

O. Castillo et al. (Eds.): Recent Advances on Hybrid Intelligent Systems, SCI 451, pp. 463–480.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Natural Language Interfaces to Databases: An
Analysis of the State of the Art

Rodolfo A. Pazos R., Juan J. González B., Marco A. Aguirre L.,
José A. Martínez F., and Héctor J. Fraire H.

Instituto Tecnológico de Ciudad Madero, Mexico
{r_pazos_r,automatas2002}@yahoo.com.mx,
jjgonzalezbarbosa@hotmail.com, marco@marcoaguirre.com.mx,
jose.mtz@gmail.com

Abstract. People constantly make decisions based on information, most of which
is stored in databases. Accessing this information requires the use of query lan-
guages to databases such as SQL. In order to avoid the difficulty of using these
languages for users who are not computing experts, Natural Language Interfaces
for Databases (NLIDB) have been developed, which permit to query databases
through queries formulated in natural language. Although since the 60s many
NLIDBs have been developed, their performance has not been satisfactory, there
still remain very difficult problems that have not been solved by NLIDB technolo-
gy, and there does not yet exist a standardized method of evaluation that permits
to compare the performance of different NLIDBs. This chapter presents an
analysis of NLIDBs, which includes their classification, techniques, advantages,
disadvantages, and a proposal for a proper evaluation of them.

1 Introduction

Information is a fundamental factor in decision making. Currently the largest
sources of information are stored in databases (DBs). Information stored in data-
bases has been growing constantly, which has brought about the need for creating
systems that permit users to obtain information easily, fast and reliably. In order
for a user to obtain information from a database, he/she needs formulate a query in
such a way that the computer interprets and generates the correct answer (usually
in a database query language such as SQL). Unfortunately, only computing pro-
fessionals can formulate queries in such way. Therefore, natural language inter-
faces to databases (NLIDBs) emerge as an alternative that permit users accessing
information stored in databases through a query in natural language (NL).

The need for NLIDBs has grown popular nowadays as a consequence that
many users request accessing information in different types of systems (comput-
ers, cell phones, PDAs) [8, 4].

Unfortunately, despite that fact that NLIDBs have been developed for more
than 50 years, they have not attained a high enough performance (percentage of

464 R.R.A. Pazos et al.

correctly answered queries close to 100%) to make them widely used in business
applications. Most of the NLIDBs that have achieved good results (success rate
around 95%) are domain dependent; i.e, those that can only be used to query a
single database; however, domain-independent NLIDBs still have deficiencies in
the translation process (form NL to a DB query language) and have attained a suc-
cess rate in the interval 80-90%.

It is clear that the development of effective NLIDBs continues to be an open re-
search topic, for the simple fact that no domain-independent NLIDB has achieved
a success rate close to 100%.

This analysis of the state of the art in NLIDBs aims at showing the state of
progress of this technology to date. To this end, the most relevant architectures,
NL processing techniques and types of GUIs that have been used for implement-
ing NLIDBs are described together with their advantages and disadvantages, as
well as examples of NLIDBs that have used them. This chapter includes a descrip-
tion of the most relevant problems that have prevented NLIDBs achieving a level
of performance good enough to make them widely used in business applications.
Finally, since evaluation is an important aspect for assessing the progress of tech-
nologies, this chapter includes an overview of the databases, query corpuses and
metrics that have been used for evaluating NLIDBs, as well as a proposal for stan-
dardizing their evaluation.

2 History

The first NL querying systems were developed in the 60s, and they were basically
NLIs for expert systems tailored for specific domains, being some of the most
famous BASEBALL [2] and LUNAR [3]. Most of those NLIDBs were developed
keeping in mind a particular database, and consequently they could not be easily
modified for querying different databases or they were difficult to port to different
application domains. These systems had a database or a knowledge system created
manually by domain experts. Some of the first NLIDBs were based on pattern
matching techniques, described in Subsection 4.1.1.

Other interfaces that were developed in the late 70s were PLANES [36], REL
[36] and LADDER [36]. These systems used a semantic grammar, described in
Subsection 4.1.3. A boom of NLIDBs development occurred in the 80s, when nu-
merous research prototypes were implemented, such as CHAT-80 [3], DATALOG
[3], EUFID [3], and TELI [3].

The next generation of NLIDBs used an intermediate representation language,
which expressed the meaning of user queries in terms of high level concepts, in-
dependently of the database structure [3]. TEAM [20] is an experimental and port-
able NLIDB developed in 1985, which consists of two main components: expres-
sion mapping from NL to formal representations and transformation of these
expressions to a DB query language, which permits the separation of the linguistic
process from the mapping process in the knowledge base.

Masque/pro translates English queries to expressions in a logic language called
LQL, which are evaluated against Prolog databases. Later on, since most existing
databases are relational, the authors decided to modify this system, from which

Natural Language Interfaces to Databases: An Analysis of the State of the Art 465

Masque/sql evolved, which is a portable NLIDB that supports SQL databases. The
main adaptation consisted of translating LQL queries to SQL expressions [3].

Several NLIDBs were developed which were commercialized. Some of the
most successful were INTELLECT, Q&A, English Wizard and English Query.
However, when graphical user interfaces were introduced, these NLIDBs were
gradually discontinued. Their performance was not very satisfactory, due to the
existence of several problems: the language coverage of the system was not ob-
vious for users; i.e., the system might be able to answer the query but it would not
generate the correct result; the origin of its mistakes could not be discerned; i.e.,
the user could not guess if the problem was caused by a language coverage limita-
tion or the conceptual scope of the database; and when the NL queries were ambi-
guous, usually the result was not what users expected.

3 Recent Work

The boom of NLIDBs development occurred in the 80s. Despite the development
of many systems at that time, gradually their use decreased due to several prob-
lems that affect their performance. In this section some of the most relevant of re-
cent works are presented; moreover, several of the systems described in this
section were included because they use translation techniques different from the
traditional ones.

PRECISE [30] introduces the notion of "semantically tractable sentences",
which are those that can be translated to a unique semantic interpretation. Its accu-
racy rate for tractable sentences is impressively high (100%), however its recall
rate is just 78-95%.

NLPQC [34] is a NLIDB that is used for querying the virtual library CINDI.
This system is constituted by a run-time preprocessor. The preprocessor builds a
conceptual knowledge base of the DB schema using WordNet, which is used at
run time for analyzing the user query according to several predefined frameworks
and for generating an SQL expression.

WYSIWYM [29] uses a semantic graph inspired by the one described in [37].
The interface helps users formulate queries using predefined frameworks, through
a query interface, where the user completes the framework choosing from a list of
search values for the columns involved in the query.

DaNaLIX [18] is a NLIDB to query XML databases. In this system the domain
knowledge can be obtained from the interaction with the user. Query analysis fo-
cuses on keywords and its relationships with the XML elements, which are used
for translating the query to XQuery.

C-PHRASE [22] has an authoring tool for editing the data dictionary of the
NLIDB for a specific domain. Query analysis focuses mainly on recognizing noun
phrases, and it uses a semantic grammar based on rules and patterns, which are
used for translating the query to SQL.

In [11] a NLIDB that uses Sequence and Tree Kernels (STKs) and some va-
riants is presented. In this system sets of data are constructed that consist of pairs,
where each pair is constituted by a NL query and its translation into SQL. The
NLIDB represents these pairs through syntactic trees, and uses kernel functions
and support vector machines for carrying out the translation from natural language
to SQL.

466 R.R.A. Pazos et al.

4 Classification of NLIDBs

In this section three types of classification of NLIDBs are presented; according to:
their type of architecture, language processing technique, and type of graphical
interface.

4.1 Classification by Architecture

4.1.1 Pattern Matching Systems

The first NLIDBs used this type of method, which employs a simple technique
based on patterns or rules that are applied to the NL query [3]. In pattern-matching
systems, their inner workings are closely related to the peculiarities of the data-
base to be queried; consequently, these systems are limited to specific databases
and the complexity of the patterns considered. In order to exemplify the simplicity
of the method, let us consider a rule that could be used for the ATIS database [33]:

 Pattern of NL query:
 “Flight Code” of <A Flight Number>
 SQL expression that corresponds to the preceding pattern:

SELECT flight_code.flight FROM flight WHERE flight_number = <A Flight
Number>

The advantage of this technique is that it is neither necessary to implement a syn-
tactic parsing nor interpretation modules for translating the query, which facilitates
their implementation. The main disadvantage is that the simplicity and superficiality
of the implementation (because of the limitation of the rules defined) frequently
causes an incorrect translation of the NL query to a DB query language. Additional-
ly, the coverage of the system is limited by the number of patterns it uses.

Some NLIDBs like the system described in [1] and gNarLI use this type of
technique.

4.1.2 Syntax-Based Systems

Syntax-based systems use a syntactic parser for generating the parse tree corres-
ponding to NL queries [3]. The parse tree is mapped to the DB query language
based on predefined syntactic grammars.

The syntactic parser is a program that parses NL sentences. Parsers are imple-
mented from a set of grammar rules and lexicons. Parsers are generally designed
for a specific natural language due to the idiosyncrasies of different languages
regarding grammar rules and lexicons.

The result of parsing a sentence is the syntactic representation of the sentence.
The representation obtained consists of three types of information: part of speech
of words, phrases, and relationships between words or phrases. The part of speech
of a word in a sentence is its syntactic category (verb, noun, adjective, preposition,
etc.). A phrase is a sequence of two or more words that are grammatically linked
without subject and predicate.

Natural Language Interfaces to Databases: An Analysis of the State of the Art 467

Parsers also generate a representation for a sentence, called constituent tree. Re-
lationships between words are represented in the constituent tree. Parsers use a set
of rules based on the constituent tree for generating the syntactic relationships be-
tween words and phrases.

Once a user query is parsed into a constituent tree, syntax-based systems use a
syntactic grammar for mapping user queries. An example of a possible grammar
for a query to the GeoBase database looks as shown below.

• S  WQ VP
• WH  “what” | “which”
• WQ  WH “river” | WH “state”
• VP  V DP
• V  “passes through” | “borders”
• DP  “Illinois” | “Missouri” | “Indiana”
Considering the following query:

Which river passes through Illinois?

According to the syntactic grammar, the system could map this query to the fol-
lowing logical query to the database (where X denotes a variable):

? (river(x)∩flow_through(X,Ilinois)).

The advantage of using this technique is that it facilitates mapping from the syn-
tactic tree to the DB query language, because the tree contains detailed informa-
tion of the sentence of the user query. The disadvantages are related to problems
concerning domain independence and DB query language. Problems such as se-
mantic ellipsis may cause ambiguity when the query refers to a column that
belongs to several DB tables. Other problems are related to the possibility of gene-
rating several syntactic trees, which could lead to several interpretations of the us-
er query. There also exists the difficulty of mapping the sentence directly to a DB
query language (such as SQL) due to the rules defined. The syntactic structures
are deeply rooted to the database information; therefore, the systems that use this
technique are difficult to port to another database.

An example of NLIDB that uses this translation technique is LUNAR.

4.1.3 Semantic Grammar Systems

The semantic grammar systems are similar to syntax-based systems: syntactic
parsing is used for generating the constituent tree of the user query. This technique
uses predefined grammars for mapping from the constituent tree to an SQL ex-
pression. An example of a possible semantic grammar is shown below [3].

S  River_question Flow_through
River_question  “which river”
Flow_through  “passes through” State
State  “Illinois”

468 R.R.A. Pazos et al.

Semantic grammars offer more-semantically-enriched information than syntactic
grammars, which extends the scope of application of such systems. Semantic in-
formation about the domain knowledge is related to the semantic grammar. Se-
mantic grammar categories are usually selected to enforce semantic constraints.

The advantage of this type of architecture is that the semantic representation does
not have a complex syntactic tree. The structures permit assigning semantic informa-
tion to the tree nodes, which reduces the elliptical problems of user queries.

The disadvantage of this method is that the semantic information about the know-
ledge domain is hard-wired into the semantic grammar (a new semantic grammar
has to be written whenever the system is configured for a new domain), which
makes difficult to port NLIDBs from one database to another. Moreover, the struc-
tures of the syntactic tree can hardly be useful for other databases. Some systems
intend to obtain information from the domain knowledge by interacting with the user
or extracting such information from a corpus of queries formulated by users.

Examples of NLIDBs that employ this translation technique are LADDER,
PLANES, REL, PHILIQA1, EUFID, ASK, DATALOG, Nchiql, QBI, CoBASE,
PRECISE, NLPQC, WYSIWYM, and the system presented in [11].

4.1.4 Intermediate-Representation Language Systems

Currently most NLIDBs use this technique for translating a NL user query to an
intermediate logical query (in some intermediate meaning representation lan-
guage). Intermediate logical queries express the meaning of user queries in terms
of high-level-world concepts, which are independent of the database structure [3].

In this type of systems a sentence is mapped first to a logical query language,
and subsequently this query is translated to a DB query language. This type of sys-
tems may include more than one meaning representation language.

In intermediate-representation language systems, a system can be divided into
two parts: the first generates the logical query and the second generates the DB
query from the logical query. The use of logical query languages permits adding
reasoning capabilities to the system through the incorporation of reasoning mod-
ules between the semantic analyzer and the DB query generator. A recent varia-
tion of this architecture consists of using an internal structure (such as a semantic
network) instead of an intermediate-representation language.

The advantage of using this technique is that the part that generates the logical
queries is independent of the DB management system. This technique also permits
the domain to be independent of the system modules and the addition of reasoning
modules that enables the system to carry out reasoning based on information
stored in the database. A disadvantage is that most of these kind of NLIDBs use
deductive databases, which are much less used than relational databases; thus, the
scope of application is limited.

Examples of systems that use this technique are RENDEZVOUS, CHAT-80,
DIALOGIC, TEAM, DIAGRAM, JANUS, TELI, TAMIC, EDITE, and C-
PHRASE.

Natural Language Interfaces to Databases: An Analysis of the State of the Art 469

4.2 Classification by Language Processing Techniques

4.2.1 Symbolic Approach

The symbolic method was prevalent in the first decades of NLIDBs development.
Words are symbols that represent objects in the real world, and they are subject to
well-defined grammar rules.

In this type of approach, language is coded in rules or other forms of represen-
tation. Language is analyzed at several levels for obtaining information, from
which rules are obtained that are applied for achieving the intended linguistic
functionality for the system. Similarly to the human language capabilities, a rule-
based reasoning is carried out which is supported by symbolic processing [2].

The advantage of this approach resides on its simplicity, since it does not re-
quire a complex implementation. Its disadvantage is that its functionality and
scope are limited to the rules defined for interpretation.

Many NLIDBs use this technique since they use rules for answering user
queries. Some systems that use this technique are LUNAR, LADDER, PLANES,
REL, PHILIQA1, EUFID, ASK, DATALOG, TAMIC, EDITE, NLPQC, and
C-PHRASE.

4.2.2 Empirical Approach

Statistical analysis is the main tool for this type of approach, since it is based on
text corpora analysis. The corpora are used as source of information for the natural
language [2]. In this approach the syntactic parsing is carried out on a training
corpus, in which the ellipsis and ambiguity problems can be resolved considering
the context of the information obtained.

The advantage of using this approach is that, unlike the symbolic approach, this
method automatically carries out the acquisition and learning of more complex
knowledge. Its disadvantage is that its effectiveness depends on the training cor-
pus, and it also needs some processing time that depends on the corpus size.

Examples of NLIDBs that use this approach are PRECISE, WYSIWYM, Da-
NaLIX and the system presented in [11].

4.2.3 Connectionist Approach

Artificial neural networks permit modeling language processing. Instead of sym-
bols, this method is based on distributed representations that correspond to statis-
tical regularities in natural language [2].

The advantage of this approach consists of permitting high-level representa-
tions of knowledge, which allows more information and possibly larger domain
independence. The disadvantage is that it probably needs more processing capaci-
ty that the other techniques.

An example of the use of this method is presented in [11]. Additionally, sys-
tems such as Nchiql, QBI, CoBase, and WYSIWYM use semantic graphs for in-
terpreting user queries. In Owda’s NLIDB [25] knowledge representation trees are
used.

470 R.R.A. Pazos et al.

4.3 Classification by Type of GUI

4.3.1 Command Line Based

This is a method that permits users to input NL queries through a simple text line.
The first NLIDBs used this type of approach because of the existing software and
hardware limitations.

Though inexperienced users easily learn to interact with graphic interfaces, a
well-designed command line interface has several advantages over other interface
types. Since the interface does not have complex components, its simplicity and
uniformity make it easy to use. In general, the execution of a command can be
faster than using a graphic interface.

A disadvantage of this type of approach is that it might be complicated to
minimize user mistakes. Though this type of interfaces have uniformity in the in-
teraction with the user, since they do not have other tools such as clarifying dialo-
gues, the results obtained are not always satisfactory because there is no feedback
from the NLIDB.

An example of NLIDB that uses this type of interface is NLPQC.

4.3.2 Menu-Based

In this type of systems users formulate queries choosing from menus of phrases
and search values. The menus are displayed on the screen and are constantly up-
dated. The user can browse the menus to find out the queries that the system can
answer.

The advantage of this kind of systems is its ease of use and the guarantee that
queries are correctly worded. A major disadvantage is that the coverage of the sys-
tem is limited by the number of phrases included in its menus. Another disadvan-
tage is the heavy use of computer resources due to the constant updating of the
system menus. Additionally, query formulation may occasionally require search-
ing through a lot of information, which may cause a lengthy search in the menus.

Some examples of menu-based NLIDBs are NLMenu System, TEAM, and
WYSIWYM, as well as the systems presented in [15] and [19].

4.3.3 Conversation/Dialogue-Based

Conversation-based systems use conversation agents that permit users to interact
with the NLIDB, in such a way that the users may refine their queries through di-
alogues until they get the desired result. There exists another type of dialogues
used by NLIDBs, which are called clarifying dialogues. These dialogues, like
conversation-based dialogues, are used after the query has been preprocessed in
order to clarify the meaning of a query that has not been fully understood (usually
asking for omitted words in the query wording).

Natural Language Interfaces to Databases: An Analysis of the State of the Art 471

The advantage of this type of interface is its reliability and friendliness, since it
permits the user to refine or clarify the query for attaining the desired result. Inte-
raction with the user makes possible to integrate learning modules that permit
feedback to the system, which in turn leads to improved performance. With a good
dialogue design, this type of interfaces guarantees obtaining the desired results
with better accuracy.

However, it might be necessary to configure the system so it adequately responds
and interprets the responses obtained from the user as a result of the interaction with
the system. There might also occur superfluous interactions with the user. Another
disadvantage is that the interaction with the system could be lengthy when dealing
with complex queries or elliptical queries (those in which words crucial for their in-
terpretation are omitted). Due to the processing and coverage of dialogue cases, the
system might require a larger amount of computational resources.

Some examples of conversation/dialogue-based NLIDBs are SHRDLU,
WISBER, and TAMIC, as well as the systems presented in [15] and [25]. Other
systems such as IR-NLI support spoken dialog.

4.3.4 Multimode-Based

This kind of interfaces has sophisticated selection and navigation techniques for
selecting objects and context-sensitive menus for manipulating them. This tech-
nique could be considered as a combination of menu-based interfaces and dialo-
gue-based interfaces, which in some cases includes the use of checkboxes, lists,
objects, etc., and even speech for interacting with the system.

Because of the combination of techniques, multi-mode interfaces share their
advantages and disadvantages. Among their advantages, it can be mentioned that
users can formulate queries at a higher level, since queries can be formulated at
different levels of construction, additionally they permit clarifying details of the
user query.

The main disadvantage if this type of interface is that it requires a larger use of
computational resources because of the larger amount of constituent elements.
Occasionally, user-system interaction could be tedious and its use might possibly
be difficult when the user ignores the operation of the system.

Some examples of multimode-based NLIDBs are JANUS, QBI, CoBase, info-
Vis, DaNaLiX, and C-PHRASE.

5 Problems in NLIDBs

For over 50 years a large number of NLIDBs prototypes and commercial systems
have been developed; however, to date they have not attained satisfactory results;
i.e, recall rate close to 100%.

Interfaces such as PRECISE [30] (considered one of the most successful), only
answers queries that are considered "tractable", where tractable is defined as "easy
to understand, questions where the words or phrases correspond to database

472 R.R.A. Pazos et al.

elements or constraints on join paths." Unfortunately, in complex databases (like
ATIS), many queries involve semantic ellipsis which makes queries difficult to
understand; for example in the query corpus for ATIS, the percentage of elliptical
queries is approximately 85%.

The pitiful situation of commercial NLIDBs gives an indication of the back-
ward state of NLIDB technology; most of the commercial products have been
discontinued due to their poor performance and the difficulty for porting and con-
figuring them. For example, LanguageAccess was discontinued by IBM, English
Query (developed by Microsoft) was included for the last time in SQL Server ver.
8.0 in 2000, and English Wizard (by Linguistic Technology Corporation) was dis-
continued several years ago. ELF [5] (reputed as being one of the best NLIDBs
and still available for sell) does not provide anymore technical support and it has
not been updated nor improved its operation for many years.

Though many ILNBDs problems still remain unsolved, most researchers that
have worked in this area, have moved to other research topics and have not con-
tinued to improve their prototypes performance.

Some of the main problems in which most of the researchers agree, are those
related to portability (domain independence) and translation from NL to a DB
query language [22, 30].

5.1 Domain Independence

A major issue in domain-independent NLIDBs is that it is very difficult to attain a
recall rate above 90%, and usually this requires a tedious configuration process for
adapting an interface to a specific database. The NLIDBs that offer domain inde-
pendence need an initial configuration process before the final users can introduce
their queries.

Configuring a NLIDB consists of supplying the system with the words and
concepts needed for the new domain, which are related to the information stored
in the database. Usually DB administrators need high levels of expertise and a
long time for configuring the system [22]. Unfortunately, NLIDBs will not be
widely used in businesses until their configuration is so easy that any computer
professional could be able to perform it.

As a result of the difficulty of developing domain-independent NLIDBs that
achieve recall rates closer to 100%, in recent years many researchers have focused
their efforts in developing NLIDBs for specific domains and for languages differ-
ent from English, some of which are described in [1, 7, 9, 10, 12, 14, 16, 17, 19,
24, 26, 31, 32].

Currently some NLIDBs that are considered domain-independent, have not
shown supporting experimental results (CoBase [37] and InBASE [6]), have been
tested with a single domain (NLPQC, STEP [22], C-PHRASE, and [23]), and oth-
er NLIDBs have been tested with databases that are not complex (ENLIGHT [13],
NaLIX [18], DaNaLIX, and the system presented in [11]).

Natural Language Interfaces to Databases: An Analysis of the State of the Art 473

Table 1. Types of problems that occurs in queries

Cases Problems
1 Use of words or phrases of different syntactic categories
1.1 Use of nouns or nominal phrases for referring to tables or columns.

Example: List number of seats on D9S.
1.2 Use of verbs or verbal phrases for referring to tables or columns.

Example: What time does flight 102136 leave ATL to DFW?
1.3 Use of prepositions or prepositional phrases for referring to tables or

columns.
Example: Give me an economy class flight from DFW to BWI one-
way.

1.4 Use of adjectives or adjectival phrases for referring to tables or col-
umns.
Example: How fast can the Concorde fly?

1.5 Use of temporal adverbs.
Example: List fares for all flights leaving after twelve o'clock noon
from BOS to BWI.

1.6 Use of conjunctions.
Example: Flights exiting Fort Worth and entering Dallas.

2 Semantic ellipsis
2.1 Lacking information of tables or columns.

Example: List fares for all flights leaving after twelve o'clock noon
from BOS to BWI.
Note: there exist two columns related to the word "fare":
"one_way_cost" and "rnd_trip_cost", thus it is not clear which of these
columns is being referred to.

2.2 Lacking information of tables or columns referred to by some value.
Example: How much is Delta flight 539?

2.3 Lacking information of tables or columns about the information re-
quested.
Example: All flights from ATL to SFO on Delta first class.

3 Covering of the capability of SQL
3.1 Queries that involve several tables.

Example: Give me an economy class flight from DFW to BWI one-
way.
Note: the columns referred to by “economy”, “flight” and “one-way”
belong to different tables.

3.2 Queries that involve aggregate functions and the Group By clause.
Example: Which flight from Philadelphia to Dallas has the cheapest
fare?

4 Other type of problems
4.1 Search values that involve two or more columns.

Example: Give me the hire date of the employee Margaret Peacock.
Note: the value "Margaret Peacock" involves two columns:
“FirstName” and “LastName.”

474 R.R.A. Pazos et al.

Table 1. (continued)

4.2 Search values constituted by two or more words.
Example: Give me the postal code and city of the supplier “Exotic Liq-
uids”.

4.3 Incomplete search values.
Example: What is the name of the store where is “the busy”.

4.4 Inexistent tables or columns.
Example: Get me a date on flight 294 leaving ATL to Washington.
Note: the table or column “date” does not exist in the database.

4.5 Spacing, punctuation and formatting mistakes.
Example: Flights between SFO and Dallas between noon and 5:00 P.M.
Note: the ATIS database uses the military format for time.

4.6 Imprecise search values.
Example: Show me the Atlanta to Dallas flights in the morning.

5.2 Translation Process

The translation process is one of the most important aspects of a NLIDB, since it
deals with understanding the query and translating it to a DB query language. In
Sections 4.1 and 4.2 several translation approaches were described.

Translation issues are caused by problems that occur in queries. From an analy-
sis carried out on query corpora involving three databases (ATIS, Northwind and
Pubs), four general types of problems (i.e., those that usually are found in queries
for most databases) were identified and classified [29]:

1. The use of words or phrases of different syntactic categories (such as nouns,

verbs, adjectives, and prepositions) for referring to tables or columns of the
database.

2. Semantic ellipsis that occurs when words that are necessary for clearly under-
standing the query are omitted.

3. Coverage of the capabilities of SQL, such as involving several tables of the da-
tabase and the use of aggregate functions.

4. Other type of problems related to human errors, such as nonexistent informa-
tion in the database, words that indicate imprecise values, etc.

The classification obtained and some examples are shown in Table 1. It is impor-
tant to point out that the classification carried out according to the problems found
in the corpora mentioned can be applied to most databases.

5.3 Desirable Features of a NLIDB

Obviously the main characteristic that any NLIDB must have is that it should an-
swer correctly all the user queries. Additionally, a survey of the literature on
ILNBDs revealed that, regarding the issues faced by ILNBDs, other characteristics
that are considered the most important are the ones mentioned next.

Natural Language Interfaces to Databases: An Analysis of the State of the Art 475

Ease of configuration. The interface should be easily and swiftly configured (re-
quiring a minimal user intervention). It should preferably be auto-configurable.

Operability. The system should be easy to use (friendly interface). Preferably, us-
ers should be guided through the querying process.

Authoring. The interface should have a tool that permits carrying out modifica-
tions of the knowledge base or data dictionary.

Habitability. The capacity of an interface for meeting user expectations, without
surpassing the system linguistic capacity (limited grammar and linguistic coverage).

Transparency. The capabilities and limitations of the system should be evident to
its users.

Robustness. Capacity of answering all the user queries.

Efficiency. The system should answer quickly.

Accuracy. The system should answer correctly all the queries.

Intelligence. The system should be able to answer deductive and temporal que-
ries. It should also be able to improve its performance through information feed-
back obtained from user-system interaction.

Multimodality. Since most NLIDBs only support user-system interaction through
keyboard, which is little practical, it is expected that the interface uses different
means for inputting queries (such as speech, menus, forms, graphic objects, etc.)
that permit users to obtain the advantages from the use of several input media.

Independence. The interface should be independent in four aspects:

1. Domain independence. The interface should be able to be ported to any data-
base, so that it can answer queries concerning the domain at hand.

2. DBMS independence. The interface should extract information from the data-
base regardless of the database management system (Oracle, Sybase SQL Serv-
er, PostgrestSQL, Microsoft SQL Server, Access, DB2, and Informix, and
MySQL).

3. Natural language independence. The interface should be multi-lingual.
4. Hardware and software independence. The interface should permit porting it to

any computing platform.

Handling of linguistic phenomena. The interface should consider the linguistic
problems that may affect the meaning of the syntactic elements involved in user
queries. Some of the most important are: anaphora, ellipsis and ambiguity.

6 Evaluation of NLIDBs

Currently, evaluating a NLIDB is a disturbing task, because there are no generally
accepted evaluation benchmarks that can be used for comparing the performance
of different NLIDBs, unlike other more mature research fields. Some characteris-
tics of the evaluations of most NLIDBs are presented next, regarding databases
used, test corpora and evaluation metrics.

476 R.R.A. Pazos et al.

6.1 Databases Used for Evaluation

Despite the large number of NLIDBs developed to date, there are only a few data-
bases that have been used for evaluation.

Many of the NLIDBs use three databases developed by L. Tang and R. Mooney
(used in [35]): Geobase, Restbase and Jobdata, relative to geography, restaurants
and jobs domains. It is important to point out that these databases are not relation-
al (they are programmed in Prolog) and their structure is simple (they contain
from 1 to 8 entity classes). Researchers that have used these databases to test their
NLIDBs, had to convert manually these databases to relational databases.

The first NLIDBs were designed for this type of databases, called deductive da-
tabases, because they contain rules for deducting facts from logic predicates.
NLIDBs for deductive database never became popular because the vast majority
of the databases used in businesses are relational.

Some of the databases used for testing are Northwind (traders database) [21],
Pubs (books database) [21], CINDI (database of the virtual library of the Concor-
dia University) [34], and in some cases student databases, which do not have a
complex structure, and for which there does not exist a real-life or a corpus of
complex queries for testing.

Finally, ATIS, a database that handles information on airline flights, is one of
the most complex relational databases used for testing. Due to the complexity of
its structure (27 tables, 123 columns and a corpus with 85% of elliptical queries),
only few NLIDBs have dared to test their performance using this database.

6.2 Query Corpora Used for Evaluation

Similarly to the fact that there is no generally accepted benchmark database, nei-
ther does exist a benchmark corpus of queries for testing NLIDBs. From the query
corpora mentioned in the literature, only the ATIS, Geobase, Restbase and Jobdata
have corpora of real-life queries. Unfortunately, despite the large number of que-
ries in ATIS (the largest corpus) many queries are repeated (i.e, they have the
same structure but different search values), and the queries do not encompass all
the types of problems that occur in queries.

The corpora for Geobase, Restbase and Jobdata are constituted by deductive
queries because the databases are deductive. The queries of these corpora may
have a high degree of logical complexity, but their databases do not have a com-
plex structure (as compared with ATIS, for example).

The ATIS corpus, though it has many repeated queries, it has a large variety of
queries that involve the most common interpretation problems found in real life.
Moreover, the complexity of the database adds further complexity to some queries.

6.3 Evaluation Metrics

There exist many metrics that could be used for evaluating ILNBDs; however, the
most used ones by researchers are the following:

Natural Language Interfaces to Databases: An Analysis of the State of the Art 477

100
queriesparsed ofnumber total

queriescorrect ofnumber total
accuracy ×= (1)

100
queries ofnumber total

queriescorrect ofnumber total
recall ×=

(2)

As shown by expression (1), accuracy is the percentage of correctly answered que-
ries with respect to the number of translated queries. As shown by (2), recall is the
percentage of correctly answered queries with respect to the number of queries in-
put to the interface.

Unfortunately, there is no uniformity on what "correct query" means. In some
NLIDBs evaluations, queries whose results include additional information to that
requested in the query, are counted as "correct queries"; while in other NLIDBs
evaluations "correct queries" include only those queries whose results include just
the requested information. This lack of uniformity makes impossible to compare
the performance of different NLIDBs.

6.4 Proposed Evaluation

As it has been mentioned, evaluating a NLIDB (by researchers and potential users
of commercial interfaces) might be a disturbing task, since there is no established
benchmark that permits standardizing the tests to carry out for a NLIDB. This sit-
uation makes impossible to compare the performance of different NLIDBs and to
assess the progress of NLIDB technology.

As a result of the survey carried out on different state-of-the-art NLIDBs, we
propose some testing means for guaranteeing a meaningful and useful evaluation
of NLIDBs, which includes databases, query corpora, and evaluation metrics.

We propose to evaluate interfaces using corpora that include queries that in-
volve the problems listed in Table 1, in order to find out how many of such prob-
lems are dealt with correctly by an interface.

Concerning databases, the use of at least three relational databases is proposed,
whose structure has a complexity degree from medium to high (regarding number
of tables and relations among tables). The ATIS database is a good candidate for
the benchmark, since it has 27 tables and a complex relations structure. However,
additional databases are needed, since the ATIS database is not adequate for for-
mulating queries that involve certain problems; for example, queries that involve
the Group By clause. By the way, the group of benchmark databases should per-
mit formulating queries that involve all the problems listed in Table 1.

Additionally, we propose that only the recall rate should be used to assess
performance, and to this end, each query in the benchmark corpora should be ac-
companied with the equivalent expression in SQL, in order to verify the correct
translation of the query.

We claim that the performance of a NLIDB can not be fully described by a
single recall number, but by a group of numbers, one for each aspect to eva-
luate. For example, a test of ELF carried out by us on a set of five complex queries

478 R.R.A. Pazos et al.

that involve the Group By clause yielded 0% of correctly answered queries; how-
ever, when tested with another query corpus ELF's recall rate is around 75% [28].
Therefore, to fully assess the performance of a NLIDB, a recall percentage should
be measured for queries that involve words or phrases of different syntactic cate-
gories (nouns, verbs, adjectives, prepositions), a recall percentage should be
measured for elliptical queries, another recall percentage for queries that involve
Group By, and so on.

7 Concluding Remarks

This analysis of the state of the art in NLIDBs aims at showing the state of
progress in this field to date. Our conclusion is that, despite the large number of
ILNBDs that have been implemented for more than 50 years, these systems have
not attained a high enough success rate (recall close to 100%) to make them wide-
ly used in business applications. We claim that for NLIDBs to be useful for such
applications, they have to reach a success rate greater than or equal to the success
rate of a good computing professional. Therefore, the good news for NLIDB re-
searchers is that there is plenty of work ahead.

The main issues that hinder the advancement of NLIDB technology are: achiev-
ing high recall rates with domain-independent systems, developing easily confi-
gurable NLIDBs, and lack of benchmarks for evaluating NLIDB performance.

From the experience gained during the development of two NLIDB prototypes
during the past 11 years [27, 28], we have arrived at the following conclusion: the
process of correctly translating from a NL query to SQL is an extremely difficult
problem, since it involves many issues (most of which are summarized in Table
1). We think that new efforts should focus on thoroughly studying and fully solv-
ing each of those problems.

Finally, like other more mature research fields, there is the need for an estab-
lished benchmark that permits obtaining a meaningful evaluation of the perfor-
mance of NLIDBs. To this end, we propose: the development of a benchmark
consisting of two or three databases (ATIS could be a good candidate), the devel-
opment of query corpora for the benchmark databases consisting of queries that
involve the problems presented in Table 1, and the use an overall recall rate to-
gether with a recall rate for each of the different problems that occur in queries
(those presented in Table 1).

References

1. Ahmad, R., Abid, M., Ali, R.: Efficient Transformation of Natural Language Query to
SQL. In: Proc. 2nd Conference on Language and Technology, pp. 53–60 (2009)

2. Akerkar, R., Joshi, M.: Natural Language Interface Using Shallow Parsing. Interna-
tional Journal of Computer Science & Applications 5, 70–90 (2008)

3. Androutsopoulos, I., Ritchie, G., Thanisch, P.: Natural Language Interfaces to Data-
bases - An Introduction. Natural Language Engineering 1, 29–81 (1995)

4. BBC, Bill Gates: Mouse is out, Touch Screen and Natural Language Interface are in
(2008),

Natural Language Interfaces to Databases: An Analysis of the State of the Art 479

http://news.bbc.co.uk/player/nol/newsid_7170000/
newsid_7174300/7174330.stm?bw=bb&mp=wm&asb=1&news=
1&bbcws=1 (accessed June 10, 2012)

5. Bhootra, R.: Natural Language Interfaces: Comparing English Language Front End
and English Query. Dissertation, Virginia Commonwealth University (2004)

6. Boldasov, M., Sokolova, E., Malkovsky, M.: User Query Understanding by the In-
BASE System as a Source for a Multilingual NL Generation Module. In: Proc. 5th In-
ternational Conference on Text, Speech and Dialogue, pp. 33–40 (2002)

7. Boonjing, V., Hsu, C.: A New Feasible Natural Language Query Method. International
Journal on AI Tools 15, 323–330 (2006)

8. Cimiano, P., Haase, P., Heizmann, J.: Porting Natural Language Interfaces between
Domains: an Experimental User Study with the ORAKEL System. In: Proc. 12th In-
ternational Conference on Intelligent User Interfaces, pp. 180–190 (2007),
doi:10.1145/1216295.1216330

9. Djahantigui, F., Norouzifard, M., Davarpanah, S., Shenassa, M.: Using Natural Lan-
guage Processing in Order to Create SQL Queries. In: Proc. International Conference
on Computer and Communication Engineering 2008, vol. 13, pp. 600–604 (2008)

10. El-Mouadib, F., Zubi, Z., Almagrous, A., El-Feghi, I.: Interactive natural language in-
terface. Journal WSEAS Transactions on Computers 8, 661–680 (2009)

11. Giordani, A., Moschitti, A.: Semantic Mapping Between Natural Language Questions
and SQL Queries via Syntactic Pairing. International Conference on Applications of
Natural Language to Information Systems, pp. 207–222 (2010), doi:10.1007/978-3-
642-12550-8_17

12. Jain, H., Bathia, P.: Hindi Language Interface to Databases. Journal of Global Re-
search in Computer Science 2(4) (2011)

13. Joshi, M.: Intelligent Natural Language Interface. Dissertation, Maharshtra University
(2006)

14. Karande, N., Patil, G.: Natural Language Database Interface for Selection of Data Us-
ing Grammar and Parsing. In: Proc. World Academy of Science Engineering Technol-
ogy, vol. 59, pp. 484–487 (2009)

15. Kim, H.: A Dialogue-Based NLIDB System in a Schedule Management Domain. In:
Proc. 33rd conference on Current Trends in Theory and Practice of Computer Science,
pp. 869–877 (2007), doi:10.1007/978-3-540-69507-3_75

16. Kovacs, L.: SQL Generation for Natural Language Interface. Journal of Computer
Science and Control Systems 2(18), 19–22 (2009)

17. Le, T.: A Frame-based Approach to Text Generation. In: The 21st Pacific Asia Confe-
rence on Language, Information and Computation, vol. 21, pp. 192–201 (2007)

18. Li, Y., Chaudhuri, I., Yang, H., et al.: DaNaLIX: a Domain-adaptive Natural Language
Interface for Querying XML. In: Proc. 2007 ACM SIGMOD International Conference
on Management of Data, pp. 1165–1168 (2007), doi:10.1145/1247480.1247643

19. Majeed, F., Shoaib, M., Ashraf, F.: An Approach to the Optimization of Menu-based
Natural Language Interfaces to Databases. IJCSI International Journal of Computer
Science Issues 8(4) (2011)

20. Martin, P., Appelt, D., Grozs, B., Pereira, F.: TEAM: An Experimental Transportable
Natural-Language Interface. IEEE Database Eng. Bull 8(3), 10–22 (1985)

21. Microsoft Northwind and Pubs Sample Databases for SQL Server 2000 (2004),
http://www.microsoft.com/
en-us/download/details.aspx?id=23654 (accessed June 10, 2012)

480 R.R.A. Pazos et al.

22. Minock, M., Olofsson, P., Näslund, A.: Towards Building Robust Natural Language
Interfaces to Databases. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.)
NLDB 2008. LNCS, vol. 5039, pp. 187–198. Springer, Heidelberg (2008)

23. Nguyen, A.K., Le, H.T.: Natural Language Interface Construction Using Semantic
Grammars. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008. LNCS (LNAI), vol. 5351,
pp. 728–739. Springer, Heidelberg (2008)

24. Nihalani, N., Motwani, M., Silaka, S.: Natural Language Interface to Database using
semantic matching. International Journal of Computer Applications 31, 29–34 (2011),
doi:10.5120/3942-5552

25. Owda, M., Bandar, Z., Crockett, K.: Conversation-Based Natural Language Interface
to Relational Databases. In: Proc. 2007 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology, pp. 363–367 (2007)

26. Pakray, P.: Keyword Based Multilingual Restricted Domain Question Answering. Dis-
sertation. Jadavpur University (2007)

27. Rangel, R.A.P., Joaquín Pérez, O., Juan Javier González, B., Gelbukh, A., Sidorov, G.,
Rodríguez M., M.J.: A Domain Independent Natural Language Interface to Databases
Capable of Processing Complex Queries. In: Gelbukh, A., de Albornoz, Á., Terashi-
ma-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 833–842. Springer,
Heidelberg (2005)

28. Pazos R., R.A., Rojas P., J.C., Santaolaya S., R., Martínez F., J.A., Gonzalez B., J.J.:
Dialogue Manager for a NLIDB for Solving the Semantic Ellipsis Problem in Query
Formulation. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010,
Part II. LNCS, vol. 6277, pp. 203–213. Springer, Heidelberg (2010)

29. Pazos R., R.A., González B., J.J., Aguirre L., M.A.: Semantic Model for Improving the
Performance of Natural Language Interfaces to Databases. In: Batyrshin, I., Sidorov, G.
(eds.) MICAI 2011, Part I. LNCS, vol. 7094, pp. 277–290. Springer, Heidelberg (2011)

30. Popescu, A., Armanasu, A., Etzioni, O., et al.: Modern Natural Language Interfaces to
Databases: Composing Statistical Parsing with Semantic Tractability. In: Proc. 20th In-
ternational Conference on Computational Linguistics, vol. 141 (2004),
doi:10.3115/1220355.1220376

31. Rao, G.: Natural Language Query Processing Using Semantic Grammar. International
Journal on Computer Science and Engineering 2(2), 219–223 (2010)

32. Sarhan, A.: A Proposed Architecture for Dynamically built NLIDB Systems. Internation-
al Journal of Knowledge Based Intelligent Engineering Systems 13(2), 59–70 (2009)

33. Sri International, Air Travel Information Service (1990),
http://www.ai.sri.com/natural-language/projects/
arpa-sls/atis.html (accessed June 10, 2012)

34. Stratica, N.: Using Semantic Templates for a Natural Language Interface to the CINDI
Virtual Library. In: Data & Knowledge Engineering, vol. 55, pp. 4–19. Elsevier
Science Publishers, The Netherlands (2005), doi:10.1016/j.datak.2004.12.002

35. Tang, L.R., Mooney, R.J.: Using Multiple Clause Constructors in Inductive Logic Pro-
gramming for Semantic Parsing. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001.
LNCS (LNAI), vol. 2167, pp. 466–477. Springer, Heidelberg (2001)

36. Templeton, M., Burget, J.: Problems in Natural-Language Interface to DBMS with Ex-
amples from EUFID. In: ANLC 1983 Proc. First Conference on Applied Natural Lan-
guage Processing, pp. 3–16 (1983), doi:10.3115/974194.974197

37. Zhang, G., Chu, W., Meng, F., et al.: Query Formulation from High-Level Concepts
for Relational Databases. In: Proc. 1999 User Interfaces to Data Intensive Systems,
pp. 64–75 (1999)

	Natural Language Interfaces to Databases: An Analysis of the State of the Art

	Introduction
	History
	Recent Work
	Classification of NLIDBs
	Classification by Architecture
	Classification by Language Processing Techniques
	Classification by Type of GUI

	Problems in NLIDBs
	Domain Independence
	Translation Process
	Desirable Features of a NLIDB

	Evaluation of NLIDBs
	Databases Used for Evaluation
	Query Corpora Used for Evaluation
	Evaluation Metrics
	Proposed Evaluation

	Concluding Remarks
	References

