
the autors of [1] have used a similar small measurement error variance based
QL approach which is developed to accommodate either of the structural or
functional models or both. Liang and Liu [3] have discussed a BCQL approach
for structural model, which was later on generalized by Wang et al. [9] to ac-
commodate correlated replicates in covariates. Sutradhar and Rao [8] have
used the SVQL approach from [5] for the longitudinal binary data, indepen-
dence setup being a special case, under functional model only. In the next
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section, we provide a brief review of some of these existing simpler BCQL
approaches which are suitable for functional models.

In Section 3, we provide a softer BCQL (SBCQL) approach which provides
a first order approximate QL regression estimates. We give some remarks in
Section 4 on future works involving this binary measurement error model.

2 Some Bias Correction Estimation Approaches

2.1 Conditional Score (CS) Approach

To understand the conditional score approach, consider for example, the func-
tional version of the logistic measurement error model with scalar predictor
zi so that the measurement error vi in (1) follows N1(0, σ2

1) (see [6], Section
4.1). For convenience, consider δ = 1 in (1). In this case, the density of (yi;xi)
is given by

f(yi, xi;β, zi) = [
exp(z′iβ)

1 + exp(z′iβ)
]yi [

1

1 + exp(z′iβ)
]1−yi

1

σ1
φ(
xi − zi
σ1

),

where φ(.) is the standard normal density function. The estimation of β also
requires the estimation of the nuisance parameters zi or some functions of zi’s
for i = 1, . . . ,K. However, Stefanski and Carroll [7] have demonstrated that
the parameter dependent statistic λi = xi + yiσ

2
1β is sufficient for unknown

zi in the sense that the conditional distribution of (yi, xi) given λi does
not depend on the nuisance parameter zi. This fact was exploited to obtain
unbiased estimating equation for β using either conditional likelihood method
or mean variance function models (based on conditional density of yi given
λi) and quasi-likelihood methods. For the scalar regression parameter β, the
unbiased estimating equation has the form ([8], Eq. (2.10))

K∑

i=1

(λi − σ2
1β)(yi − p̃i) = 0, (2)

where p̃i = F [{λi−(σ2
1/2)β}β] with F (t) = 1/[1+exp(−t)]. Let β̂CNS denote

the solution of (2) for β.

2.2 Small Measurement Error Variance Based QL
(SVQL) Approach

Note that if zi were known, then one would have obtained a consistent esti-
mator of β by solving the so-called quasi-likelihood (QL) estimating equation
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K∑

i=1

zi(yi − μiz) =

K∑

i=1

ψi(yi, zi, β) = 0, (3)

where μiz = exp(z′iβ)/[1 + exp(z′iβ)] is the mean of yi. Note that this QL es-
timating equation is also a likelihood estimating equation. However, because
the true covariate zi is not observed, one can not use the estimating equation
(3) for the estimation of β.

Suppose that by replacing zi with xi in (3), one constructs a naive QL
(NQL) estimating equation, namely

K∑

i=1

xi(yi − μix) =
K∑

i=1

ψi(yi, xi, β) = 0, (4)

where μix = exp(x′iβ)/[1 + exp(x′iβ)]. Let β̂ be the naive estimator obtained
from (4). This estimator does not converge to β, it rather converges to a

different parameter say β(δΛ). Thus, the naive estimator β̂ is biased and
hence inconsistent for β. As a remedy, assuming that δ is small, by expanding
the expected function Ex

∑K
i=1 ψi(yi, xi, β) about δ = 0, and then equating

the expanded function to zero followed by replacing zi with xi and β with β̂,
one obtains a SVQL estimator of β [5] by using the iterative equation

β̂SVQL(δ) = β̂ +
1

2
δ2

[
−

K∑

i=1

p̂ixxix
′
i

]−1

×
[
K∑

i=1

p̂ixq̂ix{1− q̂ix}β̂′Λβ̂xi − 2p̂ixq̂ixΛβ̂

]
, (5)

(see also [8], Eq. (2.2), p. 181) where q̂ix = 1− p̂ix.

3 A Softer BCQL Approach Using Corrected
Estimating Function

We propose a bias correction approach along the lines of [4]. The difference
between Nakamura’s and our approach is that in [4] a corrected score function
	∗(β; y, x) is developed such that its expectation is the true but unknown score
function, that is, Ex[	∗(β; y, x)] = 	(β; y, z), and then solved the corrected
score equation for β obtained from 	∗(β; y, x), whereas in our approach we
develop a corrected quasi-likelihood function, say Q∗(y, x, β), such that

Ex[Q∗(y, x, β)] = ψ(y, z, β) =
K∑

i=1

zi[yi − exp(z′iβ)

1 + exp(z′iβ)
], (6)
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and then solve the corrected QL equation, that is, Q∗(β, y, x) = 0 for β. But,
because the true mean function is given by μiz = exp(z′iβ)/[1 + exp(z′iβ)], it
is difficult to derive the corrected QL function Q∗(y, x, β). However, a softer,
that is, a first order approximate BCQL (SBCQL) estimating function may
be developed as follows. We denote this SBCQL function as Q̃S(y, x, β) which
will be approximately unbiased for ψ(y, z, β), that is,

Ex[Q̃S(y, x, β)] � ψ(y, z, β).

Note that under the Gaussian measurement error model (1), that is when
xi ∼ Np(zi, δ2Λ), one obtains

Ex[exp(x′iβ − ξ)] = exp(z′iβ), (7)

Ex[{xi − δ2Λβ} exp(x′iβ − ξ)] = zi exp(z′iβ), (8)

where ξ = δ2

2 β
′Λβ. It then follows that

Ex

[{xi − δ2Λβ} exp(x′iβ − ξ)
1 + exp(x′iβ − ξ)

]
� zi exp(z′iβ)

1 + exp(z′iβ)
=
μWz,N

μWz,D

. (9)

Next because, the true QL function has the form

ψ(y, z, β) =

K∑

i=1

ziyi −
K∑

i=1

[
zi exp(z′iβ)

1 + exp(z′iβ)
],

by using (9), one may write a softer BCQL (SBCQL) estimating equation as

K∑

i=1

[
xiyi − {xi − δ

2Λβ} exp(x′iβ − ξ)
1 + exp(x′iβ − ξ)

]
= 0. (10)

We denote the solution of the SBCQL estimating equation (10) by β̂SBCQL.

However, because the first order approximation used in (9) may not be
able to reduce the bias sufficiently, we consider an improvement by writing

Ex

[{xi − δ2Λβ} exp(x′iβ − ξ)
1 + exp(x′iβ − ξ)

]
= Ex

[
Wx,N

Wx,D

]

� μWz,N

μWz,D

− ˆcov[Wx,N ,Wx,D]

μ̂2
Wz,D

+
μ̂Wz,N

μ̂3
Wz,D

v̂ar[Wx,D], (11)

where we use
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μ̂Wz,N =
1

K

K∑

i=1

[{xi − δ2Λβ} exp(x′iβ − ξ)]

μ̂Wz,D =
1

K

K∑

i=1

[1 + exp(x′iβ − ξ)]

v̂ar[Wx,D] =
1

K

K∑

i=1

[1 + exp(x′iβ − ξ)]2 − μ̂2
Wz,D

ˆcov[Wx,N ,Wx,D] =
1

K

K∑

i=1

[{(xi − δ2Λβ) exp(x′iβ − ξ)}{1 + exp(x′iβ − ξ)}
]

− μ̂Wz,N μ̂Wz,D (12)

We now re-write (11) as

Ex

[{xi − δ2Λβ} exp(x′iβ − ξ)
1 + exp(x′iβ − ξ)

+ tc

]
=
μWz,N

μWz,D

, (13)

where

tc =
cov[Wx,N ,Wx,D]

μ̂2
Wz,D

− μ̂Wz,N

μ̂3
Wz,D

v̂ar[Wx,D].

Thus, instead of (10), we now solve the improved SBCQL estimating equation
given by

K∑

i=1

[
xiyi − {xi − δ

2Λβ} exp(x′iβ − ξ)
1 + exp(x′iβ − ξ)

− tc
]

= 0. (14)

4 Concluding Remarks

Among many alternative bias correction approaches, in this paper, we have
reviewed the two widely used, namely, conditional score and small variance
based QL approaches. We have provided a new softer bias corrected QL
(SBCQL) approach and a further improvement as a generalization of the
classical QL approach in [10]. We are currently working on the finite sam-
ple performance of the proposed approach and the results will be reported
elsewhere.

Acknowledgements. The authors would like to thank two referees for their com-
ments on the last version.
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Multi-dimensional Failure Probability
Estimation in Automotive Industry
Based on Censored Warranty Data

Mark Last, Alexandra Zhmudyak, Hezi Halpert,
and Sugato Chakrabarty

Abstract. The warranty datasets available for various car models are charac-
terized by extremely imbalanced classes, where a very low amount of under-
warranty vehicles have at least one matching claim (“failure”) of a given type.
The failure probability estimation becomes even more complex in the pres-
ence of censored warranty data, where some of the vehicles have not reached
yet the upper limit of the predicted interval. The actual mileage rate of under-
warranty vehicles is another source of uncertainty in warranty datasets. In
this paper, we present a new, continuous-time methodology for failure prob-
ability estimation from multi-dimensional censored datasets in automotive
industry.

Keywords: Automotive Industry, censored data, multi-dimensional failure
prediction, warranty data.

1 Introduction

Auto manufacturers are interested in estimating the probability of a failure
expected in certain systems or subsystems of an individual under-warranty
vehicle within a given time and mileage range as a function of various predic-
tive factors. For example, an automaker may be interested in estimating the
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probability of a tire failure in a specific vehicle during the next three months
and 5,000 miles. In case of the failure probability exceeding a pre-defined
threshold, the car owner may be issued a warning suggesting to visit an au-
thorized dealer at his/her earliest convenience. Ideally, if on-board diagnostic
systems were installed in every vehicle, it would be possible to record all the
necessary data in a vehicle and determine its condition in real-time. Since
such diagnostic systems are not present in every vehicle, due to cost and
other issues, the next best source of data happens to be the warranty data of
past failures. However, the warranty datasets often include “right-censored
data”, where some of the vehicles have not reached yet the warranty limit or
even the upper limit of the prediction interval and thus can produce warranty
claims after the cutoff date of the data collection process. The vehicle usage
rate provides an additional aspect of uncertainty in warranty datasets. Since
the vehicle mileage is recorded only at the time of a claim, the actual mileage
rate of non-claimed vehicles is not known at all, whereas vehicles with past
claims provide us only partial information for estimating their current us-
age rate. In this paper, a new, continuous-time methodology is presented for
failure probability estimation from multi-dimensional censored datasets.

The rest of this paper is organized as follows. In Section 2, we provide
a brief overview of previous works on failure probability estimation from
warranty claims data. Our approach to failure probability estimation is pre-
sented and demonstrated on a small numeric example in Section 3. Section 4
concludes the paper with an outline of some future research directions.

2 Related Work

Assuming that the failure data are collected up to some current date (also
called “database cutoff date”), Hu et al. [2] define the censoring time as the
minimum of the vehicle’s current mileage and the mileage at which it passes
out of the warranty plan. The observed data includes only failures, which
occurred before the censoring time of a given vehicle. The paper [2] shows
that if the censoring time distribution G is known and the time-to-failures can
only take discrete values (e.g., one day, two days, etc.), the failure probability
in a given discrete period t (e.g., on day 30 or day 45) can be estimated by
the following maximum likelihood formula:

f̂ML(t) =
nt

MG(t)
(1)

Where nt is the number of failures observed at time t and M is the total
population size of the model in question. Thus, the failure probability is
estimated as a ratio between the number of failures in a given, relatively
short period t and the proportion of vehicles whose censoring time is at least
equal to t. This discrete-time approach totally ignores the duration of the
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prediction interval t whereas summing the failure probabilities over multiple
periods may require rescaling of each estimate [2]. A similar approach is used
by Majeske [3] to estimate the cumulative number of warranty claims up to
time in service t. He calculates the number of vehicles at risk at the time in
service t (measured in months) by removing from the population all vehicles
that exceeded one of the warranty limitations (time or mileage) at time t.
However, these and other previous works on failure probability estimation
in automotive industry do not provide any direct method for calculating the
failure probability of a specific vehicle in an arbitrary one-dimensional interval
or two-dimensional cell of continuous attributes (such as mileage and/or time-
in-service) given censored warranty data with partial usage observations.

To forecast the future usage of each vehicle from its last recorded claim
until the end of its observable life, [1] uses the average rate of mileage ac-
cumulation over time between the sale date and the vehicle last claim. The
vehicles without claims are assumed to have the same distribution of daily
mileage rate as vehicles with claims. Contrary to the approach of [1], the
author of [4] argues that in general, the usage (e.g., mileage) distributions
of non-failed products are different from those of failed products. The actual
usage distributions of such products (like vehicles without claims) may be
obtained using the supplementary data approach. Customer surveys and pe-
riodic inspections are suggested as two potential sources of supplementary
usage data.

3 Failure Probability Estimation from Censored
Warranty Data

The sub-sections of this section present the following parts of the fail-
ure probability estimation process given censored data with partial usage
observations:

• Mileage rate estimation for claimed and non-claimed vehicles
• Failure probability estimation in one continuous dimension (e.g., mileage

or time in service)
• Failure probability estimation in two continuous dimensions (e.g., mileage

and time in service)

We estimate failure probability from a dataset of vehicles and their warranty
claims. Our approach is demonstrated on a small sample of simulated war-
ranty data. Let us assume that the cutoff date of our dataset is 08/23/11 and
it includes five vehicles and three claims (see Table 1). The index k repre-
sents the identification number of an individual vehicle in the warranty data.
DISk stands for the k − th vehicle days in service on the cutoff date. All
three claims are related to battery failure.
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Table 1 Vehicles data

k Sale Date DISk on
the Cutoff
Date

Claim Date Odometer
on Claim
Date

DISk

on
Claim
Date

Failure Type

1 02/24/11 180 05/13/11 2800 78 Battery

2 04/01/11 144
3 05/01/11 114
4 06/01/11 83 06/15/11 600 14 Battery
5 05/24/11 91 08/23/11 4550 91 Battery

3.1 Mileage Rate Estimation

Our method of failure probability estimation is based on the mileage Mk of
a vehicle k on the cutoff date of the warranty dataset. However, the exact
mileage is known only for claimed vehicles on the claim date, whereas for all
other vehicles we can only estimate mileage according to the Mileage-per-
Day (MPD) distribution of all vehicles or the previous claims. Our mileage
estimation procedure follows a common assumption that during the warranty
period, the usage rate of a given vehicle does not change significantly over
time. In our example we assume that the MPD distribution table contains
the following three bins only: 0 (Prob. = 0.008), 30 (Prob. = 0.6), and 45
(Prob. = 0.392 ). Each vehicle can belong to one of three following cases:

1. The vehicle k had exactly one claim of any type before the cutoff date
2. The vehicle k had more than one claim of any type before the cutoff date
3. The vehicle k had no claims before the cutoff date

In the first case, the mileage rate is calculated as the ratio between mileage
and days in service at the first claim (denoted by M1

k and DIS1
k, respectively).

Consequently, the mileage at the cutoff date is found by the following formula:

Mk =
M1

k

DIS1
k

×DISk (2)

Equation 2 applies to vehicles 1,4,5 in Table 2.
In the second case, the mileage rate is calculated from the mileage and days

in service at the last two claims (l and l − 1) using the following formula:

Mk = M l
k +

M l
k −M l−1

k

DISl
k −DISl−1

k

× (DISk −DISl
k) (3)

where DISl
k is the vehicle’s days in service at claim l.



Multi-dimensional Failure Probability Estimation 511

Finally, a vehicle without claims (Case 3) is represented by portions of
mileage rates taken from the mileage per day (MPD) distribution of all ve-
hicles. It is assumed here that a MPD distribution is available for use, but
the proposed method does not depend on how the MPD is calculated. The
cutoff date mileage of j-th portion of a vehicle k is calculated by:

M j
k = MPDj ×DISk (4)

where MPDj is the mileage per day value in the j-th bin of the MPD distri-

bution table. The cutoff date mileage M j
k is stored for the j-th portion of a

vehicle k along with Pj - the proportion of vehicles having MPDj. Equation
4 applies to vehicles 2,3 in Table 2.

Table 2 Mileage Estimation

k Equation Mileage1 Mileage2 Mileage3

1 2 6462
2 4 0 4320 6480
3 4 0 3420 5130
4 2 3557
5 2 4550

3.2 Failure Probability Estimation in One Continuous
Dimension

Let us first describe our failure probability calculation method for the Days-
in-Service (DIS) dimension, which is always known exactly for every sold
vehicle. We calculate the number of potential claims in the interval [Ix−1; Ix)
as follows:

• For vehicles which had at least one claim in the interval [Ix−1; Ix), the
number of potential claims is equal to the number of actual claims. This
assumption eliminates the possibility of obtaining failure probabilities
greater than one, especially in case of small intervals with a low number
of claims.

• Vehicles which have not reached the lower bound of the interval on the
cutoff date cannot produce claims in this interval and their potential is
zero.

• Take relative portions of vehicles which have crossed the lower bound
but have not reached the upper bound of the interval on the cutoff date.
This differs from the existing discrete-time approaches that assume the
potential of such vehicles to be zero as well.
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• Vehicles which have crossed the upper bound of the interval on the cutoff
date have a potential of one claim. This is a reasonable assumption as
most failure types have a very low probability of more than one claim per
vehicle during the entire warranty period.

We define the following parameters:

N [Ix−1; Ix) - total number of actual claims inside the interval [Ix−1; Ix)
D[Ix−1; Ix) - total number of potential claims between Ix−1 and Ix
ck[Ix−1; Ix) - number of claims for a vehicle k inside the interval [Ix−1; Ix)
portionk - the potential of a vehicle k to produce a claim inside the interval

[Ix−1; Ix) based on its days in service.
The equations of failure probability estimation in the DIS interval [Ix−1; Ix)

are:

P [Ix−1; Ix) =
N [Ix−1; Ix)

D[Ix−1; Ix)
(5)

D[Ix−1; Ix) =
∑

k

((portionk), ck[Ix−1; Ix) = 0) + N [Ix−1; Ix) (6)

portionk =

⎧
⎨

⎩

0, DISk < Ix−1
DISk−Ix−1

Ix−Ix−1
, Ix−1 ≤ DISk < Ix

1, DISk ≥ Ix

(7)

ck[Ix−1; Ix) = 0 means that vehicle k does not have claims inside the interval
[Ix−1; Ix).

We assume the failure rate inside interval to be fixed because the interval
size is relatively small. In the case of longer intervals, variable failure rate
may be assumed.

Mileage is also a continuous dimension, but unlike days-in-service it can
only be estimated for each vehicle. According to the approach presented in
sub-section 3.1 above, we divide each vehicle k into portions with each portion
j having its own mileage value M j

k .
Thus, we define the following additional parameters:

Mk - total mileage for vehicle k on the cutoff date
j - MPD bin index
M j

k - total mileage of vehicle k for a specific bin MPDj

Pj - probability of the MPD bin j

portionj
k - the potential of a portion j of a vehicle k to produce a claim

inside the interval [Ix−1; Ix) based on its mileage

The number of potential claims in the mileage interval [Ix−1; Ix) is calculated
by the following formulas:
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D[Ix−1; Ix) =
∑

k

(
∑

j

(portionj
k), ck[Ix−1; Ix) = 0) + N [Ix−1; Ix) (8)

portionj
k =

⎧
⎪⎨

⎪⎩

0, M j
k < Ix−1

Mj
k−Ix−1

Ix−Ix−1
× Pj , Ix−1 ≤M j

k < Ix

Pj , M j
k ≥ Ix

(9)

3.3 Failure Probability Estimation in Several
Continuous Dimensions

First let us assume that our failure prediction model is based on two continu-
ous attributes (dimensions): DIS and Mileage. This means that we are inter-
ested in failure probabilities given combinations of DIS intervals and mileage
intervals of arbitrary length. Now we define the following parameters:

f -attribute index. We assume that f = 1 for DIS and f = 2 for Mileage.
[Ifx−1; Ifx ) - interval from Ix−1 value to Ix value of continuous attribute f .
comb = [[I1x−1; I1x), [I2y−1; I2y )] - combination of DIS and Mileage intervals.
In our example comb = [0; 90), [0; 4500), where DIS interval is [0; 90) and

Mileage is [0; 4500).
ck[comb] - number of claims for the vehicle k inside comb
j- MPD bin index
Pj - probability of the MPD bin j
af,k - attribute f value for vehicle k on the cutoff date. We show the values

of a1,k in the column “DISk on the Cutoff Date” of Table 1.
Ncomb - number of actual claims in the combination comb
Dcomb - number of potential claims in the combination comb
portion1,k - claim potential of a vehicle k based on its days in service.

portionj
2,k - claim potential of a j-th portion of a vehicle k based on its

mileage
The failure probability in each combination is estimated using the following

formulas:

Pcomb =
Ncomb

Dcomb
(10)

As shown below, in our example, P[0;90)[0;4500) = 2/4.816 = 0.4153.

Ncomb =
∑

k

ck[comb] (11)

In our example, N[0;90),[0;4500) = 2 (Vehicles 1 and 4 in Table 1).

Dcomb =
∑

k

((portion1,k) ∗ (
∑

j

portionj
2,k), ck[comb] = 0) + Ncomb (12)
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In our example, Dcomb = 0.968 + 0.848 + 1 + 2 = 4.816.

portion1,k =

⎧
⎪⎨

⎪⎩

0, a1,k < I1x−1
a1,k−I1

x−1

I1
x−I1

x−1
, I1x−1 ≤ a1,k < I1x

1, a1,k ≥ I1x

(13)

For vehicle number 2 with respect to dimension 1 (DIS) portion1,2 = 1.

portionj
2,k =

⎧
⎪⎪⎨

⎪⎪⎩

0, aj2,k < I2y−1
aj
2,k−I2

y−1

I2
y−I2

y−1
∗ Pj , I2y−1 ≤ aj2,k < I2y

Pj , aj2,k ≥ I2y

(14)

For vehicle number 2 with respect to dimension 2 (mileage) portion1
2,2 =

0, portion2
2,2 = 4320−0

4500−0 ∗ 0.6 = 0.576, portion3
2,2 = 1 ∗ 0.392 = 0.392.

For each combination of attribute intervals, the number of actual claims
is calculated by equations [10-14]. The above procedure can be easily ex-
tended to l continuous attributes with known (like DIS) or estimated (like
mileage) values. In this case, each combination will be defined by l intervals
of l continuous attributes.

4 Conclusions and Future Work

In this short paper, we have presented a new, continuous-time approach to
failure probability estimation from multi-dimensional censored datasets in
automotive industry. The proposed approach was demonstrated on a small
numeric example. Future research directions include extending this approach
to censored datasets from other multi-dimensional domains (e.g., credit ap-
proval). To compare our approach with other probability estimation methods,
we can use the estimated probabilities to induce failure prediction models and
evaluate the accuracy of these models using ROC analysis.

Acknowledgements. This work was supported in part by the General Motors
Global Research & Development – India Science Lab.
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Resolution of Inconsistent Revision
Problems in Markov Networks

Aljoscha Klose, Jan Wendler, Jörg Gebhardt, and Heinz Detmer

Abstract. The item planning system at Volkswagen uses Markov networks
in its core, with revision of item demands being one of the most important
operations. The represented dependencies and given stipulations of the ap-
plication are highly complex and make the revision problems prone to incon-
sistencies. We present an approach that solves inconsistent revision problems
by fair adaptations of the conflicting probability assignments and fits neatly
into the knowledge-based setting of Markov networks.

Keywords: Item planning, markov networks, revision inconsistencies.

1 Item Planning at Volkswagen Group

The Volkswagen Group favors a marketing policy that provides their cus-
tomers with a maximum degree of freedom in choosing individual specifica-
tions of vehicles. In case of the VW Golf—being Volkswagens most popular
car class—there are about 200 item families with typically 4 to 8 (but up
to 150) values each, that together fully describe a car to be produced, and
many of these families can directly be chosen by the customer. Although of
course not all item combinations are possible, the customers utilize the given
variety, as in spite of the vast number of produced cars only a diminishing
fraction thereof are completely identical.
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The EPL software system at Volkswagen Group (EPL for EigenschaftsPLa-
nung) supports item planning, parts demand calculation, and capacity man-
agement for short- and medium-term forecasts. The high quality of planning
results is achieved by a combination of several relevant information sources:
rules describe buildable vehicle specifications, production history reflects cus-
tomers preferences, and market forecasts lead to stipulations of modified item
rates and capacity restrictions.

Since logical rule systems can be transformed into a relational setting,
and rates for item combinations may be identified as (frequentistic or sub-
jective) occurrence probabilities, it suggests itself to model the item demand
as a probability distribution. The enormous complexity, however, makes it
necessary to decompose this distribution using a graphical model [7, 6, 1].
Especially Markov networks turned out to be the most promising environ-
ment to satisfy the given modeling purposes.

The modeling of EPL in general and details of the revision operation, which
is central for the application, can be found in [3, 4]. We will outline only the
most important features of Markov networks and the revision operation in the
next section. Section 3 describes why inconsistencies in the planning process
are hardly avoidable. The original revision operation does not cope well with
inconsistent revision problems. In Section 4 we present our approach to fairly
resolve inconsistencies by a construct we named partition mirrors.

2 Markov Networks and the Revision Operation

Suppose that we are given a Markov network M = (H,Ψ) which represents
a joint probability distribution P (V ) on a set V = {X1, ..., Xn} of variables
with finite domains Ω(Xi), i = 1, ..., n. We assume that H = (V, {C1, ..., Cm})
denotes a hypertree and Ψ = (P (Cj))

m
j=1 a family of probability distributions

defined on the (maximal) cliques of H . In this setting, H and its associated
undirected dependency graph G(H) reflect the conditional independencies
between the involved variables, and Ψ shows the resulting factorization prop-
erty P (V ) =

∏m
j=1 P (Cj)/P (Sj), where Sj symbolize the separators in some

representation of H as a tree of cliques.
In addition, let Σ = (σs)

S
s=1 be a so-called revision structure that consists

of revision assignments σs, each of which refers to a (conditional) assignment
scheme (Rs|Ks) with a context scheme Ks, Ks ⊆ V and a revision scheme Rs,
where ∅ �= Rs ⊆ V . We assume that σs is specified by a set of assignment

components P ∗(ρ
(l)
s |κs), where κs ⊆ Ω(Ks) is its context component and

ρs
(l) its revision component, respectively. The set {ρ(l)s |l = 1, ..., l∗(s)} forms

a partitioning of Ω(Rs). Hence, each revision assignment specifies the modi-
fications of a probability distribution P (Rs|κs). In case of the empty scheme
Ks = ∅, we deal with an assignment of the (non-conditioned) probabilities

P ∗(ρ
(l)
s ).
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Finally, we suppose that for all s = 1, ..., S there are cliques C(s) ∈
{C1, ..., Cm} such that Ks ∪ Rs ⊆ Cj(s). This guarantees that we do not
have cross-over dependencies between cliques, which could not be expressible
in the structure of the given Markov network.

Let M = (H,Ψ) be a Markov network with associated joint probability
distribution P (V ). Furthermore, let Σ = (σs)

S
s=1 be a revision structure. A

probability distribution PΣ(V ) is called solution of the revision problem
(P (V ), Σ), if and only if the following conditions hold:

• The revision assignments are satisfied:

(∀s ∈ {1, ..., S})(∀l ∈ {1, ..., l∗(s)})
(
PΣ(ρ(l)s |κs) = P ∗(ρ(l)s |κs)

)

• The interaction structure is preserved: Except from the modifica-
tions induced by the revision assignments, PΣ(V ) holds all probabilistic
dependencies of P (V ).

Essentially, the required preservation of the interaction structure coincides
with the decision-theoretical presupposition that the revision operator does
not modify the cross product ratios of conditional events outside the influence
areas of the revision assignments (principle of minimal change [2]).

It can be proven (cf. [4]) that in case of existence, the solution of the
revision problem (P (V ), Σ) is uniquely defined. PΣ(V ) can be calculated
as the limit probability distribution when the revision procedure of iterative
proportional fitting [8] with parameters Σ is applied to the initial distribution
P (V ).

3 Inconsistencies

From a practical point of view, in most cases of real world applications of
sufficient complexity, we have to take into account that revision problems
(P (V ), Σ) specified by human experts are not solvable. The reason for that
observation is the fact that revision problems Σ = (σs)

S
s=1 tend to contradict

to some of the restrictions given by the zero values of the initial probability

distribution P (V ). Note that assignment components P ∗(ρ
(l)
s |κs) > 0 may

require to change some probabilities P (ω) = 0 to a strictly positive value.
This kind of modification does not conform with the dependency preservation
requirement of the revision operator, as zero probabilities show the absence
of any interaction structure. Hence, a resulting probability PΣ(ω) > 0 would
introduce a new interaction structure, which is the typical focus of the (in
some sense complementary) updating operations.

Such zero-probabilities P (ω) = 0 are typically generated by the rule system
that introduces dependencies between variables in the form of impossible
combinations.
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Fig. 1 Example of in-
consistent stipulations.
The grayed out combi-
nations (a3, b1), (a3, b3),
and (a2, b3) have zero
probability, i.e. they are
invalid. The revision
generates alternating dis-
tributions as indicated by
the separating slashes.
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We will introduce a simple example of inconsistent stipulations that we
will use to demonstrate the ideas of our approach. We consider two variables
A and B with values ai, i = 1...3 and bi, i = 1...3. We assume that there
are two rules, “a3 induces b2” and “b3 induces a1”. Therefore the combina-
tions (a3, b1), (a3, b3), and (a2, b3) are not valid, i.e. they have zero prob-
ability that cannot be increased by the revision operation. The partitions

ρ
(l)
s of the revision problem correspond directly with the values of A and B,

the context scheme Ks is empty. The probability assignments are shown in
Fig. 1. The problem is obviously not solvable, e.g. from (b3 → a1) follows
that P (a1) ≥ P (b3), which is in conflict with P ∗(b3) = 0.9 and P ∗(a1) = 0.7.
The iterative revision algorithm will not converge to a final distribution. In-
dependently of the initial distribution, the revision will oscillate between two
limit distributions as shown in the figure, showing that the revision problem
is inconsistent.

The planning experts at Volkswagen are confronted with a very high
complexity. The number of families and items, and their complex—often
transitively induced—dependencies make it almost impossible to assign non-
conflicting stipulations. In previous work our focus was to support the users
of EPL in avoiding, detecting and explaining inconsistencies.

However, it turned out that inconsistencies are not only hard to avoid,
but sometimes express the concurring interests of different planning roles.
The most apparent conflict exists between market oriented and production
oriented planning. The former is stating what customers would like to buy;
the latter describes what can be produced, considering capacities of item
suppliers and production plants.

The most important tool for dealing with such inconsistencies is the intro-
duction of priorities for stipulations. We implemented an algorithmic frame-
work for the revision that iteratively processes the stipulations in order of
their priority, decides whether the resulting planning is conflicting, and au-
tomatically adapts the stipulations to the closest consistent values. Details
on the efficient implementation of this approach can be found in [5].

This algorithm guarantees that for a set of inconsistent stipulations the
stipulation with the weakest priority is adapted. This paper deals with a dif-
ferent requirement that arose from the application. While it is quite natural
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to prioritize production capacities over market demands, the assignment of
priorities for stipulations of one planning role is often not obvious. Moreover,
it is often desirable that in case of inconsistencies several conflicting stipula-
tions are commonly adapted. A typical example are a number of country-wise
stipulations stating the market demand for an item, being in conflict with
a global capacity stipulation for that item. In that case, the capacity stip-
ulation has certainly a higher priority. The shortage of the item, however,
should be fairly compensated between all countries, instead of fully meeting
the demand of some higher prioritized countries whilst allocating nothing to
the lower prioritized ones.

Therefore the task was to devise an approach to automatically adjust the
probability assignments of a set of concurring, equally prioritized stipulations
in a fair and consistent way. An obvious idea is to allow certain deviations
between the probability assignments made by the user and those used in the
system. These deviations should be optimized according to some measure. A
measure like least squared error is commonly used to average deviations. How-
ever, the approach must fit into our probabilistic, knowledge-based setting.
It should take the principle of minimal change into account. Furthermore,
the algorithm needs to be efficient enough to be used with a large number of
stipulations. Therefore, we propose the following approach.

4 Partition Mirrors

If planning problems contain inconsistencies, the probabilities assigned by
the experts can obviously not be completely right. Therefore, the basic as-
sumption of our approach is that stipulations are slightly distorted versions
of unknown, true probability assignments. The given stipulations are only
probably right.

From the perspective of knowledge representation with Markov networks,
this is modeled by introducing mirror variables into the network structure,
couple the states of these variables to their origins by suitable initial distri-
butions, and reformulate the stipulations to assign probabilities to these new
variables.

Fig. 2 Temporary mod-
ification of the clique
structure: the partition
mirror cliques are at-
tached to the Markov
network structure
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...
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More precisely, for each stipulation σs with revision scheme Rs and a con-
text component κs, we introduce a mirror variable R′

s with one corresponding

state ρ′(l)s for each assignment component partition ρ
(l)
s .1 σs is then replaced

by a stipulation σ′
s with the same values, but using ρ′(l)s instead of ρ

(l)
s .

We then have to define the interaction structure between Rs and R′
s. If

there were no distortions, it would holdR = ρ′(l)s ⇔ R′ = ρ
(l)
s givenK = κs. If

distortions are considered possible, though highly improbable, and taking into
account that no further information on the distortions is given (insufficient
reasoning principle), we set the following conditional probabilities:

P (R′
s = ρ′(l1)s |Rs = ρ(l2)s ,K = κs) :=

{
1− ε · (|Ω(R′

s)| − 1), if l1 = l2
ε, else.

For the compensation algorithm we make a (notional or temporary) modifica-
tion of the Markov network structure as shown in Fig. 2. For each stipulation
σs, there exists by definition a clique Cj(s) with Ks ∪ Rs ⊆ Cj(s), to which
we attach a new clique C′

s = Ks ∪ Rs ∪ R′
s. This clique’s potential distri-

bution can be calculated as P (Rs, R
′
s,K) = P (R′

s|Rs,K) · P (Rs,K). The
replacement stipulation σ′

s can be assigned to this clique. We call these cliques
partition mirrors.

Our approach can cope with both, outer and inner inconsistencies2, be-
cause an independent partition mirror is introduced for each stipulation σs,
even if several stipulations use intersecting or equal revision schemes Rs.

The revision is performed without further modifications, and the revision
problem is guaranteed to be solvable. Generally, the revision operation in-
creases any epsilon-cells of the cliques’ potentials to significant probabilities
if and only if there are inconsistencies that directly force some probability
mass on these combinations. For the partition mirrors this means that dis-
tortions of the original stipulations, i.e. combinations (ρi, ρ

′
j), i �= j, only

occur if there is no other solution of the revision problem. The inconsistency
mass of the revision problem equals the probability mass on these cells. Fur-
thermore, if several stipulations are involved in an inconsistency, the revision
distributes the inconsistency mass fairly among the corresponding partition
mirrors, again according to the principle of minimal change, taking into ac-
count the initial distribution and the stipulations.

In the following we will show the results of applying the partition mirrors to
our simple example. Therefore, we introduce two new variablesA′ andB′, and
two cliques {A,A′} and {B,B′} for the partition mirrors. The stipulations

1 Notice that we introduce only one mirror variable R′
s, even if the revision scheme

Rs is multi-dimensional.
2 Outer inconsistencies are caused by inter-variable dependencies induced by rules;
inner inconsistencies are caused by concurring probability assignments for the
same variables. For a simple example of an inner inconsistency consider a variable
A with values a1 and a2, and probability assignments P ∗(a1) = 0.8 and P ∗(a2) =
0.8.
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Fig. 3 Probabilities of Markov network (potential of clique {A,B}) and partition
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Fig. 4 Resulting probabilities of the partition mirrors and adapted stipulations.
The shadowed cells of the partition mirrors hold significant inconsistency mass.

are transformed to assign probabilities P ∗(A′) and P ∗(B′). We assume that
the allowed combinations of P (A,B) are initially equally probable. With the
partition mirrors initialized as described above and initial propagation from
the original Markov network into the partition mirror cliques, we get the
situation as shown in Fig. 3.

After application of the revision operation, the Markov network holds the
probabilities as shown in Fig. 4. As can be seen, the total inconsistency mass

is 20%(=
∑
s

∑
i�=j P (ρ

(i)
s , ρ′(j)s ) = 7.9%+1.4%+1.4%+9.3%). The marginal

distributions P (A) and P (B) can be interpreted as the true, initially unknown,
consistent stipulations for the “distorted” stipulations made by the expert.

4.1 Conclusions and Remarks

The presented approach of partition mirrors is suited to transform any incon-
sistent revision problem into a solvable one. The solution of the transformed
revision problem yields a fair, probabilistically sound compensation of the
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conflicting probability assignments, and allows to determine the total incon-
sistency mass.

It is not necessary to mirror all stipulations. On the contrary, it is often
reasonable to use the original assignments for higher prioritized stipulations
(that should not be distorted), and use partition mirrors only for potentially
conflicting lower prioritized stipulations, like in the example mentioned above
with a global item capacity and country-wise stipulations for the same item.

The performance of the approach is quite reasonable. The size of a parti-
tion mirror is quadratic in the number of revision components |R′

s|, which is
harmless compared to the usual cliques’ potential sizes. However, the speed
of convergence depends on several factors. In case of inconsistencies, the re-
vision operation ends when the inconsistency mass is shifted to the epsilon
cells of the partition mirrors. The smaller the initial epsilons are chosen, and
the smaller the adaptation factors of the iterative proportional fitting are,3

the more iterations are needed for the revision to converge. It is therefore
important to find an appropriate initial epsilon. Small values lead to many
iterations, and large values may reduce overall accuracy of the result.

In our implementation we use initial epsilon values a magnitude below the
revision accuracy required by the experts. However, we found the choice not
to be that critical, and the approach in general to be rather robust. This
is especially true, when it is used only for stipulations that already turned
out to be inconsistent, as it is the case in our inconsistency management
framework [5].
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Analysis of Dynamic Brain Networks
Using VAR Models

Christian Moewes, Rudolf Kruse, and Bernhard A. Sabel

Abstract. In neuroscience it became popular to represent neuroimaging data
from the human brain as networks. The edges of these (weighted) graphs rep-
resent a spatio-temporal similarity between paired data channels. The tem-
poral series of graphs is commonly averaged to a weighted graph of which
edge weights are eventually thresholded. Graph measures are then applied to
this network to correlate them, e.g. with clinical variables. This approach has
some major drawbacks we will discuss in this paper. We identify three limi-
tations of static graphs: selecting a similarity measure, averaging over time,
choosing an (arbitrary) threshold value. The latter two procedures should
not be performed due to the loss of brain activity dynamics. We propose to
work on series of weighted graphs to obtain time series of graph measures.
We use vector autoregressive (VAR) models to facilitate a statistical analy-
sis of the resulting time series. Machine learning techniques are used to find
dependencies between VAR parameters and clinical variables. We conclude
with a discussion and possible ideas for future work.

Keywords: Dynamic networks, elctroencephalography, neuroimaging, re-
gression, vector autoregressive model.

1 Introduction

In the last decade, a new trend in neuroscience emerged which focuses on the
analysis of complex functional brain networks (see e.g. [18]). These networks
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are obtained from neuroimaging data by several technologies, e.g. electroen-
cephalography (EEG), electrocorticography (ECoG), magnetoencephalogra-
phy (MEG) or functional magnetic resonance imaging (fMRI). These methods
record activities of brain regions (e.g. on the skull, on the brain meninges or
inside of the brain). We denote these brain regions as variables. The sampling
rates of the data highly depend on the chosen method (kHz for EEG, MEG
and ECoG, Hz for fMRI).

Whenever two brain regions are co-active, they are connected to each other.
This connection induces a complex brain network that gives some high-level
representation of the really connected nervous cells of the brain. There is
general consensus that the analysis of such brain networks will help to better
understand the functionality of different brain centers and the brain as a
whole [15]. Clearly, if the dynamic behavior of such networks is ignored,
then valuable information will be lost pertaining to the brain networks being
studied.

While it is challenging to even define nodes for brain networks [2], here this
definition is explicitly given by a specific application. We discuss the analysis
of dynamic brain networks obtained from patients’ EEG. The patients from
which we recorded EEGs have visual field deficits (visual impairments) that
resulted from optic nerve damages [21]. Our goal is to find network features
that correlate with clinically relevant variables. Since we deal with (partly)
blind subjects, we assume that it has an effect on their functional connectivity
networks. We also hypothesis that there is a correspondence between the
extend of the vision loss and the dynamics of the brain connectivity.

It is well-known that brain damage leads to significant and long-lasting
neurological deficits, e.g. paralysis or blindness. Therefore, it is of interest to
study the relationship between the structural network damage and the func-
tional one that might be observable by neuroimaging methods. The first study
related to this problem was performed by C. Stam in 2007 [16]. His group
analyzed the differences in EEG data between 15 patients with Alzheimer’s
disease (AD) and 13 control subjects. Functional connectivity was computed
using synchronization likelihood (SL) [17] and the obtained brain network
were measured by small-world network criteria [19]. Correlating these mea-
sures with clinical variables, they showed that AD is characterized by a loss of
small-world network characteristics. Note that they used an averaged network
with thresholded edge weights to eventually obtain an unweighted graph.

While we also describe brain networks using SL (to facilitate the choice
of one similarity measure between two EEG channels), a previous analysis
with averaged unweighted networks did not result in high correlations using
a variety of graph measures [7]. So, in this paper we are going to extend
this approach manifold: (1) we consider the complete series of EEG networks
without averaging over time, (2) we study weighted networks without any
edge weight threshold, (3) we use machine learning techniques to find depen-
dencies between network measures and output variables instead of correlation
coefficient analyses.
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2 Functional Connectivity

To obtain a complex brain network from neuroimaging data, it is necessary to
define and measure functional connectivity of two brain regions. Estimating
functional connectivity does not find causal connections inside the human
brain. Functional connectivity can only be interpreted as statistical relation-
ship between brain regions without implying any causal coherence [11]. Nat-
urally a variety of different functional connectivity methods can been found
in the literature (see [20] for a good overview on EEG measures).

Here, we only introduce the concept of SL [17]. Consider a multivariate
time series (e.g. a multichannel EEG recording) of length N with n variables.
Let measurement xi,k be observed at timestamp i in channel k. Firstly, a
time-delay embedding is computed by

Xi,k =
(
xi,k, xi+L,k, xi+2·L,k, . . . , xi+(m−1)·L,k

)

where L is the lag and m the dimension of the embedding. These state vectors
Xi,k shall capture the relevant patterns of the signal. Now consider only two
channels A,B. Then, the probability that Xi,k are closer to each other than
ε is

P εi,k =
1

2(W2 −W1)

N∑

j

W1<|i−j|<W2

θ(ε− d(Xi,k, Xj,k))

where d is typically the Euclidean distance. For each k and i the critical
distance εi,k is computed such that P

εi,k
i,k = pref whereas pref � 1 is some

user-defined threshold. Then, for each pair of points in time (i, j) within
W1 < |i−j| < W2, the number of channels Hi,j for which d(Xi,k, Xj,k) < εi,k
is computed by

Hi,j = θ(εi,A − d(Xi,A, Xj,A)) + θ(εi,B − d(Xi,B , Xj,B))

where θ(x) = 0 if x ≤ 0 and θ(x) = 1 for x > 0. The synchronization
likelihood is then given by

SLi =
1

2pref(W2 −W1)

N∑

j

W1<|i−j|<W2

(Hi,j − 1) (1)

The set of free parameters for SL can be reduced down to a size of two by
prior information about the frequency range and temporal resolution of the
signal [10].



528 C. Moewes, R. Kruse, and B.A. Sabel

3 Brain Graphs

A brain graph is created when computing functional connectivity, e.g. using
SL, for each pair of variables at a given point in time. Such a network simply
serves as graphical representation of pairwise statistical dependencies among
all variables. Typically, these networks are described by graph measures (e.g.
density, clustering coefficient, average path length). Usually, the hope is that
they might correlate to clinical variables. Due to simplicity, we demand that
brain graphs are simple, i.e. they do not have any loops or multiple edges.
Since dealing with SL, we know that the brain graphs are symmetric.

3.1 The Meaning of Edges

An edge represents some kind of statistical dependency between two brain
regions, i.e. functional connectivity. The edge weight corresponds to the
strength of the functional connectivity. Most measures are normalized to [0, 1]
or [−1, 1] which enables a straightforward interpretation of an edge weight.
Commonly, researchers do not use weighted edges for graph analysis. Instead
an arbitrarily chosen threshold is used to cancel out edge with “low” weights.
Clearly, the remaining edges are unweighted. Despite the loss of informa-
tion, some researchers argue that one can show different effects with a binary
graph [13].

4 Critical Remark and Proposal

So far, we just reported standard techniques that convert neuroimaging data
into brain networks. Let us now consider a critique we face when dealing with
this approach and how to handle this problem.

We mainly argue that averaging brain graphs over time is generally not
beneficial. Averaging should only be permitted if the variations of the binary
time series (unweighted edge) or the numerical time series (weighted edge)
were close to zero and stationary. To illustrate this, just consider a graph
with two nodes, one edge and a linear trend in the evolution of the edge
weight. Then, averaging would diminish this important information. In our
application, a static analysis did not show very high correlations [7]. We will
present much stronger correlations in Section 5 using the following approach.

Remember that the patients are at rest. Thus every EEG time series can
have a different length and so does the series of networks. Now, recall that
certain graph measures are applied to each network to find global relations
between them and clinical variables. The series of networks is eventually
transformed into a multivariate time series of real-valued graph measures.
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Then, the question arises how these new time series with different lengths
can be correlated to the clinical variables. We propose to use a model-based
representation of these time series as it is independent from its length.

EEG data in rest do not show any trend and so do the graph measures.
Thus the easiest way to fit the time series of graph measures is to use vector
autoregressive (VAR) models [8]. A simple VAR model with p lags is given
by

xt = c+

p∑

i=1

Aixt−i + εt.

where c is a constant, Ai is a matrix storing the interdependence between
every pair of variable at point t− i and εt is white noise. Its coefficients Ai
can be simply flattened as vector which can eventually be correlated to the
output variables. In the next section we will evaluate this approach using a
real-world application.

5 Application and Experiments

In our experiments we used EEG data from 25 visually impaired subjects
suffering from optic nerve damages [21]. Enabling the relation of EEG graph
measures to clinical variables, so-called “visual field charts” were obtained
from every patient. They indicate the location and size of the optic nerve
damage [14]. Based on them, an expert defined the following clinical variables:

• proportion of intact/white sectors,
• proportion of relatively defected/gray sectors,
• proportion of absolutely defected/black sectors,

All of these were transformed by the cortical magnification function (CMF) [4]
resulting into 3 further variables.

To preprocess the data we did the following steps in EEGLAB [5]:

• manually removal of noisy time frames at beginning/end of each recording,
• removal of uncommon EEG channels across all subjects (28 were used),
• high-pass filtering with cutoff frequency at 1 Hz to remove slow movements,
• notch filtering 50 Hz to cope with European power line frequency,
• low-pass filtering with cutoff frequency at 95 Hz,
• re-referencing by the average electrode,
• down-sampling to 150 Hz to reduce the costs of SL computation,
• removal of biological artifacts using independent component analysis [9].

Biological artifacts that stem from electromyographic (EMG) or electro-
cardiograph (EKG) signal appear as noise in the recorded EEG signal in
all variations. For EMG/ECG removal, ICA was applied to very carefully
remove noisy components.
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We used FIR filters to obtain the conventional separation into frequency
bands. They are typically associated with different brain states [6]. These
bands are δ: f ∈ (1, 4] Hz, θ: f ∈ (4, 7] Hz, α: f ∈ [8, 12] Hz, β: f ∈ [13, 30] Hz,
γ: f ∈ [30, 50] Hz and μ: f ∈ [8, 13] Hz. We expected the clinical variables to
be somehow explainable by functional connectivity changes in these bands.
Functional connectivity was established by SL [17] for each frequency band.
We used an outer window length of W2 = 3 s and a reference probability
of pref = 0.02. To capture most of the dynamics, the sliding window shifted
every .5 s, i.e. an overlay of 5/6. Note that a statistical analysis of the averaged
graphs has been published by these authors [7].

Fig. 1 Original and fitted time series of graph measures in the α band of one
subject for p = 1, 2 on the left and right side, respectively

We applied 3 measures to every brain graph [3], i.e. average clustering
coefficient, density and global efficiency, resulting in a multivariate time series
for each subject and each frequency band. Every time series was modeled by
a VAR model with p = 1, 2 for simplicity. Thus we obtained p · n · n = 9 and
18 parameters, respectively, describing the dynamics of the corresponding
multivariate time series. Figure 1 shows an example of these time series. Every
clinical variable served as variable being depended from these inputs. We used
ridge regression (a penalized version of least-squares) with generalized cross
validation on different penalizer α ∈ {.1, .2, . . . , .9, 1} [12]. Thus we correlated
brain graph dynamics with clinical variables.

Regression performance was measured using the coefficient of determina-
tion R2 which is defined as

R2 ≡ 1−
∑N

i=1(yi − fi)∑N
i=1(yi − ȳ)

where ȳ = 1/n
∑N
i=1 yi. Thus the closer R2 is to 1, the better is the linear fit.

Table 1 summarizes this analysis. High scores were obtained for the pro-
portion of intact and absolutely defected sectors (more or less independent
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Table 1 Regression scores R2 for every pair of frequency band and clinical variable
fitting VAR(1) (left) and VAR(2) (right)

p = 1 δ θ α β γ μ

w .198 .727 .715 .276 .207 .370
g .193 .101 .156 .240 .273 .189

b .226 .605 .692 .328 .269 .400
w CMF .179 .698 .608 .288 .232 .338
g CMF .177 .105 .183 .446 .185 .226
b CMF .206 .630 .696 .311 .273 .364

p = 2 δ θ α β γ μ

w .466 .818 .606 .517 .389 .448
g .276 .328 .608 .376 .391 .318

b .517 .844 .827 .519 .408 .496
w CMF .470 .822 .590 .551 .389 .434
g CMF .319 .331 .584 .403 .318 .341
b CMF .516 .850 .819 .526 .406 .471

from CMF). VAR models based on δ and α seem to produce suitable fea-
tures. This regression analysis clearly shows that (1) we could actually find
network features describing the dynamics of the weighted graphs and (2)
these features correlate with the extend of the vision loss.

6 Conclusion

Recently neuroscientists started transforming neuroimaging data into brain
networks. The idea behind this approach is to use graph theory and its al-
gorithms to produce meaningful features that can help to understand brain
recordings. Using any kind of time series similarity measure, the similarity of
two data channels (nodes) at some point in time produces a new time series
(edge incident to the nodes). The series of graphs is typically averaged to one
network of which its edge weights are thresholded resulting in an unweighted
network. We do not follow this “classical” approach as it omits the dynamics
of the functional connectivity. Usually several graph measures are applied to
differentiate between brain networks of distinct subjects or conditions.

Keeping the series of graphs thus creates a multivariate time series of
these measures that need to be analyzed. Therefore in this paper we used
model-based descriptions, i.e. VAR models. Regression was applied to find
linear dependencies between VAR parameters and certain variables. An EEG
application of visually impaired subjects showed that this approach is useful
for the generation of features.

In the future, we want to work with specialized graph measures for brain
networks that capture the high fluctuations and dynamics (see e.g. [1]). Last
not least, we hope to obtain more intuitive results using rule-based machine
learning approaches to group or classify subjects based on learned models.
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Visualising Temporal Item Sets:
Guided Drill-Down with Hierarchical
Attributes

Fabian Schmidt and Martin Spott

Abstract. In the past years pattern detection has gained in importance for
many companies. As the volume of collected data increases so does typically
the number of found patterns. To cope with this problem different inter-
estingness measures for patterns have been proposed. Unfortunately, their
usefulness turns out to be limited in practical applications. To address this
problem, we propose a novel visualisation technique that allows analysts to
explore patterns interactively rather than presenting analysts with static or-
dered lists of patterns. Specifically, we focus on an interactive visualisation
of temporal frequent item sets with hierarchical attributes.

Keywords: Exploration, frequent item sets, guided visualization, hierarchi-
cal attributes, temporal association rule mining.

1 Introduction

The market environment companies are faced with today changes faster than
ever. Product life cycles are getting shorter, and prices and therefore profit
margins shrink due to harder competition. At the same time costumers de-
mand higher service levels. To tackle the problem, organisations collect vast
amounts of data about customers, internal processes and external influences
at increasing rates in order to make smart business decisions. Nevertheless,
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they still fail to unfold the full potential of the data for their decision making.
The resulting lack of information often leads to suboptimal decisions.

Pattern detection is at the heart of most data analysis activities. However,
analysts often only find the patterns they are looking for. Typically the anal-
ysis process consists of formulating a hypothesis based on domain knowledge
and testing their validity. For instance, if the number of incoming jobs of a
service provider is rising, then an analyst may test whether this was driven
by an increasing demand for certain products, in certain areas, by specific
types of job etc. The number of hypotheses is limited by analysts’ time and
imagination. To make things worse, some scientists like pharmacologists even
argue that they do not know what they are looking for, that they will only
know when they see it. This suggests that we must look for a way to present
potentially interesting patterns to users rather than expect them to come up
with hypotheses.

Unfortunately, machines still struggle to evaluate the interestingness of
found patterns, to automatically make decisions and trigger actions based
on them, mainly due to the lack of domain knowledge. For that reason, we
are interested in exploratory data analysis, where machines focus on the me-
chanical part of analysing large amounts of data and only guide the analysts’
exploration of the results through interactive visualisations. The analysts can
then trigger further analysis by the machine and make decisions based on the
results.

This paper focuses on temporal frequent item set mining [5], where fre-
quent item sets are extracted from data in regular time intervals and their
statistical properties like support values are tracked and analysed for trends
over time. We present a new approach to an interactive, graph-based visual-
isation of the results. It utilises the hierarchical nature of items we often find
in practical applications to create a drill-down functionality for exploration
(see Fig. 1 for an example). The drill-down is guided by using interestingness
measures, in that different parts of the graph are coloured according to their
potential interestingness. For instance, if a pattern occurs in the entire UK,
the visualisation will tell the user if a drill-down reveals interesting deviations
in different parts of the UK (drill-down recommended) or if the same pattern
occurs in all subregions of the UK (no drill-down recommended). Thereby,
the interestingness measures takes the trend that the pattern exhibits into
account. Compared to other visualisations this technique enables a guided
exploration of patterns rather than just their presentation.

Section 2 assesses the state of the art in visualising association rules and
frequent item sets against our requirements. In Section 3 the new approach
is introduced. Section 4 then describes how to use the concept for temporal
item set mining. Section 5 shows a scenario where this method has been
successfully implemented before we conclude the paper in Section 6 with
suggestions for further research.
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2 Requirements and Existing Visualisation Techniques

The following requirements need to be fulfilled by a visualisation technique to
be considered for our problem. First, it needs to clearly show the association
of items in an item set. Secondly, given hierarchical items, it must be possible
to drill down into (open up) lower layers in the hierarchy or hide them and do
so simultaneously for several hierarchies. Thirdly, the technique must provide
a way to show the value of interestingness measures such that the user can
be guided in the exploration of patterns.

For visualising association rules and item sets, a variety of techniques have
been proposed. The first group are colourised 2D and 3D bar charts [16, 8, 9,
12]. They are effective as a simple visualisation, but they lack the ability to
incorporate hierarchies. Parallel coordinates are discussed in [15, 10, 18, 19, 6,
13]. This technique is quite suitable for structured data stored in databases. In
addition it can be easily adapted for guided exploration. However, it is again
difficult to incorporate the hierarchical information of items. In [2, 1, 3, 4]
a 3D world representation of association rules is proposed for interactive
exploration. Is has specifically been designed for interactive exploration, but
it focuses on association rules and would lose some of its expressiveness when
being adapted to item sets. Relations between items are not shown well,
which is crucial in the context of item sets.

Finally, graph-based visualisations [11, 6, 14, 7, 17] are very good to show
relations between items and item sets. Furthermore, they are useful to explore
patterns, since methods for guiding the user can be incorporated by either
colouring or grouping nodes. As a hierarchy tree is a graph by definition, they
are also usable in that regard.

In conclusion, graph-based visualisation techniques have the highest po-
tential to solve our problem, however existing methods still require extensions
to meet our requirements, which we will discuss in the following section.

3 New Exploratory Visualisation

The new solution has two main components, the actual visualisation of pat-
terns and the technique to guide the exploration. Regarding the visualisa-
tion, we first need to consider that result sets of frequent item set mining
usually contain a large number of patterns. For that reason, the visualisa-
tion should provide possibilities to zoom into the pattern set from a rather
general view to more specific details. Let us assume a supermarket analyses
shopping patterns in the UK and that the regions of the UK are structured
hierarchically as shown in Fig. 1. An item set returned by the analysis may be
I = {Bread,Butter,UK South}, i.e. customers in the South of the UK are
frequently buying bread and butter. The same pattern will probably occur in
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subregions in the South, however, we may want to start the analysis at the
highest level and then drill down into subregions.

As hierarchical attributes like region can naturally be represented as trees,
we propose to use trees as the visualisation technique rather than more gen-
eral graphs. Thereby, we assume that every element in the hierarchy other
than the root has exactly one parent. Almost all our real-world data sets fulfil
this property. Fig. 2 shows the item set from the example above where one of
the three items, the region, is part of a hierarchy. Assuming the supermarket
would only sell one kind of bread and butter, these two items would only
be displayed as singletons (leaves) in the tree, directly attached to the root
node.

To better handle item sets with several hierarchies, a radial tree layout has
been chosen. The root node is in the middle and each layer is represented
by a circle around the root node with increasing diameters. In this way,
hierarchies can more easily spread out from the root than with vertical or
horizontal layouts.

Patterns can easily be explored by drilling down along the paths of the tree.
Subtrees of a node can be hidden and expanded to control the visible amount
of information (see triangular nodes in Fig. 2 to mark a hidden subtree).

Generally, items at lower levels in the hierarchy will only be shown, if a
frequent item set contains them. However, the number of patterns might still
be too high to recognise the most interesting ones. For that reason a guidance
system for exploring the set of patterns is provided to further guide analysts.

Guidance in this context means to draw the analysts’ attention to poten-
tially interesting patterns. This can be achieved by hiding redundant, poten-
tially uninteresting or obvious item sets. In addition to reducing the number
of patterns by hiding certain ones, potentially interesting patterns can be
highlighted, for instance by colouring nodes. The following section gives an
example for interestingness measures that can be used for this purpose.

UK

North South

Yorkshire Norfolk London Area Oxfordshire

York Ealing OxfordCity of WestminsterNorwich

Fig. 1 Example for the (partial) hierarchy of a region. We assume that every node
other than the root has exactly one parent.
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Bread

Butter

UK

North

South

Oxfordshire

London Area

City of Westminster

Ealing

Fig. 2 Visualisation of the item set I = {Bread,Butter, South} (green circles).
The item South is an element of the hierarchical attribute region that can be drilled
down into. Triangles mark nodes with a hidden hierarchy underneath that can be
unfolded.

4 Interestingness Measures for Guided Exploration

To evaluate our concept, it was implemented in the context of temporal item
set mining as suggested in [5]. The authors introduced techniques to measure
the interestingness of temporal item sets by analysing how their support and
confidence values develop over time.

In this paper the homogeneity measure from [5] is proposed as a basis
for the visual guidance. Homogeneity measures how members of a group
behave in relation to each other. In hierarchies it is especially interesting
to reveal nodes that behave differently from their parent or siblings. Go-
ing back to the example above, let us assume the support of the item set
{Bread,Butter, South} would rise over time, which makes the pattern po-
tentially interesting. In a subregion like London Area the support time series
may show a different behaviour than in the region South. The homogeneity
measure for hierarchical structures can reveal such subtrees. Typically, a ho-
mogeneous subtree is viewed as less interesting than an inhomogeneous one
since drilling down does not reveal new information.

In order to make use of the homogeneity measure from [5], the concept
specificity of an item set has to be defined in the context of hierarchies. Usu-
ally, a more specific item set is a superset of the more general one. For exam-
ple, I1 = {Bread,Butter,UK} is more specific than I2 = {Bread,Butter}
as I1 ⊂ I2. This definition cannot directly be applied to hierarchical at-
tributes like the region. On the face of it, I3 = {Bread,Butter, South} is not
comparable to I1, because the items South and UK are different. However,
since they are part of the same hierarchy, South is in fact just shorthand for
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{UK , South} and therefore I3 ⊂ I1 following the usual definition. In other
words, if we replace an item in an item set with one at a lower level of the
same hierarchy, we produce a subset of the original item set, i.e. a more
specific one.

Using this extended definition of specificity, we can adapt the homogeneity
measure for calculating the interestingness of temporal item sets proposed in
[5]. We assume a time series of support values for every item set, further
called support history.

Step 1 calculates the pairwise homogeneity between the support history of
one item set and the support histories of all item sets that have exactly one
more item (or that are one level down in the hierarchy).

Step 2 aggregates the obtained homogeneity values at a level in the hier-
archy. [5] suggests different aggregation functions like min, max or averaging
operators.

For Step 1 two methods for calculating homogeneity have been proposed, a
heuristic one and one based on entropy. In both formulas H(I1) = (v1, ..., vn)
and H(I2) = (w1, ..., wn) are the support histories of a pair of item sets I1
and I2 with I1 ⊃ I2. Ti is the time period i associated with the support values
vi and wi. The following two formulas are used to calculate homogeneity (or
difference):

φentropy(Hm(I1), Hm(I2)) :=

n∑

i=1

P (Ti | I2)log2
P (Ti | I2)

P (Ti | I1)
(1)

φheuristic(Hm(I1), Hm(I2)) :=
n∑

i=1

|vi − wi| (2)

The result of Step 2 can be used if a subtree has been hidden by just showing
its parent node. If the subtree shows a high level of homogeneity, drilling
down is not necessary. This can be indicated by giving the node a particular
colour or shape. If a subtree has already been unfolded, then the homogeneity
values from Step 1 can be used to mark the differences between items at the
same level in the hierarchy and the more general item one level above. Again,
lower homogeneity values typically indicate a higher level of interestingness.

5 Application

In the following we give a simple example to demonstrate the usefulness of the
approach. It is based on real data from a telecommunications company that
describes the weekly number of tasks the mobile workforce has to work on over
a period of 32 weeks. The company needs to understand, how the numbers
of different types of tasks develop over time in order to plan the deployment
of technicians and to spot emerging problems early. Amongst many others,
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Table 1 Homogeneity of 9 areas with their parent region. Larger values mean that
the area differs more from the parent region than areas with lower values.

area1 area2 area3 area4 area5 area6 area7 area8 area9

0.081 0.098 0.055 0.074 0.123 0.105 0.063 0.065 0.134

typical attributes are service product, type of task, required technician skill,
geographical region, type of customer and service level agreement.

The techniques described in [5] are used to produce support histories of
item sets. In order to show that homogeneity is a useful measure to guide
the drill-down, we picked a particular type of task represented by an item
set and only vary the region, which is a hierarchical attribute, similar to the
example shown in Fig. 1. The homogeneity measure is then used to compare
the support histories of the higher level region with the ones of the subregions
area1 to area9. Since the measure based on entropy gives similar results as
the heuristic one, we focussed on the latter for reasons of simplicity. Table 1
illustrates that two areas, namely area5 and area9 have significantly higher
values indicating a lower homogeneity. This means that they differ from the
behaviour of the higher level region and therefore qualify for further drilling
down. In the hierarchy tree shown in the visualisation these two areas would
be coloured to highlight their potential interestingness.

Furthermore, the values in Tab. 1 can be aggregated into a single number
representing the overall homogeneity in the parent region. Different aggre-
gation operators are currently under investigation including combinations of
measures for the mean and variance. Depending on the level of homogeneity,
the node of the parent can then be coloured to indicate, if a drill-down into
the underlying areas is interesting (low homogeneity) or not (high level of
homogeneity).

6 Conclusion

In the past decade a lot of methods for analysing huge amounts of collected
business data have been developed. Due to the increasing numbers of resulting
patterns, novel ways are needed to find interesting ones in the result set.

For that reason, this paper proposes an interactive visualisation technique
for a guided exploration of patterns using drill-downs in hierarchies. In par-
ticular, we have shown how the development of frequent item sets over time
can be analysed in order to guide analysts towards potentially interesting
patterns. With guided exploration it becomes easier to detect unexpected
interesting patterns, in contrast to the traditional analysis method of just
searching for expected ones.
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We see a lot of potential in such methods and are working on extensions
in terms of patterns other than temporal item sets and using other interest-
ingness measures.
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Bayesian Block-Diagonal Predictive
Classifier for Gaussian Data

Jukka Corander, Timo Koski, Tatjana Pavlenko, and Annika Tillander

Abstract. The paper presents a method for constructing Bayesian predictive
classifier in a high-dimensional setting. Given that classes are represented by
Gaussian distributions with block-structured covariance matrix, a closed form
expression for the posterior predictive distribution of the data is established.
Due to factorization of this distribution, the resulting Bayesian predictive and
marginal classifier provides an efficient solution to the high-dimensional prob-
lem by splitting it into smaller tractable problems. In a simulation study we
show that the suggested classifier outperforms several alternative algorithms
such as linear discriminant analysis based on block-wise inverse covariance
estimators and the shrunken centroids regularized discriminant analysis.

Keywords: Covariance estimators, discriminant analysis, high-dimensional
data, hyperparameters.

1 Introduction

The problem of classifying high-dimensional data arizes in various appli-
cations, including gene expression arrays, different types of spectroscopy

Timo Koski · Tatjana Pavlenko
KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
e-mail: tjtkoski@kth.se,pavlenko@math.kth.se

Jukka Corander
University of Helsinki, 00014 Finland
e-mail: jukka.corander@helsinki.fi

Annika Tillander
Karolinska Institutet, 171 77 Stockholm, Sweden
e-mail: Annika.Tillander@ki.se

R. Kruse et al. (Eds.): Synergies of Soft Computing and Statistics, AISC 190, pp. 543–551.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

tjtkoski@kth.se, pavlenko@math.kth.se
jukka.corander@helsinki.fi
Annika.Tillander@ki.se


544 J. Corander et al.

measurments and climate studies. In this paper we establish a predictive
supervised Bayesian classifier assuming that classes are represented by mul-
tivariate Gaussian distributions. The main challenge in constructing this
classifier is singularity of the sample based class covariance matrix in high di-
mensions. To overcome this problem, we exploit the block-diagonal covariance
structure and show that this approch yields en efficient classifier. Albeit our
approach assumes the block-diagonal structure, there is a number of efficient
methods of learning this structure from the data. A particulary useful scheme
is based on the Lasso regularization (see e.g. [7, 2]), which makes it possible
to recover structural zeros in the covariance matrix. Using this approach a
class of asymptotically equivalent block-diagonal structure approximations in
high-dimensional setting was derived in [11].

We assume that N = {1, ..., n} is a set of n data items, which are to be
classified into a finite set of sources using probabilistic generative models.
These samples represent what may be called test data that lacks a labelling
which assigns each sample to some particular source (class). In supervised
classification there is training data M = {1, ...,m}, where labels are known
for the samples in M and these determine exhaustively the possible sources
for the test samples in N .

We let x = (x1, . . . , xp)
′

be a p×1 vector in Rp. Let x(N) = {x1, ...,xn} and
z(M) = {z1, ..., zm} be the sample vectors for items in N and M , respectively.
For any subsets a ⊂ N, b ⊂M , we let x(a), z(b) denote the subsets of data for
the corresponding samples.

Let now C = {1, . . . , k} represent an ensemble of k generic classes. In
the supervised classification the labelling/classification of the samples in the
training set M is a partition T of {1, ...,m} into non-empty subsets/classes
t1, ..., tk, 1 ≤ k ≤ n, such that tc ∩ tc∗ = ∅, c �= c∗, c, c∗ = 1, 2, ..., k, and
∪kc=1tc = M . Correspondingly, S is a partition of {1, ..., n} into the classes
s1, ..., sk, i.e. we have

x(N) = ∪kc=1x
(sc) = ∪sc∈Sx(sc), z(M) = ∪tc∈T z(tc).

Bayesian predictive inference (see e.g. [5, 6, 10]) provides the inductive tools
for updating beliefs about the set of all possible classifications S by using the
data observed for the items in N and M .

2 Posterior Predictive Distributions under Gaussian
Models

Each test sample xi is by the preceding a p-dimensional column vector xi =
(xi1, ..., xip)′, and correspondingly for each training sample i ∈ M we have
zi = (zi1, ..., zip). For given classifications S, T , each data vector assigned to a
particular class c is assumed to be generated by a class-specific multivariate
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Gaussian distribution with mean vector μc ∈ Rp as a class centroid, and
positive definite covariance matrix Σc ∈ Rp×p. The probability density of an
observed sample xi (equivalently for zi) can then be defined as

p(xi|μc, Σc) =
1

(2π)
p/2 |Σc|1/2

exp

{
−1

2
(xi − μc)′

Σ−1
c (xi − μc)

}
. (1)

We regard {xi, i ∈ sc} as conditionally independent outcomes of a random
variable X = (X1, . . . ,Xp)

′
and express (1) with X ∈ N (μc, Σc).

By specifying the priors of the class parameters as a product of conjugate
Gaussian-Inverse-Wishart distributions, the predictive distributions can be
found explicitly. The joint prior distribution of μc, Σc is then expressed as

p(μc, Σc) = p(μc|αc, β−1Σc)p(Σc|δ, Φ), (2)

where p(μc|αc, β−1Σc) is the appropriate density with the hyperparameters
αc ∈ Rp, β ∈ R+, and p(Σc|δ, Φ) is the density of inverse Wishart distribution
(see [8]) with the hyperparameters δ ∈ R+, Φ ∈ Rp×p, where Φ is assumed
to be positive definite. The density of inverse Wishart distribution can be
written as

p(Σc|δ, Φ) = (2δp/2Γp(δ/2))−1|Φ|−δ/2|Σc|−(δ+p+1)/2 exp

{
−1

2
tr(Φ−1Σ−1

c )

}
,

(3)
where Γp(·) is the multivariate gamma function [1].

Hyperparameters β, δ and Φ of the prior are the same for all classes for
any S, T and are thus not indexed with respect to the class c.

Let the sample centroid and unscaled sample covariance for class sc be
written as

x̄c =
1

nc

∑

i∈sc
xi, W(sc) =

∑

xi∈sc
(xi − x̄c)(xi − x̄c)

′ (4)

respectively, where nc = |sc|.
In supervised classification, derivation of the posterior predictive distribu-

tion of test data given both training information (z(M), T ) and the classifi-
cation S can be made in the following way: the training data is first used to
update the prior hyperparameters αc, β, δ, Φ, whereafter the posterior predic-
tive distribution is calculated by integrating out parameters with respect to
the updated prior. This corresponds to

p(x(N)|z(M), S, T ) =
k∏

c=1

∫

Rp

∫

Rp×p

p(x(sc)|μc, Σc)p(μc, Σc|z(M), T )dμcdΣc,

(5)
where the above notation is simplified by omitting the hyperparameters from
p(x(N)|S, T ) [4] and
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p(μc, Σc|z(M), T ) =
p(z(tc)|μc, Σc)p(μc, Σc)∫

p

∫
Rp×p p(z(tc)|μc, Σc)p(μc, Σc)dμcdΣc (6)

is the posterior distribution of μc, Σc based on the prior p(μc, Σc) in (2) and
the data z(tc) in class c of T . A different class of predictive densities based on
uninformative priors on Σ is found in [12, p. 51] and is originally due to [5,
p. 93].

After some transforms (see [1, 3, 4]) the explicit expression for the predic-
tive distribution becomes

p(x(N)|z(M)
, S,T ) = (7)

∏k
c=1

1
πpnc/2

(
mc+β

nc+mc+β

) p
2 Γp(

δ+nc+mc+p−1
2 )

Γp(
δ+mc+p−1

2 )

det(ξ1c )
δ+mc+p−1

2

det(ξ2c)
δ+nc+mc+p−1

2

,

where mc = |tc| is the number of training samples for class c. The determi-
nants equal

det(ξ1c ) =

∣∣∣∣Φ+ W(tc) +
mcβ

mc + β
(z̄c − αc)(z̄c − αc)′

∣∣∣∣ , (8)

and

det(ξ2c ) =

∣∣∣∣Φ+ W(sc) + W(tc) +
mcβ

mc + β
(z̄c − αc)(z̄c − αc)′

∣∣∣∣ (9)

+
nc

(nc +mc + β)(mc + β)
[(mc + β)x̄c −mcz̄c − βαc]

· [(mc + β)x̄c −mcz̄c − βαc]′|,

where z̄c,W
(tc) are the training data counterparts of x̄c,W

(sc), respectively.
This approach to predictive classification is quite different from modeling

by Gaussian processes in binary classification, as found e.g. in [9].

3 Predictive Densities with Block-Diagonal Covariance
Matrices

Let us now partition the random vector X = (X1, . . . ,Xp)
′ ∈ N (μc, Σc) into

b disjoint sub-vectors, i.e. X =
(
X[1], . . . ,X[b]

)′
, where X[j] = (Xj1 , . . . , Xjpj

),

(X[j] has values in Rpj ), j = 1, . . . , b and
∑b

j=1 pj = p. The block segmenta-
tion represents (in)dependencies between groups of features. The dimension
pj is not dependent of the class c.

We assume that for any j �= l, X[j] and X[l] are conditionally in-
dependent given c ∈ C. We have thus a property of block-wise interac-
tions, and the covariance matrix Σc displays the structure of b blocks on

the main diagonal, i.e. Σc = diag
[
Σc,[1], . . . , Σc,[b]

]
. Thus, if the sample
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xi =
(
xi,[1], . . . ,xi,[b]

)′
is an outcome of N (μc, Σc), then xi,[j] is a sample

of X[j] ∈ N
(
μc,[j], Σc,[j]

)
, μc,[j] ∈ Rpj , Σc,[j] ∈ Rpj×pj , j ∈ {1, 2, . . . , b}.

Therefore

p(xi|μc, Σc) =

b∏

j=1

p(xi,[j]|μc,[j], Σc,[j]). (10)

As above, the joint prior distribution of μc,[j], Σc,[j] is taken as

p(μc,[j], Σc,[j]) = p(μc,[j]|αc,[j], β−1Σc,[j])p(Σc,[j]|δ, Φ), (11)

where p(μc,[j]|αc,[j], β−1Σc,[j]) is the density of multivariate Gaussian and
p(Σc,[j]|δ, Φ) is the conjugate Gaussian-Inverse-Wishart distribution. Hence
hyperparameters β, δ and Φ are the same for all classes c and μc,[j], Σc,[j] are

metaindependent, i.e. p(μc, Σc) =
∏b
j=1 p(μc,[j], Σc,[j]). By the preceding and

the notation in section 2 we get

p(x(sc)|μc, Σc) =
∏

i∈sc
p(xi|μc, Σc) =

∏

i∈sc

b∏

j=1

p(xi,[j]|μc,[j], Σc,[j]), (12)

Then the predictive density, p(x(N)|S) with block-diagonal covariance struc-
ture given S is expressed as

k∏

c=1

b∏

j=1

∫

R
pj

∫

R
pj×pj

∏

i∈sc
p(xi,[j]|μc,[j], Σc,[j])p(μc,[j], Σc,[j])dμc,[j]dΣc,[j].

In the same way as in (7) we obtain

p(x(N)|S) =

k∏

c=1

b∏

j=1

φ(c, j), (13)

where

φ(c, j) =
1

πpjnc/2

(
β

nc + β

) pj
2 Γp(

δ+nc+pj−1
2 )

Γp(
δ+pj−1

2 )

|Φ| δ+pj−1

2

det(ηc,[j])
δ+nc+pj−1

2

, (14)

with

det(ηc,[j]) = |Φ+ W
(sc)
[j] +

ncβ

nc + β
(x̄c,[j] − αc,[j])(x̄c,[j] − αc,[j])′| (15)

and

x̄c,[j] =
1

nc

∑

i∈sc
xi,[j], W

(sc)
[j] =

∑

xi∈sc
(xi,[j] − x̄c,[j])(xi,[j] − x̄c,[j])

′. (16)
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4 Bayesian Predictive Supervised and Marginal
Classification with Block-Diagonal Covariance

The explicit expression for the posterior predictive distribution becomes now

p(x(N)|z(M), S,T ) = (17)

∏k
c=1

∏b
j=1

1

πpjnc/2

(
mc+β

nc+mc+β

) p
2 Γpj

(
δ+nc+mc+pj−1

2 )

Γpj
(
δ+mc+pj−1

2 )

det(ξ1c,[j])
δ+mc+pj−1

2

det(ξ2
c,[j]

)
δ+nc+mc+pj−1

2

,

with det(ξ1c,[j]) and det(ξ2c,[j]) modified in an obvious manner from (8) and

(9), respectively. In the Bayesian predictive supervised marginal classifier we
have n = 1, i.e. x(N) = x. This is an attempt to classify just one new item
with sample data x using the information in z(M). Then

p(x|z(M)
, c,T ) =

b∏

j=1

φ(c, j, |z(M)
[j] ,T ) (18)

with φ(c, j, |z(M)
[j] ,T ) equal to

1

πpj/2

(
mc + β

1 +mc + β

) pj
2 Γ

(
δ+mc+pj

2

)

Γ
(
δ+mc

2

)
det(ξ1c,[j])

δ+mc+pj−1

2

det(ξ2c,[j])
δ+mc+pj

2

, (19)

since in this case we are considering the predictive distribution of x by con-
ditioning on z(M) and T under the additional condition that x was assigned
to c. Here from (8) and (9), as this is the predictive distribution of x,

det(ξ1c,[j]) =

∣∣∣∣Φ+ W
(tc)
[j] +

mcβ

mc + β
(z̄c,[j] − αc,[j])(z̄c,[j] − αc,[j])′

∣∣∣∣

det(ξ2c,[j]) =

∣∣∣∣Φ+ W
(tc)
[j] +

mcβ

mc + β
(z̄c,[j] − αc,[j])(z̄c,[j] − αc,[j])′+ (20)

+
1

(1 +mc + β)(mc + β)
[(mc + β)x[j] −mcz̄c,[j] − βαc,[j]]·

·[(mc + β)x[j] −mcz̄c,[j] − βαc,[j]]′
∣∣ .

By [5, 6] we identify the sample x as coming from class c′, if

c′ = argmaxc∈Cp(x|z(M), c,T )πc.

where πc is the prior probability or prevalence of c.
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5 Simulation Study

To illustrate the merits of the proposed classification technique in various
high-dimensional settings, we conduct a set of numerical studies. All com-
putations are done in R version 2.9, rda and lda packages are used for
comparative inferences.

We focus on the two-class case and generate data as xi ∈ Np (μc, Σ) for
c = 1, 2 and a range of dimensionality p with fixed block size, pj = 20, where
j = 1, . . . , p/pj, i = 1, . . . ,mc andmc = 25. We setΣ = diag[Σ[1], . . . , Σ[p/pj ]]

where Σ[j] =
[
(1− ρ) I + ρ1pj1

′
pj

]
, 0 < ρ < 1, i.e. each Σ[j] is assumed to

have equicorrelated strucure. Throughout the experiments we fix the true
misclassification probability to e = 0.1 and recall that for Gaussian class-
conditional distributions with known μc and Σ it holds that e = Φ(−D/2),
where Φ(·) is the Gaussian cumulative distribution function and D2 = (μ1 −
μ2)′Σ−1(μ1−μ2) is the squared Mahalanobis distance between the classes. To
control misclassification probability, we set the shift between class centroids
to μ2 − μ1 = d1p, where d = D(1

′
pΣ

−11p)
−1/2 and D = −2Φ−1(e) is the

Mahalanobis distance corresponding to e = 0.1. For hyperparameters in (2)
and (3) we assume that α1 = μ1 + 1pd/6, α2 = μ2 − 1pd/6, Φ = Ip, β = 10,
δ = 30, and compare performance of BPC with two alternative classifiers,
Shrunken Centroids Regularized Discriminant Analysis (RDA) see e.g. [7] and
Linear Discriminant Analysis with a block-wise estimated inverse covariance
(BLDA) [11]. To optimize the strenght of regularization, λ in RDA we use
5-fold cross-validation (CV) within each training fold and select λ = 0.1 over
all p. Misclassification rates were estimated using leave-one-out CV for all
three classifiers since sample sizes are small. Table 1 illustrates that BPC
yields more accurate classification than both RDA and BLDA for a range of
high-dimensional scenarios.

Table 1 Misclassification rates estimated by CV, mean(sd) averaged over 50 runs

Classifier p = 40 p = 60 p = 100 p = 120 p = 140 p = 160
BPC 0.11 (0.04) 0.13 (0.05) 0.13 (0.05) 0.13 (0.05) 0.13 (0.05) 0.11 (0.05)
RDA 0.25 (0.06) 0.29 (0.04) 0.31 (0.03) 0.31 (0.04) 0.31 (0.03) 0.30 (0.03)
LDA 0.17 (0.05) 0.22 (0.06) 0.24 (0.06) 0.27 (0.06) 0.25 (0.08) 0.26 (0.07)

To give an impression of how the hyperparameters effect performance
accuracy we plot the misclassification profile for four choices of α with vary-
ing β and δ. We fix pj = 20, p = 200 and mc = 25. Results presented in
Figure 1 indicate that shift parameter α2 − α1, representing prior distance
between classes has the key effect whereas the influence of β and δ is less
pronounced.
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Fig. 1 Misclassification rates for BPC averaged over four runs. δ ∈ (21 : 30) and
β ∈ (1 : 100). A: α2 − α1 = 1p · d, B: α2 − α1 = 1p · 2d/5, C: α2 − α1 = 1p · d/2,
D: α2 − α1 = 0p.
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Stochastic Measure of Informativity
and Its Application to the Task of
Stable Extraction of Features

Alexander Lepskiy

Abstract. In the paper we define a new notion of stochastic monotone mea-
sure. The application of this notion to solution of problem of finding of fea-
tures on the noisy image is considered.

Keywords: Feature extraction, stochastic measure of informativity.

1 Introduction

As a rule in pattern recognition or, in particular, in image processing, we
should identify images using sets of their features. Let Ω = {ωi}ni=1 be a
set of features that correspond to an image. To achieve the highest produc-
tivity and stable working of a pattern recognition system, it is necessary to
choose a small subset of features in Ω with the highest information values.
There are some very well-known approaches that can give us features with
the highest information values based on the method of principal components,
discriminant analysis and so on [2], [3]. But these methods fail to take into
account structural (e.g. morphological) characteristics of object. In this sit-
uation, measure of informativity can be used [1]. By definition, an measure
of informativity μ is a set function defined on the power set 2Ω of Ω that
for each A ∈ 2Ω shows an information value of features in A. We assume
that this function has monotone property: μ(A) ≤ μ(B) if A ⊆ B for all
A,B ∈ 2Ω (i.e. additional information does not decrease the value of μ).

In certain tasks of image processing random nature of image features can
be caused by some noisy effects. For example, if the pattern is a discrete plane
curve that extracted on the image and features are some characteristics of

Alexander Lepskiy
Higher School of Economics, Moscow, Russia
e-mail: alex.lepskiy@gmail.com

R. Kruse et al. (Eds.): Synergies of Soft Computing and Statistics, AISC 190, pp. 553–561.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

alex.lepskiy@gmail.com


554 A. Lepskiy

curve points (e.g. feature is a estimation of curvature in given point of dis-
crete curve [4]) then a random character of features (e.g. curvature) will be
due to noise of image. In this case the expectation E [M(A)] be characterize
the level of informativeness of representation A and the variance σ2 [M(A)]
be characterize the level of stability of representation to noise of pattern.
Then there is the problem of finding the most stable and informative repre-
sentation A of the pattern X . The complexity of solutions of this problem
will be determined by the degree of dependence of random features of each
other. Stochastic measure of informativity M will be additive measure if the
features are independent random variables. This case was considered in [5].
In this work we will consider the case when any random feature depends from
some other features. Then we get nonadditive monotone measure of informa-
tivity. More detail the problem of finding the most stable and informative
representation is investigated in this paper for the most popular measure of
informativity for contour image – measure of informativity by length.

2 Monotone Geometrical Measure of Informativity

Measures of informativity can be effectively used in image processing as
shown in [1]. In image processing the contours of the patterns and their char-
acteristics, for example, curvatures of smooth curves are the such features
that should not depend on illumination of a scene and orthogonal transfor-
mations (such as rotation, bias, scaling). However, in reality, we have digitized
curves that are given by some ordered sets of points. These curves can be cor-
rupted by noise. This means that we can use only some statistical estimates
of curvature [4] that not stable to noise. A problem of choosing an optimal
polygonal representation of a contour consist in finding such a representation
that preserves geometrical characteristics of contour and also that will be
stable to noise. This choice can be produced by using geometrical measure of
informativity that are axiomatically defined as follows.

Let X be an initial closed contour given by an ordered finite set points, i.e.
X = {x1, ..., xn}, where xi ∈ R2, i = 1, ..., n. We identify with any nonempty
subset B = {xi1 , ..., xim} a contour generated by connecting points with
straight lines starting from points xi1 , xi2 and ending by points xim , xi1 .

Definition 1. A geometrical measure of informativity μ : 2X → [0, 1] is
a set function that has to obey the following properties: 1) μ(∅) = 0,
μ(X) = 1; 2) A,B ∈ 2X and A ⊆ B implies μ(A) ≤ μ(B); 3) let
B =

{
..., xik−1

, xik , xik+1
, ...

} ⊆ X and neighbouring points xik−1
, xik , xik+1

belong to a straight line in the plane, then μ(B) = μ (B\ {xin}); 4) μ is
invariant w.r.t. affine transformations.
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Emphasize that axioms 1, 2 have been introduced by Sugeno for fuzzy mea-
sures (see [7]). Consider several ways for defining geometrical measure of
informativity [1].

a) Suppose that the length of an original contour is not equal to zero and
a function L(A) gives us the length of subcontour A ∈ 2X . Then a measure

of informativity defined by contour length is μL(A) = L(A)
L(X) .

b) Suppose that the domain limited by an original contour is convex, and a
function S(B) determines the area bounded by an subcontour A ∈ 2X . Then

a measure of informativity defined by contour area is μS(A) = S(A)
S(X) .

c) Let w(x,A) be a positive estimate of information value of the part of a
contour in a neighbourhood of point x ∈ A in a subcontour A ∈ 2X . Then an

average measure of informativity is defined by μ(A) =

∑
x∈Aw(x,A)∑
x∈X w(x,X)

, where

w(x,A) has to be defined for any non-empty contour A ∈ 2X and μ(∅) = 0 by
definition. It is easy to see that the introduced geometrical measure of infor-
mativity μL and μS can be considered as average measure of informativity.
For example, for μL function w(x,A) = |x− y|, where y is a next neighbour-
ing points in contour A; in case of μS function w(x,A) = S(O, x, y), where
O is the centroid of area, bounded by contour A, and S(O, x, y) is the area
of triangle with vertices in points O, x, y.

3 Stochastic Average Measure of Informativity

In real situations, values w(x,A) can be considered as random values, be-
cause an original contour is corrupted by an additive probabilistic noise. To
stress this, we denote these values by capital letters as W (x,A). In this case

we have the measure of informativity M(A) =
∑

x∈AW (x,A)
∑

x∈X W (x,A) . Then there is

problem of finding the most stable and informative representation A ∈ 2X

of the pattern X for which the expectation E [M(A)] will be maximize and
the the variance σ2 [M(A)] will be minimize. If W (x,A) = W (x) and random
values W (x), x ∈ X , are independent random variables then the measure of
informativity M(A) is additive and the problem of finding the most stable
and informative representation was investigated in this case in [5]. We em-
phasize that stochastic additive measures have been already investigated in
the literature (see e.g. [6]). Now we will be investigated the important case
when the value W (x,A) depends on two neighbouring points. For example,
the geometrical information measure μL and μS are satisfied this condition.

Let X = {x1, ..., xn} be an original contour and let vertices be ordered
by their indices. So if we consider any subcontour A ∈ 2X , then the or-
der defined on A is assumed to be generated by the order on X and given
by indices in the representation A = {xi1 , ..., xim}, where i1 < ... < im.
So for any A = {xi1 , ..., xim} ∈ 2X we can identify its elements by their
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indices and write xk(A) = xik if k ∈ {1, ...,m}. We can also consider any
integer index k assuming that xk(A) = xl(A) if l ≡ k(modm). To work
with such indices, we use a mapping π defined by xk(A) = xπA(k). We sup-
pose that W (xk(A), A) = W (xk(A), xk+1(A)), k = 1, ..., |A|, i.e. the value
W (xk(A), A) depends on two neighbouring points xk(A), xk+1(A). Further,
for simplicity reasons, we denote W (xk(A), xk+1(A)) = Wk,k+1(A). Then an
average monotone measure and stochastic average monotone measure have a
view

μ(A) =

∑|A|
k=1 wk,k+1(A)

∑|X|
j=1 wk,k+1(X)

,M(A) =

∑|A|
k=1Wk,k+1(A)

∑|X|
j=1Wk,k+1(X)

(1)

correspondingly. We call M a stochastic monotone information measure if
Wk,k+1(A), A ∈ 2X are random variables. In this case M has random values.
In this section we find estimates of numerical characteristics of M assuming
that random variables Wk,k+1(A), Wl,l+1(A) are independent if |l − k| > 1.
This situation appears if we suppose that xk, k = 1, ..., n, are also independent
random variables.

We see that M(A) = ξ
η , where ξ =

∑|A|
k=1Wk,k+1(A) and

η =
∑|X|

j=1Wk,k+1(X). The following lemma is used for estimating E [M(A)]

and σ2 [M(A)].

Lemma 1. Let ξ and η be random variables that taking values in the intervals
lξ, lη respectively on positive semiaxis and lη ⊆ ((1 − δ)E [η] , (1 + δ)E [η]),
lξ ⊆ (E [ξ]− δE [η] ,E [ξ] + δE [η]). Then it is valid the following formulas for

mean and variance of distribution of ξ
η respectively

E
[
ξ
η

]
= E[ξ]

E[η] + E[ξ]
E3[η]σ

2 [η] + 1
E2[η]Cov [ξ, η] + r1, (2)

σ2
[
ξ
η

]
= 1

E2[η]σ
2 [ξ] + E2[ξ]

E4[η]σ
2 [η]− 2E[ξ]

E3[η]Cov [ξ, η] + r2, (3)

where Cov [ξ, η] is a covariation of random variables ξ and η, i.e. Cov [ξ, η] =
E [(ξ − E [ξ]) (η −E [η])]; r1, r2 are the residuals those depends on numerical

characteristics of ξ and η. It being known that |r1| ≤ δ
1−δ · E[ξ]+E[η]

E3[η] σ2 [η] ≤
E[ξ]+E[η]
(1−δ)E[η] δ

3, |r2| ≤ Cδ3.

Proof. We prove formula (2). The formula (3) is proved by analogy. Expand
the function φ(x, y) = x

y into a Taylor series at the point (E [ξ] ,E [η]). We
get

φ(x, y) = φ (E [ξ] ,E [η]) +
∞∑

n=1

1
n!d

nφ (E [ξ] ,E [η]) =

= φ (E [ξ] ,E [η])− E[ξ](y−E[η])−E[η](x−E[ξ])
E2[η]

∞∑

n=0

(
E[η]−y
E[η]

)n
.
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The last series converges at every point (x, y) ∈ lξ × lη. Then

E
[
ξ
η

]
= E[ξ]

E[η] + E[ξ]
E3[η]σ

2 [η]− 1
E2[η]Cov [ξ, η] + r1,

where

r1 = −E
[
E[ξ](η−E[η])−E[η](ξ−E[ξ])

E2[η]

∞∑

n=2

(
E[η]−η
E[η]

)n
]

and |r1| ≤ δ
1−δ

E[ξ]+E[η]
E3[η] σ2 [η] ≤ E[ξ]+E[η]

(1−δ)E[η]δ
3. The last estimate is followed

from inequality σ [η] ≤ δE [η]. The lemma is proved.

We will use formulas (2) and (3) without their residuals. Respective values
Ẽ [M(A)] = E [M(A)] − r1, σ̃2 [M(A)] = σ2 [M(A)] − r2 we will call by esti-
mations of numerical characteristics.

Introduce the following notation: S(A) =
∑|A|
i=1 E [Wi,i+1(A)], K(A,X) =∑|A|

i=1 k
X
i (A), where kXi (A) =

∑|X|
j=1 Cov [Wi,i+1(A),Wj,j+1(X)], A ∈ 2X .

Then the formulas for Ẽ [M(A)] and σ̃2 [M(A)] based on (2) and (3) can be
written in the form

Ẽ [M(A)] = S(A)
S(X) + S(A)

S3(X)K(X,X)− 1
S2(X)K(A,X), (4)

σ̃2 [M(A)] = 1
S2(X)K(A,A) + S2(A)

S4(X)K(X,X)− 2S(A)
S3(X)K(A,X). (5)

In general, the random variable
∑|A|

k=1Wk,k+1(A) is not satisfied to conditions
of Lemma 1. However the probability of large deviations of random length of
noisy polygonal line from non-noisy length will be small if the variance of noise
is small. Therefore we assume that the random length satisfied approximately
to conditions of Lemma 1.

4 Stochastic Informational Measure by Contour Length

Assume that an original contour is corrupted by noise. In this case, X =
{xk + nk}mk=1, xk ∈ R2 and nk = (ξk, ηk) are random variables. Suppose
also that ξk, ηk, k = 1, ...,m, are independent, normally distributed and such
that E [ξk] = E [ηk] = 0, σ2 [ξk] = σ2 [ηk] = σ2, k = 1, ...,m. In this sec-
tion we consider a monotone measure μ and monotone stochastic measure M
of view (1), where Wk,k+1(A) = |xk+1(A) + nk+1(A)− xk(A)− nk(A)| and
wk,k+1(A) = |xk+1(A) − xk(A)| correspondingly. We investigate its charac-

teristics Ẽ [M(A)] and σ̃2 [M(A)]. Suppose that Wk,k+1(X), k = 1, ...,m, are
independent random variables. This requirement can be satisfied by the choice
of some subcontour (basic contour) from the initial contour.
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4.1 Numerical Characteristics of Random Variable
Wk,k+1(A)

Let lA(x) = x+(A)−x, where x+(A) is the next point w.r.t. x in the contour
A, lA(x) = |lA(x)|.
Proposition 1. The following asymptotic equalities are valid

E [Wk,k+1(A)] = l
(

1 + σ2

l2 + σ4

2l4 +O
(
σ6

l6

))
,

σ2 [Wk,k+1(A)] = 2σ2
(

1− σ2

l2 +O
(
σ4

l4

))
, l = lA(xk).

Proof. Assume that xk+1(A) − xk(A) = (l, 0), nk+1(A) − nk(A) = (ξk+1 −
ξk, ηk+1 − ηk). Denote ξ = ξk+1 − ξk and η = ηk+1 − ηk, θ = Wk,k+1(A) =√

(ξ + l)
2

+ η2. Then ξ, η are independent normally distributed random vari-

ables and such that E [ξ] = E [η] = 0 and σ2 [ξ] = σ2 [η] = 2σ2. Let
u = 1

l . Then θ2 = l2 (1 + 2ξu+
(
ξ2 + η2

)
u2

)
. Let us find the represen-

tation of θ∗ = θ/l by Taylor formula at the point u = 0: θ∗(0) = 1,

θ∗′(0) = ξ, θ∗′′(0) = η2, θ∗′′′(0) = −3ξη2, θ∗(4)(0) = 12ξ2η2 − 3η4,

θ∗(5)(0) = −60ξ3η2 + 45ξη4, θ∗(6)(0) = 360ξ4η2 − 540ξ2η4 + 45η6. There-
fore

θ∗(u) = 1 + ξu+
η2

2
u2 − ξη2

2 u3 + 4ξ2η2−η4
8 u4 − 4ξ3η2−3ξη4

8 u5 +O(u6).

We compute next E [θ∗(u)] taking in account that E [ξs] = E [ηs] = 0 if s is
odd, E

[
ξ2
]

= E
[
η2
]

= σ2, E
[
ξ4
]

= E
[
η4
]

= 3σ4, E
[
ξ6
]

= E
[
η6
]

= 15σ6,
and that we should compute the expectation of product of independent
random variables. Then we have E [θ∗(u)] = 1 + 1

2σ
2u2 + 1

8σ
4u4 + O(u6),

since E
[
θ∗(6)(0)

]
= 135 �= 0. Compute the variance of θ: E

[
θ2
]

=

E
[
ξ2 + 2ξlk + l2 + η2

]
= 2σ2 + l2, E2 [θ] = l2

(
1 + σ2

l2 +O
(
σ4

l4

))
, there-

fore, σ2 [θ] = E
[
θ2
] − E2 [θ] = σ2

(
1− σ2

2l2 +O
(
σ4

l4

))
. The general case is

also true, because values E [Wk,k+1(A)], σ2 [Wk,k+1(A)] do not depend on the
chosen coordinate system.

Corollary 1. It is true the equality

S(A) =

|A|∑

k=1

E [Wk,k+1(A)] = L(A) + σ2

|A|∑

k=1

l−1
A (xk) + σO

(
σ3

l3A

)
,

where L(A) =
∑|A|

k=1 lA(xk) is the length of contour A, lA = mink lA(xk).

By analogy with Proposition 1 and Corollary 1 we compute the covariance
between random variables Wk−1,k(A), Wk,k+1(A).
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Proposition 2. We have

Cov [Wk−1,k(A),Wk,k+1(A)] =

= −σ2 cosαk

(
1−

(
1

l2k−1
+ cosαk

2lk−1lk
+ 1

l2k

)
σ2+ o

(
σ2

l2

))
,

where αk = α(xk) =
(
l̂i−1, li

)
, lk = lA(xk), l = min {lk−1, lk}.

Calculate the covariance K(A,X) =
∑
i k

X
i (A) between the all segments of

polygon A and all segments of basic polygon X with help of last proposition.
Let α(x) (β(x)) be an inner angle of polygon A (polygon X) in vertex x,
γ(x) be an angle between the vectors x+1(A)−x, x+1(X)−x, where x+1(A)
(x+1(X)) is the next point w.r.t. x in the contour A (contour X).

Corollary 2. To same conditions it is true equality

K(A,X) = 4σ2
∑

x∈A
cos α(x)2 cos β(x)2 cos

(
γ(x) + α(x)−β(x)

2

)
+ σ2o

(
σ
lA

)

for A ∈ 2X , where lA = mink lA(xk).

4.2 The Numerical Characteristics of Stochastic
Measure of Informativity by Length

We will find numerical characteristics of stochastic measure of informativity
by length using the results of the previous item. The following theorem may
be got from equality (4), Corollaries 1, 2.

Theorem 1. The asymptotic equality

Ẽ [M(A)] = L(A)
L(X) + C1(A) σ2

L2(X) + o
(
σ2

l2A

)
, A ∈ 2X

is true, where

C1(A) = −L(A)
∑

x∈X
l−1
X (x) + L(X)

∑

x∈A
l−1
A (x) + 4 L(A)

L(X)

∑

x∈X
cos2 β(x)2 −

−4
∑

x∈A
cos α(x)2 cos β(x)2 cos

(
γ(x) + 1

2α(x) − 1
2β(x)

)
.

Similarly we will find the asymptotic formula for variance of stochastic infor-
mational measure by length with help of formula (5), Corollaries 1, 2.
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Theorem 2. The asymptotic equality

σ̃2 [M(A)] = 4C2(A) σ2

L2(X) + o
(
σ2

l2A

)
, A ∈ 2X

is true, where

C2(A) =
∑

x∈A
cos2 α(x)2 + L2(A)

L2(X)

∑

x∈X
cos2 β(x)2 −

−2 L(A)
L(X)

∑

x∈A
cosα(x)2 cosβ(x)2 cos

(
γ(x)+ 1

2α(x)− 1
2β(x)

)
.

The value of random error (the variance of stochastic informational measure)
characterizes the degree of stability of informational measure of curve with
respect to level of curve noise. We can put the task about finding of polygonal
representation of fixed cardinality A ∈ 2X , |A| = k, which minimized the
value of variance of stochastic informational measure by length. As can be
seen from Theorem 2 the polygonal representation

A = arg min
A∈2X , |A|=k

C2(A)

is a solution of indicated task for great signal-to-noise ratio
l2A
σ2 .

Example 1. Let X = {x1, ..., x6} be an ordered set of vertexes of regular 6-
gon. Calculate the value C2(A) for various polygonal representations A of
cardinality |A| = 3: A1 = {x1, x3, x5}, A2 = {x1, x2, x4}, A3 = {x1, x2, x3}.
We have C2(A1) = 1.125, C2(A2) = 1.25, C2(A3) ≈ 1.66. Thus the contour
A1 is a most stable contour to noise w.r.t. measure of informativity by length
among of contours of cardinality is equal 3.

Many other tasks of finding of informative and stable representation of noisy
image may be formulated and solved with help of this approach.
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Clustering on Dynamic Social Network
Data

Pascal Held and Kai Dannies

Abstract. This paper presents a reference data set along with a labeling
for graph clustering algorithms, especially for those handling dynamic graph
data. We implemented a modification of Iterative Conductance Cutting and
a spectral clustering. As base data set we used a filtered part of the Enron
corpus. Different cluster measurements, as intra-cluster density, inter-cluster
sparseness, and Q-Modularity were calculated on the results of the clustering
to be able to compare results from other algorithms.

Keywords: Clustering, cluster measurements, Enron data set, graph clus-
tering, stream data.

1 Introduction

Social network analysis has already been popular long before websites like
Facebook, XING or Google+ - now commonly known as social networks -
were launched. In [16] a comprehensive approach of modeling social network
data as (un)directed graphs was proposed, which has become widely accepted.
Over the years a lot of research has been performed on e.g. cohesiveness of
groups of members in social graphs [17] or segmentation of social networks
[13]. All these methods have in common that they use a static representation
of the social graph underlying the respective social network.

Recent research covered also the topic of dynamic graph clustering. Kim
et al.[11] tried to solve the problem of clustering dynamic social networks by
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using evolutionary algorithms. Goerke et al.[8] extended an algorithm based
on min-cut trees [6] introducing temporal smoothness.

Attempts have been made to infer information from dynamic graphs (e.g.
in [1]) but they either restrict themselves to fairly simple questions like con-
nectivity or to path finding problems in order to cope with the changing
structure of the graph. Such discretization results from some kind of bin-
ning operation performed on the data, thus leading to a loss of information,
namely the exact time when an event has happened. Such an approach does
not take into account the frequency with which events occur but rather lists
their absolute number.

We provide a reference clustering along with a prepared data set, bases on
the Enron corpus. One can download them at http://www.ovgu.de/pheld/
pub/SMPS2012. The clustering we provide for each time step of the data
set is described in Section 2.1, a divisive minimum modularity clustering,
generates very well clusters with respect to cluster measurements as inter-
cluster sparseness or intra-cluster density.

The paper is structured as follows: The following section gives a short
summary of the Enron dataset and of the selected algorithms for cluster-
ing. Afterwards we present our experiments in Section 3 and the results in
Section 4. We finish our paper with a conclusion in Section 5.

2 Related Work

2.1 Enron Dataset

We used the well-known Enron dataset (http://www-2.cs.cmu.edu/~enron/)
as basis for our experiments. The Enron dataset is a large corpus of email
messages from the Enron Corporation. This email communication is a good
example for human interaction in social networks. The raw dataset contains
about 620, 000 messages from 158 users [12].

For our experiments we cleaned the messages, so we removed duplicate
messages, and all messages, which were not sent from one Enron employee
to another. Mails from mailing lists were also dropped. The major part of
the dropped messages was SPAM and duplicated messages. We interpreted
mails with multiple recipients as a separate mail from the sender to every
recipient. Mails with wrong addresses, like firstnamelastname@enron.com
were matched to the correct firstname.lastname@enron.com.

From these messages we created an event list containing only the time
stamps, the sender, and the recipient of the message. In total we got 9071
events. We used this event list to generate a dynamic graph, where every
node is an Enron employee and every edge represents the communication
frequency. The event list was binned to buckets of 10.000 seconds. In total

http://www.ovgu.de/pheld/pub/SMPS2012
http://www.ovgu.de/pheld/pub/SMPS2012
http://www-2.cs.cmu.edu/~enron/
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we got about 10.000 of these time steps. To estimate this frequency we used
a Butterworth filter with a bandpass-frequency of 0.0075. This value is the
result of an optimization process, based on AIC and BIC measures. It is a
good compromise between fast reaction on changing in behavior and smooth
filter signal. A detailed description why we use this frequency can be found
in [9]. A more detailed discussion about the resulting data set can be found
at http://www.ovgu.de/pheld/pub/SMPS2012

The Enron dataset is not a really huge dataset, but this gives us the op-
portunity to cluster the resulting dynamic graph at a lot of time stamps with
classical clustering methods. Later, the results of these classical algorithms
can be compared with the results of dynamic clustering algorithms. Good
results on this small datasets could be a indicator for good results in much
larger datasets.

2.2 Clustering Algorithms

Graph clustering has obviously a close connection to the classical minimum
cut problem [3], which consists in finding for a given (undirected) graph a
partition of its vertices into two disjoint subsets, which minimizes the number
(or the total weight) of the edges crossing between them. More precisely we
try to find more than one cut here, but a “good” number of cuts for dividing
the graph in the “most natural” way.

Two values of the graph are important to determine the quality of the
clustering: The number of edges between the clusters and the number of edges
in each cluster. In section 2.3 we will present in detail several possibilities
to combine those values to a single number as a quality measure of graph
clustering.

2.2.1 Divisivel Minimum Modularity Clustering (DMMC)

The basic idea of this algorithm is the same as in Iterative Conductance
Cutting [10]. These algorithm aims for a cut of the graph minimizing the
conductance, see section 2.3. Unfortunately finding such a cut is NP-hard.
So Kannan et al.[10] used an approximation: the nodes are sorted w.r.t. their
corresponding eigenvalues of the adjacancy matrix. Then calculate each pos-
sible split of this sorted set and continue with the maximal conductance.

We decided to use the recently deeply researched measurement of Modu-
larity [2] as described in section 2.3. Besides this we decided because of the
need of as good results as possible to actually solve the NP-hard problem:
To try any possible cut to minimize the modularity. Even solving this prob-
lem does not guarantee an optimal solution with respect to modularity as
measurement: There could be steps where a split in more than two clusters
leads to a better result. So for really finding the best cluster we would have to

http://www.ovgu.de/pheld/pub/SMPS2012
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check any possible clustering. Because this is computationally too extensive
even for the given 158 nodes we hope to get a really good approximation by
using the algorithm described below.

As initialization we perform a connected component analysis and then try
to divide each cluster further trying each pair of nodes in the original cluster
as seeds of two subsequent clusters until no further possible splitting leads to
an improvement.

Algorithm 1. DMMC
Input:Similarity Matrix
clusters ← connectedComponents;
while Clustering changes do

for each cluster do

for node1,node2:cluster do � try to split clusters on each pair of nodes
clusterCenter1 ← node1;
clusterCenter2 ← node2;
assign each vertex in cluster to cluster center with higher similarity;
if clustering is better than before then

discard cluster;
add both new clusters;

end if
end for

end for
end while
Output:Clusters A1, ...,Ak

2.2.2 Other Algorithms

As second algorithm we implemented the unnormalized spectral clustering as
described by Luxburg[14] and compared it with DMMC.

There are also other algorithms described in the literature. One example
is Markov Clustering [5] that is simulating a random walk on the graph.
Another one is Geometric MST1 Clustering [7] which combines spectral par-
titioning and a geometric clustering technique. Another prominent example
is a clustering based on min-cut trees developed by Flake et al.[6].

2.3 Cluster Quality Measurements

As stated above, two values of a graph clustering are especially important to
measure the quality of a clustering: The sum of the weights of intra-cluster
edges should be maximized and the sum of the weights of inter-cluster edges
should be minimized. Because one wants only one number to compare clus-

1 MST = minimum spanning tree.
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terings, different measurements based one those two numbers were developed
[3, 4]. In this section we will use following notation:

| E | sum of weights of edges contained in E
E(C) intra-cluster edges of Cluster C
E(C1, C2) inter-cluster edges between C1 and C2

Einc(C) incident edges to a cluster, including inter-cluster edges
from C to any other cluster as well as all intra-cluster
edges of C

maxWeight for simple, undirected graphs with 0 ≤ edge Weight ≤
1: | V | · | V − 1 | · 0.5

Q-Modularity

The Q-Modularity measurement was developed by Newman und Girvan [15].
One sets up a k × k-Matrix M where k is the number of clusters. The entry
(i, j) of the matrix is the sum of the edge weights between the i-th and the
j-th cluster for i �= j and the sum of weights of the i-th cluster for i = j.
The Matrix is normalized by | M |. If this matrix has most of its weight on
the principal diagonal then most of the weights are within clusters instead
inbetween the clusters and therefore the clustering is good. However, only
using the elements on the principal diagonal to measure the cluster quality
is not sufficient, because then singleton clusters would always be optimal.

So the authors [15] choose the following quantity for taking the inter-cluster
edges into account:

ai =
∑

j

Mi,j =
| Einc(Ci) |

maxGraphWeight
(1)

The complete measurement is then calculated by:

Q-Modularity =
∑

i

(Mi,i − a2
i ) (2)

Intra-Cluster Density and Inter-Cluster Sparseness

The basic idea of the intra-cluster density is to measure how dense the clusters
are. For the intra-cluster density we used:

intraClusterDensity =
1

numClusters
·

∑

C∈clusters

| E(C) |
maxWeight(C)

(3)

The basic idea for this measurement is, that the edges inbetween the clusters
should be as sparse as possible. For inter-cluster sparseness we used:
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interClusterSparseness = 1 −

∑
(u,v)∈E,u∈Ci,v∈Cj,i�=j

| (u, v) |

maxGraphWeight − ∑
C∈clusters

| E(C) | (4)

3 Experiments

As stated above we used the Enron dataset for our experiments. The results
achieved by processing the raw data as described in Section 2.1 lead to edge
weights between zero and one, mostly much closer to zero. There are also
different types of people. Some people communicate 100 times as much as
other people, but they have also regularity in their communication behavior.
The edge weights are approcimately lognormal distributed, so we used a
logarithmic scaling:

scaledEdgeWeight =
20 + log10edgeWeight

20
(5)

Numbers smaller than zero or greater than one were set to zero or one respec-
tively. The number 20 is used as a threshold: All values above 10−20 shall be
considered. Any threshold you want to use can replace this threshold. The
higher this number is chosen the longer clustering structure from inactive
users keep alive. Isolated nodes were ignored for the clustering.

After this preprocessing we took every time step of the data and clustered
it with the two algorithms described in Sections 2.2.1 and 2.2.2 where the
maximal number of clusters for the second algorithm was set to 25 because
more than 25 clusters on 158 nodes are hard to interpret. For the spectral
clustering we stored the best result out of 100 experiments to neglect the
random component as good as possible. As the target function for both algo-
rithms we maximized the Q-Modularity. The other described measurements
were used to compare the results independent of the target function, see next
section.

4 Results

In Figure 1 we show the generated number of clusters over the time. The
x-axis describes the timeline, where 10.000 seconds are one time step. Both
algorithms generated a similar number of clusters. The K-Median algorithm
is more stable than the spectral clustering algorithm in terms of number of
clusters. This is caused by on the random component of the spectral cluster-
ing. This phenomenon is also reflected in the Q-Modularity. Good values for
the Q-Modularity are between 0.3 and 0.7 [15]. These values were reached
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Fig. 1 left: number of clusters, right: Q-Modularity over time
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Fig. 2 inter-cluster-sparseness and intra-cluster-density over time

by the K-Median algorithm most of the time. The K-Median algorithm out-
performs the spectral clustering with the Q-Modularity measurement in each
time step.

The inter-cluster-sparseness, see Figure 2, is quite good for both algo-
rithms. For this measurement the spectral clustering provides better results
than the K-Median algorithm. There are some outliers at the beginning of the
timeline. These results from less active elements in the graph at the first few
hundred time steps. So there are no old communication structures learned
and the graph is really sparse.

However the DMMC algorithm provides better results for the intra-cluster
density. This leads to the conclusion that DMMC prefers the intra-cluster
density, but spectral clustering prefers the inter cluster sparseness. The lower
values at the end of the time series are caused by the high connectivity of
the graph.
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5 Conclusion and Further Work

We clustered the Enron corpus with two different clustering algorithms: Divi-
sive Minimum Modularity Clustering, which combines Iterative Conductance
Cutting and K-Median Clustering, and the spectral clustering. We evaluated
the results of the algorithm with respect to three different clustering quality
measurements: The intra-cluster density, the inter-cluster sparseness and the
Q-Modularity. The DMMC algorithm is more stable over the time steps of
the data due to the missing random component compared to spectral clus-
tering. However, the disadvantage of DMMC is the much higher computation
time. Both algorithms lead to reasonable results, though.

Despite the long computation time, the DMMC can be used as reference to
test other cluster algorithms because.... For future work one should test the
described algorithms with other common stream data sets. Also the change
of the clusterings in a small time range should be considered as measurement
for clustering stream data.

Another open question is, how similar are the clusterings of successive
timesteps. As a next step we will study how the clusters deverlop over time
and how temporal smooth they really are. One main problem in social net-
work clustering is, that there is no correct labeling for clusters availible. In
this paper we enriched a given dataset with such labels. It should be studied
if such measure lead to good clustering results for social networks.
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Merging Partitions Using Similarities
of Anchor Subsets

Thomas A. Runkler

Abstract. This paper addresses the problem of merging pairs of partition
matrices. Such partition matrices may be produced by collaborative cluster-
ing. We assume that each subset in one partition matrix matches one of the
subsets in the other partition matrix. To align the arbitrarily ordered rows in
the partition matrices we use the memberships of a set of anchor points and
maximize their pairwise similarities. Here, we consider various set-theoretic
similarity measures. Experiments with a simplified version of the well-known
BIRCH benchmark data set illustrate the effectivity of the approach and show
that all considered similarity measures are well suited for partition merging.

Keywords: Fuzzy clustering, similarity measures.

1 Introduction

Fuzzy clustering partitions a data set X = {x1, . . . , xn} ⊂ R
p into c ∈

{2, . . . , n − 1} fuzzy subsets specified by a c × n membership matrix U ,
uik ∈ [0, 1], i = 1, . . . , c, k = 1, . . . , n,

k∑

i=1

uik = 1,

n∑

k=1

uik > 0 (1)

A popular fuzzy clustering model is fuzzy c-means (FCM) [2] that minimizes

J(U, V,X) =

c∑

i=1

n∑

k=1

um
ik‖vi − xk‖2 (2)
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with the fuzzifier m > 1 and the cluster centers V = {v1, . . . , vc} ⊂ R
p. In

this paper we use the Euclidean norm. Optimization of FCM can be done by
alternating optimization through the conditions for local extrema of J

vi =

n∑
k=1

um
ikxk

n∑
k=1

uik

, uik = 1

/
c∑

j=1

( ‖vi − xk‖
‖vj − xk‖

) 2
m−1

(3)

The computational complexity of this FCM optimization is asympotically
linear in n and asympotically quadratic in c [18]. An approach to reduce the
quadratic complexity in c is divisive clustering that starts with a lower value
of c and subsequently divides the clusters into subclusters [5], which yields a
hierarchical cluster structure. The opposite approach is agglomerative cluster-
ing that starts with a higher value of c and iteratively merges clusters [11, 12].
Both divisive and agglomerative clustering consider all objects of the entire
data set X . Orthogonal to agglomerative clustering is collaborative clustering
[13] where subsets of X are clustered separately and the clustering results are
merged. If the data are stored in distributed and remotely located devices,
then collaborative clustering reduces the communication effort, because only
clustering results need to be transmitted between the devices instead of the
complete data. Also data privacy issues can be solved by collaborative clus-
tering [14]. Fig. 1 illustrates the different schemes of divisive, agglomerative,
and collaborative clustering. The reverse of collaborative clustering is omitted
due to triviality.

divisive

agglomerativecl
us

te
rs

partition

patterns

cl
us

te
rs

partition

patterns

collaborative

cl
us

te
rs

patterns

partition

cl
us

te
rs

patterns

partition

Fig. 1 Divisive, agglomerative, and collaborative clustering

This paper focusses on merging partitions resulting from collaborative clus-
tering. Without loss of generality we consider merging a pair of partitions, as
illustrated in the right view of Fig. 1. Merging more than two partitions can
be done by iteratively merging pairs of partitions. Notice however that we
not necessarily require pairwise merging to be commutative or associative,
so merging multiple partitions may yield different results depending on the
merging sequence. For simplicity we assume that both partitions have the
same number of rows (clusters).

Hore and Hall suggest an approach to merge partitions U1 and U2 by
computing the corresponding sets of cluster centers V1 and V2 using (3) and
then applying a so-called centroid correspondence algorithm to merge the
resulting cluster centers [7]. In this paper we do not want to merge sets of



Merging Partitions Using Similarities of Anchor Subsets 575

cluster centers but present an approach to explicitly merge partition matrices.
This approach is based on similarity measures and requires the use of anchor
subsets. The paper is structured as follows: Section 2 briefly reviews similarity
measures for sets and partitions. Section 3 presents our new similarity based
approach to merge partitions. Section 4 illustrates the performance of our
new approach in experiments with benchmark data. Section 5 finally gives
the conclusions.

2 Similarity Measures for Sets and Partitions

Measures for the similarity of fuzzy subsets can be categorized into geometric
distance models, set-theoretic approaches, pattern recognition approaches,
and correlation indices [21]. In this paper we restrict to set-theoretic ap-
proaches. Dubois and Prade [3] suggested a fuzzy generalization of the Jac-
card index [10] or Gregson’s crisp similarity [6]

s1(A,B) =
|A ∩B|
|A ∪B| (4)

and two fuzzy generalizations of Restle’s crisp similarity [16]

s2(A,B) = 1− 1

n

∣∣(¬A ∩B) ∪ (A ∩ ¬B)
∣∣ (5)

and
s3(A,B) = 1− sup

x

(
(¬A ∩B) ∪ (A ∩ ¬B)

)
(6)

where ∩ and ∪ are realized using appropriate t-norms and t-conorms [19] (in
this paper we use the minimum and maximum operators), the cardinality is

|A| =
∑

x∈X

µA(x) (7)

and for convenience we denote

sup
x

A = sup
x∈X

µA(x) (8)

Enta suggested a disconsistency index (or degree of separation) [4]

s4(A,B) = 1− sup
x

(A ∩B) (9)

Fuzzy partitions are sets of fuzzy subsets, so the similarity of partitions can be
defined based on the similarity of subsets. A similarity measure for partitions
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based on the subset similarity measure s1 has been proposed by Runkler [17].
A fuzzy extension of the Rand index [15] has been proposed by Hüllermeyer
and Rifqi [8]. Generalization of several similarity indices to fuzzy, probabilis-
tic, and possibilistic partitions are presented in [1]. A further overview of
similarity measures for partitions is going to appear in [9].

3 Similarity Based Merging of Partitions

We consider the problem of merging two partition matrices U1 ∈ [0, 1]c×n1

and U2 ∈ [0, 1]c×n2 specifying c fuzzy subsets of X1 and X2, respectively, to a
joint partition matrix U ∈ [0, 1]c×n that specifies c fuzzy subsets of X , where
each matrix U1, U2 and U holds the constraints at (1), where X1 ∪X2 = X ,
and where n1, n2 < n. The partition matrices U1 and U2 may or may not be
produced by fuzzy clustering. If they come from fuzzy clustering, then they
reflect a collaborative approach, where c clusters are found in each of the two
subsets X1 and X2 of the data set X separately, and then the partitions are
merged to represent c clusters of the whole data set X . We assume that U1

and U2 are extracted from U by a sampling process such that the c clusters in
U1 match the c clusters in U2. Notice that this assumption does not generally
hold for arbitrary partition matrices U1 and U2. Each row in U1 and U2

represents a fuzzy subset of X1 and X2, respectively, so merging U1 and U2

to U means to merge rows of U1 and U2 to rows of U . The order of rows
in U1 and U2, however, is arbitrary, so we need to find out which row in U1

matches which row in U2. To do so, we define a set XA ⊂ X of anchor points
that are added to X1 and X2 and serve as references to match the rows in
U1 and U2. In other words, we partition X into the pairwise disjoint subsets
X1, X2, and XA, then find a partition matrix [U1, A1] over {X1, A} and
a partition matrix [A2, U2] over {A,X2}, and finally merge both partition
matrices to U = [U1, A1, U

′
2] over X = {X1, A,X2}, where [·] denotes the

(horizontal) matrix concatenation. The matching of subsets in U1 and U2

is done by exchanging the rows in U2 (forming a new matrix U ′
2) according

to the matching of the anchor subsets A1 and A2. Figure 2 illustrates this
merging scheme. Notice that this merging procedure is not symmetric but
keeps A1 and discards A2, so merging [U1, A1] and [A2, U2] will usually yield a
different result than merging [U2, A2] and [A1, U1]. The matrix U ′

2 is generated

U1 1A

A2 U2

1AU1 2U’

U

Fig. 2 Merging partition matrices U1 and U2 using anchors A1 and A2
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from U2 with respect to A1 and A2 using the following algorithm: For each
row i = 1, . . . , c in A1 find the most similar row in A2 (using one of the
subset similarity measures presented in the previous section) and use the

corresponding row of U2 as the ith row in U ′
2.

4 Experiments

For our experiments we use a variant of the well-known BIRCH benchmark
data set [20]. The original BIRCH data set is an artificial data set with 100
clusters in an evenly spaced 10× 10 grid spaced by 4

√
2, each consisting of

1000 points randomly generated using two-dimensional Gaussian distribution
with variance

√
2. To simplify our experiments we consider a variant of this

data set that contains only 2 × 2 clusters, each containing only 100 points,
i.e. we have a total of n = 400 points with c = 4 clusters. The grey dots in
the left view of Fig. 3 show this data set. In a first experiment we run regular
FCM clustering, c = 4, 100 iteration steps, on this data set. The resulting
cluster centers are shown as circles (©). We compare the resulting partition
with the ideal FCM partition computed using the ideal cluster centers V =
{(0, 0), (0, 4

√
2), (4

√
2, 0), (4

√
2, 4
√

2)} by (3). The left view of Fig. 4 shows
the membership values for regular FCM (horizontal) versus the ideal FCM
memberships (vertical). Ideally, all points should be on the unit main diagonal
or on the reverse unit main diagonal (because of swapped rows in U). Here,
most points are very close to the ideal case.

In our second experiment we randomly partition the data set into a set A
of 40 anchor points and two subsets X1 and X2 with (400−40)/2 = 180 data
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Fig. 3 Simplified BIRCH data set (grey dots), clustering results (©), collaborative
clustering results (×). Right: Zoom of the bottom left cluster, partial clustering
results (+).
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Fig. 4 Membership values of regular FCM (left, horizontal) and collaborative FCM
(right, horizontal) versus ideal FCM memberships with the exact cluster centers
(vertical)

points each. Then we produce the partition matrices [U1, A1] and [A2, U2]
by running FCM, c = 4, 100 iteration steps, on {X1, XA} and {XA, X2},
and merge U1, U2, A1, and A2 to U = [U1, A1, U

′
2] with the similarity mea-

sure s1 (4), just as decribed in the previous section. Finally, we compute
the equivalent cluster centers using (3). The ticks (×) in Fig. 3 shows these
cluster centers. They highly correspond with the cluster centers obtained by
conventional clustering (©). The right view of Fig. 3 shows a zoom of the
bottom left cluster and the cluster centers (+) for the two partial results of
the collaborative approach. The partial results slightly deviate from the re-
sults obtained by conventional clustering, but the merging process averages
both cluster centers and finds a solution that highly coincides with the con-
ventional approach. The right view of Fig. 4 shows the membership values
for collaborative FCM (horizontal) versus the ideal FCM memberships (ver-
tical). The deviations from the unit main diagonal and its reverse are slightly
higher than for conventional (non-collaborative) FCM, but the result is still
highly acceptable.

In our third set of experiments we compare all four similarity measures
s1, . . . , s4. Fig. 5 displays the similarities between the collaborative parti-
tions and the ideal partitions (with ideal cluster centers) for different num-
bers of anchor points between 2 and 398 (averages for 10 different random
initializations). Notice that each similarity measure is used twice: for merging
partitions and for comparison with the ideal partition. All similarity measures
yield very high similarities close to one except s3 (bottom left) that yields
similarities around 0.5. This is caused by the fact that s3 is influenced by
the fuzziness of the partitions. More specifically, s3 can only achieve similar-
ities of one for crisp partitions, and for ambiguous binary partitions with all
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Fig. 5 Similarities between collaborative and ideal partitions for different numbers
of anchor points (similarity measures s1, . . . , s4)

uik = 0.5 we only get s3 = 0.5. For s1, s2, and s4, very high similarities are
achieved, even with relatively few anchor points, and the similarity further
increases with the number of anchor points which matches the intuitive ex-
pectation. For s4 the maximum similarity is already approximately achieved
for about 100 (25%) anchor points. To summarize, we obtain very good re-
sults with s1, s2, and s4, but s3 is less suitable for cluster merging.

5 Conclusions

We have introduced a novel approach to merge partitions that may or may
not be generated by collaborative clustering. Without loss of generality we
restricted to merge pairs of partitions; multiple merging can be realized by
iterative pairwise merging. We assumed that each partition describes the
same number of subsets (i.e. the partition matrices have the same number of
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rows), and that each of the subsets of each partition matches a subset of the
other partition. Such partitions can be merged based on an anchor set whose
memberships serve to align the subsets in both partitions. More specifically,
we find an alignment of pairs of subsets that maximizes the similarity of the
corresponding anchor subsets. Our experiments with the simplified BIRCH
data set show that several set-theoretic similarity measures — denoted s1
(4), s2 (5), and s4 (9) — are well suited for subset alignment and hence for
merging partitions.
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E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 29–38.
Springer, Heidelberg (2010)



Merging Partitions Using Similarities of Anchor Subsets 581

18. Runkler, T.A., Bezdek, J.C., Hall, L.O.: Clustering very large data sets: The
complexity of the fuzzy c-means algorithm. In: European Symposium on In-
telligent Technologies, Hybrid Systems and Their Implementation on Smart
Adaptive Systems (eunite), Albufeira, pp. 420–425 (2002)

19. Schweizer, B., Sklar, A.: Associative functions and statistical triangle inequal-
ities. Publ. Math–Debrecen. 8, 169–186 (1961)

20. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering
method for very large databases. In: ACM SIGMOD Int. Conf. on Management
of Data, pp. 103–114 (1996)

21. Zwick, R., Carlstein, E., Budescu, D.V.: Measures of similarity among fuzzy
concepts: A comparative analysis. Int. J. Approx. Reason. 1, 221–242 (1987)



Author Index

Akbarzadeh Tutunchy, Mohammad
Reza 211

Almeida, Rui Jorge 173
Antoine, Violaine 27
Ayachi, Raouia 479
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