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Abstract. Differential Power Analysis (DPA) attacks find a statisti-
cal correlation between the power consumption of a cryptographic de-
vice and intermediate values within the computation. Randomization via
(Boolean) masking of intermediate values breaks this statistical depen-
dence and thus prevents such attacks (at least up to a certain order). Es-
pecially for software implementations, (first-order) masking schemes are
popular in academia and industry, albeit typically not as the sole coun-
termeasure. The current practice then is to manually ‘insert’ Boolean
masks: essentially software developers need to manipulate low-level as-
sembly language to implement masking. In this paper we make a first
step to automate this process, at least for first-order Boolean masking,
allowing the development of compilers capable of protecting programs
against DPA.
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1 Introduction

Cryptographic software provides a challenging target for software engineering.
High-level languages improve programmer productivity by abstracting unneces-
sary details of the program execution and freeing the programmer to concentrate
on the correctness of their implementation. Unfortunately, the details that are
generally abstracted away are the behavioural properties of programs, in order
to focus on their functional results. In cryptography, the way in which a value
is computed may lead to observational differences that an attacker could use to
compromise security. If values within the computation that must remain secret,
such as cryptographic keys, influence the observational behaviour then informa-
tion will leak and may render the system insecure. If a compiler is allowed to
handle the low-level decisions for a given implementation then it must also take
how information may leak into account.

State-of-the-art compilers can rival the efforts of a human in producing high
performance code. For example, effective methods of register allocation, instruc-
tion selection and scheduling often depend on knowledge of the operational de-
tails of memory latency and pipeline behaviour. Extensions to the execution
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models targeted by C compilers such as GCC and VisualStudio allow counter-
measures to be automatically applied against buffer overflow attacks [1]. A more
detailed execution model (e.g. stack frame layout) allows the compiler back-end
to perform program transformation that is aware of security constraints.

The increasingly complex threat of physical (e.g. fault and side-channel) at-
tacks on cryptographic implementations offers an interesting extension of the
above security case. Automatic resolution of said threat is now an emerging
research theme and, alongside more theoretical results in this area (e.g. [2]),
a range of concrete compilation systems exist. For example, Molnar et al. [3]
construct a binary translation (i.e., compilation) tool that resolves control-flow
based leakage using the Program Counter Model (PCM) formalism; Lux and
Starostin [4] describe a tool which detects and eliminates timing side-channels
in Java programs (demonstrating the tool by highlighting an attack against the
FlexiProver implementation of IDEA). Likewise, suitable EDA tool-chains [5]
can, given some HDL model, automatically implement countermeasures against
power-analysis attacks: a back-end which processes some logical netlist can re-
place standard cells with a secure logic style equivalent (e.g. WDDL [6]) before
producing a physical netlist.

Set within this general context, we focus on a specific challenge: given a source
program, the goal is to automatically apply Boolean masking. We therefore intro-
duce a simple type system and make use of static analysis to determine whether
statements (and associated variables) leak in a source program, with the aim
to automatically transform an insecure program into one that is secure against
(first-order) DPA. Our approach currently supports Boolean masking and hence
can be used to secure any program (e.g. AES, DES, Present, etc.) that can be
masked in this way.

2 Background

At execution time, a value in a program is a particular bit-pattern. The mean-
ing ascribed to that pattern is dependent upon the context around the code.
This basic property of computers makes them flexible, as one pattern of bits can
represent many different values depending on the program being executed. How-
ever, it can also be a source of error as the meaning of the value is not denoted
in the executable code, but rather in the source-level description. Type systems
are a method of reducing potential errors by denoting the kind (or type) of value
that a particular variable represents. Compilers can then use this type informa-
tion statically (when compiling the program) to rule out erroneous behaviour.
In this way types can be seen as a static guarantee of safety. Although type
theory is a long establish field within the languages and compilers community,
the authors believe there is no previous work on using types to describe masking
countermeasures.

Conventionally lattices are used within static analysis of programs to produce
conservative results. A lattice is a partially ordered set of values in which every
pair of values has a well-defined supremum and infimum. The analysis is guaran-
teed to be sound (if inexact) as a conservative approximation may use a bound to
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over-approximate unknown values during analysis. Information flow analysis an-
notates program values as high, or low, security and prevents data-flow between
high-security and low-security values. Non-interference was introduced [7] as a
property that can be proven from the program semantics by allowing the erasure
of a high-security region without producing any observable difference in the low-
security region (under the assumption that erasing a secret value does not leak).

Our work shares some similarities to information flow; secret values are anno-
tated by the programmer and their secrecy is treated as a value in a lattice al-
lowing the compiler to propagate secrecy information through the program. The
main difference is the role of the adversary in the system. In information flow the
adversary is considered to be on the “edge” of the computation, while execution of
code within the high-security region is not observable. Power analysis can be used
to make observations at every point in a program; all secure information must be
hidden by masking, but the adversary has the chance to observe all masked opera-
tions. While previous work is analytical, a decision is made if a program is secure,
this work takes a (potentially) broken program and converts it to a functionally
equivalent program that meets the behavioural definition in the model.

Compilers typically operate on an Intermediate Representation (IR) of a pro-
gram. Input text is parsed into an Abstract Syntax Tree (AST) that represents
the structure of program. The AST is then converted to an IR that more closely
resembles the execution of instructions on the target machine. During this pro-
cess temporary variables are introduced to store the intermediate results in com-
puting expressions. A 3-address form represents each instruction in the program
as two input operands, an opcode and an output operand, e.g. r ← a xor b.
When the output operand is unique for each instruction this form is called Static
Single Assignment (SSA). Multiple write operations to the same variable are re-
named to separate instances to ensure this property so that a sequence of the form
x← a xor b;x← x xor y becomes the sequence x1 ← a xor b;x2 ← x1 xor y.

The uniqueness of each target operand implies that loop-free programs form a
directed acyclic graph with instructions and variables as vertices, and denoting
usage by edges between those vertices. This graph is conventionally termed a
dataflow representation of the program. In such a graph each vertex v has a set
of ancestors defined as every vertex where a path exists that reaches v.

3 DPA Attacks and Mask-Based Countermeasures

In conducting a DPA attack, an attacker will try to recover information about
a secret (typically a cryptographic key) by using information about the power
consumption of a cryptographic device while it is manipulating the secret in
cryptographic operations. To perform such a DPA attack, an attacker selects a
so-called intermediate value: e.g. in the specific example that we use to illustrate
our work later in this article, the attacker might select the input or output of
the AES SubBytes operation when applied to the first byte of the AES state.

This intermediate value only depends on a small part of the secret key (in our
example only eight bits), which allows an attacker to predict this intermediate
value (using knowledge of the input data) for all possible values of that small
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part of the key. Next an attacker uses a leakage model for the device under attack
to map these predicted intermediate values to hypothetical power consumption
values: assuming the leakage model is reasonably correct, only the set of hypo-
thetical power consumption values that are related to the correct key guess will
match those power consumption values that an attacker can observe from the
device itself. Several statistical tools can be used to ‘match’ hypothetical and
real data, e.g. Pearson’s correlation coefficient, distance-of-means test, etc.

3.1 Masking to Prevent DPA

As can be inferred from the previous description, DPA attacks can only be success-
ful if an attacker can define an intermediate value (based on a suitably small part
of the secret key) that is somehow related to the instantaneous power consumption
of the device. Thus, DPA attacks can be prevented by making it impossible for an
attacker to predict the intermediate values used on the device. A popular method
to this purpose is referred to as ‘masking’. Using AES to illustrate the central prin-
ciple: instead of holding the AES state and AES key ‘as they are’ one applies a
random value to them. For example, the first byte a of the AES state is then repre-
sented as a pair (am,m), withm being the so-calledmaskwhich is a number chosen
at random from a suitable uniform distribution, such that a = am ⊕m. Equiva-
lently, the first byte of the first AES round key is then represented as pair (kn, n),
with k = kn ⊕ n, and n is chosen at random from a suitable uniform distribution.

In the encryption process itself these masked values need to be processed cor-
rectly and securely. For example, if twomasked bytes are exclusively-ored, we need
to ensure that the result is masked again: am⊕ bn may be carried out but am⊕ bm
would result in a ⊕ b being vulnerable to DPA and must not happen. Similarly,
table look-ups must be executed such that both inputs and outputs are masked.

Previous work on masking schemes has explored various options for the effi-
cient computation of various cryptographic functions, e.g. the efficient and se-
cure masking of the AES SubBytes operation has been extensively discussed.
We make use of the work in [8] and [9] by extracting some necessary properties
of secure masking schemes. A useful observation made in these previous works
was that ‘secure against’ DPA attacks is synonymous to the concept of statis-
tical independence between variables, i.e. two variables am = a ⊕m and a are
statistically independent, if the distribution of am is independent of the choice
of a (for independently chosen uniformly distributed m).

This can be related to some elementary operations involving Boolean vari-
ables. Clearly, if a is arbitrary and m is chosen uniformly at random then
am = a ⊕ m is uniformly distributed (and hence its distribution is the same
irrespective of the choice of a). Furthermore, ama × bmb

, ama × mb, (ama)
2,

p × ama (p a constant), and
∑

ai ⊕m can also be shown to be independent of
the unmasked values a and b (see [9]). It follows directly that we can guarantee
the independence of the output of any operation involving two masked input
operands as long as the inputs are independently masked.

We note that we have the implicit assumption that only computation leaks, i.e.
masks do not contribute to the leakage of the device when only stored in memory.
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3.2 Masked Variables as Type Annotations

In order to allow static checking of secrecy we annotate each type with informa-
tion to record if it may be revealed publically, or if it should be hidden, and if
so which mask will be used. Rather than a variable a : int, this produces two
alternatives, namely a : public int, and a : secret�m� int. The programmer’s
choice indicates to the compiler which state must remain hidden and which set
of masks will be used to do so.

Hence, this additional type annotations allow a compiler to keep track of the
‘flow’ of masks and intermediate values, to check whether our basic masking rule
holds, and if necessary to ‘backtrack’ variables if there is a problem and add masks
to intermediate variables such that the basic masking rule applies. In other words,
if a programmer implements a description of an algorithm without any masking,
but declares variables related to key and/or state as secret, we can provide the rest
of the masking automatically and hence relieve the programmer of that burden.

3.3 Assumptions

We make the following assumptions about the attacker, the programmer,
and the device in the remainder of this article. The attacker has the ability
to execute the program repeatedly, and on each execution run an observation
(in form of the power consumption) is made on the values computed within the
program. The attacker also has access to the inputs and output data of the en-
cryption algorithm, only the masks and keys are hidden from the attacker. The
programmer must mark every value as either secret or public: a valid compi-
lation requires that all secret values have at least one mask. Both programmer
declared variables and temporary variables inserted during compilation must
meet this requirement.

public values are already known to the attacker. At no stage can a public value
(statistically) depend upon a secret value in a computation. This is partially
analogous to information flow (in the dependence constraint, also called non-
interference).

secret values must be masked with random values which are chosen randomly
from a suitable uniform distribution.

The device on which the cryptographic algorithm is implemented supplies
(pseudo)random numbers which are uniformly distributed. In each execution
run a new set of random numbers is selected and used as masks.

The goal of formalizing a model of countermeasures into a mechanically check-
able procedure is not to prove that programs are leakage-free. Although such a
goal is desirable with the current state of modelling the complexity of the power
consumption characteristics of modern cryptographic devices it is not tractable.
Rather we seek to automate the checking of necessary conditions that must be
fulfilled in order for a program to be leakage-free. Although the specific charac-
teristics of a particular device may still cause the program to leak information,
the automation of the process enables further study of the specific issues.
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4 Algorithm

The algorithm operates directly on an intermediate representation of the pro-
gram. Our system initially parses the source into an Abstract Syntax Tree (AST),
and then converts the AST into a list of instructions in 3-operand form. Dur-
ing conversion all constant bounded loops are statically unrolled and function
calls are inlined. The programs that interest an attacker are ciphers with simple
control-flow that are converted to straight-line code by this process. The result
is a list of instructions and a set of initial variable declarations. Some of the dec-
larations made by the programmer will have security annotations, none of the
temporary variables introduced when converting expressions will be annotated.

The algorithm is designed to imitate the process used by a human engineer.
The first step is inferring what is known about the security of each value in
the program. Our system represents the security annotation as part of the type
signature of each variable in the system; the secrecy of a value can be inferred
from the secrecy of the operands and the kind of instruction used to create it
analogously to the propagation of type information. We refer to this propagation
phase as type inference, described in Section 4.1. After a single type inference
pass two outcomes are possible:

1. Inference successfully checked the security of every value in the program and
detected no leakages.

2. Inference operated to a point where it detected an error; a type was inferred
that showed a leakage of information.

The first case is a successful conclusion and the algorithm terminates by output-
ing the program in the target assembly syntax. In the second case the algorithm
has a record of the particular control point at which leakage occurred. The sec-
ond phase of the algorithm attempts to prevent leakage using a set of program
transformations that model the techniques an engineer currently uses in the same
situation. The repair phase is described in Section 4.2.

4.1 Type Inference

Our prototype used in the experiments operates on a simplified version of the
CAO type system [10]. In principle there should be no barriers to implementing
the algorithm over the full set of CAO types. The algorithm maintains a security
annotation for each type in the system, expressed as algebraic data-types these
annotations are:

mask := Wildcard id | Named n

ann := public | secret [mask]

Every type is either public or secured by a list of masks. Each mask is either
named by the programmer or inserted by the compiler. Masks that have been
named are used to specify contracts with external pieces of software (i.e. the
caller of the routine). Wildcard masks are removed when possible by the com-
piler. The removal is via substitution of another mask and the process is guarded
by the condition that no value can be reduced from more than zero masks to zero
masks. In the example these annotations are attached to the following types:
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type := byte ann | vector n ann | map ann ann

Individual byte variables have their own annotation (and hence set of masks),
while vectors are assumed to be masked by the same set. Maps describe functions
in which the input and output can be masked separately and are used to denote
lookup tables such as S-boxes. We only demonstrate types related to byte-values
as our target architecture is only 8-bit, although this formulation could be ap-
plied to values of any fixed size. Our conversion from AST to 3-address form
unrolls loops statically, inlines function calls and converts to an SSA form. As
each variable has only a single definition, the program type inference operates
in a single forward pass in which the annotation of each variable is inferred from
the operation in the instruction and the previously computed annotations of the
source operands. The cases for type inference can thus be defined as rules that
produce the type on the left when the pattern on the right matches:

public ← public xor public

secretx ← secretx xor public

secrety ← public xor secrety
secret(x ∪ y) \ (x ∩ y)← secretx xor secrety

These rules can be verified from the definition that a value k with an annotation
of secretx = {x1, . . . , xn} is defined as k ⊕ x1 ⊕ . . . xn, and the same mask in
both source operands will cancel under two applications of xor. If any annotation
is computed to be secret ∅ then the inference stops and an error is generated at
that control point.

The rules for load and store operations are simpler as essentially we only need
to preserve the masking for secret types.

secretx← load secretx public

The second operand is the index (offset) in memory. After the loop unfolding
during conversion these values are constant and thus known to the attacker. The
case for a map is slightly more general (note that maps essentially implement
masked table look-up operations):

secrety← load (secretx→ y) public
This assumes that themaphas type secretx→ y. A consequence of theseminimal
definitions is that any case not included as a valid rule will cause the inference to
fail with an error. This is commonly referred to as a ‘closed world assumption’.

4.2 Repair Heuristics

Each of our repair rules is designed to function generally on any supplied input
program. However, the set of rules is certainly not complete and requires expan-
sion based on the study of other test cases. As a result of this incompleteness,
we will refer to these rules as heuristics, although we emphasize that each rule is
sound and guaranteed to preserve the security of the program being rewritten.
While the compiler ensures the secrecy of variables that are annotated, and in-
fers any necessary conditions on dependent variables (over-approximating where
necessary) it cannot diagnose problems in the specification of secrecy that it is
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given. For example, if the programmer incorrectly labels a secret part of the
state as public then the program will remain insecure upon compilation.

The repair phase operates after an inference pass and transforms a fixed set
of leakages into secure operations. The inference pass handles all forward prop-
agation of information through the acyclic data-flow graph. The type of each
temporary value is infered by applying the inference rules to the instruction
(and its operands) that produced it. As the program is in SSA form this prop-
agation pushes information through the use-def chains in the program; the SSA
form is defined implicitly in terms of the definition and uses of values. The re-
pair phase looks for inconsistent triples of operand types, given the inference
rule associated with the instruction:

Store violations occur when a secret value is stored in a public vector. The
algorithm forms the repair by introducing a new copy of the vector protected
by a fresh wildcard mask.

Map violations occur when a secret value is used as an index in a public map
(e.g. if a key derived value indexes an S-box).

Mask collisions occur during a store operation when the mask set for the
source operand does not equal the mask set for the target vector (maps are
read-only).

Revelations occur when an instruction with secret operands produces a public
value, e.g. the mask sets cancel out.

Both of the first two cases occur because the annotation of the structure in mem-
ory is less secure than the indexing value. In the case of the vector, a new copy
is synthesized in which the elements are covered under a fresh wildcard mask. In
the case where the map is a random shuffle applied to create a secure copy. The
shuffle is defined by an input and an output mask: Sm→n[i] = S[i xor m] xor n.
In both cases substitution is used to convert the program to the secure form: for
every following instruction both read and write accesses to the insecure structure
are rewritten to use the secure version. A shuffling operation is synthesized to
copy the public version into the secret version and inserted directly before the in-
struction causing the error. This operation is expensive as it requires remasking
of the entire table. Positioning this operation before the first use places it before
the beginning of the unrolled loop, affecting loop-hoisting of the expensive code.

Both of the second two cases occur because the propagation of the mask sets
according to the rules defined in the preceding section have yielded a value that is
insecure. In these cases the problem cannot be fixed where it is observed and the
algorithm must find a source for the error that can be fixed. For each operand in
the error-causing instruction the algorithm considers the set of ancestor values.
For each ancestor the algorithm examines the effects of flipping (i.e. adding
/ removing) a single mask at a time in the mask-set of the ancestor. These
single mask flips correspond to the effect of inserting one xor instruction on the
ancestor value and rewriting the subsequent parts of the chain to use the altered
value. In each case the algorithm checks if the problematic value is fixed, and
whether any other values are revealed. If no successful repairs are found, the
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algorithm then considers pairs of flips amongst the ancestor values, triples etc.
When the set of successful flips is non-empty the algorithm uses the number of
inserted flips as a simple metric to choose the least-cost solution.

4.3 Combined Process

The two phases described are executed in alternating order.

1. Infer the types of all values starting from programmer declarations.
2. If an error occurred then perform a repair action on the program.
3. Repeat until no errors are found or a repair cannot be performed.

5 Worked Example

Algorithm 1 is sufficiently complex to necessitate a demonstration using a suit-
able example. The AES block cipher has been extensively used in previous work
to demonstrate the working principle of (Boolean) masking schemes, and we
apply our algorithm to a simplified version of it: we reduce it to a single round
operating on a single column of the state.

The input language for our prototype compiler is derived from CAO. The rich
type system of CAO is especially suitable for analysis [10] and previous work
has shown that the collection types are of benefit in compiling block ciphers [11].
For the MixColumns stage our prototype requires a small number of data-types
and so the input language is a subset of CAO.

Sbox, xtime : Byte -> Byte

key : secret<a> vector of Byte(4)

def mixcols( in:public vector of Byte(4) ) : secret<X> vector of Byte(4)

{

out : secret<X> vector of Byte(4) )

temp : vector of Byte(4)

for i in range(4)

temp[i] := Sbox[ in[i]^key[i] ]

for i in range(4)

out[i] := xtime[temp[i]] + temp[(i+1)%4] + xtime[temp[(i+1)%4]] +

temp[(i+2)%4] + temp[(i+3)%4]

return out

}

The type Byte is used to represent concrete data, while the higher-order type
vector is used to indicate logical grouping. In contrast to C the use of an aggregate
type does not imply anything about the representation in memory, and is simply a
convenience for the programmer [11]. Each type is annotated by a security level. If
the variable is already known to the attacker and can be freely revealed the anno-
tation is public.When the variable must remain hidden a set of masks is specified
with the secret annotation. In the example each declared set is a singleton al-
though larger sets are inferred for temporary variables during compilation. The
programmer has specified the existence of two masks in the source-code:
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Algorithm 1. The Automatic Masking Algorithm

procedure repairMapViolation(pos,inst)
m = new Wildcard
nT = secret {m} → oT where origMap = iT → oT
substitute every use of original map with mapM from pos onwards
insert instructions at pos to compute mapM [i] := orig[i xor oT ] xor m

procedure repairStoreViolation
m = new Wildcard
rewrite vector type in declarations to secret {m}

procedure repairAncs
ancs := {anc | anc ∈ UDC(operand), operand ∈ inst}
worklist := 2ancs (sorted in increasing size and computed lazily)
for each ancset in worklist do

Choose one mask in each ancestor in ancset
Flip the mask in each maskset and rerun the inference
if no new values are made insecure and the problem value is made secure then

Append (mask, ancset) to results
end if

end for
Sort results by size of ancset
if length results > 0 then

Insert flip operations into program
else

Abort with an error
end if

procedure topLevel
while not finished do

bindings := declarations
for each inst, pos in prog do

extract r, a, b, operation from inst
aT , bT := lookup a, b in bindings
rT := infer from operation, aT , bT
if not r in bindings then

store r → rT in bindings
else if operation = store and rT ∈ vectors and aT < rT then

try repairStoreViolation
else if operation = load and rT ∈ maps and bT < in(rT ) then

try repairMapViolation
else if rT �= lookup r in bindings then

try rewriting wildcard masks with declared masks to unify masksets
if rewrite not possible then

Abort with an error
end if

end if
if rT < max aT , bT then

try repairAncs
end if

end for
end while
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1. The key is covered by a mask a, as this masking operation must have occurred
prior to the execution of the mixcols procedure this named mask forms part
of an interface with the calling code.

2. The return value is covered by a mask X, again this forms part of an interface
with the calling code.

Any variable without a security annotation is initially assumed to be public.
If this assumption causes an error during the inference stage then it will be
rewritten with a more secure annotation.

Both the Sbox and xtime functions are declared as public mappings from Byte

to Byte. This leaves some flexibility in their definition, previous work [11] shows
how declarative definitions can be provided and memorized into lookup-tables
by a compiler, or the program can supply a constant array of bytes to encode
the mapping.

The algorithm operates according to the process in Algorithm 1. We now
illustrate some of the steps involved in iterating the inference and repair pro-
cesses. Although the algorithm operates on the low-level 3-op form of the code
this description will proceed at a source-level for reasons of space and clarity
(including presenting the unrolled loops in a rolled form).

5.1 Map Violation Detected in Sbox

Type inference fills in intermediate types until it encounters the expression Sbox[
in[i]^key[i] ]. The type of in[i]^key[i] is inferred to be secret<a>, while
the declaration of Sbox is of type Byte -> Byte. The compiler can “repair” this
type error by synthesizing a new copy of Sbox, which we will call Sboxm. As this
expression includes a part with a secret tag the minimum type annotation for
Sboxm is given by secret<x> Byte -> secret<y> Byte for some secure x and
y such that x �= y. As the index expression is masked under a we can insert a
new mask to produce an annotation of secret<a> -> secret<b> for some fresh
mask b. This mask is called a wildcard as we may merge it with other masks
later to reduce the number of random values required.

The new table Sboxm must be generated at runtime from the original Sbox
table and the masks. The compiler inserts the following code:

Sboxm : secret<a> Byte -> secret<b> Byte

b : fresh Byte;

for i in range(256) :

Sboxm[i] := Sbox[i^a] ^ b

5.2 Store Violation Detected in temp

As the programmer did not specify a security annotation for temp it defaulted
to public. The output of the Sbox map is annotated by secret<b>. This causes
an error in the inference as a secret value cannot be stored in a public variable.
The compiler fixes this error by altering the declared type of temp to be secret<b>.
This step is valid as it is always sound to increase the security of a variable. The
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compiler now expands temporaries in the expression evaluation and converts the
access to use the masked table:

temp : secret<b> vector of Byte(4)

t : secret<a> Byte

t2 : secret<b> Byte

for i in range(4) :

t := in[i] ^ key[i]

t2 := Sboxm[t]

temp[i] := t2

5.3 Revelation Detected in Second Loop

The algorithm proceeds into the second loop where it tries the following inference
until it reaches an error:

t3 : secret<c> Byte // Compiler inserted

t4 : Byte // Compiler inserted

for i in range(4)

t3 := xtime[temp[i]]

t4 := t3 ^ temp[(i+1)%4]

The error arises because the type of t3 is declared to be the same type inferred for
the expression temp[(i+1)%4]. The inference rules for an xor operation cancel
out masks that appear on both sides producing the public annotation for t4.
As a variable predecessor in the user defined code (UDC) is annotated secret

this constitutes a revelation error. The compiler uses the process described in
Section 4.2 to decide upon a repair. As one predecessor temp is a vector it would
be more costly to flip the masks uniformly in each element, rather than simply
flip the masks on t3. As flipping the existing masks does not produce a solution
the compiler inserts a new wildcard mask b.

t3,t5 : secret<c,b> Byte

t4,t6 : secret<b> Byte

out : secret<c,b> Vector of Bytes(4)

for i in range(4)

t3 := xtime[temp[i]] ^ b // Inserted flip operation

t4 := t3 ^ temp[(i+1)%4]

t5 := t4 ^ xtime[temp[(i+1)%4]]

t6 := t5 ^ temp[(i+2)%4]

out[i] := t6 ^ temp[(i+3)%4]

5.4 Mask Collisions Detected

Two subsequent iterations detect inequalities in the masking sets. These are
resolved by unifying the wildcard mask c with the declared output mask X and
inserting a flip operation to remove the mask b from the final result.
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t3,t5 : secret<X,b> Byte

t4,t6 : secret<b> Byte

t7 : secret<X,b>

out : secret<X> Vector of Bytes(4)

for i in range(4)

t3 := xtime[temp[i]] ^ b

t4 := t3 ^ temp[(i+1)%4]

t5 := t4 ^ xtime[temp[(i+1)%4]]

t6 := t5 ^ temp[(i+2)%4]

t7 := t6 ^ temp[(i+3)%4]

out[i] := t7 ^ b;

6 Application to Practice

Our discussion above demonstrates the working principle of Alg. 1. It explains
how this algorithm transforms an insecure (i.e. unmasked) program (in our exam-
ple this was AES reduced to SubBytes and MixColumns for the sake of brevity)
into secure code (i.e. masked). We now briefly discuss practical aspects such
as how the prototype compiler was implemented and the performance overhead
resulting from automated masking.

6.1 Prototype Implementation

A prototype compiler was implemented in Haskell that reads the program source,
applies Alg. 1, and then and outputs ARM assembly compatible with the Cross-
works tools [12]. The use of a declarative language such as Haskell makes the
implementation of a rule-based type-checker particularly simple. Haskell in par-
ticular is suited to embedding experimental languages due to the presence of
monad transformers and their ability to add new forms of control flow.

An extract of this conversion, including annotation of masks as comments
denoted a and b, is given below:

PUSH {R3-R12,R14}

LDR R5, =in

LDR R6, =key

LDR R7, =Sbox_M

LDR R8, =temp

LDR R9, =xtime_M

LDR R10, =out

LDRB R0, [R5, #0] // [[]], [[]], ?

LDRB R2, [R6, #0] // [[a]], [[a]], ?

EOR R3, R0, R2 // [[a]], [[]], [[a]]

LDRB R0, [R7, R3] // [[b]], [[a],[b]], [[a]]

STRB R0, [R8, #0] // [[b]], ?, [[b]]
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This code snippet shows the sequence of assembly instructions from pushing
some registers onto the stack when the function is called, to loading the first byte
of the AES state and key, exclusive-oring these two bytes and using them as index
for the SubBytes operation. As described before, a masked SubBytes table must
be generated each time the AES code is executed (to facilitate readability this is
however not included in the code shown here). Then the result of the SubBytes
operation is stored. The code is annotated with comments that show how each
register is masked for each instruction, where the mask is given provided between
the brackets [[ ]]. As we assume that the plaintext is public (i.e. unmasked) and
the key is secret (i.e. masked), the first line which refers to loading the plaintext
shows an empty masking set. The second line which refers to the loading of the
key shows that the mask a is used. In the third line where input and key are
exclusive-ored, the result inherits the mask from the key. The fourth line, which
refers to the SubBytes operation, show that this operation has a masked input
(mask a is used) and maps this input to a value which is masked differently
(mask b is used).

6.2 Performance

Performance comparisons are typically highly context specific, in our case it
is useful to bear in mind that different strategies such as loop unrolling lead to
very different code sizes and execution times. Consequently, we provide two more
code snippets, the left-hand one showing an implementation which was hand-
coded and uses loops, the right-hand one showing an implementation which was
hand-coded and unrolls these loops:

PUSH {R3-R12,R14}

BL SubBytes

// ----------------------------

// SubBytes

// Input : R1 - pointer to data

// Output : @R1

// ----------------------------

SubBytes:

MOV R5, #4

LDR R6, =acAESsbox

SubBytes:

SUB R5, R5, #1

LDRB R7, [R1, R5]

LDRB R8, [R6, R7]

STRB R8, [R1, R5]

CMP R5, #0

BNE SubBytes

BX LR

// ------------------

// Macros

// ------------------

.macro Msub i=0

LDRB R5, [R0, \i]

LDRB R5, [R4, R5]

STRB R5, [R0, \i]

.endm

PUSH {R3-R12,R14}

LDR R4, =acAESsbox

Ssub_s0: Msub #0

The clear difference in coding styles leads to different performance figures. The
hand-coded assembly version with loops requires 147 clock cycles to compute the
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SubBytes and MixColumns function (for one column of the state only), whereas
an unrolled version (hand-coded) requires 52 clock cycles. Our algorithm that
automatically adds the masking to an unmasked implementation produces code
that requires 76 clock cycles.

Another aspect to consider is how many masks are introduced. This choice also
depends on performance considerations: MixColumns can be securely masked
using four masks but fewer masks are possible if the performance overhead for
remasking is acceptable. Our algorithm in general first draws from the set of
already existing masks and only adds a new mask if the resulting errors cannot be
resolved otherwise. Consequently, our algorithm will lead to an implementation
that requires the least possible amount of randomness.

7 Discussion and Outlook

In this paper we detail an algorithm for the automated generation of code that is
resistant to first-order DPA, and illustrated the working principle on a concrete
and relevant example. While the source code needs to be written in a particular
format in which a developer can indicate what needs to be protected against
leakage (i.e. for example the cryptographic key), a developer does not need to
have any further knowledge about Boolean masking or even the assembly lan-
guage of a given microprocessor. Indeed, given that our compiler produces code
that is comparable to assembly code written by a human, one could use the same
source for numerous platforms reducing development cost considerably.

The current version assumes that the target microprocessor leaks information
independently for each instruction executed. Some devices may leak informa-
tion in a different model, where the information leakage depends on consecutive
instructions. This may impose a further restriction on the compiler, i.e. that
variables masked with the same mask cannot be manipulated in adjacent in-
structions, and subsequent iterations of our compiler will seek to address this
issue.

Our compiler was designed to produce code that would be resistant to first-
order DPA. Clearly, higher-order masking schemes as recently reported in the
literature ([13], [14]) necessitate a wider range of schemes and operations than
what our compiler currently supports. Implementing a wider range of operations
and schemes could be achieved using a domain specific language, similar to
what has been recently suggested for computing on encrypted data in ([15]).
Our current approach is then interesting as our central contribution, which is
the static analysis of types w.r.t. information leakage, could complement such a
language definition and allow minimising the overall number of masks without
compromising the security of the implementation.
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A Results of a DPA

Whilst we have argued that our algorithm ensures the necessary conditions for
masking to be secure in practice one can be reluctant to accept this without
some ‘concrete’ evidence from at least for one ‘practical’ device.

In the remainder of this section we describe some experiments that were con-
ducted on an ARM7TDMI microprocessor [16] using the example described in
Section 5. We use a simple experimental board on which a microprocessor is
mounted to acquire power traces using a ‘standard’ setup: a differential probe
is used to acquire power traces. We use a suitable sampling frequency and have
an artificially generated trigger point which eases the alignment of traces.

The first experiments focused on compiling the unmasked code described
in Section 5 using a standard C compiler. In our case this was Crossworks for
ARM and the code fragment required 183 clock cycles to execute. We acquired
2000 traces showing the power consumption during the execution of the code,
for a constant secret key and a randomly generated input, and performed some
standard DPA attacks on those traces (targeting the SubBytes output since this
is known to be a good target for AES).

(a) A correlation trace using 2000 traces. (b) The maximum correlation plotted
against the number of traces. The correct
hypothesis plotted in black and the incor-
rect hypotheses in gray.

Fig. 1. Results of a DPA attack on the unmasked implementation which give clear
evidence for the vulnerability of such an implementation on the target platform

The correlation trace for the correct hypothesis is shown in the left panel
of Fig. 1, where numerous peaks show at what points in time the result of the
substitution table is processed by the microprocessor. The right panel shows that
as little as 100 acquisitions would be necessary to reveal the correct key byte.

We performed the same analysis on the code masked by our algorithm and
translated into ARM assembly which requires 76 clock cycles to execute. Fig. 2
shows the results. There are no distinctive peaks in the correlation trace for
the correct key hypothesis (left panel). The right panel confirms that any peaks
in traces of incorrect key hypotheses are equally significant which means that
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(a) A correlation trace using 2000 traces. (b) The maximum correlation plotted
against the number of traces. The correct
hypothesis plotted in black and the incor-
rect hypotheses in gray.

Fig. 2. Results of a DPA attack on the masked implementation demonstrating that no
information leaks

no distinction between key hypotheses is possible. Given the strong leakage sig-
nals present in the unmasked implementation, even with very few traces, this
is a practical confirmation that the masked code is resistant to DPA attacks
on this platform (since even a large number of traces produces no distinctive
correlation).
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