
Z. Du (Ed.): Proceedings of the 2012 International Conference of MCSA, AISC 191, pp. 1–6.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

A Study on the Distributed Real-time System Middleware
Based on the DDS

Ren Haoli and Gao Yongming

Department of Information Equipment, Academy of Equipment, Beijing 101416, China

Abstract. This paper study on the distributed real-time system middleware.
Presents a comprehensive overview of the Data Distribution Service standard
(DDS) and describes its benefits for developing Distributed System applications.
The standard is particularly designed for real-time systems that need to control
timing and memory resources, have low latency and high robustness
requirements. As such, DDS has the potential to provide the communication
infrastructure for next generation precision assembly systems where a large
number of independently controlled components need to communicate. To
illustrate the benefits of DDS for precision assembly an example application was
presented.

Keywords: Real-time System, DDS, middleware, Distributed system.

1 Introduction

In many distributed embedded real-time (DRE) applications have stringent deadlines
by which the data must be delivered in order to process it on time to make critical
decisions. Further, the data that is distributed must be valid when it arrives at its target.
That is, if the data is too old when it is delivered, it could produce invalid results when
used in computations [1]. This paper Presents a comprehensive overview of the Data
Distribution Service standard (DDS) and describes its benefits for developing
Distributed System applications. DDS is a platform-independent standard released by
the Object Management Group (OMG) for data-centric publish-subscribe systems [2].

1.1 Distributed Applications

There are many distributed applications exist today, one requirement common to all
distributed applications is the need to pass data between different threads of execution.
These threads may be on the same processor, or spread across different nodes. You may
also have a combination: multiple nodes, with multiple threads or processes on each
one. Each of these nodes or processes is connected through a transport mechanism such
as Ethernet, shared memory, VME bus backplane, or Infiniband. Basic protocols such
as TCP/IP or higher level protocols such as HTTP can be used to provide standardized
communication paths between each of the nodes. Shared memory (SM) access is
typically used for processes running in the same node. It can also be used wherever
common memory access is available. Figure 1 shows an example of a simple

2 H. Ren and Y. Gao

distributed application. In this example, the embedded single board computer (SBC) is
hardwired to a temperature sensor and connected to an Ethernet transport. It is
responsible for gathering temperature sensor data at a specific rate. A workstation, also
connected to the network, is responsible for displaying that data on a screen for an
operator to view. One mechanism that can be used to facilitate this data communication
path is the Data Distribution Service for Real Time Systems, known as DDS [3].

Fig. 1. Simple Distributed Application

1.2 Real-Time Publish-Subscribe Middleware DDS

Distributed systems connect devices, since devices are faster than people, these
networks require performance well beyond the capabilities of traditional middleware.
The Object Management Group’s Data Distribution Service for Real Time Systems
(DDS) Standard [4]. The OMG Data-Distribution Service (DDS) is a new specification
for publish-subscribe data distribution systems. The purpose of the specification is to
provide a common application-level interface that clearly defines the data-distribution
service. DDS is sophisticated technology; It goes well beyond simple publishing and
subscribing functions. It allows very high performance (tens of thousands of
messages/sec) and fine control over many quality of service parameters so designers
can carefully modulate information flow on the network [5].

DDS provides common application-level interfaces which allow processes to
exchange information in form of topics. The latter are data flows which have an
identifier and a data type. A typical architecture of a DDS application is illustrated in
figure 2.

Applications that want to write data declare their intent to become “publishers” for a
topic. Similarly, applications that want to read data from a topic declare their intent to
become “subscribers”. Underneath, the DDS middleware is responsible to distribute
the information between a variable number of publishers and subscribers.

 A Study on the Distributed Real-time System Middleware Based on the DDS 3

Fig. 2. Decoupling of publishers and subscribers with the DDS middleware

2 The Data Centric Publish/Subscribe Model

The DDS publish-subscribe model connects anonymous information producers
(publishers) with information consumers (subscribers). The overall distributed
application (the PS system) is composed of processes, each running in a separate
address space possibly on different computers [6]. We will call each of these processes
a “participant”. A participant may simultaneously publish and subscribe to
information.Figure3 illustrates the overall DCPS model, which consists of the
following entities: DomainParticipant, DataWriter, DataReader, Publisher, Subscriber,
and Topic. All these classes extend DCPSEntity, representing their ability to be
configured through QoS policies, be notified of events via listener objects, and support
conditions that can be waited upon by the application. Each specialization of the
DCPSEntity base class has a corresponding specialized listener and a set of QoSPolicy
values that are suitable to it. Publisher represents the objects responsible for data
issuance. A Publisher may publish data of different data types. A DataWriter is a typed
facade to a publisher; participants use DataWriter(s) to communicate the value of and
changes to data of a given type. Once new data values have been communicated to the
publisher, it is the Publisher's responsibility to determine when it is appropriate to issue
the corresponding message and to actually perform the issuance.

A Subscriber receives published data and makes it available to the participant. A
Subscriber may receive and dispatch data of different specified types. To access the
received data, the participant must use a typed DataReader attached to the subscriber.
The association of a DataWriter object with DataReader objects is done by means of the
Topic. A Topic associates a name, a data type, and QoS related to the data itself. The
type definition provides enough information for the service to manipulate the data. The
definition can be done by means of a textual language or by means of an operational
“plugin” that provides the necessary methods.

4 H. Ren and Y. Gao

Fig. 3. UML diagram of the DCPS model

3 Example

This section presents the development of a software-based prototype for a modular
active fixturing system. The prototype was developed using the commercially available
DDS implementation OMG DDS 1.2 from Real-Time Innovations [7].

3.1 Design the System Framework

The system consists of a variable number of physical fixture modules, a fixture control
software, a variable number of Human Machine Interfaces (HMI). For the sake of
simplicity, each module consists of one linear actuator and three sensors. The former
acts as the locating and clamping pin against the workpiece, while the sensors feedback
reaction force, position and temperature of the contact point. The fixture modules are
implemented as smart devices with local control routines for their embedded
sensor/actuator devices. It is further assumed that each fixture module is configured
with a unique numerical identifier and with meta information about its sensors and
actuators. This way, the module is able to convert the signals coming from the sensors
(e.g. a voltage) into meaningful information (e.g. reaction force in Newton) which is
then published via DDS. The fixture control implements the global control routines of
the fixture. It processes the data coming from the various modules and controls the
movement of the actuators by publishing their desired status.

 A Study on the Distributed Real-time System Middleware Based on the DDS 5

Fig. 4. Overview on the example application

3.2 Design the Data Structures

The first step of the data-centric application development is the definition of the data
structures to be exchanged between the processes. In this context, there is a trade-off
between efficient data transfer and flexible interpretation of data. On one hand, it shall
be allowed to add fixture modules with varying capabilities, i.e. different hardware
characteristics and representations of data. This makes it necessary that each module
informs other systems about its capabilities which define how data has to be
interpreted. On the other hand, it is not efficient to publish this meta-information with
every sensor update. For this reason, it is proposed to separate actual state data from
meta-information to interpret it. Therefore, two data structures are created for each
capability of a fixture module. The first data structure is used for the transmission of the
sensor readings or desired states for actuator devices during the manufacturing process.
It is a very simple data structure that only consists of a field for the numeric module-ID
and the data itself. Below an example is provided for the data structure for force sensor
readings. Each attribute is defined with a data type, followed by a name.

struct Force {

long module_id;
double value;

};

Since this structure does not contain any information on how to use the data, an
additional data structure is defined for each capability. It contains attributes describing
the characteristics of the relevant capability like measuring range, resolution etc. In this
prototype the meta-information only contains the measuring range for capabilities that
result from the existence of sensor devices. This is further defined by attributes for the
minimum and maximum measuring value, as well as the measuring unit. For the latter
unique numerical constants have been defined. The following listing provides the data
definitions for the capability that results from the existence of a force sensor. Similar
structures have been defined for the other capabilities.

6 H. Ren and Y. Gao

struct MeasuringRange {
double min;
double max;
long unit;

};

struct SenseReactionForceCapability{
MeasuringRange measuringRange;
};

struct FixtureModuleCapabilityDef{
long id;
SenseTipPositionCapability
senseTipPositionCapability;
AdjustTipPositionCapability
AdjustClampingForceCapability
adjustClampingForceCapability;
SenseTemperatureCapability
senseTemperatureCapability;

};

Based on these data type definitions, the source code for all the subscribers,
publishers, data readers and data writers are automatically generated in the specified
programming language. These classes have to be used by the application programs that
implement the fixture modules, the fixture control and any other participating system
like monitoring applications.

4 Conclusions

In this paper, a new standard for data-centric publish-subscribe communication has
been presented and put in context to the development of next-generation precision
assembly platforms. The standard is called Data Distribution Service and is particularly
targeting real-time applications which need to manage resource consumption and
timeliness of the data transfer. DDS allows platform-independent many-to-many
communication and alleviates a number of common problems which are of particular
interest for the development of distributed assembly systems.

References

1. Cross, J.K., Schmidt, D.C.: Applying the Quality Connector Pattern to Optimize Distributed
Real-time and Embedded Middleware. In: Rabhi, F., Gorlatch, S. (eds.) Patterns and
Skeletons for Distributed and Parallel Computing. Springer Verlag (2002)

2. Object Management Group, Data Distribution Service for Real-Time Systems, Version 1.2
(June 2007), http://www.omg.org

3. Joshi, J.: A comparison and mapping of Data Distribution Service (DDS) and Java Messaging
Service (JMS), Real-Time Innovations, Inc., Whitepaper (2006), http://www.rti.com

4. Real-Time CORBA Specification Version 1.2, Object Management Group (January 2005),
http://www.omg.org/cgi-bin/apps/doc?formal/05-01-04.pdf

5. Joshi, J.: Data-Oriented Architecture, Real-Time Innovations, Inc., Whitepaper (2010),
http://www.rti.com

6. Richards, M.: The Role of the Enterprise Service Bus (October 2010),
http://www.infoq.com/presentations/Enterprise-Service-Bus

7. Data Distribution Service for Real-Time Systems Specification Version 1.1, Object
Management Group (December 2005),
http://www.omg.org/docs/formal/05-12-04.pdf

	A Study on the Distributed Real-time System Middleware Based on the DDS
	Introduction
	Distributed Applications
	Real-Time Publish-Subscribe Middleware DDS

	The Data Centric Publish/Subscribe Model
	Example
	Design the System Framework
	Design the Data Structures

	Conclusions
	References

