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Abstract. One of the grand challenges in self-configurable robotics is
to enable robots to change their configuration, autonomously, and in
parallel, depending on changes in the environment. In this paper we
investigate, in simulation, if this is possible through evolutionary algo-
rithms (EA). To this end, we implement an unconventional on-line, on-
board EA that works inside the robots, adapting their controllers to a
given environment on-line. This adaptive robot swarm is then exposed to
changing circumstances that require that robots aggregate into “organ-
isms” or dis-aggregate into swarm mode again to improve their fitness.
The experimental results clearly demonstrate that this EA is capable of
adapting the system in real time, without human intervention.

1 Introduction

Within the domain of self-configurable robotics, Stoy and Kurokawa [24] have
identified a number of grand challenges, including one that a self-configurable
robot should be able to change its configuration, autonomously, and in parallel,
depending on changes in the environment. This is exactly the problem we address
in this paper.

The main assumption and working hypothesis of the present study is that this
problem can be solved by using evolutionary algorithms. Therefore, this paper
falls in the area of evolutionary robotics, to be more specific in evolutionary
swarm robotics, since we consider a swarm of robotic units that can physically
aggregate and form a so-called organism, as envisioned by the Symbrion research
project [16]. A specific feature of our system, that distinguishes it from the huge
majority of related work, is that we use on-line evolution. In most evolutionary
robotics systems the robot controllers are evolved off-line, before deploying the
robots in some operational environment, cf. [20]. In contrast, we apply on-line
evolution, after deployment, during the operational period of the robots. This
feature is essential for robotic systems that are requested to operate long peri-
ods without direct human intervention, possibly in unforeseen and dynamically
changing environments [19]. Our previous work has addressed the issue of self-
driven aggregation and we have shown that even light environmental pressure
is sufficient for the on-line evolution of aggregated organisms [27]. In this paper
we switch from a static environment, as used in [27], to a dynamically changing
one. The main research question is:
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Is our on-line evolutionary capable of repeatedly re-adapting the robot
controllers if the circumstances change?

To find an answer to this question we design three different environments. One
where aggregated organisms have an advantage, one where they have a disad-
vantage, and one that is neutral from this perspective. Then we expose a group
of 50 robots to a scenario where the environment repeatedly changes and try to
find out whether the organisms can adapt their sizes appropriately. To this end,
there are two important things to note. Firstly, that the behaviour of organisms
is the result of the behaviour of the individual robots that form their cells. Sec-
ondly, that robot controllers can only change through evolution and we do NOT
use any specific fitness function to reward aggregation or disaggregation, only
environmental selection.

2 Related Work

A seemingly related area of existing work is that of evolutionary optimisation
in dynamic environments [4,18]. Our kind of on-line on-board evolutionary al-
gorithms are similar to this because the actual (on-line) performance is more
important than the end result (off-line performance). However, we are working
with robots whose controllers need to be evolved on-the-fly (in vivo). Here lies
a big difference: in our application one cannot afford bad candidate solutions,
because they could ”kill” the given robot, while in a usual EA bad individuals
merely slow down the search.

Our work is related to both swarm robotics and self-reconfigurable modular
robot systems. Swarm Robotics [17] is a field that stems from Swarm Intelli-
gence [3], where swarm-robots often have the ability for physical self-assembly.
Swarm-bots were created in order to provide a system which was robust towards
hardware failures, versatile in performing different tasks, and navigating dif-
ferent environments. Similarly, self-reconfigurable modular robot systems were
designed with three key motivations: versatility, robustness and low cost. The
first two are identical to motivations for swarm-robots, while low cost can be
achieved through economy of scales and mass production as these systems use
many identical modules. Yim gives an overview of self-reconfigurable modular
robot systems in [29], the research is mainly on creation of modules in hardware
and showcasing their abilities to reconfigure and lift other modules. For our
research, we assume a self-reconfigurable robot system which is independently
mobile, as reported in [12,14,28]. The task of multiple robots connecting auto-
nomously is usually called self-assembly, and has been demonstrated in several
cases: [7,21,28,30]. Most of these however, are limited to pre-programmed control
sequences without any evolution. In self-reconfigurable robots, self-assembly is
restricted to the docking of two modules as demonstrated in [14,28].

On-Line On-Board evolution is a relatively new field in evolutionary robotics,
initiated by the seminal paper of Watson et al. [26] who present a system where a
population of physical robots (i.e. their controllers) autonomously evolves while
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situated in their task environment. Since then the area of on-line on-board evo-
lution in swarm-robotics, as classified in [6], has gained a lot of momentum
[5,10,12,13,22,25].

The work in this paper is part of the SYMBRION/REPLICATOR projects
in which robots are being developed and used that are independently mobile
and can operate as a swarm, but also have a mechanical docking mechanism
allowing the modules to form and control a multi-robot organism [12]. The most
closely related existing work is that of [2,7,8] that explores self-assembly of swarm
robots. The controllers of the so-called s-bots (Recurrent Neural Networks) were
evolved off-line in simulation, and deployed and tested in real s-bots afterwards.
That research shows it is possible to evolve controllers which create organisms.
Our present work is to demonstrate that it can be done through on-line evolution
as a response to environmental changes.

3 System Description and Experimental Setup

As explained in the Introduction, we design three different environments. One
where aggregated organisms have an advantage, one where they have a disad-
vantage, and one that is neutral from this perspective. Then we expose a group
of 50 robots to a scenario where the environment repeatedly changes and watch
whether they can adapt appropriately. In this section we describe the details.

Fig. 1. Overview of the final arena, consisting of neutral (white), organism-friendly
(light-blue), and organism-unfriendly terrains

Arena. The main idea behind our implementation is to relate the environmental
(dis)advantage of organisms to their ability to move and to use different terrains.
To be specific, we add a “basic instinct” to the robots to move eastwards (from
left to right in our arena) by defining their fitness through their positions: the
more they move to the right during evaluation, the higher. Then we create three
terrains that differ in their organism-friendliness. In the organism friendly terrain
single robots cannot progress to the right and the speed of a larger organism is
higher. Metaphorically speaking we have river with a west-bound current here,
where only multi-cellular organism have the strength to swim eastwards. We
make the organism unfriendly terrain by laying out narrow pathways where big
organisms get stuck. The neutral terrain imposes no minimum nor maximum or-
ganism size. These three terrains are laid side by side and the resulting composed
field is repeated three times in order to increase the number of environmental
changes in one run, the resulting arena is shown in Fig. 1. Note that this arena is
suited to test the populations response to changes, because robots are driven to
move to the right by the fitness function. However, this fitness is certainly does
not provide a specific reward for aggregating behaviour, thus it does not repre-
sent “cheating”. In the meanwhile, it provides a well defined measure to assess
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success of robot behaviours: the more to the right at the end of an evaluation,
the better.

Robots. We conduct our experiments with simulated e-puck robots in a simple
2D simulator: RoboRobo1. The robots can steer by setting their desired left and
right wheel speeds. Each robot has 8 sensors to detect obstacles (static obstacles
as well as other robots), as well as 8 sensors to detect the the river-like zones.

Connections. In our experiments robots can create new organisms, join an
already existing organism, and two existing organisms can merge into a larger
organism. When working with real robots, creating a physical connection be-
tween two robots can be challenging, and movements of joints are noisy because
of actuator idiosyncrasies, flexibility of materials used, and sensor noise. We
choose to disregard these issues and create a very simple connection mechanism
which is rigid the moment a connection is made. The connection is modelled as
a magnetic slip-ring, which a robot can set to ‘positive’, ‘negative’ or ‘neutral’.
When robots are close enough, they automatically create a rigid connection if
both have their ring on the ‘positive’ setting. The connection remains in place as
long a neither sets its slip-ring to ‘negative’. Thus, a positive-neutral combina-
tion is not sufficient to establish a new connection, but it is sufficient to maintain
an existing one. The neutral setting is important in this experiment to allow for
organisms to maintain a certain size, as it allows connections to be maintained
without creating new ones.

Controller. The controller is a feed-forward artificial neural network that se-
lects one of 5 pre-programmed strategies based on sensory inputs. The neural
net has 20 inputs (cf. Table 1), 8 outputs and no hidden nodes. It uses a tanh
activation function. The inputs are normalised between 0 and 1.

The output of the neural network, as described in Table 1, is interpreted as
follows: the first five outputs each vote for an action, the action with the highest
activation level is selected. The sixth output describes the desired organism size
which is used when the ‘form organism’ strategy is chosen. The seventh output
describes the direction the robot should move in when performing the ‘move’
strategy. The eighth output is the desired speed the controller wants to move in,
and is used in all strategies except ‘halt’ (which sets speed to 0).

Evolutionary Algorithm and Runs. We use an on-line on-board hybrid
evolutionary mechanism. The first constituent of the hybrid is the (μ + 1) ON-
LINE [9] method, where each robot is an island with a population of μ individuals
(genotypes encoding possible controllers) that undergo evolution locally [1]. The
other component is the peer-to-peer protocol based EVAG method [15]. The
hybridised algorithm as described in detail in [11] also allows recombination
across all robots in a panmictic overlay topology.

1 http://www.lri.fr/~bredeche/roborobo/

http://www.lri.fr/~bredeche/roborobo/
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Table 1. Neural Network inputs (left) and outputs (right)

8x Obstacle distance sensors
8x Zone distance sensors
1x Size of the organism
1x Angle to the end
1x Distance to the end
1x Bias node

Vote for Form Organism
Vote for Leave Organism
Vote for Halt
Vote for Avoid Obstacles
Vote for Move
Desired organism size
Desired direction for Move
Desired speed for Move

To represent robot controllers we use a genome which directly encodes the N
weights of the neural net using a real-valued vector of length N . This genome
is extended to include N mutation step sizes (σ′s) for these N genes. Mutation
is a standard Gaussian perturbation with noise drawn from N(0, σ) using self-
adaptation of σ′s through the standard formula’s. For recombination we use
averaging crossover. As for selection, we have a mixed system of global parent
selection and local survivor selection. That is, parents are selected using a binary
tournament over all genomes in all robots. Once the parents create a newborn
controller its fitness is assessed by allowing it to control the robot for 1000
time steps: first a ‘free’ phase of 200 time steps to allow it to get out of bad
situations, followed by an evaluation period for 800 time steps. Each 1000 time
steps therefore constitutes 1 generation. At the start of a generation a choice is
randomly made between creating a new controller as described above, or choosing
an existing controller for re-evaluation, the chance of re-evaluating is controlled
by the re-evaluation rate. At the end of the evaluation cycle the given controller
is compared to the local population of μ others and replaces the worst one if it
is better.

We ran the experiment using 50 robots, we used this number to have a rel-
atively large amount of robots, while not over-crowding the starting area. Too
many robots in the start area could lead to an inability of a controller to perform
its otherwise good behaviour by getting stuck behind bad controllers.

Table 2. Parameters

Parameter Value
Local population size 3
Mutation chance 0.4
Crossover chance 0.05
Re-evaluation rate 0.5
Initial mutation step-size 0.1
Generations 2000

We used the parameters shown in
Table 2 for our evolutionary algo-
rithm and repeated the experiment
50 times, each run lasting 2000 gen-
erations. The parameter settings are
based on parameters found in our ear-
lier paper [27] in which we used the
BONESA toolbox2 [23] to optimise
settings for crossover rate, mutation
rate, initial mutation step size, re-
evaluation rate, and population size. Our experiments are fully repeatable, as
the source code is available via the web-page of the first author3.

2 http://sourceforge.net/projects/tuning/
3 A zip-file can be found at http://www.few.vu.nl/~bwl400/papers/parcours.zip

http://sourceforge.net/projects/tuning/
http://www.few.vu.nl/~bwl400/papers/parcours.zip
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Fig. 2. Robot positions

4 Results and Analysis

This section presents the results of the experiment that have been performed.
We essentially want to investigate (1) whether the robots are able to find their
way through to the end the obstacle course, (2) analyse how they find their way
through the obstacle course with respect to the formation of organisms. We will
address both questions below.

4.1 Are They Able to Find Their Way?

In order to answer the first question, we have studied the positions of the robots
within the obstacle course over time. Hereby, we have taken the position of the
best performing robot during each run (i.e. the robot which came closest to the
end of the obstacle course), and also recorded the position of the robot closest
to the beginning of the course (the worst performing robot). Furthermore, we
have taken the position of the median robot. The results averaged over 50 runs
are shown in Figure 2. The layout of the obstacle course is shown on the y-axis
whereas the x-axis show time (by means of the number of generations).

In the figure, it can be seen that the best robot on average is almost able to
complete the entire obstacle course, meaning that it manages to pass the river
three times, and ends up in the last narrow passageway. The reason why the
best robots on average do not make it all the way to the end is due to the fact
that there are some incidental bad runs where the best robot does not even pass
the first obstacle.

When considering the worst individual, it can be seen that the worst perform-
ing robots hardly progresses within the obstacle course. On average the robots
are not able to get beyond the first river which they encounter. In fact, they do
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Fig. 3. Organism Size per Position

not even end up at the beginning of the river. The median robots manage to
pass the first set of obstacles (the river and the narrow passageway) and are also
able to pass the second river.

Overall, it can be concluded that on average a majority of the robots manage
to find a way passed the river twice as well as a single passage of the narrow
passageway. Some are able to do this three consecutive times. A minority of the
robots is hindered too much by the obstacles, resulting in them never passing
the first obstacle, namely the river.

4.2 How Do They Find Their Way?

It is interesting to see that the robots learn how to deal with the obstacles, but
the question that remains is: how do they achieve it? Do they form organisms?
And do they leave organisms? We will try to obtain some insights by studying
the behaviour of the robots on a more detailed level. Therefore, we investigate
the size of the organisms over the obstacle course to see whether they learn to
form an organism and leave it at the appropriate locations.

Table 3. Mean organism size in different
zones. Zones are defined as the start and
end of the river/narrow passage.

Zone X region Mean Std

River 1 900–1800 2.76 0.45
Corridors 1 2700–3600 1.31 0.33
River 2 4500–5400 2.07 0.27
Corridors 2 6300–7200 1.28 0.27
River 3 8100–9000 2.07 0.35
Corridors 3 9900–10800 1.30 0.23

Figure 3 shows the position in the
obstacle course on the x-axis and the
average organism size (a one denotes
a single agent that is not part of an
organism) on the y-axis.

In Fig. 3 can be seen that the aver-
age size of the organisms at the river
area is a lot higher compared to the
narrow passageway. In the neutral ter-
ritories, the robots tend to continue
with the organism size required by the
obstacle they encountered last (i.e.
after a river they remain within an
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organism, and after the narrow passageway they remain single). When look-
ing closer at the behaviour of the robots during the narrow passageway, a spike
in the centre of the passageway can be seen. We assume that this is due to the
fact that the curve in the passageway is difficult to pass for the robots, and
therefore one option for them is to try and form an organism. In the trend of
the organism size during the river passage it can be seen that the average size
of the individuals is declining a bit after the first river. This because there are
simply fewer robots around with which an organism can be formed, resulting in
a disadvantage for robots that want to form large organisms.

Table 3 shows more detailed data on the average organism size at the various
regions within the obstacle course. The standard deviations are also included.

5 Concluding Remarks and Further Research

In this paper we addressed the challenge of enabling a group of self-configurable
robots to adapt their controllers to changing circumstances autonomously, with-
out human intervention. The basic idea behind our approach is to equip the
robots with evolutionary operators that keep working, during the operational
period of the robots. Our algorithmic solution combines ideas from island-based
EAs [1] and peer-to-peer EAs [15], offering –in principle– the best of both worlds.

Our experiments have provided convincing evidence that this approach is ca-
pable of evolving the robot controllers in real time and respond to environmental
changes, without using a problem-tailored fitness function to “push” some tar-
geted behaviour. Inevitably, we used a number of simplifying assumptions and
design decisions in our experimental setup (e.g., using distance from the origin as
an abstract measure of fitness), but these did not include any specific bias either.
The emerging system behaviour was rooted in the interplay of the evolutionary
mechanism and the environmental pressure.

Further work will be carried out in two directions. Firstly, we will explore
the niche of applicability of our approach, by testing it in a number of different
cases, i.e., in different (changing) environments, with various tasks for aggregated
robots and measures of viability (fitness). One of the most interesting questions
here concerns the combination of environmental selection (open-ended evolution
for pure survival) and human-defined tasks (directed evolution with quantifiable
performance measures). Secondly, in close cooperation with roboticists, we will
port the whole machinery to real robots to validate its working in vivo.
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