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Abstract. The main objective of our work is to develop an effective algorithm
for image compression. We use both lossy and non-lossy compression to achieve
best result. Our compression technique is based on the direct and inverse fuzzy
transform (F-transform), which is modified to work with dynamical fuzzy parti-
tion. The essential features of the proposed algorithm are: extracting edges, auto-
matic thresholding, histogram adjustment. The article provides a comparison of
our algorithm with the image compression algorithm (JPEG) and other existing
algorithms [1, 7] based on fuzzy transform.

1 Introduction

By image compression we mean a reduction in size of the image with the purpose to
save space and by this, a transmission time. Digital images are usually identified with
their intensity functions which, being measured in the interval [0,1], can be represented
by fuzzy relations. Therefore, in the literature on fuzzy sets and their applications, a
continuously growing interest to the problems of image compression was expected.
However, this was not the case. Below, we will give a short overview of main ideas
which influenced a progress in image compression on the basis of fuzzy sets.

A pioneering publication of Lotfi A. Zadeh [10] discussed the issue of data summa-
rization and information granularity. It has been noticed that a max−min - composition
with a fuzzy relation works as a summarization/compression tool. Then in a series of
papers (see [2, 3]), the idea to associate image compression with the theory of fuzzy re-
lation equations was intensively investigated. The correspondence between a quality of
reconstruction and a t-norm in a generalized max−t - composition with a fuzzy relation
was analyzed in [3, 4]. A new idea which influences a further progress in fuzzy based
image compression came with the notion of F-transform [5]. In [1], it has been shown
that the F-transform based image compression is better than the best possible fuzzy re-
lation based one. However, the former was still worse than JPEG technique. A certain
improvement of the F-transform based image compression was announced in [6].

A new wave of interest to the discussed problem came with more sophisticated ap-
plications of the F-transform to image processing, especially to the problem of edge
detection [9]. It has been noticed that the quality of reconstructed image strongly de-
pends on the quality of reconstructed edges. This idea is elaborated in details in the
proposed contribution.
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2 Compression

Image compression means a reduction in size of the image. By image we mean a dis-
crete function f with two variables which is defined on the domain [1,N]× [1,M] and
takes values from [0, 255]. The value f (x,y) characterizes intensity of the gray level of
the pixel whose coordinates are (x,y). Below, we will refer to f as to intensity function
or image. By compression we mean a certain transformation of f which results in a new
image function f ′ defined on [1,N′]× [1,M′] where N′ < N,M′ < M. A compression is
characterized by its ratio CR which is equal to N′M′/NM. We have to solve two prob-
lems: reduce size of compressed image and obtain decompressed image most similar to
original one.

We propose a compression alorithm which is based on the discrete F-transform in
combination with saving sharp edges. This algorithm consists of the following steps:
find and store information about gradient (section 2.1); compute range of intensity over
an image block and make a desicion regarding further partition of this block (section
2.2); compress by the F-transform (section 2.3) and store histogram of the original
image (section 2.4).

Let us make a short overview of some contemporary techniques used for compres-
sion. The idea to partition an image area into blocks according to respective ranges
of the intensity function is taken from png graphics format. Representation of a com-
pressed image by the result of a certain transform is usual for the JPEG format. Modern
compression algorithms use several transforms: discrete wavelet transform, discrete co-
sine transform, Burrows-Wheeler transform and many others.

In our approach, we combine both lossy and nonlossy compression - gradient pixels
are stored by nonlossy format, areas by lossy F-transform. We propose decompression
of an image after compression. Decompression is the inverse transformation with re-
spect to compression, it means that we transform N′ ×M′ back into N ×M.

2.1 Image Gradient Separation

Gradient separation (or edge detection) is the first step of the image compression al-
gorithm. The notion of edge is informally characterized as an area where a significant
change of intensity occurs. In practice, this characterization connects edges with ares
where first or second derivative of intensity function f attains its extremal value. In
our approach, we take the above given characterization literally and propose to classify
an edge area on the basis of a difference g between maximal and minimal values of
intensity function f over it:

g(x,y) = max( f (x′,y′))−min( f (x′,y′)) (1.1)

x′ ∈ {x− 1,x,x+ 1};y′ ∈ {y− 1,x,y+ 1}.
The area with high values of the difference g is not a subject of compression. Due to
this fact, a sharpness of a reconstructed image is as good as in the original one. The
proposed approach is sensitive to noise, more than if partial derivatives are computed
by e.g., Sobel operators. The result of the gradient separation algorithm is shown in fig
1. We propose fixed mask matrix 3×3 pixels. In order to reduce that kind of sensitivity,
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Fig. 1. Left: original picture. Right: pixels with hight difference value

we propose to use a dynamic threshold T for selecting high values of the difference g.
Due to a space limitation, we will skip a detailed description of choosing T .

2.2 F-Transform

Below, we shortly recall the basic facts about one-dimensional the F-transform [5]. For
simplicity, we apply it to a function f of one variable defined on [a,b]: let x1 < ... <
xn be fixed nodes within [a,b]. We say that fuzzy sets A1, ...,An, identified with ther
memership functions A1(x), ...,An(x) defined on[a,b] form a fuzzy partition of [a,b] if
they fulfil the following conditios for i = 1, ...,n are fulfilled:

1. Ai : [a,b]→ [0,1],Ai(xi) = 1;
2. Ai(x) = 0 if x /∈ (xi−1,xi+1), where we assume x0 = x1 = a and xn+1 = xn = b;
3. Ai(x) is a continuous function on [a,b];
4. Ai(x) stricly increases on [xi−1,xi] for i= 2, ...,n and stricly decreases on [xi,xi+1]

for i = 1, ...,n− 1.
5. Ai(x) stricly increases on [xi−1,xi] for i= 2, ...,n and stricly decreases on [xi,xi+1]

for i = 1, ...,n− 1.

Fi =
∑m

j=1 f (p j)Ai(p j)

∑m
j=1 Ai(p j)

(1.2)

for i= 1, ...,n. Shapes of basic functions are not prederminited, so that we use triangular
membership functions due to simplicity of coding. Following inverse F-transform is
then defined by:

fF,n(p j) =
∑n

i=1 FiAi(p j)

∑n
i=1 Ai(p j)

(1.3)

In our case, we are using two-dimensional F-transform described in [9]. Let us remark
that in the above given characterization of a fuzzy partition, we did not use the Ruspini
condition. By this, we obtain a certain flexibility in choosing a partition.
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2.3 Evaluation of Intensity Range in Area

Image compression algorithm is usually applied to smaller subareas. The main problem
is finding size of those areas. For instance, if we have large area of one color, but with
some small detail of different color, we have two options: we can compress it as one
area, but the detail will be lost. Or we can divide the are with the detail into smaller
areas in order tol keep that small detail. In the last case, we have to memorize many
small areas of one color. We propose to solve this problem by using the F-transform
with a non-uniform partition which is chosen on the basis of the following procedure.
Each area E is characterized by its width Ew and its height Eh; At the beginning of
algorithm we set Ew = N;Eh = M. The values of function g are computed on the basis
of (1) where x′ ∈ [max(0,x−Ew),x];y′ ∈ [max(0,y−Eh),y]. If g(x,y)≤ D, D ∈ [0,255]
and means user defined threshold for control algorithm power we choose the respective
area E as an element of the partition of the F-transform. Owerthise, we divide area E
into four symmetrical subareas and continue recursively. Dividing is terminated if the
condition of minimal difference D is true, or the condition of minimal area is true:

(Ew ≤ S∨Eh ≤ S)∨g(x,y)≤ D. (1.4)

In (4) S means minimal size (of width, or height) of basic funcions and D means thresh-
old of minimal intensity difference. These two values S and D are defined by a user, and
both of them influence power the of compression algorithm. The result of the divide
algorithm with red colored borders of an areas is shown in fig 2.

Fig. 2. Example of dividing the area

2.4 Image Histogram

The F-transform based compression is lossy and therefore the histogram of an original
image is changed after decompression. We propose to store the histogram of the original
image and apply it to obtain a better reconstruction of compressed image. We compute
the cumulative distribution function, say C as a characteristic of the histogram and store
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the respective vector of values of C. This additional vector is added to the stored infor-
mation about the compressed image. As a results, the quantity of the stored information
increases so that the proposed earlier compression ratio does not fully characterize a
size of the stored information. To take into account the actual a size of the stored in-
formation we increase the compression ratio by the respective quantity. For example:
if an image has the dimension 512× 512 px then we increase compress ratio value by
0.0009.

3 Decompression

The decompression is a transform from M′N′ space back to MN space. We propose the
decompression algorithm based on the inverse F-transform (3). Because an application
of the direct and inverse F-transform leads to the lossy decompression, our goal is to
minimize data loss. We propose to minimize the loss by decompression of the stored
gradient pixels (chap. 3.1) and histogram restore (chap. 3.2).

3.1 Decompression of Gradient Pixels

The area with high values of the difference g (see Section 2.1) is added to the image
reconstructed by the inverse F-transform. We have to put pixels from this area into
their own layer above the currently decompressed layer. After that we can merge layers
hierarchicly.

3.2 Histogram Restore

After applying the F-transform and its inverse the range of intensity changes. In order
to restore the range of intensity of an original image in the reconstruction, we use the

Fig. 3. Left: without histogram restore, PSNR = 29dB. Right: with histogram restore, PSNR =
30dB.
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Fig. 4. Left: original; right: proposed reconstruction, CR=0.08, PSNR=29dB

Fig. 5. Left: proposed reconstruction, CR=0.25, PSNR=37dB; right: proposed reconstruction,
CR=0.44, PSNR=43dB

Fig. 6. Left: JPEG, CR=0.25, PSNR=39dB; right: JPEG, CR=0.43, PSNR=46dB
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stored information about the cumulative distribution function C. This step allows to
increase the quality of reconstruction. For example, there is figure 3 for comparison
between image with and without histogram restore.

4 Estimation of a Quality of Reconstruction

The following criterion is used for estimation of a quality of a reconstructed image.
PSNR (Peak Signal to Noise Ratio) measures a similarity between an original image
and its reconstruction after. Higher value of PSNR means better quality of result.

PSNR = 20log

(
max( f )√

MSE

)
[dB] (1.5)

MSE =
1

M ·N
M−1

∑
x=0

N−1

∑
y=0

( f (x,y)− q(x,y))2

By max( f ) we mean the is maximum value of the intensity of the original image f . By
q we mean the means intensity value of the decompressed image.

5 Experiments

In Figures 4 and 5, we demonstrate the results of the proposed technique. In Figure
6, we show the results of the JPEG algorithm with the same compression ratio (CR).
For the chosen benchmark ”Cameraman” from the Coral Gallery, the JPEG is slightly
better. However, for the created by us picture in Fig. 2, the proposed algorithm shows
better results that JPEG algorithm. In order to [1] you can see, that the results of the
proposed algorithm are slightly better that the previous one.

6 Conclusion

We have proposed a new compression method on the basis of the F-transform. In com-
parison with the previous one [7], the newly proposed compression uses the following
improvements: edge extraction, dynamic area division described by non-uniform parti-
tion and histogram adjustment. Our next research will be focusing on large-size images,
color images, estimation of a speed of our algorithm and detailed comparison with the
JPEG technique.
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