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Abstract. Several general benchmark generators (BGs) are available
for the dynamic continuous optimization domain, in which generators use
functions with adjustable parameters to simulate shifting landscapes. In
the combinatorial domain the work is still on early stages. Many attempts
of dynamic BGs are limited to the range of algorithms and combinatorial
optimization problems (COPs) they are compatible with, and usually the
optimum is not known during the dynamic changes of the environment.
In this paper, we propose a BG that can address the aforementioned
limitations of existing BGs. The proposed generator allows full control
over some important aspects of the dynamics, in which several test envi-
ronments with different properties can be generated where the optimum
is known, without re-optimization.

1 Introduction

Over the years, there has been a growing interest for dynamic optimization prob-
lems (DOPs). However, after years of research, the field of dynamic optimization
still has many open issues. One of them is the development of suitable dynamic
benchmark generators (BGs) that can be easily adapted by researchers. A bench-
mark can be defined as standard test problems designed for the development of
new algorithms and the comparison with existing ones.

A DOP can be otherwise defined as a series of several static instances. Hence,
a straightforward, but not efficient, method to construct a dynamic test problem
is to switch between different static instances that will cause dynamic changes.
However, several general dynamic BGs have been proposed that re-shape the fit-
ness landscape, including: 1) Moving Peaks [1]; 2) DF1 [10]; and 3) exclusive-or
(XOR) [16]. The first two benchmark problems work for the continuous domain
where they use functions with adjustable parameters to simulate shifting land-
scapes. The continuous space can be modelled as a “field of cones” [10], where
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each cone is adjusted individually to represent different dynamics. A similar
approach is not feasible for the combinatorial space because the landscape is in-
distinct and cannot be defined without reference to the optimization algorithm.

The XOR DOP generator [16] is the only dynamic BG for the combinatorial
space that can convert any static binary-encoded problem (with known opti-
mum) to a dynamic environment without affecting the global optimum value.
In this way, one can see how close to the optimum each algorithm performs. A
similar approach does not exist for permutation-encoded problems, such as the
travelling salesman problem (TSP) and the vehicle routing problem (VRP).

In this paper, a general dynamic BG for permutation-encoded (DBGP) prob-
lems is developed which can convert a static problem instance to a dynamic
one, by modifying its encoding. The experiments on some static benchmarks
with known optimum show that the dynamic changes affect the algorithm but
the optimum remains the same. Furthermore, the experiments show that DBGP
can be directly applied to other variants of the fundamental TSP, e.g., the ca-
pacitated VRP [9].

The rest of the paper is organized as follows. Section 2 gives a summary
of dynamic optimization, including the performance measurements, algorithmic
methods, and BGs currently used. Section 3 describes the proposed DBGP. Sec-
tion 4 presents the experimental study, in which DBGP is used to generate
several dynamic test problems from static TSPs and VRPs. Finally, Section 5
concludes this paper with concluding remarks and directions for future work.

2 Background

2.1 Dynamic Combinatorial Optimization

The objective for static optimization problems is to find the optimum solution
efficiently. For DOPs, the environment changes as a function of time t, which
causes the global optimum to move. Hence, the objective for DOPs is to track
the moving optimum efficiently. Formally, a combinatorial DOP can be defined
as Π = (X ,Ω, f, t), where Π is the optimization problem, X is a set of feasible
solutions, Ω is a set of constraints, f is the objective function which assigns an
objective value to a solution x(t), where x(t) = {x1, . . . , xn} is a vector of n
discrete optimization variables that satisfy the constraints Ω, and t is the time.

The main aspects of “dynamism” are the frequency and the magnitude of
environmental changes. The former corresponds to the speed and the latter to
the degree of an environmental change, respectively. An environmental change
may involve factors like the objective function, input variables, problem instance,
constraints, and so on, that cause the optimum to change.

The environmental changes are classified into two types: dimensional and non-
dimensional changes. Dimensional changes correspond to adding/removing vari-
ables from the problem. Such environmental changes affect the representation
of the solutions and alter a feasible solution to an infeasible one. A repair oper-
ator may address this problem, but requires a prior knowledge of the problem
and the dynamic changes. Non-dimensional changes correspond to the change
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of the variables of the problem. Such environmental changes do not affect the
representation of the solutions, and, thus, are easier to address.

2.2 Nature-Inspired Approaches in Dynamic Environments

There is a growing interest in the evolutionary computation (EC) community
to apply nature-inspired algorithms to address combinatorial DOPs due to their
inspiration from nature, which is a continuous adaptation process [5]. Popular
examples of such algorithms are evolutionary algorithms (EAs) [6] and ant colony
optimization (ACO) algorithms [2].

One common characteristic of these nature-inspired algorithms is that they
are iterative. Hence, they are able to transfer knowledge from previous iterations
and adapt to the new environment [1]. EAs have search operators to exchange
information between a population of individuals. In ACO algorithms, ants share
their pheromone trails with other ants to communicate.

The difference between an EA and an ACO algorithm lies in that the former
maintains an actual population of μ solutions, whereas the latter consists of a
“virtual” population. More precisely, ACO is a constructive heuristic in which
all the ants deposit pheromone to mark their solution every iteration. Therefore,
the information of the solutions is only kept to the pheromone trails. The con-
structive procedure of ACO is biased by the existing pheromone trails and some
heuristic information available a priori [2].

2.3 Performance Measurements

For DOPs, it is difficult to analyze the adaptation and searching capabilities
of an algorithm. This is because there is no agreed measurement to evaluate
algorithms and researchers view their algorithms from different perspectives.
Different measurements have been proposed to compare algorithms such as “ac-
curacy, stability, and reactivity” [14], “collective mean fitness” [11], “accuracy
and adaptability” [15], and “performance and robustness” [13].

A common method used to compare algorithms for DOPs is the best offline
performance [5], which is defined as:

PB =
1

G

G∑

i=1

⎛

⎝ 1

R

R∑

j=1

P ∗
ij

⎞

⎠ , (1)

where G is the number of iterations, R is the number of independent runs, and
P ∗
ij is the fitness of the best solution of iteration i in run j after the last dynamic

change. Apart from the performances which describe the best the system can
do, other researchers are concerned for measurements which can characterize
the population as a whole [13]. Traditionally, the target in DOPs is to track
the moving optimum over time [5]. Recently, a new perspective on DOPs has
been established, known as robust optimization over time (ROOT), where the
target is to find the sequence of solutions which are robust over time [17]. More
precisely, a solution is robust over time when its quality is acceptable to the
environmental changes during a given time interval.
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Other researchers want to observe “how close to the moving optimum a so-
lution, either robust or not, is?”. Probably it is the best way to evaluate the
effectiveness of an algorithm for DOPs, in addition to the time needed to con-
verge to that optimum. However, the global optimum is needed for every chang-
ing environment and this is very challenging due to the NP-Hardness of most
combinatorial optimization problems (COPs). Since a DOP can be considered
as several static instances, a direct way is to solve each one to optimality, which
may be non-trivial or even impossible, especially for large problem instances. It
may be possible on small problem instances, but then it will reduce the useful-
ness of benchmarking. Hence, the need for a BG to address the challenges of
comparison is increased, but it is even harder to develop a BG for DOPs with
known optimum in COPs, without re-optimization.

2.4 Benchmark Generators for DOPs

The field of dynamic optimization is related to the applications of nature-inspired
algorithms [5]. The area is rapidly growing on strategies to enhance the perfor-
mance of algorithms, but still there is limited theoretical work, due to the com-
plexity of nature-inspired algorithms and the difficulty to analyze them in the
dynamic domain. Therefore, the development of BGs to evaluate the algorithms
is appreciated by the EC community. Such tools are not only useful to evaluate
algorithms but also essential for the development of new ones.

The XOR DOP generator [16] is the only benchmark for the combinatorial
space that constructs a dynamic environment from any static binary-encoded
function f(x(t)), where x(t) ∈ {0, 1}n, by a bitwise XOR operator. It simply
shifts the population of individuals into a different location in the fitness land-
scape. Hence, the global optimum is known during the environmental changes.

In the case of permutation-encoded problems, where x(t) is a set of numbers
that represent a position in a sequence, researchers prefer their own benchmark
instances to address different real-world applications, e.g., the dynamic TSP
(DTSP) with exchangeable cities [4], DTSP with traffic factors [8], and dynamic
VRP (DVRP) with dynamic demands.

3 Proposed Dynamic Benchmark Generator

3.1 General Framework

Most research ondynamic optimizationhas beendonewithEAs onbinary-encoded
COPs. Recently, ACO has been found effective on permutation-encoded DOPs,
e.g.,DTSP [8].Due to the highnumber of specializedBGs for permutation-encoded
COPs the establishment of a generalized one that converts the base of a static COP
to a dynamic one is vital. Most of the existing BGs are not easily available and they
are difficult to be adapted. Moreover, on each environmental change, the fitness
landscape is modified no matter whether dimensional or non-dimensional changes
are applied. Hence, it is impossible to know how close to the optimum an algorithm
performs on each environmental change.
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Younes et al. [18] introduced a general benchmark framework that applies a
mapping function on each permutation-encoded individual. The mapping func-
tion swaps the labels, i.e., the city index, between two objects and all the indi-
viduals in the population are treated in the same way. This way, the individuals
represent different solutions after a dynamic change but the fitness landscape
of the problem instance does not change. However, this generator is restricted
to the range of algorithms and COPs that they are compatible with, and it is
limited to the accuracy regarding the magnitude of change.

The proposed DBGP is designed to allow full control over the important
aspects of dynamics and convert the base of any benchmark static COP with
known optimum to a dynamic one without causing the optimum to change. Such
static instances can be obtained from the TSPLIB1 and VRPLIB2, where most
of the instances have been solved to optimality.

The basic idea of the proposed DBGP is to modify the encoding of the problem
instance, instead of the encoding of each individual, i.e., the distance matrix,
without affecting its fitness landscape. To illustrate such a dynamic change, let
G = (V ,E) be a weighted graph where V set of n nodes and E is a set of
links. Each node ui has a location defined by (x, y) and each link (ui, uj) is
associated with a non-negative distance dij . Usually, the distance matrix of a
problem instance is defined as D = (dij)n×n. Then, an environmental change
may occur at any time by swapping the location of some node i with the location
of some node j. In this way, the values in the distance matrix are re-allocated
but the optimum remains the same; see Fig. 1.

The dynamic environments constructed by DBGP3 may not reflect a full real-
world situation but achieve the main goal of a benchmark in which the optimum
is known during all the environmental changes. In other words, DBGP sacrifices
the realistic modelling of application problems for the sake of benchmarking.
Moreover, it is simple and can be adapted to any TSP and its variants to compare
algorithms in dynamic environments.

3.2 Frequency and Magnitude of Change

Every f iterations a random vector r(T ) is generated that contains all the objects
of a problem instance of size n, where T = �t/f� is the index of the period of
change, and t is the iteration count of the algorithm. For example, for the TSP
the objects are the cities which have a location (x, y). The magnitude m of
change depends on the number of swapped locations of objects.

More precisely, m ∈ [0.0, 1.0] defines the degree of change, in which only the
first m× n of r(T ) object locations are swapped. In order to restrict the swaps
to the first cities, a randomly re-ordered vector r′(T ) is generated that contains
only the first m×n objects of r(T ). Therefore, exactly m×n pairwise swaps are

1 Available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
2 Available at: http://neo.lcc.uma.es/radi-aeb/WebVRP/ or
http://www.or.deis.unibo.it/research pages/ORinstances/

VRPLIB/VRPLIB.html
3 Available at: http://www.cs.le.ac.uk/~mm251

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html
http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html
http://www.cs.le.ac.uk/~mm251
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Fig. 1. Illustration of the distance matrix with the optimum solution of the problem
instance before and after a dynamic change

performed using the two random vectors starting from the first pairs. In Younes’
generator [18], the magnitude of change is expressed as the number of swaps
imposed on the mapping function. In this way, the objects affected from the
dynamic change may not correspond to the predefined magnitude parameter.
For example, if m = 0.5, half of the objects may be swapped with the remaining
half of the objects of the optimization problem. Hence, the change affects all the
objects and may be considered as m = 1.0.

The frequency of change is defined by the constant parameter f which is
usually defined by the algorithmic iterations. However, before each environmen-
tal change, the previous pairwise swaps are reversed, starting from the end of
r(T−1) and r′(T−1). In this way, the environmental changes are always applied
to the encoding of the initial static problem instance.

3.3 Effect on Algorithms

DBPG can be applied to algorithms that either maintain an actual population or
not, because the dynamic changes occur to the encoding of the actual problem
instance. In this way, the solutions of EAs with the same encoding as before
a dynamic change have a different cost after a dynamic change. On the other
hand, the constructive procedure of ACO is affected since different heuristic
information is generated whereas the pheromone matrix remains unchanged.

In general, DBGP shifts the population of EAs and biases the population of
ACO algorithms to a new location in the fitness landscape. Younes’ generator
assumes that the solver has a population of solutions since the mapping function
is applied on the encoding of each individual, e.g., EAs. Hence, it cannot be
applied to algorithms that do not maintain an actual population, e.g., ACO.
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Another advantage of the DBGP against Younes’ generator [18] is that in the
VRP the solutions after a dynamic change may represent an infeasible solution
when EAs are used. This is because when the label of the customer changes
then its demand changes, and the capacity constraint is possible to be violated.
Hence, a repair operator or a penalty function has to be applied. The proposed
DBGP overcomes this problem since only the location of the customer changes
whereas the label and the demand remain unchanged.

3.4 Cyclic Dynamic Environments

The default dynamic environments generated by DBGP do not guarantee that
any of the previously generated environment will re-appear. Such environments
are called random dynamic environments in this paper. In fact, some algorithms
that are enhanced with memory are expected to work better on dynamic envi-
ronments that re-appear in the future [1]. Such environments are called cyclic
dynamic environments in this paper, and they can be generated as follows. First,
we generate K random vectors (r(0), . . . , r(K− 1)) with their corresponding re-
ordered vectors as the base states in the search space. Initially, the first base state
is applied. Then, every f iterations the previous dynamic changes are reversed,
and then the new ones are applied from the next base state. In this way, it is
guaranteed that the environments generated from the base states will re-appear.

DBGP has two options for cyclic dynamic environments regarding the way
the base states are selected: 1) cyclic, where the base states are selected as in a
fixed logical ring; and 2) randomly, where the base states are selected randomly.

From the above cyclic environment generator, we can further construct cyclic
dynamic environments with noise as follows. Each time a new base state is to be
selected, swaps are performed from the objects that are not in the r(T ) with a
small probability, i.e., pnoise. Note that the swaps occurring from the noise are
reversed in the same way as with the dynamic changes above.

3.5 Varying f and m Parameters

In the random and cyclic environments, the f and m parameters remain fixed
during the execution of the algorithm. An additional feature of DBGP is to
vary the values of f and m with a randomly generated number with a uniform
distribution in [1, 100] and [0.0, 1.0], respectively, for each environmental change.

4 Experimental Study

In this section, we perform some preliminary experiments based on two of the
best performing ACO algorithms, i.e., MAX −MIN Ant System (MMAS)
and Ant Colony System (ACS) [2], on two well-known COPs, i.e., TSP and
VRP. From some static benchmark instances of these problems a set of dynamic
test cases is generated using the proposed DBGP to test if the parameter m
corresponds to the degree of a dynamic change.
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Fig. 2. Overall offline performance of ACO algorithms for different problems with
different dynamic properties against the known global optimum

In Fig. 2 we illustrate our preliminary results on dynamic test environments
with different properties. The algorithms perform 1000 iterations for 30 runs and
PB, defined in Eq. (1), is chosen. On each iteration the algorithms perform the
same number of function evaluations for a fair comparison. The first two graphs
represent the performance of the aforementioned algorithms to a DTSP with a
cyclic environment (of four base states), the middle graphs represent a DVRP
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with a random environment and the last ones a DTSP with varying m and f
(left) and the corresponding values of m for each iteration (right).

From the experiments we can observe that MMAS performs much closer to
the optimum when m = 0.1, since the changing environments are similar and
the knowledge transferred is useful. On the other hand, the performance of ACS
is inferior to MMAS in all dynamic test cases. The most important observation
from the experiment is the reaction of algorithms to different values of m. In
Fig. 2, the algorithms have a small drop in the offline performance when a change
occurs with m = 0.1, and a large one when m = 0.75. This shows that DBGP
defines and controls the degree of change with parameter m appropriately.

5 Conclusions and Future Work

The construction of benchmark DOP generators is important for the empirical
comparison of algorithms in the EC community, due to the limited theoretical
work available. This paper proposes a general BG for dynamic permutation-
encoded COPs that modifies the encoding of the problem instances, to introduce
dynamic changes. The proposed DBGP converts any static benchmark instance
to a dynamic test environment with different properties.

In order to test DBGP, some preliminary experiments with dynamic test envi-
ronments generated with DBGP for the DTSP and DVRP are carried out using
ACO algorithms. From the experiments, it can be investigated how close to
the optimum each algorithm converges on each environmental change. Although
DBGP lacks a real-world application model, it is a simple method to empirically
analyze algorithms on permutation-encoded DOPs, and can be easily adapted.

Therefore, an interesting future work is to add to the DBGP more real-world
related models, such as the time-linkage property where the future behaviour of
the problem depends on the current or a previous solution found by the algorithm
[12]. Furthermore, it will be interesting to integrate DBGP with the ROOT
framework [3,17]. Another future work, is to test DBGP on more permutation-
encoded problems, such as the capacitated arc routing problem, which is the arc
counterpart of the VRP [9].
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