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Marcus Rüter, Michael Hillman, and Jiun-Shyan Chen

Abstract A novel approach is presented to correct the error from numerical
integration in Galerkin methods for meeting linear exactness. This approach is
based on a Ritz projection of the integration error that allows a modified Galerkin
discretization of the original weak form to be established in terms of assumed
strains. The solution obtained by this method is the correction of the original
Galerkin discretization obtained by the inaccurate numerical integration scheme.
The proposed method is applied to elastic problems solved by the reproducing
kernel particle method (RKPM) with first-order correction of numerical integration.
In particular, stabilized non-conforming nodal integration (SNNI) is corrected using
modified ansatz functions that fulfill the linear integration constraint and therefore
conforming sub-domains are not needed for linear exactness. Illustrative numerical
examples are also presented.

Keywords Reproducing kernel particle method • Stabilized non-conforming nodal
integration • Integration constraint • Strain smoothing

1 Introduction

As the name implies, meshfree methods are based on a discretization of the
continuous problem without using a mesh, as opposed to the finite element method
and related mesh-based methods. Meshfree methods therefore have several obvious
advantages, especially when the mesh is the source of problems, e.g. in the large
deformation analysis of structures or in the simulation of discontinuities such as
cracks.
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Fig. 1 Failure of SNNI for the tube problem discussed in Sect. 5.2

A crucial issue in Galerkin meshfree methods is domain integration, typically
carried out by Gauß or nodal quadrature. In the former case, integration is performed
using a regular cell structure or background mesh. Here, significant integration
errors arise when the background mesh is not aligned with shape function supports,
see [10]. Nodal integration, on the other hand, yields low convergence rates since
the integrands are poorly integrated, and it also suffers from rank instability due
to the shape function derivatives nearly vanishing at the particles. To cope with
these problems Beissel and Belytschko [4] suggested a stabilization method for
nodal integration that relies on a least squares residual term which is added to
the total potential energy functional. Bonet and Kulasegaram [5] added terms
to the derivatives of the shape functions to obtain an improved method. Chen
et al. [8, 9, 13] proposed stabilized conforming nodal integration (SCNI), based on
gradient smoothing which passes the linear patch test. However, its non-conforming
counterpart termed stabilized non-conforming nodal integration (SNNI), see [7], is
often used in practice because of its simplicity, particularly for fragment-impact
type problems where the construction of conforming strain smoothing sub-domains
is tedious, see [11]. The use of non-conforming strain smoothing with divergence
operation in SNNI fails to pass the linear patch test, and integration error becomes an
issue. Figure 1 illustrates the failure of SNNI. In this figure, the convergence curves
for SCNI and SNNI are compared for the tube inflation problem, as presented in
Sect. 5.2, and the low convergence rate in the case of SNNI is apparent.

Whenever a Galerkin discretization is used to find an approximate solution of
the model problem at hand, its discretization error (the difference between the true
solution and its Galerkin approximation) has to be controlled to obtain reliable
numerical results. More precisely, error control means that the error is estimated
by a reliable a posteriori error estimator. This is in general the best that can be done,
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since the error itself is in the infinite-dimensional trial and test space and therefore
not easy to grasp. For further details on discretization error control the reader may
consult Stein and Rüter [14] and Babuška et al. [3]. In addition to the discretization
error, for numerical integration schemes such as SNNI the integration error (the
difference between the true Galerkin solution and its quadrature approximation) has
to be taken into account. However, since the integration error is in the same finite-
dimensional trial and test space as both the true Galerkin solution and its quadrature
approximation, there is, in principle, a chance to compute it exactly. Therefore, the
integration error can be corrected rather than just estimated, which is demonstrated
in this paper for the case of SNNI.

Babuška et al. [1] propose an energy norm a priori error estimate for the
combined discretization and integration error (the difference between the true
solution and its Galerkin quadrature approximation), provided that the integration
error was corrected by a simple correction of the stiffness matrix to fulfill the
so-called zero row-sum condition. This estimate was later extended by Babuška
et al. [2] from linear basis functions to higher-order basis functions.

In this paper, we devise a scheme to correct the integration error induced
from using SNNI. This correction approach is based on a modification of the test
functions to fulfill the linear integration constraint as required to pass the linear
patch test. With the corrected test functions, it becomes possible, under certain
assumptions, to compute the true Galerkin solution using a modified bilinear form
with SNNI.

The paper is organized as follows: in Sect. 2, the model problem of linear elas-
ticity in its strong and weak forms is presented, as well as the associated Galerkin
discretization. In Sect. 3, the correction approach to correct the error from numerical
integration is introduced using the true Galerkin solution as the Ritz projection of
the integration error. The correction is then applied to meshfree methods in Sect. 4,
specifically to RKPM with SNNI employed. Numerical examples are presented in
Sect. 5, where the correction approach is applied to problems in linear elasticity. The
paper concludes with Sect. 6 which summarizes the major findings achieved from
theoretical and numerical points of view.

2 The Model Problem of Linear Elasticity

This section gives a brief account of the model problem of linear elasticity in its
strong and weak forms as well as its Galerkin discretization in an abstract setting.

2.1 Strong Form of the Model Problem

Let an isotropic, linear elastic body be given by the open, bounded, polygonal or
polyhedral domain ˝ � R

d with dimension d . Its boundary � D @˝ consists of
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two disjoint parts such that � D N�D [ N�N with �D and �N being the portions of
� where Dirichlet and Neumann boundary conditions are imposed, respectively.

The strong form of the elliptic, self-adjoint model problem of linear elasticity is
to find the displacement field u such that the field equations

� div � .u/ D f in ˝ (1a)

� � C W ".u/ D 0 in ˝ (1b)

" � r symu D 0 in ˝ (1c)

subjected to the boundary conditions

u D Nu on �D (1d)

� .u/ � n D Nt on �N (1e)

are fulfilled. Here, the given body forces f and the prescribed boundary tractions
Nt are assumed to be in L2.˝/ and L2.�N /, respectively. Furthermore, � is the stress
tensor, and " is the strain tensor, which are related via the elasticity tensor C that
depends on Young’s modulus E and Poisson’s ratio �.

2.2 Weak Form of the Model Problem

In the weak form associated with (1a) we seek u 2 V D fv 2 H 1.˝/ I vj�D
D Nug

such that
a.u; v/ D F.v/ 8v 2 V0 (2)

with V0 D fv 2 H 1.˝/ I vj�D
D 0g. Moreover, a W V � V0 ! R and F W V0 ! R

are bilinear and linear forms defined as

a.u; v/ D
Z

˝

� .u/ W ".v/ dV (3)

and

F.v/ D
Z

˝

f � v dV C
Z

�N

Nt � v dA; (4)

respectively. Since a is coercive, and both a and F are bounded, u 2 V exists and
is the unique solution to (2) owing to the Lax-Milgram theorem.

2.3 Galerkin Discretization

In order to solve the weak form (2) using a Galerkin method, e.g. either a mesh-
based method such as the finite element method (FEM) or a meshfree method such
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as RKPM, the Galerkin discretization of (2) is introduced. For this, the variational
problem (2) is projected onto a finite-dimensional subspace Vh of V and we solve

a.uh; vh/ D F.vh/ 8vh 2 V0;h � V0 (5)

for an approximate solution uh 2 Vh. Since Vh � V , the approximate solution uh

exists in Vh and is unique. Another conclusion that can be drawn from V0;h � V0 is
that vh 2 V0 and thus we may subtract (5) from (2) to see that

a.u � uh; vh/ D 0 8vh 2 V0;h; (6)

which is the well-known Galerkin orthogonality condition, meaning that the
discretization error u � uh is orthogonal to the test space V0;h.

3 Correction of the Numerical Integration Error

In this section, numerical integration in Galerkin methods is discussed, and a method
to provide the correction (with specific form for the first-order correction shown in
Sect. 4) of the associated integration error is derived to recover the true Galerkin
solution that possesses the important Galerkin orthogonality relation.

3.1 Numerical Integration in Galerkin Methods

Whenever a Galerkin method is employed, numerical integration may become
an issue. This is especially true for meshfree methods, owing to the overlapping
supports of shape functions and the rational functions that need to be integrated.
This is also true for mesh-based Galerkin methods, such as the extended finite
element method (XFEM), where the derivatives of the enrichment functions have
singularities at the crack tip. In these cases, we can only approximate a and F . We
denote these approximations by ah and Fh, respectively. Substituting ah and Fh into
(5), we now search for a solution uhh as an approximation of uh in the same space
Vh such that

ah.uhh; vh/ D Fh.vh/ 8vh 2 V0;h: (7)

If the coercivity of ah, and boundedness of ah and Fh are not lost by the
numerical integration, uhh is the unique solution to (7) in Vh. However, the Galerkin
orthogonality (6) is violated in this case, i.e. a.u � uhh; vh/ ¤ 0 for all vh 2 V0;h,
since (7) is not a Galerkin discretization of (2). The Galerkin discretization (5) of
the weak form (2) was obtained by replacing the trial and test spaces V and V0 with
Vh and V0;h, respectively, while keeping the same model in the sense of a and F .
Conversely, (7) is obtained from the Galerkin discretization (5) by replacing a and
F with ah and Fh, respectively, while keeping the same spaces Vh and V0;h.
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3.2 Correction of the Integration Error

In order to recover the true Galerkin solution uh, the general idea in SCNI, see [8],
is to modify the bilinear form ah in such a way that uh becomes the solution of (7)
rather than its approximation uhh. A similar idea is employed herein.

Let us first add and subtract uh in ah to see that (7) can be recast into

ah.uh; vh/ � ah.uh � uhh; vh/ D Fh.vh/ 8vh 2 V0;h: (8)

The above variational problem can be interpreted as follows: in order to recover
uh from (7), we propose to correct ah.uh; vh/ by the integration error represented
as ah.uh � uhh; vh/. However, to obtain the exact Galerkin solution from (8), it
is necessary that the first argument in the second term of the left-hand side also
depends on uh only. To this end, let us introduce the bilinear form

�
ah W Vh�V0;h ! R

defined as
�
ah.uh; vh/ D �ah.uh � uhh; vh/ 8vh 2 V0;h; (9)

i.e. we introduce uh as the Ritz projection of uh � uhh. The bilinear form
�
ah can be

designed such that the first argument is the same as in ah, whereas the integration
error is embedded in the second argument and thus

�
ah takes the general form

�
ah.uh; vh/ D

Z
˝

� .uh/ W �
".vh/ dV: (10)

Here, the bar in the integral sign represents numerical integration, and
�
" is an

assumed strain tensor that takes the effect of the integration error into account as
we shall see later in Sect. 4.3. With the definition (9), the weak form (8) turns into

ah.uh; vh/ C �
ah.uh; vh/ D Fh.vh/ 8vh 2 V0;h; (11)

or, more concisely, into

Oah.uh; vh/ D Fh.vh/ 8vh 2 V0;h; (12)

which we can now solve for uh 2 Vh directly. In the above, the bilinear form Oah W
Vh�V0;h ! R is defined as Oah.�; �/ D ah.�; �/C�

ah.�; �/, which, thanks to (3) and (10),
can be expressed as

Oah.uh; vh/ D
Z

˝

� .uh/ W O".vh/ dV (13)

in terms of the assumed strain tensor O" D " C �
". At first sight, the correction seems

to be computationally expensive, since it appears to involve solving two global
systems. However, (12) is the only problem we need to solve, since it replaces the
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original problem (7). Furthermore, the stiffness matrix associated with the bilinear
form Oah requires approximately the same computational costs as ah as will be shown
later in Sect. 4.3.

Note that since Oah differs from ah by the second argument only, (12) can be
interpreted as a Petrov-Galerkin correction of (7). Therefore, the associated stiffness
matrix is unsymmetric and thus requires a different class of iterative solvers. Never-
theless, if ah is coercive and bounded, so is Oah provided that (9) holds. Consequently,
the solution uh to the problem (12) exists and is unique. Moreover, since uh also
satisfies (5), the Galerkin orthogonality (6) is recovered. As mentioned above, in
other correction methods such as SCNI the stiffness matrix is symmetric, since in
SCNI assumed strains are used for both arguments in the bilinear form Oah, see [13].

If the integration method is accurate and uhh D uh, i.e. the integration error
vanishes, the method is consistent in the sense that nothing has to be corrected and
it turns out that Oah D ah D a and thus the associated stiffness matrix becomes
symmetric.

It should finally be noted that the recovered Galerkin solution uh and the
recovered Galerkin orthogonality (6) allow the estimation of the discretization
error with the various error estimation techniques developed over the years. If
the integration error could not be corrected, estimation of the discretization error
would be much more cumbersome, since the Galerkin orthogonality is an important
requirement used in most a posteriori discretization error estimates.

4 Meshfree Methods

All that remains to show is how the assumed strain tensor O" can be constructed for a
specific Galerkin method. In this paper, we consider the reproducing kernel particle
method as representative of meshfree Galerkin methods. Emphasis is placed on its
numerical integration using stabilized non-conforming nodal integration.

4.1 The Reproducing Kernel Particle Method (RKPM)

In RKPM, the approximate solution uh can be expressed in terms of the following
form

uh D
X
nP

�I .x/uI ; (14)

where nP is the number of particles xI , i.e. nP D cardfxI I xI 2 N̋ g, uI are the
coefficients, and �I are the meshfree shape functions. In the case of the reproducing
kernel particle method, �I takes the form

�I .x/ D ˚.x � xI /H T .0/M�1.x/H .x � xI / (15)
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with the kernel function ˚ , the vector of monomial basis functions H , and the
moment matrix

M .x/ D
X
nP

˚.x � xI /H .x � xI /H T .x � xI /: (16)

In this paper, linear basis functions are employed facilitating linear completeness
which is one of the requirements to achieve linear exactness in the Galerkin
approximation.

Since, in general, meshfree Galerkin approximations are not kinematically
admissible, the essential boundary conditions need to be imposed carefully, e.g. by
the Lagrange multiplier method, the penalty method or Nitsche’s method. Here, we
review the latter as introduced in [12] to impose the Dirichlet boundary conditions
(1d) in a weak sense. In this case, the bilinear form a and the linear form F , as
defined in (3) and (4), are extended to

a.u; v/ D
Z

˝

� .u/ W ".v/ dV �
Z

�D

v � � .u/ � n dA

�
Z

�D

u � � .v/ � n dA C
Z

�D

ˇu � v dA

(17)

and

F.v/ D
Z

˝

f � v dV C
Z

�N

Nt � v dA �
Z

�D

Nu � � .v/ � n dA C
Z

�D

ˇ Nu � v dA; (18)

respectively, with parameter ˇ 2 R
C to ensure coercivity of a. As a consequence

of the weak fulfillment of the Dirichlet boundary conditions, the trial and test space
now takes the simple form V D H 1.˝/. With the RKPM approximation (14) at
hand, we may now define the finite-dimensional subspace Vh � V as Vh D fvh 2
H 1.˝/ I vh as in (14)g.

4.2 Stabilized Conforming and Non-conforming Nodal
Integration

A crucial point in numerical integration is the fulfillment of the associated linear
integration constraint obtained by satisfying (7) with linear solution, see [7] for
details,

Z
˝

r�I dV D
Z

@˝

�I n dA (19)
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which is necessary to achieve linear exactness in the Galerkin approximation and
therefore to pass the linear patch test. Linear exactness can also be interpreted as
the linear portion of the integration error vanishing. We remark that for high-order
exactness, high-order integration constraints need to be met. For further details on
the construction of generalized integration constraints we refer the reader to Chen
et al. [6].

To keep the meshfree nature of RKPM, in this paper nodal integration is
considered rather than Gauß integration to evaluate the integrals in (17) and (18).
In nodal integration, the integrals are evaluated at the particles and weighted with a
representative integration domain. It is well known, however, that nodal integration
yields rank instability and low convergence rates.

A remedy for both problems is obtained using smoothed gradients for nodal
integration introduced by Chen et al. [8], rather than standard gradients. The
smoothed gradient operator Qr is defined as

Qr.�/jxL
D 1

j˝Lj
Z

˝L

r.�/jx dV D 1

j˝Lj
Z

@˝L

.�/jx n dA; (20)

where ˝L is the representative domain of node L, which is also referred to as
smoothing domain. Here, the gradient is first smoothed over the domain ˝L, and
the divergence theorem is then applied to convert the domain integral to a surface
integral.

In the case that the representative domains ˝L are conforming, i.e. they are
disjoint and N̋ D S

nP
N̋

L, e.g. using Voronoi cells, it is easily verified using
definition (20) and nodal integration with weight j˝Lj that

Z
˝

Qr�I dV D
X
nP

Qr�I .xL/j˝Lj D
X
nP

Z
@˝L

�I n dA

D
Z

@˝

�I n dA

(21)

holds and thus the linear integration constraint (19) is fulfilled for the smoothed
gradient operator Qr. Owing to the conforming nature of the integration domains ˝L

as depicted in Fig. 2, this method is termed stabilized conforming nodal integration.
This integration method, however, has the drawback that the conforming domains
are sometimes difficult to construct, e.g. in a semi-Lagrangian formulation for
fragment-impact problems, see [11]. To cope with this problem, stabilized non-
conforming nodal integration has been introduced in [7, 11]. As the name implies,
the domains ˝L are not conforming as shown in Fig. 3, which is a simplicity
taken in order to overcome the difficulty of constructing conforming domains.
For this method, the last equality in (21) no longer holds since the domains are
not conforming, and as a consequence the linear integration constraint (19) is not
fulfilled which may result in considerable integration error and deterioration of
convergence rate.
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nL

L

L

Fig. 2 Smoothing domains
˝L in SCNI using Voronoi
cells

n

L
L

L

Fig. 3 Smoothing domains
˝L in SNNI

4.3 The Assumed Strain Tensor O"

As we have seen, the linear integration constraint (19) is fulfilled by SCNI. We
therefore examine the first-order correction of SNNI to pass the linear patch test.
To satisfy the linear integration constraint (19) for SNNI, we introduce the modified
ansatz function (for the gradients)

r O�I D r�I C
X

d

�dI r O�dI

„ ƒ‚ …
Dr�

�I

(22)

in terms of gradients of the standard ansatz function r�I and a first-order correction

term r �

� I to account for the integration error which depends on the unknown
coefficients �dI and the gradient of the correction ansatz functions r O�dI . It should
be clear that since the test space Vh is constructed in terms of the modified ansatz
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functions O�I , the choice for the first-order correction ansatz functions O�dI is
restricted.

As an example, we express r O�dI in terms of the shape function supports

�I .x/ D
(

1 if x 2 supp �I .x/

0 if x … supp �I .x/
: (23)

In order to determine r �

� I and thus to be able to compute
�
" and consequently the

assumed strain tensor O", we substitute (22) into the linear integration constraint (19)
to see that

Z
˝

��
�I;x

�I;y

�
C �1I

�
�I

0

�
C �2I

�
0

�I

��
dV D

Z
@˝

�
�I n1

�I n2

�
dA (24)

holds with additional terms arising from the modified gradient in (22) and the shape
function supports (23). In the above, �I;x and �I;y are the derivatives of �I with
respect to x and y, respectively. The unknown coefficients �1I and �2I can then be
determined as

�1I D
� Z

˝

�I dV

��1 � Z
@˝

�I n1 dA �
Z

˝

�I;x dV

�
(25a)

�2I D
� Z

˝

�I dV

��1 � Z
@˝

�I n2 dA �
Z

˝

�I;y dV

�
: (25b)

Note that the computation of the coefficients �1I and �2I is inexpensive, since it
can be done locally. This is in contrast to previous integration corrections presented
in [5, 13], where a global system needs to be solved. Furthermore, the proposed
algorithm to compute �1I and �2I can be easily implemented into an existing RKPM
code.

We are now in a position to define the assumed strain tensor O" used in the bilinear
form

�
ah in (13). With (22) the tensor takes the form

O".vh/ D
X
nP

r symŒ O�I .x/vI �: (26)

Note that for imposing Dirichlet boundary conditions in a weak sense using
Nitsche’s method, we further need to compute assumed stresses O� .vh/ in (17)
and (18), which can be done by the constitutive relation O� .vh/ D C W O".vh/.

With the assumed strain tensor O" at hand, the bilinear form Oah as defined in (13)
can be computed. Thus, the modified variational problem (12) can be solved for
the Galerkin solution uh to pass the linear patch test. From the construction of O" in
(26) it is clear that when the linear integration constraint (19) is met, a problem
with linear solution can be recovered. For the recovery of high-order solutions
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and for use with different integration methods, such as Gauß integration or direct
nodal integration (DNI), we refer to the unified framework for domain integration
as recently presented by Chen et al. [6].

5 Numerical Examples

In this section, we present numerical results obtained by the first-order correction of
integration presented in the preceding sections. In particular, we focus on SNNI and
its first-order correction and compare the results with uncorrected SNNI and SCNI.

5.1 Beam Problem

In our first example, the system is a plane-stress cantilever beam subjected to a
parabolic in-plane shear traction with the total load P D 2; 000 kN on the free
end, as depicted in Fig. 4. The beam is modeled using anti-symmetric boundary
conditions on bottom of the beam. The length of the beam is L D 10 m, its height is
H D 2 m and it is made of an isotropic, linear elastic material with the properties:
Young’s modulus E D 30 � 106 kN/m2 and Poisson’s ratio � D 0:3.

The sub-domains of the strain smoothing used for SCNI and SNNI are plotted
in Fig. 5. As can be observed, the smoothing zones are much easier to construct for
SNNI, since SCNI requires Voronoi cells.

The deflection error along the centroid of the beam is shown in Fig. 6. First-
order correction of SNNI shows similar performance as SCNI with tip displacement
accuracies shown in Table 1.

Next, convergence of the methods is considered with the uniform node refine-
ments of the half beam as shown in Fig. 7 using 51, 165, 585, and 2,193 nodes. The
model parameters for this example are L D 5 m and H D 2 m.

The associated convergence is plotted in Fig. 8. As can be seen, corrected SNNI
shows a large improvement in error as well as convergence rate. It should be noted,
however, that the true Galerkin solution cannot be fully recovered in this case,
since the proposed correction restores linear solutions only and thus there is still
integration error left.

Finally, we increase Poisson’s ratio to � D 0:49999999 to let the material be
nearly incompressible. Furthermore, we let L D 10 m, H D 2 m, and use a plane-
strain structure. Even in this case corrected SNNI yields very good results with
nearly vanishing deflection error as can be observed from Fig. 9. The reason is that
nodal integration acts, by construction, as an under integration method and thus
locking does not become an issue, whereas Gauß integration with 5 � 5 integration
points yields locking.
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x
y

P

L

H

Fig. 4 System and loading for the cantilever beam problem

Fig. 5 Smoothing schemes for SCNI (top) and SNNI (bottom)

Fig. 6 Deflection error along the centroid of the beam

Table 1 Tip displacement
accuracy (numerical solution
normalized by the analytical
solution)

Method Uncorrected Corrected

SCNI 100.62 % –
SNNI 110.75 % 101.75 %
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Fig. 7 Discretizations of the modeled half beam for convergence

2.02

1.91

0.60

Fig. 8 Convergence for the beam problem
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Fig. 9 Deflection error along the centroid of a nearly incompressible beam

R

T

p

Fig. 10 A plane-strain tube
subjected to an internal
pressure

5.2 Tube Problem

In the next example, the structure is an isotropic tube in a plane-strain state with
outer radius R D 1 m and thickness T D 0:5 m subjected to internal pressure
p D 10 � 106 kN/m2, as shown in Fig. 10. Due to symmetry conditions, only one
quarter of the domain is modeled with anti-symmetric boundary conditions. The
material data is the same as in the previous problem for the compressible case.
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Fig. 11 Discretizations of the modeled quarter tube for convergence

1.94

0.04

1.95

Fig. 12 Convergence for the tube problem
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The modeled domain is discretized by 32, 105, 377, and 1,425 nodes with
irregular node distributions, as depicted in Fig. 11.

The convergence curves in this example, as plotted in Fig. 12, show similar
behavior as in the previous example, i.e. without first-order correction SNNI has
a low convergence rate, whereas with the correction the convergence rate is restored
and is similar to the result from SCNI.

6 Conclusions

A method was derived to correct the integration error in Galerkin methods and
therefore recover the true Galerkin approximation of the continuous model problem
at hand. The cornerstone of the proposed correction method is to modify the bilinear
form of the original method using the same numerical integration scheme. This
modified bilinear form can be viewed as accounting for the integration error by using
test functions that fulfill the associated requirements for exactness. In particular, the
method was applied to recover linear exactness under the framework of reproducing
kernel approximations with stabilized non-conforming nodal integration, which
is known to fail the linear integration constraint. Further, the proposed assumed
strain to meet integration constraint only requires solving a small linear system
locally. Numerical examples showed that the correction method performs well even
for nearly incompressible elastic problems, and thus offers a viable alternative to
constructing conforming cells previously used in SCNI.
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