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Preface

The 14th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2012) was held at the Katholieke Universiteit Leuven, Belgium,
during September 9–12, 2012. The workshop was sponsored by the International
Association for Cryptologic Research.

CHES 2012 received 120 submissions from 22 countries. The 42 members of
the Program Committee were assisted by more than 150 external reviewers. In
total, they delivered 498 reviews. Each submission was reviewed by at least four
Program Committee members. Submissions by Program Committee members
received at least five reviews. The review process was double-blind, and conflicts
of interest were carefully handled. The review process was handled through an
online review system that supported discussions among Program Committee
members. Over the entire review period, more than 660 messages were exchanged
between Program Committee members. Eventually, the Program Committee
selected 32 papers (a 27% acceptance rate) for publication in the proceedings.

CHES 2012 used, for the first time, an author rebuttal. After four weeks of
individual review, and two weeks of initial online discussions, the reviews were
forwarded to the submitting authors. The authors were invited to provide a text-
only rebuttal of no more than 500 words. CHES 2012 received 110 rebuttals (a
91% response rate). The rebuttals were then included in the online discussion
system, to guide the paper decision process in two additional weeks of online
discussion.

The program also included two invited talks, by Stephen Murdoch from the
University of Cambridge, UK, and by Christof Tarnovsky from Flylogic Engi-
neering. For the first time, the program included two tutorials on cryptographic
engineering aimed at newcomers in CHES. The tutorials were given by Junfeng
Fan from the Katholieke Universiteit Leuven, Belgium, and by Diego Aranha
from the Universidad de Brasil, Brazil.

The Program Committee also identified the best submissions from CHES
for their scientific quality, their originality, and their clarity. After deliberation,
an ad-hoc committee with no conflict of interest to these submissions evaluated
each nomination and selected one of them for award. The CHES 2012 Best Paper
Award went to Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tun-
stall. Their paper, “Compiler Assisted Masking,” discusses the use of compiler
techniques to create side-channel countermeasures.

Many people contributed to CHES 2012. We thank the authors for contribut-
ing their excellent research, and for participating so enthusiastically in the re-
buttal process. We thank the Program Committee members, and their external
reviewers, for making a significant effort over an extended period of time to select
the right papers for the program. We particularly thank Lejla Batina and Ingrid
Verbauwhede, the General Co-chairs, who took care of many practical details of
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the event. We also thank Thomas Eisenbarth for organizing the poster session at
CHES 2012. We are very grateful to Shai Halevi, who wrote the review software,
and helped adapt the system to support a rebuttal phase. The website was main-
tained by Dusko Karaklajic and by Jens Peter Kaps; we appreciate their support
throughout CHES. Finally, we thank our sponsors for supporting CHES finan-
cially: Cryptography Research, Sakura, Technicolor, Riscure, Infineon, Telecom
ParisTech, NXP, and Intrinsic ID.

CHES 2012 collected truly exciting results in cryptographic engineering, from
concepts to artifacts, from software to hardware, from attack to countermeasure.
We feel priviledged for the opportunity to develop the CHES 2012 program. We
hope that the papers in these proceedings will continue to inspire, guide, and
clarify your academic and professional endeavors.

July 2012 Emmanuel Prouff
Patrick Schaumont
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Invited Talk I

Banking Security: Attacks and Defences

Steven Murdoch
University of Cambridge, Cambridge, UK

Steven.Murdoch@cl.cam.ac.uk

Abstract. Designers of banking security systems are faced with a
difficult challenge of developing technology within a tightly constrained
budget, yet which must be capable of defeating attacks by determined,
well-equipped criminals. This talk will summarise banking security tech-
nologies for protecting Chip and PIN/EMV card payments, online shop-
ping, and online banking. The effectiveness of the security measures
will be discussed, along with vulnerabilities discovered in them both by
academics and by criminals. These vulnerabilities include cryptographic
flaws, failures of tamper resistance, and poor implementation decisions,
and have led not only to significant financial losses, but in some cases un-
fair allocation of liability. Proposed improvements will also be described,
not only to the technical failures but also to the legal and regulatory
regimes which are the underlying reason for some of these problems not
being properly addressed.
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Ahmad-Reza Sadeghi, Ingrid Verbauwhede, and
Christian Wachsmann

PUFKY: A Fully Functional PUF-Based Cryptographic Key
Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Roel Maes, Anthony Van Herrewege, and Ingrid Verbauwhede

Efficient Implementations

NEON Crypto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Daniel J. Bernstein and Peter Schwabe

Towards One Cycle per Bit Asymmetric Encryption: Code-Based
Cryptography on Reconfigurable Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Stefan Heyse and Tim Güneysu
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3D Hardware Canaries

Sébastien Briais4, Stéphane Caron1, Jean-Michel Cioranesco2,3,
Jean-Luc Danger5, Sylvain Guilley5, Jacques-Henri Jourdan1,

Arthur Milchior1, David Naccache1,3, and Thibault Porteboeuf4

1 École normale supérieure, Département d’informatique
{stephane.caron,jacques-henri.jourdan,arthur.milchior,

david.naccache}@ens.fr
2 Altis Semiconductor

jean-michel.cioranesco@altissemiconductor.com
3 Sorbonne Universités – Université Paris ii

jean-michel.cioranesco@etudiants.u-paris2.fr
4 Secure-IC

{sebastien.briais,thibault.porteboeuf}@secure-ic.com
5 Département Communications et Electronique

Télécom-ParisTech
{jean-luc.danger,sylvain.guilley}@telecom-paristech.fr

Abstract. 3D integration is a promising advanced manufacturing pro-
cess offering a variety of new hardware security protection opportunities.
This paper presents a way of securing 3D ICs using Hamiltonian paths as
hardware integrity verification sensors. As 3D integration consists in the
stacking of many metal layers, one can consider surrounding a security-
sensitive circuit part by a wire cage.

After exploring and comparing different cage construction strategies
(and reporting preliminary implementation results on silicon), we intro-
duce a ”hardware canary”. The canary is a spatially distributed chain
of functions Fi positioned at the vertices of a 3D cage surrounding a
protected circuit. A correct answer (Fn ◦ . . . ◦ F1)(m) to a challenge m
attests the canary’s integrity.

1 Introduction

3D integration is a promising advanced manufacturing process offering a variety
of new hardware security protection opportunities. This paper presents a way
of securing 3D ICs using Hamiltonian paths1 as integrity verification sensors.
3D integration consists in the stacking of many metal layers. Hence, one can
consider surrounding a security-sensitive circuit part by a wire cage, for instance
a Hamiltonian path connecting the vertices of a cube (Fig. 1). In this paper,
different algorithms to construct cubical Hamiltonian structures are studied;
those ideas can be extended to other forms of sufficiently dense lattices.

Since 3D integration is based on the vertical stacking of different dies, a Hamil-
tonian cage can surround the whole target and protect its content from physical

1 A Hamiltonian circuit (hereafter ”cage” or simply ”path” for the sake of conciseness)
is an undirected path passing once through all the vertices of a graph.

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 1–22, 2012.
c© International Association for Cryptologic Research 2012



2 S. Briais et al.

Fig. 1. Hamiltonian cycle passing through the vertices of a 4× 4× 4 cube

attacks. 3D ICs are relatively hard to probe due to the tight bonding between
layers [11]. Moreover, the 3D path can even penetrate the protected circuit and
connect points in space between the protected circuit’s transistors.

A path running through different metal layers and different dies can thus serve
as a digital integrity verification sensor allowing the sending and the collecting
of signals. In addition, the wire can be used to fill gaps in empty circuit parts to
increase design compactness and make reverse-engineering harder.

Such a protection proves challenging in terms of design as it requires devis-
ing new manufacturing and synthesis tools to fit the technology used [1, 2].
However the resulting structures prove very helpful in protecting against active
probing.

Throughout this paper n will represent the number of points forming the edge
of a cubical Hamiltonian structure. We will focus our study on cubical structures,
but the algorithms and concepts that are presented hereafter can in principle be
extended to many types of sufficiently dense lattices of points.

2 Generating Random 3D Hamiltonian Paths

2.1 General Considerations

The problem of finding a Hamiltonian path in arbitrary graphs (hampath) is
NP-complete. Membership in NP is easy to see (given a candidate solution, the
solution’s correctness can be verified in quasi-linear time). We refer the reader
to [3] for more information on hampath.

A quick glance reveals that a cube’s n3 vertices, potentially connectable by a
mesh of 3n2(n− 1) edges, break-down into four categories, illustrated in Fig. 22:

– (n−2)3 vertices corresponding to the cube’s innermost edges (i.e. not facing
the outside) can be potentially connected in any of the possible 3D directions
(right, left, up, down, front, rear).

– 6(n− 2)2 vertices, facing the cube’s outside in exactly one direction, can be
potentially connected in five possible directions.

2 The depicted cube is shown as a solid opaque object for the sake of clarity.
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– 12(n − 2) vertices, facing the cube’s outside in exactly two directions, can
be potentially connected in four possible directions.

– 8 extreme corner vertices can be connected in only three possible manners.

Indeed: (n− 2)3 + 6(n− 2)2 + 12(n− 2) + 8 = ((n− 2) + 2)3 = n3

3

4

5

6 (invisible)

Fig. 2. Potential edge connectivity

We observe that for hampath to be solvable in a cube, n must be even. If
we depart from point the (0, 0, 0) and reach a point of coordinates (x, y, z) after
visiting i vertices, then x + y + z and i have the same parity. Given that the
path must collect all the cube’s vertices, the cube size must necessarily be even.

2.2 Odd Size Cubes

The above observation excludes the existence of odd-size cubes unless one skips
in such cubes an edge (x, y, z) such that x + y + z ≡ 1 mod 2. To extend the
construction to odd n = 2k+1 while preserving symmetry, we arbitrarily decide
to exclude the central vertex (i.e. at coordinate (k, k, k)) when n is odd.

Assume that we color vertices in black and white alternatingly (the cube’s 8
extreme vertices being black) with black corresponding to even-parity x+ y+ z
and white corresponding to odd parity x+ y+ z. Here 0 ≤ x, y, z ≤ 2k. In other
words, a (2k+1)-cube has 4k3 +6k2 +3k white vertices and 4k3 +6k2 +3k+1
black vertices.

The coordinate of the cube’s central vertex is (k, k, k) which parity is identical
to the parity of k. When k is even, vertex (k, k, k) is black and when k is odd
vertex (k, k, k) is white. If we remove vertex (k, k, k) it appears that:

– When k is even, (i.e. n = 2k+1 = 4�+1) we have as many black and white
vertices (namely 4k3 + 6k2 + 3k).

– When k is odd, we have 4k3+6k2+3k+1 black vertices and 4k3+6k2+3k−1
white vertices.

Noting that each edge causes a color switch, we see that Hamiltonian paths in
cubes of size 4�+3 cannot exist. Note that if one extra black vertex is removed3

then (the now asymmetric) construction becomes possible for all k.

3 e.g. one of the cube’s extreme edges which is necessarily black.
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It remains to prove that cubes of size n = 4� + 1 exist for all � �= 0 (Fig. 3).
We refer the reader to the extended version of this paper on the IACR ePrint
server for further details.

Fig. 3. Constructive proof that cubes of size n = 4�+ 1 exist for all � �= 0

3 A Toolbox for Generating 3D Hamiltonian Cycles

3.1 From Two to Three Dimensions

We start by presenting a first algorithm for constructing random4 Hamiltonian
cycles in graphs having a minimum degree equal to at least half the number of
their vertices.

Our application requires an efficient algorithm that outputs cycles passing
through a very large number of vertices. The first algorithm reduces the prob-
lem’s complexity by using smaller cycles that we will progressively merge to
form the final bigger cycle. Consider the elementary Hamiltonian cycle forming
a simple 2 × 2 square. To combine two such squares all we need are two par-
allel edges. Merging (denoted by the operator �) can be done in two ways as
shown Fig. 4. Note that this association not only preserves Hamiltonicity but also
extends it.

a b → a � b

a

b

→

a
�

b

Fig. 4. Association of squares along the x axis (leftmost figure), or the y axis (rightmost
figure)

4 As explained in the IACR ePrint version of this work , the entropy of our structure
generators seems very complex to estimate.
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In other words, at each step two different Hamiltonian cycles in adjacent
graphs are merged, and a new Hamiltonian cycle is created. The process is
repeated until only one Hamiltonian cycle remains. We implemented this process
in C. As explained previously, our program cannot find Hamiltonian cycles for
odd cardinality values simply because such cycles do not exist (see Algorithm
1). The code starts by filling the lattice with 2× 2 squares, and then associates
them randomly. The program ends when only one cycle is left (Fig. 5).

Fig. 5. Rewriting 125 squares filling a 50 × 10 lattice as a Hamiltonian cycle
using Algorithm 1

Algorithm 1. Cycle Merging

1: Input p, q ∈ 2N.
2: let Q = Q1, ..., Qv be the v = pq

4
squares of size 2 filling the lattice of p× q points.

3: while Card(Q) �= 1 do
4: choose randomly {a, b} ∈ Q2 with a �= b.
5: if a and b have at least one couple of neighbouring parallel edges then
6: Break a randomly chosen couple of parallel neighbouring edges, verify that

they form a single Hamiltonian circuit and merge c = a � b.
7: let Q = Q ∪ {c} − {a, b}
8: else
9: goto line 4
10: end if
11: end while

The algorithm is pretty fast, and we were able to build Hamiltonian cycles
of 105 points using a laptop5 within few seconds. For some p and q values, we
observed some runtime spikes in single measurements due to convergence issues.
Fig. 6 shows the average runtime over 100 measurements as well as the standard
deviation at each point in red.

5 MacBook Air 1.8 GHz Intel Core i7.
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5

15

0 15 30 45 60 75 90

T
im

e
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)

Fig. 6. Cycle Merging runtime as a function of the number of points ×103 (average
over 100 measurements)

To transform a rectangular 2D Hamiltonian cycle into a 3D one, we run Al-
gorithm 1 for {p, q} = {p, p2} to get a p×p2 rectangle L similar in nature to the
one shown in Fig. 5.

Then, letting (xi, yi) denote the Cartesian coordinates of points in L, with the
first point being (0, 0), we fold L into a 3D structure of coordinates (x′

i, y
′
i, z

′
i)

using the following transform where j = �xi

p � and � ≡ j mod 2:

ϕ =

⎧⎨⎩x′
i = (−1)�(xi − jp) + �(p− 1)
y′i = yi
z′i = j

The result is shown in Fig. 24 (Appendix A).
It remains to destroy the folded nature of the construction while preserving

Hamiltonicity. This is done as follow: Identify anywhere in the generated struc-
ture the red pattern shown at the leftmost part of Fig. 7 where at positions
a, b, c, d edges take any of the blue positions. Iteratively apply this rewriting
rule along any desired axis until the resulting structure gets ”mixed enough” to
the designer’s taste. Evidently, this is only one possible rewriting rule amongst
several.

b
a

x−
x−

z−
z−

z+

z+
y+

y−

d
c

x+

x+

z−
z−

z+

z+
y+

y−

b
a

x−
x−

z−
z−

z+

z+
y+

y−

d
c

x+

x+

z−
z−

z+

z+
y+

y−

Fig. 7. Rewriting rule

Note that the zig-zag folding ϕ is only one among many possible folding
options as ϕ may be replaced by any 2D (preferably random) plane-filling curve
of size p× p (e.g. a Peano curve [8]).

3.2 Random Cube Association

Another approach consists in generalizing Algorithm 1 to the associating of
elementary 3D cubes. As shown in Fig. 26, one can fill the target lattice by a
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random sampling of six elementary Hamiltonian cubes (Fig. 25), associate them
randomly and further randomize the resulting structure by rewriting.

The algorithm proves very efficient (Fig. 8) and takes a few seconds6 to com-
pute a random Hamiltonian cube of size 50 (125 000 points).

5

10

15

20

25

0 15 30 45 60 75 90 105 120

T
im

e
(s
)

Fig. 8. Random Cube Association runtime as a function of the number of points ×103
(average over 100 measurements)

The algorithm picks random parallel edges from different Hamiltonian cycles
and attempts to associate them in one new structure. By opposition of the 2D
case, the 3D case presents a new difficulty which is that in some cases associable
parallel edges suddenly cease to exist. To force termination we abort and restart
from scratch if the number of iterations executed without finding a new associa-
tion exceeds the upper bound p3. To compute structures over huge lattices (e.g.
n = 100), one might need to introduce additional association rules (e.g. the rule
shown in Fig. 9) to avoid such deadlocks.

�

Fig. 9. An additional association rule (example)

3.3 Cycle Stretching

Our third algorithm maintains and extends a set of edges E initialized with the
four edges defined by the square of vertices (0, 0, 0), (0, 1, 0), (1, 1, 0) and (1, 0, 0).
At each iteration, the algorithm selects a random edge e ∈ E and one of the four
extension directions shown in Fig. 10. If such an extension is possible (in other
words, by doing so we do not bump into an edge already in E) then E is extended
by replacing e by three new edges (one parallel to e and two orthogonal to e
in the chosen extension direction). If e cannot be replaced, i.e. none of the four
extensions is possible, we pick a new e′ ∈ E and try again.

6 MacBook Air 1.8 GHz Intel Core i7.



8 S. Briais et al.

e e

Fig. 10. Extension options

The algorithm keeps track of a subset of E, denoted B, interpreted as the set
of potentially stretchable edges of E. B avoids trying to stretch the same e over
and over again.

At each stretching attempt the algorithm picks a random e ∈ B. As the
algorithm tries to stretch e, e is removed from B (no matter if the stretching
attempt is successful or not). If stretching succeeded, e is also removed from E
and three new edges replacing e are added to B and E.

The algorithm halts when B = ∅. If upon halting |E| = n3 − (n mod 2) then
the algorithm succeeds, otherwise the algorithm fails and has to be re-launched.
Since at most 3n2(n−1) vertices can be added to B, the algorithm will eventually
halt.

A non-optimized implementation running on a typical pc found a solution for
n = 6 in about a minute and a solution for n = 8 in 30 hours. The same code
was unable to find a solution for n = 10 in three weeks. An empirical human
inspection of the obtained cubes shows that the resulting structures seem very
irregular. Hence, an interesting strategy consists in generating a core cube of
size n = 8 by cycle stretching, surrounding it by elementary size 2 cubes and
proceeding by random cube association and rewriting.

Algorithm 2. Edge Stretching

1: let E = the four vertices defined by the square (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0).
2: let B = E.
3: while B �= ∅ do
4: let e ∈R B, we denote the vertices of e by e = [e1, e2].
5: let B = B − {e}
6: let dir = {←,→, ↑, ↓,↗,↙}
7: while dir �= ∅ do
8: let d ∈R dir
9: let dir = dir− {d}
10: if d and e are not aligned and stretching is possible then
11: E = E − {e}.
12: E = E ∪ {[e1, v1], [v1, v2], [v2, e2]}.
13: break
14: end if
15: end while
16: end while
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In the above algorithm the sentence ”stretching is possible” is formally defined
as the fact that no edges in E pass through the two vertices v1,v2 such that the
segment [v1, v2] is parallel to e in direction d. Arrows represent right, left, up,

down, front and backwards directions, i.e.
↑ ↗

← →
↙ ↓

3.4 Constraining Existing Hamiltonian Pathfinding Algorithms

A fourth experimented approach consisted in adapting existing hampath solving
strategies. (Dharwadker) [4] presents a polynomial time algorithm for finding
Hamiltonian paths in certain classes of graphs. Assuming that the graphs that
we are interested in are in such a class, we tweaked [4]’s C++ code to find
Hamiltonian cycles in cubes. The resulting code succeeded in finding solutions,
but these had a too regular appearance and had to be post-processed by re-
writing.

We hence constrained the algorithm by working in a randomly chosen sub-
graph E of the full n3 cube. We define a density factor γ ≤ 1 allowing to control
the number of edges in E to which we apply [4]. The ratio of edges in E and n3

is expected to be approximately γ. Note that because of the heuristic corrective
step (9), meant to reduce the odds that certain points remain unreachable, E’s
density is expected to be slightly higher than γ. The corresponding algorithm is:

Algorithm 3. Edges Selection Routine

1: E = ∅
2: for each vertex v = (x, y, z) of the full cube do
3: for each move dv = (dx,dy,dz) in {(1, 0, 0), (0, 1, 0), (0, 0, 1)} do
4: generate a random r ∈ [0, 1]
5: if r < γ and (0, 0, 0) ≤ v + dv ≤ (n− 1, n− 1, n− 1) then
6: add edge [v, v + dv] to E
7: end if
8: end for
9: if loop 3 didn’t add to E any edge having v as en extremity then
10: goto line 3
11: end if
12: end for

Practical experiments show indeed that as γ diminishes, the generated Hamil-
tonian cycles seem increasingly irregular (for high (i.e. � 1) γ values the algo-
rithm fills the cube by successive ”slices”). Finding solutions becomes compu-
tationally harder as γ diminishes, but using a standard pc, it takes about a
second to generate an instance for {γ = 0.8, n = 6} and an hour to generate a
{γ = 0.86, n = 10} one. The reader is referred to the IACR ePrint version of
this paper for visual illustrations of experimental results.
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Fig. 11. A n = 10 Hamiltonian cycle obtained by a modified version of Dharwadker’s
algorithm [4]

3.5 Branch-and-Bound

Another experimented approach was the use of branch-and-bound: Using a re-
cursive function, we can try all different cycles. Given a connected portion of a
potential Hamiltonian path, this function tries to add all the possible new edges
and calls itself recursively. If the function is called with a complete path, the job
is done.

We added several heuristic improvements to this method:

1. If the set of vertices unlinked by the current path is disconnected, it is clear
that we won’t be able to find any Hamiltonian path, and thus we can stop
searching.

2. If this set is not connected to the extremities of the current path, we can
also halt.

3. The existence of an Hamiltonian path containing a given sub-path only de-
pends on the extremities and on the set of vertices in the path. We can hence
use a dynamic programming approach to avoid redundant computations.

4. We tried multiple heuristics to chose the order of recursive calls.

However, those approaches proved much slower than cycle stretching: it appears
that the branch-and-bound algorithm makes decisive choices at the beginning of
the path without being able to re-consider them quickly. We tried to count all
the Hamiltonian cycles when n = 4 using this algorithm, but the code proved
too slow to complete this task in a reasonable time.

Those results suggest a meta-heuristic approach that would be intermediate
between branch-and-bound and stretching: we can make a cycle evolve using
meta-heuristics until we obtain an Hamiltonian cycle. Using this method (that
we did not implement) we should be able to re-consider any previous choice
without restarting the search process.
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3.6 Rewriting 3D Moore Curves

Finally, one can depart from a know regular 3D cycle (e.g. a 3D Moore curve as
shown in Fig.12) and rewrite it. Moore curves are particularly adapted to such a
strategy given that the maze entrance and exit are two adjacent edges. However,
as shown in Fig.12c (a top-down view of Fig.12b), Moore curves are inherently
regular and must be re-rewritten to gain randomness.

(a) (b) (c)

Fig. 12. Example of Moore Curves [5]

4 Silicon Experiments

To test manufacturability in silicon we created a first passive cage meant to
protect an 8-bit register. We notice that the compactness of the cage provides a
very good reverse-engineering protection.

Fig. 13. 3D layout of a cage of size 6 (130nm, 6 Metal Layers Technology)

The implemented structure (Fig. 13) is a 6×6×6 Hamiltonian cube stretching
over six metal layers, the first four metal layers are copper ones, and the last
two metal layers are thicker and made of aluminum (130nm RF technology, Fig.
14). The cube is 26μm wide and covers an 8 bit register.

As will be explained in the next section, this first prototype is not dynamic,
the Hamiltonian path is not connected to transistors. The implementation of
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a simplified dynamic structure as described in section 5 is underway and does
not seem to pose insurmountable technological challenges. Moreover, all layers
of the prototype are processed in one side of the silicon, so this implementation
does not prevent backside attack. Backside metal deposit and back to back wafer
stacking must thus be investigated to thwart backside attacks as well.

(a) (b)

Fig. 14. Top layer view (a) and tilted SEM view (b) of a 26μm wide 6 × 6 × 6 cage
implemented in a 130nm technology (×2500)7

5 Dynamically Reconfigurable 3D Hamiltonian Paths

A canary is a binary constant placed between a buffer and stack data to detect
buffer overflows. Upon buffer overflow, the canary gets corrupted and an overflow
exception is thrown. The term ”canary” is inherited from the historic practice of
using canaries in coalmines as toxic gas biological alarms. The dynamic structures
presented in this section are hardware equivalents of biologic canaries: our ”hard-
ware canary” is formed of a spatially distributed chain of functions Fi positioned
at the vertices of a 3D cage surrounding a protected circuit. In essence, a correct
answer (Fn ◦ . . . ◦ F1)(m) to a challenge m will attest the canary’s integrity. The
device described in this section relies on a library of paths precomputed using the
toolbox of algorithms described in the previous section.

5.1 Reconfigurable 3D Mazes

The construction of a 3D dynamic grid begins with the description of a Net-
work On Silicon (NOS) with speed, power and cost constraints [7, 12]. As de-
scribed in [6, 9], metal wires are shared, or made programmable, by introducing
switch-boxes, that serve as the skeleton of the dynamic Hamiltonian path. Each
switch-box is an independent cryptographic cell that corresponds to a vertex of
the graph. The switch-boxes are reconfigurable and receive reconfiguration in-
formation as messages flow through the Hamiltonian path during each session c.

7 The structure implemented in silicon is surrounded by fill shapes used as a gaps
filler, due to manufacturing constraints (polishing).
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All boxes are clocked8, and able to perform basic cryptographic operations. Six
cell-level parameters are used to define each switch-box:

– A coordinate identifier i is a positive integer representing the ordinal number
of the box’s Cartesians coordinates: i.e. i = x+ ny + n2z.

– A session identifier c is an integer representing the box’s configuration: this
value is incremented at each new reconfiguration session.

– A key ki shared with the protected processor located inside the cage.
– A routing configuration wi,c chosen between the thirty possible routing po-

sitions of a 3D bi-directional switch (Fig. 15)9.
– A state variable si,c computed at each clock cycle from the incoming data

mi,c (see hereafter) and the preceding state, si,c−1. The state si,c is stored
in the switch-box’s internal memory10.{

mi+1,c = F (mi,c, ki, wi,c, si,c)
si,c+1 = G(mi,c, ki, wi,c, si,c)

(1)

The output data mi+1,c is computed within box i using the input data mi,c and
an integrated cryptographic function F , serving as a lightweight MAC. The final
output mn3,c attests the cage’s integrity during session c.

z+

x−

y−

z−

x+

y+

mi,c

mi+1,c

wi ↘ x+ x− y+ y− z+ z−

x+ - 00 01 02 03 04

x− 10 - 05 06 07 08

y+ 11 15 - 09 0A 0B

y− 12 16 19 - 0C 0D

z+ 13 17 1A 1C - 0E

z− 14 18 1B 1D 1E -

signal output

si
g
n
a
l
in
p
u
t

Fig. 15. Example of a 3D switch-box programmed with a routing configuration wi =
0x13

Each switch-box comprises five logic parts (Fig. 16) that serve to route the
integrity attestation signal through the box’s six IOs and successively MAC the
input values mi,c:

– Two multiplexers routing IOs, with three state output buffers to avoid short-
circuits during re-configuration.

– A controller commanding the two multiplexers’ configuration.

8 We denote by t the clock counter.
9 For switch-boxes depicted in red, blue and green (Fig. 2) the number of possible
configurations drops to (respectively) 6, 12 and 20.

10 Upon reset si,0 = 0 for all i.
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– A MAC cell for processing data and a register for storing results.
– A register storing the state variable si,c, the key ki, the present configuration

wi,c, the next box configuration wi,c+1 and the clock counter t.

input
pins

6 to 1
Multiplexer Controller

CLK

MAC and
registry

CLK

1 to 6
Multiplexer
with three-
state buffers

output
pins

z−
z+
y−
y+
x−
x+

z−
z+
y−
y+
x−
x+

Fig. 16. Logic diagram of a 3D switch-box

The input message m0,c, sent through the Hamiltonian path, is composed of
two parts serving different goals (Fig. 17):

w0,c+1 w1,c+1 wi,c+1 wn3−1,c+1 cryptographic payload

reconfiguration information

Fig. 17. Structure of message m0,c

– The first message part is dedicated to reconfiguring the grid. For a cube of
size n, the reconfiguration information has n3 parts, each containing the next
routing configuration wi,c+1 of switch-box i. As the routing information of
each switch-box can be coded on 5 bits, the reconfiguration information is
initially 5n3 bits long11. Basically, this message part carries the position of
all switches for the next Hamiltonian path of session c+ 1.

– The second message part (cryptographic payload) is used to attest the
circuit’s integrity, the 64-bits payload will be successively MACed by all
switch-boxes and eventually compared to a digest computed by the pro-
tected circuit. If possible, one should select a function F that simplifies after
being composed with itself to reduce the protected circuit’s computational
burden.

5.2 Description of the Dynamic Grid and the Integrity Verification
Scheme

Upon reset, each switch-box is in a default configuration wi,0 corresponding to an
initial predefined hardwiredHamiltonian path for session c = 0. The input and the
output boxes (S0 and Sn3−1) are only partially reconfigurable; namely, the routing
of S0’s input and the routing of Sn3−1’s output cannot be changed. To clarify the
reconfiguration dynamics, we denote by t the number of clock ticks elapsed since

11 Note that the reconfiguration information part of the mi,c’s gets shorter and shorter
as i increases, i.e. as the message approaches the last switch-box.
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system reset assuming a one bit per clock tick throughput; given that 5 bits are
dropped at each ”station”, a full reconfiguration route (session) claims

5
n3−1∑
j=0

(n3 − j) =
5

2
n3(n3 + 1)

clock ticks, which is the time needed for the reconfiguration information to flow
through alln3 switch-boxes i.e. the number of clock ticks elapsed between the entry
of the first bit ofm0,c into S0 and the exit of the last bit ofmn3,c from Sn3−1. Note
that this figure does not account for the time necessary for payload transit12.

At t = 0: A new session c starts and the first bit of m0,c is received by S0 form
the protected processor.

For 5
∑i−1

j=0 (n
3−j)= 5

2
i(2n3+1−i)≤ t ≤ 5

∑i
j=0 (n

3 − j) − 1 = 5
2
(i+ 1)(2n3 − i)− 1:

All switch-boxes except Si−1 and Si are inactive (dormant). Si−1 sends the
message mi−1,c to Si which performs the following operations:

– Store the reconfiguration information wi,c+1, for the next Hamiltonian
route of session c+ 1.

– Compute mi+1,c and update si,c+1 as defined in formula (1).

At t = 5
∑n3−1

j=0 (n3 − j) = 5
2n

3(n3 + 1): The first bit of message mn3,c emerges
from the grid (from Sn3−1) and all switch-boxes re-configure themselves to
the new Hamiltonian path c+1. mn3,c is received by the protected processor
who compares it to a value computed by its own means. At the next clock
tick a new message m0,c+1 is sent in, and the process starts all over again
for a new route representing session number c+ 1.

Switch-Box 0
(w0, k0,m0, s0)

Switch-Box 1
(w1, k1,m1, s1)

Switch-Box 2
(w2, k2,m2, s2)

Switch-Box 3
(w3, k3,m3, s3)

Switch-Box 4
(w4, k4,m4, s4)

Switch-Box 5
(w5, k5,m5, s5)

Switch-Box 6
(w6, k6,m6, s6)

Switch-Box 7
(w7, k7,m7, s7)

Switch-Box 8
(w8, k8,m8, s8)

Switch-Box 9
(w9, k9,m9, s9)

Switch-Box 10
(w10, k10,m10, s10)

Switch-Box 11
(w11, k11,m11, s11)

Switch-Box 12
(w12, k12,m12, s12)

Switch-Box 13
(w13, k13,m13, s13)

Switch-Box 14
(w14, k14,m14, s14)

Switch-Box 15
(w15, k15,m15, s15)

m0,c

m0,c+1

m16,c

m16,c+1

at session c

at session c+ 1

Fig. 18. 4× 4 dynamic switch-box grid routed at c and c+ 1 (illustration)

12 p(n3 + 1) where p is the payload size in bits.
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If one of the switch-boxes is compromised then the digest output by the path
will be altered with high probability and the fault will be detected by the mirror
verification routine implemented in the protected processor (Fig. 19). The device
could then revert to a safe mode, and sanitize sensitive data.

challenge
m0,c

MAC using the
Hamiltonian circuit

MAC using the
co-processor

if 1 then
revert to
safe mode

Fig. 19. Device integrity verification scheme

The verification circuit’s size essentially depends on the MAC’s size and com-
plexity. Note that the XOR gate is a weak point: if it is bypassed the entire canary
becomes pointless. Luckily, the XOR is spatially protected by the Hamiltonian
path that surrounds it.

5.3 Vulnerability to Focused Ion Beam (FIB) Attacks

The proposed dynamic structure complies with the Read-Proof Hardware re-
quirements described in [10]: the structure is easy to evaluate, relatively cheap
(in some case no additional masks would be required) and can’t be easily re-
moved without damaging the chip.

Even though an attacker might modify some switch-box interconnections us-
ing FIB equipment, one cannot bypass a switch-box without modifying the digest
computation logic and thus triggering the canary. In theory, an attacker may mi-
croprobe the input of the first switch-box to get the reconfiguration path, feed it
into an FPGA simulating the grid and re-feed the MAC into the target, thus by-
passing the canary. The state function si implemented in each switch-box should
prevent such attacks by keeping state information. Moreover, switch-boxes are
defined at transistor level (first metal level): to microprobe each cell the attacker
has to bypass many interconnections, making such an attack very complex. Fig.
20 describes schematically the dynamic grid concept.

S1 S2 S3

Fig. 20. Three switch-boxes embedded at substrate level with interconnections over
the top layers
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The successive grid configurations are precomputed by an external Hamilto-
nian path generator using the strategies described in Section 3. This configura-
tion data should be stored in a non-volatile memory located under the cage.

6 Perspectives and Open Problems

Hardware canaries present an advantage with respect to analog integrity protec-
tion such as PUFs and sensors: being purely digital, hardware canaries can be
integrated at the HDL-level design phase be portable across technologies. The
proposed solution would, indeed, increase manufacturing and testing complex-
ity but, being purely digital, would also increase reliability in unstable physical
conditions, a common problem encountered when implementing analog sensors
and PUFs.

The previous sections raise several sophistication ideas. For instance, instead
of having the processor simply pick a reconfiguration route in a pre-stored table,
the processor may also re-write the chosen route before configuring the canary
with it. Devising more rewriting rules and developing lightweight heuristics to
efficiently identify where to apply such rules is an interesting research direction.

Another interesting generalization is the interleaving in space of several dis-
joint Hamiltonian circuits. Interleaved canaries will force the attacker to over-
come several spatial barriers. It is always possible to interleave a cube of size
n− 1 in a cube of size n without having the two cubes intersect each other13 as
illustrated in Fig. 21.

Fig. 21. A size 4 cube interleaved with a size 3 cube (3D and front view)

Fig. 22 shows the result of such a (laborious!) physical interleaving for a cube
of size 4 and a cube of size 5. Note that interleaving remains compatible with a
dynamic evolution of both cubes as canaries do not touch each other nor share
any hardware (edges or vertices).

Finally, functions F for which the evaluation of F (x) = (Fn3−1 ◦ . . . ◦ F0)(x)
is faster than n3 individual evaluations of Fi are desirable for efficiency reasons.
XOR, bit permutation, addition, multiplication and exponentiation (e.g. modulo
251) all fall into this category14. Note that Fi(x) = ki×xk′i mod p works as well.

13 Remove the (k, k, k) point from the center of the odd cube as explained before.
14 Evidently, input should be nonzero for multiplication, nonzero and �= 1 for exponen-

tiation etc.
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Fig. 22. Interleaving a Hamiltonian cube of size 4 and a Hamiltonian cube of size 5

In the first dynamic prototype the Fi’s will be formed of XORs and bit per-
mutations. Devising computational shortcuts taking into account an evolving
internal state si,c are also desirable.

Appendix

A Circuit Folding

Fig. 23. 10× 100 Hamiltonian rectangle L prepared to be folded

Fig. 24. 10× 10× 10 Hamiltonian cube ϕ(L) obtained by folding Fig. 23
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B Random Cube Association

Five elementary cubes in Fig. 26 are shown in red to underline that all cubes
forming Fig. 26 are still disjoint.

Fig. 25. The six elementary Hamiltonian cubes of size 2

Fig. 26. Elementary 2 × 2 cubes filling the lattice of points forming a cube of size
n = 10

Fig. 27. An n = 10 Hamiltonian path obtained by randomly associating Fig. 26
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C Experimental Pre-silicon Models

Having obtained several construction plans, we decided to try and construct
concrete examples using copper supplies before migrating to silicon. We used an
industrial robot to cut 12mm∅ copper segments of various sizes. A measurement
of the dimensions of off-the-shelf right angle connectors (Fig. 28) revealed that
if a 1-unit segment is h millimeters long, then an i-unit segment has to measure
(h+ 16)× i − 16 millimeters.

Fig. 28. Angle connector

C.1 Visualizing and Layering

Layering and visualizing the prototypes (and chip metal layers) was done using
an ad-hoc software suite written in C and in Processing15. The software allows
decomposing a 3D structure into layers and rotating it for inspection.

3 1 1 2

floor 0 floor 1

13 1

1 1

2

1 1

11

1 1

1 1

1

1

floor 2 floor 3

Fig. 29. Layering, visualizing and constructing the prototypes

15 http://processing.org/

http://processing.org/
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C.2 Assembly Options

Segments were assembled using several techniques ranging from soldering to
super-glue. The disadvantage of welding was the risk of unsoldering an angle
connector while soldering the nearby one (and this indeed happened at times).
Super-glue happened to be less risky but called for dexterity as the glue would
harden in a couple of seconds and thereby make any further correction impossi-
ble. All in all super-glue was preferred and allowed the generation of a variety of
experimental pre-silicon cubes shown in Fig. 30. 3D printing using stereolitogra-
phy or thermoplastic extrusion (fused deposition modeling) were considered as
well.

Fig. 30. Experimental pre-silicon cubes
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Abstract. This paper is a short summary of the first real world de-
tection of a backdoor in a military grade FPGA. Using an innovative
patented technique we were able to detect and analyse in the first doc-
umented case of its kind, a backdoor inserted into the Actel/Microsemi
ProASIC3 chips for accessing FPGA configuration. The backdoor was
found amongst additional JTAG functionality and exists on the silicon
itself, it was not present in any firmware loaded onto the chip. Using
Pipeline Emission Analysis (PEA), our pioneered technique, we were
able to extract the secret key to activate the backdoor, as well as other
security keys such as the AES and the Passkey. This way an attacker
can extract all the configuration data from the chip, reprogram crypto
and access keys, modify low-level silicon features, access unencrypted
configuration bitstream or permanently damage the device. Clearly this
means the device is wide open to intellectual property (IP) theft, fraud,
re-programming as well as reverse engineering of the design which allows
the introduction of a new backdoor or Trojan. Most concerning, it is
not possible to patch the backdoor in chips already deployed, meaning
those using this family of chips have to accept the fact they can be easily
compromised or will have to be physically replaced after a redesign of
the silicon itself.

Keywords: Hardware Assurance, silicon scanning, side-channel analy-
sis, silicon Trojans and backdoors, PEA.

1 Introduction

With the globalisation of semiconductor manufacturing, integrated circuits be-
come vulnerable to malevolent activities in the form of Trojan and backdoor
insertion [1]. An adversary can introduce Trojans into the design during a stage
of fabrication by modifying the mask at a foundry or fab. It can also be present
inside third parties’ modules or blocks used in the design. Backdoors could be
implemented by malicious insiders at the design house. From the attacker’s point
of view there is not much difference between Trojans and backdoors, because in
most cases the device would be analysed as a black box with very limited infor-
mation provided by the manufacturer. Neither would it be known who inserted

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 23–40, 2012.
c© International Association for Cryptologic Research 2012



24 S. Skorobogatov and C. Woods

the undocumented features of additional capabilities or at what stage of the
process this occured.

In a search for the ideal target we decided to test the Actel/Microsemi ProA-
SIC3 A3P250 device because of its high security specifications and wide use in
military and industrial applications. According to the chip manufacturer: “Low
power flash devices are unique in being reprogrammable and having inherent re-
sistance to both invasive and noninvasive attacks on valuable IP” [2].

In this paper we demonstrate how a deliberately inserted backdoor and addi-
tional functionalities can be found in the ‘highly secure’ Actel/Microsemi ProA-
SIC3 Flash FPGA (field-programmable gate array) chip used in both military
and sensitive industrial applications. Actel, who developed ProASIC3 devices,
market them as chips which “offer one of the highest levels of design security in
the industry” [3]. These FPGAs are unique by being low-power, live on power-up
and inherently secure as no configuration data is stored outside the device: “In
contrast to SRAM-based FPGAs, ProASIC3 configuration files cannot be read
back via JTAG or any other method” [4].

All our experiments were carried out on the Actel/Microsemi ProASIC3
A3P250 Flash FPGA device [2]. Fabricated with a 0.13 μm process with 7
metal layers, this chip incorporates 1,913,600 bits of bitstream configuration
data. According to the manufacturer’s documentation on this chip: “Even with-
out any security measures (such as FlashLock with AES), it is not possible to
read back the programming data from a programmed device. Upon programming
completion, the programming algorithm will reload the programming data into
the device. The device will then use built-in circuitry to determine if it was
programmed correctly” [2]. Our research revealed that there is some hidden func-
tionality inside the JTAG controller of this chip and one of the functions is the
covert access to the configuration data. The JTAG controller itself is a part of
the silicon design as in all FPGA chips and cannot be changed after the chip is
manufactured.

To our knowledge, this is the first documented case of finding a backdoor
inserted in a real world chip. When we talk about backdoors we treat them
differently from other undocumented features most chip manufacturers insert in
their devices for factory testing and debug purposes. The difference between a
backdoor and an undocumented command is the ability to gain access to the
programmed user IP when it is not supposed to be possible. Undocumented
commands are known to exist in JTAG for failure analysis or for debugging but
they are not designed to circumnavigate the security scheme of the device. The
dictionary gives the following definition: “backdoor – an undocumented way to
get access to a computer system or the data it contains” [5]. This is exactly what
we found in the third generation of Actel/Microsemi Flash FPGA chips. The
same approach can be used to find Trojans, altering the way the scanning is
performed slightly.

Several Trojan detection approaches have been proposed in recent years. These
can be divided into three major categories. One is full reverse engineering of the
chip which gives an in-depth analysis of the chip [6]. However, this has some
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drawbacks – it is an extremely expensive and time consuming operation, and it
will not work for cases where the Trojan is present only in a small fraction of
chips. The second category is an attempt to activate the Trojan by applying test
vectors and comparing the responses with expected responses [7,8,9]. This might
not work in situations where the Trojan is activated under rare conditions. For
modern complex circuits it is close to impossible to verify all states. In addition,
this approach will not detect Trojans designed to leak the information rather
than take control of the hardware [10]. The final category uses side-channel
analysis to detect Trojans by measuring circuit parameters such as power con-
sumption, electro-magnetic emissions and timing analysis. These methods can be
used against golden samples [11,12] or within the same integrated circuit (IC) to
minimise the variations between samples [13]. However, the effectiveness of side-
channel analysis methods greatly depends on the sensitivity of the measuring
equipment [14].

One of the most widely used approaches in Trojan and backdoor detection
is to employ differential power analysis (DPA) techniques [15] to detect any
abnormalities in the device operation. However, due to the latency introduced
by the setup and the substantial noise of the acquisition equipment, it normally
takes a very long time to scan silicon chips. With modern devices such as FPGAs,
it could be infeasible to detect any Trojans or backdoors with DPA techniques.
We used a new sensing technique which detects tiny variations in the device
operation and is thus able to detect small variations which are well below the
noise level in a standard DPA setup.

If a bug is found in firmware programmed into an FPGA then it can be
rectified by a firmware update. However, if the Trojan or backdoor is present in
the silicon itself, then there is no way to remove the bugs other than replacing
all the affected silicon chips, as has happened several times with bugs found in
Intel CPUs. The cost of such an operation is enormous and can seriously affect
an organisation’s revenue.

If a potential attacker takes control of the FPGA device, he can cause a lot of
damage to the device. For example, he can erase or even physically destroy the
FPGA by uploading a malicious bitstream that will cause a high current to pass
through the device and burn it out. Using the backdoor, an attacker can extract
the IP from the device and make some changes to the firmware, inserting new
Trojans into its configuration. That would provide a wide range of capabilities
in carrying out more sophisticated attacks at a later stage.

Greater danger could come from a new and disturbing possibility of a large scale
remote attack via a network or the Internet on the silicon itself. If the key is known,
commands can be embedded into a worm to scan for JTAG, then to attack and re-
program the firmware remotely. This cannot be excluded since the manufacturer
specifically designed such remote access feature for ProASIC3 and other Flash
FPGA devices: “Military ProASIC3/EL devices with AES-based security allow for
secure, remote field updates over public networks such as the Internet, and ensure
that valuable IP remains out of the hands of system overbuilders, system cloners,
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and IP thieves. The contents of a programmed device cannot be read back, although
secure design verification is possible” [16].

This paper is organised as follows. Section 2 gives a brief introduction into
chip access and scanning approaches, and FPGA security. Section 3 introduces
the experimental setup, while Section 4 sets out our results. Section 5 discusses
limitations and possible improvements. The impact of the research is discussed
in the concluding section.

2 Background

With the growing complexity of integrated circuits the importance of post pro-
duction testing and functional verification is growing. This is necessary to address
the issues in failure analysis and to perform design verification for correctness,
and to eliminate inevitable bugs [17]. The majority of chip manufacturers use
the JTAG (Joint Test Action Group) interface as a standard port for IC test-
ing [18]. However, until recently it was primarily used for boundary scan testing
rather than internal IC testing. In the early 2000s the JTAG specification was
expanded with programming abilities and security features to meet the FPGA
market demands [19]. However, even before then chip manufacturers were us-
ing the expanded JTAG usually referred as IEEE 1149.x. This expansion was
not standardised and for most chips was kept confidential. In that respect, the
knowledge of the test interface being a JTAG did not give any advantage to the
outsider over a proprietary test interface. However, this allowed chip manufac-
turers to use standard JTAG implementation libraries without compromising on
the security of their chips. It was important for manufacturers to use undocu-
mented or disguised commands for granting access to the JTAG or test interface,
because in some chips it provided access to the internal memory, usually holding
the end user IP and secret data [20].

The JTAG interface is operated via test access port (TAP) pins which control
the state machine (Fig. 1a). It has two registers – IR (instruction register) and
DR (data register) into which the serial data can be shifted and then executed.
The IR registers must be selected first and then, depending on the command,
DR data shifted in. The length of the IR register varies from chip to chip and
normally lies between 4 and 32 bits. Some commands do not involve the DR
register, for others its length could be many thousands of bits.

For many chips, and especially for secure microcontrollers and secure FPGAs,
the commands and data fields of JTAG registers are not documented. However,
an inquisitive attacker can gain most of this information from development kits
supplied by a particular device’s chip manufacturer. Even when the availability
of such kits is restricted by the manufacturer, their clones can be found in the
third world. For FPGA chips the task of gathering more information about
JTAG commands was simplified by the introduction of a special high level test
language called STAPL (Standard Test and Programming Language) [21]. All
the commands and data fields in the programming file compiled by design tools
are easily identifiable with both subroutines and meaningfully named variables.
An example of security state verification procedure is given in the Appendix.
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Fig. 1. (a)JTAG TAP state machine, (b)Simplified ProASIC3 security

Knowing all the JTAG commands is not sufficient to search for backdoors.
Firstly, the obtained list could be incomplete because the STAPL file is com-
piled only with commands which serve a particular task. Secondly, although
subroutines, functions and variables are meaningfully named, the IR level com-
mands are not explained and usually remain as numbers. That complicates the
reverse engineering of the JTAG functionality. What adds to the complexity is
the sequence of commands. For complex devices it will not be just one command
executed for a particular function, but a series of commands mixed with data.
Each command could be not solely IR or IR+DR, but an endless list of possible
combinations such as IR+IR, IR+DR+DR, IR+DR+IR+DR and so forth.

Searching for Trojans could represent an easier task, because in that case the
design is known as well as its likely implementation in silicon. This operation
is usually performed by the chip manufacturer or its subcontractors. However,
from an attacker’s point of view, there is not much difference between Trojans
and backdoors as he is looking for any potential vulnerability within the silicon
chip.

As a target for our experiments we chose the Actel/Microsemi ProASIC3
A3P250 device [4] for many reasons. Firstly, it has high security specifications
and is positioned as the device with highest security protection in the industry.
Actel who developed ProASIC3 chips market them as devices which “provide
the most impenetrable security for programmable logic designs” [16,22]. Secondly,
ProASIC3 chips are widely used in military and industrial applications especially
in critical systems. Therefore, without doubt, ProASIC3 devices posed suitable
challenges for this research. Any outcome occurring from analysing this device
will have a greater impact and will be more useful compared to the results
obtained from low-end security chips such as normal microcontrollers or standard
FPGAs.

ProASIC3 devices have several levels of security protection. When the new
part is shipped to the customer there is no security activated. Even at that
level the security protection is high. This is because “Even without any security



28 S. Skorobogatov and C. Woods

measures (such as FlashLock with AES), it is not possible to read back the pro-
gramming data from a programmed device” [2]. The manufacturer claims that
the readback function for the FPGA Array is not physically implemented thus
making these devices inherently secure: “Low power flash devices do not support
read-back of FPGA core programmed data; however, the FlashROM contents can
selectively be read back (or disabled) via the JTAG port based on the security set-
tings established by the Microsemi Designer software” [2]. Higher security level
offers activation of a special user key that protects rewriting of any security set-
tings: “Designers have the ability to use a FlashLock Pass Key to prohibit any
write or verification operations on the device” [4].

For remote updates of the device both the configuration bitstream and internal
Flash memory can be encrypted with the AES device master key. This function
can only be used to decrypt the data being sent to the chip for writing and
verification. There is no way to pass the internal data back to the outside world
even in an encrypted state.

The highest level of protection turns the device into no-longer-programmable
chip and should be considered with caution as in case of any bug found, the chip
will have to be physically replaced: “The purpose of the permanent lock feature is
to provide the benefits of the highest level of security to IGLOO and ProASIC3
devices. If selected, the permanent FlashLock feature will create a permanent
barrier, preventing any access to the contents of the device. This is achieved
by permanently disabling Write and Verify access to the array, and Write and
Read access to the FlashROM. After permanently locking the device, it has been
effectively rendered one-time-programmable” [2].

The backdoor we found allows readback access to the configuration data.
There are some other hidden JTAG functions which give low-level control over
the internal shadow memories and allow modification of hidden registers. How-
ever, we do not consider them a backdoor because they are not directly associated
with undocumented access to the protected data. The simplified outlook of the
ProASIC3 security is presented in Fig. 1b.

We evaluated all levels of protection in ProASIC3 devices and were able to
circumvent the security at each level. Table 1 summarises the security protection
levels in the ProASIC3 devices according to our research findings. The Passkey
offers the highest level of security for reprogrammable chip, while the Permanent
Lock should be used as the last resort and will turn the device into a one-
time programmable (OTP) chip. However, despite it being a seemingly ultimate
protection mechanism, the Permanent lock has some physical security flaws. We
found it vulnerable to some fault injection attacks, but as this does not fall
within the scope of this paper, we have not gone into further details.

Although with the backdoor we found it is possible to extract the IP blocks –
Array configuration from the FPGA, there are other ways to extract the config-
uration bitstream IP. One was published in 2010 and uses special type of optical
fault injection attacks called ‘bumping attacks’ [23]. Another method uses the
vulnerability of the AES implementation and in particular the message authenti-
cation code (MAC) used to protect the integrity of the encrypted bitstream [24].



Breakthrough Silicon Scanning Discovers Backdoor in Military Chip 29

Table 1. Security protection levels in ProASIC3

Secure area
Read
Access

Verify
Access

Write
Access

Secure
Lock

AES
Encryption

Expected
Security

Attack
Time

FROM (Flash) Yes Yes Yes Yes Yes Medium Seconds

FPGA Array No Yes Yes Yes Yes High Days

AES Key No Yes Yes Yes No Medium Seconds

FlashLock Passkey No Yes Yes Yes No Very High Hours

Backdoor Key No Yes Yes Yes No Very High Hours

Permanent Lock No No Yes No No Ultra High Minutes

By compromising the AES key in ProASIC3 the IP could be extracted even
without access to the encrypted bitstream. Although there is no readback access
for AES-encrypted bitstream configuration, verification is allowed and can be
brute forced given small number of unknown bits. An attacker can pass authen-
tication, then write a mask configuration file containing all zeros but a small
number of ones per each row, e.g. 16 bits in a 832-bit row. Writing ‘1’ over
‘0’ into the Flash configuration memory has no effect, while writing ‘0’ over ‘1’
changes its state. Since each row can be verified independently in 2 ms time,
he can brute force unknown bits row by row. With 50 samples we successfully
extracted full IP from A3P250 in 1 week. There is a MAC security feature to
prevent arbitrary writing in AES mode through validation of data. We broke it
by figuring out that it uses feedback-shift register with just 4 bits of uncertainty
per AES CBC (cipher-block chaining) block and easily bruteforceable off-line.
Moreover, we managed to disable the MAC verification by modifying few lines
in the controlling STAPL file, thus making any arbitrary writing seamless.

3 Experimental Method

Initially, we analysed the chip with standard design tools from Actel – Libero IDE
and FlashPro. The sample of A3P250 device was connected to a standard Actel
FlashPro3 programmer. All of the JTAG operations are undocumented for the
ProASIC3, however, using Actel development software we were able to generate
a series of STAPL files which we analysed to determine the commands used
for different operations. Once we learned the JTAG communication we moved
onto exploring the field of undocumented features. For that we built a special
test board with a master JTAG interface and simple functions controlled by PC
software via an RS-232 interface for convenience (Fig. 2a). The ProASIC3 chip
was placed into a ZIF socket for easier handling. During this stage we gathered
information about the command field and data registers.

The next step was to determine which commands have data fields and measure
the size of the DR registers. We then used a classic DPA setup to analyse the side-
channel emission from the ProASIC3 devices during decryption and to access
operations as well as other undocumented commands. We constructed a simple
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Fig. 2. Test setup: (a)control board, (b)DPA analysis

prototype board with a ZIF socket for the A3P250 device (Fig. 2b) and connected
it to our test board which was providing some additional triggering functions for
the oscilloscope. The power consumption was measured via a 20 Ω resistor in
the VCC core supply line with the Agilent 1130A differential probe and acquired
with the Agilent MSO8104A digital storage oscilloscope. Then the waveforms
were analysed using MatLab software with our own proprietary program code.

We tried all available JTAG command fields in different combinations and
observed all the traces scanned with DPA. In this way we were able to separate
commands with different functions. The unknown commands were then tested
with different data fields, while we observed the response and tried to understand
their function. DPA is a good approach to find normal commands; however it
can hardly help in understanding their functionality because of high noise and
the number of traces required.

In the next set of experiments we used PEA technology (described in our
paper [24]) to achieve an improved signal-to-noise ratio (SNR) in an attempt to
better understand the functionality of each unknown command. Some operations
were found to have robust silicon level DPA countermeasures. For example, the
Passkey is documented as another layer of security protection on top of the AES
encryption in the ProASIC3 to prevent IP cloning. Some DPA countermeasures
found in the Passkey protection include very good compensation of any EM
leakage and broadband spectrum spreading of side-channel emissions for the bit
comparison leakage; internal unstable clock; high noise resulting in SNR below
−20 dB. The prototype sensor setup we used is presented in Fig. 3a.

The system consists of a control interface that can be represented by a personal
computer, a remote control with embedded processor or other human interface
(Fig. 3b). The test algorithm is either present inside the test generator or it is
supplied via the control interface. Each device under test (DUT) requires its own
test algorithm, which is a part of a standard device operation and consists of a
list of commands to run the DUT in the way required by the tester; for example,
to establish an authentication or to decrypt the data. The test signal generator
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Fig. 3. (a)Prototype board with our sensor, (b)Block diagram of PEA setup

produces sets of test patterns according to the programmed algorithm. One part
of the algorithm is fixed while the other is changing. The power supply of the
DUT is provided by programmable power supply. The clock of the AC source can
be synchronised to the external clock provided by the signal generator, which in
turn can be synchronised to the device’s internal clock. This could be done by
injecting the clock signal from the generator into the DUT power supply line.
That allows a significant improvement over the existing measurement equipment
setup by significantly reducing the jitter influence on the measurement results.

As the DUT performs a requested operation it leaks some information via side
channels as a side effect of the device operation. Those side-channel responses
are measured with dedicated sensors specific for each type of side-channel emis-
sion, in our case the resistor in the core supply line. The sensors output the
signals in analog form which are then put through a signal conditioning cir-
cuit to amplify the signal and reduce the noise by applying various filters. The
signal is then delayed by one clock period, determined by the test signal gener-
ator. The purpose of the delay is to be able to compare the device side-channel
response to different input test data. The pipeline delivers its delayed output
to a waveform analyser which compares the new signal with the delayed sig-
nal for the determined number of points and provides an output, which is the
difference between them. The signal from the analyser is conditioned using am-
plifiers and filters to meet the requirement of the acquisition system, which then
converts it in a multiplexed way into a digital form. The output from the multi-
plexer is then transferred to the hardware interface. The response analyser makes
the decision on the reply based on the predetermined decision making patterns
and updates the status register, which is checked by the control system. Our
invention of this new analysis technique is covered by a patent which is avail-
able to the public [25]. Our improvement comes from: real-time attack with no
latency associated with an oscilloscope hardware/software, network and mem-
ory; lower noise with better probe design, analog signal processing and efficient
filtering.
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In the end we used a silicon scanning technique based on PEA combined with
a classic DPA setup (resistor in power line, differential probe, oscilloscope, PC
with MatLab). Communication was analysed with DPA, while the functions of
control registers were tested with both DPA and PEA. This is because for some
operations DPA is not sensitive enough.

4 Results

Scanning the JTAG command field for any unknown commands by checking the
length of the associated DR register revealed an interesting picture. There were
plenty of commands for which the associated DR register has a length different
from one, hence, used by the JTAG engine. Fig. 4a shows some of these registers
learned from the STAPL file analysis as well as newly discovered ones. Not only
that, but some registers were impossible to update with a new data (Fig. 4b).
Most of these registers were representing a Read-Only memory, referred to as
FROW in the STAPL file. Only one row was actually read, but three address bits
allowed eight rows to be accessed. All those hidden and non-updatable registers
were found to be imprinted into certain locations in FROW memory. However,
every single ProASIC3 chip has unique values stored in FROW and, hence,
in hidden registers suggesting that this memory was initialised at a factory and
then locked against overwriting. Now we knew for sure that there is some hidden
functionality in the ProASIC3 chips.

Fig. 4. JTAG scanning results: (a)hidden DR registers, (b)non-volatile DR registers

Although they do not have any specialised DPA countermeasures, the ProA-
SIC3 devices are at least 100 times longer to attack using DPA than non-
protected conventional microcontrollers such as PIC, AVR, MC68HC, MSP430
etc. The robust hardware design features are complemented with the total lack
of information about JTAG engine operation, hardware implementation and
commands. That makes any attacks on the ProASIC3 chips quite a challenging
task. Fig. 5a shows the result obtained by comparing single traces for different
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input data. Averaging over 4,096 traces gives a low-noise result, but takes a
couple of minutes to acquire (Fig. 5b). As can be seen, for single traces the
noise overshadows any useful signal with SNR being below −20 dB. The FFT
spectrum of the power trace does not have any characteristic peaks (Fig. 6a)
and filtering will not be very effective for substantially improving DPA results.

The noise can be reduced by using a frequency locking technique. There are
publications on the successful use of these techniques on FPGAs [26]. That way
the timing jitter between traces can be reduced to approximately ten degrees of
the phase shift at 19.7 MHz. However, on the other hand this injects a strong
carrier frequency which needs to be filtered out to avoid any influence on the
power analysis results. Despite good synchronisation and triggering results we
did not observe any improvements compared to the standard DPA setup because
of a very strong presence of a 19.7 MHz signal in the power trace which we were
unable to eliminate of completely.

Fig. 5. Power analysis results: (a)single trace difference, (b)average of 4,096 traces

Various DPA techniques were attempted to extract the Passkey, however, we
were unable to get even a single bit in two weeks time using our off-the-shelf DPA
equipment (oscilloscope with differential probe and PC with MatLab). The traces
that appeared using DPA accounted for many functions including memory access,
AES, Passkey and other, yet to be learned, functions. Even for an unprotected im-
plementation of AES encryption it would require at least 256 traces to be averaged
to reduce the noise and get a reliable correlation with key bits (Fig. 5). The PEA
approach allowed the key bits to be guessed at in real time and with a very good
correlation with the key bits. The outstanding sensitivity of the PEA is owed to
many factors.One ofwhich is the bandwidth of the analysed signal,which forDPA,
stands at 200MHzwhile inPEAat only 20 kHz.This not only results inmuch lower
electronic noise, which is proportional to the square root of the bandwidth, but the
cost of the acquisition hardware becomes several orders of magnitude lower. This
also impacts on the latency thus allowing real-time analysis, because the signal
produced for the analysis has almost 100% correlation with the key bits guesses
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Fig. 6. Power analysis of ProASIC3: (a)FFT spectrum, (b)PEA scan for AES key

(Fig. 6b). This makes extraction time extremely fast. All that needs to be done in
the end for the key extraction is to demodulate the signal and compare it with the
reference peak. This canbe easily performed by a simple one-dollarmicrocontroller
with on-chip ADC.

Initially we analysed all the active JTAG commands using power analysis.
Fig. 7a shows how AES authentication and Passkey verification traces look, while
Fig. 7b shows traces of Array verification and Flash FROM reading commands.
With the analysis of JTAG commands, one particular function was requesting a
128-bit key with the similar low-leakage DPA resistance property as the Passkey.
It also had robust countermeasures that proved to be DPA resistant. In addi-
tion to an unstable internal clock and high noise from other parts of the circuit,
the Passkey and backdoor access verification had their side-channel leakage con-
siderably reduced compared to AES operation. This was likely to be achieved
through using a well compensated silicon design together with ultra-low-power
transistors instead of standard CMOS library components. In addition, the useful
leakage signal has a spread spectrum with no characteristic peaks in frequency
domain, thus making narrow band filtering useless. We used the similar PEA
approach to extract both the Passkey and the backdoor key by looking for any
notable changes in the response from our sensor for correct and incorrect guesses.
However, due to much more robust DPA countermeasures it took us approxi-
mately one day to achieve this using simple PEA hardware. For the classic DPA
setup, in order to achieve at least 0.1 mV difference detectable by an oscillo-
scope, at least 32 consecutive bits of the key must match. Given the input noise
of probe+oscilloscope of 1mV at least 64 synchronous or 1024 asynchronous
averages must be performed. It takes about 15 seconds to average the signal
on MSO8104A to get a positive SNR. Finding all the unknown bits of the key
with DPA would take 232 times longer or approximately 2,000 years. Further
investigation of the backdoor key operation revealed that it unlocks many of the
undocumented functions, including reprogramming of secure memory areas and
IP access.
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Fig. 7. Examples of JTAG power traces: (a)AES vs Passkey, (b)Array vs FROM

At this point we went back to those JTAG registers which were non-updatable
as well as FROW to check whether we could change their values. Once the
backdoor feature was unlocked, many of these registers became volatile and the
FROWwas reprogrammable as a normal Flash memory. Actel has a strong claim
that “configuration files cannot be read back via JTAG or any other method” in
the ProASIC3 and in their other latest generation Flash FPGAs [4]. Hence, they
claim, they are extremely secure because the readback access is not implemented.
We discovered that in fact Actel did implement such an access, with a special
key used for activation.

Alongside this backdoor there is another layer of security in the guise of data
permutation to obscure information and make IP extraction less feasible. This
can also be dealt with using a simple brute force attack, because permutation
functions do not withstand differential cryptanalysis as every single-bit change
at the input results in a single-bit change at the output. Our experiments showed
how some information can be found via systematic testing of device operations.
Through this method, for example, we found the correspondence between bits
in the 832-bit verification data and bits in the data bus.

5 Implications and Further Improvements

Many countermeasures are designed to defeat high end oscilloscopes and their
known noise, latency and signal issues. These countermeasures prevent them-
selves from being broken in an affordable time through suppressing the signal
or by bringing it to a higher noise level. Our approach through the use of be-
spoke hardware and the removal of the oscilloscope from the testing process, is
designed to have the sensitivity to detect even the smallest variation in signal,
which then allows more detailed analysis. The setup with which we achieved
these eye-opening results is in its most basic form, employing a single pipeline
(one channel).

Having taken this technology to proof of concept, we would like to develop it by
building a multi-pipeline system consisting of 100 channels as well as new, more
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efficient hardware for our probes, with the aim of further improving sensitivity
and speed by a factor of 10. We firmly believe that with the increase in capability
planned for the next generation of our technology, defeating more secure DPA
countermeasures is a very real and achievable expectation. Using a low-noise
side-channel measurement setup with a carefully designed probe a 10× further
improvement can be achieved. Further improvements can be done to the scanning
algorithm itself thus improving the effectiveness by a further 10×. All these
improvements can bring the analysis time down to hours or even minutes.

We noticed that FPGA security relies heavily on obscurity. This ranges from
the lack of any documentation on the JTAG access interface, and absence of
information on the internal operations, down to the data formats. This works
well unless an attacker is determined to discover all this information on their
own. Alternatively, more information can be gained through the analysis of the
development tools and programming files for some chips. That certainly raises a
concern about the amount of information a potential attacker can gain through
development kits.

Some DPA and design cloning countermeasures might be ineffective in light of
efficient silicon scanning techniques. For example, Intrinsic ID offers a software
level solution for secure storage of crypto keys [27]. However, for an attacker
who has full access to the chip through a backdoor and is capable of extracting
the bitstream, localising and defeating the protection mechanism will be trivial.
He will still have to understand the proprietary bitstream encoding, however,
this can be achieved in several ways from reverse engineering the development
software, through active attacks on chips, to reverse engineering the FPGA chip
itself. Therefore, solutions with silicon-level fingerprinting using physical unclon-
able functions (PUF) will be ineffective in the presence of backdoors.

One could possibly argue that the backdoor we discovered is a bug or some-
thing overlooked by the developers. However, this is not the case as we performed
intensive investigation into this problem and found proof that the backdoor was
deliberately inserted and even used as a part of the overall security scheme. The
backdoor feature was designed as a part of the JTAG security protection mech-
anism and traces can be found in the Actel’s Libero FPGA design software.
Anyone with this free software installed on their Microsoft Windows machine
can go to the Search option in the Start menu and search for one of the fuse
names taken from Actel generated STAPL file. For example, search for the word
ULUWE in all files. This will return all STAPL files together with templates
and algorithm description files. Inside some of those files there is a proof of the
designed backdoor feature.

At the same time, other hidden features could be used to assist even more
deeper recovery of the information from the chip. For example, if someone over-
produced pre-programmed ProASIC3 chips for some important design and then
decided on using another product; they can erase the chips and sell them on
the grey market. No one would expect any security flaw because the chips are
erased and no longer hold any useful data. This is not quite true and in fact there
are still some tiny traces of the information left deep inside the Flash cells [28].
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With the help of some hidden registers we found during the JTAG scan we
were able to adjust the reference voltage of the read-sense amplifiers used by the
backdoor and successfully extracted the bitstream configuration from the erased
ProASIC3 chip. If you use ProASIC3 in a sensitive military system that had a
destructive wipe as a security feature in case of the systems capture, erasing the
chip would not be sufficient to prevent the readback of the user IP. This was a
good example of combining the backdoor with hidden and undocumented JTAG
debug functions.

6 Conclusion

Our experiments had achieved the affordable time for scanning of two weeks.
As a result we were able to locate and exploit an undocumented backdoor in
the Actel/Microsemi ProASIC3 chip positioned as the industry’s highest security
device. To our knowledge this is the first documented case of a backdoor inserted
in a real world device with critical applications. Not only can a poorly protected
AES key be extracted from the ProASIC3 chips in no time and with minimal
effort, but the Passkey which was believed to be unbreakable and which was
robust against DPA attacks can also be extracted.

The discovery of a backdoor in a military grade chip raises some serious ques-
tions about hardware assurance in the semiconductor industry. When you use
and buy an embedded system or computer it is assumed, wrongly in our opin-
ion, that the hardware is completely devoid of any vulnerabilities. We investi-
gated the ProASIC3 backdoor problem through Internet searches, software and
hardware analysis and found that this particular backdoor is not a result of
any mistake or an innocent bug, but is instead a deliberately inserted and well
thought-through backdoor that is crafted into, and part of, the ProASIC3 se-
curity system. We analysed other Actel/Microsemi products and found they all
have the same backdoor. Those products include, but are not limited to: Igloo,
Fusion and SmartFusion. The ProASIC3 is heavily marketed to the military and
industry and resides in some very sensitive and critical products. From Google
searches alone we have found that the ProASIC3 is used in military products
such as weapons, guidance, flight control, networking and communications. In in-
dustry it is used in nuclear power plants, power distribution, aerospace, aviation,
public transport and automotive products. This permits a new and disturbing
possibility of a large scale Stuxnet-type attack via a network or the Internet on
the silicon itself. If the key is known, commands can be embedded into a worm
to scan for JTAG, then to attack and reprogram the firmware remotely. The
backdoor is close to impossible to fix on chips already deployed because, unlike
software bugs in a PC Operating System, you cannot issue a patch to fix this.
Instead one has to replace all the hardware which could be extremely expensive.
It may simply be a matter of time before this backdoor opportunity, which has
the potential to impact on many critical systems, is exploited.

The chip manufacturer suggests the possibility of performing remote upgrade
of the firmware in ProASIC3 devices via TCP/IP: “The system containing the
low power flash device can be assigned an IP address when deployed in the field.
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When the device requires an update (core or FlashROM), the programming in-
structions along with the new programming data (AES-encrypted cipher text) can
be sent over the Internet to the target system via the TCP/IP protocol. Once the
MCU receives the instruction and data, it can proceed with the FPGA update.
Low power flash devices support Message Authentication Code (MAC), which
can be used to validate data for the target device” [2]. However, as we have al-
ready mentioned, the implementation of the MAC is very insecure and trivial to
break. That only increases concerns about the remote updates and taking over
the control of systems based on the ProASIC3 and other Actel/Microsemi Flash
FPGAs.

Having a security related backdoor on a silicon chip jeopardises any efforts of
adding software level protection. This is because an attacker can use the under-
lying hardware to circumvent the software countermeasures. Using PUFs is not
likely to offer much help as the firmware that calculates them could be extracted
and then reverse engineered to defeat the protection layer. Using encryption as
an additional protection layer does not always help. Moreover, it could make
things worse, as in the ProASIC3, where the AES key can be extracted in less
than a second’s time [24] compared to hours required for Passkey extraction.

Most of the current DPA-based research into silicon chips is centred on looking
for Trojans. There has been little research conducted into comparing legitimate
chips with counterfeits, using DPA. This is primarily because standard DPA
equipment generates many terabytes of data which requires complex analysis,
resulting in a long lead time and a high cost. As PEA offers superior sensitivity
and high speed analysis, it would be possible to check all chips to be used in
assembly, not just a sample batch. Currently this is not possible with any other
comparison methods whether by DPA or reverse engineering.

A debug port, factory test interface or JTAG can all potentially be used as
points to scan the silicon chip for backdoors or Trojans. Most chips manufactured
these days have at least one of these features present. Until the development of
the efficient silicon scanning techniques, it has been unfeasible to test real silicon
chips for Trojans or backdoors. Using a low-cost system it becomes possible to
independently test silicon for backdoors and Trojans in a matter of weeks. It
would take many years to perform the same task using standard DPA. Most
silicon chips are now designed and made abroad by third parties. Is there any
independent way to evaluate these products that are used in critical systems?
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Appendix

A STAPL Example Code

PROCEDURE IS_SECOK USES GV,DO_EXIT;

IF ( ! (SECKEY_OK==0) ) THEN GOTO SECOK;

STATUS = -35;

PRINT "Error, pass key match failure";

CALL DO_EXIT;

SECOK:

LABEL_SEPARATOR = 0;

ENDPROC;

PROCEDURE DO_CHECK_R USES GV,DO_EXIT,DO_READ_SECURITY;

CALL DO_READ_SECURITY;

IF ( ! (ULARE==0) ) THEN GOTO Label_70;

STATUS = -37;

PRINT "FPGA Array Encryption is not enforced.";

PRINT "Cannot guarantee valid AES key present in target device.";

PRINT "Unable to proceed with Encrypted FPGA Array verification.";

CALL DO_EXIT;

Label_70:

IF ( ! (ULARD==1) ) THEN GOTO SKIPRCHK1;

STATUS = -30;

PRINT "FPGA Array Verification is protected by pass key.";

PRINT "A valid pass key needs to be provided.";

CALL DO_EXIT;

SKIPRCHK1:

IF ( ! (ULARD==0) ) THEN GOTO Label_71;

CHKSEC = 0;

Label_71:

LABEL_SEPARATOR = 0;

ENDPROC;

http://www.intrinsic-id.com/quiddikey_on_Actel_FPGA.html
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Abstract. This work presents a novel low-cost optoelectronic setup for
time- and spatially resolved analysis of photonic emissions and a cor-
responding methodology, Simple Photonic Emission Analysis (SPEA).
Observing the backside of ICs, the system captures extremly weak photo-
emissions from switching transistors and relates them to program run-
ning in the chip. SPEA utilizes both spatial and temporal information
about these emissions to perform side channel analysis of ICs. We suc-
cessfully performed SPEA of a proof-of-concept AES implementation and
were able to recover the full AES secret key by monitoring accesses to the
S-Box. This attack directly exploits the side channel leakage of a single
transistor and requires no additional data processing. The system costs
and the necessary time for an attack are comparable to power analysis
techniques. The presented approach significantly reduces the amount of
effort required to perform attacks based on photonic emission analysis
and allows AES key recovery in a relevant amount of time.

Keywords: Photonic side channel, emission analysis, optical, temporal
analysis, spatial analysis, AES, full key recovery.

1 Introduction

Most side channel attacks focus on system-wide information leakage. However,
photonic side channels also allow selective in-depth analysis of specific parts
of the hardware. Leakage can even be extracted from single transistors within
an integrated circuit (IC). This selectivity has important implications for side
channel analysis. Potentially, signals can be captured that consist entirely of
leakage and are not impeded by side effects originating from the rest of the
system.

Photonic side channel analysis can be considered far more powerful than other
side channel analysis techniques in use today. Recovering side channel leakage
across large areas of an IC or logic becomes unnecessary. Instead, by investing
some time and effort into spatial photonic analysis of an IC’s layout, potential
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weaknesses of the implementation can be efficiently identified and exploited.
In this fashion, attacks targeting single transistors become reality. Moreover,
targeting specific elements of a chip’s logic results in significantly better Signal-
to-Noise-Ratios (SNR). Subsequent analysis of such signals can be as simple as
a binary evaluation of the traces, akin to Simple Power Analysis (SPA).

The main contributions of this paper are as follows:

A Low-Cost Photonic Emission Analysis System. The system is a low-
cost solution to capture photonic emissions of ICs. At approximately the price
of a mid-range oscilloscope, it is specifically tailored for photonic side channel
analysis. This system also cuts down on measurement times when compared to
other state-of-the-art photonic emission analysis methods, see Section 2.4.

A Novel Methodology: Simple Photonic Emission Analysis. With this
methodology we are able to recover signals that consist entirely of side channel
leakage. By carefully identifying potential targets, we can exploit the spatial sep-
aration of logic circuits to eliminate noise within the measurement, circumvent
countermeasures and eliminate other potential side effects stemming from the
rest of the cryptosystem. Signals recovered by this methodology require little to
no additional analysis or post-processing and the key can be recovered directly
by simply observing the traces akin to SPA.

Results of a Successful SPEA of AES. Using SPEA in combination with
our photonic system, we were able to correctly recover the full secret key of
a Proof-of-Concept (PoC) AES-128 implementation running on a common mi-
crocontroller, the ATmega328P. The process technology of the ATmega328P,
approximately 250nm, is the technology used in most smartcard deployments
today. We exploited the photonic side channel leakage of the row address de-
coders to monitor accesses to the AES S-Box and were able to recover the
full AES secret key. This attack works in software and hardware, and even
in the presence of hardware countermeasures, such as memory scrambling and
encryption.

Advantages and Limitations of Our System and Methodology. In addi-
tion to presenting the system, the methodology and practical results, we present
an overview of several potential countermeasures to this kind of attack. Also, we
explain how such an attack could be extended to AES implementations using
compressed tables and to alternative hardware implementations, including other
volatile and non-volatile memories.

Organization. The rest of this work is structured as follows: In Section 2 we
present additional background information on photonic emissions in CMOS, de-
tection techniques, the AES algorithm and related work. Section 3 describes the
optoelectronic system used in this work. In Section 4 we detail our attack against
a PoC AES implementation. Section 5 presents additional considerations for our
system and methodology and also includes several potential countermeasures.
Finally, we conclude in Section 6.
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2 Background

2.1 Photonic Emissions in CMOS

In CMOS technology, carriers gain kinetic energy in a transistor’s conductive
channel as they are accelerated by the source-drain electric field. At the drain
edge of the channel where the field is most intense, this energy is released in
radiative transitions, generating photons [21]. This hot-carrier luminescence is
dominant in n-type transistors due to the higher mobility of electrons as com-
pared to holes. Consequently, optical emissions of CMOS logic show a data-
dependent behaviour similar, but not equal to power consumption. The photon
generation rate is proportional to the supply voltage and the transistor switching
frequency.

Since multiple interconnect layers of modern IC designs prevent generated
photons from escaping the IC on the frontside, hot-carrier luminescence is best
observed from the backside. In this case emitted photons have to pass through the
silicon substrate, which is absorptive for wavelengths shorter than the bandgap
energy, leaving only very few Near-Infrared (NIR) photons for analysis. To reduce
absorption the substrate can be mechanically thinned with standard backside
polishing machines or alternative techniques [12].

2.2 Detection Techniques

Detection of hot-carrier luminescence from the backside, i.e., single near-infrared
photons, must overcome two issues. Firstly, charge coupled devices (CCD) ex-
hibit high spatial resolution, but only allow slow frame rates; single pixel detec-
tors like Photo Multiplier Tubes (PMT), Avalanche Photo Diodes (APD) and
Superconducting Single Photon Detectors (SSPD) offer picosecond timing res-
olution, but only for one small detection area. Secondly, readily available and
affordable Si-based detectors only cover a fraction of the relevant NIR spectral
range. Thus, for efficient photonic emission analysis more complex and expensive
solutions, such as InGaAs-based detectors, are necessary. This is especially true
for analysis of modern ICs with small feature sizes, as the emission spectrum
shifts further to the infrared with decreasing transistor gate length.

One of the most complex detector technologies in use today is Picosecond Im-
age Circuit Analysis (PICA), which is based on gated multi-channel plates with
NIR-sensitive cathode materials. It was developed explicitly for failure analysis
of semiconductors [20,10]. PICA delivers both spatial and temporal resolution,
but offers only very limited NIR-sensitivity. Additionally, integrated PICA sys-
tems have a starting price of around one million Euros in 2012. In contrast to
our optoelectronic system, it is unlikely that these systems will ever become a
commodity.

2.3 The AES Algorithm

The Advanced Encryption Standard (AES) is a secret key encryption algorithm
based on the Rijndael cipher [4]. AES has a fixed block size of 128 bits and
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operates on a 4×4 matrix of bytes, named the state. Depending on the length of
the key, which is 128, 192, or 256 bits, the cipher is termed AES-128, AES-192,
or AES-256. The algorithm is specified as a number of identical rounds (except
for the last one) that transform the input plaintext into the ciphertext. AES
consists of 10, 12 and 14 rounds for 128-, 192- and 256-bit keys, respectively.

Since our attack exploits the leakage obtained during the beginning of the
first round of AES, we present only the two operations that are executed until
then, namely AddRoundKey and SubBytes. In the AddRoundKey step, each byte
of the state is combined with a byte of the round key using the exclusive or
operation (⊕). The round key is derived from the original secret key using Ri-
jndael’s key schedule; each roundkey is the same size as the state, i.e., 128 bits.
The first AddRoundKey operation uses the original secret key, or the first 128 bits
of the secret key for AES-192 and AES-256, respectively. In the SubBytes step,
each byte in the state is replaced with its entry in a fixed 8-bit lookup table,
denoted the S-Box. This is the only operation that provides non-linearity in the
algorithm.

2.4 Related Work

In the failure analysis community hot-carrier luminescence has been used primar-
ily to characterize implementation and manufacturing faults and defects [6,15].
In this field the technology of choice to perform backside analysis is PICA [1]
and superconducting single photon detectors [17]. Both technologies are able to
capture photonic emission with high performance in their respective field, but
carry the downside of immense cost and complexity. One of the first uses of pho-
tonic emissions in CMOS in a security application was presented in [7], where
the authors utilize PICA to spatially recover information about exclusive or op-
erations related to the AddRoundKey operation of AES. Employing PICA in this
manner, led to enormous acquisition times. This is especially true considering
the size of the executed code. It took the authors 12 hours to recover a single
potential key byte [7]. In the same time our system recovers all 16 bytes of the
128-bit AES key twice. In [16] low-cost equipment was used to capture photonic
emissions via backside analysis and gain basic information about the operations
executed on an IC. Even though the author presented low-cost solutions to both
spatially and temporally resolved photonic emission analysis, no attacks using
temporal information were demonstrated. Most recently an integrated PICA sys-
tem and laser stimulation techniques were used to attack a DES implementation
on an FPGA [5]. The authors showed that the optical side channel can be used
for differential analysis and partly recovered the secret key using temporally
resolved measurements. As the authors noted, the use of equipment valued at
more than two million Euros does not make such analysis particularly relevant.
Additionally, the analysis strongly relied on a specific implementation of DES in
which inputs were zeroed. The results required differential analysis and full key
recovery was not presented.

In the field of electromagnetic side channel analysis, location-dependent leakage
was successfully exploited in an attack on an elliptic curve scalar multiplication
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implementation on an FPGAusing a near-fieldEMprobe [9]. The authors scanned
the die surface and collected EM traces at every point. They demonstrated that
location-dependent leakage can be used in a template attack and countermeasures
against system-wide leakage thus can be circumvented.

Side channels based on monitoring memory accesses have also been researched
in the field of cache attacks. In 2004, Bernstein conducted a known-plaintext
memory-access timing attack on the OpenSSL AES implementation that uses
precomputed tables [2]. The mathematical analysis of our attack is very similar.

3 Experimental Setup

To increase the relevance of semi-invasive optical vulnerability analyses and at-
tacks, the experimental system was constructed with off-the shelf components
and employs readily available technical solutions. As neither Si- nor InGaAs-
based detectors can deliver both spatial and temporal resolution in the NIR
range for an affordable price, our system combines the inherent advantages of
both detector technologies in an integrated system. The overall complexity and
cost of this system is considerably lower than common semiconductor failure
analysis and even power analysis systems, as its price is comparable to that of a
mid-range oscilloscope.

3.1 Hardware

The experimental setup consists of two detectors optically and electrically con-
nected to the Device Under Test (DUT) via a custom-built near-infrared mi-
croscope and an FPGA-based controller, see Figure 1(a). The DUT is soldered
onto a custom printed circuit board and mounted on lateral travel stages. The
microscope itself uses finite conjugate reflection type objectives with high nu-
merical aperture and gold plated mirrors to achieve maximum throughput and
a spectrally flat transmission curve. After passing the objective, the hot-carrier
luminescence spectrum is split by a dichroic mirror and each part directed to
the relevant detector. A single Si-CCD serves as the primary detector and cap-
tures NIR photons below the silicon bandgap energy. Its mega-pixel deep deple-
tion sensor is back illuminated and thermoelectrically cooled to ensure optimal
NIR sensitivity and low dark current rates. This detector can take dark-field
reflected-light as well as emission images through the substrate silicon with a
diffraction-limited spatial resolution below 1μm. The acquisition time necessary
for adequate emission images ranges from a few seconds to many minutes. It
depends strongly on the supply voltage of the DUT, the switching frequency of
the transistors under observation and the substrate thickness. Optimized soft-
ware implementations can increase the execution loop frequency and thereby the
switching frequency, which often reduces acquisition times to seconds [11].

The secondary detector is a single InGaAs/InP Avalanche Photo Diode (APD)
commonly found in telecom applications (Telcordia GR-468-CORE). It is op-
erated in Geiger mode and thermoelectrically cooled. Increased dark current
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(a) Optical Emission Analysis Setup (b) Microscope and DUT

Fig. 1. The NIR microscope connects the DUT to the detectors. The two detectors
are controlled via an FPGA-based controller, which handles gate synchronization and
delay control as well as time-to-amplitude conversion and multichannel counting, see
Figure 1(a). The DUT is mounted upside down on a custom printed circuit board
underneath the microscope objective, see Figure 1(b).

and afterpulsing, common to InGaAs/InP-APDs, are reduced by gated operation
and extensive quenching circuits. The diode is coupled to the microscope via an
optical fiber. The fiber’s aperture can be freely positioned in the image plane
and its object plane size varied by changing the position and magnification of
the fiber coupler. Areas of interest, identified in an emission image, can thus be
selected for temporal analysis with high spatial selectivity. Because of its spectral
sensitivity above 1μm, unlike the CCD, this detector does not require a thinned
DUT substrate, as silicon is transparent in this spectral range. Hence, if spatial
orientation relative to the IC’s layout can be obtained by other means, substrate
thinning can be omitted completely. This is especially true when applying our
methodologies across multiple samples of an identical IC, as only a single sample
has to be prepared.

In gated operation the APD is rendered sensitive only for a short window
in time, the detection gate, in every signal cycle. To reconstruct the complete
signal temporally, the detection gate has to be synchronized and shifted relative
to the signal with every signal cycle iteration, similar to a sampling oscilloscope.
Provided the gate delay can be controlled with high resolution, the time reso-
lution and inversely the measurement time depends only on the minimal gate
width. To implement this detection scheme we use an FPGA-based controller
phase-locked to the DUT clock. As the DUT executes the target program code,
the phase-locked FPGA digitally delays and triggers the APD detection gate.
Detection events are sent back to the FPGA and counted in the corresponding
time bins. An additional analog delay can be employed for fine delay control. The
absolute time resolution of our system is jitter-limited to approximately 1 ns.

The measurement time to reconstruct the extremely weak photoemission sig-
nals can be immense: Hundreds of thousands of samples may be necessary to
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achieve an adequate SNR. To drastically reduce the measurement times, the
FPGA triggers hundreds of APD detection gates per execution of the IC. This
results in interleaved measurements.

For our practical evaluation the DUT board consisted of an inversely soldered
ATmega328P supplied with 5V operating voltage, a 16MHz quartz oscillator as
well as decoupling capacitors and an I/O header for external communications and
programming. To shorten the emission image acquisition times, the backside of
the ATmega328P was mechanically polished with an automated backside sample
preparation machine. The remaining substrate was approximately 25μm thick.

3.2 Software

The PoC implementation running on the ATmega328P microcontroller consisted
of a software AES implementation. To increase the frequency of the execution,
only the first AddRoundKey operation and part of the first round of the AES
algorithm were computed on the chip after which the input was reset and the
measurement restarted. Specifically, the implementation computed only the first
AddRoundKey and SubBytes operations, see Section 2.3. Most notably, the AES
S-Box, see Table 2 in the appendix, was implemented in the microcontroller’s
data memory, i.e. the SRAM. Both stack- and heap-based AES implementations
were tested and resulted in offsets within SRAM as described in Section 4.1.

4 Practical Results

This section details our practical results in which we applied SPEA to mount a
practical attack against a Proof-of Concept (PoC) AES implementation.

4.1 Monitoring SRAM Access

Address logic is implemented similarly across all platforms and memories. Hence,
it is a particularly interesting and relevant target. In our implementation the
S-Box is contained within the SRAM, which led us to consider possible side
channels that exist within this memory. Specifically, we considered how SRAM
is accessed in general and how the S-Box would be accessed in the PoC AES
implementation. Memory is structured in rows and columns. In the case of the
ATmega328P, each 512 kilobyte SRAM bank is made up of 64 rows and 64
columns. Thus, each row stores a total of 64 bits, or 8 bytes. An SRAM cell
read begins with assertion of the word line [13]. When any cell within a row of
memory is accessed, the word line for the entire row is asserted. This row select
signal is driven by an inverter that is part of the row decode logic [22].

We used the Si-CCD detector and techniques introduced in [11] to analyze
the emissions of these memory accesses for different addresses and values. With
spatial resolution, accesses between even two adjacent rows of SRAM can be
clearly differentiated, see Figure 2(a) and 2(b). The same kind of analysis can
also be applied to the column addresses.
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(a) Access to 0x300 (b) Access to 0x308

Fig. 2. 120 s emission images of memory accesses to two adjacent memory rows ob-
tained with the Si-CCD detector

By studying the emission images of our PoC AES implementation we identi-
fied the S-Box within memory, see Figure 3 and Table 3 in the appendix. The
emissions of the row drivers are clearly visible to the left of the individual mem-
ory lines. The emission image Figure 3 reveals that the S-Box spans 33 rows of
the SRAM and not 32 as expected. Since the S-Box was implemented as an array
of bytes within data memory, its address depends on how many other variables
are allocated within memory. It is therefore unlikely to be aligned to the begin-
ning of a memory row. During our experiments, the S-Box always exhibited an
offset unless the address was set explicitly.

Fig. 3. Optical emission image of the S-Box in memory. The 256 bytes of the S-Box
are located from 0x23F to 0x33E, see Table 3 in the appendix. The address 0x23F is
the seventh byte of the 0x238 SRAM line, i.e. the S-Box has an offset of 7 bytes. The
emissions of the row drivers are clearly visible to the left of the memory bank. The
image allows direct readout of the bit-values of the stored data. The first byte for
example, as shown in the overlay, corresponds to 011000112 = 6316, the first value of
the AES S-Box.
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4.2 Key Recovery Using the Photonic Side Channel

By observing time-resolved access patterns to a specific row within the S-Box,
the set of key candidates can be greatly reduced. In this attack on the first round
of AES, we observe accesses to a single fixed row r over 256 input messages, in
which all bytes of the input are equal. That is, for every text byte pi = i, i ∈
{0, . . . , 255}, there is an input message mi that consists of 16 concatenated pi’s.
Thus, after the exclusive or of the first AddRoundKey operation, every element
of the S-Box is accessed exactly once for every processed byte b ∈ {1, . . . , 16} in
the first AES round. However, we only measure accesses to rows, i.e., we use the
access patterns to a given row r to eliminate certain key candidates. If potential
offsets are also taken into consideration, the number of key candidates that can
be identified using this attack are shown in Table 1.

Table 1. Number of candidates per key byte and unresolved bits of the whole key,
depending on the offset and row. For an offset of 0, there are only 32 rows.

Offset remaining candidates per key byte unresolved bits of the whole key

r = 1 or r = 33 r ∈ {2, ..., 32} r = 1 or r = 33 r ∈ {2, ..., 32}
0 8 8 48 48
1 1 1 0 0
2 2 2 16 16
3 1 1 0 0
4 4 8 32 48
5 1 1 0 0
6 2 2 16 16
7 1 1 0 0

Note, uneven offsets always result in unique access patterns, allowing for full
key recovery directly.

An attack against our PoC implementation was thus implemented in three
parts: (1) an offline precomputation of potential access patterns, (2) an online
measurement of emissions over all possible input bytes, and (3) an evaluation
resulting in a reduced set of key candidates.

Offline Precomputation. For the first round of AES and independent of the
value b, to determine which row of the S-Box is accessed by a plaintext byte
pi, key byte kj = j, j ∈ {0, . . . , 255}, and for a given offset o ∈ N≥0 and width
of the rows w ∈ N≥1, we introduce the following function row : {0, . . . , 255} ×
{0, . . . , 255} → N:

row(pi, kj) = �(pi ⊕ kj) + o)/w� + 1

Using this function, we can generate the array A, storing the sets of plaintexts
accessing row rl = l, l ∈ {1, . . . , �(256 + o)/w� + 1} for key byte kj :

A(rl, kj) = {pi|rl = row(pi, kj)}
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Time-Resolved Emission Measurement. Expecting input-dependent ac-
cesses to the memory rows, we set our APD detector to measure the photonic
emissions from the row driver inverter corresponding to a fixed memory row
with S-Box elements. Emission traces for all 256 inputs were captured, with an
acquisition time of 90 seconds each. A row access resulted in a clearly defined
photon detection peak with a high SNR, see Figure 4. Empirically defining a
threshold level l determines if a fixed row r of the S-Box was accessed within the
measurement. For a period of time tb in which the b-th byte is processed, and
for the measured photonic emission intensity Ir of a row r:

Mr(tb) = {pi|max(Ir(pi, tb)) > l}

Fig. 4. Time-resolved photonic emission traces of the PoC implementation over
all possible input bytes. All 16 peaks, corresponding to the bytes of the AES-
128 key, are clearly identifiable. Specifically, results are shown for the follow-
ing key, [0x10, 0xF1, 0xB3, 0xB7, 0x1E, 0x81, 0x12, 0xBA, 0xD1, 0x56, 0xAD,

0xBB, 0x17, 0xA2, 0xCA, 0xD5]. Note the SNR, comparing peaks to the noise floor
of traces that are not accessing the SRAM. A two dimensional plot, Figure 5, can be
found in the Appendix.
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Full Key Recovery. Finally, we can identify the resulting set of candidates for
the b-th key byte by analyzing, which key bytes could have caused the measured
accesses, using the precomputed array A:

K(b) = {kj |A(r, kj) = Mr(tb)}
For an S-Box with an uneven offset this results in a complete key recovery. In
the case of an even offset a maximum of eight candidates per key byte remain.
This set can be easily reduced by a second set of measurements selecting another
row or cross-correlation with measurements from column decoder logic.

The measurement time to fully capture the photonic emission signal over time
and all possible inputs, as seen in Figures 4 and 5, amounted to just over six
hours. However, since accesses to the S-Box occur at constant points in time in
every execution, these are the only points that need to be observed in subsequent
measurements. This cuts down the necessary measurement time immensely. Af-
ter initial analysis, any subsequent attacks on identical implementations can
therefore recover the key in less than 45 minutes.

5 Discussion

The effectiveness and relevance of the presented attack depends on and there-
fore highlights the importance of preliminary spatial analysis. It demonstrates
how the measurement time can be considerably reduced, while greatly boost-
ing the SNR, by targeting the leakage of specific transistors directly. This basic
methodology can be applied to many different attack vectors. Effectively, every
transistor exhibiting data-dependent behaviour becomes a potential target.

The initial spatial analysis is necessary to allow for at least a basic under-
standing of the chip’s functionality and the identification of potential points of
interest. In our approach we use a Si-CCD, which operates with very few imped-
ing photons at the edge of the spectral range to which silicon is sensitive. This
low cost approach requires DUT substrate thinning. However, more expensive
InGaAs-cameras can also be used, which are sensitive to photons above 1μm
wavelength. In this spectral range silicon is transparent and substrate thinning
therefore becomes unnecessary. It is worth noting that many modern security
ICs, such as smartcards, have a far thinner substrate than common general
purpose microcontrollers. As a result, many security ICs do not have to be
thinned at all for semi-invasive optical backside analysis. In contrast, modern
ICs generate less and less photonic emissions due to lower supply voltage. How-
ever, recent works have demonstrated that emission analysis of modern ICs is
possible [18,19], especially if NIR-sensitive detectors are employed. An example
of such a device is the InGaAs/InP-APD used in this work.

In the presented attack, full key recovery was achieved for an S-Box with an
uneven offset. For a fully-aligned S-Box implemented in 8-byte-rows of memory,
the set of potential key candidates can still be greatly reduced to approximately
248, see Table 1. However, by performing additional temporal measurements of
alternative points of leakage on the chip, the set of potential key candidates can
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nevertheless be reduced to a single key candidate. It is feasible, for example, to
exploit the leakage of the column decode logic and reveal the exact address of
memory accesses using cross-correlation. SPEA can potentially be extended to
any addressable memory. It can also easily be adopted to AES-192 and AES-256
and to alternative implementations, which use compressed tables. If additional
measurements can be captured in a reasonable amount of time, the attack could
even be implemented as an unknown-plaintext attack, as demonstrated for a
cache timing attack by [8].

It is worth noting, that many industry standard countermeasures, in fact,
do not prevent photonic emission attacks at all. Shields and meshes generally
only protect against attacks from the frontside. Memory encryption and scram-
bling [14] may protect against probing attacks, but have no effect on the optical
emissions. For SPEA, the memory access patterns would be unaffected. However,
memory encryption would make the initial spatial analysis more cumbersome. It
would obfuscate the values in memory, preventing the memory from being read
out optically. Memory scrambling would, on the other hand, potentially make
the attack far easier. Since the goal of memory scrambling is to obfuscate the
layout of memory in terms of addresses, it increases the likelihood that a single
S-Box element may be isolated in a row of memory. If the positions of memory
are spatially obfuscated, accessing a single line would reveal all of its elements.

Nevertheless, several potential hardware and software countermeasures to our
attack do exist. Specifically, hardware and software delays, masking and dummy
rounds can make such attacks vastly more difficult. Any form of randomization
forces longer measurement iteration times, thus greatly increasing trace acqui-
sition times. The effects of such countermeasures are identical to the effects on
power analysis, as described in [3] and could be minimized with more advanced,
e.g. differential, signal analysis techniques. On the other hand, at least in this
specific attack randomization techniques could be thwarted by employing APD
detection gates long enough to encompass any and all randomization clock cy-
cles. Since accesses to the S-Box occur at vastly different points in time, the
resulting temporal resolution would still be sufficient to yield all S-Box accesses.

It has also been argued, that shrinking structure sizes will eventually defeat
optical emission analysis and thus photonic side channels. As already mentioned,
recent works show that shrinking feature sizes do not eliminate optical emis-
sion [17,18,19] and photonic detection techniques continue to improve rapidly.
Also, in practice structure sizes only apply to the smallest structures on an IC.
In every IC there are plenty data-dependent transistors that have far larger
channels than that of the smallest logic on the chip. One such example is the
very row driver exploited in this work, which is sized up to cope with the large
capacitances of SRAM memory rows.

As a countermeasure that prohibits any optical emission attacks we would
like to propose an active shield or mesh on the backside of the IC. While a single
metal layer on the backside can trap all photons generated within the chip, active
integrity checks prevent the removal of such a layer. Further countermeasures
are under development with our partners.
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6 Conclusion

Optoelectronic systems are currently the only systems capable of recovering leak-
age from single transistors directly. Despite this fact, the photonic side channel
attacks presented so far failed to utilize both temporal and spatial information in
the attacks [5,7,16]. By combining temporal measurements of an InGaAs/InP-
APD detector with the spatial resolution of a Si-CCD, potential targets are
identified quickly and easily. Also, unprecedented levels in terms of SNR and
therefore information leakage over acquisition time are achieved. The optoelec-
tronic system employed in this work outperforms many state of the art opto-
electronic systems, for a fraction of the cost of the system utilized in [5]. The
necessary acquisition time for the attack presented is comparable to power anal-
ysis attacks.

In our Simple Photonic Emission Analysis of AES, we initially evaluated emis-
sion images and subsequently performed temporal measurements. As a result we
were able to mount a successful attack that utilizes both spatial and temporal
information retrieved from photonic emissions. Provided the spatial information
from the preliminary evaluation of emission images, we were able to focus the
temporal measurements directly on a single transistor of the IC. The informa-
tion leakage was so high that no additional analysis was necessary to recover all
16 bytes of the AES-128 secret key, akin to SPA and for a similarly low price
in terms of equipment. The optoelectronic system employed in this work costs
approximately the same as a mid-range oscilloscope, yet because it is spatially
selective, offers vastly better characteristics in terms of leakage SNR. To the best
of our knowledge this is the first work to combine temporal and spatial photonic
side channel analysis. It demonstrates that even the leakage of a single transistor
can be exploited directly to recover the full AES secret key.
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Appendix

Table 2. The AES S-Box, used during SubBytes operation, in hexadecimal represen-
tation. The first 4 bits of the input determine the row, the last 4 bits determine the
column.

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
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Table 3. AES S-Box in 32×8 implementation with an offset of 7. The sum of row and
column index yields the entry’s index, each entry denotes the corresponding input and
output value.

0 1 2 3 4 5 6 7

0x338 f9 (99) fa (2d) fb (0f) fc (b0) fd (54) fe (bb) ff (16)
0x330 f1 (a1) f2 (89) f3 (0d) f4 (bf) f5 (e6) f6 (42) f7 (68) f8 (41)
0x328 e9 (1e) ea (87) eb (e9) ec (ce) ed (55) ee (28) ef (df) f0 (8c)
0x320 e1 (f8) e2 (98) e3 (11) e4 (69) e5 (d9) e6 (8e) e7 (94) e8 (9b)
0x318 d9 (35) da (57) db (b9) dc (86) dd (c1) de (1d) df (9e) e0 (e1)
0x310 d1 (3e) d2 (b5) d3 (66) d4 (48) d5 (03) d6 (f6) d7 (0e) d8 (61)
0x308 c9 (dd) ca (74) cb (1f) cc (4b) cd (bd) ce (8b) cf (8a) d0 (70)
0x300 c1 (78) c2 (25) c3 (2e) c4 (1c) c5 (a6) c6 (b4) c7 (c6) c8 (e8)
0x2F8 b9 (56) ba (f4) bb (ea) bc (65) bd (7a) be (ae) bf (08) c0 (ba)
0x2F0 b1 (c8) b2 (37) b3 (6d) b4 (8d) b5 (d5) b6 (4e) b7 (a9) b8 (6c)
0x2E8 a9 (d3) aa (ac) ab (62) ac (91) ad (95) ae (e4) af (79) b0 (e7)
0x2E0 a1 (32) a2 (3a) a3 (0a) a4 (49) a5 (06) a6 (24) a7 (5c) a8 (c2)
0x2D8 99 (ee) 9a (b8) 9b (14) 9c (de) 9d (5e) 9e (0b) 9f (db) a0 (e0)
0x2D0 91 (81) 92 (4f) 93 (dc) 94 (22) 95 (2a) 96 (90) 97 (88) 98 (46)
0x2C8 89 (a7) 8a (7e) 8b (3d) 8c (64) 8d (5d) 8e (19) 8f (73) 90 (60)
0x2C0 81 (0c) 82 (13) 83 (ec) 84 (5f) 85 (97) 86 (44) 87 (17) 88 (c4)
0x2B8 79 (b6) 7a (da) 7b (21) 7c (10) 7d (ff) 7e (f3) 7f (d2) 80 (cd)
0x2B0 71 (a3) 72 (40) 73 (8f) 74 (92) 75 (9d) 76 (38) 77 (f5) 78 (bc)
0x2A8 69 (f9) 6a (02) 6b (7f) 6c (50) 6d (3c) 6e (9f) 6f (a8) 70 (51)
0x2A0 61 (ef) 62 (aa) 63 (fb) 64 (43) 65 (4d) 66 (33) 67 (85) 68 (45)
0x298 59 (cb) 5a (be) 5b (39) 5c (4a) 5d (4c) 5e (58) 5f (cf) 60 (d0)
0x290 51 (d1) 52 (00) 53 (ed) 54 (20) 55 (fc) 56 (b1) 57 (5b) 58 (6a)
0x288 49 (3b) 4a (d6) 4b (b3) 4c (29) 4d (e3) 4e (2f) 4f (84) 50 (53)
0x280 41 (83) 42 (2c) 43 (1a) 44 (1b) 45 (6e) 46 (5a) 47 (a0) 48 (52)
0x278 39 (12) 3a (80) 3b (e2) 3c (eb) 3d (27) 3e (b2) 3f (75) 40 (09)
0x270 31 (c7) 32 (23) 33 (c3) 34 (18) 35 (96) 36 (05) 37 (9a) 38 (07)
0x268 29 (a5) 2a (e5) 2b (f1) 2c (71) 2d (d8) 2e (31) 2f (15) 30 (04)
0x260 21 (fd) 22 (93) 23 (26) 24 (36) 25 (3f) 26 (f7) 27 (cc) 28 (34)
0x258 19 (d4) 1a (a2) 1b (af) 1c (9c) 1d (a4) 1e (72) 1f (c0) 20 (b7)
0x250 11 (82) 12 (c9) 13 (7d) 14 (fa) 15 (59) 16 (47) 17 (f0) 18 (ad)
0x248 09 (01) 0a (67) 0b (2b) 0c (fe) 0d (d7) 0e (ab) 0f (76) 10 (ca)
0x240 01 (7c) 02 (77) 03 (7b) 04 (f2) 05 (6b) 06 (6f) 07 (c5) 08 (30)
0x238 00 (63)
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Fig. 5. Time-resolved photonic emission traces of the PoC implementation over all
possible input bytes as a 2D representation. All 16 peaks, corresponding to the 16 Bytes
of the AES key, are clearly identifiable and show a width of 20 ns. This corresponds to
the employed detection gate width.

Table 4. Amount of unresolved bits of the complete key for AES-192 and AES-256,
depending on the offset and row. For an offset of 0, there are only 32 rows. Attacking
AES-192 or AES-256 requires measuring the photonic emissions of SubBytes during
the first two rounds.

Offset unresolved bits of the whole AES-192 key unresolved bits of the whole AES-256 key

r = 1 or r = 33 r ∈ {2, ..., 32} r = 1 or r = 33 r ∈ {2, ..., 32}
0 72 72 96 96
1 0 0 0 0
2 24 24 32 32
3 0 0 0 0
4 48 72 64 96
5 0 0 0 0
6 24 24 32 32
7 0 0 0 0
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Abstract. Differential Power Analysis (DPA) attacks find a statisti-
cal correlation between the power consumption of a cryptographic de-
vice and intermediate values within the computation. Randomization via
(Boolean) masking of intermediate values breaks this statistical depen-
dence and thus prevents such attacks (at least up to a certain order). Es-
pecially for software implementations, (first-order) masking schemes are
popular in academia and industry, albeit typically not as the sole coun-
termeasure. The current practice then is to manually ‘insert’ Boolean
masks: essentially software developers need to manipulate low-level as-
sembly language to implement masking. In this paper we make a first
step to automate this process, at least for first-order Boolean masking,
allowing the development of compilers capable of protecting programs
against DPA.

Keywords: Compiler assisted cryptography, masking, DPA.

1 Introduction

Cryptographic software provides a challenging target for software engineering.
High-level languages improve programmer productivity by abstracting unneces-
sary details of the program execution and freeing the programmer to concentrate
on the correctness of their implementation. Unfortunately, the details that are
generally abstracted away are the behavioural properties of programs, in order
to focus on their functional results. In cryptography, the way in which a value
is computed may lead to observational differences that an attacker could use to
compromise security. If values within the computation that must remain secret,
such as cryptographic keys, influence the observational behaviour then informa-
tion will leak and may render the system insecure. If a compiler is allowed to
handle the low-level decisions for a given implementation then it must also take
how information may leak into account.

State-of-the-art compilers can rival the efforts of a human in producing high
performance code. For example, effective methods of register allocation, instruc-
tion selection and scheduling often depend on knowledge of the operational de-
tails of memory latency and pipeline behaviour. Extensions to the execution
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models targeted by C compilers such as GCC and VisualStudio allow counter-
measures to be automatically applied against buffer overflow attacks [1]. A more
detailed execution model (e.g. stack frame layout) allows the compiler back-end
to perform program transformation that is aware of security constraints.

The increasingly complex threat of physical (e.g. fault and side-channel) at-
tacks on cryptographic implementations offers an interesting extension of the
above security case. Automatic resolution of said threat is now an emerging
research theme and, alongside more theoretical results in this area (e.g. [2]),
a range of concrete compilation systems exist. For example, Molnar et al. [3]
construct a binary translation (i.e., compilation) tool that resolves control-flow
based leakage using the Program Counter Model (PCM) formalism; Lux and
Starostin [4] describe a tool which detects and eliminates timing side-channels
in Java programs (demonstrating the tool by highlighting an attack against the
FlexiProver implementation of IDEA). Likewise, suitable EDA tool-chains [5]
can, given some HDL model, automatically implement countermeasures against
power-analysis attacks: a back-end which processes some logical netlist can re-
place standard cells with a secure logic style equivalent (e.g. WDDL [6]) before
producing a physical netlist.

Set within this general context, we focus on a specific challenge: given a source
program, the goal is to automatically apply Boolean masking. We therefore intro-
duce a simple type system and make use of static analysis to determine whether
statements (and associated variables) leak in a source program, with the aim
to automatically transform an insecure program into one that is secure against
(first-order) DPA. Our approach currently supports Boolean masking and hence
can be used to secure any program (e.g. AES, DES, Present, etc.) that can be
masked in this way.

2 Background

At execution time, a value in a program is a particular bit-pattern. The mean-
ing ascribed to that pattern is dependent upon the context around the code.
This basic property of computers makes them flexible, as one pattern of bits can
represent many different values depending on the program being executed. How-
ever, it can also be a source of error as the meaning of the value is not denoted
in the executable code, but rather in the source-level description. Type systems
are a method of reducing potential errors by denoting the kind (or type) of value
that a particular variable represents. Compilers can then use this type informa-
tion statically (when compiling the program) to rule out erroneous behaviour.
In this way types can be seen as a static guarantee of safety. Although type
theory is a long establish field within the languages and compilers community,
the authors believe there is no previous work on using types to describe masking
countermeasures.

Conventionally lattices are used within static analysis of programs to produce
conservative results. A lattice is a partially ordered set of values in which every
pair of values has a well-defined supremum and infimum. The analysis is guaran-
teed to be sound (if inexact) as a conservative approximation may use a bound to
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over-approximate unknown values during analysis. Information flow analysis an-
notates program values as high, or low, security and prevents data-flow between
high-security and low-security values. Non-interference was introduced [7] as a
property that can be proven from the program semantics by allowing the erasure
of a high-security region without producing any observable difference in the low-
security region (under the assumption that erasing a secret value does not leak).

Our work shares some similarities to information flow; secret values are anno-
tated by the programmer and their secrecy is treated as a value in a lattice al-
lowing the compiler to propagate secrecy information through the program. The
main difference is the role of the adversary in the system. In information flow the
adversary is considered to be on the “edge” of the computation, while execution of
code within the high-security region is not observable. Power analysis can be used
to make observations at every point in a program; all secure information must be
hidden by masking, but the adversary has the chance to observe all masked opera-
tions. While previous work is analytical, a decision is made if a program is secure,
this work takes a (potentially) broken program and converts it to a functionally
equivalent program that meets the behavioural definition in the model.

Compilers typically operate on an Intermediate Representation (IR) of a pro-
gram. Input text is parsed into an Abstract Syntax Tree (AST) that represents
the structure of program. The AST is then converted to an IR that more closely
resembles the execution of instructions on the target machine. During this pro-
cess temporary variables are introduced to store the intermediate results in com-
puting expressions. A 3-address form represents each instruction in the program
as two input operands, an opcode and an output operand, e.g. r ← a xor b.
When the output operand is unique for each instruction this form is called Static
Single Assignment (SSA). Multiple write operations to the same variable are re-
named to separate instances to ensure this property so that a sequence of the form
x ← a xor b;x ← x xor y becomes the sequence x1 ← a xor b;x2 ← x1 xor y.

The uniqueness of each target operand implies that loop-free programs form a
directed acyclic graph with instructions and variables as vertices, and denoting
usage by edges between those vertices. This graph is conventionally termed a
dataflow representation of the program. In such a graph each vertex v has a set
of ancestors defined as every vertex where a path exists that reaches v.

3 DPA Attacks and Mask-Based Countermeasures

In conducting a DPA attack, an attacker will try to recover information about
a secret (typically a cryptographic key) by using information about the power
consumption of a cryptographic device while it is manipulating the secret in
cryptographic operations. To perform such a DPA attack, an attacker selects a
so-called intermediate value: e.g. in the specific example that we use to illustrate
our work later in this article, the attacker might select the input or output of
the AES SubBytes operation when applied to the first byte of the AES state.

This intermediate value only depends on a small part of the secret key (in our
example only eight bits), which allows an attacker to predict this intermediate
value (using knowledge of the input data) for all possible values of that small
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part of the key. Next an attacker uses a leakage model for the device under attack
to map these predicted intermediate values to hypothetical power consumption
values: assuming the leakage model is reasonably correct, only the set of hypo-
thetical power consumption values that are related to the correct key guess will
match those power consumption values that an attacker can observe from the
device itself. Several statistical tools can be used to ‘match’ hypothetical and
real data, e.g. Pearson’s correlation coefficient, distance-of-means test, etc.

3.1 Masking to Prevent DPA

As can be inferred from the previous description, DPA attacks can only be success-
ful if an attacker can define an intermediate value (based on a suitably small part
of the secret key) that is somehow related to the instantaneous power consumption
of the device. Thus, DPA attacks can be prevented by making it impossible for an
attacker to predict the intermediate values used on the device. A popular method
to this purpose is referred to as ‘masking’. Using AES to illustrate the central prin-
ciple: instead of holding the AES state and AES key ‘as they are’ one applies a
random value to them. For example, the first byte a of the AES state is then repre-
sented as a pair (am,m), withm being the so-calledmaskwhich is a number chosen
at random from a suitable uniform distribution, such that a = am ⊕ m. Equiva-
lently, the first byte of the first AES round key is then represented as pair (kn, n),
with k = kn ⊕ n, and n is chosen at random from a suitable uniform distribution.

In the encryption process itself these masked values need to be processed cor-
rectly and securely. For example, if twomasked bytes are exclusively-ored, we need
to ensure that the result is masked again: am ⊕ bn may be carried out but am ⊕ bm
would result in a ⊕ b being vulnerable to DPA and must not happen. Similarly,
table look-ups must be executed such that both inputs and outputs are masked.

Previous work on masking schemes has explored various options for the effi-
cient computation of various cryptographic functions, e.g. the efficient and se-
cure masking of the AES SubBytes operation has been extensively discussed.
We make use of the work in [8] and [9] by extracting some necessary properties
of secure masking schemes. A useful observation made in these previous works
was that ‘secure against’ DPA attacks is synonymous to the concept of statis-
tical independence between variables, i.e. two variables am = a ⊕ m and a are
statistically independent, if the distribution of am is independent of the choice
of a (for independently chosen uniformly distributed m).

This can be related to some elementary operations involving Boolean vari-
ables. Clearly, if a is arbitrary and m is chosen uniformly at random then
am = a ⊕ m is uniformly distributed (and hence its distribution is the same
irrespective of the choice of a). Furthermore, ama × bmb

, ama × mb, (ama)
2,

p × ama (p a constant), and
∑

ai ⊕ m can also be shown to be independent of
the unmasked values a and b (see [9]). It follows directly that we can guarantee
the independence of the output of any operation involving two masked input
operands as long as the inputs are independently masked.

We note that we have the implicit assumption that only computation leaks, i.e.
masks do not contribute to the leakage of the device when only stored in memory.
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3.2 Masked Variables as Type Annotations

In order to allow static checking of secrecy we annotate each type with informa-
tion to record if it may be revealed publically, or if it should be hidden, and if
so which mask will be used. Rather than a variable a : int, this produces two
alternatives, namely a : public int, and a : secret�m� int. The programmer’s
choice indicates to the compiler which state must remain hidden and which set
of masks will be used to do so.

Hence, this additional type annotations allow a compiler to keep track of the
‘flow’ of masks and intermediate values, to check whether our basic masking rule
holds, and if necessary to ‘backtrack’ variables if there is a problem and add masks
to intermediate variables such that the basic masking rule applies. In other words,
if a programmer implements a description of an algorithm without any masking,
but declares variables related to key and/or state as secret, we can provide the rest
of the masking automatically and hence relieve the programmer of that burden.

3.3 Assumptions

We make the following assumptions about the attacker, the programmer,
and the device in the remainder of this article. The attacker has the ability
to execute the program repeatedly, and on each execution run an observation
(in form of the power consumption) is made on the values computed within the
program. The attacker also has access to the inputs and output data of the en-
cryption algorithm, only the masks and keys are hidden from the attacker. The
programmer must mark every value as either secret or public: a valid compi-
lation requires that all secret values have at least one mask. Both programmer
declared variables and temporary variables inserted during compilation must
meet this requirement.

public values are already known to the attacker. At no stage can a public value
(statistically) depend upon a secret value in a computation. This is partially
analogous to information flow (in the dependence constraint, also called non-
interference).

secret values must be masked with random values which are chosen randomly
from a suitable uniform distribution.

The device on which the cryptographic algorithm is implemented supplies
(pseudo)random numbers which are uniformly distributed. In each execution
run a new set of random numbers is selected and used as masks.

The goal of formalizing a model of countermeasures into a mechanically check-
able procedure is not to prove that programs are leakage-free. Although such a
goal is desirable with the current state of modelling the complexity of the power
consumption characteristics of modern cryptographic devices it is not tractable.
Rather we seek to automate the checking of necessary conditions that must be
fulfilled in order for a program to be leakage-free. Although the specific charac-
teristics of a particular device may still cause the program to leak information,
the automation of the process enables further study of the specific issues.
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4 Algorithm

The algorithm operates directly on an intermediate representation of the pro-
gram. Our system initially parses the source into an Abstract Syntax Tree (AST),
and then converts the AST into a list of instructions in 3-operand form. Dur-
ing conversion all constant bounded loops are statically unrolled and function
calls are inlined. The programs that interest an attacker are ciphers with simple
control-flow that are converted to straight-line code by this process. The result
is a list of instructions and a set of initial variable declarations. Some of the dec-
larations made by the programmer will have security annotations, none of the
temporary variables introduced when converting expressions will be annotated.

The algorithm is designed to imitate the process used by a human engineer.
The first step is inferring what is known about the security of each value in
the program. Our system represents the security annotation as part of the type
signature of each variable in the system; the secrecy of a value can be inferred
from the secrecy of the operands and the kind of instruction used to create it
analogously to the propagation of type information. We refer to this propagation
phase as type inference, described in Section 4.1. After a single type inference
pass two outcomes are possible:

1. Inference successfully checked the security of every value in the program and
detected no leakages.

2. Inference operated to a point where it detected an error; a type was inferred
that showed a leakage of information.

The first case is a successful conclusion and the algorithm terminates by output-
ing the program in the target assembly syntax. In the second case the algorithm
has a record of the particular control point at which leakage occurred. The sec-
ond phase of the algorithm attempts to prevent leakage using a set of program
transformations that model the techniques an engineer currently uses in the same
situation. The repair phase is described in Section 4.2.

4.1 Type Inference

Our prototype used in the experiments operates on a simplified version of the
CAO type system [10]. In principle there should be no barriers to implementing
the algorithm over the full set of CAO types. The algorithm maintains a security
annotation for each type in the system, expressed as algebraic data-types these
annotations are:

mask := Wildcard id | Named n

ann := public | secret [mask]

Every type is either public or secured by a list of masks. Each mask is either
named by the programmer or inserted by the compiler. Masks that have been
named are used to specify contracts with external pieces of software (i.e. the
caller of the routine). Wildcard masks are removed when possible by the com-
piler. The removal is via substitution of another mask and the process is guarded
by the condition that no value can be reduced from more than zero masks to zero
masks. In the example these annotations are attached to the following types:
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type := byte ann | vector n ann | map ann ann

Individual byte variables have their own annotation (and hence set of masks),
while vectors are assumed to be masked by the same set. Maps describe functions
in which the input and output can be masked separately and are used to denote
lookup tables such as S-boxes. We only demonstrate types related to byte-values
as our target architecture is only 8-bit, although this formulation could be ap-
plied to values of any fixed size. Our conversion from AST to 3-address form
unrolls loops statically, inlines function calls and converts to an SSA form. As
each variable has only a single definition, the program type inference operates
in a single forward pass in which the annotation of each variable is inferred from
the operation in the instruction and the previously computed annotations of the
source operands. The cases for type inference can thus be defined as rules that
produce the type on the left when the pattern on the right matches:

public ← public xor public

secretx ← secretx xor public

secrety ← public xor secrety
secret(x ∪ y) \ (x ∩ y) ← secretx xor secrety

These rules can be verified from the definition that a value k with an annotation
of secretx = {x1, . . . , xn} is defined as k ⊕ x1 ⊕ . . . xn, and the same mask in
both source operands will cancel under two applications of xor. If any annotation
is computed to be secret ∅ then the inference stops and an error is generated at
that control point.

The rules for load and store operations are simpler as essentially we only need
to preserve the masking for secret types.

secretx ← load secretx public

The second operand is the index (offset) in memory. After the loop unfolding
during conversion these values are constant and thus known to the attacker. The
case for a map is slightly more general (note that maps essentially implement
masked table look-up operations):

secrety ← load (secretx → y) public
This assumes that themaphas type secretx → y. A consequence of theseminimal
definitions is that any case not included as a valid rule will cause the inference to
fail with an error. This is commonly referred to as a ‘closed world assumption’.

4.2 Repair Heuristics

Each of our repair rules is designed to function generally on any supplied input
program. However, the set of rules is certainly not complete and requires expan-
sion based on the study of other test cases. As a result of this incompleteness,
we will refer to these rules as heuristics, although we emphasize that each rule is
sound and guaranteed to preserve the security of the program being rewritten.
While the compiler ensures the secrecy of variables that are annotated, and in-
fers any necessary conditions on dependent variables (over-approximating where
necessary) it cannot diagnose problems in the specification of secrecy that it is
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given. For example, if the programmer incorrectly labels a secret part of the
state as public then the program will remain insecure upon compilation.

The repair phase operates after an inference pass and transforms a fixed set
of leakages into secure operations. The inference pass handles all forward prop-
agation of information through the acyclic data-flow graph. The type of each
temporary value is infered by applying the inference rules to the instruction
(and its operands) that produced it. As the program is in SSA form this prop-
agation pushes information through the use-def chains in the program; the SSA
form is defined implicitly in terms of the definition and uses of values. The re-
pair phase looks for inconsistent triples of operand types, given the inference
rule associated with the instruction:

Store violations occur when a secret value is stored in a public vector. The
algorithm forms the repair by introducing a new copy of the vector protected
by a fresh wildcard mask.

Map violations occur when a secret value is used as an index in a public map
(e.g. if a key derived value indexes an S-box).

Mask collisions occur during a store operation when the mask set for the
source operand does not equal the mask set for the target vector (maps are
read-only).

Revelations occur when an instruction with secret operands produces a public
value, e.g. the mask sets cancel out.

Both of the first two cases occur because the annotation of the structure in mem-
ory is less secure than the indexing value. In the case of the vector, a new copy
is synthesized in which the elements are covered under a fresh wildcard mask. In
the case where the map is a random shuffle applied to create a secure copy. The
shuffle is defined by an input and an output mask: Sm→n[i] = S[i xor m] xor n.
In both cases substitution is used to convert the program to the secure form: for
every following instruction both read and write accesses to the insecure structure
are rewritten to use the secure version. A shuffling operation is synthesized to
copy the public version into the secret version and inserted directly before the in-
struction causing the error. This operation is expensive as it requires remasking
of the entire table. Positioning this operation before the first use places it before
the beginning of the unrolled loop, affecting loop-hoisting of the expensive code.

Both of the second two cases occur because the propagation of the mask sets
according to the rules defined in the preceding section have yielded a value that is
insecure. In these cases the problem cannot be fixed where it is observed and the
algorithm must find a source for the error that can be fixed. For each operand in
the error-causing instruction the algorithm considers the set of ancestor values.
For each ancestor the algorithm examines the effects of flipping (i.e. adding
/ removing) a single mask at a time in the mask-set of the ancestor. These
single mask flips correspond to the effect of inserting one xor instruction on the
ancestor value and rewriting the subsequent parts of the chain to use the altered
value. In each case the algorithm checks if the problematic value is fixed, and
whether any other values are revealed. If no successful repairs are found, the
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algorithm then considers pairs of flips amongst the ancestor values, triples etc.
When the set of successful flips is non-empty the algorithm uses the number of
inserted flips as a simple metric to choose the least-cost solution.

4.3 Combined Process

The two phases described are executed in alternating order.

1. Infer the types of all values starting from programmer declarations.
2. If an error occurred then perform a repair action on the program.
3. Repeat until no errors are found or a repair cannot be performed.

5 Worked Example

Algorithm 1 is sufficiently complex to necessitate a demonstration using a suit-
able example. The AES block cipher has been extensively used in previous work
to demonstrate the working principle of (Boolean) masking schemes, and we
apply our algorithm to a simplified version of it: we reduce it to a single round
operating on a single column of the state.

The input language for our prototype compiler is derived from CAO. The rich
type system of CAO is especially suitable for analysis [10] and previous work
has shown that the collection types are of benefit in compiling block ciphers [11].
For the MixColumns stage our prototype requires a small number of data-types
and so the input language is a subset of CAO.

Sbox, xtime : Byte -> Byte

key : secret<a> vector of Byte(4)

def mixcols( in:public vector of Byte(4) ) : secret<X> vector of Byte(4)

{

out : secret<X> vector of Byte(4) )

temp : vector of Byte(4)

for i in range(4)

temp[i] := Sbox[ in[i]^key[i] ]

for i in range(4)

out[i] := xtime[temp[i]] + temp[(i+1)%4] + xtime[temp[(i+1)%4]] +

temp[(i+2)%4] + temp[(i+3)%4]

return out

}

The type Byte is used to represent concrete data, while the higher-order type
vector is used to indicate logical grouping. In contrast to C the use of an aggregate
type does not imply anything about the representation in memory, and is simply a
convenience for the programmer [11]. Each type is annotated by a security level. If
the variable is already known to the attacker and can be freely revealed the anno-
tation is public.When the variable must remain hidden a set of masks is specified
with the secret annotation. In the example each declared set is a singleton al-
though larger sets are inferred for temporary variables during compilation. The
programmer has specified the existence of two masks in the source-code:
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Algorithm 1. The Automatic Masking Algorithm

procedure repairMapViolation(pos,inst)
m = new Wildcard
nT = secret {m} → oT where origMap = iT → oT
substitute every use of original map with mapM from pos onwards
insert instructions at pos to compute mapM [i] := orig[i xor oT ] xor m

procedure repairStoreViolation
m = new Wildcard
rewrite vector type in declarations to secret {m}

procedure repairAncs
ancs := {anc | anc ∈ UDC(operand), operand ∈ inst}
worklist := 2ancs (sorted in increasing size and computed lazily)
for each ancset in worklist do

Choose one mask in each ancestor in ancset
Flip the mask in each maskset and rerun the inference
if no new values are made insecure and the problem value is made secure then

Append (mask, ancset) to results
end if

end for
Sort results by size of ancset
if length results > 0 then

Insert flip operations into program
else

Abort with an error
end if

procedure topLevel
while not finished do

bindings := declarations
for each inst, pos in prog do

extract r, a, b, operation from inst
aT , bT := lookup a, b in bindings
rT := infer from operation, aT , bT
if not r in bindings then

store r → rT in bindings
else if operation = store and rT ∈ vectors and aT < rT then

try repairStoreViolation
else if operation = load and rT ∈ maps and bT < in(rT ) then

try repairMapViolation
else if rT �= lookup r in bindings then

try rewriting wildcard masks with declared masks to unify masksets
if rewrite not possible then

Abort with an error
end if

end if
if rT < max aT , bT then

try repairAncs
end if

end for
end while
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1. The key is covered by a mask a, as this masking operation must have occurred
prior to the execution of the mixcols procedure this named mask forms part
of an interface with the calling code.

2. The return value is covered by a mask X, again this forms part of an interface
with the calling code.

Any variable without a security annotation is initially assumed to be public.
If this assumption causes an error during the inference stage then it will be
rewritten with a more secure annotation.

Both the Sbox and xtime functions are declared as public mappings from Byte

to Byte. This leaves some flexibility in their definition, previous work [11] shows
how declarative definitions can be provided and memorized into lookup-tables
by a compiler, or the program can supply a constant array of bytes to encode
the mapping.

The algorithm operates according to the process in Algorithm 1. We now
illustrate some of the steps involved in iterating the inference and repair pro-
cesses. Although the algorithm operates on the low-level 3-op form of the code
this description will proceed at a source-level for reasons of space and clarity
(including presenting the unrolled loops in a rolled form).

5.1 Map Violation Detected in Sbox

Type inference fills in intermediate types until it encounters the expression Sbox[
in[i]^key[i] ]. The type of in[i]^key[i] is inferred to be secret<a>, while
the declaration of Sbox is of type Byte -> Byte. The compiler can “repair” this
type error by synthesizing a new copy of Sbox, which we will call Sboxm. As this
expression includes a part with a secret tag the minimum type annotation for
Sboxm is given by secret<x> Byte -> secret<y> Byte for some secure x and
y such that x �= y. As the index expression is masked under a we can insert a
new mask to produce an annotation of secret<a> -> secret<b> for some fresh
mask b. This mask is called a wildcard as we may merge it with other masks
later to reduce the number of random values required.

The new table Sboxm must be generated at runtime from the original Sbox
table and the masks. The compiler inserts the following code:

Sboxm : secret<a> Byte -> secret<b> Byte

b : fresh Byte;

for i in range(256) :

Sboxm[i] := Sbox[i^a] ^ b

5.2 Store Violation Detected in temp

As the programmer did not specify a security annotation for temp it defaulted
to public. The output of the Sbox map is annotated by secret<b>. This causes
an error in the inference as a secret value cannot be stored in a public variable.
The compiler fixes this error by altering the declared type of temp to be secret<b>.
This step is valid as it is always sound to increase the security of a variable. The
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compiler now expands temporaries in the expression evaluation and converts the
access to use the masked table:

temp : secret<b> vector of Byte(4)

t : secret<a> Byte

t2 : secret<b> Byte

for i in range(4) :

t := in[i] ^ key[i]

t2 := Sboxm[t]

temp[i] := t2

5.3 Revelation Detected in Second Loop

The algorithm proceeds into the second loop where it tries the following inference
until it reaches an error:

t3 : secret<c> Byte // Compiler inserted

t4 : Byte // Compiler inserted

for i in range(4)

t3 := xtime[temp[i]]

t4 := t3 ^ temp[(i+1)%4]

The error arises because the type of t3 is declared to be the same type inferred for
the expression temp[(i+1)%4]. The inference rules for an xor operation cancel
out masks that appear on both sides producing the public annotation for t4.
As a variable predecessor in the user defined code (UDC) is annotated secret

this constitutes a revelation error. The compiler uses the process described in
Section 4.2 to decide upon a repair. As one predecessor temp is a vector it would
be more costly to flip the masks uniformly in each element, rather than simply
flip the masks on t3. As flipping the existing masks does not produce a solution
the compiler inserts a new wildcard mask b.

t3,t5 : secret<c,b> Byte

t4,t6 : secret<b> Byte

out : secret<c,b> Vector of Bytes(4)

for i in range(4)

t3 := xtime[temp[i]] ^ b // Inserted flip operation

t4 := t3 ^ temp[(i+1)%4]

t5 := t4 ^ xtime[temp[(i+1)%4]]

t6 := t5 ^ temp[(i+2)%4]

out[i] := t6 ^ temp[(i+3)%4]

5.4 Mask Collisions Detected

Two subsequent iterations detect inequalities in the masking sets. These are
resolved by unifying the wildcard mask c with the declared output mask X and
inserting a flip operation to remove the mask b from the final result.
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t3,t5 : secret<X,b> Byte

t4,t6 : secret<b> Byte

t7 : secret<X,b>

out : secret<X> Vector of Bytes(4)

for i in range(4)

t3 := xtime[temp[i]] ^ b

t4 := t3 ^ temp[(i+1)%4]

t5 := t4 ^ xtime[temp[(i+1)%4]]

t6 := t5 ^ temp[(i+2)%4]

t7 := t6 ^ temp[(i+3)%4]

out[i] := t7 ^ b;

6 Application to Practice

Our discussion above demonstrates the working principle of Alg. 1. It explains
how this algorithm transforms an insecure (i.e. unmasked) program (in our exam-
ple this was AES reduced to SubBytes and MixColumns for the sake of brevity)
into secure code (i.e. masked). We now briefly discuss practical aspects such
as how the prototype compiler was implemented and the performance overhead
resulting from automated masking.

6.1 Prototype Implementation

A prototype compiler was implemented in Haskell that reads the program source,
applies Alg. 1, and then and outputs ARM assembly compatible with the Cross-
works tools [12]. The use of a declarative language such as Haskell makes the
implementation of a rule-based type-checker particularly simple. Haskell in par-
ticular is suited to embedding experimental languages due to the presence of
monad transformers and their ability to add new forms of control flow.

An extract of this conversion, including annotation of masks as comments
denoted a and b, is given below:

PUSH {R3-R12,R14}

LDR R5, =in

LDR R6, =key

LDR R7, =Sbox_M

LDR R8, =temp

LDR R9, =xtime_M

LDR R10, =out

LDRB R0, [R5, #0] // [[]], [[]], ?

LDRB R2, [R6, #0] // [[a]], [[a]], ?

EOR R3, R0, R2 // [[a]], [[]], [[a]]

LDRB R0, [R7, R3] // [[b]], [[a],[b]], [[a]]

STRB R0, [R8, #0] // [[b]], ?, [[b]]



Compiler Assisted Masking 71

This code snippet shows the sequence of assembly instructions from pushing
some registers onto the stack when the function is called, to loading the first byte
of the AES state and key, exclusive-oring these two bytes and using them as index
for the SubBytes operation. As described before, a masked SubBytes table must
be generated each time the AES code is executed (to facilitate readability this is
however not included in the code shown here). Then the result of the SubBytes
operation is stored. The code is annotated with comments that show how each
register is masked for each instruction, where the mask is given provided between
the brackets [[ ]]. As we assume that the plaintext is public (i.e. unmasked) and
the key is secret (i.e. masked), the first line which refers to loading the plaintext
shows an empty masking set. The second line which refers to the loading of the
key shows that the mask a is used. In the third line where input and key are
exclusive-ored, the result inherits the mask from the key. The fourth line, which
refers to the SubBytes operation, show that this operation has a masked input
(mask a is used) and maps this input to a value which is masked differently
(mask b is used).

6.2 Performance

Performance comparisons are typically highly context specific, in our case it
is useful to bear in mind that different strategies such as loop unrolling lead to
very different code sizes and execution times. Consequently, we provide two more
code snippets, the left-hand one showing an implementation which was hand-
coded and uses loops, the right-hand one showing an implementation which was
hand-coded and unrolls these loops:

PUSH {R3-R12,R14}

BL SubBytes

// ----------------------------

// SubBytes

// Input : R1 - pointer to data

// Output : @R1

// ----------------------------

SubBytes:

MOV R5, #4

LDR R6, =acAESsbox

SubBytes:

SUB R5, R5, #1

LDRB R7, [R1, R5]

LDRB R8, [R6, R7]

STRB R8, [R1, R5]

CMP R5, #0

BNE SubBytes

BX LR

// ------------------

// Macros

// ------------------

.macro Msub i=0

LDRB R5, [R0, \i]

LDRB R5, [R4, R5]

STRB R5, [R0, \i]

.endm

PUSH {R3-R12,R14}

LDR R4, =acAESsbox

Ssub_s0: Msub #0

The clear difference in coding styles leads to different performance figures. The
hand-coded assembly version with loops requires 147 clock cycles to compute the
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SubBytes and MixColumns function (for one column of the state only), whereas
an unrolled version (hand-coded) requires 52 clock cycles. Our algorithm that
automatically adds the masking to an unmasked implementation produces code
that requires 76 clock cycles.

Another aspect to consider is how many masks are introduced. This choice also
depends on performance considerations: MixColumns can be securely masked
using four masks but fewer masks are possible if the performance overhead for
remasking is acceptable. Our algorithm in general first draws from the set of
already existing masks and only adds a new mask if the resulting errors cannot be
resolved otherwise. Consequently, our algorithm will lead to an implementation
that requires the least possible amount of randomness.

7 Discussion and Outlook

In this paper we detail an algorithm for the automated generation of code that is
resistant to first-order DPA, and illustrated the working principle on a concrete
and relevant example. While the source code needs to be written in a particular
format in which a developer can indicate what needs to be protected against
leakage (i.e. for example the cryptographic key), a developer does not need to
have any further knowledge about Boolean masking or even the assembly lan-
guage of a given microprocessor. Indeed, given that our compiler produces code
that is comparable to assembly code written by a human, one could use the same
source for numerous platforms reducing development cost considerably.

The current version assumes that the target microprocessor leaks information
independently for each instruction executed. Some devices may leak informa-
tion in a different model, where the information leakage depends on consecutive
instructions. This may impose a further restriction on the compiler, i.e. that
variables masked with the same mask cannot be manipulated in adjacent in-
structions, and subsequent iterations of our compiler will seek to address this
issue.

Our compiler was designed to produce code that would be resistant to first-
order DPA. Clearly, higher-order masking schemes as recently reported in the
literature ([13], [14]) necessitate a wider range of schemes and operations than
what our compiler currently supports. Implementing a wider range of operations
and schemes could be achieved using a domain specific language, similar to
what has been recently suggested for computing on encrypted data in ([15]).
Our current approach is then interesting as our central contribution, which is
the static analysis of types w.r.t. information leakage, could complement such a
language definition and allow minimising the overall number of masks without
compromising the security of the implementation.
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A Results of a DPA

Whilst we have argued that our algorithm ensures the necessary conditions for
masking to be secure in practice one can be reluctant to accept this without
some ‘concrete’ evidence from at least for one ‘practical’ device.

In the remainder of this section we describe some experiments that were con-
ducted on an ARM7TDMI microprocessor [16] using the example described in
Section 5. We use a simple experimental board on which a microprocessor is
mounted to acquire power traces using a ‘standard’ setup: a differential probe
is used to acquire power traces. We use a suitable sampling frequency and have
an artificially generated trigger point which eases the alignment of traces.

The first experiments focused on compiling the unmasked code described
in Section 5 using a standard C compiler. In our case this was Crossworks for
ARM and the code fragment required 183 clock cycles to execute. We acquired
2000 traces showing the power consumption during the execution of the code,
for a constant secret key and a randomly generated input, and performed some
standard DPA attacks on those traces (targeting the SubBytes output since this
is known to be a good target for AES).

(a) A correlation trace using 2000 traces. (b) The maximum correlation plotted
against the number of traces. The correct
hypothesis plotted in black and the incor-
rect hypotheses in gray.

Fig. 1. Results of a DPA attack on the unmasked implementation which give clear
evidence for the vulnerability of such an implementation on the target platform

The correlation trace for the correct hypothesis is shown in the left panel
of Fig. 1, where numerous peaks show at what points in time the result of the
substitution table is processed by the microprocessor. The right panel shows that
as little as 100 acquisitions would be necessary to reveal the correct key byte.

We performed the same analysis on the code masked by our algorithm and
translated into ARM assembly which requires 76 clock cycles to execute. Fig. 2
shows the results. There are no distinctive peaks in the correlation trace for
the correct key hypothesis (left panel). The right panel confirms that any peaks
in traces of incorrect key hypotheses are equally significant which means that
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(a) A correlation trace using 2000 traces. (b) The maximum correlation plotted
against the number of traces. The correct
hypothesis plotted in black and the incor-
rect hypotheses in gray.

Fig. 2. Results of a DPA attack on the masked implementation demonstrating that no
information leaks

no distinction between key hypotheses is possible. Given the strong leakage sig-
nals present in the unmasked implementation, even with very few traces, this
is a practical confirmation that the masked code is resistant to DPA attacks
on this platform (since even a large number of traces produces no distinctive
correlation).
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1 Introduction

Side-channel analysis exploits the information leaked during the computation
of a cryptographic algorithm. The most common technique is to analyze the
power consumption of a cryptographic device using differential power analysis
(DPA). This side-channel attack exploits the correlation between the instanta-
neous power consumption of a device and the intermediate results of a crypto-
graphic algorithm.

Several countermeasures against side-channel attacks have been proposed. Cir-
cuit design approaches try to balance the power consumption of different data val-
ues [31]. Another method is to randomize the intermediate values of an algorithm
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by masking them. This can be done at the algorithm level [1,5,12,24], at the gate
level [13, 27, 32] or even in combination with circuit design approaches [25].

Many of these approaches result in very secure software implementations.
However, it has been shown that hardware implementations are much more dif-
ficult to protect against DPA [17]. The problem of most of these masking ap-
proaches is that they underestimate the amount of information that is leaked
by hardware, for instance during glitches or other transient effects. The security
proofs are based on an idealized hardware model, resulting in requirements on
the hardware that are very expensive to meet in practice. The main advantages
of the threshold implementation approach are that it provides provable secu-
rity against first-order DPA attacks with minimal assumptions on the hardware
technology, in particular, it is also secure in the presence of glitches, and that
the method allows to construct realistic-size circuits [20, 22, 23].

1.1 Organization and Contributions of This Paper

The remainder of this paper is organized as follows. In Section 2 we introduce
the notation and provide some background material. Section 2.6 contains our
first contribution: a classification of S-boxes which simplifies the task to find
implementations for all S-boxes. In Section 3 we present our second contribution:
a method to decompose permutations as a composition of quadratic ones. We
prove that all 4-bit S-boxes in the alternating group can be decomposed in this
way. We extend the sharing method in Section 4 and show that all 3×3, 4×4 and
DES 6×4 S-boxes can be shared with minimum 3 and/or 4 shares. We investigate
the cost of an HW implementation of the shared S-boxes in Section 5. Some ideas
for further improvements will be provided in the full version of the paper [2].
Finally, we conclude in Section 6.

2 Preliminaries

We consider n-bit permutations sometimes defined over a vector space Fn
2 or

over a finite field GF (2n). The degree of such a permutation F is the algebraic
degree of the (n, n) vectorial Boolean function [6] or also called n-bit S-box.
Any such function F (x) can be considered as an n-tuple of Boolean functions
(f1(x), . . . , fn(x)) called the coordinate functions of F (x).

2.1 Threshold Implementations

Threshold implementations (TI), are a kind of side-channel attack countermea-
sures, based on secret sharing schemes and techniques from multiparty compu-
tation. The approach can be summarized as follows. Split a variable x into s
additive shares xi with x =

∑
i xi and denote the vector of the s shares xi by

x = (x1, x2, . . . , xs). In order to implement a function a = F (x, y, z, . . . ) from
Fm

2 to Fn
2 , the TI method requires a sharing, i.e. a set of s functions Fi which

together compute the output(s) of F . A sharing needs to satisfy three properties:
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Correctness: a = F (x, y, z, . . . ) =
∑

i Fi(x,y, z, . . . ) for all x,y, z, . . . satisfy-
ing

∑
i xi = x,

∑
i yi = y,

∑
i zi = z, . . .

Non-completeness: Every function is independent of at least one share of the
input variables x, y, z. This is often translated to “Fi should be independent
of xi, yi, zi, . . . .”

Uniformity (balancedness): For all (a1, a2, . . . , as) satisfying
∑

i ai = a, the
number of tuples (x,y, z, . . . ) ∈ Fms for which Fj(x,y, z, . . . ) = aj , 1 ≤ j ≤
s, is equal to 2(s−1)(m−n) times the number of (x, y, z, . . . ) ∈ Fm for which
a = F (x, y, z, . . . ). Hence, if F is a permutation on Fm, then the functions Fi

define together a permutation on Fms. In other words, the sharing preserves
the output distribution.

This approach results in combinational logic with the following properties. Firstly,
since each Fi is completely independent of the unmasked values, also the sub-
circuits implementing them are, even in the presence of glitches. Because of
the linearity of the expectation operator, the same holds true for the average
power consumption of the whole circuit, or any linear combination of the power
consumptions of the subcircuits. This implies perfect resistance against all first-
order side-channel attacks [23]. The approach was recently extended and applied
to Noekeon [23], Keccak [4], Present [26] and AES [19]. Whereas it is easy to
construct for any function a sharing satisfying the first two properties, the uni-
formity property poses more problems. Hence reasonable questions to ask are:
which functions (S-boxes) can be shared with this approach, how many shares
are required and how can we construct such sharing?

A similar approach was followed in [28], where Shamir’s secret sharing scheme
is used to construct hardware secure against dth-order side-channel attacks in
the presence of glitches. Instead of constructing dedicated functions Fi, they
propose a general method which replaces every field multiplication by 4d3 field
multiplications and 4d3 additions, using 2d2 bytes of randomness. While the
method is applicable everywhere, in principle, there are cases where it may prove
too costly.

2.2 Decomposition as a Tool to Facilitate Sharing

In order to share a nonlinear function (S-box) with algebraic degree d, at least
d + 1 shares are needed [20, Theorem 1]. Several examples of functions shared
with 3 shares, namely quadratic Boolean function of two and three variables,
multiplication on the extension field GF (22m)/GF (2m) (e.g. multiplication in
GF (4)), and the Noekeon S-box have been provided [20,22,23]. A realization of
the inversion in GF (16) with 5 shares was given in [20]. Since the area require-
ments of an implementation increase with the number of shares, it is desirable
to keep the number of shares as low as possible.

The block ciphers Noekeon and Present have been designed for compact hard-
ware implementations. They have S-boxes, which are not very complex 4×4 cubic
permutations. Realizations for these two block ciphers have been presented for
Noekeon in [22, 23] and in [26] for Present. In order to decrease the algebraic
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degree of the functions for which sharings need to be found, these three real-
izations decompose the S-box into two parts. For the Present S-box, decompo-
sitions S(x) = F (G(x)) with G(0) = 0 have been found where F (x) and G(x)
are quadratic permutations [26]. By varying the constant term G(0) the authors
found all possible decompositions of S(X) = F (G(X)). Both S-boxes F (x), G(x)
have been shared with three shares (F1, F2, F3) and (G1, G2, G3) that are correct,
non-complete and uniform.

When the AES S-box (with algebraic degree seven) is presented using the
tower field approach, the only nonlinear operation is the multiplication in GF (4),
which is a quadratic mapping [19]. This observation has lead to a TI for AES
with 3 shares. In order to guarantee the uniformity, re-sharing (also called re-
masking) has been used four times. Re-sharing is a technique where fresh uniform
and random masks/shares are added inside a pipeline stage in order to make the
shares follow an uniform distribution again.

A novel fault attack technique against several AES cores including one claimed
to be protected with TI method has been proposed in [18]. But as the authors
pointed out, contrary to the AES TI implementation in [19], their targeted core
has been made without satisfying the non-completeness and uniformity proper-
ties by “sharing” the AND gates with 4 shares formula from [19, 20]. Since the
used method does not satisfy the TI properties it should not be called a TI im-
plementation of AES. In addition, the TI method was never claimed to provide
protection against fault attacks.

2.3 Equivalence Classes for n = 2, 3, 4

Definition 1 ([8]). Two S-boxes S1(x) and S2(x) are affine/linear equivalent
if there exists a pair of invertible affine/linear permutation A(x) and B(x), such
that S1 = B ◦ S2 ◦ A.

Every invertible affine permutation A(x) can be written as A · x + a with a an
n-bit constant and A an n× n matrix which is invertible over GF (2). It follows

that there are 2n ×
∏n−1

i=0 (2
n − 2i) different invertible affine permutations.

The relation “being affine equivalent” can be used to define equivalence classes.
We now investigate the number of classes of invertible n × n S-boxes for n =
2, 3, 4. Note that the algebraic degree is affine invariant, hence all S-boxes in a
class have the same algebraic degree.

It is well known that all invertible 2 × 2 S-boxes are affine, hence there is
only one class. The set of invertible 3× 3 S-boxes contains 4 equivalence classes
[8]: 3 classes containing quadratic functions, and one class containing the affine
functions. We will provide a table with a representative of each class in the full
version of the paper [2].

The maximal algebraic degree of a balanced 4-variable Boolean function is 3
[7, 16]. De Cannière uses an algorithm to search for the affine equivalent classes
which guesses the affine permutation A for as few input points as possible, and
then uses the linearity of A and B to follow the implications of these guesses
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as far as possible. This search is accelerated by applying the next observation,
which follows from linear algebra arguments (change of basis):

Lemma 1 ([15]). Let S be an n×n bijection. Then S is affine equivalent to an
S-box S̃ with S̃(0) = 0, S̃(1) = 1, S̃(2) = 2, . . . , S̃(2n−1) = 2n−1.

In the case n = 4, this observation reduces the search space from 16! ≈ 244 to
11! ≈ 225.

De Cannière lists the 302 equivalence classes for the 4 × 4 bijections [8]: the
class of affine functions, 6 classes containing quadratic functions and the re-
maining 295 classes containing cubic functions.1 We will list the classes in the
full version of the paper [2]. The numbering of the classes is derived from the
lexicographical ordering of the truth tables of the S-boxes. In order to increase
readability, we introduce the following notation An

i , Qn
j , Cn

k to denote the Affine
class number i, Quadratic class number j and Cubic class number k of permu-
tations of Fn

2 .

2.4 Order of a Permutation

All bijections from a setX to itself (also called permutations) form the symmetric
group on X denoted by SX . A transposition is a permutation which exchanges
two elements and keeps all others fixed. A classical theorem states that every
permutation can be written as a product of transpositions [29], and although
the representation of a permutation as a product of transpositions is not unique,
the number of transpositions needed to represent a given permutation is either
always even or always odd. The set of all even permutations form a normal
subgroup of SX , which is called the alternating group on X and denoted by AX .
The alternating group contains half of the elements of SX . Instead of AX and
SX , we will write here An and Sn, where n is the size of the set X .

2.5 Known S-Boxes and Their Classes

There are only few cryptographically significant 3 × 3 S-boxes: the Inversion in
GF (23), the PRINTcipher, the Threeway and the Baseking S-boxes. They all
belong to Class 3. There are many cryptographically significant 4 × 4 S-boxes.
To mention some of them: Twofish, Gost, Serpent, Lucifer, Clefia, HB1, HB2,
mCrypton, Klein, Khazad, Iceberg, Puffin, Present, Luffa, Hamsi, JH, Noekeon,
Piccolo.

2.6 The Inverse S-Box

Note that S−1, the inverse S-box, is not necessarily affine equivalent to S and in
this case may not have the same algebraic degree. We know however, that the
inverse of an affine permutation is always an affine permutation. In the case of

1 Independent of [8,15], Saarinen classified the 4× 4 S-boxes using a different equiva-
lence relation [30].
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3 × 3 S-boxes it follows that the inverse of a quadratic permutation is again a
quadratic permutation. Moreover, it can be shown that the 3 quadratic classes
in S8 are self-inverse, i.e. S−1 belongs to the same class as S. In the case n = 4,
we can apply the following lemma.

Lemma 2 ([6]). Let F be a permutation of GF (2n), then deg(F−1) = n− 1 if
and only if deg(F ) = n− 1.

Since the inverse of an affine S-box is affine, and, when n = 4, the inverse of
a cubic S-box is cubic, it follows that in this case the inverse of a quadratic
S-box is quadratic. The Keccak S-box (n = 5) is an example where the algebraic
degree of the inverse S-box (3) is different from the algebraic degree of the S-box
itself (2) [3].

We have observed that there are 172 self-inverse classes in S16. The remaining
130 classes form 65 pairs, i.e., any S-box S of the first class has an inverse S-box
S−1 in the second class (and vice versa). We will provide the list of the pairs of
inverse classes in the full version of the paper [2].

3 Decomposition of 4 × 4 S-Boxes

In this section we consider all 4× 4 bijections, and investigate when a cubic bi-
jection from S16 can be decomposed as a composition of quadratic bijections. We
will refer to the minimum number of quadratic bijections in such a decomposi-
tion as decomposition length. Recall that the Noekeon S-box is cubic but defined
as a composition of two quadratic S-boxes in F4

2 : S(x) = S2(S1(x)). Similarly
the Present S-box is cubic but has also been shown to be decomposable in two
quadratic S-boxes.

Lemma 3. If an S-box S can be decomposed into a sequence of t quadratic S-
boxes, then all S-boxes which are affine equivalent to S can be decomposed into
a sequence of t quadratic S-boxes.

Lemma 4 ([33]). For all n, the n × n affine bijections are in the alternating
group.

Lemma 5. All 4 × 4 quadratic S-boxes belong to the alternating group A16.

Proof. Since all invertible affine transformations are in the alternating group (the
previous Lemma), two S-boxes which are affine equivalent, are either both even
or both odd. We have taken one representative of each of the 6 quadratic classes
Q4

i for i ∈ {4, 12, 293, 294, 299, 300} [8] and have verified that their parities are
even. ��

Now we investigate which permutations we can generate by combining the affine
and the quadratic permutations. We start with the following lemma.

Lemma 6. Let Qi be 6 arbitrarily selected representatives of the 6 quadratic
classes Q4

i . (Hence i ∈ {4, 12, 293, 294, 299, 300}.) Then all cubic permutations
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S that have decomposition length 2, are affine equivalent to one of the cubic
permutation that can be written as

S̃i×j = Qi ◦ A ◦ Qj , (1)

where A is an invertible affine permutation and i, j ∈ {4, 12, 293, 294, 299, 300}.
It follows that we can construct all cubic classes of decomposition length 2 by
running through the 36 possibilities of i × j and the 322560 invertible affine
transformations in (1). This approach produces 30 cubic classes. In the remain-
der, we will denote the S-boxes S̃i×j by i × j and refer to them as the simple
solutions. In the full version of the paper [2] we provide the list of the simple
solutions for all 30 decompositions with length 2. Note that if Qi ◦ A ◦ Qj = S,
i.e. S can be decomposed as a product of i × j, then Q−1

j ◦ A−1 ◦ Q−1
i = S−1.

Since for n = 4 all quadratics are affine equivalent to their inverse, it follows
that S−1 is decomposed as a product of j × i. Thus any self-inverse class has
decomposition i× j and j× i as well. For the pairs of inverse classes we conclude
that if i × j belongs to the first class then j × i belongs to the second class.

To obtain all decompositions with length 3 we use similar approach as for
length 2 but the first permutation Qi is cubic (instead of quadratic) and belongs
to the already found list of cubic classes decomposable with length 2. It turns
out that we can generate in this way the 114 remaining elements of A16.

Summarizing, we can prove the following Theorem and Lemma (stated with-
out proof in [9]).

Theorem 1. A 4 × 4 bijection can be decomposed using quadratic bijections if
and only if it belongs to the alternating group A16 (151 classes).

Proof. (⇒) Let S be a bijection which can be decomposed with quadratic per-
mutations say Q1◦Q2◦. . .◦Qt. Since all Qi ∈ A16 (Lemma 5) and the alternating
group is closed it follows that S ∈ A16.
(⇐) Lemma 3, Lemma 6 and the discussion following it imply that we can gen-
erate all elements of the alternating group using quadratic permutations. ��

The left-hand-side columns of Table 1 list the decompositions of all 4×4 S-boxes.
Theorem 1 implies that the classes which are not in the alternative group i.e. in
S16 \A16, can’t be decomposed as a product of quadratic classes. Now we make
the following simple observation:

Lemma 7. Let S̃ be a fixed permutation in S16\A16 then any cubic permutation
from S16 \ A16 can be presented as a product of S̃ and a permutation from A16.

4 Sharing with 3, 4 and 5 Shares

In this section we focus first on the permutations which can be shared with 3
shares, i.e. all S-boxes in F3

2 and half of the S-boxes in F4
2 . Next we focus on

those functions that can be shared with 4 shares, i.e. the other half of the S-boxes
in F4

2 . Then, we will show how to share all of these S-boxes in F4
2 with 5 shares

without need of a decomposition.
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4.1 A Basic Result

Theorem 2. If we have a sharing for a representative of a class, then we can
derive a sharing for all S-boxes from the same class.

Proof. Let S be an n× n S-box which has a uniform, non-complete and correct
sharing S̄ using s shares Si. Denote the input vector of S by x, and the shares by
xi. Each Si contains n coordinate shared functions depending on at most (s− 1)
of the xi, such that the noncompleteness property is satisfied. We denote by xi

the vector containing the s− 1 inputs of Si.
We now construct a uniform, non-complete and correct sharing for any S-box

S̃ which is affine equivalent to S. By definition, there exist two n× n invertible
affine permutations A and B s.t. S̃ = B ◦ S ◦ A. In order to lighten notation,
we give the proof for the case that A and B are linear permutations. We define
Ā, B̄ as the ns × ns permutations that apply A, respectively B, to each of the
shares separately:

Ā(x1, x2, . . . xs) = (A(x1), A(x2), . . . A(xs)),

B̄(x1, x2, . . . xs) = (B(x1), B(x2), . . . B(xs)).

Denote yi = A(xi), 1 ≤ i ≤ s and define yi as the vector containing the
s − 1 shares yi that we need to compute Si. Consider S̄(Ā(x1, x2, . . . , xs)) =
(S1(y1), S2(y2), . . . Ss(ys)). By slight abuse of notation we can write yi = Ā(xi)
and see that the noncompleteness of the S̄i is preserved in S̄ ◦ Ā. Since Ā is a
permutation, it preserves the uniformity of the input and since S̄ is uniform so
will be the composition S̄ ◦ Ā. The correctness follows from the fact that S̄ is a
correct sharing and that

y1 + y2 + · · ·+ ys = A(x1) +A(x2) + · · ·+A(xs) = A(x1 + x2 + . . . xs) = A(x).

Consider now B̄(S̄(A(x))) = (B(S1(y1)), B(S2(y2)), . . . , B(Ss(ys))). Since B̄ is
a permutation, it preserves uniformity of the output and since S̄ is uniform, the
composition B̄ ◦ S̄ is uniform. The composition is non-complete since the S̄i are
non-complete and B̄ doesn’t combine different shares. Correctness follows from
the fact that S̄ is a correct sharing and hence

B(S1(y1)) +B(S2(y2)) + · · · +B(Ss(ys))

= B(S1(y1) +S2(y2) + · · ·+ Ss(ys)) = B(S(A(x))). ��

4.2 Direct Sharing

The most difficult property to be satisfied when the function is shared is the uni-
formity. Assume that we want to construct a sharing for the function F (x, y, z)
with 3 shares. Then it is easy to produce a sharing which satisfies the correctness
and the non-completeness requirements and is rotation symmetric, by means of
a method that we call the direct sharing method, and that we now describe.
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First, we replace every input variable by the sum of 3 shares. The correctness is
satisfied if we ensure that

F1 + F2 + F3 = F (x1 + x2 + x3, y1 + y2 + y3, z1 + z2 + z3).

In order to satisfy non-completeness, we have to divide the terms of the right
hand side over the three Fj in such a way that Fj doesn’t contain a term in xj .
We achieve this by assigning the linear terms containing an index j to Fj−1, the
quadratic terms containing indices j and j + 1 to Fj−1 and the quadratic terms
containing indices j only to Fj−1. For example,

F (x, y, z) = x+ yz, gives:

F1 = x2 + z2y2 + z2y3 + z3y2

F2 = x3 + z3y3 + z3y1 + z1y3

F3 = x1 + z1y1 + z1y2 + z2y1.

Note that the uniformity of sharing produced in this way is not guaranteed. It
has to be verified separately. The method can easily be generalized for larger
number of shares.

Direct sharing has been used in [26] for the decomposition of the quadratic
permutations F and G of the Present S-box S and similarly for Noekeon [23],
Keccak [4].

With the direct sharing method we were able to find sharings respecting the
uniformity condition for all 1344 permutations of Q3

1, but none of Q3
2 and Q3

3.
We were also able to find sharings for all 322560 permutations of Q4

4, Q4
294 and

Q4
299, but none of Q4

12, Q4
293 and Q4

300. So, unfortunately half of the quadratic
S-boxes can’t be shared directly with length 1 but we still can find a sharing with
length 2 by decomposing them as a composition of the already shared quadratic
S-boxes. Thus, if we use only direct sharing we will be able to find sharings for
all S-boxes in the alternating group but at the cost of longer path.

4.3 Correction Terms

Since direct sharing not always results in an uniform sharing the use of correc-
tion terms (CT) has been proposed [20, 22]. Correction terms are terms that
can be added in pairs to more than one share such that they satisfy the non-
completeness rule. Since the terms in a pair cancel each other, the sharing still
satisfies the correctness.

By varying the CT one can obtain all possible sharings of a given function.
Consider a Boolean quadratic function with m variables (1 output bit), which
we want to share with 3 shares. Note that the only terms which can be used as
CT are xi or xiyi (or higher degree) for i = 1, 2, 3. Indeed terms like xiyj for
i �= j can’t be used in the i-th and j-th share of the function because of the
non-completeness rule and therefore such a term can be used in only 1 share,
hence it can’t be used as a CT.
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Thus counting only the linear and quadratic CT and ignoring the constant
terms, which will not influence the uniformity, for a quadratic function with
m variables we obtain that there are 3(m +

(
m
2

)
) CT. Taking into account all

possible positions for the CT we get 23(m+(m2 )) sharings. For example, for a
quadratic function of 3 variables there are 218 possible CT and therefore for a
3× 3 S-boxes the search space will be 254. This makes the exhaustive search (to
find a single good solution) over all CT unpractical, even for small S-boxes. For
sharing with 4 shares even more terms can be used as CT.

4.4 A Link between the 3 × 3 S-Boxes and Some Quadratic 4 × 4
S-Boxes

Lemma 8. There is a transformation which expands Q3
1, Q3

2 and Q3
3 into Q4

4,
Q4

12 and Q4
300 correspondingly.

Proof. Starting from a 3× 3 S-box S and adding a new variable we can obtain a
4× 4 S-box S̃. Namely, the transformation is defined as follows: let S(w, v, u) =
(y1, y2, y3) and define S̃(x,w, v, u) = (y1, y2, y3, x). It is easy to check that this
transformation maps the first 3 classes into the other 3 classes. ��

The relation from Lemma 8 explains why if we have a sharing for a class in F3
2

we also obtain a sharing for the corresponding class in F4
2 and vice versa, i.e., if

we can’t share a class the corresponding class also can’t be shared. The results
we have obtained with 3 shares are summarized in Table 1 (middle columns).

Recall that if we use only direct sharing we will be able to share with 3 shares
all S-boxes in the alternating group but at the cost of longer path than the one
obtained by decomposition. However using CT we found sharing for classes: Q3

1,
Q3

2, Q4
4, Q4

12, Q4
293, Q4

294 and Q4
299. So all quadratic classes except Q3

3 and Q4
300

can be shared with 3 shares and without decomposition. We want to pose an
open question: find sharing without decomposition to classes Q3

3 and Q4
300 or

show why they can’t be shared with 3 shares in that way.

4.5 Sharing Using Decomposition

As an alternative to the search through a set of correction terms, we can also
construct sharings after using decomposition: we try to decompose S-boxes into
S-boxes for which we already have sharings. This decomposition problem is more
restrained than the basic problem discussed in Section 3 for sharing with 3 shares,
since we can use only the quadratic S-boxes for which we already have a sharing.
It turns out that this extra requirement sometimes increases the decomposition
length by one. For example, decomposition for Q3

3 is 1 × 2 and 2 × 1, i.e., we
obtain a sharing for Q3

3 at the cost of length 2 (instead of length 1). Similarly
Q4

300 can be decomposed as 4× 12, 4× 293, 12× 4, 12× 294, 293× 4, 293× 294,
294 × 12 and 294 × 293 so, again we obtain a sharing with length 2. Table 1
(right columns) gives the results.
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Recall that one can’t find a sharing with 3 shares for cubic functions outside
the alternating group. Thus, 4 shares will be required in this case. Using direct
sharing with 4 shares we obtain slightly better results for the quadratic S-boxes
compared to 3 shares since we were able to share also class Q4

300 (and therefore
Q3

3 too). The sharing of class Q4
300 has further improved the sharings of C4

130,
C4
131 and C4

24 which have sharing with shorter length for 4 shares than for 3
shares. We have also found sharings with 4 shares for the cubic classes C4

1 , C4
3 ,

C4
13 and C4

301 from S16 \ A16 using direct sharing. By using Lemma 7 we obtain
sharings with 4 shares for all 4× 4 S-boxes. Observe that the total length of the
sharing depends on the class we use (C4

1 , C4
3 , C4

13 and C4
301) and also on the class

from the alternating group, which is used for the decomposition. For example,
class C4

7 can be decomposed using C4
1 with length 4 but with classes C4

3 and C4
13

it can be decomposed with length 3. Note also that the number of solutions
differ. We have found 10, 31 and 49 solutions when using C4

1 , C4
3 and C4

13 classes,
correspondingly. Surprisingly for the classes in the alternating group we have
only slight improvement with 4 shares compared to 3 shares and only a few
classes in S16 \A16 have direct sharing with 4 shares. However with 5 shares all
classes can be shared directly without decomposition which is a big improvement
compare to the situation with 4 shares.

Table 1. Overview of the numbers of classes of 4× 4 S-boxes that can be decomposed
and shared using 3 shares, 4 shares and 5 shares. The numbers are split up according
to the decomposition length of the S-boxes (1, 2, 3, or 4), respectively their shares.

unshared 3 shares 4 shares 5 shares remark
1 2 3 1 2 3 4 1 2 3 1

6 5 1 6 6 quadratics
30 28 2 30 30 cubics in A16

114 113 1 114 114 cubics in A16

– – 4 22 125 151 cubics in S16\A16

An open question is why for all S-boxes the sharing with 4 shares does not
improve significantly the results compared to 3 shares and suddenly with 5 shares
we can share all classes with length 1.

Recall that for the Present S-box, decompositions S(x) = F (G(x)) have been
found in [26]. The authors also made an observation that exactly 3

7 sharings out
of the decompositions automatically satisfy the uniformity condition (i.e. without
any correction terms). Recall that with the direct sharing method without CT
we (as well as the authors of [26]) were able to share only 3 quadratic classes: Q4

4,
Q4

294 and Q4
299. The Present S-box belongs to C4

266 and has 7 simple solutions
but only 3 of them can be shared namely 294× 299, 299× 294, 299× 299, which
explains the authors’ observation.

In the full version of the paper [2] we provide a complete list for the sharings
with 3 and with 4 shares with their lengths. Recall that all classes can be shared
with 5 shares with length 1 and that for the S-boxes in S16\A16 no solution with
3 shares exist. Note that the DES 6 × 4 S-boxes can be considered as an affine
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2 × 2 selection S-box with four 4 × 4 S-boxes attached. Since we have sharings
for both 2× 2 and 4× 4 S-boxes we conclude that we have sharings for the DES
6 × 4 S-boxes as well.

5 HW Implementation of the Sharings

In this section, our aim is to provide a fair comparison and prediction what the
cost (ratio of area to a NAND gate referred to as GE) will be for a protected
S-box in a specified library. For our investigations we used the TSMC 0.18μm
standard cell library in the Synopsis development tool.

Quadratic classes and cubic classes with length 1 form the basis to all our
implementations. Therefore, we concentrated our efforts on these classes. While
considering 3 × 3 S-boxes we synthesized 840 affine equivalent S-boxes for each
class. However the number of S-boxes in a class increases to more than 322560
as we move to 4 × 4 S-boxes. In that case, we choose 1000 S-boxes per class to
synthesize.

Table 2. S8: Quadratic S-boxes sharing

3×3 S-boxes Sharing Original Unshared Shared Shared Shared
Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S8 (L) L reg L reg 1 reg 1 reg

Q3
1

Min
1

27.66
-

98.66 138.00 148.00
Max 29.66 121.66 150.00 185.66

Q3
2

Min
1

29.00
-

116.66 174.00 180.00
Max 29.66 155.00 226.66 220.33

Q3
3

Min
2

30.00 50.00 194.33 140.00 167.00
Max 32.00 51.00 201.00 194.33 228.66

Table 3. A16: Quadratic S-boxes sharing

4×4 S-boxes Sharing Original Unshared Shared Shared Shared
Quadratic Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S16 (L) L reg L reg 1 reg 1 reg

Q4
4

Min
1

37.33
-

121.33 168.33 186.33
Max 44.00 223.33 258.00 309.00

Q4
12

Min
1

36.66
-

139.33 204.00 218.00
Max 48.00 253.33 290.33 340.66

Q4
293

Min
1

39.33
-

165.33 194.33 235.00
Max 48.66 297.33 313.00 358.33

Q4
294

Min
1

40.00
-

141.33 170.33 210.33
Max 49.66 261.00 240.00 255.00

Q4
299

Min
1

40.33
-

174.33 211.00 247.00
Max 48.00 298.00 295.33 294.66

Q4
300

Min
2

33.66 58.00 207.33 209.66 249.33
Max 52.66 70.00 346.00 295.00 342.33
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Table 4. S16: Cubic S-boxes sharing

4×4 S-boxes Sharing Original Unshared Shared Shared Shared
Cubic Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S16 (L,L′) L’ reg L reg L’ reg 1 reg

C41 ∈ S16 \A16 Min
1,1

39.66 – 213.66 273.66
Max 40.33 – 378.00 464.66

C43 ∈ S16 \A16 Min
1,1

40.33 – 230.33 286.33
Max 43.00 – 413.66 500.66

C413 ∈ S16 \ A16 Min
1,1

40.33 – 260.00 319.00
Max 41.33 – 423.00 502.66

C4301 ∈ S16 \ A16 Min
1,1

39.33 – 289.33 350.33
Max 59.33 – 526.33 605.66

C4150 ∈ A16 2,2 46.33 71.66 305.33 430.66 414.33

C4151 ∈ A16 2,2 47.33 69.66 286.00 410.00 390.00

C4130 ∈ A16 3,2 48.00 97.33 393.00 375.66 442.66

C4131 ∈ A16 3,2 50.00 99.00 386.00 363.33 435.66

C424 ∈ A16 4,3 48.33 151.33 674.00 616.66 734.66

C4204 ∈ S16 \ A16 2,2 49.00 80.33 - 413.00 501.33

C4257 ∈ S16 \ A16 2,2 47.66 73.66 - 486.00 594.00

C4210 ∈ S16 \ A16 3,3 47.66 119.33 - 602.00 695.33

In tables 2, 3 and 4 we show the implementation results for each class only
the S-box with the minimum GE from the result of our original S-box synthesis
(over the class), as well as the S-box with the maximum GE. However, note that
the Min and Max values should only be taken as indications.

The area results listed in the column original S-box for an n×n S-box include
one n-bit register. If a decomposition is necessary for a correct, non-complete
and uniform sharing, then we included registers in between every pipelining
operation as required [23] which increases the cost as expected.

For classes with decomposition length more than 1, we randomly choose a
class representative i.e. an S-box. Then we implement the smallest amongst all
possible decompositions of this S-box, namely the one which gives minimum
GE. We saw that, classes Q3

3, Q4
300, C4

150, C4
151, C4

130, C4
131, C4

24, C4
204, C4

257 and
C4
210 give relatively small results when implemented as 2 × 1, 12 × 4, 12 × 293,

293 × 12, 12 × 4 × 299, 299 × 12 × 4, 299 × 12 × 4 × 299, 3 × 294, 3 × 12 and
3 × 293× 12 respectively. The area figures for C4

204 and C4
257 differ significantly.

Closer inspection reveals that this is due to the fact that their decompositions
use different S-boxes from C4

3 ; the S-box used in the decomposition of C4
204 is

smaller than the one in the decomposition of C4
257.

6 Conclusions

In this paper we have considered the threshold implementation method, which
is a method to construct implementations of cryptographic functions that are



Threshold Implementations of All 3× 3 and 4× 4 S-Boxes 89

secure against a large class of side-channel attacks, even when the hardware
technology is not glitch-free.

We have analyzed which basic S-boxes can be securely implemented using 3, 4
or 5 shares. We have constructed sharings for all 3×3, 4×4 S-boxes and 6×4 DES
S-boxes. Thus we have extended the threshold implementation method to secure
implementations for any cryptographic algorithm which uses these S-boxes. Note
that the mixing layer in the round function of a block cipher is a linear operation
and thus it is trivially shared even with 2 shares. Finally, we have implemented
several of the shared S-boxes in order to investigate the cost of the sharing as
well as the additional cost due to the pipelining stages separated by latches or
registers.

Table 5. Range for the ratio area of the Shared with length L S-box
area of the Original S-box

3 shares 4 shares 5 shares remark
1 2 3 4 1 2 3 1

3.6–5.2 6.3–6.5 – – 5.0–7.6 – – 5.4–7.4 quadratics in S8

3.3–6.2 6.2–6.6 – – 4.3–6.4 – – 5.1–7.4 quadratics in S16

– 6.0–6.6 7.7–8.2 13.9 – 7.3–9.3 12.8 8.2–15.2 cubics in A16

– – – – 5.4–10.2 8.4–10.2 12.6 10.2–14.6 cubics in S16\A16

Our results summarized in Table 5 show that such secure implementation can
also be made efficient. Note that we consider the cost of sharing with L registers
which is the total price for the sharing (since it includes the sharing logic plus
registers). Observe that the increase of the cost for sharing with 3 shares of a
quadratic S-box is similar for n = 3 and n = 4. As expected, the longer length
a sharing has, the more costly it becomes (for 3 and 4 shares). It can be seen
that sharings with 4 and 5 shares cost up to 50% more than sharings with 3
shares. However, there are several cases when using 4 or 5 shares reduces the
cost by up to 30%, respectively 10%, compared to 3 shares with longer sharing
length. For certain S-boxes using 5 shares may be even beneficial compared to
4 shares (up to 4%) but in general 5 shares are up to 30% more expensive than
4 shares.

An obvious conclusion is that the cost of the TI method heavily depends on the
class the given S-box belongs to as well as the chosen number of shares and the
associated sharing length. Therefore, in order to minimize the implementation
cost the number of shares have to be carefully chosen. For all tested S-boxes
we were able to find a sharing with cost ranging from 3.3 till 12.8 times the
area of the original S-box. However, note that the area numbers are based on a
few implementations from each class. The ratios may change significantly if the
smallest/biggest S-boxes are found for every class.

Acknowledgements: We would like to thank Christophe De Cannière for
the fruitful discussions and for sharing with us his toolkit for affine equivalent
classes.
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Abstract. New countermeasures aiming at protecting against power
analysis attacks are often proposed proving the security of the scheme
given a specific leakage assumption. Besides the classical power models
like Hamming weight or Hamming distance, newer schemes also focus
on other dynamic power consumption like the one caused by glitches
in the combinational circuits. The question arises if with the increasing
downscale in process technology and the larger role of static leakage or
other harder to model leakages, the pure theoretical proof of a coun-
termeasure’s security is still good practice. As a case study we take a
new large ROM-based masking countermeasure recently presented at
CT-RSA 2012. We evaluate the security of the scheme both under the
leakage assumptions given in the original article and using a more real-
world approach utilizing collision attacks. We can demonstrate that while
the new construction methods of the schemes provide a higher security
given the assumed leakage model, the security gain in practice is only
marginal compared to the conventional large ROM scheme. This high-
lights the needs for a closer collaboration of the different disciplines when
proposing new countermeasures to provide better security statements
covering both the theoretical reasoning and the practical evaluations.

1 Introduction

Security-enabled devices like smartcards play a larger and larger role in our ev-
eryday lives. From a mathematical point of view these can easily be protected by
modern ciphers which are secure in a black-box scenario where only the inputs
and outputs can be observed. Unfortunately, with the discovery of side-channel
attacks in the late 90s the security of a device no longer relies only on the use of
a secure cryptographic algorithm, but especially on how this algorithm is imple-
mented. In unprotected implementations sensitive information like encryption
keys can be recovered by observing so called side channels.

Many different kinds of countermeasures have since been proposed either for
protection of software and/or hardware platforms (see [11] for instance). While
the masking countermeasures for software are relatively limited mainly to the
algorithmic level, dedicated hardware circuits further allow the use of special
logic styles and gate-level countermeasures. Preventing side-channel leakage in
hardware is especially intricate since glitches in the circuit can cause otherwise

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 92–106, 2012.
c© International Association for Cryptologic Research 2012
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theoretically secure schemes to leak [12]. Because of their wide versatility the
community has shown a huge interest to different aspects of masking counter-
measures, e.g., [5,6,16,17,19,20]. More recent schemes trying to take the afore-
mentioned problem of glitches into account are schemes relying on multi-party
computation, e.g., [17,19]. Most articles dealing with side-channel countermea-
sures either propose a new scheme and try proving its security in theory under a
given leakage model [19] or evaluating the scheme in practice [15]. Because these
tasks normally require different backgrounds – math vs. engineering – there have
only been few attempts at a joint approach providing theoretically proven secu-
rity in addition to practical investigations.

In this work we focus on the practical evaluation of a masking scheme re-
cently presented at CT-RSA 2012 [10]. It is based on boolean masking and large
Look-Up-Tables (LUTs), and tries to avoid some known shortcomings caused
by updating the mask and masked data at the same time. The idea behind the
scheme is to store and update the masks in a way that the leakage caused by
updating the mask and masked data are not directly related. According to the
given proofs the scheme should prevent any kind of univariate leakage if the
leakage characteristics of the target device fits to a Hamming distance (HD)
model. Taking AES Rijndael in hardware as our case study, we compare the effi-
ciency and side-channel leakage of this scheme with the conventional way of using
global look-up-tables (GLUT) [18]. Following the guidelines in [10], we have im-
plemented the SubBytes transformation using the target masking scheme while
facing difficulties when dealing with the linear parts especially MixColumns.

Using an FPGA-based platform we practically examine and compare the side-
channel leakage of an exemplary design made considering different masking
schemes including the conventional one and those proposed in [10]. We show
that the proposed constructions indeed increase the resistance against power
analysis attacks, but only when restricting the attack to the model assumed in
the original article. Analyzing the resistance of the scheme under more realistic
assumptions about the leakage model shows that the new constructions are as
vulnerable as the conventional one.

We should stress that our practical results do not show any shortcomings
of the scheme considering the assumed leakage model. However, we show that
the model taken into account when designing and proving the security of the
proposed scheme does not comprehensively consider all the possible leakages
which are available in practice.

In Section 2 we define the notations and explain the basics of the target
masking schemes. Our design architectures and adaptions to fit to the schemes’
assumptions are described in Section 3, and the corresponding evaluation results
are provided in Section 4. Finally, Section 5 concludes our research.

2 Preliminaries

When using boolean masking as a side-channel countermeasure, a secret value x,
which contributes to the computations of a cryptographic device, is represented
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by a randomized variable z as x ⊕⊕d
i=1 ri, where each ri is an independent

random variable with a uniform distribution. Each of z, r1, . . . ,rd is considered
as a separate share in this secret sharing scheme, which is called dth-order boolean
masking. Since each share contributes to the computations separately, the scheme
is supposed to provide security at most against dth-order power analysis attacks.
In the literature there exist two distinct definitions for what is the order of an
attack. Some previous work define the order via the number of different leakage
points considered simultaneously mainly because of the sequential processing in
software. Others define the order via the statistical moment applied. In this work
we use the following definition:

– An attack which combines v different time instances – usually in v different
clock cycles – of each power trace is called v-variate attack.

– The order of an attack – regardless of v – is defined by the order of the
statistical moments which are considered in the attack.

For instance, a CPA [4] which combines two points of each power trace by sum-
ming them up is a bivariate 1st-order attack, and a CPA which applies the
squared values of each point of each trace is a univariate 2nd-order attack. Those
attacks where no specific statistical moment is applied, e.g., mutual informa-
tion analysis (MIA) [2], are distinguished only by v like univariate or bivariate
MIA [7].

The focus of this article is 1st-order boolean masking by considering one ran-
dom value for each secret. The main goal of different hardware implementations
of these schemes is to counteract univariate attacks of any order. Therefore, we
consider only these attacks in our evaluations.

While the linear operations of a cryptographic algorithm are easy to adjust
to the underlying boolean masking, providing solutions to adjust the non-linear
parts of different algorithms suitable either for software or hardware platforms
still is not trivial. This has indeed taken huge interest by the community and
several schemes and techniques have been proposed. One which is the focus of
this article is Global Look-up Table (GLUT) introduced in [18]. In the following
we briefly explain the scheme w.r.t to the specific case considered in [10].

Suppose that the desired non-linear part of the target algorithm is a bijection
and denoted by an n× n S-box S : Fn

2 �→ Fn
2 . The secret value x represented by

two shares z = x ⊕ r and r is mapped to a shared representation of S(x), i.e.,
z′ = S(x) ⊕ r′ and r′. This mapping is done by a pre-computed look-up table
T as (z, r) �→ (z′, r′), where output mask r′ is made by a deterministic function
U over input mask r. Therefore, the look-up table T maps a 2n-bit input to
a 2n-bit output and is of a size of 2n · 22n bits. This scheme, which is a usual
way of realizing a masked S-box if the table fits into the memory space, is called
“conventional” scheme in the rest of this article.

The problem which is observed in [10], is a univariate leakage caused when
the registers containing the look-up table input (z, r) are updated by its output
(z′, r′). The bit flips in the registers are represented by (Δz, Δr) = (x ⊕ S(x) ⊕
r ⊕ r′, r ⊕ r′). Therefore, a univariate MIA or a univariate 2nd-order CPA can
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reveal the relation between the bit flips and x. In order to overcome this problem
a new scheme, which is shortly restated below, has been introduced in [10].

In the new scheme, x is represented by two shares z = x⊕ F (r) and r, where
the bit length of r (denoted by p < 2n) is no longer equal to n, and F is a
deterministic function from Fp

2 to Fn
2 . The look-up table T ∗ maps a (n + p)-

bit input (z, r) to an n-bit output z′ = S(x) ⊕ F (r′), and the output mask is
computed easily as r′ = r ⊕ α, where α is a non-zero p-bit constant. The table
T ∗ needs n · 2n+p storage bits and still is comparable to the size of T for values
p close to n. In this case the register update – same scenario as before – leads to
(Δz, Δr) = (x⊕S(x)⊕F (r)⊕F (r′), r⊕r′). The mask difference is constant, i.e.,
Δr = α, but in order to appropriately choose the function F two constructions
have been proposed in [10] (we simplified the conditions for clarity):

– p = n+1, α = ({1}, {0}n), and F (r) = G(r) if r ∈ {0}×Fn
2 and F (r) = {0}n

otherwise. G is an arbitrary bijective function from {0} × Fn
2 to Fn

2 .
– p = n + n′, and for r = (rh, rl) ∈ F2n′ × F2n , F (rh, rl) = G(rh) • rl, where

• denotes multiplication over the finite field F2n . G is an arbitrary injective
function from Fn′

2 to Fn
2 − {0}. The constant α is also made by an arbitrary

non-zero constant α′ ∈ Fn′
2 as (α′, {0}n).

Both constructions satisfy the required conditions, i.e., Δr to be constant and
distribution of F (r) ⊕ F (r′) to be uniform. However, in the first construction
F (r) is zero for half of its input space. In other words, in half of the cases the
secret x is represented by z = x leading to a very high bias in the distribution
of z for a given x and uniformly distributed random r. This issue is not seen in
the second construction, and the function F is uniformly distributed over Fn

2 .
We refer to these two constructions as “first CT-RSA” and “second CT-RSA”
schemes in the rest of this article.

3 Case Study: AES

Hereafter we consider AES Rijndael as the target algorithm, and try to realize
the encryption function using the aforementioned masking scheme. The first
step toward our goal is to make the masked S-box. Because of the byte-wise
computations (n = 8) 16 · 216 = 1M bits storage space is required to realize
the table T of the conventional scheme. For the first CT-RSA scheme, the same
amount of space i.e., 8 · 217 = 1M bits, is required to make the T ∗

1 table. The
second CT-RSA scheme also leads to an 8 · 216+n′

-bit table T ∗
2 , which is still

possible in practice for some small n′.
Therefore, the SubBytes transformation can be easily realized. However, a

question arises when trying to rewrite the linear parts of the algorithm under
either the first or the second CT-RSA scheme. If the key is not masked, as is
assumed in [10], the implementation of AddRoundkey is straightforward. On
the other hand, if the key should also be masked this would push the space
requirements to (8 ·226) = 512M-bit for the look-up table to map the xored data
and key and both their masks to a masked result. This problem becomes worse
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S-box

Fig. 1. The serialized design technique

n p

p

Fig. 2. CT-RSA masking architecture [10]

when trying to maintain the masking schemes while implementing mixcolums
e.g., by a T-table approach.

In order to follow the scheme presented in [10] we suppose that only the
SubBytes transformation is performed using the CT-RSA masking schemes, and
for instance – by applying the F function – the masks are transformed to the
conventional scheme to perform the rest of the encryption operations. In the
following we discuss on issues arising when designing a circuit to solely perform
the SubBytes transformation.

3.1 Our Design

When e.g., because of area constraint, there is only one instance of a circuit,
e.g., S-box, in a design, the hardware designers usually take advantage of the
serialized design methodology. In this technique, as shown in Fig. 1, a rotate
shift register with an S-box circuit as the feedback function is employed. As a
reference we can mention [3,8,9,21] where this design methodology is used.

In either conventional or CT-RSA masking schemes the look-up tables, i.e., T
or T ∗, are quite large that integrating more than one table does not seem to be
practical. However, the CT-RSA scheme has been designed and its security has
been analyzed according to an assumption depicted in Fig. 2. It is assumed that
both shares of a state byte are simultaneously replaced by the corresponding
shares of the substitution value. This means that if a serialized architecture is
considered for implementation, our target masking scheme does not provide the
desired proven security. One solution is to use several multiplexers to select each
state byte as the S-box input and save its output in the same register. This is
usually not a designers’ preferred choice because of its higher area overhead and
slightly bigger control unit compared to the serialized one. The solution that
we have applied to realize the serialized architecture and satisfy the assumption
of the CT-RSA masking scheme is shown in Fig. 3. The rotate byte-wise shift
register is active between each two table lookups (S-box). Therefore, the S-box
output is saved at the same register which contains its input. Compared to both
aforementioned architectures this design leads to time overhead since we have
separated the shift and the save operations. While there are ways to improve
the throughput in this scenario, we deliberately chose to keep it in this simple
way since we are mainly interested in evaluating the side-channel leakage of
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Fig. 3. Our exemplary design to examine conventional and CT-RSA masking schemes

the register updates and there is no need to risk introducing unwanted leakage
sources for throughput reasons.

The target platform we selected to implement the schemes is a Virtex-5 FPGA
(XC5VLX50) embedded in a SASEBO-GII board [1]. We selected three cases of
masking schemes in our experiments to make the corresponding look-up tables:

– Conventional, look-up table T needs – as stated before – 1M bits space.
The deterministic mask-update function U (see Section 2) is selected as
r′ = U(r) = r4 ⊕ 56h in F28 and using the Rijndael irreducible polynomial.

– First CT-RSA, look-up table T ∗
1 also needs a 1M-bit space. α = 100h and

the G function is randomly selected (see Appendix for a table representa-
tion).

– Second CT-RSA, where n′ = 1, i.e., look-up table T ∗
2 also needs 1M bits

space. α = 100h, G(0) = b2h, and G(1) = 5fh.

There are a couple of different ways to implement a large look-up table in FPGAs.
We selected two versions:

– LUT, a combination of 6-input 1-output small look-up tables (LUT6 [22])
which allows realizing a large ROM, and

– BRAM, a combination of 18k-bit block RAMs (RAMB18 [22]) and a few
number of LUT6 which allows implementing a large RAM.

In order to make the T table in the LUT version, we required 1365 LUT6
instances in six depth levels for each output bit, i.e., in sum 21 840 LUT6 in-
stances which perfectly fits to the number of available LUT6 instances in our
target FPGA, i.e., 28 800. Making each the T ∗

1 and T ∗
2 tables similarly we needed

2731 LUT6 instances in seven depth levels for each output bit and in sum 21 848.
The BRAM version of table T needs four BRAM18 and one LUT6 for each

output bit, i.e., 64 BRAM18 and 16 LUT6 for whole of the T table. Each of tables
T ∗

1 and T ∗
2 also needs eight BRAM18 and three LUT6 and in sum 64 BRAM18

and 24 LUT6. We should note that 96 BRAM18 instances are available in our
target FPGA, and n′ = 1 for the second CT-RSA scheme is the only option which
could fit into the available resources either in the LUT or BRAM version.

We should emphasize that we omitted using the Architecture Wizard IP tool
of Xilinx to make the aforementioned look-up tables. Instead, we hard-instanced
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the BRAM18 and LUT6 instances with our desired contents preventing any
optimizations by the synthesizer. Also important to mention is the architectural
difference between the LUT and BRAM versions. The tables made by LUT6
can be seen as a combinational circuit (clockless) which provides output for any
value that appears at its input. However, the block RAMs need one clock cycle
to provide the desired output of the given input. Therefore, our design (Fig. 3)
in LUT version needs one clock cycle to save the table output before each shift.
It means 32 clock cycles for whole of the SubBytes transformation. But one more
clock cycle per state byte is required in the BRAM version leading to 48 clock
cycles in total.

4 Practical Results

As stated before, we used a SASEBO-GII board as the evaluation platform,
and implemented all our experimental designs on its target FPGA (XC5VLX50)
running at a frequency of 3MHz. We also measured power consumption traces of
the target FPGA using a LeCroy WP715Zi 1.5GHz oscilloscope at the sampling
rate of 1GS/s. A 1Ω resistor in the VDD path, a DC blocker, a passive probe,
an amplifier, and restricting the bandwidth of the oscilloscope to 20MHz helped
to obtain clear and low-noise measurements.

We provided 6 design profiles made as Conventional, First CT-RSA, and
Second CT-RSA each in both LUT and BRAM versions. Each design profile
gets 16 plaintext bytes pi∈{1,...,16} and according to the target masking scheme
makes a masked plaintext byte p′i of each by means of 16 independent random
values ri∈{1,...,16} (each 8-bit for the Conventional and 9-bit for the CT-RSA
profiles). 16 secret key bytes ki∈{1,...,16}, which are fix inside the design, are each
XORed with the corresponding masked plaintext byte as zi∈{1,...,16} = p′i⊕ki. In
16 clock cycles zi and ri are serially given to the design (see Fig. 3) to completely
fill the shift registers. Depending on the profile after 32 or 48 clock cycles the
SubBytes transformation is completed.

We provided a clear trigger signal for the oscilloscope which indicates the start
and end of the SubBytes transformation, thereby perfectly aligning
the measured power traces. We also restricted the measurements to cover only
the S-box computations. We fixed the number of measurements for all profiles
to 1 000 000. In the experiments shown below we kept the secret key bytes fix
and randomly selected the input plaintext bytes. Moreover, we made sure of the
uniform distribution of internal random values ri.

The technique we used to evaluate the side-channel leakage of these profiles is
the correlation-collision attack [14]. This attack examines the leakage of one cir-
cuit instance that is used in different time instances. It originally considers only
the first-order leakage, but according to [13] it can be adapted to use higher-order
moments. Since our design profiles realize different 1st-order masking schemes,
we restrict our evaluations to consider only the first- and second-order univari-
ate leakage of the profiles. We should again emphasize the goal of the CT-RSA
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Fig. 4. LUT version, (a) sample power trace, collision attack results by register update
model, (left) first-order (right) second-order: (b) and (c) Conventional, (d) and (e)
First CT-RSA, (f) and (g) Second CT-RSA profiles, each using 1 000 000 traces

profiles which is preventing the univariate side-channel leakage of any order given
the register update leakage model.

We start our evaluations with the LUT version of the Conventional profile.
An exemplary power trace, which shows the S-box table lookup of the first few
bytes, is depicted in Fig. 4(a). We consider the leakage caused by register updates
when the S-box input is overwritten by its output, i.e., vi = (pi ⊕ ki) ⊕ S(pi ⊕
ki) (not considering the masks in the formula). It is indeed the same model
which the security of CT-RSA schemes are based on. In order to perform the
aforementioned collision attack we need to compare the corresponding leakages
of register updates of two different state bytes. We consider the second and the
third state bytes, i.e., v2 and v3, and search for the correct (k2, k3) in a 216 space
by comparing each of the first- and second-order univariate leakages (means and
variances) of corresponding parts of the measured power traces. The result of
these attacks, which are not unexpected, are shown by Fig. 4(b) and Fig. 4(c).
The same scenario is considered for the First CT-RSA profile, and performing
the same attack with the same settings led to the results shown in Fig. 4(d) and
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. LUT version, collision attack results by S-box input model, (left) first-order
(right) second-order: (a) and (b) Conventional, (c) and (d) First CT-RSA, (e) and
(f) Second CT-RSA profiles, each using 1 000 000 traces

Fig. 4(e). Comparing those attack results which are based on the second-order
moments (Fig. 4(c) vs. Fig. 4(e)) shows the efficiency of the first CT-RSA scheme
to counteract those attacks which use the register update model. The same holds
for the Second CT-RSA profile, and the attack results depicted in Fig. 4(f)
and Fig. 4(g) confirm the efficiency of the second CT-RSA scheme as well.

However, the register update (usually simplified by the HD model) is not
the unique source of leakage in hardware. The value of e.g., S-box input or its
output also affects the power consumption of the device and hence contributes in
information leakage. In our designs the masked S-box input (pi∈{1,...,16} ⊕ ki)⊕
F (ri) and the mask ri at the same time appear at the look-up table input, and
the distribution of leakages which depend on the masked input and the mask is
not independent of the unmasked input pi ⊕ ki. Therefore, considering e.g., the
S-box input a univariate attack is expected to be successful.

In order to consider such model in our attacks we take the second and the third
S-box inputs, p2 ⊕ k2 and p3 ⊕ k3, and search for correct key difference k2 ⊕ k3

amongst 28 candidates by comparing each first- and second-order moments of
the corresponding parts of the power traces. The result of all six attacks are
depicted in Fig. 5, where for each of the profiles exists a successful first- and/or
second-order attack. It in fact confirms our claim that the register update is
not the sole source of leakage, and in contrast to what is argued in Section 3.2
of [10] the leakage of the combinational logic – including look-up tables – can-
not be separated from the leakage of the register update. Indeed, the leakage
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Fig. 6. BRAM version, (a) sample power trace, collision attack results by register
update model, (left) first-order (right) second-order: (b) and (c) Conventional, (d)
and (e) First CT-RSA, (f) and (g) Second CT-RSA profiles, each using 1 000 000
traces

which can be observed by currently available measurement setups is a mixture
of both leakages caused by inherent low-pass filters of the device internals, PCBs,
measurement tools, etc [11].

We also should stress the difference between the first-order leakage of the
First CT-RSA and the Second CT-RSA profiles (Fig. 5(c) vs. Fig. 5(e)).
The First CT-RSA profile has clear first-order leakage in contrast to the other
profile. The reason behind this – as stated in Section 2 – is the F function of
the first CT-RSA scheme, where the actual mask used to mask the secret, i.e.,
F (r), is zero for half of the space of r. This results in having the S-box input –
and consequently its output – unmask in the computations with the probability
of 50%.

Repeating the same scenario of considering the register update as well as S-
box input on profiles in the BRAM version led to the same results as depicted
in Fig. 6 and Fig. 7. Although it needs much less power compared to the LUT
version (Fig. 6(a) vs. Fig. 4(a)), the First CT-RSA and Second CT-RSA
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. BRAM version, collision attack results by S-box input model, (left) first-order
(right) second-order: (a) and (b) Conventional, (c) and (d) First CT-RSA, (e) and
(f) Second CT-RSA profiles, each using 1 000 000 traces

profiles also provide robustness against the attack using the register update
model. However, they both – similar to the Conventional profile – show vulner-
ability against a collision attack utilizing a straightforward S-box input model.

4.1 Discussions

As mentioned before, the profiles of the LUT version can be seen as a huge
combinational circuit which sees a masked value and the corresponding mask
at its input signals. Therefore, the glitches happening inside the combinational
circuit – similar to the results reported in [12] and [14] – are the main source
of leakage. Their dependency to the unmasked values cause the designs to be
vulnerable.

We should explain an architectural difference between the profiles of the LUT
and the BRAM versions. As stated before, the profiles of the BRAM version
need one more clock cycle per state byte compared to the LUT version. How-
ever, according to the results of the BRAM version (Fig. 7) the leakage, which
depends on one S-box table lookup, appears at more than one clock cycle. Fig-
ure 7(a) shows that the input-output of a table lookup affects the power con-
sumption not only at the clock cycle in which the block RAM is active but also
at the next time when the block RAM is activated for the next table lookup (a
distance of 3 clock cycles in our design profiles). Moreover, the biased distribu-
tion of the masks in the First CT-RSA profile becomes more problematic in
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Fig. 8. Success rate of collision attacks by S-box input model in presence of noise using
1 000 000 traces, (a) LUT version and (b) BRAM version of all profiles

the BRAM version, where the leakage related to a table lookup appears in five
consecutive clock cycles (see Fig. 7(c)).

The internal architecture of block RAMs of our target FPGA is not publicly
available, and in contrast to LUT6 it cannot be simply guessed. Therefore, we
can only speculate on the actual reasons behind the strange leakage appearing in
the profiles of the BRAM version. For instance, there exist additional input and
output registers in the block RAMs which can be activated or bypassed. Also,
each block RAM contains some cascading registers to be used when combining
several small block RAMs to a bigger one. It is ambiguous whether all these
registers still get triggered when they are bypassed in the settings. Additionally,
the data and address bitwidth of each block RAM can be arbitrarily selected
by the settings. This means that there exist several multiplexers and additional
logics to provide all possible options. All these unclear issues prevent us from
providing a certain reason for the observed leakage in the block RAMs.

At the end we compare the vulnerability of all profiles in presence of noise.
Since only the attacks using the S-box input model are successful, we omitted the
register update model in this evaluation. With a certain standard deviation we
artificially added Gaussian random noise to the specific points of all the 1 000 000
measured power traces, and performed the same attacks as before. We repeated
the noise addition and the attack 200 times for each step of the noise standard
deviation, and reported the average of the attack success rate in Fig. 8. According
to curves shown in Fig. 8(a), the CT-RSA profiles of the LUT version make the
attacks harder compared to the Conventional profile. The threshold of the noise
standard deviation for a successful attack on CT-RSA profiles is considerably
lower than that of the Conventional one. However, a similar experiment on the
profiles of the BRAM version shows different results (see Fig. 8(b)). The attack
on the Conventional profile can be unsuccessful while with the same amount
of noise the CT-RSA profiles of the BRAM version are still vulnerable to the
aforementioned attack. The reason is most likely related to the obscure internal
architecture of the block RAMs.
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5 Conclusions

In this work we have implemented the scheme recently proposed in CT-RSA
2012 [10], and have evaluated its security under the given leakage assumption in
the original paper as well as using an approach more close to a real-world sce-
nario. We pointed out the practical issues when realizing this masking schemes
for linear functions. Moreover, we addressed the difficulties of the GLUT tech-
nique caused by their extremely large resource consumption on FPGAs. For
instance, two thirds of the available BRAMs or three quarters of all available
LUTs in a Xilinx Virtex-5 LX50 are required for a single masked S-box look-up
table.

Nevertheless, we could show that the newly proposed constructions indeed
provide a higher level of security when only considering the register update model
as the leakage source. On the other hand, our results show that this leakage
assumption is still not close enough to practice even when using large ROM-
style tables instead of pure combinational circuits to implement the masked
S-boxes. By pointing out exploitable univariate leakages of all the design profiles
we showed that just stating the security of the scheme under a register update
assumption (simplified by HD) is not a valid choice in any kind of masking
realization, being it in combinational logic or large ROMs.

A closer collaboration of the different fields of countermeasure creation and
practical evaluations would help to increase the impact of new proposals. It
indeed allows a better adaption of new schemes in real-world applications. This
way the industry sector would benefit not only of a theoretical proof but would
appreciate the demonstration of the consistency of the theoretical claims with
practice.
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Appendix

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

x

00 a8 f8 f0 00 d9 62 fd 39 4a bd af 06 a9 35 e1 df
01 14 5b 82 0d 9b d4 29 17 b9 02 f7 95 3e 65 79 d7
02 7d e4 ba 8b cc dc 1d b5 87 71 07 fa ef d5 48 2f
03 a7 e3 b2 6f aa ed 4d a0 81 c0 8c 15 e0 19 9e f1
04 84 6b 4c da 93 eb 58 2b d3 27 33 76 b8 51 96 a3
05 f4 c5 75 ae d2 30 85 fb 64 38 3f 5c 9c 66 98 c1
06 bb 63 a4 73 52 fc 9d 8d 24 25 31 cf e2 57 9f c3
07 8f f3 20 7f 3b bc bf 1a 54 03 91 0a 67 a5 16 10
08 c7 e8 b3 21 13 72 0f 7a 01 88 e5 d1 f5 7c 40 ee
09 97 4e 83 94 ad 5d 04 c4 32 a1 e7 92 43 b7 1e e9
0a 12 70 50 1f a6 36 05 77 f6 ea 46 28 56 7b 55 db
0b 61 34 b4 2e 9a a2 6d 86 4f cb ab ce 8a 6c 99 42
0c 6a 5a 3d ca 59 11 53 3c ac 74 b6 c8 3a 89 2d 47
0d 2a cd de 0c 5f 26 23 4b c6 b0 7e 6e f2 c2 b1 fe
0e 18 37 0b d6 e6 d0 49 8e 41 c9 69 44 d8 90 be 5e
0f 0e f9 60 ff 1b ec 09 78 80 1c dd 08 45 68 22 2c

Fig. 9. The G function selected in our experiments in the First CT-RSA profiles,
values for the input as (x, y) ∈ F5

2 × F4
2 (in hexadecimal format)
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Abstract. A large number of secret key cryptographic algorithms com-
bine Boolean and arithmetic instructions. To protect such algorithms
against first order side channel analysis, it is necessary to perform conver-
sions between Boolean masking and arithmetic masking. Louis Goubin
proposed in [5] an efficient method to convert from Boolean to arith-
metic masking. However the conversion method he also proposed in [5]
to switch from arithmetic to Boolean is less efficient and could be a bot-
tleneck in some implementations. Two faster methods were proposed in
[2] and [9], both using precomputed tables. We show in this paper that
the algorithm in [2] is bugged, and propose an efficient correction. Then,
we propose an alternative to the algorithm in [9] with a valuable tim-
ing/memory tradeoff. This new method offers better security in practice
and is well adapted for 8-bit architectures in terms of time performance
(3.3 times faster than Goubin’s algorithm for one single conversion).

Keywords: side channel analysis, differential power analysis, Boolean
masking, arithmetic masking, conversion from arithmetic to Boolean
masking.

1 Introduction

In 1999, the concept of Differential Power Analysis (DPA) was introduced in [7]
by Paul Kocher. It consists in retrieving information about the secret key of an
algorithm by analyzing the power consumption curves generated by the device
in which the algorithm is implemented, during its execution. It was extended to
some other techniques like CPA (Correlation Power Analysis), and EMA (Elec-
tromagnetic Analysis), based on similar principles. All these attacks relying on
physical leakage of an electronic device are more generically called side channel
analysis.

Countermeasures were soon developed to thwart these attacks. The most com-
monly used method, initially proposed in [1] and [6], consists in splitting all
key-dependant intermediate variables processed during the execution of the al-
gorithm into several shares. The value of each share, considered independently
from the other ones, is randomly distributed and independent of the value of the
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secret key: thefefore, the power leakage of one share does not reveal any secret
information. It is shown in [1] that the number of power curves needed to mount
an attack grows exponentially with the number of shares. When only two shares
are used, the method comes to masking all intermediate data with random. In
this case it is said that the implementation is protected against first order DPA.
For algorithms that combine Boolean and arithmetic operations, two different
kinds of masking must be used: Boolean masking and arithmetic masking. A
large number of algorithms have this property: all software oriented finalists of
the eSTREAM stream cipher competition [4], some other stream ciphers like
Snow 2.0 [3] and Snow 3G, the block cipher IDEA [8], and several hash function
designs used for HMAC constructions. The security of DPA-protected implemen-
tations of such ciphers strongly depends on the security of conversions between
arithmetic and Boolean masking in both directions.

Two secure conversion algorithms (one for each direction) were proposed by
Goubin in [5], but the arithmetic to Boolean method of [5] is quite slow and can
be a bottleneck in some implementations. Then a second arithmetic to Boolean
algorithm using two precomputed tables was proposed by Jean-Sébastien Coron
and Alexei Tchulkine in [2]. Finally, an extension of the method of [2] was pro-
posed by Olaf Neiße and Jürgen Pulkus in [9], allowing to reduce memory con-
sumption.

In this paper we first recall the mechanisms of these three methods, show-
ing that the Coron-Tchulkine algorithm is not correct in most cases. Then we
propose a modification of Coron-Tchulkine’s algorithm, correcting the bug and
improving time performance. We also propose a new fast and secure arithmetic
to Boolean conversion technique. Finally we give some performance comparisons
between all methods.

2 Definitions and Previous Work

The masking technique introduced in [1] and [6] consists in splitting each in-
termediate variable that appears in the cryptographic algorithm, using a secret
sharing scheme. Therefore, an attacker must analyze multiple point distribu-
tions, which requires a number of power curves exponential in the number of
shares. To protect implementations against first order DPA, this technique has
to be applied with two shares.

For algorithms that combine Boolean and arithmetic functions, two kinds of
masking are used:

1. Boolean masking : x′ = x ⊕ r
2. Arithmetic masking: x′ = x − r mod 2K .

Here ⊕ is the exclusive or. The variable x refers to the secret intermediate data,
r to the random value used to obtain the masked data x′, these three data having
size K.
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The conversion algoritms from one masking to another must also be secure
against side channel analysis. This means that all intermediate variables must
be independent of the secret data.

2.1 First Secure Method

In [5] Louis Goubin proposed an efficient method to convert a Boolean masking
into an arithmetic masking, relying on the fact that the function fx′(r) = (x′ ⊕
r) − r is affine in r over the field with two elements.

An algorithm converting from arithmetic to Boolean masking was also pro-
posed in [5], based on the following recursion formula:

(A+ r) ⊕ r = uK−1, where:

{
u0 = 0,
∀k ≥ 0, uk+1 = 2[uk ∧ (A ⊕ r) ⊕ (A ∧ r)].

But this method is less efficient than from Boolean to arithmetic, as the number
of operations is linear in the size of the intermediate data.

2.2 Coron-Tchulkine Method

In [2], Jean-Sébastien Coron and Alexei Tchulkine proposed a second method to
convert from arithmetic to Boolean masking. This method is based on the use
of two precomputed tables. Let us recall its principle: two tables G and C are
generated during the precomputation phase of the algorithm. Both tables have
size 2k, where k is the size of the processed data; the value of k is typically 4 or
8. For example if k = 4, a 32-bit variable is divided into 8 nibbles: the algorithm
works then in 8 steps, each step processing one nibble of the 32-bit variable.
Table G converts a nibble from arithmetic to Boolean masking, while Table
C manages carries coming from the modular addition. Indeed, let us consider a
masked data x′ splitted into n nibbles x′

n−1||...||x′
i||...||x′

0 : each value xi = x′
i+r

can be possibly more than 2k. In this case the carry must be added to the nibble
x′
i+1 before its conversion. As the carry value is correlated to the secret data,

it must be masked. Therefore, for each input x′
i, the table C outputs the carry

value c masked by the addition of a random k-bit value γ. Both Tables G and
C can be described as follows:

Algorithm 2.1. Precomputation of tables

Table G generation

Input: a nibble size k
1. Generate a random k-bit r

2. For A = 0 to 2k − 1 do

G[A] = (A+ r)⊕ r

3. Output G and r.

Table C generation

Input: a k-bit value r.
1. Generate a random k-bit γ

2. For A = 0 to 2k − 1 do

C[A] ←
{
γ, if A+ r < 2k

γ + 1 mod 2k, if A+ r ≥ 2k

3. Output C and γ.

Finally the conversion phase can be described by the following algorithm,
where the symbol || means concatenation:
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Algorithm 2.2. Conversion of a (n · k)-bit variable
Input: (A,R) such that x = A+R mod 2n·k

and r, γ generated during precomputation phase
1. For i = 0 to n− 1 do
2. Split A into Ah||Al and R into Rh||Rl such that

Al and Rl have size k

3. A← A− r mod 2(n−i)·k

4. A← A+Rl mod 2(n−i)·k

5. if i < n− 1 do

6. Ah ← Ah +C[Al] mod 2(n−i−1)·k

7. Ah ← Ah − γ mod 2(n−i−1)·k

8. x′
i ← G[Al]⊕Rl

9. x′
i ← x′

i ⊕ r
10. A← Ah and R← Rh

11. Output x′ = x′
n−1||...||x′

i||...||x′
0

Let us specify that the value Ah and Al are updated at the same time as A:
the value A is splitted into Ah and Al throughout all the algorithm. This remark
is true for all conversion algorithms of this paper.

But this algorithm is actually not correct in case n > 2. Indeed, let us suppose
that the following propositions are true together:

1. n > 2,
2. γ takes the value 2k − 1,
3. The carry equals 1.

Then in the first iteration of the loop of Algorithm 2.2 (i.e. when i = 0), the size
of Ah is greater than k. In this case the value Ah + C[Al] − γ does not equal
Ah + 1. Thus the table C generation must be modified to obtain an algorithm
outputting always the correct value.

In Section 3, we propose a method combining correction and time performance
improvement of Coron-Tchulking method.

2.3 Neiße-Pulkus Method

A third method was proposed in 2004 by Olaf Neiße and Jürgen Pulkus in [9].
As Coron-Tchulkine algorithm, it is based on the precomputation of tables. The
principle is first to store the values of each possible nibble updated in the new
masking mode in a 2k-entry table, as Table G of Section 2.2. The carry is also
stored in a 2k-entry table C, but contrary to Coron-Tchulkine method, it is here
stored unmasked. Tables G and C can be possibly combined in one table to
reduce RAM space requirements.

The carry is masked during conversion step by the fact that sometimes the
direct value of the intermediate variable is processed and sometimes its comple-
ment is processed. A random bit z generated at the beginning of each conversion
step decides if the complement is used or not.

The method is based on the fact that, for any l-bit value x and its complement
x̄, the equation x+ x̄+1 = 2l holds. Thus for a bit z, if x̃ denotes x when z = 0,
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and x̄ when z = 1, we obtain x̃ = x− z mod 2l. And for two l-bit values x1 and

x2 it can easily proved that x̃1 + x2 = x̃1 + x̃2 + z mod 2l.
Let us take the notations of Section 2.2 (Algorithm 2.2): a random

k-bit mask r used as input and output mask of Table G, and (A,R) such that
x = A + R mod 2n·k. Then x̃ − (r|| · · · ||r) = Ã + R̃ − (r|| · · · ||r) + z, where
each nibble of x̃− (r|| · · · ||r) is taken as input of the table, the output being the
corresponding nibble of x̃ ⊕ (r|| · · · ||r). Thus the bit z must be added to the
intermediate variable A at the beginning of each conversion step. At the end, as
Ã ⊕ R̃ = A ⊕ R, the correct result is then obtained.

The main principle of the conversion algorithm of [9] can be summarized by
Algorithm 2.3.

Security of the Method. The authors of [9] claim that their algorithm is
resistant against DPA. From a DPA-only point of view, the value of the bit
C[Al] (line 9 of Algorithm 2.4) is indeed independent of the value of the secret
data, due to the fact that for a k-bit value w, the number of k-bit values r such
that w+ r ≥ 2k is w, and the number of k-bit values r such that w̄+ r ≥ 2k − 1
is 2k −w− 1, inducing a constant number 2k − 1 of possible r contributing to a
non-zero carry.

But in practice this algorithm may pose a security problem, as the value −z
mod 2n·k is manipulated several times during one conversion step: as z is a
random bit, this value is either 0 or 0xFF...FF. It could be distinguished by
the attacker in some context, using SPA techniques. With this information, the
attacker could mount a DPA attack, using the fact that the carries are then
unmasked. This implies that the behavior of the component in terms of power
and electromagnetic leakage must be studied very carefully before choosing this
conversion method.

Algorithm 2.3. Conversion of a (n · k)-bit variable
Input: (A,R) such that x = A+R mod 2n·k and r, generated

during precomputation phase
1. Generate a random bit z

2. Z ← −z mod 2n·k

3. A← (A⊕ Z)− (r|| · · · ||r) mod 2n·k

4. R← R ⊕ Z
5. For i = 0 to n− 1 do
6. Split A into Ah||Al and R into Rh||Rl such that

Al and Rl have size k

7. A← A+Rl mod 2(n−i)·k

8. if i < n− 1 do

9. Ah ← Ah + C[Al] mod 2(n−i−1)·k

10. x′
i ← G[Al]⊕Rl

11. A← Ah and R← Rh

12. Output x′ = (x′
n−1||...||x′

i||...||x′
0)⊕ (r|| · · · ||r)

The final method proposed in [9] is slightly different from Algorithm 2.3, as a
technique is added in [9] to reduce memory consumption (it is recalled in
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Section 4.2). The use of this technique implies a decrease in the speed of the
algorithm. As our paper mainly focuses on time performance, we propose in
Appendix C another modification of the algorithm in order to reach maximal
speed. This algorithm is used for the performance tests described at section 5.

3 Correction and Improvement of Coron-Tchulkine
Method

We show in Appendix A that the immediate possible corrections of Coron-
Tchulkine method keeping the size of the carry’s mask γ to k bits are not first
order DPA resistant: the size of γ must be at least (n− 1) · k to obtain complete
independence of intermediate data from the secret key.

Let us remark that both the information provided by Table G of Coron-
Tchulkine method (update of the nibble in the new masking mode) and the
information of Table C (additively masked carry) can be summarized in one
unique table T whose outputs have size n · k:

Algorithm 3.1. Table T generation

1. Generate a random k-bit r and a random (n · k)-bit γ
2. For A = 0 to 2k − 1 do

T [A] = ((A+ r)⊕ r) + γ mod 2n·k

3. Output T , r and γ

The number of entries of the table is 2k, and the size of each entry is n·k
8 bytes.

For typical values k = 8 and n = 4, the memory consumption is doubled here
compared to the adaptation of Neiße-Pulkus method proposed in Appendix C.

The resulting conversion algorithm is as follows:

Algorithm 3.2. Conversion of a (n · k)-bit variable
Input: (A,R) such that x = A+R mod 2n·k

and r, γ generated during precomputation phase
1. For i = 0 to n− 1 do
2. Split A into Ah||Al and R into Rh||Rl,

such that Al and Rl have size k

3. A← A− r mod 2(n−i)·k

4. A← A+Rl mod 2(n−i)·k

5. A← Ah||0 + T [Al] mod 2n·k

6. A← A− γ mod 2n·k

7. x′
i ← Al ⊕Rl

8. x′
i ← Al ⊕ r

9. A← Ah and R← Rh

10. Output x′ = x′
0||...||x′

i||...||x′
n−1

Here, as T ’s outputs have the same size as the processed data, if the value A+r

is greater than 2k during the precomputation of T , the (k+1)th least significant
bit of T [A] is automatically set to 1 before being masked by the addition of γ.



Switching from Arithmetic to Boolean Masking 113

During the conversion algorithm, the carry is added to the current variable
(line 5) at the same time as the nibble Al is updated.

The use of one table instead of two is clearly an advantage in terms of time
performance. But it is still possible to reduce the execution time of the conversion
algorithm by moving some instructions out of the loop. These improvements are
described in Appendix B.

4 New Method

In terms of performance, for a 16-bit or an 8-bit processor, the drawback of the
method described in Section 3 is the fact that the size of the manipulated data is
the same as the size of the intermediate data of the algorithm. Indeed, the typical
size for intermediate data is 32 bits: the time of the conversion algorithm is then
multiplied by 2 with a 16-bit processor, and by 4 with an 8-bit processor. In this
section we propose a method more appropriate for processors whose registers
have size smaller than the intermediate data of the algorithm.

4.1 Principle

Let us remark that using precomputed tables to keep data masked during the
algorithm execution comes to treating masked information as memory address
information. As a carry is a 1-bit information, our goal in this section is to apply
this principle to 1-bit information.

Let us suppose that instead of being masked arithmetically as proposed in
Sections 2.2 and 3, carries are protected by Boolean masks. The protection comes
then to adding by exclusive or a random bit to the carry value. For example,
if we call ρ such a random bit, a 2-entry table C can be generated during the
precomputed step in the following way:

Algorithm 4.1. Table C generation

1. Generate a random bit ρ and a random (n · k)-bit value λ
2. C[ρ] = λ

3. C[ρ ⊕ 1] = λ+ 1 mod 2n·k

4. Output C and λ.

Now let us suppose that a carry c, protected by the Boolean mask ρ, is ma-
nipulated during the conversion algorithm. Thus the masked value b = c⊕ ρ can
be used in the following way to add the carry c to the value Ah in a secure way:

Algorithm 4.2. Carry addition

Inputs: – a value Ah (masked arithmetically),
– a carry bit b (c masked in a Boolean way)
– C, λ generated during precomputation phase

1. Ah = Ah + C[b] mod 2n·k

2. Ah = Ah − λ mod 2n·k

3. Output Ah
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It is easy to convince oneself about:

1. The correctness of the method : whatever the value of ρ is, the value C[b] is
equal to the carry c added to λ modulo 2n·k.

2. The resistance against order 1 DPA: all processed intermediate variables are
independent of the unmasked values. The masked carry is treated as infor-
mation about the address of a RAM location. This address is independent
from the value of the carry, as it changes from one execution to the other.

In next Section, we propose a method combining the information of both the
nibble to be updated and of the carry masked by exclusive or, using this combi-
nation as an address in a conversion table.

4.2 Algorithm

In this section a new method for switching from arithmetic to Boolean masking is
proposed. As the method described in Section 3, it requires the precomputation
of one table T whose outputs must contain information about both the nibble
updated in the new masking mode and the next carry bit. Here the output of
T is directly the value (A + r + c) ⊕ r, where c is the carry resulting from the
previous addition.

The precomputed table T has the following properties:

– The carry value is masked by exclusive or with a random bit.
– During conversion phase, the choice of the address in the table not only de-

pends on the value of the nibble but also on the value of the maksed previous
carry. This implies T has size 2k+1. The needed amount of memory is then
doubled compared to Neiße-Pulkus method, and is the same compared to the
correction of Coron-Tchulkine method for typical values k = 8 and n = 4.

The value of the random bit used to mask carries decides during precomputation
step if the values of the addresses of nibbles of type (A + r) ⊕ r are greater or
less than the addresses of nibbles of type (A+ r+1)⊕ r. And during conversion
step, the value of the masked carry is used to compute the address of the next
nibble to be loaded from the table.

The method is outlined in Algorithms 4.3 and 4.4. Here again, all processed
variable are independent of secret data, inducing resistance of the algorithm
against first order DPA.

Algorithm 4.3. Table T generation

1. Generate a random k-bit r and a random bit ρ

2. For A = 0 to 2k − 1 do
T [ρ||A] = (A+ r)⊕ (ρ||r)
T [(ρ⊕ 1)||A] = (A+ r + 1) ⊕ (ρ||r)

3. Output T , r and ρ
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If k = 8, the time of the conversion phase is optimized. But in this case the size
of the output data of the table is k+1 = 9 bits. This implies that this data needs
two bytes to be stored, and the size of the table in RAM is then 1024 bytes. This
amount of memory is possible today on many embedded components, but could
still be too large in some cases. As in [9], the fact that the Boolean masking of a
secret data x′

b = x⊕ r and the arithmetic masking of the same data x′
a = x− r

mod 2k have always the same least significant bit can be used to reduce the size
of the precomputed table. Thus storing the least significant bit of (A+ r)⊕ r or
of (A+ r+ 1)⊕ r is not necessary. The place of this useless bit can be taken by
the carry bit. The resulting algorithm is then slower but the needed amount of
memory is reduced by half. In our method it is then 512 bytes.

Algorithm 4.4. Conversion of a n · k-bit variable
Input: (A,R) such that x = A+R mod 2n·k,

r, ρ generated during precomputation phase

1. A← A− (r||...||r||...||r) mod 2n·k

2. β ← ρ
3. For i = 0 to n− 1 do
4. Split A into Ah||Al and R into Rh||Rl,

such that Al and Rl have size k.

5. A← A+Rl mod 2(n−i)·k

6. β||x′
i ← T [β||Al]

7. x′
i ← x′

i ⊕Rl

8. A← Ah and R← Rh

9. Output x′ = (x′
0||...||x′

i ||...||x′
n−1)⊕ (r||...||r||...||r)

5 Performance Tests

In this section we propose some performance comparisons between Goubin’s
method and the three methods based on precomputed tables. The versions cho-
sen for the tests are the ones that are optimized in terms of time performance:

– Algorithms C.1 and C.2 (Appendix C) for the modified Neiße-Pulkus method
(named Mod. N.-P. in Tables 1, 2 and 3).

– Algorithms B.1 and B.2 (Appendix B) for the correction of Coron-Tchulkine
method (named Mod. C.-T. in Tables 1, 2 and 3).

– Algorithms 4.3 and 4.4 (Section 4.2) for the new method proposed in this
paper.

We first chose to perform C implementations of these algorithms and test them
on 8051 architectures: one 8-bit and one 16-bit microprocessors. Table 1 and Ta-
ble 2 summarize the performance comparison results for both components. These
results are given in clock cycles numbers, computed with the help of a simulation
tool. The size of the data to be converted from arithmetic to Boolean masking
is 32 bits, as it is the most common size for intermediate data of cryptographic
algorithms. For the table-based algorithms, two nibble sizes were tested: k = 4
and k = 8. The size of the precomputed tables in RAM are given in number of
bytes.
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Table 1. Smart card 8-bit microprocessor

Goubin’s Mod. N.-P. Mod. C.-T. New method
method k = 4 k = 8 k = 4 k = 8 k = 4 k = 8

Precomputation time 10325 2562 40274 18589 109391 3166 93007

Conversion time 39213 15479 9208 13969 7060 11720 6111

Table size 0 16 512 64 1024 32 1024

Table 2. Smart card 16-bit microprocessor

Goubin’s Mod. N.-P. Mod. C.-T. New method
method k = 4 k = 8 k = 4 k = 8 k = 4 k = 8

Precomputation time 86 377 3734 921 5933 439 5174

Conversion time 934 558 308 512 274 445 257

Table size 0 16 512 64 1024 32 1024

Table 3. Smart card 32-bit microprocessor

Goubin’s Mod. N.-P. Mod. C.-T. New method
method k = 4 k = 8 k = 4 k = 8 k = 4 k = 8

Precomputation time 15.1 9.6 156.2 25.5 188.8 12.1 180.3

Conversion time 32.9 12.9 10.3 12.1 8 14.9 9.2

Table size 0 16 512 64 1024 32 1024

We also performed performance comparison tests for the same algorithms in
ARM assembler on a 32-bit 26 MHz microprocessor. In Table 3 the time results
of these tests are given in microseconds.

The generation of random numbers is required by all methods. For Goubin’s
algorithm (see [5]), the size of the random value is 32 bits, and only one such ran-
dom word is necessary for each execution. For this reason, the time of this gener-
ation is set in precomputation step. Thus we remark that, depending on the chip,
the time of the generation of the random values is generally not negligible for
these conversion algorithms. This also explains the time difference between the
precomputation steps of the Neiße-Pulkus method and of the Coron-Tchulkine
method (one random byte is generated in N.-P. against four in C.-T. method).

From the figures given in Table 1 and Table 2, we remark that the new
method is more efficient on these microcontrollers than the improved correction
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of Coron-Tchulkine algorithm. This confirms the fact that the new method is
better adapted to 8-bit and 16-bit architectures. On the 8-bit architecture, the
conversion step of the new method is the fastest.

Choosing k = 4, the improved Neiße-Pulkus and the new method are both
faster than Goubin’s algorithm on all architectures, even for a single conversion,
with a small amount of needed memory. Neiße-Pulkus method is about twice
faster on the 32-bit microcontroller, and the new method about three times
faster on the 8-bit microcontroller.

6 Conclusion

In this paper we sought the fastest methods for switching from arithmetic to
Boolean masking. We first analyzed the two known methods [2,9] based on pre-
computed tables: we showed that the algorithm proposed in [2] is not correct and
proposed an improved correction. We also proposed a new method, which is well
adapted for 8-bit architectures in terms of time preformance. As the correction
of [2], it offers better security against side channel analysis in practice than the
algorithm in [9].
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Appendices

A Security Weaknesses of Two Immediate Modifications
of Coron-Tchulkine Method

Two immediate modifications of the method proposed in [2] seems possible. We
call these two possible tables C′ and C′′:

Algorithm A.1.
Carry table C′ generation
Input: a random r of k bits.
1. Generate a random k-bit γ

such that γ < 2k − 1
2. For A = 0 to 2k − 1 do

C’[A] ←
{
γ, if A+ r < 2k

γ + 1, if A+ r ≥ 2k

3.Output C′ and γ.

Algorithm A.2.
Carry table C′′ generation
Input: a random r of k bits.

1. Generate a random k-bit γ

2. For A = 0 to 2k − 1 do

C”[A] ←
{
γ, if A+ r < 2k

γ + 1, if A+ r ≥ 2k

3. Output C′′ and γ.

But both corrections imply that some manipulated data are not completely
decorrelated from the value of the secret data. Indeed, the least significant bit
of the output of Table C′ is correlated to the corresponding carry bit. Let us
compute the correlation coefficient.

Using the notations from Section 2.2, let us call b0 the least significant bit of
the output of Table C′, and c the corresponding carry value. Let us define a set χ:

χ = { (A, r, γ) : A ∈ N such that A < 2n,

r ∈ N such that r < 2n,

γ ∈ N such that γ < 2n − 1}

The correlation coefficient between b0 and c conditionned on the subset χ is as
follows:

Cor (b0 , c | χ) = |P(b0(x) = c(x) | x ∈ χ) − P(b0(x) �= c(x) | x ∈ χ)|

=

∣∣∣∣∣ 1

#χ

∑
x∈χ

(−1)b0(x)⊕c(x)

∣∣∣∣∣
Actually the value b0(x) ⊕ c(x) neither depends on the value of A nor on the
value of r, but only depends on the value of the least significant bit of γ. We
call this bit γ0. As 2

k−1 times out of 2k − 1, γ0 = 0, and 2k−1 − 1 times out of
2k − 1, γ0 = 1, we have:
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Cor (b0 , c | χ) =
∣∣∣∣∣ 1

2k − 1

∑
x∈χ

(−1)γ0(x)

∣∣∣∣∣
=

∣∣∣∣∣∣ 1

2k − 1

⎛⎝ ∑
γ<2k−1,γ0=0

(−1)0 +
∑

γ<2k−1,γ0=1

(−1)1

⎞⎠∣∣∣∣∣∣
=

∣∣∣∣ 1

2k − 1

(
2k−1 − (2k−1 − 1)

)∣∣∣∣ = 1

2k − 1

If k = 4, the correlation coefficient is then 1
15 .

It could be shown in a similar way that the correlation coefficient between the

most significant bit of the output of Table C′′ (the (k + 1)th bit) and the carry
bit has value 31

256 .
Many other modifications of carry Table C are possible, each one correspond-

ing to a specific interval in which the random carry’s mask γ takes its values. In
each of these cases it can be shown in a way similar as above that if this interval
is smaller than [0, 2(n−1)·k − 1], a correlation exists between the output of the
table and the carry bit.

In case the interval is [0, 2(n−1)·k − 1], as the addition of Table C’s output is
performed modulo at most 2(n−1)·k (line 6 of Algorithm 2.2), the precomputed
addition “γ+carry” can be also performed modulo 2(n−1)·k without the lack of
correctness of the initial Coron-Tchulkine method.

B Time Performance Improvement of Algorithm 3.2

To reduce the execution time of Algorithm 3.2, some instructions can be set out
of the loop. Three of them can be removed from the loop without weakening
security:

– The arithmetic masking with the random r (line 3) can be performed before
the loop.

– The subtraction of the value γ (line 6) can be performed before the loop
(inducing a modification of the precomputed table T ).

– The Boolean unmasking with the random r (line 8) can be performed after
the loop.

Indeed, in case these instructions are moved out of the loop, all nibbles of A but
one remain masked with the initial mask R during the execution of the algo-
rithm, and the lasting nibble is masked by the random value r. All intermediate
variables are then independent of secret data throughout the execution.
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Some extra calculations must be performed during precomputation step, al-
lowing to minimize the cost of the subtraction of γ during conversion step. The
improved version of the method is then as follows:

Algorithm B.1. Table T generation

1. Generate a random k-bit r and a random ((n− 1) · k)-bit γ
2. Compute Γ =

∑k−1
i=1 2i·k · γ mod 2n·k

3. γ′ ← γ||r
4. For A = 0 to 2k − 1 do

T [A] =
(
A+ γ′ mod 2n·k)⊕ r

5. Output T , r and Γ

Algorithm B.2. Conversion of a n · k-bit variable
Input: (A,R) such that x = A+R mod 2n·k

and r, E generated during precomputation phase

1. A← A− (r||...||r||...||r) mod 2n·k

2. A← A− Γ mod 2n·k

3. For i = 0 to n− 1 do
4. Split A into Ah||Al and R into Rh||Rl,

such that Al and Rl have size k

5. A← A+Rl mod 2(n−i)·k

6. A← Ah||0 + T [Al] mod 2n·k

7. x′
i ← Al ⊕Rl

8. A← Ah and R← Rh

9. Output x′ = (x′
0||...||x′

i||...||x′
n−1)⊕ (r||...||r||...||r)

C Time Performance Improvement of Neiße-Pulkus
Method

The principle of the method described in [9] is a direct extension of the Coron-
Tchulkine method. Therefore the two precomputed tables of [9] can be generated
at the same time in one unique table exactly the same way as proposed in section
3 for Coron-Tchulkine method.

The adapted version of Neiße-Pulkus method is then as follows:

Algorithm C.1: Table T generation

1. Generate a random k-bit r

2. For A = 0 to 2k − 1 do
T [A] = (A+ r)⊕ r

3. Output T and r
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Algorithm C.2. Conversion of a n · k-bit variable
Input: (A,R) such that x = A+R mod 2n·k

and r generated during precomputation phase
1. Generate a random bit z

2. Z ← −z mod 2n·k

3. A← (A⊕ Z) − (r|| · · · ||r) mod 2n·k

4. R← R ⊕ Z
5. For i = 0 to n− 1 do
6. Split A into Ah||Al and R into Rh||Rl,

such that Al and Rl have size k

7. A← A+Rl mod 2(n−i)·k

8. A← Ah||0 + T [Al] mod 2n·k

9. x′
i ← Al ⊕Rl

10. A← Ah and R← Rh

11. Output x′ = (x′
0||...||x′

i||...||x′
n−1)⊕ (r||...||r||...||r)

Let us remark that the instructions inside the loop are the same in algorithm
B.2 and in algorithm C.2. Concerning memory consumption, for typical values
k = 8 and n = 4, the size of T ’s outputs is here 9 bits: the required amount
of memory is then 512 bytes. It is reduced by half compared to the improved
Coron-Tchulkine algorithm of Appendix B.
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Abstract. In this paper we study a differential fault attack against the
Grain family of stream ciphers. The attack works due to certain proper-
ties of the Boolean functions and corresponding choices of the taps from
the LFSR. The existing works, by Berzati et al. (2009) and Karmakar et
al. (2011), are applicable only on Grain-128 exploiting certain properties
of the combining Boolean function h. That idea could not easily be ex-
tended to the corresponding Boolean function used in Grain v1. Here we
show that the differential fault attack can indeed be efficiently mounted
for the Boolean function used in Grain v1. In this case we exploit the
idea that there exists certain suitable α such that h(x) + h(x + α) is
linear. In our technique, we present methods to identify the fault loca-
tions and then construct set of linear equations to obtain the contents of
the LFSR and the NFSR. As a countermeasure to such fault attack, we
provide exact design criteria for Boolean functions to be used in Grain
like structure.

Keywords: Fault Attacks, Countermeasures, Grain v1, Grain-128, Grain-
128a, LFSR, NFSR, Stream Cipher.

1 Introduction

The Grain v1 stream cipher is in the hardware profile of the eStream portfo-
lio [1] that has been designed by Hell, Johansson and Meier in 2005 [15]. It
is a synchronous bit oriented stream cipher, although it is possible to achieve
higher throughput at the expense of additional hardware. The physical structure
of Grain is simple as well as elegant and it has been designed so as to require
low hardware complexity. Following certain attacks on the initial design of the
cipher, the modified versions Grain v1 [15], Grain-128 [16] and Grain-128a [2]
were proposed after incorporating certain changes. Analysis of this cipher is an
area of recent interest in as evident from numerous cryptanalytic results related
to this family [3–5, 8–13, 19, 20, 22, 23, 27, 28].

Fault attacks are known to be very efficient against stream ciphers in general,
and have received a lot of attention in recent cryptographic literature [6, 7, 17, 18,
21]. For differential fault attack scenario in stream ciphers, the attacker is allowed
to inject faults in the internal state. Then by analyzing the difference in the faulty

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 122–139, 2012.
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and the fault-free keystreams, one should be able to deduce the complete or par-
tial information about the internal state/secret key. The most common method of
injecting faults is by using laser shots or clock glitches [24, 25]. Though the fault at-
tacks usually rely on optimistic assumptions and study the cipher in a model that
is weaker than the original version, they are not unrealistic as evident from litera-
ture. In this paper too, themodel we study is a follow up of existing state-of-the-art
literature [5, 19]. A detailed justification of the feasibility of such faultmodel is pre-
sented in [5, Section IIIB]. Before proceeding further, let us now present the fault
model.

1. Similar to [5], we consider that the attacker is able to reset the system with
the original Key-IV and start the cipher operations again. The work [19]
requires a different assumption, where the IVs need to be modified in each
initialization.

2. The attacker can inject a fault at any one random bit location of the LFSR or
NFSR. As a result of the fault injection, the binary value in the bit-location
(where the fault has been injected) is toggled. The attacker is not allowed to
choose the location where he wants to inject the fault. However, as assumed
in both [5, 19] the fault in any bit may be reproduced at any later stage of
operation, once injected.

3. Similar to [5], we inject faults in the LFSR only, whereas the NFSR has been
used for fault injection in [19].

4. The attacker has full control over the timing of fault injection, i.e., it is
possible to inject the fault precisely at any stage of the cipher operation.

Our Contribution. Grain-128 has been successfully cryptanalyzed by employ-
ing fault attacks [5, 19]. However, Grain-v1 employs Boolean function of different
kind, and thus such fault attacks may not immediately work against this cipher.
In this paper we have tried to explore a generic fault attack on the structure
of the Grain family of stream ciphers and thus in particular the idea works for
Grain v1 too. The works presented in [5, 19] exploited the fact that the Boolean
function g in Grain-128 is quadratic and the function h has only one cubic term
other than the quadratic terms. This is not the scenario in Grain v1, where the
Boolean functions are of more complicated structure in their Algebraic Normal
Form. We point out that there are still problems in the choice of such functions
as in Grain v1 [15] and suggest suitable choice instead of that one.

The novel idea of our fault attack is based on certain specific observations
related to the output Boolean function h. For Grain v1, h is a 5-variable function
with the differential property that h(s0, s1, s2, s3, s4)+h(1+s0, 1+s1, s2, s3, 1+
s4) = s2. This helps us in determining one of the LFSR bits of the internal
state and repeating this several times we get the complete LFSR state. Then we
further note that h can be written as s4 ·u(s0, s1, s2, s3)+ v(s0, s1, s2, s3), where
u(s0, s1, s2, s3) + u(s0, 1 + s1, s2, 1 + s3) = 1. This helps us in determining the
NFSR bits. To highlight our contribution in this paper, we like to refer to the
following comment from [19]:
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“The attack may be extended to Grain-like ciphers with higher degree
feedback functions and output functions. However, determining fault lo-
cations can be a challenging task if linear terms are removed from output
bit expression. Higher degree feedback functions and output functions
will however certainly increase the attack complexity as mostly nonlin-
ear equations will be obtained.”

We show that the complexity of the attack is not exactly related to the degree
of the output functions. A q-variable Boolean function (say, h : {0, 1}q → {0, 1})
with high degree can also be attacked in a similar manner if there exists certain
suitable α ∈ {0, 1}q such that h(x) + h(x + α) is linear. That is, higher de-
gree functions may not increase the attack complexity as linear equations may
actually be available using clever techniques instead of nonlinear ones.

An integral part of any fault attack is to identify the register location where
the fault has been injected. We outline a novel technique of identifying the fault
location in the LFSR by using an optimal length Signature vector technique.

We also point out that there exists a pool of 5-variable Boolean functions
which are of matching parameters as proposed in [15] and possess additional
properties that help in resisting the kind of differential fault attack that we
describe here. That is, we present specific countermeasures to this kind of fault
attack that relies on proper choice of the nonlinear combining Boolean function.

Organization of this paper. In this section, we proceed with the details of
the Grain family (in particular Grain v1). Next, in Section 2, we present a broad
description of the actual attack. The implementation of the attack on Grain v1
along with the fault location identification routine is explained in Section 3. The
countermeasure corresponding to this attack with respect to proper choice of
Boolean functions is described in Section 4. Section 5 concludes the paper.

We abuse the + notation for Boolean XOR, i.e., GF(2) addition as well as
standard arithmetic addition. However, that will be clear from the context.

1.1 Brief Description of Grain Family

The exact structure of the Grain family is explained in Figure 1. It consists of an
n-bit LFSR and an n-bit NFSR. Certain bits of both the shift registers are taken
as inputs to a combining Boolean function, whence the keystream is produced.
The update function of the LFSR is given by the equation yt+n = f(Yt), where
Yt = [yt, yt+1, . . . , yt+n−1] is an n-bit vector that denotes the LFSR state at the
tth clock interval and f is a linear function on the LFSR state bits obtained
from a primitive polynomial in GF (2) of degree n. The NFSR state is updated
as xt+n = yt + g(Xt). Here, Xt = [xt, xt+1, . . . , xt+n−1] is an n-bit vector that
denotes the NFSR state at the tth clock interval and g is a non-linear function
of the NFSR state bits.

The output keystream is produced by combining the LFSR and NFSR bits
as zt = h′(Xt, Yt) =

⊕
a∈A xt+a + h(Xt, Yt), where A is some fixed subset of

{0, 1, 2, . . . , n− 1}.
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Key Loading Algorithm (KLA). The Grain family uses an n-bit key K, and
an m-bit initialization vector IV , with m < n. The key is loaded in the NFSR
and the IV is loaded in the 0th to the (m−1)th bits of the LFSR. The remaining
mth to (n−1)th bits of the LFSR are loaded with some fixed pad P ∈ {0, 1}n−m.
Hence at this stage, the 2n bit initial state is of the form K||IV ||P .

Key Scheduling Algorithm (KSA). After the KLA, for the first 2n clocks,
the keystream produced at the output point of the function h′ is XOR-ed to both
the LFSR and NFSR update functions, i.e., during the first 2n clock intervals, the
LFSR and the NFSR bits are updated as yt+n = zt+f(Yt), xt+n = yt+zt+g(Xt).

Pseudo-Random keystream Generation Algorithm (PRGA). After the
completion of the KSA, zt is no longer XOR-ed to the LFSR and the NFSR but
it is used as the Pseudo-Random keystream bit. Therefore during this phase, the
LFSR and NFSR are updated as yt+n = f(Yt), xt+n = yt + g(Xt).

NFSR LFSR

g(Xt) f(Yt)

h(Xt, Yt)/

/

zt

⊕

⊕

Fig. 1. Structure of Stream Cipher in Grain Family

One may note that given any arbitrary state and the information about its
evolution (the number of clocks in KSA or PRGA), one can calculate the corre-
sponding state SK

0 at the beginning of the KSA. This is because the state update
functions in both the KSA and PRGA in the Grain family are one-to-one and
invertible. Hence one can construct the KSA−1 routine that given an input 2n
bit vector denoting the internal state of the cipher at the end of the KSA, re-
turns the 2n bit vector giving internal state of the cipher at the beginning of the
KSA. One can similarly describe a PRGA−1 routine that inverts one round of
the PRGA.

As we will consider Grain v1 for our attack description, let us describe it
now. In Grain v1, the size of Key is n = 80 bits and the IV is of size m = 64
bits. The pad used in the KLA is P = 0xFFFF. The LFSR update rule is given
by yt+80 = yt+62+yt+51+yt+38+yt+23+yt+13+yt. The NFSR state is updated as
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xt+80 = yt + g(xt+63, xt+62, xt+60, xt+52, xt+45, xt+37, xt+33, xt+28, xt+21, xt+15,
xt+14, xt+9, xt), where g(xt+63, xt+62, xt+60, xt+52, xt+45, xt+37, xt+33,
xt+28, xt+21, xt+15, xt+14, xt+9, xt)

= xt+62+xt+60+xt+52+xt+45+xt+37+xt+33+xt+28+xt+21+xt+14+xt+9

+xt+xt+63xt+60+xt+37xt+33+xt+15xt+9+xt+60xt+52xt+45+xt+33xt+28xt+21

+xt+63xt+45xt+28xt+9 + xt+60xt+52xt+37xt+33 + xt+63xt+60xt+21xt+15

+xt+63xt+60xt+52xt+45xt+37 + xt+33xt+28xt+21xt+15xt+9

+xt+52xt+45xt+37xt+33xt+28xt+21.
The output keystream is produced by combining the LFSR and NFSR bits as

zt =
⊕

a∈A xt+a + h(yt+3, yt+25, yt+46, yt+64, xt+63), where
A = {1, 2, 4, 10, 31, 43, 56} and h(s0, s1, s2, s3, s4) = s1 + s4 + s0s3 + s2s3 +

s3s4 + s0s1s2 + s0s2s3 + s0s2s4 + s1s2s4 + s2s3s4.

2 Broad Idea of the Generic Differential Fault Attack

In this section we will describe the generic fault attack idea on any cipher with
the physical structure of the Grain family, i.e. a cipher in which there is an n-
bit LFSR driving an n-bit NFSR. The LFSR and NFSR are being updated by
feedback functions f, g respectively and the output keystream bit at each round
is generated by an output function of the internal state, i.e., a function of certain
locations from both the LFSR and the NFSR. The main nonlinear part of the
output function is the 5-variable function h and we study this function carefully.

For this, let us first describe a few issues related to Boolean functions. The
readers may have a look at [26] and the references therein for detailed background
on Boolean functions. A q-variable Boolean function is a mapping from the set
{0, 1}q to the set {0, 1}. Apart from the truth table, another important way
to represent a Boolean function is by its Algebraic Normal Form (ANF). A q-
variable Boolean function h(x1, . . . , xq) can be considered to be a multivariate
polynomial over GF (2). This polynomial can be expressed as a sum of products
representation of all distinct k-th order products (0 ≤ k ≤ q) of the variables.
More precisely, h(x1, . . . , xq) can be written as

a0 +
⊕

1≤i≤q

aixi +
⊕

1≤i<j≤q

aijxixj + · · · + a12...qx1x2 . . . xq,

where the coefficients a0, aij , . . . , a12...q ∈ {0, 1}. This is the ANF representation
of h. The number of variables in the highest order product term with nonzero
coefficient is called the algebraic degree, or simply the degree of h and denoted
by deg(h). Functions of degree at most one are called affine functions. Given the
above background, let us present the following definition.

Definition 1. Consider a q-variable Boolean function F . A non-zero vector α ∈
{0, 1}q is said to be an affine differential of F if F (x) + F (x + α) is an affine
function. A Boolean function is said to be affine differential resistant if it does
not have any affine differential.
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We propose to recover the secret key used in the cipher by observing and an-
alyzing the difference between the fault-free and faulty keystreams. Our attack
algorithm attempts to recover the internal state of the cipher after the comple-
tion of KSA (or equivalently when PRGA is about to begin). Since both the
PRGA and the KSA of Grain family is completely invertible, one can then run
the KSA−1 routine to determine the secret keyK. As we have pointed out earlier,
one can obtain a set of linear equations if there exist affine differentials corre-
sponding to the function h and one such corresponding affine function should be
on the variables that come from the locations of the LFSR only.

Given this background, the attack will comprise of the following steps:

1. The attacker is allowed to reset the cipher with the original Key-IV and
restart cipher operations.

2. The attacker can inject a fault at any one random bit location of the LFSR.
As a result of the fault injection, the binary value in the bit-location (where
the fault has been injected) is toggled. The attacker is not allowed to choose
the location of the LFSR where he wants to inject the fault. However, the
fault in any LFSR bit may be reproduced at any later stage of operation,
once injected.

3. Initially the attacker injects a fault (may be more than one in a few cases)
in a randomly chosen position of the LFSR and identifies the fault location
by comparing the original (fault-free) and faulty keystream.

4. The attacker has full control over the timing of fault injection, i.e., it is pos-
sible to inject the fault precisely at any stage of the cipher operation. Thus,
knowing the fault location, (i) it is possible to restart the cipher operations
with the original Key-IV, (ii) inject further faults in the same location (in
our case either two or four faults) at specific PRGA rounds.

5. In this case, by comparing the original (fault-free) and faulty keystream in
certain PRGA rounds, we obtain linear equations with respect to the LFSR
state bits at the beginning of the PRGA. We run the fault attack suitable
number of times so that we have several such linear equations and solving
them we get the LFSR state. It is possible to obtain the linear equations
(and thus to solve them efficiently) due to certain property of the Boolean
function h.

6. Similarly as above, comparing the original (fault-free) and faulty keystream
in certain other PRGA rounds, we obtain linear equations with respect to
the NFSR bits at certain PRGA round and thus get back the NFSR state
at the beginning of the PRGA. One can then run the KSA−1 routine to
determine the secret key K.

In the next section we detail this algorithm with respect to Grain v1.

3 Differential Fault Analysis: Case Study with Grain v1

Our attack is generic and it works for any version of the Grain family. For
Grain-128 our attack works in a similar broad framework as in [5], though the
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exact details of the signatures, construction of linear equations and the way of
exploiting the Boolean functions need to follow the method we describe below.
Since the existing works [5, 19] will not work on Grain v1 due to comparatively
complicated output function h, we concentrate on this version as a case study to
explain our novel approach. Further, we would like to point out that to the best of
our knowledge there is no existing fault attack on Grain v1 available in literature.
Moreover, our attack strategy works on any generic Grain like structure and
points out the importance of properly choosing the Boolean functions and the
LFSR, NFSR locations that will be fed into the functions.

3.1 Obtaining the Location of the Fault

Our attack model assumes that the attacker is allowed to toggle the value at
exactly one random location of the LFSR. The attacker, however can not explic-
itly choose the location where the fault is to be injected. In order for the attack
to succeed, it is very important that it will be possible to identify the location
of the LFSR where the fault has been induced.

Some Definitions and Notations. Let S0 ∈ {0, 1}160 be the initial state of
the Grain v1 PRGA, and S0,Δφ

be the initial state resulting after injecting fault

in LFSR location φ ∈ [0, 79]. Let Z = [z0, z1, . . . , zl] and Zφ = [zφ0 , z
φ
1 , . . . , z

φ
l ]

be the first l keystream bits produced by S0 and S0,Δφ
respectively. The task

for the fault location identification routine is to determine the fault location φ
by analyzing the difference between Z and Zφ. Initially we have taken the value
of l = 80. After describing the fault location identification strategy in detail, we
will study the value of l more critically.

We define an 80 bit vector Eφ over GF(2) whose ith element Eφ(i) is the
logical XNOR (complement of XOR) of the ith elements of Z and Zφ, i.e.,

Eφ(i) = 1+ zi + zφi (here + should be interpreted as ⊕). Since S0 can have 2144

values (each arising from a different combination of the 80 bit key and 64 bit IV,
rest 16 padding bits are fixed), each of these choices of S0 may lead to different
patterns of Eφ. The bitwise logical AND of all such vectors Eφ is denoted as the
Signature vector Sgnφ for the fault location φ.

The Sgnφ Pattern. Note that whenever Sgnφ(i) is 1 this implies that the ith

keystream bit produced by S0 and S0,Δφ
is equal for all choices of S0. Calculating

the Signature vectors by this method is a computationally infeasible task. We
will describe a method to calculate them efficiently as below.

For Grain v1, two initial states of the PRGA S0, S0,Δ79 ∈ {0, 1}160 which
differ only in the 79th position of the LFSR, produce identical output bits in
68 specific positions among the initial 80 keystream bits produced during the
PRGA. If an input differential is introduced in the 79th LFSR position, then at
all rounds numbered k ∈ [0, 79] \ {15, 33, 44, 51, 54, 57, 62, 69, 72, 73, 75, 76}, the
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difference exists in positions that do not provide input to the Boolean function
h and hence at these clocks the keystream bit produced by the two states are
essentially the same. At all other clock rounds the difference appears at positions
which provide input to h. Hence the keystream produced at these clocks may be
different. Following the explanation given above, we can write Sgn79 in hexadec-
imal notation, Sgn79 = FFFE FFFF BFF7 EDBD FB27, which has 80 − 12 = 68
many 1’s and rest 0’s.

Generalizing the above idea, for two PRGA initial states S0, S0,Δφ
∈ {0, 1}160

which differ only in the φth LFSR location, an analysis of the differential trails
shows that out of the first 80 keystream bits produced by them, the bits at a
certain fixed rounds are guaranteed to be equal. Thus by performing the above
analysis for all fault locations φ (0 ≤ φ ≤ 79), it is possible to calculate all
the Signature vectors. A table containing the vectors for each fault location φ is
available in Table 1.

Table 1. Fault Signature Vectors Sgnφ for 0 ≤ φ ≤ 79 in hexadecimal notation for
Grain v1

φ Sgnφ φ Sgnφ φ Sgnφ φ Sgnφ

0 FFFF 3F7F CB93 A080 0000 20 FFFF BEFF F3B7 F4A9 3808 40 FFFE DFFF B3EE ED31 3B40 60 FFFD FFBF EDEF F93A 7E52

1 FFFF 9FBF E5C9 D040 0000 21 FFFF DF7F F9DB FA54 9C04 41 FFFF 6FFF D9F7 7698 9DA0 61 FFFE FFDF F6F7 FC9D 3F29

2 FFFF CFDF F2E4 E820 0000 22 FFFF EFBF FCED FD2A 4E02 42 FFFF B7FF ECFB BB4C 4ED0 62 FFFF 7FEF DB7B F64E 9D90

3 7FFF E7EF F972 7410 0000 23 FFFF 77DF DE72 F694 2501 43 FFFF DBFF F67D DDA6 2768 63 FFFF BFF7 EDBD FB27 4EC8

4 BFFF F3F7 FCB9 3A08 0000 24 FFFF BBEF EF39 7B4A 1280 44 FFFF EDFF FB3E EED3 13B4 64 7FFF DFFB F6DE FD93 A764

5 DFFF F9FB FE5C 9D04 0000 25 7FFF DDF7 F79C BDA5 0940 45 FFFF F6FF FD9F 7769 89DA 65 BFFF EFFD FB6F 7EC9 D3B2

6 EFFF FCFD FF2E 4E82 0000 26 BFFF EEFB FBCE 5ED2 84A0 46 7FFF FB7F FECF BBB4 C4ED 66 DFFF F7FE FDB7 BF64 E9D9

7 F7FF FE7E FF97 2741 0000 27 DFFF F77D FDE7 2F69 4250 47 BFFF FDBF FF67 DDDA 6276 67 EFFF FBFF 7EDB DFB2 74EC

8 FBFF FF3F 7FCB 93A0 8000 28 EFFF FBBE FEF3 97B4 A128 48 DFFF FEDF FFB3 EEED 313B 68 F7FF FDFF BF6D EFD9 3A76

9 FDFF FF9F BFE5 C9D0 4000 29 F7FF FDDF 7F79 CBDA 5094 49 EFFF FF6F FFD9 F776 989D 69 FBFF FEFF DFB6 F7EC 9D3B

10 FEFF FFCF DFF2 E4E8 2000 30 FBFF FEEF BFBC E5ED 284A 50 F7FF FFB7 FFEC FBBB 4C4E 70 FDFF FF7F EFDB 7BF6 4E9D

11 FF7F FFE7 EFF9 7274 1000 31 FDFF FF77 DFDE 72F6 9425 51 FBFF 7FDB DFF2 74FC A40B 71 FEFF FFBF F7ED BDFB 274E

12 FFBF FFF3 F7FC B93A 0800 32 FEFF FFBB EFEF 397B 4A12 52 FDFF BFED EFF9 3A7E 5205 72 FF7F FFDF FBF6 DEFD 93A7

13 FFDF 7FF9 DBFA 549C 0400 33 FF7F FFDD F7F7 9CBD A509 53 FEFF DFF6 F7FC 9D3F 2902 73 FFBF FFEF FDFB 6F7E C9D3

14 FFEF BFFC EDFD 2A4E 0200 34 FFBF FFEE FBFB CE5E D284 54 FF7F EFFB 7BFE 4E9F 9481 74 FFDF FFF7 FEFD B7BF 64E9

15 FFF7 DFFE 76FE 9527 0100 35 FFDF FFF7 7DFD E72F 6942 55 FFBF F7FD BDFF 274F CA40 75 FFEF FFFB FF7E DBDF B274

16 FFFB EFFF 3B7F 4A93 8080 36 FFEF FFFB BEFE F397 B4A1 56 FFDF FBFE DEFF 93A7 E520 76 FFF7 FFFD FFBF 6DEF D93A

17 FFFD F7FF 9DBF A549 C040 37 FFF7 FFFD DF7F 79CB DA50 57 FFEF FDFF 6F7F C9D3 F290 77 FFFB FFFE FFDF B6F7 EC9D

18 FFFE FBFF CEDF D2A4 E020 38 FFFB 7FFE CFBB B4C4 ED00 58 FFF7 FEFF B7BF E4E9 F948 78 FFFD FFFF 7FEF DB7B F64E

19 FFFF 7DFF E76F E952 7010 39 FFFD BFFF 67DD DA62 7680 59 FFFB FF7F DBDF F274 FCA4 79 FFFE FFFF BFF7 EDBD FB27

Steps for Location Identification. As mentioned above, the task for the
fault identification routine is to determine the value of φ given the vector Eφ.
For any element V ∈ {0, 1}l define the set BV = {i : 0 ≤ i < l, V (i) = 1}. Now
define a relation � in {0, 1}l such that for 2 elements V1, V2 ∈ {0, 1}l, we will
have V1 � V2 if BV1 ⊆ BV2 .

Now we check the elements in BEφ
. By definition, these are the PRGA rounds

i during which zi = zφi . By the definition of Signature vector proposed above,
we know that for the correct value of φ, BSgnφ

⊆ BEφ
and hence Sgnφ � Eφ.

So our strategy would be to search all the Signature vectors and formulate the
candidate set Ψ0 = {ψ : 0 ≤ ψ ≤ 79, Sgnψ � Eφ}. If |Ψ0| is 1, then the single
element in Ψ0 will give us the fault location φ. However, this may not necessarily
be the case always. If Ψ0 has more than one element, we will be unable to decide
conclusively at this stage.
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In such a scenario we reset the cipher with the original Key-IV and this time
apply the fault at the same location φ at the beginning of the 80th PRGA round
and record the next 80 keystream bits Zφ(80) = [zφ80(80), z

φ
81(80), . . . , z

φ
159(80)],

where zφi (t) denotes the ith keystream bit produced due to a fault on LFSR
location φ at the beginning of PRGA round t. Let the corresponding fault-free
bits be denoted by Z(80) = [z80, z81, . . . , z159]. Now reformulate and recalculate
the vector Eφ so that its ith element is the logical XNOR of the ith elements of
Z(80) and Zφ(80). We now search over the Signature vectors in the candidate set
Ψ0 and narrow down the set of possible candidates to Ψ1 = {ψ : ψ ∈ Ψ0, Sgnψ �
Eφ}. Clearly, |Ψ1| ≤ |Ψ0|, and so if |Ψ1| = 1 then the fault location φ is the single
element in Ψ1. If not, we repeat the above process for another round, i.e. reset
and apply the fault at the PRGA round 160 etc. If after k rounds of this process,
|Ψk−1| = 1, then the single element in Ψk−1 gives us the desired location φ.

Length of Signature Vector. In the idea given above, we have considered
the length of the signature vector l = 80. It may be noted that that fault
identification routine is also possible if we increase or decrease the length of
the signature vector. So what guidelines must be followed to choose an optimal
signature length. Intuitively the following considerations seem to be useful.

1. The signature vector must be long enough so as to uniquely identify the fault
location applying one or more faults.

2. The length of the signature vector must be such that the average number of
faults required to identify the fault location can be minimized.

We shall see how each of the above considerations affect the choice of the length l
of the Signature vector. For example, by simply looking at the Signature vectors
(one may refer to Table 1), one can deduce for sure that l can not be less than or
equal to 16, otherwise φ = 0, 1, 2, 19, 20, 21, 22, 23, 24, 41, 42, 43, 44, 45, 61, 62, 63
will have the same Signature vectors. We will give a better bound on l in the
following Lemma.

Lemma 1. The LFSR fault location can not be uniquely identified if the length
of the signature vector Sgnφ is less than or equal to 44.

Proof. Take l = 44. Studying the Signature vectors, one can check that Sgn40 =
FFFE DFFF B3E and Sgn79 = FFFE FFFF BFF. Note that, for all locations i ∈
[0, 43] such that Sgn40(i) = 1, the value of Sgn79(i) is also 1. This implies that
Sgn40 � Sgn79. Now consider the case with the fault location φ = 79. Then by
the definition of the signature vector we have Sgn79 � Eφ. Since � is a partial
order on {0, 1}l, this implies that Sgn40 � Eφ and so whenever φ = 79 the
fault location identification routine will never be able to narrow down the set of
possible candidates Ψk to only {79} for any value of k. It is easy to check that
the same argument holds for any l < 44. ��

Whenever l ≥ 45 a simple exhaustive search through the Signature vectors for
all fault locations, will show that Sgnφ1 � Sgnφ2 for any two fault locations
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Fig. 2. Average number of faults vs Length of Signature

0 ≤ φ1 �= φ2 ≤ 79. Further, we have to choose some l ≥ 45 so that the average
number of faults, for determining the fault location uniquely, can be minimized.
Finding, this optimal value of l mathematically is a difficult task, and hence we
choose to determine the optimal value by performing computer simulations. By
taking the average over 220 uniformly randomly chosen Key-IV pairs for Grain
v1, for every signature length l ≥ 45 we get the curve of Average number of
faults μl vs Length of Signature l given in Figure 2.

We can see that after l = 80, μl = 1.08 becomes almost constant for increasing
values of l. So the length of the Signature vector has been chosen to be 80 bits.

A similar analysis for Grain-128 shows that the minimum Signature length
must be greater than or equal to 62. For l = 128, the value of μl is around 1.001.

3.2 Determining the LFSR Internal State

Once the fault location φ has been identified we can proceed towards determining
the LFSR internal state at the beginning of the PRGA. Depending on the value
of φ we do one of the following.

– If 0 ≤ φ ≤ 37, we disregard the faulty keystream bits, and reset the cipher
and look to hit another LFSR location.

– If 38 ≤ φ ≤ 41, we reset the cipher and apply faults at the location φ at
the beginning of PRGA rounds 0, 20 and record the faulty keystream bits
at certain specific PRGA rounds. We then reset the cipher and look to hit
another LFSR location.

– If 42 ≤ φ ≤ 79, we reset the cipher and apply faults at the location φ at
the beginning of PRGA rounds 0, 20 and record the faulty keystream bits at
certain specific PRGA rounds. We reset the cipher again and apply faults
at the location φ at the beginning of PRGA rounds 204, 224 and record the
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faulty keystream bits at certain other specific PRGA rounds. We then reset
the cipher and look to hit another LFSR location

– We continue this process till all LFSR locations 38 to 79 have been hit.

We would like to point out that each double fault (injected at PRGA rounds
0, 20 or 204, 224) yields one linear equation in the initial LFSR state bits of
the PRGA. By injecting 2 faults in the 4 LFSR locations 38 to 41 and 4 faults
in the 38 LFSR locations 42 to 79, we obtain a set of 80 independent linear
equations in the initial LFSR state bits, which can be solved to get the entire
LFSR state at the start of the PRGA. The faulty keystream bits recorded in this
phase will be again used to recover the NFSR internal state as will be explained
in Section 3.3. Before describing the attack in detail let us state the following
symbolic notations that we shall be using henceforth.

Some Notations

1. St = [xt
0, x

t
1, . . . , x

t
79 yt0, y

t
1, . . . , y

t
79] is used to denote the internal state of

the cipher at the beginning of round t of the PRGA. Thus xt
i (yti) denotes

the ith NFSR (LFSR) bit at the start of round t of the PRGA. When t = 0,
we use S0 = [x0, x1, . . . , x79 y0, y1, . . . , y79] to denote the internal state for
convenience.

2. Sφ
t (t1, t2) is used to denote the internal state of the cipher at the beginning

of round t of the PRGA, when a fault has been injected in LFSR location φ
at the beginning of the tth1 and the tth2 PRGA round.

3. zφi (t1, t2) denotes the keystream bit produced in the ith PRGA round, after
faults have been injected in LFSR location φ at the beginning of the tth1 and
the tth2 PRGA round. zi is the fault-free ith keystream bit.

Beginning the Attack. We start by making the following observation about
the output Boolean function h in Grain v1: h(s0, s1, s2, s3, s4) + h(1 + s0, 1 +
s1, s2, s3, 1 + s4) = s2. Hence h is not affine differential resistant. Note that
s0, s1, s2, s3 correspond to LFSR locations 3, 25, 46, 64 respectively and s4 corre-
sponds to the NFSR location 63. This implies that if two internal states S and
SΔ be such that they differ in LFSR locations 3, 25 and NFSR location 63 and
in no other location that contributes inputs to the output keystream bit, then
the difference of the keystream bit produced by them will be equal to the value
in LFSR location 46. Getting differentials at exactly these 3 locations may be
difficult by injecting a single fault, but may be achieved if we faulted the same
LFSR location twice, as will be explained by the following lemma.

Lemma 2. If a fault is injected in LFSR location 38 + r (0 ≤ r ≤ 41), at the
beginning of the PRGA rounds λ and λ+20 (λ = 0, 1, . . .), then in round number
55 + λ + r of the PRGA, the faulty internal state S38+r

55+λ+r(λ, λ + 20) and the
fault-free internal state S55+λ+r will differ in LFSR locations 3, 25 and NFSR
location 63 and in none of the other 9 tap locations that contributes to the output
keystream bit.
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Proof. The proof requires the analysis of the differential trail of the successive
PRGA rounds. A differential Δ introduced in LFSR location 38+r (0 ≤ r ≤ 41),
at the beginning of rounds λ and λ+20 of the PRGA, will certainly reside on the
LFSR locations 3, 25 and NFSR location 63 at the beginning of round 55+λ+ r
of the PRGA. The differential also does not affect any other location involved
in the computation of the output keystream bit in round 55 + λ+ r. ��

The above lemma implies that if λ = 0, i.e., if faults are injected at the beginning
of the PRGA and round 20 at location 38 + r, 0 ≤ r ≤ 41 of the LFSR, then in
the PRGA round 55 + r we will have

z55+r + z38+r
55+r(0, 20) = y55+r

46 ∀r ∈ [0, 41].

Now since the NFSR does not influence the LFSR during the PRGA, y55+r
46 is

a linear function of the initial LFSR bits y0, y1, . . . , y79 for all 0 ≤ r ≤ 41. For
example, by analyzing the LFSR we have y5546 = y3+ y16+ y21+ y26+ y34+ y41+
y44 + y54 + y59 + y65 + y72.

So in this process, we obtain 42 linear equations in the original LFSR bits
y0, y1, . . . , y79. We need another 38 equations such that the resulting 80 equations
are linearly independent. We have attempted to find the remaining 38 equations
by resetting the cipher and then introducing faults later in the PRGA. If we let
λ = 204, i.e., if double faults were introduced in LFSR locations 42 + r with
0 ≤ r ≤ 37 at the beginning of the PRGA rounds 204 and 224, then by the
previous analysis it may be deduced that

z263+r + z42+r
263+r(204, 224) = y263+r

46 ∀r ∈ [0, 37].

This provides us with another 38 equations. We have observed that these equa-
tions are linearly independent. Writing these equations in matrix notation, we
have LY = W . The rows of the matrix L is defined by the linear functions
y5546 , y

56
46 , . . . , y

96
46 , y

263
46 , . . . , y30046 . Further, Y = [y0 y1 . . . y79]

T and W is the col-
umn vector defined as follows

W (r) = z55+r + z38+r
55+r (0, 20) 0 ≤ r ≤ 41,

W (42 + r) = z263+r + z42+r
263+r(204, 224) 0 ≤ r ≤ 37.

Since the matrix L and its inverse can be pre-computed beforehand, the vec-
tor Y = L−1W can be calculated immediately after applying the faults and
calculating W .

Note that for the second round of fault injections the choice of fault locations
42 ≤ φ ≤ 79 and PRGA rounds 204, 224 is by no means unique. By searching
over various values of λ, one may be able to obtain a set of linearly independent
equations for other choices of fault locations and PRGA rounds.

Remark 1. If the function h in Grain v1 had been affine differential resistant,
then such linear equations could not have been formed. Instead one had to con-
sider a set of nonlinear equations to get Y . As referred in [19], solving such
nonlinear equations is more challenging task and in that case the fault attack we
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describe here would have been less efficient. The method works in a similar man-
ner for Grain-128 and Grain-128a. For example, the output function in Grain-128
is of the form h(s0, s1, s2, s3, s4, s5, s6, s7, s8) = s0s1+s2s3+s4s5+s6s7+s0s4s8,
where s0 and s4 corresponds to NFSR variables. One can check that for any
α ∈ {001000000, 000100000, 000000100, 000000010}, h(x) + h(x + α) is a linear
function of LFSR variables only.

3.3 Determining the NFSR Internal State

Once the LFSR internal state of the initial PRGA round is known, one can
then proceed to determine the NFSR internal state. In [4] it was shown, that
this could have been done efficiently for the initial version of the cipher i.e.
Grain v0. After the attack in [4] was reported, the designers made the necessary
changes to Grain v1, Grain-128 and Grain-128a so that for these new ciphers,
determining the NFSR state form the knowledge of the LFSR state was no
longer straightforward. In order to determine the NFSR bits, we look into the
decomposition of the Boolean function h in more detail. The attack we will
describe in this section can be mounted due to the following observations on the
Grain output function h.

A. h(·) can be written in the form sj · u(·) + v(·) where sj corresponds to a
variable which takes input from an NFSR tap location;

B. There exists a differential β such that u(s) + u(s+ β) = 1;
C. v(s)+v(s+β) = a function of variables that takes input from LFSR locations

only.

For Grain v1, h(s0, s1, s2, s3, s4) = s4 · u(s0, s1, s2, s3) + v(s0, s1, s2, s3), where
u(s0, s1, s2, s3) = 1 + s3 + s0s2 + s1s2 + s2s3, and v(s0, s1, s2, s3) = s1 + s0s3 +
s2s3+s0s1s2+s0s2s3. Thus we note that (i) u, v are functions on the LFSR bits
only, (ii) u(s0, s1, s2, s3) + u(s0, 1 + s1, s2, 1 + s3) = 1 and (iii) v(s0, s1, s2, s3) +
v(s0, 1 + s1, s2, 1 + s3) = 1 + s0 + s2. Hence h satisfies all the properties listed
above.

The fault-free keystream bit at the tth round can now be rewritten as zt =⊕
a∈A xt

a + xt
63 · u(yt3, yt25, yt46, yt64) + v(yt3, y

t
25, y

t
46, y

t
64). Consider two internal

states St and St,Δ which differ in the LFSR locations 25 and 64 and in no other
location, that provides input to h. If zt and zt,Δ are the keystream bits produced
by St and St,Δ in that round, then using the previous observation we can see
that

zt + zt,Δ = xt
63 + v(yt3, y

t
25, y

t
46, y

t
64) + v(yt3, 1 + yt25, y

t
46, 1 + yt64).

Let ct =
[
v(yt3, y

t
25, y

t
46, y

t
64)+v(yt3, 1+yt25, y

t
46, 1+yt64)

]
. Since the LFSR internal

state is already available, ct can be computed immediately, and hence the differ-
ence of the two keystream bits plus the value of ct gives us the value at the NFSR
location 63 at round t of the PRGA. In the next Lemma, we shall investigate
when this differential pattern in the internal state is obtained by employing the
same fault injection strategy in the previous subsection.



A Differential Fault Attack on the Grain Family of Stream Ciphers 135

Lemma 3. Let S0, S1, S2, . . . be the successive internal states of the PRGA for
Grain v1. Then the faulty state Sφ

t (0, 20) will differ from St at LFSR locations
25, 64 and none of the other 10 tap locations that feed the output function for the
following values of φ, t: (i) φ = 51+ r, t = 91+ r for 0 ≤ r ≤ 28, (ii) φ = 62+ r,
t = 55 + r for 0 ≤ r ≤ 17, (iii) φ = 62 + r, t = 75 + r for 0 ≤ r ≤ 15.

Proof. The proof follows from an analysis of the differential trails of Grain v1
PRGA, and is similar to the proof for Lemma 2. ��

The Lemma essentially implies that if faults are injected at the beginning of the
PRGA and round 20 at location 51 + r of the LFSR (0 ≤ r ≤ 28), then in the
PRGA round 91 + r we will have

z91+r + z51+r
91+r(0, 20) + c91+r = x91+r

63 ∀r ∈ [0, 28].

Also, the following equations hold:

z55+r + z62+r
55+r(0, 20) + c55+r = x55+r

63 ∀r ∈ [0, 17],

z75+r + z62+r
75+r(0, 20) + c75+r = x75+r

63 ∀r ∈ [0, 15].

Since the LHS of all the above equations are known, we can therefore calculate
the value of the NFSR location 63 for all PRGA rounds 55, 56, . . ., 72, 75,
76, . . ., 119. Because of the shifting property of the NFSR, the equations xj

i =

xj+1
i−1 ∀i ∈ [1, 79] hold. Therefore knowing x55

63, x
56
63, . . . , x

72
63, x

75
63, x

76
63, . . ., x

119
63 is

equivalent to knowing x103
15 , x103

16 , . . . , x103
32 , x103

35 , x103
36 , . . . , x103

79 , i.e., we now know
63 out of the 80 NFSR state bits of S103.

Finding the Remaining Bits. Any bits of the NFSR internal state not found
out in the previous subsection could be obtained by performing an exhaustive
search over them. However, if h is such that both u, v are functions on the LFSR
bits only then the attack can be further simplified. Since the function h in Grain
v1 satisfies this property, we proceed to determine the remaining 17 NFSR bits of
S103. These may be found by a combination of solving equations and guesswork.
Since the 80 LFSR bits of S0 have already been found in the previous section,
one can efficiently calculate the 80 LFSR bits of S103 by running the Grain
v1 PRGA routine. This is because the LFSR evolves independently during the
PRGA. Then, by observing the fault-free output keystream bits we can write
the following equations:

z102+γ = x103
0+γ+x103

1+γ+x103
3+γ+x103

9+γ+x103
30+γ+x103

42+γ+x103
55+γ+u102+γx

103
62+γ+v102+γ ,

for γ = 0, 1, . . . , 14, where ui = u(yi3, y
i
25, y

i
46, y

i
64) and vi = v(yi3, y

i
25, y

i
46, y

i
64).

Since the LFSR initial state is known, ui, vi are available. Consider the set of
15 equations given above. In the last equation it can be seen that x103

14 is the
only unknown and hence its value may be easily calculated. Once x103

14 is known,
x103
13 becomes the only unknown in the 14th equation and its value too may be
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immediately calculated. Backtracking in this manner one can calculate upto x103
5

from the 6th equation. At this point we have calculated the value of 73 NFSR
bits of S103. The 5th equation is

z106 = x103
4 + x103

5 + x103
7 + x103

13 + x103
34 + x103

46 + x103
59 + u106x

103
66 + v106.

This equation has two unknowns x103
4 and x103

34 and so the value of either un-
known can not be calculated conclusively. Similarly the 4th equation has two
unknowns x103

3 and x103
33 . If we try out all the possibilities of x103

34 , x103
33 then

the value of the remaining 5 unknowns may be calculated uniquely. So we do
an exhaustive search over the 2 bits (4 possible candidates) for S103. The cor-
rect S103 may be found out by observing the keystream bits z103, z104, . . ., as
required. We eliminate any candidate S103 vector that does not produce the re-
quired keystream bit sequence. This routine thus gives us the entire S103 vector.
Note that in order to recover the NFSR state one does not have to inject any
additional faults other than those already injected to determine the LFSR state.

Remark 2. If the function h in Grain v1 were such that it could not be decom-
posed into u and v as above, then the attack would not have been as straight-
forward. The attack here is efficient as u and v are of certain nice structures
and their inputs are from LFSR bits only. The LFSR bits are already known
after the recovery of the LFSR bits and that helps in recovering the NFSR state
easily. It can be checked that the output function of Grain-128 and Grain-128a
also follows properties (A), (B), (C) given at the beginning of this section and
thus renders them vulnerable to this attack.

3.4 Finding the Secret Key and Complexity of the Attack

It is known that the KSA and PRGA routines in the Grain family are invertible.
Once we have all the bits of S103, by running the inverse PRGA routine 103
times, we obtain the initial PRGA state S0. Thereafter, by running the inverse
KSA routine one can recover the secret key.

The attack complexity directly depends on the number of fault experiments
to be performed such that all of locations in [38, 79] of the LFSR are covered.

To have this, the expected number of fault experiments is 80 ·
∑42

i=1
1
i ≈ 344.

In each fault experiment, the fault identification routine requires μl faults and
simulation results show that the expected value of μl is 1.08. Further depending
on the LFSR location hit, during the attack phase, one needs to inject 2 or 4
extra faults for determining the internal state. Therefore, the expected number
of faults that our attack needs is 344× (1.08) + 4 × 38 + 2 × 4 ≈ 29.05.

To determine the internal state, we have to perform one matrix multiplica-
tion, and solve a set of 78 linear equations and then exhaustively search over
2 variables. After that, 103 invocations of the PRGA−1 routine and a single
invocation of the KSA−1 routine are needed to determine the Secret Key.

Thus the dominant time/memory consuming process in our attack is the
multiplication of L−1W which requires around 80 × 80 bits to store L−1 and
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802 ≈ O(212.6) bit operations to calculate the product. Further storing the Sgnφ

patterns also requires 80× 80 bits as described in Table 1.
As stated before, this is the first reported fault attack on Grain v1. Two

fault attacks [5, 19] have been reported against Grain-128 and that is the reason
direct comparison is not possible. However, one may note that our resource
requirements are either favorable or comparable to that of [5, 19].

4 Countermeasure: Choice of Proper Boolean Function

In [5], it was suggested that one of the methods to prevent such fault attacks was
to keep two identical implementations of both the shift registers in the cipher
hardware. Naturally this needs additional hardware.

One important question here is what are the reasons such that the fault at-
tack can be efficiently implemented. We have already seen that the source of
the weakness lies with the output Boolean function h. Our attack is possible as
there exists the vector α = [1, 1, 0, 0, 1] such that h(s) + h(s + α) is an affine
Boolean function. This function h, used in Grain v1, is clearly not affine differ-
ential resistant. In [15], the designers clearly specify the reasons for choosing this
particular output function.

“This filter function is chosen to be balanced, correlation immune of the
first order and has algebraic degree 3. The nonlinearity is the highest
possible for these functions, namely 12.”

In view of the fault attack presented here, we need affine differential resistant
functions with the same parameters. One may refer to [26] to have many such
functions in the class of rotation symmetric Boolean functions and we describe
the ANF of one of those as below:

F (s0, s1, s2, s3, s4) = s0s1 + s1s2 + s2s3 + s3s4 + s4s0 + s0s2 + s1s3 + s2s4 +
s3s0 + s4s1 + s0s1s3 + s1s2s4 + s2s3s0 + s3s4s1 + s4s0s2. This function can be
realized with a few extra logic gates as below. The gate count is presented as
per the calculation of [15].

Gate Requirement
NAND2 NAND3 NAND4 NAND5 NAND6 Gate Count

h [15] 8 1 9 1 0 30
F (our) 8 0 10 2 1 38

Proper cryptographic choice of h with possibly higher number of variables with
efficient implementation in terms of low gate counts is an important open ques-
tion. Further, we should also note that the decomposition of h in u, v that possess
properties (A), (B), (C) given in Section 3.3 helps in mounting an efficient fault
attack. We further note that the function F described above does not satisfy
property (B) if s4 is the only variable that takes input from an NFSR location.
This implies that even if the initial LFSR state of the PRGA is made known to
the attacker, the attacker will be unable to apply the attack given in Section 3.3
to the function F .
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5 Conclusion

In this paper we have described a differential fault attack that works on all
the versions of Grain. Such attacks were studied earlier on Grain-128 in [5, 19].
However, the attacks could not be mounted on Grain v1 due to the different
structure of the output function h(·). Here we show that the function of Grain
v1 too has some weakness in terms of having affine differentials. By this we mean
that there exists certain suitable α such that h(x)+h(x+α) is linear. Our attack
works due to this observation and corresponding choices of the taps from the
LFSR. That is, from a general perspective, the differential fault attack can be
mounted on Grain like structures even with Boolean functions of higher degree.
We also provide examples of functions that are affine differential resistant and
suggest use of such functions in Grain family as a countermeasure. Our work
provides clear direction in choosing the output Boolean function and its inputs
from the locations of the LFSR and the NFSR.
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Abstract. Algebraic side-channel attacks (ASCA) are a method of crypt-
analysis which allow performing key recoveries with very low data com-
plexity. In an ASCA, the side-channel leaks of a device under test (DUT)
are represented as a system of equations, and a machine solver is used
to find a key which satisfies these equations. A primary limitation of the
ASCA method is the way it tolerates errors. If the correct key is ex-
cluded from the system of equations due to noise in the measurements,
the attack will fail. On the other hand, if the DUT is described in a
more robust manner to better tolerate errors, the loss of information may
make computation time intractable. In this paper, we first show how this
robustness-information tradeoff can be simplified by using an optimizer,
which exploits the probability data output by a side-channel decoder,
instead of a standard SAT solver. For this purpose, we describe a way
of representing the leak equations as vectors of aposteriori probabilities,
enabling a natural integration of template attacks and ASCA. Next, we
put forward the applicability of ASCA against devices which do not con-
form to simple leakage models (e.g. based on the Hamming weight of the
manipulated data). We finally report on various experiments that illus-
trate the strengths and weaknesses of standard and optimizing solvers in
various settings, hence demonstrating the versatility of ASCA.

1 Introduction

In an algebraic side-channel attack (ASCA), the attacker is provided with a
device under test (DUT) which performs a cryptographic operation (e.g. en-
cryption). While performing this operation the device emits a measurable side-
channel leakage that is expected to be data dependent. A typical example of
such a leakage is a power consumption or electromagnetic radiation trace. As
a result of the data dependence, a certain amount of leaks is modulated into
the trace. These leaks are functions of the internal state of the DUT, which
can teach the attacker about intermediate computations at various stages of the
cryptographic operation. The trace, and its embedded leaks, are subjected to
some noise due to interference and to the limitations of the measurement setup
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[15, §1.2]. In order to recover the secret key from a power trace using an ASCA,
the attacker generally performs different steps as we describe next.
1. In a first offline phase, the DUT is analyzed in order to identify the position

of the leaking operations in the traces, for instance by using classical side-
channel attacks like CPA [5] or template attacks [7].

2. Next, in a second offline phase, the DUT is profiled and a decoding process
is devised, in order to map between a single power trace and a vector of
leaks. A common output of the decoder would be the Hamming weight of
the processed data as in [18], but many other decoders are possible.

3. After the offline phase, the attacker is provided with a small number of power
traces (typically, a single trace). The traces are accompanied by auxiliary
information such as known plaintext and ciphertext. The decoding process
is applied to the power trace, and a vector of leaks is recovered. This vector
of leaks may contain some errors, e.g. due to the effect of noise.

4. The leak vector, together with a formal description of the algorithm imple-
mented in the DUT, is represented as a system of equations. This equation
set also includes any additional auxiliary information.

5. A machine solver evaluates the equation set and attempts to find a candidate
key satisfying it. In the case of an optimizing solver, a goal function is also
specified to define the optimality of each candidate solution. The solver may
fail to terminate in a tractable time, or otherwise return a candidate key.

6. Eventually, and optionally, some post-processing can be used, e.g. in order
to brute force the remaining key candidates provided by the solver.

As indicated in the above list, there are several conditions which must all hold
true before such an attack succeeds. First, the correct key should not be excluded
from the set of solutions to the equation system. This can happen if the traces
are too noisy, or if the decoder is not adapted to the attacked device. Next, the
solver should not run for an intractable time. This can happen if not enough
side-channel information is provided. Finally, the returned key should be the
correct key, or at least a key close enough to allow an efficient enumeration.
Related Work. ASCA were introduced by Renauld et al. in [17,18], and first
applied to the block ciphers PRESENT [4] and AES [14]. These works showed
how keys can be recovered from a single measurement trace of these algorithms
implemented in an 8-bit microcontroller, provided that the attacker can identify
the Hamming weights of several intermediate computations during the encryp-
tion process. Already in these papers, it was observed that noise was the main
limiting factor for efficient ASCA. To mitigate this issue, a heuristic solution
was introduced in [18], and further elaborated in [22]. The main idea was to
adapt the leakage model in order to trade some loss of information for more
robustness, for example by grouping hard to distinguish Hamming weight values
together into sets. We will denote this approach as set-ASCA. Other improve-
ments regarding the error tolerance of ASCA have also been discussed in [13].
In parallel, an alternative proposal was introduced at CHES 2010, and denoted
as Tolerant ASCA (TASCA) [15]. Here, the idea was to include the imprecise
Hamming weights in the equation set, and to deal with these imprecisions via
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the solver. The authors showed how leaking implementations of Keeloq [9] could
be attacked in this way, and recently extended their results to the AES case [16].

Our Contribution. One primary limitation of the ASCA method lies in its
intolerance to errors: if the correct key is excluded from the system of equa-
tions, the attack will fail. This can be somehow mitigated by the robustness vs.
information tradeoff, but only up to a certain point, as the loss of too much
information makes the computation time intractable. In this work, we first show
how an optimizing solver can use probability data to retain the robustness re-
quired to be error-tolerant, while losing less information than a SAT solver,
at the cost of a larger problem representation. For this purpose, we describe a
novel way of describing measurement equations directly as vectors of aposteri-
ori probability, using the objective function of the optimizing solver. Next, we
discuss the generalization of ASCA from the case of Hamming weight leakages
to generic (template-based) models. We show that template attacks and ASCA
can be naturally integrated, both with standard solvers and optimizers. We ad-
ditionally provide experimental results allowing to put forward the strengths and
weaknesses of the newly proposed probabilistic TASCA and set-ASCA. Overall,
the resulting attacks allow strongly reduced data complexity template attacks,
when compared to standard divide-and-conquer key recovery attacks.

Document Structure. The rest of this paper is organized as follows. Section 2
describes our experimental setup. Section 3 discusses how to exploit probabilistic
information in TASCA and evaluates the performances of this improved attack,
compared to set-ASCA and the original TASCA. Section 4 investigates attacks
against a device that does not leak according to the well-known Hamming weight
leakage model. Finally, concluding remarks are given in Section 5.

2 Experimental Setup

Our analysis considers two simulated implementations of the AES Rijndael in
8-bit microcontrollers as DUT. We assumed that no leaks from the key expan-
sion process are available to the solver and that the DUT performs round key
expansion in advance. This corresponds to a more challenging scenario, as it was
established in [10] that the Hamming weights leaked from an 8-bit microcon-
troller implementation of the AES during key expansion are sufficient for full
key recovery, even without any additional state information. We also assumed
that the plaintext and the ciphertext are known to the attacker. We finally ex-
ploited the information the device leaks about the 8-bit operands commuting on
its data bus. In total, it corresponds to 100 values per round, as described below:

– The AddRoundKey operation leaks information about the 16 state bytes
after the XOR with the key, as well as information about the key bytes
themselves, giving a total of 32 leaks per round.
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– The SubBytes operation is implemented as a look-up table (LUT) and leaks
information about its 16 output state bytes (and not any other internal state
information), for a total of 16 leaks per round.

– The ShiftRows operation does not leak any information.
– The MixColumns operation is implemented using 8-bit XTIME and XOR

operations as specified in [8, §5.1], and leaks 36 additional bytes of internal
state and 16 leaks for its final state, resulting in a total of 52 leaks per round.

Note that the optimizer we used to perform TASCA was not memory-efficient
enough to represent the entire AES encryption in equation form. As a result, we
provided it with a known plaintext and the cipher equations for the first round
of encryption only. By contrast, the SAT solver was provided with a plaintext/
ciphertext pair, and all the cipher equations. In order to have comparable ex-
periments, we only exploited the 100 first round leakages, in both cases.

Regarding the leakage models, we considered two different scenarios. First,
we used the templates obtained from a PIC microcontroller. As illustrated in
Figure 1, this device closely follows a Hamming weight leakage model. Next, we
used the templates obtained from the AES S-box implemented in a 65-nanometer
CMOS technology, previously analyzed in [19]. In particular, we selected one of
the S-boxes for which the leakage model is not correlated with the Hamming
weight of the manipulated data, as illustrated in Figure 2. In both cases, the
signal-to-noise ratio was similar and relatively high (with the variance of the
signal approximately 10 times larger than the noise variance), yet leading to
some decoding errors, as will be investigated next. These setups were selected in
order to illustrate the efficiency of ASCA in different implementation contexts.

Fig. 1. PIC leakage model: average values (left) and grouped by HWs (right)

The solver used for the TASCA experiments was SCIP version 1.2.0 compiled
for Windows 64-bit [3]. This solver is currently the best non-commercial solver
available for non-linear optimization problems, as listed by [12]. The solver was
run on a quad-core Intel Core i7 950, running at 3.06GHz with 8MB cache. For
the set-ASCA experiments we used CryptoMiniSAT 2.9 [21]. This solver won
several prizes in SAT competitions (SAT Race 2010 [20] and SAT competition
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Fig. 2. 65nm S-box leakage model: average values (left) and grouped by HWs (right)

2011 [1]) and is well adapted to deal with cryptographic problems, as XOR
operations (very frequent in cryptographic algorithms) are managed by the solver
using specific optimized clauses. The solver was run on on a quad-core Intel Core
Intel Xeon X5550 processor, running at 2.67 GHz with 8MB cache.

Finally, we note that because of the previously mentioned memory limitation
issue, the success condition is defined differently for set-ASCA and TASCA.
In the set-ASCA scenario, the entire encryption operation is included in the
equation set, meaning that the solver either outputs the correct key or otherwise
runs for an intractable time. By contrast, the TASCA solver only exploits the
first round equations and, therefore, can sometimes return an incorrect key. We
deal with this condition by measuring the amount of incorrect bytes in the result
– if 4 bytes or less are incorrect, we assume that the correct key can be recovered
from this partially correct key by brute force1 and declare success. We also recall
that the amount of leaks exploited (i.e. 100) was the same in all our experiments.

3 Exploiting Probabilistic Information

As stated in the previous section, in an ASCA the attacker takes the output
of a decoding process and converts it into a series of measurement equations.
An example for such a decoding process would be a nearest neighbor decoder,
a näıve Bayes decoder [11, §13.2] or a template decoder [7]. In most cases this
decoder does not only output “hard” data (i.e. the most likely leak value) but also
some additional “soft” information, such as confidence information, a ranking of
1 Assume that e of the 16 bytes are incorrect. The attacker must go over all(16

e

)
≈ 24e/e! possible locations for those errored bytes, then try 256e = 28e pos-

sible candidate assignments for these positions, resulting in an approximate total
effort of 24e · 28e = 212e AES operations. Most modern Intel CPUs have a native
implementation of AES (AES-NI), which allows a sustained rate of more than 231

AES operations per second [2]. Thus, an attacker can use a single machine with an
AES-NI implementation to probe the neighborhood of a candidate key and find the
correct key within less than 24 hours, even if 4 of the 16 bytes are incorrect.
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several possible leaks by decreasing order of likelihood or, most generally, a full
vector listing the aposteriori probability for each possible leak value, conditioned
on the received trace. In this section, we discuss an improvement of TASCA
which is capable of taking advantage of this soft (probabilistic) information.

For this purpose, let us start from the standard scenario of a Hamming weight-
based ASCA. In this context, the tradeoff between robustness and information
is generally achieved by choice of the set size k. It defines the number of ac-
ceptable values for each individual side-channel leak in the equation set, relative
to the apriori selection of a leakage model (e.g. the Hamming weight of the
manipulated data). The value of k can be either determined as a global con-
stant for all equations in the set (e.g. as in [16,18]), or determined on a per-leak
basis according to some heuristic (e.g. as in [13,22] ). In the case of a precisely-
defined equation set, in which k = 1, only the most likely value output by the
decoder is accepted. This representation provides the most information, but it
cannot tolerate any errors. As the set size k grows, so does the robustness of the
equation set, but this comes at the price of a loss of information. The original
work on ASCA [17] investigated only the case of k = 1. Thus, the single value
chosen as most likely by the decoder was entered into the equation set. In the
set-ASCA experiments of [13,18,22], more than one value was listed as possible
to the solver, sacrificing information for robustness against errors. In this case,
each leakage equation would accept the k most likely values, as output by the
decoder. The TASCA attack of [16] also uses a set, and additionally uses a goal
function to mark one of the value in the set as likelier than the others, without
further quantification of this likelihood. This representation is more informative
than in a set-ASCA, but it still does not fully take advantage of the information
provided by the decoder.

We now present a more expressive way of representing the probability infor-
mation provided by the decoding phase. In the most general case, the decoder
outputs a full probability vector for each leak, listing the aposteriori probability
of the leak having each possible value, conditioned on the specific trace being
received. This output is typical for e.g. template decoders [7]. In the case of a
Hamming weight-based template decoder, each potential leak will have an asso-
ciated vector of 9 aposteriori probabilities corresponding to Hamming weights 0
to 8. If we further assume that individual leaks are uncorrelated, then the com-
bined probability of all leaks in the trace is proportional to the product of the
individual aposteriori probabilities. Of course, most of these combinations are
impossible, since they violate the cipher equations. The goal of the solver in this
case would be to find the set of leaks that maximizes the product of aposteriori
probabilities while still corresponding to a valid encryption. As shown in [18],
the exact values of the Hamming weight leaks provide enough information to
uniquely and efficiently find the correct key of an AES encryption. If we define
the exact value of leak i as xi, we can define the objective of the attack as:

x1 · · · xm = arg max
x1···xm

∏
i=1···m

Pr(xi|trace) s.t. cipher eq’ns are satisfied.
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Since the goal function of the SCIP solver is expressed as a sum of integers which
must be minimized, we represent the objective using this equivalent expression:

x1 · · · xm = arg min
x1···xm

∑
i=1···m

− log (Pr(xi|trace)) s.t. cipher eq’ns are satisfied.

The representation of a probability vector px for a certain leaked Hamming
weight x with set size k as a side-channel leak equation is thus split into two parts:
the constraint set and the goal term. The constraint set is very straightforward –
it considers k different events called “HW(x) is 0”, “HW(x) is 1”, etc., describes
each event in terms of the relevant combination of bits in the leaked byte, and
finally requires that one and only one of these events be true in for each leak in
a satisfiable solution. The goal term matches each event with a corresponding
probability. Each probability p is represented in the goal term as − �C log p�,
where C is an implementation parameter. The goal terms of all leaks in the
system are then summed together to create the global goal function.

3.1 Experimental Validation

In order to compare set-ASCA, basic TASCA and TASCA with probabilities
in the Hamming weight leakage model, we designed a first set of experiments,
based on simulated leakages from the PIC device illustrated in Figure 1. For
each experiment, we list the decoding success rate – the proportion of traces for
which all 100 correct leaks are included in the 100 k-sized sets provided by the
decoder – and the key recovery success rate – the proportion of traces for which
the solver returned the correct key within a reasonable time. We also report
on the (median and maximum) solving time and show the average number of
correct key bytes in case of successful attacks. For set-ASCA, both the plaintext
and ciphertext are included in the equation system, meaning that an attack can
only succeed when every 16 key bytes are correct. On the other hand, in TASCA
instances only the plaintext is used, meaning that when the set size increases,
several keys can be valid according to the algebraic representation. In this latter
case the average number of correct key bytes can be below 16. As explained in
Section 2, the attack is still considered successful when at least 12 out of the 16
key bytes are correct. Our results are summarised in Table 1.

These experiments lead to a number of interesting observations. First and as
expected, they clearly illustrate the information vs. robustness tradeoff. That
is, the probability of decoding success grows as the set size grows (better ro-
bustness). However, this impacts the performances of the different attacks in
different manners. For set-ASCA, the solving time quickly increases to the point
of intractability, because of a lack of information. By contrast, the basic TASCA
are more resistant to the loss of information: as the set size grows the running
time increases, but the key recovery probability is much less affected. Yet, the
limited information available to the solver causes parts of the key to be recov-
ered incorrectly in some cases, which then requires an additional brute forcing
step. Combining probabilistic information with a set size of 3 finally allowed the
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Table 1. set-ASCA, basic TASCA and probabilistic TASCA experimental results
against the PIC microcontroller simulated leakages with Hamming Weight model

attack set
size

decoding
success

key rec.
success

med. solving
time

max. solving
time

# of correct
key bytes

set-ASCA 1 0% 0% N/A N/A N/A
set-ASCA 2 83% 83% 2 seconds 6 seconds 16
set-ASCA 3 100% 0% 24+ hours 24+ hours N/A

basic TASCA 1 0% 0% N/A N/A N/A
basic TASCA 2 83% 75% 43.7 minutes 11.8 hours 14.48
basic TASCA 3 100% 80% 16.8 hours 66 hours 13.25
prob. TASCA 1 0% 0% N/A N/A N/A
prob. TASCA 2 83% 82% 56.7 minutes 10.07 hours 15.88
prob. TASCA 3 100% 100% 8.2 hours 143 hours 16

optimizer to recover the correct key in virtually all experiments. It also reduced
the running time compared to the basic TASCA. Yet, both TASCA approaches
are still much slower than the set-ASCA approach when it succeeds (e.g. for
set sizes k ≤ 2), due to the more complex design of the optimizer. This is also
reflected by the larger memory requirements of the TASCA solving phase.

Summarizing, the TASCA approaches allow improved flexibility as they sys-
tematically deal with the information vs. robustness tradeoff during the solving
phase. By contrast, set-ASCA shift this problem to the decoder phase. In case of
low-noise scenarios, or whenever the adversary can average the measurements,
set-ASCA is the method of choice because of its reduced memory requirements
and solving times. It also allows exploiting all the leaks (i.e. not only the first
round ones). By contrast, the more the measurements are noisy and/or hard
to interpret by the adversary (e.g. because of countermeasures), the more the
TASCA approaches becomes interesting, thanks to its optimizing features.

4 Beyond the Hamming Weight Model

As illustrated in Section 2, Figure 2, the leakage of certain devices (e.g. in 65nm
and smaller technologies) cannot always be precisely expressed with simple mod-
els. As a result, it is interesting to investigate how ASCA/TASCA can be ex-
tended towards these more challenging scenarios. In this section, we show how
to move from Hamming weight-based models to more generic ones.

For this purpose, let us assume that the attacker has performed template-
based profiling of the DUT [7]. Given a power trace, the he can now create a
probability vector for each leak, where each entry in this vector matches a certain
possible leak value, and each value in the vector is the aposteriori probability of
this leak conditioned on the power trace being processed. Assuming the DUT has
an 8-bit architecture, each such vector contains 256 entries. The decoding process
will output a number of such vectors – one for every leak in the equation set. As
for the Hamming weight model, we use this side-channel information to restrict
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the size of the solution space. In order to do so, we define a parameter called the
support size k′, which is comparable (though not identical) to the set size k in
the previous section. It corresponds to the amount of possible values associated
to each leak. These values are chosen according to the probability vector: the k′

most probable values are considered possible, and the others are rejected. Hence,
the value of k′ must be carefully chosen in order to avoid rejecting the correct
value from the set of possible ones, making the problem unsolvable.

Representing this generic leakage model as clauses or equations is less easy
than for the Hamming weight model. For the set-ASCA, the easiest way to
represent a set of k′ possible values for a leaked byte x is to exclude all impossible
values. For example, in order to exclude the value x = 9 ⇔ (x0, ..., x7) =
(0, 0, 0, 0, 1, 0, 0, 1), we add to the SAT problem the clause (x0 ∪ x1 ∪ x2 ∪ x3 ∪
−x4 ∪x5 ∪x6 ∪−x7). Each set of k′ possible values is thus translated into 256−k′

clauses with 8 literals per clause. In order to speed up the solving process, we
additionally apply some simplification techniques, e.g. reducing the length and
number of closes. For the TASCA, the representation of a probability vector px

for a certain leaked byte x with support size k′ as a side-channel leak equation is
again split into two parts: the constraint set and the goal term. The constraint
set describes k′ different events called “x is 0”, “x is 1”, etc., and requires that
one and only one of these events is true for each leak. The goal term matches
each event with a corresponding probability. An example of such a representation
can be found in Appendix A. Since this representation is especially suited for
template-based profiling, we call it template TASCA and set-ASCA.

4.1 Impact of the Support Size and Goal Function

A first natural question in this new setting is: how small must the support size
be for the attacks to succeed, and what is the impact of the probabilistic in-
formation that can be added to the optimizer? To answer it, we designed an
experiment in which we compared many pairs of template-TASCA instances of
single-round AES with different support sizes. In each pair, one of the instances
was provided with an unweighted probability vector (that is, all nonzero ele-
ments in the probability vector are considered of equal probability), while the
other was provided with a weighted vector function. The latter one was simu-
lated (independent of any actual leakage model) such that the single correct byte
value always had a higher probability than all the other ones in the support. For
the rest, the instances were identical, with only plaintext provided, such that
the solver could potentially output an incorrect key as in the previous section.

The results of this experiment are illustrated in Figure 3. As we can see, they
can be divided into four distinct phases. In the first phase (support sizes up
to 10), the performance of the weighted and unweighted instances is identical,
probably because enough information is available in the support of the function,
making the additional information in the goal function redundant. In the second
phase (support sizes 10 – 50) both the weighted and the unweighted instances
end in successful key recovery, but the weighted instances are faster by two
orders of magnitude. We see that in this range there is still enough information
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Fig. 3. Template-TASCA attacks with weighted (solid line) and unweighted (dashed
line) probability vectors: experimental running time and success rate

in the unweighted instances to precisely specify the correct key, but the added
information of the goal function allows the optimizer to reach the correct answer
more quickly. In the third phase (support sizes 50 – 70) the success rate of the
unweighted instances slowly falls to 0, probably because more and more incorrect
keys can satisfy the constraint set. However, the additional information in the
goal function causes the optimizer to prefer the likeliest solution, which in our
case was the correct one. Finally, in the fourth phase (support sizes 70 and up)
the large amount of possible keys in the support makes the success rate of the
unweighted instances marginally small. Note that even with a full support (k′ =
256) the performance was still good. This implies that all information about the
instances can be encoded into the goal function and not into the constraints,
and thus that the correct key will never be excluded from the equation set.

Furthermore, it could be argued that the running time of the weighted tem-
plates is faster than that of the unweighted ones because the correct guess is
always the highest ranked. To investigate this scenario, we repeated the same
experiment, this time setting the rank of the correct key candidate to 2. The
change in rank caused the running time of the weighted case to increase, but
had no effect on the success rate. We verified this behavior for ranks of up to 14.

4.2 Experimental Validation

As in the previous section, we verified the effectiveness of our attacks by perform-
ing several experiments. This time, we considered a DUT where the simulated
leakages are generated according to the model of the 65nm ASIC implementing
one AES S-box presented in Section 2. As illustrated in Figure 2, the leakage
function of this device is very different from the Hamming weight model. Thus, it
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Table 2. Template set-ASCA and probabilistic TASCA experimental results against
simulated leakages from a 65nm S-box, with generic template model

attack set
size

dec. SR key rec.
SR

med. solving
time

max. solving
time

# of correct
key bytes

set-ASCA 64 15.5% 15.5% 2 sec. 2 sec. 16
set-ASCA 90 90% 90% 265 sec. 24+ hours 16
set-ASCA 100 100% 29% 24+ hours 24+ hours 16

prob. TASCA 64 15.5% 15.5% 35.88 sec. 86.03 sec. 16
prob. TASCA 90 90% 90% 245.72 sec. 869.4 sec. 16
prob. TASCA 100 100% 100% 342.76 sec. 21271 sec. 16
prob. TASCA 256 100% 100% 62254 sec. 48+ hours 16

constitutes a perfect target for our template-based set-ASCA and TASCA. In a
first step, we profiled the AES S-box, resulting in 256 templates corresponding to
the 256 possible transition values. Each univariate template assumes a Gaussian
noise and was characterized by a mean value μ and a noise standard deviation
σ. In a second step, we used Bayesian inversion to simulate the classification
probability Pr (xi|trace) from the template output Pr (trace|xi).

The results of the attacks are summarized in Table 2, where we selected dif-
ferent support sizes k′. As expected, smaller support sizes lead to more unsat-
isfiable/unsolvable problems, but these problems are solved faster, meaning a
higher success rate for the computation phase. As soon as k′ ≥ 100, all the prob-
lems are solvable, but the solving process becomes much longer. We compared
two attacks: the set-ASCA and the probabilistic TASCA. Both essentially con-
firmed our previous observations. Namely, the set-ASCA instances are very fast
to solve for low support sizes, but suddenly increase in difficulty between k′ = 90
and k′ = 100. By comparison, probabilistic TASCA instances for low support
sizes are much slower to solve than set-ASCA ones. Nevertheless, the difficulty of
solving TASCA instances increases slower than for set-ASCA ones. In the end,
probabilistic TASCA is able to solve problems with support size k′ = 256, which
is totally infeasible for set-ASCA (as k′ = 256 means no side-channel informa-
tion for set-ASCA instances). Summarizing, we again observe a tradeoff between
efficiency (set-ASCA) and flexibility (probabilistic TASCA).

Besides, Table 3 presents a comparison of the Hamming weight model and
the template model in terms of set size and support size. For each set size, i.e.
for each number of possible Hamming weight values, the table details the cor-
responding average support size k̄′ and the minimum and maximum support
sizes k′

min and k′
max. For instance if k = 2, the two consecutive Hamming weight

values HW(x) = {0 or 1} correspond to k′
min = 9 possible transition values out

of 256. Similarly, the two Hamming weight values HW(x) = {3 or 4} correspond
to k′

max = 126 possible transition values out of 256. On average, a leak that is
represented by a set of 2 possible Hamming weight values can also be repre-
sented by a set of k̄′ = 95 possible transition values. Contrarily to the attacks
using the template model where the support size is the same for every leak, the
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attacks using the Hamming weight model present different support sizes. There-
fore, some sets of Hamming weight values offer more information than others. In
other words, the Hamming weight information is not uniformly distributed over
the 100 considered leaks in the first AES round. This table allows us to compare
and better understand the results from Table 1 and Table 2. For example, we
observe that solving set-ASCA problems with the Hamming weight model for
set size k = 2 takes about 2 seconds, while solving set-ASCA problems with the
template model for a similar support size k′ = 90 takes more than 250 seconds.
Hence, set-ASCA seems to take advantage of the non-uniform information pro-
posed by the Hamming weight model. This confirms observations already made
in [6]: the SAT solver usually exploits small parts of the equation system where
the information is most concentrated. Interestingly, the same is not true for prob-
abilistic TASCA: template instances with support size 90 or 100 are faster to
solve than Hamming weight instances with set size 2. Our hypothesis is that for
probabilistic TASCA, the goal function contains more information when using
the template model than the Hamming weight model, as the Hamming weight
model does not make any distinction between different transition values with
the same weight. As a consequence, the advantage offered by non-uniform infor-
mation is counterbalanced by a less informative goal function.

Table 3. Comparison between set sizes (Hamming weight model) and corresponding
average k̄′, minimum k′

min and maximum k′
max support sizes (template model)

Set size k k̄′ k′
min k′

max

1 50 1 70
2 95 9 126
3 134 37 186

5 Concluding Remarks

In this paper we showed how both optimizers and solvers can be used to perform
ASCA even if the leakage function does not conform to the Hamming weight
model. The solver-based approach (set-ASCA) was shown to be faster than the
optimizer-based approach (TASCA) when a high degree of robustness is not re-
quired (for example, if the traces can be preprocessed by averaging many traces).
However, in cases when robustness is required, the optimizer approach was shown
to be both faster and with higher success rate than the solver-based approach.
This is due to the additional flexibility afforded by the optimizer goal function,
which allowed us to construct a generic representation of the measured leak as a
vector of aposteriori probabilities. The new flexible representation presented in
this paper allows TASCA and set-ASCA attacks to be used as a natural match
for template attacks. To carry out a combined Template-TASCA or Template-
set-ASCA, the attacker should not only create templates for the original key
bytes, but also for all intermediate values. The solver step will then replace any
traditional post-processing step used in template attacks such as brute-force key
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enumeration. As a result, we further illustrated how an ASCA can be used ef-
fectively as a post-processing step of a template attack, dramatically reducing
its data complexity. We believe that attention should be given to this capability
when evaluating the security of systems using template attacks.

Future Work. Optimizers are less efficient than solvers in terms of running
time, but since a solver does not have any efficient way of representing the
objective function which contains the aposteriori probabilities, its running time
quickly becomes intractable when high robustness is desired. It may be possible
to increase the robustness of the solver-based approach by finding a better way
of choosing the set size k or support size k′. For example, instead of choosing the
k′ most likely value, the solver can set a threshold probability and include in its
support all values with a higher probability than this threshold. The solver might
also be used in an adaptive manner - slowly increasing the support size while the
solver returns unsatisfiability, until we reach the minimal sized support for which
a solution exists. Quite naturally, the opposite approach would be interesting too.
Namely, the search for improved optimizers, allowing to represent more complex
problems with reduced memory efficiency would be another way to close the
gap between set-ASCA and TASCA. Finally, it would be interesting to carefully
investigate the connection between the offline and online phases of a template
attack on the success of template-TASCA and template set-ASCA. A better
model obtained through better profiling in the offline phase should intuitively
allow the use of lower-quality data in the online attack phase, and vice versa.
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Assume that during the cryptographic operation the DUT processes two bytes
x and y. Using a template profiling step, the attacker creates a model of the
leakages produced by the processing of x and y. Given a trace, the attacker
can now use this information to calculate vectors of aposterioti probabilities for
x and for y (px, py), conditioned on the specific trace having been received.
The support size has been set to k′ = 4. The vectors passed to the solver
are px = { 1

2 , 1
3 , 1

12 , 1
12 , 0 · · · 0}, py = { 1

5 , 1
5 , 1

5 , 0, 0, 2
5 , 0 · · · 0} . The attacker also

chooses the implementation parameter C = 10 to efficiently capture the proba-
bility information while limiting the ultimate size of the goal term. The attacker
then uses the aposteriori probability vectors to generate the following equations:

∗ Leak Equations :
+1 ˜ x i s 0 0 +1 ˜ x 0 ˜ x 1 ˜ x 2 ˜ x 3 ˜ x 4 ˜ x 5 ˜ x 6 ˜ x 7 = 1 ;
+1 ˜ x i s 0 1 +1 x 0 ˜ x 1 ˜ x 2 ˜ x 3 ˜ x 4 ˜ x 5 ˜ x 6 ˜ x 7 = 1 ;
+1 ˜ x i s 0 2 +1 ˜ x 0 x 1 ˜ x 2 ˜ x 3 ˜ x 4 ˜ x 5 ˜ x 6 ˜ x 7 = 1 ;
+1 ˜ x i s 0 3 +1 x 0 x 1 ˜ x 2 ˜ x 3 ˜ x 4 ˜ x 5 ˜ x 6 ˜ x 7 = 1 ;
+1 x i s 0 0 +1 x i s 0 1 +1 x i s 0 2 +1 x i s 0 3 = 1 ;

+1 ˜ y i s 0 0 +1 ˜ y 0 ˜ y 1 ˜ y 2 ˜ y 3 ˜ y 4 ˜ y 5 ˜ y 6 ˜ y 7 = 1 ;
+1 ˜ y i s 0 1 +1 y 0 ˜ y 1 ˜ y 2 ˜ y 3 ˜ y 4 ˜ y 5 ˜ y 6 ˜ y 7 = 1 ;
+1 ˜ y i s 0 2 +1 ˜ y 0 y 1 ˜ y 2 ˜ y 3 ˜ y 4 ˜ y 5 ˜ y 6 ˜ y 7 = 1 ;
+1 ˜ y i s 0 5 +1 y 0 ˜ y 1 y 2 ˜ y 3 ˜ y 4 ˜ y 5 ˜ y 6 ˜ y 7 = 1 ;
+1 y i s 0 0 +1 y i s 0 1 +1 y i s 0 2 +1 y i s 0 5 = 1 ;

∗ Goal term :
min : +6 x i s 0 0 +10 x i s 0 1 +24 x i s 0 2 +24 x i s 0 3 . . .

+16 y i s 0 0 +16 y i s 0 1 +16 y i s 0 2 +9 y i s 0 5 ;

In addition to these leak equations, the instance will also contain additional
equations which describe the cryptographic meaning of the variables x and y,
as well as equations which capture the auxiliary information available to the
attacker (such as known plaintext).
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Abstract. Masking on the algorithm level, i.e. concealing all sensi-
tive intermediate values with random data, is a popular countermeasure
against DPA attacks. A properly implemented masking scheme forces an
attacker to apply a higher-order DPA attack. Such attacks are known
to require a number of traces growing exponentially in the attack order,
and computational power growing combinatorially in the number of time
samples that have to be exploited jointly. We present a novel technique
to identify such tuples of time samples before key recovery, in black-box
conditions and using only known inputs (or outputs). Attempting key
recovery only once the tuples have been identified can reduce the compu-
tational complexity of the overall attack substantially, e.g. from months
to days. Experimental results based on power traces of a masked software
implementation of the AES confirm the effectiveness of our method and
show exemplary speed-ups.

Keywords: Time sample selection, multivariate side-channel attack,
masking, reverse-engineering.

1 Introduction

Side-channel attacks are used to break implementations of cryptographic al-
gorithms in embedded devices. Since the introduction by Kocher [11] in the
late nineties, they have been refined and a series of countermeasures have been
designed to thwart them. A particularly popular countermeasure against Dif-
ferential Power Analysis (DPA) attacks [12] is d-order masking [4,7], since it
enjoys a formal proof of security against higher-order DPA attacks [4,15] of or-
der d or less. d-order masking is based on splitting every sensitive intermediate
value in d + 1 shares and we consider the case that they are manipulated at
distinct times, as is typical for software implementations. d+ 1-order DPA and
d + 1-variate Mutual Information Analysis (MIA) attacks [5,17] (from now on
referred to as multivariate attacks together) allow to break d-order masked im-
plementations by analyzing tuples of d + 1 time samples, corresponding to all
shares of a masked sensitive variable, from each trace. However, multivariate
attacks are significantly more difficult to mount than univariate attacks for two
reasons. First, attacks exploiting higher-order moments are exponentially more

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 155–174, 2012.
c© International Association for Cryptologic Research 2012
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sensitive to noise as the masking order d increases [4,19]. As a consequence, the
number of traces required to mount a successful attack grows exponentially in
d. Second, multivariate attacks need to search over d+1-tuples of time samples.
The computational complexity of the attacks therefore grows combinatorially in
the attack order d + 1. Hence, secure implementations use a masking order d
in combination with a suitable noise level to ensure that an attack will require
a sufficiently large number of traces and a heavy amount of computation, such
that the attack becomes impractical.

Related Work. Most related works on non-profiled multivariate attacks start
from the assumption that the time samples where the shares of the tar-
geted, masked sensitive variable leak are known, and focus on the key recov-
ery [5,10,15,17,18,20,23]. Few related works tackle the problem of identifying
(tuples of) interesting time samples before key recovery, and they do so with
heuristic approaches. Agrawal et al. [1] describe a method to identify tuples of
time samples that requires a chosen input adversarial model and that can only
exploit the leakage of single bits. Their method is tailored to Boolean masking
and the measurements can not be re-used for key recovery, due to the way the
inputs are chosen. Oswald et al. [16] essentially propose an exhaustive search
over all d + 1-tuples of time samples in a small time window that is selected
based on an educated guess. The interpretation of educated guess is left to the
practitioner. Note that the guess does not select tuples of time samples, but
a window of time samples that has to be searched for a tuple exhaustively in
combination with key recovery. This method can be applied with known inputs
or outputs and, in principle, to any masking scheme. The approach suggested by
Lemke and Paar [14] and Gierlichs et al. [5] is to examine the empirical variance
of several power traces when the input data is kept constant, i.e. it requires a
chosen input adversarial model. In an ideal case, the variance is then caused
only by masking, and therefore time samples with high variance mostly corre-
spond to time samples where the masks or masked variables are being processed.
Note that also this method does not identify tuples of time samples but a set
of samples that has to be searched for a tuple exhaustively in combination with
key recovery. The measurements can not be re-used for key recovery and, in
principle, the method can be applied to any masking scheme.

In summary, the educated guess of Oswald et al. is the only method described
in the literature that can be applied in black-box conditions and with known
inputs or outputs.

Contribution. We present a novel method for identifying interesting d + 1-
tuples of time samples before key recovery. It is not heuristic but systematic and
ranks all possible d + 1-tuples of time samples in a given window according to
their dependency on, informally speaking, “typical attack targets”. It does not
provide a qualitative yes/no decision, but instead ranks tuples with respect to a
meaningful metric such that there is a natural order in which to attack them. Our
technique can lead to a substantial improvement in the computational efficiency
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of multivariate attacks compared to exhaustive search over the same window of
time samples, since it retains only a small fraction of all possible d+1-tuples for
key recovery. The relative improvement depends on the size of the subkeys that
are attacked. In absolute terms, the improvement becomes more pronounced with
increasing attack order d+1, increasing size of the time window, and increasing
number of traces.

Our approach is based on mutual information and is fully generic: it applies
to attacks of any order d + 1, including univariate attacks against unmasked
implementations, it applies to all possible masking schemes, it requires only a
known input or output scenario, it can traverse S-boxes, locate shares of the
masked S-box output, and it does not require any restrictive assumptions on
the device leakage behavior. In other words, our method does not require more
restrictive assumptions than a generic MIA attack [6].

Paper Organization. In Sect. 2 we introduce our notation, recall the basics of
masking and discuss state-of-the-art multivariate attacks. In Sect. 3 we present
our technique together with an analysis of how and why it works. We discuss its
efficiency, impact, and possible refinements in Sect. 4. In Sect. 5 we present ex-
perimental results that validate our proposal and highlight some of its interesting
properties. Section 6 concludes the paper.

2 Preliminaries

In this paper we consider only non-profiled, multivariate attacks. Interesting
tuples are tuples of time samples that carry leakage of all shares of a masked
variable that is a (possibly keyed) function of the plaintext.

2.1 Notation

Capital letters in bold face, e.g. M, denote random variables. Lowercase letters,
e.g. m, denote a specific value of M, e.g. M = m. Mi are mask bytes, P is a
plaintext byte, K is a key byte, and S-box is a cryptographic S-box. L(t) is the
random variable corresponding to the measured side-channel leakage at time t.
tM denotes the instant when the device is manipulating the random variable
M. I(A;B;C) denotes the multivariate mutual information between A, B and
C [2,5] and is computed as

I(A;B;C) = I(A;B) − I(A;B|C) . (1)

Note that, if A and B are independent, I(A;B) = 0 and I(A;B;C) ≤ 0.

2.2 Masking

Masking was introduced by Goubin and Patarin [7] and by Chari et al. [4] (to-
gether with a proof of security) as a sound approach to protect implementations
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against first-order DPA attacks. In a d-order masked implementation, every sen-
sitive variable Z is randomly split into d + 1 shares M1, . . . ,Md,V satisfying

M1 � . . . �Md �V = Z , (2)

where � is some suitable group operator.
The security of properly implemented masking schemes relies on the fact that

even if the adversary manages to know any information about up to d shares out
of d+1 (for example, via side-channel leakage), he cannot learn any information
about the sensitive variable Z.

Throughout the paper we assume that the shares M1, . . . ,Md,V are manip-
ulated (and leak) separately at different time instants. Further, we assume that
these time instants and the values of the shares are unknown to the adversary.

2.3 Multivariate Attacks

Masked implementations of order d can in theory always be broken by d + 1-
variate attacks as originally proposed by Messerges [15] and Chari et al. [4]. They
exploit the statistical dependence between the leakage of the d+1 shares and the
sensitive variable Z. There are essentially two different methods for performing
multivariate attacks.

The first approach [4,10,15,16,18,23] consists in reducing the problem to a
univariate scenario by preprocessing each trace, and then running a first-order
attack on the preprocessed traces. The preprocessing generates a new trace from
all possible d+ 1-tuples of distinct time samples of the original trace, where for
each tuple the d + 1 time samples are combined with a so-called combination
function (typically the absolute difference [15] or the centered product [18]).
The second approach, proposed by Prouff and Rivain [17] and Gierlichs et al.
[5], does not rely on a preprocessing step but directly uses multivariate MIA for
the attack.

A major shortcoming of both methods is that they suffer from the effect
known as “combinatorial explosion” and hence combinatorial time complexity
in d+1. Both methods aim to recover subkeys while, at the same time, searching
for a suitable d+1-tuple of time samples in the traces. In the first approach, the
preprocessed traces are

(
L

d+1

)
time samples long, where L is the trace length.

These traces have to be processed for each hypothesis on the subkey. In the
second approach, the distinguisher should be computed for each of the

(
L

d+1

)
d+ 1-tuples, and for each hypothesis on the subkey.

Hence, it is very important to identify the interesting tuples (or to narrow
down a window of time samples as much as possible) prior to key recovery in
order to keep the computational complexity of a multivariate attack at a feasible
level.

3 Identifying Interesting Tuples of Time Samples

In this section we explain how to identify interesting d+1-tuples of time samples
prior to key recovery. Note that we focus our attention on this aspect and that
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key recovery is not the primary focus of the paper. For clarity in the exposition,
in what follows we assume a first-order Boolean masking scheme (two shares)
and a noise-free scenario. The practical results presented in Sect. 5 are based on
measured power traces.

3.1 Core Idea

Let us consider a scenario with fixed plaintext, fixed key, and sensitive interme-
diate value Z = Fk(p), where Fk is some key-dependent function (for example,
Fk(p) = S-box(p ⊕ k)). The key observation is that the mutual information be-
tween the leakages at time instants corresponding to the manipulation of the
mask M1 and the masked intermediate value V = M1 ⊕ Fk(p) is non-zero.
That is,

I(L(tM1);L(tV)) > 0 . (3)

The interpretation is straightforward: leakage at tV depends only on V, which
varies in function of only the maskM1 (since the plaintext and the key are fixed),
and some information about the mask is leaked at tM1 . Hence, the information
shared between leakage at tM1 and tV is non-zero. On the other hand, the
information shared between leakage at two unrelated time samples t0 and t1 is
zero

I(L(t0);L(t1)) = 0 (4)

because no relation exists between data handled at t0 and at t1. Thus, Eqs. (3)
and (4) allow us to distinguish pairs of time samples that contain leakage of
dependent variables (case of Eq. (3)) from those pairs that contain leakage of
independent variables, that are irrelevant for the multivariate attack (case of
Eq. (4)). Note that not all pairs of time samples that contain leakage of dependent
variables carry some information about the key. For example, if the same mask
is manipulated at t0 and t1, then I(L(t0);L(t1)) > 0.

We stress that the value of K need not be known, and no hypothesis on it be
made.

The General Case. In the above example we required a fixed plaintext and
thus a chosen plaintext scenario. We can relax this assumption and instead work
with known (varying) plaintexts. Suppose that the device is manipulating the
plaintext byte P, the mask M1 and the masked intermediate value V such that
V = M1 ⊕ Fk(P) at time instants tP, tM1 and tV, respectively. The natural
extension of the core observation to known varying plaintexts is that L(tP),
L(tM1) and L(tV) are not independent, and therefore the mutual information
between them is non-zero

I(L(tM1);L(tV);L(tP)) �= 0 . (5)

At three unrelated time samples t0, t1 and t2, on the other hand, the mutual
information is zero

I(L(t0);L(t1);L(t2)) = 0 . (6)
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The interpretation follows the same lines as in the particular case. Leakage
at tV depends only on V, which now varies in function of the plaintext and the
mask (since the key is fixed), and some information about the mask and the
plaintext is leaked at tM1 and tP, respectively. Thus, the information shared
between L(tM1), L(tV) and L(tP) is non-zero.

Note that it is not necessary to search for tP, nor is it necessary for tP to
physically exist in the power traces. By assumption, the plaintext is known, so
it is possible to substitute L(tP) with the leakage of the known plaintext under
some hypothesized leakage model L̃(P). This makes the analysis faster since one
has to search only for a pair of time instants (tM1 and tV) instead of searching
for a triplet. The choice of L̃ will be discussed in Sect. 3.3.

We can hence use Eqs. (5) and (6) to distinguish dependent triplets from
independent triplets. In addition, and contrary to the particular case with fixed
plaintext, all identified tuples are now interesting tuples and all relate to the
specific plaintext byte P. Most of them carry some information about the key
and can be useful for a key recovery attack. The only possible type of tuple
that will be identified as interesting although it does not carry some information
about the key is the one corresponding to all shares of the specific, masked
plaintext byte. We discuss this in more detail in Sect. 3.3.

3.2 Suggested Workflow for Multivariate Attacks

The previous observations allow an attacker to identify interesting d+ 1-tuples
of time samples prior to key recovery. Again, we use d = 1 in the explanation.
The proposed workflow divides an attack in three phases:

Step 1. (Window selection) The adversary uses any available mean to narrow
down the time window to analyze. For example, the adversary could
select a small window based on an educated guess [16], if possible. Obvi-
ously, care has to be taken to not discard too many time samples since
the window must contain at least one interesting d+ 1-tuple.

Step 2. (Tuple selection) The adversary estimates I(L(t1);L(t2); L̃(P)) for all
(t1, t2) with t1 > t2 in the remaining window, and keeps a list of pairs of
time samples yielding negative mutual information with large absolute
value.

Step 3. (Key recovery attack) The adversary performs the preferred strategy for
a bivariate attack on traces consisting only of the pairs of time samples
in the list. These traces consist of a few pairs of time samples, and hence
the key recovery step is much faster.

3.3 Which Tuples of Time Samples Pop Up?

The adversary has freedom to choose the hypothesized leakage model L̃ for the
plaintext. Depending on the choice of L̃, different tuples of time samples will be
identified. In this section we analyze two cases.
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L̃ is the identity function. When the adversary computes the mutual infor-
mation between time samples and a plaintext byte, i.e. L̃(P) = P, he will be
able to identify all tuples corresponding to all shares of any (sensitive) variable
of the form Z = Fk(P). In particular, the method is able to identify the shares
(M1,V) with V = P ⊕ M1, V = P ⊕ K ⊕ M1 and V = S-box(P ⊕ K) ⊕ M1,
since the key is fixed.

This result is useful, as it allows the attacker to locate both the masked
variables before the S-box (masked plaintext and masked S-box input) as well
as the masked variables after the S-box (masked S-box output). Note that it is
irrelevant if the masks before and after the S-box are the same. If the mask does
not change, the identified tuples of time samples will share one component.

L̃ is an approximation of the device leakage behavior. If the attacker
chooses L̃ as an approximation of the leakage behavior L, he will be able to
identify all tuples of time samples corresponding to all shares of any (sensitive)
variable of the form Z = Fk(P) appearing before the S-box (e.g. masked plain-
text and masked S-box input). For a typical S-box, he will not be able to identify
tuples of time samples corresponding to shares of sensitive variables after the S-
box. The intuitive reasoning behind this is that knowledge of the distribution of
the plaintext’s leakage does not give sufficient information for guessing the dis-
tribution of the S-box output’s leakage. The advantage of this choice, compared
to the identity function, is the ease of estimation, see Sect. 4.1. Disadvantages
are that one cannot locate shares of masked variables after the S-box and that
one relies on an assumption about the device leakage behavior.

Note that we compute the mutual information according to Eq. (1), and not as

I((L(t0),L(t1)); L̃(P)) =

I(L(t0); L̃(P)) + I(L(t1); L̃(P)) − I(L(t0);L(t1); L̃(P)) ,
(7)

where the last of the three terms is in turn given by Eq. (1) [2]. The reasoning for
this choice is straightforward. The first two terms of Eq. (7) capture first-order
leakage of variables that depend on L̃(P), e.g. unmasked plaintext, unmasked
S-box input and, depending on the choice of L̃, unmasked S-box output. By
assumption, the masking scheme is properly implemented and there is no first-
order leakage of sensitive variables. Hence, the only first-order leakage that these
terms could capture is that of the unmasked plaintext, which is of no use for
our purpose. By omitting the two terms and using Eq. (1) we ensure that only
interesting tuples yield non-zero mutual information.

Moreover, Eq. (1) allows us to target very specific tuples. For our interest-
ing tuples it holds that I(L(tM1 ),L(tV)) = 0 such that interesting tuples yield
strictly negative mutual information, see (1).

4 Discussion

In this section we discuss several aspects of the proposed workflow for multivari-
ate attacks, such as its efficiency, refinements and additional applications.



162 O. Reparaz, B. Gierlichs, and I. Verbauwhede

4.1 Efficiency Analysis

We evaluate the efficiency of the proposed workflow with respect to the running
time and the number of traces needed, and we compare these numbers to those
of a “classical” multivariate MIA attack that uses exhaustive search instead of
step 2. Although the proposed method is not limited to a particular multivariate
attack technique for step 3, using multivariate MIA here allows us to draw im-
portant conclusions regarding the efficiency of the proposed workflow, since the
numbers can be directly compared. In both cases we focus the attacks on the
(masked) S-box output. According to the previous section, this choice implies
that step 2 of the proposed workflow uses the identity function L̃(P) = P. We
analyze two different scenarios:

(a) Unknown leakage behavior. Step 3 of the proposed workflow and the “clas-
sical” MIA both use the identity leakage model, or possibly some truncated
identity leakage model in case of a bijective S-box. The point here is that
both step 3 and the “classical” MIA use the same leakage model.

(b) Known leakage behavior L equal to Hamming weight leakage. Step 3 of the
proposed workflow and the “classical” MIA both use the Hamming weight
leakage model.

Running Time. We assume that after step 1 the traces are L time samples
long and contain at least one tuple of time samples corresponding to all shares
of the masked S-box output. We further assume that all attacks are provided
with sufficiently many traces, i.e. there are no PDF estimation problems.

In scenario (a) the running time of the “classical” MIA attack is given by(
L

d+1

)
× α × |K|, where

(
L

d+1

)
is the number of d + 1-tuples of time samples

to analyze, α is the time it takes to compute the MIA distinguisher for one
d+1-tuple of time samples and one subkey hypothesis using the identity leakage
model, and |K| is the number of subkey hypotheses. In scenario (b) the running
time of the “classical” MIA attack is

(
L

d+1

)
× β × |K|, where β is the time it

takes to compute the MIA distinguisher for one d+1-tuple of time samples and
one subkey hypothesis using the Hamming weight leakage model.

In scenario (a) the running time of step 2 of the proposed workflow is given
by

(
L

d+1

)
× α, and the running time of step 3 is |K| × α × γ, where γ is the

number of d + 1-tuples in the list of interesting tuples generated in step 2. We
have that γ ≥ 1 and typically γ is much smaller than L. The combined running
time of steps 2 and 3 is

(
L

d+1

)
× α + |K| × α × γ. In scenario (b) the running

time of step 2 is again
(

L
d+1

)
× α and the running time of step 3 is |K| × β × γ.

The combined running time of both steps is
(

L
d+1

)
× α+ |K| × β × γ. Note that

in both scenarios (a) and (b), the total running time of the proposed workflow
is dominated by step 2. Table 1 summarizes these numbers and shows that the
proposed workflow essentially runs |K| times faster.

So far we have limited this analysis to attacks against a single subkey. For
attacking multiple subkeys, it may be that only recovering the first subkey is
hard and that the interesting tuples of time samples related to the other subkeys
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Table 1. Running time of MIA attacks using the proposed and the “classical” workflow

Proposed workflow “Classical” MIA Improvement factor

Scenario (a)
(

L
d+1

)× α+ |K| × α× γ
(

L
d+1

)× α× |K|
≈ (

L
d+1

)× α ≈ |K|
Scenario (b)

(
L

d+1

)× α+ |K| × β × γ
(

L
d+1

)× β × |K|
≈ (

L
d+1

)× α ≈ |K| × β/α

can be easily guessed once the tuple related to the first subkey has been found.
But it may also be that recovering the other subkeys requires basically the same
computation as recovering the first subkey. In either case, the improvement factor
is essentially |K|. In the latter case, this improvement applies to recovering each
subkey, which is not obvious since we express the improvement as a factor.
Further, we note that the improvement factor is independent of the masking
order d and the window size L. However, in absolute terms the running time
improvement increases substantially with increasing attack order d + 1, L and
the number of traces. Finally, we point out that the analysis holds independently
of the method used to estimate the mutual information, as long as we assume
that all involved estimations of mutual information use the same method.

Number of Traces Needed. It is not straightforward to make a precise but
general statement about the number of traces needed for our method to suc-
cessfully locate interesting tuples. Many factors play a role. We make a brief
assessment and describe two of the effects that have to be considered.

First, we consider an idealized scenario where steps 2 and 3 succeed as soon
as the same precision for the estimations is achieved. In this case, in scenario (b)
(Hamming weight leakage model), step 2 may require more traces to pinpoint the
interesting d+1 tuples of time samples than step 3 to recover the key. This is due
to the fact that, in the attack step, the estimation of I(L(tV);L(tM); HW(Z))
with Z = S-Box(P ⊕ k) for a hypothesized k requires generally less traces than
an equally precise estimation of I(L(tV);L(tM);P) in the tuple selection step.
This is because of the different number of classes for HW(Z) and for P. In the
case of AES, there are 256 different possible values for P, while there are only
nine different possible values for HW(Z). Nevertheless, since step 2 requires a
larger number of traces, these traces must be obtained and may be used in step
3. A “classical” d+1-variate MIA attack requires the same (smaller) number of
traces as step 3.

In scenario (a) ((possibly truncated) identity leakage model) the previous
effect is typically less pronounced and thus the difference in the number of traces
required in each step is smaller. The same holds for the difference in the number
of traces needed for step 2 and a “classical” d+ 1-variate MIA attack.

Second, the precision of the mutual information estimates required in step
3 to distinguish the correct key hypothesis from incorrect ones may not be
the same as the precision required to distinguish an interesting tuple from a
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non-interesting one in step 2. The relation between these precisions can be al-
most arbitrary. However, it should typically hold that the precision required by
an attack against the S-box output in step 3 is not higher than the precision
required in step 2.

Summarizing, in scenario (a) the proposed workflow offers a running time
improvement factor in the order of magnitude of |K|, possibly at the cost of
an increased number of traces. In scenario (b) the proposed workflow requires
more traces than a “classical” attack but still offers an interesting running time
improvement factor. It offers a trade off. Whether the trade off is attractive
depends on the ratio β/α in the running time improvement factor, and on how
many more traces are required.

4.2 On the S-Box

The fact that the method can distinguish all d + 1 tuples corresponding to all
shares of any (sensitive) variable of the form Z = Fk(P) can be used to traverse
bijective S-boxes without making any hypothesis on the subkey. This is because
the S-box input is a keyed permutation of the plaintext, and the S-box output is
a permutation of the S-box input. Both permutations are transparent to mutual
information when using the identity function L̃(P) = P.

It is less obvious, nevertheless true, that the method also works in the case
of non-injective S-boxes, as for instance in DES. The reasoning is similar to
the above. The S-box input is a keyed permutation of the plaintext. The S-box
output is not a permutation of the S-box input, but a non-injective function of
it. Therefore, if we use the identity function and condition on the plaintext, the
S-box can be traversed just like a bijective S-box, and interesting tuples of time
samples after the S-box can be identified. Note that a non-injective S-box cannot
be traversed from output to input in the same way.

4.3 Additional Applications

The method described in this paper is fully generic and does not place any restric-
tive assumption on the specific targeted implementation. However, the method
benefits from the available specificities of the implementation. For example, an
adversary could mount the following strategy if he knows that the device’s leak-
age behavior is close to the Hamming weight model. Using the Hamming weight
model, the adversary first locates tuples corresponding to the S-box input to
narrow down the time window. Then, using the identity function, he searches in
that window for the S-box output.

The adversary could also locate tuples corresponding to the S-box input of
the next S-box lookup to further narrow down the time window.

Bit-tracing [9] is a technique used to track the time instants when a predictable
variable is handled in the execution flow of an unknown implementation. This is
a useful technique to reverse-engineer unknown implementations. The ideas in
Section 3.1 can be exploited to track masked variables during the execution of
an algorithm. Note that the fact that the proposed method can traverse S-boxes



Selecting Time Samples for Multivariate DPA Attacks 165

(by the arguments given in Sect. 4.2) can also lead to a significant speed-up in
the bit-tracing process of masked implementations.

4.4 Estimation of Mutual Information

We note that any suitable method for estimating the mutual information or
the required probability distributions, e.g. histograms [6], kernel density estima-
tion [17], B-splines [21], statistical moments [13], parametric methods [17], and
any similar metric, e.g. Kullback-Leibler divergence [22], Kolmogorov-Smirnov
test [22], Cramér-von-Mises test [22], can be used.

Available knowledge about the device leakage behavior, e.g. close to the Ham-
ming weight model, can be used to speed up the estimations. Here we do not
refer to the choice of L̃ but to the leakage variables.

4.5 Key Recovery Step

By construction, our method identifies tuples of time samples that correspond
to all shares of a masked (sensitive) variable. It does so irrespective of the par-
ticular dependencies between each share and its side-channel leakage. Therefore,
a generic multivariate MIA attack with (possibly truncated) identity leakage
model appears to be most suited to exploit the unknown dependencies, in gen-
eral. However, if standard assumptions approximate the leakage behavior good
enough or the specific leakage behavior is known, the identified tuples can be
exploited more efficiently with adapted multivariate MIA or higher-order DPA
attacks.

The proposed method can identify interesting tuples that relate to a specific
plaintext byte, but it cannot per se focus on interesting tuples that correspond
to a specific function of that plaintext byte. As a consequence, the method will in
general not discriminate between interesting tuples that correspond to all shares
of the masked plaintext, the masked S-box input or the masked S-box output.
Clearly, the latter is preferable for an attack. In our experiments we noted that
enough interesting tuples corresponding to all shares of the masked S-box output
appeared at the top of the ranked list.

5 Experiments

In this sectionwe present experimental results of ourmethod, insight on its compu-
tation anda performance evaluation.Wenote that all “numbers of traces” reported
in this section cannot be generalized to other platforms and implementations.

5.1 Measurements

We use an 8-bit microcontroller of Atmel’s AVR family in a smart card plastic
body as platform for our experiments. The microcontroller runs a first-order
Boolean masked implementation of AES-128 encryption that follows the lines
of [8]. This concrete implementation uses six independent mask bytes for one
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encryption. Before the SubBytes operation, all state bytes are protected by the
same mask M0. After the SubBytes operation, all state bytes are protected by
the same mask M1. Before MixColumns, each column of the state is remasked
with M2, . . . ,M5. After MixColumns, each column of the state is masked with
M′

2, . . . ,M
′
5 that depend on M2, . . . ,M5. Shiftrows does not affect the masking

and after the next AddRoundKey operation, all state bytes are again protected
by M0 due to the masked key schedule. Note that the six masks are re-used to
protect all rounds. There are no additional countermeasures.

We obtained 50 000 power traces from encryptions of randomly chosen plain-
texts with a fixed key and random masks. The card was clocked at 4MHz and
we used a sampling frequency of 200MS/s.

5.2 Selection of a Time Window: Step 1

To reduce the computational burden, we restricted the measurements to cover
only the first 1.5 rounds of the encryption. This was done based on an educated
guess on the SPA features present in the power traces. Then, we compressed the
traces by integration to one point per clock cycle. As a result, each compressed
trace comprises 800 points. The subsequent analyses were carried out on these
compressed traces.

5.3 Computation of the Method: Step 2

To show the full potential of the method, we chose L̃ to be the identity function.
In what follows, P refers to the third plaintext byte, an arbitrary choice. We
estimate densities with histograms (using nine bins for each dimension unless
otherwise stated, because we expect a leakage behavior close to the Hamming
weight/distance model) and we useˆto indicate estimates, e.g. Î is an estimate
of I. The computation of step 2 is split into two terms:

Î(L(t0);L(t1);P) = Î(L(t0);L(t1)) − Î(L(t0);L(t1)|P) . (8)

In our experiments, we noted that a straightforward computation of this expres-
sion can result in inconvenient estimation errors. The reason lies in the differ-
ent number of traces used to estimate each term on the right side of Eq. (8).

Î(L(t0);L(t1)) is computed with all available traces, say T . The second term is
computed as

Î(L(t0);L(t1)|P) =

255∑
p=0

P̂r(P = p)Î(L(t0);L(t1)|P = p) (9)

and for the computation of each summand about T/256 traces are used. This
difference in the number of traces translates into different estimation accuracies
for each term in Eq. (8), burying the small relevant difference between them
due to the effect of P in the larger difference due to the different estimation
accuracies.
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To amend this, since we have that I(L(t0);L(t1)) = I(L(t0);L(t1)|D) for a
uniformly distributed dummy random variable D that is independent of the
leakages and taking values in {0, . . . , 255}, we can compute Î(L(t0);L(t1)) in a
way that resembles Eq. (9) and approximate it by

Î(L(t0);L(t1)|D) =

255∑
d=0

P̂r(D = d)Î(L(t0);L(t1)|D = d) . (10)

This leads to equally (in-)accurate estimates for both terms in Eq. (8) and the
difference between them is mostly due to the effect of P.

To illustrate the effectiveness of step 2 we compute Î(L(t0);L(t1)|D) and

Î(L(t0);L(t1)|P) from 50 000 measurements using the same bin distributions for
both terms. We use this relatively large number of traces to present aesthetically
pleasant figures. Far less traces are sufficient for the method to work.

Figure 1 (left) shows a plot of the values of the first term of Eq. (8), i.e.

Î(L(t0);L(t1)) computed as Eq. (10), for t0, t1 ∈ {1, . . . , 800} and t0 �= t1. It
is obviously sufficient to compute the values only for t0 < t1 or t0 > t1. The
x- and y-axes both denote time. We plot a mean trace next to each of them
for orientation. The values of mutual information are represented by different
colors according to the color bar on the left side. We blank out most pairs of
time samples, those that yield small values of mutual information, by plotting
them in white. All pairs that yield mutual information values above a certain
threshold are plotted in black.
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Fig. 1. Left: Matrix of Î(L(t0);L(t1)) values. The color bar is in units of bits. A mean
trace is plotted next to the axes. Right: Above diagonal, ‘x’: 100 pairs of time samples
where a multivariate MIA attack succeeds. Below diagonal, ‘+’: 100 top ranked pairs
in the list of step 2
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We can see that the locations of the pairs have a clear structure and could possi-
bly aid reverse-engineering of the implementation. Since we know the implementa-
tion, we can easily relate parts of the figure to operations: AddRoundKey (approx.
index 100 to 150), SubBytes (approx. index 200 to 300), remasking (approx. 300
to 350), four parts of MixColumn (approx. index 350 to 500), AddRoundKey (ap-
prox. index 550 to 600), followed by SubBytes and remasking in round two. These
pairs are, however, not yet interesting pairs because it is not clear if they can be
exploited by an attack (see the discussion of Eqs. (3) and (4)).

Next, we rank the list of pairs according to the result of Eq. (8). The 100
top ranked pairs in the list, i.e. negative mutual information and large absolute
value, are depicted in the lower triangle of Figure 1 (right) with ‘+’ symbols.

For the sake of comparison, we include in the upper triangle of the figure the
100 pairs of time samples where a multivariate MIA attack on the third key byte
(using the Hamming weight leakage model on predicted S-box output values and
50 000 traces) achieves the largest nearest-rival distinguishing score [24], marked
with ‘x’ symbols.

The partial match between the upper and the lower triangular matrix serves
as a first visual evidence for the effectiveness of the method. In particular, the
method is able to identify pairs corresponding to both shares of the S-box output
of a specific state byte (here the third) without making any hypothesis about
the key.

5.4 Performance Evaluation of Step 2

This section details the performance of the proposed method in finding the
pairs that can be exploited for key recovery. Informally, we aim to decouple the
performance of the proposed method from the performance of the key recovery
attack itself, which is not the focus of this paper. To do so, we first define a
set of good pairs of time samples that can be attacked and then we analyze the
performance of the method in identifying good pairs among all possible pairs.

More precisely, we define sets of good pairs by running an attack on all pairs
using 50 000 measurements and retaining the 100 resp. 290 pairs that lead to
key recovery and have highest nearest-rival distinguishing score. Our choice for
the size of the sets is somewhat arbitrary. The idea is simply to define one
smaller set of very good pairs and a larger set that contains additional good
pairs with lower nearest-rival distinguishing score. Since different attacks may
favor different pairs, we define such sets for three cases: multivariate MIA on
the S-box output, Correlation Power Analysis (CPA) [3] with centered product
combination function [18] on the S-box output and CPA with same combination
function on the S-box input (all using the Hamming weight leakage model). In
total, we hence define six sets of good pairs.

Once the sets of good pairs are defined, we run step 2 parametrized by the
number of traces. For each number of traces, we repeat the run of step 2 on
100 randomly chosen sets of traces and, each time, keep the position of the best
ranked good pair in the list generated by step 2. In other words, we test the
pairs in descending order of their ranking (rank 1 is best) and stop as soon as a
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pair is good. This ranking position is the minimum size of the list from step 2
required for step 3 to succeed in that particular run for a given attack technique.
Recall that, by definition, an attack on a good pair succeeds with a comfortable
nearest-rival distinguishing score (albeit the absolute margin for a CPA attack
on the S-box input is a lot smaller). We hence evaluate only the performance of
step 2.

The distributions of the ranks of the best ranked good pairs are shown as
boxplots in Fig. 2 (sets of 100 good pairs) and in Fig. 3 (sets of 290 good pairs).
For both figures, the used attack techniques are, from left to right: MIA S-box
output, CPA S-box output and CPA S-box input.

In the boxplots, the central mark is the median (2nd quartile) and the box
edges (solid) represent the 1st and the 3rd quartile. The whiskers (dashed) extend
to q3 + 1.5(q3 − q1) and q1 − 1.5(q3 − q1), where q1 and q3 are the 1st and 3rd

quartiles, respectively. Outliers are marked with ‘+’ symbols.
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Fig. 2. Distribution of the ranking of the first good pair in the list of step 2. Left to
right: MIA S-box output, CPA S-box output, CPA S-box input, hypothetical random
method. 100 good pairs

For comparison, the rightmost boxplot in each figure shows the distribution
that a hypothetical method that ranks the pairs at random, instead of step 2,
would produce. These distributions are independent of an attack technique and
only relate to the number of good pairs among all pairs, here 100 resp. 290 out
ouf 800× 799/2 = 319 600.

One can observe that the proposed method begins to identify good pairs (i.e.
to perform better than a random guess) that are exploitable by multivariate MIA
or CPA attacks on the S-box output when 3 000 traces or more are available. As
the number of traces increases, the medians of the distributions become smaller,
i.e. good pairs move steadily toward the top of the list.

One can also observe that our method ranks good pairs for multivariate MIA
slightly higher than good pairs for CPA on the S-box output. On the other hand,
the method is not able to identify good pairs for a CPA attack on the S-box input
better than a random guess. We note that both behaviors are not a property of
our method but probably related to our test platform and the implementation.
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In the case of larger lists of 290 good pairs, the previously made observations
mostly hold. As expected, the medians of the distributions are smaller than in
the case of 100 good pairs, simply because even a random guess becomes more
likely to succeed. In addition, we can observe that the method now ranks good
pairs for multivariate MIA and CPA on the S-box output almost equally well.
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Fig. 3. Distribution of the ranking of the first good pair in the list of step 2. Left to
right: MIA S-box output, CPA S-box output, CPA S-box input, hypothetical random
method. 290 good pairs

5.5 Practical Attacks

The above results highlight important properties of our method and demonstrate
that it is effective. In practice, one is however less interested in the exact rank of
the first good pair in the sorted list, and more interested in the success rate of
an attack end-to-end. This clearly involves the performance of our method and
the efficiency of the attack used in step 3.

Table 2 shows success rates for steps 2 and 3 together. First we use a given
number of randomly chosen traces to compute step 2. Then we attack the γ = 10
resp. 100 best ranked pairs with multivariate MIA, CPA on the S-box output
and CPA on the S-box input (as described before) in step 3, using the same
traces. We repeat this procedure 100 times. For the numbers in the first row
of the table, we considered an attack successful if the correct key leads to the
smallest correlation (or mutual information) value (negative sign and highest
absolute value), over all evaluated γ pairs. For the numbers in the second row
of the table, we additionally required the correct key to stand out at least by
a factor of 1.5 compared to the nearest rival (left) and by a factor of at least 2
(right).

A first observation is that a CPA attack on the S-box input does not work in
our concrete scenarios. CPA attacks on the S-box output converge slightly faster
toward 100% success rate than multivariate MIA attacks on the S-box output.
We can further see that, given enough traces, both attacks in step 3 eventually
reach 100% success, even if we attack only the top ten pairs of step 2 and require
the correct key to stand out by a factor of at least 1.5. These results confirm
that the combination of steps 2 and 3 works in practice, and that step 2 is able
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Table 2. Success rates for steps 2 and 3 together, for several parameters: number of
traces, size γ of the list of step 2, key recovery attack

Number of traces 2k 3k 4k 5k 10k 2k 3k 4k 5k 10k

MIA S-box output γ = 100 3 15 59 83 100 γ = 10 0 3 34 53 100
CPA S-box output 11 41 75 95 100 1 11 48 66 100
CPA S-box input 1 0 0 1 0 2 0 0 1 0

MIA S-box output γ = 10 0 2 15 35 100 γ = 10 0 0 7 17 90
CPA S-box output factor 1.5 0 3 28 52 98 factor 2 0 0 10 17 78
CPA S-box input 0 0 0 0 0 0 0 0 0 0

to identify exploitable pairs of time samples. Interestingly, one can further see
that multivariate MIA attacks on the S-box output have a small advantage over
CPA attacks on the S-box output, if we require the correct key to stand out by
a factor of at least 2.

5.6 Computational Efficiency

In Tab. 3 we present empirical execution times for our implementations of the
proposed workflow (steps 2 and 3) and the strategy that uses exhaustive search
instead of step 2. Step 3 of the proposed workflow was performed with multi-
variate MIA on the S-box output (using the Hamming weight leakage model
and list size γ = 100). For the exhaustive search strategy we evaluated two vari-
ants: multivariate MIA on the S-box output (using the Hamming weight leakage
model) and CPA on the S-box output (with centered product preprocessing).
All implementations were executed on the same processor on a single core. We
note that the absolute execution times are heavily implementation-dependent
and thus relative speed-ups are more interesting, since they are less tied to the
particular implementation used.

Table 3. Empirical execution times for steps 2 and 3 (γ = 100) of the proposed
workflow and several attacks using exhaustive search

Number of traces step 2 + step 3 Exhaustive search Improvement factor

5 000 2m30s + 2s MIA-HW 1h48m 43
CPA 2h 48m 68

50 000 10m24s + 19s MIA-HW 17h18m 97
CPA 23h32m 132

A first observation regarding Tab. 3 is the speed-up achieved by the proposed
workflow, compared to exhaustive search, when multivariate MIA is used for key
recovery. This is a directly interpretable result that corresponds to scenario (b)
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in Sect. 4.1. The improvement factor in this case is of 43 when 5 000 and 97 when
50 000 traces are used, respectively. We observe that, for our implementations,
the factor β/α depends on the number of traces.

One can further see that, for our implementations, applying the proposed
workflow is even advantageous if exhaustive search is done with CPA. It achieves
an improvement factor of 68 in the running time of the attack when 5 000 traces
are used, and an improvement factor of 132 when 50 000 traces are used. However,
we stress that this result is not universally valid. The speed-ups are heavily
affected by the relative efficiency of our implementations of linear correlation
and mutual information estimation.

As a final observation concerning Tab. 3, we remark the validity of the ap-
proximation we made in Tab. 1: the running time of the proposed workflow is
dominated by step 2. Step 3 contributes at most 3% to the total running time
if the list size is γ = 100.

6 Conclusion

Multivariate DPA attacks can suffer from the effect known as “combinatorial
explosion” and hence combinatorial time complexity in the number of time sam-
ples that have to be exploited jointly. We presented a novel technique to identify
such interesting tuples of time samples before key recovery. Compared to previ-
ous work on this topic, our method is not heuristic but systematic and works in
black-box conditions using only known inputs (or outputs). Our technique can
lead to a substantial improvement in the computational efficiency of multivariate
attacks compared to exhaustive search over the same window of time samples,
since it retains only a small fraction of all possible tuples for key recovery. Our
approach is based on mutual information and is fully generic, i.e. it does not
require more restrictive assumptions than a generic MIA attack. Experimental
results based on power traces of a masked software implementation of the AES
confirm the effectiveness of the technique, highlight some of its interesting prop-
erties and attest attractive running time improvements. An aspect that is not
fully explored in this paper and left for future work is a thorough analysis of the
number of traces needed for the technique to work.
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Abstract. Side-channel collision attacks are one of the most investi-
gated techniques allowing the combination of mathematical and physical
cryptanalysis. In this paper, we discuss their relevance in the security
evaluation of leaking devices with two main contributions. On the one
hand, we suggest that the exploitation of linear collisions in block ciphers
can be naturally re-written as a Low Density Parity Check Code decod-
ing problem. By combining this re-writing with a Bayesian extension of
the collision detection techniques, we succeed in improving the efficiency
and error tolerance of previously introduced attacks. On the other hand,
we provide various experiments in order to discuss the practicality of
such attacks compared to standard DPA. Our results exhibit that col-
lision attacks are less efficient in classical implementation contexts, e.g.
8-bit microcontrollers leaking according to a linear power consumption
model. We also observe that the detection of collisions in software devices
may be difficult in the case of optimized implementations, because of less
regular assembly codes. Interestingly, the soft decoding approach is par-
ticularly useful in these more challenging scenarios. Finally, we show that
there exist (theoretical) contexts in which collision attacks succeed in ex-
ploiting leakages whereas all other non-profiled side-channel attacks fail.

1 Introduction

Most side-channel attacks published in the literature and used to evaluate leaking
cryptographic devices are based on a divide-and-conquer strategy. Kocher et al.’s
Differential Power Analysis (DPA) [10], Brier et al.’s Correlation Power Analysis
(CPA) [5] and Chari et al.’s Template Attacks (TA) [6] are notorious examples.
However, alternatives to these standard approaches have also been investigated,
e.g. by trying to combine side-channel information with classical cryptanalysis.
The collision attacks introduced by Schramm et al. at FSE 2003 are among the
most investigated solutions for this purpose [19]. While initially dedicated to
the DES, they have then been applied to the AES [18] and improved in different
directions over the last years, as witnessed by the recent works of Ledig et al. [11],
Bogdanov [2,3,4], Moradi et al. [13,14] and Clavier et al. [7].
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From an application point of view, collision attacks differ from standard side-
channel attacks by their underlying assumptions. Informally, divide-and-conquer
distinguishers essentially assume that a cryptographic device leaks information
that depends on its intermediate computations, under a given leakage model.
The leakage model is generally obtained either from engineering intuition, in
the case of non-profiled attacks such as DPA and CPA, or through a prelimi-
nary estimation of the chip measurements probability distribution, in the case
of profiled attacks such as TA. By contrast, collision attacks do not require a
precise knowledge of the leakage distribution. They rather trade this need for a
combination of two other assumptions: (i) the distribution of a couple of mea-
surements corresponding to the intermediate computation of identical values can
be distinguished from the one corresponding to different values; (ii) the adver-
sary is able to divide each measurement trace corresponding to the encryption of
a plaintext into sub-traces corresponding to elementary operations, e.g. the ex-
ecution of block cipher S-boxes. In other words, collision attacks trade the need
of precise leakage models for the need to detect identical intermediate compu-
tations, together with a sufficient knowledge of the operations scheduling in the
target device. Interestingly, the knowledge of precise leakage models has recently
been shown to be problematic in non-profiled attacks [22], e.g. in the case of de-
vices with strongly non-linear leakage functions. Hence, although the existence
of such devices remains an open question [16], they at least create a theoretical
motivation for understanding the strengths and weaknesses of collision attacks.

This paper brings two main contributions related to this state-of-the-art.
First, we observe that many previous collision attacks do not efficiently deal

with errors (i.e. when the correct value of a key-dependent variable is not the like-
liest indicated by the leakages), and rely on add-hoc solutions for this purpose.
In order to handle erroneous situations more systematically, we introduce two
new technical ingredients. On the one hand, we propose to re-write side-channel
collision attacks as a Low Density Parity Check (LDPC) decoding problem. On
the other hand, we describe a (non-profiled) Bayesian extension of collision de-
tection techniques. We show that these tools are generic and allow successful key
recoveries with less measurement data than previous ones, by specializing them
to two exemplary attacks introduced by Bogdanov [2,3] and Moradi et al. [13].

Second, we question the relevance of side-channel collision attacks and their
underlying assumptions, based on experimental case studies. For this purpose,
we start by showing practical evidence that in “simple” scenarios, the efficiency
of these attacks is lower than the one of more standard attacks, e.g. the non-
profiled extension of Schindler’s stochastic approach [17], described in [8]. We
then observe that in actual software implementations, the detection of collisions
can be difficult due to code optimizations. As a typical example, we observe that
the leakage behavior of different AES S-boxes in an Atmel microcontroller may be
different, which prevents the detection of a collision with high confidence for these
S-boxes. We conclude by exhibiting an (hypothetical) scenario were the leakage
function is highly non-linear (i.e. in the pathological example from [22]), collision
attacks lead to successful key recoveries whereas all non-profiled attacks fail.
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2 Background

2.1 Notations

In order to simplify the understanding of the paper, we will suppose that the
targeted block cipher is the AES Rijndael. Hence, the number of S-boxes con-
sidered is 16, and these S-boxes manipulate bytes. Nevertheless, all the following
statements can be adapted to another key alternating cipher, by substituting
the correct size and number of S-boxes. In this context, the first-round subkey
and plaintexts are all 16-byte states. We respectively use letters k and x for the
key and a plaintext, and use subscripts to point to a particular byte:

x
def
= (x1, x2, . . . , x16) , k

def
= (k1, k2, . . . , k16).

Next, the attackers we will consider have access to a certain number of side-
channel traces, corresponding to the encryption of different plaintexts encrypted
using the same key k. We denote with nt the number of different inputs en-
crypted, and with x(1), . . . , x(nt) the corresponding plaintexts. Each trace ob-
tained is composed of 16 sub-traces corresponding to the 16 S-box computations

t(i)
def
= (t

(i)
1 , . . . t

(i)
16 ). Each sub-trace is again composed of a number � of points (or

samples). Hence, the sub-trace corresponding to the a-th S-box will be denoted

as t
(i)
a

def
= (t

(i)
a,1, . . . , t

(i)
a,�). Furthermore, we will use the corresponding capital let-

ters X , K and T to refer to the corresponding random variables.

2.2 Linear Collision Attacks

Linear collision attacks are based on the fact that if an attacker is able to detect a
collision between two (first-round) S-box executions, then he obtains information
about the key. Indeed, if a collision is detected, e.g. between the computation of
S-box a for plaintext x(ia) and S-box b for plaintext x(ib), this attacker obtains
a linear relation between the two corresponding input bytes:

x(ia)
a ⊕ ka = x

(ib)
b ⊕ kb.

This relation allows him to decrease the dimension of the space of possible keys

by 8, removing keys for which ka⊕kb �= x
(ia)
a ⊕x

(ib)
b . A linear system can then be

built by combining several equations, and solving this system reveals (most of)
the key. Naturally, the success of the attack mainly depends on the possibility to
detect collisions. Two main approaches have been considered for this purpose.

In the first approach, simple statistics such as the Euclidean distance [18] or
Pearson’s correlation coefficient [19], are used as detection metrics. In this case,
the detection of a collision can be viewed as a binary hypothesis test. It implies to
define an acceptance region (i.e. a threshold on the corresponding statistic). As
a result, a collision may not be detected and a false collision may be considered
as a collision. This second point is the most difficult to overcome, as a false-
collision implies adding a false equation in the system, which in turn implies the
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attack failure. Heuristic solutions based on binary and ternary vote have then
been proposed in [3] to mitigate this issue. In binary vote, the idea is to observe
the same supposed collision using many traces, and to take a hard decision by
comparing the number of times the collision detection procedure returns true
with some threshold. Ternary vote is based on the fact that if there is a collision
between two values, then the output of the collision-detection procedure should
be the same when comparing both traces with a third one.

An alternative approach is the correlation-enhanced attack introduced by
Moradi et al. [13]. This approach is somehow orthogonal to the first one, since
we are not in the context of binary hypothesis testing anymore. Namely, instead
of only returning true or false, a comparison procedure directly returns the
score obtained using the chosen statistic (e.g. Pearson’s correlation coefficient).

Hence, when comparing two sub-traces t
(i)
a and t

(j)
b , we obtain a score that is

an increasing function of the likelihood of Ka ⊕ Kb being equal to x
(i)
a ⊕ x

(j)
b .

Besides, the authors of [13] combined their attack with a pre-processing of the
traces, that consists in building “on-the-fly” templates of the form:

t̄(x)a =

∑
i,x

(i)
a =x

t
(i)
a

#{i, x(i)
a = x}

· (1)

Such a pre-processing is typically useful to extract first-order side-channel infor-
mation (i.e. difference in the mean values of the leakage distributions).

3 General Framework for Linear Collision Attacks

In this section, we propose a general framework for describing the different linear
collision attacks that have been proposed in the literature. One important con-
tribution of this framework is to represent these attacks as a decoding problem.
In particular, we argue that a natural description of collision attacks is obtained
through the theory of LDPC codes, designed by Gallager in 1962 [9].

3.1 Collision Attacks as an LDPC Decoding Problem

We start with the definition of LDPC codes.

Definition 1. LDPC codes (graph representation). Let G be a bipartite graph
with m left nodes and r right nodes. Let us denote by GE the set of edges i.e.
(i, j) ∈ GE if and only if the i-th left node and the j-th right node are ad-
jacent. This graph defines a code C of length m over Fm

q , such that for w =
(w1, w2, . . . , wm) ∈ Fm

q , we have:

w ∈ C ⇐⇒ ∀1 ≤ j ≤ r,
⊕

i,(i,j)∈GE

wi = 0.

This code is said to be an (m, i, j) LDPC code if the maximum degree for a left
nodes is i and the maximum degree for a right nodes is j.
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In general, left nodes are called message nodes while right nodes are named
check nodes, since they correspond to conditions for code membership. This
definition can be directly related to our collision attack setting. First observe
that a collision between S-boxes a and b provides information on the variable:

ΔKa,b
def
= Ka ⊕ Kb.

It follows that the vector ΔK
def
= (ΔK1,2, . . . , ΔK15,16) determines a coset of K

of size 28. Hence, it can be seen as a codeword of an LDPC code of dimension
15 and length 120. This LDPC code corresponding to our problem has a very
particular structure: the set of check nodes only contains right nodes of degree
equal to 3. These nodes correspond to the linear relationships:

ΔKa,b ⊕ ΔKa,c = ΔKb,c, ∀ 1 ≤ a < b < c ≤ 16.

Therefore, finding the key in a linear collision attack consists in finding the like-
liest codeword of the aforementioned LDPC code, and then exhaustively testing
the keys derived from this system by setting K1 to each of its 28 possible values.
This LDPC formulation for the linear collision attack problem allows the use of
a decoding algorithm to recover the likeliest system of equations. In general, it is
well known that the performances of such a decoder can be drastically improved
when soft information is available. Interestingly, soft information is naturally
available in our context, e.g. through the scores obtained for each possible value
of a variable ΔKa,b. Nevertheless, these scores do not have a direct probabilistic
meaning. This observation suggests that a Bayesian extension of the statistics
used for collision detection, where the scores would be replaced by actual prob-
abilities, could be a valuable addition to collision attacks, in order to boost the
decoder performances. As will be shown in Section 5, this combination of LDPC
decoding and Bayesian statistics can indeed lead to very efficient attacks.

3.2 General Framework

A general description of linear collision attacks is given in Algorithm 1 and holds
in five main steps. First, the traces may be prepared with a PreProcessTraces

procedure. For example, signal processing can be applied to align traces or to
remove noise. Instantiations of this procedure proposed in previous attacks [3,13]

will be discussed in Section 4.1. Next, the scores Sa,b
def
= (Sa,b(δ))δ∈F256

corre-
sponding to the possible values δ of the variables ΔKa,b are extracted (with the
ComputeStatistics procedure). Different techniques have again been proposed
for this purpose in the literature. In order to best feed the LDPC decoder, the
scores can be turned into distributions for the variables ΔKa,b, thanks to an
ExtractDistributions procedure. As will be discussed in Section 4.2, this can
be obtained by normalization, or by applying a Bayesian extension of the com-
puted statistics. In particular, we will show how meaningful probabilities can
be outputted for two previously introduced similarity metrics (in a non-profiled
setting). Using these distributions, the LDPCDecode procedure then returns a
list of the � most likely codewords that correspond to the most likely consistent
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Algorithm 1. General framework for linear-collision attacks

Input: nt plaintexts x(1), . . . , x(nt) and the corresponding traces t(1), . . . , t(nt).
Output: The key k used by the targeted device.
(t̄1, . . . , t̄16)← PreProcessTraces(x(1) , . . . , x(nt), t(1), . . . , t(nt));
foreach 1 ≤ a < b ≤ 16 do

Sa,b ← ComputeStatistics(t̄a , t̄b);

Pr [ΔK]← ExtractDistributions(S1,2 , . . . , S15,16);
{S1, . . . ,S�} ←LDPCDecode(Pr [ΔK]);
foreach system Si and key candidate k compatible with equations in Si do

if TestKey(k) then
return k;

return failure;

systems {S1, . . . ,S�} of 120 equations (with Si more likely than Si+1). Such a
decoding algorithm is detailed in Section 4.3 for the case � = 1. Finally, the 28

full keys fulfilling S1 are tested in the TestKey procedure. The correct key is
returned if found otherwise keys fulfilling S2 are tested and so on. If the correct
key does not fulfill any of the Si’s, then failure is returned.

4 Instantiation of the Framework Procedures

Following the previous general description, we now propose a few exemplary
instantiations of its different procedures. Doing so, we show how to integrate
previously introduced collision attacks in our framework.

4.1 Pre-processing

Pre-processing the traces is frequently done in side-channel analysis, and colli-
sion attacks are no exceptions. For example, Bogdanov’s attacks take advantage
of averaging (by measuring the power consumption of the same plaintext several
times), in order to reduce the measurement noise [2,3,4]. Similarly, Moradi et al.
[13] start by building the “on-the-fly” templates defined in Equation (1). This
latest strategy shows good results in attacks against unprotected implementa-
tions with first-order leakages and our experiments in Section 5 will exploit it1.

4.2 Information Extraction

The use of an LDPC soft-decoding algorithm requires to extract distributions for
the variables ΔKa,b. As mentioned in Section 3.1, such distributions can be ob-
tained heuristically, by normalizing scores obtained with classical detection tech-
niques. But the optimal performances of a soft-decoder are only reached when
these distributions correspond to actual probabilities Pr

[
ΔKa,b = δ

∣∣S(a, b, δ)].
1 By contrast, averaging is detrimental in the case of masked implementations with
only second-order leakages, as detailed in [7]. As an alternative, the authors of this

paper concatenate sub-traces t
(i)
a corresponding to the same plaintext x and form a

vector t̄a by collecting these concatenated sub-traces for different plaintext values.
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While such probabilities are easily computed in profiled attacks, obtaining them
in a non-profiled setting requires more efforts and some assumptions. In this sec-
tion, we first introduce general tools that may be applied to any given detection
technique for this purpose. For illustration, we then apply them to both the Eu-
clidean distance (ED) and the correlation-enhanced (CE) detection techniques.

Bayesian Extensions: General Principle. The naive approach for extracting
distributions from scores S(a, b, δ), obtained for a candidate ΔKa,b = δ, is to
apply normalization:

Norm(S(a, b, δ))
def
=

S(a, b, δ)∑
δ′ S(a, b, δ

′)
·

As already mentioned, such normalized scores are not directly meaningful since
they do not correspond to actual probabilities Pr

[
ΔKa,b = δ

∣∣S(a, b, δ)]. There-
fore, and as an alternative, we now propose a Bayesian technique for computing
scores that corresponds to these probabilities and is denoted as:

BayExt(S(a, b, δ)) ≈ Pr
[
ΔKa,b = δ

∣∣S(a, b, δ)] ,
where the ≈ symbol recalls that the distributions are estimated under certain
(practically relevant) assumptions. For this purpose, we introduce the next model.

Model 1. Let T (resp. T ′) be the sub-trace corresponding to the execution of an
S-box with input X (resp. X ′). Let S(T, T ′) be a statistic extracted from the pair
of traces (T, T ′) (typically the Euclidean distance or a correlation coefficient).
Then, there exists two different distributions Dc and Dnc such that:

Pr [S(T, T ′) = s] =

{
PrDc [S = s] if X = X ′,
PrDnc [S = s] otherwise.

We note that in theory, the distribution of the statistic in the non-collision case
should be a mixture of different distributions, corresponding to each pair of non-
colliding values. However, in the context of non-profiled attacks, estimating the
parameters of these distributions (mean and variance, typically) for each compo-
nent of the mixture would require a large amount of measurement traces (more
than required to successfully recover the key). Hence, we model this mixture as
a global distribution. As will be clear from our experimental results, this heuris-
tic allows us to perform successful attacks with small amounts of measurement
traces. Model 1 directly implies that the distribution of ΔKa,b can be expressed
using PrDc [·] and PrDnc [·], as stated in the following Lemma.

Lemma 1. Let Σ
def
= (si, Δxi)1≤i≤n be the set of observed statistics si and the

corresponding suggested value Δxi for a given XOR of key bytes ΔKa,b. Then:

Pr
[
ΔKa,b = δ

∣∣Σ] ∝
n∏

i=1

Pr
[
S = si

∣∣Δxi, ΔKa,b = δ
]
,

∝
∏

i,Δxi=δ

PrDc [S = si]
∏

i,Δxi 	=δ

PrDnc [S = si] ,
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where PrDc [S = si] (resp. PrDnc [S = si]) denotes the distribution of the statis-
tic S when resulting from the comparison between to identical (resp. different)
inputs. Moreover, if for any i, PrDnc [S = si] is non-zero, then:

Pr
[
ΔKa,b = δ

∣∣Σ] ∝
∏

i,Δxi=δ

PrDc [S = si]

PrDnc [S = si]
·

Proof. The first line is a direct application of Bayes’ relation, the second results
from Model 1, and the final formula is obtained dividing by

∏
i PrDnc [S = si].�

In order to solve our estimation problem, we have no other a priori information
on Dc and Dnc than their non-equality. This problem is a typical instance of
data clustering. That is, the set of observations si is drawn from a mixture of
two distributions Dc and Dnc, with respective weights 2−8 and (1 − 2−8). For
both detection metrics in this paper, we show next that it is easy to theoretically
predict one out of the two distributions. We will then estimate the parameters
of the other distribution based on this prediction and some additional measure-
ments. Lemma 2 (proven in Appendix A) provides formulas to estimate the
non-collision distribution parameters based on the collision ones. Moving from
the collision to the non-collision distribution can be done similarly.

Lemma 2. Let D be a mixture of two distributions Dc and Dnc with respective
weights 2−8 and 1 − 2−8. Let us denote by μ̄ and σ̄2 estimates for the expected
value and variance of D obtained from observed values. Similarly, we denote
(μ̄c, σ̄2

c) estimates obtained for Dc. Then, we can derive the following estimates
for expected value and variance of Dnc:

μ̄nc =
μ̄− 2−8μ̄c

1 − 2−8
, and σ̄2

nc =
σ̄2 − 2−16σ̄2

c

(1 − 2−8)2
·

Specialization to the Euclidean Distance Detection. The Euclidean dis-
tance (ED) has been proposed as a detection tool in [18] and investigated in a pro-
filed setting in [4]. The Euclidean distance between two traces T and T ′ equals:

ED(T, T ′) def
=

�∑
j=1

(Tj − T ′
j)

2.

Let us first detail a natural non-Bayesian use of this similarity metric. Then,
we will specialize the aforementioned framework in order to provide formulas
to compute actual probabilities Pr

[
ΔKa,b

∣∣t̄a, t̄b] from observed Euclidean dis-

tances. In general, the smaller is the Euclidean distance between traces T̄
(ia)
a and

T̄
(ib)
b , the more probable is the value x

(ia)
a ⊕x

(ib)
b for the variableΔKa,b is. Hence,

we will consider the opposite of ED
(
T̄

(ia)
a , T̄

(ib)
b

)
as the score to normalize:

SED(a, b, δ)
def
= Norm

(
d0 − max

x
(ia)
a ⊕x

(ib)

b =δ

ED
(
T̄ (ia)
a , T̄

(ib)
b

))
, (2)
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where d0 is chosen such that all values d0 − max
x
(ia)
a ⊕x

(ib)

b =δ
ED

(
T̄

(ia)
a , T̄

(ib)
b

)
are strictly positive. Note that if a single trace is given, only a single Euclidean
distance can be computed between each pair of S-boxes a and b. By contrast,
many Euclidean distances can be computed per pair of S-boxes when the number
of traces increases. This justifies the use of a (heuristic) max function to select
which Euclidean distance will be retained to compute the scores. Let us now
consider the application of the Bayesian framework to the use of ED. We will use
ED B to refer to this Bayesian extension of ED. As mentioned earlier, efficiently
deriving probabilities from scores in a non-profiled setting requires to make some
assumptions. In the following, we consider the frequent case where the leakage is
the sum of a deterministic part (that depends on an intermediate computation
result) and a white Gaussian noise, as proposed in [17] and stated in Model 2.

Model 2. For any input byte X i
a and for any point j in the corresponding sub-

trace T i
a, the power consumption T i

a,j is the sum of a deterministic value Lj(X
i
a)

and some additive white Gaussian noise N i
a,j of variance σ2

j :

T i
a,j = Lj(X

i
a) +N i

a,j.

To lighten notation, we will omit superscripts and subscripts when a statement
applies for all inputs and sub-traces. This model admittedly deviates from the
distribution of actual leakage traces, since the noise in different samples can be
correlated. We note again that in non-profiled attacks, it is not possible to obtain
any information on the covariances of this Gaussian noise. Nevertheless, taking
points in the trace that are far enough ensures that these covariances are small
enough for this approximation to be respected in practice, as will be confirmed
experimentally in Section 5. In such a context, the variables (Tj −T ′

j) are drawn

according to the Gaussian distribution N (Lj(X)−Lj(X
′), 2σ2

j ). As a result, the
normalized Euclidean distance becomes:

EDB(T, T
′) def

=
�∑

j=1

(Tj − T ′
j)

2

2σ2
j

, (3)

and can be modeled using χ2 distribution family (i.e. sums of squared Gaussian
random variables ). Indeed, each term of the sum is distributed according to a
non-central χ2 distribution with non central parameter (Tj −T ′

j)
2. In the case of

a collision, this parameter vanishes and all the terms are drawn according to a
central χ2 distribution. Hence Dc is a χ2 distribution with � degrees of freedom.
In the case of Dnc, the attacker has no knowledge of (Lj(X) − Lj(X

′))2 and is
unable to directly estimate the distribution. Yet, as previously mentioned it is
possible to obtain a good approximation of this distribution from the param-
eters of Dc using Lemma 2. Experiments show that the shape of Dnc quickly
tends towards a Gaussian distribution when increasing the number of points �.
Combining these observations, we obtain the following score:
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BayExt(SED(a, b, δ))
def
=

Norm
(
exp

[
1
2

∑
x
(ia)
a ⊕x

(ib)

b
=δ

(
EDB

(
T̄ (ia)
a ,T̄

(ib)

b

)
−μnc

)2

σ2
nc

− EDB(T̄
(ia)
a , T̄

(ib)
b )

])
. (4)

Remark. If averages are performed during the PreProcessTracesprocedure, the

number of traces used to compute values T̄
(ia)
a may be different. Hence, the nor-

malized Euclidean distance EDB has to take this into account when comparing

sub-traces T̄
(ia)
a and T̄

(ib)
b . This is done by replacing 2σ2

j by σ2
j

(
1

#(a,ia)
+ 1

#(b,ib)

)
in (3), where #(a, ia) is the number of traces averaged to obtain T̄

(ia)
a .

Specialization to the Correlation-Enhanced Detection. We now consider
the use of Pearson’s correlation coefficient as detection tool. Let us recall that
for two vectors U and V having the same length and mean values Ū and V̄ , the
correlation coefficient is defined as:

ρ(U, V )
def
=

∑
i(Ui − Ū)(Vi − V̄ )√∑

i(Ui − Ū)2
√∑

i(Vi − V̄ )2
·

Many papers take advantage of this comparison metric in the side-channel liter-
ature. In the following, we focus on the correlation-enhanced solution proposed
in [13], as it generally provides the best results. This attack applies to “on-the-

fly” templates t̄ such that T̄
(x)
a contains the sub-traces obtained by averaging

the computations of an S-box a with plaintext byte x. The detection is based on

the fact that if ΔKa,b = δ, then traces T̄
(x)
a should correspond to (i.e. be similar

with) traces T̄
(x⊕δ)
b . We denote the permutation of the vector T̄b that contains

the T̄
(x⊕δ)
b ’s for increasing x values as T̄⊕δ

b . Then, the normalized score for a

given δ is obtained with SCE(a, b, δ)
def
= Norm

(
ρ
(
T̄a, T̄

⊕δ
b

))
. In practice, some

values of T
(x)
a or T

(x⊕δ)
b may not be defined if few traces are used. In the case

where at least one of the two traces is undefined, the coordinate will be ignored in
the computation of the correlation coefficient. As for the Euclidean distance, we
propose to apply the Bayesian extension to the use of the correlation-enhanced
detection. The distribution of the correlation coefficient is not easy to handle,
but we can approximate it with a Gaussian one using the Fisher transform of

this coefficient, as proposed in [12]: CEB(a, b, δ)
def
= arctanh SCE(a, b, δ). Asymp-

totically, the random variables CEB(a, b, δ) are normally distributed with mean
equal to the expected value of ρ

(
T̄a, T̄

⊕δ
b

)
, and variance (N − 3)−1, where N

is the number of coordinates used to compute the correlation coefficient. Given
these modified statistics, we now derive the corresponding Bayesian extension.
For non-collisions, the correlation coefficient has an expected value of 0. Let us
denote the expected value of the correlation when a collision occurs as μc. Since
both distributions have the same variance (say σ2), Lemma 1 translates into:
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Pr
[
ΔK = δ

∣∣CEB(a, b, δ) = s
]
∝ e−

(s−μc)2

σ2

e−
s2

σ2

∝ exp

[
s2 − (s− μc)

2

σ2

]
∝ exp

[
2s

σ2

]
.

In practice, it turned out that distributions are really close to Gaussian, even
for a small number of traces used, but their variance did not tend towards the
expected value (N − 3)−1. Hence, in our following experiments, we rather used:

SCE B(a, b, δ)
def
= Norm

(
e2 CEB(a,b,δ)

)
. (5)

Again, results in Section 5 show that even if based on slightly incorrect models,
the impact of these Bayesian extensions on the attack efficiency is positive.

4.3 LDPC Decoding

A soft-decoding algorithm for non-binary LDPC codes can be found in [1] and
is presented in Algorithm 2. It consists in iterating a belief propagation stage a
certain number of times. Let us recall that a code can be represented using a
bipartite graph: left nodes are message nodes and correspond to positions of the
codeword; right nodes are check nodes that represent redundancy constraints.
The attacker receives distributions for the message nodes. The belief propagation
step boils down to updating these message node distributions according to the
adjacent message nodes (that is, message nodes sharing a common check node).
Such a decoding algorithm actually works for any linear code, but quickly be-
comes intractable as the degree of check nodes increases. In the case of LDPC
codes, this degree is small (by definition) which makes the algorithm run effi-
ciently. In our particular context where check nodes have degree 3, information
from adjacent nodes can further be exploited through the convolution:

Pa,c ∗ Pb,c(δ)
def
=

∑
α∈F256

Pa,c(δ)Pb,c(δ ⊕ α).

In addition, the corresponding graph has small cycles and the propagation is
very fast (after only two iterations, a position has been influenced by all oth-
ers). Hence, the number of iterations of the while loop can be considered as a
constant. Note that the convolution of two probability tables can be computed
using a fast Walsh transform. Indeed, for a field of q elements, the q convolutions
can be computed in Θ(q ln q). Hence, Algorithm 2 has a complexity of Θ(q ln q).

5 Experiments

We now present experiments obtained in three different settings. The first set of
attacks targets a reference implementation of the AES and confirms the relevance
of the tools we introduced. Following, a second set of attacks targeting an op-
timized implementation of AES (namely, the furious implementation from [15])
is presented. The main observation is that small code optimizations may lead
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Algorithm 2. Proposition for LDPCSoftDecoding procedure

Input: The distributions Pr [ΔKa,b = δ].
Output: The likeliest consistent system S .
foreach 1 ≤ a < b ≤ 16, δ ∈ F256 do

Pa,b(δ)← Pr [ΔKa,b = δ];

while
(
argmax

δ
P1,2(δ), . . . , argmax

δ
P15,16(δ)

)
is not a codeword do

foreach 1 ≤ a < b ≤ 16 do
foreach δ ∈ F256 do

Pa,b(δ)← Pa,b(δ) ·
∏

c �∈{a,b} Pa,c ∗ Pb,c(δ);

Pa,b ← Pa,b

‖Pa,b‖1 ;

return
(
argmax

δ
P1,2(δ), . . . , argmax

δ
P15,16(δ)

)
;

to variations in S-boxes leakage functions, which in turn results in less efficient
attacks. For these two first sets of attacks, we measured the power consumption
of an Atmel microcontroller running the target AES implementations at 20MHz,
by monitoring the voltage variations over a small resistor inserted in the supply
circuit. We then conclude this paper by investigating a theoretical setting where
leakage functions are not linear. This final experiment motivates the potential
interest of collision attacks compared to other non-profiled distinguishers.

In the following, we compare collision attacks (Coll) using the Euclidean dis-
tance (ED) and the correlation-enhanced (CE) detection techniques, with the
non-profiled variant of Schindler et al.’s stochastic approach [17], described in [8]
and using a 9-element basis including the target S-boxes output bits. Collision
attacks have been performed using the instantitation of PreProcessTraces pro-
cedure from [13], defined by (1). As mentioned in the introduction, and for all
our experiments, we assumed that we were able to divide each leakage traces in
16 sub-traces corresponding to the 16 AES S-boxes. For the real measurements,
the detection metrics were directly applied to these sub-traces, following the de-
scriptions in the previous sections. As for the simulated ones in Section 5.3, we
generated univariate leakages for each S-box execution, according to the hypo-
thetical (linear and non-linear) leakage functions and a Gaussian noise.

5.1 Attacking the Reference Implementation

In this first experiment, we consider a favorable setting where each table look-up
is performed with the same register (our asm code provided in Appendix B). The
goal is to emphasize the gain obtained from the LDPC formulation of the prob-
lem and the Bayesian extension. The 28-th order success rates (defined in [20])
obtained in this case are given in Figure 1. Original collision attacks directly
extract the key from scores obtained with the ED or CE metrics. Attacks tak-
ing advantage of the LDPC decoder are marked with an (L), and the use of the
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Fig. 1. Order 28 success rates of attacks using the homemade implementation

Bayesian extension is denoted by (B)2. As expected, using the LDPC decod-
ing algorithm greatly improves the attacks performances. Moreover, using the
Bayesian extension also provides a non-negligible gain. Interestingly, when both
tools are combined, ED and CE detection metrics seem to be equivalent in terms
of data complexity. This may be a good empirical indication that the error cor-
recting codes approach we propose really extracts all the available information.

5.2 Attacking the Optimized Implementation

In this next experiment, we targeted the AES furious implementation. This op-
timized implementation is a more challenging target, since the S-box layer and
the ShiftRows operation are interleaved. Moreover, the table looks-up are per-
formed from different registers. Due to these optimizations, the leakage functions
of the different S-boxes are not so similar anymore (see Appendix B). Hence, the
correct key is unlikely to correspond to the most likely codeword. A direct con-
sequence of this more challenging context is that the success rate of order 28

is not suited to evaluate the attack performances (i.e. the correct key may be
rated beyond the 28 first ones by the attack). As an alternative, we estimated
the median rank of the correct key among the 2128 possible values.

In that case, one should use a decoding algorithm with � > 1 and test the
28 · � corresponding keys afterwards. Unfortunately, the efficiency of such a list-
decoding algorithm depends on the shape of distributions Pr [ΔK], themselves
being highly dependent on the similarity metrics used to compare traces, and
the device running the cipher. Therefore, we left the design of such an algorithm
as a scope for further research. Yet, and in order to be able to analyze the at-
tack performances, we used an ad-hoc list-decoding algorithm that consists in
enumerating key classes from a subset of 15 positions of dimension 15 (using
the algorithm in [21]), for which the corresponding distributions have a small

2 Since the Bayesian extension does not modify the ordering of the scores, using it
only makes sense when applying the LDPC decoding algorithm.
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entropy. Note that the belief propagation part of the decoder in Algorithm 2
can be used (or not) before performing the enumeration. To avoid confusion, we
will denote by (L’) the use of this belief propagation step before enumerating.
Computing the median rank of the key also becomes intensive as this rank be-
comes large. Hence, we decided to enumerate keys up to the 220-th first ones,
and in the cases where the correct key was not found, estimated the key rank
by multiplying correct subkey ranks. These heuristics naturally have to be taken
into consideration when analyzing the results in Figure 2. However, we believe
that they provide a fair understanding of the different attacks we investigated.
Namely, as in Figure 1, the soft-decoding algorithm allows great performance im-
provements in the furious implementation case-study. By contrast, the Bayesian
extensions were less directly useful. This observation again relates to the differ-
ent leakage models observed for different S-boxes. As the parameter estimation
in the Bayesian extensions requires a sufficient precision to be exploitable, they
were only useful after approximately 150 traces in this more challenging scenario.
Note finally that most collision attacks are stuck around rank 215. This can be
explained by one of the S-boxes leaking in a drastically different way than the
others in our implementation. As a result, we were only able to recover 14 bytes
out of the 15 ones from this optimized implementation (even with large number
of measurements). This leads to a median rank of roughly 27 for the correct
system, an a median rank 215=7+8 for the correct master key.

5.3 Simulated Experiments with Non-linear Leakages

In the previous experiments, the non-profiled variant of Schindler et al.’s stochas-
tic approach consistently gave better results than the (improved) collision attacks
investigated. As a result, one can naturally question the interest of such attacks
in a security evaluation context. In order to discuss this issue, this final section
analyzes the relevance of collision attacks in a purely theoretical setting. We
used two different sets of simulated traces for this purpose: the first ones were
generated using a leakage function of which the output is a linear function of the
S-boxes output bits; the second ones were generated with a leakage function of
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Fig. 3. 28-th order success rate for linear (left) and non-linear (right) leakage functions

which the output is a highly non-linear function of the S-boxes output bits (i.e. a
situation emulating the worst case scenario from [22]). The results corresponding
to these alternative scenarios are in Figure 3. As expected, the linear leakages in
the left part of the figure are efficiently exploited by all attacks, with an improved
data complexity for the stochastic approach. By contrast, in the right part of
the figure, the stochastic approach is unable to exploit the non-linear leakages,
and only collision attacks lead to successful key recoveries3. This confirms that
there exist situations in which non-profiled collision attacks are able to exploit
information leakage that no other non-profiled attack can. We leave the quest
for such leakage functions (or protected circuits) as a scope for further research.
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A Proof of Lemma 2

We want to express the mean and the variance of a mixture of two distributions
as a function of the means and variances of these distributions. Let us recall that
D is a mixture of two distributions Dc and Dnc with respective weights 2−8 and
1−2−8. We denote by μ and σ2 the expected value and variance of D, by (μc, σ

2
c )

the expected value and variance of Dc, and by (μnc, σ
2
nc) the expected value and

variance of Dnc. Let Xc and Xnc be respectively drawn according to Dc and Dnc

and X be the mixture 2−8Xc + (1 − 2−8)Xnc. Then, due to the linearity of the
operator, E (X) = E

(
2−8Xc + (1 − 2−8)Xnc

)
= 2−8μc + (1 − 2−8)μnc. Thus, it

follows that μnc = μ−2−8μc

1−2−8 . Concerning the variance, a slightly more difficult
calculus leads to the claimed result. First, we use the relationship V (X) =

E
(
X2
)
− E (X)

2
and we develop its first term in:

E
(
X2
)
= E

(
2−16X2

c + 22−8(1 − 2−8)XcXnc + (1 − 2−8)2X2
nc

)
.

Since Xc and Xnc are independent variables, we have:

E
(
X2
)
= 2−16E

(
X2

c

)
+ 2−7(1 − 2−8)E (Xc)E (Xnc) + (1 − 2−8)2E

(
X2

nc

)
.

We then notice that E
(
X2

c

)
= σ2

c + μ2
c (the same holds for E

(
X2

nc

)
). Hence:

E
(
X2
)
= 2−16(σ2

c + μ2
c) + 2−7(1 − 2−8)μcμnc + (1 − 2−8)2(σ2

nc + μ2
nc).

Now returning to V (X) = E
(
X2
)
−E (X)2, we finally observe that many terms

in μ vanish to yield V (X) = 2−16σ2
c + (1 − 2−8)2σ2

nc.

B Additional Details about the Target Implementations

Our experiments are based on two different implementations of the AES: a refer-
ence one that has been designed such that S-boxes looks-ups have similar leakage
functions, and the furious implementation. They respectively execute the AES
S-box in four instructions (mov SR,ST22; mov ZL,SR; lpm SR,Z; mov ST22,SR)
and three instructions (mov H1,ST21; mov ZL,ST22; lpm ST21,Z). We observed
that the most leaking operation in the S-box computation was the mov operation,
that stores the input of the S-box in the ZL register. Hence, in the reference im-
plementation, we first copy intermediate values in a register SR, that is the same
for all 16 S-boxes computations. Then, SR is updated and the output is copied
back to the initial state register. On the contrary, we can see that in the furi-
ous implementation, the ZL register is directly updated from the state register
(here ST22), and the answer directly goes back to the state register. In addi-
tion, the furious implementation combines the S-box layer with the ShiftRows
operation. It explains why the output is stored in ST21 and not ST22. The opti-
mizations in the furious implementation are the main reason of the poor results
of the attacks performed. As a simple illustration, we plotted the templates of
the leakage points used in the attacks for different S-boxes in Figure 4 (for the
reference implementation) and Figure 5 (for the furious one).



192 B. Gérard and F.-X. Standaert

0 50 100 150 200 250
0.019

0.022

0.025

0.028

0.031

0.034

0.037

Input values

T
en

si
on

 m
ea

su
re

d 
(V

)

S−box 1

0 50 100 150 200 250
0.019

0.022

0.025

0.028

0.031

0.034

0.037

Input values

T
en

si
on

 m
ea

su
re

d 
(V

)

S−box 3

Fig. 4. Leakage functions for the reference implementation

0 50 100 150 200 250
0.018

0.02

0.022

0.024

0.026

0.028

Input values

T
en

si
on

 m
ea

su
re

d 
(V

)

S−box 1

0 50 100 150 200 250
0.018

0.02

0.022

0.024

0.026

0.028

Input values

T
en

si
on

 m
ea

su
re

d 
(V

)

S−box 3

Fig. 5. Leakage functions for the furious implementation

C About Time Complexity

Metrics used in Section 5 for analyzing experiments only consider the success
rate of the attacks as a function of their data complexity. We consider the time
complexity of the proposed collision attack in this section. When attacking ns S-
boxes processing nb-bit words, these complexities for our different procedures are:

ComputeStatistics O
(
n2
sn

2
t �
)

ExtractDistributions O
(
n2
s(n

2
t + 2nb)

)
LDPCDecode O

(
n2
snb2

nb
)

When using the pre-processing technique that has a cost Θ (nsnt�), the complex-
ity of the procedure ComputeStatistics is decreased to O

(
n2
s2

2nb�
)
. Hence, it

turns out that, in realistic contexts, collision attacks can be performed in a negli-
gible time compared to the on-line acquisition and the final key search phases (a
similar comment applies to stochastic attacks). Furthermore, by carefully profil-
ing the number of cycles needed to perform the different steps of the attacks, we
observed that the slight time overhead induced by the use of a Bayesian exten-
sion and/or an LDPC decoding algorithm is positively balanced by the reduction
of the data complexity, hence leading to globally more efficient attacks.
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Abstract. Leakage-resilient constructions have attracted significant at-
tention over the last couple of years. In practice, pseudorandom functions
are among the most important such primitives, because they are state-
less and do not require a secure initialization as, e.g. stream ciphers.
However, their deployment in actual applications is still limited by secu-
rity and efficiency concerns. This paper contributes to solve these issues
in two directions. On the one hand, we highlight that the condition of
bounded data complexity, that is guaranteed by previous leakage-resilient
constructions, may not be enough to obtain practical security. We show
experimentally that, if implemented in an 8-bit microcontroller, such con-
structions can actually be broken. On the other hand, we present tweaks
for tree-based leakage-resilient PRFs that improve their efficiency and
their security, by taking advantage of parallel implementations. Our se-
curity analyses are based on worst-case attacks in a noise-free setting and
suggest that under reasonable assumptions, the side-channel resistance
of our construction grows super-exponentially with a security parameter
that corresponds to the degree of parallelism of the implementation. In
addition, it exhibits that standard DPA attacks are not the most relevant
tool for evaluating such leakage-resilient constructions and may lead to
overestimated security. As a consequence, we investigate more sophisti-
cated tools based on lattice reduction, which turn out to be powerful in
the physical cryptanalysis of these primitives. Eventually, we put forward
that the AES is not perfectly suited for integration in a leakage-resilient
design. This observation raises interesting challenges for developing block
ciphers with better properties regarding leakage-resilience.

1 Introduction

Physical attacks, in which adversaries take advantage of the peculiarities of
the devices on which cryptographic operations are running, are an important
concern for modern security applications. They typically include side-channel
attacks (where the adversary monitors the leakage due to the cryptographic
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computations [26]), fault attacks (where the adversary tries to force a device to
perform erroneous computations [6]), tampering attacks (where the adversary
probes a few wires of the implementation [4]) and memory attacks (where the
adversary directly monitors parts of the memory [18]). As a result, a variety
of hardware-level countermeasures have been proposed, in order to reduce the
amount of information an implementation may provide to adversaries. Over the
last few years, such hardware-level countermeasures have been complemented
by significant efforts to extend the formal guarantees of provable security from
cryptographic algorithms towards cryptographic implementations. For this pur-
pose, various models have been introduced, trying to capture physical reality
in abstract terms, with the goal of allowing meaningful reasoning about physi-
cal security. Examples of models to formalize side-channel attacks include Mi-
cali and Reyzin’s physically observable cryptography [29] and Dziembowski and
Pietrzak’s leakage-resilient cryptography [14]. Examples of models to formalize
fault attacks, tampering attacks and memory attacks can also be found, e.g.
in [3,16,21,22]. Eventually, more general abstractions, such as the auxiliary in-
put model [11], or the bounded retrieval model [10,13], have been introduced for
similar purposes. Quite naturally, these different models raise numerous ques-
tions about their relevance to practice, e.g. regarding the correspondence (or lack
thereof) between the basic assumptions used in proofs and what can actually be
guaranteed by hardware designers. In general, there remain many open problems
to answer in order to specify a fully satisfying model (see, e.g. [38,39]).

Nevertheless, and somewhat independent of the practical relevance of the
models used to formalize physical security issues, it may very well be that (small
variations of) ideas proposed in these theoretical works actually provide sig-
nificantly enhanced security against large categories of “practical” side-channel
attacks (such as surveyed in [28]), when analyzed in more restricted frameworks
such as [41]. In this paper, we follow this direction and focus on the security of
symmetric cryptographic primitives such as block and stream ciphers. This focus
is naturally motivated by the fact that such low-cost algorithms are among the
most frequently considered targets, e.g. for power and EM analysis.

Related work. The very idea to prevent side-channel attacks at the protocol level
relying on key updates refers to Kocher [25]. Following, Pseudo-Random Num-
ber Generators (PRNGs) allowing security against side-channel attacks have first
been proposed and analyzed in a specialized setting [33] (with noisy Hamming
weight or identity leakage functions). Leakage-resilient stream ciphers based on
an “alternating structure”, with a proof of security in the standard model have
then been described in [14,34]. Similar constructions without alternating struc-
ture, but with a proof in a model relying on a random-oracle assumption can
be found in [42,43]. Finally, an attempt to prove the security of a PRG without
alternating structure and in the standard model, assuming non-adaptive leak-
age functions, was also suggested in [43], and was later shown to require large
amounts of public randomness for the proof to hold in [15]. It remains an open
question to determine if the exact construction proposed in [43], using only two
alternating public values, can be proven secure or attacked in a practical setting.
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While theoretically interesting (and efficiently implemented), these stream
ciphers and PRNGs all suffer from the limitation that they require a secure ini-
tialization mechanism. As already clear in [33], this problem of initialization is
an important issue for deploying leakage-resilient constructions in real-world de-
vices, as it typically implies much larger performance overheads. Roughly speak-
ing, and taking AES-based designs as an example, all previous leakage-resilient
PRNGs can output one 128-bit block every two AES executions. By contrast, the
initialization mechanism proposed at ASIACCS 2008 [33] requires 128 AES exe-
cutions per block (if the best security against side-channel attacks is privileged).
Following solutions did not allow any improvement in this respect.

Interestingly, this requirement of a secure initialization process for PRNGs can
actually be translated into the need of a leakage-resilient PseudoRandom Func-
tion (PRF). As a consequence, it was first observed in [42] that a tree-based
construction such as the one of Goldreich, Goldwasser and Micali (GGM) [17]
inherently brings improved resistance against side-channel attacks. Again taking
an AES-based example, these PRFs allow ensuring that every intermediate key
in the tree is only used twice. The construction in [42] was proven secure against
side-channel attacks under a random-oracle assumption, together with the ob-
servation that leakage-resilience for stateless PRFs requires to limit the leakage
function to be non-adaptive. Next, Dodis and Pietrzak constructed a leakage-
resilient PRF and proved its security in the standard model (with non-adaptive
leakages as well) [12], by applying a GGM-like construction to the stream cipher
with alternating structure from [34]. How to replace the alternating structure by
alternating public randomness is additionally discussed in [15].

Finally, the construction of PseudoRandom Permutations (PRPs) was first
discussed at CRYPTO 2010 [12]. In this paper, Dodis and Pietrzak describe ef-
ficient attacks (with non-adaptive leakage functions) against Feistel ciphers con-
structed from leakage-resilient PRFs. It is shown in [15] that more positive results
can be obtained in a known-plaintext (rather than chosen-plaintext) adversarial
scenario. However, as for the PRF constructions listed above, the practicality of
these PRP constructions is strongly limited by performance overheads.

In this work, we tackle two important questions related to leakage-resilient PRFs.

First, we study their implementation in leaking devices and the security level
that they provide against standard side-channel attacks. Doing so, we put for-
ward the difference between a side-channel attack with bounded data complexity
and a side-channel attack with bounded number of measurements. As previous
constructions in [12,15,42] all guarantee a bounded data complexity, but do not
prevent unbounded number of measurements for the PRF executed on the same
inputs, we exhibit attacks in low-cost (8-bit) microcontrollers taking advantage
of these capabilities. We use these experiments to argue about the need of par-
allelism for leakage-resilient PRF implementations in general.

Second, we study how to exploit parallelism in the implementations of PRFs,
in order to significantly improve their efficiency. For this purpose, we take advan-
tage of a careful selection of the public values used in an AES-based construction.
By enforcing that these public values are such that all the bytes corresponding
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to the first-round S-boxes are identical, we succeed in significantly reducing the
success rate of a Differential Power Analysis (DPA) against our implementations.
Doing so, we also observe that DPA is not the most suitable tool for cryptan-
alyzing such leakage-resilient designs, and describe advanced attacks exploiting
lattice reduction, that allow us to better evaluate worst-case security levels. This
analysis puts forward the need to enumerate a permutation of the AES bytes,
which offers an interesting security parameter (as the number of such permuta-
tions grows as a factorial function). Furthermore, this trick allows us to reduce
the 128 AES iterations per block, required in the execution of previous PRFs
constructions, down to 17 (and even less if the PRF is used for encryption in
counter mode). This results in an overhead factor that is much more in line
with the ones of other countermeasures against side-channel attacks. While our
proposal goes against the requirement of independent public randomness in [15],
it is backed up by a practical security analysis, which again raises the question
whether this requirement is motivated by the physics or by proof artifacts. Be-
sides, our proposal could be integrated into the PRF of CRYPTO 2010, in which
the alternative structure removes the need of public randomness in the proofs.

We finally remark that the techniques analyzed in this paper raise interesting
challenges for the design of new block ciphers allowing efficient implementations
when inserted in leakage-resilient PRFs, or for the direct design of ad hoc con-
structions. As suggested by the AES-128 instance that we study in Section 6,
the Rijndael algorithm may not be the best suited block cipher for this purpose,
and we suggest a few directions that could lead to improved solutions.

2 The Leakage Resilient PRF Constructions

In the first sections of this paper, we will base our discussions on the GGM
construction depicted in the left part of Figure 1. Let Fk(x) denote the PRF
indexed by k and evaluated on x. Further, let the building blocks Eki(pij) denote

the application of a block cipher E to a plaintext pij under a key ki (the figure
takes the example of E = AES-128 with 1 ≤ i ≤ 128 and 0 ≤ j ≤ 1). Let also
x(i) denote the ith bit of x. The PRF first initializes k0 = k and then iterates
as follows: ki+1 = Eki(pi0) if x(i) = 0 and ki+1 = Eki(pi1) if x(i) = 1. Eventually,
the (n+ 1)th intermediate key k128 is the PRF output as Fk(x).

In this basic version, the execution of the PRF guarantees that any side-
channel adversary will at most observe the leakage corresponding to two plain-
texts pi0 and pi1 per intermediate key. This implies 128 executions of the AES-128
to produce a single 128-bit output. A straightforward solution to trade improved
performances for additional leakage is to increase the number of observable plain-
texts per intermediate key. If one has Np such plaintexts per stage, the number of
AES-128 executions to produce a 128-bit output is divided by log2(Np). However,
as will be discussed in Section 3, such a tradeoff scales badly and very rapidly
decreases the side-channel security of an implementation. The more efficient al-
ternative that we propose in this paper is based on a slight variation of this idea,
illustrated in the right part of Figure 1. It can be viewed as a GGM construc-
tion with Np = 256, but where the same set of 256 carefully chosen plaintexts
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Fig. 1. Leakage-resilient PRFs: straight GGM (left) and efficient alternative (right)

is re-used in each PRF stage, excepted for the last stage where Np = 1. Note
that this is in contrast with the proof of leakage-resilience in [15], that requires
all the pij ’s to be public random values that are independently picked prior to
encryption. In terms of efficiency, this proposal reduces the number of stages of
a PRF based on the AES-128 to 17 (i.e. 16 plus one final whitening). As will be
seen in Section 5, it also leads to interesting practical security guarantees.

3 Bounded Data Complexity May Not Be Enough

Let us consider the PRF construction in the left part of Figure 1 with the
AES-128 as block cipher. As previously mentioned, for each intermediate key ki,
this construction prevents adversaries to mount side-channel attacks with data
complexity larger than 2. By contrast, nothing prevents the repetition of large
number of measurements for the same input pij . In this section, we investigate
whether this condition of bounded data complexity is sufficient to guarantee
practical security against side-channel attacks. For this purpose, we set up ex-
perimental attacks against an implementation of the AES in an 8-bit microcon-
troller, with limited data complexity (i.e. small Np values). For illustration, we
used the measurement setup and statistical tools previously described in [40].
More precisely, we considered template attacks in principal subspaces, using only
power consumption measurements, and Principal Component Analysis (PCA)
as dimensionality reduction technique. We exploited templates for two target
operations, namely the AddRoundKey and SubBytes in the first AES round.

The results of attacks targeting the first AES master key byte are given in
Figure 2 for Np = 1, 2. The number of measurements used in the attacks is given
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Fig. 2. Experimental attacks against the AES with bounded data complexity

on the x-axis, and their first-order success rate (following the definition in [41]) is
given on the y-axis. The right part of the figure corresponds to the result forNp =
2, i.e. the exact data complexity tolerated by the PRF construction. It can be
observed that high success rates can already be obtained with our simple attack
setting. In fact, due to the 8-bit bus of our microcontroller, even attacks with
data complexity Np = 1 allow reaching non-negligible success rates. As shown in
Appendix C, Figure 8, this success rate dramatically increases with Np, clearly
suggesting that enhancing the PRF efficiency in this direction is not acceptable
for security reasons. Admittedly, this simple scenario may not be reflective of
better protected or larger, parallel devices. But it at least suggests that the
security assumptions in all previous works on leakage-resilient PRFs overlook
the important difference between data complexity and number of measurements.

As a result, two natural directions can be envisioned. On the one hand, one
could design new (stateful) PRFs ensuring a bounded number of measurements.
This would essentially correspond to the storage of all the intermediate nodes
that have been computed in previous invocations of the tree-based PRF in Fig-
ure 1. Although different security vs. memory tradeoffs could be considered,
this solution is hardly realistic from an implementation cost point of view. On
the other hand, one could investigate the impact of large (parallel) implemen-
tations, where the bounded data complexity would be better reflected in the
attacks’ success rates. The following section investigates this second option.

4 Efficiently Exploiting Parallelism

In this section, we study how parallelism improves the security against DPA
attacks and the efficiency of a tree-based PRF. For this purpose, we will mainly
focus on one step of the constructions in Figure 1, and take the example of k0 = k.
In this context, there are three main parameters to consider when evaluating
the side-channel security of the PRF, next denoted as Np, Ns and σ2

n. First, the
adversary is allowed to encrypt Np (for now, random) plaintexts pj (1 ≥ j ≥ Np)
under the key k. Second, we target an AES-like block cipher where Ns S-boxes
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are executed in parallel. Finally, the leakage measurements are affected by a
noise with variance σ2

n. Let us denote the bytes of the plaintexts as pj [i] and the
bytes of the key as k[i]. We will consider leakages of the form:

lj =

Ns∑
i=1

L(S(pj [i]⊕ k[i])) + n, (1)

with S the AES S-box, L a leakage function and n a Gaussian-distributed noise
with variance σ2

n. In such a setting, parallelism essentially depends on the number
of S-boxes Ns. Increasing this parameter typically allows increasing the amount
of “algorithmic noise” in the attacks, as we now detail. For illustration, we con-
sidered a Hamming weight leakage function L = WH(·) with σ2

n = 0, and a DPA
adversary using Bayesian templates [9]. The left part of Figure 3 summarizes the
joint effect of Ns and Np in this random plaintext scenario, where the guessing
entropy (in log2 scale) of the first master-key byte is used as evaluation met-
ric [41]. It indicates the average position of the correct key byte in the scored list
provided by the DPA attack, and thus reflects the key-search complexity of an
adversary who is given such a list. One can clearly see the strong impact of in-
creasingNp, as the key search complexity decreases almost exponentially with it.
In addition, the random plaintext scenario allows directly recovering information
on all key bytes, by applying a straightforward divide-and-conquer strategy.

Fig. 3. Guessing entropy of the first AES master-key byte (log2 scale). Left: random
(uniform) plaintext scenario. Right: carefully chosen plaintext scenario.

Careful selection of the plaintexts. The previous discussion highlighted that par-
allelism is not sufficient to guarantee security against side-channel attacks. In this
section, we propose to tweak the PRF design with carefully chosen plaintexts,
in order to prohibit the application of standard divide-and-conquer strategies.
For this purpose, we define our plaintexts as the concatenation of Ns identical
values j, i.e. pj = j||j|| . . . ||j, with 1 ≤ j ≤ Np and Np limited by the S-box
input space. Under conditions discussed later in this section, the effect of this
measure is that in a DPA attack, the predictions corresponding to the Ns key
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bytes cannot be distinguished anymore. That is, all key bytes are targeted at the
same time. As a result, and even when increasing Np, not all the Ns key bytes
can be highly ranked by the attack. This effect can be seen in the right part of
Figure 3 and is reflected in a higher guessing entropy for the target key byte.

One important consequence of this observation is that the reduced guessing
entropy of one key byte does not directly translate towards more key bytes.
Indeed, the adversary now has to reconstruct a full key from a single score vector
(rather than Ns ones in the random plaintext scenario). Intuitively, the task of
reconstructing the full key could be divided into two steps: (1) picking a subset
of Ns key bytes and (2) afterwards determining their order. Probably the most
important result for this countermeasure is that even if the Ns correct key bytes
are always ranked in the Ns first positions, task (2) still has a complexity of Ns!,
a number which grows super-exponentially. We now discuss the conditions upon
which this security parameter can actually be observed:

1. The leakage function L in Equation (1) has to be identical for all S-boxes.
2. Side-channel attacks exploiting unknown ciphertexts should be hard.

As far as the first condition is concerned, it is admittedly a new type of assump-
tion. Therefore we investigated its practicality in Section 6, based on an FPGA
case study. Our conclusions can be summarized as follows. (a) This assump-
tion is indeed implementation-dependent. That is, we were able to identify both
implementations with close to identical leakage models for all S-boxes, and imple-
mentations in which these models exhibit significant differences. (b) Even in the
cases where significant differences occur, these differences could not be exploited.
Essentially, this is because constructing the models (byte per byte, as imposed
by computational constraints) has to be done for uniform plaintexts. That is,
we assume parts of the bytes in the implementation to produce independent
algorithmic noise (binomially, or approximately Gaussian distributed). By con-
trast, during an attack, the plaintexts are carefully chosen for all the bytes, hence
generating a strongly key-dependent noise that was not characterized during pro-
filing. As a result, the modeled leakage and the leakage during an attack do not
match, which prohibits successful key recoveries. Summarizing, our experiments
provide good indication that our assumption is sufficiently fulfilled for power
measurements. As for EM measurements, it depends on the localization capabil-
ities of the adversary. As discussed in [27], Chapter 3, distinguishing structures
of a few hundred gates in complex circuits is a non-trivial task, especially for
deep-submicron technologies. Hence, we believe that our countermeasure rules
out an important part of low-cost EM attacks, and leave the investigation of
advanced localization issues as an interesting question for future research.

As far as the second condition is concerned, first note that only the ciphertexts
of the last step in the right construction of Figure 1 are given to the adversary.
But for this last iteration, only one public plaintext p can be queried (i.e. the
data complexity is bounded to one). For all the other steps, the ciphertexts
remain internal intermediate values. In this context, we just observe that most
DPA attacks against block cipher implementations are based on the knowledge
of either the plaintexts or the ciphertexts. To our knowledge, the best attacks in
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fully unknown input conditions are algebraic ones, e.g. [35,36], which are hardly
realistic in large parallel devices. Hence, it is reasonable to assume that the most
critical threat against this PRF construction is taking advantage of the carefully
chosen plaintexts. This scenario is investigated next.

5 Worst Case Security Analyses

The previous section argued that breaking an AES-based leakage-resilient PRF
taking advantage of parallelism could be at least as hard as enumerating a permu-
tation over the AES S-boxes. This would correspond to 16! ≈ 244 for AES-128,
24! ≈ 279 for Rijndael-192 and 32! ≈ 2117 for Rijndael-256. Hence, a natural
question is to determine whether one can hope for more security, i.e. indepen-
dent of their order, how difficult is the task of finding the correct Ns key bytes
of the PRF? For this purpose, a first strategy is to apply a standard DPA attack
and to enumerate the keys from the single score vector it provides. As discussed
in Appendix A, this does not lead to any efficient key recovery and suggests large
security guarantees. However, it turns out that in view of the design tweaks used
in our PRF construction, standard DPA attacks are not anymore the most rele-
vant tool for their security evaluation. In the rest of this section, we discuss two
alternative techniques for attacking a PRF implementation. In both cases, the
attacks rely on strong assumptions. Namely, we assume that the adversary has a
perfect knowledge of the leakage function and can average his measurements in
order to obtain noiseless leakages. As discussed in Appendix B, producing such
noiseless traces may require significant amounts of measurement data. These
conditions are motivated by the goal of investigating worst-case security. In this
setting, we first describe an iterative type of DPA attack that significantly im-
proves over the one in Appendix A. Next, we analyze the impact of advanced
attacks using lattice reduction. In both cases, the results underline that the PRF
construction does not offer much more security than what is bounded by the time
needed to enumerate the permutation, if perfect measurements are available.

5.1 An Iterative DPA-Like Attack

The aim of the iterative DPA attack is to recover the correct set of key bytes in
the PRF implementation, exploiting the fact that one correct key byte is ranked
at position one with high probability (see Appendix A). It works by iteratively
removing the algorithmic noise corresponding to the best rated key bytes.

In the beginning of the attack, the adversary has an empty set of recovered
key bytes and mounts a first DPA. As a result, he adds a first key byte to the
set of recovered key bytes, corresponding to the highest rank in his (single) score
vector. Next, he mounts a second DPA, this time adding the algorithmic noise
corresponding to the already recovered key byte to his predictions. As a result,
he adds a second key byte to the set of recovered key bytes. This procedure
is repeated until a set of Ns key bytes is recovered. Simulated DPA attacks
in a noise free scenario and assuming that the adversary exactly knows the
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leakage model (i.e. in the same worst-case conditions as in Section 4) show that
this simple strategy succeeds for Ns = 16 and Np = 256 with a probability of
≈ 59%. However, as soon as we either increase Ns or decrease Np, the success
rate drops, as exhibited in Table 1. Additionally, there is no obvious way to
(1) tell immediately if a wrong key byte was picked and (2) efficiently recover
the master key from an incorrect set of key bytes. In the next section, we show
that advanced attacks based on lattice reduction provide a more robust and
systematic way to exploit the side-channel leakage of our PRF implementation.

Table 1. Success rates for the iterative DPA attack

Np = 4 8 16 32 64 128 256

Ns = 2 0.0 30.3 81.4 98.6 99.7 99.7 99.5
4 0.0 0.0 13.0 78.3 96.8 97.3 97.8
8 0.0 0.0 0.0 10.1 69.8 89.2 91.1

16 0.0 0.0 0.0 0.0 3.8 36.7 58.8
32 0.0 0.0 0.0 0.0 0.0 0.2 2.9

5.2 Advanced Attacks Using Lattice Reduction

Let us first recall Equation (1) that describes our noiseless leakages:

lj =

Ns∑
i=1

L(S(pj [i]⊕ k[i])).

Similarly to the previous section, the goal of a lattice-reduction attack is to re-
cover the vector of key bytes k = {k[1], k[2], . . . , k[Ns]} up to a permutation,
from a vector of noiseless leakages L = {l1, l2, . . . , lNp}. To simplify the analysis,
we first assume that all key bytes in the vector k are distinct1. In this context,
we denote byte-wise hypothetical leakage values as lba = L(S(b ⊕ a)), where b
(resp. a) represents an hypothetical plaintext byte (resp. key byte). Next, we

define a Np-dimension vector la = {l1a, l2a, . . . , l
Np
a }. Our problem can now be

restated as finding a subset K of [0, 1, . . . , 255] containing Ns elements such that
L =

∑
a∈K la. This turns the initial problem into a vectorial knapsack prob-

lem. To solve this knapsack problem, we can either try generic algorithms as
in [5,20,37], or a lattice-based approach [24]. It is well-known that the lattice-
based approach is very efficient for some knapsack problems and fails to work
for other parameters. Since our context is quite specific, the parameters we are
concerned with are not covered in standard textbooks. Moreover, our parame-
ters are fixed and an asymptotic analysis does not make sense in this case. As
a consequence, we decided to investigate the practical performance of a lattice
reduction attack. As will be clear next, this lattice reduction approach is sur-
prisingly efficient and the security estimates obtained by analyzing exhaustive

1 With this assumption, an exhaustive search on k can be achieved by trying all choices
of Ns key values among 256. Under this exhaustive search attack, the security for
Ns = 16 is 83 bits, for Ns = 24 it is 111 bits and for Ns = 32 it is 135 bits.
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search (in footnote 2) are overoptimistic. We note that the lattice based approach
also outperforms the results obtained with generic algorithms. Hence, we only
focus on this solution in the rest of the section. Taking the wost-case example of
Np = 256, we can construct the lattice spanned by the columns of the following
matrix: ⎛⎜⎜⎜⎜⎜⎝

κ l0 κ l1 · · · κ l255 κL
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

... 0
0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎠ ,

where κ is a large enough constant to guarantee that any short vector in this
lattice has its 256 first rows equal to 0. There exists a short vector of squared-
norm Ns in the lattice which contains 0 in the first 256 rows and such that the
next 256 rows are the characteristic vector of the set K, i.e. there is a 1 in row
257 + i iff i is in K (all other rows contain zeros). Hence, if we find a short
vector containing exactly Ns 1s, it can be converted into a set of keys which
is compatible with the observed leakages. Note that for large values of Np (e.g.
256), we expect only one solution for K, which is experimentally verified next.

Note finally that if there are collisions in the vector of keys, we can still apply
the same method with a minor change: the expected short vector becomes an
encoding of a multiset. In particular, a key byte which appears twice is encoded
by a 2. As a consequence, the principle of the attack is left unchanged. However,
due to the presence of squares in the computation of the norm, the expected
short vector has a larger norm which lowers the probability of success.

Experimenting the Attack. As in the previous sections, we decided to con-
sider a Hamming weight leakage function in our evaluations. In addition to the
previously described case with Np = 256, we again experimented with truncated
versions of the vector L, i.e. with smaller Np’s. For each pair of parameters Ns,
Np, we performed 100 independent experiments (except for the case Np = 256
where we performed 1000 experiments) and extracted the success rate and aver-
age execution time of the LLL algorithm using the FPLLL library [1] of Cadé,
Pujol and Stehlé on an Intel Core i7-2820QM processor clocked at 2.30GHz.
These results are given in Table 2. Note that a TBD entry means that we have

Table 2. Measured success rates and average timing for the lattice-based attack

Np = 256 254 252 251 250 249 248 247 246 245

Ns = 16 100 100 100 100 100 100 100 100 100 100
1.3s 1.4s 1.4s 1.4s 1.5s 1.5s 3.1s 34.8s 73.0s 131.4s

24 99.9 100 100 100 100 100 100 100 TBD TBD
1.4s 1.4s 1.4s 1.4s 1.5s 1.5s 3.1s 35.5s ≈ 88s ≈ 143s

32 79.6 79 79 83 80 79 76 TBD TBD TBD
1.4s 1.5s 1.5s 1.5s 1.6s 1.6s 3.3s ≈ 33s ≈ 81s ≈ 140s
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only performed a single test in order to determine an approximate running time
but no meaningful probability of success. These results clearly exhibit that the
LLL-based approach outperforms the heuristic iterative DPA in the previous
section. Yet, one can observe that decreasing the number of leakages in large
implementations (e.g. for Ns = 32) leads to significant increases of the execution
times. More detailed results for the Np = 256 case are presented in Table 3, also
reflecting the fraction of key vectors containing collisions in our experiments.

Table 3. Additional data for Np = 256

Ns
Key vectors Successes Key vectors Successes

Overall fraction Timing
w/o collisions w/ collisions

16 610 610 390 390 100% 1.3s
24 328 328 672 671 99.9% 1.4s
32 141 137 859 659 79.6% 1.4s
40 40 23 960 479 50.2% 1.6s

Improving the success rate. In order to improve the probability of success when
Ns grows, we can also combine the lattice reduction approach with a partial
exhaustive search. The idea is to guess the contribution of some fixed vector,
to subtract this guessed contribution from the target vector and to re-run the
attack without the guessed vector and with a smaller short vector.

6 Practical Instantiation Issues

The previous sections of this paper suggest that a leakage-resilient PRF of-
fers interesting security arguments compared to state-of-the-art countermeasures
against side-channel attacks. Motivated by the need to understand the impact
of different parameters in a PRF implementation, our analysis was mostly based
on idealized leakage functions. In this section, we complement this view with a
first discussion of some important practical instantiation issues.

Performance Evaluation.We evaluated the hardware performance of our con-
struction based on AES-128 (LRPRF-128) and Rijndael-192 (LRPRF-192). For
this purpose, we opted for a fully parallel, encryption-only implementation of
the algorithms. In addition to these block ciphers, the PRF designs also contain
a register to store the x value and some control logic to operate the blocks. Using
Synopsis Design Compiler 2010 and the STM 65nm CMOS standard cell library,
this resulted in an area of 9.97 kGE (resp. 14.43 kGE) for LRPRF-128 (resp.
LRPRF-192). An encryption takes 10 (resp. 12) cycles plus 2 cycles to load the
key and the plaintext. Thus, the complete PRF evaluation with a 16 (resp. 24)
byte value for x takes 17× 12 + 2 = 206 (resp. 25× 14 + 2 = 352) cycles, where
the additional two are again for loading the key and the x value. This is in fact
in line with state-of-the-art protected implementations like the one by Moradi et
al. from Eurocrypt 2011 [30]. Their threshold implementation of AES-128 takes
266 cycles at an area of 11.12 kGE. In addition, we mention that given some
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memory overheads, the PRF construction gains particular interest when used
for encryption in counter mode. It enables starting the PRF evaluation from
intermediate results of previous evaluations. For instance, producing a 512-bit
keystream can be done in only (17+ 2+2+2)× 12+2 = 278 cycles (given that
there is no overflow of the least significant byte in the IV).

Investigation of Leakage Models. In order to analyze the practicality of the
requirement that the S-box leakage models must be identical, we performed a
case study on the SASEBO evaluation platform [2] and measured the power
consumption of two circuits. The first one consisted of two block-RAM based
S-boxes and the second one implemented two S-boxes following Canright’s ap-
proach [8]. For both circuits, we acquired one million traces and built templates
from them. That is, for each S-box within a circuit, we characterized 256 Gaus-
sian distributions corresponding to the 256 possible inputs. We then used the
mean values of these distributions as the leakage model for an S-box. The ex-
tracted leakage models can be seen in Figure 4. For block-RAM based S-boxes,
they show a Pearson correlation of 0.996. This means that for carefully designed
implementations, the requirement of identical leakage models can indeed be ful-
filled. By contrast for the Canright implementation, there was a visible layout
difference between the two instances on the FPGA. Therefore, also the models
differed and the correlation of the mean values decreased to 0.686. From this
case study, we can conclude that for some implementations, there are leakage
differences which can be extracted by an adversary with profiling capabilities.
In the next paragraph, we discuss whether these differences can be exploited.

Fig. 4. Leakage models: block-RAM based S-box (left) and Canright S-box (right)

Impact of Algorithmic Noise. In traditional DPA attacks, the algorithmic
noise is considered to be Gaussian and, due to uniformly distributed inputs,
averages out for a sufficient number of inputs. In our case on the other hand, all
inputs are determined by a single byte and a fixed key. Therefore the algorithmic
noise cannot be averaged out and in addition, is fully determined by the unknown
part of the key. Clearly, directly profiling such kind of noise is computationally
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hard (it corresponds to performing a DPA directly on the full master key).
Therefore, and in order to analyze the effect of this key-dependent algorithmic
noise, we performed the following simulated experiment. First, we implemented
Ns = {2, 4, 8} Canright S-boxes on the FPGA (i.e. we considered the most
different leakage models). For each S-box Si with i ∈ [1;Ns], we measured 400
traces for each input, while keeping the inputs to the other S-boxes at zero. This
way we could build precise leakage models Li without acquiring any algorithmic
noise. To simulate real traces where all S-boxes operate in parallel, we then built
the overall leakage function as: L′(p) =

∑Ns

i=1 Li(Si(p[i])) + n, where p is the
Ns-byte input, p[i] is the ith byte of the input, and n an Gaussian distributed
measurement noise estimated from our data set. This leakage description was
then used to simulate our Ns S-box device from which we could sample traces for
arbitrary inputs. From this point, we proceeded as usual. That is, we built Ns

templates (now including algorithmic noise) by sampling 100 million traces from
L′(·). Next, we launched template attacks by sampling 300 times 256 000 traces
(for 300 different keys). The results of these attacks can be seen in Figure 5.

Fig. 5. Impact of algorithmic noise reflected by the success rate and guessing entropy

For the uniformly distributed (UD) plaintexts, all subkeys are recovered cor-
rectly after 3 000 and 13 000 traces respectively, indicated by a guessing entropy
of one and a first-order success rate of one. Both metrics are averaged over the
Ns S-boxes. By contrast, for the carefully chosen (CC) plaintexts, it can be ob-
served that the success rates stagnate at the same time as when they reach one
for the uniformly distributed plaintexts. This is because for some subkeys the
models will fit. Hence, those subkeys can be recovered with good probability. But
for the remaining subkeys it is not possible to carry out a successful recovery. In
the case of a template attack (represented with plain curves in the figure), this
means that the probability of the correct key will diminish at some point, which
is the reason why the guessing entropy increases again after 26 000 traces. In the
case of a correlation attack using the templates’ mean value as model (instead
of the usual Hamming weight model [7]), this effect vanishes, as represented by
the dotted lines. That is, the “hard to recover” subkeys then stagnate at fixed
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ranks in the lists (corresponding to a fixed correlation coefficient value), rather
than decreasing towards a probability zero, due to an incorrect model. Thus, we
can conclude that even if there are actual differences in the leakage models of
the different S-boxes of a PRF implementation, and strong profiling is possible
for the adversary, the key-dependent algorithmic noise prevents the building of
a sound leakage model. For example, already for 8 parallel S-boxes, each subkey
remains with a guessing entropy of ≈ 35 in our case study. It would further
increase with more parallel S-boxes (the previously described PRF implementa-
tions would have at least 16 and 24 ones, respectively). Hence, the only way to
perform successful key recoveries in these cases would be to build templates for
the full key, which is unrealistic for computational reasons.

Preventing DPA Attacks against MixColumns. The central result of our
security analyses is that performing a side-channel attack against our parallel
PRF implementation should at least require to enumerate a permutation over
Ns S-boxes. However, this implicitly assumes that the only path for perform-
ing a DPA is this operation, which neglects the possibility to mount attacks
against MixColumns. In general, such attacks are more computationally inten-
sive, as they require guessing 232 key candidates. Yet, this remains achievable
with modern computers. Given that such attacks succeed, it would only remain
to enumerate a permutation of the MixColumns operations (i.e. 4! × 4 for the
AES-128, where the factor 4 relates to the fact that the adversary would recover
the 32-bit subkeys up to a byte-wise rotation). However, this attack may not al-
ways be applicable in practice, and can be made more computationally intensive,
as we now discuss. First note that in a hardware implementation, the adversary
may have to target the Hamming distance between the state register values be-
fore and after the first round. But one byte of this value depends on five key bytes
and four bytes of this value depend on eight key bytes, which is harder to guess.
In addition, there is a simple and general trick to increase the amount of bytes to
guess after the MixColumns transform. Namely, one just has to switch the order
of MixColumns and AddRoundKey. This requires that the key schedule applies
the inverse MixColumns operation to the round keys before outputting them.
Since the only non-linear operation in the key schedule is SubWord, the key
schedule can operate on accordingly recoded round keys and, instead of apply-
ing SubWord, apply the sequence MixColumns, SubWord, InvMixColumns. The
costs of this accounts for one InvMixColumns and one MixColumns unit. Finally,
any attack against larger subkeys would still have a bounded data complexity
of 256 with key-dependent algorithmic noise. Summarizing, the protection of
MixColumns against DPA can be enhanced by different architectural means.
Besides, and quite interestingly, this discussion highlights that the AES is not
the best suited algorithm for integration in our leakage-resilient PRF. Hence,
it suggests the design of block ciphers with more convenient diffusion layers for
this purpose as another interesting scope for further research.

Security against Fault Attacks. Finally, there is an additional advantage
to our construction. Usually, the resources for side-channel attacks and fault
protections cannot be shared. For leakage-resilient PRFs, on the other hand,
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we can provide a first-order fault protection based on temporal redundancy, by
just repeating the last step of the construction. Taking the LRPRF-128 as an
example, we would perform 18 instead of 17 encryptions. This accounts for an
overhead of only 5.8%, rather than the usual 100% for block ciphers.

7 Conclusions and Consequences for Block Cipher Design

This paper describes tweaks to improve both the practical security and the effi-
ciency of leakage-resilient PRFs. They allow quantifying physical security with
a parameter that has super-exponential impact on the time complexity of a
successful attack. They also open the paths towards real world applications,
as their performance overheads are in line with other countermeasures against
side-channel attacks. In particular, the only known countermeasure with an ex-
ponential security parameter is masking. But increasing the number of masks in
a block cipher implementation is generally (much) more expensive than increas-
ing its parallelism. Next, our results suggest interesting challenges for the design
of new block ciphers, as the AES Rijndael appears not to be an ideal candidate
for integration in leakage-resilient constructions. Possible tracks for investigation
include modifying the number and size of S-boxes (that directly affect the se-
curity vs. efficiency tradeoff of the PRF), reducing the number of rounds in the
inner steps of the construction, and improving diffusion layers in order to avoid
the possible attacks after the diffusion layer described in Section 6.
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A Security against Standard DPA Attacks

The result of a standard (template-based) DPA attack against our scheme is a
single vector, in which all possible subkeys are ranked according to their proba-
bility. From this, a full key consisting ofNs bytes has to be reconstructed. Ideally,
the set of the Ns correct subkeys would be ranked first and all other subkeys
would have a low probability. However, looking at the distribution of the sub-
keys within such a vector after a noise-free attack shows that this is not the case
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Fig. 6. Distribution of the correct key bytes within a probability vector

Fig. 7. Estimated and extrapolated guessing entropy of the full key

(mainly because of the algorithmic noise). Figure 7 illustrates where the correct
subkeys can be found within the vector on average. Whereas the best-ranked
correct key byte can be almost with certainty found at position one, some of the
correct subkeys are ranked much lower. Starting from such a vector, the optimal
adversarial strategy is to enumerate full keys according to their probability,
where all up-to-permutation-identical keys have the same probability. Following
this strategy, we estimated and extrapolated the guessing entropy. This was done
by generating a probability vector for Ns values between one and seven with a
constant noise variance which would correspond to an algorithmic noise of 16
or 32 parallel S-boxes. From each vector we sampled 230 random full keys and
checked the position of the correct full key within this set. Afterwards, we scaled
this position to 256Ns and added the complexity for the permutation. Finally,
since we could observe a power-law for the guessing entropy, we extrapolated
these values up to 16 and 32 S-boxes using the slope in log-scale. The very fact
that the end points of these extrapolations suggest a security of 284 and 2185

show that standard DPA cannot be the optimal strategy.
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B Averaging Effort to Obtain Noiseless Traces

As the security evaluations in Section 5 both consider noiseless traces, an in-
teresting question is to determine the averaging effort that would be needed to
obtain such high quality information from an actual implementation. For this
purpose, we measured a fully parallel AES-128 FPGA implementation on the
SASEBO evaluation platform [2]. We considered traces close to noise-free if we
can correctly identify the 128-bit Hamming distance value for 256 measurements,
with a probability of 0.90. Thus, each of the 256 measurements must be classi-
fied correctly with a probability of (0.9)1/256 = 0.9996. This in turn corresponds
to a confidence interval of 3.54 σ, assuming a normal distribution of the noise.
Thus, to allow error-free decoding, we need the mean values for the Hamming
weights to be twice that value apart, meaning 7.08 σ. Given the distance between
the mean values Δμ and the standard deviation of our measurements, we can
calculate the number of traces to average as:

n =

(
7.08 σ

Δμ

)2

.

As we get only sample means from our measurements, we calculated n for the
average and the minimum value of Δμ. The latter one is also motivated by the
fact that, if due to the power model the Δμ values are not equidistant, then the
smallest distance determines n. For the average Δμ we found n = 6.9 ∗ 103 and
for the minimum value we found n = 8.8 ∗ 106. To get a close to noise-free mean
trace for every plaintext, we additionally need to multiply this number by 256,
thus we need to acquire a total number of 1.78 ∗ 106 and 2.27 ∗ 109 traces for the
minimum and average Δμ, respectively. The actual number of traces to acquire
most likely lies somewhere between these two extreme values. Hence, it suggests
that the averaging effort can be expected to be non-negligible.

C Additional Figure

Fig. 8. Experimental attacks against the AES with bounded data complexity
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large body of theoretical work attempts to incorporate these side-channel attacks
into the security model and to design new cryptographic schemes that provably
protect against them. Despite important progress in this area, only very few
works in the theory community consider how to protect symmetric primitives
against leakage attacks. That is somewhat surprising as symmetric primitives
such as pseudorandom number generators and block ciphers are the “working
horses” of cryptography and are by far the most frequent target of side-channel
attacks. Moreover, as frequently pointed out [22,23], many of the recent theoret-
ical constructions are rather involved and use techniques which only seem to be
required to enable the security proof, and do not necessarily contribute to the
real-world security of the system. In this work, we show that simpler and more
natural constructions of important symmetric primitives such as pseudorandom
functions (PRFs) and pseudorandom permutations (PRPs) are provable leakage
resilience if we aim for weaker security notions.

1.1 Modeling Leakage Resilience and Weaker Security Notions

As most previous works on leakage-resilient symmetric primitives [4,20,1,23], we
follow Dziembowski and Pietrzak [4] who structure the computation into time
steps and require that the leakage given to the adversary is some bounded amount
of arbitrary polynomial-time computable information about the data/state that
is used during this step. The latter restriction that the leakage function is only ap-
plied to the state touched in an invocation was suggested by [19] under the term
“only computation leaks information”. As the number of invocations of a scheme
is usually unbounded, also the amount of leakage can become arbitrarily large.

On Granular Leakage Resilience (gLR). Typically, a time step is one in-
vocation of the scheme that leaks independently from the computation in the
previous and next time step. This could for example be the computation of a
signature [5], or the generation of a block of pseudorandom bits for stream-
ciphers [4,20]. In this work, we will follow [1,22] and consider a more fine grained
notion where the construction of some leakage resilient (LR) scheme CS re-
quires several invocations of an underlying cryptographic primitive P,1 and we
require that each invocation of P leaks independently. We call this notion granu-
lar leakage-resilience, or gLR for short. We notice that in the literature on leakage
resilience even more fine grained models have been considered [9,3]

As side-channel leakage is often a global phenomenon (e.g., in power analysis
attacks the adversary measures the global power consumption of the device),
the question arises whether such a locality restriction still suffices to model rel-
evant leakages in practice. For certain important leakage classes, we can answer
this question affirmatively. For instance, the prominent Hamming weight leakage
function can be computed independently from the Hamming weight of the local
states. A similar observation works for any affine leakage function.

1 Concretely, we will consider the cases where CS is a LR-PRF and P a wPRF, and
the case where CS is a LR-PRP and P a LR-PRF.
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Formally, we model granularity as follows. Let τi be the state that is used
by the computation (keys, inputs, randomness) in time step i. Before each such
step, the adversary can adaptively choose a leakage function fi, and after this
step has been processed, she learns fi(τi).

On Non-adaptive Leakage Resilience (naLR). Besides granularity, another
natural relaxation of leakage resilience, which has been considered in e.g. [23,1,22],
is to require that the adversary has to fix the leakage functions in advance be-
fore seeing any leakage or outputs. This notion is called non-adaptive leakage
resilience, or naLR for short. In the leakage setting, a fully adaptive choice of
the leakage function may be an overly powerful model to capture side-channel
attacks, as in practice the leakage function is often fixed in advance by the de-
vice and the measurement equipment (for more discussion on this cf. [23,1,22]).
Also, as discussed in [23], for stateless cryptographic schemes that do not allow
to evolve the secret state, such as PRFs or PRPs, one simply cannot achieve se-
curity against adaptively chosen leakage functions: the adversary can just learn
the state bit-by-bit by picking for each observation a different leakage function.2

1.2 Our Contributions

In this work, we study various new and existing constructions of leakage-resilient
pseudorandom objects. In a nutshell our results can be summarized as follows:

1. We revisit the work of Yu et al. [23] and show that the proof of the pro-
posed (more natural) construction of a non-adaptive leakage-resilient (naLR)
stream cipher has a subtle flaw. We propose a simple solution to this problem
which unfortunately is impractical.

2. Inspired by the work of Dodis and Pietrzak [1], we show how to construct a
nagLR non-adaptive PRF which is simpler and more natural and avoids the
alternating structure used in [1].

3. We prove that a Feistel network with only 3 rounds, each instantiated with
a non-adaptive leakage-resilient non-adaptive PRF, yields a non-adaptive
leakage-resilient non-adaptive PRP. This completes a result of [1] who showed
that a leakage-resilient PRP requires a superlogarithmic number of rounds
instantiated with a leakage-resilient PRF.

We elaborate on these results further below.

Section 2: Yu et al. [23] Revisited. The first leakage resilient symmet-
ric primitive was the stream-cipher construction proposed by Dziembowski and
Pietrzak in [4]. This construction has later been simplified in [20] using a weak
PRF and is illustrated in Figure 1.

2 In this paper we not only differentiate between adaptive/non-adaptive leakage, but
also adaptive/non-adaptive PRFs. In the latter non-adaptive means the adversary
fixes all inputs in advance. We use the convention that non-adaptive leakage-resilient
PRF means the leakage functions are chosen non-adaptively, whereas leakage-
resilient non-adaptive PRF means the inputs to the PRF are chosen non-adaptively.
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K0 F F F

X0 K1 F F

X1 X2 X3 X4

K2

K3

K4

Fig. 1. Construction SCALT of a leakage resilient stream-cipher from any (weak) PRF
F [20]. The initial secret key is X0,K0,K1, the output is X0, X1, . . ..

The constructions from [4,20] use an alternating structure (cf. Figure 1) and
requires the secret state to hold two secret keysKi,Ki+1 for the underlying weak
PRF F (a weak PRF is only guaranteed to be random on random inputs). The
alternating structure enforces independence between inputs Xi and keys Ki, but
seems mostly motivated by the security proof rather than contributing much to
the scheme’s real-world security.

Yu et al. [23] advocate that already much simpler constructions will be secure
against most practically relevant side-channel attacks. They propose a more
natural construction SCSEQ from any wPRF F as illustrated in Figure 2. The
secret state of this scheme consists of only a single secret key Ki for F, and two
fixed public random values p0, p1 which are used alternately as inputs to F. This
scheme is not leakage resilience if the leakage functions can be chosen adaptively,
which is easily seen by the so-called “precomputation” attack: as we know p0, p1,
in the ith round we can choose a leakage function fi which (using its input Ki−1)
computes a future key Kt (for some t > i) and leaks some bits about it. As we
can do this for any i < t, we can (for a sufficiently large t) learn the entire Kt.

It is claimed in [23] that the construction from Figure 2 is a naLR stream ci-
pher. Note that the precomputation attack becomes infeasible if one must choose
the leakage functions fi before seeing p0, p1, as now fi(Ki−1, pi−1 mod 2) cannot
compute the future key Ki+1 = F(Ki, pi mod 2). Unfortunately, as we discuss in
Section 2, the main technical lemma used in their proof has a subtle flaw, and
thus the security proof is incorrect. Currently, we do not know if the construc-
tion is actually insecure, or if the proof can be salvaged. Our counterexample
showing that their main lemma is flawed does not lead to an actual attack on
the naLR security of the cipher.

The proof in [23] uses a lemma from [20] which states that the output F(K,X)
of a weak PRF F is pseudorandom, even if K,X only have high pseudoentropy
and are independent. The flaw in their proof roots from the fact that the input
p0 is reused every second round (cf. Figure 2), and thus already in the 3rd round,
where one computes K3 ← F(K2, p0), the key K2 is not independent from p0,
which means one cannot apply the lemma from [20] directly.

This dependence problem disappears if one uses fresh public random inputs
p0, p1, p2, . . . for every round instead of alternating the two values p0 and p1, we
will denote this construction by SC+

SEQ. Of course SC+
SEQ is pretty much useless

in practice as its description size (i.e. the public inputs p0, p1, . . .) is linear in the
length of the output it can generate. Nonetheless, the observation that SC+

SEQ is
naLRwill be useful for constructing nagLR non-adaptive PRFs as discussed below.
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Section 3: Leakage-Resilient PRFs. Dodis and Pietrzak [1] construct a
nagLR PRF. Their basic idea is to use the leakage resilient stream-cipher from [20]
in a tree-like construction (inspired by the classical GGM construction.). Their
construction is rather involved, as the alternating structure of the stream-cipher
must be preserved within the tree like structure of the GGM transformation.3

We propose a much simpler construction illustrated in Figure 3, which we get
by using the naLR stream cipher SC+

SEQ (discussed in the previous section) within
a GGM-like tree-structure. One may expect that starting with naLR stream-
cipher like SC+

SEQ and use it within GGM, we obtain a naLR PRF. Surprisingly,
we show that this intuition is wrong. In fact, our construction in Figure 3 can
be completely broken even using only non-adaptive leakage.

Our attack exploits the fact that, even though the leakage-functions cannot
be adaptively chosen, the inputs to the PRF can be chosen adaptively. In par-
ticular, the choice of the inputs can depend on the public values pi. Intuitively,
this allows us to commit to exponentially many leakage functions (one for each
input to the PRF) at the beginning, and only later, when we learn the pi’s
we can choose which leakage function to choose by choosing the appropriate
input to the PRF adaptively.4 On the positive side, we show that our construc-
tion Γ F,m is a nagLR non-adaptive PRF, that is, it is secure if not only the
leakage-function, but also the inputs to Γ F,m are chosen non-adaptively. This,
of course, is a strong assumption, but for some important applications, like the
initialization of a stream cipher [22], such a non-adaptive PRF is sufficient (in
fact, here even a weak PRF is sufficient). Also, we would like to mention that
in practice many side-channel attacks, such as DPA attacks, work by measuring
the power consumption of the device on random inputs. Our security analysis
incorporates such important attacks where the adversary exploits leakages from
random inputs to the cryptographic scheme. We emphasize that, of course, our
construction is an adaptively secure PRF in the black-box sense.

Section 4: Leakage-Resilient PRPs. A classical result by Luby and Rack-
off [16] shows that a three-round Feistel (cf. Figure 4) network, where each round
is instantiated with a secure PRF, is a secure PRP. Dodis and Pietrzak [1] show
that three-round Feistel networks cannot be leakage resilient. More precisely,
they show that every Feistel network with a constant number of rounds (using
any perfectly leakage resilient round functions, e.g. a random oracle) can be
broken using only very simple leakage (e.g., the Hamming-weight of the inputs
to the round functions). On the positive side, they show that a Feistel net-
work with a super-logarithmic number of rounds instantiated with L-LR PRFs
is a L-gLR PRP for any class L of leakage functions. Here, L is some class of

3 Whereas the GGM construction is just a simple tree, the construction of [1] is a
graph with tree-width 3.

4 Let us mention that for the attack we require that the leakage functions are aware
(i.e. get as input) which node in the tree they are leaking from. Modeling granular
leakage like this makes our positive results stronger, but the attacks more artificial.
We don’t know if our construction can be broken with non-adaptive leakage where
the leakage-function is oblivious about the node it is leaking from.
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admissible leakage functions, which in our case will usually be all polynomial-
time computable functions with range {0, 1}λ for some λ ∈ N.

The aforementioned attack requires that one can query the PRF adaptively.
We show that this is inherent by proving that a 3-round Feistel instantiated with
L-LR PRFs yields a L-gLR non-adaptive PRP. This again illustrates the power
of non-adaptivity in the leakage setting.

1.3 More Related Work

We notice that an alternative way to construct symmetric leakage resilient prim-
itives is by using techniques from leakage resilient circuit compilers. Leakage-
resilient circuit compilers allow to transform any circuit, e.g., an implementation
of the AES, into a transformed circuit that is protected against certain classes of
leakage attacks. This line of research was initiated by Ishai et al. [14] who show
security against probing attacks. This result was recently generalized to a set-
ting where leakages can be described by an AC0 circuit [6]. The works that are
most relevant to ours are recent leakage-resilient circuit compilers in the “only
computation leaks” setting [15,9,3,10]. While on the positive side such compilers
allow to provably protect any cryptographic scheme against certain classes of
leakage, they typically make strong granularity assumptions and are inefficient.5

An approach exploiting parallelism to achieve practically efficient leakage-
resilient block-ciphers was put forward by Medwed, Standaert and Joux in these
proceedings [18].

1.4 Notation and Basic Definitions

In this section, we present some basic notation and definitions that will be used
throughout this paper.

Strings & Sets. Concatenation of two strings x, y is denoted x‖y, or, if no con-
fusion is possible, simply xy. For X ∈ {0, 1}n we denote with X [i] the ith bit of
X and with X|i the i bit prefix of X . [a, b] denotes the interval {a, a+ 1, . . . , b},
[b] is short for [1, b]. For a set X , X ∈R X denotes that X is assigned a value
sampled uniformly at random from X . For a distribution D, we denote X ← D
the random variableX sampled from the distributionD. To abbreviate notation,
we often identify random variables with their distribution.

Functions. Rm,n denotes the set of all functions {0, 1}m → {0, 1}n, Pn the set
of all permutation over {0, 1}n.

Distance. With δD(X ;Y ) we denote the advantage of a circuitD in distinguishing

the random variables X,Y , i.e.: δD(X ;Y )
def
= |Pr[D(X) = 1] − Pr[D(Y ) = 1]|.

Δ(X ;Y )
def
= maxD δD(X ;Y ) denotes the statistical distance of X and Y . With

δs(X ;Y ) we denote maxDδ
D(X ;Y ) where the maximum is over all circuits D of

size s.
5 Circuits that make use of techniques from [15,9,3,10] grow by a factor of n2 compared
to an unprotected circuit, where n as a statistical security parameter.
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Entropies. We recall some basic definitions for different types of entropy.

Definition 1. A random variable Z has min-entropy k, denoted H∞(Z) = k,
if for all z in the range of Z we have Pr[Z = z] ≤ 2−k.

A “computational” version of min-entropy called HILL-pseudoentropy was in-
troduced in [12].

Definition 2. We say X has HILL pseudoentropy k, denoted byHHILL
ε,s (X) ≥ k,

if there exists a distribution Y with min-entropy H∞(Y ) = k where δs(X ;Y ) ≤ ε.

Dodis et al. [2], and Hsiao et al. [13] extended the above notions to analyze what
happens to the min-entropy (resp. HILL-pseudoentropy) of a random variable
X given a possibly correlated random variable Z.

Definition 3. Let (X,Z) be a pair of random variables. The average min-
entropy of X conditioned on Z is defined as

H̃∞(X |Z) = − log
∑
z∈Z

Pr[Z = z]2−H∞(X|Z=y)

A computational version was given in [13] and is formally defined as follows:

Definition 4. Let (X,Z) be a pair of random variables. X has conditional HILL

pseudoentropy at least k conditioned on Z, denoted H̃HILL
ε,s (X |Z) ≥ k if there

exists a collection of distributions Yz for each z ∈ Z, giving rise to a joint
distribution (Y, Z), such that H̃∞(Y |Z) ≥ k and δs((X,Z); (Y, Z)) ≤ ε.

Pseudorandomness. Pseudorandomness is a fundamental and extremely useful
cryptographic concept. Informally, an object (such as a bit-string, function or
permutation) is pseudorandom if (1) it can be efficiently implemented using a
small amount of randomness and (2) it cannot be distinguished from the corre-
sponding uniformly random object by any efficient algorithm. A basic building
block to generate pseudorandomness that will be used a basic building block in
our constructions is a weak pseudorandom function (weak PRF). In contrast to
standard PRFs, the notion of a weak PRF is weaker, as its output only has to be
pseudorandom for random inputs. We recall the definition of (weak) PRFs/PRPs
below.

Definition 5. A function F : {0, 1}k × {0, 1}m → {0, 1}n is an (ε, s, q)-
pseudorandom function (PRF) if no adversary A of size s can distinguish F(K, ·)
(instantiated with a random key K) from a random function R ← Rm,n. More
precisely, for any A of size s that can make up to q queries to its oracle, we have

|Pr[K ← {0, 1}k : AF(K,·) → 1]− Pr[R ← Rm,n : AR(·) → 1]| ≤ ε. (1)

A non-adaptive PRF is defined similarly, except that we only consider non-
adaptive adversaries who must choose the queries X1, . . . , Xq before seeing any
outputs. A weak PRF is defined similarly, except that the inputs X1, . . . , Xq are
chosen uniformly at random and not chosen by A.

A (non-adaptive/weak) pseudorandom permutation (PRP) is defined analo-
gously, except that we require F(K, .) to be a permutation for every K.
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2 Stream Ciphers

2.1 Yu et al. [23] Revisited

A stream cipher is a function SC : {0, 1}k → {0, 1}k ×{0, 1}n that, for every key
K0, defines a sequence X1, X2, . . . of outputs which are recursively defined as

(Ki+1, Xi+1) = SC(Ki)

The security notion for stream ciphers requires that for a random initial secret
key K0 ∈R {0, 1}k, the outputs X1, X2, . . . , X� are pseudorandom.

A stream cipher is leakage-resilient [4] if, for any �, the outputs X�, X�+1, . . .
are pseudorandom given X0, X1, . . . , X�−1 and a bounded amount of adaptively
chosen leakage Λ0, Λ1, . . . , Λ�−1. This leakage is computed as follows: for any
i = 0, 1, . . . , � − 2, before (Ki+1, Xi+1) ← SC(Ki) is computed, an adversary
chooses a leakage function fi with range {0, 1}λ (the parameter λ ∈ N bounds
the amount of leakage we allow per round), and then gets Λi = fi(K

′
i) where

K ′
i ⊆ Ki is the part of the secret state which is accessed during the evaluation

of SC(Ki).
Yu, Standaert, Pereira and Yung [23] propose a construction, SCSEQ, illus-

trated in Figure 2. As outlined in the introduction this construction is vulnerable
to the precomputation attack if the leakage functions can be chosen adaptively
depending on the public values. In [23] it is claimed that it satisfies a relaxed
notion of leakage-resilience where the leakage functions f1, f2, . . . are chosen non-
adaptively.

The construction is initialized with a secret key K0 ∈R {0, 1}k for a wPRF
F : {0, 1}k × {0, 1}n → {0, 1}m and two public random values p0, p1 ∈R {0, 1}n
(although these values are public, it will be crucial that the adversary chooses the
leakage functions before seeing these values.) The output is recursively computed
as

(Ki+1, Xi+1) ← F(Ki, pi mod 2)

The proofs in [20,23] use a lemma which states that the output of a weak PRF
on a random input is pseudorandom even if the key is not uniform, but only has
high min-entropy.

F F FK0

K1 K2
K3

p0 p1 p0

X1 X2 X3

(K1)|1 (K1 ⊕K2)|1

Fig. 2. The stream cipher construction SCSEQ from a weak PRF F from [23]. K0 is the
secret initial key, p0, p1 are public random values and X1, X2, . . . is the output. The
leakage leading to our counterexample to Lemma 3 from [23] is shown in gray.
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Proposition 1 (wPRF with non-uniform keys, Lemma 2 from [20]).
Let F : {0, 1}k × {0, 1}n → {0, 1}m be a (ε, s, q) secure weak PRF, X ∈R {0, 1}n
be uniform and K ∈ {0, 1}k be any random variable which is independent of X
and has min-entropy H∞(K) ≥ k − λ for some λ ∈ N, then

(X,F(K,X)) is pseudorandom. (2)

Quantitatively, (X,F(K,X)) cannot be distinguished by adversaries of size ≈
sε2 with advantage ≈ ε2λ, so we have a loss of 6 ε2 in circuit size and 2λ in
distinguishing advantage. The reduction makes O(λ/ε2) queries, so q has to be
at least that large.

The other main ingredient of the proof is a theorem from [4],7 which states that
a pseudorandom value Z ∈ {0, 1}k has whp. HILL pseudoentropy almost k − λ
given any λ bits of auxiliary information A about Z. In our case, Z will be
(X,F(K,X)) as in eq.(2) and A will be leakage f(X,X) ∈ {0, 1}λ. Concretely,
we get

Proposition 2. For F, X,K as in Proposition 1 and f any leakage function
with range {0, 1}λ

Pr[HHILL
ε′,s′ (X,F(K,X) | f(K,X)) ≥ n+m− 2λ] ≥ 1 − 2−λ (3)

where s′ ≈ sε424λ and ε′ = ε22λ, so setting, say λ = log(ε−1/4),8 we get s′ ≈
sε5, ε′ =

√
ε.9

Before we turn to the problem with the security proof in [23], let us consider
a slightly different construction which we will call SC+

SEQ. This construction
is defined like SCSEQ, except that we use a fresh random input pi (for i =
0, . . . , L − 1) in every round, i.e. (Ki+1, Xi+1) ← SC(Ki, pi). Of course this is
not a practical construction as we can output at most L blocks (where L denotes
the number of the public pi values.) But it illustrates the proof idea, and we will
use this construction as a starting point to construct leakage-resilient PRFs in
the next section.

Theorem 1. The construction SC+
SEQ is a naLR stream cipher. The amount λ

of leakage tolerated per round depends on F as explained in Footnote 8.

6 Let us note that there is a typo in the conference version of [20] (the t2 in eq.(3)
shoud be t), suggesting that the loss in circuit size is only ε, not ε2.

7 A more general “dense model theorem” was independently given in [21], cf. [7] for a
good overview.

8 I.e. the leakage bound λ = log(ε−1)/4 is a function of the distinguishing advantage
of the best distinguisher for the weak PRF F: If F is secure against polynomial-size
distinguishers (i.e. ε = ω(log k)), λ is superlogarithmic in the security parameter k.
If F is exponentially hard, λ can be linear in k.

9 Due to the very loose reductions in [20,7], these bounds will not imply any practical
security guarantees if instantiated with a standard block cipher where k is typically
something like 128 or 256. To get practical bounds, one would have to make idealized
assumptions like assuming F is a random orcale [23].
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Proof. By the definition of a leakage-resilient stream cipher, we have to consider
the following random experiment: an adversary A chooses some L′ ∈ [L] and
leakage functions f1, . . . , fL′ : {0, 1}k×{0, 1}n → {0, 1}λ. Then we sampleK0 ∈R

{0, 1}k, p0, . . . , pL−1 ∈R {0, 1}n and flip a coin b ← {0, 1}.
The adversary gets the public values p0, . . . , pL−1, the outputs X1, . . . , XL′

and leakage Λ1, . . . , ΛL′ , where Λi = fi(Ki−1, pi−1).
If b = 0 the adversary gets a random Z ∈R {0, 1}(L−L′)m′ , if b = 1 she gets

the remaining outputs XL′+1, . . . , XL. We must prove, that she cannot guess b
with probability much better than 1/2.

We will prove that KL′ is indistinguishable from a K̃L′ which has k − λ bits
of average min-entropy given the view viewL′ of the adversary after L′ rounds,
where viewi denotes the view of the adversary after the ith round, i.e.10

viewi = {p0, . . . , pi−1, X1, . . . , Xi, Λ1, . . . , Λi}

This will prove the theorem, as by eq.(3) and the fact that the pL′+1, . . . , pL
are all chosen uniformly at random the remaining outputs XL′+1, . . . , XL will
be pseudorandom. To see that KL′ has high conditional pseudoentropy given
viewL′ we proceed in rounds, showing that for any j ≤ L′, if Kj−1 has high
conditional pseudoentropy given viewj−1, then Kj has high pseudoentropy given
viewj . For j = 1 this follows directly from eq.(3) as (K1, X1) ← F(K0, p0), where
K0 and p0 are uniform.

After the first round whp. K1 has conditional pseudoentropy k − 2λ given
view1. Thus, there exists a K̃1 with average min-entropy H̃∞(K̃1|view1) = k−2λ
that is indistinguishable from K1 (given view1). Because of this, in the above
experiment we can replace K1 with K̃1 and the probability that A will finally
guess b correctly can only change by a negligible amount (otherwise A would
constitute a distinguisher for K1 and K̃1.) We proceed as above for L′ rounds
(replacing Ki with K̃i for all i = 1, . . . , L′) concluding that KL′ is indistinguish-

able from a K̃L′ where H̃∞(K̃L′ |viewL′) = k − 2λ. As the pi are independent of
Ki, we get by Proposition 1 the claimed statement. ��

Let us go back to the construction SCSEQ from [23], where we alternate between
two inputs p0, p1 instead of using a fresh pi for every round. Towards proving
that this construction is a naLR stream-cipher, we can proceed as in the proof of
Theorem 1 for the first two rounds arguing that K1 and K2 are indistinguishable
from K̃1, K̃2 satisfying H∞(K̃i|viewi) = k − 2λ, but the 3rd step becomes more
difficult.

The reason is that (in our adapted experiment, where Ki got replaced with
K̃i for i = 1, 2) we compute K3 ← F(K̃2, p0); but p0 is clearly not random (and
independent) given the view of A, as p0 was already used in the first round.
Thus we cannot just apply Proposition 1 eq. (2) to conclude that the next key
K3 to be computed has high conditional pseudoentropy.

10 Note that we only include p0, . . . , pi−1 into viewi, but in the actual security experi-
ment the adversary gets to see all the p0, . . . , pL right away. We can do so as we only
consider non-adaptive adversaries and the pi’s are chosen uniformly at random.
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The authors of [23] are well aware of this problem. In order to “enforce”
independence between K̃2 and p0, they put forward a lemma which claims these
values become independent when given the leakage from the previous round (for
clarity, we only state their lemma for the case of K3)

Lemma 1 (Lemma 3 [23]). K̃2 and {p0, p1, X1, X2, Λ1} are independent given
{p1, Λ2}.

Although this approach looks promising, unfortunately, it turns out that this
lemma is wrong (already for λ = 1) as can be seen by a simple counterexample
illustrated in Figure 2: choose leakage functions f1, f2 that output the first bits
Λ1 = K1[1] and Λ2 = K1[1]⊕ K2[1] of K1 and K1 ⊕ K2 respectively.

First, we observe that in our adapted experiment where we replace the Ki’s
(having only conditional pseudoentropy) with K̃i’s (having min-entropy), Λ1, Λ2

will be the first bits of K̃1 and K̃1 ⊕ K̃2. To see this, just note that, e.g., K1 and
K̃1 are indistinguishable given Λ1 = K1[1], this can only be the case if K1 and
K̃1 agree on the first bit. To see why the lemma is flawed, we first observe that
if {p1, Λ2 = K̃1[1] ⊕ K̃2[1]} is known, then given Λ1 = K̃1[1] we can compute
K̃2[1] = K̃1[1] ⊕ K̃1[1] ⊕ K̃2[1]. Now, the lemma claims K̃2 is independent of
{p0, p1, X1, X2, K̃1[1]} given {p1, K̃1[1]⊕K̃2[1]}, which by our observation means
that K̃2[1] is already determined (i.e., has no entropy) given {p1, K̃1[1]⊕ K̃2[1]},
but this is not true as shown by the claim below.

Claim. If K̃2[1] has no entropy given {p1, K̃1[1]⊕ K̃2[1]} then F is not a wPRF.

Proof. We will show that if F is a secure weak PRF, then {p1, K̃1[1], K̃2[1]} is
close to being uniform (which implies the claim.) The value p1 is uniform by
definition. To see that {p1, K̃1[1]} is uniform recall that K1[1] = K̃1[1], and
K1 = F(K0, p0). Clearly, every individual bit of K1 (in particular K1[1]) must
be close to uniform as otherwise we could distinguish K1 from uniform (and thus
break the security of F) by just outputting this bit. Similarly, K2 = F(K̃1, p1)
is pseudorandom given {p1, K̃1[1]}, and thus K̃2[1] = K2[1] is close to uniform
given {p1, K̃1[1]}.

3 Leakage-Resilient PRFs

In [1] Dodis and Pietrzak construct a nagLR PRF from any wPRF F. Informally,
a PRF is leakage resilient if its outputs on all “fresh” inputs are pseudorandom,
even if the adversary can query the PRF, and besides the outputs also gets the
leakage from these computations.11 In this section we propose a much simpler
construction than the one from [1], which is a nagLR non-adaptive PRF, that is,

11 Let us remark that this is not the only meaningful notion of leakage-resilience for
PRF. Instead of requiring that only fresh outputs look pseudorandom, we could
ask for a simulator that can efficiently fake leakage. A notion along this lines in a
somewhat different context and for nog-continious leakage (called “seed incompress-
ibility”) has been considered in [11].
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Fig. 3. Illustration of Γ F,m for m = 2. p0, p1 and p2 are the random public values
and Kε = K is the initial random key of the PRF. The output of the PRF for each
X ∈ {0, 1}2 is represented by ZX , i.e., the leaves of the tree.

it remains secure if not only the leakage function, but also the inputs are chosen
non-adaptively.

We define a naLR PRF by considering an adversary A who has access to two
oracles: the challenge and the leakage oracle. The first is as in Definition 5, i.e.,
either it is the pseudorandom function F(K, ·), or a random function R ← R.
The latter oracle Ff (K, ·) can be queried on some input X ∈ {0, 1}m and returns
F(K,X) together with the leakage f(K,X), where f is the leakage function non-
adaptively chosen at the beginning of the experiment.12 Of course, the queries
to the two oracles must be disjoint.

Definition 6. [L-naLR (non-adaptive) PRF] A function F : {0, 1}k×{0, 1}m →
{0, 1}n is a (ε, s, q)-secure L-naLR PRF if for any A of size s that can make up
to q disjoint queries to its two oracles, and for any leakage function f ∈ L, we
have∣∣∣∣ Pr

K←{0,1}k
[AF(K,·),Ff (K,·) = 1]− Pr

R←Rm,n K←{0,1}k
[AR(·),Ff (K,·) = 1]

∣∣∣∣ ≤ ε.

We will mostly omit the parameters ε, s and q and say that F is a L-naLR PRF
if ε is some negligible function in k and s, q are superpolynomial in k.

A L-naLR non-adaptive PRF is defined equivalently, except that A must choose
the q PRF input queries non-adaptively.

12 Note that we allow the adversary to only choose one leakage function. On could also
consider a stronger non-adaptive notion where the adversary can initially choose a
different leakage function for every query to be made.
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Recall that naLR security denotes L-naLR security where L is the class of all
efficiently computable functions with range {0, 1}λ for some λ ∈ N. In this
section, we will only consider this special case, but we gave the general definition
as it will be used in the next section. As outlined in the introduction, stateless (cf.
Footnote 8) na-LR naPRFs don’t exist, and thus following [22,1], we consider
a “granular” nagLR-security notion, informally discussed in Section 1.1. Our
construction Γ F,m, illustrated in Figure 3, is inspired by the classical GGM
construction of a PRF from a PRG [8]. On input X ∈ {0, 1}m computes its
output ZX by invoking a wPRF F m + 1 times sequentially. The inputs to the
m+ 1 invocations are fixed random public values p0, . . . , pm. The ith bit of the
input X [i] determines which half of the output of F in the ith invocation is used
as a key for the (i+ 1)th invocation.

Let us define the PRF Γ F,m : {0, 1}k+(m+1)� × {0, 1}m → {0, 1}n, which
uses a wPRF F : {0, 1}k × {0, 1}� → {0, 1}2k as main building block. The se-
cret key is K ← {0, 1}k and moreover we sample m + 1 random public values
p = p0, . . . , pm ← {0, 1}�. Below we define how the output ZX is computed by
Γ F,m(K, p,X) in pseudocode. We explicitly state which bit of the input is read as
this will determine the inputs that the leakage functions will get. With F0(K,X)
and F1(K,X) we denote the function computing F(K,X) but only outputting
the left and right half of the output, respectively.

PRF Γ F,m(K, (p0, . . . , pm), X), where X ∈ {0, 1}m and K ← {0, 1}k:
Set i := 0 and Kε := K
Repeat:

i := i+ 1.
Read the input bit X [i].
Compute KX|i := FX[i](KX|i−1

, pi−1).
Until i = m
Compute ZX := F(KX , pm).
Output ZX .

We think of the above computation as being performed in m + 1 time steps.
Each of the m loops, and the final computation of ZX , is a time step. Thus, the
nagLR non-adaptive PRF security notion allows the adversary to initially choose
a leakage function f : {0, 1}� × {0, 1}k × {0, 1} → {0, 1}λ and inputs to the two
oracles. For every input X to the Ff (K, .) oracle, the adversary gets F (K,X)
and leakage

f(p0,Kε, X [1]), f(p1,KX|1 , X [2]), . . . , f(pm−1,KX|m−1
, X [m]), f(pm,KX , 0)

(4)
As in [1], we can actually handle somewhat stronger leakage functions which not
only get the bit X [i] of X touched in the ith time step, but all the bits X|i of
X touched so far, i.e.

f(p0,Kε, X|1), f(p1,KX|1 , X|2), . . . , f(pm−1,KX|m−1
, X|m−1), f(pm,KX , X)

(5)
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The interpretation here is, that the leakage function f knows exactly at which
node of the tree it is. We are now ready to prove our main theorem in this section

Theorem 2. If F : {0, 1}k × {0, 1}� → {0, 1}2k is a weak PRF, then Γ F,m is a
nagLR non-adaptive PRF. The amount of leakage λ per time step (i.e., for each
invocation of F) depends on the security of F (cf. Footnote 8)

Proof. Let A be an adversary which initially chooses a leakage function f (as
described above), q distinct inputs x1, . . . , xq and some q0, meaning that the
first q0 queries will be leakage queries, and the last q1 := q − q0 queries are
challenge queries. We sample a random key K ← {0, 1}k and a coin b ← {0, 1}
determining if we’re in the real or random experiment (note that we do not yet
sample the p0, . . . , pm ← {0, 1}�.)

We now evaluate all q queries simultaneously, going down the tree as illus-
trated in Figure 3 layer by layer, sampling the random pi’s as we go down (this
parallel evaluation is only possible as the queries are chosen non-adaptively.)
It will be convenient to give the adversary the leakage for all q queries (even
though the last q1 challenge queries are not supposed to leak at all), except for
the very last layer. In the last layer, we evaluate the first q0 queries, and give
the adversary this outputs together with the leakage. If b = 0 (which means
we’re in the real experiment) the adversary gets the outputs, and random values
otherwise.

Below we formally describe how the leakage is computed. As just mentioned,
we give the adversary more power than required for nagLR-security. Concretely,
in item 2 below, she gets leakage from internal nodes on all queries, not just he
leakage queries. Set i := 0, sample a random K = Kε, and then the outputs and
leakage are computed layer by layer as follows:

1. sample a random pi and give it to the adversary.
2. compute KI‖0‖KI‖1 := F(KI , pi) and leakage ΛI := f(KI , pi, I) for all i bit

prefixes of x1, . . . , xq. Give all the computed leakage to the adversary.
3. If i < m − 1 then set i := i + 1 and go back to step 1, otherwise go to next

step (at this point we have computed Kxi for all queries xi.)
4. sample a random pm and give it to the adversary.
5. Compute the final outptus Zxi := F(Kxi , pm) = Γ F,m(K,xi) and leakage

Λxi := f(Xx1, pm, xi) for i = 1, . . . , q0. Give this outptus and leakage to the
adversary.

6. If b = 0, for i = q0+1, . . . , q, compute Zxi := F(Kxi , pm), otherwise, if b = 1,
sample random Zxi ← {0, 1}2n. Give this values to the adversary.

We denote by view0 the view of the adversary in the above experiment if b =
0, and with viewm if b = 1. To prove the theorem we must show that view0

and viewm are computationally indistinguishable. We will consider hybrid views
view1, . . . , viewm−1, and show that for every i = 1, . . . ,m, viewi−1 and viewi

indistinguishable.
Consider the computation K0‖K1 = F(Kε, p0), Λε = f(Kε, p0) in the first

layer. As Kε has min-entropy n− 2λ (in fact, in this first layer, this key is even
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uniform) and p0 is uniform, by Proposition 1 K0‖K1 is pseudorandom given p0,
and by Proposition 2 K0‖K1 has (whp.) HILL pseudoentropy 2n − 2λ when
additionally given Λε. The first hybrid view1 is dervied from the hybrid view0

by replacing this K0‖K1 with a random variable K̃0‖K̃1 which has min-entorpy
2n − 2λ given p0, Λε. By the definition of HILL pseudoentropy, such a K̃0‖K̃1

exists, where view0 and view1 are computationally indistinguishable. Thus, in
view1, the inputs K̃0 and K̃1 to the first layer (which are outptus from the zero
layer) have min-entropy n− 2λ, and by Proposition 1, each outputs of this layer
will have pseudoentropy n−2λ given the entire view of the adversary. The hybrid
view2 is derived from view1 by replacing this outputs which have min-entropy
n − 2λ, and so on, until we get the hybrid viewm−1 which is indistinguishable
from view0. In viewm−1, the inputs K̃xi to the last layer has min-entropy n− 2λ.
We choose pm uniformly at random, and it follows by Proposition 1, that the
“challange” outputs Zxi := F(K̃xi , pm) are pseudorandom, and thus indistin-
guishable from viewm which is derived from viewm−1 by replacing all challange
outputs by uniformly random values (as in the case b = 1.) ��

3.1 An Adaptive Attack against Our Construction Γ F,m

In Theorem 2 we showed that Γ F,m is a nagLR non-adaptive PRF. As discussed
in Section 1.2, it trivially is not a naLR non-adaptive PRF or gLR non-adaptive
PRF, i.e. the non-adaptivity and granularity for the leakage are necessary. It is a
natural question whether it is a nagLR PRF like the (much more sophisticated)
construction from [1]).

We answer this question negatively and show a simple attack against Γ F,m.
The attack allows the adversary to learn leakage that reveals the first λ bits of
Γ F,m(K,X) for an input X that has not yet been queried. Clearly, this breaks
the security of the PRF as required by Definition 6. Suppose m = � + 1, then
the attack works as follows:

1. Define f(pm−1,KI , I) to be the first λ bits of F(F0(KI , pm−1), I).
2. Learn the public values p0, . . . , pm ∈ {0, 1}�.
3. Query the leakage oracle for pm||1 and obtain Γ F,m(K, pm||1) and, from the

leakage, the first λ bits of

F(F0(Kpm , pm−1), pm) = Γ F,m(K, pm||0).

Thus, for a leakage query pm||1 the attack reveals the first λ bits ofΓ F,m(K, pm||0).
We emphasize that this attack is rather artificial and most likely will not affect the
real-world security of our construction. However, it illustrates that any attempt
to prove the security of Γ F,m in an adaptive setting must fail (indeed, this attack
works even if we assign a different public value to every node – details are omitted
in this extended abstract).

Let us emphasize that this attack requires that for each execution of the weak
PRF F the corresponding leakage function is “aware” of its current position in
the tree, that is, we need a leakage function as in eq.(5) and not eq.(4). Although
for our positive result considering a stronger leakage model only strengthens the
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result, for an attack we would like the model to be as weak as possible and stick
with leakage functions that only get whatever is touched, and nothing beyond
that, as required for nagLR PRFs. We do not know if such an attack exists
against Γ F,m.

4 Leakage-Resilient PRPs

In the previous section we gave a simple construction of a PRF which is se-
cure against non-adaptive leakage if queried on non-adaptively chosen inputs. In
practice, one usually doesn’t use pseudorandom functions, but rather pseudo-
random permutations (PRPs). In particular, block ciphers, the work horses of
cryptography, are assumed to be PRPs. Block ciphers are also the main targets
of side-channel cryptanalysts, thus coming up with leakage-resilient PRPs is a
particularly worthwhile task.

In the standard setting (i.e. without leakage), Luby and Rackoff [16] famously
showed that one can construct a PRP from a PRF by using a three-round Feis-
tel network as illustrated in Figure 4. With one round more one even gets a
strong PRP, i.e. an object that is indistinguishable from a uniformly random
permutation even if one can query it from both sides.

To prove that a 3-round Feistel using PRFs as round functions is a PRP one
proceeds in two steps.13 First one shows that a 3-round Feistel instantiated with
uniformly random functions is indistinguishable from a uniformly random per-
mutation (this step is completely information theoretic). In the second step one
then observes that a 3-round Feistel instantiated with URFs (uniformly random
functions) is indistinguishable from a 3-round Feistel using PRFs. This second
step follows by a simple hybrid argument where we replace the pseudorandom
round functions with uniformly random functions one by one. A restricted case
of the statement claiming only non-adaptive security and using only random
functions as round functions, is given by the proposition below.

Proposition 3 (3-Round Feistel is Non-Adaptively Secure PRP). For
any n, q ∈ N and x1, . . . , xq ∈ {0, 1}2n consider the distributions:

– Sample P ∈R P2n and, for i ∈ [q], set yi = P(xi).
– Sample F1,F2,F3 ∈R Rn and for i ∈ [q] set zi = ΦF1,F2,F3(xi) (as in Figure 4)

then

Δ([y1, . . . , yq], [z1, . . . , zq]) ≤ q2

2n

Proof (sketch). Consider the values ci = F1(ai) ⊕ bi for i = 1, . . . , q (where
xi = ai‖bi, cf. Figure 4.) As F1 is a URF, these ci’s will contain a collision
with probability at most q(q− 1)/2n+1. Assuming they are all distinct, the ui =
F2(ci)⊕ai’s are uniformly random as F2 is a URF. As they are uniformly random,

13 This proof template follows [17]; the original proof of Luby and Rackoff [16] is “di-
rect”, but also more complicated.



Practical Leakage-Resilient Symmetric Cryptography 229

ai bi

F1 ⊕

⊕ F2

F3 ⊕
ui vi

ci

Fig. 4. 3-round Feistel Network ΦF1,F2,F3 : {0, 1}2n → {0, 1}2n with round functions
Fi : {0, 1}n → {0, 1}n

they also will contain a collision with with probability at most q(q − 1)/2n+1.
This implies the values zi = ui‖vi are 2 · q(q − 1)/2n+1 = q(q − 1)/2n close to
uniform over {0, 1}2n. The uniform distribution over q elements over {0, 1}2n is
q(q − 1)/22n close to the distribution of the y1, . . . , yq (which is uniform, but
without repetition.) Thus, as statistical distance obeys the triangle inequality,
the zi’s are q(q − 1)/2n + q(q − 1)/22n ≤ q2/2n close to the yi’s. ��

Proposition 3 also holds if the inputs xi are chosen adaptively, but the proof for
this case is significantly more delicate. The proof of Proposition 3 above uses
the fact that the inputs c1, . . . , cq to the second round function (cf. Figure 4)
are all distinct (with high probability). The adaptive case also goes along these
lines, but here one has to argue that the ci’s are also “hidden”, as an adaptive
adversary who could “guess” the ci values could compute inputs to the Feistel
network where the outputs partially collide.

As shown in [1], it is already sufficient to get some simple leakage (e.g. the
Hamming Weight) of the ci values to launch such an attack. This attack can
be adapted to work on Feistel networks with any number r of rounds, but its
complexity (i.e. number of adaptive queries) grows exponentially in r. Still, this
implies that a constant-round Feistel network, instantiated with leakage-resilient
PRFs, can be broken in polynomial time, and thus is not a leakage-resilient PRP.

The queries to the Feistel network made in the [1] attack are adaptive, and here
we show that this is indeed crucial. By Theorem 3 below, a 3-round Feistel is a
non-adaptively secure leakage-resilient PRP if instantiated with leakage-resilient
PRFs. The notion of leakage-resilience achieved by the PRP is inherited from
the underlying PRF. If the round functions are L-naLR PRFs, then we get a
L-nagLR PRP.

More formally, we initially choose a bit b ∈ {0, 1} and three keys k1, k2, k3
for F which defines the round functions Fi(.) = F(ki, .) for i = {1, 2, 3}, and if
b = 1 a random permutation P ∈R P2n (using lazy sampling.) The adversary
can initially choose three leakage functions f1, f2, f3 ∈ L, distinct inputs ai‖bi
for i = 1, . . . , q and some q0 which specifies that the first q0 inputs are leakage
queries, and the last q1 := q − q0 are challange queries (as we consider non-
adaptive queries, we can wlog. assume the queries are ordered like this.) She
then gets, for every i ≤ q0, the outputs ui‖vi = ΦF1,F2,F3(ai‖bi) and the leakage
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f1(k1, ai), f2(k2, ci) and f3(k3, ui) (so, each round of the Feistel network is con-
sidered a time-step which leaks independently.) For the queries i > q0 she gets
the regular output ΦF1,F2,F3(ai‖bi) if b = 0 and the random P(ai‖bi) otherwise.
Note that besides the evaluation of the round functions Fi, one also has to com-
pute three XORs. It would be cheating to assume that this XORs are leakage
free. We go to the other extreme, and assume the XORs leak completely by
giving the adversary the entire ci value for every leakage query. This ci together
with the known values ai, bi, ui, vi specifies all the inputs/outputs to the three
XOR computations (e.g. the first XOR takes as inputs bi and bi ⊕ ci.)

Theorem 3. Let F : {0, 1}� × {0, 1}n → {0, 1}n be an (q, ε, s)-secure L-naLR
non-adaptive PRF. Then the three round Feistel network ΦF1,F2,F3 , where each
Fi = F(ki, .) is an independent instantiation of F, is a (q, ε′, s′)-secure L-nagLR
non-adaptive PRP where

ε′ = 3ε+ q2/2n s′ = s− poly(q, n)

Proof. Let x1, . . . , xq0 and x′
1, . . . , x

′
q1 (where q0 + q1 = q) denote the non-

adaptively chosen leakage and challenge queries. Let ki ← {0, 1}� be randomly
chosen keys for the round functions Fi(.) = F(ki, .). Let f1, f2, f3 ∈ L denote the

leakage functions chosen by the adversary. The adversary gets (with xi
def
= ai‖bi

and ci, ui, vi as in Figure 4)

yi = ΦF1,F2,F3(xi) Λi
def
= {f1(k1, ai), f2(k2, ci), f3(k3, ui), ci}

We must prove that the outputs y′1, . . . , y
′
q1 , where

y′i = ΦF1,F2,F3(x
′
i)

are pseudorandom given y1, . . . , yq0 and Λ1, . . . , Λq0 .

Claim. The ci’s corresponding to the q queries are distinct with probability at
least q(q − 1)/2n+1 + ε.

Proof. To see this, let δ denote the probability that the ci’s collide; we can
construct a non-adaptive q-query distinguisher for F with advantage δ − q(q −
1)/2n+1 (note that as F is an ε-secure PRF this will imply that δ ≤ q(q −
1)/2n+1 + ε as claimed.) This distinguisher simply queries its oracle (which is
either a URF or F(k, .)) on inputs a1, . . . , aq, obtaining z1, . . . , zq; the oracle
outputs 1 if and only if any of the zi ⊕ bi collide. If the outputs come from a
URF, this probability is q(q − 1)/2n+1, whereas if they come from F(k, .) this
probability is δ by definition. This concludes the proof of the claim. ��
Now assume all the ci’s are distinct. Conditioned on this, we can show by a
similar argument that also all the ui = F2(k2, ci) ⊕ ai will be distinct with
probability q(q − 1)/2n+1 + ε.

Assume the ci’s and ui’s are all distinct and recall that vi = F3(k3, ui) ⊕
ci. Then it follows from the L-naLR non-adaptive PRF security of F that the
y′i = uq0+i‖vq0+i values for i = 1, . . . , q1 are pseudorandom given y1, . . . , yq0 and
Λ1, . . . , Λq0 , as F2(k2, .) and F3(k3, .) are queried on distinct inputs in the first
q0 and the last q1 queries. ��
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Abstract. Side-channel attacks (SCAs) exploit weakness in the physi-
cal implementation of cryptographic algorithms, and have emerged as a
realistic threat to many critical embedded systems. However, no theo-
retical model for the widely used differential power analysis (DPA) has
revealed exactly what the success rate of DPA depends on and how. This
paper proposes a statistical model for DPA that takes characteristics of
both the physical implementation and cryptographic algorithm into con-
sideration. Our model establishes a quantitative relation between the
success rate of DPA and a cryptographic system. The side-channel char-
acteristic of the physical implementation is modeled as the ratio between
the difference-of-means power and the standard deviation of power dis-
tribution. The side-channel property of the cryptographic algorithm is
extracted by a novel algorithmic confusion analysis. Experimental results
on DES and AES verify this model and demonstrate the effectiveness of
algorithmic confusion analysis. We expect the model to be extendable
to other SCAs, and provide valuable guidelines for truly SCA-resilient
system design and implementation.

Keywords: Side-channel attack, differential power analysis.

1 Introduction

Cryptographic algorithms are widely used in various computer systems to en-
sure security. Despite the security strength of the algorithm, the leaked side-
channel information of the cryptosystem implementation, like power consump-
tion of smart cards and timing information of embedded processors, can be ex-
ploited to recover the secret key. Differential power analysis (DPA) is one of the
early effective SCAs which analyzes the correlation between intermediate data
and power consumption to reveal the secret [1]. Over the past decade, there has
been many other successful power analysis attacks, including Correlation Power
Attack (CPA) [2], Mutual Information Attack (MIA) [3], Partitioning Power
Analysis (PPA) [4], etc. Other side-channel information, like electromagnetic
emanations [5,6] and timing information [7], can also be exploited. A real secure
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system must be designed with countermeasures to be SCA-resilient. Common
countermeasures include masking [8], power-balanced logic [9], and random de-
lays [10]. To measure the SCA resilience of a system or the effectiveness of a
countermeasure, several generic metrics are used, such as number of measure-
ments, success rate [11,12], guessing entropy [13] and information theoretic met-
ric [13,14]. One commonly used metric for evaluating a system’s SCA resilience
is the success rate, i.e., the probability that a specific SCA is successful with
certain complexity constraint. For a cryptosystem, a low success rate for a SCA
on it indicates its high resilience against such SCA.

Intuitively, both the physical implementation and cryptographic algorithm
would affect the SCA resilience of a cryptosystem. An ideal implementation
with countermeasures could reduce the side-channel leakage to minimum. Dif-
ferent cryptographic algorithms may have different intrinsic SCA-related proper-
ties. Accurately evaluating different implementations of the same cryptographic
algorithm and comparing different cryptographic algorithms, in terms of their
SCA resilience, are challenging issues. However, such analysis and theoretical
modeling will reveal system-inherent parameters that affect its SCA resilience,
and in practice will greatly facilitate advances in the design and implementation
of real secure cryptosystems.

Related Work. There has been many related research efforts attempting to ad-
dress the above issues. However, the effects of the algorithm and implementation
were not clearly decoupled and better quantitative model is needed to understand
their interaction. In [15], an approach is presented to model the DPA signal-to-
noise ratio (SNR) of a cryptographic system, which does not further reveal how
the SNR determines the ultimate SCA resilience. In [16], the relation between
the difference-of-means power consumption and key hypotheses is analyzed and
utilized to improve the DPA efficiency, without examining characteristics of the
algorithm. [17] presented a statistical model for CPA, which illustrated well the
effect of SNR on the power of CPA. However, they did not consider the inter-
action between the incorrect keys and thus the formula does not numerically
conform to the empirical overall success rate for CPA (see Appendix A). Work
in [18] exhibits DPA-related properties of SBoxes in cryptographic algorithms
and introduces a new notion of transparency order of an SBox, without con-
sidering the implementation aspect. A framework presented in [13] unifies the
theory and practice of SCA with a combination of information theory and se-
curity metrics. A quantitative analysis between the metrics and cryptographic
system would be a nice complement to the general framework.

Our Contributions. In this paper, we proposes a statistical analysis model for
DPA. To the best of our knowledge, this is the first analytic model for the success
rate of DPA on cryptographic systems, and also the first model extracting SCA
related characteristics from both the physical implementation and cryptographic
algorithm. The physical implementation is represented by the power difference
related to the select function and standard deviation of power waveforms. The
ratio between them defines the SCA resilience of an implementation. The SCA-
related property of a cryptographic algorithm is characterized by algorithmic
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confusion analysis. A confusion matrix is generated to measure the statistical
correlation between different key candidates in DPA.

The rest of the paper is organized as follows. Section 2 introduces notions
and fundamentals in cryptographic algorithms, DPA procedures, and statistical
aspects in SCAs. Section 3 presents the algorithmic confusion analysis with def-
initions of confusion and collision coefficients. Our model for the success rate of
DPA is proposed in Section 4. The model is verified with experimental results on
DES and AES in Section 5. Section 6 discusses more implications of the model
and its possible applications. Finally conclusions are drawn in Section 7.

2 Preliminaries

2.1 Randomness of Cryptographic Algorithm

Cryptographic algorithms are designed to be robust against cryptanalysis with
two well-known statistical properties [19]. Confusion makes the statistical rela-
tion between the the ciphertext and key as complex as possible; diffusion makes
the statistical relation between the ciphertext and plaintext as complex as pos-
sible. With deliberate design, an encryption algorithm is perfectly secret if each
bit in the ciphertext C is purely random [20]:

Theorem 1. Suppose bC is one bit of the ciphertext C for a perfectly secret
encryption algorithm, bC has the same probability to be 0 or 1:

Pr [bC = 1] = Pr [bC = 0] =
1

2
.

2.2 Differential Power Analysis Procedure

All SCAs have a common hypothesis test procedure. We next give an introduc-
tion on the earliest discovered and important DPA procedure.

– Side-channelmeasurements obtain physical side-channel information W , i.e.,
waveforms of power consumption collected from devices. Denote the wave-
form population as W = {W1, . . . ,WNm}, where Wi is a (time series) mea-
surement with a certain input, and Nm is the total number of measurements
for the cryptographic system. EachW is a time series asW = {w1, . . . , wNp},
where Np is the number of points in W .

– Key hypotheses enumerate all possible values of the subkey k under attack,
denoted as 〈k〉 = {k0, . . . , kNk−1}, where Nk is the total number of key
guesses, and Nk = 2lk with lk as the subkey bit-length.

– Select function ψ for DPA is one single bit bd of intermediate data d com-
puted from the plaintext M or ciphertext C and a key, written as ψ = bd.
The value of ψ is either 1 or 0.

– Correlation between ψ for each key hypothesis and W is computed for a
specific attack. The correlation for DPA is the difference of means (DoM) δ,
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i.e., the difference between the average power consumption of two waveform
groups partitioned with ψ = 1 and 0, written as:

δ =

∑
Wψ=1

Nψ=1
−
∑

Wψ=0

Nψ=0
(1)

where Nψ=1 and Nψ=0 are the numbers of measurements with ψ = 1 and
ψ = 0 respectively, under a particular key hypothesis. Given enough number
of measurements, the DoM δc for the correct key kc converges to the power
difference ε related to the bit bd under attack, written as lim

Nm→∞
δc = ε, where

Nm = Nψ=1 +Nψ=0.
– Testing with the maximum likelihood method chooses the key hypothesis

which has the maximum correlation (DoM in DPA) as the correct key.

2.3 Central Limit Theorem

The basic statistical aspect of our model is the Central Limit Theorem [21], con-
sidering the various noises in leakage measurements and the sampling process
for side-channel cryptanalysis, i.e., the leakage measurement is for a set of ran-
dom inputs rather than enumerating the entire input space. Consider a random
distribution X = {x1, x2, x3, . . .}. The mean value and standard deviation of the
population are μ and σ, respectively. Randomly select a sample of size Nx from
the population we get the mean value:

X̄ =
1

Nx

Nx∑
i=1

xi.

When Nx is sufficiently large, X̄ is approximately normally distributed,
N (μX̄ , σX̄), with μX̄ = μ and σX̄ = σ√

Nx
.

DPA is a sampling process on the entire waveform population, which is
usually regarded as normally distributed [22]. Denote the standard deviation
of the waveform population as σW . Thus the two mean terms for the DoM
computation in Equation (1) are normal random variables with distribution
N
(
ε+ b, σW/

√
Nψ=1

)
and N

(
b, σW/

√
Nψ=0

)
, respectively. Here b denotes the

mean power consumption for the waveform group ψ = 0. Since both Nψ=0 and
Nψ=1 are approximately Nm

2 according to Theorem 1, δc is a random variable
with normal distribution N (μδc , σδc) as μδc = ε and σδc = 2 σW√

Nm
. This state-

ment still holds for large Nm by the Central Limit Theorem when we drop the
normal distribution assumption on the waveform population.

3 Algorithmic Confusion Analysis

A chosen select function involves a certain SBox of the cryptographic algorithm
(a preset computation given as a lookup table) and a subkey. In this section, we
attempt to reveal properties of the algorithm that would indicate its resilience to
DPA. The analysis is only algorithm and select function related, and independent
on the leakage measurements.
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3.1 Confusion Coefficient

Assume the select function for DPA is chosen as a bit in the last-round encryp-
tion, which is dependent on several bits of the ciphertext, the subkey, and the
corresponding SBox. Two key hypotheses ki and kj would have two correspond-
ing ψ|ki and ψ|kj . The values of ψ|ki and ψ|kj can be different or the same. We
find out that the probability that ψ|ki is different or the same with ψ|kj reveals
DPA-related property of the cryptographic algorithm.

We name a confusion coefficient after the confusion property of cryptographic
algorithms defined in [19]. The confusion coefficient κ over two keys (ki, kj) is
defined as:

κ = κ(ki, kj) = Pr [(ψ|ki) �= (ψ|kj)] =
N(ψ|ki) 	=(ψ|kj)

Nt

where Nt is the total number of values for the relevant ciphertext bits, and
N(ψ|ki) 	=(ψ|kj) is the number of occurrences for which different key hypotheses
ki and kj result in different ψ values. For example, in our DPA attack on DES
(Data Encryption Standard) algorithm, Nt is 2

7 = 128.
Similarly, the complementary confusion coefficient or collision coefficient ξ

over (ki, kj) is defined as:

ξ = ξ(ki, kj) = Pr [(ψ|ki) = (ψ|kj)] =
N(ψ|ki)=(ψ|kj)

Nt

We have κ + ξ = 1 and 0 ≤ κ < 1 and 0 < ξ ≤ 1. For a perfectly secret
cryptographic, we have:

Lemma 1. Confusion Lemma (see Appendix B for the proof).

Pr [(ψ|ki) = 0, (ψ|kj) = 1] = Pr [(ψ|ki) = 1, (ψ|kj) = 0] =
1

2
κ

Pr [(ψ|ki) = 1, (ψ|kj) = 1] = Pr [(ψ|ki) = 0, (ψ|kj) = 0] =
1

2
ξ.

For three different keys kh, ki and kj , we further define a three-way confusion
coefficient:

κ̃ = κ̃(kh, ki, kj) = Pr [(ψ|ki) = (ψ|kj), ψ|ki) �= (ψ|kh)] .

Lemma 2. κ̃(kh, ki, kj) =
1
2 [κ(kh, ki) + κ(kh, kj)− κ(ki, kj)]. (See Appendix C)

3.2 Confusion Coefficient and DPA

The power measurements are for one key embedded in the cryptographic system,
i.e., the correct key, denote as kc. Denote kg as one of the incorrect key guesses.
Suppose the DoM for kc and kg are δc and δg, respectively. The difference between
the two DoMs is Δ(kc, kg) = (δc − δg). We have obtained the mean and variance
of Δ(kc, kg) (see Appendix D):

E[Δ(kc, kg)] = 2κ(kc, kg)ε

V ar[Δ(kc, kg)] = 16κ(kc, kg)
σ2
W

Nm
+ 4κ(kc, kg)ξ(kc, kg)

ε2

Nm

(2)

Hence, limNm→∞ Δ(kc, kg) = 2κ(kc, kg)ε.
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4 Statistical Model for DPA

In DPA, to successfully distinguish the correct key kc from other key hypotheses,
it requires the DoM of kc to be larger than that of all other keys, written as:
δkc > {δ〈kc〉}, where 〈kc〉 denotes all the incorrect keys, i.e., {k0, . . . , kNk−1}
excluding kc, and {δ〈kc〉} denotes {δk0 , . . . , δkNk−1} excluding δkc . The success
rate to recover the correct key, SR, is defined as the probability for δkc > δ〈kc〉:

SR = SR
[
kc, 〈kc〉

]
= Pr

[
δkc > {δ〈kc〉}

]
The overall success rate is against (Nk − 1) wrong keys. We next show the
derivation of the success rates starting from the simple one-key success rate.

1-key Success Rate. We first consider the 1-key success rate, i.e., the success
rate of kc over an incorrect key kg chosen out of 〈kc〉, written as:

SR1 = SR [kc, kg] = Pr
[
δkc > δkg

]
= Pr [Δ(kc, kg) > 0] .

From Section 2.3, Δ(kc, kg) is the difference of two normal random variables,
therefore follows distribution N

(
μΔ(kc,kg), σΔ(kc,kg)

)
. From Equation (2),

μΔ(kc,kg) = 2κ(kc, kg)ε, σΔ(kc,kg) = 2

√
κ(kc, kg)

Nm

√
4σ2

W + ξ(kc, kg)ε2.

Let Φ(x) = 1
2 [1 + erf( x√

2
)] denote the cumulative distribution function (cdf) of

the standard normal distribution, where erf(x) is the error function erf(x) =
2√
π

∫ x

−∞ e−t2/2dt. Since
Δ(kc,kg)−μΔ(kc,kg)

σΔ(kc,kg)
is a standard normal random variable,

SR1 = Pr [Δ(kc, kg) > 0] = 1 − Φ(−
μΔ(kc,kg)

σΔ(kc ,kg)
) = Φ(

μΔ(kc,kg)

σΔ(kc ,kg)
)

=
1

2

[
1 + erf

(
μΔ(kc,kg)√
2σΔ(kc,kg)

)]
=

1

2

[
1 + erf

(√
κ(kc, kg)

(2σWε )2 + ξ(kc, kg)

√
Nm

2

)]
(3)

This is a function of confusion coefficients κ(kc, kg), the ratio of ε to σW , and
the number of measurements, Nm. Overall, the higher ε/σW , κ(kc, kg), and Nm

are, the higher the success rate is, i.e., more susceptible to DPA.

2-keys Success Rate. Next we consider the 2-keys success rate, i.e., the success
rate of kc over two chosen incorrect keys kg1 and kg2 , written as:

SR2 = SR [kc, {kg1 , kg2}] = Pr
[
δkc > δkg1

, δkc > δkg2

]
= Pr [y1 > 0, y2 > 0]

where

y1 = Δ(kc, kg1) = δkc − δkg1
, y2 = Δ(kc, kg2) = δkc − δkg2

.
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Since y1 and y2 are random variables with normal distribution, Y2 = [y1, y2]
T is

a random vector with two-dimension normal distribution as N (μ2,Σ2), where

μ2 =

[
μy1

μy2

]
=

[
2κ(kc, kg1)ε
2κ(kc, kg2)ε

]
, Σ2 =

[
Cov(y1, y1) Cov(y1, y2)
Cov(y1, y2) Cov(y2, y2)

]
.

The covariances in Σ2 are (see Appendix E for the proof):

Cov(y1, y1) =16κ(kc, kg1 )
σ2
W

Nm
+ 4κ(kc, kg1)ξ(kc, kg1 )

ε2

Nm

Cov(y2, y2) =16κ(kc, kg2 )
σ2
W

Nm
+ 4κ(kc, kg2)ξ(kc, kg2 )

ε2

Nm

Cov(y1, y2) =16κ̃(kc, kg1 , kg2)
σ2
W

Nm
+ 4[κ̃(kc, kg1 , kg2) − κ(kc, kg1)κ(kc, kg2)]

ε2

Nm
.

Let Φ2(x) denote the cdf of the 2-dimension standard normal distribution.

SR2 = Φ2(
√

NmΣ2
−1/2μ2) (4)

which is a function of the ratio ε/σW , sample size Nm, and confusion coefficients
κ(kc, kg1), κ(kc, kg2) and κ(kg1 , kg2).

(Nk − 1)-keys success rate. The overall success rate is the success rate of
kc over all other (Nk − 1) keys 〈kc〉,

SR = SRNk−1 = SR
[
kc, 〈kc〉

]
= Pr

[
δkc > {δ〈kc〉}

]
= Pr [Y > 0]

where Y is the (Nk − 1)-dimension vector of differences between δkc and δ〈kc〉:

Y = δkc − δ〈kc〉 =
[
Δ(kc, kg1), . . . , Δ(kc, kgNk−1)

]T
= [y1, . . . , yNk−1]

T
.

Y is randomly distributed with N (μY ,ΣY ). The mean is:

μY = 2εκ (5)

where κ denotes a (Nk − 1)-dimension confusion vector for the correct key kc
with entries κ(kc, kgi), i = 1, ..., Nk − 1. The elements in the (Nk − 1)× (Nk − 1)
matrix ΣY are covariances between y1, . . . , yNk−1. Thus

ΣY = 16
σ2
W

Nm
K + 4

ε2

Nm
(K − κκT ) (6)

where κT denotes the transpose of κ, and K is the (Nk−1)×(Nk−1) confusion
matrix of the cryptographic algorithm for kc, with elements {κij} as:

κij =

{
κ(kc, kgi) if i = j

κ̃(kc, kgi , kgj ) if i �= j.
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The confusion matrix K fully depicts the relation between all the key candidates
in the algorithm, and Equation (6) shows how it affects the success rate.

Let ΦNk−1(x) denote the cdf of the (Nk − 1)-dimension standard normal
distribution.

SR = SRNk−1 = ΦNk−1(
√

NmΣY
−1/2μY ). (7)

Our statistical model for the overall success rate (SR) results in a multivariate
Gaussian distribution formula. We can see that SR is determined by parameters
related to both the physical implementation, ε and σW , and the cryptographic
algorithm, K. ε and σW can be computed from the side-channel measurements
of the cryptographic system. K is only determined by the specific selection func-
tion and cryptographic algorithm, independent of real physical implementations.
Given these parameters, SR can be calculated with numerical simulations of the
(Nk − 1)-dimension normal distribution. Our model extracts the effect of both
the implementation and algorithm on SCA resilience quantitatively.

5 Experimental Results

5.1 DPA on DES

We perform DPA on DES, with the selection function on a randomly chosen
bit. In our experiments, we choose the first bit of the input for the last round
to evaluate the success rate model. We take the data set from DPAcontest [23]
secmatv1 and focus on a single point (the 15750th point) which has the maximum
DoM for kc. Discussions on multi-point leakage will be given in Section 6.3. We
generate the empirical success rate with 1000 trials as in [11,12].

To compute the theoretical success rate, we need the physical implementation
parameters SNR = ε/σW and the confusion coefficients κ for any two keys. Since
kc has been recovered for this data set, using all the power measurements at the
selected leakage time point (the 15750th point), we can estimate ε as the DoM
under kc and estimate σ2

W as the variance of power measurements. For a DES
subkey of 6-bit, the number of key guesses, Nk, is 64, and there are (64 × 63)
confusion coefficients. We found that they fall into nine values.

{0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75}.

We define these values as characteristic confusion values of a DES SBox. Why
they end up in these nine values and what are the implications are unknown
yet. However, we believe they manifest some important DPA-related properties
of the SBoxes.

Fig. 1 plots the empirical success rates (the solid curves) and theoretical
success rates (the dashed curves) of our model. We show the success rates
against different number of key candidates for kc = k60. From top down, they
are: SR1 = SR(kc, k0), SR2 = SR(kc, {k0, k1}), SR8 = SR(kc, {k0, . . . , k7}),
SR32 = SR(kc, {k0, . . . , k31}), and the overall success rate SR63 = SR(kc, 〈kc〉).
We can see that the two curves for SR63 track each other very well, showing the
accuracy of our theoretical model.
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Fig. 2. Empirical and theoretical success
rates of DPA on AES

5.2 DPA on AES

We next perform DPA on AES. The select function is defined as the XORed
value of input and output of the third bit of the sixteenth SBox in the last
round of AES. We measured the power consumption data using the SASEBO
GII board with AES implementation designated by DPAcontest [24]. The total
number of measurements in the data set is 100, 000. The size of the AES subkey
is 8, and there are (256 × 255) confusion coefficients, which also fall into nine
characteristic confusion values of AES SBox:

{0.4375, 0.453125, 0.46875, 0.484375, 0.5, 0.515625, 0.53125, 0.546875, 0.5625}.

Fig. 2 shows the empirical success rates (solid curves) and theoretical success
rates (dashed curves) of DPA for kc = k143. The two 255-keys success rate curves
of empirical and theoretical track each other very well, demonstrating that the
model is also very accurate for AES.

6 Discussions

Our DPA analysis builds a quantitative model for the SCA resilience of a cryp-
tographic system over its inherent parameters, including ε, σW and K. Next we
present more SCA-related insights from the model about the implementation
and algorithms, and how to use it to evaluate countermeasures and algorithms.

6.1 Signal and Noise of the Side Channel

Theoretically, DPA targets a portion of circuits that are related to the select
function ψ, and other parts of the circuits are considered as random noise unre-
lated to ψ. DoM ε of the correct key is the power difference between ψ = 1 and
ψ = 0 of the part of circuits under attack. DPA is a statistical process retrieving
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the DoM ε out of all the power consumptions. As the number of power wave-
forms increases, the standard deviation of the difference between the DoMs for
the correct key and incorrect keys decreases. When the standard deviations of
DoMs are significantly less than ε, DPA has a significant success rate to recover
the key. Here, ε indicates the signal level, and σW indicates the noise level.

We define ε/σW as the signal-to-noise ratio (SNR) for the side channel. It is
shown in Equation (3) for the 1-key success rate how the SNR determines the
DPA results. The SNR can be used as a metric to measure the SCA resilience of
the implementation of a cryptographic system. It is similar to the SNR defined
in [15,22], however with more explicit quantitative implications in our model.

6.2 DPA-Confusion Property of Cryptographic Algorithms

Our algorithmic confusion analysis reveals the inherent property of a cryp-
tographic algorithm, i.e., how differently the key candidates behave in DPA.
Confusion coefficient is determined by both the cryptographic algorithm and
selection function ψ. The eight different SBoxes in DES may have different con-
fusion properties. Different bits in the same SBox may also have different con-
fusion properties. Compared to DES, the confusion coefficients of an AES SBox
are more concentrated near 0.5, which means the key candidates behave more
randomly. For SBoxes with the same key space size, the success rates have the
same dimensions, and hence the one with larger confusion coefficients leaks more
information, leading to higher success rates. For two algorithms with different
subkey space sizes, we need to compute the overall success rates. Comparing
DES and AES, the dimension factor dominates over confusion coefficients. AES
has 256 key candidates and the overall success rate is for 255-keys, making it
more resilient than the 63-keys success rate of DES.

The experiments in Section 5.2 define the selection function ψ for DPA on
AES as the XORed value of two intermediate data due to the characteristics of
ASIC implementation. In micro-controller implementation, the select function
is defined directly as one intermediate data. A good select function for attacks
gives larger confusion coefficient κ(kc, kg) and therefore larger success rate as
shown in Equation (3). The algorithmic confusion analysis can also serve as a
methodology to evaluate how good selection functions are at distinguishing the
correct key.

6.3 Evaluation of DPA Countermeasure: Random Delay

Our model will be very useful for evaluating different DPA countermeasures.
Here we take the method of random delay as example, which is an effective
countermeasure to hide leakage [10,25,26]. We analyze the resilience of random
delay under DPA to demonstrate the usage of our DPA model.

The random delay has no effect on the intermediate value. Thus it has no
effect on the algorithmic confusion properties. It changes the success rate of
DoM attack by affecting the signal-to-noise ratio. Random delay spreads out
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the original side-channel leakages along the time, and therefore lowers the signal
level. We consider the simplest case of single-point leakage at time s (general
cases are presented in Appendix F). Suppose the power leakage without random
delay is ε. The distribution of the random delay is Pr(t) = frd(t), for t =
1, 2, ..., Nrd time units. Denote the time with largest frd(t) as tmax. Then the
maximum leakage after random shifting is εrd = ε ·frd(tmax), and the maximum
leakage time point shifts from s to s + tmax. For uniform random delay, εrd =
ε/Nrd. Larger Nrd would decrease εrd, however, it also slows down the program
and degrades the performance. This also applies to more general multiple-point
leakage. Our quantitative model can therefore aid the designer to fine-tune the
balance between the SCA resilience and performance. Note that our success
rate model is based on the knowledge of the correct key, kc. It is meant to be
adopted by the cryptosystem designer to take SCA security as a metric in the
early design stage, by evaluating the SCA resilience of their implementations
and countermeasures vigorously. It does not help the attacks.

6.4 Application of the Model to Other Side-Channel Attacks

Although there have been many other effective power analysis attacks, we choose
the DPA to build the success rate model for its simplicity. As a matter of fact,
all the power analysis attacks can be unified and it has been shown that the
most popular approaches, such as DoM test, CPA, and Bayesian attacks, are
essentially equivalent on a common target device (with the same power leakage
model) [27]. DPA is the simplest one in modeling, because it targets a single bit.
In CPA, the select function is the Hamming weight of the SBox output rather
than a single bit. In addition, the correlation is the Pearson Correlation rather
than the difference-of-means. We can envision that the success rate for CPA is
still dependent on the implementation-determined parameters ε and σW , and
algorithm-dependent confusion coefficients κ and matrix. However, the confu-
sion coefficient is no longer the probability that two different keys end up with
different select function values, but would be generally the mean value of squared
select function difference. We can regard the DoM model as a special case of the
CPA model with the number of bits as 1. In our future work, we will investigate
the success rate formulas for other power analysis attacks and timing attacks
and their constituent parameters.

7 Conclusions

In this paper, a theoretical model for DPA on cryptographic systems is presented.
It reveals how physical implementations and cryptographic algorithms jointly af-
fect the SCA resilience. The relation between the success rate and cryptographic
systems is modeled over a multivariate Gaussian distribution. The signal-to-
noise ratio between the power difference and standard deviation of the power
distribution indicates how resilient an implementation is. The confusion matrix



244 Y. Fei, Q. Luo, and A.A. Ding

generated by algorithmic confusion analysis illustrates how the cryptographic
algorithm affects the resilience. Experimental results on DES and AES verify
the model. We believe that this model is innovative, provides valuable insights
on side-channel characteristics of cryptosystems, and could significantly facilitate
SCA-resilient design and implementations.
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Appendix

A The Related CPA Model

A model for CPA is proposed in [17] and improved in [28]. The overall success
rate of CPA is given as:

SR =

(∫ ∞

0

1
1√

Nm−3

√
2π

exp

{
− (x− r)2

2
Nm−3

}
dx

)Nk−1

where r is the Pearson correlation of CPA for the correct key, Nk is the number
of key guesses in CPA, and Nm is the number of measurements.

http://www.dpacontest.org/
http://www.rcis.aist.go.jp/special/SASEBO/index-en.html
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Fig. 3. Empirical and theoretical success
rates of CPA on DES
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Fig. 4. Empirical and theoretical success
rates of CPA on AES

The CPA model assumes that the different dimensions of the overall success
rate are independent, i.e., the covariances between different key guesses are 0.
This is a false assumption, and therefore makes the CPA model inaccurate. We
generate success rates using the CPA model for DES and AES with the same
data set used in Section 5, as shown in Figs.3 and 4. The success rate curves
from the CPA model do not match the empirical results.

B Proof for the Confusion Lemma (Lemma 1)

Apply Theorem 1 to each of the key hypotheses ki and kj , we have:

Pr [ψ|ki = 1] = Pr [ψ|ki = 0] =
1

2
, Pr [ψ|kj = 1] = Pr [ψ|kj = 0] =

1

2
.

Because Pr [ψ|ki = 1] = Pr [ψ|ki = 1, ψ|kj = 0]+Pr [ψ|ki = 1, ψ|kj = 1], and sim-
ilarly for the other three probabilities above, from the definitions of the coeffi-
cients κ and ξ, we have:

Pr [ψ|ki = 1, ψ|kj = 0] = Pr [ψ|ki = 0, ψ|kj = 1] =
1

2
κ,

Pr [ψ|ki = 0, ψ|kj = 0] = Pr [ψ|ki = 1, ψ|kj = 1] =
1

2
ξ.

C Proof for Lemma 2

κ(kh, ki) + κ(kh, kj) =Pr[(ψ|kh) �= (ψ|ki)] + Pr[(ψ|kh) �= (ψ|kj)]
=Pr[(ψ|kj) = (ψ|kh) �= (ψ|ki)] + Pr[(ψ|kj) = (ψ|ki) �= (ψ|kh)]+
Pr[(ψ|ki) = (ψ|kh) �= (ψ|kj)] + Pr[(ψ|ki) = (ψ|kj) �= (ψ|kh)]

=Pr[(ψ|kj) �= (ψ|ki)] + 2Pr[(ψ|kj) = (ψ|ki) �= (ψ|kh)]
=κ(ki, kj) + 2κ̃(kh, ki, kj).

Therefore: κ̃(kh, ki, kj) =
1
2 [κ(kh, ki) + κ(kh, kj) − κ(ki, kj)].
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D Confusion Coefficient and DPA DoM

In DPA, the set of waveformsW is divided into two groups according to the value
of ψ for one key hypothesis. Therefore, for the correct key kc and a guessed key
kg the Nm measurements are divided into four groups Wij , i, j = 0, 1, as shown
in Table 1. For example, W10 is the group of measurements that satisfy ψ|kc = 1
and ψ|kg = 0, and W1 is the group of measurements for ψ|kc = 1. We denote the
number of measurements in each group by Nij . We have N1 = N11+N10, N0 =
N01 +N00, N1 +N0 = N 1 +N 0 = Nm. Suppose the DoM for kc and kg are δc

Table 1. The four groups of waveforms Wij and their number of measurements

ψ|kc = 1 ψ|kc = 0 total

ψ|kg = 1 W11 (N11) W01 (N01) W 1 (N 1)

ψ|kg = 0 W10 (N10) W00 (N00) W 0 (N 0)

total W1 (N1 ) W0 (N0 ) W (Nm)

and δg, respectively. The difference between the two DoMs is:

Δ(kc, kg) = δc − δg =(
N11

N1
− N11

N 1
)W̄11 + (

N10

N1
+

N10

N 0
)W̄10

− (
N01

N0
+

N01

N 1
)W̄01 − (

N00

N0
− N00

N 0
)W̄00 (8)

where W̄ij =
∑

Wij/Nij for i, j = 0, 1, which are normal random variables
according to the Central Limit Theorem as given in Section 2.3. Hence Δ(kc, kg)
is also normally distributed because it is a linear combination of normal random
variables. We now calculate its mean and variance.

Note that there are two sources of randomness in Δ(kc, kg). The first source is
from the randomly selected plaintexts. Denote ψc = (ψ1, ..., ψNm)|kc and ψg =
(ψ1, ..., ψNm)|kg as the values of the select function for the set of measurement
plaintext under the correct key kc and incorrect key kg, respectively. ψc, ψg, and
Nijs are all random variables. Conditional on given ψc and ψg, the partition
of the measured waveforms W into four groups are fixed, and thus Nijs are
constants. There is still the second source of randomness, measurement errors in
W . Therefore W̄ijs are still random variables conditional on given ψc and ψg.

Given ψc and ψg, the waveforms in groups W11 and W10 have the same mean,
which is larger by the amount ε than the mean of waveforms in W01 and W00.
Without loss of generality, we assume that the theoretical means of W̄11, W̄10,
W̄01 and W̄00 are ε, ε, 0 and 0, respectively. Therefore from equation (8), the
conditional mean of Δ(kc, kg) is:

E[Δ(kc, kg)|ψc,ψg] = (
N11

N1
− N11

N 1
+

N10

N1
+

N10

N 0
)ε

= (1 − N11

N 1
+

N10

N 0
)ε = (

N01

N 1
+

N10

N 0
)ε.
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Now we consider the randomness in Nijs, related to the algorithmic confu-
sion analysis. According to Lemma 1, each of the waveform with ψ|kg = 1
has κ(kc, kg) probability to have ψ|kc = 0. N01 and N10 independently follow
Binomial(N 1,κ(kc, kg)) and Binomial(N 0,κ(kc, kg)) distributions, respectively.

E(
N01

N 1
+

N10

N 0
) =

κ(kc, kg)N 1

N 1
+

κ(kc, kg)N 0

N 0
= 2κ(kc, kg),

V ar(
N01

N 1
+

N10

N 0
) =

κ(kc, kg)ξ(kc, kg)

N 1
+

κ(kc, kg)ξ(kc, kg)

N 0

As Nm → ∞, according to Theorem 1 and Lemma 1, N1 � N0 � N 1 � N 0 �
Nm/2, N10 � N01 � κ(kc, kg)Nm/2, N11 � N00 � [1 − κ(kc, kg)]Nm/2. Thus:

E[Δ(kc, kg)] = E{E[Δ(kc, kg)|ψc,ψg]} = 2κ(kc, kg)ε (9)

V ar{E[Δ(kc, kg)|ψc,ψg]} =4κ(kc, kg)ξ(kc, kg)
ε2

Nm
(10)

The W̄ijs are independent and each has the conditional variance σW/
√
Nij .

From (8), we get:

E{V ar[Δ(kc, kg)|ψc,ψg]} =E{σ2
W [(

1

N1
− 1

N 1
)2N11 + (

1

N1
+

1

N 0
)2N10

+ (
1

N0
+

1

N 1
)2N01 + (

1

N0
− 1

N 0
)2N00]}

=σ2
W

16κ(kc, kg)

Nm
.

Combined with (10),

V ar[Δ(kc, kg)] =E{V ar[Δ(kc, kg)|ψc,ψg]} + V ar{E[Δ(kc, kg)|ψc,ψg]}

=16κ(kc, kg)
σ2
W

Nm
+ 4κ(kc, kg)ξ(kc, kg)

ε2

Nm
. (11)

E 2-keys Success Rate

For the 2-keys success rate, we have got Y2 = [y1, y2]
T , a random vector with

two-dimension normal distribution, N (μ2,Σ2). Now we calculate the formula
for Σ2. From equation (8), we have (for i = 1, 2):

yi = Δ(kc, kgi) =(
N11,yi

N1 ,yi

− N11,yi

N 1,yi

)W̄11,yi + (
N10,yi

N1 ,yi

+
N10,yi

N 0,yi

)W̄10,yi

− (
N00,yi

N0 ,yi

− N00,yi

N 0,yi

)W̄00,yi − (
N01,yi

N 1,yi

+
N01,yi

N0 ,yi

)W̄01,yi (12)
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From Appendix D Equation (11), the variance of y1 and y2 are:

Cov(yi, yi) = 16κ(kc, kgi)
σ2
W

Nm
+ 4κ(kc, kgi)ξ(kc, kgi)

ε2

Nm
, i = 1, 2

Next we compute Cov(y1, y2), the covariance between y1 and y2. We first calcu-
late E[Cov(y1, y2|ψc,ψg1 ,ψg2)]. The conditional covariance between y1 and y2
given (ψc,ψg1 ,ψg2) is:

Cov(y1, y2|ψc,ψg1 ,ψg2)

=4κ(kc, kg1)κ(kc, kg2)[Cov(W̄10,y1 , W̄10,y2) + Cov(W̄01,y1 , W̄01,y2)

− Cov(W̄10,y1 , W̄01,y2)− Cov(W̄01,y1 , W̄10,y2)]

The waveforms in W10y1
and W10y2

are those with ψ|kc = 1, different from those
in W01y1

and W01y2
, therefore: Cov(W̄10,y1 , W̄01,y2) = Cov(W̄01,y1 , W̄10,y2) = 0.

To compute Cov(W̄10,y1 , W̄10,y2), we consider how similar they are, i.e., how
many waveforms are the same between the partitions W10y1

and W10y2
. Let

N10,s denote the number of same waveforms between W10,y1 and W10,y2 . Then
Cov(

∑
W10,y1 ,

∑
W10,y1) = N10,sσ

2
W . N10,s � κ̃(kc, kg1 , kg2)Nm/2 as Nm → ∞

by the definition of κ̃(kc, kg1 , kg2). Hence,

Cov(W̄10,y1 , W̄10,y2) =
Cov(

∑
W10,y1 ,

∑
W10,y2)

N10,y1N10,y2

=
2κ̃(kc, kg1 , kg2)

κ(kc, kg1)κ(kc, kg2 )Nm
σ2
W

Similarly, we get the same expression for Cov(W̄01,y1 , W̄01,y2). Thus we get

E[Cov(y1, y2|ψc,ψg1 ,ψg2)] = 16κ̃(kc, kg1 , kg2)
σ2
W

Nm
. (13)

Next we calculate Cov[E(y1|ψc,ψg1 ,ψg2), E(y2|ψc,ψg1 ,ψg2)]. Let Nd,y1 denote
the number of measurements where ψ|kc is different from ψ|kg1 . From (12),

Cov[E(y1|ψc,ψg1 ,ψg2), E(y2|ψc,ψg1 ,ψg2)]

=(
2ε

Nm
)2Cov(Nd,y1 , Nd,y2) = (

2ε

Nm
)2[E(Nd,y1Nd,y2) − E(Nd,y1)E(Nd,y2)]

We re-express Nd,y1 =
∑

I[(ψ|kc) �= (ψ|kg1)] and Nd,y2 =
∑

I[(ψ|kc) �= (ψ|kg2)].
Obviously E(Nd,y1) = Nmκ(kc, kg1) and E(Nd,y2) = Nmκ(kc, kg2 ).

Nd,y1Nd,y2 =
∑

I[(ψ|kc) �= (ψ|kg1)]
∑

I[(ψ|kc) �= (ψ|kg2)]

Note that Nd,y1Nd,y2 is the sum of N2
m terms. Most of the terms in the sum have

expectation κ(kc, kg1)κ(kc, kg2) except for those Nm terms corresponding to the
same waveforms, which have expectation:

E{I[(ψ|kc) �= (ψ|kg1 )]I[(ψ|kc) �= (ψ|kg2 )]} = E{I[(ψ|kg1) = (ψ|kg2) �= (ψ|kc)]}
= κ̃(kc, kg1 , kg2)
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Hence,

E(Nd,y1Nd,y2)=N2
mκ(kc, kg1)κ(kc, kg2)+Nm[κ̃(kc, kg1 , kg2)−κ(kc, kg1)κ(kc, kg2)]

This implies that

Cov[E(y1|ψc,ψg1 ,ψg2), E(y2|ψc,ψg1 ,ψg2)]

= 4[κ̃(kc, kg1 , kg2) − κ(kc, kg1)κ(kc, kg2)]
ε2

Nm
. (14)

Combining (13) and (14), we get:

Cov(y1, y2)

=E[Cov(y1, y2|ψc,ψg1 ,ψg2)] + Cov[E(y1|ψc,ψg1 ,ψg2), E(y2|ψc,ψg1 ,ψg2)]

=16κ̃(kc, kg1 , kg2)
σ2
W

Nm
+ 4[κ̃(kc, kg1 , kg2) − κ(kc, kg1)κ(kc, kg2)]

ε2

Nm
.

F Leakage Evaluation of Random Delay

The resilience of random delay is determined by the maximum leakage εrd, which
is the overall leakage accumulated with random shifting. We consider two sce-
narios of the original leakage:

1. Single-point leakage. Only one time point s in the power consumption wave-
form leaks information with signal level ε. This is the simplified ideal case.
The maximum leakage after random shifting is the original leakage dis-
tributed with the maximum probability, which is:

εrd = ε · frd(tmax) = ε · max
0≤t≤Nrd−1

{frd(t)} .

For uniform random delay, Pr(t) = frd(t) = 1/Nrd, for t = 0, 1, ..., Nrd − 1.
Hence the signal εrd = ε/Nrd decreases from the original signal ε by a factor
Nrd.

2. Multiple-point leakage. At time t, the leakage signal strength is ε(t). Then
the leakage signal at time i with random delay is:

εrd(i) =

Nrd−1∑
t=0

frd(t)ε(i+ t).

The maximum leakage accumulation with random delay as:

εrd = max
i

{
Nrd−1∑
t=0

frd(t)ε(i + t)

}
.

Then the success rate of the strongest single-point DoM attack on the device
with random delay can be calculated by Formula (7) using the εrd value.
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Abstract. In recent years, PUF-based schemes have not only been suggested for
the basic tasks of tamper sensitive key storage or the identification of hardware
systems, but also for more complex protocols like oblivious transfer (OT) or bit
commitment (BC), both of which possess broad and diverse applications. In this
paper, we continue this line of research. We first present an attack on two re-
cent OT- and BC-protocols which have been introduced at CRYPTO 2011 by
Brzuska et al. [1,2]. The attack quadratically reduces the number of CRPs which
malicious players must read out in order to cheat, and fully operates within the
original communication model of [1,2]. In practice, this leads to insecure pro-
tocols when electrical PUFs with a medium challenge-length are used (e.g., 64
bits), or whenever optical PUFs are employed. These two PUF types are currently
among the most popular designs. Secondly, we discuss countermeasures against
the attack, and show that interactive hashing is suited to enhance the security of
PUF-based OT and BC, albeit at the price of an increased round complexity.
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1 Introduction

Today’s electronic devices are mobile, cross-linked and pervasive, which makes them
a well-accessible target for adversaries. The well-known protective cryptographic tech-
niques all rest on the concept of a secret binary key: They presuppose that devices store
a piece of digital information that is, and remains, unknown to an adversary. It turns out
that this requirement is difficult to realize in practice. Physical attacks such as invasive,
semi-invasive or side-channel attacks carried out by adversaries with one-time physical
access to the devices, as well as software attacks like application programming interface
(API) attacks, viruses or Trojan horses, can lead to key exposure and security breaks.
As Ron Rivest emphasized in his keynote talk at CRYPTO 2011 [22], merely calling a
bit string a “secret key” does not make it secret, but rather identifies it as an interesting
target for the adversary.

Indeed, one main motivation for the development of Physical Unclonable Functions
(PUFs) was their promise to better protect secret keys. A PUF is an (at least partly)
disordered physical system P that can be challenged with so-called external stimuli or

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 251–267, 2012.
c© International Association for Cryptologic Research 2012
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challenges c, upon which it reacts with corresponding responses r. Contrary to standard
digital systems, these responses depend on the micro- or nanoscale structural disorder
of the PUF. It is assumed that this disorder cannot be cloned or reproduced exactly,
not even by the PUF’s original manufacturer, and that it is unique to each PUF. Any
PUF P thus implements a unique and individual function fP that maps challenges c to
responses r = fP (c). The tuples (c, r) are called the challenge-response pairs (CRPs)
of the PUF.

Due to its complex internal structure, a PUF can avoid some of the shortcomings of
classical digital keys. It is usually harder to read out, predict, or derive PUF-responses
than to obtain digital keys that are stored in non-volatile memory. The PUF-responses
are only generated when needed, which means that no secret keys are present perma-
nently in the system in an easily accessible digital form. Finally, certain types of PUFs
are naturally tamper sensitive: Their exact behavior depends on minuscule manufactur-
ing irregularities, often in different layers of the IC, and removing or penetrating these
layers will automatically change the PUF’s read-out values. These facts have been ex-
ploited in the past for different PUF-based security protocols. Prominent examples in-
clude identification [21,9], key exchange [21], and various forms of (tamper sensitive)
key storage and applications thereof, such as intellectual property protection or read-
proof memory [11,14,29].

In recent years, also the use of PUFs in more advanced cryptographic protocols to-
gether with formal security proofs has been investigated. In these protocols, usually
PUFs with a large challenge set and with a freely accessible challenge-response inter-
face are employed.1 The PUF is used similar to a “physical random oracle”, which is
transferred between the parties, and which can be read-out exactly by the very party
who currently holds physical possession of it. Its input-output behavior is assumed to
be so complex that its response to a randomly chosen challenge cannot be predicted
numerically and without direct physical measurement, not even by a person who had
physical access to the PUF at earlier points in time. In 2010, Rührmair [23] showed
that oblivious transfer (OT) can be realized between two parties by physically trans-
ferring a PUF in this setting. He observed that via the classical reductions of Kil-
ian [13], this implies PUF-based bit commitment and PUF-based secure multi-party
computations. In the same year, the first formal security proof for a PUF-protocol
was provided by Rührmair, Busch and Katzenbeisser [24]. They presented definitions
and a reductionist security proof for PUF-based identification protocols. At CRYPTO
2011 Brzuska et al. [1] adapted Canetti’s universal composition (UC) framework [3]
to include PUFs. They gave PUF-based protocols for oblivious transfer (OT), bit
commitment (BC) and key exchange (KE) and proved them to be secure in their
framework.

The investigation of advanced cryptographic settings for PUF makes sense even
from the perspective of a pure practitioner: Firstly, it clarifies the potential of PUFs
in theory, a necessary prerequisite before this potential can be unleashed in commer-
cial applications without risking security failures. Secondly, BC and OT protocols are

1 This type of PUF sometimes has been termed Physical Random Function [9] or Strong PUF
[11,26,25,24] in the literature. We emphasize that the Weak/Strong PUF terminology intro-
duced by Guajardo et al. [11] is not to be understood in a judgemental or pejorative manner.
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extremely versatile cryptographic primitives, which allow the implementation of such
diverse tasks as zero-knowledge identification, the enforcement of semi-honest behavior
in cryptographic protocols, secure multi-party computation (including online auctions
or electronic voting), or key exchange. If these tasks shall be realized securely in prac-
tice by PUFs, a theoretical investigation of the underlying primitives — in this case BC
and OT — is required first.

In this paper, we continue this line of research, and revisit the use of PUFs in OT-
and BC-protocols. Particular emphasis is placed on the achievable practical security
if well-established PUFs (like electrical PUFs with 64-bit challenge lengths or optical
PUFs) are used in the protocols. We start by observing an attack on the OT- and BC-
protocols of Brzuska et al. [1,2] which quadratically reduces the number of responses
that a malicious player must read out in order to cheat. It works fully in the original
communication model of Brzuska et al. and makes no additional assumptions. As we
show, the attack makes the protocols insecure in practice if electrical PUFs with medium
bitlengths around 64 bits are used, and generally if optical PUFs are employed. This has
a special relevance since the use of optical PUFs for their protocols had been explicitly
proposed by Brzuska et al. (see Section 8 of [2]). Secondly, we investigate countermea-
sures against our attack, and show that interactive hashing can be used to enhance the
security of PUF-based OT and BC protocols.

Our work continues the recent trend of a formalization of PUFs, including proto-
col analyses, more detailed investigations of non-trivial communication settings, and
formal security proofs. This trend will eventually lay the foundations for future PUF
research, and seems indispensible for a healthy long-term development of the field. It
also combines protocol design and practical security analyses in a novel manner.

Organization of this Paper. In Section 2 we present the protocols of Brzuska et al. in
order to achieve a self-contained treatment. Section 3 gives our quadratic attack. Section
4 discusses its practical effect. Section 5 discusses countermeasures. We conclude the
paper in Section 6.

2 The Protocols of Brzuska et al.

Our aim in this paper is to present a quadratic attack on two recent PUF-protocols for
OT and BC by Brzuska et al. [1,2] and to discuss its practical relevance. In order to
achieve a self-contained treatment, we will now present these two protocols. To keep
our exposition simple, we will not use the full UC-notation of [1], and will present the
schemes mostly without error correction mechanisms, since the latter play no role in
the context of our attack.

The protocols use two communication channels between the communication part-
ners: A binary channel, over which all digital communication is handled. It is
assumed that this channel is non-confidential, but authenticated. And secondly an in-
secure physical channel, over which the PUF is sent. It is assumed that adversaries
can measure adaptively selected CRPs of the PUF while it is in transition over this
channel.
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2.1 Oblivious Transfer

The OT protocol of [1] implements one-out-of-two string oblivious transfer. It is as-
sumed that in each subsession the senderPi initially holds two (fresh) bitstrings s0, s1 ∈
{0, 1}λ, and that the receiver Pj holds a (fresh) choice bit b.

Brzuska et al. generally assume in their treatment that after error correction and the
application of fuzzy extractors, a PUF can be modeled as a function PUF : {0, 1}λ →
{0, 1}rg(λ). We use this model throughout this paper, too. In the subsequent protocol of
Brzuska et al., it is furthermore assumed that rg(λ) = λ, i.e., that the PUF implements
a function PUF : {0, 1}λ → {0, 1}λ (compare [1,2]).

Protocol 1: PUF-BASED OBLIVIOUS TRANSFER ([1], SLIGHTLY SIMPLIFIED DE-
SCRIPTION)

External Parameters: The protocol has a number of external parameters, including the
security parameter λ, the session identifier sid, a number N that specifies how many
subsessions are allowed, and a pre-specified PUF-family P , from which all PUFs which
are used in the protocol must be drawn.

Initialization Phase: Execute once with fixed session identifier sid:

1. The receiver holds a PUF which has been drawn from the family P .
2. The receiver measures l randomly chosen CRPs c1, r1, . . . , cl, rl from the PUF, and

puts them in a list L := (c1, r1, . . . , cl, rl).
3. The receiver sends the PUF to the sender.

Subsession Phase: Repeat at most N times with fresh subsession identifier ssid:

1. The sender’s input are two strings s0, s1 ∈ {0, 1}λ, and the receiver’s input is a bit
b ∈ {0, 1}.

2. The receiver chooses a CRP (c, r) from the list L at random.
3. The sender chooses two random bitstrings x0, x1 ∈ {0, 1}λ and sends x0, x1 to the

receiver.
4. The receiver returns the value v := c⊕ xb to the sender.
5. The sender measures the responses r0 and r1 of the PUF that correspond to the

challenges c0 := v ⊕ x0 and c1 := v ⊕ x1.
6. The sender sets the values S0 := s0 ⊕ r0 and S1 := s1 ⊕ r1, and sends S0, S1 to

the receiver.
7. The receiver recovers the string sb that depends on his choice bit b as sb = Sb ⊕ r.

He erases the pair (c, r) from the list L.

Comments. The protocol implicitly assumes that the sender and receiver can interrogate
the PUF whenever they have access to it, i.e., that the PUF’s challenge-response inter-
face is publicly accessible and not protected. This implies that the employed PUF must
possess a large number of CRPs. Using a PUF with just a few challenges does not make
sense: The receiver could then create a full look-up table for all CRPs of such a PUF
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before sending it away in Step 3 of the Initialization Phase. This would subsequently
allow him to recover both strings s0 and s1 in Step 6 of the protocol subsession, as
he could obtain r0 and r1 from his look-up table. Similar observations hold for the
upcoming protocol 2. Indeed, all protocols discussed in this paper require PUFs with
a large number of challenges and publicly accessible challenge-response interfaces.
These PUFs have sometimes been referred to as Physical Random Functions or also
as Strong PUFs in the literature [11,26,25].

Furthermore, please note that no physical transfer of the PUF is envisaged during
the subsessions of the protocol. According to the model of Brzuska et al., an adversary
only has access to it during the initialization phase, but not between the subsessions.
This protocol use has some similarities with a stand-alone usage of the PUF, in which
exactly one PUF-transfer occurs between the parties.

2.2 Bit Commitment

The second protocol of [1] implements PUF-based Bit Commitment (BC) by a generic
reduction to PUF-based OT. The BC-sender initially holds a bit b. When the OT-
Protocol is called as a subprotocol, the roles of the sender and receiver are reversed:
The BC-sender acts as the OT-receiver, and the BC-receiver as the OT-sender. The de-
tails are as follows.

Protocol 2: PUF-BASED BIT COMMITMENT VIA PUF-BASED OBLIVIOUS TRANS-
FER ([1], SLIGHTLY SIMPLIFIED DESCRIPTION)

Commit Phase:

1. The BC-sender and the BC-receiver jointly run an OT-protocol (for example Proto-
col 1).

(a) In this OT-protocol, the BC-sender acts as OT-receiver and uses his bit b as the
choice bit of the OT-protocol.

(b) The BC-receiver acts as OT-sender. He chooses two strings s0, s1 ∈ {0, 1}λ at
random, and uses them as his input s0, s1 to the OT-protocol.

2. When the OT-protocol is completed, The BC-sender has learned the string v := sb.
This closes the commit phase.

Reveal Phase:

1. In order to reveal bit b, the BC-sender sends the string (b, v) (with v = sb) to the
BC-receiver.

Comments. The security of the BC-protocol is inherited from the underlying
OT-protocol. Once this protocol is broken, also the security of the BC-protocol is lost.
This will be relevant in the upcoming sections.
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3 A Quadratic Attack on Protocols 1 and 2

We will now discuss a cheating strategy in Protocols 1 and 2. Compared to an attacker
who exhaustively queries the PUF for all of its m possible challenges, we describe an
attack on Protocols 1 and 2 which reduces this number to

√
m. As we will argue later

in Section 4, this has a particularly strong effect on the protocol’s security if an optical
PUF is used (as has been explicitly suggested by [2]), or if electrical PUFs with medium
challenge lengths of 64 bits are used.

Our attack rests on the following lemma.

Lemma 3. Consider the vector space ({0, 1}λ,⊕), λ ≥ 2, with basis B = {a1, . . . ,
a�λ/2�, b1, . . . , b�λ/2�}. Let A be equal to the linear subspace generated by the vectors
in BA = {a1, . . . , a�λ/2�}, and let B be the linear subspace generated by the vectors
in BB = {b1, . . . , b�λ/2�}. Define S := A ∪ B. Then it holds that:

(i) Any vector z ∈ {0, 1}λ can be expressed as z = a ⊕ b with a, b ∈ S, and this
expression (i.e., the vectors a and b) can be found efficiently (i.e., in at most poly(λ)
steps).

(ii) For all distinct vectors x0, x1, v ∈ {0, 1}λ there is an equal number of combina-
tions of linear subspaces A and B as defined above for which x0 ⊕ v ∈ A and
x1 ⊕ v ∈ B.

(iii) S has cardinality |S| ≤ 2 · 2�λ/2�.

Proof. (i) Notice that any vector z ∈ {0, 1}λ can be expressed as a linear combination
of all basis vectors: z =

∑
uiai +

∑
vjbj , i.e., z = a⊕ b with a ∈ A and b ∈ B. This

expression is found efficiently by using Gaussian elimination.
(ii) Without loss of generality, since x0, x1 and v are distinct vectors, we may choose

a1 = x0⊕v �= 0 and b1 = x1⊕v �= 0. The number of combinations of linear subspaces
A and B is independent of the choice of a1 and b1. (Notice that if x0 �= x1 but v = x0,
then the number of combinations is twice as large.)

(iii) The bound follows from the construction of S and the cardinalities of A and B,
which are |A| = 2�λ/2� and |B| = 2�λ/2�.

An Example. Let us give an example in order to illustrate the principle of Lemma 3.
Consider the vector space ({0, 1}λ,⊕) for an even λ, and choose as subbases BA0 =
{e1, . . . , eλ/2} and BB0 = {eλ/2+1, . . . , eλ}, where ei is the unit vector of length λ
that has a one in position i and zeros in all other positions. Then the basis BA0 spans the
subspace A0 that contains all vectors of length λ whose second half is all zero, and BB0

spans the subspace B0 that comprises all vectors of length λ whose first half is all zero.
It then follows immediately that every vector z ∈ {0, 1}λ can be expressed as z = a⊕b
with a ∈ A0 and b ∈ B0, or, saying this differently, with a, b ∈ S and S := A0 ∪ B0.
It is also immediate that S has cardinality |S| ≤ 2 · 2λ/2.

Relevance for PUFs. The lemma translates into a PUF context as follows. Suppose
that a malicious and an honest player play the following game. The malicious player
gets access to a PUF with challenge length λ in an initialization period, in which he
can query CRPs of his choice from the PUF. After that, the PUF is taken away from
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him. Then, the honest player chooses a vector z ∈ {0, 1}λ and sends it to the malicious
player. The malicious player wins the game if he can present the correct PUF-responses
r0 and r1 to two arbitrary challenges c0 and c1 which have the property that c0⊕c1 = z.
Our lemma shows that in order to win the game with certainty, the malicious player
does not need to read out the entire CRP space of the PUF in the initialization phase; he
merely needs to know the responses to all challenges in the set S of Lemma 3, which
has a quadratically reduced size compared to the entire CRP space. This observation is
at the heart of the attack described below.

In order to make the attack hard to detect for the honest player, it is necessary that the
attacker chooses random subspaces A and B, and does not use the above trivial choices
A0 and B0 all the time. This fact motivates the random choice of A and B in Lemma 3.
The further details are as follows.

The Attack. As in [1,2], we assume that the PUF has got a challenge set of {0, 1}λ.
Given Lemma 3, the OT-receiver (who initially holds the PUF) can achieve a quadratic
advantage in Protocol 1 as described below.

First, he chooses uniformly random linear subspaces A and B, and constructs the set
S, as described in Lemma 3. While he holds possession of the PUF before the start of
the protocol, he reads out the responses to all challenges in S. Since |S| ≤ 2 · 2�λ/2�,
this is a quadratic improvement over reading out all responses of the PUF.

Next, he starts the protocol as normal. When he receives the two values x0 and x1 in
Step 3 of the protocol, he computes two challenges c∗0 and c∗1 both in set S such that

x0 ⊕ x1 = c∗0 ⊕ c∗1.

According to Lemma 3(i), this can be done efficiently (i.e., in poly(λ) operations).
Notice that, since the receiver knows all the responses corresponding to challenges in
S, he in particular knows the two responses r∗0 and r∗1 that correspond to the challenges
c∗0 and c∗1.

Next, the receiver deviates from the protocol and sends the value v := c∗0 ⊕ x0 in
Step 4. For this choice of v, the two challenges c0 and c1 that the sender uses in Step 5
satisfy

c0 := c∗0 ⊕ x0 ⊕ x0 = c∗0

and
c1 := c∗0 ⊕ x0 ⊕ x1 = c∗0 ⊕ c∗0 ⊕ c∗1 = c∗1.

By Lemma 3(ii), Alice cannot distinguish the received value v in Step 4 from any ran-
dom vector v. In other words, Alice cannot distinguish Bob’s malicious behavior (i.e.,
fabricating a special v with suitable properties) from honest behavior. As a consequence,
Alice continues with Step 6 and transmits S0 = s0 ⊕ r∗0 and S1 = s1 ⊕ r∗1 . Since Bob
knows both r∗0 and r∗1 , he can recover both s0 and s1. This breaks the security of the
protocol.

Please note the presented attack is simple and effective: It fully works within the
original communication model of Brzuska et al. [1,2]. Furthermore, it does not require
laborious computations of many days on the side of the attacker (as certain modeling
attacks on PUFs do [25]). Finally, due to the special construction we proposed, the
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honest players will not notice the special choice of the value v, as the latter shows no
difference from a randomly chosen value.

Effect on Bit Commitment (Protocol 2). Due to the reductionist construction of Protocol
2, our attack on the oblivious transfer scheme of Protocol 1 directly carries over to the
bit commitment scheme of Protocol 2 if Protocol 1 is used in it as a subprotocol. By
using the attack, a malicious sender can open the commitment in both ways by reading
out only 2 ·2�λ/2� responses (instead of all 2λ responses) of the PUF. On the other hand
it can be observed easily that the hiding property of the BC-Protocol 2 is unconditional,
and is not affected by our attack.

4 Practical Consequences of the Attack

What are the practical consequences of our quadratic attack, and how relevant is it
in real-world applications? The situation can perhaps be illustrated via a comparison
to classical cryptography. What effect would a quadratic attack have on schemes like
RSA, DES and SHA-1? To start with RSA, the effect of a quadratic attack here is rather
mild: The length of the modulus must be doubled. This will lead to longer computation
times, but restore security without further ado. In the case of single-round DES, how-
ever, a quadratic attack would destroy its security, and the same holds for SHA-1. The
actual effect of our attack on PUF-based OT and BC has some similarities with DES or
SHA-1: PUFs are finite objects, which cannot be scaled in size indefinitely due to area
requirements, arising costs, and stability problems. This will also become apparent in
our subsequent discussion.

4.1 Electrical Integrated PUFs

We start our discussion by electrical integrated PUFs, and take the well-known Arbiter
PUF as an example. It has been discussed in theory and realized in silicon mainly for
challenge lengths of 64 bits up to this date [9,10,15,28]. Our attack on such a 64-bit
implementation requires the read-out of 2 · 232 = 8.58 · 109 CRPs by the receiver. This
read-out can be executed before the protocol (i.e., not during the protocol), and will
hence not be noticed by the sender. Assuming a MHz CRP read-out rate [15] of the
Arbiter PUF, the read-out takes 8.58 · 103 sec, or less than 144min.

Please note that the attack is independent of the cryptographic hardness of the PUF,
such as its resilience against machine learning attacks. For example, a 64-bit, 8-XOR-
Arbiter PUF (i.e., an Arbiter PUF with eight parallel standard 64-bit Arbiter PUFs
whose single responses are XORed at the end of the structure) is considered secure
in practice against all currently known machine learning techniques [25]. Nevertheless,
this type of PUF would still allow the above attack in 144min.

Our attacks therefore enforce the use of PUFs with a challenge bitlength of 128 bits
or more in Protocols 1 and 2. Since much research currently focuses on 64-bit im-
plementations of electrical PUFs, publication and dissemination of the attack seems
important to avoid their use in Protocols 1 and 2. Another aspect of our attack is that it
motivates the search for OT- and BC-protocols that are immune, and which can safely
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be used with 64-bit implementations. The reason is that the usage of 128-bit PUFs
doubles the area consumption of the PUF and negatively affects costs.

4.2 Optical PUFs

Let us now discuss the practical effect of our attack on the optical PUF introduced by
Pappu [20] and Pappu et al. [21]. The authors use a cuboid-shaped plastic token of
size 1 cm × 1 cm × 2.5 mm, in which thousands of light scattering small spheres are
distributed randomly. They analyze the number of applicable, decorrelated challenge-
response pairs in their set-up, arriving at a figure of 2.37 · 1010 [21]. Brzuska et al.
assume that these challenges are encoded in a set of the form {0, 1}λ, in which case
λ = "log2 2.37 · 1010# = 35. If this number of 235 is reduced quadratically by virtue
of Lemma 3, we obtain on the order of 2 · 218 = 5.2 · 105 CRPs that must be read
out by an adversary in order to cheat. It is clear that even dedicated measurement set-
ups for optical PUFs cannot realize the MHz rates of the electrical example in the last
section. But even assuming mild read-out rates of 10 CRPs or 100 CRPs per second, we
still arrive at small read-out times of 5.2 · 104 sec or 5.2 · 103 sec, respectively. This is
between 14.4 hours (for 10 CRPs per second) or 87 minutes (for 100 CRPs per second).
If a malicious receiver holds the PUF for such a time frame before the protocol starts
(which is impossible to control or prevent for the honest players), he can break the
protocol’s security.

Can the situation be cleared by simply scaling the optical PUF to larger sizes? Un-
fortunately, also an asymptotic analysis of the situation shows the same picture. All
variable parameters of the optical PUF [21,20,16] are the x-y-coordinate of the incident
laser beam and the spatial angle Θ under which the laser hits the token. This leads to
a merely cubic complexity in the three-dimensional diameter d of the cuboid scattering
token. 2 Given our attack, this implies that the adversary must only read out O(d 1.5)
challenges in order to cheat in Protocols 1 and 2. If only the independent challenges
are considered, the picture is yet more drastic: As shown in [31], the PUF has at most a
quadratic number of independent challenges in d. This reduces to a merely linear num-
ber of CRPs which the adversary must read out in our attack. Finally, we remark that
scaling up the size of the PUF also quickly reaches its limits under practical aspects:
The token considered by Pappu et al. [21,20] has an area of 1 cm × 1 cm. In order to
slow down the quadratic attack merely by a factor of 10, a token of area 10 cm × 10 cm
would have to be used. Such a token is too large to even fit onto a smart card.

Overall, this leads to the conclusion that optical PUFs like the ones discussed in
[20,21,16] cannot be used safely with the Protocols 1 and 2 in the face of our attack. Due
to their low-degree polynomial CRP complexity, and due to practical size constraints,
simple scaling of the PUFs constitutes no efficient countermeasure. This distinguishes
the optical approach from the electrical case of the last section. This observation has a
particular relevance, since Brzuska et al. had explicitly suggested optical PUFs for the
implementation of their protocols (see Section 8 of [2]).

2 Please note in this context that the claim of [2] that the number of CRPs of an optical PUF is
super-polynomial must have been made erroneously or by mistake; our above brief analysis
shows that it is at mostly cubic. The low-degree polynomial amount of challenges of the optical
PUF is indeed confirmed by the entire literature on the topic, most prominently [21,20,31].
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5 Potential Countermeasures

5.1 Additional PUF Transfers and Time Constraints?

Can we bind the time in which the malicious player has got access to the PUF in order
to prevent our attack? The current Protocols 1 and 2 obviously are unsuited to this end;
but could there be modifications of theirs which have this property? A simple approach
seems the introduction of one additional PUF transfer from the sender to the receiver in
the initialization phase. This assumes that the sender initially holds the PUF, transfers it
to the receiver, and measures the time period within which the receiver returns the PUF.
The (bounded) period in which the receiver had access to the PUF can then be used to
derive a bound on the number of CRPs the receiver might know. This could be used
to enforce security against a cheating receiver. Please note that a long, uncontrolled
access time for the sender is no problem for the protocol’s security, whence it suffices
to concentrate on the receiver.

On closer inspection, however, there are significant problems with this approach. In
general, each PUF-transfer in a protocol is very costly. One PUF-transfer per protocol
seems acceptable, since it is often executed automatically and for free, for example by
consumers carrying their bank cards to cash machines. But having two such transfers in
one protocol, as suggested above, will most often ruin a protocol’s practicality.

A second issue is that binding the adversarial access time in a tight manner by two
consecutive PUF transfers is very difficult. How long will one physical transfer of the
PUF take? 1 day? If the adversary can execute this transfer a few hours faster and
can use the gained time for executing measurements on the PUF, our countermeasure
fails. The same holds if the adversary carries out the physical transfer himself and can
measures the PUF while it is in transit.

In summary, enforcing a tight time bound on the receiver’s access time by two PUF
transfers or also by other measures will be impossible in almost any applications. The
above idea may thus be interesting as a theoretical concept for future PUF-protocol
design, but cannot be considered a generally efficient and practically relevant counter-
measure.

5.2 Interactive Hashing

Let us now discuss a second and more effective countermeasure: The employment of
interactive hashing (IH) as a substep in OT protocols. As we will show, protocols based
on IH can achieve better security properties than Protocol 1. The idea of using IH in the
context of PUFs has been first been suggested by Rührmair in 2010; his OT-protocol
was the first published PUF-based two-player protocol [23]. The following approach is
a simplified version of his original scheme. We also give (for the first time) a security
analysis of the protocol. Via the general reduction of BC to OT presented in Protocol 2,
our construction for OT can also be used to implement PUF-based BC.

5.2.1 Interactive Hashing as a Security Primitive
Interactive hashing (IH) is a two-player security primitive suggested by [18,17]. It has
been deployed as a protocol tool in various contexts, including zero-knowledge proofs,
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bit commitment and oblivious transfer (see references in [17]. The following easily
accessible and application-independent definition of IH has been given in [4]; for more
a formal treatment see [27].

Definition 4 (Interactive Hashing (IH) [4]). Interactive Hashing is a cryptographic
primitive between two players, the sender and the receiver. It takes as input a string
c ∈ {0, 1}t from the sender, and produces as output two t-bit strings, one of which is
c and the other c′ �= c. The output strings are available to both the sender and the
receiver, and satisfy the following properties:

1. The receiver cannot tell which of the two output strings was the original input. Let
the two output strings be c0, c1, labeled according to lexicographic order. Then if
both strings were a priori equally likely to have been the sender’s input c, then they
are a posteriori equally likely as well.

2. When both participants are honest, the input is equally likely to be paired with any
of the other strings. Let c be the sender’s input and let c′ be the second output of
interactive hashing. Then provided that both participants follow the protocol, c′

will be uniformly distributed among all 2t − 1 strings different from c.
3. The sender cannot force both outputs to have a rare property. Let G be a subset of

{0, 1}t representing the sender’s “good set”. Let G be the cardinality of G and let
T = 2t. Then if G/T is small, the probability that a dishonest sender will succeed
in having both outputs c0, c1 be in G is comparably “small”.

One standard method to implement IH is by virtue of a classical technique by Naor et
al. [17]. To achieve a self-contained treatment, we describe this technique in a variant
introduced by Crepeau et al. [4] below. In the protocol below, let c be a t-bit string that
is the input to sender in the interactive hashing. All operations take place in the binary
field F2.

Protocol 5: INTERACTIVE HASHING [4]

1. The receiver chooses a (t− 1)× t matrix Q uniformly at random among all binary
matrices of rank t − 1. Let qi be the i-th query, consisting of the i-th row of Q.

2. For 1 ≤ i ≤ t − 1 do:
(a) The receiver sends query qi to the sender.
(b) The sender responds with vi = qi · c.
(c) Given Q and v ∈ {0, 1}t−1 (the vector of the sender’s responses), both parties

compute the two values of c ∈ {0, 1}t consistent with the linear system Q ·c =
v. These solutions are labeled c0, c1 according to lexicographic order.

The following theorem, which is taken from [4,27], tells us about the security of the
above scheme. It relates to the security definition 4.

Theorem 6 (Security of Protocol 5). Protocol 5 satisfies all three information theo-
retic security properties of Definition 4. Specifically, for Property 3 of Definition 4, it
ensures that a dishonest sender can succeed in causing both outputs to be in the “good
set” G with probability at most 15.6805 · G/T , where G = |G| and T = 2t.
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5.2.2 Oblivious Transfer
We are now presenting a PUF-based oblivious transfer protocol that uses IH as a sub-
step. It bears some similarities with an earlier protocol of Rührmair [23] in the sense
that it also uses interactive hashing, but is slightly simpler.

Protocol 7: PUF-BASED 1-OUT-OF-2 OBLIVIOUS TRANSFER WITH INTERACTIVE

HASHING

1. The sender’s input are two strings s0, s1 ∈ {0, 1}λ and the receiver’s input is a bit
b ∈ {0, 1}.

2. The receiver chooses a challenge c ∈ {0, 1}λ uniformly at random. He applies c to
the PUF, which responds r. He transfers the PUF to the sender.

3. The sender and receiver execute an IH protocol, where the receiver has input c.
Both get outputs c0, c1. Let i be the value where ci = c.

4. The receiver sends b′ := b⊕ i to the sender.
5. The sender applies the challenges c0 and c1 to the PUF. Denote the corresponding

responses as r0 and r1.
6. The sender sends S0 := s0 ⊕ rb′ and S1 := s1 ⊕ r1−b′ to receiver.
7. The receiver recovers the string sb that depends on his choice bit b as Sb ⊕ r =

sb ⊕ rb⊕b′ ⊕ r = sb ⊕ ri ⊕ r = sb.

5.2.3 Security and Practicality Analysis
We start by a security analysis of Protocol 7 in the so-called “stand alone, good PUF
model”, which was introduced by van Dijk and Rührmair in [6]. In this communication
model, the following two assumptions are made: (i) the PUF-protocol is executed only
once, and the adversary or malicious players have no access to the PUF anymore after
the end of the protocol; (ii) the two players do not manipulate the used PUFs on a
hardware level. We stress that whenever these two features cannot be guaranteed in
practical applications, a number of unexpected attacks apply, which spoil the security
of the respective protocols. Even certain impossibility results can be shown under these
circumstances; see [6] for details.

In the following analysis in the stand alone, good PUF model, we assume that the
adversary has the following capabilities:

1. He knows a certain number of CRPs of the PUF, and has possibly used them to
build an (incomplete) predictive model of the PUF. In order to model this ability,
we assume that there is a proper subset S � C of the set of all challenges C
such that the adversary knows the correct responses to the challenges in S with
probability one. The cardinality of S depends on the previous access times of the
adversary to the PUF and the number of CRPs he has collected from other sources,
for example protocol eavesdropping. It must be estimated by the honest protocol
users based on the given application scenario. Usually |S| $ |C|.

2. Furthermore, we assume that the adversary can correctly guess the response to a
uniformly and randomly chosen challenge c ∈ C \ S with probability at most
ε, where the probability is taken over the choice of c and over the adversary’s
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random coins. Usually ε will be significantly smaller than one. To name two exam-
ples: In the case of a well-designed electrical PUF with single-bit output, ε will be
around 0.5; in the case of a well-designed optical PUF [20,21] with multi-bit im-
ages as outputs, ε can be extremely small, for example smaller than 2−100. Again,
the honest protocol users must estimate ε based on the circumstances and the em-
ployed PUF.

Assuming the above capabilities and using Theorem 6, the probability that the receiver
can cheat in Protocol 7 is bounded above by

15.6805 · |S|/|C| + ε,

a term that will usually be significantly smaller than one.
Under the presumption that this cheating probability of the receiver is indeed smaller

than one, the security of Protocol 7 can be further amplified by using a well-known
result by Damgard, Kilian and Savail (see Lemma 3 of [5]):

Theorem 8 (OT-Amplification [5]). Let (p, q)-WOT be a 1-2-OT protocol where the
sender with probability p learns the choice bit c and the receiver with probability q
learns the other bit b1−c. Assume that p + q < 1. Then the probabilities p and q can
be reduced by running k (p, q)-WOT-protocols to obtain a (1 − (1 − p)k, qk)-WOT
protocol.

In the case of our OT-Protocol 7 it holds that p = 0, whence the technique of Damgard
et al. leads to an efficient security amplification, and to a (0, qk)-WOT protocol. The
PUF does not need to be transferred k times, but one PUF-transfer suffices. We remark
that the probability amplification according to Theorem 8 is not possible with Protocol
1 after our quadratic attack, since the attack leads to a cheating probability of one for
the receiver, i.e., p+ q ≥ 1 in the language of Theorem 8.

Let us quantatively illustrate the security gain of Protocol 7 over Protocol 1 via a
simplified back-of-the-envelope calculation: We argued earlier that via our quadratic
attack, a malicious receiver who has read out 2 · 218 CRPs from an optical PUF can
cheat with probability 1 (= with certainty) in Protocol 1. Let us compare this to the case
that an optical PUF is used in the IH-based Protocol 7. Let us assume that the adversary
has collected the same number of CRPs (= 2 · 218 CRPs) as in the quadratic attack,
and that the (multi-bit) response of the optical PUF on the remaining CRPs is still hard
to preduct, i.e., it cannot be predicted better than with probability ε ≤ 2−100. Then by
Theorem 6 and by our above analysis, the adversary’s chances to break Protocol 7 are
merely around 15.6805 · 219 · 2−35 + 2−100 ≈ 0.00024. This probability can then be
exponentially reduced further via Theorem 8.

On the downside, however, the IH-Protocol 5 has a round complexity that is linear
(i.e., equal to λ − 1) in the security parameter λ. This is relatively significant for the
optical PUF (where λ = 35) and electrical PUFs with medium bitlengths (where λ =
64). One possible way to get around this problem is to use the constant round interactive
hashing scheme by Ding et al. [7]. However, this scheme has slightly worse security
guarantees than the IH scheme of the last sections. Future work will analyze the exact
security loss under the use of the IH scheme of Ding. A first analysis to this end can be
found in van Dijk and Rührmair [6].
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To summarize the discussion in this section, interactive hashing can restore the secu-
rity of PUF-based OT protocols even for small sized PUFs with 64-bit challenge lengths
and for optical PUFs in the stand alone, good PUF model. Via the general reduction of
BC to OT given in Protocol 2, this result can be used to securely implement PUF-based
BC in this model, too. However, the use of IH leads to an increased number of com-
munication rounds that is about equal to the (binary) challenge length of the PUF, i.e.,
around 64 rounds for the integrated PUFs with 64 bit challenges, and around 35 rounds
for optical PUFs of size 1 cm2 [21]. It must be decided on the basis of the concrete
application scenario whether such a number of rounds is acceptable.

6 Summary and Conclusions

We revisited PUF-based OT- and BC-protocols, including the recent schemes of Rühr-
mair from Trust 2010 [23] and Brzuska et al. from Crypto 2011 [1,2]. We placed spe-
cial emphasis on the security which these protocols achieve in practice, in particular
when they are used in connection with widespread optical and 64-bit electrical PUF-
implementations. Our analysis revealed several interesting facts.

First of all, we described a simple and efficient method by which the OT- and BC-
protocol of Brzuska et al. can be attacked with probability one in practice if electrical
PUFs with 64-bit challenge lengths are used, or whenever optical PUFs are employed.
Since much research focuses on 64-bit implementations of electrical PUFs [9,10,15],
and since Brzuska et al. had explicitly suggested optical PUFs for the implementation of
their protocols (see Section 8 of [2]), the publication and dissemination of our quadratic
attack seems important to avoid their use in Protocols 1 and 2. Please note that our
attack is independent of the cryptographic hardness of the PUF, and is merely based on
its challenge size.

Secondly, we discussed an alternative class of protocols for oblivious transfer that are
based on interactive hashing techniques. They are inspired by the earlier OT-protocol of
Rührmair [23]. We argued that these protocols lead to better security in practice. They
can be used safely with 64-bit electrical PUFs. When used with optical PUFs, they
lead to better security than the protocols of Brzuska et al., but the security margins are
tighter than in the 64-bit case. In both cases, a well-known result by Damgard, Kilian
and Savail [5] can be used in order to reduce the cheating probabilities exponentially.

Our discussion shows once more that PUFs are quite special cryptographic and secu-
rity tools. Due to their finite nature, asymptotic constants that might usually be hidden
in O(·)- and Θ(·)-notations become relevant in practice and should be discussed ex-
plicitly. Furthermore, their specific nature often allows new and unexpected forms of
attacks. One of the aims of our work is to bridge the gap between PUFs in theory and
applications; reconciling these two fields seems a necessary prerequisite for a healthy
long-term development of the field. We hope that the general methods and the approach
of this paper can contribute to this goal.

Recommendations for Protocols Use and Future Work. Let us conclude the paper with
a condensed recommendation for the practical implementation of PUF-based OT and
BC protocols, and by a discussion of future work. Firstly, it is clear from our results that
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the protocol of Brzuska et al. cannot be used safely with optical PUFs a la Pappu (i.e.,
with non-integrated optical PUFs that have only a small or medium sized challenge set),
or with electrical PUFs with challenge lengths around 64 bits.

Secondly, we showed that Protocols based on interactive hashing (IH) can achieve
better security. These protocols can be employed safely with optical PUFs and with
electrical PUFs of challenge length 64. Furthermore, Damgard et al.’s [5] amplification
technique can be applied in order to bring the cheating probabilities arbitrarily close to
zero. Nevertheless, we would like to stress once more to practical PUF-users that this
analysis only applies if the protocols are employed in the stand alone, good PUF model
(see Section 5.2.3 and [6]). As soon as the features of this model cannot be enforced in a
given application (for example by certifying a PUF, or by erasing PUF responses at the
protocol end [6]), certain new attacks apply, which spoil both the security of IH-based
protocols and of the protocols of Brzuska et al. These attacks are not the topic of this
publication, but have been described in all detail in [6].

If a PUF has challenge length of 128 bits or more, it seems at first sight that the proto-
cols of Brzuska et al. could be used safely in the stand alone, good PUF model, too, but
we stress that this recommendation is yet to be confirmed by full formal analysis. One
issue is that the PUF security feature required by the protocols of Brzuska et al. is (in a
nutshell) that the adversary must be unable to select two PUF-challenges with a given
distance d such that he knows the two corresponding responses. This security property
of a PUF is new in the literature and should yet be further investigated in future work
before final recommendations are being made. In particular, it does not seem simple or
straightforward to judge in practice whether a given PUF fulfills this property.

A second topic for future research is how the round complexity of the IH-based
protocols can be reduced. Some steps to this end have been made by van Dijk and
Rührmair in [6], where the constant-round interactive hashing scheme of Ding et al. [7]
is applied to obtain contant-round PUF-based OT and BC protocols.
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30. Tuyls, P., Škorić, B.: Strong Authentication with Physical Unclonable Functions. In:
Petkovic, M., Jonker, W. (eds.) Security, Privacy and Trust in Modern Data Management.
Springer (2007)
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Abstract. Secure storage of cryptographic keys in hardware is an es-
sential building block for high security applications. It has been demon-
strated that Physically Unclonable Functions (PUFs) based on unini-
tialized SRAM are an effective way to securely store a key based on the
unique physical characteristics of an Integrated Circuit (IC). The start-
up state of an SRAM memory is unpredictable but not truly random as
well as noisy, hence privacy amplification techniques and a Helper Data
Algorithm (HDA) are required in order to recover the correct value of
a full entropy secret key. At the core of an HDA are error correcting
techniques. The best known method to recover a full entropy 128-bit key
requires 4700 SRAM cells. Earlier work by Maes et al. has reduced the
number of SRAM cells to 1536 by using soft decision decoding; however,
this method requires multiple measurements (and thus also power resets)
during the storage of a key, which will be shown to be an unacceptable
overhead for many applications. This article demonstrates how soft deci-
sion decoding with only a single measurement during storage can reduce
the required number of SRAM cells to 3900 (a 17% reduction) without
increasing the size of en-/decoder. The number of SRAM cells can even
be reduced to 2900 (a 38% reduction). This does increase cost of the
decoder, but depending on design requirements it can be shown to be
worthwhile. Therefore, it is possible to securely store a 128-bit key at a
very low overhead in an IC or FPGA.

1 Introduction

Due to submicron process variations during manufacturing, every transistor in
an IC has slightly different physical properties. These properties can be mea-
sured and since the process variations are uncontrollable, they result in features
that cannot be copied. Therefore, it is possible to create an electronic device
with a unique electronic fingerprint that offers a very strong resistance against
cloning.

Physically Unclonable Functions (PUFs) are based on an electronic circuit
that measures the responses of hardware to random input challenges. These
responses depend on the unique and uncontrollable physical properties of the
device and allow to authenticate the device. PUF responses are inherently noisy,
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due to the presence of noise during the measurements. Helper Data Algorithms
(HDAs) based on forward error correction have been developed to correct this
noise. This paper presents an improved soft decoding algorithm for HDAs. In
soft decoding, decisions are not based on the 0 or 1 value of a bit but on the
probability for a bit to take the value 0 or 1.

SRAM memories have specific properties, which make them very suitable for
use as PUFs: it turns out that uninitialized SRAM contains an unpredictable
value because of the unbalance between two transistors; this unbalance depends
on process variations and is hard to control. The unpredictable start-up value
can be used for secure storage of a key. This is a convenient alternative to key
storage in EEPROM, because EEPROM brings additional costs and is typically
not available when a new technology node is rolled out. In addition to these
benefits, SRAM PUFs are also more secure than EEPROM since the key is
completely absent when the device is powered off. The SRAM values observed
do contain entropy but they are not truly random. This can be resolved by
using a larger SRAM in combination with privacy amplification (as shown by
Guajardo et al. in [6]).

1.1 Related Work

Pappu [14] introduced the concept of PUFs in 2001 under the name Physical
One-Way Functions. The proposed technology was based on obtaining a response
(scattering pattern) when shining a laser on a bubble-filled transparent epoxy
wafer. In 2002 this principle was translated by Gassend et al. [5] into Silicon
Physical Random Functions. These functions make use of the manufacturing
process variations in ICs, with identical masks, to uniquely characterize each
IC. For this purpose the frequency of ring oscillators were measured. Using this
method (now known as a Ring Oscillator PUF), they were able to character-
ize ICs. In 2004 Lee et al. [9] proposed another PUF that is based on delay
measurements, the Arbiter PUF.

Besides intrinsic PUFs based on delay measurements a second type of PUF in
ICs is known: the memory-based PUF. These PUFs are based on the measure-
ment of start-up values of memory cells. This memory-based PUF type includes
SRAM PUFs, which were introduced by Guajardo et al. in 2007 [6]. Further-
more, so-called Butterfly PUFs were introduced in 2008 by Kumar et al. [8], D
Flip-Flop PUFs by Maes et al. [11] in 2008, and recently Buskeeper PUFs by
Simons et al. [15] in 2012.

The first HDAs for generating cryptographic keys from PUFs were introduced
by Linnartz et al. [10] in 2003 (as Shielding Functions) and Dodis et al. [4] in
2004 (as Fuzzy Extractors). After these introductions, secure use of Fuzzy Ex-
tractors was discussed by Boyen in [2]. A first efficient hardware implementation
of an HDA was described in [1] by Bösch et al. The first HDA using soft decision
error correction for memory-based PUFs was proposed by Maes et al. [12,13]
in 2009.
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1.2 Our Contribution

This paper introduces a new soft decision decoding scheme for HDAs used in
PUF implementations. To the best of our knowledge, this is the first ever soft de-
cision decoder for memory-based PUFs that only requires a single PUF measure-
ment during enrollment. This approach offers a significant increase in practical
usability over the method proposed in [12,13], as will be shown in Sect. 3.

Besides using only a single enrollment measurement, the soft decision decoding
scheme as introduced in this paper allows for an efficient hardware implementa-
tion. For that reason the construction only uses simple linear block codes such
as repetition, Reed-Muller (RM), and Golay codes. This paper will show that
these soft decision decoders offer substantial added value over their hard deci-
sion counterparts from [1] and are also efficiently implementable in hardware (in
contrast to more complex codes such as BCH and LDPC).

1.3 Paper Outline

Section 2 introduces the concept of HDAs. The state of the art of soft decision
decoding in PUF HDAs is presented in Sect. 3. The problem of the known
method for soft decision decoding is discussed together with how our proposed
method can improve this. When this has been established, Sect. 4 describes the
newly proposed method in more detail. We will compare the performance of our
new method to known implementations of hard decision decoding. Results of
this comparison can be found in Sect. 5. Conclusions are drawn in Sect. 6.

2 Helper Data Algorithms

2.1 Construction for Secure Key Storage

As stated earlier, an important application of PUFs is secure key storage [16].
Memory-based PUFs can be used for this purpose. In this paper we use SRAM
PUFs as the example of memory-based PUFs. Of all memory-based PUFs,
SRAM is the one with the best performance regarding both reproducibility and
entropy (as demonstrated in [3]). Secure key storage with PUFs makes use of
an HDA to securely store and reconstruct the key. Different constructions of
HDAs exist. The implementation used in this paper is depicted in Fig. 1. We
distinguish two phases in this HDA: enrollment and reconstruction.

Enrollment. During enrollment the key is programmed into the device, com-
parable to the key programming phase for other secure key storage mechanisms.
First, the response of the targeted PUF is measured. This response is called the
reference PUF response (R) and is the input of the Fuzzy Extractor [2,4,10].
This Fuzzy Extractor (FE) derives a cryptographic key from a random secret
and computes helper data W by xor-ing the encoded secret with R. In the recon-
struction phase, W enables FE to reconstruct the exact same (“programmed”)
cryptographic key from a new response of this specific PUF. The helper data is
stored in non-volatile memory attached to the device and is public information.
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Fig. 1. Enrollment and reconstruction for the HDA

Reconstruction. In the reconstruction phase the same PUF is measured again
and its response (R′, which is slightly different from R) is input to the FE. The
FE uses W and R′ to reconstruct the cryptographic key that was “programmed”
during enrollment. If R′ is close enough to R, the original key will be successfully
reconstructed using information reconciliation.

2.2 Fuzzy Extractors

This section explains in more detail the most important building blocks of a
Fuzzy Extractor.

Secret Encoding. Secret encoding is performed during enrollment and consists
of selecting a random secret and encoding this secret with the chosen error
correction code. In this paper we use linear error correcting codes with length
n, dimension k and minimum Hamming distance d, which are listed as [n, k, d]
codes. The encoded secret C is xor-ed with R (this method is called code-offset
technique) to create the value W , which will be used during reconstruction.

Information Reconciliation. In Fig. 1 information reconciliation can be found
as “Decode secret” during reconstruction. This can be done after R′ has been
xor-ed with W to create C′, which differs from C at the same positions that R′

differs from R. Hence if R′ and R are sufficiently close together (depending on
how many errors can be corrected by the selected code construction), C′ can be
corrected into C and decoded into the secret encoded at enrollment.
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Privacy Amplification. As an attacker may have partial information on the
PUF (due to non-randomness in the response), the selected secret should be
compressed into a cryptographic key with maximum entropy. This minimizes
the knowledge of the attacker about the value of the key. According to [6] the
secrecy rate for SRAM PUFs is 0.76, which indicates that for deriving a key of
128 bits with full entropy a secret of "128/0.76# = 171 bits is required. This is
the number of secret bits that will be used for our analyses. This paper will not
focus on privacy amplification, but note that compression can be achieved (for
example) with a cryptographic hash function.

3 Soft Decision Decoding

3.1 State of the Art

When using soft decision decoding, reliability information about incoming bits
is provided along with the bit-value of ‘0’ or ‘1’. In other words, every bit at
the input of a soft decision decoder is accompanied by a value that indicates the
confidence level of this specific bit. Soft decision decoders can use this additional
information to improve their error correcting capabilities; it is well known that
on a typical Gaussian channel soft decision decoding results in an improvement
of about 2 dB over hard decision. The goal is to help the decoder to output the
most likely transmitted codeword and decrease the error rate at its output.

Soft decision decoding for memory-based PUFs has only been used in the
literature by Maes et al. in [12,13]. Their proposal is the following:

– During enrollment several measurements of the (SRAM) PUF are per-
formed. Based on these measurements an error probability for each PUF bit
is derived and stored together with the helper data. The more stable the
response of a specific PUF bit is during these multiple enrollment measure-
ments, the higher the confidence level of the value of this bit will be.

– During reconstruction error probabilities from enrollment are used to
indicate the confidence level of each individual bit. It is proven in [12,13] that
using this soft decision information, less PUF bits are required to successfully
reconstruct the secret bits that are used for the cryptographic key.

3.2 Motivation for Construction

The problem with the method from [12,13] is that multiple enrollment measure-
ments are required. This has the following consequences:

– Non-volatile storage will be required in the device containing the PUF. Val-
ues of the multiple enrollment measurements need to be added in order to
obtain the error probability of each bit. A key business case for PUFs is the
replacement of non-volatile key storage (as described in Sect. 1). Therefore,
the method from [12,13] gives up on the essential advantage of PUFs for
key storage and introduces additional process steps (introducing extra de-
lay), costs, footprint while decreasing security (because of possible attacks
on non-volatile memory).
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– The size of the required storage grows with the number of measurements
performed. For example, when 3 enrollment measurements are performed,
the sum value of each PUF bit can take on any integer value between 0 and
3. Therefore, this requires an additional 2 bits of storage per PUF bit. With
7 measurements 3 bits are required (and so on).

– Multiple measurements (and additional processing) leads to a longer time
required for enrolling each PUF. This could lead to problems when enrolling
millions of devices in production lines.

To solve these practical problems, we propose a new method for soft decision
decoding. The requirements for this new method are the following:

– It should only use one measurement during enrollment (and reconstruction).
– It should be efficiently implementable in hardware.

The methods proposed in this paper will only focus on HDAs using the code-
offset technique with linear block codes. Other codes, such as LDPC and convo-
lutional codes, are more complex to decode and not well suited to deal with the
limited amount of data available in PUF implementations. Therefore they will
not be considered in this paper.

3.3 Our Proposal

The previous section has motivated why we propose a new low footprint HDA
construction. This HDA should require as few PUF bits as possible in combina-
tion with low algorithmic complexity, while avoiding the implementation issues
from the previous soft decision decoding method.

The method for soft decision coding proposed here is based on the concate-
nated codes from [1]. Figure 2 shows the flowcharts of encoding and decoding in
the proposed HDA. Encoding is performed in a similar manner as for the hard
decision construction (and is thus only based on a single PUF measurement).
During decoding however, there are two differences with the hard decision con-
struction:

– The repetition decoder is replaced by a quantizer, which derives probabilistic
information from a single reconstruction measurement.

– The second decoder is a soft decision decoder (using the probabilistic infor-
mation from the quantizer).

When using the repetition decoder as a quantizer, it “weighs” the amount of
ones and zeros at its (non-probabilistic) input and outputs a (probabilistic) value
between 0 and 1 that corresponds to this input. An input string consisting of s
bits with i ones and s− i zeros will be converted by the quantizer into an output
value of i/s. These strings of length s are the sum (modulo 2) of the repetitive
output of the encoder with noise of the PUF measurement. Hence, without noise
the value i would either be 0 or s. So the closer i is to one of these values, the
more confident the soft output value of the quantizer will be.

The soft values at the output of the quantizer are used as input for the soft
decision decoder. Candidate soft decision decoders are described in Sect. 4.
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Fig. 2. Encoding and decoding as used in the proposed HDA

4 Soft Decision Decoders

We propose two methods for performing soft decision decoding, which are based
on well-known error correction codes and more in particular on concatenated
codes as described in [1]. Furthermore, it is important that both methods are
implementable in hardware without too much overhead on resources. This rules
out the more complex (BCH) codes from [1], since it is not possible to convert
them into a hardware efficient soft decision code (and even the resource efficiency
of some hard decision BCH implementations is questionable). To illustrate cost
effectiveness of both solutions, a comparison between the hard- and soft decision
implementations of these codes will be given in Sect. 5.4.

4.1 Brute-Force RM Decoder

The first proposed method is brute-force, which can be used for codes with a lim-
ited set of codewords (that is, with a small dimension k). In this method the soft
input of the decoder is compared to all possible codewords. Based on Euclidean
Distance, the most likely codeword from the list is selected to be decoded. In
our analysis we use this method for evaluating soft decision decoding with two
concatenated codes. The two constructions are repetition in combination with
the Reed-Muller[16,5,8] code and with Reed-Muller[8,4,4]. It is clear that both

Algorithm 1. Brute-Force Soft Decision Reed-Muller Decoder

Input: String of size n consisting of soft values between 0 and 1.
Actions:
1. Calculate Euclidean Distance of input string to all possible codewords of RM code.
2. Select codeword of length n with lowest Euclidean Distance to input.
3. Decode codeword to corresponding encoded secret bits.
Output: Binary string of size k.
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codes only have a limited number of codewords (32 and 16 respectively). Algo-
rithm 1 describes how the proposed brute-force soft decision decoder works. In
both constructions the repetition decoders are used as quantizers to create the
soft input for the RM decoders, as described in Sect. 3.3.

4.2 Hackett Decoder

The second method is a concatenated code using repetition and Golay[24,12,8],
where the Golay decoder is used for soft decision decoding as described in [7].
Again the repetition code is used as a quantizer, which produces soft values that
are used as input for soft decision Golay decoder. The algorithm of this Golay
decoder is described in Algorithm 2 and is visualized in Fig. 3.

Algorithm 2. Hackett Soft decision Golay Decoder

Input: String of size n consisting of soft values between 0 and 1.
Actions:
1. Convert input to corresponding hard (binary) values.
2. Based on soft input values, select 4 bits from input with least confidence.
3. Calculate overall parity of hard values.

if parity is even -> flip least confident bit.
4. Initialize values required for loop: ED min =∞, y = “hard values” and k = 0.
5. Error correct y using hard decision Golay[24,12,8].
6. Calculate Euclidean Distance of resulting string to soft input.

if Euclidean Distance < ED min -> Replace ED min and z = y.
if k < 7 -> flip two bits (as described in Table 1) to get new y, go back to step 5.
else -> Decode codeword z to corresponding encoded secret bits.

Output: Binary string of size k.

Furthermore, Table 1 provides an overview of how the 8 different patterns are
created from the original value of y by flipping bits (all possible patterns with
even weight consisting of 4 bits). In this table b0 denotes the least confident
bit, b1 the second least confident, etc. According to [7] only these 8 patterns
are required (and not all 16 possibilities when flipping 4 bits), because it is
already assured that the parity of all values of y are odd, which will lead to an
odd number of errors. It is also claimed that hard decision decoding of an even
number of errors rarely yields a codeword closer to the soft input than decoding
with an odd number of errors. Therefore, patterns with an even parity are not
used in this decoder.

5 Soft vs. Hard Decision Comparison

This section is dedicated to demonstrating the added value of soft decision decod-
ing for PUF implementations. For that purpose the soft decision implementations
from the previous section are compared to their hard decision counterparts based



276 V. van der Leest, and B. Preneel, and E. van der Sluis

Fig. 3. Flowchart of Hackett decoder

Table 1. Bits flipped in comparison to initial value of y for different values of k

k b0 b1 b2 b3 Bits flipped compared to k − 1

0 0 0 0 0 -
1 1 0 0 1 b0 and b3
2 0 0 1 1 b0 and b2
3 1 0 1 0 b0 and b3
4 0 1 1 0 b0 and b1
5 1 1 0 0 b0 and b2
6 0 1 0 1 b0 and b3
7 1 1 1 1 b0 and b2

on error correcting performance and required resources. This will show that the
number of PUF bits required for successfully reconstructing keys is much smaller
when using soft decision decoding and that the additional resources required are
limited.

The performance of the proposed soft decision decoders will not be compared
to those from [12,13]. Even though the performance of the decoders from [12,13]
is better than those presented here, this is an unfair comparison. Those decoders
require multiple enrollment measurements, which leads to the problems listed in
Sect. 3.2. The decoders proposed in this paper and their hard decision counter-
parts do not have these problems and can therefore be compared fairly.

The system used for context in this section derives 171 secret bits from an
SRAMPUF. This example has been taken from [6] and is also referred to in [12,13]
and [1]. The bit error rate of the PUF data (noise of PUF measurement) is called
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ε and will be 15%, which is similar to these same references and is a good repre-
sentation of noise on SRAM used at operating temperatures ranging from -40◦C
to +85◦C (industrial temperature standard). Furthermore, the False Rejection
Rate (FRR) of the 171 secret bits should be lower than 10−6 (i.e. the probability
of incorrectly decoding a secret key with ε = 0.15 < one in a million).

5.1 Hard Decision Concatenated Codes

The FRR of the hard decision decoders can be calculated using a set of formulas.
The first step is to calculate the error probability of the repetition decoder. This
probability depends on the length of the repetition code as well as the value of
ε and is defined as follows: When the number of bit errors at the input of the
repetition decoder is higher than half of the length of the code (repetition code
can only be of odd length, to avoid equal number of zeros and ones), the output
of the decoder will be incorrect. This leads to the following formula:

Perep
=

s∑
i=�s/2�

(
s
i

)
εi(1 − ε)s−i = 1 −

�s/2�∑
i=0

(
s
i

)
εi(1 − ε)s−i .

Using the error probability of the repetition decoder in combination with the
parameters of the hard decision code, the error probability of the concatenated
code can be derived. When the number of errors from the repetition decoder is
too high for the hard decision decoder to correct (> �(d−1)/2�), the outcome of
the hard decision decoder will be incorrect. The corresponding formula, where
t = �(d− 1)/2�, is:

Pecode
=
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(
n
i

)
P i
erep

(1 − Perep
)n−i = 1 −
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i=0

(
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i

)
P i
erep

(1 − Perep
)n−i .

Finally when these error probabilities are known, the total FRR of the key can be
calculated (this step has been omitted in [1], which may give the false impression
that the results from this paper differ from those in [1]). A key can only be
reconstructed successfully when all required output blocks from the concatenated
decoder (and thus all secret bits) are correct. Dividing the length of the secret
by k (number of secret bits per decoding) leads to the number of output blocks
that need to be decoded correctly to reconstruct the key successfully. In other
words the FRR of the hard decision decoders is defined as:

FRRkey = 1 − (1 − Pecode
)�secret length/k� = 1 − (1 − Pecode

)�171/k� .

5.2 Soft Decision Simulation Results

Unfortunately, it is not straightforward to define formulas for calculating the
FRR of the soft decision decoders. In order to be able to evaluate the performance
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of these systems, the decoders have been simulated. These simulations have been
performed by encoding random secrets with the concatenated encoders, adding
random noise with ε = 0.15, and decoding the resulting string with the soft
decision decoders as described in earlier sections. The results of this simulation
can be found in Fig. 4. This figure displays the FRRs of the three different
concatenated soft decision decoders as a function of the length of the repetition
code. Note that the repetition code can be of even length in this system, since
it is used as a quantizer when decoding (and not as a hard decision repetition
decoder). A threshold is set in the figure at an FRR of 10−6, which allows us
to derive the shortest repetition length required to achieve an FRR (for a key
based on 171 secret bits) below this threshold.

Fig. 4. Simulation results for soft decision decoders of RM[16,5,8], RM[8,4,4], and
Golay[24,12,8] codes

5.3 Comparison

Based on the formulas from Sect. 5.1 and the simulation results from Sect. 5.2 the
performance of the hard- and soft decision decoders can be compared. Table 2
shows the amount of SRAM required to reconstruct a key based on 171 secret
bits with a total FRR below 10−6. We conclude that the amount of SRAM
required for soft decision decoding is significantly lower than that of hard decision
decoding (RM[16,5,8]: 47% decrease, RM[8,4,4]: 44%, Golay: 38%). This shows
that the soft decision decoders are very suitable when implementing an SRAM
PUF HDA, which is optimized on the amount of SRAM required.
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Table 2. Results hard and soft decision codes (deriving 171 secret bits, FRR < 10−6)

Code Type Rep. Length FRR Amount of SRAM (Bytes)a

RM[16,5,8] Hard 13 1.6 · 10−7 �171/5� ∗ 16 ∗ 13/8 = 910
RM[16,5,8] Soft 7 3.7 · 10−7 �171/5� ∗ 16 ∗ 7/8 = 490
RM[8,4,4] Hard 25 3.4 · 10−7 �171/4� ∗ 8 ∗ 25/8 = 1075
RM[8,4,4] Soft 14 3.3 · 10−7 �171/4� ∗ 8 ∗ 14/8 = 602
Golay[24,12,8] Hard 13 4.0 · 10−7 �171/12� ∗ 24 ∗ 13/8 = 585
Golay[24,12,8] Soft 8 4.8 · 10−7 �171/12� ∗ 24 ∗ 8/8 = 360

a Calculation method for the amount of SRAM:
�required secret bits (171) / secret bits per codeword� = # required codewords
# of codewords * length codewords * repetition length = # of bits / 8 = # of Bytes

5.4 Resource Estimates

Besides a comparison based on the amount of SRAM required for each code
construction, one can also compare the codes based on the total amount of re-
sources required. For this purpose the total footprint of each construction will
be estimated. One could also compare codes based on either timing or power
consumption. However, we believe that these comparison are much less impor-
tant when comparing hard and soft decision coders. When PUFs are used for
key storage, silicon area is the main cost factor (note that this silicon is mostly
inactive). Power and delay overhead play only a very minor role, since the coders
are only active when generating the key (at start-up of a device). This one-time
operation can be done within 1 millisecond at any realistic clock and will there-
fore not consume much time or power. Therefore, area will be the only factor
in this comparison. Results on timing have been added to Table 3 for informa-
tional purposes only. Power consumption by the soft decision decoders has been
found to be negligible in comparison to regular IC operation (since there is only
consumption during a short time at power-up) and is therefore omitted.

The total footprint consists of the following components: the encoder, quan-
tizer/repetition coder, decoder and SRAM. The required resources for each com-
ponent are estimated based on synthesis and the results can be found in Table 3.
In this table all estimates are based on area-optimized IC implementations. These
constructions have also been implemented on FPGA, so they can be used on FP-
GAs with uninitialized SRAM. Since these FPGAs are rare however, the main
focus of this paper is on IC implementations. Furthermore, all estimates are de-
noted in GE1 and for SRAM a size of 1 GE per bit has been used as a reasonable
estimate2.

1 GE – Gate Equivalent is a measure of area in any technology. 1 GE is the area of a
NAND2 (standard drive strength).

2 For TSMC 65nm standard cell library raw gate density ≈ 854 Kgate/mm2, while
SRAM cells are 0.499μm2 (6T) [17]. Hence, one SRAM cell is < 0.5 gates (1mm2

/ 854000 = 1.17μm2). This is without read-out circuitry, which provides significant
overhead for small SRAMs. Considering a factor 2 overhead, an SRAM cell ≈ 1 GE.



280 V. van der Leest, and B. Preneel, and E. van der Sluis

Table 3. Resource estimates for different code constructions

Code Type Dec. clks Encoder Quant./Rep. Decoder SRAM Total

RM[16,5,8] Hard ±200 0.12 kGE 0.14 kGE 0.75 kGE 7.3 kGE 8.3 kGE
RM[16,5,8] Soft ±400 0.12 kGE 0.10 kGE 1.1 kGE 3.9 kGE 5.2 kGE
RM[8,4,4] Hard ±100 55 GE 0.19 kGE 0.5 kGE 8.6 kGE 9.3 kGE
RM[8,4,4] Soft ±200 55 GE 0.14 kGE 0.6 kGE 4.8 kGE 5.6 kGE
Golay[24,12,8] Hard ±15 0.30 kGE 0.14 kGE 1.0 kGE 4.7 kGE 6.1 kGE
Golay[24,12,8] Soft ±150 0.30 kGE 0.13 kGE 3.0 kGE 2.9 kGE 6.3 kGE

Table 3 shows that soft decision decoding results in a substantial decrease
in the SRAM size and in most cases additional overhead for the soft decoder
is small. Soft decision decoders require more registers than their hard decision
counterparts, since all codeword bits are now represented by a multi-bit soft
value. This alone adds 24 to 72 Flip-Flops to the implementations. These are
needed independent of speed/area trade-offs. Another unavoidable footprint in-
crease is the calculation and comparison of distances. The speed/area trade-off is
mainly determined by the amount of parallelism used here. Finally, the Hackett
soft decision Golay decoder introduces additional logic for (among others) the
selection of weak bits.

The choice of an HDA implementation depends on the parameter that should
be optimized. In this example, when optimizing on the amount of SRAM used
by the code construction, the soft decision Golay code should be implemented.
If the total footprint of the implementation needs to be minimized, the soft
decision RM[16,5,8] is the preferred choice. What is most important to notice is
that the results clearly show the benefit of soft decision decoding.

The added value of soft decision decoding will increase even further when
an HDA requires error correction with either a lower FRR, a higher ε, a larger
number of secret bits or multiple keys. In those cases the SRAM will become an
even more dominant factor in the total footprint of the implementation. There-
fore, it will be more important to decrease the amount of SRAM required. An
example in which 5 128-bits keys need to be stored with these code constructions
can be found in Table 4. Here we conclude that the soft decision Golay code is
favourable when SRAM is the dominant component of the footprint.

Table 4. Estimation of total footprint for different code constructions storing 5 keys

Code Type Encoder Quant./Rep. Decoder SRAM Total

RM[16,5,8] Hard 0.12 kGE 0.14 kGE 0.75 kGE 36.4 kGE 37.4 kGE
RM[16,5,8] Soft 0.12 kGE 0.10 kGE 1.1 kGE 19.6 kGE 20.9 kGE
RM[8,4,4] Hard 55 GE 0.19 kGE 0.5 kGE 43.0 kGE 43.7 kGE
RM[8,4,4] Soft 55 GE 0.14 kGE 0.6 kGE 24.1 kGE 24.9 kGE
Golay[24,12,8] Hard 0.30 kGE 0.14 kGE 1.0 kGE 23.4 kGE 24.8 kGE
Golay[24,12,8] Soft 0.30 kGE 0.13 kGE 3.0 kGE 14.4 kGE 17.8 kGE
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Note: In this section the amount of non-volatile memory required to store helper
data (outside of the chip) has not been taken into account. The helper data size
(in bytes) is equal to that of the SRAM, hence it is clear that this size in-
/decreases linearly with the SRAM size.

6 Conclusions

This paper presents a new and efficient method of soft decision error correction
decoding that can be used in HDAs for memory-based PUFs. This new method
is based on hard decision decoding using concatenated codes as proposed in [1],
where the repetition decoder is replaced by a quantizer that creates the input
for a soft decision decoder. It results in a code construction for HDAs that
requires less PUF bits for error correction. Furthermore, the proposed method
of soft decision decoding can be implemented efficiently in hardware and does
not suffer from the same practical problems as the soft decision construction
from [12,13].

Using several (hardware) implementations of soft decision decoders, the added
value of soft decision decoding has been demonstrated for an HDA that derives
171 secret bits with an FRR below 10−6 while ε = 0.15. The soft decision de-
coders decrease the number of PUF bits that are required to derive the secret
bits in comparison to their hard decision counterparts by 38% to 47%. This de-
crease of PUF bits comes at only a limited cost in hardware resources of the
decoder, which becomes even less significant when the size of the PUF becomes
more dominant in the total footprint of the HDA. The optimal HDA implemen-
tation can be chosen based on the parameter that should be kept as small as
possible (number of PUF bits, total footprint of HDA, etc.) in combination with
the values of FRR, ε and secret size.

Acknowledgements. This work has been supported in part by the European
Commission through the FP7 programme under contracts 238811 UNIQUE
and 216676 ECRYPT II, by the IAP program P6/26 BCRYPT of the Bel-
gian state, and by the Research Council KU Leuven through GOA TENSE
(GOA/11/007). The authors would like to thank the anonymous referees for con-
structive
comments.

References
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Abstract. Physically Unclonable Functions (PUFs) are an emerging
technology and have been proposed as central building blocks in a va-
riety of cryptographic protocols and security architectures. However, the
security features of PUFs are still under investigation: Evaluation results
in the literature are difficult to compare due to varying test conditions,
different analysis methods and the fact that representative data sets are
publicly unavailable.

In this paper, we present the first large-scale security analysis of ASIC
implementations of the five most popular intrinsic electronic PUF types,
including arbiter, ring oscillator, SRAM, flip-flop and latch PUFs. Our
analysis is based on PUF data obtained at different operating condi-
tions from 96 ASICs housing multiple PUF instances, which have been
manufactured in TSMC 65 nm CMOS technology. In this context, we
present an evaluation methodology and quantify the robustness and un-
predictability properties of PUFs. Since all PUFs have been implemented
in the same ASIC and analyzed with the same evaluation methodology,
our results allow for the first time a fair comparison of their properties.

Keywords: Physically Unclonable Functions (PUFs), ASIC implemen-
tation, evaluation framework, unpredictability, robustness.

1 Introduction

Physically Unclonable Functions (PUFs) are increasingly proposed as central
building blocks in cryptographic protocols and security architectures. Among
other uses, PUFs enable device identification and authentication [33,28], bind-
ing software to hardware platforms [7,14,4] and secure storage of cryptographic
secrets [37,17]. Furthermore, PUFs can be integrated into cryptographic algo-
rithms [2] and remote attestation protocols [29]. Today, PUF-based security
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products are already announced for the market, mainly targeting IP-protection,
anti-counterfeiting and RFID applications [36,11].

PUFs typically exhibit a challenge/response behavior: When queried with a
challenge, the PUF generates a random response that depends on the physical
properties of the underlying PUF hardware. Since these properties are sensitive
to typically varying operating conditions, such as ambient temperature and sup-
ply voltage, the PUF will always return a slightly different response each time it is
stimulated. The most vital PUF properties for PUF-based security solutions are
robustness and unpredictability [1]. Robustness requires that, when queried with
the same challenge multiple times, the PUF should generate similar responses
that differ only by a small error that can be corrected by an appropriate error cor-
rection mechanism. This is an essential requirement in PUF-based applications
that must rely on the availability of data generated by or bound to the PUF and
should be fulfilled under different operating conditions. Unpredictability guaran-
tees that the adversary cannot efficiently compute the response of a PUF to an
unknown challenge, even if he can adaptively obtain a certain number of other
challenge/response pairs from the same and other PUF instances. With a PUF
instance we denote one particular hardware implementation of a PUF design.
Unpredictability is important in most PUF-based applications, such as authenti-
cation protocols, where the adversary could forge the authentication if he could
predict the PUF response. Existing PUF-based security solutions typically rely
on assumptions that have not been confirmed for all PUF types. For instance,
most delay-based PUFs have been shown to be emulatable in software [26], which
contradicts the unpredictability and unclonability properties. Hence, a system-
atic analysis of the security properties of real PUF implementations in hardware
is fundamental for PUF-based security solutions.

In contrast to most cryptographic primitives, whose security can be related
to well established (albeit unproven) assumptions, the security of PUFs relies on
assumptions on physical properties and is still under investigation. The security
properties of PUFs can either be evaluated theoretically, based on mathematical
models of the underling physics [35,30], or experimentally by analyzing PUF im-
plementations [10,34,8,9,16]. However, mathematical models never capture phys-
ical reality in its full extent, which means that the conclusions on PUF security
drawn by this approach are naturally debatable. The main drawback of the ex-
perimental approach is its limited reproducibility and openness: Even though
experimental results have been reported in literature for some PUF implementa-
tions, it is difficult to compare them due to varying test conditions and different
analysis methods. Furthermore, raw PUF data is rarely available for subsequent
research, which greatly hinders a fair comparison.

Our Goal and Contribution. We present the first large-scale security anal-
ysis of ASIC implementations of the five most popular electronic PUF types,
including different delay-based PUFs (arbiter and ring oscillator PUFs) and dif-
ferent memory-based PUFs (SRAM, flip-flop and latch PUFs). Hereby, we focus
on robustness and unpredictability, which are the most vital PUF properties
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in many security-critical applications. The ASICs have been manufactured in
TSMC 65 nm CMOS technology within a multi-project wafer run and contain
multiple implementations of the same PUF design. Our analysis is based on PUF
data obtained from 96 ASICs at different temperatures, supply voltages and noise
levels that correspond to the corner values typically tested for consumer-grade
IT products. In this context, we developed an evaluation methodology for the
empirical assessment of the robustness and unpredictability properties of PUFs.
Since all PUFs have been implemented in the same ASIC and analyzed with the
same methodology, our results allow for the first time a fair comparison of the
robustness and unpredictability of these PUFs.

Our evaluation results show that all PUFs in the ASIC are sufficiently robust
for practical applications. However, not all of them achieve the unpredictability
property. In particular, the responses of arbiter PUFs have very low entropy,
while the entropy of flip-flop and latch PUF responses are affected by tem-
perature variations. In contrast, the ring oscillator and SRAM PUFs seem to
achieve all desired properties of a PUF: Their challenge/response behavior hardly
changes under different operating conditions and the entropy of their responses
is quite high. Furthermore, the responses generated by different ring oscillator
and SRAM PUF instances seem to be independent, which means that the adver-
sary cannot predict the response of a PUF based the challenge/responses pairs
of another PUF. However, the min-entropy, i.e., the minimum number of random
bits observed in a response of the ring oscillator PUF is low, which means that
some responses can be guessed with high probability.

Outline. We provide background information on PUFs in Section 2 and give
an overview of the ASIC implementation of the analyzed PUFs in Section 3.
We present our evaluation methodology in Section 4 and our analysis results in
Section 5. Finally, we conclude in Section 6.

2 Background on PUFs

A Physically Unclonable Function (PUF) is a function that is embedded into
a physical object, such as an integrated circuit [25,20]. When queried with a
challenge x, the PUF generates a response y that depends on both x and the
unique device-specific physical properties of the object containing the PUF. Since
PUFs are subject to noise induced by environmental variations, they return
slightly different responses when queried with the same challenge multiple times.

PUFs are typically assumed to be robust, physically unclonable, unpredictable
and tamper-evident, and several approaches to quantify and formally define their
properties have been proposed (see [1] for an overview). Informally, robustness
means that, when queried with the same challenge multiple times, the PUF re-
turns similar responses with high probability. Physical unclonability demands
that it is infeasible to produce two PUFs that are indistinguishable based on
their challenge/response behavior. Unpredictability requires that it is infeasible
to predict the PUF response to an unknown challenge, even if the PUF can be
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adaptively queried for a certain number of times. Finally, a PUF is tamper-
evident if any attempt to physically access the PUF changes its challenge/re-
sponse behavior. The properties required from a PUF strongly depend on the
application. For instance, a PUF with small challenge/response space can be
easily emulated by reading out all its challenge/response pairs and creating
a look-up table. While such a PUF cannot be used directly in authentication
schemes (such as in [32]), it could still be used in a key storage scenario (such
as in [17]), where the adversary is typically assumed not being able to interact
with the PUF.

There is a variety of PUF implementations (see [20] for an overview). The
most appealing ones for the integration into electronic circuits are electronic
PUFs, which come in different flavors. Delay-based PUFs are based on race
conditions in integrated circuits and include arbiter PUFs [15,24,18] and ring
oscillator PUFs [6,32,21]. Memory-based PUFs exploit the instability of volatile
memory cells, such as SRAM [7,9], flip-flops [19,16] and latches [31,14].

Note that memory-based PUFs can be emulated in software since the limited
number of memory cells allows creating a look-up table. Further, most delay-
based PUFs are subject to model building attacks that allow emulating the PUF
in software [15,24,18,26]. To counter this problem, additional primitives must
be used: Controlled PUFs [5] and Feed-Forward PUFs [22] use cryptographic
functions or XOR-networks in hardware, respectively, to hide the responses of the
underlying PUF. Furthermore, PUFs are inherently noisy and must be combined
with error correction mechanisms, such as fuzzy extractors [3] that remove the
effects of noise before the PUF response can be processed in a cryptographic
algorithm. Typically, the cryptographic and error correcting components as well
as the link between them and the PUF must be protected against invasive and
side channel attacks.

3 The PUF ASIC

Our analysis is based on data obtained from 96 ASICs that have been manu-
factured in TSMC 65 nm CMOS technology within a Europractice multi-project
wafer run. The ASIC has been designed within the UNIQUE1 research project.
Each ASIC implements multiple instances of three different memory-based PUFs
(SRAM, flip-flop and latch PUFs) and two different delay-based PUFs (ring oscil-
lator and arbiter PUFs). The main characteristics and number of PUF instances
in the ASICs are shown in Table 1. Furthermore, the ASIC is equipped with an
active core that emulates the noisy working environment of a microprocessor.
When enabled, this core performs AES encryption during the PUF evaluation.

The implementation of the arbiter PUF follows the basic approach presented
by Lee et al. [15] and consists of 64 delay elements and an arbiter. The delay
elements are connected in a line, forming two delay paths with an arbiter placed
at the end. Each challenge corresponds to a different configuration of the delay
paths. More detailed, each delay element has two inputs and two outputs and
1 http://www.unique-project.eu/

http://www.unique-project.eu/
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Table 1. Physically Unclonable Functions (PUFs) implemented in the 96 ASICs

PUF class PUF type Number of
instances per

ASIC

Total number
of instances

Challenge
space size

Response
space size

Delay-based Arbiter 256 24, 576 264 2
Ring oscillator 16 1, 536 32, 640 ≈ 215 2

Memory-based SRAM 4 (8 kB) 384 211 232

Flip-flop 4 (1 kB) 384 28 232

Latch 4 (1 kB) 384 28 232

can be configured to map inputs to outputs directly (challenge bit 0) or to switch
them (challenge bit 1). During the read-out of the PUF response, the input signal
propagates along both paths and, depending on which of the paths is faster, a
single response bit is generated. To ensure that the delay difference results from
the manufacturing process variations rather than the routing of the metal lines,
a symmetric layout for the delay elements and full-custom layout blocks were
used. Further, to reduce any bias the capacitive loads of the connecting metal
wires was balanced and a symmetric NAND-latch was used as arbiter.

The ring oscillator PUF uses the design by Suh et al. [32]. Each ring oscillator
PUF consists of 256 ring oscillators and a control logic, which compares the
frequency of two different oscillators selected by the PUF challenge. Depending
on which of the oscillators is faster, a single response bit is generated. The
individual ring oscillators are implemented using layout macros to ensure that
all oscillators have exactly the same design, which is fundamental for the correct
operation of the ring oscillator PUF.

The memory-based PUFs are implemented as arrays of memory elements
(SRAM cells, latches, flip-flops). All these memory elements are bi-stable cir-
cuits with two stable states corresponding to a logical 0 and 1. After power-up,
each memory element enters either of the two states. The resulting state depends
on the manufacturing process variations and the noise in the circuit. When chal-
lenged with a memory address, the PUF returns the 32 bit data word at that
address. The implementations of the memory-based PUFs follow the SRAM PUF
design by Holcomb et al. [9], the flip-flop PUF design by Maes et al. [19] and the
latch PUF design by Su et al. [31]. Latch and flip-flop PUFs are implemented
using the standard cells from TSMC’s 65 nm low-power library. The placement
and implementation of the SRAM cells of the SRAM PUF has been done by
TSMC’s memory compiler. The latch and flip-flop PUFs are based on standard
cells using a clustered strategy, where all latches or flip-flops of the same PUF
instance are grouped together in single block.

The test setup consists of an ASIC evaluation board, a Xilinx Virtex 5 FPGA
and a PC (Figure 1). Each evaluation board can take five ASICs and allows
controlling the ASIC supply voltage with an external power supply. The interac-
tion with the evaluation board and the ASICs is performed by the FPGA, which
is connected to a PC that controls the PUF evaluation process and stores the raw
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Fig. 1. Test setup with Xilinx Virtex 5 FPGA (left) and ASIC evaluation board with
five PUF ASICs (right)

PUF responses obtained from the ASICs. The tests at different temperatures
have been performed in a climate chamber.

4 Our Evaluation Methodology

Many PUF-based applications require PUF responses to be reliably reproducible
while at the same time being unpredictable (see, e.g., [20,1]). Hence, our empirical
evaluation focuses on robustness and unpredictability.

Notation. With |x| we denote the length of some bitstring x. Let E be some
event, then Pr[E] denotes the probability that E occurs. We denote with HW(x)
the Hamming weight of a bitstring x, i.e., the number of non-zero bits of x. With
dist(x, y) we denote the Hamming distance between two bit strings x and y, i.e.,
the number of bits that are different in x and y.

4.1 Robustness Analysis

Robustness is the property that a PUF always generates responses that are simi-
lar to the responses generated during the enrolment of the PUF. Note that PUFs
should fulfil this property under different operating conditions, such as different
temperatures, supply voltages and noise levels. The robustness of PUFs can be
quantified by the bit error rate BER := dist(yEi

,yE5)

|yE5 | , which indicates the number
of bits of a PUF response yEi that are different from the response yE5 observed
during enrolment. We determine the maximum BER of all PUF instances in all
ASICs based on challenge/response pairs collected at different ambient tempera-
tures (−40 ◦C to +85 ◦C), supply voltages (±10% of the nominal 1.2 V) and noise
levels (active core enabled and disabled), which correspond to the corner values
that are typically tested for consumer grade IT products. This shows the impact
of the most common environmental factors on the BER of each PUF type. We
did not test different noise levels at different temperatures and supply voltages
since most PUFs (except the arbiter PUF) turned out to be hardly affected by
even the maximum amount of noise the active core can generate. An overview
of all test cases considered for robustness is given in Table 2. We estimate the
BER of all PUFs in all ASICs using the following procedure:
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Table 2. Robustness test cases

Test Active Core Ambient Temperature Supply Voltage Iter.
Case Off On −40 ◦C +25 ◦C +85 ◦C 1.08 V 1.2V 1.32V k

E1 × × × 20
E2 × × × 40
E3 × × × 20

E4 × × × 30
E5 × × × 60
E6 × × × 30

E7 × × × 20
E8 × × × 40
E9 × × × 20

E11 × × × 60

Step 1: Sample challenge set generation. A sample challenge set X ′ is generated
for each PUF type (arbiter, ring oscillator, SRAM, flip-flop and latch PUF) and
used in all subsequent steps. For all but the arbiter PUF the complete challenge
space is used as a sample set. Since the arbiter PUF has an exponential challenge
space, we tested it for 13, 000 randomly chosen challenges, which is a statistically
significant subset and representative for the whole challenge space.

Step 2: Enrolment. For each PUF instance, the response yi to each challenge
xi ∈ X ′ is obtained under nominal operating conditions (test case E5) and stored
in a database DB0.

Step 3: Data acquisition. For all test cases Ep in Table 2, each PUF instance is
evaluated k times on each xi ∈ X ′ and its responses are stored in a database
DBp for p = 1, . . . , 11.

Step 4: Analysis. For each PUF instance, the maximum BER between its re-
sponses in DB0 and its responses in DB1,. . . ,DB11 over all xi ∈ X ′ is computed.

4.2 Unpredictability Analysis

Unpredictability ensures that the adversary cannot efficiently compute the re-
sponse of a PUF to an unknown challenge, even if he can adaptively obtain a
certain number of other challenge/response pairs from the same and other PUF
instances [1]. This is important in most PUF-based applications, such as authen-
tication protocols, where the adversary can forge the authentication when he can
predict a PUF response. Note that unpredictability should be independent of the
operating conditions of the PUF, which could be exploited by an adversary.

The unpredictability of a PUF implementation can be estimated empirically
by applying statistical tests to its responses and/or based on the complexity
of the best known attack against the PUF [20,1]. Statistical tests, such as the
DIEHARD [23] or NIST [27] test suite, can in principle be used to assess the
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Table 3. Unpredictability test cases

Test Case Active Core Ambient Temperature Supply Voltage
Off On −40 ◦C +25 ◦C +85 ◦C 1.08 V 1.2V 1.32V

E13 × × ×
E14 × × ×
E15 × × ×
E16 × × ×
E17 × × ×

unpredictability of PUF responses. However, since these test suites are typi-
cally based on a series of stochastic tests, they can only indicate whether the
PUF responses are random or not. Moreover, they require more input data than
the memory-based PUFs and ring oscillator PUFs in the ASIC provide. Similar
as in symmetric cryptography, the unpredictability of a PUF can be estimated
based on the complexity of the best known attack. There are attacks [26] against
delay-based PUFs that emulate the PUF in software and allow predicting PUF re-
sponses to arbitrary challenges. These attacks are based on machine learning tech-
niques that exploit statistical deviations and/or dependencies of PUF responses.
However, emulation attacks have been shown only for simulated PUF data and it
is currently unknown how these attacks perform against real PUFs [26]. Another
approach is estimating the entropy of the PUF responses based on experimental
data. In particular, min-entropy indicates how many bits of a PUF response are
uniformly random. The entropy of PUFs can be approximated using the context-
tree weighting (CTW) method [39], which is a data compression algorithm that
allows assessing the redundancy of bitstrings [10,34,8,16].

We assess the unpredictability of PUFs using Shannon entropy, which is
a common metric in cryptography and allows establishing relations to other
publications that quantify the unpredictability of PUFs using entropy (such
as [35,32,9,1]). We estimate the entropy and min-entropy of the responses of
all available PUFs. Specifically, we first check whether PUF responses are biased
by computing their Hamming weight and estimate an upper bound of the en-
tropy of PUF responses using a compression test. Eventually, we approximate
the entropy and min-entropy of the responses of all available PUFs. Our entropy
estimation is more precise than previous approaches since it considers dependen-
cies between the individual bits of the PUF responses. Furthermore, to get an
indication of whether responses of different PUF instances are independent, we
compute the Hamming distance between responses of different PUF instances.

We assess the unpredictability of all available PUFs at different temperatures
and supply voltage levels (Table 3) to determine the effects of environmental
variations on the unpredictability using the following procedure: We assess the
unpredictability of all PUFs in the ASICs using the following procedure:

Step 1: Sample challenge set generation. For each PUF type, a sample challenge
set X ′ is generated that is used in all subsequent steps. For all but the arbiter
PUF, the complete challenge space is used as a sample challenge set. Since the
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arbiter PUF has an exponential challenge space, we again test it only for 13, 000
challenges. The subsequent analysis steps require X ′ := {x′ ∈ X ′′| dist(x, x′) ≤
k}, which includes a set X ′′ of randomly chosen challenges and all challenges
that differ in at most k bits from the challenges in X ′′ (that may be known to
the adversary).

Step 2: Data acquisition. For all test cases Eq in Table 3, each PUF instance is
evaluated on each xi ∈ X ′ and the responses y are stored in a database DBq.

Step 3: Analysis. For each test case Eq, the responses in DBq are analyzed as
detailed in the following items:

Step 3a: Hamming weight. For each PUF instance, the average Hamming weight
of all its responses yi in DBq is computed, which indicates whether the responses
are biased towards 0 or 1.

Step 3b: CTW Compression. For each PUF instance, a binary file containing all
its responses in DBq is generated and compressed using the context-tree weight-
ing (CTW) algorithm [38]. The resulting compression rate is an estimate of the
upper bound of the entropy of the PUF responses.

Step 3c: Entropy estimation. For each PUF instance, the entropy and min-
entropy of all its responses in DBq is estimated as detailed in the next paragraph.

Step 3d: Hamming distance. For each PUF type, the Hamming distance dist(y, y′)
of all pairs of responses (y, y′) in DBq generated by pairwise different PUF in-
stances for the same challenge x is computed. While all previous steps con-
sider only responses of the same PUF instance, the Hamming distances indicate
whether responses of different PUF instances are independent. This is important
to prevent the adversary from predicting the responses of one PUF implemen-
tation based on the challenge/response pairs of another (e.g., his own) PUF
implementation, which would contradict the unpredictability property.

Entropy Estimation. Let x be the PUF challenge for which the adversary
should predict the response y. Further, let Y (x) be the random variable repre-
senting y. Moreover, let W (x) be the random variable representing the set of all
responses of the PUF except y, i.e., W (x) = {y′|y′ ← PUF(x′); x′ ∈ X \ {x}}.
We are interested in the conditional entropy

H(Y |W ) = −
∑
x∈X

Pr
[
Y (x), W (x)

] · log2 Pr
[
Y (x)|W (x)

]
(1)

and the conditional min-entropy

H∞(Y |W ) = − log2

(
max
x∈X

{
Pr
[
Y (x)|W (x)

]})
, (2)
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which quantify the average and minimal number of bits of y, respectively, that
cannot be predicted by the adversary, even in case all other responses in W (x)
are known.2 Hence, 2−H∞(Y |W ) is an information-theoretic upper bound for the
probability that an adversary guesses the PUF response y to challenge x.

However, computing Equations 1 and 2 for W (x) is difficult since (1) the sizes
of the underlying probability distributions are exponential in the response space
size, and (2) the complexity of computing H(Y |W ) grows exponentially with the
challenge space size of the PUF to be analyzed. Hence, Equations 1 and 2 can
at most be estimated by making assumptions on the physical properties of the
PUFs that reduce the size of W (x). In the following, we explain how we estimated
these entropies for each PUF type and discuss the underlying assumptions.

Memory-based PUFs. A common assumption on memory-based PUFs is that
spatially distant memory cells are independent [20,1]. A similar assumption has
been used by Holcomb et al. [9], who estimate the entropy of SRAM PUF re-
sponses based on the assumption that individual bytes of SRAM are independent.
However, physically neighboring memory cells can strongly influence each other,
in particular when they are physically connected.3 Hence, our entropy estima-
tion considers dependencies between neighboring memory cells (which could be
exploited by an adversary) while assuming that spatially distant memory cells
are independent. More specifically, we compute the entropy of the PUF response
bit Yi,j of the memory cell at row i and column j of the underlying memory
under the worst case assumption that the values of all neighboring memory cells
W ′(x) = (Yi−1,j , Yi,j+1, Yi+1,j , Yi,j−1) are known, i.e., we compute Equations 1
and 2 for W ′(x).

Ring Oscillator PUFs. The ring oscillator PUFs in the ASICs compare the oscil-
lation frequency of two ring oscillators Oi and Oj selected by the PUF challenge
x = (i, j) and returns a response Y (i, j), depending on which of the two oscil-
lators was faster. Since neighboring ring oscillators may affect each other (e.g.,
by electromagnetic induction), we consider the potential dependency between
the frequencies of neighboring oscillators and assume that the frequency of spa-
tially distant oscillators is independent. Thus, we compute Equations 1 and 2
for W ′(i, j) =

(
Yi−2,j , Yi−1,j , Yi+1,j , Yi+2

)
.

Arbiter PUFs. Arbiter PUFs measure the delay difference of two delay lines
that are configured by the PUF challenge. The individual delays caused by the
switches and their connections are additive, which implies that the PUF response
y to a challenge x can be computed if a sufficient number of responses to chal-
lenges that are close to x are known. Hence, we compute Equations 1 and 2 for
W ′(x) = {y′ ← PUF(x′)|x′ ∈ X ′, dist(x, x′) ≤ k}, which corresponds to the
2 Note that this corresponds to the game-based security definition of unpredictability

by Armknecht et al. [1], which formalizes the difficulty of predicting Y in case the
PUF responses in W are known.

3 SRAM cells are typically arranged in a matrix, where all cells in a row are connected
by a word line and all cells in a column are connected by a bit line.
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worst case where the adversary knows responses to challenges that differ in at
most k bits from the challenge whose response he must guess. Specifically, we
use X consisting of 200 randomly chosen challenges and k = 1.

Computing the Entropy. To compute the entropy and min-entropy (Equations 1
and 2) for each test case Eq, we first estimate Pr

[
x = Y (x), w = W (x)

]
for

each x ∈ X ′ by dividing the number of observations of each tuple (x, w) in
database DBq by the size of the sample challenge set X ′. Further, to compute
Pr
[
x = Y (x)

∣∣w = W (x)
]

= Pr
[
x = Y (x), w = W (x)

]
/ Pr

[
w = W (x)

]
, we

estimated Pr
[
w = W (x)

]
by dividing the number of observations of each tuple(

Y (x), w = W (x)
)

in database DBi by the size of X ′. Eventually, we computed
Equations 1 and 2.

5 Evaluation and Results

We applied the evaluation methodology in Section 4 to all PUF instances in
all ASICs. Most of our results are illustrated using bean plots [12] that allow
an intuitive visualization of empirical probability distributions (Figures 2 to 5).
Each bean shows two distributions, smoothed by a Gaussian kernel to give the
impression of a continuous distribution, together with their means indicated by
black bars. The distribution in black on the left side typically corresponds to
data collected under normal PUF operating conditions, while the one in gray on
the right side corresponds to some other test case in Table 2 and 3.

Due to space restrictions, we illustrate only the most important results and
provide a detailed discussion in the full version of this paper [13].

5.1 Robustness Results

We computed the bit error rate (BER) under varying environmental conditions
(Table 3). Our results show that all arbiter, ring oscillator and SRAM PUF in-
stances have a very similar BER, while there is a big variability in the BERs of
the flip-flop and latch PUF instances (Figure 2). Further, the BER of the arbiter,
ring oscillator and SRAM PUF instances is below 10% for all test cases, which
can be handled by common error correction schemes, such as fuzzy extractors [3].
The BER of most PUFs depends on the operating temperature (Figure 2a): Com-
pared to +25 ◦C (test case E5), at −40 ◦C (test case E2) the BER of the flip-flop
and latch PUF increases significantly, while the BER of the ring oscillator and
SRAM PUF increases only slightly and the BER of the arbiter PUF hardly
changes. A similar behavior of the BERs can be observed at +85 ◦C (test case
E8). All PUFs in all ASICs turned out to be robust against variations of their
supply voltages. Compared to nominal operating conditions (test case E5), the
distributions of the BERs only slightly increase when varying the supply voltage
by 10% (test case E4 and E6). The arbiter PUF exhibits a significantly increased
BER when operated in a noisy working environment (test case E11; Figure 2b)
while there is no significant change of the BER of all other PUFs. Hereby, we
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Fig. 2. Distribution of the bit error rate (BER) in percent over all PUF instances at
different ambient temperatures and noise levels. The two peaks of the BER distribution
of the arbiter PUF show that those arbiter PUFs that are spatially close to the active
core are more affected than those farther away.

observed that the BER of arbiter PUF instances that are spatially close to
the active core significantly changes, while those that are farther away are not
directly affected.

5.2 Unpredictability Results

In this section, we present the results of our unpredictability analysis. Due to
the time-limited access to the climate chamber, the data required to analyze
the unpredictability of the arbiter PUF at −40 ◦C and at +85 ◦C is not avail-
able. However, we show the results for normal operating conditions and different
supply voltages.

Hamming Weights. To get a first indication of randomness in the PUFs, we
computed the Hamming weight of their responses as described in Section 4.2.
Our results show that ring oscillator and SRAM PUF responses are close to the
ideal Hamming weight of 0.5, independent of the operating conditions (Figure 3),
which indicates that their responses may be random. The Hamming weight of
the flip-flop PUF and latch PUF responses strongly depends on the ambient
temperature (Figure 3a) and is clearly biased. Supply voltage variations (test
cases E16 and E17) have no significant impact on the Hamming weight of the
responses of any of the PUF instances in the ASIC (Figure 3b).
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Fig. 3. Distribution of the Hamming weight over all PUF instances at different am-
bient temperatures and supply voltage levels. The two peaks of the Hamming weight
distribution of the latch PUF may come from the fact that one of the four latch PUF
instances on each ASIC is implemented in a separate power domain.

CTW Compression. The context-tree weighting (CTW) compression test
gives a good indication of the upper bound of the entropy of PUF responses.
The higher the compression rate, the lower the entropy of the PUF. The results
of this test (Table 4) confirm the Hamming weight test results:

The compression rate of the ring oscillator and SRAM PUF responses is in-
variant for all test cases; the compression rates of the flip-flop and latch PUF
responses do not change for different supply voltages (test case E16 and E17), but
vary with the ambient temperature (test cases E13, E14 and E15). The compres-
sion rate of the SRAM PUF responses strongly indicates that these responses are
uniformly random, while there seem to be some dependencies in the responses
generated by all other PUFs.

Entropy Estimation. The results of the entropy estimation described in
Section 4.2 confirm the results of all previous tests and provide more insights
into the entropy and min-entropy of the PUF responses (Figure 4).

The entropy of responses corresponding to neighboring arbiter PUF challenges
is remarkably low, which confirms the high prediction rate of emulation attacks
against arbiter PUFs reported in literature [26]. The entropy and min-entropy of
the ring oscillator and SRAM PUF responses is invariant to temperature (test
cases E13, E14 and E15) and supply voltage (test case E16 and E17) variations.
Moreover, the entropy and min-entropy of flip-flop and latch PUFs vary with



296 S. Katzenbeisser et al.

Table 4. CTW compression results

Test Size of PUF response after CTW compression in percent
Case Arbiter Ring-Oscillator Flip-Flop Latch SRAM

E13 — 0.77 0.77 0.84 1.00
E14 0.51 0.77 0.87 0.70 1.00
E15 — 0.77 0.98 0.53 1.00

E16 0.53 0.77 0.88 0.69 1.00
E17 0.49 0.77 0.87 0.71 1.00
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Fig. 4. Distribution of the entropy (black) and min-entropy (gray) over all PUF in-
stances at different ambient temperatures and supply voltage levels

the operating temperature (test cases E13, E14 and E15) and are constant for
different supply voltages (test case E16 and E17).

Hamming Distances. The Hamming distance test (Section 4.2) gives an in-
dication of whether the responses generated by different PUF instances to the
same challenge are independent. Our results show that, independent of the am-
bient temperature (test cases E13, E14 and E15) and supply voltage (test cases
E16 and E17), the responses of different ring oscillator and SRAM PUF instances
have the ideal Hamming distance of 0.5, while there seem to be dependencies
between the responses generated by different arbiter PUF instances to the same
challenge (Figure 5). The Hamming distance of the responses of the flip-flop
PUFs changes for different temperatures and supply voltages. At +85 ◦C (test
case E15) the Hamming distance of the flip-flop PUF is ideal, while it is biased
towards zero at −40 ◦C (test case E13). Moreover, at 1.08 V (−10% undervoltage,
test case E16) we observed a bias of the Hamming distance towards one, while
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Fig. 5. Distribution of the Hamming distance over all PUF instances at different am-
bient temperatures and supply voltage levels

the Hamming distance at 1.32 V (+10% overvoltage, test case E17) is similar to
the distribution at nominal operating conditions (test case E14). The Hamming
distance of the responses of the latch PUFs are biased towards zero and invariant
for different supply voltages.

5.3 Discussion

Our results show that arbiter, ring oscillator and SRAM PUFs are more robust
to temperature variations than the latch and flip-flop PUFs. This could be due
to the dual nature of these PUFs, i.e., the two delay paths, two ring oscillators,
and the symmetrical structure of the SRAM cells, respectively. As discussed in
Section 3, we do not have access to the internal circuit diagrams and layout of
the standard cells provided by TSMC and thus can only speculate about the
transistor schematics of the flip-flops and latches. Standard cell libraries typi-
cally use implementations based on transmission gates, which are more compact
than static latches or flip-flops with a dual structure and there is no duality or
symmetry in these transistor schematics. Further, the results of the Hamming
weight and Hamming distance tests indicate that the unpredictability of PUFs
with a dual structure are less affected by temperature variations.

The entropy of the arbiter PUF is remarkably low, which can be explained
by the linear structure of this PUF. Note that in the arbiter PUF implementa-
tion, two signals travel along two delay paths and finally arrive at an arbiter
(Section 3). In case the delay difference δt of the two paths is greater than the
setup-time tsetup plus the hold time thold of the arbiter, the PUF response will
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be correctly generated according to which signal arrives first. However, in case
δt < tsetup + thold, the arbiter will be in the metastable state and the PUF re-
sponse will depend on the bias of the arbiter caused by manufacturing process
and/or layout variations of the arbiter and the noise in the circuit. A limited
number of simulations (with 20 PUFs for 3 challenges) including extracted post
layout parasitics were performed before the tape-out of the ASIC to estimate
this effect.

Since the arbiter PUF design is based on delay accumulation, it is very sus-
ceptible to emulation attacks [26]. An example illustrating this fact is the case
where two challenges differ in only the last bit. In this case, signals will travel
along the same paths through 63 delay elements, and only in the last element
the paths will be different. If the attacker knows the outcome for one challenge,
he can guess the outcome of the other one with high probability, which might
explain the low entropy and min-entropy of the arbiter PUFs.

5.4 Summary

The arbiter PUF responses have a very low entropy and their use in applications
with strict unclonability and unpredictability requirements should be carefully
considered. Further, the arbiter PUFs are susceptible to changes of their supply
voltage and to environmental noise, which significantly increases the bit error
rate of the PUF. However, the bit error rate stays within acceptable bounds and
can be compensated by existing error correction mechanisms.

The flip-flop and latch PUFs are susceptible to temperature variations, which
have a significant effect on the bit error rate and the unpredictability of the PUF
responses. Hence, flip-flop and latch PUFs should not be used in an environment,
where the adversary can lower the ambient temperature of the PUF, reducing
the entropy of the PUF responses.

The SRAM and ring oscillator PUFs achieve almost all desired properties of a
PUF: The bit error rate does not change significantly under different operating
conditions, the entropy of the PUF responses is high and the responses generated
by different PUF instances seem to be independent. However, the ring oscillator
exhibits a low min-entropy, which might be problematic in some applications.

6 Conclusion

We performed the first large-scale analysis of the five most popular PUF types
(arbiter, ring oscillator, SRAM, flip-flop and latch PUFs) implemented in ASIC.
Our analysis is based on PUF data obtained from 96 ASICs, each housing several
PUF instances. Our results allow for the first time a fair comparison of these
PUFs. In this context, we presented an evaluation methodology for the empirical
assessment of the robustness and unpredictability properties of PUFs that are
fundamental in most applications of PUFs.

Our results show that the SRAM and ring oscillator PUFs seem to achieve all
desired properties of a PUF. However, the arbiter PUFs have a very low entropy
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and the entropy of the flip-flop and latch PUFs is susceptible to temperature
variations. Hence, the suitability of these PUFs for security-critical applications,
such as authentication or key generation must be carefully considered.

Future work includes the analysis of stronger PUF constructions and the
development of entropy estimation methodologies that also include potential
dependencies between different PUF instances.
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Abstract. We present PUFKY: a practical and modular design for a
cryptographic key generator based on a Physically Unclonable Func-
tion (PUF). A fully functional reference implementation is developed
and successfully evaluated on a substantial set of FPGA devices. It uses
a highly optimized ring oscillator PUF (ROPUF) design, producing re-
sponses with up to 99% entropy. A very high key reliability is guaran-
teed by a syndrome construction secure sketch using an efficient and
extremely low-overhead BCH decoder. This first complete implementa-
tion of a PUF-based key generator, including a PUF, a BCH decoder and
a cryptographic entropy accumulator, utilizes merely 17% (1162 slices) of
the available resources on a low-end FPGA, of which 82% are occupied by
the ROPUF and only 18% by the key generation logic. PUFKY is able to
produce a cryptographically secure 128-bit key with a failure rate < 10−9

in 5.62 ms. The design’s modularity allows for rapid and scalable adapta-
tions for other PUF implementations or for alternative key requirements.
The presented PUFKY core is immediately deployable in an embedded
system, e.g. by connecting it to an embedded microcontroller through a
convenient bus interface.

Keywords: Physically Unclonable Functions (PUFs), Cryptographic
Key Generation, Fuzzy Extractors.

1 Introduction

An indispensable premise for the majority of cryptographic implementations is
the ability to securely generate, store and retrieve keys. The required effort to
meet these conditions is often underestimated in the algorithmic description of
cryptographic primitives. The minimal common requirements for a secure key
generation and storage are i) a source of true randomness that ensures unpre-
dictable and unique fresh keys, and ii) a protected memory which reliably stores
the key’s information while shielding it completely from unauthorized parties.
From an implementation perspective, both requisites are non-trivial to achieve.
The need for unpredictable randomness is typically filled by applying a seeded
pseudo-random bit generator (PRNG). However, the fact that such generators
are difficult to implement properly was just recently made clear again by the ob-
servation [13] that a large collection of “random” public RSA keys contains many

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 302–319, 2012.
© International Association for Cryptologic Research 2012
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pairs which share a prime factor, which is immediately exploitable. Implement-
ing a protected memory is also a considerable design challenge, often leading to
increased implementation overhead and restricted application possibilities, to en-
force the physical security of the stored key. Countless examples can be provided
of broken cryptosystems due to poorly designed or implemented key storages, or
bad handling of keys. Moreover, even high-level physical protection mechanisms
are often not sufficient to prevent well-equipped and motivated adversaries from
discovering stored secrets [24, 25].

PUF-based key generators try to tackle both requirements at once by harvest-
ing static, device-unique randomness and processing it into a cryptographic key.
This avoids the need for both a PRNG, since the randomness is already intrin-
sically present in the device, and the need for a protected non-volatile memory,
since the used randomness is static over the lifetime of the device and can be
measured again and again to regenerate the same key from otherwise illegible
random features. Since PUF responses are generally noisy and of low-entropy,
a PUF-based key generator faces two main challenges: increasing the reliability
to a practically acceptable level and compressing sufficient entropy in a fixed
length key. Fuzzy extractors [7] perform exactly these two functions and can be
immediately applied for this purpose, as suggested in a number of earlier PUF
key generator proposals. In [10], Guajardo et al. propose to use an SRAM PUF
for generating keys, using a fuzzy extractor configuration based on linear block
codes. This idea was extended and optimized by Bösch et al. [4] who propose
a concatenated block code configuration, and Maes et al. [14] who propose to
use a soft-decision decoder. Yu et al. [28] propose a configuration based on ring
oscillator PUFs and apply an alternative error-correction method.

Contribution. Our main contribution is a highly practical PUF-based crypto-
graphic key generator design (PUFKY), and an efficient yet fully functional
FPGA reference implementation thereof. The proposed design comprises a num-
ber of major contributions based on new insights: i) we propose a novel variant
of a ring oscillator PUF based on very efficient Lehmer-Gray order encoding;
ii) we abandon the requirement of information-theoretical security in favor of
a much more practical yet still cryptographically strong key generation; iii) we
counter the widespread belief that code-based error-correction, BCH decoding in
particular, is too complex for efficient PUF-based key generation, by designing a
highly resource-optimized BCH decoder; and iv) we present a global optimization
strategy for PUF-based key generators based on well-defined design constraints.

Structure. In Section 2 we provide necessary background information on the
individual elements of the proposed key generator. Section 3 describes the de-
sign stage, putting all these elements together in the PUFKY architecture and
Section 4 provides concrete results on an optimized reference implementation of
the proposed PUF and the full PUFKY design. In Section 5, we discuss some
interesting details of our design and hint at possible future improvements and
applications. Finally, we conclude in Section 6.
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2 Background

2.1 Notation

We briefly introduce the notational conventions used throughout this work. A
random variable is denoted by a capital letter X and a particular outcome thereof
by a lower case letter x. A vector of length n is written as Xn = (X1, . . . , Xn) and
HW(Xn) is the Hamming weight of Xn. A matrix is represented by a bold faced
symbol A. H(X) is the Shannon entropy of the random variable X and H∞(X) is
its min-entropy. For a random binary vector Xn ∈ {0, 1}n, we respectively define
R(Xn) ≡ H(Xn)

n and R∞(Xn) ≡ H∞(Xn)
n . By Bn,p(t) we denote the binomial

cumulative distribution function with parameters n and p evaluated in t, and
B−1

n,p(q) is its inverse. By C(n, k, t) we denote a binary block code of length n,
dimension k and minimal distance 2t + 1 which is hence able to correct up to
t bit errors. When C(n, k, t) is linear it is defined by a generator and a parity-
check matrix, respectively denoted by Gk×n and Hn−k×n, satisfying the property
GHT = 0.

2.2 Physically Unclonable Functions (PUFs)

PUFs are hardware primitives which produce unpredictable and instantiation-
dependent outcomes. A silicon PUF is implemented on a silicon chip and uses the
intrinsic device randomness caused by chip manufacturing process variations to
generate a device-unique response. Due to their physical nature, PUF responses
are generally not perfectly reproducible (noisy) and not perfectly random. If
we consider the response of a particular PUF instance as a binary vector Xn,
the unreliability is expressed by the expected bit error rate between two evalua-
tions xn and x′n of the same response: Pr(xi �= x′

i). The entropy density R(Xn)
of a response expresses its relative amount of randomness. We will refer to a
PUF with a maximal bit error rate pe and an entropy density of at least ρ as a
(pe, ρ)-PUF.

A Ring Oscillator PUF (ROPUF) is a silicon PUF which generates a re-
sponse based on the frequencies of on-chip digital ring oscillators. Since the exact
frequency of a such oscillators is noticeably affected by process variations, an ac-
curate measurement thereof will contain unpredictable and device-unique infor-
mation. The first concept of a ROPUF was proposed by Gassend et al. [9], based
on a single configurable oscillator. Concerns about predictability and robustness
led to the proposal of an improved ROPUF structure by Suh and Devadas [23],
which uses a number of fixed oscillators and considers the relative frequencies of
oscillator pairs instead of their absolute values. Yin and Qu [27] further explored
this technique by considering the frequency ordering of larger groups of oscilla-
tors which is able to produce longer bit responses. Maiti et al. [15] performed an
extensive characterization of ROPUFs on a large FPGA population, justifying
their qualities as silicon PUFs.
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2.3 Secure Sketching
The notion of a secure sketch was proposed by Dodis et al. [7] and provides a
method to reliably reconstruct the outcome of a noisy variable in such a way that
the entropy of the outcome remains high. A number of possible constructions
based on error-correcting codes was also proposed in [7]. In this work, we will
focus on the syndrome construction for binary vectors.

We describe the operation of a syndrome construction secure sketch which
uses a binary linear block code C(n, k, t) with parity-check matrix H. The sketch
procedure takes as input an outcome of Xn → xn and produces a sketch hn−k =
xnHT . The recovery procedure takes as input a different (possibly noisy) outcome
of Xn → x′n(= xn ⊕ en with en a bit error vector) and the previously generated
sketch hn−k, and calculates the syndrome sn−k = x′nHT ⊕ hn−k. Because of the
linearity of the code, it is easy to show that sn−k ≡ enHT . If HW(en) ≤ t then
en can be decoded from sn−k, which is equivalent to a decoding operation for
C(n, k, t), and xn can be recovered as xn = x′n ⊕ en.

The sketch hn−k needs to be stored in between sketching and recovering. The
key point is that knowledge of hn−k does not fully disclose the entropy of Xn, but
at most n−k bits thereof. This means that hn−k can be stored and communicated
publicly and there will still be at least H(Xn)− (n−k) bits of entropy left in Xn.
In the setting of cryptographic key generation, the term helper data is used to
refer to such public information which is produced by the initial key extraction
and used by subsequent key regenerations.

The design parameters of the syndrome construction are mainly determined
by the selection of an appropriate linear block code C(n, k, t). In order to yield a
meaningful secure sketch, C(n, k, t) needs to meet some constraints determined
by the available (pe, ρ)-PUF and by the required remaining entropy m and re-
liability 1 − pfail of the output of the secure sketch. These constraints are listed
in the first column of Table 1. The practicality constraint restricts the possible
codes to ones for which a practical decoding algorithm exists. The rate and cor-
rection constraints further bound the possible code parameters as a function of
the available input (pe, ρ) and the required output (m, pfail). They respectively
express the requirement of not disclosing the full entropy of the PUF through
the helper data, and the minimally needed bit error correction capacity in order
to meet the required reliability. Bösch et al. [4] demonstrated that code concate-
nation offers considerable advantages when used in secure sketch constructions.
Notably the use of a simple repetition code as an inner code significantly relaxes
the design constraints. The parameter constraints for a syndrome construction
based on the concatenation of a repetition code C1(n1, 1, t1 = n1−1

2 ) as an inner
code and a second linear block code C2(n2, k2, t2) as an outer code, are given in
the second column of Table 1.

2.4 BCH Decoding
BCH codes are particularly performant cyclical linear block codes for which ef-
ficient error-decoding algorithms exist. A binary BCH code CBCH(nBCH , kBCH , tBCH)
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Table 1. Parameter constraints for the syndrome construction of secure sketches, de-
pending on the type of code construction used

C(n, k, t) C2(n2, k2, t2) ◦ C1(n1, 1, t1 = n1−1
2 )

Practicality C(n, k, t) is C2(n2, k2, t2) is
efficiently decodable efficiently decodable

Rate k
n

> 1 − ρ k2
n1n2

> 1 − ρ

Correction
t ≥ B−1

n,pe

(
(1 − pfail)

1
r

)
, t2 ≥ B−1

n2,1−p′
e

(
(1 − pfail)

1
r

)
,

with r = � m
k−n(1−ρ) � with p′

e = 1 − Bn1,pe(t1)
r = � m

k2−n1n2(1−ρ) �

is defined for nBCH = 2u−1, but BCH codes of any code length can be constructed
by also considering shortened versions: CBCH(nBCH − v, kBCH − v, tBCH).

Decoding a BCH syndrome into the most-likely bit error vector is typically
performed in three steps. First, so called syndrome evaluations zi are calculated
by evaluating the syndrome sn−k as a polynomial for α, . . . , α2tBCH , with α a
generator for F2u . The next step is using these zi to generate an error location
polynomial Λ. This is generally accomplished with the Berlekamp-Massey (BM)
algorithm. First published by Berlekamp [2] and later optimized by Massey [16],
this algorithm requires the inversion of an element in F2u in each of its 2tBCH

iterations. In order not to have to do this costly calculation, many authors have
come up with modified versions of the algorithm, e.g. [20–22]. However, these are
all time-memory tradeoffs of the original inversionless BM algorithm by Burton
[5], which we prefer due to its lower storage requirements. Finally, by calculating
the roots of Λ, one can find the error vector en. This is done with the Chien
search algorithm [6] by evaluating Λ for α, . . . , αtBCH . If Λ evaluates to zero for
αi then the corresponding error bit enBCH −i = 1.

2.5 Cryptographic Key Generation

To ensure their unpredictability, cryptographic keys should be generated from
a random source. Recommendations for appropriate sources and best practice
extraction methods can be found, e.g. in [1, 8, 12], and are used heavily in prac-
tical implementations. In addition to these best practice methods, strong ex-
tractors [18] have been proposed as unconditionally secure extractors of uniform
randomness. However they generally induce a large entropy loss, i.e. the output
length is much smaller than the entropy of the input, which is undesirable since
high-entropy randomness is scarce in most implementations. To generate reli-
able keys from noisy non-uniform sources like PUFs, Dodis et al. [7] introduced
the concept of a fuzzy extractor. This is basically a concatenation of a secure
sketch, as described in Sect. 2.3, with a strong extractor and is able to generate
information-theoretically secure keys. To obtain this very high security level, one
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still has to make a strong assumption about the min-entropy of the randomness
source, which is often impossible. Moreover, due to the use of a strong extractor,
large entropy losses need to be taken into account here, which often makes the
overall key generation very impractical1.

Another approach is considered in key generation based on PRNGs seeded
from an entropic source, as described in [1, 8, 12]. Such generators obtain their
initial internal state by accumulating entropy from a, usually low-quality, entropic
source using an entropy accumulation function. In [1, Sect. 10.4], constructions
for entropy accumulators based on a generic cryptographic hash function or a
block cipher are provided. Kelsey et al. [12] also strongly recommend a cryp-
tographic hash function for this purpose. Following this motivation, we opt for
a hash function to accumulate entropy in our design. The amount of data to
be accumulated to reach a sufficient entropy level, depends on the (estimated)
entropy rate of the considered source. For PRNGs which produce large quanti-
ties of output data, the source entropy estimates are usually very conservative.
For PUFs, entropy comes at a high implementation cost and being too conser-
vative leads to an excessively large overhead. For this reason we are forced to
consider relatively tight estimates on the remaining entropy in a PUF response
after secure sketching. On the other hand, the output length of a PUF-based key
generator is very limited (a single key) compared to PRNGs. In any case, the
total amount of entropy which needs to be accumulated should at least match
the length of the generated key.

3 Design

3.1 PUFKY Architecture

The top-level architecture of our PUFKY PUF-based key generator is shown
in Fig. 1. As a PUF, we use an ROPUF which produces high-entropy outputs
based on the frequency ordering of a selection of ring oscillators, as described
in Section 3.2. To account for the bit errors present in the PUF response, we
use a secure sketch construction based on the concatenation of two linear block
codes, a repetition code CREP(nREP , 1, nREP −1

2 ) with nREP odd and a BCH code
CBCH(nBCH , kBCH , tBCH). The design of the syndrome generation and error decoder
blocks used in the secure sketching is described in Section 3.3. To accumulate
the remaining entropy after secure sketching, we apply the recently proposed
light-weight cryptographic hash function SPONGENT [3].

3.2 ROPUF Design

Our ROPUF design is inspired by the design from Yin and Qu [27] which generates
a response based on the frequency ordering of a set of oscillators. A measure of the
frequency of an oscillator is obtained by counting the number of oscillations in a
1 In earlier work on PUF-based key generation with fuzzy extractors, e.g. [4, 10, 14],

the additional entropy loss by the strong extractor is ignored and the resulting keys
can not be considered information-theoretically secure.
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Fig. 1. PUFKY: PUF-based cryptographic key generator architecture

fixed time interval. To amortize the overhead of the frequency counters, oscillators
are ordered in b batches of a oscillators sharing a counter. In total, our ROPUF
design contains b × a oscillators of which sets of b can be measured in parallel. The
measurement time is determined as a fixed number of cycles of an independent on-
chip ring oscillator and is fixed at 87 μs. After some post-processing, an �-bit re-
sponse is generated based on the relative ordering of b simultaneously measured
frequencies. A total of a × �-bit responses can be produced by the ROPUF in this
manner. Note that, to ensure the independence of different responses, each oscilla-
tor is only used for a single response generation. The architecture of our ROPUF
design is shown in Fig. 2.
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Fig. 2. ROPUF architecture

Encoding the ordering of b frequency measurements F b = (F1, . . . , Fb) in an
�-bit response X� = (X1, . . . , X�), turns out to be the main design challenge
for this type of ROPUF. As discussed in Section 2.3, the quality of the PUF
responses, expressed by (pe, ρ), will be decisive for the design constraints of the
secure sketch, and by consequence for the key generator as a whole. The details of
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the post-processing will largely determine the final values for (pe, ρ). We propose
a three-step encoding for F b → X�:

1. Frequency Normalization: remove structural bias from the measurements.
2. Order Encoding: encode the normalized frequency ordering to a stable bit

vector in such a way that all ordering entropy is preserved.
3. Entropy Compression: compress the order encoding to maximize the entropy

density without significantly increasing the bit error probability.

Frequency Normalization. Only a portion of a measured frequency Fi will be ran-
dom, and only a portion of that randomness will be caused by the effects of pro-
cess variations on the considered oscillator. The analysis from [15] demonstrates
that Fi is subject to both device-dependent and oscillator-dependent structural
bias. Device-dependent bias does not affect the ordering of oscillators on a single
device, so we will not consider it further. Oscillator-dependent structural bias
on the other hand is of concern to us since it has a potentially severe impact
on the randomness of the frequency ordering. From a probabilistic viewpoint, it
is reasonable to assume the frequencies Fi to be independent, but due to the
oscillator-dependent structural bias we can not consider them to be identically
distributed since each Fi has a different expected value μFi . The ordering of Fi

will be largely determined by the deterministic ordering of μFi and not by the
effect of random process variations on Fi. Fortunately, we are able to obtain an
accurate estimate μ̃Fi of μFi by averaging Fi over many measurements on many
devices. Subtracting this estimate from the measured frequency gives us a nor-
malized frequency F ′

i = Fi − μ̃Fi . Assuming μ̃Fi ≈ μFi , the resulting normalized
frequencies F ′

i will be independent and identically distributed (i.i.d.). Calculat-
ing μ̃Fi needs to be performed only once for a single design after the oscillator
implementations are fixed, preferably over an initial test batch of ROPUF in-
stances. When these normalization terms are known with high accuracy, they
are included in the design, e.g. using a ROM.

Order Encoding. Sorting a vector F ′b of normalized frequencies, e.g. in ascend-
ing order, amounts to rearranging its elements in one of b! possible ways. The
goal of the order encoding step is to produce an �′-bit vector Y �′ which uniquely
encodes the ascending order of F ′b. Since the elements of F ′b are i.i.d., each
of the b! possible orderings is equally likely to occur [26], leading to H(Y �′) =
log2 b! =

∑b
i=2 log2 i. An optimal order encoding has a high entropy density but

a minimal sensitivity to noise on the F ′
i values. We propose a Lehmer encoding

of the frequency ordering, followed by a Gray encoding of the Lehmer coeffi-
cients. A Lehmer code is a unique numerical representation of an ordering which
is moreover efficient to obtain since it does not require explicit value sorting. It
represents the sorted ordering of F ′b as a coefficient vector Lb−1 = (L1, . . . , Lb−1)
with Li ∈ {0, 1, . . . , i}. It is clear that Lb−1 can take 2 × 3 × . . . × b = b! possible
values which is exactly the number of possible orderings. The Lehmer coefficients
are calculated from F ′b as Lj =

∑j
i=1 gt(F ′

j+1, F ′
i ), with gt(x, y) = 1 if x > y and
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0 otherwise. The Lehmer encoding has the nice property that a minimal change
in the sorted ordering caused by two neighboring values swapping places only
changes a single Lehmer coefficient by ±1. Using a binary Gray encoding for the
Lehmer coefficients, this translates to only a single bit difference as preferred.
The length of the binary representation becomes �′ =

∑b
i=2�log2 i� yielding

R
(

Y �′
)

=
∑

b

i=2
log2 i∑b

i=2
�log2 i� which is close to optimal.

Entropy Compression. R
(

Y �′
)

is already quite high, but can be increased further
by compressing it to X� with � ≤ �′. Note that Y �′ is not quite uniform over
{0, 1}�′ since some bits of Y �′ are biased and/or dependent. This results from
the fact that most of the Lehmer coefficients, although uniform by themselves,
can take a range of values which is not an integer power of two, leading to a
suboptimal binary encoding. We propose a simple compression by selectively
XOR-ing bits from Y �′ which suffer the most from bias and/or dependencies,
leading to an overall increase of the entropy density. Note that XOR-compression
potentially also increases the bit error probability, but at most by a factor �′

� .

3.3 Syndrome Generation and Error Decoding for CREP and CBCH

Repetition Code CREP. The syndrome generation of xnREP consists of pairwise
XOR-ing x1 with each remaining bit of xnREP , or hi = x1⊕xi+1. Error decoding is
based on a Hamming weight check of the syndrome snREP −1, which immediately
yields the value for the first error bit e1. The remaining error bits are again
obtained by a pairwise XOR of e1 with each of the syndrome bits, but this
step is discarded in the syndrome construction. In our design, both syndrome
generation and error decoding of a repetition code are fully combinatorial.

BCH Code CBCH . Since BCH codes are cyclical codes, their syndrome genera-
tion is a finite field division by the code’s generator polynomial. This is efficiently
implemented in hardware as an LFSR evaluation of length (nBCH − kBCH).

The error decoding step of a BCH code is more complex and requires the
largest design effort of all elements in our secure sketch. Most BCH decoders
are designed with a focus on throughput and use systolic array designs, e.g. [19,
20, 22]. Aiming for a size-optimized implementation, we propose a serialized,
minimalistic coprocessor design with a 10-bit application-specific instruction
set and limited conditional execution support. Although highly optimized to-
wards BCH decoding, the architecture is generic in the sense that it can decode
any BCH code, including shortened versions, requiring only a slight change of
firmware and memory size. The datapath consists of two blocks: an address and
a data block. To optimize array indexing, all addressing is done indirectly using
a five element address RAM, which is efficiently updated by a dedicated address
ALU. The output of the address RAM is directly connected to the data RAM.
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Fig. 3. BCH decoder architecture

The data block consists of data RAM and an ALU which is used mainly for
multiply-accumulate operations over F2u . To minimize the size, this ALU con-
tains only a single register. All other necessary operands come directly from the
data RAM. A high-level overview of the coprocessor architecture is shown in
Fig. 3.

BCH error decoding is done in the three steps elaborated in Section 2.4. A
listing of each used algorithm and their approximate runtimes can be found in
Appendix A. The performance of the algorithm execution is heavily optimized
using branch removal and loop unrolling. The coprocessor’s instruction set can
be found in Appendix B.

4 Implementation

We now present the implementation results of our PUFKY design as described
in Section 3. The implementation was synthesized, configured and tested on a
Xilinx® Spartan®-6 FPGA (XC6SLX45) which is a low-end FPGA in 45 nm
technology, specifically targeted for embedded system solutions.

4.1 PUF Implementation and Characterization
We first test our ROPUF implementation separately to obtain its quality param-
eters (pe, ρ). This characterization also produces the μ̃Fi normalization terms
required in the final key generator implementation as detailed in Section 3.2.
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We configured and tested exactly the same PUF implementation on 10 identical
FPGAs, using an ROPUF design with b = 16 batches of a = 64 oscillators each.

The frequency measurements are outputted directly and we perform all post-
processing described in Section 3.2 offline, using Matlab2. To characterize
the noise, the frequency of every loop is measured 25 times. For the moment
we don’t consider entropy compression, so the PUF response X� has length
� = �′ =

∑b
i=2�log2 i� = 49 bits with an assumed entropy of H(X�) = H(Y �′) =

log2 b! = 44.25 bits, yielding an entropy density of ρ = 90.31%. In Fig. 4(a),
the inter- and intra-distance histogram plots of these responses are presented.
The average inter-distance between responses on different devices is about 23.7
in 49 bits or about 48.4%. The small deviation from the ideal of 50% is repre-
sentative for the responses only having 90% entropy. At room temperature, the
average intra-distance between measurements of the same response on a single
device is just below 1 in 49 bits or merely 2.0%. ROPUFs are known to become
more unstable under temperature changes. To estimate this effect, we performed
a rough temperature test using a thermoelectric element to heat the FPGA’s
die temperature to about 80◦C and cool it to about 10◦C. We measured the
intra-distances with respect to a room temperature reference. We also studied
the effect of the XOR-compression on the ROPUF’s response robustness, by
compressing the response lengths to � = 42 (ρ becomes 97.95%) and � = 40
(ρ becomes 98.78%). Fig. 4(b) shows the effect of both temperature and XOR-
compression on the average bit error probability. Heating the FPGA die has
the most severe impact on the stability of the ROPUF’s responses. As expected,
XOR-compression also slightly increases the bit error probability, approximately
by a factor �′

� . Taking into account a 2% safety margin on the observed bit error
rates, our ROPUF implementation yields a (pe = 12%, ρ = 90.31%)-PUF for
� = 49, or a (13%, 97.95%)-PUF for � = 42, or a (14%, 98.78%)-PUF for � = 40.
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Fig. 4. Characterization of our ROPUF implementation

2 In the final PUFKY implementation, all post-processing is done on the device.
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4.2 Full Key Generator Implementation

Now we can start optimizing the full PUFKY design according to the constraints
as expressed in Section 2.3. The main cost variable for implementation size is the
number of required oscillators (a × b), and for performance the number of errors
the BCH decoder needs to correct (tBCH ). Since we target embedded systems,
we aim for an as small as possible implementation at a practically acceptable
performance. The optimization parameters depend on our ROPUF, expressed
by the triplet (�, pe, ρ) for which concrete values are provided at the end of
Section 4.1, and on the requirements for the generated key, expressed by (m, pfail).
For our reference implementation, we aim for a key length m = 128 with failure
rate pfail ≤ 10−9. After a thorough exploration of the design space with these
parameters, we converge on the following PUFKY reference implementation:

– We select the (pe = 13%, ρ = 97.95%)-ROPUF variant with � = 42, imple-
menting b = 16 batches of a = 53 oscillators each.

– A secure sketch applying a concatenation of CREP(7, 1, 3) and CBCH(318, 174, 17).
The repetition block generates 36 bits of helper data for every 42-bit PUF
response and outputs 6 bits to the BCH block. The BCH block generates
144 bits of helper data once and feeds 318 bits to the entropy accumulator.

– The ROPUF generates in total a×� = 2226 bits containing a×�×ρ = 2180.4
bits of entropy. The total helper data length is 53 × 36 + 144 = 2052. The
remaining entropy after secure sketching is at least 2180.4 − 2052 = 128.4
bits which are accumulated in an m = 128-bit key by a SPONGENT-128
hash function implementation.

The total size of our PUFKY reference implementation for the considered FPGA
platform is 1162 slices, of which 82% is taken up by the ROPUF block. Table 2(a)
lists the size of each submodule used in the design. The total time spend to
extract the 128-bit key is approximately 5.62 ms (at 54 MHz). Table 2(b) lists
the number of cycles spend in each step of the key extraction.

Table 2. Area consumption and runtime of our reference PUFKY implementation on
a Xilinx Spartan-6 FPGA. Due to slice compression and glue logic the sum of module
sizes is not equal to total size. The PUF runtime is independent of clock speed.

(a) Area consumption

Module Size [slices]

ROPUF 952
REP decoder 37
BCH syndrome calc. 72
BCH decoder 112
SPONGENT-128 22
helper data RAM 38

Total 1162

(b) Runtimes

Step of extraction Time [cycles]

PUF output 4.59 ms
REP decoding 0
BCH syndrome calc. 511
BCH decoding 50320
SPONGENT hashing 3990
control overhead 489

Total @ 54 MHz 5.62 ms
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5 Discussion

5.1 Some Notes on Security

Our reference PUFKY implementation uses a best-practice entropy accumula-
tion function based on a cryptographically secure hash to generate a key from an
amount of entropic data, instead of an information-theoretically secure fuzzy ex-
tractor. The large majority of currently existing key generators based on PRNGs
also use the best-practice cryptographic approach. We note that, due to the mod-
ularity of the PUFKY design, it is possible to obtain an information-theoretically
secure extraction with minor replacements: i) one needs to consider min-entropy
instead of Shannon entropy in all design constraints, ii) one needs to replace
the entropy accumulation function by a strong extractor, and iii) one needs to
collect more (min-)entropy than the key length to account for the additional
losses induced by the strong extractor. Note that all three changes do come at a
rather large implementation overhead, which is the cost one pays for obtaining
information-theoretical security.

From a physical security perspective, PUFs and PUF-based key generators
can be assumed, like any implementation of a cryptographic primitive, to be
vulnerable to side-channel attacks when no appropriate countermeasures are
taken, see e.g. [11, 17]. Since our PUFKY reference implementation is a fully
functional PUF-based key generator, it is the ideal test subject for side-channel
analysis to identify and protect against possible side-channel leakages in a next
version. Such analysis is a logical future work which we are considering. In this
light, we do want to mention the inherent side-channel resistance of the error
decoding blocks in syndrome-construction secure sketches. This results from the
fact that no data processed by these blocks contains any information about the
PUF output nor about the extracted key, but only about the public syndrome
and the error on the PUF output.

5.2 Application Possibilities

The key generated by our PUFKY key generator can basically be used in any
conceivable key-based security application. In its current form, the reference im-
plementation produces cryptographically strong 128-bit keys with a failure rate
< 10−9, but similar implementations for other key parameters (or alternative
PUF designs) can be produced rapidly based on our modular PUFKY archi-
tecture. Using a PUF-based key offers a number of advantages over traditional
key generation, the most noteworthy being: i) one does not need protected non-
volatile memory to permanently store the key since it can be regenerated at any
time, and ii) the key is intrinsically bound to a particular platform instantia-
tion which is very useful, e.g. in anticounterfeiting or HW/SW binding appli-
cations. We note that both advantages are of particular interest in the context
of an FPGA-based embedded system. To demonstrate the ease of integrating a
PUFKY implementation in an embedded design, we developed a bus wrapper
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and a software driver for connecting it to a Xilinx® MicroBlaze® embedded pro-
cessor. The PUFKY interface then becomes as simple as calling the driver’s
getKey() function from one’s embedded software application.

6 Conclusion

Developing a PUF-based cryptographic key generator is a process involving many
parameters, constraints and trade-offs. In this work, we identified and formalized
the generic design constraints and integrated them in a practical key generator
design. We propose a complete implementation of this design based on a ring-
oscillator PUF, a specialized error-correcting BCH decoder and a cryptographic
entropy accumulator. Our ring-oscillator PUF produces high-entropy responses
(up to 99%) based on actual physical randomness. The proposed BCH decoder
design is very efficient and scalable, yet occuppies only a minimal amount of re-
sources. As our implementation results demonstrate, the induced overhead of this
BCH decoder in a PUF based key generator is certainly justifiable. Finally, the
choice for a cryptographic entropy accumulator, motivated by their wide-spread
use in PRNG based key generators, offers a considerable efficiency gain compared
to the much more stringent design constraints for information-theoretically se-
cure key extraction. Due to its completeness and efficieny, our PUFKY reference
implementation is the first PUF-based key generator to be immediately deploy-
able in an embedded system.
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A BCH Decoding Algorithms

Listed below are the three algorithms that we use for BCH decoding. More infor-
mation on these algorithms and how they are used can be found in Section 2.4.
We denote an array A of b elements, with each element in N as A[b] ∈ N. Array
indices start at 0, unless specifically mentioned otherwise. Both Algorithm 1 and
2 amount to polynomial evaluation, however, in the former, heavy optimization
is possible since we know that every coefficient must be either 0 or 1. Algorithm 3
is the same as the one presented in [5], with a few modifications to better fit the
architecture of our coprocessor.
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Algorithm 1: Syndrome calculation
Input: sn−k[n − k] ∈ F2
Output: z[2t] ∈ F2u

Data: curArg, evalArg ∈ F2u

i, j ∈ N
curArg ← α
for i ← 0 to 2t − 1 do

z[i] ← 0
evalArg ← 1
for j ← 0 to n − k − 1 do

if sn−k[j] = 1 then
z[i] ← z[i] ⊕ evalArg

evalArg ← evalArg ⊗ curArg
curArg ← curArg ⊗ α

Algorithm 2: Chien search
Input: Λ[t + 1] ∈ F2u

Output: errorLoc[n] ∈ F2
Data: curAlpha, curEval ∈ F2u

i, j ∈ N
for i ← n − 1 to 0 do

curEval ← Λ[0]
curAlpha ← α
for j ← 1 to t do

Λ[j] ← Λ[j] ⊗ curAlpha
curEval ← curEval ⊕ Λ[j]
curAlpha ← curAlpha ⊗ α

if curEval = 0 then
errorLoc[i] ← 1

else
errorLoc[i] ← 0

Algorithm 3: Inversionless Berlekamp-Massey
Input: z[2t] ∈ F2u

Output: Λ[t + 1] ∈ F2u

Data: b[t + 2], δ, γ ∈ F2u ; flag ∈ F2; k ∈ Z; i, j ∈ N
b[−1] ← 0
b[0] ← 1
Λ[0] ← 1
for i ← 1 to t do

b[i] ← 0
Λ[i] ← 0

γ ← 1
k ← 0
for i ← 0 to 2t − 1 do

δ ← 0
for j ← 0 to min(i, t) do

δ ← δ ⊕ (z[i − j] ⊗ Λ[j])
flag ← (δ �= 0) & (k ≥ 0)
if flag = 1 then

for j ← t to 0 do
b[j] ← Λ[j]
Λ[j] ← (Λ[j] ⊗ γ) ⊕ (b[j − 1] ⊗ δ)

γ ← δ
k ← −k − 1

else
for j ← t to 0 do

b[j] ← b[j − 1]
Λ[j] ← (Λ[j] ⊗ γ) ⊕ (b[j − 1] ⊗ δ)

k ← k + 1

Table 3 lists formulas for the ideal and actual runtime of each algorithm. We
define the ideal algorithm runtime as the total number of (not unrolled) loop it-
erations. Note that runtime is mainly determined by tBCH in all three algorithms.
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Our obtained runtimes of the syndrome and error-location calculation are par-
ticularly efficient requiring only 3–5 cycles per loop iteration with well chosen
parameters for CBCH .

Table 3. The ideal and actual runtimes for the BCH decoding algorithms. The formulas
for actual runtime are highest order approximations.

Algorithm Runtime [cycles]
Ideal Actual (approx.)

Syndrome calculation 2tBCH · (nBCH − kBCH) 40tBCH · � nBCH −kBCH
u

�
Berlekamp-Massey 3.5 · (t2

BCH + tBCH) 36t2
BCH

Error loc. calculation nBCH · tBCH 3.6nBCH · tBCH

B BCH Decoder Instruction Set

Table 4 gives an overview of the instructions implemented on the BCH decod-
ing coprocessor, their result and the number of cycles needed to execute each
instruction.

Table 4. Instruction set of the BCH decoding coprocessor

Opcode Result Cycles

jump PC ← value 2
cmp_jump PC ← value if (comp = true) 3
stop PC ← PC 1

comp condi ← (comp = true) 2
set_cond condi ← value 1

load_reg reg ← data[addri] 1
load_fixed_reg reg ← value 2

load_fixed_addr addri ← value 2
mod_addr addri ← f(addri) 1
copy_addr addri ← addrj 1

store_reg data[addri] ← reg 1
store_fixed data[addri] ← value 2

rotr data[addri] ← data[addri] � 1 1
shiftl_clr data[addri] ← data[addri] � 1 1
shiftl_set data[addri] ← (data[addri] � 1) | 1 1

gf2_add_mult data[addri] ← data[addri] ⊗ data[addrj ] 1
reg ← reg ⊕ (data[addri] ⊗ data[addrj ])
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Abstract. NEON is a vector instruction set included in a large frac-
tion of new ARM-based tablets and smartphones. This paper shows that
NEON supports high-security cryptography at surprisingly high speeds;
normally data arrives at lower speeds, giving the CPU time to handle
tasks other than cryptography. In particular, this paper explains how
to use a single 800MHz Cortex A8 core to compute the existing NaCl
suite of high-security cryptographic primitives at the following speeds:
5.60 cycles per byte (1.14 Gbps) to encrypt using a shared secret key,
2.30 cycles per byte (2.78 Gbps) to authenticate using a shared secret
key, 527102 cycles (1517/second) to compute a shared secret key for a
new public key, 624846 cycles (1280/second) to verify a signature, and
244655 cycles (3269/second) to sign a message. These speeds make no
use of secret branches and no use of secret memory addresses.

Keywords: vectorization-friendly cryptographic primitives, efficient soft-
ware implementations, smartphones, tablets, there be dragons.

1 Introduction

The Apple A4 CPU used in the iPad 1 (2010, 1GHz) and iPhone 4 (2010, 1GHz)
contains a single Cortex A8 CPU core. The same CPU core also appears in many
other tablets and smartphones. The point of this paper is that the Cortex A8
achieves impressive speeds for high-security cryptography:

• 5.60 cycles per byte to encrypt a message using a shared secret key;
• 2.30 cycles per byte to authenticate a message using a shared secret key;
• 527102 cycles to compute a shared secret key for a new public key;
• 624846 cycles to verify a signature on a short message; and
• 244655 cycles to sign a short message.
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We do not claim that all high-security cryptographic primitives run well on the
Cortex A8. Quite the opposite: we rely critically on a synergy between

• the capabilities of the “NEON” vector unit in the Cortex A8 and
• the parallelizability of some carefully selected cryptographic primitives.

The primitives we use are Salsa20 [9], a member of the final portfolio from
the ECRYPT Stream Cipher Project; Poly1305 [5], a polynomial-evaluation
message-authentication code similar to the message-authentication code in GCM;
Curve25519 [6], an elliptic-curve Diffie–Hellman system; and Ed25519 [10], an
elliptic-curve signature system that was introduced at CHES 2011. The rest of
this paper explains how we use NEON to obtain such high speeds for these
primitives.

It is not a coincidence that our selection matches the default primitives in
NaCl, the existing “Networking and Cryptography library” [13] used in appli-
cations such as DNSCrypt [45]; vectorizability was one of the design criteria for
NaCl. It is nevertheless surprising that a rather small vector unit, carrying out
just one arithmetic instruction per cycle, can run these primitives at the speeds
listed above. A high-power Intel Core 2 CPU core (at 45nm, like the Apple A4),
with a 64-bit instruction set and three full 128-bit vector units, has cycle counts
of 3.98/byte, 3.32/byte, 307053, 365742, and 106542 for the same five tasks with
the best reported assembly-language implementations of the same primitives in
the SUPERCOP benchmarking suite [12]; the Cortex A8 ends up much more
competitive than one might expect. We also do better than the 697080 Cell cy-
cles for Curve25519 achieved in [17], even though the Cell has more powerful
permutation instructions and many more registers.

Side Channels. All memory addresses and branch conditions in our software
are public, depending only on message lengths. There is no data flow from secret
data (keys, plaintext, etc.) to cache timing, branch timing, etc. We do not claim
that our software is immune to hardware side-channel attacks such as power
analysis, but we do claim that it is immune to software side-channel attacks
such as [44], [2], and [47].

Benchmarking Platform. The speeds reported above were measured on a
low-cost Hercules eCAFE netbook (released and purchased in 2011) containing
a Freescale i.MX515 CPU. This CPU has a single 800MHz Cortex A8 core.
The same machine is also visible in the SUPERCOP benchmarks as h4mx515e.
Occasionally we make comparisons to benchmarks that use OpenSSL or a C
compiler; the netbook is shipped with Ubuntu 10.04, and in particular OpenSSL
0.9.8k and gcc 4.4.3, neither of which we claim is optimal.

All of our software has been checked against standard test suites. We are plac-
ing our software online to maximize verifiability of our results, and are placing it
into the public domain to maximize reusability. Some of our preliminary results
are already online and included in various public benchmark reports, but this
paper is our first formal announcement and achieves even better speeds.

More CPUs with NEON. The Cortex A8 is not the only hardware design
supporting the NEON instruction set. The Apple A5 CPU used in the iPad 2
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(2011, 1GHz) and iPhone 4S (2011, 800MHz) contains two Cortex A9 CPU cores
with NEON units. The NVIDIA Tegra 3 CPU used in the 2011 Asus Eee Pad
Transformer Prime tablet (2011, 1.3GHz) and HTC One X smartphone (2012,
1.5GHz) contains four Cortex A9 CPU cores with NEON units. Qualcomm’s
“Snapdragon” series of CPUs reportedly includes a different NEON microarchi-
tecture for the older “Scorpion” cores and a faster NEON microarchitecture for
the newer “Krait” cores.

We have very recently benchmarked our software on a Scorpion, obtaining cy-
cle counts of 5.40/byte, 1.89/byte, 606824, 756795, and 511123 for the five tasks
listed above. We expect that further optimization for Cortex A9 and Snapdragon
will produce even better results. The rest of this paper focuses on the original
Cortex A8 NEON microarchitecture.

One should not think that all tablets and smartphones support NEON in-
structions. For example, NVIDIA omitted NEON from the Cortex A9 cores in
the Tegra 2; lower-cost ARM11 processors do not support NEON and continue to
appear in new devices; and some devices use Intel processors with a quite differ-
ent instruction set. However, Apple alone has sold more than 50 million tablets
with NEON and many more smartphones with NEON, and our sampling sug-
gests that NEON also appears in the majority of new tablets and smartphones
from other manufacturers. This paper turns all of these devices into powerful
cryptographic engines, capable of protecting large volumes of data while leaving
the CPU with enough time to actually do something useful with that data.

2 NEON Instructions and Speeds

This section reviews NEON’s capabilities. This is not a comprehensive review:
it focuses on the most important instructions for our software, and the main
bottlenecks in those instructions. All comments about speed refer to the NEON
unit in a single Cortex A8 core.

Registers. The NEON architecture has 16 128-bit vector registers (2048 bits
overall), q0 through q15. It also has 32 64-bit vector registers, d0 through d31,
but these registers share physical space with the 128-bit vector registers: q0 is
the concatenation of d0 and d1, q1 is the concatenation of d2 and d3, etc.

For comparison, the basic ARM architecture has only 16 32-bit registers, r0
through r15. Register r13 is the stack pointer and register r15 is the program
counter, leaving only 14 32-bit registers (448 bits overall) for general use. One
of the most obvious benefits of NEON for cryptography is that it provides much
more space in registers, reducing the number of loads and stores that we need.

Syntax. We rarely look at NEON register names, even though we write code
in assembly: we use a higher-level assembly syntax that allows any number of
names for 128-bit vector registers. For example, we write

diag3 ^= b0

and then an automatic translator produces traditional assembly language

veor q6,q6,q14
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for assembly by the standard GNU assembler gas; here the translator has se-
lected q6 for diag3 and q14 for b0. We nevertheless pay close attention to the
number of “live” 128-bit registers at each moment, reorganizing our computa-
tions to fit reasonably large amounts of work into registers.

The syntax is our own design. To build the translator we reused the existing
qhasm toolkit [7] and wrote a short ARM+NEON machine-description file for
qhasm. This file contains, for example, the line

4x r=s+t:>r=reg128:<s=reg128:<t=reg128:asm/vadd.i32 >r,<s,<t:

stating our syntax and the gas assembly-language syntax for a 4-way vectorized
32-bit addition, and also identifying the inputs and outputs of the instruction
for the qhasm register allocator. The code examples in the rest of this paper use
our syntax for the sake of readability; we do not assume that readers are already
familiar with NEON.

We have also experimented extensively with writing NEON code in C, us-
ing compiler extensions for NEON instructions. However, we have found that
assembly language gives us far better tradeoffs between software speed and pro-
gramming effort. Assembly language has a reputation for being hard to read and
write, but typical code such as

4x a0 = diag1 + diag0

4x b0 = a0 << 7

in our assembly-language syntax is as straightforward as

a0 = diag1 + diag0;

b0 = vshlq_n_u32(a0,7);

in C. The critical advantage of assembly language is that it provides more control.
We frequently find that every available C compiler produces poorly scheduled
code, leaving the NEON unit mostly idle; changing the C code to produce better
assembly-language scheduling is a hit-and-miss affair, and it is also not clear
how the compiler could be modified to do better, since the C language provides
no way to express instruction priorities. Writing directly in assembly language
eliminates this difficulty, allowing us to focus on higher-level questions of how to
decompose larger computations (such as multiplications modulo 2255 − 19) into
pieces suitable for vectorization.

Arithmetic Instructions. The Cortex A8 NEON microarchitecture has one
128-bit arithmetic unit. A typical arithmetic instruction such as

4x a = b + c

occupies the NEON arithmetic unit for one cycle. This instruction partitions
the 128-bit output register a into four 32-bit quantities a[0], a[1], a[2], a[3],
similarly partitions b and c, and then has the same effect as
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a[0] = b[0] + c[0]

a[1] = b[1] + c[1]

a[2] = b[2] + c[2]

a[3] = b[3] + c[3]

where as usual + means addition modulo 232. Readers accustomed to two-
operand architectures should note that there is no requirement to split this
instruction into a copy a = b followed by 4x a += c.

This instruction passes through several single-cycle NEON pipeline stages N1,
N2, etc. It reads its input when it is in stage N2; if the input will not be ready
then it already predicts the problem at the beginning of the pipeline and stalls
there, also stalling subsequent NEON instructions. It makes its output available
in stage N4, two cycles after reading the input, so another addition instruction
that begins two cycles later (reaching N2 when the first instruction reaches N4)
can read the output without stalling.

We comment that “addition has 2-cycle latency” would be an oversimplifica-
tion, for reasons that will be clear in the next paragraph. We also warn readers
that ARM’s Cortex A8 manual [3] reports stage N3 for the output, even though
an addition that begins the next cycle will in fact stall. This is not an isolated
error in the manual, but rather an unusual convention for reporting output
availability: ARM consistently lists the stage just before the output is ready. An
online Cortex A8 cycle counter by Sobole [40] correctly displays this latency,
although we encountered some other cases where it was too pessimistic.

A logical instruction such as

a = b ^ c

has the same performance as an addition. A subtraction instruction

4x a = b - c

occupies the arithmetic unit for one cycle, just like addition, but needs the c

input one cycle earlier, in stage N1. Addition and subtraction thus each have
latency 2 as input to an addition or to the positive part of a subtraction, but
latency 3 as input to the negative part of a subtraction.

Shifting by a fixed distance is like subtraction in that it needs input in stage
N1 and generates output in stage N4. NEON can combine three instructions for
rotation into two instructions—

4x a = b << 7

4x a insert= b >> 25

—but the second instruction occupies the arithmetic unit for two cycles and
generally causes larger latency problems than a separate shift and xor.

A pair of 32-bit multiplications, each producing a 64-bit result, uses one in-
struction:

c[0,1] = a[0] signed* b[0]; c[2,3] = a[1] signed* b[1]
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This instruction occupies the arithmetic unit for two cycles, for a total through-
put of one 32× 32 → 64-bit multiplication per cycle. This instruction reads b in
stage N1, reads a in stage N2, and makes c available in stage N8. This instruction
has a multiply-accumulate variant, carrying out additions for free:

c[0,1] += a[0] signed* b[0]; c[2,3] += a[1] signed* b[1]

The accumulator is normally read in stage N3, but is read much later if it is the
result of a similar multiplication instruction. A typical sequence such as

c[0,1] = a[0] unsigned* b[0]; c[2,3] = a[1] unsigned* b[1]

c[0,1] += e[2] unsigned* f[2]; c[2,3] += e[3] unsigned* f[3]

c[0,1] += g[0] unsigned* h[2]; c[2,3] += g[1] unsigned* h[3]

takes six cycles without any stalls.

Loads, Stores, and Permutations. There is a 128-bit NEON load/store unit
that runs in parallel with the NEON arithmetic unit. An aligned 128-bit or
aligned 64-bit load or store consumes the load/store unit for one cycle and makes
its result available in N2. Alignment is static (encoded explicitly in the instruc-
tion), not dynamic:

x01 aligned= mem128[input_1]; input_1 += 16

The load/store instruction does not allow an offset from the index register but
does allow subsequent increment of the index register by the load amount or
by another register. There are separate instructions for an unaligned 128-bit or
unaligned 64-bit load or store, for an unaligned 64-bit load or store with an
offset, and various other possibilities, each consuming the load/store unit for at
least two cycles.

NEON includes a few permutation instructions that consume the load/store
unit for one cycle: for example,

r = s[1] t[2] r[2,3]

takes a single cycle to replace r[0] and r[1] with s[1] and t[2] respectively,
leaving r[2] and r[3] unchanged. This instruction reads s and t in stage N1
and writes r in stage N3. There are more permutation instructions that consume
the load/store unit for two cycles.

Each NEON cycle dispatches at best one instruction to the arithmetic unit
and one instruction to the load/store unit. These two dispatches can occur in
either order. For example, a sequence of 6 single-cycle instructions of the form
A LS A LS A LS will take 3 NEON cycles (A LS, A LS, A LS); a sequence LS
A A LS LS A will take 3 NEON cycles (LS A, A LS, LS A); but a sequence LS
LS LS A A A will take 5 NEON cycles (LS, LS, LS A, A, A).

A c-cycle instruction is dispatched in the same way as c adjacent single-cycle
instructions. For example, the permutation instruction in

4x a2 = diag3 + diag2

diag3 = diag3[3] diag3[0,1,2]

4x next_a2 = next_diag3 + next_diag2
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takes two LS cycles, so overall this sequence takes two cycles (A LS, LS A).
Occasional permutations thus do not cost any cycles. As another example, one
can interleave two-cycle permutations with two-cycle multiplications.

3 Encrypt Using a Shared Secret Key:
5.60 Cycles/Byte for Salsa20

This section explains how to encrypt data with the Salsa20 stream cipher [9] at
5.60 Cortex A8 cycles/byte: e.g., 1.14 Gbps on an 800MHz core. The inner loop
uses 4.58 cycles/byte and scales linearly with the number of cipher rounds; for
example, Salsa20/12 uses 2.75 cycles/byte for the inner loop and 3.77 cycles/byte
for the entire cipher. (These are long-message figures, but the per-message over-
head is reasonably small: for example, a 1536-byte message with full Salsa20 uses
5.75 cycles/byte.)

For comparison, [29] reports that a new AES-128-CTR assembly-language
implementation, contributed to OpenSSL by Polyakov, runs at 25.4 Cortex A8
cycles per byte (0.25 Gbps at 800MHz). There is no indication that this speed in-
cludes protection against software side-channel attacks; in fact, the recent paper
[47] by Weiß, Heinz, and Stumpf demonstrated Cortex A8 cache-timing leakage
of at least half the AES key bits from OpenSSL and several other AES implemen-
tations. We have written our own NEON AES-128-CTR implementation using
the bitslicing approach by Käsper and Schwabe [23], protecting against side-
channel attacks and at the same time setting a new Cortex A8 speed record of
19.12 cycles/byte (0.33 Gbps at 800MHz), but obviously Salsa20 is much faster.

The eBASC stream-cipher benchmarks [12] report, for Cortex A8, two other
ciphers providing comparable long-message speeds: 5.77 cycles/byte for NLS v2
and 7.18 cycles/byte for TPy. NLS v2 is certainly fast, but it is limited to a 128-
bit key and 264 bits of output, it relies on S-box lookups that would incur extra
cost to protect against cache-timing attacks, and in general it does not appear
to have as large a security margin as Salsa20. We see our results as showing that
the same speeds can be achieved with higher security. TPy is less competitive: it
relies on random access to a large secret array, requiring an expensive setup for
each nonce (not visible in the long-message timings) and incurring vastly higher
costs for protection against cache-timing attacks.

Review of Salsa20; Non-NEON Bottlenecks. Salsa20 expands a 256-bit
key and a 64-bit nonce into a long output stream, and xors this stream with the
plaintext to produce ciphertext. The stream is generated in 64-byte blocks. The
main bottleneck in generating each block is a series of 20 rounds, each consisting
of 16 32-bit add-rotate-xor sequences such as the following:

s4 = x0 + x12

x4 ^= (s4 >>> 25)

This might already seem to be a perfect fit for the basic 32-bit ARM instruction
set, without help from NEON. The Cortex A8 has two 32-bit execution units;
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addition occupies one unit for one cycle, and rotate-xor occupies one unit for
one cycle. One would thus expect 320 add-rotate-xor sequences to occupy both
integer execution units for 320 cycles, i.e., 5 cycles per byte.

However, there is a latency of 2 cycles between the two instructions shown
above, and an overall latency of 3 cycles between the availability of x0 and the
availability of x4. Furthermore, the ARM architecture provides only 14 registers,
but Salsa20 needs at least 17 active values: x0 through x15 together with a sum
such as s4. (One can overwrite x0 with s4, but only at the expense of extra
arithmetic to restore x0 afterwards.) Loads and stores occupy the execution
units, taking time away from arithmetic operations. (ARM can merge two loads
of adjacent registers into a single instruction, but this instruction consumes both
execution units for one cycle and the first execution unit for another cycle.) There
are also various overheads outside the 20-round inner loop. Compiling several
different C implementations of Salsa20 with many different compiler options did
not beat 15 cycles per byte.

Internal Parallelization; Vectorization; NEON Bottlenecks. Each Salsa20
round has 4-way parallelism, with 4 independent add-rotate-xor sequences to
carry out at each moment. Two parallel computations hide some latencies but
require 8 loads and stores per round with our best instruction schedule; three or
four parallel computations would hide all latencies but would require even more
loads and stores per round.

NEON has far more space in registers, and its 128-bit arithmetic unit can
perform 4 32-bit operations in each cycle. The 4 operations to carry out at each
moment in Salsa20 naturally form a 4-way vector operation, at the cost of three
128-bit permutations per round. Salsa20 thus seems to be a natural fit for NEON.

However, NEON rotation consumes 3 operations as discussed in Section 2,
so add-rotate-xor consumes 5 operations, at least 1.25 cycles; 5 add-rotate-xor
operations per output byte consume at least 6.25 cycles per byte. Furthermore,
NEON latencies are even higher than basic ARM latencies. The lowest-latency
sequence of instructions for add-rotate-xor is

4x a0 = diag1 + diag0

4x b0 = a0 << 7

4x a0 unsigned>>= 25

diag3 ^= b0

diag3 ^= a0

with total latency 9 to the next addition: the individual latencies are 3 (N4
addition output a0 to N1 shift input), 0 (but carried out the next cycle since
the arithmetic unit is busy), 2 (N4 shift output b0 to N2 xor input), 2 (N4 xor
output diag3 to N2 xor input), and 2 (N4 xor output diag3 to N2 addition
input). A straightforward NEON implementation cannot do better than 11.25
cycles per byte.

External Parallelization. We do better by taking advantage of another level
of parallelizability in Salsa20: Salsa20, like AES-CTR, generates output blocks
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independently as functions of a simple counter. Computing two output blocks
in parallel with the following pattern of add-rotate-xor operations—

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

+ << >> ^ ^ + << >> ^ ^

+ << >> ^ ^ + << >> ^ ^

—hides almost all NEON latencies, reducing our inner loop to 44 cycles per
round for both blocks, i.e., 880 cycles for 20 rounds producing 128 bytes, i.e.,
6.875 cycles per byte. Computing three output blocks in parallel still fits into
NEON registers (with a slightly trickier pattern of operations—the most obvious
patterns would need 18 registers), further reducing our inner loop to 6.25 cycles
per byte, and alleviates latency issues enough to allow two-instruction rotations,
but as far as we can tell this is outweighed by somewhat lower effectiveness of
the speedup discussed in the next subsection.

Previous work on Salsa20 for other 128-bit vector architectures had vector-
ized across four output blocks. However, this needs at least 17 active vectors
(and more to hide latencies), requiring extra instructions for loads and stores,
more than the number of permutation instructions saved. This would also add
overhead outside the inner loop and would interfere with the speedup described
in the next subsection.

Interleaving ARM with NEON. We do better than 6.25 cycles per byte by
using the basic ARM execution units to generate one block while NEON gen-
erates two blocks. Each round involves 23 NEON instructions for one block (20
instructions for four add-rotate-xor sequences, plus 3 permutation instructions),
23 NEON instructions for a second block, and 40 ARM instructions for a third
block. The extra ARM instructions reduce the inner loop to (2/3)6.875 ≈ 4.58
cycles per byte: the cycles for the loop are exactly the same but the loop produces
1.5× as much output.

We are pushing this technique extremely close to an important Cortex A8
limit. The limit is that the entire core decodes at most two instructions per
cycle, whether the instructions are ARM instructions or NEON instructions.
The 880 cycles that we spend for 128 NEON output bytes have 1760 instruction
slots, while we use only 920 NEON instructions, leaving 840 free slots; we use
800 of these slots for ARM instructions that generate 64 additional output bytes,
and an additional 35 slots for loop control to avoid excessive code size. (Register
pressure forced us to spill the loop counter, and each branch instruction has a
hidden cost of 3 slots; we ended up unrolling 4 rounds.) Putting even marginally
more work on the ARM unit would slow down the NEON processing, and an easy
quantitative analysis shows that this would slow down the cipher as a whole.

The same limit makes ARM instructions far less effective for, e.g., the compu-
tations modulo 2255 − 19 discussed later in this paper. These computations are
large enough that they require many NEON loads and stores alongside arith-
metic, often consuming both of the instruction slots available in a cycle. There
are still some slots for ARM instructions, but these computations require an
even larger number of ARM loads and stores, leaving very few slots for ARM
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arithmetic instructions. Furthermore, these computations are dominated by mul-
tiplications rather than rotations, and even full-speed ARM multiplications have
only a fraction of the power of NEON multiplications.

Minimizing Overhead. The above discussion concentrates on the performance
of the Salsa20 inner loop, but there are also overheads for initializing and final-
izing each block, reading plaintext, and generating ciphertext.

The 64-byte Salsa20 output block consists of four vectors x0 x1 x2 x3, x4
x5 x6 x7, x8 x9 x10 x11, and x12 x13 x14 x15 that must be xor’ed with
plaintext to produce ciphertext. NEON uses 0.125 cycles/byte to read poten-
tially unaligned plaintext, and 0.125 cycles/byte to write potentially unaligned
ciphertext, for an overhead of 0.25 cycles/byte; ARM is slower. It should be pos-
sible to reduce this overhead, at some cost in code size, by overlapping memory
access with computation, but we have not yet done this.

The Salsa20 inner loop naturally uses and produces “diagonal” vectors x0 x5

x10 x15, x4 x9 x13 x3, etc. Converting these diagonal vectors to the output
vectors x0 x1 x2 x3 etc. poses an interesting challenge for NEON’s permutation
instructions. We use the following short sequence of instructions (and gratefully
acknowledge optimization assistance from Tanja Lange):

r0 = ... # x0 x5 x10 x15

r4 = ... # x4 x9 x14 x3

r12 = ... # x12 x1 x6 x11

r8 = ... # x8 x13 x2 x7

t4 = r0[1] r4[0] t4[2,3] # x5 x4 - -

t12 = t12[0,1] r0[3] r4[2] # - - x15 x14

r0 = (abab & r0) | (~abab & r12) # x0 x1 x10 x11

t4 = t4[0,1] r8[3] r12[2] # x5 x4 x7 x6

t12 = r8[1] r12[0] t12[2,3] # x13 x12 x15 x14

r8 = (abab & r8) | (~abab & r4) # x8 x9 x2 x3

r4 = t4[1]t4[0]t4[3]t4[2] # x4 x5 x6 x7

r12 = t12[1]t12[0]t12[3]t12[2] # x12 x13 x14 x15

r0 r8 = r0[0] r8[1] r8[0] r0[1] # x0 x1 x2 x3 x8 x9 x10 x11

There are 7 single-cycle permutations here, consuming 0.11 cycles/byte, and
2 two-cycle arithmetic instructions (using abab) interleaved with the permuta-
tions. Similar comments apply to block initialization. These and other overheads
increase the overall encryption costs to 5.60 cycles/byte.

4 Authenticate Using a Shared Secret Key:
2.30 Cycles/Byte for Poly1305

This section explains how to compute the Poly1305 message-authentication code
[5] at 2.30 Cortex A8 cycles/byte: e.g., 2.78 Gbps on an 800MHz core. Authen-
ticated encryption with Salsa20 and Poly1305 takes just 7.90 cycles/byte.

For comparison, [29] reports 50 Cortex A8 cycles/byte for AES-GCM and
28.9 cycles/byte for its proposed AES-OCB3; compared to the 25.4 cycles/byte
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of AES-CTR encryption, authentication adds 25 or 3.5 cycles/byte respectively.
GCM, OCB3, and Poly1305 guarantee that attacks are as difficult as breaking
the underlying cipher, with similar quantitative security bounds. Another ap-
proach, without this guarantee, is HMAC using a hash function; the Cortex A8
speed leaders in the eBASH hash-function benchmarks [12] are MD5 at 6.04
cycles/byte, Edon-R at 9.76 cycles/byte, Shabal at 12.94 cycles/byte, BMW at
13.55 cycles/byte, and Skein at 15.26 cycles/byte.

One of these authentication speeds, the “free” 3.5-cycle/byte authentication in
OCB3, is within a factor of 2 of our Poly1305 speed. However, OCB3 also has two
important disadvantages. First, OCB3 cannot be combined with a fast stream
cipher such as Salsa20—it requires a block cipher, as discussed in [29]. Second,
rejecting an OCB3 forgery requires taking the time to decrypt the forgery, a full
28.9 cycles/byte; Poly1305 rejects forgeries an order of magnitude more quickly.

Review of Poly1305. Poly1305 reads a one-time 32-byte secret key and a
message of any length. It chops the message into 128-bit little-endian integers
(and a final b-bit integer with b ≤ 128), adds 2128 to each integer (and 2b to the
final integer) to obtain components m[0],m[1], . . . ,m[� − 1], and produces the
16-byte authenticator

(((m[0]r� +m[1]r�−1 + · · ·+m[�− 1]r) mod 2130 − 5) + s) mod 2128

where r and s are components of the secret key. “One time” has the same
meaning as for a one-time pad: each message has a new key. If these one-time
keys are truly random then the attacker is reduced to blind guessing; see [5] for
quantitative bounds on the attacker’s forgery chance. If these keys are instead
produced as cipher outputs from a long-term key then security relies on the
presumed difficulty of distinguishing the cipher outputs from random.

Readers familiar with the GCM authenticated-encryption mode [32] will rec-
ognize that Poly1305 shares the polynomial-evaluation structure of the GMAC
authenticator inside GCM. The general structure was introduced by den Boer
[18], Johansson, Kabatianskii, and Smeets [24], and independently Taylor [43];
concrete examples include [39], [34], [4], [28], and [27]. But these proposals dif-
fer in many details, notably the choice of finite field: a field of size 2128 for GCM,
for example, and integers modulo 2130 − 5 for Poly1305.

Efficient authentication in software relies primarily on fast multiplication in
this field, and secondarily on fast conversion of message bytes into elements of
the field. Efficient authentication under a one-time key (addressing the secu-
rity issues discussed in [4, Section 8, Notes], [8, Sections 2.4–2.5], [21], [14],
etc.) means that one cannot afford to precompute large tables of multiples of
r; we count the costs of all precomputation. Avoiding the possibility of cache-
timing attacks means that one cannot use variable-index table lookups; see, e.g.,
the discussion of GCM security in [23, Section 2.3].

Multiplication mod 2130 − 5 on NEON. We represent an integer f
modulo 2130 − 5 in radix 226 as f0 + 226f1 + 252f2 + 278f3 + 2104f4. At the end
of the computation we reduce each fi below 226, and reduce f to the
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interval
{
0, 1, . . . , 2130 − 6

}
, but earlier in the computation we use standard lazy-

reduction techniques, allowing wider ranges of f and of fi.
The most attractive NEON multipliers are the paired 32-bit multipliers, which

as discussed in Section 2 produce two 64-bit products every two cycles, including
free additions. The product of f0+226f1+· · · and g0+226g1+· · · is h0+226h1+· · ·
modulo 2130 − 5 where

h0 = f0g0 + 5f1g4 + 5f2g3 + 5f3g2 + 5f4g1,

h1 = f0g1 + f1g0 + 5f2g4 + 5f3g3 + 5f4g2,

h2 = f0g2 + f1g1 + f2g0 + 5f3g4 + 5f4g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + 5f4g4,

h4 = f0g4 + f1g3 + f2g2 + f3g1 + f4g0,

all of which are smaller than 264/195 if each fi and gi is bounded by 226. Ev-
idently somewhat larger inputs fi and gi, products of sums of inputs, sums of
several outputs, etc. do not pose any risk of 64-bit overflow. This computa-
tion (performed from right to left to absorb all sums into products) involves 25
generic multiplications and 4 multiplications by 5, but it is better to eliminate
the multiplications by 5 in favor of precomputing 5g1, 5g2, 5g3, 5g4, in part be-
cause those are 32-bit multiplications and in part because a multiplication input
is often reused.

Rather than vectorizing within a message block, and having to search for 12
convenient pairs of 32-bit multiplications in the pattern of 25 multiplications
shown above, we simply vectorize across two message blocks, using a well-known
parallelization of Horner’s rule. For example, for � = 10, we compute

((((m[0]r2 +m[2])r2 +m[4])r2 +m[6])r2 +m[8])r2

+ ((((m[1]r2 +m[3])r2 +m[5])r2 +m[7])r2 +m[9])r

by starting with the vector (m[0],m[1]), multiplying by the vector (r2, r2), adding
(m[2],m[3]), multiplying by (r2, r2), etc. The integer m[0] is actually represented
as five 32-bit words, so the vector (m[0],m[1]) is actually represented as five vec-
tors of 32-bit words. The 25 multiplications shown above, times two blocks, then
trivially use 25 NEON multiplication instructions costing 50 cycles, i.e., 1.5625
cycles per byte. There are, however, also overheads for reading the message and
reducing the product, as discussed below.

Reduction. The product obtained above can be safely added to a new message
block but must be reduced before it can be used as input to another multipli-
cation. To reduce a large coefficient h0, we carry h0 → h1; this means replacing
(h0, h1) with (h0 mod 226, h1 +

⌊
h0/2

26
⌋
). Similar comments apply to the other

coefficients. Carrying h4 → h0 means replacing (h4, h0) with (h4 mod 226, h0 +
5
⌊
h4/2

26
⌋
), again taking advantage of the sparsity of 2130 − 5.

NEON uses 1 cycle for a pair of 64-bit shifts, 1 cycle for a pair of 64-bit masks,
and 1 cycle for a pair of 64-bit additions, for a total of 3 cycles for a pair of carries
(plus 2 cycles for h4 → h0). A chain of six carries h0 → h1 → h2 → h3 → h4 →
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h0 → h1 is adequate for subsequent multiplications: it leaves h1 below 226 + 213

and each other hi below 226. However, each step in this chain has latency at
least 5, and even aggressive interleaving of carries into the computations of hi

would eliminate only a few of the resulting idle cycles. We instead carry h0 → h1

and h3 → h4, then h1 → h2 and h4 → h0, then h2 → h3 and h0 → h1, then
h3 → h4, spending 3 cycles to eliminate latency problems. The selection of initial
indices (0, 3) here allows the longer carry h4 → h0 to overlap two independent
carries h1 → h2 → h3; we actually interleave h0 → h1 → h2 → h3 → h4 with
h3 → h4 → h0 → h1, being careful to keep the separate uses of hi away from
each other.

This approach consumes 23 cycles for two blocks, i.e., 0.71875 cycles per byte.
As message lengths grow it becomes better to retreat from Horner’s method, for
example computing

((m[0]r4 +m[2]r2 +m[4])r4 +m[6]r2 +m[8])r2

+ ((m[1]r4 +m[3]r2 +m[5])r4 +m[7]r2 +m[9])r

by starting with (m[0],m[1]) and (m[2],m[3]), multiplying by (r4, r4) and (r2, r2)
respectively, adding, adding (m[4],m[5]), then reducing, etc. This eliminates half
of the reductions at the expense of extending the precomputation from (r2, r2)
to (r4, r4). One can easily eliminate more reductions with more precomputation,
but one pays for precomputation linearly in both time and space, while the
benefit becomes smaller and smaller.

For comparison, [4, Section 6] precomputed 97 powers of r for a polynomial
evaluation in another field. The number 97 was chosen to just barely avoid
overflow of sums of 97 intermediate values; [4] did not count the cost of precom-
putation. Of course, when we report long-message performance figures we blind
ourselves to any constant amount of precomputation, but beyond those figures
we are also careful to avoid excessive precomputation (and, for similar reasons,
excessive code size). We thus settled on eliminating half of the reductions.

Reading the Message. The inner loop in our computation, with half reductions
as described above, computes fr4+m[i]r2+m[i+2]. One input is an accumulator
f ; the output is written on top of f for the next pass through the loop. Two
more inputs are r2 and r4, both precomputed. The last two inputs are message
blocks m[i] and m[i+2]; the inner loop loads these blocks and converts them to
radix 226. The following paragraphs discuss the costs of this conversion.

The same computations are carried out in parallel on m[i + 1] and m[i + 3],
using another accumulator. We suppress further mention of this straightforward
vectorization: for example, when we say below that NEON takes 0.5 cycles for a
64-bit shift involved in m[i], what we actually mean is that NEON takes 1 cycle
for a pair of 64-bit shifts, where the first shift is used for m[i] and the second is
used for m[i+ 1].

Loading m[i] produces a vector (m0,m1,m2,m3) representing the integer
m0 + 232m1 + 264m2 + 296m3. Our goal here is to represent the same integer
(plus 2128) in radix 226 as c0+226c1+252c2+278c3+2104c4. A shift of the 64 bits



NEON Crypto 333

(m2,m3) down by 40 bits produces exactly c4. A shift of (m2,m3) down by 14
bits does not produce exactly c3, and a shift of (m1,m2) down by 20 bits does
not produce exactly c2, but a single 64-bit mask then produces (c2, c3). Similar
comments apply to (c0, c1), except that c0 does not require a shift.

Overall there are seven 64-bit arithmetic instructions here (four shifts, two
masks, and one addition to c4 to handle the 2128), consuming 3.5 cycles for
each 16-byte block. There is also a two-cycle (potentially unaligned) load, along
with just six single-cycle permutation instructions; NEON has an arithmetic
instruction that combines a 64-bit right shift (by up to 32 bits) with an extraction
of the bottom 32 bits of the result, eliminating some 64-bit-to-32-bit shuffling.

The second message block m[i+2] has a different role in fr4+m[i]r2+m[i+2]:
it is added to the output rather than the input. We take advantage of this by
loading m[i+2] into a vector (m0,m1,m2,m3) and adding m0+232m1+264m2+
296m3 into a multiplication result h0 + 226h1 + 252h2 + 278h3 + 2104h4 before
carrying the result. This means simply adding m0 into h0, adding 26m1 into h1,
etc. We absorb the additions into multiplications by scheduling m[i + 2] before
the computation of h. The only remaining costs for m[i+2] are a few shifts such
as 26m1, one operation to add 2128, and various permutations.

The conversion of m[i] and m[i + 2] costs, on average, 0.171875 cycles/byte
for arithmetic instructions. Our total cost for NEON arithmetic in Poly1305 is
2.09375 cycles/byte: 1.5625 cycles/byte for one multiplication per block, 0.359375
cycles/byte for half a reduction per block, and 0.171875 cycles/byte for input
conversion. We have not yet managed to perfectly schedule the inner loop: right
now it takes 147 cycles for 64 bytes, slightly above the 134 cycles of arithmetic,
so our software computes Poly1305 at 2.30 cycles/byte.

5 Compute a Shared Secret Key for a New Public Key:
527102 Cycles for Curve25519;
Sign and Verify:
244655 and 624846 Cycles for Ed25519

This section explains how to compute the Curve25519 Diffie–Hellman function
[6], obtaining a 32-byte shared secret from Alice’s 32-byte secret key and Bob’s
32-byte public key, in 527102 Cortex A8 cycles: e.g., 1517/second on an 800MHz
core. This section also explains how to sign and verify messages in the Ed25519
public-key signature system [10] in, respectively, 244655 and 624846 Cortex A8
cycles: e.g., 3269/second and 1280/second on an 800MHz core. Ed25519 public
keys are 32 bytes, and signatures are 64 bytes.

For comparison, openssl speed on the same machine reports

• 424.2 RSA-2048 verifications per second (1.9 million cycles),
• 11.1 RSA-2048 signatures per second (72 million cycles),
• 88.6 NIST P-256 Diffie–Hellman operations per second (9.0 million cycles),
• 388.8 NIST P-256 signatures per second (2.1 million cycles), and
• 74.5 NIST P-256 verifications per second (10.7 million cycles).
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Morozov, Tergino, and Schaumont [33] report two speeds for “secp224r1” Diffie–
Hellman: 15609 microseconds on a 500MHz Cortex A8 (7.8 million cycles), and
6043 microseconds on a 360MHz DSP (2 million DSP cycles) included in the
same CPU, a TI OMAP 3530. Curve25519 and Ed25519 have a higher security
level than secp224r1 and 2048-bit RSA; it is also not clear which of the previous
speeds include protection against side-channel attacks.

Review of Curve25519 and Ed25519. Curve25519 and Ed25519 are elliptic-
curve systems. Key generation is fixed-base-point single-scalar multiplication:
Bob’s public key is a multiple B = bP of a standard base point P on a standard
curve. Bob’s secret key is the integer b.

Curve25519’s Diffie–Hellman function is variable-base-point single-scalar mul-
tiplication: Alice, given Bob’s public key B, computes aB where a is Alice’s se-
cret key. The secret shared by Alice and Bob is simply a hash of aB; this secret
is used, for example, as a long-term key for Salsa20, which in turn is used to
generate encryption pads and Poly1305 authentication keys.

Signing in Ed25519 consists primarily of fixed-base-point single-scalar multi-
plication. (We make the standard assumption that messages are short; hashing
time is the bottleneck for very long messages. Our measurements use 59-byte
messages, as in [12].) Signing is much faster than Diffie–Hellman: it exploits
precomputed multiples of P in various standard ways. Verification in Ed25519 is
slower than Diffie–Hellman: it consists primarily of double-scalar multiplication.

The Curve25519 elliptic curve is the Montgomery curve y2 = x3+486662x2+x
modulo 2255 − 19, with a unique point of order 2. The Ed25519 elliptic curve is
the twisted Edwards curve −x2+y2 = 1−(121665/121666)x2y2 modulo 2255−19,
also with a unique point of order 2. These two curves have an “efficient birational
equivalence” and therefore have the same security.

Montgomery curves are well known to allow efficient variable-base-point single-
scalar multiplication. Edwards curves are well known to allow a wider variety of
efficient elliptic-curve operations, including double-scalar multiplication. These
fast scalar-multiplication methods are “complete”: they are sequences of addi-
tions, multiplications, etc. that always produce the right answer, with no need
for comparisons, branches, etc. Completeness was proven by Bernstein [6] for
single-scalar multiplication on any Montgomery curve having a unique point of
order 2, and by Bernstein and Lange [11] for arbitrary group operations on any
Edwards curve having a unique point of order 2.

The main loop in Curve25519, executed 255 times, has four additions of inte-
gers modulo 2255 − 19, four subtractions, two conditional swaps (which must be
computed with arithmetic rather than branches or variable array lookups), four
squarings, one multiplication by the constant 121666, and five generic multipli-
cations. There is also a smaller final loop (a field inversion), consisting of 254
squarings and 11 multiplications. Similar comments apply to Ed25519 signing
and Ed25519 verification.

Multiplication mod 2255 − 19 on NEON. We use radix 225.5, imitating the
floating-point representation in [6, Section 4] but with unscaled integers rather
than scaled floating-point numbers: we represent an integer f modulo 2255−19 as
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f0 + 226f1 + 251f2 + 277f3 + 2102f4 + 2128f5 + 2153f6 + 2179f7 + 2204f8 + 2230f9

where, as in Section 4, the allowable ranges of fi vary through the computation.
We use signed integers fi rather than unsigned integers: for example, when

we carry f0 → f1 we reduce f0 to the range [−225, 225] rather than [0, 226].
This complicates carries, replacing a mask with a shift and subtraction, but
saves one bit in products of reduced coefficients, allowing us to safely compute
various products of sums without carrying the sums. This was unnecessary in
the previous section, in part because the 5 in 2130 − 5 is smaller than the 19 in
2255 − 19, in part because 130 is smaller than 255, and in part because the sums
of inputs and outputs naturally appearing in the previous section have fewer
terms than the sums that appear in these elliptic-curve computations.

The product of f0 + 226f1 + 251f2 + · · · and g0 + 226g1 + 251g2 + · · · is h0 +
226h1 + 251h2 + · · · modulo 2255 − 19 where

h0=f0g0+38f1g9+19f2g8+38f3g7+19f4g6+38f5g5+19f6g4+38f7g3+19f8g2+38f9g1

h1=f0g1+ f1g0+19f2g9+19f3g8+19f4g7+19f5g6+19f6g5+19f7g4+19f8g3+19f9g2

h2=f0g2+ 2f1g1+ f2g0+38f3g9+19f4g8+38f5g7+19f6g6+38f7g5+19f8g4+38f9g3

h3=f0g3+ f1g2+ f2g1+ f3g0+19f4g9+19f5g8+19f6g7+19f7g6+19f8g5+19f9g4

h4=f0g4+ 2f1g3+ f2g2+ 2f3g1+ f4g0+38f5g9+19f6g8+38f7g7+19f8g6+38f9g5

h5=f0g5+ f1g4+ f2g3+ f3g2+ f4g1+ f5g0+19f6g9+19f7g8+19f8g7+19f9g6

h6=f0g6+ 2f1g5+ f2g4+ 2f3g3+ f4g2+ 2f5g1+ f6g0+38f7g9+19f8g8+38f9g7

h7=f0g7+ f1g6+ f2g5+ f3g4+ f4g3+ f5g2+ f6g1+ f7g0+19f8g9+19f9g8

h8=f0g8+ 2f1g7+ f2g6+ 2f3g5+ f4g4+ 2f5g3+ f6g2+ 2f7g1+ f8g0+38f9g9

h9=f0g9+ f1g8+ f2g7+ f3g6+ f4g5+ f5g4+ f6g3+ f7g2+ f8g1+ f9g0.

The extra factors of 2 appear because 225.5 is not an integer. We precompute
2f1, 2f3, 2f5, 2f7, 2f9 and 19g1, 19g2, . . . , 19g9; each hi is then a sum of ten prod-
ucts of precomputed quantities.

Most multiplications appear as independent pairs, computing fg and f ′g′ in
parallel, in the elliptic-curve formulas we use. We vectorize across these multipli-
cations: we start from 20 64-bit vectors such as (f0, f

′
0) and (g0, g

′
0), precompute

14 64-bit vectors such as (2f1, 2f
′
1) and (19g1, 19g

′
1), and then accumulate 10

128-bit vectors such as (h0, h
′
0). By scheduling operations carefully we fit these

54 64-bit quantities into the 32 available 64-bit registers with a moderate number
of loads and stores.

Some multiplications do not appear as pairs. For those cases we vectorize
within one multiplication by the following strategy. Accumulate the vectors
(f0g0, 2f1g1) and (19f2g8, 38f3g9) and (19f4g6, 38f5g7) and (19f6g4, 38f7g5) and
(19f8g2, 38f9g3) into (h0, h2); accumulate (f0g2, 2f1g3) etc. into (h2, h4); and
so on through (h8, h0). Also accumulate (f1g2, 19f8g3), (f3g0, f0g1), etc. into
(h3, h1); accumulate (f1g4, 19f8g5) etc. into (h5, h3); and so on through (h1, h9).
Each vector added here is a product of two of the following 27 precomputed
vectors:
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• (f0, 2f1), (f2, 2f3), (f4, 2f5), (f6, 2f7), (f8, 2f9);
• (f1, f8), (f3, f0), (f5, f2), (f7, f4), (f9, f6);
• (g0, g1), (g2, g3), (g4, g5), (g6, g7);
• (g0, 19g1), (g2, 19g3), (g4, 19g5), (g6, 19g7), (g8, 19g9);
• (19g2, 19g3), (19g4, 19g5), (19g6, 19g7), (19g8, 19g9);
• (19g2, g3), (19g4, g5), (19g6, g7), (19g8, g9).

We tried several other strategies, pairing inputs and outputs in various ways,
before settling on this strategy. All of the other strategies used more precomputed
vectors, requiring more loads and stores.

Reduction, Squaring, etc. Reduction follows an analogous strategy to Sec-
tion 4. One complication is that each carry has an extra operation, as mentioned
above. Another complication for vectorizing a single multiplication is that the
shift distances are sometimes 26 bits and sometimes 25 bits; we vectorize carry-
ing (h0, h4) → (h1, h5), for example, but would not have been able to vectorize
carrying (h0, h5) → (h1, h6).

For squaring, like multiplication, we vectorize across two independent opera-
tions when possible, and otherwise vectorize within one operation. Squarings are
serialized in square-root computations (for decompressing short signatures) and
in inversions (for converting scalar-multiplication results to affine coordinates),
but the critical bottlenecks are elliptic-curve operations, and squarings come in
convenient pairs in all of the elliptic-curve formulas that we use.

In the end arithmetic consumes 150 cycles in generic multiplication (called
1286 times in Curve25519), 105 cycles in squaring (called 1274 times), 67 cycles
in multiplication by 121666 (called 255 times), 3 cycles in addition (called 1020
times), 3 cycles in subtraction (called 1020 times), and 12 cycles in conditional
swaps (called 512 times), explaining fewer than 400000 cycles. The most impor-
tant source of overhead in our current Curve25519 performance, 527102 cycles,
is non-arithmetic instructions at the beginning and end of each function. We
are working on addressing this by inlining all functions into the main loop and
scheduling the main loop as a whole, and we anticipate then coming much closer
to the lower bound, as in Salsa20 and Poly1305.

Similar comments apply to Ed25519. When we submitted this paper, many
Ed25519 cycles (about 50000 cycles in signing and 25000 in verification) were
consumed by the SHA-512 implementation selected by SUPERCOP [12]; but a
subsequent OpenSSL revision drastically improved SHA-512 performance on the
Cortex A8. We have not bothered investigating SHA-512 performance in more
detail: the Ed25519 paper [10] recommends switching to Ed25519-SHA-3.
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Abstract. Most advanced security systems rely on public-key schemes
based either on the factorization or the discrete logarithm problem. Since
both problems are known to be closely related, a major breakthrough in
cryptanalysis tackling one of those problems could render a large set of
cryptosystems completely useless.

Code-based public-key schemes are based on the alternative security
assumption that decoding generic linear binary codes is NP-complete.
In the past, most researchers focused on the McEliece cryptosystem, ne-
glecting the fact that the scheme by Niederreiter has some important
advantages. Smaller keys, more practical plain and ciphertext sizes and
less computations. In this work we describe a novel FPGA implementa-
tion of the Niederreiter scheme, showing that its advantages can result
a very efficient design for an asymmetric cryptosystem that can encrypt
more than 1.5 million plaintexts per seconds on a Xilinx Virtex-6 FPGA,
outperforming all other popular public key cryptosystems by far.

1 Introduction

Public-key cryptosystems build the foundation for virtually all advanced crypto-
graphic requirements, such as asymmetric encryption, key exchange and digital
signatures. However, up to now most cryptosystems rely on two classes of fun-
damental problems to establish security, namely the factoring problem and the
(elliptic curve) discrete logarithm problem. Since both are related, a significant
cryptanalytical improvement will turn out a large number of currently employed
security systems to be insecure overnight. This threat is further nourished by
upcoming generations of powerful quantum computers that have been shown to
be very effective in computing solutions to the problems mentioned above [36].
Recently, IBM announced two further breakthrough in quantum computing [9]
so that such practical systems might already become available in the next 15
years. Evidently, a larger diversification of cryptographic primitives that are re-
sistant against such attacks is absolutely essential for the future of public-key
cryptosystems.
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Addressing this, cryptosystems that settle their security on alternative hard
problems have gathered much attention in the last years, such as multivariate-
quadratic (MQ-), lattice-based and code-based schemes. A drawback of these
constructions have been their low efficiency, large key sizes or complex computa-
tion with respect to RSA and ECC, what typically makes it difficult to employ
them on small and embedded systems. First approaches to tackle these issues
on such small systems has been presented for MQ and McEliece cryptosystems
on the last years’ workshops of the CHES series [8,14].

In this work, we focus on another code-based scheme. The cryptosystem pre-
sented by Niederreiter [29] is dual to McEliece’s proposal [25] but enables higher
efficiency while still maintaining the same security argument. In particular, it
has been shown that even after more than 30 years of thorough analysis the
code-based schemes remain unbroken when security parameters and fundamen-
tal codes are appropriately chosen [5]. Furthermore, a recent result indicated that
McEliece and Niederreiter cryptosystems also resist quantum computing [12].

Our Contribution: In this work, we present the first implementation of the Nieder-
reiter scheme on reconfigurable hardware. Our implementation for Xilinx’ Virtex-
6 FPGAs provides 80-bit of equivalent symmetric security and can run more than
1.5 million encryption and 17000 decryption operations per second, respectively.
By using only a moderate amount of memory and logic resources, our implemen-
tation even outperforms many other implementation of classical cryptosystems,
such as ECC-160 and RSA-1024. This impressive throughput of our implementa-
tion has become possible due to our highly optimized constant weight encoding
algorithm. Due to these optimizations and the inherent advantages of Niederre-
iter over McEliece, we achieve a performance that are even orders of magnitudes
faster than any other McEliece implementation reported so far.

Outline: This paper is structured as follows: we start with a brief introduction
to Niederreiter encryption, shortly explain necessary operations on Goppa codes
and introduce constant weight encoding. Section 4 describe our actual imple-
mentations for an Xilinx Virtex6LX240 FPGA. Finally, we present our results
for these platforms in Section 5.

2 Previous Work

Although proposed already more than 30 years ago, the code-based encryption
such as the McEliece and Niederreiter scheme has never gained much attention
due to their large secret and public keys involved. With their large and costly
memory requirements they have been hardly integrated in any real-world prod-
ucts – yet. The first FPGA-based implementation of McEliece was proposed
in [14] for a Xilinx Spartan-3AN and encrypts and decrypts data in 1.07 ms and
2.88 ms, using security parameters achieving an equivalence of 80-bit symmetric
security. The authors of [38] presented another accelerator for binary McEliece
encryption on a more powerful Virtex5-LX110T that encrypts and decrypts in
0.5 ms and 1.4 ms providing a similar level of security. For x86 personal com-
puters, the most recent implementation of the binary McEliece scheme is due
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to Biswas and Sendrier [7] that achieves about 83-bit security according to [5].
Comparing their implementation with other public key schemes, it turns out
that McEliece encryption is even faster than RSA and NTRU [4] - at the cost
of larger keys. But researchers addressed the issue of large keys by replacing the
original used binary Goppa codes with codes that allow more compact represen-
tations, e.g, [26,32]. However, for these schemes only PC and microcontroller
implementations exist so far [2,20]. Even worse, most of the attempts to reduce
the key size have been broken[15]. Note that all previous works also exclusively
target the McEliece cryptosystems. To the best of our knowledge, the only pub-
lished Niederreiter implementation for embedded systems is an implementation
for small 8-bit AVR microcontrollers enabling encryption and decryption in 1.6
ms and 179 ms [19]. Additionally, there are some Java based implementations
or Niederreiter based signatures available [33].

2.1 The Niederreiter Public Key Scheme

The Niederreiter scheme [29] is a public key cryptosystem based on linear error-
correcting codes, similar to the popular McEliece cryptosystem. The secret key
is an efficient decoding algorithm for an error-correcting code with dimension k,
length n and error correcting capability t. To create a public key, Niederreiter de-
fined a random n× n-dimensional permutation matrix P disguising the structure
of the code by computing the product Ĥ = M × H × P . Here, M can be chosen
as the (n− k)× (n− k) matrix that transforms Ĥ into systematic form. Using the
public key Kpub = (Ĥ, t) and private key Ksec = (P−1, H,M−1), encryption and
decryption can be defined as in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1. Classical Niederreiter Message Encryption

Input: Message m,Kpub = (Ĥ, t)
Output: Ciphertext c
1: Encode the message m as a binary string of length n and weight t called e
2: c = ĤeT

3: return c

Note that Algorithm 1 employs only a simple matrix multiplication operation
on the input message that was transformed into a constant weight word before.
The necessary algorithm for constant weight encoding (Bin2CW) is given in
detail in Section 2.4.

Algorithm 2. Classical Niederreiter Message Decryption

Input: Ciphertext c,Ksec = (P,M, g(z),L)
Output: Message m
1: c′ ←M−1c
2: decode c′ to error vector e′ = PeT

3: e← P−1e′

4: Decode the error vector e to the binary message m
5: return m
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Decryption is the most time-consuming process and requires several complex
operations on the linear code defined over binary extension fields. In Section 2.5
we briefly introduce the required steps for decoding codewords. Note that in a
modern Niederreiter description, applying the permutation P can be omitted
completely. This is possible by computing a permuted support and merging the
mapping of roots to bit positions via the support list with the permutation. See
Section 4.2 for details.

2.2 Niederreiter vs. McEliece

The main difference between Niederreiter and McEliece is the public key. While
an (n × k) generator matrix serves as public key in McEliece, Niederreiter uses
a (n × (n − k)) parity check matrix for this purpose. Both matrices can be
used in their systematic form, leading to ((n − k) ∗ k) bits storage require-
ment in both cases. Using this method in the McEliece case demands a CCA2
secure conversion [30,24] to stay secure, whereas Niederreiter can be used with-
out this overhead. In McEliece, an n-bit code word with errors is used as ci-
phertext, whereas Niederreiter uses the (n− k)-bit syndrome as plaintext. This
shifts the syndrome computation from the receiver to the sender of the message
and therefore speeds up decryption, still maintaining high encryption perfor-
mance. At the same time, the parity check matrix and related information is
no longer part of the secret key, thus reducing the secret key size. However, the
Niederreiter scheme requires the scrambling matrix M in any case which can
be omitted when using McEliece encryption. Finally, Niederreiter encryption
imposes less restrictions on the plaintext size, i.e, depending on the param-
eter sets and constant weight encoding algorithm, Niederreiter enables plain-
text blocks with a size of only hundreds of bits instead of several thousands
bits as in the case of McEliece encryption. In particular, for key transporta-
tion protocols with symmetric key sizes of 128 to 256 bits, the transfer of
thousands of bits as required in the case of McEliece can be an expensive
overhead.

2.3 Security Parameters

All security parameters for cryptosystems are chosen in a way to provide suffi-
cient protection against the best known attack (whereas the notion of “sufficient”
is determined by the requirements of an application). On the attempt to employ
an alternative cryptosystem, it is of utmost important for a security engineer
to being able to safely assess if this best attack has already been found. In this
context, the work by Bernstein et al. [5] currently proposes the best attack on
McEliece and Niederreiter cryptosystems so far reducing the work factor to break
the McEliece scheme based on a (1024, 524) Goppa code and t = 50 to 260.55 bit
operations. According to their findings, we summarize the security parameters
for specific security levels in Table 1. The public key size column gives the size
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Table 1. Security Parameters for Niederreiter Cryptosystems

Security Level Parameters Size Kpub Size Ksec

(n, k, t), errors added in KBits (g(z) | L |M−1) KBits

Short-term (60 bit) (1024, 644, 38), 38 239 (0.37 | 10 | 141)
Mid-term I (80 bit) (2048, 1751, 27), 27 507 (0.29 | 22 | 86)
Mid-term II (128 bit) (2690, 2280, 56), 57 913 (0.38 | 18 | 164)
Long-term (256 bit) (6624, 5129, 115), 117 7, 488 (1.45 | 84 | 2, 183)

of a systematic parity check matrix and the secret key column the size of the
Goppa polynomial g(z), the support L and the inverse scrambling matrix M−1.

As can be clearly seen, the main caveat against coding based cryptosystems is
the significant size of the public and private keys. For 80 bit security, for example,
the parameters m = 11, n = 2048, t = 27, k ≥ 1751 already lead to an M−1 of
11KBytes and a public key size of 63KBytes. Note that we can reduce the size
of the public key from originally 74KBytes by choosing M in such a way that it
brings Ĥ to systematic form Ĥ = (IDn−k | Q), where only the redundant part
Q has to be stored.

2.4 Constant Weight Encoding and Decoding

Before encrypting a message with the Niederreiter cryptosystem, the message
has to be encoded into an error vector. More precisely, the message needs to
be transformed into a bit vector of length n and constant weight t. There exist
quite a few encoding algorithms (e.g., those in [11,34,16]), however they are not
directly applicable to the restricted execution environment of embedded systems
and hardware. In this work we unfolded the recursive algorithm proposed in [35]
so that it can run by an iterative state machine. During the encoding operation,

one has to compute a value d ≈ ln(2)
t ·(n− t−1

t ) to determine how many bits of the
message are encoded into the distance to the next one-bit on the error vector. But
many embedded (hardware) systems do not have a dedicated floating-point and
division unit so these operations should be replaced. We therefore substituted
the floating point operation and division by a simple and fast table lookup. Since
we still preserve all properties from [35], the algorithm will still terminate with
a minor negligible loss in efficiency.

The encoding algorithm suitable for embedded systems is given in Algorithm 3.
The constant weight decoding algorithm was adapted in a similar way, and is

presented in Algorithm 4.

2.5 Encoding and Decoding of Goppa Codes

In this section we briefly introduce the underlying Goppa codes that provide the
fundamental arithmetic for the Niederreiter cryptosystem.
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Theorem 1. Let g(z) be an irreducible polynomial of degree t over GF (2m).
Then the set

Γ (G(z), GF (2m)) = {(cα)α∈GF (2m) ∈ {0, 1}n |
∑

α∈GF (2m)

cα
z − α

≡ 0 mod G(z)}

(1)
defines a binary Goppa code C of length n = 2m, dimension k ≥ n − mt and
minimum distance d ≥ 2t + 1. The set of the αi is called the support L of the
code.[42]

Algorithm 3. Encode Binary String in Constant Weight Word (Bin2CW)

Input: n, t, binary stream B
Output: Δ[0, . . . , t− 1]
1: δ = 0, index = 0
2: while t �= 0 do
3: if n ≤ t then
4: Δ[index++] = δ
5: n− = 1, t− = 1, δ = 0
6: end if
7: u← uTable[n, t]
8: d← (1 << u)
9: if read(B, 1) = 1 then
10: n− = d, δ+ = d
11: else
12: i← read(B,u)
13: Δ[index++] = δ + i
14: δ = 0, t− = 1, n− = (i+ 1)
15: end if
16: end while

Algorithm 4. Decode Constant Weight Word to Binary String (CW2Bin)

Input: n, t,Δ[0, . . . , t− 1]
Output: binary stream B
1: δ = 0, index = 0
2: while t �= 0 AND n > t do
3: u← uTable[n, t]
4: d← (1 << u)
5: if Δ[index] ≥ d then
6: Write(1, B)
7: Δ[index]− = d
8: n− = d
9: else
10: δ = Δ[index++]
11: Write(0|δ,B)
12: n− = (δ + 1), t− = 1
13: end if
14: end while
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There exist fast decoding algorithmswith runtimeO(n·t) operations (e.g., [31,41]).
For each irreducible polynomial g(z) overGF (2m) of degree t there exists a binary
Goppa code of length n = 2m and dimension k = n − mt. This code is capable
to correct up to t errors [3] and can be represented by a k × n generator matrix G
such that C = {mG : m ∈ F k

2 } .
Since r = c + e ≡ e mod g(z) holds, the syndrome Syn(z) of a received

codeword can be obtained from Equation (1) by

Syn(z) =
∑

α∈GF (2m)

rα
z − α

≡
∑

α∈GF (2m)

eα
z − α

mod G(z) (2)

To finally recover e, we need to solve the key equation σ(z) · Syn(z) ≡ ω(z)
mod g(z), where σ(z) denotes a corresponding error-locator polynomial and ω(z)
denotes an error-weight polynomial. Note that it can be shown that ω(z) = σ(z)′

is the formal derivative of the error-locator and by splitting σ(z) into even and
odd polynomial parts σ(z) = a(z)2+ z · b(z)2, we finally determine the following
equation to determine error positions:

Syn(z)(a(z)2 + z · b(z)2) ≡ b(z)2 mod G(z) (3)

To solve Equation (3) for a given syndrome Syn(z), the following steps have to
be performed:

1. Compute an inverse polynomial T (z) with T (z) · Syn(z) ≡ 1 mod g(z)
(or provide a corresponding table). It follows that (T (z) + z)b(z)2 ≡ a(z)2

mod g(z).
2. There is a simple case if T (z) = z ⇒ a(z) = 0 s.t. b(z)2 ≡ z · b(z)2 · Syn(z)

mod G(z) ⇒ 1 ≡ z · Syn(z) mod G(z) which directly leads to σ(z) = z.
Contrary, if T (z) �= z, compute a square root R(z) for the given polynomial
R(z)2 ≡ T (z) + z mod G(z). Based on an observation by Huber [23] this
can be done by a simple polynomial multiplication. We can then determine
solutions a(z), b(z) satisfying

a(z) = b(z) · R(z) mod G(z). (4)

using the extended euclidean algorithm. The computation is stopped, when
a(z) reaches degree � t

2�. Finally, we use the identified a(z), b(z) to construct
the error-locator polynomial σ(z) = a(z)2 + z · b(z)2.

3. The roots of σ(z) denote the positions of error bits.
Searching the roots of σ(z) with degree t over GF (2m) is time-consuming.
Besides the plain evaluation of all support elements, for this two most com-
monly used methods are the Chien search [10] and Horner’s scheme [22]. A
third method as proposed in [6] for PC platforms can not be easiliy paral-
lelized and requires a lot of greatest common divisor and trace computations.
In our work we therefore use a parallelized version of the Chien search, which
concurrently evaluates all t coefficients (see Section 4.2 for details). The de-
coding process, as required in Step 2 of Algorithm 2 for message decryption,
is finally summarized in Algorithm 5.
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Algorithm 5. Decoding Goppa Codes

Input: Received syndrome Syn(z) of a codeword r with up to t errors
Output: Recovered message m̂
1: T (z)← Syn(z)−1 mod G(z)
2: if T (z) = z then
3: σ(z)← z
4: else
5: R(z)←√

T (z) + z
6: Compute a(z) and b(z) with a(z) ≡ b(z) ·R(z) mod G(z)
7: σ(z)← a(z)2 + z · b(z)2
8: end if
9: Determine roots of σ(z) and compute e
10: return e

3 Design Decisions

In this section we discuss the design and parameter decisions for our Niederreiter
implementation on reconfigurable hardware. A primary goal of our design is high-
performance, a secondary reasonable hardware costs.

3.1 Parameter Selection

With the implementation of our Niederreiter cryptosystem, we aim to provide
80-bit of equivalent symmetric security, i.e., protection that is comparable to the
security of ECC and RSA with approximately 160-bit and 1024-bit, respectively.
This level of security is still considered sufficient for mid-term security applica-
tions providing a reasonable cost-performance ratio and thus suitable for most
embedded systems. To achieve this level of security, we selected the parameters
m = 11, n = 2048, t = 27, k ≥ 1751 resulting in a private and public key size
of 13.5 and 63KBytes to be stored on the device. This amount of memory is
available in each Xilinx FPGA larger than the low-cost Spartan-3 XC3S1000,
Virtex-5 XC5VLX30 and Virtex-6 XC6VLX75T, respectively [44].

The above security level was originally proposed to minimize public key size for
a given security level and not to maximize performance. However, we stay with
this parameters to be comparable with the existing code-based implementations,
which all selected this parameter set.

For practical purposes, we fixed the size of a message block to 192 bits which
can be encoded into an appropriate error vector in any case. Note that the con-
stant weight encoding algorithm requires an input of variable length to produce
a constant weight output. Experiments showed that on average 210 bits are re-
quired to construct a valid constant weight word. Fixing the input message to
192 bits and adding random bits as required, makes the algorithm practicable
without leaking any security-relevant information.

The secret key consisting of the Goppa polynomial g(z), the support L and
the inverse scrambling matrix M−1 is stored as part of the bitstream file which
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configures the FPGA. Because only the Spartan3-AN class from Xilinx offers
internal Flash memory to store the bitstream internally in a (somewhat) pro-
tected way, appropriate actions have to be taken to protect the bitstream when
storing it in external memory. In this case it is mandatory to enable bitstream
encryption using AES-256 which is available for larger Xilinx Spartan-6 and all
Xilinx Virtex-FPGAs from Virtex-4. Note, however, that also the Xilinx spe-
cific bitstream encryption [43] was successfully attacked by side-channel analysis
in [28].

The (larger) public key can be stored either in internal or external memory
since it does not require special protection. For our implementation we opted
to store the public key in internal BRAMs to allow immediate access for high-
performance encryption.

3.2 Inherent Side Channel Resistants

Some research had been done regarding side channels in code-based cryptog-
raphy, however, all solely focused on implementations of McEliece encryption
[40,39,37,21,27]. The advantage of Niederreiter in contrast to McEliece is that
the ciphertext not consists only out of a pure codeword with randomly added
errors. Fault attacks cannot be easily performed by flipping random bits of the
ciphertext assuming that the decoder either corrects one of the the intention-
ally injected errors or fails to do so. For Niederreiter encryption, the ciphertext
is a syndrome polynomial. Flipping random bits will result most likely in a
decoding error without leaking any information. This renders all the attacks
from [40,39,37] useless. Only power analysis attacks, like the one described in
[21], which directly attacks the Goppa polynomial used in the Patterson algo-
rithm, are still possible. It also requires further investigation, if adoptions of
attacks targeting the root search are possible.

4 Implementation

This section describes our implementation primarily targeting a recent Virtex-6
LX240 FPGA. Note that this device is certainly too large for our implementation
but was chosen due to its availability on the Xilinx Virtex-6 FPGA ML605
Evaluation Kit for practical testing. Furthermore, we provide implementations
for a Xilinx Spartan-3 and Xilinx Virtex-5 to allow fair comparisons with other
work (cf. Table 4).

4.1 Encryption

The public key Ĥ is stored in an internal BRAM memory block and row-wise
addressed by the output of the constant weight encoder. Multiplying a binary
vector with a binary matrix is equivalent to a XOR operation of each row with
input vector bit equal to one. Since this operation is trivial, we now focus on
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the implementation of the constant weight encoding algorithm. Input data to
our cryptosystem is passed using a FIFO with a non-symmetric 8-to-1 bit as-
pect ratio. Hence, after a word with 8-bit length is written to the FIFO, it
can be read out bit by bit. This is the equivalent to the binary stream reader
presented in Algorithm 3. Its main part is implemented as a small finite state
machine. Every time a valid Δ[i] has been computed, it is directly transferred
to the vector-matrix-multiplier summing up the selected rows. By interleaving
operations we are able to process one bit from the FIFO at every clock cycle.
After the last Δ[t] has been computed, only the last indexed row of Ĥ has to
be added to the sum. Directly afterwards the encryption operation has finished
and the ciphertext becomes available. Due to the very regular structure of the
vector-matrix-multiplier and the small operands of the constant weight encoder,
we were able to achieve a high clock frequency of 300MHz. Nevertheless, the
logic in the constant weight encoder is still the bottleneck.
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Fig. 1. Block diagram of the encryption process

4.2 Decryption

The first step in the decryption process is the multiplication by the inverse
matrix M−1. This 11KByte large matrix is stored in an internal BRAM and
addressed by an incrementing counter. Using this BRAM, the rows of the matrix
are XORed into an intermediate register if the corresponding input bit of the
ciphertext equals to one. After (n− k) = 297 clock cycles, this register contains
the value c′ = M−1 ∗ c as shown in Algorithm 2. Now c′ is passed on to the
Goppa decoder. The Goppa decoder implements standard Patterson decoding
(see Algorithm 5) and returns the erroneous bit positions in the order they are
found during the decoding process.
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Searching roots is a time-consuming process that is highlighted by Figure 2
showing our Chien search core. Decryption performance can be boosted by in-
stantiating two or more of these cores in parallel and let them evaluate different
support elements in parallel. Beside the additional management overhead in the
controlling state machine, each of this cores requires additional 620 registers and
106 LUTs. We therefore only use one core which evaluates one support element
in two clock cycles and finishes the entire process after 4098 clock cycles.

Chien Root Searching

11 bit 
Register_0

Sigma
Polynomial

308

11 bit 
Register_27

Sum equals 0 ?Counter

Root

11

11 111111

0 2711 11

Fig. 2. Design of the Core for Chien Search

Next each root needs to be mapped to these bit positions. In this context,
we constructed a table containing entries for L ∗ P , i.e., we merged this map-
ping and the reverse permutation from line 3 in Algorithm 2. As a side effect,
the permutation P completely disappears from the scheme. Because the sub-
sequent constant weight decoding algorithm expects the distance between the
error bits in ascending order, we implemented a sorting circuit which sorts the
error positions using a systolic implementation of bubble sort. At the same time
it further computes the distance between two successive error positions. Finally,
the error distances are translated into the binary message by a straightforward
implementation of Algorithm 4 as developed in Section 4.1.
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5 Results

We now present the results for our implementation on three different platforms
to enable a fair comparison with other work. Note that most of the differences
in the number of used resources are due to architecture differences in the FPGA
types, i.e., 4-input LUTs vs. 6-input LUTs and 18 KB BRAMs vs. 36 KB BRAMs
in Spartan-3 and Virtex-5/6 FPGAs, respectively.

Encryption takes approximately 200 cycles and is around a factor of 72 faster
than decryption that requires around 14,500 cycles. An open problem is how to
transfer 1.5 million keys per second to the device, when many different public
key are required, which is a typical application. Here an interface capable of
transferring 1, 5 ∗ 106 ∗ 63Kbyte ≈ 774Gbyte

sec would be necessary. As mentioned

Table 2. Implementation results of Niederreiter encryption with n = 2048, k =
1751, t = 27 after PAR

Aspect Spartan3-2000 Virtex5-LX50 Virtex6-LX240

Slices 854 (2%) 291 (4%) 315 ( 1 %)
LUTs 1252 (3%) 888 (3%) 926 ( 1 %)
FFs 869 (2%) 930 (3%) 875 ( 1 %)
BRAMs 36 (90%) 18 (30%) 17 ( 4 %)

Frequency 150 MHz 250 MHz 300 MHz

CW Encode e = encode(m) ≈ 200 cycles

Encrypt c = e · Ĥ concurrently with CW Encoding
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Table 3. Implementation results of Niederreiter decryption with n = 2048, k =
1751, t = 27 after PAR

Aspect Spartan3-2000 Virtex5-LX50 Virtex6-LX240

Slices 11253 (54%) 4077 (56%) 3887 (10 %)
LUTs 15559 (37%) 9743 (33%) 9409 (6 %)
FFs 13608 (33%) 13537 (47%) 12861 (4 %)
BRAMs 22 (55%) 13 (21%) 9 (2 %)

Frequency 95 MHz 180 MHz 250MHz

Undo Scrambling c ·M−1 297 cycles
Compute T = Syn(z)−1 4310 cycles
Solve Equation (4) 4854 cycles
Search Roots 4098 cycles
Sort&Convert 85 cycles
CW Decode 198 cycles

Table 4. Comparison of our Niederreiter designs with single-core ECC and RSA im-
plementations for 80 bit security

Scheme Platform Freq Time/Op Cycles/byte

This work [enc] Virtex6-LX240T 300 MHz 0.66 �s 8.3
This work [dec] Virtex6-LX240T 250 MHz 58.78 �s 612

McEliece [enc] [14] Spartan3-AN1400 150 MHz 1070 �s 768
McEliece [dec] [14] Spartan3-AN1400 85 MHz 21,610 � 8788
This work enc Spartan3-2000 150 MHz 1.32 �s 8.3
This work dec Spartan3-2000 95 MHz 154 �s 612

McEliece [enc] [38] Virtex5-LX110T 163 MHz 500 �s 389
McEliece [dec] [38] Virtex5-LX110T 163 MHz 1400 �s 1091
This work [enc] Virtex5-LX50T 250 MHz 0.793 �s 8.2
This work [dec] Virtex5-LX50T 180 MHz 81 �s 612

ECC-P160 [17] Spartan-3 1000-4 40 MHz 5.1 ms 10,200
ECC-K163 [17] Virtex-II 128 MHz 35.75 �s 224.6

RSA-1024 random [18] Spartan-3A 133 MHz 48.54 ms 50,436
RSA-1024 random [18] Spartan-6 187 MHz 34.48 ms 50,373
RSA-1024 random [18] Virtex-6 339 MHz 19.01 ms 59,258

NTRU encryption [1] Virtex 1000EFG860 50 MHz 5 �s 8.3

above, the public-key cryptosystems RSA-1024 and ECC-P160 are assumed1

to roughly achieve an simiar level of 80 bit symmetric security [13]. We finally
compare our results to published implementations of these systems that target

1 According to [13], RSA-1248 actually corresponds to 80 bit symmetric security. How-
ever, no implementation results for embedded systems are available for this key size.



Towards One Cycle per Bit Asymmetric Encryption 353

similar platforms (i.e.,[14,38,17,18,1] ). For a fair comparison with other exist-
ing implementations of code-based systems we also implemented our code for
Spartan-3 and Virtex-5 FPGAs.

6 Conclusions

In this paper, we clearly demonstrate the very high performance that can be
achieved with an efficient FPGA-based implementation of the Niederreiter scheme.
Besides the more practical plaintext size and smaller public keys, the extremely
high performance with more than 1.5 million encryption and 17000 decryption
operations per second, respectively, makes Niederreiter an interesting candidate
for applications where high throughput and many public key encryptions per
second are required (e.g., upcoming car-2-car communication infrastructures).
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Abstract. Solving a system of multivariate quadratic equations (MQ)
is an NP-complete problem whose complexity estimates are relevant to
many cryptographic scenarios. In some cases it is required in the best
known attack; sometimes it is a generic attack (such as for the multi-
variate PKCs), and sometimes it determines a provable level of security
(such as for the QUAD stream ciphers).

Under reasonable assumptions, the best way to solve generic MQ sys-
tems is the XL algorithm implemented with a sparse matrix solver such
as Wiedemann’s algorithm. Knowing how much time an implementation
of this attack requires gives us a good idea of how future cryptosystems
related to MQ can be broken, similar to how implementations of the
General Number Field Sieve that factors smaller RSA numbers give us
more insight into the security of actual RSA-based cryptosystems.

This paper describes such an implementation of XL using the block
Wiedemann algorithm. In 5 days we are able to solve a system with 32
variables and 64 equations over F16 (a computation of about 260.3 bit
operations) on a small cluster of 8 nodes, with 8 CPU cores and 36 GB
of RAM in each node. We do not expect system solvers of the F4/F5

family to accomplish this due to their much higher memory demand.
Our software also offers implementations for F2 and F31 and can be
easily adapted to other small fields. More importantly, it scales nicely
for small clusters, NUMA machines, and a combination of both.

Keywords: XL, Gröbner basis, block Wiedemann, sparse solver, mul-
tivariate quadratic systems.

1 Introduction

Some cryptographic systems can be attacked by solving a system of multivari-
ate quadratic equations. For example the symmetric block cipher AES can be
attacked by solving a system of 8000 quadratic equations with 1600 variables
over F2 as shown by Courtois and Pieprzyk in [5] or by solving a system of 840
sparse quadratic equations and 1408 linear equations over 3968 variables of F256

as shown by Murphy and Robshaw in [17]. Multivariate cryptographic systems
can be attacked naturally by solving their multivariate quadratic system; see for
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example the analysis of the QUAD stream cipher by Yang, Chen, Bernstein, and
Chen in [21].

We describe a parallel implementation of an algorithm for solving quadratic
systems that was first suggested by Lazard in [11]. Later it was reinvented by
Courtois, Klimov, Patarin, and Shamir and published in [4]; they call the al-
gorithm XL as an acronym for extended linearization: XL extends a quadratic
system by multiplying all equations with appropriate monomials and linearizes
it by treating each monomial as an independent variable. Due to this extended
linearization, the problem of solving a quadratic system turns into a problem of
linear algebra.

XL is a special case of Gröbner basis algorithms (shown by Ars, Faugère, Imai,
Kawazoe, and Sugita in [1]) and can be used as an alternative to other Gröbner
basis solvers like Faugère’s F4 and F5 algorithms (introduced in [7] and [8]).
An enhanced version of F4 is implemented for example in the computer algebra
system Magma, and is often used as standard benchmark by cryptographers.

There is an ongoing discussion on whether XL-based algorithms or algorithms
of the F4/F5-family are more efficient in terms of runtime complexity and mem-
ory complexity. To achieve a better understanding of the practical behaviour of
XL for generic systems, we describe a parallel implementation of the XL algo-
rithm for shared-memory systems, for small computer clusters, and for a combi-
nation of both. Measurements of the efficiency of the parallelization have been
taken at small clusters of up to 8 nodes and shared-memory systems of up to 64
cores. A previous implementation of XL is PWXL, a parallel implementation of
XL with block Wiedemann described in [15]. PWXL supports onl F2, while our
implementation supports F2, F16, and F31. Furthermore, our implementation is
modular and can be extended to other fields. Comparisons on performance of
PWXL and our work will be shown in Sec. 4.3. We are planning to make our
implementation available to the public.

This paper is structured as follows: The XL algorithm is introduced in Sec. 2.
The parallel implementation of XL using the block Wiedemann algorithm is
described in Sec. 3. Section 4 gives runtime measurements and performance
values that are achieved by our implementation for a set of parameters on several
parallel systems as well as comparisons to PWXL and to the implementation
of F4 in Magma.

2 The XL Algorithm

The original description of XL for multivariate quadratic systems can be found
in [4]; a more general definition of XL for systems of higher degree is given in [3].
The following gives an introduction of the XL algorithm for quadratic systems;
the notation is adapted from [23]:

Consider a finite field K = Fq and a system A of m multivariate quadratic
equations �1 = �2 = · · · = �m = 0 for �i ∈ K[x1, x2, . . . , xn]. For b ∈ Nn denote
by xb the monomial xb1

1 xb2
2 . . . xbn

n and by |b| = b1 + b2 + · · · + bn the total
degree of xb.
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XL first chooses a D ∈ N as D := min{d : ((1 − λ)m−n−1(1 + λ)m)[d] ≤ 0}
(see [22, Eq. (7)], [13,6]), where f [i] denotes the coefficient of the degree-i term in
the expansion of a polynomial f(λ) e.g., (λ+2)3[2] = (λ3 +6λ2+12λ+8)[2] = 6.
XL extends the quadratic system A to the system R(D) = {xb�i = 0 : |b| ≤
D − 2, �i ∈ A} of maximum degree D by multiplying each equation of A by all
monomials of degree less than or equal to D−2. Now, each monomial xd, |d| ≤ D
is considered a new variable to obtain a linear system M. Note that the system
matrix of M is sparse since each equation has the same number of non-zero
coefficients as the corresponding equation of the quadratic system A. Finally the
linear system M is solved, giving solutions for all monomials and particularly
for x1, x2, . . . , xn. Note that the matrix corresponding to the linear system M
is the Macaulay matrix of degree D for the polynomial system A (see [12], e.g.,
defined in [9]).

2.1 The Block Wiedemann Algorithm

The computationally most expensive task in XL is to find a solution for the
sparse linear system M of equations over a finite field. There are two popu-
lar algorithms for that task, the block Lanczos algorithm [16] and the block
Wiedemann algorithm [2]. The block Wiedemann algorithm was proposed by
Coppersmith in 1994 and is a generalization of the original Wiedemann algo-
rithm [20]. It has several features that make it powerful for computation in XL:
From the original Wiedemann algorithm it inherits the property that the run-
time is directly proportional to the weight of the input matrix. Therefore, this
algorithm is suitable for solving sparse matrices, which is exactly the case for XL.
Furthermore, big parts of the block Wiedemann algorithm can be parallelized
on several types of parallel architectures. The following paragraphs give a brief
introduction to the block Wiedemann algorithm. For more details please refer
to [18, Sec. 4.2] and [2].

The basic idea of Coppersmith’s block Wiedemann algorithm for finding a
solution x̄ �= 0 of Bx̄ = 0 for B ∈ KN×N , x̄ ∈ KN (where B corresponds to the
system matrix of M when computing XL) is the same as in the original Wiede-
mann algorithm: Assume that the characteristic polynomial f(λ) =

∑
0≤i f [i]λi

of B is known. Since B is singular, it has an eigenvalue 0, thus f(B) = 0
and f [0] = 0. We have:

f(B)z̄ =
∑
i>0

f [i]Biz̄ = B
∑
i>0

f [i]Bi−1z̄ = 0,

for any vector z̄ ∈ KN . Therefore, x̄ =
∑

i>0 f [i]Bi−1z̄, z̄ �= 0 is a (hopefully
non-zero) kernel vector and thus a solution of the linear equation system. In
fact it is possible to use any annihilating polynomial f(λ) of B, i.e., a polyno-
mial f(λ) �= 0 such that f(B) = 0.

Wiedemann suggests to use the Berlekamp–Massey algorithm for the com-
putation of f(λ). Given a linearly recurrent sequence {a(i)}∞i=0, the algorithm
computes c1, . . . , cd for some d such that c1a

(d−1) + c2a
(d−2) + · · · + cda

(0) = 0.
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Choosing a(i) = x̄T BBiz̄ with random vectors x̄ and z̄ (as delegates for BBi)
as input and f [i] = cd−i, 0 ≤ i < d as output returns f(λ) as an annihilating
polynomial of B with high probability.

Coppersmith [2] proposed a modification of the Wiedemann algorithm that
makes it more suitable for modern computer architectures by operating in par-
allel on a block of ñ column vectors z̄i, 0 ≤ i < ñ, of a matrix z ∈ KN×ñ. His
block Wiedemann algorithm computes kernel vectors in three steps which are
called BW1, BW2, and BW3 for the remainder of this paper. The block sizes of
the block Wiedemann algorithm are the integers m̃ and ñ. They can be chosen
freely for the implementation such that they give the best performance on the
target architecture for matrix and vector operations, e.g., depending on the size
of cache lines or vector registers. Step BW1 computes the first N/m̃+N/ñ+O(1)
elements of a sequence {a(i)}∞i=0, ai =

(
x · (B · Biz)

)T ∈ K ñ×m̃ using random
matrices x ∈ Km̃×N and z ∈ KN×ñ. This sequence is the input for the second
step BW2, a block variant of the Berlekamp–Massey algorithm. It returns a ma-
trix polynomial f(λ) with coefficients f [j] ∈ K ñ×ñ, that is used by step BW3 to
compute up to ñ solution vectors in a blocked fashion similar as described above
for the original Wiedemann algorithm.

3 Implementation of XL

Stage BW1 of the block Wiedemann algorithm computes a(i) =
(
x · (B · Biz)

)T ,
0 ≤ i ≤ N/m̃ + N/ñ + O(1). We do this efficiently using two sparse-matrix
multiplications by making the random matrices x and z deliberately sparse. We
compute a sequence {t(i)}∞i=0 of matrices t(i) ∈ KN×n defined as

t(i) =

{
Bz for i = 0
Bt(i−1) for i > 0.

Thus, a(i) can be computed as a(i) = (xt(i))T . In step BW3 we evaluate the an-
nihilating polynomial f(λ) by applying Horner’s scheme, again using two sparse-
matrix multiplications by computing

W (j) =

{
z · (f [deg(f)]) for j = 0,

z · (f [deg(f) − j]) + B · W (j−1) for 0 < j ≤ deg(f).

For details on the steps BW1, BW2, and BW3 please refer to [18, Sec. 4.2].
Assuming that m̃ = c · ñ for some constant c ≥ 1, the asymptotic time

complexity of step BW1 and BW2 can be written as O
(
N2 · wB

)
, where wB is

the average number of nonzero entries per row of B. Note that BW3 actually
requires about half of the time of BW1 since it requires only about halve as
many iterations. The asymptotic time complexity of Coppersmith’s version of
the Berlekamp–Massey algorithm in step BW2 is O

(
N2 · ñ). Thomé presents an

improved version of Coppersmith’s block Berlekamp–Massey algorithm in [19].
Thomé’s version is asymptotically faster: It reduces the complexity of BW2
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from O(N2 · ñ) to O
(
N · log2(N) · ñ). The subquadratic complexity is achieved

by converting the block Berlekamp–Massey algorithm into a recursive divide-
and-conquer process.

Since steps BW1 and BW3 have a higher asymptotic time complexity than
Thomé’s version of step BW2, we do not describe our implementation, optimiza-
tion, and parallelization of Coppersmith’s and Thomé’s versions of step BW2 in
detail in this paper for the sake of brevity. The interested reader is referred
to [18, Chap. 4] for details. However, we discuss the performance of our imple-
mentations in Sec. 4.

Since the system matrix M has more rows than columns, some rows must be
dropped randomly to obtain a square matrix B. Observe that due to the exten-
sion step of XL the entries of the original quadratic system A appear repeatedly
in the matrix B at well-defined positions based on the enumeration scheme.
Therefore, it is possible to generate the entries of B on demand spending a
negligible amount of memory. However, the computation of the entry positions
requires additional time; to avoid this computational overhead, we store the
Macaulay matrix B in a compact memory format (see [18, Sec. 4.5.3]). This
gives a significant speedup in the computation time—given that the matrix B
fits into available memory.

3.1 Efficient Matrix Multiplication

All matrix multiplications of the shape D = EF that we perform during XL are
either multiplications of a sparse matrix by a dense matrix, or multiplications of
a dense matrix by a dense matrix with matrices of a small size. For these cases,
schoolbook multiplication is more efficient than the asymptotically more efficient
Strassen algorithm or the Coppersmith–Winograd algorithm.

However, when computing in finite fields, the cost of matrix multiplications
can be significantly reduced by trading expensive multiplications for cheap
additions—if the field size is significantly larger than the row weight of E. This
is the case for small fields like, for example, F16 or F31. We reduce the number
of actual multiplications for a row r of E by summing up all row vectors of F
which are to be multiplied by the same field element and performing the multi-
plication on all of them together. A temporary buffer bα ∈ Kn, α ∈ K of vectors
of length n is used to collect the sum of row vectors that ought to be multiplied
by α. For all entries Er,c, row c of F is added to bEr,c . Finally, b can be reduced
by computing

∑
α · bα, α �= 0, α ∈ K, which gives the result for row r of the

matrix D.
With the strategy explained so far, computing the result for one row of E

takes wE + |K|−2 additions and |K|−2 scalar multiplications (there is no need
for the multiplication by 0 and 1, and for the addition of 0). The number of
actual multiplications can be further reduced by exploiting the distributivity of
the scalar multiplication of vectors: Assume in the following that K = Fpk =
Fp[x]/(f(x)), with p prime and f(x) an irreducible polynomial with deg(f) = k.
When k = 1, the natural mapping from K to {0, 1, . . . , p − 1} ⊂ N induces an
order of the elements. The order can be extended for k > 1 by ∀β, γ ∈ K :
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β > γ ⇐⇒ β[i] > γ[i], i = max({j : β[j] �= γ[j]}). We decompose each scalar
factor α ∈ K \ {0, 1, x1, . . . , xk−1} of a multiplication α · bα into two components
β, γ ∈ K such that β, γ < α and β + γ = α. Starting with the largest α,
iteratively add bα to bβ and bγ and drop buffer bα. The algorithm terminates
when all buffers bα, α ∈ K \ {0, 1, x1, . . . , xk−1} have been dropped. Finally, the
remaining buffers bα, α ∈ {1, x1, . . . , xk−1} are multiplied by their respective
scalar factor (except b1) and summed up to the final result. This reduces the
number of multiplications to k − 1. All in all the computation on one row of E
(with row weight wE) costs wE +2(|K|−k−1)+k−1 additions and k−1 scalar
multiplications. For example the computations in F16 require wE + 25 additions
and 3 multiplications per row of a matrix E.

3.2 Parallel Macaulay Matrix Multiplication

The most expensive part in the computation of steps BW1 and BW3 of XL is a
repetitive multiplication of the shape tnew = B · told, where tnew, told ∈ KN×ñ

are dense matrices and B ∈ KN×N is a sparse Macaulay matrix with an average
row weight wB .

For generic systems, the Macaulay matrix B has an expected number of non-
zero entries per row of (|K|−1)/|K|·(n+2

2

)
. However, in our memory efficient data

format for the Macaulay matrix we also store the zero entries from the original
system. This results in a fixed row weight wB = |K|·(n+2

2

)
. This is highly efficient

in terms of memory consumption and computation time for F16, F31, and larger
fields (see [18, Chap. 4]). Since there is a guaranteed number of entries per row
(i.e. the row weight wB) we compute the Macaulay matrix multiplication in row
order in a big loop over all row indices as described in the previous section.

The parallelization of the Macaulay matrix multiplication of steps BW1 and
BW3 is implemented in two ways: On multi-core architectures OpenMP is
used to keep all cores busy; on cluster architectures the Message Passing Inter-
face (MPI) and InfiniBand verbs are used to communicate between the cluster
nodes. Both approaches can be combined for clusters of multi-core nodes.

The strategy of the workload distribution is similar on both multi-core systems
and cluster systems. Figure 1 shows an example of a Macaulay matrix. Our
approach for efficient matrix multiplications (described in the previous section)
trades multiplications for additions. The approach is most efficient, if the original
number of scalar multiplications per row is much higher than the order of the
field. Since the row weight of the Macaulay matrix is quite small, splitting the
rows between computing nodes reduces the efficiency of our approach. Therefore,
the workload is distributed by assigning blocks of rows of the Macaulay matrix
to the computing units.

Parallelization for Shared-Memory Systems: We parallelize the data-
independent loop over the rows of the Macaulay matrix using OpenMP with the
directive “#pragma omp parallel for”. The OpenMP parallelization on UMA
systems encounters no additional communication cost although the pressure on
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Fig. 1. Plot of a Macaulay matrix for a system with 8 variables, 10 equations, using
graded reverse lexicographical (grevlex) monomial order

shared caches may be increased. On NUMA systems the best performance is
achieved if the data is distributed over the NUMA nodes in a way that takes the
higher cost of remote memory access into account. However, the access pattern
to told is very irregular due to the structure of the Macaulay matrix: In par-
ticular, the access pattern of each core does not necessarily fully cover memory
pages. Furthermore, the same memory page is usually touched by several cores.
The same is true for tnew , since after each iteration tnew and told are swapped by
switching their respective memory regions. Therefore, we obtained the shortest
runtime by distributing the memory pages interleaved (in a round-robin fashion)
over the nodes.

Parallelization for Cluster Systems: The computation on one row of the
Macaulay matrix depends on many rows of the matrix told. A straightforward
approach is to make the full matrix told available on all cluster nodes. This can
be achieved by an all-to-all communication step after each iteration of BW1
and BW3. If B were a dense matrix, such communication would take only a
small portion of the overall runtime. But since B is a sparse Macaulay matrix
which has a very low row weight, the computation time for one single row of B
takes only a small amount of time. In fact this time is in the order of magnitude
of the time that is necessary to send one row of tnew to all other nodes during
the communication phase. Therefore, this simple workload-distribution pattern
gives a large communication overhead.

This overhead is hidden when communication is performed in parallel to com-
putation. Today’s high-performance network interconnects are able to transfer
data via direct memory access (DMA) without interaction with the CPU, allow-
ing the CPU to continue computations alongside communication. It is possible
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to split the computation of tnew into two column blocks; during computation on
one block, previously computed results are distributed to the other nodes and
therefore are available at the next iteration step. Under the condition that com-
putation takes more time than communication, the communication overhead can
almost entirely be hidden. Otherwise speedup and therefore efficiency of cluster
parallelization is bounded by communication cost.

Apart from hiding the communication overhead it is also possible to totally
avoid all communication by splitting told and tnew into independent column
blocks for each cluster node. However, splitting told and tnew has an impact
either on the runtime of BW1 and BW3 (if the block size becomes too small
for efficient computation) or on the runtime of BW2 (since the block size has a
strong impact on its runtime and memory demand).

We implemented both approaches since they can be combined to give best
performance on a target system architecture. The following paragraphs explain
the two approaches in detail:

a) Operating on Two Shared Column Blocks of told and tnew: For this approach,
the matrices told and tnew are split into two column blocks told,0 and told,1

as well as tnew,0 and tnew,1. The workload is distributed over the nodes
row-wise as mentioned before. First each node computes the results of its
row range for column block tnew,0 using rows from block told,0. Then a non-
blocking all-to-all communication is initiated which distributes the results
of block tnew,0 over all nodes. While the communication is going on, the
nodes compute the results of block tnew,1 using data from block told,1. After
computation on tnew,1 is finished, the nodes wait until the data transfer of
block tnew,0 has been accomplished. Ideally communication of block tnew,0

is finished earlier than the computation of block tnew,1 so that the results of
block tnew,1 can be distributed without waiting time while the computation
on block tnew,0 goes on with the next iteration step.

However, looking at the structure of the Macaulay matrix (an example
is shown in Fig. 1) one can observe that this communication scheme per-
forms much more communication than necessary. For example on a cluster
of four computing nodes, node 0 computes the top quarter of the rows of
matrices tnew,0 and tnew,1. Node 1 computes the second quarter, node 2 the
third quarter, and node 3 the bottom quarter. Node 3 does not require any
row that has been computed by node 0 since the Macaulay matrix does not
have entries in the first quarter of the columns for these rows. The obvious
solution is that a node i sends only these rows to a node j that are actually
required by node j in the next iteration step.

This communication pattern requires to send several data blocks to in-
dividual cluster nodes in parallel to ongoing computation. This can not be
done efficiently using MPI. Therefore, we circumvent the MPI API and pro-
gram the network hardware directly. Our implementation uses an InfiniBand
network; the same approach can be used for other high-performance net-
works. We access the InfiniBand hardware using the InfiniBand verbs API.
Programming the InfiniBand cards directly has several benefits: All data
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structures that are required for communication can be prepared offline; ini-
tiating communication requires only one call to the InfiniBand API. The
hardware is able to perform all operations for sending and receiving data
autonomously after this API call; there is no need for calling further func-
tions to ensure communication progress as it is necessary when using MPI.
Finally, complex communication patterns using scatter-gather lists for in-
coming and outgoing data do not have a large overhead. This implementa-
tion reduces communication to the smallest amount possible for the cost of
only a negligibly small initialization overhead.

This approach of splitting told and tnew into two shared column blocks
has the disadvantage that the entries of the Macaulay matrix need to be
loaded twice per iteration, once for each block. This gives a higher memory
contention and more cache misses than when working on a single column
block. However, these memory accesses are sequential. It is therefore likely
that the access pattern can be detected by the memory logic and that the
data is prefetched into the caches.

b) Operating on Independent Column Blocks of told and tnew: Any communi-
cation during steps BW1 and BW3 can be avoided by splitting the ma-
trices told and tnew into independent column blocks for each cluster node.
The nodes compute over the whole Macaulay matrix B on a column stripe
of told and tnew . All computation can be accomplished locally; the results
are collected at the end of the computation of these steps.

Although this is the most efficient parallelization approach when look-
ing at communication cost, the per-node efficiency drops drastically with
higher node count: For a high node count, the impact of the width of the
column stripes of told and tnew becomes even stronger than for the previ-
ous approach. Therefore, this approach only scales well for small clusters.
For a large number of nodes, the efficiency of the parallelization declines
significantly. Another disadvantage of this approach is that since the nodes
compute on the whole Macaulay matrix, all nodes must store the whole
matrix in their memory. For large systems this is may not be feasible.

Both approaches for parallelization have advantages and disadvantages; the ideal
approach can only be found by testing each approach on the target hardware.
For small clusters approach b) might be the most efficient one although it loses
efficiency due to the effect of the width of told and tnew . The performance of
approach a) depends heavily on the network configuration and the ratio between
computation time and communication time. Both approaches can be combined
by splitting the cluster into independent partitions; the workload is distributed
over the partitions using approach b) and over the nodes within one partition
using approach a).

4 Experimental Results

This section gives an overview of the performance and the scalability of our
XL implementation for generic systems. Experiments have been carried out on
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Table 1. Computer architectures used for the experiments

NUMA Cluster
CPU

Name AMD Opteron 6276 Intel Xeon E5620
Microarchitecture Bulldozer Interlagos Nehalem
Frequency 2300 MHz 2400 MHz
Number of CPUs per socket 2 1
Number of cores per socket 16 (2 x 8) 4
Level 1 data-cache size 16 × 48 KB 4 × 32 KB
Level 2 data-cache size 8 × 2 MB 4 × 256 KB
Level 3 data-cache size 2 × 8 MB 8 MB
Cache-line size 64 byte 64 byte

System Architecture
Number of NUMA nodes 4 sockets × 2 CPUs 2 sockets × 1 CPU
Number of cluster nodes — 8
Total number of cores 64 64
Network interconnect — InfiniBand MT26428

2 ports of 4×QDR, 32 Gbit/s
Memory

Memory per CPU 32 GB 18 GB
Memory per cluster node — 36 GB
Total memory 256 GB 288 GB

two computer systems: a 64-core NUMA system and an eight node InfiniBand
cluster. Table 1 lists the key features of these systems.

4.1 Impact of the Block Size

We measured the impact of the block size of the block Wiedemann algorithm on
the performance of the implementation on a single cluster node (without cluster
communication). We used a quadratic system with 16 equations and 14 variables
over F16. In this case, the degree D for the linearization is 9. The input for the
algorithm is a Macaulay matrix B with N = 817190 rows (and columns) and
row weight wB = 120. To reduce the parameter space, we fix m̃ to m̃ = ñ.

Figure 2 shows the runtime for block sizes 32, 64, 128, 256, 512, and 1024.
Given the fixed size of the Macaulay matrix and m̃ = ñ, the number of field
operations for BW1 and BW2 is roughly the same for different choices of the
block size ñ since the number of iterations is proportional to 1/ñ and number of
field operations per iteration is roughly proportional to ñ. However, the runtime
of the computation varies depending on ñ.

During the i-th iteration step of BW1 and BW3, the Macaulay matrix is mul-
tiplied with a matrix t(i−1) ∈ FN×ñ

16 . For F16 each row of t(i−1) requires ñ/2 bytes
of memory. In the cases m̃ = ñ = 32 and m̃ = ñ = 64 each row thus occupies less
than one cache line of 64 bytes. This explains why the best performance in BW1
and BW3 is achieved for larger values of ñ. The runtime of BW1 and BW3 is min-
imal for block sizes m̃ = ñ = 256. In this case one row of t(i−1) occupies two cache
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Fig. 2. Runtime and memory consumption of XL 16-14 over different block sizes on a
single cluster node with two CPUs (8 cores in total) and 36 GB RAM

lines. The reason why this case gives a better performance than m̃ = ñ = 128
might be that the memory controller is able to prefetch the second cache line.
For larger values of m̃ and ñ the performance declines probably due to cache
saturation.

According to the asymptotic time complexity of Coppersmith’s and Thomé’s
versions of the Berlekamp–Massey algorithm, the runtime of BW2 should be
proportional to ñ. However, this turns out to be the case only for moderate sizes
of ñ; note the different scale of the graph in Fig. 2 for a runtime of more than 2000
seconds. For m̃ = ñ = 256 the runtime of Coppersmith’s version of BW2 is al-
ready larger than that of BW1 and BW3, for m̃ = ñ = 512 and m̃ = ñ = 1024
both versions of BW2 dominate the total runtime of the computation. Thomé’s
version is faster than Coppersmith’s version for small and moderate block sizes.
However, by doubling the block size, the memory demand of BW2 roughly dou-
bles as well; Figure 2 shows the memory demand of both variants for this experi-
ment. Due to the memory–time trade-off of Thomé’s BW2, the memory demand
exceeds the available RAM for a block size of m̃ = ñ = 512 and more. Therefore,
memory pages are swapped out of RAM onto hard disk which makes the runtime
of Thomé’s BW2 longer than that of Coppersmith’s version of BW2.

4.2 Scalability Experiments

The scalability was measured using a quadratic system with 18 equations and 16
variables over F16. The degree D for this system is 10. The Macaulay matrix B
has a size of N = 5 311 735 rows and columns; the row weight is wB = 153. Since
this experiment is not concerned about peak performance but about scalability,
a block size of m̃ = ñ = 256 is used. For this experiment, the implementation
of the block Wiedemann algorithm ran on 1, 2, 4, and 8 nodes of the cluster
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and on 1 to 8 CPUs of the NUMA system. The approach a) (two shared column
blocks) was used on the cluster system for all node counts.

Given the runtime T1 for one computing node and Tp for p computing nodes,
the parallel efficiency Ep on the p nodes is defined as Ep = T1/pTp. Figure 3
shows the parallel speedup and the parallel efficiency of BW1 and BW2; the
performance of BW3 behaves very similarly to BW1 and thus is not depicted
in detail. These figures show that BW1 and Coppersmith’s BW2 have a nice
speedup and an efficiency of at least 90% on 2, 4, and 8 cluster nodes. The effi-
ciency of Thomé’s BW2 is only around 75% on 4 nodes and drops to under 50%
on 8 nodes. In particular the polynomial multiplications require a more efficient
parallelization approach. However, Thomé’s BW2 takes only a small part of the
total runtime for this system size; for larger systems it is even smaller due to its
smaller asymptotic time complexity compared to steps BW1 and BW3. Thus, a
lower scalability than BW1 and BW3 can be tolerated for BW2.

For this problem size, our parallel implementation of BW1 and BW3 scales
very well for up to eight nodes. However, at some point the communication time
is going to catch up with computation time: The computation time roughly
halves with every doubling of the number of cluster nodes, while the commu-
nication demand per node shrinks with a smaller slope. Therefore, at a certain
number of nodes communication time and computation time are about the same
and the parallel efficiency declines for any larger number of nodes. We do not
have access to a cluster with a fast network interconnect and a sufficient amount
of nodes to measure when this point is reached, thus we can only give an estima-
tion: Figure 4 shows the expected time of computation and communication for
larger cluster sizes. We computed the amount of data that an individual node
sends and receives depending on the number of computing nodes. We use the
maximum of the outgoing data for the estimation of the communication time.
For this particular problem size, we expect that for a cluster of around 16 nodes
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communication time is about as long as computation time and that the parallel
efficiency is going to decline for larger clusters.

On the NUMA system, the scalability is similar to the cluster system. BW1
achieves an efficiency of over 85% on up to 8 NUMA nodes. The workload was
distributed such that each CPU socket was filled up with OpenMP threads as
much as possible. Therefore, in the case of two NUMA nodes (16 threads) the
implementation achieves a high efficiency of over 95% since a memory controller
on the same socket is used for remote memory access and the remote memory
access has only moderate cost. When using more than one NUMA node, the
efficiency declines to around 85% due to the higher cost of remote memory
access between different sockets. Also on the NUMA system the parallelization
of Thomé’s BW2 achieves only a moderate efficiency of around 50% for 8 NUMA
nodes. The parallelization scheme used for OpenMP does not scale well for a large
number of threads. The parallelization of Coppersmith’s version of BW2 scales
almost perfectly on the NUMA system. The experiment with this version of BW2
is performed using hybrid parallelization by running one MPI process per NUMA
node and one OpenMP thread per core. The overhead for communication is
sufficiently small that it does not have much impact on the parallel efficiency of
up to 8 NUMA nodes.

Our experiments show that the shape of the Macaulay matrix has a large
impact on the performance and the scalability of XL. Currently, we are using
graded reverse lexicographical order for the Macaulay matrix. However, as op-
posed to Gröbner basis solvers like F4 and F5, for XL there is no algorithmic or
mathematical requirement for any particular ordering. In our upcoming research,
we are going to examine if another monomial order or a redistribution of columns
and rows of the Macaulay matrix has a positive impact on the performance of
our implementation.
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4.3 Comparison with PWXL and Magma F4

To put our numbers into context, we compare our work with two other Gröb-
ner basis solvers in this section: with PWXL, a parallel implementation of XL
with block Wiedemann for F2 described in [15], and with the implementation of
Faugère’s F4 algorithm [7] in the computational algebra system Magma.

Comparison with PWXL: Figure 5 compares the runtime of PWXL and our
implementation for systems in F2 with m = n. We ran our XL implementation
on our cluster system (see Table 1) while PWXL was running on a machine with
four six-core AMD Opteron 8435 CPUs, running at 2.6 GHz.

Our implementation outperforms PWXL for the largest cases given in the
paper, e.g., for n = 33 our implementation is 24 times faster running on 8
cluster nodes (64 CPU cores) and still 6 times faster when scaling to 16 CPU
cores. This significant speedup may be explained by the fact that PWXL is a
modification of the block-Wiedemann solver for factoring RSA-768 used in [10].
Therefore, the code may not be well optimized for the structure of Macaulay
matrices. However, these numbers show that our implementation achieves high
performance for computations in F2.

Comparison with F4: Figure 6 compares time and memory consumption of
the F4 implementation in Magma V2.17-12 and our implementation of XL for
systems in F16 with m = 2n. When solving the systems in Magma we coerce the
systems into F256, because for F256 Magma performs faster than when using F16

directly. The computer used to run F4 has an 8 core Xeon X7550 CPU running
at 2.0 GHz; however, F4 uses only one core of it. We ran XL on our NUMA
system using all 64 CPU cores. For this comparison we use Coppersmith’s version
of BW2 since it is more memory efficient than Thomé’s version.

Note that there is a jump in the graph when going from n = 21 to n = 22
for XL our implementation, similarly when going from n = 23 to n = 24
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for F4. This is due to an increment of the degree D from 5 to 6, which hap-
pens earlier for XL. Therefore, F4 takes advantage of a lower degree in cases
such as n = 22, 23. Other XL-based algorithms like Mutant-XL [14] may be able
to fill this gap. In this paper we omit a discussion of the difference between the
degrees of XL and F4/F5. However, in cases where the degrees are the same for
both algorithms, our implementation of XL is better in terms of runtime and
memory consumption.

For n = 25, the memory consumption of XL is less than 2% of that of F4.
In this case, XL runs 338 times faster on 64 cores than F4 on one single core,
which means XL is still faster when the runtime is normalized to single-core
performance by multiplying the runtime by 64.

4.4 Performance for Computation on Large Systems

Table 2 presents detailed statistics of some of the largest systems we are able to
solve in a moderate amount of time (within at most one week). In the tables the
time (BW1, BW2, BW3, and total) is measured in seconds, and the memory is
measured in GB. Note that for the cluster we give the memory usage for a single
cluster node. While all the fields that we have implemented so far are presented
in the table, we point out that the most optimization has been done for F16.

The system with n = 32 variables and m = 64 equations over F16 listed in
Table 2 is the largest case we have tested. The system was solved in 5 days on
the cluster using block sizes m̃ = 256 and ñ = 128. With n = 32 and D = 7
we have N =

(
n+D

D

)
=
(
32+7

7

)
= 15 380 937 and wB =

(
n+2

2

)
=
(
32+2

2

)
= 561.

There are roughly N/ñ + N/m̃ iterations in BW1 and N/ñ iterations in BW3.
This leads to 2N/ñ + N/m̃ Macaulay matrix multiplications, each takes about
N · (wB + 25) · ñ additions and N ·3 · ñ multiplications in F16 (see Sec. 3.2). Op-
erations performed in BW2 are not taken into account, because BW2 requires
only a negligible amount of time. Therefore, solving the system using XL cor-
responds to computing about (2 · 15 380 937/128+ 15 380 937/256) · 15 380 937 ·
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Table 2. Statistics of XL with block Wiedemann for F2 and F16 using Thomé’s BW2,
and F31 using Coppersmith’s BW2

Field Machine m n D Time in [sec] Memory Block Size
BW1 BW2 BW3 total in [GB] m̃, ñ

F2 Cluster 32 32 7 3830 1259 2008 7116 2.4 512, 512
Cluster 33 33 7 6315 2135 3303 11778 3.0 512, 512
Cluster 34 34 7 10301 2742 5439 18515 3.8 512, 512
Cluster 35 35 7 16546 3142 8609 28387 4.6 512, 512
Cluster 36 36 7 26235 5244 15357 46944 5.6 512, 512

F16 NUMA 56 28 6 1866 330 984 3183 3.9 128,128
Cluster 1004 238 548 1795 1.3 256,256
NUMA 58 29 6 2836 373 1506 4719 4.6 128,128
Cluster 1541 316 842 2707 1.6 256,256
NUMA 60 30 7 91228 5346 64688 161287 68.8 256,128
Cluster 53706 3023 38052 94831 10.2 256,128
NUMA 62 31 7 145693 7640 105084 258518 76.7 256,128
Cluster 89059 3505 67864 160489 12.1 256,128
NUMA 64 32 7 232865 8558 163091 404551 100.3 256,128
Cluster 141619 3672 97924 244338 15.3 256,128

F31 NUMA 50 25 6 1729 610 935 3277 0.3 64,64
Cluster 1170 443 648 2265 0.7 128,128
NUMA 52 26 6 2756 888 1483 5129 0.4 64,64
Cluster 1839 656 1013 3513 0.9 128,128
NUMA 54 27 6 4348 1321 2340 8013 0.5 64,64
Cluster 2896 962 1590 5453 1.0 128,128
NUMA 56 28 6 6775 1923 3610 12313 0.6 64,64
Cluster 4497 1397 2458 8358 1.2 128,128
NUMA 58 29 6 10377 2737 5521 18640 0.7 64,64
Cluster 6931 2011 3764 12713 1.5 128,128

(561 + 25) · 128 ≈ 258.3 additions and about 250.7 multiplications in F16. Since
one addition in F16 requires 4 bit operations, this roughly corresponds to the
computation of 4 · 258.3 ≈ 260.3 bit operations.
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Abstract. Multivariate Quadratic Public Key Schemes (MQPKS) at-
tracted the attention of researchers in the last decades for two reasons.
First they are thought to resist attacks by quantum computers and sec-
ond, most of the schemes were broken. The latter may be the reason
why implementations are rare. This work investigates one of the most
promising member of MQPKS and its variants, namely UOV, Rainbow
and enTTS. UOV resisted all kinds of attacks for 13 years and can be con-
sidered one of the best examined MQPKS. We describe implementations
of UOV, Rainbow and enTTS on an 8-bit microcontroller. To address
the problem of large keys, we used several optimizations and also im-
plemented the 0/1-UOV scheme introduced at CHES 2011. To achieve a
practically usable security level on the selected device, all recent attacks
are summarized and parameters for standard security levels are given.
To allow judgement of scaling, the schemes are implemented for the most
common security levels in embedded systems 264, 280 and 2128 bits sym-
metric security. This allows for the first time a direct comparison of the
four schemes because they are implemented for exactly the same security
levels on the same platform and also by the same developer.

Keywords: Multivariate Quadratic Signatures, MQ, Unbalanced Oil
and Vinegar, UOV, Rainbow, enTTS, AVR, Embedded Device.

1 Introduction

Since Peter Shor published efficient quantum algorithms [20] to solve the prob-
lem of factorization and discrete logarithm in 1995, there is a increasing demand
in investigating possible alternatives. One such class of so-called post-quantum
cryptosystems is based on multivariate quadratic (MQ) polynomials. We know
that solving systems of MQ-polynomials is hard in the worst case, as the cor-
responding MQ-problem is proven to be NP-complete [11]. Unfortunately all
schemes proposed so far also need the Isomorphism of Polynomials (IP) prob-
lem to hide the trapdoor. It is not known how hard this problem is and indeed
most MQ-schemes are broken this way. So for example, the balanced Oil and
Vinegar scheme [15], Sflash [4] and much more [17,16,12,7,8,23]. To encapsulate,
nearly all MQ-encryption schemes and most of the MQ-signature schemes are

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 374–389, 2012.
� International Association for Cryptologic Research 2012
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broken up to this point. There are only very few exceptions like the signature
schemes HFE−, Unbalanced Oil and Vinegar (UOV) and its layer based variants
Rainbow and enTTS. Well, breaking the first seems to be a matter of time as
some ideas of the attack against Sflash from Asiacrypt 2011 [4] might also be
applicable. On the other hand, UOV resisted all kinds of attacks for 13 years. It
is thought to be the most promising member of the class of MQ-schemes.

Previous Work and Contribution. Rainbow type hardware implementations
got some attention during the last years. An 0.35�m ASIC, which signs in 0.012
ms, is reported in [2]. Further [21] presents an ASIC implementation, taking only
198 clock cycles for a sign operation. An ASIC implementation of enTTS(20,28)
enabling sign in 0.044 seconds running at a slow clock of 100KHz, is reported
in [25]. The authors also report a MSP430 implementation signing in 71 ms and
verifying in 726 ms and a 8051-compatible �C implementation signing in 198ms.
At CHES 2004, Yang et al. describe an implementation of TTS targetting 8051-
compatible �Cs [1]. Their implementation of TTS(20,28) signs in 144ms, 170ms,
60ms and for TTS(24,32) they achieve 191ms, 227 ms, 85 ms for an i8032AH,
i8051AH and W77E59, respectively. We are not aware of any implementation of
UOV or Rainbow targeting small microcontrollers.

This work describes implementations of the MQ-signature schemes, UOV,
Rainbow and enTTS, on an 8-bit microcontroller. Additionally, methods to re-
duce the key size are evaluated and a version of UOV published at CHES 2011
(0/1-UOV [19]) is introduced and also evaluated. To achieve a practically usable
security level on the selected device, recent attacks are summarized and param-
eters for standard security levels are given. The actual implementations were
all done by the same developer. This ensures, that we really compare different
schemes and not just different skills of different developers.

Organization. Section 2 introduces MQ-schemes in general and UOV, Rain-
bow and enTTS in special. Section 3 summaries recent attacks and derives pa-
rameter sets to achieve 264, 280 and 2128 bit security. Afterwards, Section 4 de-
scribes our implementations before we present our results in Section 5. Finally,
we conclude in Section 6 and point out some details for future improvements.

2 Multivariate Quadratic Public Key Cryptosystems

This section provides a brief introduction to UOV [14], 0/1 UOV [19], Rainbow
[9] and enTTS [24]. The general idea of all these MQ-signature schemes is to
use a public multivariate quadratic map P : Fn

q → Fm
q with

P =

⎛⎜⎝ p(1)(x1, . . . , xn)
...

p(m)(x1, . . . , xn)

⎞⎟⎠
and

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

α
(k)
ij xixj = xᵀP(k)x,
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where P(k) is the (n × n) matrix describing the quadratic form of p(k) and
x = (x1, . . . , xn)

ᵀ. Note that we can neglect linear and constant terms as they
never mix with quadratic terms and thus do not increase the security [5].

The trapdoor is given by a structured central map F : Fn
q → Fm

q with

F =

⎛⎜⎝ f (1)(u1, . . . , un)
...

f (m)(u1, . . . , un)

⎞⎟⎠
and

f (k)(u1, . . . , un) :=
∑

1≤i≤j≤n

γ
(k)
ij uiuj = uᵀF(k)u.

In order to hide this trapdoor we choose two secret linear transformations S, T
and define P := T ◦ F ◦ S. See Figure 1 for an illustration.

Fn
q Fm

q

Fn
q Fm

q

P

S T

F

Fig. 1.MQ-Scheme in general

Unbalanced Oil and Vinegar. For the UOV signature scheme the variables
ui, i ∈ V := {1, . . . , v} are called vinegar variables and the remaining variables
ui, i ∈ O := {v + 1, . . . , n} are called oil variables. The central map F is given
by

f (k)(u1, . . . , un) :=
∑

i∈V,j∈V

γ
(k)
ij uiuj +

∑
i∈V,j∈O

γ
(k)
ij uiuj.

The corresponding matrix F(k) is depicted in Figure 2.

F(k) =

x1 . . . xv . . . xn

0

x1

...

xv

...

xn

︷
︸︸

︷︷︸︸︷

vinegar variables

oil variables

Fig. 2. Central map F of UOV. White parts denote zero entries while gray parts denote
arbitrary entries.
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As we have m equations in m + v variables, fixing v variables will yield a
solution with high probability. Due to the structure of F(k), i.e. there are no
quadratic terms of two oil variables, we can fix the vinegar variables at random
to obtain a system of linear equations in the oil variables, which is easy to solve.
This procedure is not possible for the public key, as the transformation S of
variables fully mixes the variables (like oil and vinegar in a salad). Note that
for UOV we can discard the transformation T of equations, as the trapdoor is
invariant under this linear transformation.

Rainbow. Rainbow uses the same idea as UOV but in different layers. Current
choices of parameters (q, v1, o1, o2) use two layers, as it turned out to be the
best choice in order to prevent MinRank attacks and preserve short signatures
at the same time. We will use q = 28 throughout the paper. The central map F
of Rainbow is divided into two layers F(1), . . . ,F(o1) and F(o1+1), . . . ,F(o1+o2) of
form given in Figure 3.

0

0

0

0

00

v1 o1 o2

for F(1), . . . ,F(o1)

and

0

v1 o1 o2

for F(o1+1), . . . ,F(o1+o2)

Fig. 3. Central map of Rainbow (q, v1, o1, o2). White parts denote zero entries while
gray parts denote arbitrary entries.

To use the trapdoor we first solve the small UOV system F(1), . . . ,F(o1) by
randomly fixing the v1 vinegar variables. The solution u1, . . . , uv1+o1 is now
used as vinegar variables of the second layer. Solving the obtained linear system
yields uv1+o1+1, . . . , uv1+o1+o2 . A formal description of Rainbow is given by the
following formula.

f (k)(u1, . . . , un) :=
∑

i∈V1,j∈V1

γ
(k)
ij uiuj +

∑
i∈V1,j∈O1

γ
(k)
ij uiuj

for k = 1, . . . , o1

f (k)(u1, . . . , un) :=
∑

i∈V1∪O1,j∈V1∪O1

γ
(k)
ij uiuj +

∑
i∈V1∪O1,j∈O2

γ
(k)
ij uiuj

for k = o1 + 1, . . . , o1 + o2

0/1-Unbalanced Oil and Vinegar. At CHES 2011 Petzold et al. [19] showed
that large parts of the public key are redundant in order to prevent key recovery
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attacks. More precisely, S can be chosen of a special structure due to equivalent
keys and thus large parts of the public and secret map are equal. Choosing this
parts of P of a special structure, such that direct attacks on the public key do
not become easier, they were able to reduce the key size and running time of the
verification algorithm.

Enhanced TTS. Enhanced TTS was proposed by Yang and Chen in 2005 [24].
The general idea is the same as for Rainbow, but as TTS was designed for high
speed implementation it uses as few monomials as possible. For the purpose of
evaluating the security we generalize the scheme by adding more monomials. As
soon as a monomial xixj with xi ∈ U and xj ∈ V occur in the original TTS
polynomial, we just assume that all monomials xixj with xi ∈ U and xj ∈ V
occur. This way we easily see that TTS is a very special case of the Rainbow
signature scheme. There are two different scalable central maps given in [24],
one is called even sequence and the other odd sequence. The following equations
show the odd sequence. We restrict our implementation to this case.

f (i) = ui +

2�−3∑
j=1

γijuju2�−2+(i+j+1 mod 2�−1) for 2� − 2 ≤ i ≤ 4�− 4,

f (i) = ui +

�−2∑
j=1

γijui+j−(4�−3)ui−j−2� +

2�−3∑
j=�−1

γijui+j−3�+3ui−j+�−2

for i = 4� − 3, 4�− 2,

f (i) = ui+γi0ui−2�+1ui−2�−1+

i−1∑
j=4�−1

γi,j−(4�−2)u2(i−j)−(i mod 2)uj+γi,i−4�+2u0ui

+

6�−3∑
j=i+1

γi,j−(4�−2)u4�−1+i−juj for 4� − 1 ≤ i ≤ 6� − 3.

If we generalize these equations to the Rainbow signature scheme, the central
map is given by Figure 4.

F1, . . . ,F2�−1 F2�,F2�+1 F2�+2, . . . ,F4�

2� − 2 2� − 1 2 2� − 1 2� − 2 2� − 1 2 2� − 1 2� − 2 2� − 1 2 2� − 1

Fig. 4. Secret map F of odd sequence Enhanced TTS generalized
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3 Security in a Nutshell

To provide a fair comparison between UOV, Rainbow and enTTS regarding
memory consumption and running time, we first have to choose parameters of
the same level of security. Therefore we briefly revisit the latest attacks and
choices of parameters of all three schemes.

3.1 Security and Parameters of UOV and 0/1-UOV

Direct Attack. To forge a single signature an attacker would have to solve a
system of o quadratic equations in v variables over Fq. The usual way of finding
one solution is first guessing v variables at random. This preserves one solution
with high probability. The best way of solving the remaining MQ-system of o
equations and variables is to guess a few further variables and then apply some
Gröbner Basis algorithm like F4 (see Hybrid Approach of Bettale et al. [3]).
Recently Thomae et al. showed that we can do better than guessing v variables
at random [22]. Calculating these v variables through linear systems of equations
allows to solve a system of o−

⌊
v
o

⌋
quadratic equations and variables afterwards.

To determine the complexity of solving a MQ-system using a Groebner basis
algorithm like F4 we refer to [3]. In a nutshell, we first have to calculate the
degree of regularity dreg. For semi-regular sequences, which generic systems are
assumed to be, the degree of regularity is the index of the first non-positive
coefficient in the Hilbert series Sm,n with

Sm,n =

∏m
i=1(1 − zdi)

(1 − z)n
,

where di is the degree of the i-th equation. Then the complexity of solving a
zero-dimensional (semi-regular) system using F4 [3, Prop. 2.2] is

O
((

m

(
n+ dreg − 1

dreg

))α)
,

with 2 ≤ α ≤ 3 the linear algebra constant. We used α = 2 throughout the
paper.

Key Recovery Attacks. There are two key recovery attacks known so far.
The first is a purely algebraic attack called Reconciliation attack [6]. In order
to obtain the secret key S we have to solve

(
k+1
2

)
o quadratic equations in kv

variables for an optimal parameter k ∈ N. The second attack is a variant of the
Kipnis-Shamir attack on the balanced Oil and Vinegar scheme [15]. The overall
complexity of this attack is O(qv−o−1o4). Note that v = 2o is very conservative
in order to prevent this attack and thus v can be chosen much smaller for o
large enough. As k ≥ 2 even the Reconciliation attack will not badly benefit of
choosing v smaller and direct attacks even suffer of such a choice.
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Table 1. Minimal 0/1-UOV parameters achieving certain levels of security. Thereby g
is the optimal number of variables to guess in the hybrid approach and k is the optimal
parameter selectable for the Reconciliation attack.

security parameter (o, v) direct attack Reconciliation Kipnis-Shamir

264 (21, 28) 267 (g = 1) 2131 (k = 2) 266

280 (28, 37) 285 (g = 1) 2166 (k = 2) 283

2128 (44, 59) 2130 (g = 1) 2256 (k = 2) 2134

3.2 Security and Parameters of Rainbow

All attacks against UOV also apply to Rainbow. Additionally the security of
Rainbow relies on the MinRank-problem. Thus we also have to take MinRank
and HighRank attacks, as well as the Rainbow Band Separation attack into
account. See Petzold et al. [18] for an overview of the attacks and the parameters
to choose.

Table 2. Minimal Rainbow parameters achieving certain levels of security. Thereby g
is the optimal number of variables to guess for the hybrid approach.

security (v1, o1, o2) direct attack Band MinRank HighRank Kipnis Reconciliation

264 (15, 10, 10) 267 (g = 1) 270 2141 293 2125 2242 (k = 6)

280 (18, 13, 14) 285 (g = 1) 281 2167 2126 2143 2254 (k = 5)

2128 (36, 21, 22) 2131 (g = 2) 2131 2313 2192 2290 2523 (k = 7)

3.3 Security and Parameters of Enhanced TTS

All attacks against Rainbow also apply to enTTS. The only attack that seriously
benefit from the changes made between Rainbow and enTTS is the Reconcilia-
tion attack with large k. But as the complexities of this attacks are out of reach
anyway this do not affect the security. Actually the complexity is higher than
the ones of all the other attacks, so we omit it. More important is the slight
benefit of the Band Separation attack. For the odd sequence enTTS we derive
m+ n − 1 quadratic equations in n− 2 instead of n variables.

4 Implementation on AVR Microprocessors

The goal of these implementations is a fair comparison between some of the most
promising MQ-based post quantum public key schemes. All schemes were anal-
ysed in the previous section and sets of parameters with equivalent security were
defined under considerations of most recent attacks. A problem when compar-
ing such schemes is that every implementation has its own philosophy of what
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Table 3. Minimal odd sequence enTTS parameters achieving certain levels of security.
Thereby g is the optimal number of variables to guess for the hybrid approach.

security (�,m, n) direct attack Band MinRank HighRank Kipnis-Shamir

264 (7, 28, 40) 289 (g = 1) 268 2126 2117 2127

280 (9, 36, 52) 2110 (g = 2) 285 2159 2151 2160

2128 (15, 60, 88) 2176 (g = 3) 2131 2258 2249 2259

is most worthy of optimization. Therefore we aim for a comparison with equal
conditions for all schemes such as the same platform and implementation by
the same person, also with nearly the same possible optimizations. Additionally
practical figures are given in a real world scenario for signature verification and
generation time. All the schemes were implemented with runtime optimization
in mind.

4.1 Target Platform and Tools

An ATxMega128a1 on an xplain board was used as target device. This micro
processor has a clock frequency of 32 MHz, 128KB flash program memory and
8KB SRAM. The code was written in C and optimized for embedded use. As
compiler avr-gcc in version 4.5.1 and at some places assembler gcc-as 2.20.1 was
used.

Polynomial Representation / Key Storage. When implementing MQPKS
on microprocessors it is important to construct an efficient way of storing and
reading the keys out of memory. All polynomials of an MQ-scheme are repre-
sented by their coefficients. It is important to decide how this coefficients are
processed during runtime. The coefficients of UOV and Rainbow can be easily
mapped to some readout loops. This is not that easy with enTTS as only a min-
imal count of coefficients are used and this few coefficients are spread over three
layers and six different cyclic structures. As random access on the flash memory
produces a lot of addressing overhead while calculating the address each time
a serial approach was chosen. All coefficients are stored in memory in the same
exact order in which they are read out. There are no gaps or zeros in memory
which is also memory efficient. This memory architecture allows us to read out
the keys directly and simply increment the address to reach the next coefficient.
The AVR instruction set allows a memory readout with a post increment in
one clock cycles from SRAM or two clock cycles from Flash memory. There-
fore no additional address calculation is needed. The number of coefficients to
store and thus the memory consumptions in bytes is o

(
ov + v(v+1)

2

)
for UOV,

o1

(
o1v +

v(v+1)
2

)
+o2

(
o2(v + o1) +

(v+o1)(v+o1+1)
2

)
for Rainbow and 8l2−6l−3

for enTTS. The resulting memory requirements for specific security parameters
are given in Table 5.
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4.2 Arithmetic and Field

As the used microprocessor is based on an 8 bit architecture, working in F28

is optimal. Multiplication is done by a table look up, each element is brought
to its exponential representation, processed and then transformed back to the
normal polynomial representation. Every transformation from the exponential
to the basis representation costs one memory access, therefore in all implemen-
tations the exponential representation is kept as long as no F28 addition takes
place, which is a bitwise exclusive OR operation of two coefficients in the basis
representation. As the coefficients of the keys are first read in by a multiplica-
tion, all keys are already stored in the exponential form. Random numbers are
generated by the rand() gcc pseudo random number generator. This function is
seeded with a value derived from uninitialized SRAM blocks which are arbitrary
on every start up.

Inverting the Layers. All schemes require the inversion of multivariate sys-
tems of equations. As only linear systems of equation can be solved efficiently,
we have to fix variables until the system gets linear and then perform a simple
Gaussian elimination using LU decomposition. Here the exponential representa-
tion is also used where possible. For example the lower matrix and all variables
were saved in exponential form. In enTTS the middle layer consists only of poly-
nomials depending on already known variables. Therefore these polynomials can
be inverted directly.

4.3 Key Size and Signature Runtime Reduction

The main problem of MQ-schemes are large keys, as storage space is limited
on embedded devices. Large private keys come also together with long signature
time, due to the processing of more data. As the signature for a fixed message
is not unique, there is a lot of redundancy that can be used to reduce the secret
key S (cf. theory of equivalent keys). We used such minimal keys for UOV as
well as for Rainbow. Note that there are no equivalent keys known for enTTS
and thus the whole matrix S has to be stored. The special form of S has two
additional side effects in addition to less space. First, also the signature time is
reduced. The multiplication with the identity matrix corresponds to a copy of
the signature so that only the multiplication with the remaining coefficients has

to be done. For UOV this saves us (v−1)·v
2 + (o−1)·o

2 equations and for Rainbow
(v−1)·v

2 + (o1−1)·o1
2 + (o2−1)·o2

2 . The second observation is that due to the identity
matrix in the vinegar × vinegar part, large parts of P and F are equal. They
do not increase security an can be seen as a system parameter (cf. [19]). As
required by the authors of [19] for 0/1-UOV, also a different monomial ordering
was chosen according to a minimal Turán graph. This reordering prevent easier
attacks on the public key. The same procedure is probably possible for Rainbow.
But as no publication exists which investigated this case, it was not implemented.
For enTTS this is not possible as the Tame equations in the middle layer cause
to blur the variable structure and no equivalent keys are known.
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4.4 Verify Runtime Reduction

In the case of 0/1-UOV, choosing the coefficient from F2 has another advantage
besides of less memory consumption. The verification and signature generation
time can be reduced. As we know that the majority of coefficients are from F2,
we can check for a one or a zero, which leads to a copy instruction in the case
of one or a skip instruction in case of zero. Only otherwise we have to perform a
costly multiplication in F28 . The effect is in our implementation not marginally
visible, because the used table look up method is fast compared to a schoolbook
multiplication method.

4.5 RAM Requirements

MQ-schemes do not need a lot of RAM, in contrast to the persistent flash mem-
ory requirements. In Table 4 the requirements are listed. Besides RAM needed
for persistent, counting or temporary variables, only the Gaussian elimination
algorithm needs a noticeable amount of RAM. As the inversion is computed in
place, only one quadratic systems at time has to be stored in RAM. In case of
multiple layers the maximal requirements are defined by the largest system of
equations to be solved.

Table 4. Minimal Ram Requirements for LES Solving in Bytes

security 264 280 2128 general

UOV 441 784 1936 m2

Rainbow 400 729 1849 (o1 + o2)
2

enTTS 169 289 841 (2l − 1)2

4.6 Key Generation

The keys for all schemes are generated on a standard PC using a C program.
Basically T ◦ F ◦ S = P has to be computed. Using the quadratic form, the
composition can be written as in (1). An overview of the key generation process
of 0/1 UOV with small parameters can be found in the appendix.

P(i) =

m∑
j=1

tijS
ᵀF(j)S (1)

Another way to generate an UOV key is described in [19]. It can be done by
transforming the matrix S into a matrix Auov and write all coefficients of f (i)

ordered lexicographically to the rows of Q. Then the following equation holds:
Auov · Q = STF(i)S. With this relation inverting Auov is possible and therefore
a inverse approach, choosing first P and then applying Auov to get F . For the
runtime optimization the reordering of monomials can take place in Auov instead
of reorder the monomials in P and F .
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5 Results

Table 5 shows our achieved results. They are easy to compare because schemes
are grouped by security level. For all schemes key size, runtime and code size
are given. Where applicable the system parameter size is also included. The
public and secret key sizes can be easily calculated. One element responds to
one byte and no other overhead needs to be saved so the keys consists only of
the coefficients of the public or secret maps and the linear transformations. In
the case of 0/1-UOV a large part is fixed and declared as a system parameter,
but it must be anyway saved or be easy to generate in a real world scenario,
therefore thus size is also listed.

Clock cycles were count internally with two concatenated 16 bit counters
which are enabled to count on every clock cycle. As the count of verify operations

scales with (n·(n+1)
2 ·m) the measured times do not surprise. As enTTS uses the

largest numbers of n and m it has the lowest verify performance and the largest
public keys. Rainbow is the fastest as the parameters can be chosen relatively
low. The big advantage of enTTS is the small private key. Large parts of the
central map are zero and have not to be saved. In terms of theoretical public
key size 0/1-UOV performs the best. If the possibility to generate the system
parameter on the device would exist, it would ensure the smallest public key.
The gain of verification and signature time in comparison to the standard UOV
is only minimal as the multiplication by table look up has no significant runtime
difference in comparison to a multiplication with 0 or 1 as the 0 case is a special
case and is checked anyway every time in a normal multiplication in F28 . When
measuring scalability for secret/public key size at the step from 264 to 2128,
UOV has a increase factor of 9/9, 0/1-UOV of 9/9, Rainbow 10/11 and enTTS
of 4/10. UOV scales the best in public key size, enTTS the best in private key
size. Regarding the signature size, UOV has the highest expansion factor, with
a message to signature ratio of approximately 2.3, followed by Rainbow with 1.7
and enTTS with 1.4.

As a comparison of an �C with an ASIC or PC implementation is meaningless,
the only MQ implementation we can compare with is the one from [25]. The
authors implemented enTTS(5, 20, 28) on a MSP430 running at 8 MHz. Signing
requires 17.75 ms and verifying 181.5 ms, when scaled up to our clock frequency.
Although, the MSP430 is a 16 bit CPU, our implementation is a factor of 3.7
faster in signing and 5.1 times faster in verifying.

Also when comparing our work with implementations of the classical signa-
ture schemes RSA and ECDSA, all four schemes perform well. E.g. for 280 bit
security [13] reports 203ms for a ECC sign operation, where our implementations
are two to ten times faster. For the verifying operation our work is up to three
times faster. Due to the short exponent in RSA-verify, [13] verifies in the same
order of magnitude. But the RSA-sign operation is at least a factor of 25 slower
than our work. Table 6 summarizes other implementations on comparable 8 bit
platforms.
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Table 6. Overview of other implemenatations on comparable platforms

Method Time[ms]@32MHz
sign verify

enTTS(5, 20, 28)[25] 17.751 181.51

ECC-P160 (SECG) [13] 2031 2031

ECC-P192 (SECG) [13] 3101 3101

ECC-P224 (SECG) [13] 5481 5481

RSA-1024 [13] 2,7481 1081

RSA-2048 [13] 20,8151 4851

NTRU-251-127-31 sign [10] 1431 -

1 For a fair comparison with our implementation running
at 32MHz, timings at lower frequencies were scaled ac-
cordingly.

6 Conclusion

In this work we present the first �C implementations of the three most common
MQPKS since nearly 10 years. Additionally, we implemented for the first time
0/1-UOV on a constrained device. All recent attacks were summarized and we
proposed current security parameters for 264, 280 and 2128 bit symmetric security.
Additionally, we showed that choosing v = 2o for UOV is outdated. When
comparing with existing MQ implementations, ours are a factor of three and five
times faster in signing and verifying, respectively. We hope our implementations
will inspire follow up work, to improve acceptance of MQPKS in constrained
environments.

6.1 Further Improvements

There is still space for improvements and the upper limit is not reached yet.
A few ideas were not implemented in this work. Saving the system parameters
is not optimal. Here a replacement by a pseudo random number generator or
an other generator function would reduce the public key drastically, even if
verification time would be increased. In our implementation all elements of F2 are
saved as a byte value. It would be possible to achieve smaller keys when saving
8 elements in one byte, combined with a verification function which utilizes
assembler instructions maybe even a faster verification could be possible. An
overall time vs. code size trade-off is still a topic to investigate. MQ-schemes
are very well scalable in regard to this trade-off.
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A Toy Example of 0/1 UOV Key Generation

Step 1: Choose parameters o, v and generate S and B.

01 47 A8 9E

01 A1 55 AD

01 3D F4 0A

01 C2 9F 2B

01 8E 01 C5

01 54 83 12

01

01

01

S = S−1 = n

n

01 01 00 00 00 01 00 00 01 00 00 01 00 00 00 01 00 01 01 00 01 00 00 00 01 01 01 00 01 00 01 01 01 01 01 00 00

01 00 01 00 00 00 01 00 01 01 01 00 00 00 01 00 00 00 00 00 00 01 00 00 01 01 00 01 01 01 01 01 01 01 00 00 01

01 00 00 01 01 00 00 00 01 00 00 01 00 00 00 00 00 00 00 01 01 00 00 00 01 01 01 00 01 01 00 00 00 00 00 01 01

B = m

D

(o, v) = 3, 6
n = o+ v = 9
D = v·(v+1)

2 + o · v = 39

D2 = o·(o+1)
2 = 6

D′ = D +D2 = 45

Step 2: Generate AUOV and permutate rows.

01

01

01

01

01

01

43 AC 01 FF 7C 01

7A 2F DE 97 02 01

A3 3D FA C7 2E 01

01

01

01

01

01

96 AC 01 FF 7C 01

4D 2F DE 97 02 01

75 3D FA C7 2E 01

01

01

01

01

96 43 01 FF 7C 01

4D 7A DE 97 02 01

75 A3 FA C7 2E 01

01

01

01

96 43 AC FF 7C 01

4D 7A 2F 97 02 01

75 A3 3D C7 2E 01

01

01

96 43 AC 01 7C 01

4D 7A 2F DE 02 01

75 A3 3D FA 2E 01

01

96 43 AC 01 FF 01

4D 7A 2F DE 97 01

75 A3 3D FA C7 01

1A C9 4D 96 11 6A 96 C8 A1 43 2D F2 43 37 AC 84 FD AC 01 FF 7C 01 E2 9C FF F4 7C 01

44 51 FD 32 11 4D 96 4C 9C 2E 67 7A 43 23 1B D0 2F AC 1C D9 DE 01 F5 97 FF 02 7C 01

DF CA 90 BF EF 75 96 E1 DC 2B 6E A3 43 9F E9 1C 3D AC 01 23 FA 01 F6 C7 FF 2E 7C 01

9C 93 F9 A6 13 9A 4D E0 77 25 43 F4 7A 21 5C 19 5E 2F 97 6E A1 DE 1B 33 97 04 02 01

A7 18 61 50 5E 75 4D 96 B9 B4 56 A3 7A F5 73 74 3D 2F 89 6B FA DE 1D C7 97 2E 02 01

B5 81 36 74 42 AA 75 62 5F FD A2 45 A3 38 9B A3 88 3D F3 68 93 FA CB 1B C7 20 2E 01

AUOV =

D′

01

01

01

01

01

01

1A C9 4D 96 11 6A 96 C8 A1 43 2D F2 43 37 AC 84 FD AC 01 FF 7C 01 E2 9C FF F4 7C

9C 93 F9 A6 13 9A 4D E0 77 25 43 F4 7A 21 5C 19 5E 2F 97 6E A1 DE 1B 33 97 04 02

B5 81 36 74 42 AA 75 62 5F FD A2 45 A3 38 9B A3 88 3D F3 68 93 FA CB 1B C7 20 2E

01

01

01

43 AC 01 FF 7C 01

7A 2F DE 97 02 01

A3 3D FA C7 2E 01

01

01

01

96 AC 01 FF 7C 01

4D 2F DE 97 02 01

75 3D FA C7 2E 01

01

01

01

96 43 01 FF 7C 01

4D 7A DE 97 02 01

75 A3 FA C7 2E 01

01

96 43 AC FF 7C 01

4D 7A 2F 97 02 01

75 A3 3D C7 2E 01

01

96 43 AC 01 7C 01

4D 7A 2F DE 02 01

75 A3 3D FA 2E 01

4D 7A 2F DE 97 01

75 A3 3D FA C7 01

44 51 FD 32 11 4D 96 4C 9C 2E 67 7A 43 23 1B D0 2F AC 1C D9 DE 01 F5 97 FF 02 7C

DF CA 90 BF EF 75 96 E1 DC 2B 6E A3 43 9F E9 1C 3D AC 01 23 FA 01 F6 C7 FF 2E 7C

AUOV
′ =

D

Step 3: Invert AUOV
′

01

01

01

01

01

01

1A C9 4D 96 11 6A 96 C8 A1 43 2D F2 43 37 AC 84 FD AC 01 FF 7C 01 E2 9C FF F4 7C

9C 93 F9 A6 13 9A 4D E0 77 25 43 F4 7A 21 5C 19 5E 2F 97 6E A1 DE 1B 33 97 04 02

B5 81 36 74 42 AA 75 62 5F FD A2 45 A3 38 9B A3 88 3D F3 68 93 FA CB 1B C7 20 2E

01

01

01

43 AC 01 FF 7C 01

7A 2F DE 97 02 01

A3 3D FA C7 2E 01

01

01

01

96 AC 01 FF 7C 01

4D 2F DE 97 02 01

75 3D FA C7 2E 01

01

01

01

96 43 01 FF 7C 01

4D 7A DE 97 02 01

75 A3 FA C7 2E 01

01

96 43 AC FF 7C 01

4D 7A 2F 97 02 01

75 A3 3D C7 2E 01

01

96 43 AC 01 7C 01

4D 7A 2F DE 02 01

75 A3 3D FA 2E 01

4D 7A 2F DE 97 01

75 A3 3D FA C7 01

44 51 FD 32 11 4D 96 4C 9C 2E 67 7A 43 23 1B D0 2F AC 1C D9 DE 01 F5 97 FF 02 7C

DF CA 90 BF EF 75 96 E1 DC 2B 6E A3 43 9F E9 1C 3D AC 01 23 FA 01 F6 C7 FF 2E 7C

AUOV
′ =

01

EC D5 66 4C 5B E7 7E B3 91 48 67 8D 72 8F B7 71 80 84 2B 6A 69 63 36 AD 58 33 64 C8 A0 AA 4C 4B

9D 7F 94 0A 69 EF CB E8 17 DA FD 2D 42 79 78 58 5E 9C 82 8B ED CA AD 04 BA 98 2D 2F FD A2 71 BC A3 A5 04 47 41 68 B6

01

01

01

01 15 08 5E F7 38 73 81 62 9A 11 26 66 9C 9B 51 1E 1B DE 1F F2 94 9B 8A EA 8B 0B AA 81 AA 30 4E 54 06 BF B9 D2 5B 83

FB B8 68 2A 25 51 A5 E8 4A 7C 2F 16 E2 10 6E 18 DB C6 7E 88 7D 2A 61 BC 66 B1 7F BC 3A C0 2B 6B 60 E1 6B F2 13 0A 2D

D2 A2 E8 14 A8 61 D9 1E C4 90 31 D9 A6 F8 77 CF 40 5E 64 09 83 9F 24 F4 60 E9 CF 11 A6 B4 3C D2 9C 11 69 D2 76 95 47

01

49 69 A8 7E E8 8A 64 FB FF F1 85 77 39 A1 E9 F3 34 C6 6F 2F B5 F7 50 9D A9 08 F9 91 48 FB 34 98 7B 72 F9 7E CF 2F F2

01

01

01

CE 1A BD B2 3D 44 A6 55 5D 9D 1C 81 7F E5 84 BD 19 B7 B9 1A 2C 8D 5A AD 11 09 4B 25 BF FF 67 B4 9B 3D 53 AC 86 A6

88 EF F2 87 2C AE 72 FC 95 DD 75 80 76 79 37 BB 7E B8 4E F0 F9 9F C5 22 DD 65 18 1B 42 04 D5 ED 7E C4 A9 D7 6D F0 23

67 6B ED AD 5C 7B B8 03 D0 47 A1 10 E7 C6 EA E2 4B A8 9F A3 48 A7 0C 20 D0 F5 DC D1 9B 80 DD 69 D7 46 47 9A 2D FF 72

01

01

01

01

15 29 9B 81 B6 3A 45 7D 7D 4A 68 12 F2 4F F6 21 B1 6F 9E C1 31 49 6D 30 79 AF BD 2B 0F E6 87 A4 6A 58 D8 DF 19 E3 70

BD 6A 03 DD CC D2 83 B5 FE DD 60 FB B5 0E 5F FA 12 B7 4F BB CC A6 A5 6B CD 49 C6 BB 38 D7 EB 0C 51 6F 8C 41 4B DA D7

55 74 39 6D B4 A2 C4 C3 BD 06 74 EF 0F CA 61 AF 2E 5C BB EE 4C 12 A7 22 30 E5 31 DD FC AA F1 8B 9C 6D CC 52 AA 63 B2

01

2E EC C5 B4 77 32 3D A8 45 49 34 75 B8 D4 09 75 1A 5E 90 98 49 DF BC 8A 55 9C 23 32 B2 16 F0 52 CA 92 CB AA B5 45 A9

01

05 B5 77 64 2B 3E 52 5F 15 F3 06 C8 14 C3 54 8B 03 E9 29 82 65 D8 CF 2A 5E 59 8A 42 5D 73 8E 99 1B CA E4 BC 9B 15 A0

8E CF 83 A8 7E A1 AF 87 DF 38 F4 4D 02 91 5B 37 7A 32 D9 15 75 D6 64 A3 5A 73 B3 A3 FD D1 E0 98 8D EA 1A B4 3F DF 10

1B 2C 58 21 D1 BA A3 80 6B 53 12 42 6C 73 B1 E1 09 A5 DF A9 26 6C 57 D6 87 92 91 94 89 44 8C E8 41 4C 86 13 E6 6B 47

01

01

2E EC C5 B4 77 32 3D A8 45 49 A2 75 B8 D4 09 75 59 5E 90 98 49 DF 10 8A 55 9C 23 32 B2 16 F0 2E CB 92 CB AA B5 45 A9

82 95 37 D3 1A 02 9C 53 18 F9 B1 BB 32 88 60 BB 04 B8 4E F0 F9 49 42 30 79 AF BD 02 2D 9F 15 5B A9 EE 77 F2 0D 18 8D

93 CE 81 3A 9D C4 9B 6D 59 15 97 74 76 60 79 74 D2 D2 C3 40 15 F0 84 B2 42 8F 25 C4 1C 3D 99 B0 DE 2A 25 84 C0 59 97

01

E8 96 58 AC 2F CD E5 64 40 27 B0 43 87 DB 0D F0 63 C6 60 0F 59 51 57 7A 87 92 91 52 E2 4F 63 7B BE D9 FB FD E1 4B 0F

4D 7A 2F DE 97 01

75 A3 3D FA C7 01

(AUOV
′)−1 =

Step 4: Compute F and P

01 3D 26 00 01 00 A8 8D E5

00 B1 00 00 01 E4 B6 CB

00 00 01 00 0E C8 38

01 3E 01 33 09 D8

00 00 05 80 C1

00 4E A5 58

00 27 57 00 01 01 E7 1D C1

01 5F 00 01 00 3D 51 DD

00 00 00 01 FD 66 04

00 82 01 FD 6C 8F

01 01 2A BA C8

00 6E 2A 75

00 7E BF 00 01 00 47 76 66

00 94 00 00 00 53 D2 4D

01 01 01 00 CE 90 EF

00 A4 01 FE 00 DF

00 01 E2 D2 47

01 60 49 3D

f1, f2, f3 =

01 3D 26 00 01 00 00 01 00

00 B1 00 00 01 00 01 01

00 00 01 00 00 00 01

01 3E 01 01 00 01

00 00 01 01 01

00 0C 01 01

00 00 00

01 AE

00

00 27 57 00 01 01 01 00 00

01 5F 00 01 00 00 00 00

00 00 00 01 00 00 01

00 82 01 00 01 01

01 01 01 01 01

00 AA 01 00

00 00 01

00 4F

01

00 7E BF 00 01 00 00 01 00

00 94 00 00 00 00 00 00

01 01 01 00 00 00 01

00 A4 01 01 00 01

00 01 00 00 00

01 9E 00 00

01 01 01

00 45

00

p1, p2, p3 =

F = B · (AUOV
′
)
−1 P = F ·AUOV

Fig. 5. 0/1 UOV Key Generation. For details see [19].
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Abstract. We provide a comprehensive evaluation of several lightweight
block ciphers with respect to various hardware performance metrics,
with a particular focus on the energy cost. This case study serves as a
background for discussing general issues related to the relative nature
of hardware implementations comparisons. We also use it to extract in-
tuitive observations for new algorithm designs. Implementation results
show that the most significant differences between lightweight ciphers
are observed when considering both encryption and decryption architec-
tures, and the impact of key scheduling algorithms. Yet, these differences
are moderated when looking at their amplitude, and comparing them
with the impact of physical parameters tuning, e.g. frequency / voltage
scaling.

1 Introduction

Lightweight cryptography is an active research direction, as witnessed by the
number of algorithms aiming at “low-cost” implementations designed over
the last years. Looking at block ciphers, the list includes (but is not lim-
ited to) DESXL [15], HIGHT [13], ICEBERG [22], KATAN [2], KLEIN [10], LED [11],
mCrypton [16], NOEKEON [3], Piccolo [20], PRESENT [1], SEA [21] and TEA [24].
Although these algorithms are useful and inventive in many ways, determining
which one to use in which application with good confidence can be difficult. One
first reason for this is that the very definition of low-cost is hard to capture, as it
is highly dependent on the target platform. For illustration, operations that are
cheap in hardware (e.g. wire crossings) may turn out to be annoyingly expensive
in software. In fact, even for a given technology, there are various criteria that
could be considered to evaluate the low-cost nature of different algorithms. The
implementation size (measured in gates, program memory, . . . ) generally comes
in the first place, but power or energy can be more reflective in certain appli-
cation scenarios. Besides, lightweight cryptography has mainly been developed
through several independent initiatives, over an already long time period. This
is in contrast with the design of standard algorithms for which the selection
was/will be the result of an open competition. One outcome of the Advanced
Encryption Standard (AES) and SHA3 competitions is the publication of well mo-
tivated comparative studies. Taking the example of hardware (ASIC and FPGA)

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 390–407, 2012.
c© International Association for Cryptologic Research 2012
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implementations, several works can be mentioned both for the AES, e.g. [7,8,23],
and SHA3 candidates [9,12,14]. By contrast, only a few evaluations of lightweight
algorithms are available in the literature. For example, the companion paper
of the KATAN algorithm includes gate counts and throughput estimations for
several ciphers [2], but they consider different technologies. A recent initiative
can also be mentioned for software implementations [6]. But to the best of the
authors’ knowledge, there exist no systematic evaluations for hardware imple-
mentations to date.

In this paper, we compare the hardware performances of 6 block ciphers, with
different block and key sizes. Namely, we considered the AES [4] and NOEKEON

for 128-bit blocks and keys, HIGHT and ICEBERG for 64-bit blocks and 128-bit
keys, and KATAN and PRESENT for 64-bit blocks and 80-bit keys. This choice of
algorithms was motivated by having different block and key sizes, together with
different styles of key scheduling and decryption. After a brief discussion under-
lying the relative nature of evaluation metrics for hardware implementations, we
evaluate different figures of merits for these 6 candidates, with a particular focus
on the energy efficiency (which explains the word “green” of our title). For this
purpose, we first analyze hardware design choices and describe different architec-
tures for encryption, decryption and encryption/decryption, with and without
round unrolling and parallelization. This allows us to quantify the combinatorial
cost and delays of the different ciphers, and to analyze their respective imple-
mentations. Next, we study the tuning of physical parameters, and evaluate the
impact of frequency / voltage scaling on our comparisons. Doing so, we investi-
gate the relevance of the energy per bit as a comparison criteria for lightweight
block ciphers, i.e. its independence with respect to hardware design choices and
frequency / voltage scaling. In other words, we question the extent to which such
a metric reflects algorithmic design choices and discuss its possible biases. We
answer positively and argue that it nicely summarizes the “energy efficiency” of
an algorithm. We also show that the informativeness of this metric is further
improved if correlated with the “performance efficiency” (usually measured with
a throughput over area ratio). As a conclusion of our experiments, we finally try
to extract useful suggestions for new lightweight cryptographic algorithms.

2 Evaluation Metrics for Hardware Implementations

Evaluating hardware implementations is a challenging task. In this section, and
as a background to our following case study, we introduce different metrics that
can be used for this purpose, together with possible shortcomings with respect
to their relevance for comparing algorithms. Namely, we will consider the area,
power consumption, throughput and energy cost, as summarized in Figure 1.
This selection was motivated by the fact that these metrics are generally re-
flective of the application constraints that may be encountered in practice. In
general, the most revealing units for these metrics are physical (i.e. μm2, Watts,
bit/sec and Joules). However, as these physical units can only be obtained at
the very end of an implementation process, convenient first-order estimates are



392 S. Kerckhof et al.

Fig. 1. Summary of evaluation metrics for hardware implementations

Fig. 2. Left: serial design with resource sharing. Right: unrolled & parallelized design.

obtained with the gate count, switching activity (i.e. number of bit transitions
per clock cycle), number of cycles per algorithm execution and block size.

The first important observation regarding these metrics is that they are always
relative, meaning that it is usually possible to optimize a single metric quite
arbitrarily, if the other ones can be degraded. Hence, in order to make any
comparison relevant, it is necessary to agree on some application objectives.
For example, the area and power can be relative to time or energy constrains,
while the throughput and energy can be relative to area or power constraints.
As a result, optimization goals can be roughly separated as “design for low
area or power” and “design for high throughput or low energy”. In the first case,
designers will typically share the resources (to decrease the area cost) and reduce
the datapath (to limit the switching activity). Such optimizations are illustrated
for the case of a block cipher S-box layer in the left part of Figure 2. Quite
naturally, re-using the same component also implies that the relative cost of
the S-box compared to the control logic and memory decreases, which implies a
lower efficiency. Therefore, in the second case, the designer will rather unroll the
S-boxes (i.e. implement them all on chip) and parallelize their computation (i.e.
perform them in a single clock cycle), as illustrated in the right part of the figure.
Besides, the performances of these implementations will also depend on their
clock frequency, for which the maximum value fmax is inversely proportional to
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the longest combinatorial path (aka critical path) between two registers. If the
clock frequency is not sufficient, inner pipelining can be used in order to cut the
critical path by the addition of registers, as illustrated in Appendix, Figure 6.

Having roughly described these optimization techniques allows us to come
back on the relativity of the metrics when comparing different algorithms. For
example, the throughput is very arbitrary, as it can be straightforwardly im-
proved by multiplying the circuit size. The same observation holds (to a smaller
extent) for the instantaneous power consumption, as a designer could theoret-
ically reduce his datapath to a single bit, independently of the algorithm to
implement. In general, a lack of instantaneous power can also be overcome by
decreasing the clock frequency and relying on decoupling capacitances. Hence,
applications where this metric really matter are quite limited (RFID being the
most frequent example). The area cost becomes slightly more discriminant, since
increasing the sharing of resources generally implies a cost penalty in the control
part. Finally, the energy per encryption is more discriminant, as it corresponds to
an integral over time and is not compressible beyond what is allowed by the total
combinatorial cost of an algorithm. Quite naturally, many combined metrics can
also be derived, e.g. the “throughput over area ratio” is one of the most popular
tool to express the performance efficiency of a given hardware implementation.

The main consequence of this relativity is that the fair comparison of hardware
implementations is always specialized to a set of constraints. In the following sec-
tions, we will define our methodology for this purpose, and investigate the energy
cost of different algorithms, for various hardware architectures. Beforehand, a
few more comments about this evaluation are worth being mentioned.

(1) Present hardware design flows make intensive use of automated tools, of
which the options highly influence the final performance. For example, imposing
stronger constraints on the clock frequency can be automated in this way, at
the cost of area increases. In such cases, it is useful to agree on the maximum
tolerated penalty (compared to the area obtained without frequency constraints).

(2) Once all design choices have been taken, it is always possible to further tune
the performances of an implementation, e.g. by taking advantage of frequency /
voltage scaling. This issue will be investigated in Section 5.

(3) As technologies are shrinking to the nanometer scale, a part of their power
consumption may become static (i.e. happen independent of the switching activ-
ity)1. As leakage currents are essentially dependent on the circuit size, it implies
that the optimization goals for area and power become closer in this case. Sig-
nificant leakage currents also have an impact on the energy performances.

(4) In general, comparisons are only meaningful for algorithms with the same
block and key size. Yet, different block sizes can sometimes be reflected in the
metrics (e.g. by computing the energy per bit rather than per block).

1 Note that this effect can be mitigated by exploiting low-leakage libraries.
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3 The Case of 6 Block Ciphers: Methodology

In order to make our performance evaluations as relevant as possible, we defined
a strict methodology for all our implementations. It defines requirements on the
target architectures, their interface and the implementation flow.

Regarding architectures, and for all the investigated ciphers, we considered
encryption, decryption and encryption/decryption designs. The reference point
of our evaluations is a standard loop implementation of the AES Rijndael, per-
forming one encryption in 12 cycles, taking advantage of the efficient S-box
representation of Mentens et al. [18]. This choice was mainly motivated by our
low-energy consumption goal. Further reduction of the area (e.g. with 8-bit or
32-bit architectures) would lead to less energy-efficient designs. We also thought
that the throughputs of these AES implementations (of a few Gbps) were large
enough for a wide range of applications. Next, for all the investigated lightweight
ciphers, we analyzed the generic unrolled architecture depicted in Figure 3, where
Nr rounds are executed per clock cycle. Having at least one full round imple-
mented was again motivated by our low-energy consumption objective. We used
this generic architecture in order to determine the number of lightweight cipher
rounds that are needed to consume the same area, or that require the same
delay as an AES round. Besides, they are also interesting architectures for very
low-latency implementations. As unrolling without adding pipeline is generally a
suboptimal choice regarding the critical path, we further considered two imple-
mentation scenarios. In the first one, we assumed a clock frequency of 100MHz
(determined by the system): it corresponds to a context where such an unrolling
is indeed motivated by external constraints. Next, we estimated the maximum
clock frequency. In this second case, we further investigated the impact of paral-
lel (or pipelined) architectures. In order to exhaustively analyze our large design
space (various Nr values, encryption vs. decryption vs. encryption/decryption,
f = 100MHz vs. fmax), we heavily relied on generic VHDL/Verilog program-
ming. We additionally used a common (generic as well) interface for all the
ciphers, with plaintext/ciphertext (resp. key) port width corresponding to the
block (resp. key) size, and a simple handshaking mechanism to control the flow.

Regarding the synthesis environment, we operated in two steps. In the first
place, and in order to study the impact of architectural choices, we investigated
the previously defined operating frequencies (i.e. f = 100MHz and fmax) at

Fig. 3. Unrolled architectures with various number of rounds
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1.2V, i.e. the nominal supply voltage for the technology used (see Section 4).
As previously mentioned, the maximum frequency depends on the synthesis and
place-and-route, since the CAD tool can further optimize a design to reach a
target timing constraint at the cost of an area increase. Thus, we precisely defined
the maximum frequency as the frequency obtained when the area of the design
has increased by 10% compared to the unconstrained design. This step allowed
us to identify the most efficient architectures for each lightweight cipher. Next,
for this reduced set of architectures, we analyzed the possibities of frequency /
voltage scaling by carefully tuning the supply voltage (in Section 5).

All the ciphers were implemented following a classical ASIC flow. We used
a commercial 65-nanometer CMOS low-power technology. Synthesis was per-
formed using the Synopsys tools suite. We used the switching activity annota-
tion, by means of behavioral simulation, in order to extract realistic power and
energy figures. In addition, the supply voltage exploration was performed using
the standard cells library that was re-characterized at different Vdd’s. Finally,
and because of space constraints, we reproduced the most informative metrics
provided by our implementations in appendix, and additionally extracted some
of them for illustrating our claims in the core of the paper. The remainder of
our syntheses data is available online, in the full version of the paper.

4 Implementation Results at Fixed Vdd=1.2V

Using the previously defined methodology, we first reported the selected perfor-
mance metrics of our different syntheses at 1.2V supply voltage in Appendix,
Figures 8 to 13, where each point in the curves corresponds to a different un-
rolling parameter Nr. These figures allow us to evaluate the efficiency of the
different ciphers implemented. In this section, we report on a number of useful
observations regarding both hardware design and algorithmic design issues.

As a starting point, we looked at the area curves (given for f = 100MHz in
Figure 8). In general, one would expect the circuit size to increase linearly with
the number of rounds unrolled. However, in the case of lightweight ciphers, we
observed that a number of rounds may be needed before such a linear dependency
appears. This fact is in direct relation with the limited combinatorial cost of the
rounds in certain ciphers (most visibly, KATAN). That is, if the cost of a round
is small in comparison with the state registers and control logic, doubling the
number of rounds unrolled will not double the consumed area. A similar behavior
is observed for the critical path in Figure 9. If the rounds are simple enough for
this critical path to be in the control logic, then doubling the amount of rounds
unrolled will not result in cutting the maximum frequency by two. Again, this
effect is amplified for KATAN, as its round computations only affect a few bits, the
other ones being routed from the state register to itself. Overall, these figures
recall that the definition of a round is arbitrary: several rounds of a lightweight
ciphers are generally needed to reach the cost and delay of an AES round.

Looking at the throughput curves first confirms that in general, unrolling an
implementation without pipelining it mainly makes sense if the clock frequency
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if fixed below the maximum one, e.g. because of system constraints. Yet, we also
remark that for some ciphers, unrolling a few rounds without pipeline improves
the throughput at maximum frequency too (see Figure 10). This is a consequence
of “simple rounds” and the previously mentioned non-linear increase of the crit-
ical path for low Nr values. Note that even for KATAN, the throughput starts to
decrease beyond Nr = 26 (this data is not included in the figures, for visibility
reasons). Besides, increasing Nr at maximum frequency does not lead to the ex-
pected constant curves. This is explained by a detrimental side-effect related to
the overhead cycles required to charge/discharge the plaintext and master key
in their registers. Namely, this overhead becomes more significant with the num-
ber of implemented rounds (i.e. when the number of clock cycles per encryption
becomes small). Note that the impact of this interfacing drawback is stronger
for NOEKEON and HIGHT, as they respectively account for 2 and 3 cycles for these
ciphers (one for loading the data, one per initial/final transformation).

The average power implementation results also exhibit different conclusions
for f = 100MHz and fmax. In the first case, they are dominated by the switching
activity in the circuit, that increases with Nr. Hence, the power is correlated
with the circuit size in this case. By contrast at maximum frequency, unrolling
is either neutral or implies a reduction of the average power, when the maximum
frequency decreases with Nr faster than the area (e.g. for HIGHT).

Interestingly, the energy per bit (given for fmax in Figure 11) is remarkably
similar in our two frequency contexts, because it is dominated by the switch-
ing activity in the selected low-leakage technology. This confirms that it is a
reasonably discriminant metric for algorithmic comparisons. It is also quite cor-
related with the throughput over area metric at 100MHz in Figure 12, i.e. when
unrolling the algorithms affects the throughput and area in opposite directions,
with close to equivalent impact. Quite naturally, this correlation vanishes at max-
imum frequency, due to the inefficiency of unrolling without pipeline. Finally,
the previously mentioned side-effects (such as overhead cycles and unbalanced
use of logic and memory) are naturally reflected in these curves as well.

A summary of our implementation results regarding algorithm efficiency (both
in terms of performances and energy) is depicted in Figure 4, where the energy
per bit is represented in function of the throughput over area ratio, for our differ-
ent architectures. Such figures naturally require a few cautionary remarks. First,
they have to be interpreted with care, as they only provide a big picture of the
implementation efficiency. Practical case studies may focus specifically on differ-
ent combinations of metrics. Second, even if assuming that efficiency is indeed
the design goal, comparing algorithms is difficult as their performances are some-
times close, and depend on the architectures (e.g. encryption-only, decryption-
only and encryption/decryption designs lead to different ratings). Yet, we believe
that a few interesting conclusions can be extracted that we now detail.

Starting with encryption designs, the comparison roughly suggests NOEKEON
≥ PRESENT ≈ KATAN ≥ HIGHT ≈ AES ≥ ICEBERG. This ordering is explained by
different factors. Maybe the most important one is the significant differences
in the key scheduling. At the extremes, NOEKEON does not have any, while for
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Fig. 4. Vdd = 1.2V: throughput over area ratio vs. energy per bit

ICEBERG, the key scheduling is as complex as the encryption rounds. Next, the
respective block and key sizes strongly matter as well. Having larger key sizes
naturally implies lower efficiency in general (but theoretically provides improved
security). Less obviously (and less significantly), smaller block sizes are also neg-
ative for efficiency. For example, working on 128-bit blocks instead of 64-bit ones
doubles the datapath size, but it rarely implies doubling the overall cost (thanks
to the strong diffusion layers in modern ciphers). Considering the decryption
architectures allows putting forward one more design issue, namely the need to
perform the key scheduling “on-the-fly” in forward direction before doing it in
backward direction2 for ciphers such as AES, KATAN and PRESENT. It implies that
the comparison is modified into NOEKEON ≥ HIGHT ≥ ICEBERG ≈ PRESENT ≥ AES

≈ KATAN. Finally, the encryption/decryption designs further indicate the possi-
bility to efficiently share the resources between the cipher and its inverse. Here,
involutional ciphers such as ICEBERG gain a particular advantage, leading to a
rating: NOEKEON ≥ HIGHT ≈ ICEBERG ≥ AES ≈ PRESENT ≥ KATAN.

An alternative view of the performance and energy efficiency of the different
algorithms is given in Appendix, Figure 13 (for f = 100MHz), where we plot the
ratio between the throughput and the product of the area and the energy per bit.
Again, such a figure requires a careful interpretation as they only provide one
“global efficiency” metric. Yet, it is interesting to note that for all ciphers, the

2 This choice is natural in hardware implementations as storing a fully precomputed
expanded key in registers would generally require too large memory oveheads.
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Table 1. Implementation results for most “globally efficient” architectures

Cipher Mode Area fmax Latency Throughput Power Energy
E,D,ED [μm2] [MHz] [cycles] [Mbps] [mW] [pJ per bit]

AES E 17921 444 12 4740 13,5 2,9
Nr = 1 D 20292 377 22 2195 10,6 4,8

ED 24272 363 ≈17 ≈2997 ≈12,6 ≈4,4
NOEKEON E 8011 1149 18 8173 15,0 1,8
Nr = 1 D 10431 1075 19 7243 14,1 1,9

ED 10483 1075 ≈18,5 ≈7445 ≈15,35 ≈2,1
HIGHT E 6524 641 19 2159 6,3 2,9
Nr = 2 D 6524 645 19 2173 6,3 2,9

ED 8217 540 19 1820 6,1 3,3

ICEBERG E 11377 699 17 2632 10,7 4,0
Nr = 1 D 11359 699 17 2632 10,7 4,0

ED 11408 689 17 2596 10,6 4,0

KATAN E 6231 952 17 3585 8,1 2,7
Nr = 16 D 8616 666 33 1292 9,8 6,1

ED 12609 473 ≈25 ≈1347 ≈12,7 6,4

PRESENT E 5024 1123 17 4230 9,3 2,2
Nr = 2 D 6060 1041 33 2020 8,9 4,4

ED 8213 884 ≈25 ≈2523 ≈12,6 4,7

architecture providing the best such global efficiency has approximately the same
latency. Intuitively, this suggest that the computational security of cryptographic
algorithms imposes to iterate Boolean functions with a minimum complexity that
is somewhat comparable for all ciphers. For illustration, we provide the complete
synthesis results for these most efficient architectures for all ciphers in Table 1,
where the approximate symbol means that we provide an average for ED figures.

Impact of Parallelism/Pipeline. As mentioned in the previous section, un-
rolling our architectures without parallelizing or pipelining becomes suboptimal
at maximum frequency. In cases where the (already high) throughputs obtained
in Table 1 are not sufficient for a given application, it is possible to further in-
crease them with parallelization and pipelining. For this purpose, it is natural
to start from the efficient architectures with Nr determined as in Table 1. In the
first case, we just multiply several circuits as depicted in Figure 7. Since only
the control part can be shared between the multiple instances, we essentially
double the throughput at the cost of a doubled area (in particular, the control
part is small in our implementations and this “doubling rule” was precise up
to a few percents). In the case of outer pipelining, it is additionally possible to
spare a few multiplexors. Yet, the trends observed for all metrics and all ciphers
are essentially the same as well. In particular for the throughput over area ratio
and the energy per encrypted bit (i.e. the two metrics we mainly focus on in this
work), we observed similar conclusions for all the investigated ciphers. This be-
havior is again due to the limited cost of the control part compared to the state
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registers and the datapath in our block cipher implementations. As doubling
the parallelism or pipeline essentially comes at the cost of a doubled area, the
throughput over area ratio remains close to constant. Since the same comment
applies to the energy per bit (i.e. doubling the throughput doubles the power
consumption), we conclude that parallelization and pipeline do not increase the
efficiency, nor do they notably affect our comparisons of algorithms.

5 Frequency / Voltage Scaling

The previous sections investigated the impact of architectural choices on the
efficiency of different implementations. We used them to compare different
lightweight ciphers. A natural extension of this work is to investigate the impact
of physical parameters, e.g. in terms of frequency / voltage scaling. Two main
questions can be investigated in this setting. First, do the algorithm compar-
isons remain unchanged with variable supply voltage? Second, are the efficiency
differences between different lightweight ciphers significant in front of the dif-
ferences when tuning a physical parameter. In order to answer these questions,
we re-synthesized the “most efficient” implementations of Table 1 at different
Vdd’s. The library we used for this purpose is composed of cells that tolerate
supply voltages from 1.2V to 0.4V. Note that, beyond the previously listed re-
marks about the relative nature of hardware performance comparisons, synthesis
results at low supply voltage are particularly sensitive to synthesis options. This

Fig. 5. Voltage scaling: throughput over area ratio vs. energy per bit



400 S. Kerckhof et al.

confirms the general discussion found in Saar Drimer’s PhD dissertation in the
context of FPGAs [5]. As a consequence, while we would expect the comparison
of algorithms to be fully independent of the frequency / voltage scaling, we ob-
served some curve overlaps in our performance evaluations. Our conclusions are
as follows.

From the hardware design point of view and as expected, the critical path
increases faster, as the supply voltage decreases (in Figure 14). Hence, the max-
imum frequency and throughput both decrease non-linearly as well, resulting in
a reduction of the throughput over area ratio for low Vdd’s. More positively,
the reason why we lower the supply voltages is to reach lower power consum-
ing points. This is what we observed in our experiments: the power decreases
non-linearly with the supply voltage. However, due to the first observation, this
power reduction is also moderated by the critical path increase. As a result, the
energy per bit (represented in Figure 15) only decreases close to quadratically
with the supply voltage, as expected from the energy required to switch the inter-
nal capacitances. Note that for all our syntheses, the leakage currents remained
negligible (they would become significant below 0.4V in our target technology).

Regarding algorithms, we again plotted a global view of the power and perfor-
mance efficiency metrics in Figure 5. This final picture allows us to answer the
two previously listed questions. First, the comparisons of the different algorithms
and architectures is essentially similar as the ones for Vdd = 1.2V. Yet, and as
previously mentioned, some curve overlaps are noticed, due to the increased
variability of our synthesis results at low supply voltage. Second, the difference
between different algorithms in terms of efficiency is quite limited when com-
pared with the impact of frequency / voltage scaling. For example, the energy
per bit can be decreased by an order of magnitude when reducing Vdd (at the
cost of a throughput decrease). By contrast, the difference between the various
block ciphers investigated roughly corresponds to a factor 2 for this metric. Yet,
the gains obtained when looking at combined metrics is non-negligible (i.e. at
least it is larger than the variability due to synthesis options), in particular when
looking at all architectures (i.e. not only the encryption one).

6 Conclusion

This paper provided a first comprehensive comparison of lightweight block ci-
phers in terms of energy (and performance) efficiency. It confirms that such ci-
phers do provide interesting figures compared to standard solutions such as the
AES. However, the gains observed are sometimes limited and may not be suffi-
cient to motivate the use of non standard algorithms in actual applications. Note
that our conclusions are naturally restricted to an energy-oriented case-study.
For example, minimizing the area would lead to totally different optimization
tweaks (e.g. taking advantage of resource sharing rather than unrolling).

Synthesis results performed for different architectures and supply voltages sug-
gest that using the smallest rounds (e.g. those of KATAN) is not the best strategy
to reach energy-efficient implementations (because of the too large number of
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iterations required to complete each encryption). Besides, we noticed that the
strong similarity in the block cipher rounds design principles does lead to remark-
ably comparable implementation figures. In fact, the most meaningful differences
between the investigated ciphers relate to key scheduling algorithms and the effi-
cient combination of encryption and decryption designs. Overall, we believe that
these results and the general discussion about hardware performance evaluation
raise interesting problems for the design of new block ciphers. Namely, finding
how to make the algorithmic choices more discriminant with respect to hardware
implementations is an interesting research direction.

Acknowledgements. Stéphanie Kerckhof is a PhD student funded by a FRIA
grant, Belgium. François Durvaux is a PhD student funded by the Walloon region
MIPSs project. Cédric Hocquet is a PhD student funded by the Walloon region
MIPSs project. David Bol is a Postdoctoral Researcher of the Belgian Fund for
Scientific Research (FNRS-F.R.S.). François-Xavier Standaert is an Associate
Researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.). This
work has been funded in part by the ERC project 280141 (acronym CRASH).

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

2. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
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Appendix

Fig. 6. Inner pipelining of a block cipher round

Fig. 7. Parallel architectures with various number of rounds
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Fig. 8. Vdd = 1.2V, f = 100MHz: area

Fig. 9. Vdd = 1.2V, fmax: critical path
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Fig. 10. Vdd = 1.2V, fmax: throughput

Fig. 11. Vdd = 1.2V, fmax: energy per bit



406 S. Kerckhof et al.

Fig. 12. Vdd = 1.2V, f = 100MHz: throughput over area ratio

Fig. 13. Vdd = 1.2V, f = 100MHz: throughput over (area × energy per bit) ratio
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Fig. 14. Voltage scaling: critical path

Fig. 15. Voltage scaling: energy per bit



Lightweight Cryptography for the Cloud:

Exploit the Power of Bitslice Implementation

Seiichi Matsuda1 and Shiho Moriai2

1 Sony Corporation
1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan

SeiichiA.Matsuda@jp.sony.com
2 National Institute of Information and Communications Technology (NICT)

4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
shiho.moriai@nict.go.jp

Abstract. This paper shows the great potential of lightweight cryptog-
raphy in fast and timing-attack resistant software implementations in
cloud computing by exploiting bitslice implementation. This is demon-
strated by bitslice implementations of the PRESENT and Piccolo light-
weight block ciphers. In particular, bitsliced PRESENT-80/128 achieves
4.73 cycles/byte and Piccolo-80 achieves 4.57 cycles/byte including data
conversion on an Intel Xeon E3-1280 processor (Sandy Bridge microar-
chitecture). It is also expected that bitslice implementation offers resis-
tance to side channel attacks such as cache timing attacks and cross-VM
attacks in a multi-tenant cloud environment. Lightweight cryptography
is not limited to constrained devices, and this work opens the way to its
application in cloud computing.

Keywords: lightweight cryptography, software implementation, bitslice
implementation, cloud, block cipher, PRESENT, Piccolo.

1 Introduction

The cyber physical system has emerged as a promising direction for enriching
interactions between physical and virtual worlds [14]. Many wireless sensor net-
works, for instance, monitor some aspect of the environment or human behaviors,
and relay the data to the cloud for processes such as data mining, business in-
telligence and predictive analytics. Preservation of security and privacy in the
sensed information in this system is essential.

Lightweight cryptography, which can be implemented on resource-constrained
devices, is attracting attention for protecting private and sensitive information
gathered on sensors . Recently many lightweight cryptographic primitives have
been proposed, such as block ciphers, stream ciphers, hash functions, message-
authentication codes [3,19,5,1,7,8,20]. Moreover, an international standard of
lightweight cryptography (ISO/IEC 29192) has been developed in ISO/IEC JTC
1/SC 27.

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 408–425, 2012.
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Most lightweight cryptographic algorithms are designed to minimize the re-
source consumption of a hardware implementation such as area, power, and en-
ergy consumption, while some are software-oriented with design criteria such as
low memory requirements, small code size, and limited instruction sets for low-
end (e.g., 8-bit) platforms. As a result of design trade-off, some of lightweight
cryptographic algorithms do not show good throughput in software implemen-
tation on mid-range to high-end microprocessors (e.g., Intel Core i7 processors)
typically used for cloud computing.

This paper shows the great potential of lightweight cryptography in fast soft-
ware implementations in cloud environments by exploiting bitslice implementa-
tion demonstrated through bitslice implementations of PRESENT and Piccolo.
PRESENT and Piccolo are lightweight 64-bit block ciphers: the former was pre-
sented by Bogdanov et al. at CHES 2007 [3] and is specified in ISO/IEC 29192-
2 [11], and the latter was presented by Shibutani et al. at CHES 2011 [20]. In
particular, PRESENT-80/128 achieves 4.73 cycles/byte and Piccolo-80 achieves
4.57 cycles/byte on an Intel Xeon E3-1280 processor (Sandy Bridge). PRESENT-
80/128 achieves 5.79 cycles/byte. Piccolo-80 achieves 5.69 cycles/byte on an Intel
Core i7 870 (Nehalem), which are faster than the bitsliced AES’s fastest record
on the same microarchitecture (6.92 cycles/byte on an Intel Core i7 920) [12].

Only a few software performance data of lightweight cryptography for compar-
ison exist in public literature. As for PRESENT, in [17] there are some software
implementation results on 4-bit, 8-bit and 16-bit microcontrollers, but on a 32-
bit processor, the encryption speed available is 16.2 cycles/byte on a Pentium
III. In [9], it is written that optimized table-based implementations run 57 and
86 cycles/byte on a Core i7 Q720 for LED-64 and LED-128, respectively, and
that they are faster than PRESENT. There is also previous work on bitsliced
PRESENT by Grabher et al. [6], but their implementation results are not com-
petitive.

It has been known that bitslice implementation is also resistant to cache tim-
ing attacks because it has no table lookups. In a multi-tenant cloud environment,
cross-virtual machine (VM) attacks become new threats [18]. Bitslice implemen-
tation mitigates these risks.

The remainder of this paper is structured as follows. Section 2 shows a brief
history of bitslice implementation, a use case of lightweight block ciphers in the
cloud, and our target. Sections 3 and 4 respectively show bitslice implementa-
tions of lightweight block ciphers PRESENT and Piccolo, including optimizing
techniques. Section 5 shows performance data and comparison with previous
results, and Section 6 gives our conclusion.

2 Bitslice Implementation

Biham in 1997 introduced bitslicing as a technique for implementing crypto-
graphic algorithms to improve the software performance of DES [2]. It was im-
plemented on several processors and used for brute force key search of DES in
the DES Challenges project in the late-1990s. The basic concept of bitslicing is
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Fig. 1. Use case of decryption in bitslice implementation in the cloud

to simulate a hardware implementation in software. The entire algorithm is rep-
resented as a sequence of logical operations. On a processor with n-bit registers,
a logical instruction corresponds to simultaneous execution of n hardware logi-
cal gates. In the bitslice implementation, S-boxes are computed using bit-logical
instructions rather than table lookups. Since the execution time of these instruc-
tions is independent of the input and key values, the bitslice implementation is
generally resistant to timing attacks.

Bitslice implementation techniques have progressed. The bitslice implementa-
tions of block ciphers presented by Biham were to encrypt/decrypt independent
n blocks on a processor with n-bit registers. Matsui and Nakajima [15] demon-
strated remarkable performance gain on Intel’s Core 2 processor by fully utilizing
its enhanced SIMD architecture. They showed a bitsliced AES running at the
speed of 9.2 cycles/byte on a Core 2, which was faster than any previous standard
table-based implementations. A hurdle in this implementation was that as many
as n independent blocks needed to be processed simultaneously. Könighofer [13]
presented an alternative implementation for 64-bit platforms that processes only
four input blocks in parallel. Käsper and Schwabe [12] extended this approach
and achieved a bitsliced AES in counter mode running at 7.59 cycles/byte on a
Core 2.

A Use Case of Lightweight Block Ciphers in the Cloud. In cyber
physical systems, analyzing large data sets – so-called big data – will become
a key basis of competition, underpinning new waves of productivity growth,
innovation, and consumer surplus. Cloud computing will play an important role
in analyzing big data, where scale-out software systems running on low-cost
“commodity” platforms are expected. When sensor data need to be encrypted
for privacy protection, encryption on a low-cost embedded hardware module
using a lightweight block cipher will be the most cost competitive solution on
the sensor side. Encrypted sensor data are collected from many sensors and
decrypted on servers in the cloud when needed.
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Bitslice implementation provides leverage in this use case. In most cases it
can be implemented so that the sensor data size per transmission fits the block
size. Encrypted sensor data from each sensor can be decrypted independently.
One of the drawbacks of bitslice implementation has been the low number of
applications where the encryption/decryption unit size is large, e.g., 2048-byte
chunks. However, in this use case, one can simply collect encrypted sensor data
from many sensors until the decryption unit size with no concern about the
order, and then decrypt them by using bitslice implementation. The decryption
key can be set block-by-block independently.

Our Target. We choose PRESENT and Piccolo as each representative of
lightweight block ciphers based on Substitution Permutation Networks and Feis-
tel networks, respectively. Our implementations of PRESENT and Piccolo are
run on three different Intel microarchitectures: Core (45-nm), Nehalem, and
Sandy Bridge. Core and Nehalem support up to Streaming SIMD Extensions
(SSE) 4.1 with 16 128-bit XMM registers, and Sandy Bridge newly supports
Advanced Vector Extensions (AVX) as an extension of SSE. Major enhance-
ments of AVX are supports for 256-bit YMM registers, 256-bit floating point
instruction set, and 3-operand syntax, which is also used for legacy 128-bit SSE
instructions (we call this 128-bit AVX). For example, 2-operand syntax instruc-
tion pxor xmm1, xmm2 (xmm1^=xmm2) can be expressed in 3-operand syntax as
vpxor xmm1, xmm2, xmm3 (xmm1=xmm2^xmm3). Since a source operand of an in-
struction is not overwritten by the result, 3-operand syntax can reduce the cost
of temporary data copy to another register and reduce code size. Unfortunately,
256-bit AVX does not support integer instructions operated on 256-bit YMM
registers, so we use 128-bit AVX with 3-operand using XMM registers on Sandy
Bridge. Legacy SSE instructions used in our implementation, such as logical
(pand, pandn, por, pxor), data transfer (movdqa), shuffle (pshufb, pshufd), and
unpack instructions (punpckhbw and its variants) are supported by the three ar-
chitectures. 128-bit AVX instructions used on Sandy Bridge are vpand, vpandn,
vpor, vpxor, vpshufb, vpunpckhbw and its variants. The latency of the register-
to-register operations above is one cycle. The register-to-memory operations re-
quire more cycles depending on the data dependency, memory/cache mechanism,
and characteristics of each microarchitecture.

Our Implementation Approach. Our implementation handles the number of
parallel blocks smaller than the original bitslice implementation. This approach
enables processing operations on only 16 XMM registers without frequent load-
ing and storing of data between XMM registers and memory, and improves
convenience as a cryptographic library tool. To explore the possibility of bit-
slice implementation of PRESENT and Piccolo, we study several cases for the
number of blocks processed in parallel: 8-, 16-, and 32-parallelism for PRESENT
and 16-parallelism for Piccolo. In Section 3 and 4, at the beginning we introduce
some specific optimizations for each algorithm with legacy SSE instructions, and
then optimize our implementations to reduce the number of instructions of the
codes by using 128-bit AVX instructions on Sandy Bridge.
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3 PRESENT

PRESENT [3] is a 64-bit block cipher supporting 80- and 128-bit keys. The S/P-
network of PRESENT consists of addRoundKey, sBoxLayer and pLayer with 31
rounds as shown in Fig. 2. sBoxLayer consists of 16 parallel 4-bit S-boxes and
pLayer permutes bit positions of the 64-bit data state. After the final round, the
state is XORed with the round key for post-whitening and output as ciphertext.
We denote the 64-bit block of PRESENT by 16 4-bit data n0, · · · , n15. Let
ni = ni,0||ni,1||ni,2||ni,3 for 0 ≤ i ≤ 15, where ni,j is the j-th bit of ni.

3.1 Bitsliced Representation

Our bitsliced representations for 8-, 16-, and 32-block parallel implementations
are shown in Fig. 3, Fig. 4, and Figs. 5 and 6, respectively. In this paper, we
denote 16 128-bit XMM registers by r[i], 0 ≤ i ≤ 15. For l-block parallel imple-
mentation, l-bit data ni,j in the figures means the bit collection of ni,j gathered
from the same position of each l-block. The 4-bit slicing enables us to compute
4-bit S-box using bit-logical instructions in the same way as the original 1-bit
slicing [2] and the 8-bit slicing for AES [12].

We use four XMM registers for 8-block parallel implementation, eight XMM
registers for 16-block parallel implementation to store the 4-bit slicing of input
data, and the remaining XMM registers as temporary registers for processing
sBoxLayer and pLayer.

For 32-block parallel implementation, we handle two bitsliced representations
with 16 XMM registers and switch the representations of intermediate data al-
ternately in rounds to reduce the cost of pLayer processing, i.e., the processing
can be skipped every other round. Figure 5 gives the initial bitsliced representa-
tion after performing a conversion algorithm. Since there are no XMM register
for temporary use, we need to move data in a XMM register to memory in the
process of sBoxLayer and pLayer.

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

k

k

i

i+1

Fig. 2. The S/P network for PRESENT
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Fig. 3. Bitsliced representation of PRESENT in 8-block parallel implementation

Fig. 4. Bitsliced representation of PRESENT in 16-block parallel implementation
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Fig. 5. First bitsliced representation of PRESENT in 32-block parallel implementation

Fig. 6. Second bitsliced representation of PRESENT in 32-block parallel implementa-
tion
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3.2 sBoxLayer

A smaller logical representation of S-box maximizes the advantage of bitslice
implementation. One previous work reported that the logical representation of
PRESENT S-box requires only 14 gates [4], in which four temporary registers
were used and 3-operand logical instructions were assumed. We therefore use
their logical representation for 8- and 16-block parallel implementations with
128-bit AVX on Sandy Bridge, and search for another logical representation
using 2-operand instructions for the other implementations.

We took the same approach as Osvik [16] to search a software-oriented logical
representation that consists of five operations and, or, xor, not, mov with only
five registers (four registers for input and one register for temporary use). The
instruction sequence found by our algorithm requires 20 instructions as below.

// Input: r3, r2, r1, r0, tmp

// Output: r3, r2, r1, r0

1. r2 ^= r1; r3 ^= r1;

2. tmp = r2; r2 &= r3;

3. r1 ^= r2; tmp ^= r0;

4. r2 = r1; r1 &= tmp;

5. r1 ^= r3; tmp ^= r0;

6. tmp |= r2; r2 ^= r0;

7. r2 ^= r1; tmp ^= r3;

8. r2 = ~r2; r0 ^= tmp;

9. r3 = r2; r2 &= r1;

10. r2 |= tmp;

11. r2 = ~r2;

Note that four registers r3, r2, r1, r0 of input registers contain four input
bits (r3 contains the most significant bit).

3.3 pLayer

The original 1-bit slicing can compute bit-by-bit permutation like pLayer of
PRESENT by only changing the order of registers with no cost. However our
4-bit slicing causes additional operations for processing pLayer in compensation
for the decrease in the parallelism of bitslice implementations from 128 (size of
XMM register) to 8, 16, and 32.

A combination of the shuffle byte instruction pshufb firstly introduced in
Intel Supplemental SSE3 (SSSE3) and the unpack instructions for double-word
punpck(h/l)dq and quad-word punpck(h/l)qdq realizes the pLayer processing.
The notation h and l of h/l means high-order and low-order of 64-bit data in a
128-bit XMM register, respectively.

As the bitsliced representations for 8- and 16-block parallel implementation
are almost same format, the implementation of pLayer for the 16-block requires
the operations for the 8-block twice. We explain the case for the 8-block and
then progress to the case for 32-block parallel implementation.
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8-block Parallel Implementation. First of all, we perform pshufb on XMM
register r[0] containing ni,0 for 0 ≤ i ≤ 15 in Fig. 3 as the following pattern.

r[0] : n0,0||n4,0||n8,0||n12,0||n1,0||n5,0|| · · · ||n10,0||n14,0||n3,0||n7,0||n11,0||n15,0

Applying for the other registers r[1], r[2], and r[3] similarly, we perform the
punpckhdq instruction on r[0] and r[1], which unpacks and interleaves the high-
order double-word from r[0] and r[1] into r[0]. The subsequent punpckhqdq for
r[0] and r[2], where r[2] contains the result of punpckhdq for r[2] and r[3], can
produce desired 128-bit data in register r[0] as follows.

r[0] : n0,0||n4,0||n8,0||n12,0||n0,1||n4,1|| · · · ||n8,2||n12,2||n0,3||n4,3||n8,3||n12,3

In the pLayer processing with legacy SSE instructions, we require 16 instructions,
i.e., four pshufb, four punpck(h/l)dq, four punpck(h/l)qdq, and four movdqa
for storing intermediate results. With an optimization using 128-bit AVX instruc-
tions vpunpck(h/l)dq and vpunpck(h/l)qdq, four movdqa become redundant,
i.e., requiring 12 instructions in total.

32-block Parallel Implementation. As mentioned before, we manage two
bitsliced representations for 32-block parallel implementation. These represen-
tations are constructed in such a way that the bit permutation of pLayer for
the initial bitsliced representation as shown in Fig. 5 produces the other repre-
sentation with only register renaming. Using the notation of the intial bitsliced
representation, we can represent the updated bitsliced representation as the re-
sult of the pLayer process for the initial bitsliced representation as follows.

r[0] : n0,0||n4,0||n8,0||n12,0

r[4] : n1,0||n5,0||n9,0||n13,0

r[8] : n2,0||n6,0||n10,0||n14,0

r[12] : n3,0||n7,0||n11,0||n15,0

...

r[3] : n0,3||n4,3||n8,3||n12,3

r[7] : n1,3||n5,3||n9,3||n13,3

r[11] : n2,3||n6,3||n10,3||n14,3

r[15] : n3,3||n7,3||n11,3||n15,3

The above corresponds to the second bitsliced representation as shown in Fig. 6.
The pLayer processing in the next round for this representation requires an
instruction sequence consisting of 16 punpck(h/l)dq, 16 punpck(h/l)qdq and
20 movdqa including four memory accesses for temporarily storing data twice
and produces the initial bitsliced representation. Therefore the pLayer process
can be computed every other round and requires 26 instructions on average. The
128-bit AVX can reduce the number of instructions from 52 to 36.

An additional operation for this trick to adjust the alignment of round keys
is needed, unpacking round keys every other round in the key schedule.
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4 Piccolo

Piccolo [20] is a lightweight 64-bit block cipher supporting 80-bit and 128-bit
keys. Piccolo has a structure of a variant of 4-line generalized Feistel network
(GFN) as shown in Fig. 7, and iterates 25 and 31 rounds for 80- and 128-bit
keys, respectively. We denote a 64-bit block for Piccolo by four 16-bit words:
W0,W1,W2,W3. Let Wi = n4∗i||n4∗i+1||n4∗i+2||n4∗i+3 for 0 ≤ i ≤ 3, and let
nj = nj,0||nj,1||nj,2||nj,3 for 0 ≤ j ≤ 15, where nj is 4-bit data and nj,k is the
k-th bit of nj .
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Fig. 7. The structure of Piccolo

8 8 8 8 8 8 8 8

64

64

x x x x x x x x0 1 2 3 4 5 6 7

x x x x x x x x2 7 4 1 6 3 0 5

Fig. 8. Round permutation RP

4.1 Bitsliced Representation

Figure 9 shows our bitsliced representation for 16-block parallel implementation
of Piccolo. 16-bit data ni,j in the figure means the bit collection of ni,j gathered
from a same position of each 16-block for 0 ≤ i ≤ 15 and 0 ≤ j ≤ 3.

Since the 2-line out of the 4-line GFN is processed and the other lines pass
through in one round, the data for the former and latter should be stored sep-
arately, assigning each for different registers. Then, two F-functions used in the
GFN are the same, so we can pack eight 16-bit data ni,j corresponding to the
2-line data (e.g., W0&W2 or W1&W3) on same XMM registers with the 4-bit
slicing as our implementation of PRESENT.

The number of XMM registers for storing 4-bit slicing of input data is eight.
Four XMM registers of the renaming eight XMM registers can be used for storing
the data passed through during processing F-functions and the other four XMM
registers can be used as temporary registers for processing F-functions.

If we assign the data for a line of the 4-line GFN on a XMM register for 32-
block parallel implementation of Piccolo, we would need full 16 XMM registers to
store 4-bit slicing of input data. It leads to more memory access than the case of
PRESENT for storing the data temporarily. Therefore we think 16-block parallel
implementation of Piccolo using 128-bit XMM registers is optimal parallelism.
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Fig. 9. Bitsliced representation of Piccolo in 16-block parallel implementation

4.2 F-Function

The F-function consists of two S-box layers and a diffusion matrix (see Fig. 10).
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Fig. 10. F-function
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S-box Layer. The S-box layer consists of four 4-bit bijective S-boxes S rep-
resented by the logic circuit shown in Fig. 11. A software instruction sequence
of the S-box can be manually obtained from the logic circuit, which requires 15
instructions with a temporary register. We searched for a smaller instruction
sequence in the similar way to the PRESENT S-box and found the following
one with 13 instructions in six cycles, assuming that up to three independent
instructions are issued per cycle.
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// Input: r3, r2, r1, r0, tmp

// Output: r0, r1, r2, r3

1. tmp = r1; r1 |= r2; r3 = ~r3;

2. r0 ^= r2; r1 ^= r3; r3 |= r2;

3. r0 ^= r3; r3 = r1;

4. r3 |= r0;

5. r3 ^= tmp; tmp |= r0;

6. r2 ^= tmp; r3 = ~r3;

The notation is the same as the instruction sequence of the PRESENT S-box.

Diffusion Matrix. The following multiplication between the constant 4 × 4
diffusion matrix M and four 4-bit data x0, x1, x2, x3 over GF(24) defined by an
irreducible polynomial x4 + x+ 1 outputs four 4-bit data y0, y1, y2, y3.⎛⎜⎜⎝

y0
y1
y2
y3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
x0

x1

x2

x3

⎞⎟⎟⎠
Let xi = xi,0||xi,1||xi,2||xi,3 for 0 ≤ i ≤ 3. Since diffusion matrix M is cyclic,
4-bit data yi can be expressed as yi = 2 · xi ⊕ 3 · xi+1 ⊕ xi+2 ⊕ xi+3 where index
is calculated by modulo 4. Representing each bit of the products 2 · xi and 3 · xi

given in Table 1, all bits of yi = yi,0||yi,1||yi,2||yi,3 are obtained as follows.

yi,0 = xi,1 ⊕ xi+1,0 ⊕ xi+1,1 ⊕ xi+2,0 ⊕ xi+3,0

yi,1 = xi,2 ⊕ xi+1,1 ⊕ xi+1,2 ⊕ xi+2,1 ⊕ xi+3,1

yi,2 = xi,0 ⊕ xi,3 ⊕ xi+1,0 ⊕ xi+1,2 ⊕ xi+1,3 ⊕ xi+2,2 ⊕ xi+3,2

yi,3 = xi,0 ⊕ xi+1,0 ⊕ xi+1,3 ⊕ xi+2,3 ⊕ xi+3,3

As each 128-bit XMM register contains eight 16-bit data corresponding the 2-line
data, it is possible to perform two matrix calculations simultaneously, utilizing
rotation of the data on the upper and lower 64-bit data in a 128-bit XMM reg-
ister. The 16-bit left rotation rot16 on a XMM register with pshufb instruction
is defined as follows.

rot16 : [w0||w1||w2||w3||w4||w5||w6||w7] %→ [w1||w2||w3||w0||w5||w6||w7||w4]

Note that wi is a 16-bit data and 32-bit left rotation rot32 and 48-bit left rotation
rot48 can be defined in the same way.

Table 1. Multiplication 4-bit data xi by 2 and 3 over GF(24) defined by x4 + x+ 1

xi xi,0 xi,1 xi,2 xi,3

2 · xi xi,1 xi,2 xi,0 ⊕ xi,3 xi,0

3 · xi xi,0 ⊕ xi,1 xi,1 ⊕ xi,2 xi,0 ⊕ xi,2 ⊕ xi,3 xi,0 ⊕ xi,3
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We can compute the following updated four XMM registers r[i] for 0 ≤ i ≤ 3
with 25 instructions including eight pshufb, 13 pxor and four movdqa instruc-
tions, using four temporary registers.

r[0] ← r[1] ⊕ rot16(r[1]) ⊕ rot16(r[0]) ⊕ rot32(r[0] ⊕ rot16(r[0]))

r[1] ← r[2] ⊕ rot16(r[2]) ⊕ rot16(r[1]) ⊕ rot32(r[1] ⊕ rot16(r[1]))

r[2] ← r[0] ⊕ rot16(r[0])⊕r[3]⊕rot16(r[3])⊕rot16(r[2])⊕rot32(r[2]⊕rot16(r[2]))

r[3] ← r[0] ⊕ rot16(r[0]) ⊕ rot16(r[3]) ⊕ rot32(r[3] ⊕ rot16(r[3]))

Note that translating rot48 = rot32 ◦ rot16 saves the number of pshufb.

4.3 Round Permutation

The round permutation (RP ) permutes eight 8-bit data over 64-bit data as
shown in Fig. 8. A simple implementation of RP for a XMM register holding
j-th bit of 4-bit data ni permutes four 32-bit data (e.g., ni,j ,ni+1,j) in a 128-bit
register by using double-word shuffle instruction pshufd as follows.

rp0 : [w0||w1||w2||w3||w4||w5||w6||w7] %→ [w4||w5||w2||w3||w0||w1||w6||w7]

rp1 : [w0||w1||w2||w3||w4||w5||w6||w7] %→ [w0||w1||w6||w7||w4||w5||w2||w3]

Note that we perform rp0 and rp1 on four XMM regsiters holding the data for
W0&W2 and W1&W3, respectively. It requires only two pshufd instructions per
bit, or eight in total per one round. Before proceeding to the next round, we
need renaming four XMM regsiters holding the data for W0&W2 and W1&W3.

Remove Round Permutation. We describe the implementation to remove
RP changing the calculation of diffusion matrix M and the position of round
keys with no cost in the data processing. This modification can reduce 8*(the
number of rounds) instructions compared to the above implementation of RP .

Since register renaming can only switch the positions of the 2-line data, the
removing RP causes the misalignment in byte position on XMM registers to
effect input-output of diffusion matrix and subsequent xor with round keys and
data in the previous round. The byte positions from Round 1 to 5 in normal
64-bit block with/without RP before the round process are as follows.

byte position with RP byte position without RP

Round 1: [b0, b1, b2, b3, b4, b5, b6, b7] [b0, b1, b2, b3, b4, b5, b6, b7]

Round 2: [b2, b7, b4, b1, b6, b3, b0, b5] [b2, b3, b0, b1, b6, b7, b4, b5]

Round 3: [b4, b5, b6, b7, b0, b1, b2, b3] [b0, b1, b2, b3, b4, b5, b6, b7]

Round 4: [b6, b3, b0, b5, b2, b7, b4, b1] [b2, b3, b0, b1, b6, b7, b4, b5]

Round 5: [b0, b1, b2, b3, b4, b5, b6, b7] [b0, b1, b2, b3, b4, b5, b6, b7]

Note that bi is 8-bit data corresponding to a pair of 4-bit data n2∗i and n2∗i+1

for 0 ≤ i ≤ 7, and the misalignment of byte position is emphasized by bold
phase. The above shows that the misalignment disappears in four rounds.
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In Round 2, two 8-bit data b3, b0 switch positions with two 8-bit data b7, b4 for
the input data (b2, b3, b6, b7) and output data (b0, b1, b4, b5) of two F-functions.
Utilizing the shuffle operations rp1, rp0 to cancel the effect of each misalignment,
we introduce shf 0 = rp0 ◦ rp1 and replace rot16, rot32 in the original diffusion
matrix with shf 16 = rp0 ◦ rot16 ◦ rp1, shf 32 = rp0 ◦ rot32 ◦ rp0 as below.

shf 0 : [x0||x1||x2||x3||x4||x5||x6||x7] %→ [x4||x5||x6||x7||x0||x1||x2||x3]

shf 16 : [x0||x1||x2||x3||x4||x5||x6||x7] %→ [x5||x2||x7||x0||x1||x6||x3||x4]

shf 32 : [x0||x1||x2||x3||x4||x5||x6||x7] %→ [x6||x7||x4||x5||x2||x3||x0||x1]

The new representation for calculating diffusion matrix can be expressed with
25 instructions including eight pshufb, four pshufd, and 13 pxor as follows.

r[0] ← shf 0(r[1]) ⊕ shf 16(r[1]) ⊕ shf 16(r[0]) ⊕ shf 32(shf 0(r[0]) ⊕ shf 16(r[0]))

r[1] ← shf 0(r[2]) ⊕ shf 16(r[2]) ⊕ shf 16(r[1]) ⊕ shf 32(shf 0(r[1]) ⊕ shf 16(r[1]))

r[2] ← shf 0(r[0]) ⊕ shf 16(r[0]) ⊕ shf 16(r[2]) ⊕ shf 0(r[3]) ⊕ shf 16(r[3])

⊕ shf 32(shf 0(r[2]) ⊕ shf 16(r[2]))

r[3] ← shf 0(r[0]) ⊕ shf 16(r[0]) ⊕ shf 16(r[3]) ⊕ shf 32(shf 0(r[3]) ⊕ shf 16(r[3]))

We omit movdqa in the original diffusion matrix, utilizing pshufd natively sup-
porting 3-operand. In Round 3 for the input data (b0, b1, b4, b5) of two F-
functions, b0, b1 switches positions with b4, b5, but we can use the original repre-
sentation owing to the calculation of two diffusion matrices independently. Since
the misalignment of output data (b2, b3, b6, b7) is the same for the input data,
no operations are needed. Round 4 can use the same representation in Round 2.

Therefore, we alternately call the original diffusion matrix and modified one,
and adjust the data alignment for the round keys in the key schedule. With 128-
bit AVX, the modified representation of diffusion matrix in Round 2 requires four
more instructions compared to the original one, so the performance improvement
remains about three fourths of the case with legacy SSE instructions.

5 Performance

This section summarizes the instruction counts for PRESENT and Piccolo, and
shows the evaluation results of our implementations on three different computers
given in Table 2.

Table 2. Computers used for benchmarking

Processor Intel Xeon E5410 Intel Core i7 870 Intel Xeon E3-1280

Microarchitecture Core Nehalem Sandy Bridge

Clock Speed 2.33 GHz 2.93 GHz 3.5 GHz

RAM 8 GB 16 GB 16 GB

OS Linux 2.6.16.60 x86 64 Linux 3.1.10 x86 64 Linux 2.6.37.6 x86 64
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Table 3. Instruction count for PRESENT and Piccolo with Legacy SSE instructions

logical
mov shuffle unpack

mov xor per TOTAL
instr. (mem) (mem) round 80-bit 128-bit

PRESENT (8-block parallel) 40 1444

addRoundKey - - - - - 4 4 128

sBoxLayer 17 3 - - - - 20 620

pLayer - 4 4 8 - - 16 496

conversion 154 28 12 8 8 - - 200

PRESENT (16-block parallel) 80 2720

addRoundKey - - - - - 8 8 256

sBoxLayer 34 6 - - - - 40 1240

pLayer - 8 8 16 - - 32 992

conversion 154 32 24 16 16 - - 232

PRESENT (32-block parallel) 126* 4446

addRoundKey - - - - - 16 16 512

sBoxLayer 68 12 - - 4 - 84 2604

pLayer - 0/16 - 0/32 0/4 - 0/52 780

conversion 288 78 82 64 38 - - 550

Piccolo (16-block parallel) 63 1815 2193

diffusion matrix 13 4/0 8/12 - - - 25 625 775

S-box 22 4 - - - - 26 650 806

addRoundKey 4 4 - - - 4 12 300 372

addWhiteningKey - - - - - 8 - 8

conversion 154 32 24 16 16 - - 232

Table 3 presents the total number of instructions for PRESENT and Pic-
colo with the legacy SSE instruction set. The notations “logical instr.” and
“(mem)” in the table mean logical instructions including shift operation and
instructions with memory, respectively. For the 32-block parallel implementa-
tion of PRESENT, “*” means the number of instructions per round on average.
The “diffusion matrix” in Piccolo shows both the number of instructions for
calculating the original diffusion matrix (left) and that for modified one (right).
The “conversion” includes not just conversion process that converts input data
to the bitsliced representation and reverses it to output data, but also loading
input data and storing output data. Our conversion algorithm utilizes a part
of the assembly code published by Käsper and Schwabe [12], which includes 84
instructions to convert eight 128-bit blocks on eight XMM registers to the bit-
sliced representation of 8-bit slicing on eight XMM registers with one temporary
XMM register. We added a few shuffle and unpack instructions in this code to
obtain desired bitsliced format.

We optimized our implementation with 128-bit AVX instructions. Owing to
3-operand syntax, the number of mov instructions in the table is zero except
for register-to-memory operations. Furthermore we can use smaller instruction
sequence of PRESENT S-box with 14 instructions in 8- and 16-block parallelism.
The numbers of instructions for 8-, 16-, and 32-block parallel implementation
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Table 4. Performance of PRESENT and Piccolo with 80-bit and 128-bit keys

Algorithm PRESENT-80/128 Piccolo-80 Piccolo-128

Number of parallel blocks 8 16 32 16

Xeon E3-1280 (Sandy Bridge)

Cycles/byte 8.46 6.52 4.73 4.57 5.52

Instructions/cycle 2.04 2.48 3.10 2.61 2.61

Core i7 870 (Nehalem)

Cycles/byte 10.88 7.26 5.79 5.69 6.80

Instructions/cycle 2.07 2.93 3.00 2.49 2.52

Xeon E5410 (Core)

Cycles/byte 13.55 10.98 7.55 6.85 8.23

Instructions/cycle 1.67 1.93 2.30 2.07 2.08

of PRESENT with 128-bit AVX are 1106, 2068, and 3752, respectively. The
numbers of instructions for 16-block parallel implementation of Piccolo with
128-bit AVX are 1531 and 1849 for 80- and 128-bit keys, respectively.

Table 4 gives evaluation results. We measured the average cycles of encryp-
tions for 1024KB random data and did not include the cost of the key sched-
ule, which was regarded as negligible cost in our evaluation. Since the num-
ber of rounds of PRESENT is 31 for both 80- and 128-bit keys, the results of
PRESENT-80 and -128 are exactly the same. The result on Xeon E5410 shows
the performance of optimized code with 128-bit AVX.

For comparison, only a few software implementation results of ultra-
lightweight block ciphers on general-purpose processors have been reported. A
table-based implementation of LED [8] with 64- and 128-bit keys needs 57 and
86 cycles on Core i7 Q720 (1.60 GHz). Suzaki et al. [21] showed that TWINE
encryption achieved 11.0 cycles/byte on Core i7 2600S (2.8 GHz, Sandy Bridge),
so our implementations of PRESENT and Piccolo deliver superior performance
compared with previous results and indicate an attractive option for software
implementation for lightweight block ciphers on general-purpose processors.

As far as we know, besides hardware efficiency, Piccolo-80 achieves the fastest
software implementation among existing 64-bit block ciphers in our implementa-
tion. Moreover, since Piccolo adopts a permutation based key schedule, which is
lighter than the S-box based key schedule of PRESENT, Piccolo may have some
advantage even for short message encryption. On the other hand, there are some
stream ciphers with small hardware and fast software performance. For example,
the public eBASC benchmarks report that TRIVIUM achieves 3.69 cycles/byte
and SNOW 2.0 achieves 4.03 cycles/byte on a Nehalem CPU (dragon).

For further optimization, 256-bit AVX accelerates the performance of our bit-
slice implementation with low parallelism using AVX2 instruction set introduced
in Haswell microarchitecture which will be released in 2013. An optimization for
instruction sequences of S-box assuming both 3-operand instructions and issuing
three independent instructions remains the matter of research.
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6 Conclusion

This paper showed the great potential of lightweight cryptography in fast and
timing-attack resistant software implementations in cloud computing by ex-
ploiting bitslice implementation. This was demonstrated by bitslice implemen-
tations of the PRESENT and Piccolo lightweight block ciphers. In particular,
PRESENT-80/128 achieved 5.79 cycles/byte and Piccolo-80 achieved 5.69 cy-
cles/byte on an Intel Core i7 processor, which is faster than the AES speed record
in bitslice implementation on the same microarchitecture. We demonstrated bit-
slice implementation of only two lightweight block ciphers, but other lightweight
block ciphers as well as other lightweight cryptographic primitives such as hash
functions are worth implementing. We hope that lightweight cryptography will
be used not only for constrained devices, but also for cloud computing.

Acknowledgments. The authors appreciate Kazuya Kamio and Kyoji Shibu-
tani for useful comments and suggestions.
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Abstract. The processing time required by a cryptographic primitive
implemented in hardware is an important metric for its performance but
it has not received much attention in recent publications on lightweight
cryptography. Nevertheless, there are important applications for cost ef-
fective low-latency encryption. As the first step in the field, this paper
explores the low-latency behavior of hardware implementations of a set
of block ciphers. The latency of the implementations is investigated as
well as the trade-offs with other metrics such as circuit area, time-area
product, power, and energy consumption. The obtained results are re-
lated back to the properties of the underlying cipher algorithm and, as
it turns out, the number of rounds, their complexity, and the similarity
of encryption and decryption procedures have a strong impact on the
results. We provide a qualitative description and conclude with a set of
recommendations for aspiring low-latency block cipher designers.

1 Introduction

As cryptography is becoming ever more pervasive in modern technology, new ap-
plications regularly emerge. Some of these new applications also introduce new
requirements on the implementation such as ultra fast response times. Appli-
cations such as Car2X communication (e.g. automotive road tolling, intelligent
transport systems), high speed networking (optical links), and secure storage
devices (e.g. memories, solid-state disks, super-speed USB 3.0), just to name a
few, all require an instant response. Besides these there are also applications
that require moderately high throughput but have limited maximum clock fre-
quencies, e.g. FPGA, or strict area requirements that preclude the use of highly
pipelined architectures.

Cryptographic primitive design is a balancing act between several aspects
such as cryptographic strength, implementation cost, execution speed, power
consumption, etc. Which trade-offs are the right ones to make is determined by
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Fig. 1. Typical trade-offs in cryptography

the application. In the past, different applications have led to different corners
of the design space to be explored. The most important of these are depicted in
Fig. 1.

Government applications have typically favored cryptographic strength over
aspects such as cost and speed, although these aspects usually do play an impor-
tant role in selection processes like the former AES competition [1] and currently
the SHA-3 competition [31]. The use of these algorithms in applications such as
mainframe systems has resulted in the development of high throughput imple-
mentations, both in hardware and software.

More recently the advent of RFID and other wireless technologies sparked an
interest in a new field: low-power and low-cost cryptography. The first primitives
to be explored were stream ciphers, for example in the eSTREAM project [15],
followed by a whole range of block ciphers such as tea [37], noekeon [13],
mini-aes [12], mcrypton [29], sea [36], hight [23], desxl [27], clefia [35],
present [9], mibs [24], katan/ktantan [10], printcipher [26], klein [18],
led [20], piccolo [34], and others. The field has recently been expanded by the
introduction of several new low-cost hash functions such as dm-present [20],
keccak-f[400]/-f[200] [7, 25], quark [6], photon [19], and spongent [8].

We have identified a new range of applications; those that require very fast
response times and for which there is no established research field yet. Note
that although most of the high-speed implementations available in literature do
achieve tremendous throughput, their response time is generally not that fast.
This is due to their extensive use of pipelining which enables them to process
multiple messages at the same time, but in order to encrypt a single message
block, this type of implementation still needs multiple clock cycles, i.e. typically
more than 20. An example of this is a recent work from Mathew et al. [30],
presenting a reconfigurable AES encrypt/decrypt hardware accelerator targeted
for content-protection in high-performance microprocessors which, manufactured
in 45 nm CMOS technology, achieves 53 Gb/s throughput. Another example
comes from Hodjat and Verbauwhede [22] where area-throughput trade-offs of a
fully pipelined AES implementation are described and a throughput of 30 Gb/s
to 70 Gb/s is achieved.

In other words, a high throughput is usually achieved by common signal pro-
cessing techniques such as pipelining and parallel processing, while achieving
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a low latency, on the other hand, still remains a challenge. As a consequence
one could ask the following questions: What is the minimum achievable latency
for a given security level? Do designs that inherently have lower latency also
achieve higher throughput when implemented in a pipelined fashion? And does
“lightweight” necessarily mean “light + wait?” These are all interesting ques-
tions and as it seems there are a lot of compelling reasons to take a closer look
at the latency behavior of cryptographic primitives.

Our Contribution. We introduce the new field of low-latency encryption; high-
light the differences with lightweight and classical cryptography, and by bringing
several important applications to light we try to motivate further research in this
field.

We identify several well-known lightweight block ciphers as possible candi-
dates to yield low-latency implementations. By examining this set of ciphers in
the context of low-latency encryption, our work provides the first results in the
field. We therefore develop a framework that examines the low-latency behavior
of cryptographic primitives on the following aspects:

• Minimal achievable latency.
• Its impact on the circuit size.
• Its impact on the power and energy consumption.

We link the collected data to the cipher design decisions and show that results are
strongly influenced by their properties. More specifically, the number of rounds,
the round’s complexity (e.g. the S-box size, MDS (Maximum Distance Separable)
matrices defined over different fields versus binary matrix), and the similarity
of encryption and decryption procedures have a significant influence on the al-
gorithm’s performance. Our work concludes with a set of recommendations for
aspiring low-latency block cipher designers.

Organization of the Paper. The remainder of this paper is organized as fol-
lows. In Section 2, we provide a short description of the block ciphers we have
chosen to investigate. Our contributions – the implementation results, compar-
isons, and discussion – are presented in Sections 3 and 4. We first investigate
the minimum achievable latency in Section 3.1 and then evaluate the impact
optimization for low latency has on area in Section 3.2. Our study continues by
combining the two previously described metrics in section Section 3.3 where the
results for the time-area product are presented and in Section 3.4, we have a
closer look at the impact low-latency implementations have on the power and
energy consumption. We elaborate more on our results and conclude in Section 4.

2 Preliminaries

There are many algorithms to choose from for a comparative study of low-
latency behavior, but in order to draw meaningful conclusions about hardware
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performance a set of candidate algorithms should be chosen with similar proper-
ties. We therefore focus on algorithms that are expected to result in low-latency
implementations. Since hardware implementations of hash functions generally
require more area to implement [16] and stream ciphers usually need a large
number of initialization rounds [11, 21] we chose to focus on block ciphers only.
Furthermore, it is expected that lightweight block ciphers yield good results in
terms of implementation cost, even in a fully-unrolled implementation. Besides
latency as our primary goal, we consider silicon area as a very important factor
in practical implementations of encryption algorithms and, therefore, we restrict
our candidates to lightweight block ciphers but include aes as the reference ci-
pher. In order to reduce the number of candidates to a manageable number, we
further restrict the set to ciphers with the well-studied SPN structure.

This results in the following list of seven lightweight SPN block ciphers:
aes [14,32], klein [18], led [20], mcrypton [29], mini-aes [12], noekeon [13],
present [9]. We provide a brief description of each cipher and refer for more
details to their original descriptions in the literature.

AES [14,32], designed by Daemen and Rijmen in 1997, has become not only
a NIST standard but also the most used block cipher nowadays. The cipher
has not been considered lightweight until the work of Feldhofer et al. [17] who
provided the smallest implementation at the time, requiring only 3400 GE.1 aes

is an iterated block cipher with a block-size of 128 bits and three possible key
lengths of 128, 192, and 256 bits. In this work, we consider only the 128-bit key
version which consists of 10 rounds. The word size is 8 bits, i.e. the data elements
are considered as elements of the field GF(28). Each round of aes consists of
the following operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey.
The operation SubBytes (S-layer) is defined as the simultaneous application of
the S-Box (inversion in GF(28)) to each element of the state. The permutation
layer (P-layer) consists of ShiftRows andMixColumns operations. The ShiftRows
operation is defined as the simultaneous left rotation of the row i of the state by
i positions. The MixColumns operation pre-multiplies each column of the state
by an MDS matrix defined over GF(28). The KeySchedule derives the round
key from the secret key, by applying once the S-Box and some simple linear
operations. Finally, AddRoundKey XORs the round key to the current state.

NOEKEON [13] is a 128-bit block cipher with a 128-bit key, proposed by
Daemen, Peeters, Van Assche, and Rijmen in 2000. noekeon is a self-inverse,
bit-sliced cipher and can be considered as the predecessor of modern lightweight
block ciphers. It has 16 rounds and each of them consists of the following op-
erations: Theta, Pi1, Gamma, and Pi2. The operation Gamma is an involutive
non-linear mapping (S-layer), in which S-boxes operate independently on 32 4-
bit tuples. Pi1 and Pi2 perform simple cyclic shifts. Theta is a linear mapping
that first XORs the working key to the state and then performs a simple linear
transformation of the state. Therefore, Theta acts partially as AddRoundKey

1 The current smallest implementation of AES comes from Poschmann et al. [33] and
consumes only 2400 GE, which is comparable to the size of some of the first proposed
lightweight block ciphers.
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and, together with Pi1 and Pi2, forms the P-layer of the cipher. The KeySched-
ule is very simple – a so-called working key is derived from the secret key and
then XORed to the state at each round. For the encryption procedure, the work-
ing key is simply equal to the secret key. Note that the self-inverse property of
the cipher has big advantages when both encryption and decryption need to be
implemented on the same circuit.

MINI-AES [12], or a small scale variant of aes, has been described by Cid,
Murphy, and Robshaw in 2005 in order to provide a suitable framework for
comparing different cryptanalytic methods. In this paper, we consider a 10-
round mini-aes with a block-size of 64 bits, a key length of 64 bits, and a word
size of 4 bits. The main difference between aes and the version of mini-aes we
chose to examine is that the S-box and the MDS matrix are defined over the
field GF(24). Therefore, the selected instance of mini-aes can be considered as
a lightweight version of the aes cipher.

MCRYPTON [29] is a 64-bit block cipher supporting three different key
length (64, 96, and 128 bits), designed by Lim and Korkishko in 2006 and is one of
the first lightweight SPN block ciphers. Each round of mcrypton consists of the
following operations: NonLinear Substitution γ, Column-wise bit Permutation π,
Column-to-row Transposition τ , and Key Addition σ. The operation γ (S-layer)
consists of 16 nibble-wise substitutions using four 4-bit S-boxes (S0, S1, S2, S3,
all affine equivalents to the inversion in GF(24) and such that S2 = S−1

0 and
S3 = S−1

1 ). The P-layer consists of π and τ operations. The π operation is an
involutional bit-wise matrix multiplication. The τ operation simply transposes
the state and is thus an involution. The KeySchedule is simple and consists of two
stages: a round key generation through a nonlinear S-box transformation and a
key variable update through a simple rotation. Finally, the σ operation XORs
the round key to the state. Independent of the key length, mcrypton always
uses 12 rounds with a slightly different KeySchedule. Note that decryption and
encryption can share most of the round operations and that the KeySchedule
allows a direct derivation of the last round key.

PRESENT [9], designed by Bogdanov et al., was proposed in 2007 and es-
tablished itself as one of the most prominent lightweight block ciphers. It has
recently been adopted as a standard in ISO/IEC 29192-2. The 31-round cipher
has a block-size of 64 bits and comes with an 80-bit or 128-bit key. Each round
of present consists of the following operations: sBoxLayer, pLayer and Ad-
dRoundKey. The sBoxLayer is defined as the simultaneous application of a very
light 4-bit S-Box to each nibble of the state. The pLayer is a simple bitwise
permutation. The KeySchedule rotates the key variable, XORs a constant and
applies the S-box to the key variable. AddRoundKey XORs the 64 most signifi-
cant bits of the key variable to the state. Note that the pLayer provides a rather
slow diffusion of the cipher, which results in the considerably high number of
rounds.

KLEIN [18] is a rather young lightweight cipher proposed by Gong, Nikova,
and Law in 2010. It is a block cipher with a fixed 64-bit block-size and a vari-
able key length of 64, 80 or 96 bits. Each round of the cipher consists of the
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following operations: SubNibbles, RotateNibbles, MixNibbles, and AddRoundKey.
The operation SubNibbles (S-layer) is defined as the simultaneous application
of an involutive 4-bit S-Box to each element of the state. The P-layer consists
of RotateNibbles and MixNibbles operations. The RotateNibbles operation ro-
tates the state two bytes to the left. The MixNibbles coincides with the aes

MixColumns operation, i.e. pre-multiplies each column of the state by an MDS
matrix defined over GF(28). The KeySchedule derives the round key from the se-
cret key, by applying two S-Boxes and some simple linear operations. Finally, the
AddRoundKey XORs the round key to the state. klein-64/80/96 uses 12/16/20
rounds respectively.

LED [20], designed by Guo, Peyrin, Poschmann, and Robshaw in 2011, is
one of the most recent lightweight ciphers. It is a nibble-based 64-bit block
cipher with two variants taking 64-bit and 128-bit keys. Each round of led

consists of the following operations: AddConstants, SubCells, ShiftRows, and
MixColumnsSerial. Once every 4 rounds the AddRoundKey operation is applied.
The SubCells (S-layer) reuses the present S-box and applies it to each 4-bit
element of the state.MixColumnsSerial uses an MDS matrix defined over GF(24)
for linear diffusion that is suitable for compact serial implementation since it
can be represented as a power of a very simple binary matrix. AddConstants
XORs a constant to the state at each round. ShiftRows operates by rotating
row i of the array state by i cell positions to the left. AddConstants, ShiftRows,
and MixColumnsSerial form the P-layer of the cipher. The 64-bit key variant
consists of 32 rounds while the 128-bit key variant consists of 48 rounds. The
cipher has no KeySchedule, meaning the same key is XORed to the state using
AddRoundKey, once every 4 rounds.

The resulting set of block ciphers represents a wide spectrum of building
blocks for the S-layer, P-layer, and the key schedule. In summary, aes is (the
only) byte-oriented block cipher (i.e. byte-based S- and P-layers) with an MDS
P-layer; noekeon has a nibble-based S-layer, a bit-based P-layer and it is a self-
inverse bit-sliced cipher; mini-aes is a nibble-oriented cipher (i.e. nibble-based
S- and P-layers) with an MDS P-layer; mcrypton has a nibble-based S-layer,
a bit-wise matrix for the P-layer with a specific key schedule; present has a
nibble-based S-layer and a very simple bit permutation for the P-layer; klein
has a nibble-based S-layer and a byte-based MDS P-layer (equivalent to aes);
finally, led is a nibble-oriented block cipher (i.e. nibble-based S- and P-layers)
with an MDS P-layer and no key schedule.

Note that klein and aes share the sameMDS matrix; led and present share
the same S-layer; mini-aes and led have different nibble oriented MDS matrices;
and the S-layer of mini-aes and mcrypton are close (affine equivalents) to
each other. Therefore, we have a variety of building blocks: bit-, nibble- and
byte-oriented blocks; different complexity of S-boxes; either simple matrices, the
MDS ones, or just a simple permutation as the P-layer. All this allows us to
investigate how different elements influence the overall performance when low-
latency encryption is the ultimate goal.
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3 Hardware Evaluation

In this section, we provide an extensive hardware evaluation of the seven block
ciphers which we identified in the previous section. Besides the cryptographic
properties of a cipher, the chosen architecture has a significant influence on the
overall performance. As our goal is to evaluate designs with the lowest achiev-
able latency, we mainly focus on 1-cycle and 2-cycle based architectures. More
specifically, a 1-cycle based architecture represents a fully-unrolled architecture
which requires a single clock cycle for its execution. Similarly, a 2-cycle based
architecture needs two clock cycles in order to execute its computation. Since
the term low-latency implies a low number of clock cycles for the algorithm ex-
ecution (recall the systems with a limited clock frequency), we do not evaluate
architectures that require three or more clock cycles.

We then distinguish between encryption (ENC) only and encryp-
tion/decryption (ENC/DEC) architectures. Moreover, as will become apparent
later, some of the implemented ciphers benefit from the inherent similarities
between encryption and decryption datapaths. In these cases, we also provide
figures for a more compact but still slightly slower implementation that shares
the datapath. Figure 2 depicts all the evaluated architectures, however for read-
ability we only report results for (ENC/DEC) architectures. The results for the
architectures supporting encryption only are provided in Appendix B.

The presented results are obtained in 90 nm CMOS technology, synthesized
with the Cadence RTL compiler version 10.10-p104. In order to have a better
overview on the hardware performance, we always provide figures for both time-
constrained and unconstrained designs. By time-constrained, we mean a design
that achieves the minimum possible critical path at the expense of a large area
overhead. An unconstrained design consumes the minimum possible area with
the drawback of being a slower circuit. In both cases, this only refers to the
synthesis tool constraints and not to the actual RTL code, which in fact remains
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Fig. 2. Six evaluated architectures: (a) 1-cycle based, ENC-only. (b) 2-cycle based,
ENC-only. (c) 1-cycle based, ENC/DEC. (d) 2-cycle based, ENC/DEC. (e) 1-cycle
based, ENC/DEC, shared datapath. (f) 2-cycle based, ENC/DEC, shared datapath.
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Fig. 3. Number of rounds of the tested ciphers

the same. The code of all designs is written in Verilog and tested against the
available test vectors. The data showing the implementation results is provided
in Table 1, Appendix A.

Although we rank the ciphers according to their hardware performance, we
do not attempt to define the most efficient one with respect to all evaluated
criteria. We believe that depending on the application requirements, the selection
of the most efficient design could be based on any of the following criteria: area,
latency, time-area product, power, or energy. Moreover, if more than one criterion
influences the final decision, we believe that it is rather trivial to combine the
presented data and obtain a unique benchmark. As the evaluated ciphers provide
different security levels, there is no easy way to fairly compare them against each
other. While it is rather obvious that a cipher with a block-size of 64 bits will
perform better in terms of area than one with 128 bits, the influence of the key
length remains rather vague. With this evaluation, we bring to light the influence
of similar and other design decisions on the final hardware performance.

Recall that all the evaluated ciphers have a block-size of 64 bits, except aes
and noekeon which have a 128-bit block-size. Some ciphers support different
key lengths and therefore we evaluate 128-bit key aes; 64-bit, 80-bit, and 96-bit
key klein; 64-bit and 128-bit led; 64-bit, 96-bit, and 128-bit key mcrypton;
64-bit key mini-aes; 128-bit key noekeon; and 80-bit and 128-bit key present.
Finally, as most of the obtained results will be highly correlated with the number
of cipher rounds, we provide Fig. 3, which visualizes this metric.

3.1 Latency

We define latency as a measure of time needed for a certain design to complete a
defined (computational) task. In our context, the computational task is defined
as an encryption of a single message block and the latency is calculated as:

Latency = N · tcp ,

where N is the number of clock cycles needed for the encryption of a single
message block and tcp is the critical path of the circuit. In order to highlight the
difference between latency and throughput, we outline that the latency truly de-
pends on the inherent properties of a cryptographic algorithm, while the through-
put does not – it can be simply increased using the common signal processing
techniques such as pipelining and parallel computations.
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Figure 4 shows the minimum achievable latency for the ENC/DEC module
of all the evaluated ciphers. noekeons-128 denotes a noekeon implementation
with a shared datapath for encryption and decryption, and it is clearly marked
in gray to set it apart from the other designs. The figure further reveals that, in
general, there is only a slight advantage of 1-cycle based architectures over 2-cycle
based ones, but minimal latency is obtained with a 1-cycle based architecture
as expected. The designs that show the highest performance are certainly mini-

aes and mcrypton (all key lengths). Being around 30 % slower, klein-64 is
the third best candidate. The lowest performance comes from led-128, which is
more than 5 times slower than mini-aes. aes, for example, achieves 70 % slower
critical path than mini-aes.

What is interesting to observe is that the latency of certain designs, i.e. klein
and led, depends on the key length, while for others, i.e. mcrypton and pre-

sent, this is not the case. This links directly to the number of rounds, which in
case of klein and led increases for larger key lengths, while it remains constant
for mcrypton and present (recall Fig. 3).

In Appendix B, we provide the results for ENC-only architectures (see Fig. 12)
The results show that the performance of certain designs, e.g. klein-64 and mini-

aes, certainly degrades when the decryption path is embedded into the design.
In order to explain this in more detail, we provide Fig. 5 where we depict the
average latency per round of each cipher for both ENC-only and ENC/DEC
architectures. It is easy to see that the decryption datapath of aes, klein,
and mini-aes is considerably slower than that of the encryption. To a lesser
extent this also holds for led, mcrypton, and present. noekeon is the only
cipher that does not suffer from this property. We also observe a clear correlation
between the average latency per round and the complexity of the round.

An unconstrained design of present, on the other hand, shows a somewhat un-
expected result. Its unconstrainedENC-only architecture (seeFig. 12,AppendixB)
seems to be slower than its ENC/DEC architecture. This result is explained by the
fact that, when unconstrained, the synthesis tool optimizes designs for area while
the timing is less important. When time-constrained, however, the synthesis tool
makes a significant effort to optimize for timing and therefore the ENC/DEC ar-
chitecture of present becomes slower than its ENC-only architecture.

Fig. 4. Minimum latency [ns] for ENC/DEC module: (a) Time-constrained. (b) Un-
constrained.
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Fig. 5. Average latency [ns] per round: (a) Time-constrained. (b) Unconstrained.

Fig. 6. Minimum area [kGE] for ENC/DEC module: (a) Time-constrained. (b) Un-
constrained.

Finally, we note that the ratio between the latency of the unconstrained and
time-constrained designs ranges from 2.63 for aes (ENC/DEC) to only 1.30 for
noekeon (ENC-only, Fig. 12, Appendix B), which illustrates the elasticity of
the design’s latency.

3.2 Area

Similar to the previous subsection, we first provide results for the circuit size of
all the evaluated cipher variants. Secondly, we elaborate on the area per round
distribution, where we observe several interesting results. Note that the area is
expressed in gate equivalence (GE) units, representing the relative size of the
circuit compared to a simple 2-input NAND gate.

Figure 6 illustrates the area for ENC/DEC architectures. In contrast to the
latency figures, the advantage for 2-cycle based architectures is clear: 2-cycle
based architectures consume approximately half of the area of the 1-cycle based
architectures. We also observe a significant correlation between the number of
cipher rounds and the circuit size. mini-aes and mcrypton again show the
best result, followed by the approximately 25 % larger klein-64 implementation.
present comes as the next one with about 60 % overhead. Not surprisingly, the
largest circuit size is shown by aes, which is more than 9 times larger than
mini-aes. From the lightweight ciphers, led-128 consumes the biggest area and
it is more than 4 times larger than mini-aes.

An interesting property can be observed in noekeon where due to their in-
herent similarity the datapaths for encryption and decryption can be shared.
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Fig. 7. Average area [GE] per round: (a) Time-constrained. (b) Unconstrained.

Denoted with noekeons-128 (grayed) in Fig. 6 it can be seen that an imple-
mentation with shared datapath results in significant area savings (about 50 %),
while not influencing the latency as much, i.e. only about 5 % increase (recall
Fig. 4). A similar observation, still to a lesser degree, is true for mcrypton.
When implemented with a shared datapath (not depicted) this results in about
30 % area savings with about 20 % timing overhead compared to the results
depicted in Fig. 4. Although encryption and decryption look quite similar for
mcrypton, two layers of multiplexors per round are needed in the shared dat-
apath in order to choose the correct S-boxes. This extra logic multiplied by the
unrolling factor results in quite a significant latency and area overhead for the
total design.

Figure 7, which illustrates the average area per round for each cipher (ex-
cept aes, since its round size goes well beyond the other values – 23 kGE for
unconstrained and 37 kGE for time-constrained), shows that present has the
smallest round amongst all ciphers, which is not surprising, as its round consists
of an S-layer and a very light P-layer (wiring only). The P-layers of other ciphers
involve more complex operations such as multiplication with an MDS matrix for
mini-aes, for example, or variations thereof for other ciphers. Note also that the
average area per round of noekeon is relatively large. This is due to its block
size of 128 bits; twice that of the other ciphers. This only confirms our initial
assumption that both the number of cipher rounds and their complexity have a
significant influence on hardware performance.

There are a number of observations about the area per round distribution
that we illustrate here using klein-80 as an example (see Fig. 8); although the
same observation holds to a higher or lesser extent for most of the evaluated
ciphers. The first is that due to the higher complexity of decryption, the critical
path passes through the decryption datapath, which therefore becomes consid-
erably larger than the encryption datapath when time-constrained. noekeon is
the only cipher exempt from this effect, while the effect is barely noticeable in
the case of led. When constraints are relaxed, this effect naturally fades away,
although remaining slightly noticeable even in unconstrained implementations.

Another observation that can be made for both time-constrained and uncon-
strained implementations, and holds over all the evaluated ciphers, is the consid-
erably smaller area taken by the last few rounds of an unrolled design. For example
in the time-constrained implementation of klein-80, the last round is more than
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Fig. 8. Area distribution [GE] per round of klein-80: (a) Time-constrained. (b) Un-
constrained.

25 % smaller in size than the largest (in this case the second) round. For all other
ciphers this difference always remains above 20 %. This phenomenon is explained
by the fact that the logic gates used in the last rounds require considerably lower
driving strength since they drive less logic than the middle rounds and can there-
fore be smaller. We further address this observation in Section 4.

The third observation that could be drawn from Fig. 8 is a noticeable swing
in area in the first 13 rounds of the time-constrained klein-80 implementation
(similar observation holds for all other ciphers as well). This is however an effect
introduced by the synthesis tool and is caused by insertion of a significant number
of buffer cells in order to strengthen (and thus speed up) the signal propagation
throughout the combinational network of the circuit which happens periodically,
several rounds after each other.

The ratio between the size of time-constrained and unconstrained designs
spans the range from 1.66 for klein-80 to 2.22 for noekeons. This ratio defines
the elasticity of the design’s area and is an indication of the overhead in area
needed to achieve the smallest possible critical path of the design.

3.3 Time-Area Product

Although it is a simple combination of the two previously described metrics, we
still provide graphs for the time-area product as this is an often used criterion
for selecting the final implementation. Figure 9 illustrates the time-area product
for the ENC/DEC architecture.

Again, the highest performance with respect to this criterion is shown by
mini-aes and all the versions of mcrypton. With more than 60 % overhead,
klein-64 takes the third place, while the lowest performance is again shown by
led-128. For all the tested ciphers it holds that the 2-cycle based architecture
provides between 40 % and 45 % more efficiency with respect to this metric.

When moving from unconstrained to time-constrained designs the highest gain
is shown by AES with 40 % decrease of the time-area product, while noekeons
achieves even a negative gain with 8 % increase of the time-area product. In gen-
eral this ratio (time-area of unconstrained versus time-area of time-constrained
designs) ranges between 0.85 and 1.00 which reflects in a rather small overall
improvement.



438 M. Knežević, V. Nikov, and P. Rombouts

Fig. 9. Minimum time-area product [ms·GE] for ENC/DEC module: (a) Time-
constrained. (b) Unconstrained.

3.4 Power and Energy

The results for the average power consumption are obtained by taking into ac-
count the switching activity of the circuit and are based on synthesis results.
While accurate power measurement is only possible once the circuit is manufac-
tured, we believe that our estimates are still reliable when it comes to comparing
the power consumption between different designs. We note here that the term
average is relative, since we consider designs with very low latency. Therefore,
when considering a fully unrolled design (1-cycle), the average power is mea-
sured, and hence averaged, over a single clock cycle which in fact reflects the
instantaneous power consumption. For the 2-cycle based designs, the power is
averaged over two clock cycles. In order to eliminate the data dependency, we
average the power consumption over 100 random vector inputs for each mea-
surement.

Since the power consumption is linearly related to the operating frequency,
this metric directly influences the value of the measured power. Our strategy of
setting the operating frequency is simple in this case – we set the frequency as the
reciprocal of the critical path. Therefore, the power consumption of each design
is measured during its shortest possible execution time. The energy consumption
is normalized over the number of processed bits, i.e. the message block-size, and
calculated as:

E =
P · Latency

B
=

P · N · tcp
B

,

where P is the average power, N is the number of clock cycles needed for the
encryption of a single message block, tcp is the critical path of the circuit, and
B is the message block-size.

Figures 10 – 11 illustrate the power and energy consumption, respectively.
The most power and energy efficient designs are again mini-aes, mcrypton,
and klein-64, while led consumes the most. Surprisingly, a large design such
as aes consumes much less energy than most of the lightweight ciphers. This in
fact relates to the number of rounds, which in case of aes is only 10, as well as
to its block size of 128 bits (energy is normalized over the block size).
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Fig. 10. Power consumption [μW] for ENC/DEC module: (a) Time-constrained. (b)
Unconstrained.

Fig. 11. Energy consumption [fJ/bit] for ENC/DEC module: (a) Time-onstrained. (b)
Unconstrained.

4 Discussion and Conclusions

The ciphers we have evaluated within our framework are mainly designed for
lightweight applications. They were not designed to satisfy the low-latency re-
quirement imposed by new applications. Therefore, some of the ciphers which
provide very good lightweight properties, e.g. led and present, demonstrate
quite a low hardware performance when it comes to the low-latency behavior.
Still, we believe that by looking at the solutions offered by lightweight cryptog-
raphy and understanding how their inherent properties influence the low-latency
behavior one makes the very first step towards building an efficient low-latency
cryptographic primitive. We summarize our results and give some guidelines for
designing low-latency algorithms. In this context, we mainly address hardware
properties of the algorithms.

S-Box. aes is the only cipher with an 8-bit S-box which is significantly larger
than the 4-bit S-boxes used by the other ciphers. In theory, a cryptographically
strong 8-bit S-box is on average 32 times larger than a cryptographically strong
4-bit S-box. In practice, due to the characteristics of standard cell libraries, this
ratio is smaller but remains around 20. This fact strongly encourages the use of
cryptographically strong 4-bit (or even 3-bit) S-boxes where possible. We stress
here that even among the 4-bit (or 3-bit) S-boxes there are significant differences
in circuit size [28].

Number of Rounds. Although both led and present use 4-bit S-boxes, thus
having a relatively lightweight round, the number of rounds they consist of is
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considerably large (see Fig. 3). When a design is (partially) unrolled, the number
of rounds becomes a significant factor in the algorithm’s performance. While
this is obvious in the context of the circuit’s latency, once we target low-latency
design, also the area overhead becomes significant. This implies a higher power
and energy consumption as well. We therefore suggest to minimize the number
of rounds of the cryptographic algorithm.

Round Complexity. An interesting conclusion comes from comparing for ex-
ample the mini-aes and present algorithms. While the present round is very
lightweight (it consist of the S-layer and the P-layer, which is in fact only wiring
in hardware), the algorithm still needs a relatively large number of rounds in or-
der to achieve good cryptographic properties. mini-aes, on the other hand, has
only 10 rounds and achieves good cryptographic properties by having a heavier
P-layer, i.e. an MDS matrix, which efficiently increases the number of active S-
boxes at low-cost. To illustrate, the P-layer of mini-aes is about 30 % larger than
its S-layer and therefore 10 rounds of mini-aes versus 31 rounds of present seem
to be a very good design choice. We, therefore, suggest to reduce the number of
rounds at the cost of (slightly) heavier round. Finding a lightweight P-layer with
good cryptographic properties is of a high importance here. Similar to mini-aes,
mcrypton demonstrates a very good selection for the P-layer (a bitwise matrix
multiplication) while klein’s P-layer (a byte oriented MDS) seems to be rather
heavy.

Key Schedule. When comparing klein and led on one side with mcrypton

and present on the other, we observe that the number of rounds of klein

and led increases with the key length, which is certainly an undesired property.
This is not the case with mcrypton and present where the number of rounds
remains constant even if the key length changes. Additionally, led and noekeon

ciphers come without key schedule, i.e. the same round key is used in all rounds.
Although the key schedule is not within the critical path, this feature reduces the
complexity of the circuit and it is, therefore, beneficial for the implementation
cost of low-latency designs.

Heterogenous Constructions. As we already observed in Fig. 8, the last few
rounds of the unrolled implementations are smaller in area than the middle
ones. This leads to an interesting conclusion: we suggest to design cryptographic
primitives with heterogenous rounds. Namely, designing the algorithm such that
the last few rounds are more complex, and thus larger in area, would reduce the
number of rounds and reduce the complexity of the whole design. This would,
obviously, have consequences for lightweight (round-based) implementation of
the algorithm, but here we only consider the low-latency requirements. To further
illustrate this observation, we provide Fig. 17 in Appendix C, where the area
per round distribution is given for the present-80 block cipher assuming several
different timing constraints.

Encryption and Decryption Procedures. Although Fig. 8 shows only the
results for klein, it illustrates a trend common to all ciphers (except noe-

keon). The figure clearly shows that there is a noticeable imbalance between the
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encryption and decryption datapaths for most of the tested ciphers. The expla-
nation of this phenomenon is rather simple. Most of the ciphers are designed
with the efficiency of the encryption procedure in mind. Therefore, the S-box
and the P-layer are often chosen such that their complexity is smaller than that
of their inverses. This fact indeed favors the approach of noekeon, where the
same hardware resources can be reused for both encryption and decryption.
This approach not only saves a significant amount of area, but also reduces the
latency of the implementation. We also observe that although mcrypton has
(nearly) involutional layers there is a non-negligible cost to reuse them for both
encryption an decryption (due to the required insertion of multiplexors).

Conclusion. We have introduced the domain of low-latency encryption, clearly
distinguishing it from the domains of lightweight and conventional encryption.
Six well-known lightweight SPN block ciphers, including aes, were selected based
on their properties and identified as possible candidates to yield good low-latency
behavior. We evaluated their hardware performance within the context of low-
latency encryption, thereby providing the first results in the field. It has been
shown that the obtained results (i.e. latency, area, power, and energy consump-
tion) are strongly influenced by the design properties such as the number of
rounds, the round’s complexity, and the similarity between encryption and de-
cryption procedures. We hope that our results will inspire others to design new
and efficient low-latency cryptographic primitives.
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A Hardware Performance (Data)

In Table 1, we summarize hardware figures for all the tested block ciphers. The
best (smallest) values in each column are marked in bold. Since all the values
are obtained based on synthesis results, we believe that the metrics including
area, latency, and time-area product are estimated with a good accuracy. On
the other hand, we believe that accurate power and energy estimation can only
be done after place and route is performed and, therefore, we do not provide a
detailed report on these two metrics.
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Table 1. Hardware performance of all the tested ciphers (90 nm CMOS, synthesis
results)

Time-constrained

1-cycle 2-cycle

ENC ENC/DEC ENC ENC/DEC

L A T-A L A T-A L A T-A L A T-A

aes-128 14.8 218.1 3.227 17.8 366.6 6.525 16.6 118.1 1.961 20.2 191.8 3.874
klein-64 11.2 29.0 0.325 15.3 48.2 0.737 12.2 14.6 0.179 16.4 24.9 0.409
klein-80 14.8 39.0 0.577 20.3 63.7 1.293 15.8 19.6 0.310 21.4 32.6 0.697
klein-96 18.4 48.6 0.893 25.3 79.9 2.021 19.6 24.5 0.481 26.4 41.3 1.089
led-64 30.9 62.0 1.917 31.2 128.7 4.014 32.2 32.2 1.038 32.8 63.5 2.081
led-128 46.0 93.4 4.296 46.6 193.1 8.999 47.4 47.9 2.269 48.2 96.0 4.625
mcrypton-64 9.7 22.5 0.218 9.8 41.3 0.405 10.4 11.7 0.124 10.8 20.9 0.225
mcrypton-96 9.7 22.7 0.221 9.8 40.4 0.396 10.4 12.1 0.126 10.8 21.1 0.228
mcrypton-128 9.7 23.2 0.225 9.8 41.4 0.406 10.4 12.1 0.125 11.0 21.0 0.231
mini-aes-64 8.6 23.0 0.198 9.9 40.0 0.396 10.4 12.5 0.130 12.0 22.0 0.265
noekeon-128 14.9 50.0 0.745 14.8 102.5 1.517 16.6 26.1 0.433 17.0 49.6 0.844
noekeons-128 - - - 15.5 49.5 0.768 - - - 17.4 27.1 0.471
present-80 14.3 36.9 0.528 14.8 72.3 1.070 16 19.2 0.308 16.4 37.6 0.616
present-128 14.3 38.1 0.544 14.7 73.8 1.084 16 19.6 0.313 16.6 37.1 0.615

Unconstrained

1-cycle 2-cycle

ENC ENC/DEC ENC ENC/DEC

L A T-A L A T-A L A T-A L A T-A

aes-128 45.5 103.6 4.715 46.6 232.2 10.820 43 62.3 2.677 51.6 122.0 6.293
klein-64 20.4 11.8 0.240 31.9 28.8 0.918 25.2 7.7 0.194 35.2 15.7 0.553
klein-80 26.9 15.7 0.422 42.1 38.2 1.610 32.2 10.1 0.325 46.0 20.7 0.951
klein-96 33.5 19.7 0.659 53.1 47.9 2.544 39.6 12.6 0.500 57.0 25.8 1.470
led-64 68.8 24.5 1.688 68.5 58.9 4.038 71 14.8 1.053 71.0 29.7 2.109
led-128 102.5 36.6 3.754 100.6 88.1 8.858 103.2 21.9 2.258 105.0 44.1 4.629
mcrypton-64 20.2 11.7 0.235 20.7 20.6 0.427 22 6.6 0.146 23.4 11.3 0.264
mcrypton-96 19.9 11.8 0.235 20.1 20.8 0.418 21 6.8 0.143 22.6 11.5 0.259
mcrypton-128 20.2 12.0 0.242 20.0 21.0 0.419 21.2 7.0 0.148 22.8 11.6 0.265
mini-aes-64 19.6 9.4 0.184 20.9 23.0 0.481 21.6 6.7 0.145 25.8 13.0 0.335
noekeon-128 27.6 21.3 0.587 27.9 51.6 1.438 32.4 13.8 0.446 33.0 26.6 0.878
noekeons-128 - - - 31.8 22.3 0.710 - - - 33.6 15.1 0.507
present-80 36.6 15.0 0.548 31.0 34.8 1.078 33.6 9.2 0.308 36.0 18.9 0.682
present-128 35.9 15.7 0.564 30.8 36.3 1.117 33.6 9.7 0.327 34.2 20.0 0.685

L – Latency [ns]
A – Area [kGE]

T-A – Time-Area product [ms×GE]
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B Hardware Performance for ENC-Only Modules

Fig. 12. Minimum latency [ns] for ENC-only module: (a) Time-constrained. (b) Un-
constrained.

Fig. 13. Minimum area [kGE] for ENC-only module: (a) Time-constrained. (b) Un-
constrained.

Fig. 14. Minimum time-area product [ms·GE] for ENC-only module: (a) Time-
constrained. (b) Unconstrained.

Fig. 15. Power consumption [μW] for ENC-only module: (a) Time-constrained. (b)
Unconstrained.
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Fig. 16. Energy consumption [fJ/bit] for ENC-only module: (a) Time-constrained. (b)
Unconstrained.

C Area per Round Distribution of present-80 ENC-Only

Fig. 17. Area [GE] per round distribution of the present-80 ENC-only architecture
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Abstract. In this paper, we present several efficient fault attacks against
implementations of RSA–CRT signatures that use modular exponentia-
tion algorithms based on Montgomery multiplication. They apply to any
padding function, including randomized paddings, and as such are the
first fault attacks effective against RSA–PSS.

The new attacks work provided that a small register can be forced to
either zero, or a constant value, or a value with zero high-order bits. We
show that these models are quite realistic, as such faults can be achieved
against many proposed hardware designs for RSA signatures.

Keywords: Fault Attacks, Montgomery Multiplication, RSA–CRT, PSS.

1 Introduction

The RSA signature scheme is one of the most used schemes nowadays. An RSA
signature is computed by applying some encoding function to the message, and
raising the result to d-th power modulo N , where d and N are the private ex-
ponent and the public modulus respectively. This modular exponentiation is the
costlier part of signature generation, so it is important to implement it efficiently.
A very commonly used speed-up is the RSA–CRT signature generation, where
the exponentiation is carried out separately modulo the two factors of N , and
the results are then recombined using the Chinese Remainder Theorem. How-
ever, when unprotected, RSA–CRT signatures are vulnerable to the so-called
Bellcore attack first introduced by Boneh et al. in [3], and later refined in multi-
ple publications such as [31]: an attacker who knows the padded message and is
able to inject a fault in one of the two half-exponentiations can factor the public
modulus using a faulty signature with a simple GCD computation.

Many workarounds have been proposed to patch this vulnerability, including
extra computations and sanity checks of intermediate and final results. A recent

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 447–462, 2012.
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taxonomy of these countermeasures is given in [24]. The simplest countermea-
sure may be to verify the signature before releasing it. This is reasonably cheap
if the public exponent e is small and available in the signing device. In some
cases, however, e is not small, or even not given—e.g. the JavaCard API does
not provide it [22]. Another approach is to use an extended modulus. Shamir’s
trick [25] was the first such technique to be proposed; later refinements were
suggested that also protect CRT recombination when it is computed using Gar-
ner’s formula [2, 7, 30, 9]. Finally, yet another way to protect RSA–CRT signa-
tures against faults is to use redundant exponentiation algorithms, such as the
Montgomery Ladder. Papers including [14, 24] propose such countermeasures.
Regardless of the approach, RSA–CRT fault countermeasures tend to be rather
costly: for example, Rivain’s countermeasure [24] has a stated overhead of 10%
compared to an unprotected implementation, and is purportedly more efficient
than previous works including [14, 30].

Relatedly, while Boneh et al.’s original fault attack does not apply to RSA
signatures with probabilistic encoding functions, some extensions of it were pro-
posed to attack randomized ad hoc padding schemes such as ISO 9796-2 and
EMV [10, 12]. However, Coron and Mandal [11] were able to prove that Bellare
and Rogaway’s padding scheme RSA–PSS [1] is secure against random faults
in the random oracle model. In other words, if injecting a fault on the half-
exponentiation modulo the second factor q of N produces a result that can be
modeled as uniformly distributed modulo q, then the result of such a fault can-
not be used to break RSA–PSS signatures. It is tempting to conclude that using
RSA–PSS should enable signers to dispense with costly RSA–CRT countermea-
sures. In this paper, we argue that this is not necessarily the case.

Our Contributions. The RSA–CRT implementations targeted in this pa-
per use the state-of-the-art modular multiplication algorithm due to Mont-
gomery [20], which avoids the need to compute actual divisions on large integers,
replacing them with only multiplications and bit shifts. A typical implementa-
tion of the Montgomery multiplication algorithm will use small registers to store
precomputed values or short integer variables throughout the computation. The
size of these registers varies with the architecture, from a single bit in certain
hardware implementations to 16 bits, 32 bits or more in software. This paper
presents several fault attacks on these small registers during Montgomery multi-
plication, that cause the result of one of the half-exponentiations to be unusually
small. The factorization of N can then be recovered using a GCD, or an approx-
imate common divisor algorithm such as [15, 5, 8].

We consider three models of faults on the small registers. In the first model,
one register can be forced to zero. In that case, we show that causing such a fault
in the inverse Montgomery transformation of the result of a half-exponentiation,
or a few earlier consecutive Montgomery multiplications, yields a faulty signa-
ture which is a multiple of the corresponding factor q of N . Hence, we can factor
N by taking a simple GCD. In the second model, another register can be forced
to some (possibly unknown) constant value throughout the inverse Montgomery
transformation of the result of a half-exponentiation, or a few earlier consecutive
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Montgomery multiplications. A faulty signature in this model is a close multiple
of the corresponding factor q of N , and we can thus factor N using an approx-
imate common divisor algorithm. Finally, the third model makes it possible to
force some of the higher-order bits of one register to zero. We show that, while
injecting one such fault at the end of the inverse Montgomery transformation
results in a faulty signature that isn’t usually close enough to a multiple of q to
reveal the factorization of N on its own, a moderate number of faulty signatures
(a dozen or so) obtained using that process are enough to factor N .

The RSA padding scheme used for signing, whether deterministic or prob-
abilistic, is irrelevant in our attacks. In particular, RSA–PSS implementations
are also vulnerable. Of course, this does not contradict the security result due
to Coron and Mandal [11], as the faults we consider are strongly non-random.
Our results do suggest, however, that exponentiation algorithms based on Mont-
gomery multiplication are quite sensitive to a very realistic type of fault attacks
and that using RSA–CRT countermeasures is advisable even for RSA–PSS.

Organization of the Paper. In §2, we recall some background material on the
Montgomery multiplication algorithm, on modular exponentiation techniques,
and on RSA–CRT signatures. Our new attacks are then described in §§3–5,
corresponding to three different fault models: null faults, constant faults, and
zero high-order bits faults. Finally, in §6, we discuss the applicability of our
fault models to concrete hardware implementations of RSA–CRT signatures,
and find that many proposed designs are vulnerable.

2 Preliminaries

2.1 Montgomery Multiplication

Proposed by Montgomery in [20], the Montgomery multiplication algorithm pro-
vides a fast way method for computing modular multiplications and squarings.
Indeed, the Montgomery multiplication algorithm only uses multiplications, ad-
ditions and shifts, and its cost is about twice that of a simple multiplication
(compared to 2.5 times for a multiplication and a Barett reduction), without
imposing any constraint on the modulus.

Usually, one of two different techniques is used to compute Montgomery mul-
tiplication: either Separate Operand Scanning (SOS), or Coarsely Integrated
Operand Scanning (CIOS). Consider a device whose processor or coprocessor
architecture has r-bit registers (typically r = 1, 8, 16, 32 or 64 bits). Let b = 2r,
q be the (odd) modulus with respect to which multiplications are carried out,
k the number of r-bit registers used to store q, and R = bk, so that q < R
and gcd(q, R) = 1. The SOS variant consists in using the Montgomery reduc-
tion after the multiplication: for an input A such that A < Rq, it computes
Mgt(A) ≡ AR−1 (mod q), with 0 ≤ Mgt(A) < q. The CIOS mixes the reduc-
tion algorithm with the previous multiplication step: considering x and y with
xy < Rq, it computes CIOS(x, y) = xyR−1 mod q with CIOS(x, y) < q.
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1: function SignRSA–CRT(m)
2: M ← μ(m) ∈ ZN � message

encoding
3: Mp ←M mod p
4: Mq ←M mod q

5: Sp ←M
dp
p mod p

6: Sq ←M
dq
q mod q

7: t← Sp − Sq

8: if t < 0 then t← t+ p

9: S ← Sq +
(
(t · π) mod p

) · q
10: return S

Fig. 1. RSA–CRT signature genera-
tion with Garner’s recombination. The
reductions dp, dq modulo p− 1, q− 1 of
the private exponent are precomputed,
as is π = q−1 mod p.

1: function CIOS(x, y)
2: a← 0
3: y0 ← y mod b
4: for j = 0 to k − 1 do
5: a0 ← a mod b
6: uj ← (a0+xj · y0) · q′ mod b

7: a←
⌊a+ xj · y + uj · q

b

⌋
8: if a ≥ q then a← a− q

9: return a

Fig. 2. The Montgomery multiplica-
tion algorithm. The xi’s and yi’s are
the digits of x and y in base b; q′ =
−q−1 mod b is precomputed. The re-
turned value is (xy · b−k mod q). Since
b = 2r, the division is a bit shift.

Figure 2 presents the main steps of the CIOS variant, which will be used there-
after. However, replacing the CIOS by the SOS or any other variant proposed
in [17] does not protect against any of our attacks.

2.2 Exponentiation Algorithms Using Montgomery Multiplication

Montgomery reduction is especially interesting when used as part of a modular
exponentiation algorithm. A large number of such exponentiation algorithms
are known, including the Square-and-Multiply algorithm from either the least
or the most significant bit of the exponent, the Montgomery Ladder (used as
a side-channel countermeasure against cache analysis, branch analysis, timing
analysis and power analysis), the Square-and-Multiply k-ary algorithm (which
boasts greater efficiency thanks to fewer multiplications), etc. The first three
exponentiation algorithms will be considered in this paper, and two of those are
detailed in Figure 3.

Note that using the Montgomery multiplications inside any exponentiation al-
gorithm requires all variables to be in Montgomery representation (x̄ = xR mod
q is the Montgomery representation of x) before applying the exponentiation pro-
cess. In line 2 of each algorithm from Figure 3, the message is transformed into
Montgomery representation by computing CIOS(x,R2) = xR2R−1 mod q = x̄.
At the end, the very last CIOS call allows to revert to the classical representa-
tion by performing a Montgomery reduction: CIOS(Ā, 1) = (Ā ·1)R−1 mod q =
ARR−1 mod q = A. Finally the other CIOS steps compute the product in Mont-
gomery representation: CIOS(Ā, B̄) = (AR)(BR)R−1 mod q = AB.

2.3 RSA–CRT Signature Generation

Let N = pq be a n-bit RSA modulus. The public key is denoted by (N, e) and
the associated private key by (p, q, d). For a message M to be signed, we note
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Square-and-Multiply LSB Montgomery Ladder

1: function ExpLSB(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: A← R mod q
4: for i = 0 to t do
5: if ei = 1 then
6: A← CIOS(A, x̄)

7: x̄← CIOS(x̄, x̄)

8: A← CIOS(A, 1)
9: return A

1: function ExpLadder(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: A← R mod q
4: for i = t down to 0 do
5: if ei = 0 then
6: x̄← CIOS(A, x̄)
7: A← CIOS(A,A)
8: else if ei = 1 then
9: A← CIOS(A, x̄)
10: x̄← CIOS(x̄, x̄)

11: A← CIOS(A, 1)
12: return A

Fig. 3. Two of the exponentiation algorithms considered in this paper. In each case,
e0, . . . , et are the bits of the exponent e (from the least to the most significant), b is
the base in which computations are carried out (gcd(b, q) = 1) and R = bk.

S = md mod N the corresponding signature, where m is deduced from M by
an encoding function, possibly randomized. A well-known optimization of this
operation is the RSA–CRT which takes advantage of the decomposition of N
into prime factors. By replacing a full exponentiation of size n by two n/2, it
divides the computational cost by a factor of around 4. Therefore RSA–CRT is
almost always employed: for example, OpenSSL as well as the JavaCard API
[22] use it.

Recovering S from its reductions Sp and Sq modulo p and q can be done either
by the usual CRT reconstruction formula (1) below, or using the recombination
technique (2) due to Garner:

S = (Sq · p−1 mod q) · p+ (Sp · q−1 mod p) · q mod N. (1)

S = Sq + q · (q−1 · (Sp − Sq) mod p). (2)

Garner’s formula (2) does not require a reduction modulo N , which is interest-
ing for efficiency reasons and also because it prevents certain fault attacks [4].
On the other hand, it does require an inverse Montgomery transformation Sq =
CIOS(S̄q, 1), whereas that step is not necessary for formula (1), as it can be
mixed with the multiplication with q−1 mod p. This is an important point, as
some of our attacks specifically target the inverse Montgomery transformation.
The main steps of the RSA–CRT signature generation with Garner’s recombi-
nation are recalled in Figure 1.

3 Null Faults

We first consider a fault model in which the attacker can force the register
containing the precomputed value q′ = (−q mod b) to zero in certain calls to the
CIOS algorithm during the computation of Sq.
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Under suitable conditions, we will see that such faults can cause the q-part of
the signature to be erroneously evaluated as S̃q = 0, which makes it possible to

retrieve the factor q of N from one such faulty signature S̃, as q = gcd(S̃, N).

3.1 Attacking CIOS(A, 1)

Suppose first that the fault attacker can force q′ to zero in the very last CIOS
computation during the evaluation of Sq, namely the computation of CIOS(A, 1).
In that case, the situation is quite simple.

Theorem 1. A faulty signature S̃ generated in this fault model is a multiple of
q (for any of the exponentiation algorithms considered herein and regardless of
the encoding function involved, probabilistic or not).

Proof. The faulty value q̃′ = 0 causes all of the variables u in the CIOS loop to
vanish; indeed, for j = 0, . . . , k − 1, they evaluate to:

ũj = (a0 +Aj · 1) · q̃′ mod 2r = 0.

As a result, the value S̃q computed by this CIOS loop can be written as:

S̃q =

⌊(⌊
· · ·
⌊(⌊

A0 · 2−r
⌋
+A1

)
· 2−r

⌋
+ · · ·

⌋
+Ak−1

)
· 2−r

⌋
.

Now, the values Aj are r-words, i.e. 0 ≤ Aj ≤ 2r − 1. It follows that each of

the integer divisions by 2r evaluate to zero, and hence S̃q = 0. As a result, the

faulty signature S̃ is a multiple of q as stated. ��

It is thus easy to factor N with a single faulty signature S̃, by computing
gcd(S̃, N). Note also that if this last CIOS step is computed as CIOS(1, A)
instead of CIOS(A, 1), the formulas are slightly different but the result still
holds.

3.2 Attacking Consecutive CIOS Steps

If Garner recombination is not used or the computation of CIOS(A, 1) is some-
how protected against faults, a similar result can be achieved by forcing q′ to
zero in earlier calls to CIOS, provided that a certain number of successive CIOS
executions are faulty.

Assuming that the values x̄ and A in Montgomery representation are uni-
formly distributed modulo q before the first faulty CIOS, we show in the full
version of this paper [13]that faults across � = "log2"log2 q## iterations in the

loop of the exponentiation algorithm are enough to ensure that S̃q will evaluate
to zero with probability at least 1/2. For example, if q is a 512-bit prime, we
have � = 9. This means that forcing q′ to zero in 9 iterations (from 9 to 18 calls
to CIOS depending on the exponentiation algorithm under consideration and on
the input bits) is enough to factor the modulus at least 50% of the time—and
more faulty iterations translate to higher success rates.
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Table 1. Success rate of the null fault attack on consecutive CIOS steps, for a 512-
bit prime q and r = 16. 100 faulty signatures were computed for each parameter set.
For the Square-and-Multiply MSB and Montgomery Ladder algorithms, we compare
success rates when faults start at the beginning of the loop vs. at a random iteration.

S&M LSB S&M MSB Montgomery Ladder

Faulty iterations (%) Start (%) Anywhere (%) Start (%) Anywhere (%)

8 31 93 62 45 30

9 65 100 93 87 76

10 89 100 100 99 93

Simulation results. We have carried out a simulation of null faults on consecutive
CIOS steps for each of the three exponentiation process algorithms, with varying
numbers of faulty iterations; for the Square-and-Multiply MSB and the Mont-
gomery Ladder algorithms, two sets of experiments have been conducted for each
parameter set: one with faults starting from the first iteration, and another one
with faults starting from a random iteration somewhere in the exponentiation
loop. Results are collected in Table 1.

4 Constant Faults

In this section, we consider a different fault model, in which the fault attacker
can force the variables uj in the CIOS algorithm to some (possibly unknown)
constant value ũ.

Just as with null faults, we consider two scenarios: one in which the last CIOS
computation is attacked, and another in which several inner consecutive CIOS
computations in the exponentiation algorithm are targeted.

4.1 Attacking CIOS(A, 1)

Faults on all iterations. Consider first the case when faults are injected in all
iterations of the very last CIOS computation. In other words, the device com-
putes CIOS(A, 1), except that the variables uj , j = 0, . . . , k − 1, are replaced
by a fixed, possibly unknown value ũ. In that case, we show that a single faulty
signature is enough to factor N and recover the secret key. The key result is as
follows (the proof can be found in the full version [13]).

Theorem 2. Let S̃ be a faulty signature obtained in the fault model described
above. Then, (2r − 1) · S̃ is a close multiple of q with error size at most 2r+1,
i.e. there exists an integer T such that:∣∣(2r − 1) · (S̃ + 1)− qT

∣∣ ≤ 2r+1.
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Thus, a single faulty signature yields a value V = (2r − 1) · (S̃+1) mod N which
is very close to a multiple of q. It is easy to use this value to recover q itself.
Several methods are available:

– If r is small (say 8 or 16), it may be easiest to just use exhaustive search: q
is found among the values gcd(V +X,N) for |X | ≤ 2r+1, and hence can be
retrieved using around 2r+2 GCD computations.

– A more sophisticated option, which may be interesting for r = 32, is the
baby step, giant step-like algorithm by Chen and Nguyen [5], which runs in

time Õ(2r/2).
– Alternatively, for any r up to half of the size of q, one can use Howgrave-

Graham’s algorithm [15] based on Coppersmith techniques. It is the fastest
option unless r is very small (a simple implementation in Sageruns in about
1.5 ms on our standard desktop PC with a 512-bit prime q for a any r up
to ≈ 160 bits, whereas exhaustive search already takes over one second for
r = 16).

Faults on most iterations. Howgrave-Graham’s algorithm is especially relevant
if the constant faults do not start at the very first iteration in the CIOS loop.
More precisely, suppose that the fault attacker can force the variables uj to a
constant value ũ not for all j but for j = j0, j0 + 1, . . . , k − 1 for some j0.

Then, the same computation as in the proof of Theorem 2 yields the following
bound on S̃q:

ũ · q
2r − 1

− 2rj0 − 2 < S̃q ≤ ũ · q
2r − 1

+ 2rj0 + 1.

It follows that (2r − 1) · S̃ is a close multiple of q with error size � 2r(j0+1).
Now note that Howgrave-Graham’s algorithm [15] will recover q given N and

a close multiple with error size at most q1/2−ε. This means that one faulty
signature S̃ is enough to factor N as long as j0+1 < k/2, i.e. the constant faults
start in the first half of the CIOS loop.

4.2 Attacking Other CIOS Steps

As in §3.2, if Garner recombination is not used or CIOS(A, 1) is protected against
faults, we can adapt the previous attack to target earlier calls to CIOS and still
reveal the factorization of N . However, the attack requires two faulty signatures
with the same constant fault ũ. Details are given in the full version [13].

In short, depending on the ratios q/2�log2 q� and ũ/(2r − 1), two faulty sig-

natures S̃, S̃′ with the same faulty value ũ have a certain probability of being
equal modulo q. Thus, we recover q as gcd(N, S̃ − S̃′). This attack works with
the Square-and-Multiply LSB and Montgomery Ladder algorithms, but not with
Square-and-Multiply MSB exponentiation.

Simulation results are presented in Table 2. For various 512-bit primes q, the
attack has been carried out for 1000 pairs of random messages, with a random
constant fault ũ for each pair. It is successful if the two resulting faulty signatures
S̃, S̃′ satisfy gcd(N, S̃ − S̃′) = q.



Attacking RSA–CRT Signatures with Faults on Montgomery Multiplication 455

Table 2. Success rate of the constant fault attack on successive CIOS steps, when using
Square-and-Multiply LSB exponentiation with random 512-bit primes q and r = 16

q/2�log2 q� 0.666 0.696 0.846 0.957

Success rate (%) 36 34.4 26.7 20.4

5 Zero High-Order Bits Faults

In this section, we consider yet another fault model, in which the fault attacker
targets the very last iteration in the evaluation of CIOS(A, 1) during the com-
putation of Sq. We assume that the attacker is able to force a certain number h
of the highest-order bits of uk−1 to zero, possibly but not necessarily all of them
(i.e. 1 ≤ h ≤ r). Then, while a single faulty signature is typically not sufficient
to factor the modulus, multiple such signatures will be enough if h is not too
small. More precisely, we prove the following theorem in the full version of this
paper [13]:

Theorem 3. Let S̃ be a faulty signature obtained in this fault model. Then, S̃
is a close multiple of q with error size at most 2−h · q + 1, i.e. there exists an
integer T such that |S̃ − qT | ≤ 2−h · q + 1.

Now, recovering q from faulty signatures of the form S̃ is a partial approximate
common divisor (PACD) problem, as we know one exact multiple of q, namely
N , and several close multiples, namely the faulty signatures. Since the error size
≈ q/2h is rather large relative to q, the state-of-the-art algorithm to recover q
in that case is the one proposed by Cohn and Heninger [8] using multivariate
Coppersmith techniques.

The algorithm by Cohn and Heninger is likely to recover the common divisor
q ≈ N1/2 given � close multiples S̃(1), . . . , S̃(�) provided that the error size is

significantly less than N (1/2)1+1/�

. Hence, if the faults cancel the top h bits of
uk−1, we need � of them to factor the modulus, where:

� � − 1

log2

(
1 − h

log2 q

) . (3)

In practice, if a few more faults can be collected, it is probably preferable to
simply use the linear case of the Cohn-Heninger attack (the case t = k = 1 in
their paper [8]), since it is much easier to implement (as it requires only linear
algebra rather than Gröbner bases) and involves lattice reduction in a lattice of
small dimension that is straightforward to construct. We examine this method
in more details in the full version of this paper [13], and find that it makes it
possible to factor N provided that:

� � log2 q

h
(4)
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Table 3. Theoretical minimum number � of zero higher-order h-bit faulty signatures re-
quired to factor a balanced 1024-bit RSA modulus N using the general Cohn-Heninger
attack or the simplified linear one

Number h of zero top bits 48 40 32 24 16

Minimum � with the general attack 8 9 11 15 22

Minimum � with the linear attack 11 13 16 22 32

Table 4. Experimental success rate of the simplified (linear) Cohn-Heninger attack
with � faulty signatures when N is a balanced 1024-bit RSA modulus. Timings are
given for our Sage implementation on a single core of a Core 2 CPU at 3 GHz.

Number � of faulty signatures 11 12 13 14 15 16 17 18

Success rate with h = 48 (%) 23 100 100 100 100 100 100 100

Success rate with h = 40 (%) 0 0 2 100 100 100 100 100

Success rate with h = 32 (%) 0 0 0 0 0 0 99 100

Average CPU time (ms) 33 35 38 41 45 49 54 59

which is always a worse bound than (3) but usually not by a very large margin.
Table 3 gives the theoretical number of faulty signatures required to factor N
for various values of h, both in the general attack by Cohn and Heninger and in
the simplified linear case.

We carried out a simulation of the linear version of the attack on a 1024-
bit modulus N with various values of h, and found that it works very well
in practice with a number of faulty signatures consistent with the theoretical
minimum. The results are collected in Table 4. The attack is also quite fast: a
naive implementation in Sage runs in a fraction of a second on a standard PC.

6 Fault Models

In this section we discuss how realistic the setup of the attacks described above
can be. In principle, all the RSA–CRT implementations using Montgomery mul-
tiplication may be vulnerable, but we have to note that the fault setup (and how
realistic it is) depends heavily on implementation choices, since many variations
around the algorithm from Figure 2 have been proposed in recent literature.

After a discussion about the tools needed to get the desired effects, we focus
on several implementation proposals [29, 18, 16, 21, 28, 19, 6], chosen for their
relevance.

6.1 Characteristics of the Perturbation Tool

First all the perturbations needed to carry out our attacks need to be controlled
and local to some gates of the chip. Therefore, the attacker needs to identify the
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localization of the vulnerable gates and registers. The null fault attacks described
in §3 need either a q′ value set to 0, or multiple consecutive faults in line 6 of
the main loop of CIOS(A, 1) or during multiple consecutive CIOS. The attacks
described in §4 also need these multiple consecutive faults. Considering that
state-of-art secure micro-controllers embed desynchronization countermeasures
such as clock jitters and idle cycles, if the target of the perturbation is some
shared logic with other treatments (like in the ALU of a CPU), the fault must
be accurately space and time controlled, and the effects must be repeatable as
well. Identification of the good cycles to inject the perturbation may be a very
difficult task, and our attacks seem to be irrelevant. The only exception may be
the null fault of §3, if the fault is injected when the q′ register is loaded.

Nevertheless, many secure microcontrollers embed an isolated modular arith-
metic acceleration coprocessor. A large proportion of them specifically use the
Montgomerymultiplication CIOS algorithm (or one of its described variants [17]).
Therefore, if the q′ or the uj value is isolated in a specific small size register, a
unique long duration perturbation can be sufficient for our attack to succeed. The
duration of the perturbation varies with the implementation choices and can vary
from one cycle to log2 q, which does not exceed a hundred microseconds on actual
chips. To get this kind of effect, laser diodes are the best-suited tool, since the
duration of the spot is completely controlled by the attacker [26].

6.2 Analysis of Classical Implementations of the Montgomery
Multiplication

The public Montgomery architectures can be divided in 3 different categories :

– the first one [29, 18, 16] contains variations on the Tenca and Koç Multi-
ple Word Radix-2 Montgomery Multiplication algorithm (MWR2MM) [29],
which can be seen as a CIOS algorithm with r = 1. The characteristic of
these implementations is that they use no multiplier. They are then suited
for constrained area.

– the second category [28, 19] is an intermediate where r is a classical size
for embedded architecture, such as 8,16 or 32 bits. They can be used for
intermediate area/latency trade-offs.

– the last category [21, 6] propose a version of CIOS/SOS with only one loop,
implying that r ≥ "log2 q#. The main difficulty of these implementation
techniques is to deal with the very large multiplications they require . For
that purpose they use interpolation techniques, like Karatsuba in [6] or RNS
in [21]. These implementations are designed to achieve the shortest latency.

Architectures Based on MWR2MM (r = 1). In this kind of architecture,
q′ cannot be manipulated, since it is always equal to 1, so no wire or register
carries its value. On the other hand, the value of uj is computed at every loop
of the CIOS, and since it is only one bit, a simple shot on the logic driving
the register during the final multiplication CIOS(A, 1) is sufficient to get an
exploitable result (uj = 0 corresponds to the null fault of §3, and uj = 1 to the
constant fault of §4).
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Fig. 4. Systolic Montgomery Multiplier of [29] and potential target of the fault

The first proposal [29] is a fully systolic 1 array of processing elements (PE)
executing consecutively line 6 of the CIOS algorithm in one cycle, and line 7 in k
cycles from LSB to MSB. Figure 4 proposes an overview of the architecture. Each
PE consists of a w-word carry save adder, able to compute a w word addition
and to keep the carry for the next cycle. In the figure, T (j) stands for the j-th
least significant w word of T .

At each clock cycle, the PE presents the computed result ai(j) to the next
one, and the value ui is kept in the PE for the computation of the next word
ai(j + 1). The value of ui is computed before the word ai(0) is presented, and
then is kept in each PE during the whole computation of ai in a register. This
architecture has the great advantage of being completely scalable (whatever the
number of PEs and the size of M , this architecture can compute the expected
result as long as the RAM are correctly dimensioned).

To achieve our attack, the register keeping ui can be the targeted, but every
PE must be targeted simultaneously in order to get the correct result. Therefore
it is more interesting to target the control logic responsible for the sequencing
of the register loading, since all the PEs are connected.

In [18], the authors manage to get rid of the CS to binary converter by re-
designing the CS adder of every PE. The vulnerability to our attack is therefore
the same, since the redesign does not affect the targeted area.

Huang et al. [16] proposed a new version of the data dependency in the
MWR2MM algorithm and rearranged the architecture of [29], in a semi sys-
tolic form. Figure 5 gives an overview of the architecture. In this architecture,
the intermediate value ai is manipulated in carry save format A specific PE, PE0

is specialized in generating the ui values at each cycle. while the j-th PE is in
charge of computing the sequence ai(j).

This architecture is very vulnerable to our attacks, since a simple n-cycle long
shot on the right logic in the PE0 (see Figure 5) is sufficient to get the expected
result.

According to the authors, the design works at 100MHz on their target platform
(a Xilinx Virtex II FPGA), therefore the duration of the perturbation is at least
10 μs for a 1024 bits multiplication (2048 bits RSA) if the Garner recombination is

1 Meaning that all the PEs are the same.
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used (using the attack from §3.1 or §4.1). If classical CRT reconstruction is used,
according to Table 1, 200 μs will be enough for a null fault.

As a conclusion we can see that this kind of implementation is very vulnerable,
since the setup of the attack is quite simple.

High Radix Architecture (1 < r < �log2 q�). In this type of implemen-
tation the value q′ = −q−1 mod 2r is computed in a r-bit register, unless the
quotient pipelining approach [23] is used.

For example, the implementation of [19] is described in Figure 6. It relies on
the coordinated usage of multiplier blocks of the Xilinx Virtex II together with
specifically designed carry save adders. The values uj can be the target of any
fault described in this paper, but it may be easier to put once for all the q′

register to 0, with a 100% success rate for the attack if properly carried out.
Another implementation is mentioned in [19] with a four-deep pipeline, but it
suffers from the same vulnerability.

The attack may be more difficult to achieve on the architecture of [28, Figure
4]. First, it uses quotient determination [23], and therefore does not need to
store q′ anywhere. Second, the multiplier in charge of computing uj is shared
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for all the Montgomery computation. In order to carry out the attack of §4 on
this architecture, the attacker has to determine the specific cycles where uj is
computed to generate a perturbation. For that particular design, the attacks
seem out of reach.

Full Radix Architecture (r ≥ �log2 q�). In this kind of implementation,
a single round is enough to compute the Montgomery algorithm. This imple-
mentation choice reports all the complexity on the design of a log2 q × log2 q
multiplier. To reduce the full complexity of the big multiplication, interpolation
techniques are used. In [6], a classical nested Karatsuba multiplication is used,
whereas [21] proposes RNS.

In these architectures, a specific laser shot must swap all the u0 or q′ at the
same time to produce a null fault. To have a chance, a better solution is to use
non invasive attacks (in the sense of [27]), such as power or clock glitches. Indeed
u0 or q′ are fully manipulated on the same clock cycle (or in very few), therefore
it may be more practical to make the sequencer miss an instruction instead of
aiming directly at the registers.

The zero high-order bits fault attack from §5 is also an option. In the archi-
tecture of [6], the most significant bits of u0 can be set to 0.

7 Conclusion

In this paper, we have shown that specific realistic faults can defeat unprotected
RSA–CRT signatures with any padding scheme, probabilistic or not. While it
is not difficult to devise suitable countermeasures (for example, checking that
Sq is not too small before outputting a signature is enough to thwart all of our
attacks), this underscores the fact that relying on probabilistic signature schemes
does not, in itself, protect against faults.
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Abstract. We (re-) introduce the Reduce-By-Feedback scheme given
by Vielhaber (1987), Benaloh and Dai (1995), and Jeong and Burleson
(1997).

We show, how to break RSA, when implemented with the standard
version of Reduce-by-Feedback or Montgomery multiplication, by Differ-
ential Power Analysis. We then modify Reduce-by-Feedback to avoid this
attack. The modification is not possible for Montgomery multiplication.

We show that both the original and the modified Reduce-by-Feedback
algorithm resist timing attacks.

Furthermore, some VLSI-specific implementation details (delayed
carry adder, re-use of MUX tree and logic) are provided.

Keywords: Reduce-by-Feedback, modular multiplication, Montgomery
multiplication, timing analysis, differential power analysis.

1 Introduction

RSA, Diffie-Hellman (over Fp), and elliptic curve schemes (over Fp) use modular
multiplication as their computational kernel. This is usually implemented as
Montgomery multiplication [12] (1985), which is fast and has timing independent
of the values. Montgomery treats the bits of the first factor to be multiplied from
the LSB towards the left, and works with the residue classes [x ·(2L)−1] mod N ,
where [x] are the standard residue classes, and L is the length (in bits) of the
operands, e.g. L = "log2(N)#.

There exists, however, an algorithm that avoids the mapping from [x] to
[x ·(2L)−1] mod N , by working the bits of the first factor from MSB downwards
to the right: Reduce-by-Feedback [15,16,20] (1987) (Sections 3 and 4).

The Reduce-by-Feedback algorithm preserves the immunity against timing
attacks (Section 5), the constant shift amount of 1,2,3, or 4 bits per clock cycle,
depending on the implementation effort, and all other advantages of Montgomery
multiplication.
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Additionally, a DPA attack against RSA implemented by Montgomery multi-
plication or Reduce-by-Feedback (Section 6), can be avoided by a modification
of Reduce-by-Feedback (Section 7). This modification can not be applied to
Montgomery multiplication, as far as we can see.

An overview about implementations of modular multiplication is given in [6].

2 Multiplication by Shift-and-Add

It is worthwhile to recall the Shift-and-Add algorithm, since Reduce-by-Feedback
is constructed completely analogously, retaining its properties:

Algorithm 1. Shift-and-Add
Parameters:
operand length l [e.g. = 1024]
shift length per clock cycle z [e.g. = 3], with Z := 2z [e.g. = 8]

IN A,B < 2l // factors, where A =
∑l−1

k=0 ak2
k =

∑�l/z�−1
k=0 αkZ

�l/z�−1−k

OUT M // product M = A · B
Algorithm:
M := 0
FOR k := 0 TO "l/z# − 1

M := (M << z) + αk · B
ENDFOR

Some trivial, but remarkable properties of Shift-and-Add are:

(i) The coefficient αk lies in the range {0, 1, . . . , Z − 1}, thus Z possible mul-
tiples of B are to be taken into account. Note that α0 is the MSB part.

(ii) We have exactly "l/z# cycles to go in the loop, a fixed timing.
(iii) It is sufficient to store the multiples for α ≥ Z/2, and α = 0, by supplying

shifted copies for the smaller cases, e.g. cases 3 ·B, 6 ·B (for α = 3 and 6)
from 12 ·B, α = 12 for z = 4, Z = 16.

(iv) The “1-off trick” [15,16,20,7]: A further saving is possible by replacing the
odd multiples by the next higher even ones, and subtract Z ·B in the next
clock cycle:
((αk ·B) << z) + αk+1 ·B = (((αk + 1) · B) << z) + (αk+1 − Z) ·B.
Putting Cα,k := 1, iff αk is odd, 0 otherwise, we then set

αk := αk + Cα,k − Z · Cα,k−1 and M := (M << z) + αk · B.

Hence, (iii) and (iv) combined leave us with the necessary multiples
±(Z/2 + 2),±(Z/2 + 4), . . . ,±Z, 0, where we first applied (iv), then (iii).

While these are still Z/2 choices, and including shifts we again have Z multi-
ples, as are necessary by using base Z, the ± comes for free in hardware as two’s
complement, taking the inverse outputs Q of the register latches. Only the Z/4
multiples Z/2 + 2, Z/2 + 4, . . . , Z have to be stored in hardware.
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3 Reduce-by-Feedback

History:
This algorithm was first introduced in 1987 by Vielhaber [15],
also [16], and in 1990 the German patent [20] was granted.
Beth and Gollmann describe the algorithm in [2], in 1989.
Benaloh and Dai rediscovered the algorithm and gave a talk at
the Rump Session of CRYPTO’95 [1], patenting it in the United
States in 1998 as [19].
Finally, Jeong and Burleson re-re-discovered the algorithm in
1997, when it appeared in the journal article [7].

3.1 The Algorithm

The original idea stems from the analogy with LFSR’s: The z bits running off
in front for each Shift-and-Add step are fed back into the accumulator:

Let K ≡ 2l+2z+1 mod N, 0 ≤ K < N .
Also, partition M into its lower l + z + 1 bits and the higher part,

MH = �M/2l+z+1�,ML = M mod 2l+z+1, M = (MH |ML). Then

(MH |ML) << z = MH · 2l+2z+1 +ML · 2z ≡ MH ·K +ML · 2z mod N

The Shift-and-Add-with-Reduce-by-Feedback algorithm now runs as follows (note
that μk is MH):

Algorithm 2. Shift-and-Add-with-Reduce-by-Feedback
M := 0, Cα,−1 := 0, Cμ,−1 := 0
FOR k := 0 TO "l/z# − 1

Cα,k := αk mod 2, αk := αk + Cα,k − Z · Cα,k−1

μk := �M/2l+z+1�
Cμ,k := μk mod 2, μk := μk + Cμ,k − Z · Cμ,k−1

M := ((M mod 2l+z+1) << z) + αk · B + μk ·K
ENDFOR

// M = A · B mod N, 0 ≤ M < 2l (not necessarily M < N)

Reduce-by-Feedback preserves the 4 properties of Shift-and-Add:

(i) The standard range for the multiples of K is μk ∈ {−1, 0, 1, . . . , 2z}.
(ii) The FOR loop excutes exactly "l/z# times, each run comprising a shift and

2 additions. This amount is independent of the values.
(iii) The multiples of K required according to (i) can be restricted to μk ∈

{0} ∪ {Z/2 + 1, . . . , Z}, supplying the others by shifting.
(iv) The odd multiples can be traded for negative ones, applying the “1-off

trick”. Hence in total we need αk, μk ∈ {0,±(Z/2+2),±(Z/2+4), . . . ,±Z},
with 0 and ± for free in hardware.

Reduce-by-Feedback is thus completely analogous to Shift-and-Add.
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3.2 Overflow Avoidance

We check overflow avoidance by proving the inequality

−Z ≤ μk = MH ≤ Z, ∀k

by induction.
We have 0 ≤ B,K < 2l and 0 ≤ ML < 2l+z+1. Including the “1-off trick”,

we require −Z ≤ αk, μk ≤ Z, and αk, μk being even. This is true for αk, ∀k and
can be assumed for μ0 = 0 at the start.

Then

−1 · 2l+z+1 ≤ (ML << z) + αk · B + μk ·K < 2l+z+1 · (2z + 1/2 + 1/2)

i.e. −1 ≤ M+
H ≤ 2z. As with Cα, we put Cμ,k = 1, if μk is odd and has to be

increased by the “1-off trick”, Cμ,k = 0 otherwise, and then have

μk+1 = M+
H + Cμ,k+1 − Cμ,k · Z ∈ {−Z,−Z + 2, . . . , Z − 2, Z},

which proves the induction step.
Therefore, the accumulator M never exceeds the range −1 · 2l+z+1 ≤ M <

(Z + 1) · 2l+z+1 and the even multiples of B up to ±Z ·B are sufficient.

4 Implementation Issues

4.1 Re-use of MUX Tree

Since the choice of the correct multiples, αk ·B+μk ·K, is completely analogous
for B and for K, we may use the same logic (calculation of decision variables,
MUX tree, shifter) first for the part αk · B (in one half clock cycle), and then
for μk · K (in the other half clock cycle), as described in [15,16,20].

This 1:1 analogy between Shift-and-Add and Reduce-by-Feedback was the
central idea of the algorithm and leads to very compact VLSI designs:

Mapping the implementation in [16] to current 65 nm rules, and näıvely as-
suming a shrinking factor (65/1000)2, this would roughly lead to 13·(1000/65)2 ≈
3000 bits/mm2, or a full 4096 bit RSA with control unit on about 1.5 square
millimeters.

4.2 Delayed-Carry-Adder

Brickell [3] introduced the Delayed-Carry-Adder, a chain of halfadders instead of
full adders, and where the resulting double register has the property ci+1∧si = 0.

The advantage of the Delayed-Carry-Adder is the locality of carries. We do
not have to wait for carry propagation and thus addition is fast. At the end
of a multiplication, however, the final Delayed-Carry result has eventually to be
added into the standard form, which may lead to a timing attack (see Section 5).

Nevertheless, without carry-save techniques, this carry propagation problem
would arise at each addition intead of just once at the end.
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Table 1. Boolean logic for Delayed-Carry adder

Standard Boolean function Using Nand-2 gates

di := si ∧ bi, ti := si ⊕ bi di := si ∧ bi, ti := si ⊕ bi
ei := ti ∧ ki, ui := ti ⊕ ki ei := ti ∧ ki, ui := ti ⊕ ki

fi := ci ∨ di−1 (which are not both 1, fi := ci ∧ di−1

due to ci+1 ∧ si = 0)

gi+1 := ui ∧ fi, vi := ui ⊕ fi gi+1 := ui ∧ fi, vi := ui ⊕ fi
hi+1 := ei ∨ gi (not both 1: ei = 1⇒ ui = 0) hi+1 := ei ∧ gi
c+i+1 := vi ∧ hi, s

+
i := vi ⊕ hi c+i+1 := vi ∧ hi, s

+
i := vi ⊕ hi

Also, we have to take extra care when dealing with the upper part MH (μk)
of the accumulator, see next subsection.

The addition (c, s)+ := (c, s)+ b+ k usually requires two full adders in carry-
save technique. With Brickell’s delayed-carry scheme, we add as follows, where
(c, s) is the delayed-carry register, (b) and (k) are the terms α ·B and μ ·K, re-
spectively. t, u, v are intermediate sum terms, d, e, f, g, h are intermediate carries.
In NAND-logic, the variable c will only be used invertedly.

This leaves us with 4 halfadders plus two or’s, the equivalent of two full
adders. We thus need the same number of gate equivalents, but the result now
has the Delayed-Carry Property ci+1 ∧ si = 0, which is crucial, when calculating
μk (see next paragraph).

4.3 How to Keep the Invariant When Using the Delayed-Carry
Representation

We feed back the z leading MSB bits, which have to be in the range −1, 0, . . . , Z
(assumption for overflow avoidance).

With delayed-carry, we have ci+1 ∧ di = 0, hence the following patterns are
the highest values possible (shown for the case z = 3, Z = 8), Table 1.

As can be seen in Table 2, cases 4 and 5 would lead to an overflow (MH > Z =
8) due to the Delayed-Carry representation. We avoid this by looking further to
the right and (cases 1 and 2) detect and avoid a subsequent overflow already in
the previous cycle.

4.4 Fast Computation of MUX Control Variables

It is crucial that the clock frequency depends only on the data propagation
within the bit slices, and not on the control module.

In each clock cycle, we add α ·B and μ ·K to the delayed-carry register (c, s).
In the two previous half cycles, we choose these multiples by the same hardware
(MUX, shifter, logic), which is not time-critical for α · B, since in principle,
all values α are known. On the other hand, μ depends on the addition just
performing in the half cycle (k + 1, H), while the next multiple μ · K must be
selected in (k + 1, L). We proceed as follows (see [15][16]):

Having calculated (MH)k+1 in half cycle (k + 1, H), immediately afterwards
we need μk+1 in half cycle (k+1, L). We therefore have to precompute as much as
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Table 2. MSB sum of Delayed-Carry-Adder

1 c2l+z+1+2,1,0;−1,−2 0 0 0 0 1 sum is 8 with carry, OK, avoids case 4
s2l+z+1+2,1,0;−1,−2 1 1 1 1 1
MH,2l+z+1+3,2,1,0;−1,−2 1 0 0 0 0 0

2 c2l+z+1+2,1,0;−1,−2 0 0 0 1 1 sum is 8 with carry, OK, avoids case 5
s2l+z+1+2,1,0;−1,−2 1 1 1 1 0
MH,2l+z+1+3,2,1,0;−1,−2 1 0 0 0 0 1

3 c2l+z+1+2,1,0;−1,−2 0 0 1 1 1 sum is 8, OK
s2l+z+1+2,1,0;−1,−2 1 1 1 0 0
MH,2l+z+1+3,2,1,0;−1,−2 1 0 0 0 1 1

4 c2l+z+1+2,1,0;−1,−2 0 1 1 1 1 sum is 9, to be avoided by case 1
s2l+z+1+2,1,0;−1,−2 1 1 0 0 0
MH,2l+z+1+3,2,1,0;−1,−2 1 0 0 1 1 1

5 c2l+z+1+2,1,0;−1,−2 1 1 1 1 1 sum is 11, to be avoided by case 2
s2l+z+1+2,1,0;−1,−2 1 0 0 0 0
MH,2l+z+1+3,2,1,0;−1,−2 1 0 1 1 1 1

Table 3. Precomputation of control variables

Clock Half Selection Computation
cycle cycle
k H αk ·B (MH |ML)k := . . .
k L μk ·K

k + 1 H αk+1 · B (MH |ML)k+1 := ((ML)k << z) + αk ·B + μk ·K
k + 1 L μk+1 ·K

we can: In (k,H), we already compute a partial sum (MH)k ·Z+αk ·B for the bit
positions of MH , including 2 more bits to the right, as described in the previous
paragraph, to avoid possible overflow in the future. We then add the part μk ·K
in (k, L), for these bit positions. We also add 0,1,2,3 to obtain the four possible
final values for μ, and for all four possibilities, we precompute the MUX control
variables for the next choice of μ · K. The only missing part are up to 3 carries
from the lower part, ML, of the sum. In this way, terminating (k + 1, H), we
obtain the new sum (MH)k+1, and immediately select the MUX-control values
to fetch μk+1 ·K in (k + 1, L) from the 4 precomputed sets.

The full-custom implementation in [16] achieves a control unit faster than
the bit slices. We have this design goal also for the FPGA implementation. It
remains to be verified though, whether this will apply or whether the FPGA
architecture (6-input LUTs instead of a chain of half-adders) will actually make
the bit slices even faster.

5 Timing Attacks

We may trivially find the Hamming weight of the exponent by just counting
multiplications and squarings. To prevent this, we would have to either do both
in parallel, wasting space, or introduce dummy multiplications, wasting time.
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In any case, this issue is independent of the implementation of modular mul-
tiplication.

As Kocher [9] points out, however, apart from the Hamming weight, we can
indeed recover the full exponent — provided that multiplication time is sensitive
on the values, some lead to faster calculation than others.

The attack by Schindler [13] on Montgomery multiplication can easily be
overcome by introducing a dummy subtraction, costing a single clock cycle.
There is no analogue of this attack against Reduce-by-Feedback.

Therefore, with Reduce-by-Feedback as well as with Montgomery multiplica-
tion (+dummy), timing attacks are ruled out during the modular multiplication,
taking in any case exactly "l/z# cycles. The result is then in a delayed-carry- or
carry-save-register.

The final carry however, may introduce timing information. Either

(i) we use carry-look-ahead logic, space-intensive, or
(ii) we keep the result in delayed-carry-form, space-intensive, or
(iii) we wait until the longest carry chain (l + z bits) will have passed, time-

intensive, or
(iv) we use interrupt techniques, efficient, but time-variant.

The variation due to carries in case (iv) is the only potential information leak for
a timing attack. This is though independent of Reduce-by-Feedback (or Mont-
gomery multiplication), but a consequence of using carry-save or delayed-carry
techniques.

Up to here, this concerned the modular multiplication as building block. As to
the exterior loop, exponentiation, Square-and-Multiply, there must of course be
the same number of clock cycles between any two multiplications and/or squar-
ings to avoid a timing/DPA mix just concentrating on the transition between two
of them. Otherwise, use the double-add scheme by Joye [8] in the multiplicative
version “square-multiply”, wasting time though. However, this does not concern
modular multiplication proper, but exponentiation.

6 How to Break RSA with Differential Power Analysis

Both Reduce-by-Feedback and Montgomery multiplication make RSA suscep-
tible to the following DPA [10] attack. For other attacks against RSA see the
power attack by Yen et al. [18], and the timing attack by Miyamoto et al. [11].

Now to our DPA attack: Every multiplication (in this section this includes
squarings) starts with an empty accumulator M = 0, and also a zero adjustment
value μ0 (both for Reduce-by-Feedback and Montgomery multiplication).

The first factor, A, will on average start with z zeroes every Z’th multiplica-
tion. In this case, α0 ·B = 0, while the term will be nonzero otherwise.

For μ0 = α0 = 0 (in terms of Reduce-by-Feedback), we compute

M+ = (M << z) + α0 ·B + μ0 ·K = (0 << z) + 0 + 0 = 0,

hence the register M was empty before the step and is overwritten again with
zeroes.
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If, on the other hand, α0 �= 0,

M+ = (M << z) + α0 ·B + μ0 ·K = 0 + α0 · B + 0 �= 0,

and roughly half of the flip-flops of register M will change state from 0 to 1.
This gives a strong difference in power consumption during this first cycle of the
multiplication, compared to M+ = M = 0, a “point-of-interest” in terms of the
template attack [4].

We focus only on this information (about half a bit for z = 3) and will assume
that we can distinguish between A < 1

Z · 2l, case α0 = 0, and A ≥ 1
Z · 2l, case

α0 �= 0, for every multiplication step.
We assume that we have access to the public RSA modulus N and to several

known ciphertexts χ1, χ2, . . . . We observe the decryptions χd
i mod N for a fixed

unknown exponent d (unblinded case). We compute the multiplication chains for
all 2L possible initial segments of d of a certain length L. These segments will
consist of L squarings and furthermore L′, 0 ≤ L′ ≤ L, multiplications, depend-
ing on the number of 1’s in the segment. For each hypothetical segment, we
do the corresponding calculations (multiplications and squarings) and memorize
the sequence of initial coefficients α0 of length L+ L′.

We now observe the actual H/W decryption and obtain a sequence {= 0, �=
0}2L, whose first L+L′ components we check against all possible initial segments.

The per-symbol information is −
(
log2

(
1
Z

)
· 1
Z + log2

(
Z−1
Z

)
· Z−1

Z

)
= 1.0,

0.811, 0.544, and 0.337 bits for z = 1, 2, 3, and 4, respectively. Hence, 1,2,2,3
decryptions χi should be sufficient.

The crucial case is, however, the large set of initial segments leading to the
sequence (�= 0)L

′
, in the case that this is the actual observation. We expect this

to happen with probability
(
Z−1
Z

)L′
, thus leading to

(
Z−1
Z

)L′ × 2L cases. We set
L′ := 0.5L from now on and consider C decryptions χ1, . . . , χC , whose outcomes
(α = 0 or α �= 0) we assume independent.

The expected number of segments which always lead to (�= 0)L+L′ , in all C
decryptions, is then (

Z − 1

Z

)1.5L·C
× 2L.

To have uniqueness, we want this size down to 1, hence
(
Z−1
Z

)1.5L·C × 2L = 1 or
C = −1/(1.5 log2(7/8)), which gives C = 0.67, 1.61, 3.47, and 7.16 for z = 1, 2, 3,
and 4, respectively. Therefore, C ≥ Z/2 samples (asymptotically Z · ln(2)/1.5
samples) are necessary.

We now compare the C ≥ Z/2 sequences actually observed from {= 0, �=
0}L′ with all initial segments of d, saving only the matches, where under ideal
conditions, only a single match should occur. These matches are then extended,
compared to the observations, and so forth, until recovering the full secret RSA
exponent d.

Certainly, there will be noise in our measurements, so quite some more than
Z/2 ciphertexts will be needed under realistic conditions.

And that breaks RSA!
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7 How to Repair Reduce-by-Feedback to Avoid the DPA
Attack on RSA

In this section, we suggest modifications to strengthen Reduce-by-Feedback
against Differential Power Analysis.

As we have seen, the initial all-zero phase is exploitable by DPA. We can
neither avoid μ0 = 0 in the first step, nor α0 = 0 once in a while — if using
directly the z bits of A, and MH , respectively.

We can, however, avoid M = 0 %→ M+ = 0 in this cases, by using the same
“1-off” trick as in property (iv) of Shift-and-add and Reduce-by-Feedback:

0 = 1 + (−1)

We just never add a zeroth multiple, but instead add B once, and subtract it (Z-
fold) in the next step. This brings us back to zero every second step. Assuming
B to have 50% 1’s, the effect is flipping back-and-forth half of the register bits.

To be explicit, we use the case z = 3, Z = 8 in the sequel. The columns “old”
show the regular case [15,16,20], applying properties (iii) and (iv), including
a multiple 0. We also adjust the treatment of values Σ = −1, 1, 2, and 3 to
minimize the information flow (bias) from α, μ to C,A,MH , see columns “new”.

Note that we still use the “1-off trick”, however in an irregular way, so that
the required multiples are no longer just the even ones. In any case, all required
multiples can still be obtained by shifting from only Z/4 values, e.g. 6, and 8.

Table 4. Old and new multiples αk, μk

Cα, αk, Σ αk, C
+ αk, C+

Cμ MH μk(old) μk(new)
0 −1 −1 0 1 −1 0
0 000 0 0 0 1 1
0 001 1 2 1 1 0
0 010 2 2 0 3 1
0 011 3 4 1 3 0
0 100 4 4 0 4 0
0 101 5 6 1 6 1
0 110 6 6 0 6 0
0 111 7 8 1 8 1
0 1000 8 8 0 8 0

Cα, αk, Σ αk, C
+ αk, C+

Cμ MH μk(old) μk(new)
1 −1 −9 −8 1 −8 1
1 000 −8 −8 0 −8 0
1 001 −7 −6 1 −6 1
1 010 −6 −6 0 −6 0
1 011 −5 −4 1 −4 1
1 100 −4 −4 0 −3 1
1 101 −3 −2 1 −3 0
1 110 −2 −2 0 −1 1
1 111 −1 0 1 −1 0
1 1000 0 0 0 1 1

Description of Table 4, Multiples αk, μk from A,MH

The original αk (bits from A), may vary from 0 to Z − 1 = 7, MH (upper part
of M) may vary from −1 to Z = 8. Applying property (iv), a previous odd
value was adjusted by +1, hence we may have to adjust now (Cα, Cμ = 1) by
−Z = −8, giving an overall sum Σ between −9 and +8. Σ is now split into a
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multiple actually added, αk, μk, minus a possible new carry C+
α , C+

μ = 1. In the
original scheme, the multiples were 0,±2,±4,±6, and ±8, while we now have
±1,±3,±4,±6, and ±8, avoiding zero.

Observe that in both cases, all multiples are shifts and negatives of just the
two multiples 6 and 8. Hence, even after the modification, only these 2 multiples
have actually to be stored (and computed).

Description of Table 5, Bias

There is now less bias between Σ,C and the bits of αk, μk. We define bias as
pr(1)− pr(0) (not as pr(1)− 1

2 ).
We assume probability 1/8 each for α = 0, . . . , 7. For, μ, by folding 3 equidis-

tributions over the intervals [0, 8[, [−1/2, 1/2[, and [−1/2, 1/2[, we obtain proba-
bility 1/8 each for μ = 1, . . . , 6, probability 5/48 for μ = 0 and 7, and probability
1/48 for μ = −1 and 8, each comprising the interval MH ∈ [μ, μ+ 1[.

C = 0 and C = 1 are each assigned probability 1/2.
We consider the bias of the bits of C and Σ (internal values revealing infor-

mation about the actual contents of A and M), conditional on certain value sets
for α, μ, namely zero, positive, shifts of 8, and shifts of 6 (potentially observable
by DPA).

We now have probability zero for α = 0, which was 1/8 before. Neither can
we infer anything on observing a shift of 8 (1,2,4,8) vs. a shift of 6 (3,6).

What remains is a bias from α positive to C = 0 (which is almost a tautology).
The fact α > 0 , however, is a mix of the cases α = 1, 2, 3, 4, 6, 8, far more difficult
to analyze by DPA than the distinction α = 0 vs. α �= 0, now ruled out.

Table 5. Bias of C,Σ, conditional on α, μ

C|α Σ2|α Σ1|α Σ0|α C|μ Σ2|μ Σ1|μ Σ0|μ
α, μ = 0 new=old 0 0 0 0 0 0 0 0
α, μ > 0 new −1 0 0 0 −23/24 1/24 1/24 1/24
α, μ > 0 old −1 1/7 1/7 1/7 −1 −2/21 −2/21 −2/21
α, μ ∈ {±1,±2,±4,±8} new=old 0 0 0 0 0 0 0 0
α, μ ∈ {±3,±6} new=old 0 0 0 0 0 0 0 0

We now give the complete Shift-and-Add-with-Reduce-by-Feedback algorithm
for z = 3, including the mentioned modifications, and the final adjustment from
delayed-carry to a single register.

Algorithm 3. Shift-and-Add-with-Reduce-by-Feedback
IN A,B,N // each at most l bits long, N odd
OUT M // the product M=A·B mod N, 0 ≤ M<2l (not necessarily M<N)
// M is actually stored in a delayed-carry register (c, s). Table 2 :
const mult[-9..8] = (−8,−8,−6,−6,−4,−3,−3,−1,−1, 1, 1, 3, 3, 4, 6, 6, 8, 8)
const C[-9..8] = (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0)
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M := 0, Cα := 0, Cμ := 0
FOR k := 0 TO "l/z# − 1

α := 4 · a3k+2 + 2 · a3k+1 + 1 · a3k − 8 · Cα

α := mult[α], Cα := C[α]
μ := �M/2l+z+1� − 8 · Cμ

μ := mult[μ], Cμ := C[μ]
M := ((M mod 2l+z+1) << z) + α ·B + μ · K

ENDFOR

// Multiply by 29

FOR k := 1 TO 3

α := −8 · Cα, Cα := 0
μ := �M/2l+z+1� − 8 · Cμ

μ := mult[μ], Cμ := C[μ]
M := ((M mod 2l+z+1) << z) + α ·B + μ · K

ENDFOR

// Divide by 29, leaving M < 2l

FOR k := 1 TO 9

IF M is odd N ′ := N else N ′ := 0
M := (M +N ′) >> 1

ENDFOR

M := C + S // the final carry, using e.g. carry-look-ahead or interrupts

Although N ′ is either N or zero in the last 9 steps, the result (M +N ′) >> 1
will differ from M in about half of the bits in both cases, making DPA based on
flip-flop recharges extremely difficult.

Unfortunately (or luckily, if we want to promote Reduce-by-Feedback), we see
no way to implement this modification with Montgomery multiplication:

The two properties (iii) and (iv) of Shift-and-Add-with-Reduce-by-Feedback
can be mapped to Montgomery multiplication as
(iii) use shifted multiples (of N) to compensate results terminating in . . . 0, and
(iv) use the 2’s complement of multiples of N terminating in . . . 01 to account
for those terminating in . . . 11.

Again, we have a total of Z/4 multiples physically to be stored, those multiples
of N terminating in . . . 01. However, there seems to be no workaround to replace
the do-nothing (subtract 0 ·N) in the case . . . 000 by anything else.

Conclusion

We have (re-)introduced the Reduce-by-Feedback algorithm, which can be seen
as “Montgomery on the high end”, but was inspired by LFSR feedback.

Reduce-by-Feedback is immune against timing attacks (as is Montgomery
multiplication with dummy subtraction), with the possible exception of the final
carry run.

We recalled how to avoid physically storing multiples, by providing shifted
multiples, and using the “1-off trick”, saving 75%.
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RSA can be broken by DPA, when executed with Montgomery multiplication,
or the unmodified Reduce-by-Feedback.

We proposed modifications for the choice of multiples of both the second
factor B and the feedback value K ≡ 2l+2z+1 mod N . These modifications di-
minish bias, avoid the multiple zero, and thereby avoid the accumulator being
zero in consecutive time steps. These effects of the modification will diminish
the susceptibility of Reduce-by-Feedback to Differential Power Analysis consid-
erably. In particular, the DPA attack of Section 6 on RSA, exploiting the partial
multiplier zero, is no longer possible.

Replacing a multiple zero with “1+ (−1)” by the “1-off trick” is not possible
for Montgomery multiplication. Therefore, the DPA attack against RSA with
Montgomery multiplication is still possible.

We have therefore shown that Reduce-by-Feedback-with-Shift-and-Add is the
method of choice, to implement a timing-resistant and DPA-aware modular mul-
tiplication.
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Abstract. Towards the cold boot attack (a kind of side channel attack),
the problems of reconstructing RSA parameters when (i) certain bits are
unknown (Heninger and Shacham, Crypto 2009) and (ii) the bits are
available but with some error probability (Henecka, May and Meurer,
Crypto 2010) have been considered very recently. In this paper we exploit
the error correction heuristic proposed by Henecka et al to show that
CRT-RSA schemes having low Hamming weight decryption exponents
are insecure given small encryption exponents (e.g., e = 216 + 1). In
particular, we show that the CRT-RSA schemes presented by Lim and
Lee (SAC 1996) and Galbraith, Heneghan and McKee (ACISP 2005)
with low weight decryption exponents can be broken in a few minutes in
certain cases. Further, the scheme of Maitra and Sarkar (CT-RSA 2010),
where the decryption exponents are not of low weight but they have large
low weight factors, can also be cryptanalysed. We also identify a few
modifications of the error correction strategy that provides significantly
improved experimental outcome towards the cold boot attack.

Keywords: Cold Boot Attack, CRT-RSA, Cryptanalysis, Error Correc-
tion, Exponents, Hamming Weight, RSA.

1 Introduction

Side Channel Attack. Side channel cryptanalysis is now a quite popular tech-
nique for evaluating cryptographic schemes and this method usually considers
additional information available from the physical implementation of a cryp-
tosystem, rather than exploiting the theoretical weaknesses of the algorithm
itself. The additional information may be obtained from timing information,
power consumption, electromagnetic leaks etc. and the attack may very well
exploit technical knowledge of the internal operation of the system on which
the algorithm is implemented. The initial research in this area is pioneered by
Kocher [18].

Recently, the idea of cold-boot attack has been presented in [12] that shows
it is possible to exploit degraded data from the computer memory to attack
cryptosystems such as DES, AES, RSA etc. This idea has been studied in more

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 476–493, 2012.
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detail in [14] that shows that if certain percentage of bits of the RSA secret key
are available, then it is possible to reconstruct the complete secret key (or in
other words, it is possible to factorize the RSA modulus). Subsequently, in [13],
a model has been considered, where the bits of the secret key are available with
some probability of error. In this paper we study the work of [13] in more detail.

In general, the side channel attacks use the existing cryptanalytic techniques
with additional (side channel) information. In contrast, in this paper we exploit
the algorithm developed for side channel attacks [13], that is applied for a direct
attack on certain versions of CRT-RSA with no extra hints or other informa-
tion. Further, we also provide certain modifications on the algorithm of [13] to
(heuristically) improve the results of [13]. This improved strategy can immedi-
ately be used for the side channel cryptanalysis presented in [13] which is related
to cold-boot attack [12].

We also like to refer the recent paper [6] related to noisy factoring where new
attacks have been proposed whose running time is essentially the “square root”
of exhaustive search. In this case [6, Section 4], that attack considers that the
noisy version of one of the RSA primes is available. However, the cold-boot attack
model that we consider here, is different from [6] as the noisy versions of more
than one secret parameters of RSA variants are in the hand of cryptanalyst.

RSA. In the seventies, the path-breaking idea of public key cryptosystem has
been introduced by Diffe and Hellman [10] and as an outstanding follow-up,
RSA public key cryptosystem [27] has been proposed by Rivest, Shamir and
Adleman. RSA is undoubtedly the most attractive research area in cryptology
with immediate applications in practice.

The RSA cryptosystem and several variants of it are in use for applications
related to secure data exchange mechanisms. The encryption as well as the de-
cryption process in RSA use modular exponentiation. As square and multiply is
the most popular method for modular exponentiation, it is immediate to note
that the cost is low for small exponents.

Before proceeding further, let us briefly explain the RSA public key cryp-
tosystem. In RSA, a large integer N is generated such that N = pq, where
p, q are primes of same bit lengths. The encryption and decryption exponents
are denoted by e, d respectively and they are chosen in such a manner that
ed ≡ 1 mod φ(N), where φ(N) = φ(pq) = (p − 1)(q − 1), the Euler’s totient
function. The parameters e,N are distributed as the public key and the part d
is kept secret. In the encryption process, we have C = M e mod N , whereas, the
decryption is performed as M = Cd mod N .

It is clear that the cost of modular exponentiation can be reduced if one can
reduce the exponents e, d. However, ed > φ(N) provides the constraint that one
cannot make both e, d small. For any integer x, let us denote its bit-length as �x
and thus �e+ �d ≥ �N . Towards making the decryption process faster, the secret
decryption exponent d has to be made small. In this direction, using the idea of
continued fraction, Wiener [28] showed that when d < 1

3N
1
4 , one can factor N

efficiently. Later, using lattice based techniques, this result has been improved by
Boneh and Durfee [3,2] till the upper bound N0.292. To achieve further efficiency
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during encryption process, small e is considered. Coppersmith [7] has shown that
RSA with very small e, e.g., e = 3 is not secure. For practical purposes, little
larger encryption exponents are used. For example, it is a common practice to
use e = 216+1 and it is believed to be quite secure. Given small e, d becomes of
the order of N , and the decryption process will be much less efficient than the
encryption.

CRT-RSA. To achieve further efficiency during decryption, Wiener [28] pre-
scribed use of Chinese Remainder Theorem (CRT) that has earlier been studied
by Quisquater and Couvreur [26]. This is known as CRT-RSA. In CRT-RSA,
one uses dp = d mod (p − 1) and dq = d mod (q − 1), instead of d, for the de-
cryption process. This is the most widely used variant of RSA in practice, and
decryption becomes more efficient if one pre-calculates the value of q−1 mod p.
Thus, in PKCS [24] standard for the RSA cryptosystem, it is recommended
to store the RSA secret parameters as a tuple (p, q, d, dp, dq, q

−1 mod p). For
all the cryptanalytic strategy we mention here, the term q−1 mod p could not
be exploited. Thus, in this paper, we will refer the secret key of RSA as a tu-
ple SK = (p, q, d, dp, dq). Let us now discuss the cryptanalytic results related
to CRT-RSA. The birthday attack has been pointed out by Pinch (as referred
in [25]) in case of very small dp, dq (one may also have a look at [23]). Further,
if dp, dq < N0.073, one can factor N in polynomial time [17]. In [16], it has been
shown that CRT-RSA is weak if dp − dq is known and dp, dq are smaller than
N0.099. Broadly speaking, it is easy to see that CRT-RSA can be broken in O(e)
time if dp − dq can be obtained with small effort.

There are also some important results related to RSA variants under the fault
attack. Boneh et al [4] showed that CRT-RSA implementations are vulnerable
in this regard. Later Coron et al [8,9] extended the results of [4]. Recently, Brier
et al [5] have presented alternative key-recovery attacks on CRT-RSA signatures
under fault model.

RSA and CRT-RSA Variants. There are several proposals on RSA and CRT-
RSA key generation algorithms such that e is small and the secret parameters
have certain special structures. For example, Lenstra [19] pointed out that by
taking N with half of most significant bits to be zero, one would obtain around
30% advantage in encryption and decryption process. Similar idea for using
large number of zeros in the binary representation of decryption exponent has
also been used in several papers. In such a case, the multiplication effort will
be reduced a lot in square and multiply algorithm. Initially Lim and Lee [21]
considered the RSA keys with relatively low Hamming weight of the decryption
exponent d. Later, Galbraith et al [11] proposed a key generation algorithm
for CRT-RSA. Using that idea, one can generate CRT-RSA modulus N which
allows the cost of encryption and decryption to be balanced according to the
requirements of the applications. For faster decryption, one can choose dp, dq
with low Hamming weight. In this regard, Galbraith et al [11] mentioned

“In some settings we may also want to choose the di to have low Ham-
ming weight. This is easily done if the ki are small.”
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Towards the security analysis, for small e, the estimated time complexity to

attack such a scheme [11] has been presented as O
(√

wdp

( �dp/2
wdp/2

))
, where wx is

the Hamming weight of the binary representation of the integer x. In line of the
work of [11], another efficient scheme has been proposed in [22] that also relied on
large low weight factors in the decryption exponent dp, dq. The security analysis
of [22] show that the exhaustive search for the low Hamming weight factors in
the decryption exponents is an approach to attack such a scheme. Note that the
schemes of [21,11,22] are motivated towards implementing on low end devices
with limited computational power (such as smart card).

Our Contribution. To the best of our knowledge, there has been no crypt-
analytic result on the security of schemes [21,11,22] so far. For the first time,
in contrary to the claims in [21,11,22], we show that the ideas exploiting low
weight integers in the secret decryption exponents, can be broken much faster.
The basic technique we use in this paper is the work of [13] related to error
correction of RSA secret key. In Crypto 2010, Henecka et al [13] studied the
case when the bits of SK were known with some error probability for each bit.
We refer a noisy version of SK as ˜SK, i.e., ˜SK = (p̃, q̃, d̃, d̃p, d̃q). That is, each
bit of the parameters in SK is considered to be flipped with some probability
δ ∈ [0, 12 ). The authors [13] could show that one can correct the errors in the
secret key (i.e. recover the secret key) in polynomial time (for small e) when the
error rate δ is less than 0.237, 0.160, 0.084 when noisy versions of (p, q, d, dp, dq)
or (p, q, d) or (p, q) are available.

The algorithm presented in [13] guesses the bits of one of the primes and
then uses the reconstruction technique for cold-boot attack in [14] as to get ap-
proximations of the other parameters in SK. The verification of each guess is
achieved by comparing the Hamming distance of the guess with the erroneous
version of SK obtained through side-channel attacks. This is equivalent to prun-
ing the search space towards the correct solution, and hence higher bit-error can
be corrected if one uses more parameters from SK during the pruning phase.

In CRT-RSA situation, we have edp ≡ 1 mod (p − 1). Thus, one can write
edp = 1 + kp(p − 1) where kp < e. Similarly we have edq = 1 + kq(q − 1)
where kq < e. For small values of e, one may assume kp, kq are known to the
attacker in O(e) time complexity as we explain in Section 2. In general, for a
randomly chosen integer x, we have wx ≈ �x

2 . However, for efficient decryption,
sometimes wdp , wdq are taken significantly smaller than the random case. For
example, consider that �dp = �dq = 512 and wdp , wdq ≈ 50. In such a scenario,
one can take the all zero bit string as error-incorporated (noisy) presentation of
dp, dq, where the error rate is around

50
512 ≈ 10%. As the error rate is significantly

small, one can apply the error correcting algorithm of [13] to recover the secret
key. Denoting the time complexity of the error-correction algorithm [13] as τ ,
our strategy attacks the schemes [21,11] in τO(e) time, and the scheme [22] in
τO(e3) time.

While attacking the schemes [21,11,22], one can attempt to recover all the bits
of p as it is done for the error correcting algorithm in [13]. However, one can also
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try to construct only the least significant half of p using the same strategy and
then use the lattice based result of [1] to get the complete p. While describing
the experimental results, we present separate data for constructing all the bits
of p and only least significant half of p.

While applying the heuristic [13], we noted a few modifications that can im-
prove the performance significantly and the central idea is as follows. Instead of a
single fixed threshold related to bit-matching in [13], we use multiple thresholds
towards the motivation that we involve several constraints on the secret param-
eters in our case whereas a single constraint has been taken into consideration
in [13].

Table 1. Experimental results of [13] with maximum possible δ as available from [13,
Section 6, Tables 2, 3, 4].

Parameters Upper bound of δ [13] Success probability (expt.) upper bound of δ
theoretical experimental [13] our achieved in our expt.

(p, q) 0.084 0.08 0.22 0.61 0.12
(p, q, d) 0.160 0.14 0.15 0.52 0.17

(p, q, d, dp, dq) 0.237 0.20 0.21 0.50 0.25

To present a glimpse of our improvement, let us provide a brief comparison
of our results with that of [13] in Table 1. For the experiments, we only refer to
the results at maximum value of δ in [13] (and show that our success probability
is better at that point) because our main contribution is to show that we can
go significantly beyond the bound of δ in [13] with our heuristic strategy in
Algorithm 2 (Section 3). See Section 4 for the detailed experimental results. For
any other results describing lower error rates presented in [13], we always obtain
improved success probability and those are not explicitly mentioned here.

We like to point out that apart from the specific attack on CRT-RSA with cer-
tain parameters, our improved heuristic can correct more noise than the existing
strategy [13] for cold-boot attack in general.

Roadmap. In Section 2, we efficiently exploit the error correction strategy
of [13] to show that CRT-RSA schemes that involve low weight secret parame-
ters are not secure. We point out that the CRT-RSA based schemes of [21,11]
with certain parameters can be broken in a few minutes (Section 2.1) and also
present cryptanalytic results on the scheme of [22] (Section 2.2). Further, in the
process, we provide modifications to the error correction heuristic of [13] that
provides significantly improved experimental results. This is presented in Sec-
tion 3. Detailed experimental results are presented in Section 4. Conclusion of
this paper is presented in Section 5.

2 The Idea of Cryptanalysis

We start with the basic relations of CRT-RSA, such as edp = 1 + kp(p − 1) ⇒
kp − 1 ≡ kpp mod e, and edq = 1 + kp(q − 1) ⇒ kq − 1 ≡ kqq mod e. From
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these we get kq ≡ (kp − 1) (kp(1 − N)− 1)−1 mod e. Since both kp, kq < e and
from the above equation a choice of kp fixes kq, there are O(e) possible choices
for the pairs (kp, kq). As we have assumed, the Hamming weight of dp, dq are
considered to be significantly lower than the random case. Further, the presence
of 1’s in the binary representation of dp, dq are considered to be i.i.d. For better
explanation, from now on, we will assume that kp, kq are known to the attacker
and finally the complexity of the attack will be obtained by multiplying an O(e)
factor, unless mentioned otherwise.

Our idea is to guess a few bits (say a many bits) of p from the least significant
side and let the corresponding integer be p′. From p′, we get an approximation q′

of q. From p′, q′ and using the knowledge of e, kp, kq, we obtain the approxima-
tions of dp, dq, that we denote by d′p, d

′
q respectively. If the Hamming weights of

d′p, d
′
q are less than some predefined threshold, then p′ would be a possible choice

of p. This process will be repeated until we have obtained a set A of possible
guesses p′ for p. Then we extend the solutions by adding a more bits in the more
significant side with the possible partial solutions in A. The process continues
till we get a set of possible solutions for p itself.

Input: N, e, kp, kq and a,C
Output: Set A, containing possible guesses for p.

Initialize b = 0, A = ∅, A−1 = {λ}, i = 1;1

while b < �N
2

do2

A = {0, 1}a‖A−1;3

For each possible options p′ ∈ A, calculate q′ = (p′)−1N mod 2b+a;4

For each p′, q′, calculate5

d′p = (1 + kp(p
′ − 1)) e−1 mod 2b+a, d′q = (1 + kq(q

′ − 1)) e−1 mod 2b+a;
If the number of 0’s taking together the binary patterns of d′p, d

′
q in the6

positions b to b+ a− 1 from the least significant side is less than C, then
delete p′ from A;
If b �= 0 and A = ∅, then terminate the algorithm and report failure;7

A−1 = A; b = b+ a; i = i+ 1;8

end
Report A;9

Algorithm 1. Reconstruction algorithm for p.

In Algorithm 1, we present the algorithm formally. For that we need to use
certain notations. Given two binary strings u1, u2, by u1‖u2 we mean the con-
catenation of the strings. With abuse of notation, for two integers x, y, by x‖y
we denote the integer formed by the concatenation of the binary representations
of x, y. We also consider the notation X‖Y = {x‖y : x ∈ X, y ∈ Y }. By λ we
mean an empty or null string. Steps 4 and 5 in Algorithm 1 can be calculated
efficiently using the relations [13, Equations (8), (10), (11)].
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2.1 Cryptanalysis of [21,11]

In [21,11], CRT-RSA secret keys are generated in a manner such that the weights
of dp, dq are small. By δ we denote the probability that a bit of dp or dq is 1.

Thus, δ can be estimated as
wdp

�dp
or

wdq

�dq
. Following the theoretical results of [13],

we immediately get the result as below. For the sake of completeness, a detailed
analysis regarding this is available in Appendix A.

Theorem 1. Let a = " ln �N
4ε2 #, γ0 =

√
(1 + 1

a )
ln 2
4 and C = a + 2aγ0. We also

consider that the parameters kp, kq of CRT-RSA are known. Then one can obtain

p in time O(l
2+ ln 2

2ε2

N ) with success probability greater than 1 − 2ε2

ln �N
− 1

�N
if δ ≤

1
2 − γ0 − ε.

To maximize δ, we need that ε should converge to zero and in such a case a
tends to infinity. Then the value of γ0 converges to 0.416. Thus, asymptotically
Algorithm 1 works when δ is less than 0.5 − 0.416 = 0.084. However since in
this case a becomes very large, the algorithm will not be efficient and may not
be implemented in practice. This is the reason, experimental results could not
reach the theoretical bounds in [13].

Generally, dp, dq are taken to be of same bit size which is equal to �N
2 . Thus,

following the idea of Theorem 1 above, one can cryptanalyze CRT-RSA having
wdp , wdq ≤ 0.04�N in O(e ·poly(�N )) time. For each possible option of kp, kq (this
requires O(e) time), one needs to apply Algorithm 1 to obtain p. It is indeed
clear that for small e the attack remains efficient.

In [21, Page 9, end of paragraph 3], example parameters have been proposed,
where �N = 768, �dp = 384 and wdp = 30. This falls under the condition men-
tioned above and we could cryptanalyze all the CRT-RSA keys with such pa-
rameters in a few minutes in practice. In another example [21, Table 2, Section
7], it has been considered that �N = 768, �dp = 377 and wdp = 45 and e = 257.

In this case δ =
wdp

�dp
≈ 0.12 > 0.08, and thus it is not in the bound given in

Theorem 1 and so Algorithm 1 would not work as it is. However, in the next
section (Section 3) we will present some modifications over Algorithm 1 to get
Algorithm 2 that provides significantly improved results experimentally than
what presented in Theorem 1. That helps us in easily breaking CRT-RSA with
the above mentioned parameters in a few minutes again.

In [11, Figure 1], parameters are proposed as (�e, �dp , �kp) = (176, 338, 2) with
wdp = 38. Note that in this situation, one could easily obtain kp and kq, even
without trying O(e) steps. Here δ = 38

338 ≈ 0.11. Using Algorithm 2 discussed in
Section 3, one can break the CRT-RSA scheme with such parameters mentioned
in [11] within a few minutes.

2.2 Cryptanalysis of [22]

In [22], the CRT-RSA decryption exponents dp, dq have been chosen in a slightly
different manner. Here the weight of dp, dq are not small, but they are of the form
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dp = dp1dp2 and dq = dq1dq2 . The factors dp1 and dq1 are of size O(e) and the
other factors dp2 of dp and dq2 of dq are of significantly small Hamming weight.
So, in this case we have edp1dp2 = 1 + kp(p − 1) and edq1dq2 = 1 + kq(q − 1).

There are O(e2) choices of dp1 , dq1 . Since kq ≡ (kp−1) (kp(1 − N) − 1)
−1

mod e,
within O(e3) many attempts one can get the correct choice of (dp1 , dq1 , kp, kq).
Hence one can consider that the attacker knows dp1 , dq1 , kp and kq, perform the
attack and then multiply the effort by O(e3) to get the total time complexity of
the cryptanalysis. Let a many LSBs of p be known and p′ be the corresponding
integer. Then a many LSBs of dp2 , dq2 can be obtained through the following
identities:

dp2 ≡ (edp1)
−1(1 + kp(p

′ − 1)) mod 2a,

dq2 ≡ (edq1)
−1 (

1 + kq
(
N(p′)−1 mod 2a − 1

))
mod 2a. (1)

We use the Equation (1) in step 5 of the Algorithm 1 instead of what is given
there towards the cryptanalysis of [22]. Here �dp2

≈ �N
2 − �e. When wdp2

, wdq2
≤

0.08
(
�N
2 − �e

)
, one could cryptanalyze the CRT-RSA scheme with the parame-

ters proposed in [22] in time O(e3�
2+ ln 2

2ε2

N ).
Five challenges have been presented in [22], where e = 216+1, �N = 1024 and

wdp2
= wdq2

= 40. As both dp1 and dq1 are of O(e), �dp2
≈ �dq2

≈ 512−16 = 496.

Hence δ = 40
496 ≈ 0.08. Thus, the proposal of [22] can be cryptanalysed using

Algorithm 1 with a modification in step 5 as described above.
Let us now explain the efficiency of our cryptanalysis on the proposal of [22] as

we could not break it in real time as had been done on the examples of [21,11].
Note that for e as described in [22], e3 is around 248 and that many runs of
Algorithm 1 or Algorithm 2 are required.

The parameters of [22] are so chosen that if one tries to go for an exhaus-
tive search, then it will require around 294 effort. Based on this, it has been
claimed [22] that such a scheme is secure as the best possible factorization strat-
egy using NFS [20] requires around 286 time complexity and one cannot attack
the scheme in a lower complexity than that.

Now we show that one can indeed attack the scheme of [22] in a time complex-
ity much less than 286. One can implement the attack with all possible values of
dp1 , dq1 , kp, kq that requires 248 many invocations of Algorithm 1 or Algorithm 2
when e is 16-bit integer. As Algorithm 2 works significantly better than Algo-
rithm 1, we estimate the time complexity of each invocation of Algorithm 2.
Given a block length a = 10, to get p, we need " 512

10 # = 52 many generations of
set A, where we bound the number of solutions in the set A by 1000 in the exper-
iments. We can estimate the time complexity for each invocation of Algorithm 2
with the above parameters as 52 · 1000 < 216. Hence, the total complexity of the
attack is around 248+16 = 264, which is significantly smaller than 286.

While the idea presented in [22] can be cryptanalyzed, it cannot be broken in
a few minutes experimentally as it could be done for [21,11]. One may actually
explore the ideas of countermeasure from [22]. To protect/blind the secret expo-
nents, one needs to use the product of one large integer (of small weight) and one
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very small integer such that the weight of the product is not small (please see
Section 2.2). Proper choice of parameters (in particular bit length of the smaller
and larger factors) will make the attack less effective. As an example, instead of
choosing 16-bit kp, kq, one may try larger ones (say, 32 bits). This will increase
dp1 , dq1 to 32 bits. In this case, the attacker needs to know dp1 , dq1 , kp and the
attack complexity will this increase.

3 Heuristics for Further Improvement of the Error
Correction Algorithm [13]

The theoretical bounds on the noise rate δ in [13] for which SK can be recovered
from a noisy version of it are as follows: (i) δ < 0.237, when p̃, q̃, d̃, d̃p, d̃q are

available, (ii) δ < 0.160, when p̃, q̃, d̃ are available, and (iii) δ < 0.084 when p̃, q̃
are available. However one cannot achieve these bounds due to high length of the
block size. The experimental bounds achieved in [13, Section 6, Tables 2, 3, 4]
are presented as 0.20, 0.14 and 0.08 for cases 1, 2 and 3 respectively with success
probability less than 0.25. In this section we explain certain heuristics to improve
these experimental results significantly. We present experimental results having
error rates higher than the theoretical upper bound of [13]. This we get for the
parameter a = 10 which is much lower than the values used in the experiments
of [13] and increasing a in our strategy improves our results further. Let us now
present the broad ideas behind our improvements.

Different Values of the Threshold C. Instead of one fixed threshold C, we
take different thresholds in different steps, that depend on the value b+a. During
the pruning, we count the number of bits at which the noisy parameters and the
possible solutions match for the positions 0 to b + a − 1. Thus the number of
comparison for each parameter is (b+a) at each step and then based on that we
decide whether we will accept or reject a solution. Thus we consider a cumulative
measure, where for the initial steps, the bit strings compared are of the lesser size
and as the solution grows, the bit strings in comparison are of larger size. The
threshold parameters are chosen based on the error rate and length of the-then
solutions (which are actually b+ a at that point of time).

Multiple Constraints on Each Round. Instead of considering the total num-
ber of mismatched bits for each component of the secret key, all possible con-
straints are considered at the same time in our strategy. Suppose we want to
factor N = pq where p, q are available with some noise. Consider an instance of
the algorithm where we have reached up to the bit position i.

For proceeding further, let us have a few notations. For an integer x, by x[i],
we denote the i-th least significant bit of x. Further, by x[i], we mean the bit-
string x[i], x[i − 1], . . . , x[1], x[0] and this will also be interpreted as an integer.
As an example, for a prime, say, p = 23, we have the binary representation 10111
and thus, p[3] = 0111, which is 7 as an integer.
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Let the number of matched bits between the partial solution p′ and the cor-
responding bits of the noisy version p̃, i.e., p̃[i] be μ1 and for q′ and q̃[i] be μ2.
We impose constraints on both the values of μ1, μ2 along with μ3 = μ1 + μ2

to achieve better pruning. In [13], the pruning was applied on the sum of the
individual values only. Here, in case of m many components of the secret key,
total number of constraints in each iteration would be

∑m
i=1

(
m
i

)
= 2m−1. When

we work with the five parameters p, q, d, dp, dq, we use a total of 31 constraints
instead of 1 as mentioned in [13].

Suppose that the secret key has m components. For the l-th component (1 ≤
l ≤ m) of the key, let μ2l−1 denote the number of matched bits between the
partial solution and the noisy version of the component at the corresponding
bits. Then for each individual component, numbers of matched bits are given
by {μ1, μ2, μ4, . . . , μ2m−1} respectively. Now, for any general k ∈ [1, 2m − 1], we
define the term μk as follows: μk =

∑m
i=1 kiμ2i−1 , where ki are the bits of k

for 1 ≤ i ≤ m. Thus the total number of matched bits in all components of
the secret key is given by μ2m−1 =

∑m
i=1 μ2i−1 . In practice, when we work with

m = 5 parameters p, q, d, dp, dq of the secret key, μ31 = μ1 + μ2 + μ4 + μ8 + μ16

represents the cumulative sum of matched bits between the partial solution and
corresponding bits of the noisy version for all parameters.

Value of Threshold Parameters and Its Run-Time Modifications. For
each μi, we choose the value of the threshold Ca+b

i depending upon the noise
rate δ and the value of a + b at that stage. For a fixed noise rate δ, we choose
the minimum Ca+b

i such that

Ca+b
i∑
j=1

(
wi(a+ b)

j

)
δj(1 − δ)a+b−j > ν, (2)

where wi is the Hamming weight of i as we have mentioned earlier. In the experi-
ments we take ν = 0.99 for a+ b < 150 and ν = 0.98 for a+ b ≥ 150. We choose
the thresholds like this so that the possibility of rejecting a correct partial solu-
tion remains very low. It is clear that one cannot allow the size of A to increase
exponentially. Thus one needs to keep some upper bound on |A| while running the
algorithm. Let |A| be restricted by a constant upper bound B. Consider m secret
parameters and take certain threshold for each μi. While creating the set A from
A−1 in a loop, if |A| > B, we reduce Ca+b

2m−1 by 1. One may ask, why do we reduce
only the threshold corresponding to μ2m−1 = μ1 + μ2 + . . . + μ2m−1 . We have
tried in manipulating other thresholds as well, but found that this is quite an ef-
fective idea to obtain good experimental results. The study of such thresholds and
their modifications during the run of the algorithm is an interesting question and
requires serious attention that is not in the scope of this work.

The Modified Algorithm. Based on the above discussion, our improved error
correction strategy is presented in Algorithm 2. We have presented the algorithm
with all the five parameters p̃, q̃, d̃, d̃p, d̃q, though one can easily modify it for less
number of parameters.
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Input: N, e, k, kp, kq
Input: p̃, q̃, d̃, d̃p, d̃q
Input: a,B and threshold parameters as described in (2).
Output: Set A, containing possible guesses for p.

Initialize b = 0, A = ∅, A−1 = ∅;1

while b < �N
2

do2

A = {0, 1}a‖A−1;3

For each possible options p′ ∈ A, calculate q′ = (p′)−1N mod 2b+a;4

Calculate d′ = (1 + k (N + 1− p′ − q′)) e−1) mod 2b+a;5

Calculate6

d′p = (1 + kp(p
′ − 1)) e−1 mod 2b+a, d′q = (1 + kq(q

′ − 1)) e−1 mod 2b+a;
Calculate μi’s for i = 1 to 31 comparing least significant b+ a bits of the7

noisy strings and the corresponding possible partial solution strings of
length b+ a, i.e., through the positions 0 to b+ a− 1;
If μi < Ca+b

i for any i ∈ [1, . . . , 31], delete the solution from A;8

If |A| > B, reduce Ca+b
31 by 1 and go to Step 8;9

If b �= 0 and A = ∅, then terminate the algorithm and report failure;10

A−1 = A; b = b+ a;11

end
Report A;12

Algorithm 2. Improved Error Correction algorithm.

In the next section we present experimental results to highlight the significant
improvements over [13]. Theoretical analysis of Algorithm 2 (possibly exploiting
statistical techniques) is indeed of interest, though it is not attempted in this
initiative.

4 Experimental Results

We have implemented Algorithm 2 using C programming language (with GMP
library for processing large integers) on Linux Ubuntu 2.6. The hardware plat-
form is an HP Z800 workstation with 3GHz Intel(R) Xeon(R) CPU. Our imple-
mentation is not optimized and for each run the time required varied from a few
seconds to a few minutes depending on the error rates. The time estimations
presented in our tables are the averages of the time required in the successful
runs only. In all the experiments, we take 1024-bit RSA with public exponent
e = 216+1. We consider a = 10 and B = 1000. For each experiment, we generate
20 different RSA secret keys and for each secret key, we generate 20 many noisy
versions by incorporating independently and uniformly distributed errors with
noise rate δ. So, we have a total of 400 samples.

First we go for only two parameters. This can be interpreted in two ways: (i)
the noisy versions of p, q are available with error rate δ or (ii) p, q are completely
unknown, but the weights of p, q are small, i.e.,

wp

�p
≈ wq

�q
≈ δ.
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Table 2. Experimental results with Algorithm 2 with two parameters p, q

δ 0.08 0.09 0.10 0.11 0.12 0.13
Success probability 0.61 0.36 0.19 0.06 0.02 -
Time (in seconds) 255.97 249.56 252.23 235.34 230.13 -

Success probability (half) 0.71 0.55 0.41 0.23 0.13 0.08
Time (in seconds) 68.82 66.24 66.23 66.00 60.04 61.67

Table 3. Experimental results with Algorithm 2 with two parameters dp, dq

δ 0.08 0.09 0.10 0.11 0.12 0.13
Success probability 0.59 0.27 0.14 0.04 - -
Time (in seconds) 307.00 294.81 272.72 265.66 - -

Success probability (half) 0.68 0.49 0.25 0.18 0.08 0.02
Time (in seconds) 87.41 84.47 80.18 74.57 79.33 76.04

Note that we run Algorithm 2 till we obtain all the bits of p. However, it is
known that if one obtains the least significant half of p, then it is possible to
obtain the factorization of N efficiently [1]. In this case, as we need to reconstruct
half of the bits of p instead of the full binary string, the success probability
will increase. Keeping this in mind, in the experimental results we provide the
success probability to obtain the complete bit pattern of p to compare our results
with [13] as well as the success probability to obtain least significant half of p, that
is actually required for the attack. We refer the second one as success probability
(half) in the tables. The error rate of the order of 0.08 could be achieved with
success probability 0.22 in [13], and one may see in Table 2 that our results are
significantly improved.

In Table 3, we present experimental results related to our attack in Section 2.
Taking e = 216 +1, we have generated CRT-RSA secret exponents dp, dq having
small Hamming weights using the idea of [11]. In Table 3, we present experi-
mental results taking 5-bit kp, kq. The results in Table 3 is slightly worse than
Table 2. This is because in the least �kp many bits of dp, dq, the error rate is not
small due to the key generation algorithm of [11]. We obtained similar kinds of
results for cryptanalysis of [22] too, with similar parameters as in the benchmark
examples of [22, Appendix A]. However, in these cases, for practical experiments
in a few minutes, we need to consider that dp1 , dq1 , kp, kq are available. That is,
the time need to be multiplied by 248 for actual attack, when e = 216 + 1, say.

Next, in Table 4, we consider the case with three parameters p, q, d. When
δ = 0.14, the success probability in [13, Table 3] has been reported as 0.15. The
success probability using our modification is 0.52 in this scenario. Further we
could demonstrate experimental results till δ = 0.17 which is better than the
theoretical bound of 0.16 in [13].

Next we present the results will all five parameters. It is evident from Table 5
that we obtained significant improvement over the results of [13].

Our current implementation is only towards proof-of-the-concept. The results
are expected to improve further with optimized implementation. While we can
work with higher error rates and the success probability of our modified version
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Table 4. Experimental results with Algorithm 2 with three parameters p, q, d

δ 0.14 0.15 0.16 0.17 0.18
Experiment 0.52 0.21 0.11 0.03 -

Time (in seconds) 461.24 430.36 412.08 407.8 -

Experiment(half) 0.69 0.48 0.23 0.14 0.07
Time (in seconds) 142.99 131.69 127.12 123.00 124.00

Table 5. Experimental results with Algorithm 2 with five parameters p, q, d, dp, dq

δ 0.20 0.21 0.22 0.23 0.24 0.25
Experiment 0.50 0.44 0.33 0.14 0.02 0.005

Time (in seconds) 699.82 639.16 607.23 580.45 540.10 502.00

Experiment(half) 0.70 0.58 0.55 0.31 0.12 0.065
Time (in seconds) 221.00 192.35 190.94 173.96 168.00 169.61

are much better than [13], we require little more running time than [13]. However,
we like to point out that our improvement is not achieved at the cost of a higher
running time as our results cannot be reached taking a = 10 by the techniques
of [13]. Towards the higher error rates, the value of a in [13] varies from 20 to 29,
whereas we work with a as small as 10 for all the cases. Still we achieve better
success rate. Larger the size of a, larger is the set of partial solutions A. This
clearly shows that our strategy performs significantly better with the new ideas
of pruning where the correct solution is retained with good success rate.

We have also explored a few other implementation strategies for Algorithm 2.
Let D(x) be the largest integer that divides x. From the knowledge of k, kp and
kq, one can easily calculate D(k), D(kp), D(kq). Thus, in the steps 5 and 6 of the
Algorithm 2, one can calculate

d′ = (1 + k (N + 1 − p′ − q′)) e−1) mod 2b+a+D(k),
d′p = (1 + kp(p

′ − 1)) e−1 mod 2b+a+D(kp) and

d′q = (1 + kq(q
′ − 1)) e−1 mod 2b+a+D(kq).

Since D(k), D(kp) and D(kq) are very small in general, the improvement in
terms of time complexity will not be significant and we have checked that exper-
imentally too. In the course of optimizing the algorithm, one may note that the
solution sets for these equations can be evolved rapidly by Hensel lifting. These
are actually used in the time of inverse calculations in our strategy. In this case
also, we did not obtain major improvements in running time.

5 Conclusion

In this paper, first we apply the recently proposed error correction strategy (mo-
tivated from cold-boot attack) for RSA secret keys [13] to actual cryptanalysis
of CRT-RSA under certain conditions. We studied two kinds of schemes. The
first one considers the CRT-RSA decryption keys of low weight as in [21,11]. In
these cases, we demonstrate complete break in a few minutes for 1024 bit RSA
moduli. The next one considers the scenario when the decryption exponents are
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not of low weight, but they contain large low weight factors [22]. Though this
scheme seems more resistant to our method than the ones in [21,11], it [22] is
also prone to cryptanalysis with much lower complexity than what claimed in
the paper [22].

Further, we had a detailed look at the actual error correction algorithm of [13]
and provided significant improvements as evident from experimental results. The
experimental results are significantly better than the ones presented in [13] and
more importantly, we could demonstrate that the theoretical bound of [13] can
also be crossed using our heuristic. These results can directly be applied to
cold-boot attack, in general, on RSA and its variants.

Acknowledgments. The authors like to thank the Centre of Excellence in
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search.
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Appendix A

In Section 2, we have described Algorithm 1 towards cryptanalysis of CRT-RSA
schemes with low weight decryption exponents when the encryption exponent
is small. The theoretical result related to the algorithm has been presented in
Theorem 1. Theorem 1 follows directly from the analysis of [13]. Still we explain
this in detail for completeness.

We refer to Algorithm 1. Let us define a random variable Xc for the total
number of 0’s in the binary representation of d′p and d′q from the position b to
b + a − 1, where d′p, d

′
q are correct partial solution of dp, dq. Clearly Xc follows

binomial distribution with parameters 2a and probability 1 − δ. Hence

P (Xc = γ) =

(
2a

γ

)
(1 − δ)γδ2a−γ ,

for γ = 0, . . . , 2a.
Now assume one can expand some incorrect partial solutions (p′, q′) and obtain

d′p, d
′
q. Let Xb be the number of 0’s in the expanded 2a many bits in d′p, d

′
q. To

study the distribution of Xb, we consider the following heuristic assumption that
every solution generated from incorrect partial solution consists of randomly
chosen bits. Thus,

P (Xb = γ) =

(
2a

γ

)
2−2a.

We have to choose a threshold C such that the two distributions Xc and Xb are
sufficiently separated.

Take C = a + 2aγ0 where γ0 =
√
(1 + 1

a )
log 2
4 . Let the random variable Yi

represent the number of incorrect partial solutions that pass the threshold bound
C at i-th stage. Then one can get the following result.

Lemma 1. The expectation E[Yi] of Yi is less than 2a+1.

Proof. Let us denote Zg as the number of incorrect candidates from the partially
correct solution and let Zb give the count of the number of incorrect candidates
from each partially incorrect solution. Thus, we have

E[Y1] = E[Zg],

E[Y2] = E[Zg] + E[Zb]E[Y1],

...

E[Yi] = E[Zg] + E[Zb]E[Yi−1]

= E[Zg] + E[Zb] (E[Zg] + E[Zb]E[Yi−2])

= · · ·

= E[Zg]

i−1∑
k=0

E[Zb]
k

= E[Zg]
1 − E[Zb]

i

1 − E[Zb]
.
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Now define 2a random variables corresponding to i = 1, · · · , 2a such that

Zi
b =

{
1 if i-th bad candidate passes the threshold
0 otherwise

Clearly, Zb =

2a∑
i=1

Zi
b. So,

E[Zb] = 2aE
[
Zi
b

]
= 2aPr

[
Zi
b = 1

]
= 2aPr [Xb ≥ C]

= 2aPr

[
Xb ≥ 2a

(
1

2
+ γ0

)]
From Hoeffding’s inequality [15] we know,

Pr

[
Xb ≥ 2a

(
1

2
+ γ0

)]
≤ e−4aγ2

0 = e−4a(1+ 1
a )

log 2
4

= 2−a−1.

Hence E[Zb] ≤ 2a · 2−a−1 = 1
2 < 1. So,

E[Yi] <
E[Zg]

1 − E[Zb]
≤ 2E[Zg] ≤ 2(2a − 1) as E[Zg] ≤ 2a − 1

< 2a+1.

��

To have the time complexity of Algorithm 1 polynomial in �N , one can take, for
example, a = " ln �N

4ε2 # and δ ≤ 1
2 − γ0 − ε. Then we get the following result.

Lemma 2. Algorithm 1 succeeds with probability greater than 1 − ε2

�N
− 1

�N
.

Proof. The probability of pruning the correct partial solution at one step is given
by Pr[Xc < C]. Now

Pr[Xc < C] = Pr[Xc < 2a(
1

2
+ γ0)] ≤ Pr[Xc < 2a(1− δ − ε)] ≤ e−4aε2 ≤ 1

�N
.

Thus,

Pr[success] = (1 − Pr[Xc < C])�
�N
2a � ≥ (1 − Pr[Xc < C])

�N
2a +1

≥ (1 − 1

�N
)

�N
2a +1 ≥ 1 −

�N
2a + 1

�N
≥ 1 − 1

2a
− 1

�N
≥ 1 − 2ε2

ln �N
− 1

�N
.

��
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Using same idea of [13], it can be shown that the time complexity of our idea is

O(�
2+ log 2

2ε2

N ). Hence from Lemma 1 and Lemma 2, we get Theorem 1 (Section 2.1)
as follows.

Theorem 1. Let a = " ln �N
4ε2 #, γ0 =

√
(1 + 1

a )
ln 2
4 and C = a + 2aγ0. We also

consider that the parameters kp, kq of CRT-RSA are known. Then one can obtain

p in time O(l
2+ ln 2

2ε2

N ) with success probability greater than 1 − 2ε2

ln �N
− 1

�N
if δ ≤

1
2 − γ0 − ε.
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Abstract. In this paper we present an FPGA implementation of a high-
speed elliptic curve scalar multiplier for binary finite fields. High speeds
are achieved by boosting the operating clock frequency while at the
same time reducing the number of clock cycles required to do a scalar
multiplication. To increase clock frequency, the design uses optimized
implementations of the underlying field primitives and a mathemati-
cally analyzed pipeline design. To reduce clock cycles, a new schedul-
ing scheme is presented that allows overlapped processing of scalar bits.
The resulting scalar multiplier is the fastest reported implementation for
generic curves over binary finite fields. Additionally, the optimized prim-
itives leads to area requirements that is significantly lesser compared to
other high-speed implementations. Detailed implementation results are
furnished in order to support the claims.

Keywords: Elliptic curve scalar multiplication, FPGA, high-speed im-
plementation, Montgomery ladder.

1 Introduction

Elliptic curve cryptography (ECC) is an asymmetric key cipher adopted by the
IEEE [21] and NIST [22] as it offers more security per key bit compared to other
contemporary ciphers. Security in ECC based cryptosystems is achieved through
elliptic curve scalar multiplication. The complex finite field operations involved in
ECC often mandates dedicated accelerators for cryptographic and cryptanalytic
applications. Field programmable gate arrays ( FPGAs) are a popular platform
for accelerating curve scalar multiplication due to features such as in-house pro-
grammability, shorter time to market, reconfigurability, low non-recurring costs,
and simpler design cycles [23]. However, the constrained resources, large granu-
larity, and high costs of routing makes the development of high-speed hardware
on FPGAs difficult. The challenges involved in development with FPGAs have
led to several published articles on high-speed designs of elliptic curve scalar mul-
tiplication for FPGA platforms [1,2,3,5,6,9,10,17]. For binary finite fields over
generic curves, most notable works are by Chelton and Benaissa in [5] and more
recently Azarderakhsh and Reyhani-Masoleh in [2]. Chelton and Benaissa are
capable of doing a scalar multiplication in 19.5μsec, while Azarderakhsh and

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 494–511, 2012.
c© International Association for Cryptologic Research 2012
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Reyhani-Masoleh’s implementation requires 17.2μsec. In this paper, we propose
an elliptic curve multiplier (ECM) capable of doing scalar multiplications in
10.7μsec in the same finite field and FPGA family as [5] and [2].

The speed of a hardware design is dictated by 2 parameters: the frequency of
the clock and the number of clock cycles required to perform the computation.
One method to boost the maximum operable clock frequency is by reducing
area. Smaller area generally implies lesser routing delay, which in turn implies
higher operable clock frequencies. Another method to increase clock frequency
is by pipelining. Chelton and Benaissa [5] extensively rely on this in order to
achieve high-speeds. However extensive pipelining in the design is likely to in-
crease the clock cycles required for the computation. Clock cycles can be reduced
by parallelization, efficient scheduling, and advanced pipeline techniques such as
data-forwarding. Parallelization by replication of computing units was used in
[2] to achieve high speeds. The drawback of parallelization however is the large
area requirements. Our ECM achieves high-speeds by (1) reducing area, (2) ap-
propriate usage of FPGA hardware resources, (3) optimal pipelining enhanced
with data-forwarding, (4) and efficient scheduling mechanisms.

The area requirements of the ECM is primarily due to the finite field arithmetic
primitives, in particular multiplication and inversion. In [17], it was shown that
an ECM developed with highly optimized field primitives is capable of achieving
high computation speeds in-spite of using a näıve scalar multiplication algorithm,
no pipelining, or parallelization. Our choice of finite field primitives is based on
[17], and has an area requirement which is 50% lesser than [5] and 37% lesser
than [2]. The reduced area results in better routing thus leading to increased
operating frequencies. Besides the finite field primitives, the registers used in
the ECM contribute significantly to the area. Each register in the ECM stores
a field element, which can be large. Besides, there are several such registers
present. We argue that the area as well as delay can be reduced by placing the
registers efficiently in the FPGA.

Ideally, an L stage pipeline can boost the clock frequency up to L times. In
order to achieve the maximum effectiveness of the pipelines, the design should be
partitioned into L equal stages. That is, each stage of the pipeline should have the
same delay. However to date the only means of achieving this is by trial-and-error.
In this paper, we show that a theoretical model for FPGA designs, when applied
for the ECM, can be used to first estimate the delay in the critical path and
there by find the ideal pipelining. As L increases, there is likely to be more data
dependencies in the computations, thus resulting in more stalls (bubbles) in the
pipeline. The paper investigates scheduling strategies for the Montgomery scalar
multiplication algorithm, which is an efficient method for pipelining the ECM
[13] Compared to [5], which also uses the Montgomery ladder, our scheduling
techniques require 3m clock cycles lesser for scalar multiplication in the field
GF (2m).

The structure of the paper is as follows: Section 2 has the brief mathematical
background required to understand this paper. The organization of the ECM
is discussed in Section 3. Section 4 formally analyzes pipelining the ECM while
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Section 5 discusses the scheduling of instructions in the pipeline. Section 6 deter-
mines the right pipeline for the ECM and Section 7 presents the architecture of
the ECM with the right pipeline. Implementation results are presented and com-
pared the state-of-the-art in Section 8, while the final section has the conclusion
for the paper.

2 Background

An elliptic curve is either represented by 2 point affine coordinates or 3 point
projective coordinates. The smaller number of finite field inversions required by
projective coordinates makes it the preferred coordinate system. For the field
GF (2m), the equation for an elliptic curve in projective coordinates is Y 2 +
XY Z = X3Z + aX2Z2 + bZ4, where the curve constants a and b ∈ GF (2m)
and b �= 0. The points on the elliptic curve together with the point at infinity
(O) form an Abelian group under addition with group operations point addition
and point doubling. For a given point P on the curve (called the base point)

Algorithm 1. Montgomery Point Multiplication
Input: Base point P and scalar s = {st−1st−2 . . . s0}2 with st−1 = 1
Output: Point on the curve Q = sP
begin1

P1(X1, Z1)← P (X, Z); P2(X2, Z2)← 2P (X, Z)2
for k = t − 2 to 0 do3

if sk = 1 then4
P1 ← P1 + P25
P2 ← 2P26

end7
else8

P2 ← P1 + P29
P1 ← 2P110

end11
end12
return Q ← Projective2Affine(P1 , P2)13

end14

and a scalar s, scalar multiplication is the computation of the scalar product sP .
Algorithm 1 depicts the Montgomery algorithm [11,14] for computing sP . For
each bit in s, a point addition followed by a point doubling is done (lines 5,6 and
9,10). In these operations (listed in Equation 1) only the X and Z coordinates
of the points are used.

Xi ← Xi · Zj ; Zi ← Xj · Zi ; T ← Xj ; Xj ← X4
j + b · Z4

j

Zj ← (T · Zj)
2 ; T ← Xi · Zi ; Zi ← (Xi + Zi)

2 ; Xi ← x · Zi + T
(1)

Depending on the value of the bit sk, operand and destination registers for the
point operations vary. When sk = 1 then i = 1 and j = 2, and when sk = 0
then i = 2 and j = 1. The final step in the algorithm, Projective2Affine(·),
converts the 3 coordinate scalar product in to the acceptable 2 coordinate affine
form. This step involves a finite field inversion along with 9 other multiplications
[13].
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3 The Processor Organization

The functionality of the ECM is to execute Algorithm 1. It comprises of 2 units:
the register bank and the arithmetic unit as seen in Figure 1. In each clock cycle,
control signals are generated according to the value of the bit sk, which reads
operands from the register bank, performs the computation in the arithmetic
unit, and finally write back the results. In this section we present the architecture
for the register bank and arithmetic units.

3.1 Arithmetic Unit

The field multiplier is the central part of the arithmetic unit. We choose to use a
hybrid bit-parallel Karatsuba field multiplier (HBKM), which was first introduced
in [18] and then used in [17]. The advantage of the HBKM is the sub-quadratic
complexity of the Karatsuba algorithm coupled with efficient utilization of the
FPGA’s LUT resources. Further, the bit-parallel scheme requires lesser clock
cycles compared to digit level multipliers used in [2]. The HBKM recursively splits
the input operands until a threshold (τ) is reached, then threshold (school-book)
multipliers are applied. The outputs of the threshold multipliers are combined
and then reduced (Figure 2).

Field inversion is performed by a generalization of the Itoh-Tsujii inversion
algorithm for FPGA platforms [19]. The generalization requires a cascade of
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2n exponentiation circuits (implemented as the Powerblock in Figure 1), where
1 ≤ n ≤ m − 1. The ideal choice for n depends on the field and the FPGA
platform. For example, in GF (2163) and FPGAs having 4 input LUTs (such as
Xilinx Virtex 4), the optimal choice for n is 2. More details on choosing n can
be found in [8]. The number of cascades, us, depends on the critical delay of the
ECM and will be discussed in Section 4. Further, an addition chain for �m−1

n � is
required. Therefore, for GF (2163) and n = 2, an addition chain for 81 is needed.
The number of clock cycles required for inversion, assuming a Brauer chain, is
given by Equation 2, where the addition chain has the form (u1, u2, · · · , ul), and
L is the number of pipeline stages in the ECM [4].

ccita = L(l+ 1) +

l∑
i=2

⌈ui − ui−1

us

⌉
(2)

3.2 Register Bank

There are six registers in the register bank, each capable of storing a field ele-
ment. Five of the registers are used for the computations in Equation 1, while
one is used for field inversion. There are 3 ways in which the registers can be
implemented in FPGAs. The first approach, using block RAM, is slow due to
constraints in routing. The two other alternatives are distributed RAM and flip-
flops. Distributed RAM allows the FPGA’s LUTs to be configured as RAM.
Each bit of the 6 registers will share the same LUT. However each register
is used for a different purpose therefore the centralization effect of distributed
RAM will cause long routes, leading to lowering of clock frequencies. Addition-
ally, there is an impact on the area requirements. Flip-flops on the other hand
allow de-centralization of the registers, there by allowing registers to be placed
in locations close to their usage, thus routing is easier. Further, each slice in the
FPGA has equal number of LUTs and flip-flops. The ECM is an LUT intensive
design, due to which several of the flip-flops in the slice remain unutilized. By
configuring the registers to make use of these flip-flops, no additional area (in
terms of the number of slices) is required.

4 Pipelining the ECM

All combinational data paths in the ECM start from the register bank output
and end at the register bank input. The maximum operable frequency of the
ECM is dictated by the longest combinational path, known as the critical path.
There can be several critical paths, one such example is highlighted through the
(red) dashed line in Figure 1.

Estimating Delays in the ECM : Let t∗cp be the delay of the critical paths

and f∗
1 = 1

t∗cp
the maximum operable frequency of the ECM prior to pipelining.

Consider the case of pipelining the ECM into L stages, then the maximum op-
erable frequency can be increased to at-most f∗

L = L × f∗
1 . This ideal frequency

can be achieved if and only if the following two conditions are satisfied.
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Table 1. LUT delays of Various Combinational Circuit Components

Component k− LUT Delay for k ≥ 4 m = 163, k = 4

m bit field adder 1 1

m bit n : 1 Mux �logk(n+ log2n)� 2 (for n = 4)
(Dn:1(m)) 1 (for n = 2)

Exponentiation max(LUTDelay(di)), where di is the ith 2 (for n = 1)
Circuit (D2n(m)) output bit of the exponentiation circuit 2 (for n = 2)

Powerblock us ×D2n (m) +Dus:1(m) 4 (for us = 2)
(Dpowerblk(m))

Modular Reduction 1 for irreducible trinomials 2
(Dmod) 2 for pentanomials (for pentanomials)

HBKM As seen in Figure 2, this can be written as 11 (for τ = 11)
(DHBKM(m)) Dsplit +Dthreshold +Dcombine +Dmod

= �logk(mτ )�+ �logk(2τ )�
+�log2

(
m
τ

)�+Dmod

1. Every critical path in the design should be split into L stages with each stage

having a delay of exactly
t∗cp
L .

2. All other paths in the design should be split so that any stage in these paths

should have a delay which is less than or equal to
t∗cp
L .

While it is not always possible to exactly obtain f∗
L, we can achieve close to

the ideal clock frequency by making a theoretical estimation of t∗cp and then
identifying the locations in the architecture where the pipeline stages have to
be inserted. We denote this theoretical estimate of delay by t#cp. The theoretical
analysis is based on the following prepositions. These propositions were first
stated in [19] and used to design high-speed inversion circuits. Their correctness
have been extensively validated in [19] for 4 and 6 input LUT based FPGAs.

Proposition 1. [19] For circuits which are implemented using LUTs, the delay
of a path in the circuit is proportional to the number of LUTs in the path.

Proposition 2. [19] The number of LUTs in the critical path of an n variable
Boolean function having the form y = gn(x1, x2, · · · , xn) is given by "logk(n)#,
where k is the number of inputs to the LUTs (k− LUT ).

Using these two propositions it is possible to analyze the delay of various com-
binational circuit components in terms of LUTs. The LUT delays of relevant
combinational components are summarized in Table 1. The reader is referred to
[19] for detailed analysis of the LUT delays. The LUT delays of all components
in Figure 1 are shown in parenthesis for k = 4. Note that the analysis also con-
siders optimizations by the synthesis tool (such as the merging of the squarer
and adder before Mux B (Figure 1), which reduces the delay from 3 to 2).

Pipelining Paths in the ECM : Table 1 can be used to determine the LUT
delays of any path in the ECM. For the example critical path, (the red dashed
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line in Figure 1), the estimate for t∗cp is the sum of the LUT delays of each

component in the path. This evaluates to t#cp = 23. Figure 3 gives a detailed
view of this path. Pipelining the paths in the ECM require pipeline registers
to be introduced in between the LUTs. The following proposition determines
how the pipeline registers have to be inserted in a path in order to achieve the
maximum operable frequency (f#

L ) as close to the ideal (f∗
L) as possible (Note

that f#
L ≤ f∗

L).

Proposition 3. If t#cp is the LUT delay of the critical paths, and L is the desired

number of stages in the pipeline, then the best clock frequency (f#
L ) is achieved

only if no path has delay more than " t#cp
L #.

For example for L = 4, no path should have a LUT delay more than " 23
4 #. This

identifies the exact locations in the paths where pipeline registers have to be
inserted. Figure 3 shows the positions of the pipeline register for L = 4 for the
critical path.

On the Pipelining of the Powerblock : The powerblock is used only
once during the computation; at the end of the scalar multiplication. There
are two choices with regard to implementing the powerblock, either pipeline
the powerblock as per Proposition 3 or reduce the number of 2n circuits in the
cascade so that the following LUT delay condition is satisfied (refer Table 1),

Dpowerblock(m) ≤ "
t#cp
L

# − 1 (3)

, where −1 is due to the output mux in the register bank. However the sequential
nature of the Itoh-Tsujii algorithm [7] ensures that the result of one step is used
in the next. Due to the data dependencies which arise the algorithm is not suited
for pipelining and hence the latter strategy is favored. For k = 4 and m = 163,
the optimal exponentiation circuit is n = 2 having an LUT delay of 2 [19]. Thus
a cascade of two 22 circuits would best satisfy the inequality in (3).

5 Scheduling for the ECM

In this section we discuss the scheduling of the addition-doubling loop in Algo-
rithm 1. For each bit in the scalar (sk), the eight operations in Equation 1 are
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Table 2. Scheduling Instructions for the ECM

ek1 : Xi ← Xi · Zj ek4 : Zj ← (T · Zj)
2

ek2 : Zi ← Xj · Zi ek5 : T ← Xi · Zi; Zi ← (Xi + Zi)
2

ek3 : T ← Xj ; Xj ← X4
j + b · Z4

j ek6 : Xi ← x · Zi + T

ek1 ek2 ek3

ek5

ek6

ek4

(a) Data Dependencies

1 2 3 4 5 6 7 8
Clock Cycle

ek6

ek5

ek4

ek3

ek2 or ek1

ek1 or ek2

(b) Timing Diagram

Fig. 4. Scheduling the Scalar Bit sk

computed. Unlike [2], where 2 finite field multipliers are used in the architecture,
we, like [5], use a single field multiplier. This restriction makes the field multiplier
the most critical resource in the ECM as Equation 1 involves six field multipli-
cations, which have to be done sequentially. The remaining operations comprise
of additions, squarings, and data transfers can be done in parallel with the mul-
tiplications. Equation 1 can be rewritten as in Table 5 using 6 instructions, with
each instruction capable of executing simultaneously in the ECM.

Proper scheduling of the 6 instructions is required to minimize the impact
of data dependencies, thus reducing pipeline stalls. The dependencies between
the instructions ek1 to ek6 are shown in Figure 4(a). In the figure a solid arrow
implies that the subsequent instruction cannot be started unless the previous
instruction has completed, while a dashed arrow implies that the subsequent
instruction cannot be started unless the previous instruction has started. For
example ek6 uses Zi, which is updated in ek5 . Since the update does not require a
multiplication (an addition followed by a squaring here), it is completed in one
clock cycle. Thus ek5 to ek6 has a dashed arrow, and ek6 can start one clock cycle
after ek5 . On the other hand, dependencies depicted with the solid arrow involve
the multiplier output in the former instruction. This will take L clock cycles,
therefore a longer wait.

The dependency diagram shows that in the longest dependency chain, ek5 and
ek6 has dependency on ek1 and ek2 . Thus e

k
1 and ek2 are scheduled before ek3 and ek4 .

Since the addition in ek6 has a dependency on ek5 , operation ek5 is triggered just
after completion of ek1 and ek2 ; and operation ek6 is triggered in the next clock
cycle. When L ≥ 3, the interval between starting and completion of ek1 and ek2
can be utilized by scheduling ek3 and ek4 . Thus, the possible scheduling schemes
for the 6 instructions is

({ek1 , ek2}, ek3 , ek4 , ek5 , ek6) (4)
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Fig. 5. Schedule for Two Scalar Bits when sk−1 = sk

Where { } implies that there is no strict order in the scheduling (either e1 or
e2 can be scheduled first). An example of a scheduling for L = 3 is shown in
Figure 4(b). For L ≥ 31, the number of clock cycles required for each bit in the
scalar is 2L + 2 . In the next part of this section we show that the clock cycles
can be reduced to 2L + 1 (and in some cases 2L) if two consecutive bits of the
scalar are considered.

5.1 Scheduling for Two Consecutive Bits of the Scalar

Consider the scheduling of operations for two bits of the scalar, sk and sk−1

(Algorithm 1). We assume that the computation of bit sk is completed and the
next bit sk−1 is to be scheduled. Two cases arise: sk−1 = sk and sk−1 �= sk. We
consider each case separately.

When the Consecutive Key Bits Are Equal : Figure 5(a) shows the
data dependencies when the two bits are equal. The last two instructions to
complete for the sk bit are ek5 and ek6 . For the subsequent bit (sk−1), either e

k−1
1

or ek−1
2 has to be scheduled first according to the sequence in (4). We see from

Figure 5(a) that ek−1
1 depends on ek6 , while ek−1

2 depends on ek5 . Further, since
ek5 completes earlier than ek6 , we schedule e

k−1
2 before ek−1

1 . Thus the scheduling
for 2 consecutive equal bits is

({ek1 , ek2} , ek3 , ek4 , ek5 , ek6 , ek−1
2 , ek−1

1 , ek−1
3 , ek−1

4 , ek−1
5 , ek−1

6 )

An example is shown in Figure 5(b).

1 The special case of L <= 2 can trivially be analyzed. The clock cycles required in
this case is six.
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When the Consecutive Key Bits Are Not Equal : Figure 6(a) shows the
data dependency for two consecutive scalar bits that are not equal. Here it can
be seen that ek−1

1 and ek−1
2 depend on ek5 and ek6 respectively. Since, ek5 completes

before ek6 , we schedule e
k−1
1 before ek−1

2 . The scheduling for two consecutive bits
is as follows

({ek1 , ek2} , ek3 , ek4 , ek5 , ek6 , ek−1
1 , ek−1

2 , ek−1
3 , ek−1

4 , ek−1
5 , ek−1

6 )

An example is shown in Figure 6(b).

Effective Clock Cycle Requirement : Starting from ek1 (or ek2), completion
of ek2 (or ek1) takes L + 1 clock cycles, for an L stage pipelined ECM. After
completion of ek1 and ek2 , e

k
5 starts. This is followed by ek6 in the next clock cycle.

So in all 2L + 2 clock cycles are required. The last clock cycle however is also
used for the next bit of the scalar. So effectively the clock cycles required per bit
is 2L+ 1. Compared to the work in [5], our scheduling strategy saves two clock
cycles for each bit of the scalar. For an m bit scalar, the saving in clock cycles
compared to [5] is 2m. Certain values of L allow data forwarding to take place.
In such cases the clock cycles per bit reduces to 2L, thus saving 3m clock cycles
compared to [5].

5.2 Data Forwarding to Reduce Clock Cycles

For a given value of L, Proposition 3 specifies where the pipeline registers have to
be placed in the ECM. If the value of L is such that a pipeline register is placed at
the output of the field multiplier, then data forwarding can be applied to save one
clock cycle per scalar bit. For example, consider L = 4. This has pipeline registers
placed immediately after the multiplier as shown in Figure 3. This register can



504 C. Rebeiro, S.S. Roy, and D. Mukhopadhyay

1 2 3 4 5 6 7 8
Clock Cycle

109

ek6

ek5

ek4

ek3

ek2 or ek1

ek1 or ek2

sk−1 starts

(a) Without Data Forwarding

1 2 3 4 5 6 7 8
Clock Cycle

9

Data Forwarding Path

10

ek6

ek5

ek4

ek3

sk−1 starts

ek1 or ek2

ek2 or ek1

(b) With Data Forwarding

Fig. 7. Effect of Data Forwarding in the ECM for L = 4

be used to start the instruction ek5 one clock cycle earlier. Figure 5.1 compares
the execution of a single bit with and without data forwarding. Though ek2 (or
ek1) finishes in the fifth clock cycle, the result of the multiplication is latched
into the pipeline register after the fourth clock cycle. With data forwarding from
this register, we start ek5 from the fifth clock cycle, thus reducing clock cycle
requirement by one to 2L.

6 Finding the Right Pipeline

The time taken for a scalar multiplication in the ECM is the product of the
number of clock cycles required and the time period of the clock. For an L stage
pipeline, Section 4 determines the best time period for the clock. In this section
we would first estimate the number of clock cycles required and then analyze
the effect of L on the computation time.

6.1 Number of Clock Cycles

There are two parts in Algorithm 1. First the scalar multiplication in projective
coordinates and then the conversion to affine coordinates. The conversion com-
prises of finding an inverse and 9 multiplications. The clock cycles required is
given by cc2scm = cc3scm + ccita + ccconv.

cc3scm is the clock cycles required for the scalar multiplication in projective
coordinates. From the analysis in Section 5 this can be written as 2mL if data
forwarding is possible and m(2L + 1) otherwise. For the conversion to affine
coordinates, finding the inverse requires ccita clock cycles (from Equation 2),
while the 9 multiplications following the inverse requires ccconv clock cycles. The
value of ccconv for the ECM was found to be 7 + 9L. Thus,

cc2scm =
[
cc3scm

]
+
[
L(l+ 1) +

l∑
i=2

⌈ui − ui−1

us

⌉]
+
[
7 + 9L

]
(5)
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Table 3. Computation Time Estimates for Various Values of L for an ECM over
GF (2163 and FPGA with 4 input LUTs

L us DataForwarding cc3scm ccita ccconv cc2scm ct
Feasible

1 9 No 978 25 16 1019 1019t
#
cp

2 4 No 978 44 25 1047 524t
#
cp

3 3 No 1141 61 34 1236 412t
#
cp

4 2 Yes 1304 82 43 1429 357t
#
cp

5 1 No 1793 130 52 1975 395t
#
cp

6 1 Yes 1956 140 61 2157 360t
#
cp

7 1 Yes 2282 150 70 2502 358t
#
cp

6.2 Analyzing Computation Time

The procedure involved in analyzing the computation time for an L stage pipeline
is as follows.

1. Determine t#cp (the LUT delay of the critical path of the combinational cir-
cuit) using Table 1.

2. Compute the maximum operable frequency (" t#cp
L #) and determine the lo-

cations of the pipeline registers. Therefore determine if data forwarding is
possible.

3. Determine us, the number of cascades in the power block, using Equation 3
and the delay of a single 2n block (Table 1).

4. Compute cc2scm, using Equation 5.

5. The computation time ct is given by cc2scm × " t#cp
L #.

For an ECM over GF (2163), the threshold for the HBKM set as 11, an addition
chain of (1, 2, 4, 5, 10, 20, 40, 80, 81), and 22 exponentiation circuits in the power
block, the t#cp is 23. The estimated computation time for various values of L are
given in Table 3. The cases L = 1 and L = 2 are special as for these cc3scm = 6m.
The table clearly shows that the least computation time is obtained when L = 4.

7 Detailed Architecture of the ECM

Figure 8 shows the detailed architecture for L = 4. The input to the architec-
ture is the scalar, reset signal, and the clock. At reset, the curve constants and
base point are loaded from ROM. At every clock cycle, the control unit gener-
ates signals for the register bank and the arithmetic unit. Registers are selected
through multiplexers in the register bank and fed to the arithmetic unit through
the buses A0, A1, A2, A3, and Qin. Multiplexers again channel the data into
the multiplier. The results are written back into the registers through buses C0,
C1, C2, Qout. Note the placement of the pipeline registers dividing the circuit
in 4 stages and ensuring that each stage has an LUT delay which is less than or
equal to " 23

4 # = 6. Note also the pipeline register present immediately after the
field multiplier (HBKM) used for data forwarding.
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Table 4. Comparison of the Proposed ECM with FPGA based Published Results

Work Platform Field Slices LUTs Freq Comp.
(m) (MHz) Time (μs)

Orlando [15] XCV400E 163 - 3002 76.7 210
Bednara [3] XCV1000 191 - 48300 36 270
Gura [6] XCV2000E 163 - 19508 66.5 140
Lutz [12] XCV2000E 163 - 10017 66 233
Saqib [20] XCV3200 191 18314 - 10 56
Pu [16] XC2V1000 193 - 3601 115 167
Ansari [1] XC2V2000 163 - 8300 100 42
Rebeiro [17] XC4V140 233 19674 37073 60 31

Järvinen1[9] Stratix II 163 (11800ALMs) - - 48.9

Kim 2[10] XC4VLX80 163 24363 - 143 10.1
Chelton [5] XCV2600E 163 15368 26390 91 33

XC4V200 163 16209 26364 153.9 19.5

Azarderakhsh3[2] XC4CLX100 163 12834 22815 196 17.2
XC5VLX110 163 6536 17305 262 12.9

Our Result (Virtex 4 FPGA) XC4VLX80 163 8070 14265 147 9.7
XC4V200 163 8095 14507 132 10.7
XC4VLX100 233 13620 23147 154 12.5

Our Result (Virtex 5 FPGA) XC5VLX85t 163 3446 10176 167 8.6
XC5VSX240 163 3513 10195 148 9.5
XC5VLX85t 233 5644 18097 156 12.3

1. uses 4 field multipliers; 2. uses 3 field multipliers; 3. uses 2 field multipliers

Figure 9 shows the finite state machine for L = 4. The states I0 to I5 are used
for initialization (line 2 in Algorithm 1). State AD1 represents the first clock
cycle for the scalar bit st−2. States AD2

1 to AD9
1 represent the computations

when sk = 1, while AD2
0 to AD9

0 are for sk = 0. Each state corresponds to a
clock cycle in Figure 7(b). Processing for the next scalar bit (sk−1) begins in the
same clock cycle as AD9

0 and AD9
1 in states AD1

eq and AD1
neq. The states AD1

eq

or AD1
neq are entered depending on the equality of sk and sk−1. If sk = sk−1

then AD1
eq is entered, else AD1

neq is entered. After processing of all scalar bits
is complete, the conversion to affine coordinates (ccita + ccconv) takes place in
states C1 to C125.

8 Implementation Results and Comparisons

We evaluated the ECM using Xilinx Virtex 4 and Virtex 5 platforms. Table 4
shows the place and route results using the Xilinx ISE tool. There have been
several implementations of elliptic curve processors on different fields, curves,
platforms, and for different applications. Due to the vast variety of implementa-
tions available, we restrict comparisons with FPGA implementations for generic
elliptic curves over binary finite fields (Table 4). In this section we analyze recent
high-speed implementations.

The implementation in [17] is over the field GF (2233) and does a scalar mul-
tiplication in 31μs. The implementation relied heavily on optimized finite-field
primitives and was not pipelined or parallelized. Our implementation on the
same field uses enhanced primitives from [17], and therefore has smaller area
requirements. Additionally higher speeds are achieved due to efficient pipelining
and scheduling of instructions.

The implementation in [5] uses a 7 stage pipeline, thus achieves high oper-
ating clock frequency. However, the un-optimized pipeline and large clock cycle
requirement limits performance. In comparison, the ECM uses better scheduling
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there by saving around 1, 600 clock cycles and a better pipeline, there by ob-
taining frequencies close to [5], in-spite of having only 4 pipeline stages. Further,
efficient field primitives and the sub-quadratic Karatsuba multiplier instead of
the quadratic Mastrovito multiplier result in 50% reduction in area on Virtex 4.

In [2], two highly optimized digit field multipliers were used. This enabled
parallelization of the instructions and higher clock frequency. However, the use
of digit field multipliers resulted in large clock cycle requirement for scalar mul-
tiplication (estimated at 3,380). We use a single fully parallel field multiplier
requiring only 1, 429 clock cycles and an area which is 37% lesser in Virtex 4.

In [10], a computation time of 10.1μs was achieved while on the same platform
our ECM achieves a computation time of 9.7μs. Although the speed gained is
minimal, it should be noted that [10] uses 3 digit-level finite field multipliers
compared to one in ours, thus has an area requirement which is about 3 times
ours. The compact area is useful especially for cryptanalytic applications where
our ECM can test thrice as many keys compared to [10].

9 Conclusion

The papers presents techniques to reduce the computation time for scalar multi-
plications on elliptic curves. The techniques involve the use of highly optimized
finite field primitives and efficient utilization of FPGA resources in order to re-
duce the area requirements, which in turn leads to better routing, hence higher
clock frequencies. Additionally, a theoretical analysis of the data paths, help
pipeline the multiplier. Further, efficient scheduling of elliptic curve operations,
supported with data-forwarding mechanisms, reduce the number of clock cycles
required to execute a scalar multiplication. These mechanisms result in a scalar
multiplier that is faster than any other reported implementations, in-spite of
having just a single finite field multiplier. The presence of a single optimized
field multiplier additionally leads to area requirements, which is considerably
lesser than contemporary implementations. Results are presented for generic
curves over the field GF (2163), however these mechanisms can be applied for
other curves and fields as well.
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Appendix A

In this appendix we summarize the ideal design parameters for k = 4 (Xilinx
Virtex 4 FPGA) and k = 6 (Xilinx Virtex 5) for the field GF (2163).

Table 5. Summary of Design Parameters for GF (2163) for k = 4 and k = 6

Parameter k = 4 k = 6

Threshold used in HBKM (τ) 11 11

Exponentiation Circuit in Powerblock 22 circuit (Quad) 24 circuit
Addition Chain (1, 2, 4, 5, 10, 20, 40, 80, 81) (1, 2, 4, 5, 10, 20, 40)
Number of Cascades in Powerblock (us) 2 1

LUT Delay (t
#
cp) 23 17

Ideal Number of Pipeline Stages (L) 4 4

Table 6. LUT requirement for different Primitives in GF (2163)

Primitives No. of LUTs in Virtex 4 LUTs in Virtex 5
Instances per unit total per unit total

Adder 1 163 163 163 163
Squarer 1 163 163 163 163

Adder merged with Squarer1 1 163 163 163 163

Quad Circuit2 4 315 1260 249 996

Mux 2:13 5, 4 163 815 163 652
Mux 4:1 8 326 2608 163 1304
Multiplier 1 9092 9092 6313 6313

Total - - 14264 - 9754

1. This is present before Mux B

2. Two of these are present in the Powerblock

3. On Virtex 4, Mux F is 2 : 1. On Virtex 5, this is not required as there is single 24 circuit

Appendix B

In this appendix we present more details about the implementation. In order to
understand how the FPGA’s LUTs have been utilized, we have synthesized each
module individually. Table 6 gives the details according to Figure 8. It may be
noted that these results may not exactly match the results in Table 4 because
(1) they have been synthesized individually (2) and it does not have the top
module which contains the control unit.
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For the Virtex 5 FPGA, the Powerblock should ideally have a single 24 circuit
as seen in Table 5. This we have implemented using a cascade of two quad
circuits.

The critical path for the design (both in Virtex 4 and Virtex 5) obtained from
the Xilinx tool, was through Mux H (in the register bank), the quad circuit, and
then the Mux B (refer Figure 8). This path is present in the first stage of the
pipeline and corresponds to the maximum operating clock frequency specified in
Table 4.
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Abstract. We present both a hardware and a software implementation
variant of the learning with errors (LWE) based cryptosystem presented
by Lindner and Peikert. This work helps in assessing the practicality
of lattice-based encryption. For the software implementation, we give a
comparison between a matrix and polynomial based variant of the LWE
scheme. This module includes multiplication in polynomial rings using
Fast Fourier Transform (FFT). In order to implement lattice-based cryp-
tography in an efficient way, it is crucial to apply the systems over poly-
nomial rings. FFT speeds up multiplication in polynomial rings, which is
the most critical operation in lattice-based cryptography, from quadratic
to quasi-linear runtime. For the hardware variant, we show how this
fundamental building block of lattice-based cryptography can be im-
plemented and evaluated in terms of performance. A second important
component for lattice-based cryptosystems is the sampling from discrete
Gaussian distributions. We examine three different variants for sampling
Gaussian distributed integers, namely rejection sampling, a rounding
based approach, and a look-up table based approach in hardware.

Keywords: LWE, Lattice-Based Encryption, Hardware, FPGA.

1 Introduction

Lattice-based cryptography is currently enjoying high attention in the crypto-
graphic community. Related systems offer an alternative security background
to factoring and discrete logarithm based schemes. Moreover, while the latter
two may be broken using quantum computers, so far there is no quantum com-
puter algorithm known that solves hard lattice problems faster than classical
algorithms. Unlike factoring and discrete logarithms, there are even no subexpo-
nential time attacks known against lattice systems on classical computers. Last,
but not least, lattice-based cryptosystems only apply simple and fast arithmetic
operations and asymptotically allow for quasi-linear runtimes, which is nearly
optimal. Lattice-based schemes are usually accompanied by very strong security
proofs, which relate breaking the system to solving worst-case problems in lat-
tices (compared to basing the security on average-case problems only, like we

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 512–529, 2012.
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know from other areas of cryptography). All these facts distinguish lattice-based
cryptosystems as promising candidates to replace systems based on number the-
oretic problems, like factoring and computing discrete logarithms.

Originally, most lattice systems require the storage of huge matrices over in-
teger rings and are quite inefficient both in runtime and storage space. The
idea of replacing matrices by polynomials over ideals in integer rings allows
to reduce both. Hence, replacing lattices by ideal lattices results in very ef-
ficient systems. Instead of storing huge matrices of space O(n2), where n is
larger than 128, it is sufficient to store just O(n logn) elements. Moreover, the
multiplication of elements of ideal lattices can be performed efficiently using
the Fast Fourier Transform (FFT) [CT65] in time O(n log n) for a serial and
in O(log n) for a parallel implementation, instead of O(n2) for straightforward
multiplication.

Based on lattice problems, many cryptographic primitives were already de-
veloped in theory. Among others, there are a hash function [ADL+08], digital
signatures [Lyu09], encryption schemes [SS11, LP11], fully homomorphic encr-
pytion [Gen09], and many more. The security of most encryption schemes is
based on the learning with errors problem (LWE). Regev [Reg05] and Peik-
ert [Pei09] proved that the LWE problem is at least as hard as solving cer-
tain lattice problems in the worst case, which is the background of the strong
security of LWE-based cryptosystems. What is missing for nearly all lattice-
based encryption systems, however, are implementations. To the best of our
knowledge, there is no publicly available implementation of any provably secure
lattice-based cryptosystem available yet. The NTRUEncrypt system [HPS98] is
a special case, where implementations are provided, but they are protected by
patents. Further, the original NTRUEncrypt scheme lacks a security proof. In
order to show that lattice-based cryptography is ready for practical real-world
applications, the schemes have to be implemented first. The asymptotic advan-
tage gained by FFT is well-known, however, it lacks a practical evaluation for this
application.

For sampling of Gaussian distributed integers, the situation is similar. The
theoretical evaluation of rejection sampling is known meanwhile, but the prac-
tical efficiency of this approach is still unclear. We are also not aware of any
comparison to the rounding-based approach as presented by Devroye in [Dev86].

When lattice-based cryptography is to be used in practice, efficient hardware
components are required as well. Therefore, it is necessary to investigate into
design optimizations of current cryptosystems as hardware modules. Hence, we
present efficient hardware modules for the fundamental building blocks of lattice-
based encryption schemes, such as the FFT-based polynomial multiplication and
a Gaussian sampler.

In addition to providing a reference software implementation of the matrix and
polynomial variants of the encryption scheme, we detail a fully engineered hard-
ware implementation using FFT for polynomial multiplication. Furthermore, an
evaluation of all these implementation variants is given.
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1.1 Related Work

Regev introduced the first worst-case hardness proof for the LWE problem to-
gether with the first LWE-based encryption scheme in 2005 [Reg05]. Various
improvements of this scheme appeared later, such as [ACPS09, LPR10, Mic10].
In 2011, Lindner and Peikert proposed in [LP11] an adaption of the system of
[Mic10] and various efficiency improvements. This is the most recent and at the
same time the most promising LWE-based encryption scheme. These authors
detail an improved security analysis and multiple parameter sets for different se-
curity levels. They introduce a matrix-based variant as well as an instantiation
based on polynomials over residue rings.

The encryption scheme of [SS11] is a variant of the NTRUEncrypt system
equipped with a quantum security reduction. Its security is based on the LWE
problem in polynomial rings in the standard model. To our knowledge there is
no practical investigation of this scheme available so far. We expect its efficiency
to be comparable to the LWE scheme of [LP11].

1.2 Our Contribution

To the best of our knowledge we present the first practical evaluation of an
LWE-based cryptosystem. This paper details a performance comparison of two
realization variants based on matrix and polynomial operations, whereas the
latter one is using FFT for fast multiplication. Further, real-world implications
are evaluated by a comparison of the measured error-rate to theoretical expec-
tations. Moreover, we present an optimal set of parameters for hardware im-
plementations, which allow for optimizations of the largest hardware modules.
In our hardware implementation we apply the FFT approach of [CLRS09]. Ad-
ditionally, well-known improvements related to the inverse FFT allow for the
removal of half of the residue class multipliers, together with the reduction of
the critical path and hence provide a higher performance.

We propose efficient hardware modules for evaluation of the FFT as well
as for the discrete Gaussian sampler. Both modules can be used for numer-
ous lattice-based encryption [LPR10, LP11] and signature schemes as in, e.g.
[GPV08, Lyu12].

Our experiments illustrate the sizes of the keys, the message expansion fac-
tor, and the timing results for the hardware and software implementations. The
polynomial variant of LWE performes as expected: The size of private and public
keys grows linearly in the security parameter. For the medium security parame-
ters given in [LP11], the size of the secret key is 0.5 KB, whereas the public key is
1 KB in size. In software, key generation for the same security level takes 3.1ms,
whereas encryption and decryption take 1.5ms and 0.6ms, respectively. In con-
trast, dedicated hardware modules speed-up encryption by a factor of nearly 200
and decryption by nearly 70 for this level of security. The message expansion fac-
tor, i.e., the size of a ciphertext divided by the size of a plaintext, is about 50.
While the polynomial variant is superior in all other measured characteristics,
the matrix variant features smaller message expansion factors.
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2 Preliminaries

The authors of [LP11] propose two implementation variants, which exploit either
a matrix-based or a polynomial-based representation. For this reason we refer to
these representations as LWE-Matrix and LWE-Polynomial, respectively.

2.1 The LWE Problem

The security background of the cryptosystem under examination is the LWE
problem, which was introduced by Regev in 2005.

Consider a dimension n > 1, an integer module p ≥ 2 and an error distribution
χ. The distribution χ will be the discrete Gaussian error distribution. Given a
vector s ∈ Zn

q , a vector a ∈ Zn
q is chosen uniformly at random. Further, an

error term e ← χ is chosen and the pair (a, t = 〈a|s〉 + e mod p) is computed.
The search version of LWE asks to find s given an arbitrary number of sample
pairs (ai, ti). The decision version of LWE asks to distinguish between arbitrary
numbers of sample pairs (ai, ti) and uniformly drawn samples from Zn

q × Zq.
For hardness results on LWE we refer the reader to the work of [Reg05, Pei09].

Practical attacks on the LWE-based cryptosystems were described in [LP11]. The
ring LWE problem defined in [LPR10] is the adaption of LWE to polynomial
rings. It is important as security background for the LWE-Polynomial scheme.
An attacker breaking the LWE-Polynomial encryption system is able to solve the
ring LWE problem instance, and thus is able to solve certain lattice problems in
all lattices of a certain smaller dimension (the so-called worst-case hardness).

2.2 LWE-Based Encryption

Here we recall the more efficient polynomial variant, for the matrix variant we
refer to [Mic10, LP11]. Define the polynomial rings R = Z[X ]/〈f(x)〉 and Rq =
Zq[X ]/〈f(x)〉 for a polynomial f(x) that is monic and irreducible. Example
choices are f(x) = xn + 1 for n being a power of 2. Further, χk and χe are
error distributions over R for key generation and encryption, respectively. Useful
parameters for different levels of security were presented in [LPR10, LP11].

The LWE-Polynomial encryption is denoted as (KeyGen,Enc,Dec), where

– KeyGen(a): choose r1, r2 ← χk and let p = r1 − a · r2. Output public key p
and secret key r2.

– Enc(a, p,m ∈ Σn): choose e1, e2, e3 ← χe. Let m̄ = encode(m) ∈ Rq. The
ciphertext is then (c1 = a · e1 + e2, c2 = p · e1 + e3 + m̄) ∈ R2

q .

– Dec((c1, c2), r2): output decode(c1 · r2 + c2).

Decoding fails if |e1 · r1 + e2 · r2 + e3| is bigger than the threshold t = �q/4�. This
per-symbol error probability is denoted δ. It is depending on the error distribu-
tions χk and χe. More exactly, δ is an upper bound on the error probability per
symbol. Following the proposal of [LP11], we choose χk = χe = χ. The Gaussian
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standard deviation s for the distribution χ is selected depending on the dimension
n, threshold t, parameter c, and the error probability δ by means of

s2 =

√
2π

c
· t√

2n · ln(2/δ)
. (1)

The variant LWE-Matrix is denoted in a similar manner, it uses matrices over
Zq instead of polynomials over the ring R. Since the arithmetic in polynomial
rings can be performed more efficiently, the polynomial variant seems to be more
appropriate in practice. A possible disadvantage of LWE-Polynomial concerns
security. The system is provably secure as long as the decision ring LWE problem
is hard. LWE-Matrix only requires the decision LWE problem to be hard, which
is a weaker assumption, since it is unknown if the additional ring structure
influences the hardness of the LWE problem.

Message Encoding. Error-tolerant encoder and decoder functions are required
by the presented encryption system. In the following the message encoding of
LWE-Polynomial is detailed, which can analogously be applied to LWE-Matrix.

A message m, represented as a bit-vector m ∈ Σn = {0, 1}n, is trans-
formed into a vector m̄ ∈ Rq. Therefore, the encoding and decoding are func-
tions encode:Σ → Rq and decode:Rq → Σ, respectively. The equation encode(
decode(m) + e mod q) = m is satisfied as long as all coefficients of the error-
polynomial e ∈ Rq are within the threshold t, for which we selected [−t, t) =
[−� q

4�, �
q
4�).

2.3 Fast Fourier Transform

The FFT is used to convert the coefficient representation of the polynomial to a
point-value representation. The multiplication using the coefficients of two poly-
nomials with degree n takes O(n2) time. In point-value representation, the mul-
tiplication is performed in O(n log n) as serial implementation and in O(log n)
if implemented in parallel, which we selected for hardware implementation.

Algorithm 1 characterizes the polynomial multiplication, which applies the
FFT to convert the polynomials from coefficient to point-value representation.

To exploit the full potential of the FFT and speed-up the polynomial reduction
(cf. Appendix A), we restrict the choice of the irreducible polynomial f(x) to a
cyclotomic one with the form f(x) = xn+1, where n is a power of 2. This allows
for further improvements which are detailed in Section 4.3.

There are multiple reasons why we favour FFT over other polynomial multi-
plication approaches (e.g., Toom-Cook[Coo66]). FFT is easily parallelizable, and
the asymptotic runtime of the parallel FFT is O(logn) compared to O(n1+ε),
where 0 < ε < 1 for Toom-Cook. Additionally, the FFT hardware implemen-
tation greatly benefits from the utilized polynomial f(x) = xn + 1 with n a
power of 2, as this saves a lot of hardware resources. However, the Toom-Cook
approach might be faster for practical parameters, but the comparison of poly-
nomial multiplication algorithms is out of scope of this work.
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Algorithm 1. Polynomial Multiplication using FFT

Input: a, b ∈ Z2n
q , ωm

Output: c ∈ Z2n
q

1 A = FFT (a,ωm)
2 B = FFT (b,ωm)
3 for i = 0 to 2n− 1 do
4 C[i] = A[i] · B[i]
5 end
6 c = FFT−1(C,ωm)
7 return c

3 Software Implementation

The general purpose of the software implementation presented herein was to
provide a reference implementation of the LWE based encryption scheme and to
assess its real-world properties. We are using C++ on a Linux-based operating
system, with the GCC 4.6.1 compiler. We integrated the NTL library [Sho] in
version 5.5.2, which comprises data types for matrices and vectors over residue
classes Zq as well as elements in polynomial rings Zq[X ] and in factor rings
Zq[X ]/〈f(x)〉. NTL applies FFT for its polynomial multiplication routines. Our
outlined software implementation contains both variants – LWE-Matrix as well
as LWE-Polynomial, which are available online.1 The tested parameter sets of
n, q, c, and s, for different values of δ are denoted in Table 1. The first column
is taken from [LP11] and the values for the standard deviation of Gaussian
sampling s are computed according to (1). It should be noted that the toy
parameter set for n = 128 can not be considered secure in practice. For n = 256
and δ = 10−2 the estimated runtime/advantage ratio of the strongest (so-called
decoding) attack is 2120 seconds, which is compared to the security of AES-
128 in [LP11]. Unfortunately, an approach to compute “real” security estimates
(bit-security) for lattice-based cryptosystems is not known so far.

x

y

f(x)

k · g(x)

u · k · g(x)

x

reject
accept

Fig. 1. Rejection sampling for

f(x) = 1
s
· e−π·x2

s2 , g(x) = 1
n
and k =

⌈
n
s

⌉
.

Algorithm 2.
Rejection Sampling

1 repeat

2 x
$← Z ∩ [−t, t]

3 u
$← R ∩ [0, 1]

4 until u · k · g(x) < f(x)
5 return x ∈ Zq following a

Gaussian distribution

1 https://www.cdc.informatik.tu-darmstadt.de/de/cdc/

personen/michael-schneider/

https://www.cdc.informatik.tu-darmstadt.de/de/cdc/personen/michael-schneider/
https://www.cdc.informatik.tu-darmstadt.de/de/cdc/personen/michael-schneider/
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Table 1. Computed values for parameter s in dependence of combinations of all used
tuples (n, c, q) and δ, as proposed in [LP11]. For δ = 10−2 this reflects the classifications
toy, low, medium, and high for n set to 128, 192, 256, and 320, respectively

(n, c, q) sδ=10−2 class[LP11] sδ=10−3 sδ=10−4 sδ=10−5 sδ=10−6

(128, 1.35, 2053) 6.77 toy 6.19 5.79 5.5 5.26
(192, 1.28, 4093) 8.87 low 8.11 7.59 7.2 6.9
(256, 1.25, 4093) 8.35 medium 7.63 7.15 6.78 6.5
(320, 1.22, 4093) 8.0 high 7.31 6.84 6.5 6.22
(384, 1.2, 4451) 8.04 – 7.34 6.87 6.52 6.25

(448, 1.184, 4723) 8.02 – 7.33 6.86 6.51 6.23
(512, 1.172, 4987) 8.01 – 7.32 6.85 6.5 6.23

−10 −5 0 5 10
0

5

10

15

Sampled value

%

Rejection Sampling

Devroye Sampler

Cont. Gaussian

Fig. 2. Histogram of 108 samples of rejection sampling and the sampler of Devroye

We denote the expression x
$← S for a value of x that is being sampled uni-

formly at random from the set S. For sampling Gaussian distributed integers, we
apply the rejection sampling approach. This method is, among others, exploited
in [GPV08] already. Algorithm 2 and Fig. 1 illustrate the rejection sampling ap-
proach. An exercise of this method revealed that for the chosen parameters the
sampling success rate is approx. 20%. This is due to the fact that in the second
sampling step in Algorithm 2, values far from the origin being accepted with
a very small probability. Tests with the Gaussian Sampler of Devroye [Dev86,
Chap. 3, Exercise 3] with standard deviation of σ = 1√

2π
·s showed a success rate

of 85.2% for this sampler. The generation of 108 samples on our test platform
took 19s compared to 75s for the rejection sampler. Therefore, using Devroye’s
sampler would allow for faster sampling in the encryption system. Unfortunately,
the output of this sampler differs from the continuous Gaussian distribution, as
shown in Fig. 2. Further, the performance benefits by using a Devroye sampler
were negligible in our tests, although the success rates differ significantly.

The performance tests presented in this paper have been executed on an Intel
Core 2 Duo CPU running at 3.00 GHz and 4Gb of RAM. As clearly visible from
Fig. 3, LWE-Polynomial benefits from the fewer coefficients and outperforms
LWE-Matrix by at least a factor of 4. The superior performance results, the
smaller memory footprint, and less key data were the reasons to consider only
LWE-Polynomial for hardware implementation. To be more specific, the analysis
of the memory footprint revealed that LWE-Polynomial utilized 3.8 to 23 times
less memory during key generation, 2.6 to 17.2 times while encrypting, and
decryption took 2 to 5 times less memory resources than LWE-Matrix.
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Fig. 3. Computation times of LWE software variants for all basic functions KeyGen,
Encrypt, and Decrypt (cf. Table 2).

Table 2. LWE-Matrix vs. LWE-Polynomial: Time in milliseconds for key generation,
encryption, and decryption of a 16 byte plaintext.

KeyGen Encrypt Decrypt
n tMatrix tPoly tMatrix/tPoly tMatrix tPoly tMatrix/tPoly tMatrix tPoly tMatrix/tPoly

128 141.3 2.51 56.2 3.01 0.76 3.98 1.24 0.28 4.40
256 604.9 3.10 195.3 11.01 1.52 7.23 2.37 0.57 4.15
384 1311.2 4.05 323.6 23.41 2.51 9.34 3.41 0.98 3.46
512 2338.5 4.53 516.5 46.05 3.06 15.04 4.52 1.18 3.84

Table 3. Filesizes in bytes of LWE public and private keys as well as size of a ciphertext
for a 16 byte plaintext. It is remarkable that the ciphertext of the matrix variant is
smaller than that of the polynomial variant.

Public Key Private Key Cyphertext
n Matrix Poly Matrix/Poly Matrix Poly Matrix/Poly Matrix Poly Matrix/Poly
128 146811 1154 127.22 53602 394 136.05 1142 1143 1.00
256 465851 2435 191.31 108298 883 122.65 1816 2423 0.75
384 935676 3659 255.72 162232 1271 127.64 2433 3650 0.67
512 1567516 4912 319.12 216624 1665 130.10 3058 4893 0.62

The filesize of the generated key material is depicted in Table 3. We directly
used the NTL [Sho] output, which is on the one hand clearly not an optimal
representation for the data, but allowed for interoperability with other tools. The
theoretical key and ciphertext sizes for the software implementation are given in
(2) and (3), respectively. Here, n denotes the dimension and l the message length
in bits. For software based approaches a short integer (16 bit) length has been
selected instead of "log2(q)# for the required bit width, which has been chosen for
the hardware implementation. The ratios between the filesizes of LWE-Matrix
and LWE-Polynomial are on the other hand good estimations for the real values.

SizeMatrix,Public = (n · l + n2) · �log2(q)� SizeMatrix,Private = n · l · �log2(q)�
SizePoly,Public = 2 · n · �log2(q)� SizePoly,Private = n · �log2(q)�

(2)
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SizeMatrix,Cipher = (n+ l) · �log2(q)� SizePoly,Cipher = 2n · �log2(q)� (3)

Another noteable result of our software evaluation revealed that the ciphertext
for higher dimensions is smaller in LWE-Matrix compared to LWE-Polynomial,
as denoted in Table 3. Further on, we noticed that different values of the error
probability δ have only a marginal impact on the related runtimes.

4 Hardware Implementation

As aforementioned, only the LWE-Polynomial variant has been selected for
hardware implementation, as the software evaluation indicated the performance
benefits of this representation (see Fig. 3). The evaluation platform of the hard-
ware implementation is a Xilinx ML-605 evaluation board providing a Virtex-6
LX240T FPGA. Hardware modules have been designed in a vendor independent
manner, which allows the utilization of FPGAs from other vendors as well as a
representation as an Application Specific Integrated Circuit (ASIC) implemen-
tation. Additionally, we also present related synthesis results using a Virtex-7
device in Table 6.

The parameters exploited for the hardware implementation are given in Ta-
ble 4 and we assigned δ = 10−2. Recall that the parameter set with n = 128 does
not supply sufficient security guarantees (“toy” parameters). The FFT requires
for all roots of unity that q−1 is a multiple of 2n (see Corollary 30.4 [CLRS09]).

The dataflow for the three primitive operations of the LWE-based scheme are
depicted in Fig. 4. In contrast to the rejection sampling approach applied in the
software variant, which would require floating point arithmetic, the Gaussian
sampler has been implemented by means of a look-up table. Integers in the
range of [−"2 · s#, "2 · s#] are selected by applying the random output of a linear
feedback shift register (LFSR) as an address to an array of Gaussian distributed
values. In order to save resources, this array has been embodied using only start
and end addresses of the values. An unoptimized Gaussian array would require
(resolution · "log2(q)#) bits, whereas the optimized version requires 3 · (2 · "2s#+
1) · "log2(q)# only. For example, with s = 6.67, q = 3329 and a resolution of
1023 the optimized version requires 1044 bits (c.f. Table 5) whereas a straight
forward array would require 12288 bits, which saves in this case approx. 92% of
the memory. Additionally, the uniform sampler, required during key generation
is realized by an LFSR (cf. Sect. 4.1). For the look-up-table with interval size
of 4s, the probability of a sample outside of this interval is 4.6 · 10−6. This
probability can be lowered further by choosing a larger interval.

Table 4. LWE parameters for hardware tests using δ = 10−2 and the bit width
(�log2(q)�) for representing coefficient values.

n q s ω �log2(q)�
128 3329 8.62 17 12
256 7681 11.31 62 13
512 12289 12.18 49 14
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Table 5. Implemented approach of the Gaussian array

Start/End-address . . . . . . 157 237 238 337 338 451 452 570 571 684 685 784 785 865 . . . . . .

Gaussian value . . . -3 -2 -1 0 1 2 3 . . .

The message encoding, as outlined in Sect. 2.2, is performed by the encode and
decode modules depicted in Fig. 4(a) and Fig. 4(c), respectively. The encryption
datapath, as displayed in Fig. 4(a), shows how Gaussian distributed random
errors are introduced within the cipertext by multiplication and addition. As
a result of the encryption, the two vectors c1 and c2 contain the ciphertext.
Decryption of the ciphertext (c1, c2) is performed by a multiplication of the
private key r2 with c1 followed by an addition of c2 as detailed in Fig. 4(c).

(a) Encryption (b) KeyGen

(c) Decryption

Fig. 4. Overview of LWE Encryption Scheme Datapaths

The modular multiplication of polynomials is by far the most expensive op-
eration in this scheme. Therefore, we apply the FFT for polynomial reduction
and a Montgomery multiplier [Mon85] to realize the modular multiplication of
the polynomial coefficients as depicted in Fig. 5.

4.1 Random Numbers for Keys and Errors

Uniformly distributed random numbers are required by the Gaussian sampler.
In this work we emphasize on the implementation of the Gaussian sampler and
therfore the quality of the LFSR-based RNG is not in the scope of this paper. For
the practical use of the herein proposed scheme, attacks on the random number
generators, such as frequency injection [MM09], have to be considered. Novel
concepts for RNGs addressing reconfigurable hardware have been presented in
previous works, such as [KG04], [Gün10], [VD10] and [MKD11].
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Fig. 5. Arithmetic unit for polynomial multiplication

4.2 Resource Utilization

The utilization of device resources are depicted in Fig. 6 and correspond to the
data of the Virtex-6 columns in Table 6. Taking a closer look at the actual values,
one can find that dimensions n > 128 did not fit into the Virtex-6 device, which
we used for evaluation. Therefore, we additionally provide synthesis results for a
Virtex-7 series device (cf. Table 6). Using this device enabled the implementation
of the whole scheme for the largest dimension considered in this paper. Our
primary goal was performance, which naturally leads to larger implementations.
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Fig. 6. Hardware resource utilization of the top-modules LWE-KeyGen, LWE-Encrypt,
and LWE-Decrypt for n = {128, 256, 512}. Detailed data is denoted in Table 6.

4.3 Design Improvements

The choice of parameters allows for some optimizations of certain modules. As
an example, the inverse FFT can be considerably improved in the case that if the
reduction polynomial for the residue ring follows the structure of f(x) = xn + 1
for which n is a power of 2, i.e., it is cyclotomic. The root of unity ω ∈ Zq is
selected such that ω2n = 1 mod q with q is prime and q − 1 is a multiple of
2n. Based on Collary 30.4 in [CLRS09], ω is determined by ωn = −1 mod q
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Table 6. Top-level module resource utilization of KeyGen, Encrypt, and Decrypt on
a Xilinx XC6VLX240T FPGA and XC7V2000T for n = {128, 256, 512}

(a) LWE-KeyGen

Virtex-6 LX240T Virtex-7 2000T
n = 128 % n = 256 % n = 512 % n = 128 % n = 256 % n = 512 %

# Registers 37918 12 82463 27 174757 57 37918 1 85472 3 174757 7
# LUTs 64804 42 146718 97 314635 208 69140 5 163209 13 348204 28

(b) LWE-Encrypt

Virtex-6 LX240T Virtex-7 2000T
n = 128 % n = 256 % n = 512 % n = 128 % n = 256 % n = 512 %

# Registers 65680 21 143396 47 296207 98 65680 2 143396 5 296207 12
# LUTs 131254 87 298016 197 618934 410 131187 10 320816 26 634893 51

(c) LWE-Decrypt

Virtex-6 LX240T Virtex-7 2000T
n = 128 % n = 256 % n = 512 % n = 128 % n = 256 % n = 512 %

# Registers 31884 10 65174 21 134036 44 31884 1 65174 2 134036 5
# LUTs 56311 37 124158 82 263083 174 56313 4 124265 10 260772 21

throughout this paper and it is used as a common parameter of all butterfly
modules. Generally speaking, this eliminates the final polynomial reduction step,
resulting in a cut of half the residue class multipliers.

Assume that the inputs of a butterfly module are denoted by xi and xi+n

and the outputs are denoted by yi and yi+n. Then the inner calculation of the
butterfly module is given by

yi = xi + ωjxi+n

yi+n = xi − ωjxi+n .
(4)

In the last step of the inverse FFT each coefficient is multiplied by the inverse
element of 2n in the residue class ring Zq. Applying this multiplication to every
output of a butterfly module results in

yi · (2n)−1 = xi · (2n)−1 + ωjxi+n · (2n)−1

yi+n · (2n)−1 = xi · (2n)−1 − ωjxi+n · (2n)−1 .
(5)

Applying the reduction step of cyclotomic polynomials (cf. (10)), both outputs
of a butterfly module are subtracted as follows

yi · (2n)−1 − yi+n · (2n)−1 =xi · (2n)−1 + ωjxi+n · (2n)−1

− xi · (2n)−1 + ωjxi+n · (2n)−1

=2ωj(2n)
−1 · xi+n .

(6)

An important consequence of (6) is that not every input xi is required to calculate
the inverse FFT. If this consequence is considered for the inputs of the inverse
FFT, only those inputs characterized by an odd index are used. So, each input
with an odd index is connected to a wire that is placed in the lower half of the
parallel FFT depicted as in Fig. 7. The term 2ωj(2n)

−1 in (6) is precomputed
in order to further reduce the ammount of utilized resources.
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Fig. 7. Optimization of the inverse FFT followed by a polynomial reduction (cf. (6))

5 Evaluation and Practical Implications

An evaluation of the presented results shows that for the LWE-Polynomial im-
plementation, encryption and decryption differ only by a factor of roughly 2.6 for
the software version. The hardware implementation as presented in this paper is,
because of its full parallel structure, able to perform encryption and decryption
at the same speed. The LWE-Matrix does not share this property as the size of
the matrix grows quadratically with the dimension n.

To compare the performance of each implementation, the achieved through-
puts of both, the hardware and software implementation variants are depicted
in Fig. 8. Due to the increased parallelism and the structure of the encryp-
tion scheme, the hardware outperforms the software by a factor up to 316 for
encryption and of 122 for decryption. For the key generation the results are
even better and show a performance gain of roughly 400 in all three dimensions
(n = {128, 256, 512}). The reason for this considerable gain is the difference be-
tween the rejection sampling approach in software and the look-up table method
in hardware. Additionally, the hardware benefits from a full parallel implemen-
tation for sampling values, in contrast to the serial software implementation.

5.1 Message Expansion Factors

The estimated message expansion factor for the dimension n = 128 and the
parameters q = 2053 and s = 6.77 is 22. For the software-based implementations
of LWE-Matrix and LWE-Polynomial a short integer (16 bit) has been chosen
to represent the coefficient values, resulting in the difference in Table 7. As
aforementioned, the parameters for the hardware variant have been selected to
improve the FFT, hence the message expansion factors are also different (as q is
set to 3329). A comparison of all implementation variants is detailed in Table 7.
Obviously, using the optimal representation for the polynomial coefficients, the
message expansion factor of 24 is still very close to the expected factor of 22.
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Fig. 8. Throughput values of evaluated implementation variants

Table 7. Ciphertext in bytes for 16 byte plaintext and corresponding expansion factors

LWE-Matrix LWE-Polynomial LWE-Hardware
n Cipher Cipher/Plain Cipher Cipher/Plain Cipher Cipher/Plain
128 512 32 512 32 384 24
192 640 40 768 48 – –
256 768 48 1024 64 832 52
320 896 56 1280 80 – –
384 1024 64 1536 96 – –
448 1152 72 1792 112 – –
512 1280 80 2048 128 1792 112

5.2 Error Rates

An interesting result of the software implementaion tests, is the practical error
rate that can be observed during decryption, as depicted in Figure 9. As a part of
the evaluation we assessed the error rates, which represent the error probability
per symbol, against the upper bound δ outlined in Sect. 2.2. We state that the
practical error rate is more than a factor 100 smaller than its upper bound δ,
whereas the error rate increases with the dimension n.

The exact measurement values for the encountered bit errors for LWE-Matrix
and LWE-Polynomial are given in Table 8 and Table 9, respectively.

A reduction of the error probability may be achieved by changing the pa-
rameters which determine s (cf. (1)) q and n. The Gaussian standard deviation
s decreases when δ decreases as well. For the security guarantee to hold, it is
necessary that s · q > 2

√
n holds. This implies that, for the same security level

n, q has to be increased when smaller δ (and with this smaller s) is required.
A second way to deal with decryption errors is the application of error correct-
ing codes. This approach allows to keep the system parameters unchanged, but
enlarges the message expansion factor.



526 N. Göttert et al.

128 192 256 320 384 448 512

10−7

10−6

10−5

10−4

n

E
rr
o
r
R
a
te

LWE-Matrix, errδ=10−2

LWE-Matrix, errδ=10−3

LWE-Matrix, errδ=10−4

LWE-Poly, errδ=10−2

LWE-Poly, errδ=10−3

LWE-Poly, errδ=10−4

Fig. 9. Rate of bit-errors for LWE-Matrix and LWE-Polynomial for δ ∈
{10−2, 10−3, 10−4} for 1, 600, 000 byte plaintext, as detailed in Table 8 and Table 9

Table 8. LWE-Matrix: Bit errors and error rate for a 1, 600, 000 byte plaintext

δ = 10−2 δ = 10−3 δ = 10−4 δ = 10−5 δ = 10−6

n Errors % Errors % Errors % Errors % Errors %
128 189 0.001477 4 0.000031 1 0.000008 0 0.00 0 0.00
192 467 0.003648 8 0.000063 0 0.00 0 0.00 0 0.00
256 650 0.005078 15 0.000117 0 0.00 0 0.00 0 0.00
320 994 0.007766 26 0.000203 2 0.000016 0 0.00 0 0.00
384 1304 0.010188 31 0.000242 3 0.000023 0 0.00 0 0.00
448 1567 0.012242 47 0.000367 0 0.00 0 0.00 0 0.00
512 1820 0.014219 68 0.000531 2 0.000016 0 0.00 0 0.00

Table 9. LWE-Polynomial: Bit errors and error rate for a 1, 600, 000 byte plaintext

δ = 10−2 δ = 10−3 δ = 10−4 δ = 10−5 δ = 10−6

n Errors % Errors % Errors % Errors % Errors %
128 94 0.000734 0 0.00 0 0.00 0 0.00 0 0.00
192 586 0.004578 4 0.000031 0 0.00 0 0.00 0 0.00
256 474 0.003703 7 0.000055 1 0.000008 0 0.00 0 0.00
320 766 0.005984 13 0.000102 0 0.00 0 0.00 0 0.00
384 1031 0.008055 42 0.000328 1 0.000008 0 0.00 0 0.00
448 1108 0.008656 40 0.000313 2 0.000016 0 0.00 0 0.00
512 1329 0.010383 46 0.000359 5 0.000039 0 0.00 0 0.00

6 Future Work

Usage of error correcting codes, such as Viterbi[Vit67], in order to overcome
decryption errors will be addressed in future work. Another not yet addressed
aspect is that error detection itself is not sufficient since it allows for a correlation
with the private key if decryption fails; error corection however may interact with
the security guarantees of the whole scheme. Applying the central limit theorem
enables the precomputation of expected error rates instead of upper bounds,
which leads to a better estimation than the upper bound δ.
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We consider as additional goals for the hardware implementation to investi-
gate into an architecture which exploits resource sharing in order to reduce the
amount of required resources. Further, a hardware version without the use of
an FFT is envisaged to quantify the tradeoff between resource utilization and
throughput. An investigation on the benefits of constant multipliers, to further
improve the design, is part of future work.
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[Gün10] Güneysu, T.: True random number generation in block memories of recon-
figurable devices. In: FPT. IEEE (2010)

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public
Key Cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423,
pp. 267–288. Springer, Heidelberg (1998)

[KG04] Kohlbrenner, P., Gaj, K.: An embedded true random number generator for
FPGAs. In: ACM/SIGDA FPGA (2004)

[LP11] Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based
Encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–
339. Springer, Heidelberg (2011)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning
with Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

[Lyu09] Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and
Factoring-Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)

www.cased.de


528 N. Göttert et al.

[Lyu12] Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–
755. Springer, Heidelberg (2012)

[Mic10] Micciancio, D.: Duality in lattice cryptography (2010) (Invited talk)

[MKD11] Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA-Based True Random
Number Generation Using Circuit Metastability with Adaptive Feedback
Control. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 17–32. Springer, Heidelberg (2011)

[MM09] Markettos, A.T., Moore, S.W.: The Frequency Injection Attack on Ring-
Oscillator-Based True Random Number Generators. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 317–331. Springer, Heidelberg
(2009)

[Mon85] Montgomery, P.L.: Modular multiplication without trial division. Mathe-
matics of Computation 44 (1985)

[Paa94] Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Ga-
lois Fields. PhD thesis, Universität Essen (1994)

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In: STOC. ACM (2009)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: STOC. ACM (2005)

[Sho] Shoup, V.: Number theory library (NTL), http://www.shoup.net/ntl/
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A Mathematical Background

The polynomial reduction can be written as r(x) = g(x) mod f(x) and repre-
sented in matrix notation [Paa94] as a multiplication of g(x) with the reduction
matrix M as follows:

⎛⎜⎜⎜⎝
r0
r1
...

rn−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 0 · · · 0 μ0,0 · · · μ0,n−2

0 1 · · · 0 μ1,0 · · · μ1,n−2

...
...
. . .

...
...

. . .
...

0 0 · · · 1 μn−1,0 · · · μn−1,n−2

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0
g1
...

gn−1

gn
...

g2n−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

http://www.shoup.net/ntl/
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The elements μj,i of matrix M are calculated from

μj,i =

{
−fj , for j = 0, . . . , n− 1; i = 0

μj−1,i−1 + μn−1,i−1 · μj,0 , for j = 0, . . . , n− 1; i = 1, .., n− 2;
(8)

where μj−1,i−1 = 0, if j = 0. This procedure gets very simple if f(x) is a
cyclotomic polynomial of the form xn + 1, with n is a power of 2

M =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 −1 0 · · · 0
0 1 · · · 0 0 −1 · · · 0
...
...
. . .

...
...

. . .
...

...
...

... 0 · · · 0 −1
0 0 · · · 1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (9)

By means of this simplified matrix, the calculation of the matrix-vector multi-
plication can be reduced to:

⎛⎜⎜⎜⎝
r0
r1
...

rn−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
g0 − gn

g1 − gn+1

...
gn−2 − g2n−2

gn−1

⎞⎟⎟⎟⎟⎟⎠ . (10)

This simplification (10) leads to the fact that the polynomial reduction takes
only linear time.
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Abstract. Nearly all of the currently used and well-tested signature
schemes (e.g. RSA or DSA) are based either on the factoring assumption
or the presumed intractability of the discrete logarithm problem. Fur-
ther algorithmic advances on these problems may lead to the unpleasant
situation that a large number of schemes have to be replaced with alter-
natives. In this work we present such an alternative – a signature scheme
whose security is derived from the hardness of lattice problems. It is
based on recent theoretical advances in lattice-based cryptography and
is highly optimized for practicability and use in embedded systems. The
public and secret keys are roughly 12000 and 2000 bits long, while the
signature size is approximately 9000 bits for a security level of around
100 bits. The implementation results on reconfigurable hardware (Spar-
tan/Virtex 6) are very promising and show that the scheme is scalable,
has low area consumption, and even outperforms some classical schemes.

Keywords: Post-QuantumCryptography, Lattice-Based Cryptography,
Ideal Lattices, Signature Scheme Implementation, FPGA.

1 Introduction

Due to the yet unpredictable but possibly imminent threat of the construction
of a quantum computer, a number of alternative cryptosystems to RSA and
ECC have gained significant attention during the last years. In particular, it
has been widely accepted that relying solely on asymmetric cryptography based
on the hardness of factoring or the (elliptic curve) discrete logarithm problem is
certainly not sufficient in the long term [7]. This has been mainly due to the work
of Shor [34], who demonstrated that both classes of problems can be efficiently
attacked with quantum computers. As a consequence, first steps towards the
required diversification and investigation of alternative fundamental problems
and schemes have been taken. This has already led to efficient implementations
of various schemes based on multivariate quadratic systems [5,3] and the code-
based McEliece cryptosystem [10,35].
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Another promising alternative to number-theoretic constructions are lattice-
based cryptosystems because they admit security proofs based on well-studied
problems that currently cannot be solved by quantum algorithms. For a long
time, however, lattice constructions have only been considered secure for in-
efficiently large parameters that are well beyond practicability1 or were, like
GGH [14] and NTRUSign [17], broken due to flaws in the ad-hoc design ap-
proach [30]. This has changed since the introduction of cyclic and ideal lat-
tices [26] and related computationally hard problems like Ring-SIS [31,22,24]
and Ring-LWE [25] which enabled the constructions of a great variety of theo-
retically elegant and efficient cryptographic primitives.

In this work we try to further close the gap between the advances in theoretical
lattice-based cryptography and real-world implementation issues by constructing
and implementing a provably-secure digital signature scheme based on ideal lat-
tices. While maintaining the connection to hard ideal lattice problems we apply
several performance optimizations for practicability that result in moderate sig-
nature and key sizes as well as performance suitable for embedded and hardware
systems.

Digital Signatures and Related Work. Digital signatures are arguably the most
used public-key cryptographic primitive in practical applications, and a lot of
effort has gone into trying to construct such schemes from lattice assumptions.
Due to the success of the NTRU encryption scheme, it was natural to try to
design a signature scheme based on the same principles. Unlike the encryption
scheme, however, the proposed NTRU signature scheme [18,16] has been com-
pletely broken by Nguyen and Regev [30]. Provably-secure digital signatures were
finally constructed in 2008, by Gentry, Peikert, and Vaikuntanathan [13], and,
using different techniques, by Lyubashevsky and Micciancio [23]. The scheme
in [13] was very inefficient in practice, with outputs and keys being megabytes
long, while the scheme in [23] was only a one-time signature that required the
use of Merkle trees to become a full signature scheme. The work of [23] was
extended by Lyubashevsky [20,21], who gave a construction of a full-fledged sig-
nature scheme whose keys and outputs are currently on the order of 15000 bits
each, for an 80-bit security level. The work of [13] was also recently extended by
Micciancio and Peikert [27], where the size of the signatures and keys is roughly
100, 000 bits.

Our Contribution. The main contribution of this work is the implementation
of a digital signature scheme from [20,21] optimized for embedded systems. In
addition, we propose an improvement to the above-mentioned scheme which
preserves the security proof, while lowering the signature size by approximately
a factor of two. We demonstrate the practicability of our scheme by implementing
a scalable and efficient signing and verification engine. For example, on the low-
cost Xilinx Spartan-6 we are 1.5 times faster and use only half of the resources

1 One notable exception is the NTRU public-key encryption scheme [17], which has
essentially remained unbroken since its introduction.
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of the optimized RSA implementation of Suzuki [38]. With more than 12000
signatures and over 14000 signature verifications per second, we can satisfy even
high-speed demands using a Virtex-6 device.

Outline. The paper is structured as follows. First we give a short overview on
our hardness assumption in Section 2 and then introduce the highly efficient and
practical signature scheme in Section 3. Based on this description, we introduce
our implementation and the hardware architecture of the signing and signature
verification engine in Section 4 and analyze its performance on different FPGAs
in Section 5. In Section 6 we summarize our contribution and present an outlook
for future work.

2 Preliminaries

2.1 Notation

Throughout the paper, we will assume that n is an integer that is a power of 2,
p is a prime number congruent to 1 modulo 2n, and Rpn

is the ring Zp[x]/(x
n+

1). Elements in Rpn

can be represented by polynomials of degree n − 1 with

coefficients in the range [−(p − 1)/2, (p − 1)/2], and we will write Rpn

k to be a
subset of the ring Rpn

that consists of all polynomials with coefficients in the

range [−k, k]. For a set S, we write s
$← S to indicate that s is being chosen

uniformly at random from S.

2.2 Hardness Assumption

In a particular version of the Ring-SIS problem, one is given an ordered pair
of polynomials (a, t) ∈ Rpn × Rpn

where a is chosen uniformly from Rpn

and

t = as1 + s2, where s1 and s2 are chosen uniformly from Rpn

k , and is asked to
find an ordered pair (s′1, s′2) such that as′1 + s′2 = t. It can be shown that when
k >

√
p, the solution is not unique and finding any one of them, for

√
p < k $ p,

was proven in [31,22] to be as hard as solving worst-case lattice problems in ideal
lattices. On the other hand, when k <

√
p, it can be shown that the only solution

is (s1, s2) with high probability, and there is no classical reduction known from
worst-case lattice problems to finding this solution. In fact, this latter problem
is a particular instance of the Ring-LWE problem. It was recently shown in [25]
that if one chooses the si from a slightly different distribution (i.e., a Gaussian
distribution instead of a uniform one), then solving the Ring-LWE problem
(i.e., recovering the si when given (a, t)) is as hard as solving worst-case lattice
problems using a quantum algorithm. Furthermore, it was shown that solving the
decision version of Ring-LWE, that is distinguishing ordered pairs (a, as1 + s2)
from uniformly random ones in Rpn ×Rpn

, is still as hard as solving worst-case
lattice problems.

In this paper, we implement our signature scheme based on the presumed
hardness of the decision Ring-LWE problem with particularly “aggressive” pa-
rameters. We define the DCKp,n problem (Decisional Compact Knapsack prob-
lem) to be the problem of distinguishing between the uniform distribution over
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Rpn × Rpn

and the distribution (a, as1 + s2) where a is uniformly random in

Rpn

and si are uniformly random in Rpn

1 . As of now, there are no known al-
gorithms that take advantage of the fact that the distribution of si is uniform
(i.e., not Gaussian) and consists of only −1/0/1 coefficients2, and so it is very
reasonable to conjecture that this problem is still hard. In fact, this is essentially
the assumption that the NTRU encryption scheme is based on. Due to lack of
space, we direct the interested reader to Section 3 of the full version of [21] for
a more in-depth discussion of the hardness of the different variants of the SIS

and LWE problems.

2.3 Cryptographic Hash Function H with Range Dn
32

Our signature scheme uses a hash function, and it is quite important for us that
the output of this function is of a particular form. The range of this function,
Dn

32, for n ≥ 512 consists of all polynomials of degree n − 1 that have all zero
coefficients except for at most 32 coefficients that are ±1.

We denote by H the hash function that first maps {0, 1}∗ to a 160-bit string
and then injectively maps the resulting 160-bit string r to Dn

32 via an efficient
procedure we now describe. To map a 160-bit string into the range Dn

32 for
n ≥ 512, we look at 5 bits of r at a time, and transforms them into a 16-digit
string with at most one non-zero coefficient as follows: let r1r2r3r4r5 be the five
bits we are currently looking at. If r1 is 0, then put a −1 in position number
r2r3r4r5 (where we read the 4-digit string as a number between 0 and 15) of
the 16-digit string. If r1 is 1, then put a 1 in position r2r3r4r5. This converts
a 160-bit string into a 512-digit string with at most 32 ±1’s.3 We then convert
the 512-bit string into a polynomial of degree at least 512 in the natural way by
assigning the ith coefficient of the polynomial the ith bit of the bit-string. If the
polynomial is of degree greater than 512, then all of its higher-order terms will
be 0.

3 The Signature Scheme

In this section, we will present the lattice-based signature scheme whose hard-
ware implementation we describe in Section 4. This scheme is a combination of
the schemes from [20] and [21] as well as an additional optimization that allows
us to reduce the signature length by almost a factor of two. In [20], Lyuba-
shevsky constructed a lattice-based signature scheme based on the hardness of
the Ring-SIS problem, and this scheme was later improved in two ways [21].

2 For readers familiar with the Arora-Ge algorithm for solving LWE with small noise
[2], we would like to point out that it is does not apply to our problem because this
algorithm requires polynomially-many samples of the form (ai,ais+ ei), whereas in
our problem, only one such sample is given.

3 There is a more “compact” way to do it (see for example [11] for an algorithm that
can convert a 160-bit string into a 512-digit one with at most 24 ±1 coefficients),
but the resulting transformation algorithm is quadratic rather than linear.
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The first improvement results in signatures that are asymptotically shorter, but
unfortunately involves a somewhat more complicated rejection sampling algo-
rithm during the singing procedure, involving sampling from the normal distri-
bution and computing quotients to a very high precision, which would not be
very well supported in hardware. We do not know whether the actual savings
achieved in the signature length would justify the major slowdown incurred,
and we do leave the possibility of efficiently implementing this rejection sam-
pling algorithm to future work. The second improvement from [21], which we do
use, shows how the size of the keys and the signature can be made significantly
smaller by changing the assumption from Ring-SIS to Ring-LWE.

3.1 The Basic Signature Scheme

For ease of exposition, we first present the basic combination scheme of [20] and
[21] in Figure 1, and sketch its security proof. Full security proofs are available
in [20] and [21]. We then present our optimization in Sections 3.2 and 3.3.

Signing Key: s1, s2
$←Rpn

1

Verification Key: a
$←Rpn , t← as1 + s2

Cryptographic Hash Function: H : {0, 1}∗ → Dn
32

Sign(μ, a, s1, s2)
1: y1,y2

$←Rpn

k

2: c← H(ay1 + y2, μ)
3: z1 ← s1c+ y1, z2 ← s2c+ y2

4: if z1 or z2 /∈ Rpn

k−32, then goto step 1
5: output (z1, z2, c)

Verify(μ, z1, z2, c,a, t)
1: Accept iff

z1, z2 ∈ Rpn

k−32 and
c = H(az1 + z2 − tc, μ)

Fig. 1. The Basic Signature Scheme

The secret keys are random polynomials s1, s2
$← Rpn

1 and the public key is

(a, t), where a
$← Rpn

and t ← as1 + s2. The parameter k in our scheme which
first appears in line 1 of the signing algorithm controls the trade-off between the
security and the runtime of our scheme. The smaller we take k, the more secure
the scheme becomes (and the shorter the signatures get), but the time to sign
will increase. We explain this as well as the choice of parameters below.

To sign a message μ, we pick two “masking” polynomials y1,y2
$← Rpn

k and
compute c ← H(ay1 + y2, μ) and the potential signature (z1, z2, c) where z1 ←
s1c + y1, z2 ← s2c + y2

4. But before sending the signature, we must perform
a rejection-sampling step where we only send if z1, z2 are both in Rpn

k−32. This
part is crucial for security and it is also where the size of k matters. If k is too
small, then z1, z2 will almost never be in Rpn

k−32, whereas if its too big, it will

4 We would like to draw the reader’s attention to the fact that in step 3, reduction
modulo p is not performed since all the polynomials involved have small coefficients.
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be easy for the adversary to forge messages5. To verify the signature (z1, z2, c),

the verifier simply checks that z1, z2 ∈ Rpn

k−32 and that c = H(az1 + z2 − tc, μ).
Our security proof follows that in [21] except that it uses the rejection sam-

pling algorithm from [20]. Given a random polynomial a ∈ Rpn

, we pick two poly-

nomials s1, s2
$← Rpn

k′ for a sufficiently large k′ and return (a ∈ Rpn

, t = as′1+s′2)
as the public key. By theDCKp,n assumption (and a standard hybrid argument),
this looks like a valid public key (i.e., the adversary cannot tell that the si are

chosen from Rpn

k′ rather than from Rpn

1 ). When the adversary gives us signature
queries, we appropriately program the hash function outputs so that our signa-
tures are valid even though we do not know a valid secret key (in fact, a valid
secret key does not even exist). When the adversary successfully forges a new
signature, we then use the “forking lemma” [33] to produce two signatures of
the message μ, (z1, z2, c) and (z′1, z

′
2, c

′), such that

H(az1 + z2 − tc, μ) = H(az′1 + z′2 − tc′, μ), (1)

which implies that
az1 + z2 − tc = az′1 + z′2 − tc′ (2)

and because we know that t = as1 + s2, we can obtain

a(z1 − cs1 − z′1 + c′s1) + (z2 − cs2 − z′2 + c′s2) = 0.

Because zi, si, c, and c′ have small coefficients, we found two polynomials u1,u2

with small coefficients such that au1 + u2 = 06 By [21, Lemma 3.7], knowing
such small ui allows us to solve the DCKp,n problem.

We now explain the trick that we use to lower the size of the signature as
returned by the optimized scheme presented in Section 3.3. Notice that if Equa-
tion (2) does not hold exactly, but only approximately (i.e., az1 + z2 − tc −
(az′1 + z′2 − tc′) = w for some small polynomial w), then we can still obtain
small u1,u2 such that au1 + u2 = 0, except that the value of u2 will be larger
by at most the norm of w. Thus if az1 + z2 − tc ≈ az′1 + z′2 − tc′, we will still
be able to produce small u1,u2 such that au1 + u2 = 0. This could make us
consider only sending (z1, c) as a signature rather than (z1, z2, c), and the proof
will go through fine. The problem with this approach is that the verification
algorithm will no longer work, because even though az1+z2−tc ≈ az1−tc, the
output of the hash function H will be different. A way to go around the problem
is to only evaluate H on the “high order bits” of the coefficients comprising the
polynomial az1 + z2 − tc which we could hope to be the same as those of the
polynomial az1 − tc. But in practice, too many bits would be different (because
of the carries caused by z2) for this to be a useful trick. What we do instead is
send (z1, z

′
2, c) as the signature where z′2 only tells us the carries that z2 would

have created in the high order bits in the sum of az1 + z2 − tc, and so z′2 can
be represented with much fewer bits than z2. In the next subsection, we explain

5 The exact probability that z1, z2 will be in Rpn

k−32 is
(
1− 64

2k+1

)2n

.
6 It is also important that these polynomials are non-zero.
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exactly what we mean by “high-order bits” and give an algorithm that produces
a z′2 from z2, and then provide an optimized version of the scheme in this section
that uses the compression idea.

3.2 The Compression Algorithm

For every integer y in the range
[
− p−1

2 , p−1
2

]
and any positive integer k, y can

be uniquely written as y = y(1)(2k + 1) + y(0) where y(0) is an integer in the

range [−k, k] and y(1) = y−y(0)

2k+1 . Thus y(0) are the “lower-order” bits of y, and

y(1) are the “higher-order” ones7. For a polynomial y = y[0]+y[1]x+ . . .+y[n−
1]xn−1 ∈ Rpn

, we define y(1) = y[0](1) + y[1](1)x + . . . + y[n − 1](1)xn−1 and
y(0) = y[0](0) + y[1](0)x+ . . .+ y[n − 1](0)xn−1.

The Lemma below states that given two vectors y, z ∈ Rpn

where the coef-
ficients of z are small, we can replace z by a much more compressed vector z′

while keeping the higher order bits of y+ z and y+ z′ the same. The algorithm
that satisfies this lemma is presented in Figure 5 in Appendix A.

Lemma 3.1. There exists a linear-time algorithm Compress(y, z, p, k) that for

any p, n, k where 2nk/p > 1 takes as inputs y
$← Rpn

, z ∈ Rpn

k , and with

probability at least .98 (over the choices of y ∈ Rpn

), outputs a z′ ∈ Rpn

k such
that

1. (y + z)(1) = (y + z′)(1)

2. z′ can be represented with only 2n+ "log(2k + 1)# · 6kn
p bits.

3.3 A Signature Scheme for Embedded Systems

We now present the version of the signature scheme that incorporates the com-
pression idea from Section 3.2 (see Figure 2). We will use the following notation
that is similar to the notation in Section 3.2: every polynomial Y ∈ Rpn

can be
written as

Y = Y(1)(2(k − 32) + 1) +Y(0)

whereY(0) ∈ Rpn

k−32 and k corresponds to the k in the signature scheme in Figure
2. Notice that there is a bijection between polynomialsY and this representation
(Y(1),Y(0)) where

Y(0) = Y mod (2(k − 32) + 1),

and

Y(1) =
Y − Y(0)

2(k − 32) + 1
.

Intuitively, Y(1) is comprised of the higher order bits of Y.
The secret key in our scheme consists of two polynomials s1, s2 sampled uni-

formly from Rpn

1 and the public key consists of two polynomials a
$← Rpn

and

7 Note that these only roughly correspond to the notion of most and least significant
bits.
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Signing Key: s1, s2
$←Rpn

1

Verification Key: a
$←Rpn , t← as1 + s2

Cryptographic Hash Function: H : {0, 1}∗ → Dn
32

Sign(μ, a, s1, s2)
1: y1,y2

$←Rpn

k

2: c← H
(
(ay1 + y2)

(1), μ
)

3: z1 ← s1c+ y1, z2 ← s2c+ y2

4: if z1 or z2 /∈ Rpn

k−32, then goto step 1
5: z′2 ← Compress (az1 − tc, z2, p, k − 32)
6: if z′2 = ⊥, then goto step 1
7: output (z1, z

′
2, c)

Verify(μ, z1, z
′
2, c,a, t)

1: Accept iff
z1, z

′
2 ∈ Rpn

k−32 and

c = H
(
(az1 + z′2 − tc)(1), μ

)

Fig. 2. Optimized Signature Scheme

t = as1 + s2. In step 1 of the signing algorithm, we choose the “masking poly-
nomials” y1,y2 from Rpn

k . In step 2, we let c be the hash function value of the
high order bits of ay1 +y2 and the message μ. In step 3, we compute z1, z2 and
proceed only if they fall into a certain range. In step 5, we compress the value
z2 using the compression algorithm implied in Lemma 3.1, and obtain a value
z′2 such that (az1 − tc + z2)

(1) = (az1 − tc + z′2)
(1) and send (z1, z

′
2, c) as the

signature of μ. The verification algorithm checks whether z1, z
′
2 are in Rpn

k−32

and that c = H
(
(az1 + z′2 − tc)(1), μ

)
.

The running time of the signature algorithm depends on the relationship of
the parameter k with the parameter p. The larger the k, the more chance that
z1 and z2 will be in Rpn

k−32 in step 4 of the signing algorithm, but the easier the
signature will be to forge. Thus it is prudent to set k as small as possible while
keeping the running time reasonable.

3.4 Concrete Instantiation

We now give some concrete instantiations of our signature scheme from Figure 2.
The security of the scheme depends on two things: the hardness of the under-
lying DCKp,n problem and the hardness of finding pre-images in the random
oracle H8. For simplicity, we fixed the output of the random oracle to 160 bits
and so finding pre-images is 160 bits hard. Judging the security of the lattice
problem, on the other hand, is notoriously more difficult. For this part, we rely
on the extensive experiments performed by Gama and Nguyen [12] and Chen and
Nguyen [8] to determine the hardness of lattice reductions for certain classes of
lattices. The lattices that were used in the experiments of [12] were a little differ-
ent than ours, but we believe that barring some unforeseen weakness due to the

8 It is generally considered folklore that for obtaining signatures with λ bits of security
using the Fiat-Shamir transform, one only needs random oracles that output λ bits
(i.e., collision-resistance is not a requirement). While finding collisions in the random
oracle does allow the valid signer to produce two distinct messages that have the
same signature, this does not constitute a break.
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Table 1. Signature Scheme Parameters

Aspect Set I Set II

n 512 1024
p 8383489 16760833
k 214 215

Approximate signature bit size 8, 950 18, 800
Approximate secret key bit size 1, 620 3, 250
Approximate public key bit size 11, 800 25, 000

Expected number of repetitions 7 7

Approximate root Hermite factor 1.0066 1.0035
Equivalent symmetric security in bits ≈ 100 > 256

added algebraic structure of our lattices and the parameters, the results should
be quite similar. We consider it somewhat unlikely that the algebraic structure
causes any weaknesses since for certain parameters, our signature scheme is as
hard as Ring-LWE (which has a quantum reduction from worst-case lattice
problems [25]), but we do encourage cryptanalysis for our particular parameters
because they are somewhat smaller than what is required for the worst-case to
average-case reduction in [37,25] to go through.

The methodology for choosing our parameters is the same as in [21], and so
we direct the interested reader to that paper for a more thorough discussion. In
short, one needs to make sure that the length of the secret key [s1|s2] as a vector
is not too much smaller than

√
p and that the allowable length of the signature

vector, which depends on k, is not much larger than
√
p. Using these quantities,

one can perform the now-standard calculation of the “root Hermite factor” that
lattice reduction algorithms must achieve in order to break the scheme (see
[12,28,21] for examples of how this is done). According to experiments in [12,8]
a factor of 1.01 is achievable now, a factor of 1.007 seems to have around 80 bits
of security, and a factor of 1.005 has more than 256-bit security. In Figure 1, we
present two sets of parameters. According to the aforementioned methodology,
the first has somewhere around 100 bits of security, while the second has more
than 256.

We will now explain how the signature, secret key, and public key sizes are
calculated. We will use the concrete numbers from set I as example. The signature
size is calculated by summing the bit lengths of z1, z

′
2, and c. Since z1 is in Rpn

k−32,
it can be represented by n"log(2(k − 32) + 1)# ≤ n log k + n = 7680 bits. From
Lemma 3.1, we know that z′2 can be represented with 2n+ "log(2(k− 32)+ 1)# ·
6(k−32)n

p ≤ 2n+ 6 log(2k) = 1114 bits. And c can be represented with 160 bits,
for a total signature size of 8954 bits. The secret key consists of polynomials
s1, s2 ∈ Rpn

1 , and so they can be represented with 2"n log(3)# = 1624 bits, but
a simpler representation can be used that requires 2048 bits. The public key
consists of the polynomials (a, t), but the polynomial a does not need to be
unique for every secret key, and can in fact be some randomness that is agreed



Practical Lattice-Based Cryptography 539

upon by everyone who uses the scheme. Thus the public key can be just t, which
can be represented using "n log p# = 11776 bits.

We point out that even though the signature and key sizes are larger than in
some number theory based schemes, the signature scheme in Figure 2 is quite
efficient, (in software and in hardware), with all operations taking quasi-linear
time, as opposed to at least quadratic time for number-theory based schemes.
The most expensive operation of the signing algorithm is in step 2 where we need
to compute ay1 + y2, which also could be done in quasilinear time using FFT.
In step 3, we also need to perform polynomial multiplication, but because c is
a very sparse polynomial with only 32 non-zero entries, this can be performed
with just 32 vector additions. And there is no multiplication needed in step 5
because az1 − tc = ay1 + y2 − z2.

4 Implementation

In this section we provide a detailed description of our FPGA implementation
of the signature scheme’s signing and verification procedures for parameter set
I with about 100 bits of equivalent symmetric security. In order to improve
the speed and resource consumption on the FPGA, we utilize internal block
memories (BRAM) and DSP hardcores spanning over three clock domains. We
designed dedicated implementations of the signing and verification operation
that work with externally generated keys.

Roughly speaking, the signing engine is composed out of a scalable amount
of area-efficient polynomial multipliers to compute ay1 + y2. Fresh randomness
for y1,y2 is supplied each run by a random number generator (in this prototype
implementation an LFSR). To ensure a steady supply of fresh polynomials from
the multiplier for the subsequent parts of the design and the actual signing
operation, we have included a buffer of a configurable size that pre-stores pairs
(ay1+y2,y1||y2). The hash function H saves its state after the message has been
hashed and thus prevents rehashing of the (presumably long) message in each
new rejection-sampling step. The sparse multiplication of sc works coefficient-
wise and thus allows immediate testing for the rejection condition. If an out-
of-bound coefficient occurs (line 4 and 6 of Figure 2), the multiplication and
compression is immediately interrupted and a new polynomial pair is retrieved
from the buffer. For the verification engine, we rely on the polynomial multiplier
used to compute ay1+y2 twice as we compute az1+z

′
2 first, maintain the internal

state and therefore add t(−c) in a second round to produce the input for the
hash function. When signatures are fed into or returned by both engines, they
are encoded in order to meet the signature size (see Lemma A.2 for a detailed
algorithm).

4.1 Message Signing

The detailed top-level design of the signing engine is depicted in Figure 3. The
computation of ay1 + y2 is implemented in clock domain (1) and carried out
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by a number of PolyMul units (three units are shown in the depicted setup).
The BRAMs storing the initial parameters y = y1||y2 are refilled by a random
number generator (RNG) running independently in clock domain (3) and the
constant polynomial a is loaded during device initialization. When a PolyMul

unit has finished the computation of r = ay1+y2, it requests exclusive access to
the Buffer and stores r and y when free space is available. Internally the Buffer
consists of the two configurable FIFOs FIFO(r) and FIFO(y). As all operations
in clock domain (1) and (3) are independent of the secret key or message,
they are triggered when space in the Buffer becomes available. As described in
Section 3.4, the polynomial r = ay1 + y2 is needed as input to the hashing as
well as for the compression components and is thus stored in BRAM BUF(r) while
the coefficients of y1,y2 are only needed once and therefore taken directly out
of the FIFOs.

When a signature for a message stored in FIFO(m) is requested, the sampling-
rejection is repeated in clock domain (2) until a valid signature has been written
into FIFO(σ). The message to be signed is first hashed and its internal state
saved. Therefore, it is only necessary to rehash r in case the computed signature is
rejected (but not the message again). When the hash c is ready, the Compression
component is started. In this component, the values z1 = s1c+y1 and z2 = s2c+
y2 are computed column/coefficient-wise with a Comba-style sparse multiplier [9]
followed by an addition so that coefficients of z1 or z2 are sequentially generated.
Rejection-sampling is directly performed on these coefficients and the whole pair
(r,y) is rejected once a coefficient is encountered that is not in the desired range.
The secret key s = s1||s2 is stored in the block RAM BRAM(s) which can be
initialized during device initialization or set from the outside during runtime.
The whole signature σ = (z1, z

′
2, c) is encoded by the Encoder component in

order to meet the desired signature size (max. 8954 bits) and then written into
the FIFO FIFO(σ). The usage of FIFOs and BRAMs as I/O port allows easy
integration of our engine into other designs and provides the ability for clock
domain separation.

Polynomial Multiplication. The most time-consuming operation of the sig-
nature scheme is the polynomial multiplication a · y1 (with the addition of y2

being rather simple). Recall that a ∈ Rpn

has 512 23-bit wide coefficients and

that y1 ∈ Rpn

k consists of 512 16-bit wide coefficients. We are aware that the se-
lected schoolbook algorithm (complexity of O(n2)) is theoretically inferior com-
pared to Karatsuba [19] (O(nlog 3)) or the FFT [29] (O(n log n)). However, its
regular structure and iterative nature allows very high clock frequencies and an
area efficient implementation on very small and cheap devices. The polynomial
reduction with f = xn + 1 is performed in place which leads to the negacyclic
convolution

r =

511∑
i=0

511∑
j=0

(−1)�
i+j
n �aiyjx

i+j mod 512
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Fig. 3. Block structure of the implemented signing engine. The three different clock
domains are denoted by (1), (2), (3).

of a and y1. The data path for the arithmetic is depicted in Figure 4(a). The
computation of aiyj is realized in a multiplication core. We avoid dealing with
signed values by determining the sign of the value added to the intermediate
coefficient from the MSB sign bit of yj and if a reduction modular xn + 1 is
necessary. As all coefficients of a are stored in the range [0, p − 1] they do not
affect the sign of the result. Modular reduction (see Figure 4(b)) by p = 8383489
is implemented based on the idea of Solinas [36] as 223 mod 8383489 = 5119 is
very small. For the modular addition of y2 the multiplier’s arithmetic pipeline
is reused in a final round in which the output of BRAM(a) is being set to 1 and
the coefficients of y2 are being fed into the BRAM(y) port. Each PolyMul unit
also acts as an additional buffer as it can hold one complete result of r in its
internal temporary BRAM and thus reduces latency further in a scenario with
precomputation. All in all, one PolyMul unit requires 204 slices, 3 BRAMs, 4
DSPs and is able to generate approx. 1130 pairs of (r,y) per second at a clock
frequency of 300 MHz on a Spartan-6.

(a) Pipelined data-path of PolyMul. (b) DSP based modular reduction with p =
8383489.

Fig. 4. Implementation of PolyMul
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4.2 Signature Verification

In the previous sections we discussed the details of the signing algorithm. When
dealing with the signature verification, we can reuse most of the previously de-
scribed components. In particular, the PolyMul component only needs a slight
modification in order to compute az1 + z

′
2 − tc which allows efficient resource

sharing for both operation. It is easy to see that we can split the computation
of the input to the hash instantiation into t1 = az1 + z

′
2, t2 = t(−c) + 0 and

t = t1 + t2. We see that the first equation can be performed by the PolyMul

core as a ∈ Rpn

and z1, z
′
2 ∈ Rpn

k . The same is true for the second equation
with t being in Rpn

and the inverted c being also in the range [−k, k] (c is
even much smaller). The only problem is the final addition of the last equation
as a third call to PolyMul would not work due to the fact that both inputs
are from Rpn

which PolyMul cannot handle. However, note that PolyMul stores
the intermediate state of the schoolbook multiplication in BRAM(r) but initial-
izes the block RAM with zero coefficients prior to the next computation of a
new ay1 + y2. As a consequence, PolyMul supports a special flag that triggers
a multiply-accumulate behavior in which the content of BRAM(r) is preserved
after a full run of the schoolbook multiplication (ay1) and an addition of y2.
Therefore, the intermediate values t1 and t2 are summed up in BRAM(r) and we
do not need the final addition. This enabled us to design a verification engine
that performs its arithmetic operations with just two runs of the PolyMul core.

5 Results and Comparison

All presented results below were obtained after post-place-and-route (PAR) and
were generated with Xilinx ISE 13.3. We have implemented the signing and
verification engine (parameter set I, buffer of size one) on two devices of the
low-cost Spartan-6 device family and on one high-speed Virtex-6 (all speed grade
−3). Detailed information regarding performance and resources consumption is
given in Table 2 and Table 3, respectively. For the larger devices we instantiate
multiple distinct engines as the Compression and Hash components become the
bottleneck when a certain amount of PolyMul components are instantiated. Note
also that our implementation is small enough to fit the signing (two PolyMul

units) or verification engine on the second-smallest Spartan-6 LX9.
When comparing our results to other work as given in Table 4, we conser-

vatively assume that RSA signatures (one modular exponentiation) with a key
size of 1024 bit and ECDSA signatures (one point multiplication) with a key
size of 160 bit are comparable to our scheme in terms of security (see Section 3.4
for details on the parameters). In comparison with RSA, our implementation on
the low-cost Spartan-6 is 1.5 times faster than the high-speed implementation
of Suzuki [38] – that still needs twice as many device resources and runs on the
more expensive Virtex-4 device. Note however, that ECC over binary curves is
very well suited for hardware and even implementations on old FPGAs like the
Virtex-2 [1] are faster than our lattice-based scheme. For the NTRUSign lattice-
based signature scheme (introduced in [17] and broken by Nguyen [30]) and the
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Table 2. Performance of signing and verification for different design targets

Aspect Spartan-6 LX16 Spartan-6 LX100 Virtex-6 LX130

S
ig
n
in
g

Engines/Multiplier 1/7 4/9 9/8
Total Multipliers 7 36 72
Max. freq. domain (1) 270 MHz 250 MHz 416 MHz
Max. freq. domain (2) 162 MHz 154 MHz 204 MHz
Throughput Ops/s 931 4284 12627

V
er
ifi
ca
ti
o
n Independent engines 2 14 20

Max. frequency domain (1) 272 MHz 273 MHz 402 MHz
Max. frequency domain (2) 158 MHz 103 MHz 156 MHz
Throughput Ops/s 998 7015 14580

Table 3. Resource consumption of signing and verification for different design targets

Aspect Spartan 6 LX16 Spartan 6 LX100 Virtex 6 LX130

S
ig
n
in
g Slices 2273 11006 19896

LUT/FF 7465/8993 30854/34108 67027/95511
18K BRAM 29.5 138 234
DPS48A1 28 144 216

V
er
ifi
ca
ti
o
n Slices 2263 14649 18998

LUT/FF 6225/6663 44727/45094 61360/57903
18K BRAM 15 90 120
DPS48A1 8 56 60

XMSS [6] hash-based signature scheme we are not aware of any implementation
results for FPGAs. Hardware implementations of Multivariate Quadratic (MQ)
cryptosystems [5,3] show that these schemes are faster (factor 2-50) than ECC
but also suffer from impractical key sizes for the private and public key (e.g.,
80 Kb for Unbalanced Oil and Vinegar (UOV)) [32]. While implementations of
the McEliece encryption scheme offer good performance [10,35] the only imple-
mentation of a code based signature scheme [4] is extremely slow with a runtime
of 830 ms for signing.

6 Conclusion

In this paper we presented a provably secure lattice based digital signature
scheme and its implementation on a wide scale of reconfigurable hardware. With
moderate resource requirements and more than 12,000 and 14,000 signing and
verification operations per second on a Virtex-6 FPGA, our prototype imple-
mentation even outperforms classical and alternative cryptosystems in terms of
signature size and performance.



544 T. Güneysu, V. Lyubashevsky, and T. Pöppelmann

Table 4. Implementation results for comparable signature schemes (signing)

Operation Algorithm Device Resources Ops/s

RSA Signature [38] RSA-1024;
private key

XC4VFX12-10 3937 LS/
17 DSPs

548

ECDSA [15] NIST-P224;
point mult.

XC4VFX12-12 1580 LS/
26 DSPs

2,739

ECDSA [1] NIST-B163;
point mult.

XC2V2000 8300 LUTs/
7 BRAMs

24,390

UOV-Signature [5] UOV(60,20) XC5VLX50-3 13437 LUTs 170,940

Future work consists of optimization of the rejection-sampling steps as well
as evaluation of different polynomial multiplication methods like the FFT. We
also plan to investigate practicability of the signature scheme on other platforms
like microcontrollers or graphic cards.
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A Compression Algorithm

In this section we present our compression algorithm. For two vectors y, z, the
algorithm first checks whether the coefficient y[i] of y is greater than (p− 1)/2−
k in absolute value. If it is, then there is a possibility that y[i] + z[i] will need
to be reduced modulo p and in this case we do not compress z[i]. Ideally there
should not be many such elements, and we can show that for the parameters used
in the signature scheme, there will be at most 6 (out of n) with high probability.
It’s possible to set the parameters so that there are no such elements, but this
decreases the efficiency and is not worth the very slight savings in the compression.

Assuming that y[i] is in the range where z[i] can be compressed, we assign
the value of k to z′[i] if y[i](0) + z[i] > k, assign −k if y[i](0) + z[i] < −k, and 0
otherwise. We now move on to proving that the algorithm satisfies Lemma 3.1.

Lemma A.1. Item 1 of Lemma 3.1 holds.

Proof. Given in the full version of this paper.

Lemma A.2. Item 2 of Lemma 3.1 holds.

Proof. If z[i]′ = 0, we represent it with the bit string ′00′. If z[i]′ = k, we
represent it with the bit string ′01′. z[i]′ = −k, we represent it with the bit
string ′10′. If z[i]′ = z[i] (in other words, it is uncompressed), we represent it
with the string ′11z[i]′ where z[i] can be represented by 2 log k bits (the ′11′

is necessary to signify that the following log 2k bits represent an uncompressed
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Compress(y, z, p, k)
1: uncompressed← 0
2: for i=1 to n do
3: if |y[i]| > p−1

2
− k then

4: z′[i]← z[i]
5: uncompressed← uncompressed+ 1
6: else
7: write y[i] = y[i](1)(2k + 1) + y[i](0) where −k ≤ y[i](0) ≤ k
8: if y[i](0) + z[i] > k then
9: z′[i]← k
10: else if y[i](0) + z[i] < −k then
11: z′[i]← −k
12: else
13: z′[i]← 0
14: end if
15: end if
16: end for
17: if uncompressed ≤ 6kn

p
then

18: return z′

19: else
20: return ⊥
21: end if

Fig. 5. The Compression Algorithm

value). Thus uncompressed values use 2 + log 2k bits and the other values use
just 2 bits. Since there are at most 6kn/p uncompressed values, the maximum
number of bits that are needed is

(2+log 2k)·6kn
p

+2

(
n− 6kn

p

)
= 2n+"log(2k+1)#·6kn

p
. ��

Finally, we show that if y is uniformly distributed in Rpn

, then with probability
at least .98, the algorithm will not have more than 6 uncompressed elements.

Lemma A.3. If y is uniformly distributed modulo p and 2nk/p ≥ 1, then the
compression algorithm outputs ⊥ with probability less than 2%.

Proof. The probability that the inequality in line 3 will be true is exactly 2k/p.
Thus the value of the “uncompressed′′ variable follows the binomial distribution
with n samples each being 1 with probability 2k/p. Since we will always set
n >> 2k/p, this distribution can be approximated by the Poisson distribution
with λ = 2nk/p. If λ ≥ 1 then the probability that the number of occurrences is
greater than 3λ is at most 2% (this occurs for λ = 1). Since we output ⊥ when
uncompressed > 6kn/p = 3λ, it is output with probability at most 2%. ��
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Abstract. Correlation power-analysis (CPA) attacks are a serious
threat for cryptographic device because the key can be disclosed from
data-dependent power consumption. Hiding power consumption of en-
cryption circuit can increase the security against CPA attacks, but it
results in a large overhead for cost, speed, and energy dissipation. Mask-
ing processed data such as randomized scalar or primary base point
on elliptic curve is another approach to prevent CPA attacks. However,
these methods requiring pre-computed data are not suitable for hard-
ware implementation of real-time applications. In this paper, a new CPA
countermeasure performing all field operations in a randomized Mont-
gomery domain is proposed to eliminate the correlation between target
and reference power traces. After implemented in 90-nm CMOS process,
our protected 521-bit dual-field elliptic curve cryptographic (DF-ECC)
processor can perform one elliptic curve scalar multiplication (ECSM) in
4.57ms over GF (p521) and 2.77ms over GF (2409) with 3.6% area and
3.8% power overhead. Experiments from an FPGA evaluation board
demonstrate that the private key of unprotected device will be revealed
within 103 power traces, whereas the same attacks on our proposal can-
not successfully extract the key value even after 106 measurements.

Keywords: Elliptic curve cryptography (ECC), side-channel attacks,
power-analysis attacks, Montgomery algorithm.

1 Introduction

Elliptic curve cryptography (ECC) independently introduced by Koblitz [1] and
Miller [2] has been widely applied to provide a confident scheme for information
exchange. For the past several years, many previous works [3], [4], [5], [6] have
been published for ECC hardware implementation aiming at the performance
improvement. However, even the ECC is secure at cryptanalysis, the private
data of a unprotected hardware device can be extracted by the physical attacks
due to side-channel leakage. The power-analysis attacks, initially presented by
Kocher [7], can reveal the key value by analyzing the power information of a
cryptographic implementation such as on an ASIC, FPGA or microprocessor.
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During the device processing, simple power-analysis (SPA) attacks can distin-
guish the key value through visual inspection because of the specifically active
circuit with direct hardware scheduling. The unified elliptic curve (EC) point
calculation [8], [9] is usually used to avoid the variation of power consumption
over time. However, the correlation power-analysis (CPA) attacks [10] comput-
ing the correlation between target power traces and power model by statistical
approach can reveal the key value due to the existence of key-dependent opera-
tions in every round of calculation. For ECC primitives specified in IEEE P1363
[11], the CPA attacks can be applied to EC integrated encryption system, single
pass EC Diffie-Hellman or single pass EC Menezes-Qu-Vanstone key agreement
because the private key is kept invariant for a long time duration.

Hiding technique with algorithm-independent dedicated circuit is a common
approach to protect cryptographic processors from attackers collecting the key-
dependent characteristics of power traces. In [12], wave dynamic differential logic
circuit with regular routing algorithm is exploited to equalize the current be-
tween rising and falling transitions. However, at least double hardware latency,
area cost, and energy for unprotected encryption engines are required due to
precharging for half cycle, and generating complementary logic outputs from
divided single ended modules with equivalent power consumption. Switched ca-
pacitor [13] is able to isolate the encryption core from the external power sup-
plies, but this approach results in 50% speed loss for replenishing charge every
cycle. In order to avoid the throughput degradation, a countermeasure circuit
using digital controlled ring oscillators [14] is designed outside of the critical
path. The concept is to generate random noise power to dominate the power
consumption of arithmetic unit, and then the correlation peak would not be
found even matching the correct key value. But this demands extra 100% power
overhead for the key-dependent processing element.

At the algorithm level, masking the processed data independent of power
consumption is another approach to avoid the CPA attacks. Since the scalar
K of EC point calculation is periodic with the point order #E, a randomized
scalar technique proposed by Coron [15] can be adopted to change the key value
by adding α · #E for every elliptic curve scalar multiplication (ECSM) such as
KP = (K+α ·#E)P , where α is a random integer and P is a primary base point
on EC. However, with this method, the throughput overhead is inevitable due
to extending the key length. In [9], the ECSM of 521-bit key extended with a 32-
bit random value needs 10% more execution time to be carried out than that of
unprotected approach. Another CPA countermeasure also presented in [15] is to
mask the primary base point with pre-computed random points R and S = KR.
Then the ECSM is achieved by computing K(P +R) = KP ′ and subtracting S
before returning such that KP ′ − S = KP . For every next ECSM calculation,
the random points R and S are refreshed by performing R ← (−1)β2R and
S ← (−1)β2S with a single random bit β. But the time-cost random point
generation is not suitable for real-time applications as the EC parameters are
various with different users. In [16], the EC isomorphism method can randomize
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the primary base point by simple finite field operations without pre-computing
random points. However, it is limited to be applied in single finite field GF (p).

In this brief, we propose a new efficient countermeasure to overcome the CPA
attacks by computing overall dual-field ECC functions in a randomized Mont-
gomery domain. The feature of our approach is to mask the intermediate values
in not only the arithmetic but also the temporary register. Thus it is unnecessary
to extend the key length, customize circuit and modify the routing algorithm
in ASIC or FPGA design flow. Since our proposed design adopts simple logic
circuit to counteract CPA attacks, the hardware cost overhead could be signifi-
cantly reduced, and the maximum operating frequency of protected design is the
same as that of unprotected design using conventional Montgomery algorithm.
Additionally, by reducing the iteration time of the division, which dominates
other field operations in computation time, the speed can be improved further.

The remainder of the paper is outlined as follows. CPA attacks applied on the
ECC device are introduced in Section 2. The proposed countermeasure method
and design architecture are given in Section 3 and Section 4, respectively. Sec-
tion 5 shows the FPGA power measurement and ASIC implementation results.
Section 6 concludes this work.

2 CPA Attacks on ECC Device

Algorithm 1 presented in [8] is a usually adopted approach to counteract SPA
attacks by regularly performing the ECSM KP = P + · · · + P , where K is the
m-bit private key and P is a point on elliptic curves (ECs). But the intermediate
values of elliptic curve point doubling in Step 3 and Step 4 still have dependence
on the zero and non-zero bit of the key value. Hence, with a chosen point P , the
key value can be distinguished by matching the power trace segment of accessing
the memory storage for point coordinates P1 or P2.

Algorithm 1. Montgomery ladder ECSM algorithm

Input: K and P
Output: KP
1. Let P1 ← P , P2 ← 2P
2. For i from m− 2 to 0 do
3. If Ki = 1 then P1 ← P1 + P2, P2 ← 2P2

4. else P2 ← P1 + P2, P1 ← 2P1

5. Return P1

Fig. 1 illustrates the scenario of CPA attacks. For ECC primitives, the primary
base point is commonly public. Thus the power model can be characterized from
the hamming distance of memory storage for key-dependent point coordinates
by measuring the device sample before the statistical analysis, which computes
the correlation between the measured target power traces and the power model.
The correlation value of correct hypothesis will be larger than that of the others
due to the same hamming distance of processed data. Through this approach,
the overall binary key can be extracted after m − 1 rounds in linear time.
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Fig. 1. CPA attacks on an ECC device operating in a specific domain

3 Proposed Algorithm against CPA Attacks

The fundamental concept of CPA countermeasure is to break the dependency
between intermediate values and power traces. For achieving the EC point calcu-
lation, the well-known Montgomery algorithm [17] is usually adopted to perform
the field arithmetic in a specific domain such that A ≡ a · r (mod p), where
a is in the integer domain and r ≡ 2m (mod p) is the Montgomery constant
with m-bit field length. In this work, we introduce an approach to resist the
CPA attacks at modular algorithm by calculating the operands in a randomized
Montgomery domain A ≡ a · 2λ (mod p), where the domain value λ equals the
hamming weight (HW) of an n-bit random value α. Note that n is the maxi-
mum field length and the bit values of (αn−1, αn−2, . . . , αm) are set to zero for
preventing λ from exceeding m. By exploiting this approach, the intermediate
values can be masked because they are various with different domain values
such as 2g (mod p) �= 2h (mod p) when 0 ≤ g �= h < m. Since the proposed
method is to randomize intermediate values in basic modular operations, the
SPA resistant ECSM algorithm shown in Algorithm 1 can still be applied with-
out computation overhead from extended scalar length, and there is no need for
pre-computed EC points. The overall randomized Montgomery operations for
input operands X ≡ x · 2λ (mod p) and Y ≡ y · 2λ (mod p) are summarized
in Table 1.

3.1 Randomized Montgomery Multiplication

Algorithm 2 shows our proposed randomized Montgomery multiplication which
contains two operating steps in every iteration to change the intermediate do-
main value λ′, and these steps are determined by the ith bit of random value α.
If αi = 1, the domain value of output operand R decreases by one in Step 4 such
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Table 1. Operations in Randomized Montgomery Domain

Operation Arithmetic

Randomized Montgomery multiplication (RMM) RMM(X,Y ) ≡ x · y · 2λ (mod p)

Randomized Montgomery division (RMD) RMD(X,Y ) ≡ x · y−1 · 2λ (mod p)

Randomized addition (RA) RA(X,Y ) ≡ (x+ y) · 2λ (mod p)

Randomized subtraction (RS) RS(X,Y ) ≡ (x− y) · 2λ (mod p)

as R = (R + V0 · S)/2 (mod p); the domain value remains the same as αi = 0
in Step 5 such as R = (R + V0 · S) (mod p). The initial values of operands
(V,R, S) are set to be (X, 0, Y ). In further iterative calculation, the bit value V0

is equal to the ith bit value of X , and the operand S doubles its value as αi = 0.
Base on these, the functionality can be derived as follows:

– For 1st iteration, the intermediate result of R is (X0 · Y ) · 2−α0 (mod p).
– For 2nd iteration, R becomes ((X0 · Y ) · 2−α0 (mod p) +X1 · (21−HW(α0) ·

Y )) · 2−α1 (mod p).
– Untilmth iteration, the final result ofR is (· · · (((X0 ·Y )·2−α0 (mod p)+X1·

(21−HW(α0) ·Y )) ·2−α1 (mod p)+X2 ·(22−HW(α1,α0) ·Y )) ·2−α2 (mod p)+
· · ·+Xm−1 · (2m−1−HW(αm−2,···,α1,α0) · Y )) · 2−αm−1 (mod p)
≡ (X0·Y ·2−HW(αm−1,...,α0)) (mod p)+(X1·Y ·2−HW(αm−1,...,α0)+1) (mod p)+
· · ·+ (Xm−1 · Y · 2−HW(αm−1,...,α0)+m−1) (mod p)
≡ X · Y · 2−HW(αm−1,...,α0) (mod p)
≡ X · Y · 2−λ (mod p).

Hence, the randomized Montgomery multiplication in Algorithm 2 can be per-
formed in m iterations, the same as those in conventional radix-2 Montgomery
multiplication.

Algorithm 2. Radix-2 randomized Montgomery multiplication

Input: X,Y, p, and α
Output: R = RMM(X,Y )
1. Let V = X, R = 0, S = Y
2. For i from 0 to m− 1 do
3. R ≡ R + V0 · S (mod p), V = V/2
4. If αi = 1 then R ≡ R/2 (mod p)
5. else S ≡ 2S (mod p)
6. Return R

Algorithm 3 shows a radix-4 approach to Algorithm 2 for almost 50% iteration
reduction. The domain value of R is determined by the HW of two continuous
bits of random value α in Steps 5, 6, and 7. For the case of HW = 2, it is reduced
by two through performing quartering operation such as R ≡ R/4 (mod p).
While halving R and doubling S operations are performed as HW = 1, these are
deduced by computing one iteration of radix-2 Montgomery reduction and one
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iteration of radix-2 modular reduction in single period. For the rest case of HW
= 0, the operand S ≡ 4S (mod p) is performed due to the unchanged domain
value of R.

Algorithm 3. Radix-4 randomized Montgomery multiplication

Input: X,Y, p, and α
Output: R = RMM(X,Y )
1. Let V = X, R = 0, S = Y
2. For i from 0 to

⌈
m
2

⌉− 1 do
3. If m (mod 2) ≡ 1 and i =

⌈
m
2

⌉− 1 then
R ≡ R + V0 · S (mod p), V = V

2

4. else
R ≡ R + V0 · S + V1 · 2S (mod p), V = V

4

5. If (α2i+1, α2i) = (1, 1) then
R ≡ R

4
(mod p)

6. else if (α2i+1, α2i) = (1, 0) or (0, 1) then
R ≡ R

2
(mod p), S ≡ 2S (mod p)

7. else
S ≡ 4S (mod p)

8. Return R

3.2 Randomized Montgomery Division

To achieve the division in Montgomery domain, Kaliski [18] first proposed an
iterative algorithmwhich needsm ∼ 2m iterations of successive reduction, 0 ∼ m
iterations for degree recovery (reduce intermediate domain value λ′ to be m as
λ′ > m), and two additional Montgomery multiplications with a final modular
reduction p−R. The algorithm presented in [18] is formulated from the identical
equations as follows: {

Y ·R ≡ −U · 2λ′ (mod p)

Y · S ≡ V · 2λ′ (mod p).

Based on Kaliski’s method, we derive a new randomized Montgomery division
which is described in Algorithm 4. To directly achieve the division operation
without additional multiplication and final modular reduction, our method is to
modify the initial values of (U, V,R, S) to be (p, Y, 0, X) in Step 1 and the RS
data path with modular subtraction in Steps 10, 11, 13, 14. Then the identities
become {

X−1 · Y ·R ≡ U · 2λ′ (mod p)

X−1 · Y · S ≡ V · 2λ′ (mod p).

Similar to RMM, the RS data path between the Montgomery domain and integer
domain is determined by the ith bit value of α. The domain value of operands
R and S increases by one as αi = 1 and remains the same as αi = 0.

For further reducing the degree recovery phase, the RS data path turns into
dividing values by two in Steps 5, 8, 11, 14 to keep the intermediate domain
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Algorithm 4. Radix-2 randomized Montgomery division

Input: X, Y, p, and α
Output: R = RMD(X,Y )
1. Let U = p, V = Y,R = 0, S = X
2. While (V > 0) do
3. If U is even then U = U/2
4. If αi = 1 then S ≡ 2S (mod p)
5. else R ≡ R/2 (mod p)
6. else if V is even then V = V/2
7. If αi = 1 then R ≡ 2R (mod p)
8. else S ≡ S/2 (mod p)
9. else if U > V then U = (U − V )/2
10. If αi = 1 then R ≡ R − S (mod p), S ≡ 2S (mod p)
11. else R ≡ (R − S)/2 (mod p)
12. else V = (V − U)/2
13. If αi = 1 then S ≡ S −R (mod p), R ≡ 2R (mod p)
14. else S ≡ (S −R)/2 (mod p)
15. If i < m then i = i+ 1
16. Return R

value in λ = HW(α) as i = m. Thus the identities in Algorithm 4 are given as
follows:

If i < m, then

{
X−1 · Y · R ≡ U · 2λ′ (mod p)

X−1 · Y · S ≡ V · 2λ′ (mod p)

else

{
X−1 · Y ·R ≡ U · 2λ (mod p)
X−1 · Y · S ≡ V · 2λ (mod p).

Before the last iteration, both U and V are 1 because the initial values of U and
V are relatively prime. Then after finishing the iterative operations in Step 2, the
values of (U, V,R, S) become (1, 0, X ·Y −1 ·2λ (mod p), 0). As a result, the pro-
posed randomized division algorithm requires at most 2m iterations of successive
reduction. Table 2 shows the expected operation time and the comparison with
related works on modifying radix-2 Montgomery division algorithm. With ran-
domization capability, Algorithm 4 will also benefit the hardware design owing
to the low latency.

Table 2. Analysis of Various Division Algorithms

Algorithm 4 TCAS-I’06 [3] ESSCIRC’10 [9]

Iteration Time m ∼ 2m m ∼ 2m m ∼ 3m

Multiplication 0 2 ∼ 3 0

Domain Random 2λ, 0 ≤ λ ≤ m Fixed 2m Fixed 2m

Algorithm 5 shows the radix-4 randomized Montgomery division derived from
Algorithm 4, and there are more branches in the algorithm as the radix becomes
lager. To remain the domain value of R unpredictable in the flexible range of
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[0,m−1), it is determined by the HW of random value αi or (αi+1, αi). The values
of UV is reduced to at least UV/4 except U ≡ 1 (mod 4), V ≡ 3 (mod 4) or
U ≡ 3 (mod 4), V ≡ 1 (mod 4) in Steps 17 and 18. With this approach and
a radix-4 RMM given in Algorithm 3, the EC point calculation can be carried
out faster in affine coordinates than that in projective coordinates [19], where
the iteration time ratio RMD/RMM ∼= 1.32 over GF (p) and 1.44 over GF (2m).

4 Hardware Architecture of DF-ECC Processor

Fig. 2 shows the block diagram of the proposed dual-field ECC (DF-ECC) pro-
cessor. For the CPA resistance, all field operations over GF (p) and GF (2m) are
performed by the Galois field arithmetic unit (GFAU) in a randomized Mont-
gomery domain. The operating domain is determined by the value in domain
shift register, which is sourced from a 1-bit random number generator (RNG)
and refreshed before the next ECSM calculation. For the flexibility, we use an
all-digital RNG utilizing the cycle-to-cycle time jitter in free-running oscillators
with a synchronous feedback post-processor [20]. The overall architecture of CPA
countermeasure circuit is shown in Fig. 3. Besides, to efficiently store the long
bit length operands including EC parameters and points, a block memory of
register file is exploited.

Prime/Poly. reg

GFAU
GFAU in1
GFAU in2

GFAU out

w
w

w
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RFQ0x

RFQ0y

RFQ1x
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6

w

w

1
RF addr

RF datai

RF datao

RF we

System Bus

n

RFa
FieldLen regn

Key shift reg
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2 GFAU funcsel

DF-ECC Control

Wrapper
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Divisor

Data reg

Instruction Decoder
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DF-ECC/Field  
Arithmetic Functions

Address DecoderCPA 
Countermeasure 
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Fig. 2. Overall diagram for the DF-ECC processor
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Algorithm 5. Radix-4 randomized Montgomery division

Input: X, Y, p, and α
Output: R = RMD(X,Y )
1. Let U = p, V = Y,R = 0, S = X, i = 0
2. While (V > 0) do
3. c ≡ U (mod 4), d ≡ V (mod 4), t = 2
4. If i = m− 1 then

R ≡ 2R (mod p), S ≡ 2S (mod p), t = 1
5. else if c = 0 then U = U

4
, S ≡ 4S (mod p)

6. else if d = 0 then V = V
4
, R ≡ 4R (mod p)

7. else if c = d then
8. If U > V then U = U−V

4
,

R ≡ R − S (mod p), S ≡ 4S (mod p)
9. else V = V −U

4
,

S ≡ S −R (mod p),R ≡ 4R (mod p)
10. else if c = 2 then

11. If U
2
> V then U =

U
2
−V

2
,

R ≡ R − 2S (mod p), S ≡ 4S (mod p)

12. else V =
V −U

2
2

, U = U
2
,

S ≡ 2S −R (mod p), R ≡ 2R (mod p)
13. else if d = 2 then

14. If U > V
2

then U =
U−V

2
2

, V = V
2
,

R ≡ 2R − S (mod p), S ≡ 2S (mod p)

15. else V =
V
2
−U

2
,

S ≡ S − 2R (mod p), R ≡ 4R (mod p)
16. else
17. If U > V then U = U−V

2
,

R ≡ R − S (mod p), S ≡ 2S (mod p), t = 1
18. else V = V −U

2
,

S ≡ S −R (mod p),R ≡ 2R (mod p), t = 1
19. If i < m then
20. If i = m− 1 or t = 1 then
21. If αi = 1 then R ≡ R (mod p), S ≡ S (mod p)
22. else R ≡ R

2
(mod p), S ≡ S

2
(mod p)

23. else
24. If (αi+1, αi) = (1, 1) then

R ≡ R (mod p), S ≡ S (mod p)
25. else if (αi+1, αi) = (1, 0) or (0, 1) then

R ≡ R
2

(mod p), S ≡ S
2

(mod p)
26. else

R ≡ R
4

(mod p), S ≡ S
4

(mod p)
27. i = i+ t
28. else R ≡ R

2t
(mod p), S ≡ S

2t
(mod p)

29. Return R
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Fibonacci Ring Oscillator (x+1)(x5+x4+x2+x+1)

Galois Ring Oscillator (x+1)(x6+x5+x2+x+1)

Jitter

…

Domain Shift Register
Domain Flagαi

Fig. 3. The domain flag is to randomly assign operating domain for GFAU

As the iterative operations in Algorithm 4 and Algorithm 5 are performed
in one cycle, the critical path is to calculate the results of R or S consisting of
the UV comparison with modular operations. For the modular division by 2 or
4 in Steps 5, 8, 11, 14 of Algorithm 4 and Steps 22, 25, 26, 28 of Algorithm 5,
multiples of the prime p are added to enable the lowest part of R or S is zero
so that they can be carried out by simple shift logic operator. Further, since
the results of R, S are irrelevant to the results of operands U or V , a fully-
pipelined stage can be inserted between the UV and RS data path to moderate
the critical path. As the UV data path is determined, then the next cycle is
to set the values of the operands R, S and simultaneously determine the next
case until V = 0. Although one additional cycle is needed after pipelining, this
is negligible as the operation takes hundreds or thousands of cycles. The timing
flow of pipelined scheme is shown in Fig. 4. Besides, to reduce the hardware
cost, symmetric modular operations such as R ≡ (R − S)/2 (mod p) and S ≡
(S−R)/2 (mod p) in Algorithm 4, R ≡ (R−S)/4 (mod p) and S ≡ (S−R)/4
(mod p) in Algorithm 5 can be executed by the same computational unit with
a swap logic circuit, which is to switch the input operands of RS data path.
In Algorithm 4, the RS data path can be classified into two groups: the first
group includes Steps 4, 5 and Steps 10, 11; the second one consists of Steps
7, 8 and Steps 13, 14. In Algorithm 5, the two groups of RS data path are
classified as follows: Steps 6, 9, 12, 15, and 18 belong in the first group; the
second one consists of the others. The data flows of R and S are switched as the
processing group is different from the group in previous cycle. Moreover, since the
EC point calculation is a serial field operation, both of the temporary registers
and modular operations can be shared for the operands V, S,R in Algorithm 2
and Algorithm 4 (or Algorithm 3 and Algorithm 5). These multiple modular
operations in the iterative calculation can be effectively implemented by using
a programmable data path of bit-level architecture, which consists of the carry-
save adders with a carry-lookahead adder at last stage. The detailed radix-2 and
radix-4 GFAU architecture is shown in Fig. 5 and Fig. 6, respectively.

5 Power Measurement and Implementation Results

Based on our proposed architecture using Montgomery ladder ECSM method,
four different 160-bit DF-ECC processors with radix-2 and radix-4 algorithms are
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independently designed on an FPGA platform to evaluate the CPA resistance.
The performance results are given in Table 3, and the verification environment
is shown in Fig. 7.

Table 3. FPGA Implementation Results

Design Area (Slices) f max (MHz) Field Arithmetic

I 7,573 (32%) 27.7 Radix-2 Montgomery

II 8,158 (34%) 27.7 Radix-2 Randomized Montgomery

III 9,828 (41%) 20.2 Radix-4 Montgomery

IV 10,460 (43%) 20.2 Radix-4 Randomized Montgomery

As shown in Algorithm 1, the point coordinate value P2 is dependent on
the bit value of the key in every iteration. Fig. 8(a) and Fig. 8(b) illustrate
the CPA attacks on the unprotected Design-I and Design-III, respectively, using
conventional Montgomery algorithm [21] to reveal the key value. The correlation
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Fig. 7. (a) Environment of power measurement. (b) Current running through the DF-
ECC processor recorded by measuring the voltage drop via a resistor in series with the
board power pin and FPGA power pin.

coefficients for all possible hamming distances of the point coordinate P2 are
plotted over power traces, and that of the correct key hypothesis is plotted in
black. In this case, as more than 103 power traces are used, the correlation of the
correct key is the highest one among that of all the other key hypotheses, and
then the key value can be found easily. However, even after collecting 106 power
measurements from the Design-II and Design-IV using randomized Montgomery
operations, the correlation coefficients of correct and incorrect hypothesis shown
in Fig. 9 cannot be scattered, and they are near zero because the processed data
are uncorrelated to power model. This means that there is no information bias
of the key value extracted by the CPA attacks.
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Fig. 8. Correlation coefficients of the target traces and power model over power traces
obtained from the (a) Design-I (b) Design-III performing arithmetic in a fixed domain
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Fig. 9. Correlation coefficients of the target traces and power model over power traces
obtained from the (a) Design-II (b) Design-IV performing arithmetic in a randomized
domain.

Table 4. Implementation Results Compared with Related Works

Technology
Field Area

KGates
Galois f max Time Energy AT

Length (mm2) Field (MHz) (ms/ECSM) (μJ/ECSM) Product

Ours (Radix-2) 90-nm 160 0.21 61.3
GF (p160) 277 0.71 11.9 1

GF (2160) 277 0.61 9.6 1

Ours (Radix-4) 90-nm 160 0.29 83.2
GF (p160) 238 0.43 11.2 0.82

GF (2160) 238 0.39 8.97 0.87

TCAS-II’09 [5] 0.13-μm 160 1.44 169
GF (p160) 121 0.61 42.6 1.63*

GF (2160) 146 0.37 30.5 1.16*

Ours (Radix-2) 90-nm 521 0.58 168
GF (p521) 250 8.08 452 1

GF (2409) 263 4.65 246 1

Ours (Radix-4) 90-nm 521 0.93 265
GF (p521) 232 4.57 435 0.89

GF (2409) 238 2.77 238 0.94

ESSCIRC’10 [9] 90-nm 521 0.55 170
GF (p521) 132 19.2 1,123 2.40

GF (2409) 166 8.2 480 1.78

* Technology scaled area-time product = Gates × (Time × t), where t = 90-nm/0.13-μm.

Our proposed DF-ECC processor was also implemented by UMC 90-nm CMOS
technology, and the post-layout simulations for ASIC implementation with com-
parisons are given in Table 4. In terms of area-time product, our DF-ECC pro-
cessor outperforms other approaches. By reducing the division iteration time and
randomizing intermediate values in field arithmetic without increasing the key
size, our work using radix-2 approach is at least 44% faster than the previous
521-bit design [9] with comparable hardware complexity. Compared with a four
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Table 5. Overhead for CPA Resistance

Ours (Radix-2) Ours (Radix-4) ESSCIRC’10 [9] JSSC’06 [12] JSSC’10 [13]

Design 521 DF-ECC 521 DF-ECC 521 DF-ECC 128 AES 128 AES

Area 4.3% 3.6% 10% 210% 7.2%

Time 0 0 14.0%a 288% 100%

Energy 5.2% 3.8% 20.8%b 270% 33%

Overhead = Result differences between protected and unprotected circuit
Results of unprotected circuit

×100%.

a. Estimated by cycle count×clock period.

b. Estimated by operation time×average power.

multipliers based ECC processor without power-analysis protection [5], our fully-
pipelined and highly-integrated radix-4 GFAU architecture achieves competitive
speed with 51% less gate counts.

For the CPA resistance, our approach is to mask the processed data uncorre-
lated with power traces without lengthening the hardware latency and without
dominating the power consumption of key-dependent operations. From the com-
parison given in Table 5, our proposed countermeasure is superior to others not
only in operation time but also in energy dissipation.

6 Conclusion

In this paper, we introduced a randomized dual-field Montgomery algorithm
which is suitable for ECC hardware implementation against the CPA attacks.
Without modifying logic circuit and without pre-computing data from host sys-
tem, the relationship between target power traces and power model can be bro-
ken by performing the field arithmetic in a unpredictable operating domain.
The proposed CPA countermeasure approach has been analyzed on an FPGA
platform. Attacks on the unprotected designs reveal the private key within one
thousand power traces, while the key value of the protected core cannot be
extracted after one million power traces. Circuit overhead for randomly deter-
mining the operating domain can be integrated into the system without speed
degradation. Implemented by an UMC 90-nm technology, our protected 521-
bit DF-ECC processor using radix-4 randomized Montgomery operations, with
3.6% area and 3.8% average power overhead, can perform one GF (p521) ECSM
in 4.57ms and one GF (2409) ECSM in 2.77ms. We believe that both high perfor-
mance and efficient CPA countermeasure are achieved in our proposed DF-ECC
processor.
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Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
292–302. Springer, Heidelberg (1999)

16. Joye, M., Tymen, C.: Protections against Differential Analysis for Elliptic Curve
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