
Chapter 8
Asymptotic Safety, Fractals, and Cosmology

Martin Reuter and Frank Saueressig

Abstract These lecture notes introduce the basic ideas of the asymptotic safety
approach to quantum Einstein gravity (QEG). In particular they provide the back-
ground for recent work on the possibly multi-fractal structure of the QEG space-
times. Implications of asymptotic safety for the cosmology of the early Universe are
also discussed.

8.1 Introduction

Finding a consistent and fundamental quantum theory for gravity is still one of the
most challenging open problems in theoretical high-energy physics to date. As is
well known, the perturbative quantization of the classical description for gravity,
general relativity, results in a non-renormalizable quantum theory [1–3]. One pos-
sible lesson drawn from this result may assert that gravity constitutes an effective
field theory valid at low energies, whose ultraviolet (UV) completion requires the
introduction of new degrees of freedom and symmetries. This is the path followed,
e.g., by string theory. In a less radical approach, one retains the fields and symme-
tries known from general relativity and conjectures that gravity constitutes a fun-
damental theory at the non-perturbative level. One proposal along this line is the
asymptotic safety scenario [4–6] initially put forward by Weinberg [7–10]. The key
ingredient in this scenario is a non-Gaussian fixed point (NGFP) of the gravitational
renormalization group (RG) flow, which controls the behavior of the theory at high
energies and renders physical quantities safe from unphysical divergences. Given
that the NGFP comes with a finite number of unstable (or relevant) directions, this
construction is as predictive as a ‘standard’ perturbatively renormalizable quantum
field theory.
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(1) The primary tool for investigating this scenario is the functional renormaliza-
tion group equation (FRGE) for gravity [11], which constitutes the spring-board for
the detailed investigations of the non-perturbative renormalization group behavior
of quantum Einstein gravity [11–60]. The FRGE defines a Wilsonian RG flow on a
theory space which consists of all diffeomorphism-invariant functionals of the met-
ric gμν , and turned out to be ideal for investigating the asymptotic safety conjecture
[4–8]. In fact, it yielded substantial evidence for the non-perturbative renormaliz-
ability of quantum Einstein gravity. The theory emerging from this construction
(henceforth denoted ‘QEG’) is not a quantization of classical general relativity. In-
stead, its bare action corresponds to a non-trivial fixed point of the RG flow and is a
prediction therefore.

The approach of [11] employs the effective average action Γk [61–72] which has
crucial advantages as compared to other continuum implementations of the Wilso-
nian RG flow [73–76]. The scale dependence of Γk is governed by the FRGE [61]

k∂kΓk[Φ,Φ̄] = 1

2
STr

[(
δ2Γk

δΦAδΦB
+ Rk

)−1

k∂kRk

]
. (8.1)

Here ΦA is the collection of all dynamical fields considered, Φ̄A denotes their back-
ground counterparts and STr denotes a generalized functional trace carrying a minus
sign for fermionic fields and a factor 2 for complex fields. Moreover Rk is a matrix-
valued infrared cutoff, which provides a k-dependent mass-term for fluctuations
with momenta p2 � k2, while vanishing for p2 � k2. Solutions of the flow equa-
tion give rise to families of effective field theories {Γk[gμν],0 ≤ k < ∞} labeled
by the coarse-graining scale k. The latter property opens the door to a rather direct
extraction of physical information from the RG flow, at least in single-scale cases: If
the physical process under consideration involves a single typical momentum scale
p0 only, it can be described by a tree-level evaluation of Γk[gμν], with k = p0.

(2) Already soon after the asymptotic safety program had taken its modern form,
various indications pointed in the direction that in QEG space-time should have
certain features in common with a fractal. In ref. [13] the four-dimensional graviton
propagator has been studied in the regime of asymptotically large momenta and it
has been found that near the Planck scale a kind of dynamical dimensional reduction
occurs. As a consequence of the NGFP controlling the UV behavior of the theory,
the four-dimensional graviton propagator essentially behaves as two-dimensional
on microscopic scales.

Subsequently, the “finger prints” of the NGFP on the fabric of the effective QEG
space-times have been discussed in [15], where it was shown that asymptotic safety
induces a characteristic self-similarity of space-time on length scales below the
Planck length �Pl. The graviton propagator becomes scale-invariant in this regime
[13]. Based on this observation it was argued that, in a cosmological context, the ge-
ometry fluctuations it describes can give rise to a scale-free spectrum of primordial
density perturbations responsible for structure formation [77–81]. Thus the overall
picture of the space-time structure in asymptotically safe gravity as it emerged about
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ten years ago comprises a smooth classical manifold on large distance scales, while
on small scales one encounters a low-dimensional effective fractal [13, 15].

The characteristic feature at the heart of these results is that the effective field
equations derived from the gravitational average action equip every given smooth
space-time manifold with, in principle, infinitely many different (pseudo-) Rieman-
nian structures, one for each coarse-graining scale [82, 83]. Thus, very much like in
the famous example of the coast line of England [84], the proper length on a QEG
space-time depends on the ‘length of the yardstick’ used to measure it. Earlier on
similar fractal properties had already been found in other quantum gravity theories,
in particular near dimension 2 [85], in a non-asymptotically safe model [86] and by
analyzing the conformal anomaly [87].

Along a different line of investigations, the causal dynamical triangulation (CDT)
approach has been developed and first Monte-Carlo simulations were performed
[88–95]; see [96] for a recent review. In this framework one attempts to compute
quantum gravity partition functions by numerically constructing the continuum limit
of an appropriate statistical mechanics system. This limit amounts to a second-order
phase transition. If CDT and its counterpart QEG, formulated in the continuum by
means of the average action, belong to the same universality class, one may expect
that the phase transition of the former is described by the non-trivial fixed point
underlying the asymptotic safety of the latter.

Remarkably, ref. [90–92] reported results which indicated that the four-dimen-
sional CDT space-times, too, undergo a dimensional reduction from four to two
dimensions as one ‘zooms’ in on short distances. In particular, it had been demon-
strated that the spectral dimension ds measured in the CDT simulations has the very
same limiting behaviors, 4 → 2, as in QEG [97]. Therefore it was plausible to as-
sume that both approaches indeed ‘see’ the same continuum physics.

This interpretation became problematic when ref. [94] carried out CDT simula-
tions for d = 3 macroscopic dimensions, which favor a value near ds = 2 on the
shortest length-scale probed since, in this case, the QEG prediction for the fixed
point region is the value ds = 3/2 [97]. Furthermore, the authors of ref. [98] re-
ported simulations within the Euclidean dynamical triangulation (EDT) approach
in d = 4, which favor a drop of the spectral dimension from 4 to about 1.5; this is
again in conflict with the QEG expectations if one interprets the latter dimension as
the value in the continuum limit.

Later on we will present several types of scale-dependent effective dimensions,
specifically the spectral dimension ds and the walk dimension dw for the effective
QEG space-times. We shall see that on length scales slightly larger than �Pl there
exists a further regime which exhibits the phenomenon of dynamical dimensional
reduction. There the spectral dimension is even smaller than near the fixed point,
namely ds = 4/3 in the case of 4 dimensions classically. Moreover, we shall argue
that the (3-dimensional) results reported in [94] are in perfect accord with QEG, but
that the shortest possible length scale achieved in the simulations is not yet close
to the Planck length. Rather, the Monte Carlo data probe the transition between the
classical and the newly discovered ‘semi-classical’ regime [99].

For similar work on fractal features in different approaches we must refer to the
literature [100–122].
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(3) As for possible physics implications of the RG flow predicted by QEG, ideas
from particle physics, in particular the ‘RG improvement’, have been employed in
order to study the leading quantum gravity effects in black holes [123–126], cos-
mological space-times [77–81, 127–136] or possible observable signatures from
asymptotic safety at the LHC [137–140]. Among other results, it was found [123–
125] that the quantum effects tend to decrease the Hawking temperature of black
holes, and that their evaporation process presumably stops completely once the
black holes mass is of the order of the Planck mass. In cosmology it turned out
that inflation can occur without the need of an inflaton, and that the running of the
cosmological constant might be responsible for the observed entropy of the present
Universe [79–81].

These lectures are intended to provide the necessary background for these devel-
opments. They consist of three main parts, dealing with the basic ideas of asymptotic
safety, the fractal QEG space-times, and possible implications of asymptotic safety
for cosmology, respectively.

8.2 Theory Space and Its Truncation

We start by reviewing the basic ideas underlying asymptotic safety, referring to [4–
6] for a more detailed discussion. The arena in which the Wilsonian RG dynamics
takes place is ‘theory space’. Albeit a somewhat formal notion, it helps in visualizing
various concepts related to functional renormalization group equations; see Fig. 8.1.
To describe it, we shall consider an arbitrary set of fields Φ(x). Then the corre-
sponding theory space consists of all (action) functionals A : Φ �→ A[Φ] depending
on this set, possibly subject to certain symmetry requirements (a Z2-symmetry for a
single scalar, or diffeomorphism invariance if Φ denotes the space-time metric, for
instance). So the theory space {A[·]} is completely determined once the field content
and the symmetries are fixed. Let us assume we can find a set of ‘basis functionals’
{Pα[·]} so that every point of theory space has an expansion of the form

A[Φ,Φ̄] =
∞∑

α=1

ūαPα[Φ,Φ̄]. (8.2)

The basis {Pα[·]} will include both local field monomials and non-local invariants
and we may use the ‘generalized couplings’ {ūα, α = 1,2, . . .} as local coordinates.
More precisely, the theory space is coordinatized by the subset of ‘essential cou-
plings’, i.e., those coordinates which cannot be absorbed by a field reparameteriza-
tion.

Geometrically speaking the FRGE for the effective average action, Eq. (8.1),
defines a vector field β on theory space. The integral curves along this vector field
are the ‘RG trajectories’ k �→ Γk parameterized by the scale k. They start, for k →
∞, at the microscopic action S and terminate at the ordinary effective action at
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Fig. 8.1 The points of theory
space are the action
functionals A[·]. The RG
equation defines a vector field
β on this space; its integral
curves are the RG trajectories
k �→ Γk . They emanate from
the fixed point action
Γ∗ ≡ Γ∞, which might differ
from the bare action by a
simple explicitly known
functional, and end at the
standard effective action Γ

k = 0. The natural orientation of the trajectories is from higher to lower scales k, the
direction of increasing ‘coarse graining’. Expanding Γk as in (8.2),

Γk[Φ,Φ̄] =
∞∑

α=1

ūα(k)Pα[Φ,Φ̄], (8.3)

the trajectory is described by infinitely many ‘running couplings’ ūα(k). Inserting
(8.3) into the FRGE we obtain a system of infinitely many coupled differential equa-
tions for the ūα’s:

k∂kūα(k) = βα(ū1, ū2, . . . ; k), α = 1,2, . . . . (8.4)

Here the ‘beta functions’ βα arise by expanding the trace on the right-hand side of
the FRGE in terms of {Pα[·]}, i.e., 1

2 Tr[· · · ] = ∑∞
α=1 βα(ū1, ū2, . . . ; k)Pα[Φ,Φ̄].

The expansion coefficients βα have the interpretation of beta functions similar to
those of perturbation theory, but not restricted to relevant couplings. In standard
field theory jargon one would refer to ūα(k = ∞) as the ‘bare’ parameters and to
ūα(k = 0) as the ‘renormalized’ or ‘dressed’ parameters.

The notation with the bar on ūα and βα is to indicate that we are still dealing
with dimensionful couplings. Usually the flow equation is reexpressed in terms of
the dimensionless couplings

uα ≡ k−dα ūα, (8.5)

where dα is the canonical mass dimension of ūα . Correspondingly, the essential uα’s
are used as coordinates of theory space. The resulting RG equations

k∂kuα(k) = βα(u1, u2, . . .) (8.6)

are a coupled system of autonomous differential equations. The βα’s have no explicit
k-dependence and define a ‘time independent’ vector field on theory space.

In this language, the basic idea of renormalization can be understood as follows.
The boundary of theory space depicted in Fig. 8.1 is meant to separate points with
coordinates {uα,α = 1,2, . . .} with all the essential couplings uα well defined, from



190 M. Reuter and F. Saueressig

points with undefined, divergent couplings. The basic task of renormalization theory
consists in constructing an ‘infinitely long’ RG trajectory which lies entirely within
this theory space, i.e., a trajectory which neither leaves theory space (that is, devel-
ops divergences) in the UV limit k → ∞ nor in the infrared (IR) limit k → 0. Every
such trajectory defines one possible quantum theory.

The consistent UV behavior can be ensured by performing the limit k → ∞ at
a fixed point {u∗

α,α = 1,2, . . .} ≡ u∗ of the RG flow. The fixed point is a zero of
the vector field β ≡ (βα), i.e., βα(u∗) = 0 for all α = 1,2, . . . . The RG trajectories,
solutions of k∂kuα(k) = βα[u(k)], have a low ‘velocity’ near a fixed point because
the βα’s are small there and directly at the fixed point the running stops completely.
As a result, one can ‘use up’ an infinite amount of RG time near/at the fixed point
if one bases the quantum theory on a trajectory which runs into such a fixed point
for k → ∞. This construction ensures that in the UV limit the trajectory ends at
an ‘inner point’ of theory space giving rise to a well-behaved action functional.
Thus we can be sure that, for k → ∞, the trajectory does not develop pathological
properties such as divergent couplings. The resulting quantum theory is ‘safe’ from
unphysical divergences.

At this stage it is natural to distinguish two classes of fixed points. First, the
UV limit may be performed at a Gaussian fixed point (GFP) where u∗

α = 0, ∀α =
1,2, . . . . In this case, the fixed point functional does not contain interactions and the
theory becomes asymptotically free in the UV. This is the construction underlying
perturbatively renormalizable quantum field theories. More general, one can also
use a non-Gaussian fixed point (NGFP) for letting k → ∞, where, by definition, not
all of the coordinates u∗

α vanish. In the context of gravity, Weinberg [7, 8] proposed
that the UV limit of the theory is provided by such a NGFP.

Note that at the NGFP it is the dimensionless essential couplings (8.5) which
assume constant values. Therefore, even directly at a NGFP where uα(k) ≡ u∗

α , the
dimensionful couplings keep running according to a power law

ūα(k) = u∗
αkdα . (8.7)

Furthermore, non-essential dimensionless couplings are not required to attain fixed
point values.

Given a fixed point, an important concept is its UV critical hypersurface SUV, or
synonymously, its unstable manifold. By definition, it consists of all points of theory
space which are pulled into the fixed point by the inverse RG flow, i.e., for increasing
k. Its dimensionality dim(SUV) ≡ ΔUV is given by the number of attractive (for
increasing cutoff k) directions in the space of couplings.

For the RG equations (8.6), the linearized flow near the fixed point is governed
by the Jacobi matrix B = (Bαγ ), Bαγ ≡ ∂γ βα(u∗):

k∂kuα(k) =
∑
γ

Bαγ

(
uγ (k) − u∗

γ

)
. (8.8)
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The general solution to this equation reads

uα(k) = u∗
α +

∑
I

CIV
I
α

(
k0

k

)θI

, (8.9)

where the V I ’s are the right-eigenvectors of B with eigenvalues −θI , i.e.,∑
γ Bαγ V I

γ = −θIV
I
α . Since B is not symmetric in general the θI ’s are not guar-

anteed to be real. We assume that the eigenvectors form a complete system though.
Furthermore, k0 is a fixed reference scale, and the CI ’s are constants of integra-
tion. The quantities θI are referred to as critical exponents since when the renor-
malization group is applied to critical phenomena (second-order phase transitions)
the traditionally defined critical exponents are related to the θI ’s in a simple way
[68, 69].

If uα(k) is to describe a trajectory in SUV, uα(k) must approach u∗
α in the limit

k → ∞ and therefore we must set CI = 0 for all I with Re θI < 0. Hence the di-
mensionality ΔUV equals the number of B-eigenvalues with a negative real part, i.e.,
the number of θI ’s with Re θI > 0. The corresponding eigenvectors span the tangent
space to SUV at the NGFP. If we lower the cutoff for a generic trajectory with all
CI nonzero, only ΔUV ‘relevant’ parameters corresponding to the eigendirections
tangent to SUV grow (Re θI > 0), while the remaining ‘irrelevant’ couplings per-
taining to the eigendirections normal to SUV decrease (Re θI < 0). Thus near the
NGFP a generic trajectory is attracted towards SUV.

Coming back to the asymptotic safety construction, let us now use this fixed
point in order to take the limit k → ∞. The trajectories which define an infinite cut-
off limit are special in the sense that all irrelevant couplings are set to zero: CI = 0
if Re θI < 0. These conditions place the trajectory exactly on SUV. There is a ΔUV-
parameter family of such trajectories, and the experiment must decide which one
is realized in Nature. Therefore the predictive power of the theory increases with
decreasing dimensionality of SUV, i.e., number of UV attractive eigendirections of
the NGFP. If ΔUV < ∞, the quantum field theory thus constructed is comparable
to and as predictive as a perturbatively renormalizable model with ΔUV ‘renormal-
izable couplings’. Summarizing, we call a theory asymptotically safe if its UV be-
havior is controlled by a non-Gaussian fixed point with a finite number of relevant
directions. The former condition ensures that the theory is safe from unphysical UV
divergences while the latter requirement guarantees the predictivity of the construc-
tion.

Up to this point our discussion did not involve any approximation. A method
which gives rise to non-perturbative approximate solutions is to truncate the theory
space {A[·]}. The basic idea is to project the RG flow onto a finite-dimensional
subspace of theory space. The subspace should be chosen in such a way that the
projected flow encapsulates the essential physical features of the exact flow on the
full space.

Concretely, the projection onto a truncation subspace is performed as fol-
lows. One makes an ansatz of the form Γk[Φ,Φ̄] = ∑N

i=1 ūi (k)Pi[Φ,Φ̄], where
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the k-independent functionals {Pi[·], i = 1, . . . ,N} form a ‘basis’ on the sub-
space selected. For a scalar field φ, say, examples include pure potential terms∫

ddxφm(x),
∫

ddxφn(x) lnφ2(x), . . . , a standard kinetic term
∫

ddx(∂φ)2, higher
order derivative terms

∫
ddx φ(∂2)nφ,

∫
ddx f (φ)(∂2)nφ(∂2)mφ, . . . , and non-

local terms like
∫

ddx φ ln(−∂2)φ, . . . . Even if Γ∞ is simple, a standard φ4 action,
say, the evolution from k = ∞ downwards will generate such terms.

The projected RG flow is described by a set of ordinary (if N < ∞) differential
equations for the couplings ūi (k). They arise as follows. Let us assume we expand
the Φ-dependence of 1

2 Tr[· · · ] (with the ansatz for Γk[Φ,Φ̄] inserted) in a basis
{Pα[·]} of the full theory space which contains the Pi ’s spanning the truncated space
as a subset:

1

2
Tr[· · · ] =

∞∑
α=1

βα(ū1, . . . , ūN ; k)Pα[Φ,Φ̄]

=
N∑

i=1

βi(ū1, . . . , ūN ; k)Pi[Φ,Φ̄] + rest. (8.10)

Here the ‘rest’ contains all terms outside the truncated theory space; the approxima-
tion consists in neglecting precisely those terms. Thus, equating (8.10) to the LHS
of the flow equation, ∂tΓk = ∑N

i=1 ∂t ūi (k)Pi , the linear independence of the Pi ’s
implies the coupled system of ordinary differential equations

∂t ūi(k) = βi(ū1, . . . , ūN ; k), i = 1, . . . ,N. (8.11)

Solving (8.11) one obtains an approximation to the exact RG trajectory projected
onto the chosen subspace. Note that this approximate trajectory does, in general,
not coincide with the projection of the exact trajectory, but if the subspace is well
chosen, it will not be very different from it.

8.3 The Effective Average Action for Gravity

The effective average action for gravity which has been introduced in ref. [11]
is a concrete implementation of the general ideas outlined above. The ulti-
mate goal is to give meaning to an integral over ‘all’ metrics γμν of the form∫

Dγμν exp{−S[γμν] + source terms} whose bare action S[γμν] is invariant under
general coordinate transformations. The first step consists in splitting the quantum
metric according to

γμν = gμν + hμν (8.12)

where gμν is a fixed, but unspecified, background metric and hμν are the quantum
fluctuations around this background which are not necessarily small. This allows
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the formal construction of the gauge-fixed (Euclidean) gravitational path integral

∫
DhDCμDC̄μ exp

{−S[g+h]−Sgf[h;g]−Sghost[h,C, C̄;g]−ΔkS[h,C, C̄;g]}.
(8.13)

Here S[g+h] is a generic action, which depends on γμν only, while the background
gauge fixing Sgf[h;g] and ghost contribution Sghost[h,C, C̄;g] contain gμν and hμν

in such a way that they do not combine into a full γμν . We take Sgf[h;g] to be a
gauge fixing ‘of the background type’ [141], i.e., it is invariant under diffeomor-
phisms acting on both hμν and ḡμν .

The key ingredient in the construction of the FRGE is the coarse graining term
ΔkS[h,C, C̄;g]. It is quadratic in the fluctuation field,

∫
ddx

√
ghμνR

μνρσ
k

(−D̄2)hρσ ,

plus a similar term for the ghosts. The kernel Rμνρσ
k (p2) provides a k-dependent

mass term which separates the fluctuations into high momentum modes p2 � k2

and low momentum modes p2 � k2 with respect to the scale set by the covariant
Laplacian of the background metric. The profile of Rμνρσ

k (p2) ensures that the high
momentum modes are integrated out unsuppressed while the contribution of the low
momentum modes to the path integral is suppressed by the k-dependent mass term.
Varying k then naturally realizes Wilson’s idea of coarse graining by integrating out
the quantum fluctuations shell by shell.

The k-derivative of Eq. (8.13) with hμν and the ghosts coupled to appropriate
sources, provides the starting point for the construction of the functional renormal-
ization group equation for the effective average action Γk [61–67]. (See [68, 69] for
reviews.) For gravity this flow equation takes the form [11]

∂tΓk[h̄, ξ, ξ̄ ;g] = 1

2
STr

[(
Γ

(2)
k + Rk

)−1
∂tRk

]
. (8.14)

Here t = log(k/k0), STr is a functional supertrace which includes a minus sign for
the ghosts ξ ≡ 〈C〉, ξ̄ ≡ 〈C̄〉, Rk is the matrix-valued (in field space) IR cutoff intro-
duced above, and Γ

(2)
k is the second variation of Γk with respect to the fluctuation

fields. Notably, Γk[h̄, ξ, ξ̄ ;g] depends on two metrics, gμν and

gαβ ≡ 〈γαβ〉 = gαβ + h̄αβ, h̄αβ ≡ 〈hαβ〉. (8.15)

In this sense, Γk is of an intrinsically bimetric nature, and therefore we often write
Γk[g,g, ξ, ξ̄ ] ≡ Γk[h̄ = g−g, ξ, ξ̄ ;g]. This functional is invariant under background
gauge transformations acting on all four fields simultaneously. It is a k-dependent
generalization of the standard effective action Γ ≡ Γ0 to which it reduces in the limit
k → 0. It can also be shown that Γk in the limit k → ∞ is essentially equivalent to
the bare action S. (For further details about Γk for gravity we refer to [11].)
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8.4 The Einstein–Hilbert Truncation

Solving the FRGE (8.14) is equivalent to (and as difficult as) calculating the func-
tional integral over γμν . It is therefore important to devise efficient approximation
methods. The truncation of theory space is the one which makes maximum use of
the FRGE reformulation of the quantum field theory problem at hand.

The first truncation for which the RG flow has been worked out [11] is the
‘Einstein–Hilbert truncation’ which retains in Γk only the terms

∫
ddx

√
g and∫

ddx
√

gR, already present in the in the classical action, with k-dependent cou-
pling constants, as well as the classical gauge fixing and ghost terms:

Γk = 1

16πGk

∫
ddx

√
g{−R + 2λ̄k} + class. gf- and gh-terms. (8.16)

In this case the truncation subspace is 2-dimensional. The ansatz (8.16) contains two
free functions of the scale, the running cosmological constant λ̄k and the running
Newton constant Gk .

Upon inserting the ansatz (8.16) into the flow equation (8.14) it boils down to a
system of two ordinary differential equations. We shall display them here in terms
of the dimensionless running cosmological constant and Newton constant, respec-
tively:

λk ≡ k−2λ̄k, gk ≡ kd−2Gk. (8.17)

Using λk and gk the RG equations become autonomous

k∂kg(k) = βg

[
g(k), λ(k)

]
, k∂kλ(k) = βλ

[
g(k), λ(k)

]
, (8.18)

with

βg(gk, λk) = [
d − 2 + ηN(gk, λk)

]
gk. (8.19)

Here ηN ≡ ∂t lnGk is the anomalous dimension of the operator
√

gR. The explicit
form of the beta functions βg and βλ for arbitrary cutoff Rk and dimension can be
found in ref. [11]. Here we only display the result for d = 4 and a sharp cutoff:

∂tλk = −(2 − ηN)λk − gk

π

[
5 ln(1 − 2λk) − 2ζ(3) + 5

2
ηN

]
, (8.20a)

∂tgk = (2 + ηN)gk, (8.20b)

ηN = − 2gk

6π + 5gk

[
18

1 − 2λk

+ 5 ln(1 − 2λk) − ζ(2) + 6

]
. (8.20c)

In [14] this system has been analyzed in detail, using both analytical and numer-
ical methods. In particular all RG trajectories have been classified, and examples
have been computed numerically. The most important classes of trajectories in the
phase portrait on the g–λ-plane are shown in Fig. 8.2.

The RG flow is found to be dominated by two fixed points (g∗, λ∗): the GFP
at g∗ = λ∗ = 0, and a NGFP with g∗ > 0 and λ∗ > 0. There are three classes of
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Fig. 8.2 RG flow in the g–λ-plane. The arrows point in the direction of increasing coarse graining,
i.e., of decreasing k. (From [14])

trajectories emanating from the NGFP: trajectories of Type Ia and IIIa run towards
negative and positive cosmological constants, respectively, and the single trajectory
of Type IIa (‘separatrix’) hits the GFP for k → 0. The high momentum properties of
QEG are governed by the NGFP; for k → ∞, in Fig. 8.2 all RG trajectories on the
half-plane g > 0 run into this point. The two critical exponents are a complex con-
jugate pair θ1,2 = θ ′ ± iθ ′′ with θ ′ > 0. The fact that at the NGFP the dimensionless
coupling constants gk,λk approach constant, non-zero values then implies that the
dimensionful quantities run according to

Gk = g∗k2−d , λ̄k = λ∗k2. (8.21)

Hence for k → ∞ and d > 2 the dimensionful Newton constant vanishes while the
cosmological constant diverges.

So, the Einstein–Hilbert truncation does indeed predict the existence of a NGFP
with exactly the properties needed for the asymptotic safety construction. Clearly
the crucial question is whether the NGFP found is the projection of an exact fixed
point in the full theory or merely the artifact of an insufficient approximation. This
question has been analyzed during the past decade within truncations of ever in-
creasing complexity. All investigations performed to date support the existence of a
NGFP in the exact theory, and without exception they predict a projected RG flow
on the g–λ-plane which is qualitatively similar to that of the Einstein–Hilbert trun-
cation. In fact, the phase portrait in Fig. 8.2 has survived substantial generalizations
of the truncation ansatz for the average action. Furthermore, clear evidence for a
small, finite dimensionality of SUV was found, first in 2 + ε dimensions [15] and
then by an impressively complex calculation in d = 4 also [31, 32].
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Beside its successes in describing gravity at high energies, QEG also recovers
classical general relativity at low energies. Concretely, it was shown in [123–125]
that Fig. 8.2 contains Type IIIa trajectories which are in agreement with observa-
tional data. This analysis is fairly robust and clear-cut; it does not involve the NGFP.
All that is needed is the RG flow linearized about the GFP. In its vicinity one has
[11]

λ̄(k) = λ̄0 + νḠkd + · · · , G(k) = Ḡ + · · · , (8.22)

i.e., λ̄ displays a running ∝ kd and G is approximately constant. Here ν is a positive
constant of order unity [11, 14]. These equations are valid if λ(k) � 1 and g(k) � 1.
They describe a 2-parameter family of RG trajectories labeled by the pair (λ̄0, Ḡ). It
will prove convenient to use an alternative labeling (λT, kT) with λT ≡ (4νλ̄0Ḡ)1/2

and kT ≡ (λ̄0/νḠ)1/4. The old labels are expressed in terms of the new ones as
λ̄0 = 1

2λTk2
T and Ḡ = λT/(2νk2

T). It is furthermore convenient to introduce the ab-
breviation gT ≡ λT/(2ν). When parameterized by the pair (λT, kT) the trajectories
assume the form

λ̄(k) = 1

2
λTk2

T

[
1 + (k/kT)4] ≡ λ̄0

[
1 + (k/kT)4],

G(k) = λT

2νk2
T

≡ gT

k2
T

,

(8.23)

or, in dimensionless form,

λ(k) = 1

2
λT

[(
kT

k

)2

+
(

k

kT

)2]
, g(k) = gT

(
k

kT

)2

. (8.24)

As for the interpretation of the new variables, it is clear that λT ≡ λ(k ≡ kT) and
gT ≡ g(k = kT), while kT is the scale at which βλ (but not βg) vanishes according
to the linearized running: βλ(kT) ≡ kdλ(k)/dk|k=kT = 0. Thus we see that (gT, λT)

are the coordinates of the turning point T of the Type IIIa trajectory considered, and
kT is the scale at which it is passed. The regimes k > kT (k < kT) are conveniently
referred to as the ‘UV regime’ (‘IR regime’).

Let us now hypothesize that, within a certain range of k-values, the RG tra-
jectory realized in Nature can be approximated by (8.24). In order to determine
its parameters (λ̄0, Ḡ) or (λT, kT) we must perform a measurement of G and λ̄.
If we interpret the observed values Gobserved = m−2

Pl , mPl ≈ 1.2 × 1019 GeV, and
λ̄observed ≈ 10−120m2

Pl as the running G(k) and λ̄(k) evaluated at a scale k � kT,
then we get from (8.23) that λ̄0 = λ̄observed and Ḡ = Gobserved. Using the definitions
of λT and kT along with ν = O(1) this leads to the order-of-magnitude estimates
gT ≈ λT ≈ 10−60 and kT ≈ 10−30mPl ≈ (10−3 cm)−1. Because of the tiny values of
gT and λT the turning point lies in the linear regime of the GFP. Going beyond the
linear regime, the k-dependence of G and λ̄ is plotted schematically in Fig. 8.3.
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Fig. 8.3 The dimensionful Λ(k) ≡ λ̄(k) and G(k) for a Type IIIa trajectory with realistic param-
eters

8.5 The Multi-fractal Properties of QEG Space-Times

We now proceed by discussing an intriguing consequence arising from the scale-
dependence of the gravitational effective action, namely that the QEG space-time
at short distances develops fractal properties [13, 15, 97]. As we have seen, the
effective average action Γk[gμν] defines an infinite set of effective field theories,
valid near a variable mass scale k. Intuitively speaking, the solution 〈gμν〉k of the
scale dependent field equation

δΓk

δgμν(x)

[〈g〉k
] = 0 (8.25)

can be interpreted as the metric averaged over (Euclidean) space-time volumes of a
linear extension � which typically is of the order of 1/k. Knowing the scale depen-
dence of Γk , i.e., the renormalization group trajectory k �→ Γk , we can in principle
follow the solution 〈gμν〉k from the ultraviolet (k → ∞) to the infrared (k → 0).

(1) Quantum space-times. It is an important feature of this approach that the in-
finitely many equations of (8.25), one for each scale k, are valid simultaneously.
They all refer to the same physical system, the ‘quantum space-time’, but describe
its effective metric structure on different scales. An observer using a ‘microscope’
with a resolving power � ≈ k−1 will perceive the Universe to be a Riemannian man-
ifold with metric 〈gμν〉k .1 At every fixed k, 〈gμν〉k is a smooth classical metric. But
since the quantum space-time is characterized by the infinity of Eqs. (8.25) with
k = 0, . . . ,∞ it can acquire very non-classical and in particular fractal features. In

1The ‘resolving power’ � of the microscope is in general a complicated function of k. It can be
found by an algorithm outlined in [97]. For the purposes of the present discussion it is sufficient to
think of this relationship as � ≈ 1/k, like on flat space.
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particular, it was concluded in [13, 15] that the effective dimensionality of space-
time is scale dependent. It equals 4 at macroscopic distances (� � �Pl) but, near
� ≈ �Pl, it gets dynamically reduced to the value 2. For � � �Pl space-time resem-
bles a 2-dimensional fractal. In the following we review the arguments that led to
this conclusion.

(2) Self-similarity in the fixed point regime. For simplicity we use the Einstein–
Hilbert truncation to start with, and we consider space-times with classical dimen-
sionality d = 4. The corresponding RG trajectories are shown in Fig. 8.2. The phys-
ically relevant ones, for k → ∞, all approach the NGFP at (g∗, λ∗) so that the
dimensionful quantities run according to (8.21). This scaling behavior is realized in
the asymptotic scaling regime k � mPl. Near k = mPl the trajectories cross over to-
wards the GFP at g = λ = 0, and then run towards negative, vanishing, and positive
values of λ, respectively. For our present purpose, it suffices to consider the limiting
cases of very small and very large distances of a RG trajectory. We assume that Gk

and λ̄k behave as in (8.21) for k � mPl, and that they are constant for k � mPl. The
precise interpolation between the two regimes will not be needed here.

The argument of ref. [15] concerning the fractal nature of the QEG space-times
was as follows. Within the Einstein–Hilbert truncation of theory space, the effective
field equations (8.25) happen to coincide with the ordinary Einstein equation, but
with Gk and λ̄k replacing the classical constants. Without matter,

Rμν

(〈g〉k
) = 2

2 − d
λ̄k〈gμν〉k. (8.26)

Since in absence of dimensionful constants of integration λ̄k is the only quantity
in this equation which sets a scale, every solution to (8.26) has a typical radius of
curvature rc(k) ∝ 1/

√
λ̄k . (For instance, the maximally symmetric S4-solution has

the radius rc = r =
√

3/λ̄k .) If we want to explore the space-time structure at a
fixed length scale � we should use the action Γk[gμν] at k = 1/� because with this
functional a tree level analysis is sufficient to describe the essential physics at this
scale, including the relevant quantum effects. Hence, when we observe the space-
time with a microscope of resolution �, we will see an average radius of curvature
given by rc(�) ≡ rc(k = 1/�). Once � is smaller than the Planck length �Pl ≡ m−1

Pl
we are in the fixed point regime where λ̄k ∝ k2 so that rc(k) ∝ 1/k, or

rc(�) ∝ �. (8.27)

Thus, when we look at the structure of space-time with a microscope of resolution
� � �Pl, the average radius of curvature which we measure is proportional to the
resolution itself. If we want to probe finer details and decrease � we automatically
decrease rc and hence increase the average curvature. Space-time seems to be more
strongly curved at small distances than at larger ones. The scale-free relation (8.27)
suggests that at distances below the Planck length the QEG space-time is a special
kind of fractal with a self-similar structure. It has no intrinsic scale because in the
fractal regime, i.e., when the RG trajectory is still close to the NGFP, the parameters
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which usually set the scales of the gravitational interaction, G and λ̄, are not yet
‘frozen out’. This happens only later on, somewhere half way between the non-
Gaussian and the Gaussian fixed point, at a scale of the order of mPl.

Below this scale, Gk and λ̄k stop running and, as a result, rc(k) becomes indepen-
dent of k so that rc(�) = const for � � �Pl. In this regime 〈gμν〉k is k-independent,
indicating that the macroscopic space-time is describable by a single smooth, clas-
sical Riemannian manifold.

(3) Anomalous dimension and graviton propagator. An independent argument
supporting the assertion that the QEG space-time has an effective dimensionality
which is k-dependent and non-integer in general based upon the anomalous dimen-
sion ηN ≡ ∂t lnGk has been put forward in ref. [13]. In a sense which we shall make
more precise in a moment, the effective dimensionality of space-time equals 4+ηN .
The RG trajectories of the Einstein–Hilbert truncation (within its domain of valid-
ity) have ηN ≈ 0 for k → 0 and ηN ≈ −2 for k → ∞, the smooth change by two
units occurring near k ≈ mPl. As a consequence, the effective dimensionality is 4
for � � �Pl and 2 for � � �Pl.

In fact, the UV fixed point has an anomalous dimension η ≡ ηN(g∗, λ∗) = −2.
We can use this information in order to determine the momentum dependence of
the dressed graviton propagator for momenta p2 � m2

Pl. Expanding (8.16) about
flat space and omitting the standard tensor structures we find the inverse propagator
G̃k(p)−1 ∝ G−1

k p2. The conventional dressed propagator G̃ (p) contained in Γ ≡
Γk=0 is obtained from the exact G̃k in the limit k → 0. For p2 > k2 � m2

Pl the
actual cutoff scale is the physical momentum p2 itself so that the k-evolution of
G̃k(p) stops at the threshold k = √

p2. Therefore,

G̃ (p)−1 ∝ p2G−1
k

∣∣
k=

√
p2 ∝ (

p2)1− η
2 (8.28)

because G−1
k ∝ k−η when η is (approximately) constant. In d flat dimensions, and

for η �= 2 − d , the Fourier transform of G̃ (p) ∝ 1/(p2)1−η/2 yields the following
propagator in position space:

G (x;y) ∝ 1

|x − y|d−2+η
. (8.29)

This form of the propagator is well known from the theory of critical phenomena, for
instance. (In the latter case it applies to large distances.) Equation (8.29) is not valid
directly at the NGFP. For d = 4 and η = −2 the dressed propagator is G̃ (p) = 1/p4,
which has the following representation in position space:

G (x;y) = − 1

8π2
ln

(
μ|x − y|). (8.30)

Here μ is an arbitrary constant with the dimension of a mass. Obviously (8.30) has
the same form as a 1/p2-propagator in 2 dimensions.
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Slightly away from the NGFP, before other physical scales intervene, the prop-
agator is of the familiar type (8.29) which shows that the quantity ηN has the stan-
dard interpretation of an anomalous dimension in the sense that fluctuation effects
modify the decay properties of G so as to correspond to a space-time of effective
dimensionality 4 + ηN .

Thus the properties of the RG trajectories imply a remarkable dimensional re-
duction: Space-time, probed by a ‘graviton’ with p2 � m2

Pl is 4-dimensional, but
it appears to be 2-dimensional for a graviton with p2 � m2

Pl [13]. More generally,
in d classical dimensions, where the macroscopic space-time is d-dimensional, the
anomalous dimension at the fixed point is ηN = 2 − d . Therefore, for any d , the
dimensionality of the fractal as implied by ηN is d + ηN = 2 [13, 15].

8.6 Spectral, Walk, and Hausdorff Dimension

The fractal properties of the QEG space-time can be further quantified by investi-
gating random walks and diffusion processes on fractals. In this course one is led to
introduce various notions of fractal dimensions, such as the spectral or walk dimen-
sion [142]. A priori they have no reason to equal the effective dimension deff = d +η

implied by the running Newton constant and the graviton propagator.

(1) The spectral dimension. Consider the diffusion process where a spinless test
particle performs a Brownian random walk on an ordinary Riemannian manifold
with a fixed classical metric gμν(x). It is described by the heat-kernel Kg(x, x′;T )

which gives the probability density for a transition of the particle from x to x′ during
the fictitious time T . It satisfies the heat equation

∂T Kg

(
x, x′;T ) = −ΔgKg

(
x, x′;T )

, (8.31)

where Δg = −D2 denotes the Laplace operator. In flat space, this equation is easily
solved by

Kg

(
x, x′;T ) =

∫
ddp

(2π)d
eip·(x−x′)e−p2T . (8.32)

In general, the heat-kernel is a matrix element of the operator exp(−T Δg). In the
random walk picture its trace per unit volume,

Pg(T ) = V −1
∫

ddx
√

g(x)Kg(x, x;T ) ≡ V −1 Tr exp(−T Δg), (8.33)

has the interpretation of an average return probability. Here V ≡ ∫
ddx

√
g(x) de-

notes the total volume. It is well known that Pg possesses an asymptotic early time
expansion (for T → 0) of the form Pg(T ) = (4πT )−d/2 ∑∞

n=0 AnT
n, with An de-

noting the Seeley–DeWitt coefficients. From this expansion one can motivate the
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definition of the spectral dimension ds as the T -independent logarithmic derivative

ds ≡ −2
d lnPg(T )

d lnT

∣∣∣∣
T =0

. (8.34)

On smooth manifolds, where the early-time expansion of Pg(T ) is valid, the spectral
dimension agrees with the topological dimension d of the manifold.

Given Pg(T ), it is natural to define an, in general T -dependent, generalization of
the spectral dimension by

Ds(T ) ≡ −2
d lnPg(T )

d lnT
. (8.35)

According to (8.34), we recover the true spectral dimension of the space-time
by considering the shortest possible random walks, i.e., by taking the limit ds =
limT →0 Ds(T ). Note that in view of a possible comparison with other (discrete)
approaches to quantum gravity the generalized, scale-dependent version (8.35) will
play a central role later on.

(2) The walk dimension. Regular Brownian motion in flat space has the celebrated
property that the random walker’s average square displacement increases linearly
with time: 〈r2〉 ∝ T . Indeed, performing the integral (8.32) we obtain the familiar
probability density

K
(
x, x′;T ) = 1

(4πT )d/2
exp

(
−|x − x′|2

4T

)
. (8.36)

Using (8.36) yields the expectation value 〈r2〉 ≡ 〈x2〉 = ∫
ddx x2K(x,0;T ) ∝ T .

Many diffusion processes of physical interest (such as diffusion on fractals) are
anomalous in the sense that this linear relationship is generalized to a power law
〈r2〉 ∝ T 2/dw with dw �= 2. The interpretation of the so-called walk dimension dw is
as follows. The trail left by the random walker is a random object, which is inter-
esting in its own right. It has the properties of a fractal, even in the ‘classical’ case
when the walk takes place on a regular manifold. The quantity dw is precisely the
fractal dimension of this trail. Diffusion processes are called regular if dw = 2, and
anomalous when dw �= 2.

(3) The Hausdorff dimension. Finally, we introduce the Hausdorff dimension dH .
Instead of working with its mathematically rigorous definition in terms of the Haus-
dorff measure and all possible covers of the metric space under consideration, the
present, simplified definition may suffice for our present purposes. On a smooth set,
the scaling law for the volume V (r) of a d-dimensional ball of radius r takes the
form

V (r) ∝ rdH . (8.37)

The Hausdorff dimension is then obtained in the limit of infinitely small radius,

dH ≡ lim
r→0

lnV (r)

ln r
. (8.38)
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Contrary to the spectral or walk dimension whose definitions are linked to dynami-
cal diffusion processes on space-time, no such dynamics is associated with dH .

8.7 Fractal Dimensions Within QEG

Upon introducing various concepts for fractal dimensions in the last section, we now
proceed with their evaluation for the QEG effective space-times, following refs. [97]
and [99]. Our discussion will mostly be based on the Einstein–Hilbert truncation.
As we shall see this restriction is actually unnecessary in the asymptotic scaling
regime, i.e., when the RG trajectory is close to the NGFP. In this case we can derive
exact results for the spectral and walk dimension by exploiting the scale invariance
of the theory at the fixed point.

8.7.1 Diffusion Processes on QEG Space-Times

Since in QEG one integrates over all metrics, the central idea is to replace Pg(T ) by
its expectation value

P(T ) ≡ 〈
Pγ (T )

〉 ≡
∫

DγDCDC̄Pγ (T ) exp
(−Sbare[γ,C, C̄]). (8.39)

Here γμν denotes the microscopic metric and Sbare is the bare action related to
the UV fixed point, with the gauge-fixing and the pieces containing the ghosts C

and C̄ included. For the untraced heat-kernel, we define likewise K(x,x′;T ) ≡
〈Kγ (x, x′;T )〉. These expectation values are most conveniently calculated from
the effective average action Γk , which equips the d-dimensional smooth mani-
folds underlying the QEG effective space-times with a family of metric structures
{〈gμν〉k,0 ≤ k < ∞}, one for each coarse-graining scale k [82, 97]. These metrics
are solutions to the effective field equations implied by Γk .

We shall again approximate the latter by the Einstein–Hilbert truncation (8.16).
The corresponding effective field equation is given by (8.26). Based on this equa-
tion, we can easily find the k-dependence of the corresponding solution 〈gμν〉k by
rewriting (8.26) as [λ̄k0/λ̄k]Rμ

ν(〈g〉k) = 2
2−d

λ̄k0δ
μ

ν for some fixed reference scale

k0, and exploiting that Rμ
ν(cg) = c−1Rμ

ν(g) for any constant c > 0. This shows
that the metric and its inverse scale according to, for any d ,

〈
gμν(x)

〉
k
= λ̄k0

λ̄k

〈
gμν(x)

〉
k0

,
〈
gμν(x)

〉
k
= λ̄k

λ̄k0

〈
gμν(x)

〉
k0

. (8.40)

Denoting the Laplace operators corresponding to the metrics 〈gμν〉k and 〈gμν〉k0 by
Δ(k) and Δ(k0), respectively, these relations imply

Δ(k) = λ̄k

λ̄k0

Δ(k0). (8.41)
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At this stage, the following remark is in order. In the asymptotic scaling regime
associated with the NGFP, the scale-dependence of the couplings is fixed by the
fixed-point condition (8.21). This implies in particular

〈
gμν(x)

〉
k
∝ k−2 (k → ∞). (8.42)

This asymptotic relation is actually an exact consequence of asymptotic safety,
which solely relies on the scale-independence of the theory at the fixed point.

We can evaluate the expectation value (8.39) by exploiting the effective field the-
ory properties of the effective average action. Since Γk defines an effective field
theory at the scale k we know that 〈O(γμν)〉 ≈ O(〈gμν〉k) provided the observ-
able O involves only momentum scales of the order of k. We apply this rule to the
RHS of the diffusion equation, O = −Δγ Kγ (x, x′;T ). The subtle issue here is the
correct identification of k. If the diffusion process involves (approximately) only
a small interval of scales near k over which λ̄k does not change much, the corre-
sponding heat equation contains the operator Δ(k) for this specific, fixed value of k:
∂T K(x, x′;T ) = −Δ(k)K(x, x′;T ). Denoting the eigenvalues of Δ(k0) by En and
the corresponding eigenfunctions by φn, this equation is solved by

K
(
x, x′;T ) =

∑
n

φn(x)φn

(
x′) exp

[−F
(
k2)EnT

]
. (8.43)

Here we introduced the convenient notation F(k2) ≡ λ̄k/λ̄k0 . Knowing the propaga-
tion kernel, we can time-evolve any initial probability distribution p(x;0) according
to

p(x;T ) =
∫

ddx′
√

g0
(
x′)K(

x, x′;T )
p
(
x′;0

)
, (8.44)

with g0 the determinant of 〈gμν〉k0 . If the initial distribution has an eigenfunction
expansion of the form p(x;0) = ∑

n Cnφn(x), we obtain

p(x;T ) =
∑
n

Cnφn(x) exp
[−F

(
k2)EnT

]
. (8.45)

If the Cn’s are significantly different from zero only for a single eigenvalue EN ,
we are dealing with a single-scale problem and would identify k2 = EN as the rel-
evant scale at which the running couplings are to be evaluated. In general the Cn’s
are different from zero over a wide range of eigenvalues. In this case we face a mul-
tiscale problem where different modes φn probe the space-time on different length
scales. If Δ(k0) corresponds to flat space, say, the eigenfunctions φn = φp are plane
waves with momentum pμ, and they resolve structures on a length scale � of order
1/|p|. Hence, in terms of the eigenvalue En ≡ Ep = p2 the resolution is � ≈ 1/

√
En.

This suggests that when the manifold is probed by a mode with eigenvalue En it
‘sees’ the metric 〈gμν〉k for the scale k = √

En. Actually, the identification k = √
En

is correct also for curved space since, in the construction of Γk , the parameter k is
introduced precisely as a cutoff in the spectrum of the covariant Laplacian.
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As a consequence, under the spectral sum of (8.45), we must use the scale k2 =
En which depends explicitly on the resolving power of the corresponding mode.
Likewise, in Eq. (8.43), F(k2) is to be interpreted as F(En):

K
(
x, x′;T ) =

∑
n

φn(x)φn

(
x′) exp

[−F(En)EnT
]

=
∑
n

φn(x) exp
{−F

[
Δ(k0)

]
Δ(k0)T

}
φn

(
x′). (8.46)

As in [97], we choose k0 as a macroscopic scale in the classical regime, and we
assume that at k0 the cosmological constant is small, so that 〈gμν〉k0 can be approx-
imated by the flat metric on R

d . The eigenfunctions of Δ(k0) are plane waves then
and Eq. (8.46) becomes

K
(
x, x′;T ) =

∫
ddp

(2π)d
eip·(x−x′)e−p2F(p2)T , (8.47)

where the scalar products are performed with respect to the flat metric, 〈gμν〉k0 =
δμν . The kernel (8.47) satisfies the relation K(x,x′;0) = δd(x − x′) and, provided
that limp→0 p2F(p2) = 0, also

∫
ddxK(x, x′;T ) = 1.

Taking the trace of (8.47) within this ‘flat-space approximation’ yields [97]

P(T ) =
∫

ddp

(2π)d
e−p2F(p2)T . (8.48)

Introducing z = p2, the final result for the average return probability reads

P(T ) = 1

(4π)d/2Γ (d/2)

∫ ∞

0
dz zd/2−1 exp

[−zF (z)T
]
, (8.49)

where F(z) ≡ λ̄(k2 = z)/λ̄k0 . In the classical case, F(z) = 1, the relation (8.49) re-
produces the familiar result P(T ) = 1/(4πT )d/2, whence Ds(T ) = d independently
of T . We shall now discuss the spectral dimension for several other illustrative and
important examples.

8.7.2 The Spectral Dimension in QEG

(A) Let us evaluate the average return probability (8.49) for a simplified RG trajec-
tory where the scale dependence of the cosmological constant is given by a power
law, with the same exponent δ for all values of k:

λ̄k ∝ kδ =⇒ F(z) ∝ zδ/2. (8.50)

By rescaling the integration variable in (8.49) we see that in this case

P(T ) = const

T d/(2+δ)
. (8.51)
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Hence (8.35) yields the important result

Ds(T ) = 2d
2+δ

. (8.52)

It happens to be T -independent, so that for T → 0 trivially ds = 2d/(2 + δ).

(B) Next, let us be slightly more general and assume that the power law (8.50) is
valid only for squared momenta in a certain interval, p2 ∈ [z1, z2], but λ̄k remains
unspecified otherwise. In this case we can obtain only partial information about
P(T ), namely for T in the interval [z−1

2 , z−1
1 ]. The reason is that for T ∈ [z−1

2 , z−1
1 ]

the integral in (8.49) is dominated by momenta for which approximately 1/p2 ≈ T ,
i.e., z ∈ [z1, z2]. This leads us again to the formula (8.52), which now, however,
is valid only for a restricted range of diffusion times T ; in particular the spectral
dimension of interest may not be given by extrapolating (8.52) to T → 0.

(C) Let us consider an arbitrary asymptotically safe RG trajectory so that its behav-
ior for k → ∞ is controlled by the NGFP. In this case the running of the cosmo-
logical constant for k � M , with M a characteristic mass scale of the order of the
Planck mass, is given by a quadratic scale-dependence λ̄k = λ∗k2, independently of
d . This corresponds to a power law with δ = 2, which entails in the NGFP regime,
i.e., for T � 1/M2,

Ds(T ) = d

2
(NGFP regime). (8.53)

This dimension, again, is locally T -independent. It coincides with the T → 0 limit:

ds = d

2
. (8.54)

This is the result first derived in ref. [97]. As it was explained there, it is actually an
exact consequence of asymptotic safety which relies solely on the existence of the
NGFP and does not depend on the Einstein–Hilbert truncation.

(D) Returning to the Einstein–Hilbert truncation, let us consider the piece of the
Type IIIa RG trajectory depicted in Fig. 8.4 which lies inside the linear regime of
the GFP. Newton’s constant is approximately k-independent there and the cosmo-
logical constant evolves according to (8.22). When k is not too small, so that λ̄0

can be neglected relative to νḠkd , we are in what we shall call the ‘kd regime’; it
is characterized by a pure power law λ̄k ≈ kδ with δ = d . The physics behind this
scale dependence is simple and well-known: It represents the vacuum energy den-
sity obtained by summing up the zero-point energies of all field modes integrated
out. For T in the range of scales pertaining to the kd regime we find

Ds(T ) = 2d

2 + d

(
kd regime

)
. (8.55)
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8.7.3 The Walk Dimension in QEG

In order to determine the walk dimension for the diffusion on the effective QEG
space-times, we return to Eq. (8.47) for the untraced heat-kernel. We restrict our-
selves to a regime with a power-law running of λ̄k , whence F(p2) = (Lp)δ with
some constant length-scale L.

Introducing qμ ≡ pμT 1/(2+δ) and ξμ ≡ (xμ − x′
μ)/T 1/(2+δ), we can rewrite

(8.47) in the form

K
(
x, x′;T ) = 1

T d/(2+δ)
Φ

( |x − x′|
T 1/(2+δ)

)
(8.56)

with the function

Φ
(|ξ |) ≡

∫
ddq

(2π)d
eiq·ξ e−Lδq2+δ

. (8.57)

For δ = 0, this obviously reproduces (8.36). From the argument of Φ in (8.56) we
infer that r = |x − x′| scales as T 1/(2+δ) so that the walk dimension can be read off
as

Dw(T ) = 2 + δ. (8.58)

In analogy with the spectral dimension, we use the notation Dw(T ) rather than dw

to indicate that it might refer to an approximate scaling law which is valid for a finite
range of scales only.

For δ = 0,2, and d we find, in particular, for any topological dimension d ,

Dw =

⎧⎪⎨
⎪⎩

2 classical regime,

4 NGFP regime,

2 + d kd regime.

(8.59)

Regimes with all three walk dimensions of (8.59) can be realized along a single RG
trajectory. Again, the result for the NGFP regime, Dw = 4, is exact in the sense that
it does not rely on the Einstein–Hilbert truncation.

8.7.4 The Hausdorff Dimension in QEG

The smooth manifold underlying QEG has per se no fractal properties whatsoever.
In particular, the volume of a d-ball Bd covering a patch of the smooth manifold of
QEG space-time scales as V (Bd) = ∫

Bd ddx
√

gk ∝ (rk)
d . Thus, by comparing to

Eq. (8.37), we read off that the Hausdorff dimension is strictly equal to the topolog-
ical one:

dH = d . (8.60)
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8.7.5 Relations Between Dimensions

(1) The Alexander-Orbach relation. For standard fractals the quantities ds , dw ,
and dH are not independent but are related by [143]

ds

2
= dH

dw

. (8.61)

By combining Eqs. (8.52), (8.58), and (8.60) we see that the same relation holds true
for the effective QEG space-times, at least within the Einstein–Hilbert approxima-
tion and when the underlying RG trajectory is in a regime with power-law scaling
of λ̄k . For every value of the exponent δ we have

Ds(T )

2
= dH

Dw(T )
. (8.62)

(2) (Non-) Recurrence. The results dH = d , Dw = 2 + δ imply that, as soon as δ >

d − 2, we have Dw > dH and the random walk is recurrent then [142]. Classically
(δ = 0) this condition is met only in low dimensions d < 2, but in the case of the
QEG space-times it is always satisfied in the kd regime (δ = d), for example. So also
from this perspective the QEG space-times, due to the specific quantum gravitational
dynamics to which they owe their existence, appear to have a dimensionality smaller
than their topological one.

(3) Four dimensions are special. It is intriguing that, in the NGFP regime, Dw = 4
independently of d . Hence the walk is recurrent (Dw > dH ) for d < 4, non-recurrent
for d > 4, and the marginal case Dw = dH is realized if and only if d = 4, making
d = 4 a distinguished value.

Notably, there is another feature of the QEG space-times which singles out d = 4:
It is the only dimensionality for which Ds(NGFP regime) = d/2 coincides with the
effective dimension deff = d + η∗ = 2 obtained from the scale-dependent graviton
propagator (see Sect. 8.5.)

8.8 The RG Running of Ds and Dw

Let us consider an arbitrary RG trajectory k �→ (gk, λk), where gk ≡ Gkk
d−2 and

λk ≡ λ̄kk
−2 are the dimensionless Newton constant and cosmological constant, re-

spectively. Along such a RG trajectory there might be isolated intervals of k-values
where the cosmological constant evolves according to a power law, λ̄k ∝ kδ , for
some constant exponents δ which are not necessarily the same on different such
intervals. If the intervals are sufficiently long, it is meaningful to ascribe a spec-
tral and walk dimension to them since δ = const implies k-independent values
Ds = 2d/(2 + δ) and Dw = 2 + δ.

In between the intervals of approximately constant Ds and Dw , where the k-
dependence of λ̄k is not a power law, the notion of a spectral or walk dimension
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might not be meaningful. The concept of a scale-dependent dimension Ds or Dw is
to some extent arbitrary with respect to the way it interpolates between the ‘plateaus’
on which δ = const for some extended period of RG time. While RG methods allow
the computation of the Ds and Dw values on the various plateaus, it is a matter
of convention how to combine them into continuous functions k �→ Ds(k),Dw(k)

which interpolate between the respective values.

(1) The exponent δ as a function on theory space. Next we describe a special pro-
posal for a k-dependent Ds(k) and Dw(k) which is motivated by technical simplic-
ity and the general insights it allows. We retain Eqs. (8.52) and (8.58), but promote
δ → δ(k) to a k-dependent quantity

δ(k) ≡ k∂k ln(λ̄k). (8.63)

When λ̄k satisfies a power law, λ̄k ∝ kδ , this relation reduces to the case of con-
stant δ. If not, δ has its own scale dependence, but no direct physical interpreta-
tion should be attributed to it. The particular definition (8.63) has the special prop-
erty that it actually can be evaluated without first solving for the RG trajectory.
The function δ(k) can be seen as arising from a certain scalar function on theory
space, δ = δ(g,λ), whose k-dependence results from inserting an RG trajectory:
δ(k) ≡ δ(gk, λk). In fact, (8.63) implies δ(k) = k∂k ln(k2λk) = 2 + λ−1

k k∂kλk so
that δ(k) = 2 + λ−1

k βλ(gk, λk) upon using the RG-equation k∂kλk = βλ(g,λ). Thus
when we consider δ as a function on theory space, coordinatized by g and λ, it reads

δ(g,λ) = 2 + 1

λ
βλ(g,λ). (8.64)

Substituting this relation into (8.52) and (8.58), the spectral and the walk dimensions
become functions on the g–λ-plane,

Ds(g,λ) = 2d

4 + λ−1βλ(g,λ)
, (8.65)

and

Dw(g,λ) = 4 + λ−1βλ(g,λ). (8.66)

As we discussed already, the scaling regime of a NGFP has the exponent δ = 2.
From Eq. (8.64) we learn that this value is realized at all points (g,λ) where βλ = 0.
The second condition for the NGFP, βg = 0, is not required here, so that we have
δ = 2 along the entire line in theory space:

B = {
(g,λ) | βλ(g,λ) = 0

}
. (8.67)

For d = 4 the curve B is shown as the dashed line in Fig. 8.4. Both the GFP
(g,λ) = (0,0) and the NGFP, (g,λ) = (g∗, λ∗), are located on this curve. Further-
more, the turning points T of all Type IIIa trajectories are also situated on B, and
the same holds for all the higher-order turning points which occur when the trajec-
tory spirals around the NGFP. The line B divides the (g,λ)-plane in three domains:
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Fig. 8.4 The (g,λ) theory space with the line of turning points, B, and a typical trajectory of Type
IIIa. The arrows point in the direction of decreasing k. The big black dot indicates the NGFP while
the smaller dots represent points at which the RG trajectory switches from increasing to decreasing
λ or vice versa. The point T is the lowest turning point, and C is a typical point within the classical
regime. For λ � 0.4, the RG flow leaves the classical regime and is no longer reliably captured by
the Einstein–Hilbert truncation

(i) Above B: βλ > 0, δ > 2 ⇒ Ds < d/2,Dw > 4. (ii) Below B: βλ < 0, δ < 2 ⇒
Ds > d/2,Dw < 4. (iii) On B: βλ = 0, δ = 2 ⇒ Ds = d/2,Dw = 4. This observa-
tion leads us to an important conclusion: The values δ = 2 ⇐⇒ Ds = d/2,Dw = 4
which (without involving any truncation) are found in the NGFP regime, actually
also apply to all points (g,λ) ∈ B, provided the Einstein–Hilbert truncation is reli-
able and no matter is included.

(2) Running dimensions along a RG trajectory. We proceed by investigating how
the spectral and walk dimension of the effective QEG space-times changes along a
given RG trajectory. As discussed above, our interest is in scaling regimes where Ds

and Dw remain (approximately) constant for a long interval of k-values. For the re-
mainder of this section, we will restrict ourselves to the Einstein–Hilbert truncation
in d = 4.

We start by numerically solving the coupled differential equations (8.18) with the
β-functions from [11] for a series of initial conditions keeping λinit = λ(k0) = 0.2
fixed and successively lowering ginit = g(k0). The result is a family of RG trajecto-
ries where the classical regime becomes more and more pronounced. Subsequently,
these solutions are substituted into (8.65) and (8.66), which give Ds(t;ginit, λinit)

and Dw(t;ginit, λinit) in dependence of the RG-time t ≡ ln(k) and the RG trajec-
tory. One can verify explicitly that substituting the RG trajectory into the return
probability (8.49) and computing the spectral dimension from (8.34) by carrying
out the resulting integrals numerically gives rise to the same picture.

Figure 8.5 shows the resulting spectral dimension and the localization of the
plateau-regimes on the RG trajectory. In the left diagram, ginit decreases by one
order of magnitude for each shown trajectory, starting with the highest value to the
very left. As a central result, Fig. 8.5 establishes that the RG flow gives rise to three
plateaus where Ds(t) and Dw(t) are approximately constant:
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Fig. 8.5 The t ≡ ln(k)-dependent spectral dimension along illustrative solutions of the RG-
equations (8.18) in d = 4. The trajectories develop three plateaus: the classical plateau with
Ds = 4,Dw = 2, the semi-classical plateau where Ds = 4/3,Dw = 6 and the NGFP plateau with
Ds = 2,Dw = 4. (Recall that Dw = 2d/Ds = 8/Ds .) The plateau values are indicated by the hor-
izontal lines. The second figure shows the location of these plateaus on the RG trajectory: the
classical, k4, and NGFP regime appear between the points P1 and P2, P3 and P4, and above P5,
respectively

(i) For small values k, below t � 1.8, say, one finds a classical plateau where
Ds = 4,Dw = 2 for a long range of k-values. Here δ = 0, indicating that the
cosmological constant is indeed constant.

(ii) Following the RG flow towards the UV (larger values of t) one next encounters
the semi-classical plateau where Ds = 4/3,Dw = 6. In this case δ(k) = 4 so
that λ̄k ∝ k4 on the corresponding part of the RG trajectory.

(iii) Finally, the NGFP plateau is characterized by Ds = 2,Dw = 4, which results
from the scale-dependence of the cosmological constant at the NGFP λ̄k ∝
k2 ⇐⇒ δ = 2.

The plateaus become more and more extended the closer the trajectory’s turning
point T gets to the GFP, i.e., the smaller the IR value of the cosmological constant.

8.9 Matching the Spectral Dimensions of QEG and CDT

The key advantage of the spectral dimension Ds(T ) is that it may be defined and
computed within various a priori unrelated approaches to quantum gravity. In par-
ticular, it is easily accessible in Monte Carlo simulations of the causal dynamical
triangulations (CDT) approach in d = 4 [90–92] and d = 3 [94] as well as in Eu-
clidean dynamical triangulations (EDT) [98]. This feature allows a direct compari-
son between DCDT

s (T ) and DEDT
s (T ) obtained within the discrete approaches and

DQEG
s (T ) capturing the fractal properties of the QEG effective space-times. In [99]

we carried out this analysis for d = 3, using the Monte Carlo data obtained in [94]
according to the following scheme:

(i) First, we numerically construct a RG trajectory gk(g0, λ0), λk(g0, λ0) depend-
ing on the initial conditions g0, λ0, by solving the flow equations (8.18).
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Table 8.1 Initial conditions gfit
0 , λfit

0 for the RG trajectory providing the best fit to the Monte Carlo
data [94]. The fit-quality (ΔDs )

2, given by the sum of the squared residues, improves systemati-
cally when increasing the number of simplices in the triangulation

gfit
0 λfit

0 (ΔDs )
2

70k 0.7 × 10−5 7.5 × 10−5 0.680

100k 8.8 × 10−5 39.5 × 10−5 0.318

200k 13 × 10−5 61 × 10−5 0.257

(ii) We evaluate the resulting spectral dimension DQEG
s (T ;g0, λ0) of the corre-

sponding effective QEG space-time. This is done by first finding the return
probability P(T ;g0, λ0), Eq. (8.49), for the RG trajectory under consideration
and then substituting the resulting expression into (8.35). The spectral dimen-
sion constructed in this way depends not only on the length of the random walk
but also on the initial conditions of the RG trajectory.

(iii) We determine the RG trajectory underlying the CDT-simulations by fitting the
parameters g0, λ0 to the Monte Carlo data. The corresponding best-fit val-
ues are obtained via an ordinary least-squares fit, minimizing the squared Eu-
clidean distance

(ΔDs)
2 ≡

500∑
T =20

[
DQEG

s

(
T ;gfit

0 , λfit
0

) − DCDT
s (T )

]2
, (8.68)

between the (continuous) function DQEG
s (T ;g0, λ0) and the points DCDT

s (T ).
We thereby restrict ourselves to the random walks with discrete, integer length
20 ≤ T ≤ 500, which constitute the ‘reliable’ part of the data.

The resulting best-fit values gfit
0 , λfit

0 for triangulations with N = 70,000, N =
100,000, and N = 200,000 simplices are collected in Table 8.1. Notably, the sum
over the squared residuals in the third column of the table improves systemati-
cally with an increasing number of simplices. By integrating the flow equation for
g(k), λ(k) for the best-fit initial conditions one furthermore observes that the points
gfit

0 , λfit
0 are actually located on different RG trajectories. Increasing the size of the

simulation N leads to a mild but systematic increase of the distance between the
turning point T and the GFP of the corresponding best-fit trajectories.

Figure 8.6 then shows the direct comparison between the spectral dimensions
obtained by the simulations (continuous curves) and the best-fit QEG trajectories
(dashed curves) for 70k, 100k and 200k in the upper left, upper right and lower left
panel, respectively. This data is complemented by the relative error

ε ≡ −DQEG
s (T ;gfit

0 , λfit
0 ) − DCDT

s (T )

DQEG
s (T ;gfit

0 , λfit
0 )

(8.69)

for the three fits in the lower right panel. The 70k data still shows a systematic devia-
tion from the classical value Ds(T ) = 3 for long random walks, which is not present
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Fig. 8.6 Comparison between the spectral dimension measured in 3-dimensional CDT space–
times build from 70k (upper left), 100k (upper right), and 200k simplices (lower left) obtained in
[94] (continuous curves) and the best fit values for D

QEG
s (T ;gfit

0 , λfit
0 ) (dashed curves). The rela-

tive errors for the fits to the CDT-datasets with N = 70,000 (circles), N = 100,000 (squares) and
N = 200,000 (triangles) simplices are shown in the lower right. The residuals growth for very
small and very large durations T of the random walk, consistent with discreteness effects at small
distances and the compactness of the simulation for large values of T , respectively. The quality
of the fit improves systematically for triangulations containing more simplices. For the N = 200k
data the relative error is ≈1 %

in the QEG results. This mismatch decreases systematically for larger triangulations
where the classical regime becomes more and more pronounced. Nevertheless and
most remarkably we find that for the 200k-triangulation ε � 1 %, throughout.

We conclude this section by extending DQEG
s (T ;gfit

0 , λfit
0 ) obtained from the

200k data to the region of very short random walks T < 20. The result is depicted
in Fig. 8.7 which displays DCDT

s (T ) (continuous curve) and DQEG
s (T ;gfit

0 , λfit
0 )

(dashed curve) as a function of log(T ). Similarly to the four-dimensional case dis-
cussed in Fig. 8.5, the function DQEG

s (T ;gfit
0 , λfit

0 ) obtained for d = 3 develops three
plateaus where the spectral dimension is approximately constant over a long T -
interval. For successively decreasing duration of the random walks, these plateaus
correspond to the classical regime DQEG

s (T ) = 3, the semi-classical regime where
DQEG

s (T ) ≈ 1 and the NGFP regime where DQEG
s (T ) = 3/2. The figure illustrates

that DCDT
s (T ) probes the classical regime and part of the first crossover towards

the semi-classical regime only. This is in perfect agreement with the assertion [94]
that the present simulations do not yet probe structures below the Planck scale.
This assessment resolves the apparent contradiction between the extrapolation re-
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Fig. 8.7 Comparison between the spectral dimensions obtained from the dynamical triangulation
with 200k simplices (continuous curve) and the corresponding D

QEG
s (T ;gfit

0 , λfit
0 ) predicted by

QEG (dashed curve). In the latter case, the scaling regime corresponding to the NGFP is reached
for log(T ) < −40, which is well below the distance scales probed by the Monte Carlo simulation

sult limT →0 DCDT
s (T ) ≈ 2 and the QEG prediction limT →0 DQEG

s (T ) = 3/2. Per-
forming the extrapolation of limT →0 DCDT

s (T ) based on the leading corrections to
the classical regime does not reliably identify the signature of a non-Gaussian fixed
point in Ds(T ).

A similar conclusion also holds true in four dimensions. Comparing the profiles
of DQEG

s (T ) shown in Fig. 8.5 with the fitting functions used in the CDT [90–92] or
EDT [98] simulations shows that all the Monte Carlo data points obtained are posi-
tioned on the infrared side of the turning point of the RG trajectories underlying the
QEG effective space-times. They neither probe the semi-classical plateau nor the
scaling regime of the NGFP. Depending on where the data are cut off, one obtains
different tangents to the first crossover, which lead to widely different extrapolations
for the value ds = Ds(T )|T =0. We believe that this is actually at the heart of the ap-
parent mismatch in the spectral dimension for infinitesimal random walks reported
from the CDT and EDT computations.

8.10 Asymptotic Safety in Cosmology

At this point we switch to another field where QEG effects might be relevant, the
cosmology of the early Universe. As we discussed at the end of Sect. 8.4, the Type
IIIa trajectories displayed in Fig. 8.2 possess all the qualitative properties one would
expect from the RG trajectory describing gravitational phenomena in the real Uni-
verse. They can have a long classical regime and a small, positive cosmological con-
stant in the infrared. Remarkably, along the RG trajectory realized by Nature [79–
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81, 133], the dimensionful running cosmological constant λ̄(k) changes by about
120 orders of magnitude between k-values of the order of the Planck mass and
macroscopic scales, while the dimensionful Newton constant G(k) has no strong
k-dependence in this regime. For k > mPl, the scale dependence of G(k) and λ̄(k)

is governed by the NGFP, implying that λ̄(k) diverges and G(k) approaches zero,
see Eq. (8.21). An immediate question is whether there is any experimental or ob-
servational evidence that would hint at this enormous scale dependence of the grav-
itational parameters. Clearly, the natural place to search for such phenomena is cos-
mology.

8.10.1 RG Improved Einstein Equations

The computational setting for investigating the signatures arising from the scale-
dependent couplings are the RG improved Einstein equations: By means of a
suitable cutoff identification k = k(t) we turn the scale dependence of G(k) and
λ̄(k) into a time dependence, and then substitute the resulting G(t) ≡ G[k(t)] and
λ̄(t) ≡ λ̄[k(t)] into the Einstein equations Gμν = −λ̄(t)gμν + 8πG(t)Tμν . We spe-
cialize gμν to describe a spatially flat (K = 0) Robertson–Walker (FRW) metric
with scale factor a(t), and we take Tμ

ν = diag[−ρ,p,p,p] to be the energy-
momentum tensor of an ideal fluid with equation of state p = wρ, where w > −1
is constant. Then the improved Einstein equation boils down to the modified Fried-
mann equation and a continuity equation:

H 2 = 8π

3
G(t)ρ + 1

3
λ̄(t), (8.70a)

ρ̇ + 3H(ρ + p) = −
˙̄λ + 8πρĠ

8πG
. (8.70b)

The modified continuity equation (8.70b) is the integrability condition for the im-
proved Einstein equation implied by Bianchi identity, Dμ[λ̄(t)gμν −8πG(t)Tμν] =
0. It describes the energy exchange between the matter and gravitational degrees of
freedom (geometry). For later use let us note that upon defining the critical density
ρcrit(t) ≡ 3H(t)2/[8πG(t)], the relative density ΩM ≡ ρ/ρcrit and Ωλ̄ = ρλ̄/ρcrit
the modified Friedmann equation (8.70a) can be written as ΩM(t) + Ωλ̄(t) = 1.

8.10.2 Solving the RG Improved Einstein Equations

The general strategy for solving Eqs. (8.70a), (8.70b) is as follows. First we obtain
G(k) and λ̄(k) by solving the flow equation in the Einstein–Hilbert truncation before
constructing the cosmologies by numerically solving the RG improved evolution
equations. We shall employ the cutoff identification k(t) = ξH(t), where ξ is a
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fixed positive constant of order unity. This is a natural choice since in a Robertson–
Walker geometry the Hubble parameter measures the curvature of space-time; its
inverse H−1 defines the size of the ‘Einstein elevator’.

The very early part of the cosmology can be described analytically. For k → ∞
the trajectory approaches the NGFP so that G(k) = g∗/k2 and λ̄(k) = λ∗k2. In this
case the differential equation can be solved analytically, with the result

H(t) = α

t
, a(t) = Atα, α =

[
1

2
(3 + 3w)

(
1 − Ω ∗̄

λ

)]−1

, (8.71)

and ρ(t) = ρ̂t−4, G(t) = Ĝt2, λ̄(t) = ̂̄λ/t2. Here A, ρ̂, Ĝ, and ̂̄λ are positive con-
stants. They parametrically depend on the relative vacuum energy density in the
fixed point regime, Ω ∗̄

λ
, which assumes values in the interval (0,1). If α > 1 the

deceleration parameter q = α−1 − 1 is negative and the Universe is in a phase of
power-law inflation. Furthermore, it has no particle horizon if α ≥ 1, but does have
a horizon of radius dH = t/(1 − α) if α < 1. In the case of w = 1/3 this means that
there is a horizon for Ω ∗̄

λ
< 1/2, but none if Ω ∗̄

λ
≥ 1/2.

8.10.3 Inflation in the Fixed-Point Regime

Next we discuss in more detail the cosmologies originating from the epoch of
power-law inflation which is realized in the NGFP regime if Ω ∗̄

λ
> 1/2. Since

the transition from the fixed point to the classical FRW regime is rather sharp, it
will be sufficient to approximate the RG improved UV cosmologies by the follow-
ing caricature: For 0 < t < ttr, the scale factor behaves as a(t) ∝ tα , α > 1. Here
α = (2 − 2Ω ∗̄

λ
)−1 since w = 1/3 will be assumed. Thereafter, for t > ttr, we have

a classical, entirely matter-driven expansion a(t) ∝ t1/2. Clearly this is a very at-
tractive scenario: neither to trigger inflation nor to stop it one needs any ad hoc
ingredients such as an inflaton field or a special potential. It suffices to include
the leading quantum effects in the gravity + matter system. Following [79–81], the
RG improved cosmological evolution for the RG trajectory realized by Nature is
characterized as follows:

(A) The transition time ttr is dictated by the RG trajectory. It leaves the asymptotic
scaling regime near k ≈ mPl. Hence H(ttr) ≈ mPl and since ξ = O(1) and H(t) =
α/t , we find the estimate

ttr = αtPl. (8.72)

Here, as always, the Planck mass, time, and length are defined in terms of the value
of Newton’s constant in the classical regime: tPl = �Pl = m−1

Pl = Ḡ1/2 = G
1/2
observed.

Let us now assume that Ω ∗̄
λ

is very close to 1 so that α is large: α � 1. Then (8.72)
implies that the transition takes place at a cosmological time which is much later
than the Planck time. At the transition the Hubble parameter is of order mPl, but



216 M. Reuter and F. Saueressig

Fig. 8.8 The proper length L and the Hubble radius as a function of time. The NGFP and FRW
cosmologies are valid for t < ttr and t > ttr, respectively. The classical cosmology has an apparent
initial singularity at tas outside its domain of validity. Structures of size eN�Pl at ttr cross the Hubble
radius at tN , a time which can be larger than the Planck time

the cosmological time is in general not of the order of tPl. Stated differently, the
‘Planck time’ is not the time at which H and the related physical quantities assume
Planckian values. The Planck time as defined above is well within the NGFP regime:
tPl = ttr/α � ttr.

In the NGFP regime 0 < t < ttr the Hubble radius �H (t) ≡ 1/H(t), i.e., �H (t) =
t/α, increases linearly with time but, for α � 1, with a very small slope. At the
transition, t = ttr, the NGFP solution is to be matched continuously with a FRW
cosmology (with vanishing cosmological constant). We may use the classical for-
mula a ∝ √

t for the scale factor, but we must shift the time axis on the classical side
such that a, H , and then as a result of (8.70a), also ρ are continuous at ttr. There-
fore, a(t) ∝ (t − tas)

1/2 and H(t) = 1
2 (t − tas)

−1 for t > ttr. Equating this Hubble
parameter at t = ttr to H(t) = α/t , valid in the NGFP regime, we find that the shift
tas must be chosen as tas = (α − 1

2 )tPl = (1 − 1
2α

)ttr < ttr. Here the subscript ‘as’
stands for ‘apparent singularity’. This is to indicate that if one continues the clas-
sical cosmology to times t < ttr, it has an initial singularity (‘big bang’) at t = tas.
Since, however, the FRW solution is not valid there, nothing special happens at tas;
the true initial singularity is located at t = 0 in the NGFP regime; see Fig. 8.8.

(B) We now consider some structure of comoving length Δx, a single wavelength
of a density perturbation, for instance. The corresponding physical, i.e., proper
length is L(t) = a(t)Δx then. In the NGFP regime it has the time dependence
L(t) = (t/ttr)

αL(ttr). The ratio of L(t) and the Hubble radius evolves according to
L(t)/�H(t) = (t/ttr)

α−1L(ttr)/�H(ttr). For α > 1, i.e., Ω ∗̄
λ

> 1/2, the proper length
of any object grows faster than the Hubble radius. So objects which are of ‘sub-
Hubble’ size at early times can cross the Hubble radius and become ‘super-Hubble’
at later times; see Fig. 8.8.

Let us focus on a structure which, at t = ttr, is eN times larger than the Hubble
radius. Before the transition we have L(t)/�H(t) = eN(t/ttr)

α−1. Assuming eN > 1,
there exists a time tN < ttr at which L(tN) = �H(tN ), so that the structure considered
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‘crosses’ the Hubble radius at the time tN . It is given by

tN = ttr exp

(
− N

α − 1

)
. (8.73)

What is remarkable about this result is that, even with rather moderate values of α,
one can easily ‘inflate’ structures to a size which is by many e-folds larger than the
Hubble radius during a very short time interval at the end of the NGFP epoch.

The largest structures in the present Universe, evolved backward in time by the
classical equations to the point where H = mPl, have a size of about e60�Pl there. We
can use (8.73) with N = 60 to find the time t60 at which those structures crossed the
Hubble radius. With α = 25 the result is t60 = 2.05tPl = ttr/12.2. Remarkably, t60
is smaller than ttr by one order of magnitude only. As a consequence, the physical
conditions prevailing at the time of the crossing are not overly ‘exotic’ yet. The
Hubble parameter, for instance, is only one order of magnitude larger than at the
transition: H(t60) ≈ 12mPl. The same is true for the temperature; one can show that
T (t60) ≈ 12T (ttr) where T (ttr) is of the order of mPl. Note that t60 is larger than tPl.

(C) QEG offers a natural mechanism for generating primordial fluctuations dur-
ing the NGFP epoch. The idea is that the NGFP amounts to a kind of ‘critical
phenomenon’ with characteristic fluctuations on all scales. They turn out to have
a scale-free spectrum with a spectral index close to n = 1. For a detailed discussion
of this mechanism the reader is referred to [15, 77–81]. Suffice it to say that the
quantum mechanical generation of the primordial fluctuations makes essential use
of the dimensionally reduced form of the graviton propagator; it happens on sub-
Hubble distance scales. However, thanks to the inflationary NGFP era the modes
relevant to cosmological structure formation were indeed smaller than the Hubble
radius at a sufficiently early time, for t < t60, say. (See the L(t) curve in Fig. 8.8.)

8.10.4 Entropy and the Renormalization Group

In standard Friedmann–Robertson–Walker cosmology where the expansion is adia-
batic, the entropy (within a comoving volume) is constant. It has always been some-
what puzzling therefore where the huge amount of entropy contained in the present
Universe comes from. Presumably it is dominated by the cosmic microwave back-
ground radiation (CMBR) photons which contribute an amount of about 1088 to the
entropy within the present Hubble sphere.

The observation that the value of the cosmological constant decreases during
the expansion of the universe hints at another mechanism at work within the RG
improved cosmologies: the dynamical creation of entropy. Following [79–81] we
shall argue that in principle the entire entropy of the massless fields in the present
Universe can be understood as arising from this effect. If energy can be exchanged
freely between the cosmological constant and the matter degrees of freedom, the
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entropy observed today is obtained precisely if the initial entropy at the big bang
vanishes. The assumption that the matter system must allow for an unhindered en-
ergy exchange with λ̄ is essential; see refs. [77–81].

To make the argument as transparent as possible, let us first consider a Universe
without matter, but with a positive λ̄. Assuming maximal symmetry, this is nothing
but de Sitter space, of course. In static coordinates its metric is given by ds2 = −[1+
2ΦN(r)]dt2 + [1 + 2ΦN(r)]−1dr2 + r2(dθ2 + sin2 θdφ2) with ΦN(r) = − 1

6 λ̄r2. In
the weak field and slow motion limit ΦN(r) has the interpretation of a Newtonian
potential; for λ̄ > 0 it is an upside-down parabola. Point particles in this space-time
‘roll down the hill’ and are rapidly driven away from the origin r = 0 and from
any other particle. Now assume that the magnitude of |λ̄| is slowly (‘adiabatically’)
decreased. This will cause the potential ΦN(r) to move upward as a whole, its slope
decreases. So the change in λ̄ increases the particle’s potential energy. This is the
simplest way of understanding that a positive decreasing cosmological constant has
the effect of ‘pumping’ energy into the matter degrees of freedom.

We are thus led to suspect that, because of the decreasing cosmological constant,
there is a continuous inflow of energy into the cosmological fluid contained in an
expanding Universe. It will ‘heat up’ the fluid or, more exactly, lead to a slower de-
crease of the temperature than in standard cosmology. Furthermore, by elementary
thermodynamics, it will increase the entropy of the fluid. If during the time dt an
amount of heat dQ > 0 is transferred into a volume V at the temperature T the
entropy changes by an amount dS = dQ/T > 0. To be as conservative (i.e., close
to standard cosmology) as possible, we assume that this process is reversible. If not,
dS is even larger.

In order to quantify this argument, we model the matter in the early Universe
by a gas with nb bosonic and nf fermionic massless degrees of freedom, all at the
same temperature. In equilibrium its energy density, pressure, and entropy density
are given by the usual relations (here neff = nb + 7

8nf)

ρ = 3p = π2

30
neffT

4, (8.74a)

s = 2π2

45
neffT

3, (8.74b)

so that in terms of U ≡ ρV and S ≡ sV ,

T dS = dU + p dV. (8.74c)

In an out-of-equilibrium process of entropy generation the question arises how the
various thermodynamical quantities are related then. To be as conservative as possi-
ble, we make the assumption that the irreversible inflow of energy destroys thermal
equilibrium as little as possible in the sense that the equilibrium relations (8.74a)–
(8.74c) continue to be (approximately) valid. Such minimally non-adiabatic pro-
cesses were termed ‘adiabatic’ (with the quotation marks) in ref. [144, 145].
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8.10.5 Primordial Entropy Generation

Let us return to the modified continuity equation (8.70b). After multiplication by a3

it reads [
ρ̇ + 3H(ρ + p)

]
a3 = P̃(t), (8.75)

where we defined

P̃ ≡ −
( ˙̄λ + 8πρĠ

8πG

)
a3. (8.76)

Without assuming any particular equation of state, Eq. (8.75) can be rewritten as

d

dt

(
ρa3) + p

d

dt

(
a3) = P̃(t). (8.77)

The interpretation of this equation is as follows. Let us consider a unit coordi-
nate, i.e., comoving volume in the Robertson–Walker space-time. Its corresponding
proper volume is V = a3 and its energy contents is U = ρa3. The rate of change of
these quantities is subject to (8.77):

dU

dt
+ p

dV

dt
= P̃(t). (8.78)

In classical cosmology where P̃ ≡ 0 this equation together with the standard ther-
modynamic relation dU +pdV = T dS is used to conclude that the expansion of the
Universe is adiabatic, i.e., the entropy inside a comoving volume does not change
as the Universe expands, dS/dt = 0.

When λ̄ and G are time dependent, P̃ is non-zero and we interpret (8.78) as
describing the process of energy (or ‘heat’) exchange between the scalar fields λ̄

and G and the ordinary matter. This interaction causes S to change,

T
dS

dt
= T

d

dt

(
sa3) = P̃(t), (8.79)

where here and in the following we write S ≡ sa3 for the entropy carried by the
matter inside a unit comoving volume and s for the corresponding proper entropy
density. The actual rate of change of the comoving entropy is

dS

dt
= d

dt

(
sa3) = P(t), (8.80)

where P ≡ P̃/T . If T is known as a function of t we can integrate (8.79) to
obtain S = S(t). In the RG improved cosmologies the entropy production rate per
comoving volume

P(t) = −
[ ˙̄λ + 8πρĠ

8πG

]
a3

T
(8.81)
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is non-zero because the gravitational ‘constants’ λ̄ and G have acquired a time de-
pendence.

Clearly we can convert the heat exchanged, T dS, to an entropy change only
if the dependence of the temperature T on the other thermodynamical quantities,
in particular ρ and p is known. For this reason we shall now make the following
assumption about the matter system and its (non-equilibrium!) dynamics:

The matter system is assumed to consist of neff species of effectively massless
degrees of freedom which all have the same temperature T . The equation of state is
p = ρ/3, i.e., w = 1/3, and ρ depends on T as

ρ(T ) = κ4T 4, κ ≡
(

π2

30
neff

)1/4

. (8.82)

No assumption is made about the relation s = s(T ).
The first assumption, radiation dominance and equal temperature, is plausible

since we shall find that there is no significant entropy production any more once
H(t) has dropped substantially below mPl. The second assumption, Eq. (8.82),
amounts to the hypothesis formulated above, the approximate validity of the equi-
librium relations among ρ, p, and T .

Note that while we used (8.74c) in relating P(t) to the entropy production and
also postulated Eq. (8.74a), we do not assume the validity of the formula for the en-
tropy density, Eq. (8.74b), a priori. We shall see that the latter is an automatic con-
sequence of the cosmological equations. To make the picture as clear as possible we
shall neglect in the following all ordinary dissipative processes in the cosmological
fluid.

Using p = ρ/3 and (8.82) the entropy production rate can be seen to be a total
time derivative, P(t) = d/dt[(4/3)κa3ρ3/4]. Therefore we can immediately inte-
grate (8.79) and obtain

S(t) = 4

3
κa3ρ3/4 + Sc, (8.83)

or, in terms of the proper entropy density, s(t) = (4/3)κρ(t)3/4 + Sc/a(t)3. Here Sc
is a constant of integration. In terms of T , using (8.82) again,

s(t) = 2π2

45
neffT (t)3 + Sc

a(t)3
. (8.84)

The final result (8.84) is very remarkable for at least two reasons. First, for Sc =
0, Eq. (8.84) has exactly the form (8.74b) which is valid for radiation in equilibrium.
Note that we did not postulate this relationship, only the ρ(T )-law was assumed.
The equilibrium formula s ∝ T 3 was derived from the cosmological equations, i.e.,
the modified conservation law. This result makes the hypothesis ‘non-adiabatic, but
as little as possible’ self-consistent. Second, if limt→0 a(t)ρ(t)1/4 = 0, which is
actually the case for the most interesting class of cosmologies we shall find, then
S(t → 0) = Sc by Eq. (8.83). As we mentioned in the introduction, the most plau-
sible initial value of S is S = 0 which means a vanishing constant of integration
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Sc here. But then, with Sc = 0, Eq. (8.83) tells us that the entire entropy carried
by the massless degrees of freedom today (CMBR photons) is due to the RG run-
ning.

8.10.6 Entropy Production for RG Trajectory Realized by Nature

Substituting the NGFP solution (8.71) for w = 1/3 the entropy production rate
(8.81) reads P(t) = 4κ(α − 1)A3ρ̂3/4t3α−4. For the entropy per unit comoving
volume we find, if α �= 1, S(t) = Sc + (4/3)κA3ρ̂3/4t3(α−1), and the corresponding
proper entropy density is s(t) = Sc/(A

3t3α) + 4κρ̂3/4/(3t3). For the discussion of
the entropy we must distinguish three qualitatively different cases.

(i) The case α > 1, i.e., 1/2 < Ω∗
λ̄

< 1: Here P(t) > 0 so that the entropy and en-
ergy content of the matter system increases with time. By Eq. (8.81), P > 0 implies
˙̄λ + 8πρĠ < 0. Since ˙̄λ < 0 but Ġ > 0 in the NGFP regime, the energy exchange is
predominantly due to the decrease of λ̄ while the increase of G is subdominant in
this respect. The comoving entropy S(t) has a finite limit for t → 0, S(t → 0) = Sc,
and S(t) grows monotonically for t > 0. If Sc = 0, which would be the most natural
value in view of the discussion above, all of the entropy carried by the matter fields
is due to the energy injection from λ̄.

(ii) The case α < 1, i.e., 0 < Ω∗
λ̄

< 1/2: Here P(t) < 0 so that the energy and

entropy of matter decreases. Since P < 0 amounts to ˙̄λ + 8πρĠ > 0, the dominant
physical effect is the increase of G with time, the counteracting decrease of λ̄ is less
important. The comoving entropy starts out from an infinitely positive value at the
initial singularity, S(t → 0) → +∞. This case is unphysical probably.

(iii) The case α = 1, Ω∗
λ̄

= 1/2: Here P(t) ≡ 0, S(t) = const. The effect of a de-

creasing λ̄ and increasing G cancels exactly.
At lower scales the RG trajectory leaves the NGFP and very rapidly ‘crosses

over’ to the GFP. This is most clearly seen in the behavior of the anomalous dimen-
sion ηN(k) ≡ k∂k lnG(k) which changes from its NGFP value η∗ = −2 to the clas-
sical ηN = 0. This transition happens near k ≈ mPl or, since k(t) ≈ H(t), near a cos-
mological ‘transition’ time ttr defined by the condition k(ttr) = ξH(ttr) = mPl. (Re-
call that ξ = O(1).) The complete solution to the improved equations can be found
with numerical methods only. It proves convenient to use logarithmic variables nor-
malized with respect to their respective values at the turning point. Beside the ‘RG
time’ τ ≡ ln(k/kT), we use x ≡ ln(a/aT), y ≡ ln(t/tT), and U ≡ ln(H/HT).

Summarizing the numerical results, one can say that for any value of Ω ∗̄
λ

the UV
cosmologies consist of two scaling regimes and a relatively sharp crossover region
near k,H ≈ mPl corresponding to x ≈ −34.5 which connects them. At higher k-
scales the fixed point approximation is valid, at lower scales one has a classical
FRW cosmology in which λ̄ can be neglected.
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Fig. 8.9 The crossover epoch of the cosmology for Ω ∗̄
λ

= 0.98. The plots (a), (b), (c) display the
logarithmic Hubble parameter U , as well as q , Ωλ̄, g and λ as a function of the logarithmic scale
factor x. A crossover is observed near x ≈ −34.5. The diamond in plot (d) indicates the point on
the RG trajectory corresponding to this x-value. (The lower horizontal part of the trajectory is not
visible on this scale.) The plots (e) and (f) show the x-dependence of the anomalous dimension
and entropy production rate, respectively

As an example, Fig. 8.9 shows the crossover cosmology with Ω ∗̄
λ

= 0.98 and
w = 1/3. The entropy production rate P has a maximum at ttr and quickly goes to
zero for t > ttr; it is non-zero for all t < ttr. By varying the Ω ∗̄

λ
-value one can check

that the early cosmology is indeed described by the NGFP solution (8.71). For the
logarithmic H vs. a plot, for instance, it predicts U = −2(1−Ω ∗̄

λ
)x for x < −34.4.

The left part of the plot in Fig. 8.9a and its counterparts with different values of Ω ∗̄
λ

indeed comply with this relation. If Ω ∗̄
λ

∈ (1/2,1) we have α = (2 − 2Ω ∗̄
λ
)−1 > 1

and a(t) ∝ tα describes a phase of accelerated power-law inflation.
When Ω ∗̄

λ
↗ 1 the slope of U (x) = −2(1−Ω ∗̄

λ
)x decreases and finally vanishes

at Ω ∗̄
λ

= 1. This limiting case corresponds to a constant Hubble parameter, i.e., to
de Sitter space. For values of Ω ∗̄

λ
smaller than, but close to 1 this de Sitter limit is

approximated by an expansion a ∝ tα with a very large exponent α. The phase of
power-law inflation automatically comes to a halt once the RG running has reduced
λ̄ to a value where the resulting vacuum energy density no longer can overwhelm
the matter energy density.
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8.11 Conclusions

In these lectures we reviewed the basic ideas of asymptotic safety and explained
why we believe that quantum Einstein gravity is likely to be renormalizable in the
modern non-perturbative sense. We argued that the scale-dependence of the gravita-
tional couplings intrinsic to asymptotic safety gives rise to multi-fractal features of
the effective space-times and should also have an impact on the cosmological evo-
lution of the Universe we live in. In the latter context, we proposed three possible
candidate signatures: a period of automatic, cosmological constant-driven inflation
that requires no ad hoc inflaton, the entropy carried by the radiation which fills the
Universe today, and the primordial density perturbations necessary for structure for-
mation. If these perturbations are an imprint of the metric fluctuations in the NGFP
regime, the ‘critical phenomenon’ properties of the latter might be the origin of
the observed scale free spectrum of the former. It is indeed an exciting idea that
what we see when we look at the starry sky, during a clear summer night on the
Cycladic Islands, for instance, might actually be a snapshot of the geometry fluctua-
tions governed by the short-distance limit of QEG, and tremendously magnified by
the cosmic expansion.
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