
Chapter 5
Introduction to Causal Dynamical
Triangulations

Andrzej Görlich

Abstract The method of causal dynamical triangulations is a non-perturbative and
background-independent approach to quantum theory of gravity. In this review we
present recent results obtained within the four dimensional model of causal dynam-
ical triangulations. We describe the phase structure of the model and demonstrate
how a macroscopic four-dimensional de Sitter universe emerges dynamically from
the full gravitational path integral. We show how to reconstruct the effective action
describing scale factor fluctuations from Monte Carlo data.

5.1 Introduction

The model of causal dynamical triangulations (CDT) was proposed some years ago
by J. Ambjørn, J. Jurkiewicz and R. Loll with the aim of defining a lattice formu-
lation of quantum gravity from first principles [1–4]. The foundation of this model
is the formalism of path integrals applied to quantize a theory of gravitation. The
causal dynamical triangulations method is a natural generalization of discretization
procedure, introduced in the definition of quantum mechanical Feynman’s path in-
tegral, to higher dimensions. In the path integral formulation of quantum gravity, the
role of a particle trajectory is played by the geometry of four-dimensional spacetime.
CDT provide an explicit recipe for calculating the path integral and for specifying
the class of virtual geometries which should be superimposed in the path integral.
Let us emphasize that no ad hoc discreteness of space-time is assumed from the
outset, and the discretization appears only as a regularization, which is intended to
be removed in the continuum limit. The presented approach has the virtue that it
allows quantum gravity to be relatively easily represented and studied by computer
simulations.

Classical theory of gravitation, general relativity, in contrast with other known
interactions describes the dynamics of space-time geometry where the considered
degree of freedom is the geometry associated with the metric field gμν(x). The non-
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vanishing curvature of the underlying space-time geometry is interpreted as a gravi-
tational field. The starting point for construction of the quantum theory of gravitation
is the classical Einstein–Hilbert action ({−,+,+,+} signature and sign convention
as in [5, 6])

SEH[gμν] = 1

16πG

∫
M

d4x
√−detg(R − 2Λ), (5.1)

where G and Λ are respectively the Newton’s gravitational constant and the cosmo-
logical constant, M is the space-time manifold equipped with a pseudo-Riemannian
metric gμν with Minkowskian signature {−,+,+,+} and R denotes the associated
Ricci scalar curvature [7, 8]. We used the natural Planck units c = � = 1. For sim-
plicity, we assume that the topology of M is S1 × S3.

Path-integrals are one of the most important tools used for the quantization of
classical field theories. The path integral or partition function of quantum gravity is
defined as a formal integral over all space-time geometries, i.e., equivalence classes
of space-time metrics g with respect to the diffeomorphism group DiffM on M ,
also called histories,

Z =
∫

DM [g]eiSEH[g]. (5.2)

5.1.1 Causal Triangulations

To make sense of the formal gravitational path integral (5.2), the causal dynami-
cal triangulations model uses a standard method of regularization, and replaces the
path integral over geometries by a sum over a discrete set T of all causal trian-
gulations T . In other words, CDT serve as a regularization of smooth space-time
histories present in the formal path integral (5.2) with piecewise linear manifolds.

The building blocks of four dimensional CDT are four-simplices. A simplex is
a generalization of a triangle, which itself is a two-dimensional simplex, to higher
dimensions. Each four-dimensional simplex is composed of five vertices connected
to each other and is taken to be a subset of a four-dimensional Minkowski space-
time together with its inherent light-cone structure. Thus the metric inside every
simplex is flat. Figure 5.1 presents a visualization of four-simplices together with a
light-cone sketch. A four-dimensional simplicial manifold, with a given topology,
is obtained by properly gluing pairwise four-simplices along common tetrahedral
faces. A simplicial manifold takes over a metric from simplices of which it is built.
In general, such n-dimensional complex cannot be embedded in R

n, which signifies
a non-vanishing curvature. The curvature is singular and localized on the triangles.

The underlying assumption of CDT is the causality condition. It has a signifi-
cant impact on desirable properties of the theory. As a consequence of the original
Lorentzian signature of space-time, in a gravitational path integral one should sum
over causal geometries only. We will consider only globally hyperbolic pseudo-
Riemannian manifolds which allow introducing a global proper-time foliation. The
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Fig. 5.1 A visualization of
fundamental building blocks
of four-dimensional causal
dynamical triangulations:
four-simplices. The simplices
join two successive slices t

and t + 1, and are divided
into two types: {4,1} and
{3,2}. The simplices are
equipped with the flat
Minkowski metric imposing
the light-cone structure

leaves of the foliation are spatial three-dimensional Cauchy surfaces Σ and are
called slices. Because topology changes of the spatial slices are often associated
with causality violation, we forbid the topology of the leaves to alter in time. Fig-
ure 5.2 illustrates a triangulation with imposed a foliation violating the causality
condition. For simplicity, we choose the spatial slices to have a fixed topology
Σ = S3, that of a three-sphere, and establish periodic boundary conditions in the
time direction. Therefore, we assume space-time topology to be M = S1 × S3,
where S1 corresponds to time and S3 to space. The spatial slices are enumerated by
a discrete time coordinate i. At each integer proper-time step i, a spatial slice itself
forms a triangulation of S3, made up of equilateral tetrahedra with a side length
as > 0, with an induced metric which has a Euclidean signature. Each vertex lies in
one spatial slice and is assigned the corresponding discrete time coordinate i.

Two successive slices, given respectively by triangulations T (3)(t) and
T (3)(t + 1), are connected with four-simplices. The simplices are joined in such
a way that they form a four-dimensional piecewise linear geometry. Such an object
takes the form of a four-dimensional slab with the topology of [0,1] × S3 and has
T (3)(t) and T (3)(t + 1) as the three-dimensional boundaries. A set of slabs glued
one after another builds the whole simplicial complex. Such connection of two
consecutive slices, by interpolating the space between them with properly glued
four-simplices, does not spoil the causal structure. The triangulation of the later
slice wholly lies in the future of the earlier one.

Because each simplex connects two consecutive spatial slices and contains ver-
tices lying in both of them, there are four kinds of simplices, namely {1,4}, {2,3},
{3,2} and {4,1}. The first number denotes the number of vertices lying in slice
T (3)(t), and the second lying in slice T (3)(t + 1). Figure 5.1 illustrates four-
simplices of type {4,1} and {3,2} connecting slices t and t + 1.

Similarly, due to the causal structure, we distinguish two types of edges. The
space-like links connecting two vertices in the same slice have length as > 0. The
time-like links connecting two vertices in adjacent slices have length at . In causal
dynamical triangulations, the lengths as and at are constant but not necessarily
equal. Let us denote the asymmetry factor between the two lengths by α:

a2
t = α a2

s . (5.3)
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Fig. 5.2 A visualization of a
two-dimensional
triangulation with a
light-cone structure and a
branching point marked. In
causal dynamical
triangulations spatial slices
are not allowed to split, which
prevents singularities of the
time arrow

In the Lorentzian case α < 0. The volumes and angles of simplices are functions of
as and at and differ for the two types {4,1} and {3,2}. Because no coordinates are
introduced, the CDT model is manifestly diffeomorphism-invariant. Such a formu-
lation involves only geometric invariants such as lengths and angles.

5.1.2 The Regge Action and the Wick Rotation

The Einstein–Hilbert action (5.1) has a natural realization on piecewise linear man-
ifolds called the Regge action. Let N41 mean the number of simplices of type {1,4}
or {4,1}, and N32 the number of simplices of type {2,3} or {3,2}. They sum up
to the total number of simplices, N4 = N41 + N32. The total physical four-volume∫
T d4x

√|detg| is given by a linear combination of N41 and N32. Similarly, the
global curvature

∫
T d4x

√|detg|R can be expressed using the angle deficits which
are localized at triangles, and is a linear function of total volumes N32, N41 and
the total number of vertices N0. The Regge action, i.e., action (5.1) calculated for a
causal triangulation T , can be written in a very simple form,

S[T ] ≡ −K0N0[T ] + K4N4[T ] + Δ
(
N41[T ] − 6N0[T ]), (5.4)

where K0, K4 and Δ are bare coupling constants, and are nonlinear functions of
parameters appearing in the continuous Einstein–Hilbert action, namely G and Λ,
and the asymmetry factor α = a2

t /a
2
s which is a regularization parameter [3]. K4

plays a similar role as a cosmological constant, it controls the total volume. K0 may
be viewed as the inverse of the gravitational coupling constant G. Δ is related to the
asymmetry factor α between lengths time-like and spatial-like links. It is zero when
at = as and does not occur in the Euclidean dynamical triangulations [9]. Δ will
play an important role since a change in Δ will be associated with geometric phase
transitions which might determine the ultraviolet limit of the lattice theory.

Causal dynamical triangulations provide a regularization of histories appearing
in the formal gravitational path integral (5.2). The integral is now discretized by
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replacing it with a sum over the set of all causal triangulations T weighted with the
Regge action (5.4), providing a meaningful definition of the partition function,

Z ≡
∑
T ∈T

1

CT
eiS[T ]. (5.5)

CT is the order of the automorphism group of a triangulation T , and might be
viewed as the remnant of the division by the volume of the diffeomorphism group
DiffM .

The advantage of the CDT approach is that for a fixed size of the triangulations,
understood as the number of simplices N4, the number of combinations is finite,
which in general makes it possible to use numerical calculations. Nonetheless, this
number grows exponentially with the size. Because of the oscillatory behavior of
the integrand (5.5), we are still led into problems in defining the path integral, and
in addition the mentioned numerical techniques are not useful. We may evade this
problem by applying a trick called Wick rotation, which, roughly, is based on the
analytical continuation of the time coordinate to imaginary values, and results in the
change of the space-time signature from Lorentzian to Euclidean and a substitution
of the complex amplitudes by real probabilities,

eiSLor → e−SEuc
. (5.6)

Due to the global proper-time foliation, the Wick rotation is well defined. It can be
simply implemented by analytical continuation of the lengths of all time-like edges,
at → iat ,

a2
t = α a2

s , α > 0.

This procedure is possible, because we have a distinction between time-like and
space-like links. The Regge action rotated to the Euclidean sector, after the redefini-
tion applied in (5.6), SEuc = −iSLor, has exactly the same simple form as its original
Lorentzian version (5.4). An exact derivation of the Wick-rotated Regge action can
be found in [3].

As a consequence of the regularization procedure and Wick rotation to the Eu-
clidean signature, the partition function (5.2) is finally written as a real sum over the
set of all causal triangulations T,

Z =
∑
T ∈T

1

CT
e−S[T ]. (5.7)

We should keep in mind that the Euclidean Regge action S[T ] and the partition
function Z depend on bare coupling constants K0, K4 and Δ. With the partition
function (5.7) there is associated a probability distribution on the space of triangu-
lations P [T ] which defines the quantum expectation value

〈O〉 ≡
∑
T ∈T

O[T ]P [T ], P [T ] ≡ 1

Z

1

CT
e−S[T ], (5.8)

where O[T ] denotes some observable defined on T. The above partition function
defines a statistical mechanical problem which is free of oscillations and may be
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Fig. 5.3 A sketch of the
phase diagram of the
four-dimensional causal
dynamical triangulations. The
phases correspond to regions
on the bare coupling constant
K0–Δ plane. We observe
three phases: a crumpled
phase A, a branched polymer
phase B and the most
interesting genuinely
four-dimensional de Sitter
phase C

tackled in an approximate manner using Monte Carlo methods. Equation (5.7) is
the starting point for computer simulations which further allow us to measure ex-
pectation values defined by (5.8) and to obtain physically relevant information.

5.2 Phase Diagram

The standard version of the causal dynamical triangulations model uses the Regge
action (5.4), which depends on a set of three bare coupling constants K0, Δ and K4.
For simulation-related technical reasons it is preferable to keep the total four-volume
fluctuating around some finite prescribed value during Monte Carlo simulations. The
number of configurations grows exponentially with the size, but the contribution to
the partition function coming from extremely large configurations is suppressed by
the term involving K4. A value of K4 below the critical value would make the parti-
tion function ill defined. Thus K4, acting as Lagrange multiplier, needs to be tuned
to its critical value, and effectively does not appear as a coupling constant. The two
remaining bare coupling constants K0 and Δ can be freely adjusted and depending
on their values we observe three qualitatively different behaviors of a typical con-
figuration. The phase structure was first qualitatively described in a comprehensive
publication [2] where three phases were labeled A, B and C. The first real phase di-
agram obtained due to large-scale computer simulations was described in [15]. The
phase diagram, based on Monte Carlo measurements, is presented in Fig. 5.3. The
solid lines denote observed phase-transition points for configurations of size 8,0000
simplices, while the dotted lines represent an interpolation.

In the remainder of this section we describe the properties of the phases and
discuss the phase transitions.

• Phase A. For large values of K0 (cf. Fig. 5.3) the universe disintegrates into un-
correlated irregular sequences of maxima and minima with time extent of few
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Fig. 5.4 Snapshot of a spatial volume N(i) for a typical configuration of phase A, B and C.
A typical configuration in phase C is bell-shaped with well-defined spatial and time extent

steps. As an example of a configuration in this phase, the spatial volume dis-
tribution N(i), defined as the number of tetrahedra in a spatial slice labeled by a
discrete time index i, is shown in Fig. 5.4. When looking along the time direction,
we observe a number of small universes. The geometry appears to be oscillating in
the time direction. They can merge and split with the passing of the Monte Carlo
time. These universes are connected by necks not much larger than the smallest
possible spatial slice. In the computer algorithm we do not allow these necks to
vanish such that the configuration becomes disconnected. This phase is related
to so-called branched polymers phase present in Euclidean dynamical triangula-
tions (EDT) [9]. No spatially- nor time-extended universe, like the universe we
see in reality, is observed and phase A is regarded as non-physical.

• Phase B. For small values of Δ nearly all simplices are localized on one spatial
slice. Although we have a large three-volume collected at one spatial hypersurface
of a topology of a three-sphere S3, the corresponding slice has almost no spatial
extent. The Hausdorff dimension is very high, if not infinite. In the case of infinite
Hausdorff dimension the universe has neither time extent nor spatial extent, there
is no geometry in a traditional sense. Phase B is also regarded as non-physical.

• Phase C. For larger values of Δ we observe the third, physically most interest-
ing, phase. In this range of bare coupling constants, a typical configuration is
bell-shaped and behaves like a well-defined four-dimensional manifold (cf. Fig.
5.4). The measurements of the Hausdorff dimensions confirm that at large scales
the universe is genuinely four-dimensional [2]. Most results presented in this pa-
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per were obtained for a point that is firmly placed in the phase C (cf. Fig. 5.3).
A typical configuration has a finite time extent and spatial extent which scales
as expected for a four-dimensional object. The averaged distribution of a spatial
volume coincides with the distribution of Euclidean de Sitter space S4 and thus
this phase is also called the de Sitter phase.

The transitions between phases have been studied in detail in [20]. So far, there
is a strong numerical evidence that the transition between phases A and C is of first
order, while between phases B and C there is a second-order transition.

For the A–C phase transition, the distribution of values taken by the order pa-
rameter N0, conjugate to K0, reveals a two-peak structure, which corresponds to
different types of geometry. The peaks become sharper with the increase of the sys-
tem size, N4 → ∞. This confirms that configurations behave as if they were either
in phase C or phase A and suggests that the A–C transition is of first order.

A similar two-peak distribution of the order parameter conjugate to the coupling
constant Δ, namely N41 − 6N0, is present for the B–C phase transition. But with
the increasing total volume N4 peaks become blurred and start to merge. Also, the
measured value of the shift exponent ν̃ = 2.51(3) [20] is far from ν̃ = 1 expected for
a first-order transition. The above arguments strongly suggest that the B–C phase
transition is of second order.

5.3 The Macroscopic de Sitter Universe

We start the quantitative description of the Universe emerging in causal dynamical
triangulations by passing over local degrees of freedom of the quantum geometry,
and reducing the considerations to volumes of spatial slices. The causality condition
is ensured by imposing on configurations a global proper-time foliation and keeping
the topology of leaves fixed. Due to the discrete structure, successive spatial slices,
i.e., hypersurfaces of constant time, are labeled by a discrete time parameter i. The
index i ranges from 1 to T . By construction, they are glued in the way to form a
simplicial manifold with the topology of a three-sphere S3.

5.3.1 The Spatial Volume

The spatial three-volume N(i) is defined as the number of tetrahedra constituting a
spatial slice i = 1, . . . , T . Because each spatial tetrahedron is a base of one simplex
of the type {1,4} and one of the type {4,1}, the three-volumes N(i) sums up to
the total volume Ntot ≡ ∑T

i=1 N(i) = N41/2. The spatial volume N(i) is an exam-
ple of the simplest observable providing information about the large-scale shape of
the universe appearing in CDT path integral. An individual space-time history con-
tributing to the partition function is not an observable, precisely in the same way as a
trajectory of a particle in the quantum-mechanical path integral is not an observable
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either. However, it is perfectly legitimate to talk about the expectation value 〈N(i)〉
as well as about the fluctuations around the mean.

The lattice regularization present in CDT allows to adapt powerful Monte Carlo
techniques to calculate expectation values, defined by Eq. (5.8). Though in two di-
mensions we have analytical tools, in four dimensions it is currently the only way to
extract non-perturbative information about fluctuating geometries. Numerical sim-
ulations consist in generating a sequence of space-time geometries, more precisely
causal triangulations T , according to the probability distribution (5.8). Configura-
tions are then used to calculate the average. A significant feature of the CDT ap-
proach, as shown in [11], is a dynamically emerging and physically realistic back-
ground geometry, described by the average 〈N(i)〉.

Let us focus on one particular point of the phase diagram firmly placed in
phase C, and given by the following values of bare coupling constants: K0 = 2.2,
Δ = 0.6, volume N41 = 160,000 and time-period T = 80. In this phase, the plot of
N(i) for an individual configuration is bell-shaped with a well-outlined blob. Fig-
ure 5.5 shows the volume profile N(i) of a typical configuration. For the range of
discrete volumes N4 under study, the Universe does not extend over the entire axis,
but rather is localized in a region much shorter than T = 80 time slices.

The Einstein–Hilbert action (5.1), and consequently the Regge action (5.4), is
invariant under time translations t → t + δ. Because configurations are periodic in
time, a straightforward average 〈N(i)〉 is meaningless, as it would give a uniform
distribution. From Fig. 5.5 it is clear that in phase C the time translation symmetry
is spontaneously broken. To perform a meaningful average of the spatial volume
〈N(i)〉, we thus fix the position of the center of mass of the volume distribution
to be at t = 0. We apply this procedure to each configuration contributing to the
expectation value.

The expectation value 〈N(i)〉 is measured using Monte Carlo techniques,

〈
N(i)

〉 ≈ 1

K

K∑
k=1

N(k)(i), (5.9)

where the brackets 〈. . .〉 mean averaging over the whole ensemble of causal tri-
angulations weighted with the Regge action (5.4) and the expectation value is ap-
proximated be a sum over K statistically independent Monte Carlo configurations.
Figure 5.5 shows the average spatial volume 〈N(i)〉 (black thick line) measured at
a point in the phase C, K0 = 2.2 and Δ = 0.6. The heights of the boxes visible
in the plot indicate the amplitude of spatial volume fluctuations for each i given
by σi = √〈N(i)2〉 − 〈N(i)〉2. Results obtained by simulations show that the aver-
age geometry, in the blob and tail region, is extremely well approximated by the
formula

N̄(i) ≡ 〈
N(i)

〉 = H · cos3(i/W), (5.10)

where W is proportional to the time extent of the Universe and H denotes its max-
imal spatial volume. The fit H · cos3(i/W) is also plotted in Fig. 5.5 with a dashed
gray line, but it is indistinguishable from the empirical curve. The background ge-
ometry given by the solution (5.10) is consistent with the geometry of a four-sphere
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Fig. 5.5 Spatial volume N(i)

of a randomly chosen typical
configuration (gray line) and
background geometry 〈N(i)〉
(black line): Monte Carlo
measurements for fixed
N41 = 160,000, K0 = 2.2,
Δ = 0.6. The best fit (5.10)
yields indistinguishable
curves at given plot
resolution. The bars height
indicate the average size of
quantum fluctuations

S4 and corresponds to Euclidean de Sitter space, the maximally symmetric solution
of classical Einstein equations with a positive cosmological constant [12, 13].

This is one of the most important results obtained within the CDT frame-
work [11]. While no background was put by hand, the measurements present a di-
rect evidence that the background geometry of a four-sphere emerges dynamically.
Moreover, neglecting the stalk, which by construction has a non-zero volume, we
spontaneously end up with the S4 topology, although we started with M = S1 ×S3.

5.3.2 The Mini-superspace Model

The shape of the three-volume N̄(i) = H ·cos3(i/W) emerges as a classical solution
of the mini-superspace model. This model appears for example in quantum cosmo-
logical theories developed by Hartle and Hawking in their semi-classical evaluation
of the wave function of the Universe [17]. This model assumes a spatially homoge-
neous and isotropic metric on a Euclidean space-time with S1 × S3 topology,

ds2 = dτ 2 + a2(τ )dΩ2
3 , (5.11)

where a(τ) is the scale factor depending on the proper time τ and dΩ2
3 denotes the

line element on S3. This means that all degrees of freedom except the three-volume
(scale factor) are frozen. In CDT model we have the opposite situation, no degrees
of freedom are excluded, instead we integrate out all of them but the scale factor.
Nevertheless, in both cases results demonstrate high similarity. The physical volume
of a spatial slice for a given time τ equals v(τ) = ∫

dΩ3
√

detg|S3 = 2π2a(τ)3. The
Euclidean version of the Einstein–Hilbert action (5.1) [5, 6] calculated for the metric
(5.11) up to boundary terms is given by

S[a] = 2π2

16πG

∫
dτ

(−6aȧ2 − 6a + 2Λa3), (5.12)

and is called the mini-superspace action.
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Although it is formally easy to perform the Wick rotation of the Einstein–Hilbert
action (5.1), the corresponding Euclidean action suffers from the unboundedness
of the conformal mode. This is caused by the wrong sign of the kinetic term, as
is reflected in the standard mini-superspace action (5.12). Consequently, the Regge
action (5.4) is also unbounded from below. Some triangulations may have very large
negative values of the Regge action, but the action is always bounded from below
due to the UV lattice regularization. The problem of infinities is revived when tak-
ing the continuum limit. Fortunately, in the non-perturbative approaches, like CDT,
the partition function emerges as a subtle interplay of the entropic nature of trian-
gulations and the bare action. The entropy factor may suppress the unbounded con-
tributions coming from the conformal factor. There is a strong evidence [21] that,
after integrating out all degrees of freedom except the scale factor, which means tak-
ing into account the non-perturbative measure, one obtains a positive kinetic term
in (5.12). This is exactly what happens in four-dimensional causal dynamical trian-
gulations: the effective action for N(i) is equal to the mini-superspace action (5.12),
but with an opposite sign, and is thus bounded from below. Together with a con-
vergence of the coupling constants to their critical values, if such a point exists, the
entropic and action terms should be balanced, and one hopes to obtain the proper
continuum behavior.

Turning back to the spatial volume variable, the mini-superspace action (5.12)
can be rewritten as

S[v] = − 1

24πG

∫
dτ

(
v̇2

v
+ βv1/3 − 3Λv

)
, β = 9

(
2π2)2/3

. (5.13)

The overall sign of the action does not affect the classical solution of equations of
motion. The classical trajectory, solving the Euler–Lagrange equation, is given by

v̄(τ ) = 2π2R3 cos3
(

τ

R

)
, R =

(
Λ

3

)−1/2

. (5.14)

The physical volume v̄(τ ) describes the maximally symmetric space for a positive
cosmological constant, namely the Euclidean de Sitter Universe or a geometry of a
four-sphere S4 with radius R. This result is in agreement with the relation (5.10) for
N̄(i) found in numerical simulations. The de Sitter space emerges dynamically as a
background geometry in the CDT model.

5.3.3 The Four-Dimensional Space-Time

The scaling properties and the measured spectral dimension of the ensemble of tri-
angulations show that the Universe coming out in the CDT model is genuinely four-
dimensional. Up to now, we have presented results for only one value of the total
volume Ntot. Keeping the coupling constants K0 and Δ fixed, which naïvely means
that the geometry of simplices is not changed, we measure the expectation value
N̄(i) for different total volumes Ntot.
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Fig. 5.6 Average scaled
spatial volume n̄(t) for a
variety of total volumes Ntot
calculated for the scaling
dimension dH = 4. Measured
in Monte Carlo simulations
for K0 = 2.2 and Δ = 0.6.
We omit the error bars not to
obscure the picture. The
dashed line plots the fit
n̄(t) = 3

4B
cos3(t/B), where

B = 0.69

If the scaling dimension is dH time intervals should scale as N
1/dH
tot , which im-

plies that the volume-independent time coordinate t scales as a function of a discrete
time i as

t ≡ Δt · i, Δt ≡ N
− 1

dH
tot . (5.15)

To compare the spatial volume distributions N(i) for geometries with different
volumes Ntot, we introduce the scaled three-volume n(t),

n(t) ≡ N
−1+ 1

dH
tot N(i), n̄(t) = 〈

n(t)
〉
. (5.16)

For very large Ntot, the time interval Δt is close to zero and in the continuum limit
the sum over discrete time steps can be replaced by an integral,∫

dt . . . ↔
∑

i

Δt . . . . (5.17)

The normalization condition reads
∫

n(t)dt = N−1
tot

∑
i N(i) = 1.

Now it is possible to directly compare n(t) for various total volumes and check
for which value of the scaling dimension dH the overlap is the best [2]. The esti-
mated value of dH = 3.98±0.10 minimizes the error function defined as a spread of
scaled spatial volumes n(t). The error of determination of dH was estimated using
the Jackknife method [18]. The expected value dH = 4 is very close to the mea-
sured result, and is well within the margin of error. Figure 5.6 shows the scaled
three-volumes n(t) using dH = 4.0 for several values of total volumes Ntot.

Since n̄(t) is normalized and is obtained by the scaling of N̄(i) which is given
by Eq. (5.10), it is expressed by the formula

n̄(t) = 3

4B
cos3

(
t

B

)
, (5.18)

where B depends only on the coupling constants K0 and Δ, but not on Ntot. For
K0 = 2.2 and Δ = 0.6, the measured values is B ≈ 0.69. The curve (5.18) with
adjusted B is drawn with a dashed line in Fig. 5.6, and the fit is remarkably good.
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From Eqs. (5.16) and (5.18) and the scaling dimension dH = 4 we obtain the
following expression for the three-volume N̄(i):

N̄(i) = 3

4

N
3/4
tot

B
cos3

(
i

BN
1/4
tot

)
. (5.19)

As expected for a four-dimensional space-time, the time extent Tuniv of the blob,
measured in units of time steps, scales as Tuniv ∼ πB · N1/4

tot . The expression (5.19)
specifies expression (5.10) and is only valid in the extended part of the Universe
where the spatial three-volumes are larger than the minimal cut-off size.

Let us relate the discrete spatial volume N(i) with the physical volume v(τ)

of hypersurfaces of constant time. The classical solution v̄(τ ) is given by for-
mula (5.14), while the average discrete volume N̄(i) is given by formula (5.19).
Up to some factors they are expressed by the same function. Henceforth, we make
the key assumption that the average configuration described by N̄(i) in fact has a
geometry of a four-sphere S4 given by v̄(τ ). The physical total four-volume of a
four-sphere with a radius R equals

V4 =
∫ π

2 R

− π
2 R

v̄(τ )dτ = 8π2

3
R4 = C4a

4Ntot, (5.20)

where

C4 = 2

(
Vol{4,1} +N32

N41
Vol{3,2}

)
,

which is interpreted as the average four-volume shared by one spatial tetrahedron.
Here, a = as is the cut-off length, i.e., the lattice constant. The continuum time t

defined by (5.15) and the discrete time i are proportional to the proper time τ (cf.
(5.11)),

τ = √
gtt t = √

gttΔti, Δt = N
−1/4
tot . (5.21)

A slab between slices i and i + 1 has a proper-time extent Δτ and a four-volume

v(τ)Δτ = v(τ)
√

gttΔt = C4a
4N(i) = N

3/4
tot C4a

4n(t). (5.22)

The above equation is consistent with formula (5.20) which determines the total
four-volume of the emerging de Sitter space with a radius R. The proper-time extent
of the de Sitter Universe is πR, while in terms of the time t it is equal to πB , hence

√
gtt = τ

t
= R

B
, R =

(
3C4Ntot

8π2

)1/4

a. (5.23)

Assuming such scaling relations between physical and discrete volume (cf. (5.22)),
and between proper and discrete times (cf. (5.21)), we ensure that the empirically
derived formulas (5.18) or (5.19) describe a Euclidean de Sitter Universe for all Ntot.

Another quantity revealing information about the geometry is related to the dif-
fusion phenomena, namely the so-called spectral dimension dS . On a d-dimensional
Riemannian manifold with a metric gμν(x), let ρ(x,x0;σ) be the probability den-
sity of finding a diffusing particle at position x after some fictitious diffusion time σ ,
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Fig. 5.7 The spectral
dimension dS of the Universe
as a function of diffusion
time σ , measured for
K0 = 2.2, Δ = 0.6 and
N4 ≈ 368k. The thick curve
plots the average measured
spectral dimension, while the
highlighted area represents
the error bars. The best fit
dS(σ ) = 4.02 − 120

58+σ
is

drawn with a dashed line

with an initial position at σ = 0 fixed at x0. The evolution of ρ(x,x0;σ) is controlled
by the diffusion equation

∂σ ρ(x,x0;σ) = �gρ(x,x0;σ), ρ(x,x0;σ = 0) = 1√
detg(x)

δ(x − x0),

(5.24)

where �g is the Laplace operator corresponding to gμν(x). The return probabil-
ity describes the probability of finding a particle at the initial point after diffusion
time σ . The average return probability P(σ), supplying a global information about
the geometries, is given by

P(σ) =
〈

1

V4

∫
ddx

√
detg(x)ρ(x,x;σ)

〉
,

where V4 = ∫
ddx

√
detg(x) is the total space-time volume and the average is also

performed over the ensemble of geometries. For infinite flat manifolds the spectral
dimension dS can be extracted from the return probability due to its definition,

dS ≡ −2
d logP(σ)

d logσ
. (5.25)

For the Euclidean flat manifold Rd , the spectral and Hausdorff dimensions are equal
to the topological dimension, dS = dH = d . For the four-sphere S4, the spectral
dimension dS = 4 for short diffusion times, while for very large times, because of
the finite volume, the zero mode of the Laplacian will dominate and, with the above
definition, dS will tend to zero.

Definition (5.25) is particularly convenient because it is easy to perform nu-
merical simulations which measure the return probability. In the CDT framework,
the space-time geometry is regularized by piecewise flat manifolds built of four-
simplices. Let us recall that after the Wick rotation space-times appearing in the
model are Riemannian manifolds equipped with the positive-definite metric tensor.
The diffusion process can be carried out by implementing the discretized version of
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the diffusion equation (5.24), ρ(i, i0;σ + 1) − ρ(i, i0;σ) = Δ
∑

j↔i (ρ(j, i0;σ) −
ρ(i, i0;σ)), where Δ denotes the time step and the sum is evaluated over all sim-
plices j adjacent to i. Here variables i0, i and j denote labels of simplices. The dif-
fusion process is running on the dual lattice, i.e. the probability flows from a simplex
to its neighbors. Since each simplex has exactly five neighbors, it is convenient to
set Δ = 1/5 and the diffusion equation reads ρ(i, i0;σ + 1) = 1

5

∑
j↔i ρ(j, i0;σ).

To evaluate ρ(i, i0;σ), we pick an initial four-simplex i0 lying in the central
slice iCV and impose the initial condition ρ(i, i0;σ = 0) = δi i0 . We iterate the
diffusion equation and calculate the probability density ρ(i, i0;σ) for consecutive
diffusion steps σ [10]. Finally, we repeat the above operations for a number of
random starting points i0 (K = 100) and calculate the average return probability
P(σ) = 1

K

∑K
i0=1 ρ(i0, i0;σ). In numerical simulations the return probability P(σ)

is averaged over a number of triangulations (∼1,000) and the spectral dimension dS

is calculated from the definition (5.25). Figure 5.7 shows the spectral dimension dS

as a function of the diffusion time steps σ , in the range 40 < σ < 500. For small val-
ues of σ (<30) lattice artifacts are very strong and the spectral dimension becomes
irregular. Because of the finite volumes of configurations, for very large σ (
500),
the spectral dimension dS falls down to zero. In the presented range, the measured
spectral dimension dS is very well expressed by the formula

dS(σ ) = a − b

c + σ
= 4.02 − 120

58 + σ
, (5.26)

where variables a, b and c were obtained from the best fit. As observed, the spectral
dimension depends on a diffusion time, and thus it is scale dependent. Small σ ,
means that the diffusion process probes only the nearest vicinity of the initial point.
Extrapolation of results gives the short-distance limit of the spectral dimension

dS(σ → 0) = 1.95 ± 0.10.

In the long-distance limit the spectral dimension tends to

dS(σ → ∞) = 4.02 ± 0.05.

The short-range value of the spectral dimension dS = 2, much smaller than the scal-
ing dimension dH , suggests a fractal nature of geometries appearing in the path
integral at short distances. At long distances dS = 4, and configurations resemble
a smooth manifold. Amazingly, such non-trivial scale dependence of the spectral
dimension of the quantum space-time, the same infrared (dS = 4) and ultraviolet
(dS = 2) behavior, is also present in Hořava–Lifshitz gravity [16] and in the renor-
malization group approach [19] (see the article by Reuter and Saueressig in this
volume).

5.4 Quantum Fluctuations

As we have seen, the dynamically emerging background geometry agrees strikingly
well with the solution of the mini-superspace model. By investigating properties of



108 A. Görlich

the semi-classical limit of the lattice approach, we will check if quantum fluctua-
tions around the classical trajectory (5.14) are also correctly described by the ef-
fective mini-superspace action (5.13). Nevertheless, it should be clearly stated that
these considerations are truly non-perturbative, and take into account both a very
important influence of the entropy factor, which does not depend on bare coupling
constants, as well as the bare action (5.4). Based on numerical data obtained by
computer simulations, we construct, within the semi-classical approximation, the
effective action describing discrete spatial volume N(i) and compare it with the
mini-superspace action (5.13). The effective action comes into existence because of
a subtle interplay between the entropy and the bare action (5.4).

Let us denote the deviation of the three-volume N(i) from the expectation value
N̄(i) by

ηi = N(i) − N̄(i).

Imitating the path integral approach to quantum mechanics, N(i) describes the po-
sition at discrete time i of a non-physical particle trajectory, giving a contribution
to the partition function. Likewise, ηi is a fluctuation from the classical trajectory
N̄(i). In the semi-classical approximation, the spatial volume fluctuations ηi are de-
scribed by a quadratic form P, obtained by the quadratic expansion of the effective
action around the classical trajectory:

S[N = N̄ + η] ≈ S[N̄ ] + 1

2

∑
i,j

ηi Pij ηj + O
(
η3), (5.27)

where the sum is performed over time slices i, j = 1, . . . , T .
The P matrix carries information about quantum fluctuations and may be ex-

tracted from numerical data. In analogy to 〈N(i)〉 (cf. (5.9)), we measure the co-
variance matrix C of volume fluctuations using Monte Carlo techniques,

Cij ≡ 〈ηiηj 〉 ≈ 1

K

K∑
k=1

(
N(k)(i) − N̄(i)

)(
N(k)(j) − N̄(j)

)
. (5.28)

If the quadratic approximation describes properly quantum fluctuations around the
average N̄ , the propagator C and the matrix P are directly related, Cij = P−1

ij .
For numerical convenience the measurements were performed only for triangu-

lations with a fixed total volume Ntot ≡ ∑T
i=1 N(i). This constraint imposes on

the covariance matrix C the existence of a zero mode, with corresponding constant
eigenvector e0

j = 1/
√

T , preventing the straightforward inversion of C. In order to

invert the matrix C we project it on the subspace orthogonal to the zero mode e0

and then perform the inversion. Details of this procedure are described in [12].
After measuring in Monte Carlo simulations the covariance matrix C, we get the

empirical Sturm–Liouville operator P which can be compared with the predictions
of the mini-superspace model. The empirical P matrix has an expected tridiagonal
structure with a high accuracy. The tridiagonal form suggests that the effective ac-
tion describing fluctuations of N(i) is quasi-local in time. The action consists of
the kinetic part, which couples volumes of successive slices providing the non-zero
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subdiagonal elements of P, and the potential part, which contributes only to the
diagonal.

In [11] it was shown that the effective action corresponds to a discretization of
the mini-superspace action (5.13) up to an overall sign. Below we derive a discrete
version of the mini-superspace action with reversed sign,

S[v] =
∫

dτ

(
α

v̇2

v
+ βv1/3 − 2Λv

)
, (5.29)

which later will be compared to the empirical action. We have incorporated the
factor 1/(24πG) into constants α,β and Λ. The discretization procedure is not
unique, but up to the order considered here, all discretizations are equivalent. We
substitute the physical volume v(τ) with the discrete volume N(i) which may be
treated as a continuous variable inside the blob. The stalk region is governed by
very strong lattice artifacts, and therefore is not reliably treated in the semi-classical
approximation. The standard discretization of the time derivative is v̇ → N(i + 1)

− N(i), and the kinetic part is written as

α
v̇2

v
→ g1

(N(i + 1) − N(i))2

N(i + 1) + N(i)
.

Because both matrices C and P are symmetric, the discretized terms also must be
symmetric in i and i + 1. The potential part is discretized straightforwardly,

βv1/3 − 2Λv → g2N(i)1/3 − g3N(i).

Therefore, a discretized, dimensionless version of action (5.29) is given by

S[N ] =
∑

i

g1
(N(i + 1) − N(i))2

N(i + 1) + N(i)
+ g2N(i)1/3 − g3N(i). (5.30)

Further, we show that the discrete effective action (5.30) describes not only the
average N̄(i) (5.10), what follows from the classical trajectory of Eq. (5.29), but
indeed also the measured fluctuations η(i).

5.4.1 The Effective Action

The P operator can be decomposed into the kinetic part Pkin and the potential
part Ppot,

P = Pkin + Ppot.

Only the kinetic part Pkin contributes to the sub-diagonal elements of the tridiagonal
matrix P. Because the square of the time derivative couples the preceding and fol-
lowing time steps, and because the covariance matrix is symmetric, Pkin should be



110 A. Görlich

Fig. 5.8 Kinetic term: The
directly measured expectation
values N̄(i) (black line),
compared to g1

ki
(thick line)

extracted from the measured
covariance matrix C for
K0 = 2.2, Δ = 0.6 and
various total volumes Ntot
ranging from 20,000 to
160,000 simplices. The
theoretical prediction
g1
ki

= 1
2 (N̄(i) + N̄(i + 1)) is

realized with a very high
accuracy. The value of g1 is
constant for all volumes Ntot

a symmetric tridiagonal matrix, such that the sum of elements in a row or a column
is always zero. It can be decomposed into parts linearly dependent on ki :

Pkin =
T∑

i=1

kiX(i), X(i)
jk = δij δik + δ(i+1)j δ(i+1)k − δ(i+1)j δik − δij δ(i+1)k,

(5.31)

where X(i) is a matrix corresponding to the discretization of the second time deriva-
tive ∂2

t at a time t = i.
Neglecting details of the zero mode removal, the potential part is diagonal,

Ppot = Diag
({ui}

) =
T∑

i=1

uiY(i), Y(i)
jk = δij δik.

The decomposition of the empirical matrix P into a kinetic and potential part is
done using the least square method. We find such values of {ki} and {ui} for which
the matrix Pkin + Ppot is as close as possible to the empirical matrix P, i.e., we
minimize the residual sum of squares

RSS
[{ki}, {ui}

] ≡ Tr
[
P − (

Pkin + Ppot)]2
. (5.32)

We will omit details of the parameter fitting. Equation (5.32) is quadratic in {ki}
and {ui}, and the fitting boils down to calculating traces of products of matrices
X(i) and Y(j). We will show that the fitted values of the kinetic term {ki}, obtained
by minimizing residues (5.32), are indeed in agreement with the kinetic part of the
discrete mini-superspace action (5.30). The quadratic expansion (5.27) of the action
(5.30) gives

ki = −Pii+1 = − ∂2S[N ]
∂N(i)∂N(i + 1)

∣∣∣∣
N=N̄

= g1
8N̄(i)N̄(i + 1)

(N̄(i) + N̄(i + 1))3
. (5.33)
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Fig. 5.9 The extracted
potential term ui as a function
of average volume N̄(i). The
fit c2v̄

−5/3
t presents the

behavior expected for the
mini-superspace model. The
visible points correspond to
the blob region

In the zeroth order approximation, N̄(i) ≈ N̄(i + 1), we expect the following be-
havior of the kinetic term:

g1

ki

= (N̄(i) + N̄(i + 1))3

8N̄(i) N̄(i + 1)
≈ 1

2

(
N̄(i) + N̄(i + 1)

)
. (5.34)

Figure 5.8 presents the plot of g1/ki for the empirical values of ki and various total
volumes Ntot. The theoretical fit (5.34) agrees extremely well with the measured
quantities. Additionally, the effective coupling constant g1 does not depend on Ntot
in the margin of error. For K0 = 2.2, Δ = 0.6, we measured g1 = 0.038±0.002. The
kinetic part of the quantum fluctuations is indeed described by the mini-superspace
action (5.29).

Further we will directly show that values of the potential term {ui} extracted
from the empirical inverse propagator P also agree with the mini-superspace model.
Within this framework, we expect that

ui = U ′′(N̄(i)
) = −2

9
g2N̄(i)−5/3. (5.35)

Figure 5.9 shows the measured values of coefficients ui extracted from the empirical
matrix Ppot. Because of large statistical errors, it is not an easy task to determine ui .
The physically interesting region of large volumes corresponds to relatively small
values of ui as they are expected to fall as N̄(i)−5/3. Due to the existence of the
zero mode, the blob region is also affected by the huge contribution from the stalk.
Moreover, in analogy with the situation in the ordinary path-integral approach to
quantum mechanics, when the time step approaches zero in the continuum limit
Ntot → ∞, the potential term is sub-dominant with respect to the kinetic term for
individual space-time histories in the path integral.

Nevertheless, due to a sufficiently long Monte Carlo sample, the obtained results
allowed us to confirm that indeed Eq. (5.35) is in agreement with measurements.
Figure 5.9 presents the measured coefficients −ui as a function of the average three-
volume N̄(i). The error bars shown on the plot were estimated using the Jackknife
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Fig. 5.10 The measured
effective coupling constant g1
as a function of bare coupling
constant Δ for K0 = 2.2. The
B–C transition point is
located at about Δcrit = 0.05.
When approaching phase B

from phase C, the coupling
constant g1 diminishes and
the fluctuations grow, as
expected when reaching
phase transition point

method. Such a form allows us to directly compare the potential coefficients with
theoretical predictions −ui ∝ N̄(i)−5/3. The selected range of N̄(i) corresponds to
the bulk. The best fit of the form f (x) = a x−c to the empirical values ui as a func-
tion of N̄(i) gives c = −1.658±0.096. The measured exponent coefficient c is very
close to the theoretical value c = −5/3. The fit f (x) = a x−5/3, corresponding to
the potential part of action (5.30), is presented in Fig. 5.9 with a thin line. The agree-
ment with the data is good; the potential part of the effective action is indeed given
by U(x) = g2x

1/3 − g3x. Apart from obtaining the correct power ui ∝ N̄−5/3(i),
the coefficient in front of this term is also independent of Ntot.

5.4.2 Flow of the Gravitational Constant

The quantum fluctuations of the three-volume are very accurately described by the
discrete, dimensionless effective action

S
[
N(i)

] =
∑

i

g1
(N(i + 1) − N(i))2

2N(i)
+ g2N

1/3(i), (5.36)

where we have omitted the cosmological constant term, since during the measure-
ments the total volume Ntot was fixed. This action comes out as a discretization of
the mini-superspace action (5.13) with the opposite sign, which solves the problem
of unboundedness. Let us note that it is justified to use the semi-classical approxi-
mation as the distribution of spatial volumes N(i) in the bulk is given by Gaussian
fluctuations around the mean.

Using Eqs. (5.16), (5.17) and (5.21)–(5.23), we can rewrite the above discrete
action in terms of the physical volume v(τ),

S
[
v(τ)

] = g1gtt

2
√

NtotC4a4

∫
dτ

[
v̇2

v
+ g̃2v

1/3
]
. (5.37)
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It is natural to identify the coupling constant G multiplying the effective action
(5.13) with Newton’s gravitational constant G. Using Eq. (5.23), we get the fol-
lowing relations between the gravitational constant G and the effective constant g1
[11, 12]:

G = 2
√

NtotC4a
4

24πg1gtt

= a2

g1

√
C4B

2

3
√

6
. (5.38)

In order to keep fixed the physical constant G, and thus the amplitude of fluctua-
tions

√〈(δv(τ ))2〉 ∝ g
−1/2
1 N

1/4
tot a2, when taking the continuum limit a → 0 one has

to tune the effective coupling constant g1 ∝ a2. This means that in terms of the lat-
tice volume N(i) fluctuations should diverge, and this happens when we approach
a second- or higher-order transition line. Therefore it is important to determine the
order of the transition. Figure 5.10 shows the measured effective coupling constant
g1 for various values of Δ. As mentioned before, the effective coupling constant g1
does not depend on Ntot when the bare coupling constants are fixed, and the same is
true for the classical trajectory v̄(t). Therefore, one also has to properly tune the bare
coupling constants so that the effective coupling constant satisfies g1a

−2 = const
while taking the limits Ntot → ∞ and a → 0. Indeed, when we approach the B–C

transition line g1 tends to zero.
Using relation (5.38) we can express the cut-off length a in terms of the Planck

length, and thus estimate the size of the Universe generated in computer simula-
tions. Let us recall that in natural units G = �2

Pl. For the bare coupling constants
K0 = 2.2, Δ = 0.6 we measured the quantities: Kcrit

4 = 0.922, ξ = N32/N41 = 1.30,
α = 0.5858, C4 = 0.0317, g1 = 0.038, which results in a ≈ 1.9�Pl and the linear
size πR of the universe built from 160,000 simplices is about 20�Pl. The quantum
de Sitter universes studied here are therefore quite small, and quantum fluctuations
around their average shape are large (cf. (5.5)). Surprisingly, the semi-classical mini-
superspace formulation gives an adequate description of the measured data, at least
for the volume profile.

5.5 The Geometry of Spatial Slices

Let us look deeper into the geometry of spatial slices. A spatial slice is a leaf of the
imposed global proper-time foliation and is labeled by a discrete time index i. Each
such hypersurface is a three-dimensional triangulation built of equilateral spatial
tetrahedra, more precisely, a piecewise linear manifold of topology S3. However,
it does not mean that the geometry of slices is close to the geometry of a three-
dimensional sphere.

5.5.1 The Hausdorff Dimension

Let us denote the number of tetrahedra building slice i by the discrete three-volume
n3 ≡ N(i). A basic observable defined on a slice is the number of tetrahedra n(r, i0)
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Fig. 5.11 Scaled values of
the radius n

−1/dH

3 r and shell

area n
−1+1/dH

3 n(r) for
dH = 3. Data points for
various values of slice
volume n3 overlap. The gray
strip plots the scaled radial
volume averaged over all data
points. Measurements were
performed at K0 = 2.2 and
Δ = 0.6

at a three-dimensional distance r from some initial tetrahedron i0. At distance r = 0
only the initial tetrahedron is counted and n(0, i0) = 1. For such definition, n(r, i0)

corresponds to an area of the shell of radius r . Summing up the area over all shells
gives the discrete volume of a slice n3. Let n(r) denotes the average of n(r, i0) over
all n3 initial tetrahedra i0,

n(r) = 1

n3

n3∑
i0=1

n(r, i0), n3 =
rmax∑
r=0

n(r, i0).

We will investigate scaling properties of n(r) with respect to the slice volume n3.
The Hausdorff dimension of spatial slices may be measured by a comparison of the
scaled with volume n3 values of the radial volume n(r). First, for a large number
of Monte Carlo configurations, slices with the same volume n3 (more or less few
tetrahedra) are collected into groups. The average radial volume n(r) within a group
n3 is denoted as 〈n(r)〉n3 .

For the Hausdorff dimension dH we expect that the radius r and the average
volume 〈n(r)〉n3 scaled and normalized in the following way

(
r,

〈
n(r)

〉
n3

) → (
n

−1/dH

3 r, n
−1+1/dH

3

〈
n(r)

〉
n3

)
(5.39)

overlap for all n3. We define the error of the overlap of the scaled points and
find such value of dH which minimizes the dispersion. The best fit is obtained for
dH = 2.94 ± 0.05. Figure 5.11 presents the measured values of 〈n(r)〉n3 scaled ac-
cording to (5.39) with dH = 3 and for various values of n3 between 1,000 and 4,000
tetrahedra.

The measured value of dH is independent of the coupling constants K0 and Δ,
as long as we stay well inside the phase C. This results is true if we consider the
ensemble average of the slice geometry, but it does not mean that individual spatial
slices resemble a smooth three-dimensional geometry.



5 Introduction to Causal Dynamical Triangulations 115

Fig. 5.12 Spectral dimension
dS of spatial slices as a
function of diffusion time σ .
For short diffusion times, a
split for even (empty) and odd
(filled) values of σ is
observed arising from the
discrete structure. The
measured values of dS

converge to the thin line
corresponding to dS = 1.5

5.5.2 Spectral Dimension

We measure the spectral dimension of spatial slices in the same way as for the whole
simplicial manifolds. The probability of finding a diffusing particle in tetrahedron
i after a diffusion time σ and starting at tetrahedron i0 is given by the probability
density ρ(i, i0;σ). The discrete diffusion equation, describing the evolution of the
probability density, can be written as ρ(i, i0;σ + 1) = 1

4

∑
j↔i ρ(j, i0;σ), where

the sum is over all tetrahedra j adjacent to i. For a starting tetrahedron i0, chosen
at random, we set the initial condition ρ(i, i0;σ = 0) = δii0 . By iterating the diffu-
sion equation, we calculate the return probability P(σ, i0) ≡ ρ(i0, i0;σ) for succes-
sive discrete diffusion steps σ . Further, we compute the average return probability
P(σ) ≡ 〈〈P(σ, i0)〉i0〉MC by averaging over initial points and configurations. For
each configuration we consider only the central slice. The spectral dimension dS is
obtained from the return probability using the definition (5.25). For a three-sphere
geometry, the spectral dimension dS is equal 3 for short diffusion times, and dS will
tend to zero for longer times. Figure 5.12 shows the values of the spectral dimen-
sion dS as a function of the diffusion time σ , determined by numerical simulation
using the definition (5.25) for a randomly chosen typical configurations in phase C.
Due to the discrete lattice structure, for small values of σ a split for even and odd
diffusion times is observed. Because of the finite volumes of the spatial slices, for
very large σ , dS falls down to zero. For the intermediate region, there is a plateau of
the spectral dimension at dS ≈ 1.5.

The significant difference between the measured Hausdorff dimension of spatial
slices, dH ≈ 3, and the measured spectral dimension, dS ≈ 1.5, is an indication of
the fractal nature of the slices. Indeed, this was proved in a direct way [14]. The
three-dimensional spatial slices reveal a large number of minimal necks. A minimal
neck consists of four triangles forming a tetrahedron, but where this tetrahedron
does not belong to the triangulation. They provide the three-dimensional triangula-
tion with a tree-structure (for S3 geometry). At many random places, a branch bi-
furcates into two or more branches. Most probably when the size of the slice grows
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to infinity, we would observe the fractal structure of branched polymers. A similar
structure is present in three-dimensional Euclidean dynamical triangulations, where
so-called baby Universes separated by minimal necks are observed [22].

5.6 Conclusions

The model of causal dynamical triangulations is a non-perturbative and background-
independent approach to quantum gravity. The foundations of this model are very
simple. It is a mundane lattice field theory with a piecewise linear manifold serving
as a regularization of general relativity. The introduction of Wick rotation allows
us to use very powerful Monte Carlo techniques and calculate quantum expectation
values of observables.

Based on the Monte Carlo measurements we predict the existence of three phases
within the CDT model. In the physically most interesting phase, so called de Sitter
phase, the time-translational symmetry is spontaneously broken and the scale factor
as a function of time behaves as a bell-shaped distribution. Recent results give a
strong evidence that the Universe which emerges dynamically in causal dynamical
triangulations is genuinely four-dimensional. Its geometry corresponds to de Siter
space, the maximally symmetric solution to the classical Einstein equations in the
presence of a positive cosmological constant. At large scales both the Hausdorff
and spectral dimensions are equal to 4. CDT presents a picture of the Universe with
superimposed finite quantum fluctuations around the classical trajectory, which are
well described semi-classically. The measurements of the covariance matrix allowed
us to reconstruct the discrete effective action describing quantum fluctuations of the
three-volume N(i). This action was identified with the discretization of the mini-
superspace action. In the CDT model, however, no reduction of degrees of freedom
is introduced. Due to the identification, the effective coupling constant can be related
to the physical gravitational constant, giving a recipe of how to obtain a meaningful
continuum limit and expressing the lattice constant in terms of physical units.

The spatial slices of the imposed foliation reveal, however, a fractal structure
similar to branched polymers. Although the measurements show that the Hausdorff
dimension of the slices is equal to 3, the measured spectral dimension is only half of
this value. Indeed, the fractality was confirmed by a direct analysis of tree structures
defined in terms of so-called minimal necks.
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