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Abstract. The rapid development of information and communication 
technologies (ICTs) has provided rich resources for spatio-temporal data mining 
and knowledge discovery in modern societies. Previous research has focused on 
understanding aggregated urban mobility patterns based on mobile phone 
datasets, such as extracting activity hotspots and clusters. In this paper, we aim 
to go one step further from identifying aggregated mobility patterns. Using 
hourly time series we extract and represent the dynamic mobility patterns in 
different urban areas. A Dynamic Time Warping (DTW) algorithm is applied to 
measure the similarity between these time series, which also provides input for 
classifying different urban areas based on their mobility patterns. In addition, 
we investigate the outlier urban areas identified through abnormal mobility 
patterns. The results can be utilized by researchers and policy makers to 
understand the dynamic nature of different urban areas, as well as updating 
environmental and transportation policies. 

Keywords: Mobile phone datasets, Urban mobility patterns, Dynamic Time 
Warping, Time series. 

1 Introduction 

Identifying urban mobility patterns has been a continuing research topic in GIScience, 
transportation planning, and behavior modeling. Since the time-dimension is 
considered an important factor for most social activities, understanding the dynamics 
of the daily mobility patterns is essential for the management and planning of urban 
facilities and services [1, 2]. However, most of the previous research in this field is 
based on data acquired from travel diaries and questionnaires, which is a widely 
adopted data collection method when studying individual travel behavior [3]. Due to 
the limited number of people covered by travel diaries, these datasets fail to provide 
comprehensive evidence when studying the characteristics of the whole urban system, 
such as identifying clusters of urban mobility.  

Meanwhile, the development of information and communication technologies (ICTs) 
has created a wide range of new spatio-temporal data sources (e.g., georeferenced mobile 
phone records), leading to research that focuses on characterizing urban mobility patterns 
from mobile phone datasets (e.g., the real-time Rome project at the MIT SENSEable City 
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Lab1). Undoubtedly, mobile phone datasets opened the way to a new paradigm in urban 
planning, i.e., Real-time cities [4], as well as facilitating studies on behavior analysis and 
spatio-temporal data mining [5]. Researchers believe that urban structure has a strong 
impact on urban-scale mobility patterns, indicating that different areas inside a city are 
associated with different inhabitants’ motion patterns [6, 7]; therefore, previous research 
has focused on extracting aggregated patterns in different urban areas from mobile phone 
data, such as hotspots, clusters, and points of interest (POIs) [8]. However, there has not 
been sufficient research on characterizing and classifying mobility patterns in different 
urban areas from a dynamic perspective, i.e., analyzing these patterns with respect to 
time. Although the extraction of aggregated patterns (i.e., hotspots and clusters) offers 
valuable input for maintaining the sustainability of urban mobility, it fails to provide 
sufficient information for understanding the “rhythm” of an urban system. The objective 
of this research is to go a step beyond the aggregation of individual mobility. We analyze 
the hourly patterns (time series) of mobility aggregation in different urban areas and 
demonstrate their differences. For instance, time series associated with a central business 
district (CBD) would be different from suburban areas. Exploring these patterns will be 
helpful for policy makers in understanding the dynamic nature of different urban areas, as 
well as updating environmental and transportation policies. Moreover, the methodology 
can also be applied to identify abnormal mobility patterns in some special districts, for 
example, a high crime rate area.  

The analysis in this research is based on a mobile phone dataset from northeast 
China. We will measure the similarity of different urban areas based on a Dynamic 
Time Warping algorithm (DTW): this is a well-developed algorithm in the field of 
speech recognition and signal processing for matching two time series, but it has 
rarely been used for urban mobility modeling [9]. Next, we will classify the time 
series based on hierarchical clustering, which allows for the detection of outlier urban 
patterns. The results can also be used as a reference for residents’ activities, including 
long-term choices such as where to live, and short-term choices such as daily activity 
scheduling. 

The remainder of this paper is organized as follows: Section 2 describes related 
work in the areas of mobility modeling, mobile phone data analysis, and Dynamic 
Time Warping. Section 3 introduces the basic research design, including the 
description of the dataset and the methodology. Section 4 presents the data analysis, 
and we conclude this research in Section 5. 

2 Related Work 

2.1 Mobility Modeling and Mobile Phone Data 

Modeling human mobility patterns has become an important research question in various 
fields such as Geographic Information Science, Transportation, and Physics. Much 
progress has been made regarding the theories, methodologies, and applications. Larsen 
[10] identified five types of mobility: 1) Physical travel of people (e.g., work, leisure, 

                                                           
1 http://senseable.mit.edu/realtimerome/ 
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family life); 2) Physical travel of objects (e.g., products to customers); 3) Imagination 
travel (e.g., memories, books, movies); 4) Visual travel (e.g., internet surfing on Google 
Earth); and 5) Communication travel (e.g., person-to-person messages via telephones, 
letters, emails, etc.). In this research, when referring to “human mobility” we mainly 
focus on characterizing the 1st category of human mobility (Physical travel of people).  

Due to the widespread usage of mobile phones, several studies have been conducted 
with a focus on extracting the characteristics of human mobility from georeferenced 
mobile phone data [11]. Since individuals are atoms in an urban system, the spatio-
temporal characteristics of an urban system could be viewed as a generalization of 
individual behavior; therefore, mobile phone data also provide new insights in analyzing 
the aggregated mobility patterns of phone users in urban systems. Researchers have 
identified two major perspectives when exploring human mobility patterns from mobile 
phone data [12]: 

(a) Individual perspective: This category of research mainly focuses on 
identifying individual trajectory patterns, which is related to the theme of 
pattern recognition in Physics and Computer Science. For example, Gonzalez et 
al. [13] studied the individual trajectories of 100,000 mobile phone users based 
on tracked location data for over six months, providing new input to 
understanding the basic laws of human motion. Song et al. [14] examined the 
regularity of human trajectories based on mobile phone data, and their results 
indicate that human mobility is highly predictive. Some researchers have 
combined the location information with social attributes of the phone users, 
such as with the social positioning method (SPM) [15]. Since the usage of 
mobile phones can affect the mobility patterns of their users, previous studies 
have also focused on the interaction between ICTs and human activity-travel 
behavior [16, 17].   

(b) Urban perspective: Cities can be considered complex systems that are 
constituted by different processes and elements [2]. The rapid development of 
ICTs not only provides a rich data source for modeling urban systems, but also 
resulted in inevitable changes in the spatio-temporal characteristics of urban 
mobility. Researchers have focused on the following two aspects when 
studying the development in urban and regional planning based on mobile 
phone data:  
 

(i) Spatial division and morphology: For example, Kang et al. [18] 
investigated how patterns of human mobility inside cities are affected by 
two urban morphological characteristics, i.e., compactness and size. 

(ii) Spatial clustering and spread: The study of hotspot clustering patterns has 
been addressed in many studies. In the real-time Rome project conducted 
by the MIT SENSEable City Lab, researchers studied the congregation of 
tourists and the gathering of people during special events2. Another similar 
project is “Mobile Landscape Graz in Real Time”, which concentrates on 
the activity distribution of phone users in the city of Graz, Austria3.  

                                                           
2 http://senseable.mit.edu/realtimerome/ 
3 http://senseable.mit.edu/graz/ 
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The analysis in this research is conducted from the urban perspective. As stated in 
Section 1, most previous research has concentrated on exploring aggregated patterns 
when analyzing urban mobility from mobile phone datasets. Here we focus on the 
temporal patterns of urban mobility. We use DTW to characterize and classify the 
mobility time series associated with different urban areas, which extends previous 
research on spatial clustering and mobility spread. The DTW algorithm has been 
identified as one of the most useful methods to measure the similarity between two 
time series, which minimizes the effects of shifting and distortion in time [19]. 
Section 2.2 provides the background of DTW and its applications.  

2.2 Dynamic Time Warping and Its Applications 

One important research question regarding time series data is finding whether two 
time series represent similar behavior [20]. Traditional distance measures, such as 
Euclidean distance, are not suitable for measuring the distance between time series 
data. For example, consider two time series A[1,1,1,1,2,10,1,1,1] and 
B[1,1,1,1,10,2,1,1,1]: the Euclidean distance between A and B is      . This is a 
fairly large number, which implies dissimilarity between the two given time series; 
however, the structures of the two series are actually very similar to each other. 
Therefore, researchers started to look for new algorithms to measure the similarity 
between two time series. Moreover, in the fields of Computer Science and 
Mathematics, researchers also used Discrete Fréchet Distance to measure the 
similarity between two curves [21]; however, this method is very sensitive to outliers 
and displacements [22], therefore it is not very appropriate for time series data. Here, 
Dynamic Time Warping (DTW) is proposed to find an optimal match between two 
given time-dependent sequences [23]. This algorithm has been well developed to 
measure the similarity between time series in various research areas, such as speech 
recognition, motion detection, or signal processing [24]. DTW has also been used for 
analyzing human trajectories and motion patterns, for example, Lee et al. [25] utilized 
DTW to classify the trajectories of moving objects. 

Fig.1 represents the process of calculating the DTW distance between two example 
time series. First a DTW grid is constructed. Inside each grid cell a distance measure 
is applied to compare the corresponding elements (here we use absolute differences) 
of the two time series. In order to find the best match between these two sequences, 
one needs to find a path through the grid which minimizes the total distance; this is 
considered the DTW distance between the two series.  

The biggest advantage of DTW is that one can obtain a robust time alignment 
between reference and test patterns with a high tolerance of element displacement 
[26]. It can also match series with different lengths, which is very useful for some 
applications such as handwriting recognition. However, sometimes DTW tends to 
over-distort the series to create an unrealistic correspondence between elements; 
therefore, it is applicable to set local constraints and global constraints on the path. 
This prevents very short features matching with very long ones [19]. 
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Fig. 1. DTW algorithm 

As mentioned in Section 1, although DTW has been applied to analyze individual 
trajectory patterns, only a few studies have utilized this method to explore urban-scale 
patterns, most of which concentrate on remote sensing data [27, 28]. Researchers have 
proposed several other methodologies to compare two time series, such as Longest 
Common Subsequence (LCSS), but DTW has a high performance for series in which 
the same classes are best characterized by their shapes rather than their values. In this 
research we focus on the internal structure of the mobility time series instead of their 
magnitude. Since DTW can be used to warp the time series, it allows us to group 
similar mobility patterns together, even though the corresponding elements in the two 
series are not exactly aligned with each other (see example in Section 3.2). More 
specifically, here we will use DTW to measure the similarity of hourly population 
density trends of different urban areas. The results of the similarity measure will serve 
as the basis for urban classification and outlier detection. In addition, we will discuss 
the issue of comparing the mobility pattern of a reference area, i.e., a benchmark, to 
other urban areas.  

3 Research Design 

3.1 Dataset 

The analysis is based on a dataset from city A4 (acquired from a major mobile phone 
operator in China), which is a commercial and transportation center in northeast 
China. The dataset covers approximately one million mobile phone users (20% of the 
city population) and includes mobile phone connection records for a time span of 9 
days (4 weekend days and 5 weekdays). It includes the time, duration, and 
approximate location of mobile phone connections, as well as the age and gender 
attributes of the users. Table 1 provides a sample record. The phone number, 
longitude, and latitude are not shown for privacy reasons. For each user, the location 
of the nearest mobile phone base tower is recorded both when the user makes and 
receives a phone call, resulting in a positional data accuracy of about 300m-500m. 

                                                           
4 The name of the city is not shown as requested by the data provider. 
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Table 1. Sample record from the dataset  

Phone number Longitude Latitude  Time Duration 
1360******* 126.***** 45.***** 12:06:12 5mins 

3.2 Methodology 

As discussed in Section 2, we use DTW to measure the similarity of hourly mobility 
patterns between different urban areas. This algorithm allows us to group similar 
patterns together, as well as identifying outlier patterns. Due to the complexity of 
urban systems, it is highly possible that similar mobility patterns may have various 
forms in terms of their time dimensions. Fig. 2a shows two example series that are 
similar (series 2 is created from series 1 using the lag operator lag=1, the y axis of 
both figures are normalized to [0, 1] for simplicity). Both series have two peak time 
periods (one in the morning, the other in the afternoon). For comparison, Fig. 2b 
shows two series that are highly distinct from each other (series 3 is a flat series).  

 

   

       (a)                           (b) 

Fig. 2. Example series: (a) Two similar patterns; (b) Two distinct patterns 

The distances measured by DTW, Euclidean distance and the Discrete Fréchet 
Distance are presented in Table 2.  

Table 2. DTW, Euclidean and Discrete Fréchet distance for example series 

 
Dis1 

(Series 1 vs Series 2) 
Dis2 

(Series 1 vs Series 3) 
Distance Ratio 

(Dis2/Dis1) 
DTW 0.00208 0.31 149.04 

Euclidean 1.41 3.33 2.36 
Fréchet 0.70 0.90 1.29 

As can be seen, the distance ratio indicates that DTW shows a much better 
performance of distinguishing different time series than the other two methods; 
therefore, it is a more useful method for researchers to quantify the similarity of 
dynamic mobility patterns. 

In this research, the data analysis will be conducted in the following three steps: 
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3.2.1 Summarize Dynamic Population from Cell Phone Records 
To summarize the dynamic mobility patterns in different urban areas, we first need to 
divide the study area into sub-areas. One option is to divide the study area into grid 
cells [18]; however, it is difficult to decide on the appropriate cell size. Moreover, it is 
highly possible that the number of base towers in each cell varies, resulting in higher 
mobility in areas with higher tower density. Therefore, we decided to divide the study 
area into Voronoi polygons based on the spatial distribution of cell phone towers  
(Fig. 3), and then to summarize the hourly phone call frequencies for each polygon. 
Each Voronoi polygon is associated with a time series to represent its hourly phone 
call frequency pattern. To further extract the number of people (i.e., active mobile 
phone users) in each cell, we eliminated the repeated phone calls made by the same 
user. 

Note that all the numbers here are on an average daily basis. To normalize the 
results, each population count is divided by the size of the given polygon. Since the 
analysis for large polygons has relatively low spatial accuracy resulting from the low 
density of base towers in the surrounding area, we only perform the analysis for 
polygons smaller than 10 km2. As indicated in Fig. 3, these polygons (highlighted) 
cover the majority of the downtown area. 

 

Fig. 3. Voronoi polygons smaller than 10km2 

Last, we calculate relative mobility patterns for each polygon. In relative time 
series, for each cell its values are divided by the maximum of the 24 hourly values. 
This standardizes the magnitude of data and also helps in further investigating the 
internal structure of each time series. Since the main focus of this research is not on 
the absolute value of each series, we use relative time series instead of the original 
ones to measure the similarity of mobility patterns between polygons. 

3.2.2 Calculate DTW Distance Matrix 
Based on the algorithm described in Section 2, we construct the DTW distance matrix 
for the relative time series associated with each of the selected Voronoi polygons. The 
output is a distance matrix D, in which Dij represents the DTW distance between cell 
polygon i and j. We use a global constraint “Sakoe-Chiba band”, which has a fixed 
windows width in both horizontal and vertical directions [23]. Here the window size 
is set to be 4, indicating that the maximum allowable absolute time deviation between 
two matched elements is 4 hours. This constraint helps to prevent unrealistic 
distortion in the time dimension, such as matching the evening hour patterns with 
morning patterns. 
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3.2.3 Analyze Urban Mobility Patterns Based on DTW Distance Matrix 
Based on the DTW matrix, one can explore the dynamic patterns of urban areas from 
various perspectives, either addressing the “similarity” or “dissimilarity” of urban 
divisions. In this paper we will conduct two example analyses for both circumstances 
based on the distance matrix constructed in step 2. The first one focuses on mapping 
the mobility similarity to reference areas, whereas the second example concentrates 
on detecting outlier patterns. Note that to further clean up the data, polygons with 
zero-phone call frequencies are eliminated. The analysis is presented in detail in 
Section 4. 

4 Data Analysis 

4.1 Mapping the Similarity to Reference Areas 

In urban studies, it is common for researchers to select one or more particular areas as 
case studies for data collection and analysis. Many of these studies are related to 
human mobility patterns, such as crime trends, traffic congestion, etc. Although there 
are usually many other control variables in the analysis, identifying the mobility 
similarity between a selected area (reference area) and other areas can provide 
references for further analysis.  

Fig. 4 represents the similarity measure of mobility patterns between a reference 
polygon (marked red, where a major commercial street is located) and other urban 
areas. Dark brown color indicates a more similar mobility pattern (shorter DTW 
distance), whereas the light yellow color indicates a less similar one. As can be seen 
from Fig. 4, the average DTW distance on weekdays (2.73e-2) appears to be slightly 
smaller compared to that on weekends (2.85e-2) based on a paired two sample t test 
(p<0.001), indicating that the mobility patterns on weekdays are closer to the pattern 
in the reference area. A potential reason is that most human social activities during 
weekends (i.e., grocery shopping, leisure activities) do not have such strict time 
constraints as the ones on weekdays (i.e., go to school / work), so it is highly possible 
that there are more irregular patterns during weekends (further confirmed in the 
outlier analysis in Section 4.2). In addition, it appears that the polygons surrounding 
the commercial street show a more similar pattern to the reference area on weekends 
than on weekdays (see the zoomed-in subfigures of Fig. 4a, b), indicating a potential 
mobility correlation among those areas during weekends. This also represents the 
opposite of the general trend of the whole study area, where mobility on weekdays is 
closer to the pattern in the reference area. This indicates that spatial scale plays an 
important role in this analysis. However, in order to generate further conclusions for 
other urban study questions (e.g., traffic congestion), we will need additional socio-
economic data to conduct additional correlation analyses. Fig. 4 is only a first step of 
measuring the similarity between different urban areas in terms of dynamic mobility 
patterns, and it provides an initial reference for socio-economic studies. 

One can also define the reference (benchmark) series manually. For example, we 
define the benchmark series as [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], 
representing an evenly distributed mobility pattern during both day and night hours.  
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Fig. 6. Histogram of DTW distance for weekdays and weekends 

4.2 Outlier Detection  

As discussed in [29], outlier mining techniques can be used to investigate abnormal 
activities such as traffic accidents. From a broader perspective, since urban-scale 
mobility patterns are strongly affected by the urban structures, identifying abnormal 
mobility patterns can be helpful for researchers and policy makers to investigate the 
functioning patterns of different urban areas, as well as optimizing the distribution of 
urban services (e.g., Police patrol). Moreover, this technique can also be applied to 
detect potential incidents by comparing given patterns in a certain area to its regular 
pattern. Therefore, in the second analysis we explore outlier detection based on the 
DTW distance matrix discussed in Section 3. Our objective is to identify cell 
polygons with abnormal mobility patterns. Since hierarchical classification can 
operate directly on the distance matrix, we adopt this method to classify the mobility 
time series. The algorithm is defined in Fig.7. 

 

 

Fig. 7. Outlier detection algorithm 

There are several methods to set the number of clusters in hierarchical classification; 
however, this value is often affected by specific application scenarios. As an example 
analysis, here we adopt the criteria discussed in [30], where numCluster = max(2; 
sqrt(n/2)), n is the number of entries, and threshold t is defined as 3. 

In the classification, we detected 15 outliers for weekdays and 18 for weekends. 
All the other cells are aggregated into one class. To further investigate the structures 
of the outlier series, we first define what a typical “normal series” looks like. Fig. 8 
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shows an average series for both weekdays and weekends after removing the outlier 
polygons. As can be seen, a normal series has two mobility peaks each day: one is 
around 9am; the other is around 6pm. The mobility density reaches the lowest point 
between 2-4am. This is consistent with common sense. On weekends the mobility 
density is slightly higher during night hours in this case, but there is no substantial 
difference between weekdays and weekends regarding the average patterns.  

 

Fig. 8. Average normal series 

Fig. 9 shows the results of the outlier detection. The detected outliers are marked 
red, other cell polygons are marked light blue. We can see that there are slight 
differences between weekdays and weekends.  

       

(a)                                  (b) 

Fig. 9. Outlier polygons. (a) Weekdays; (b) Weekends 

As a comparison, Fig. 10 shows two example outlier time series (zoomed-in 
polygons in Fig. 9). Referring back to the landmarks on Google Map5, the plot leads 
us to the following hypothesis to explain the abnormality of the areas: 

In polygon 238 there are many night clubs and other leisure facilities for night 
hours. This may explain the abnormal high density rate after midnight. Since there is 
a big international trade center only open during weekdays, this possibly explains why 
the mobility during daytime is not consistent with regular work hours on weekends. 

                                                           
5 http://maps.google.com; The map with landmarks is not shown as required by the 

data provider. 
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In polygon 125 there are several community colleges and training schools. There 
are not many night clubs in this area. The mobility density continues to be high 
between 8am and 8pm on weekends, indicating a noticeable difference in mobility 
patterns between weekdays and weekends. 

        

                  (a)                                 (b) 

Fig. 10. Outlier patterns. (a) Polygon 238; (b) Polygon 125 

Additional information is needed to test the above hypothesis, which is not the 
focus of this research. Generally, the above provides us with a novel method of 
detecting the abnormality of urban mobility patterns, as well as a better understanding 
of the “pulse” of a particular city. 

5 Conclusion 

This research focused on investigating the dynamic mobility patterns of urban areas. 
We demonstrated that DTW is a highly effective method for exploring the similarity / 
dissimilarity of urban mobility patterns. The results indicate that the study area has 
the highest mobility density around 9am and 6pm, and this pattern exists for both 
weekdays and weekends. We also looked into the internal structures of the abnormal 
series. In addition, we provided a method to examine the similarity between a 
benchmark series and study areas based on the DTW distance matrix. The outlier 
detection method discussed in Section 4.2 can also be used to identify abnormal 
mobility patterns in future urban studies, as well as providing reference for 
transportation and urban planning.  

This research provides us with new insights for modeling the changing mobility 
patterns for urban areas. Here we used Voronoi polygons to divide the study area, in 
future studies we will use grid cells (500m*500m) and compare both results. 
Moreover, in this paper the data is segmented into 1 hour granularity. It would be 
interesting to investigate how different temporal granularities impact the results. Age 
and gender factors of phone users should also be included in further studies. Another 
potential direction for future research is to investigate how the predefined local and 
global constraints affect the DTW distance and classification results. The 
methodology discussed in this paper can be applied to other cities. Moreover, DTW 
can also be used to examine individual mobility patterns of phone users (i.e., 
characterizing user trajectories based on the abnormality of visited areas). 
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