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A Modified Simulated Annealing Algorithm

for Optimal Capacity Allocation

in Make-to-Order Job-Shops

Liang Huang

Abstract This paper presents a new capacity allocation method to support

decisions in the design or redesign of a make-to-order job-shop with stochastic

orders and processing times. The solutions for capacity allocation can be adding/

removing machines or work shifts at every work stations. A bi-criteria objective

function comprising fixed costs and tardiness penalty is used to evaluate each

solution. A simulation model is applied to compute the objective function itera-

tively in a modified simulated annealing procedure until a feasible and profitable

solution is generated. Bottleneck analysis is used as guidance for the neighborhood-

generation in the modified simulated annealing procedure in order to accelerate

convergence. Consequently, the run time of the procedure is short enough for

practical use. Different problems were tested. Solutions from the proposed method

were compared to those from the classical simulated annealing and the comparison

showed relatively positive results.

Keywords Job-shop • Make-to-order • Capacity allocation • Bottleneck analysis

• Simulated annealing

Introduction

Many studies focused on the production scheduling to minimize the tardiness of

jobs in a make-to-order job-shop. In these studies, it is generally assumed that the

capacity at each work station is determined. However, in practice, it is often needs

to be changed dynamically by making use of the numerical or empirical outcomes

from production scheduling. For example, when too much tardiness of jobs
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repeatedly occur after proper production scheduling, it is necessary to allocate or

reallocate capacities at relevant work stations in order to reduce the tardiness in

future production (Yeh 1997; Fry and Russell 1993). This paper will address

optimal planning for capacity allocation to support medium to long term (several

months to years) decisions under a given production scheduling method in a make-

to-order job-shop with stochastic orders and processing times.

For capacity allocation, most problems need to allocate multiple work stations’

capacity simultaneously. These are complex combinational optimization problems.

Arakawa et al. (2000, 2003) presented a simulation model for job-shop scheduling

incorporating capacity adjustment. In their study, a backward/forward hybrid

simulation method is used for production scheduling at the first step; and based

on the result of scheduling, a pattern search method is used to adjust capacity at the

second step. Yang et al. (2005) used the particle swarm optimization (PSO)

algorithm for integration of process planning and production scheduling in a job-

shop. Some studies use simulation models as well as meta-heuristics algorithms in

the design of the manufacturing systems similar to job-shops. Seshadri and Pinedo

(1999) presented a framework consist of an optimization model and a simulation

model to adjust the capacity for assembly and applied an iterative algorithm using

CPLEX 10.2 to deal with the optimization. Shahabudee and Krishnaiah (1999) set

the parameters of a multi-product Kanban system using genetic algorithm (GA); the

parameters include the number of machines at each work station. In another study

of Shahabudeen et al. (2003), they set similar parameters of a multi-product Kanban

system using simulated annealing (SA). In all these studies, meta-heuristics

algorithms usually use neighborhood search to reach the optimum solution from

an initial solution. Coupled with simulation models, many alternatives were exam-

ined by simulation in the search procedure. For this reason, they often consume too

much time in solving large-scale problems.

In this paper, bottleneck analysis is used as approximate discrete gradients of the

objective function of the weighted tardiness. A modified simulated annealing is also

presented, in which the neighborhood-generation is guided by the gradients in order

to accelerate convergence and reduce the run time of the neighborhood search

procedure. Our aim is to make the run time short enough for practical use, even if

simulation is performed many times in the search procedure.

Optimization Model

In this study, the alternatives for capacity allocation can be adding/removing

machines or work shifts. The available operation hours in regular time, such as

working 8 h at daytime, is defined as the capacity of a machine. For example, at a

work station, five machines can be allocated at most under the plant space avail-

ability. In this way, various numbers of machines can provide five discrete

alternatives for capacity allocation from 8 to 40 h per day at the work station.
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Array these alternatives according to their capacity from low to high. The

alternatives can be denoted by the integral values from 1 to 5.

Therefore, it is assumed that in a general job-shop that consists ofmwork stations,

a linear array s ¼ [c1 c2 . . . cm] is the solution vector of the optimization model,

where cj is the alternative number of the capacity level at work station j, for j ¼ 1, 2,

. . ., m. Then, the feasible region of s is a set of discrete vectors, denoted as S.
For make-to-order production, weighted tardiness is a general performance

measure of job-shops. In this study, one of the purposes of capacity allocation is

to fulfill the due dates of all jobs as much as possible. Suppose n jobs belong to

p product classes will be manufactured in an m work stations job-shop within a q-
months period, we can formulate the first object function to measure the perfor-

mance of the job-shop in the q-months planning period as follow

zTðsÞ ¼
Xp

l¼1

wTP
l

X

i2Il
nLSi maxðxCi ðsÞ � xDi ; 0Þ; (15.1)

where wTP l is the weight on tardiness penalty per unit product and per unit time of

class l, Il is sets of i when job i belongs to class l, nLS i is the lot size of job i, xC i(s)
is the completion time of job i in solution s, and xD i is the due date of job i. In the

capacity allocation tool, each wTP l is assumed to be a fixed value in the q-months

planning period, estimated by the production manager using historical data or

practical experience. nLS i, xC i(s) and xD i are generated by the simulation model.

Another purpose of capacity allocation is to reduce the fixed cost, which mainly

consists of the depreciation of machines and the fixed salary of operators in this

study. The mean monetary values of the depreciation per month and per machine

wM j at each work station j were provided by the production manager according to

the cost accounting of the workshop. Supposing these values in the q-months

planning period will be similar to their historical values, we estimated the fixed

cost per month of the job-shop for all solutions s according to the number of

machines nM j(s). Then, the second objective function is

zCðsÞ ¼ q
Xm

j¼1

wM
j n

M
j ðsÞ: (15.2)

The two objective functions are both considered in this study to get a feasible

and profitable solution for a practical use. Hence, the optimization model with a bi-

criteria objective function is

min zTðsÞ þ zCðsÞ (15.3)

subject to : s 2 S: (15.4)
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Gradient-Based Simulated Annealing

Kirkpatrick et al. (1983) firstly presented SA in 1983. In its neighborhood search,

SA accepts inferior solutions according to a probability in order to bypass local

optimums. Thus, in this study, we couple the gradient-based method with SA and

present a hybrid method named GBSA to optimizing capacity allocation. The

GBSA has not only the capability of avoiding local minima, but also a higher

speed of convergence to approach stationary compared to the traditional SA.

Step 1: Input the control parameters of the GBSA: Initial Temperature Ti, Termi-

nation Temperature Tf, Cooling Rate a, Freeze Limit F, and Accept Limit b.
Take Ti as current temperature T. Generate initial solution s0. A simulation is

performed to compute the object function value z0 in solution s0. In this study,

the initial solution s0 was set to be 1.2 times (an empirical value from the

practical case) of the mean capacity requirement per day in the tested cases.

Step 2: Detect the bottlenecks in the job-shop. To detect and measure the shifting

bottlenecks in a job-shop, a statistical method called the active period method

has been presented by Roser et al. (2002). They proposed that at any given time

the momentary bottleneck is the machine with the longest uninterrupted active

period at this time and in any given period of time the average bottlenecks can be

measured by the percentage of the time that a work station. Although this

method is not an exact one, it is very robust, easy to apply and has the ability

to detect the bottlenecks in steady state systems or non-steady state systems.

Step 3: Suppose there are ns solutions neighbor to the current solution s0 in the

feasible region N+. They are denoted as hk (k ¼ 1, 2, . . ., ns). In this step,

“neighbor to” means only one element is +1 or �1. If the neighborhood hk is a
solution to add machines to work station j, let pk ¼ bj; otherwise, let pk ¼ �bj.
Denote the minimum in pk as pmin. We select a new solution s1 from the

neighborhoods of s0 according to a probability shown as follows:

Pðs1 ¼ hkÞ ¼ pk � pminð Þg
Pns

k¼1

pk � pminð Þg
: (15.5)

Therefore, the neighbor of a better estimated objective-function value has a

higher probability to be chosen in order to accelerate convergence. Parameter g
in (15.5) is used to adjust the influence of the bottleneck analysis in the search

procedure. Based on pilot experiments, we observe that when the objective-

function value has a large improvement in the previous iteration indicating that

the guidance of the gradient works well at this stage of the search procedure, g
should be set to a larger value to make full use of the guidance of the gradient, or

else g should be set to a smaller value to have a better chance to move from one

local minimum area to another one. For this consideration, in this study g is set to
1 at the beginning of the search procedure and will be adjusted at each iteration

as stated in Step 4.
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Step 4: Calculate the objective function value z1 in the new solution s1 through a

simulation. Let Dz ¼ z1 � z0. If Dz < 0, the current solution s0 will be replaced
by the new solution s1; otherwise, apply a probability P(A) ¼ e�Dz/T to deter-

mine whether the replication should be performed. Set g ¼ |Dz|/(|Dz|)max, where

(|Dz|)max is the maximum among all the |Dz| values in the past iterations.

Step 5: The current temperature T is adjusted after everyF iterations according to a.
If it’s below Tf or the solution has not been improved for too many consecutive

iterations to overstep b, stop the search produce; otherwise, go to Step 2.

Step 6: Report s0 and z0 as the final solution and its objective function value,

respectively.

In the proposed GBSA, the neighborhood-generation is not a random produce

like that in the traditional SA, but controlled by the results of the bottleneck

analysis. And g will be changed at each iteration according to the improvement of

the objective-function value. These modifications speed up the search for a better

solution in the area with the most potential while still allows the search to move

away from a local area to another. Thus, the neighborhood search may stop earlier

as controlled by b and the computing time is reduced.

Computational Experiments

In this paper, three case studies are tested using our proposed GBSA. Case 1

consists of 3 types of orders and 5 work stations, Case 2 consists of 5 types of

orders and 10 work stations, and Case 3 consists of 15 types of orders and 30 work

stations, respectively. In this paper, only the data of Case 1 to be given in detail for

the space constraints.

In Case 1, there are 3–10 machines at each of the five work stations. The

scheduling method used in this workshop is a dispatching rule, earliest due date

with the tie broken by first come first service (EDD/FCFS), for it is very easy to be

applied in a dynamic job-shop with stochastic demand and processing times. Within

a work station, the scheduling is complex in this workshop. For we have not enough

detailed records about it, according to the production manager’s suggestion, we

make an assumption that a task can always make full use of the capacity within a

work station and the processing time of the tasks processed at the work station will

decrease/increase linearly with adding/removing capacity to the work station.

In the simulation model, inter arrival times of the orders and processing times of

the tasks are generated in exponential distributions; constraints of lead times,

tardiness penalties per hour and depreciation of machines are set to be fixed values.

These data is shown in Tables 15.1 and 15.2.

The simulation software was developed in Microsoft SQL2000. In all the cases,

the simulation for any given solution was performed in the duration of 25,000 h.

The simulations were all performed in a personal Pentium IV computer with 2.4G
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CPU and 1G memory. The mean simulation time of each simulation (including the

time for bottleneck analysis) is 35 s in Case 1.

According to the pilot runs, two groups of control parameters are used to both

traditional SA and GBSA. Therefore, there are four kinds of algorithm with

different control parameter values or different neighborhood-generation methods

applied to Case 1, 2, and 3, which is denoted as A1, A2, A3, and A4. Their control

parameter values are shown in Table 15.3. The results of the three cases are shown

in Table 15.4.

Table 15.1 Demand requirements and tardiness penalties in Case 1

Product

type

Mean inter arrival time of orders

(hour)

Constraints of lead time

(hour)

Tardiness penalty

(RMB/hour)

1 40 50 20

2 60 60 15

3 80 70 10

Table 15.2 Processing times and depreciation of machines in Case 1

Product type Work station Mean processing time (hour)

Depreciation of machines (1,000

RMB)

1 1 2.25 20

2 2.00 20

3 2.50 10

2 1 1.25 7.5

2 1.25 7.5

3 2.00 15

3 1 1.75 10

2 1.25 7.5

3 2.25 10

Table 15.3 Control

parameters
Type

Control parameter values

Ti Tf a F b

A1 GBSA 1 0.1 0.9 10 20

A2 GBSA 1 0.3 0.7 5 10

A3 Traditional SA 1 0.1 0.9 10 20

A4 Traditional SA 1 0.3 0.7 5 10

Table 15.4 Results of the computational experiments

Objective function value (1,000 RMB) Run time (minute)

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

A1 1,053 1,794 4,250 9.64 14.59 42.37

A2 1,053 1,794 4,287 6.13 12.95 37.08

A3 1,053 1,826 4,420 38.31 76.45 225.54

A4 1,053 1,815 4,587 31.66 52.21 89.40
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Conclusions

In this paper, a modified SA, named GBSA, is used as an optimization tool to

optimize capacity allocation in make-to-order job-shops. Although the optimums of

all the algorithms equip to each other in Case 1, the proposed GBSA used notice-

ably smaller computing time than the traditional SA. Moreover, with less comput-

ing time, GBSA found better solutions in Case 2 and 3 compared to the traditional

SA. These results show that the proposed method can often finds better solutions

with a shorter computation time compared to the traditional method. These optimal

solutions for capacity allocation can be very useful to support decisions in

performing tradeoffs between the tardiness penalty and the cost of capacity

allocation.
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