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Preface

This LNCS volume contains the proceedings of the 12th International Conference
on Parallel Problem Solving from Nature (PPSN 2012). This biennial event con-
stitutes one of the most important and highly regarded international conferences
in evolutionary computation and bio-inspired metaheuristics. Continuing with a
tradition that started in Dortmund, in 1990, PPSN 2012 was held during Septem-
ber 1–5, 2012 in Taormina, Sicily, Italy.

PPSN 2012 received 226 submissions from 44 countries. After an extensive
peer-review process involving more than 230 reviewers, the Program Committee
Chairs went through all the reports and ranked the papers according to the
reviewers’ comments. Each paper was evaluated by at least four reviewers. The
top 105 manuscripts were finally selected for inclusion in this LNCS volume
and for presentation at the conference. This represents an acceptance rate of
46%, which guarantees that PPSN will continue to be one of the most respected
conferences for researchers working in natural computing around the world.

PPSN 2012 featured four distinguished keynote speakers: Angelo Cangelosi
(University of Plymouth, UK), Natalio Krasnogor (University of Nottingham,
UK), Panos M. Pardalos (University of Florida, USA), and Leslie G. Valiant
(Harvard University, USA).

The meeting began with six workshops: “Evolving Predictive Systems” (Bog-
dan Gabrys and Athanasios Tsakonas), “Joint Workshop on Automated Selec-
tion and Tuning of Algorithms” Part A: Continuous Search Spaces—Focus on
Algorithm Selection (Heike Trautmann, Mike Preuss, Olaf Mersmann, and Bernd
Bischl), Part B: Discrete Search Spaces – Focus on Parameter Selection (Andrew
Parkes and Ender Özcan), “Theoretical Aspects of Evolutionary Multiobjective
Optimization: Interactive Problem Solving Sessions and New Results” (Dimo
Brockhoff and Günter Rudolph), “Modeling Biological Systems” (Julia Handl,
Joshua Knowles, and Yaochu Jin), and “Parallel Techniques in Search, Opti-
mization, and Learning” (Enrique Alba and Francisco Luna). The workshops
offered and ideal opportunity for the conference members to explore specific
topics in evolutionary computation, bio-inspired computing, and metaheuristics
in an informal and friendly setting.

PPSN 2012 also included eight tutorials: “Introduction to Bioinformatics”
(Jaume Bacardit, University of Nottingham, UK), “Evolutionary Multi-Objective
Optimization” (Jürgen Branke, University of Warwick, UK), “Implementing Ar-
tificial Evolution on GPGPU-Based Computing Eco-Systems with the EASEA-
CLOUD Massively Parallel Platform” (Pierre Collet, Strasbourg University,
France), “Programming by Optimization—A New Paradigm for Developing High-
Performance Software” (Holger H. Hoos, University of British Columbia, Canada),
“Computational Intelligence and Games” (Pier Luca Lanzi, Polytechnic of Milan,
Italy), “Ant Colony Optimization” (Vittorio Maniezzo, University of Bologna,
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Italy), “Complex Systems Science in Its Thirties” (Roberto Serra, University of
Modena and Reggio Emilia, Italy), and “Expressive Genetic Programming” (Lee
Spector, Hampshire College, USA).

We wish to express our gratitude to the authors who submitted their papers
to PPSN 2012 and to the Program Committee members and external reviewers
who provided thorough evaluations of all these submissions. We also express
our profound thanks to Marisa Lappano Anile, Claudio Angione, Jole Costanza,
Giovanni Carapezza, Giovanni Murabito, and all the members of the Organizing
Committee for their substantial efforts in preparing for and running the meeting.
Thanks to all the keynote and tutorial speakers for their participation, which
greatly enhanced the quality of this conference. Finally, we also express our
gratitude to all the organizations that provided financial support for this event.

September 2012 Carlos Coello Coello
Vincenzo Cutello
Kalyanmoy Deb

Stephanie Forrest
Giuseppe Nicosia

Mario Pavone
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Tello
Philipp Rohlfshagen
Andrea Roli
Günter Rudolph
Thomas Runarsson
Thomas A. Runkler
Conor Ryan
Erol Sahin
Michael Sampels
Ivo Sbalzarini
Robert Schaefer
Andrea Schaerf
Marc Schoenauer
Oliver Schütze
Michele Sebag

Bernhard Sendhoff
Roberto Serra
Marc Sevaux
Jonathan Shapiro
Moshe Sipper
Roman Slowinski
Christine Solnon
Terence Soule
Dipti Srinivasan
Catalin Stoean
Giovanni Stracquadanio
Thomas Stützle
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Are State-of-the-Art Fine-Tuning Algorithms Able to Detect a Dummy
Parameter? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
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Abstract. Optimization of an engineering system or component makes
a series of changes in the initial random solution(s) iteratively to form
the final optimal shape. When multiple conflicting objectives are con-
sidered, recent studies on innovization revealed the fact that the set of
Pareto-optimal solutions portray certain common design principles. In
this paper, we consider a 14-variable bi-objective design optimization
of a MEMS device and identify a number of such common design prin-
ciples through a recently proposed automated innovization procedure.
Although these design principles are found to exist among near-Pareto-
optimal solutions, the main crux of this paper lies in a demonstration of
temporal evolution of these principles during the course of optimization.
The results reveal that certain important design principles start to evolve
early on, whereas some detailed design principles get constructed later
during optimization. Interestingly, there exists a simile between evolu-
tion of design principles with that of human evolution. Such information
about the hierarchy of key design principles should enable designers to
have a deeper understanding of their problems.

Keywords: multi-objective optimization, automated innovization,
MEMS design, evolution, design principles.

1 Introduction

Gathering better and richer knowledge about a problem always fascinated man.
In the context of engineering design, this amounts to discovering and under-
standing a number of aspects related to the design problem at hand. First and
foremost, the designer is interested in knowing what shape, parameters, materi-
als etc. would make a solution optimal with respect to one or many objectives
of design. Optimality is an important consideration, as the designers are aware
that an optimal design is always competitive and can never be bettered by any
other solution. With the classical mathematics-oriented [11] and non-traditional
optimization tools, such as evolutionary algorithms, simulated annealing, etc.
that are available today, finding a near-optimal solution to a complex engineer-
ing problem involving non-linear objectives and constraints, mixed nature of
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variables, computationally expensive evaluation procedures, and stochasticities
in evaluation process can all be achieved reasonably well.

Secondly, with the machine learning and data mining tools available today,
designers can hope to know more beyond just finding the optimal solutions of
a problem. They can provide a deeper understanding about the properties of
optimal solutions and gather valuable knowledge for their future use. A recent
study on innovization proposed the use of two or more conflicting objectives to
find a set of trade-off near Pareto-optimal solutions and then an analysis of the
solutions to unveil hidden properties common to them [1,2,7]. These properties
are referred to as design principles. They convey useful information about ‘what
makes a solution optimal?’.

Optimization is an iterative process in which the task is started with one or
more random solutions. Solutions are then modified by the algorithm’s operators
to hopefully find better solutions. The solution update procedure is continued it-
eratively till one or more satisfactory solutions are found. The process, if thought
carefully, is an evolutionary process, in which a set of random naive solutions
(most likely not resembling at all with the final optimal solutions) get modi-
fied to take shape of optimal solutions. Ignoring a number of complex effects
associated with natural evolution (such as environmental changes, sexual repro-
duction, dominance-diploidy etc.), the above-described optimization process can
be viewed similar to the human evolution, a process that started from the cre-
ation of prokaryotes cells (around 4,000 million years ago (Ma)) to eukaryotes
(around 2,100 Ma) to sponges (around 600 Ma) to vertebrates (around 500 Ma)
to tetrapods (around 390 Ma) to synapsida (around 256 Ma) to reptiles (around
250 Ma) to placental mammal (around 160 Ma) to primates (around 75 Ma) to
Hominidae (around 15 Ma) to Australopithecus Afarensis (around 3.6 Ma) to
Homo erectus (around 1.8 Ma) to Homo Sapiens (160 thousand years ago) and
to the ancestors of modern day Homo Sapiens (around 12,000 years ago) [9]. We
concentrate on the fact that several milestone developments made the evolution
of modern human possible and the information about these key developments
are important for the evolutionists to have a better understanding of how we
have come and where we may go from here. The development of back-bone (ver-
tebrate) as early as around 500 Ma was the first major event in the human
evolution. Thereafter, the development of legs around 390 Ma was another ma-
jor breakthrough that allowed the creatures to leave water and come to land.
Many other significant anthropological developments took place along the way,
which eventually helped create high-performing living creatures like humans.

In this paper, we consider a specific engineering design task for our study and
first find a set of trade-off, near-Pareto-optimal solutions using an EMO proce-
dure. These high-performing solutions can be viewed somewhat similar to the
human population of today who can be considered better and high-performing
compared to all of their ancestors since the beginning of life formation about
four billion years ago. Thereafter, we perform an automated innovization task
on these high-performing design solutions to reveal a set of design principles
common to them. These principles may be thought of as similar to the features
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that are common to the present human population, such as presence of a back-
bone, legs, skull etc. of certain type. As the history of human evolution reveals
a chronology of developments (such as being a vertebrate first, then developing
legs, and so on), in this paper, we are particularly interested in investigating the
evolutionary history of the key design principles. For this purpose, we suggest a
computational procedure and reveal interesting time-line of formation of design
ideas along an optimization process. Such information about a problem provides
valuable insight about the importance of various design principles and should
help designers to better understand their designs and eventually create better
designs.

1.1 Multi-objective Optimization and Automated Innovization

Multi-objective optimization considers multiple conflicting objectives and theo-
retically gives rise to a set of Pareto-optimal solutions, each of which is optimal
corresponding to a trade-off among the objectives. Since the outcome are multi-
ple solutions, multi-objective optimization is ideal for finding a set of alternate
solutions either for finally choosing a single preferred solution or to launch a fu-
ture analysis. Due to the population approach and ability to introduce artificial
niches within a population, evolutionary algorithms (EAs) are ideal for solv-
ing multi-objective optimization problems. For the purpose of future analysis of
Pareto-optimal solutions, as mentioned above, recent studies have proposed an
innovization task for discovering innovative solution principles [7]. Since Pareto-
optimal solutions are all optimal, they are likely to possess some common prop-
erties related to design variables, objectives and constraints that remain as ‘sig-
natures’ to Pareto-optimal solutions. A few recent studies have also attempted
to discover common design principles automatically using sophisticated machine
learning procedures [2,1], which we discuss here in brief.

Automated innovization, proposed in 2010 [2], uses a grid-based clustering
technique to identify correlations in any multi-dimensional space whose dimen-
sions are provided by the user. The procedure was later extended [1] so that
design principles hidden in all possible Euclidean spaces formed by the variables
and objectives (and any other user-defined functions) can be obtained simultane-
ously without any human interaction. This is achieved at the cost of restricting
the mathematical structure of the design principles to a multiplicative form given
by,

∏N
j=1 φj(x)

ajbj = c, where φj ’s are basis functions. A total of N basis func-
tions need to be provided by the user. A basis function can be any function of
the problem variables. The usual choices are the objectives and the variables
themselves. aj is a Boolean exponent determining the presence (=1) or absence
(=0) of j-th basis function and bj is a real-valued exponent. Automated innoviza-
tion is capable of extracting multiple design principles of multiplicative form by
optimizing aj ’s and bj ’s. It is argued that since many natural, physical, biologi-
cal and man-made processes are governed by formulae with the same structure
(power laws [10]), most correlations are expected to be mathematically captured
by it. By definition, the expression on the left side of above equation is a design
principle (DP) if it evaluates to approximately the same value for a majority
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of the Pareto-optimal solutions. Thus the c value on the right is a measure of
commonality and the extent of this commonality is obtained by clustering the
evaluated c values. For further details readers are referred to [1].

2 MEMS Design Study

MEMS (Microelectromechanical systems) are tiny mechanical devices that are
built upon semiconductor chips. They usually integrate across different phys-
ical domains a number of functions, including fluidics, optics, mechanics and
electronics and are used to make numerous devices such as pressure sensors,
gyroscopes, engines and accelerometers. The present design problem concerns a
comb-drive micro-resonator shown in Figure 1. There are 14 design variables as
shown in Figure 1, V is the voltage amplitude and Nc is number of rotor comb
fingers. The variable bounds are: 2μm ≤ Lb, Lt, Lsy, Lsa ≤ 400μm, 2μm ≤
wb, wt, wc ≤ 20μm, 10μm ≤ wsy , wsa, wcy ≤ 400μm, 4μm ≤ x0 ≤ 400μm,
7 Volts ≤ V ≤ 50 Volts and 3 ≤ Nc ≤ 66. The design is subject to 10 linear
constraints and 14 non-linear constraints. The objectives of design are (i) min-
imization of the power consumption (applied voltage), and (ii) minimization of
the total area of MEMS device. Further details about the problem can be found
in [8].

Fig. 1. MEMS model adapted from [8]
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Fig. 2. Progress of EMO solutions to-
wards Pareto-optimal front

2.1 Generation of Pareto-optimal Front

This highly non-linear design optimization problem was previously solved using
NSGA-II [6] with an external archive for collecting the non-dominated solu-
tions [12]. In this study, the original implementation of NSGA-II is used instead.
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To have statistical invariance, 10 different runs are performed each with P = 500
population members for tmax = 500 generations. Each NSGA-II run uses the
same parameters: SBX (simulated binary crossover [5]) operator with pc = 0.9
and ηc = 15, and polynomial mutation operator [4] with pm = 0.033 and ηm =
20. All variables except Nc are real-valued. A binary string of length six bits is
used to represent Nc, for which pc and pm are 0.9 and 0.0125, respectively. The
non-dominated solutions from each run are accumulated and sorted using the
dominance criterion. This process gives rise to 1, 198 high-performing trade-off
solutions.

To ensure a proper convergence, a local search procedure (the nonlinear
gradient-based minimization algorithm fmincon from MATLAB) is applied to
the ε-constrained MEMS design problem [3] on each of 1, 198 solutions. However,
since gradient-based algorithms cannot efficiently handle discrete variables, for
every solution, we keep Nc fixed to its current value and the other 13 variables
are modified during the local search procedure. It is observed that the difference
between NSGA-II solutions and the local-searched solutions are quite small. The
improved non-dominated front is shown in Figure 2.

3 Results

The previous study [12] attempted to visually decipher design trends among
these solutions. In the following section, we apply the automated innovization
algorithm [2] to unveil design knowledge in a quantitative way.

3.1 Design Principles Using Automated Innovization

The 1, 198 non-dominated solutions obtained above are used for the innovization
study. All 14 design variables and the two objective functions are chosen as the
basis functions needed for the automated innovization study. The optimization
formulation of the automated innovization problem is solved using a single-
objective NSGA-II which uses the following settings: (i) population Size = 500,
(ii) number of generations = 500, (iii) niched tournament selection operator,
(iv) single-point binary crossover with pc = 0.85 and SBX with pc = 0.90,
and ηc = 10, (v) bitwise mutation with pm = 0.15 and polynomial mutation
with pm = 0.05 and ηm = 50. Table 1 lists all 15 design principles found by
the automated innovization study. The last column is a measure of the extent
of commonality among the 1, 198 non-dominated solutions. It is referred to as
the significance and is simply the percentage of the trade-off solutions whose
c values are clustered. Minimum allowable significance is a user parameter in
innovization and has been set to 70% in this case. A few interesting aspects of
the comb driven micro-resonator design problem obtained from the automated
innovization study are as follows:

1. Six design principles, namely DP1, DP2, DP4, DP7, DP8 and DP9 are all
more or less constant for at least 80% of the data. The third column shows
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Table 1. Automated innovization results for the MEMS design problem

Notation Design principle Cluster average (μlargest) Significance
DP1 w1.0000

c = c 2.000231E-06 98.50 %
DP2 w1.0000

sy = c 1.000441E-05 97.16 %
DP3 L1.0000

sa = c 1.169490E-05 88.23 %
DP4 w1.0000

t = c 2.001497E-06 87.65 %
DP5 L1.0000

t = c 6.873649E-06 87.40 %
DP6 L1.0000

sy = c 3.605399E-05 86.56 %
DP7 w1.0000

sa = c 1.000482E-05 86.06 %
DP8 w1.0000

b = c 2.000028E-06 84.72 %
DP9 w1.0000

cy = c 1.000088e-05 79.63 %
DP10 f1.0000

1 L0.6470
b = c 1.078929E-01 78.46 %

DP11 f1.0000
2 L−0.4888

b = c 3.671301E+02 74.12 %
DP12 f0.2546

1 f1.0000
2 L−0.3563

b = c 2.812855E+02 73.79 %
DP13 f1.0000

2 L−0.4800
b L−0.1160

c = c 1.258088E+03 72.70 %
DP14 f1.0000

1 L0.6490
b L0.1429

c = c 2.112050E-02 72.70 %
DP15 f0.7737

1 f1.0000
2 = c 7.301285E+01 70.45 %

that all these design principles tend to their lower bounds. It is interesting
to note that all the associated variables are widths, indicating that for this
MEMS component, the overall width should be as low as physically possible
(provided they satisfy the constraints) for (near) Pareto-optimality.

2. Each of DP3, DP5 and DP6 are also approximately constant on the front.
However they surprisingly take a value intermediate in their variable ranges.
This indicate that the corresponding length variables are very important and
will determine Pareto-optimality for this problem.

3. The flexure beam length Lb is important in an indirect way. DP10 signifies
that it is inversely proportional to the voltage f1. The instantaneous voltage
applied across the comb drive is associated with the force created to move
the shuttle mass and the flexure beams are designed to compensate this
movement. It becomes clear that more the force (which in turn is due to
higher voltage), the stiffer the structure should be and hence a shorter beam
length (Lb) is required.

The design principles and their implications mentioned above are interesting
and provide a designer interesting insights about the particular MEMS design.
However, in the following section, we discuss a further post-optimality analysis
procedure that is more revealing and also has a deeper connection to the time-
line developments of human evolution.

3.2 Evolution of Design Principles

Consider the various anthropological features that homo-sapiens acquired during
the process of human evolution. There is sufficient documented evidence which
tells us that these features evolved gradually over millions of years, rather than
appearing out as a single event, driven by the natural mechanisms of reproduc-
tion, genetic mutation and natural selection. Despite the simplicity in our design
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environment (being static, deterministic, asexual, non-cooperative, etc.), the de-
sign principles obtained in Table 1 can be thought as somewhat analogous to
these features, since they are common to most of the solutions (at least 70%),
just like the anthropological features that distinguish humans from other liv-
ing beings. We are interested here in investigating if there exists a gradual and
chronological evolution of the above design principles over iterations just like the
chronology of anthropological feature development over millions of years. If such
a gradual development of key design features is observed, the information would
be valuable to the designers for a better understanding and further their future
use. Similarity between natural and artificial evolutions can help both fields with
cross-breeding of their key concepts.

We propose the following procedure for recording the evolutionary time-line
of design principles. The non-dominated solutions from each of the 10 runs at
each generation t is stored. Next, each of the 13 identified design principles
(DPi, i = 1, . . . , 13) is checked for their appearance in the combined data in
each generation. The significance of DPi (SDPi

t ) at generation t is calculated as
the proportion of points satisfying the DP to the total non-dominated points at
the final generation. Thereafter, a plot of the significance value of each DP with
generation will reveal the relative appearance of the DP during the optimization
process. Here, we provide the algorithm in step by step format with the following
input: (i) design principles (DPi, i = 1, 2, . . .) obtained after the automated
innovization task, (ii) cluster information associated with each DPi, and (iii)
generation-wise population members for each run:

Step 0: Set t ← 0.
Step 1: Collect non-dominated solution set Pt at generation t from all runs.

Thereafter, remove the dominated points from Pt.
Step 2: Evaluate DPi at all solutions in Pt to compute the c values and collect

them in set Ct.
Step 3: Every element cj ∈ Ct is checked for its existence in any of the K

clusters of DPi using the criterion, cj ∈ cluster k ⇔ μk − d σk ≤ cj ≤
μk + d σk, where μk and σk are the mean and standard deviation of c-values
of the k-th cluster, respectively. The number of elements Et in Ct that do
belong any one of the K clusters is recorded. d = 4 is used here and also
recommended.

Step 4: Calculate the significance of DPi in the current generation t as follows:
SDPi
t = (Et/|Ptmax |)×100%, where |.| represents the set size. For the MEMS

design case, we have |Ptmax | = 1, 198.
Step 5: If t = tmax Stop else t ← t + 1 and Goto Step 1. Here tmax is the

number of generations used for solving the original multi-objective problem.

We apply the above procedure to the MEMS design problem for the first 13 of the
15 design principles obtained by automated innovization. DP14 is a combination
of DP10 and DP13. DP15 does not involve any decision variables. Hence, we do
not consider them for the evolution analysis. Figure 3 shows SDPi

t for each of the
13 DPs at various generations. The evolution history shown in the figure reveals
the time at which each of DPs started to evolve during the optimization process.
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Fig. 3. Evolution of 13 design principles show a gradual development. Similarity with
events in human evolution is also shown for a comparison.

We show the evolution when there is around 10% existence of the particular DP
in the combined population. Clearly, a gradual evolution pattern of DPs can
be seen: (DP2, DP13, DP11, DP12, DP1, DP5, DP4, DP3, DP7, DP10, DP8,
DP9, DP6). This information of some DPs which form later due to existence of
some other DPs which formed early on during the optimization process provide
valuable knowledge to the designers.

For the first 10 generations, no feasible solution was found. Thereafter, when
some feasible solutions were created, it took another 160 generations for the first
design principle DP2 to emerge among the non-dominated solutions. At around
171 generations, about 10% of the non-dominated points of all 10 runs have the
DP2 property: wsy is constant. This variable denotes the thickness of the web of
the I-shaped element. The fact that this property has started to evolve first means
that this design principle is a fundamental requirement for a design to take shape
of an optimal solution. This is equivalent to the development of the ‘backbone’ as
early as around 530 million years ago for the eventual evolution of a human.
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After the emergence of DP2, the next few generations created DP13 which is a
relationship between the area of MEMS device, Lb and Lc. The principle states
that for a MEMS with smaller area, smaller values of Lb and Lc are needed.
Third and fourth DPs (DP11, DP12) emerge after a while. These DPs enables
a more direct relationship between the area and Lb to be created in the form
of DP11 and DP12. As an analogy, the emergence of DP11 and DP12 may be
compared with further anthropological developments, such as formation of legs,
that made a significant leap towards human evolution. In this sense, fixation of
wsy , Lb and Lc early on during the optimization process remain as fundamental
developments towards becoming optimal.

Thereafter, after a gap of 15 generations, a new DP emerges. This is DP1
denoting that the variable wc must be constant. The variable wc is the thick-
ness of the comb tooth. When the MEMS with a previously evolved feature
(DP12) fixed a direct relationship between Lb and the area, the thickness of
each comb was the next parameter to get fixed. DP1 dictates that the optimal
design requires a fixed tooth size. From this generation onwards, detail design
principles involving a few other variables (Lt from DP5, wt from DP4, Lsa from
DP3, wsa from DP7, wb from DP8, wcy from DP9) evolved. As the solutions
approach the Pareto-optimal front, DP15 relating two objective values starts to
get formed and around 235 generation a direct relationship (DP10) between the
first objective (applied voltage) and Lb forms.

Finally, DP6 that requires the variable Lsy to be constant evolves at around
280 generations. This variable relates to the width of the web of the I-shaped
element. When more characteristic variables get settled with evolution, this was
the final fixation needed for the solutions to become close being Pareto-optimal.

It is interesting to note from Figure 2 that evolution of all DPs take place when
the non-dominated points are close to the Pareto-optimal front. This observation
is similar to the fact that most of the major anthropological developments in
human evolution took place in a relatively short time span since the creation
of life forms. The chronology of evolution of design principles discovered above
from multiple EMO runs clearly puts forward a hierarchy of importance of them
and highlights their inter-relationships. Such important information are difficult
to obtain in any other ways.

4 Conclusions

In this paper, we have extended the use of automated innovization principles
to make a deeper understanding of an engineering design problem. The key de-
sign principles found by the innovization procedure have been investigated for
their chronological evolution during the optimization process. A computational
procedure has been suggested for this purpose. It is observed that certain de-
sign principles get created early on during the optimization process, while some
other detail design principles form later. We have argued that the evolution of
design principles during the course of optimization has, barring some details,
a remarkable similarity to the time-line history of significant anthropological
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developments for human evolution over many millions of years. The connec-
tion is interesting and puts natural and artificial design of systems on a similar
platform, thereby allowing cross-breeding of ideas between two areas. The evo-
lutionary information thus obtained may provide a clear hierarchy of important
design features needed to constitute an optimal design. Such knowledge is vital
for designers in having a clear understanding of key features and their inter-
relationships and also to make use of them in their future design scenarios.

Acknowledgments. Authors wish to thank Dr. Zhun Fan for introducing them
to the MEMS design problem.
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Abstract. Planning a satisfactory route for an autonomous vehicle over
a complex unstructured environment with respect to multiple objectives
is a time consuming task. However, there are abundant opportunities
to speed up the process by exploiting prior information, either from ap-
proximations of the current problem instance or from previously solved
instances of similar problems. We examine these two approaches for a set
of test instances in which the competing objectives are the time taken
and likelihood of detection, using real-world data sources (Digital Ter-
rain Elevation Data and Hyperspectral data) to estimate the objectives.
Five different instances of the problem are used, and initially we compare
three multi-objective optimisation evolutionary algorithms (MOEA) on
these instances, without involving prior information. Using the best-
performing MOEA, we then evaluate two approaches that exploit prior
information; a graph-based approximation method that pre-computes a
collection of generic ’coarse-grained’ routes between randomly selected
zones in the terrain, and a memory-based approach that uses the solu-
tions to previous instances. In both cases the prior information is queried
to find previously solved instances (or pseudo-instances, in the graph
based approach) that are similar to the instance in hand, and these are
then used to seed the optimisation. We find that the memory based ap-
proach is most effective, however this is only usable when prior instances
are available.

1 Introduction

Route-planning is one of the increasingly many application domains in which a
multi-objective optimisation (MOO) approach [1] has been found to have signif-
icant advantages over single-objective approaches [2]. In this paper, we further
explore multi-objective optimisation algorithms for route-planning of manned
and unmanned vehicles in a hostile and unstructured environment, and focus on
the question of accelerating the process by exploiting prior information. Speed of
optimization can be particularly vital in the application environments of interest
to us – broadly speaking, this is because there will often be a need to have a

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 11–21, 2012.
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viable route plan within seconds of the decision being made to start to move
the vehicle to a given new location. Meanwhile, in the route planning domain,
as well as a large number of other interesting application domains, a range of
prior information is available and could be used in various ways to bootstrap the
optimisation process.

In the case of route planning, the broad geographic area and terrain charac-
teristics where routes are to be planned are known in advance. The solutions to
previously solved route planning instances within the same terrain may also be
known but it would be infeasible to pre-compute all instances from every pos-
sible start and end location (some geographic features in the environment may
move between instances). However, it is very appealing to utilise prior informa-
tion whenever possible. In this paper, we examine two approaches to integrating
prior information into a multi-objective optimisation algorithm; (i) solving ap-
proximations of the current problem instance, or (ii) information derived from
previously solved problems with sufficient similarity.

In the remainder, we briefly cover background material in Section 2 and then
introduce multi-objective route-planning. Section 3 then evaluates three MOEAs
on our five test instances, without exploiting prior information. In Sections 4
and 5 we then respectively explore two different approaches to include prior
information. Section 6 concludes and discusses future work.

2 Background

A multi-objective optimization (MOO) problem is posed as argminx∈X Gm(x),
where Gm(x) is a set of m objective functions and x is defined as a vector of
decision variables (or a solution) in the form x = (x1, x2.., xN ) from the set of
solutions X . The aim is to find the Pareto set which contains all the solutions
that are not dominated by any other solution. A solution x is said to be non-
dominated by y, if and only if, x is as good as y in all objectives and x is strictly
better then y in at least one objective.

The most effective MOO approaches to date are generally regarded to be
multi-objective evolutionary algorithms (MOEAs). Typically, MOEAs (as well
as most optimization algorithms) make little or no use of prior information that
may be available about the problem at hand. The concept of exploiting prior
information is pervasive in artificial intelligence, appearing in several different
guises (e.g. case based reasoning (CBR) [3], or, more recently, per-instance tun-
ing [4]), however it is infrequent in the optimization literature, perhaps because
appropriate approaches are highly domain-specific. Nevertheless some examples
include work in the Genetic Programming community [5,6] in which popula-
tions were seeded with solutions to previous instances, while an approach was
recently proposed in [7] which exploits extensive pre-computation of solutions
to potential instances that may be faced in a given domain. Meanwhile, [8] ex-
plores the re-use of the probability models built by an estimation of distribution
algorithm (EDA) on previous instances, while seeding with previous solutions is
occasionally explored, especially for dynamic optimization [9,10].
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We examine two approaches with which to integrate prior information in route
planning, in the scenario that instances will occur with previously unknown start
and end locations, but within a known geographic area (e.g. a 5km by 5km
square). The first approach is to prepare in advance Pareto optimal but coarse
grained route solutions for a large collection of potential start and end locations
within the region. For any such start/end pair, we abstract the search space as a
directed graph, and then use a multi-objective extension to traditional A* called
NAMOA* [11] to find Pareto optimal coarse-grained routes. which, in turn, seed
the population of a MOEA solving the instance at hand. The second approach
uses solutions to previously solved similar route planning instances to seed the
initial population for the new instance.

We consider a route planning scenario where a route is required that min-
imises a set of competing objectives such as the fuel used, the time taken, the
distance travelled, or the likelihood of being detected by observers. We build on
the route planning problem defined in [2] and are informed by previous studies
of motion planning for autonomous vehicles [12,13]. Route planning is the con-
struction of a route that navigates between two geographic locations. The start
and end location are defined by a latitude, longitude and heading from true
north. For convenience, we encode a route in relative polar coordinates where
αi is the heading relative to the next way point and r is the distance to travel
in this direction. To evaluate a route, the objective functions used here are the
time taken and likelihood of detection, as defined in [2], and the route is divided
into 30 segments. The objective functions are calculated using Digital Terrain
Elevation Data (DTED) 1 and the NASA LandSat Multispectral data. The Mul-
tispectral data is combined with a classifier to infer the terrain type and hence
the maximum speed allowed on that portion of the route segment. To evaluate
the performance of different MOEAs, five instances, P1 to P5, were generated.
The definition of the routes and java code for the objective functions is available
at http://code.google.com/p/multi-objective-route-planning/.

3 Comparison of Multi Objective Optimisation
Algorithms

First, we compare three different MOEAs, MOEA/D, SMPSO, and NSGA-II, on
our five problem instances, without using prior information. Multi Objective Evo-
lutionaryAlgorithmsBased onDecomposition (MOEA/D)[14]was selected to rep-
resent the current state of the artMOEA. Speed-constrainedMulti-objective PSO
(SMPSO)[15] is used to provide a baseline algorithm fromtheParticle SwarmOpti-
misation (PSO) community, while the Non-dominated Sorting Genetic Algorithm
II (NSGAII)[16] is also tested as a commonly used effective benchmark MOEA.

The implementations of MOEA/D, SMPSO and NSGAII have been taken
from JMetal2 and the results presented are averaged over 50 independent runs

1 EarthExplorer (http://earthexplorer.usgs.gov)
2 http://jmetal.sourceforge.net/

(http://earthexplorer.usgs.gov)
http://jmetal.sourceforge.net/
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which were limited to 200,000 evaluations per run. NSGAII and SMPSO had
a population size of 100 and MOEA/D a population size of 600. Comparisons
are quantified using the Inverted Generational Distance (IGD), as defined in
[17]. The ’known’ Pareto optimal front is calculated by combining the solutions
generated from all experiments presented in addition to one million randomly
generated samples. Results are summarised in Table 1.

Table 1. The IGD values (M. = mean and Std = standard deviation) for
(M)=MOEA/D, (S)=SMPSO and (N)=NSGAII on Problems 1 to 5

Prob P1 P2 P3 P4 P5

Alg S N M S N M S N M S N M S N M

Mean 61.0 464.7 33.8 152.4 817.9 47.9 130.8 345.5 29.8 107.2 407.5 47.7 54.1 205.7 5.8
Std 12.0 150.9 28.2 41.6 193.4 36.1 25.5 141.2 19.2 33.6 76.3 25.5 9.8 56.9 14.8

The results in Table 1 follow preliminary experiments which hand-optimised
the parameters of each of the algorithms. For these five problem instances,
MOEA/D clearly produces solutions closest, in terms of IGD, to the reference
Pareto optimal front. Hence, MOEA/D is used in the remainder of this paper.

4 Graph-Based Approximation

In the route planning scenario of interest, before an instance of the problem arises,
we know the broad geographical region in which the start and end locationswill be.
We describe here a way to exploit that prior information, based on a priori finding
coarse-grained solutions to many potential instances, based on all possible pairs of
start and end locations over a 50m by 50mmesh. For each such pair, a solution tree
is generated by using the encoding outlined in Section 2, but with each bearing
(αi) restricted to a discrete set, e.g. [−30, 0,+30]. Once the maximum number
of segments has been reached, the current location is joined to the end location
using a single straight line segment. The Pareto set of solutions on this tree is
then extracted by using NAMOA* (of which more below). Given a new instance
of the route planning problem, we then find the pre-solved coarse-grained instance
whose start and end locations best match the new instance, and use the Pareto
set found by NAMOA* to seed the MOEA/D population.

Figure 1 (a) shows the final IGD value for the five different route planning
problems when MOEA/D is initialised randomly and with the non-dominated
solutions found by solving two configurations of the graph-based approximation.
The results clearly shown that initialising the MOEA/D population with solu-
tions generated from an initial graph-based approximation has an improvement
in the final IGD value. With 3 segments and 3 bearings (3,3) at each node, the
final IGD is statistically different (according to a two tailed, paired T test with
confidence level 0.99) for 1 of the problems (P4) and with 5 segments and 5
bearings (5,5), the final IGD value is statistically different for all 5 problems.

Figure 1 (b) shows the number of route evaluations required to reach the
110% of the maximum final IGD value when using MOEA/D with a randomly
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initialised population. The results show that the number of evaluations required
is statistically reduced on all route planning problems except for problem 2 (with 5
segments and 5 bearings). The results show that, on average, using a graph-based
approximation can reduce the number of routes evaluated by 5,318 for 3 segments
and 3 bearings and 8,582 routes for 5 segments and 5 bearings where NAMOA*
only evaluates, on average, 11 and 143 routes for each of these configurations.
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Fig. 2. The No. of Routes Evaluated for P1 with different graph configurations

Although, the exponential complexity of NAMOA* is clearly shown in Fig-
ure 2 (Note the log scale) where the number of routes evaluated significantly
increases (for a small reduction in the IGD). The number of routes evaluated
are calculated by totalling the number of edges evaluated during the operation
of the NAMOA* algorithm. One reason for this is that a suitable tree-pruning
heuristic is unavailable for the likelihood of detection and hence a lower bound
must be assumed (likelihood of detection is zero) therefore reducing the removal
of dominated branches (or partially explored routes) in the graph.

This section has shown that seeding MOEA/D with solutions generated from
an approximation of the problem, solved using NAMOA*, has a significant im-
pact on the IGD value but NAMOA* can only be run for very crude approxima-
tions of the problem before the number of evaluations required quickly becomes
infeasible. The next section evaluates a different seeding strategy that is based
on storing solutions between problem instances.

5 Memory-Based

In this section, a memory-based approach is examined, where previous solutions
are reused from previously solved instances of similar problems. The approach is
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only appropriate when the problems are not evolving rapidly and when informa-
tion from previously solved problems have some bearing on the current problem
being solved i.e. the shape and distribution of the routes. The non-dominated
solutions generated by MOEA/D are stored in a k-d tree [18] which is referenced
by the latitude and longitude of the start and end locations. All of the solutions
from previous problems are currently stored in the k-d tree but only a subset of
the K closest neighbours, up to half the total population, are used to initialise
the population of MOEA/D when solving a new instance.

To evaluate the approach, it is necessary to generate a sequence of problem
instances. A sequence of ten instances of route planning problems, Pi,j , where
i is the problem number and j is the index in the sequence, are generated by
randomly selecting a start and end location in the area of the route planning
problems P1 to P5. Once a route planning problem in the sequence has been
solved, the non-dominated solutions are added to the k-d tree and the next
route planning problem is tackled. At the beginning of the next route planning
problem, the closest neighbours to this route planning problem are extracted
from the k-d tree and the non-dominated solutions for these problems added to
the initial population of MOEA/D. The remaining population used in MOEA/D
is randomly initialised within the input parameter range.

Figure 3 (a) shows the final IGD value for MOEA/D and the Memory-Based
MOEA/D (neighbours=3) on P1 over the sequence of ten route planning in-
stances. The IGD value for each iteration is generated over 50 runs of MOEA/D
and the same sequence is used for each run. The IGD results show that ini-
tialising MOEA/D with solutions from previously similar instances results in a
statistically better (using a two tailed, paired with 0.99 probability) set of solu-
tions for five of the ten instances (4,6, 8,9 and 10). Figure 3 (b) shows the number
of evaluations required to reach 110% of the maximum final IGD value as found
by MOEA/D. The results show that for some instances the number of evalua-
tions is significantly lower (4,6,8,9 and 10) with on average a reduction in the
number of routes evaluated for these four instances is 13,369. The results show
that MOEA/D initialised using solutions from previously solved problems has
the potential, on some instances, to reduce the number of evaluations required
to produce a reasonable approximation of the Pareto optimal front.

For example, the reduction in the number of evaluations can be graphically
seen in Figure 4 (a) where the memory-based MOEA/D (shown in dashed) is
compared with a randomly initialised MOEA/D (shown in black). The reason
for this earlier reduction in IGD value can be seen by comparing the solutions
extracted from the memory at the start of the optimisation. The solutions ex-
tracted from the memory provide a reasonable approximation of the Pareto
optimal front in the first few iterations of the algorithm. A comparison of the
initial and optimised routes can be seen in Figure 4 (b) where the initial routes
provide a broad spectrum of possible routes with previously successful shapes
without having to exhaustively search all possible combinations as with the pre-
vious graph-based approach.
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6 Conclusions and Future Work

This paper has presented an examination of two approaches to using prior in-
formation, graph-based and memory-based, for MOEA/D when applied to a
route planning problem over an unstructured environment. The experimental
results have shown that both approaches enable MOEA/D to generate a set of
solutions closer to the known Pareto optimal front in fewer iterations than a
traditional random initialisation. Solving a graph-based approximation has been
shown to produce routes closer to the known Pareto optimal front for the five
route planning problems but is only feasible for small graphs because the number
of evaluations required increases exponentially. Using a memory-based approach
has also been shown to generate routes closer to the known Pareto optimal front
for a sequence of problem instances but this is highly dependent on whether a
sufficiently similar problem has been solved previously and whether the environ-
ment has evolved since solving that problem. The approaches examined in this
paper are applicable to a wide range of multi-objective optimisation applications.
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Future work will concentrate on how to apply these techniques to dynamic
environments where the problem is evolving either during or between route
planning problems and to analyse methods of storing and extracting subsets
of solutions based on the similarity of the instances.
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Abstract. This work analyzes population size and neighborhood re-
combination in the context of many-objective optimization. Large pop-
ulations might support better the evolutionary search to deal with the
increased complexity inherent to high dimensional spaces, whereas neigh-
borhood recombination can reduce dissimilarity between crossing indi-
viduals and would allow us to understand better the implications of a
large number of solutions that are Pareto-optimal from the perspective
of decision space and the operator of variation. Our aim is to under-
stand why and how they improve the effectiveness of a dominance-based
many-objective optimizer. To do that, we vary population size and an-
alyze in detail convergence, front distribution, the distance between in-
dividuals that undergo crossover, and the distribution of solutions in
objective space. We use DTLZ2 problem with m = 5 objectives in our
study, revealing important properties of large populations, recombina-
tion in general, and neighborhood recombination in particular, related
to convergence and distribution of solutions.

1 Introduction

Recently, there is a growing interest on applying multi-objective evolutionary al-
gorithms (MOEAs) to solve many-objective optimization problems [1], where the
number of objective functions to optimize simultaneously is considered to be more
than three. It is well known that conventional MOEAs [2,3] scale up poorly with
the number of objectives of the problem, which is often attributed to the large
number of non-dominated solutions and the lack of effective selection and diver-
sity estimation operators to discriminate appropriately among them, particularly
in dominance-based algorithms. Selection, indeed, is a fundamental part of the
algorithm and has been the subject of several studies, leading to the develop-
ment of evolutionary algorithms that improve the performance of conventional
MOEAs on many-objective problems [1]. However, finding trade-off solutions that
satisfy simultaneously the three properties of convergence to the Pareto front, well
spread, and well distributed along the front is especially difficult to achieve in
many-objective problems and most search strategies for many-objective optimiza-
tion proposed recently compromise one in favor of the other [1].

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 22–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In addition to selection, detailed studies on the characteristics of many-objective
landscapes, the effectiveness of operators of variation, and the effects of large popu-
lations are important to move forward in our understanding of evolutionary many-
objective optimization in order to develop effective and efficient algorithms. From
this standpoint, we have presented initial evidence that MOEAs can improve
their performance on many-objective problems by using large populations and
neighborhood recombination [4].

In this work, our aim is to understand why and how population size and
neighborhood recombination increase the effectiveness of the algorithm. To study
that, we choose NSGA-II [5] as our base algorithm and incorporate neighborhood
recombination into it. We vary population size and analyze in detail convergence,
front distribution, the distance between individuals that undergo crossover, and
the distribution of solutions in objective space. We use DTLZ2 problem [6] with
m = 5 objectives in our study.

The motivation to look into large populations is that they might support bet-
ter the evolutionary search to deal with the increased complexity inherent to
high dimensional spaces. On the other hand, the motivation to study recombi-
nation is to understand better the implications of a large number of solutions
that are Pareto-optimal from the perspective of decision space and the operator
that make moves on it. A large number of non-dominated solutions could cause a
large diversity of individuals in the instantaneous population and recombination
of very dissimilar individuals could be too disruptive. Neighborhood recombina-
tion aims to reduce dissimilarity between crossing individuals.

Our study reveals important properties of large populations, recombination in
general, and neighborhood recombination in particular, related to convergence
and distribution of solutions.

2 Method

In many-objective problems the number of non-dominated solutions grows sub-
stantially with the number of objectives of the problem [7,8]. A side effect of this
is that non-dominated solutions tend to cover a larger portion of objective and
variable space compared to problems with fewer objectives [9]. The implications
of a large number of non-dominated solutions have been studied in objective
space, where selection operates. However, little is known about the implications
in decision space, where recombination and mutation operate. It is expected that
the large number of non-dominated solutions in many objective problems induce
a large diversity of individuals in the instantaneous population. In which case
recombination of very dissimilar individuals could be too disruptive affecting its
effectiveness.

Neighborhood Recombination encourages mating between individuals located
close to each other, aiming to reduce dissimilarity between crossing individuals
and improve the effectiveness of recombination in high dimensional objective
spaces. We choose NSGA-II as our base algorithm and incorporate neighborhood
recombination into it. In this work, we leave untouched selection of NSGA-II,
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Fig. 1. Neighborhood Recombination

which uses a primary ranking based on dominance and a secondary ranking
based on crowding distance. This would allow us to show and explain the effects
of population size and recombination with a well known selection.

The main steps of Neighborhood Recombination are as follows. During the
calculation of dominance relationships, the proposed method calculates the dis-
tance between individuals in objective space and keeps a record of the |P | ×Rn

closest neighbors of each individual. Note that when the ranked population of
size |P |+ |Q| is truncated to form the new population of size |P |, some individu-
als would be deleted from the neighborhood of each individual. When individuals
are selected for recombination, the first parent pA is chosen from the parent pop-
ulation P using a binary tournament, while the second parent pB is chosen from
the neighborhood of pA using another binary tournament. Then, recombination
is performed between pA and pB. That is, between pA and one of its neigh-
bors in objective space. If all neighbors of individual pA were eliminated during
truncation, the second parent pB is selected from the population P similar to
pA. Fig.1 illustrates the neighborhood creation and mating for recombination.
In this work, we set the parameter that defines the size of the neighborhood of
each individual to Rn = 0.1 (10%|P |).

3 Test Problem and Analysis Indicators

3.1 Test Problem

We study the behavior of the algorithms using the continuous function DTLZ2
[5], setting the number of objectives to m = 5 and the total number of variables
to n = m+9. Problem DTLZ2 is designed in such a way that the Pareto-optimal
front corresponds to a non-convex surface in objective space, which lies in the
positive quadrants of the unit hyper-sphere, with Pareto-local fronts constructed
parallel to it. To achieve this, the n variables of a solution x = (x1, x2, · · · , xn)
are classified in two subsets. The first m− 1 variables x1, x2, · · · , xm−1, denoted
x1:m−1, determine the position of solutions within the Pareto-local/optimal
front, whereas the remaining n − m + 1 variables xm, xm+1, · · · , xn, denoted
xm:n, determine the distance of the Pareto-local front to the Pareto-optimal
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front. When xm = xm+1 = · · · = xn = 0.5, the solution is located in the Pareto-
optimal front. The m objective functions used in DTLZ2 are as follows

f1(x) = (1 + g(xm:n))
∏m−1

i=1 cos(π
2
xi)

f2(x) = (1 + g(xm:n))

(
∏m−2

i=1 cos(π
2
xi)

)
sin(π

2
xm−1)

f3(x) = (1 + g(xm:n))

(
∏m−3

i=1 cos(π
2
xi)

)
sin(π

2
xm−2)

...
fm−1(x) = (1 + g(xm:n))cos(π

2
x1)sin(π

2
x2)

fm(x) = (1 + g(xm:n))sin(π
2
x1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

g(xm:n) =
n∑

i=m

(xi − 0.5)2 (2)

3.2 Analysis Indicators

Proximity Indicator(Ip) [10]: Measures convergence of solutions by

Ip = median
x∈P

⎧⎨⎩
[

m∑
i=1

(fi(x))2
] 1

2

− 1

⎫⎬⎭ , (3)

where x denotes a solution in the population P . Smaller values of Ip indicate
that the population P is closer to the Pareto-optimal front and therefore mean
better convergence of solutions.

Mates Distance(Dc): Euclidian distances in variable space between pairs of
solutions that undergo crossover are computed separately for the subsets of vari-
ables x1:m−1 and xm:n that determine the position of solutions within the front
and their distance to the Pareto-optimal front, respectively. Here we report the
average distances Dc(x1:m−1) and Dc(xm:n) taken over all pairs of solutions that
undergo crossover at a given generation.

Distribution of Solution in Objective Space (ψk): In order to observe
where solutions of the parent population P are located in objective space, we
classify each solution according to the number k = 0, 1, · · · ,m−1 of its objective
values that are very small compared to the maximum objective value of the
solution. More formally, The class k a solution belongs to is determined by

k =
m∑

i=1

θi (4)

θi =

{
1 if fi(x) < fmax(x)/100
0 otherwise

(5)
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where fmax(x) = max{f1(x), f2(x), · · · , fm(x)}. Roughly, a solution belonging
to class k = 0 is considered to be in the central region of objective space, whereas
solutions belonging to class k ≥ 1 are gradually considered to be in the edges
of objective space and identify dominant resistant solutions. We report ψk, the
number of solutions in population P belonging to class k.

Front Distribution: Shows the number of solutions per front obtained after
applying non-dominated sorting to the combined population of parents P and
offspring Q. Here, we report results for fronts F1 ∼ F5.

4 Simulation Results and Discussion

4.1 Preparation

In this work we use NSGA-II[6] as a base algorithm and include in its framework
Neighborhood Recombination. We observe the behavior of conventional NSGA-
II and NSGA-II with Neighborhood Recombination varying the population size
from |P | = 100 to 5000 individuals. As genetic operators we use SBX crossover
and Polynomial Mutation, setting their distribution exponents to ηc = 15 and
ηm = 20, respectively. The parameter for the operators are crossover rate pc =
1.0, crossover rate per variable pv = 0.5, and mutation rate pm = 1/n, where
n is the number of variables. The maximum number of generations is fixed to
T = 100. Here we report average results obtained running the algorithms 30
times.

4.2 Analysis Varying Population Size in NSGA-II

In this section we analysis the behavior of NSGA-II. Results are shown in Fig.2.
First, we look at the convergence of the algorithm. Fig.2(a) shows Ip of Pareto-
optimal solutions obtained in the final generation (T = 100) increasing the
population size from |P | = 100 to 5000. It can be seen that Ip gets smaller by
increasing population size |P |. That is, a larger population improves convergence
of the algorithm. In order to investigate these results with more detail, Fig.2(b)
shows the transition of Ip over the generations when the algorithm is set to
population sizes |P | = 100, 1000, 2000, 5000. In the case of |P | = 100, it can be
seen that Ip increases substantially. This indicates that the algorithm diverges
from the Pareto-optimal front, rather than converge to it, as evolution proceeds.
However, signs of convergence gradually appear by increasing population size
|P |. Eventually, for |P | = 5000 no divergence is observed and Ip reduces to 0.05
with very small dispersion. Here an important conclusion is that population size
is strongly correlated to the convergence ability of the algorithm.

Then, we analyze the front distribution over the generations. Results for
the first five fronts F1, · · · , F5 are shown in Fig.2(c)∼(e) for population sizes
|P | = 100, 1000, 5000, respectively. Note that the number of solutions in the first
front |F1|, obtained after applying non-dominated sorting to the combined pop-
ulation of parents and offspring of size 2|P |, is larger than the size of the parent
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Fig. 2. Results by NSGA-II
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Fig. 3. Results by NSGA-II with Neighborhood Recombination
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population|P | for most of the evolution. Especially when |P | = 100, the ratio
|F1|/|P | is the highest and |F1| exceeds |P | at a very early generation. When
the population increases to |P |=1000 and 5000, the ratio |F1|/|P | reduces and it
takes few more generations until |F1| exceeds the size of the parent population.
Looking closely at Fig.2 (e) that shows results for |P | = 5000, we can see that
the first 10 generations when |F1| < |P | is precisely the period where Ip reduces
significantly, as shown in Fig.2 (b) |P | = 5000. If |F1| < |P | then the population
is composed by solutions coming from two or more fronts, which means that
parent selection can discriminate based on dominance ranking and not only on
crowding distance as it is the case when |F1| > |P |. These results suggest that
a large enough random initial population is able to include lateral diversity
(solutions from different fronts), which allows dominance-based selection to pull
the population in the direction of the Pareto-optimal front.

Next, we look at Dc(x1:m−1) and Dc(xm:n), the average distances in decision
space between individuals that undergo crossover. Note from Fig.2(f) that Dc

(x1:m−1), computed on the subset of variables that determine the position within
the front, is large at generation 0 and it tends to increase as the evolution proceeds.
Note also that this trend becomes less pronounced as we increase the
population size |P |. This shows the diversity of solutions and it is evidence that re-
combination takes place among very dissimilar solutions, raising questions about
its effectiveness to help convergence. On the other hand, from Fig.2 (g) note that
Dc(xm:n), computed on the subset of variables that determine the distance to the
Pareto-optimal front, becomes smaller with the generations as we increase |P |.
This reduction of Dc(xm:n) is expected if the population converge towards the
Pareto-optimal front, which is located at xm = xm+1 = · · · = xn = 0.5.

Finally, we analyze the distributions of solutions in objective space ψk(k =
0, 1, · · · , 4) shown in Fig.2(h)∼(j) for population sizes |P | = 100, 1000, 5000,
respectively. Note that in the case of |P | = 100, 1000, the number of solutions ψ0

are initially around 75% of the population size |P |, but after few generations it
reduces to around 30% of |P |, showing that the number of solutions ψk, k ≥ 1,
close to the axis of the objectives functions increase significantly as evolution
proceeds. On the other hand, when a population size |P | = 5000 is used, in few
generations the number of solutions ψ0 reduce from around 75% of |P | to 50%
of |P |, but then it rises and remains around 60% of |P | until the last generation.
This shows that larger populations are not easily pulled towards the extreme
regions of objective space, caused by selection based on crowding distance that
is at work for most generations since the size of the first front surpasses the
population size (|F1| > |P |).

4.3 Analysis of Neighborhood Recombination

In this section we analyze the behavior of NSGA-II with Neighborhood Recom-
bination. Results are shown in Fig.3. Similar to the previous section, first we
look at convergence. From Fig.3(a) note that the inclusion of neighborhood re-
combination reduces Ip drastically compared to NSGA-II for any population
size, as shown in Fig.2(a). From Fig.3(b) it is important to note that, contrary
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to NSGA-II, no divergence of solutions is observed over the generations when
neighborhood recombination is used, even for very small populations.

Next, we look at the front distribution shown in Fig.3(c)∼(e). Note that a
similar trend to NSGA-II can be observed. However, when neighborhood recom-
bination is used |F1| gradually increases with the number of generations, while
in NSGA-II |F1| remained high but relatively constant.

Then, we analyze the distances among solutions that undergo crossover shown
in Fig.3(f),(g). Looking at Fig.3(f), note that Dc(x1:m−1) reduces substantially
compared to NSGA-II. This is an effect of recombining individuals with one of
its neighbors. By selecting a partner close in objective space we are increasing
the likelihood of selecting one that is also close in variable space, unless the func-
tions are highly non-linear. Most importantly, a short Dc(x1:m−1) indicates that
recombination takes place in less dissimilar individuals, which increases signifi-
cantly the effectiveness of recombination for any population size as corroborated
by the reduction of Ip shown above. Fig.3(g) shows that Dc(xm:n) shortens as
the algorithm approaches better fronts, resembling the reduction of Ip.

Finally, looking at distribution of solutions ψk in objective space shown in
Fig.3(h)∼(j), comparing with NSGA-II it can be seen that the number of solu-
tions ψ0 increases when neighborhood recombination is used, whereas the num-
ber of solutions ψk, k ≥ 1, reduces. This shows that there are more solutions
in the central region and fewer in the edges of objective space, even for very
small populations. That is, a more effective recombination helps convergence
and resists the pull of selection towards extreme regions of objective space.

5 Conclusions

In this work, we have studied the effects of population size and neighborhood
recombination on the search ability of a dominance-based MOEA applied to
many-objective optimization. We chose NSGA-II as our base algorithm and in-
cluded in it an operator that keeps track of neighbors and recombine individuals
that are close to each other in objective space. We varied population size and
analyzed in detail convergence, front distribution, the distance between individ-
uals that undergo crossover, and the distribution of solutions in objective space
using problem DTLZ2 with m = 5 objectives.

Our results showed that population size is strongly correlated to the conver-
gence ability of the algorithm. A large enough random initial population is able
to include lateral diversity (solutions belonging to different fronts), which allows
dominance-based selection to pull the population in the direction of the Pareto-
optimal front. We also showed that small populations are easily pulled towards
extreme regions of objective space by selection based on crowding distance and
that larger populations gradually become more resistant to this effect.

We argued and presented evidence that recombination in many-objective op-
timization takes place on highly dissimilar individuals if no restriction is put
to partner selection. Also, we verified that neighborhood recombination takes
place in less dissimilar individuals and showed that this increases significantly
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the effectiveness of recombination for any population size, helping convergence
and resisting the pull of selection towards extreme regions of objective space.

In this work we have focused mostly on population size and recombination.
Selection is a fundamental part of the algorithm and there is ongoing work ana-
lyzing the effects of population size and recombination using improved selection
mechanisms for many-objective optimization. However, due to space limitations,
we shall report our finding elsewhere.

In the future, we would like to extend our analysis to other problems, increase
the number of objectives and variables, and look at other ways to perform effec-
tive recombination in many-objective spaces. Also, determining an appropriate
population size according to the number of objectives is an important area of
research.
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Abstract. We consider the choice of clustering criteria for use in multiobjective
data clustering. We evaluate four different pairs of criteria, three employed in re-
cent evolutionary algorithms for multiobjective clustering, and one from Delattre
and Hansen’s seminal exact bicriterion method. The criteria pairs are tested here
within a single multiobjective evolutionary algorithm and representation scheme
to isolate their effects from other considerations. Results on a range of data sets
reveal significant performance differences, which can be understood in relation
to certain types of challenging cluster structure, and the mathematical form of
the criteria. A performance advantage is generally found for those methods that
make limited use of cluster centroids and assess partitionings based on aggregate
measures of the location of all data points.

1 Introduction

Multiobjective clustering algorithms frame the data clustering problem as a multiobjec-
tive optimization problem in which a partitioning is optimized with respect to a number
of conflicting criteria. This can be seen as a step beyond traditional clustering tech-
niques, which commonly optimize a single criterion only [11]. It is also a step beyond
techniques for internal cluster validation [9], which typically consider combinations of
criteria, but usually do so by combining criteria in a linear or non-linear form.

The use of multiple objectives in data clustering has two key advantages. First, the
framework of multiobjective optimization provides a natural way of defining a good
partitioning: An exact definition of the clustering problem is elusive, but, loosely, a
good partitioning can be described as one that meets at least the following two criteria:
(i) data points within the same cluster are similar; while (ii) data points within different
clusters are dissimilar. Second, single criteria for clustering are biased with respect to
the number of clusters (i.e., the criteria naturally increase or decrease for partitionings
with a larger number of clusters). One of the consequences of this is that the large ma-
jority of single-objective algorithms require the number of clusters to be specified as
an input parameter. Multiobjective approaches to data clustering can tackle this issue
in a novel way: by selecting two criteria that have opposite biases with respect to the
number of clusters, these techniques are able to counter-balance this bias. In princi-
ple, multiobjective algorithms are therefore capable of exploring a range of solutions
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with different number of clusters, which can support the user in identifying the most
appropriate number of clusters [7].

Previous research on multiobjective clustering [4,7,8] has shown that bicriterion clus-
tering methods often outperform their single-objective counterparts: an algorithm that
optimizes two objectives, X and Y, simultaneously, will usually generate certain solu-
tions that are better than the solutions generated by an algorithm that optimizes X or Y
only. However, little research (if any) has been done to compare the different choices of
(pairs of) criteria in terms of their conceptual aims, or their empirical performance, in bi-
criterion clustering. In this manuscript, we investigate this issue by comparing four pairs
of clustering criteria that have been proposed in previous work on multiobjective clus-
tering. We discuss the conceptual similarities and differences between these choices,
and provide empirical results on the use of the criteria in an existing multiobjective
evolutionary algorithm for data clustering.

2 Background and Methods

The principle of multiobjective data clustering was first introduced in 1980, when De-
lattre and Hansen described an exact algorithm for bicriterion clustering [4]. This algo-
rithm was able to identify the set of partitionings corresponding to an optimal trade-off
between two objectives, namely the split and the diameter of a partitioning. Given com-
putational resources at the time (as well as the algorithm’s reliance on graph colour-
ing [10]), the method was evaluated on small data sets with tens of data items only.
More recently, the idea of multiobjective clustering has been extended to a wider set of
clustering criteria [1,2,7,8,9,12], which have been optimized using heuristic approaches
to multiobjective optimization, principally evolutionary algorithms (EMO).

Here, based on this previous work, four versions of multiobjective clustering were
implemented that differed solely in the clustering criteria used. An existing multiob-
jective clustering algorithm was used as the basis of the implementation, that is the
underlying multiobjective evolutionary algorithm (PESA-II, [3]), as well as the en-
coding, variation operators, initialization and parameter settings are consistent with
those described in [8]. The pairs of objectives used within the different versions are as
follows.

MOCK [8]: The first method uses the objectives employed in the multiobjective evo-
lutionary clustering algorithm MOCK (Multiobjective clustering with automatic
k-determination). The first of these, overall deviation, measures the compactness of
the clusters in the partitioning. It is given as:

(Min.)
∑

ck∈C

∑
i∈ck

d(i, μk),

where C is the given set of clusters, μk is the centroid of cluster ck and d(, ) is a
distance measure defined between data points. The second objective, connectivity,
assesses to what extent data points that are close neighbours are found in the same
cluster. It is given as:

(Min.)
∑

ck∈C

∑
i∈ck

∑
l∈1..L

δ(i, l),
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where L is a parameter specifying the number of neighbours to use (here, the de-
fault L = 20 is used), and δ(i, l) is a function which is 0 when data item i and its
lth nearest neighbour are in the same cluster and 1/l otherwise.

DH [10]: The second method employs the clustering criteria used in Delattre and
Hansen’s seminal biclustering algorithm. The first objective is the complete link
clustering criterion, which minimizes the largest cluster diameter observed in a
partitioning. The objective is formally given as

(Min.) maxck∈Cmaxi,j∈ck
d(i, j),

where C is the given partitioning of the data. The second objective is the single
link clustering criterion, which maximizes the minimum split (distance) between
clusters present in a partitioning. This is given as

(Max.) minck∈C,cl∈C,l �=kmini∈ck,j∈cl
d(i, j).

BMM1 [1]: The third pair of objectives is taken from a multiobjective evolutionary
algorithm originally designed for fuzzy clustering. For the case of crisp partition-
ing (considered here), the clustering objectives used simplify to the within-cluster
sum of squares, and the minimum distance observed between cluster centroids.
Formally, the within-cluster sum of squares is given as

(Min.)
∑

ck∈C

∑
i∈ck

d(i, μk)2,

where μk is the cluster centroid of cluster ck. Evidently, this is very similar to the
measure of overall deviation defined above with the difference that the distance
values are here squared. The minimum distance between cluster centroids is given
as

(Max.) minck∈C,cl∈C,l �=kd(μk, μl),

where μk and μl are the cluster centroids of cluster ck and cl, respectively.
BMM2 [12]: The fourth method also uses the intra-cluster sum of squares (see above)

as its first objective. The second objective is the summed pairwise distance between
cluster centroids. Formally, this is given as

(Max.)
∑

ck∈C,cl∈C,l �=k

d(μk, μl),

where μk and μl are the cluster centroids of cluster ck and cl, respectively.

3 Conceptual Characteristics

Key similarities and differences between MOCK, DH, BMM1 and BMM2 are summa-
rized in Table 1 and are discussed in this section.
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Table 1. Characteristics of the different clustering criteria: (i) Computational complexity asso-
ciated with evaluating a partitioning of N data points in D dimensions into K clusters; L gives
the number of neighbours used in MOCK’s connectivity measure; (ii) Resolution of the criteria
(the extent to which information about all data points is taken into account); (iii) Use of cluster
centroids

Complexity Resolution Centroids
Overall deviation (MOCK) Θ(DN) Complete Yes
Maximum diameter (DH) Θ(N2) Partial No
Within-cluster sum of squares (BMM1, BMM2) Θ(DN) Complete Yes
Connectivity (MOCK) Θ(LN) Complete No
Minimum split (DH) Θ(N2) Partial No
Minimum centroid distance (BMM1) Θ(DK2) Partial Yes
Sum of centroid distances (BMM2) Θ(DK2) Complete Yes

3.1 Similarities between the Objectives

There are some clear similarities in the way clustering objectives have been combined
in the techniques considered. In all four cases, the pair of objectives has been selected
to assess both of the key properties of a good partitioning (see Introduction): that (i)
data points within the same cluster are similar; while (ii) data points within different
clusters are dissimilar.

In MOCK, homogeneity of clusters is assessed using the measure of overall de-
viation. A similar role is played by the maximum diameter criterion in Delattre and
Hansen’s method and by the within-cluster sum of squares in Bandyopadhyay et al.’s
methods (methods BMM1 and BMM2).

In MOCK, separation between clusters is considered implicitly through the measure
of connectivity, which penalizes data points whose nearest neighbours do not reside in
the same cluster. In Delattre and Hansen’s technique the distance between clusters is
assessed using the criterion of minimum split, which identifies the closest pair of data
points that are not in the same cluster. Finally, Bandyopadhyay et al. measure cluster
distance based on the distance of cluster representatives, either considering the entire
set of cluster centres (method BMM2 [12]) or the minimum distance only (method
BMM1 [1]).

3.2 Differences between the Objectives

Despite these clear similarities, there are also some fundamental differences between
the criteria considered.

One defining characteristic of a clustering criterion is the extent to which its calcula-
tion takes into account the cluster assignment of all data points within a data set. This
can be most easily understood using the examples of the within-cluster sum of squares
and the maximum diameter criterion. The within-cluster sum of squares is calculated as
the sum of the distances of all data items to their cluster centre. A change in the cluster
assignment of any single data item will therefore usually result in a change to the value
of the criterion. In contrast, the maximum diameter of a partitioning is defined as the
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largest dissimilarity observed between data items that reside in the same cluster. This
means that changes in the cluster assignment of individual data items will often have
no effect on the value of the criterion, provided that the maximum diameter remains
unchanged.

A second defining characteristic is the presence or absence of the concept of cluster
centroids in the calculation. Methods that use a cluster centroid make certain implicit
assumptions on the shape of the surrounding clusters: it is clear that the definition of
a cluster centroid makes relatively little sense for a nonconvex cluster. Out of the ob-
jectives discussed, overall deviation, within-cluster sum of squares and the measures of
cluster dissimilarity in BMM1 and BMM2 all rely on the definition of a cluster cen-
tre. On the other hand, MOCK’s connectivity measure, as well as both of Delattre and
Hansen’s clustering criteria, make no such assumptions on the presence of a centroid
and the shape of the underlying cluster.

3.3 Computational Complexity

A further significant difference between the clustering criteria is their computational
complexity.

As discussed above, Delattre and Hansen’s measure of cluster homogeneity does not
make use of a cluster centroid. This comes at the expense of quadratic complexity, as
all pairwise dissimilarities between data items need to be considered. In contrast, meth-
ods of cluster homogeneity that do utilize a centroid (i.e., overall deviation in MOCK,
within-cluster sum of squares in BMM1 and BMM2) have linear complexity.

For measures of cluster separation, the differences in complexity are even more
significant. Again, Delattre and Hansen’s is the computationally most expensive: the
identification of the minimum split requires the pairwise comparison of all data items,
resulting in quadratic complexity. MOCK’s objective (connectivity) ranks second in
complexity: it requires the one-off calculation of N sorted lists of length N (complex-
ityΘ(N×N logN ), but has linear complexity for all further evaluations. The objectives
in BMM1 and BMM2 have a complexity of only Θ(DK2), where K is the number of
clusters in the partitioning.

4 Empirical Performance Analysis

4.1 Experimental Setup

For the empirical comparison of the four methods, a benchmark set of Gaussian Clusters
in 2, 10 and 100 dimensions was used. This benchmark set has been described previ-
ously [8], and the data and results are summarized as supplementary material [6]. In
addition, eight two-dimensional data sets available at http://cs.joensuu.fi/sipu/datasets/,
were used; these are summarized in Table 2. These feature a variety of challenging clus-
ter properties which we discuss in the next section. The Euclidean distance measure was
used for all data sets.

The results returned by each method were evaluated by monitoring the size of the
non-dominated set, their quality with respect to the set of eight clustering criteria, as
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Table 2. Two-dimensional data sets (also see http://cs.joensuu.fi/sipu/datasets/)

Name N D K Name N D K

Jain 373 2 2 Compound 399 2 6
Aggregation 788 2 8 Path-based 300 2 3
Flame 244 2 2 r15 600 2 15
Spiral 312 2 3 d31 3100 2 31
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Fig. 1. Size of the solution sets of non-dominated solutions. Representative results over 21 runs
for data sets r15 and d31. The data shows a general trend with an ordering of the solutions sets S
returned by the methods as |SBMM2| > |SMOCK | > |SBMM1| > |SDH |.

well as their accuracy with respect to the known class labels for the data. The latter
was assessed using the Adjusted Rand Index (AR, [5]), which is an established exter-
nal technique of cluster validation that can be used to compare a clustering to a set of
known true class labels. It is normalized with respect to the number of clusters in the
partitioning, and is therefore well suited for the comparison of partitionings with differ-
ent numbers of clusters as done in this work [9]. It takes values between 0 and 1, with
1 indicating a partitioning that accurately matches all known class labels.

4.2 Results

A set of 21 runs was obtained for each combination of data set and pair of objectives.
Each run generated a set of non-dominated solutions, which was then analyzed with
respect to the performance measures discussed above. Full results are available as sup-
plementary material [6]. In the following, we will show selected results obtained by
the methods, with the aim of highlighting key strengths and limitations of the four
combinations of objectives used.

In terms of the size of the solution sets returned by the methods, we find that BMM2
and MOCK return respectively the most and second most non-dominated partitionings.
DH returns the least solutions, followed by BMM1. We postulate that this ordering is
due to the different levels of resolution of the objectives used. As discussed in the pre-
vious section, measures with partial resolution (such as minimum split) are calculated
based on the position of a few, extreme data points only. Consequently, many different
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Fig. 2. Best solutions (as judged by the Adjusted Rand Index) identified by the four methods on
the two-dimensional data sets. Results are over 21 runs.

partitionings will result in the same objective value such that plateaus are introduced
into the search space. Our results indicate that this also reduces the number of Pareto
optimal solutions. Figure 1 shows representative results for data sets r15 and d31.
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Fig. 3. Illustrative example: Non-spherical clusters. Best two cluster solution returned on the
Jain data set by the first run of each method. The nonconvex shape of the clusters introduces
problems for methods BMM1 and BMM2, which implicitly assume a convex shape through the
use of cluster centroids in both objectives.

Internal validation of clustering results, based on the eight different criteria of clus-
tering quality, indicates that, as expected, all of the four methods outperform their con-
testant techniques at optimizing their individual pair of objectives (results not shown).

Figure 2 summarizes the results of external cluster validation (based on the Adjusted
Rand Index) for the two-dimensional data sets. From these data, it is clear that the
choice of objectives has significant impact on the quality of the best solutions returned.
This is further confirmed by the results obtained for the Gaussian data sets (see sup-
plementary material [6]). Out of the four methods tested, MOCK shows the best peak
performance for the majority of the data sets. The performance differences observed
can be understood in more detail by considering the objectives’ performance with re-
spect to cluster structures that pose challenges. Using the clustering results obtained
for the Jain, Flame and Spiral data, Figures 3 to 5 highlight the effects of nonconvex
clusters, chaining between clusters [4] and highly elongated clusters. Key observations
from this analysis are limitations of Bandyopadhyay et al.’s techniques with respect to
unequally sized and nonconvex clusters (a direct consequence of the use of cluster cen-
troids in both objectives), limitations of Delattre and Hansen’s technique with respect
to chaining / overlap between cluster, and limitations of MOCK’s connectivity measure
for extremely elongated clusters (which may be overcome through adjustment of the
parameter L in the connectivity measure).
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Fig. 4. Illustrative example: Non-spherical clusters with chaining. Best two cluster solution
returned on the Flame data set by the first run of each method. The chaining between clusters
poses problems for method DH. As the objectives used in DH do not consider the location of all
data points, they are more sensitive to this type of noise. The presence of non-spherical clusters
makes this data set problematic for methods BMM1 and BMM2.
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Fig. 5. Illustrative example: Highly elongated clusters. Best three-cluster solution returned on
the Spiral data set by the first run of each method. Again, the non-spherical shape of the clusters
is problematic for methods BMM1 and BMM2. MOCK also shows a poor performance on this
data, as the clusters are so elongated that the connectivity measure ceases to work (some of the L
nearest neighbours of each data point are located in another cluster).
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5 Conclusion

This manuscript has focused on the comparison of four pairs of criteria for multiob-
jective clustering. One pair of criteria — from Delattre and Hansen’s early bicriterion
clustering algorithm — has not previously been evaluated except on very small data
sets. The results show that, despite some conceptual similarities in the clustering criteria
compared here, significant performance differences can be observed when they are em-
ployed within a multiobjective evolutionary algorithm for clustering. Overall, the pair
of objectives employed in the multiobjective clustering algorithm MOCK emerges as
the strongest combination. We offer two explanations for this result: (i) the limited use
of cluster centroids in MOCK’s objectives (use in one rather than both objectives) and
(ii) the consideration of all data points in the calculation of both of MOCK’s objectives.
Here, results were all generated using PESA-II; future work may seek to generalize our
findings to alternative metaheuristic or exact methods.
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Abstract. This paper examines the interaction of decision model com-
plexity and utility in a computational intelligence system for algorithmic
trading. An empirical analysis is undertaken which makes use of recent
developments in multiobjective evolutionary fuzzy systems (MOEFS) to
produce and evaluate a Pareto set of rulebases that balance conflicting
criteria. This results in strong evidence that controlling portfolio risk
and return in this and other similar methodologies by selecting for inter-
pretability is feasible. Furthermore, while investigating these properties
we contribute to a growing body of evidence that stochastic systems
based on natural computing techniques can deliver results that outper-
form the market.

1 Introduction

Algorithmic trading is an important part of the global financial services indus-
try. In 2008 over 40% of executed market orders were attributed to algorithmic
trading methods in major developed stock markets. Growth in the volume of
trades generated by automatic signals has risen 30-40% per annum since, with
the financial crisis over the period having little effect on the uptake of technol-
ogy [1]. Financial portfolio management is a complex task that takes place in a
highly dynamic and competitive environment with arguably immeasurable un-
certainty. These factors make the problem quite different from other applications
of computational intelligence in control, pattern recognition, etc, even though
the tools and methods used are the same. It is therefore of value to examine the
relationships between system design and parameters and specific and extensive
performance markers and tools in financial applications distinctly.

This paper applies an evolving fuzzy system based on the representation de-
scribed in [2] and from a technical viewpoint significantly extends that earlier
research to make the models which are learned even closer to those used by fi-
nancial practitioners. This is done by adding fundamental data (accounting and
macro economic information) and by making use of a multiobjective EA to im-
plement criteria for model parsimony. Here we make a contribution to answering
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Fig. 1. Practical problem: design a control system to consolidate the tasks of the human
portfolio analyst

questions about whether subjective criteria (such as human interpretability) can
produce value in the application of heuristic, and specifically computational in-
telligence, approaches to problem solving in financial trading - a complex and
dynamic activity performed on the basis of incomplete information. We find that
by controlling rule intelligibility we are able to strongly influence the risk and
return profile of portfolios managed by the algorithm. This angle is simply not
able to be considered in classical modeling as it is currently espoused in finance
because a trading model is viewed in simple terms essentially as a formula rather
than an intelligent agent.

The particular methodology used to produce interpretable models is as justi-
fied as other techniques capable of representing expressive models computation-
ally because it too has been found to perform at a standard equivalent to other
state of the art machine learning approaches on standard benchmarks [3]. Many
other multiobjective approaches are described in the literature [4]. The conclu-
sions made here are also to some extent applicable to other methods. In addition,
certain aspects of the particular approach make it particularly suitable for this
analysis, notably the the structure that is imposed on the decision model rep-
resentation to cause the optimzation process to in some respects imitate human
reasoning in the application domain.

Rule based approximate reasoning systems can be applied to approximate
human thinking when combined with a self-learning methodology. Efforts to
automate human thinking in this way has been found to lead to improved per-
formance in real world applications: for example in emulating a skilled human
operator who controls complex machinery “without a formal quantitative model
in mind” [5]. Figure 1 illustrates the rationale of the system presented here
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in adapting approximate reasoning principles to financial modeling. A financial
analyst generally performs a sequence of specific activities: generating or select-
ing/tuning a range of indicators (these are often called rules in financial parlance
and should not be confused with the term rulebase as it is used here) from raw
data measurements or feeds; testing resultant models using historic data; build-
ing a portfolio using the model and lastly there is constant process of updating
the approach based on portfolio management performance.

In the remainder of the paper we describe the design of the system in perform-
ing the tasks illustrated in Figure 1, provide empirical results on performance of
different portfolios while varying model complexity, and make conclusions appli-
cable more generally regarding the complexity of decision models in the financial
problem domain.

2 Methodology

The approach mimics a real financial analyst (see Figure 1). The key tasks are:
data measurement; transformation to generate unit strategies based on historic
price and volume data (technical analysis) and information about the firms un-
derlying the stocks (fundamental analysis); selecting and combining the numer-
ous models in the previous step into a genotype comprising a fuzzy rulebase and
a vector of parameters for the strategies; and lastly the implementation of deci-
sions on portfolio contents. A multiobjective EA facilitates the study of model
complexity.

2.1 Measurement, Information Set, and Initial Models

The information set defines the universe of discourse that can be represented
from the environment. Technical (price/volume) and fundamental information
on underlying firms is incorporated.

Fundamental Strategies. A set of fundamental variables found to be useful
in other emprical studies was selected. The relationship between the variables
considered and price changes has been found to be farily transient further ac-
centuating the need for an adaptive methodology able to be achieved with a
heuristic approach. Dividend yield measures the cash flow benefit with regard to
the share investment. The power of dividend yield to forecast stock return has
been noted in [6] as being “temporary” component of prices. Price to Book Value
has been used in fundamental factor models for some time. The price Earnings
ratio (PE) divides the share price, over the total earnings per share, in some
periods and markets the PE ratio is a predictor of higher return with reduced
risk, see [7]. Earnings per share (EPS) is calculated by taking the ratio of the
profit of the firm over its market share. Stocks that have a higher earnings per
share generate more income relative to the stock price and thus places upward
pressure on the share price [8]. The debt to equity ratio looks at the liabilities
per share; it has been shown to be positively correlated with stock price [9].
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In a falling or volatile market liabilities may be of more importance. The last
three fundamental variables ( earnings before interest and tax, return on assets,
and return on equity) divide firm income into classifications provide more fine
grained picture.

Each variable is processed to obtain a rate of change measurement in the
form of an oscillator (O). The oscillator measures the change relative to an
earlier point O = (vt − vt−m)/vt−m. The parameter m measures this period and
belongs to the set 10, 20, 30, . . . , 260.

Technical Strategies. Technical strategies use price and volume data. They are
widely used in industry and theoretical justifications postulate the importance
of behavioural factors and their detection using technical rules [10]. Technical
trading rules may also be able to pick up institutional trading activity [11].

The technical inputs is given in table 1. The abbreviations have meaning:
SMA, single moving average; DMA, double moving average; PPO, price oscil-
lator; OBV, on balance volume indicator; RSI, relative strength index; MFI,
money flow index; Vol. DMA, volume double moving average; PVO, percentage
volume oscillator; DMI, directional movement index; %R, percent R. For the
OBV indicator the value obvt for each day t is calculated by initially at t = 0
obv0 = v0, then for each subsequent day t: if pt > pt−20 then obvt = obvt−1 + vt;
else if pt < pt−20 then obvt = obvt−1−vt, else if if pt > pt−20 then obvt = obvt−1.

2.2 Decision Model Representation

A solution aggregates the inputs from the processing described in the previous
subsections and is represented using a set of fuzzy rules and an integer vector of
parameters (time horizons - see restrictions in Table 1).

A rulebase is a mapping
D : �n → Ω,

from vector of observations x = {x1, . . . , xn} ∈ �n to a signals {ω1, . . . , ωc} ∈ Ω
to buy or sell. The form of the rules is based on [13], the output is interpreted
as a degree of certainty the buy or sell signal is correct, given antecedent and
training data. A rule rk in a ruleset M has the format: Rk : if x1 is A1 ∧ . . . ∧
xn is An; then (zk,1, . . . , zk,c) where x1 . . . xn are feature observations that are
described by linguistic labels A1 . . . An, these are common in the different rules
and precalculated as in [2].

zk,i =
Sum of matching degrees of rule with ωi

Sum of total matching degrees for all rules
.

The mapping D uses the max operation to aggregate rules and the product
t-norm to aggregate the antecedent conjunctions. The degree of certainty for

i-th signal is D : evali(x) = maxMk=1

{
zk,i

∏n
j=1 {μj(xj)}

}
, In this way, we

specify a search space of possible rules to correspond to trading rules that a
human expert trader could construct using the same information. A rule is
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Table 1. Technical indicators and restrictions on parameters

Name Formula Restrictions

Price Change 1 δ = 20

Price Change 2 ln

(
pt

pt−δ

)
δ = 50

Price Change 3 δ = 100

SMA Buy
pt

mat
lenma ∈ {10, 20, 30}

SMA Sell
mat
pt

lenma ∈ {10, 20, 30}
DMA Buy 1 lenma2 ∈ {10, 20, 30}

lenma2 ∈ {40, 50, 60}
DMA Buy 2

ma1t
ma2t

lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

DMA Buy 3 lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

DMA Sell 1 lenma2 ∈ {10, 20, 30}
lenma2 ∈ {40, 50, 60}

DMA Sell 2
ma2t
ma1t

lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

DMA Sell 3 lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

PPO 1 lenma2 ∈ {10, 20, 30}
lenma2 ∈ {40, 50, 60}

PPO 2
ma1t−ma2t

ma1t
× 100 lenma1 ∈ {60, 70, . . . , 120}

lenma2 ∈ {130, 140, . . . , 240}
PPO 3 lenma1 ∈ {60, 70, . . . , 120}

lenma2 ∈ {130, 140, . . . , 240}
DMI see [12]

%R %R =
pt−min[pt−1,...,pt−10]

max[pt−1,...,pt−10]−min[pt−1,...,pt−10]

RSI RSI = 100 − 100
1+RS

RS =
totalgains÷n
totallosses÷n

MFI MFI = 100 − 100
1+MR

MR =
∑ MF+

MF−
MF+ = pi × vt, wherepi > pi−1, and

MF− = pi × vt, wherepi < pi−1

Vol. DMA Buy 1
vma1t
vma2t

lenvma1 = 5, lenvma2 = 20

Vol. DMA Buy 2 lenvma1 = 20, lenvma2 = 100

Vol. DMA Sell 1
vma2t
vma1t

lenvma1 = 5, lenvma2 = 20

Vol. DMA Sell 2 lenvma1 = 20, lenvma1 = 100

OBV Buy

(
pt−max

[
pt−1,...pt−n

])
pt

+

(
max

[
obvt−1 ,...obvt−n

]
−obvt

)
obvt

OBV Sell

(
min

[
pt−1,...,pt−n

]
−pt

)
pt

+

(
obvt−min

[
obvt−1 ,...,obvt−n

])
obvt

PVO 1
ma1t−ma2t

SMt
× 100 lenma1 = 5, lenma1 = 20

PVO 2 lenma1 = 20, lenma1 = 100

Bol 1 Bol =
pt−mat

2×sd(Pt,...,Pt−δ )
δ = 20

Bol 2 δ = 50

considered in this paper to be a statement in structured language that speci-
fies that if some condition(s) hold, then a particular action ought to be taken.
IF [Conditions], THEN do [buy/sell a particular stock] Each rulebase comprises
several such statements. The genotype representation and operators are provided
in [2].

2.3 Learning Process

The learning model uses a pareto based algorithm (SPEA2, [14]) to obtain a set
of solutions balancing objectives of solution simplicity and in sample prediction
accuracy. We can express the task to learn rules as an optimization problem in
which there are two main criteria. These are to minimize the number of false
signals produced by the strategies (accuracy), and reduce the model complexity:

minimize z = ferror(x), fcomplexity(x).
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The accuracy objective performance is the error in determining buy and sell
signals from a set of examples in training data T :

ferror(x) = 1 − # correct signals

# false signals + # correct signals
.

The number of correct signals is the count of the number of times the rulebase
correctly anticipated a rise or fall in the share price, a false signal is the number of
times the rulebase falsly predicted a rise or fall in the share price. The complexity
of a strategy specified by a rulebase is defined by the number of rules and, within
each rule, by the number of clauses.

A rulebase has two main sources of complexity which are the number of rules,
and inputs quantified per rule. Therefore, fcomplexity may be decomposed into
these components (which are modeled as separate objectives using the mul-
tiobjective evolutionary algorithm). In this paper we consider two complexity
objectives, the number of rules, and the average number of inputs used per rule
(#inputs/#rules) in the rulebase. Given two fuzzy rulebase solutions, x1 and
x2, we can say that x1 dominates x2 if it is less than or equal to the other in
all objectives being minimized or otherwise that it dominates in particular one
of the objectives. The final source of complexity is from the definition of the
linguistic variables - we set this deterministically prior to running the optimizer
so it is not an objective here. The approach is verified using classical benchmarks
such as Iris in [3].

3 Financial Portfolio Management

These experiments used historic data from the Standard and Poor ASX 200 oil
and gas stocks between April 2000 and November 2009. All data was sourced
from Data International. Instead of raw price data we used a total return index
adjusted for stock splits, mergers and dividend payments. The oil and gas sector
is very volatile in this period (global financial crisis and reversal as a result of
the resources trade with China). There was a period of growth followed by fall
and a subsequent recovery, this allowed for an evaluation of the system in three
different epochs. Transaction costs were 0.25% to buy or sell, population size for
SPEA was 100 and the archive size was 10. In the business model, transactions
inspired by the decision model were applied to re-balance portfolios to sell and
buy recommended stocks at fixed intervals of 20 trading days, for adaptation
the optimization process was run before each re-balance using the previous year
of data for “training”.

Two benchmarks are used for comparison the first is a a buy and hold approach
(BH) and the second is a standard active alpha strategy [1]. The alpha is based
on the single-factor pricing model which relates a stocks excess return, ri,t − rf,t
to market return as follows

ri,t − rf,t = αi + βi [rm,t − rf,t] + ei,t,
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Table 2. Metrics of performance for the portfolios managed by solutions with varying
structural complexity (SC) and linguistic complexity (LC) along with the 2 benchmark
portfolios. Confidence bounds are at the 90% level based on 30 test runs.

HP Ret An. Ret σ IR Sel. Net Sel.

Benchmarks

BH 6.1325 0.2899 0.3654 0.5836 0.2956 0.1703
Alpha 12.7924 0.3873 0.3988 0.7931 0.4095 0.2697

Low LC

Low SC 16.0 [± 4.74] 0.366 [± 0.0375] 0.501 [± 0.0279] 0.699 [± 0.0694] 0.438 [± 0.0405] 0.262 [± 0.0369
Medium SC 10.4 [± 2.94] 0.314 [± 0.0351] 0.418 [± 0.0218] 0.621 [± 0.0773] 0.345 [± 0.0362] 0.199 [± 0.0351]
High SC 12.7 [± 4.55] 0.318 [± 0.0421] 0.453 [± 0.0297] 0.617 [± 0.0811] 0.368 [± 0.0450] 0.208 [± 0.0407]

Medium LC

Low SC 16.5 [± 5.99] 0.368 [± 0.0372] 0.490 [± 0.0587] 0.667 [± 0.0621] 0.419 [± 0.0522] 0.246 [± 0.0366]
Medium SC 13.3 [± 3.04] 0.355 [± 0.0330] 0.526 [± 0.0581] 0.647 [± 0.0617] 0.421 [± 0.0408] 0.235 [± 0.0311]
High SC 10.8 [± 2.32] 0.337 [± 0.0287] 0.491 [± 0.0396] 0.615 [± 0.0563] 0.388 [± 0.0359] 0.215 [± 0.0292]

High LC

Low SC 12.7 [± 1.80] 0.375 [± 0.0179] 0.394 [± 0.0152] 0.764 [± 0.0377] 0.394 [± 0.0204] 0.256 [± 0.0178]
Medium SC 31.6 [± 7.65] 0.482 [± 0.0279] 0.490 [± 0.0179] 0.912 [± 0.0456] 0.543 [± 0.0332] 0.370 [± 0.0290]
High SC 30.8 [± 7.67] 0.477 [± 0.0292] 0.491 [± 0.0214] 0.903 [± 0.0504] 0.537 [± 0.0341] 0.364 [± 0.0302]

index i indicates the stock and t refers to a day, e is an error term and ri,t is the
stocks return on day t, rf,t is the risk free rate, rm,t is the market return. In an effi-
cient market it would be possible to price stocks based solely on their risk compo-
nents, here the excess return above the market. In the ideal theoretic case returns
of any stock above the risk-free rate can be fully explained by the risk component,
meaning that βi would be one andαi zero. If the alpha is actually positive the stock
is outperforming relative to its level of risk and should be bought (conversely if it
is negative the stock should be sold). In testing, the alpha portfolio produced an
annual return of 38% compared with the buy and hold strategy which resulted in
29.56%. The information ratio of the alpha portfolio was 0.78 and for the buy and
hold it was 0.58. Other metrics are given in table 2.

With some levels of complexity, the system was able to out perform both
the active and passive benchmarks. Table 2 shows performance metrics achieved
while varying linguistic and structural complexity parameters. Linguistic com-
plexity refers to the granularity of the membership functions, and structural
complexity refers to the relative number of rules and inputs per rule (this was
controlled by selecting solutions from the Pareto front with different trade-offs
between performance and complexity objectives).

As well as volatility, we consider risk using two more refined metrics. The first
of these, the information ratio (IR), is superior to the commonly used Sharpe
ratio (return/volatility) as it considers excess return. It is calculated as the
portfolios average return in excess of the benchmark portfolio over the standard
deviation of this excess return. It is used to evaluate the active stock-picking

ability of the rulebase. The IR is calculated as: IR =
√
260α
σe

, where σe is the
standard error of alpha in the capital asset pricing model expression of portfolio
return given in the previous section and used to manage the alpha benchmark.
Selectivity and Net Selectivity [15] provide further refinement of overall perfor-
mance adjusted for risk. Any returns that a portfolio earns above the risk free
rate are adjusted for both the returns that a market benchmark portfolio would
earn if it had the same level of systematic risk and the same level of total risk.

Figure 3 shows differences in portfolio return and volatility due to complex-
ity. Linguistic complexity is indicated by the number of membership functions
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(a)

(b)

Fig. 2. The risk profile of portfolios managed with solutions of differing complexity.
(a) shows Return vs. Volatility by complexity. (b) shows the Information Ratio of the
portfolios and the benchmarks.
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(i.e. 3 to 13 MF) and structural complexity by numbers (0 to 9 Pareto). Simpler
models resulted in of lower return and (often) higher volatility, there was also
lower stability between the different runs. The stability between different runs is
an important risk as the method is stochastic. For more complex models higher
return was observed at the cost of higher volatility (though here the informa-
tion ratio shows the increase in volatility is justified by the return). In all cases
there is a crux where increasing complexity above a certain level does not lead
to gain and performance deteriorates. But only the average to higher linguistic
complexity models provide the potential to out perform the benchmarks with
appropriate levels of structural complexity.

4 Conclusion

In this paper we have described an evolutionary fuzzy system for portfolio man-
agement that first of all makes novel contributions by significantly building on
earlier work in [2]. The experiments show the system performs well. There was
considerable variation however for different levels of complexity and this can be
used to hone performance. Almost all related research in finance is focused on
relatively simple rules, we find such rules did not result in excess return above the
benchmarks while the more complex models could. Therefore, it seems likely that
controversy in some circles regarding the possibility of finding profitable rules
somewhat misses the point, recent systems based on machine learning methods
probably are able to do well by harnessing complexity. Another observation is
that as the system approximates human reasoning, additional complexity may
indicate to some extent why it is a fact that industry practitioners commonly
attempt to generate profits by trading based on past data, despite there being
in academia almost a consensus that there is limited possibility to do so.

When computational intelligence is used in algorithmic trading, it can lead
to novel ways of controlling performance. For instance, as solution complexity is
found to be a strong driver of risk and return, performance can be reliably shaped
through identifying the locus where additional return starts to generate higher
risk. It is also possible to use model complexity parameters improve stability
and thus limit problems associated with the stochastic nature of the learning
process which are often viewed as a drawback compared to other static modeling
approaches in algorithmic trading.
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Abstract. Aggregate fitness selection is known to suffer from the bootstrap 
problem, which is often viewed as the main inhibitor of the widespread 
application of aggregate fitness selection in evolutionary robotics. There 
remains a need to identify methods that overcome it, while requiring the 
minimum amount of a priori task knowledge from the designer. 

We suggest a novel two-phase method. In the first phase, it exploits multi 
objective optimization to develop a population of controllers that exhibit several 
desirable behaviors. In the second phase, it applies aggregate selection using the 
previously obtained population as the seed. The method is assessed by two non-
traditional comparison procedures. The proposed approach is demonstrated 
using simulated coevolution of two robotic soccer players. The multi objective 
phase is based on adaptation of the well-known NSGA-II algorithm for 
coevolution. The results demonstrate the potential advantage of the suggested 
two-phase approach over the conventional one. 

1 Introduction 

A major goal of Evolutionary Robotics (ER) is to develop methods for automatically 
synthesizing autonomous robot systems. However, the majority of ER research has 
used fitness functions which incorporate moderate to high levels a priori knowledge 
about the task [1]. Solving generally complex problems without the incorporation of a 
priori knowledge is still an open problem. Specifically, aggregate fitness, which bases 
selection only on success or failure to complete the task (a very low level of 
incorporated a priori knowledge [1]), is known to suffer from the bootstrap problem, 
in which randomly initialized populations have no detectable level of fitness and thus 
cannot be evolved [1]. Overcoming this problem is often considered as one of the 
main challenges of ER [2].  

Our proposed approach is associated with two existing methods: (a) one that 
initially relies on a bootstrapping component and later gives way to aggregate 
selection [3], and (b) one that uses Multi Objective Optimization (MOO) for 
incremental evolution, relying on a pre-defined decomposition of the task into sub-
tasks [4].  

We suggest a novel method building upon these concepts. First, it exploits MOO to 
evolve a population of controllers which exhibit several useful, non-task specific, 
behaviors (explore environment, avoid obstacles, etc.). Secondly, it applies aggregate 
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selection using the previously obtained population as the seed population. This 
reduces considerably the probability of the population from being sub-minimally 
competent. As MOO supports diverse search, the overall proposed method remains 
non-tailored in nature, and thus should scale better to complex problems. 

The contributions of the current work are:  

1. Proposing and analyzing a novel method for dealing with the bootstrap problem in 
ER, which offers a more generic approach than common practices. 

2. Expanding a recently suggested procedure (equal-effort comparison), and utilizing 
a unique one (end-game comparison), for comparing co-evolutionary methods. 

3. Introducing a slightly modified version of the well established NSGA-II algorithm 
that makes it suitable for use in co-evolution.  

To demonstrate the proposed method, this work employs a competitive coevolution 
task, namely a soccer game, for which aggregate selection is a natural choice.  

The reminder of this paper is organized as follows: Section  2 provides some 
relevant background. Section  3 presents the comparison procedures and the proposed 
method. Section  4 provides details on the simulation study and the outcomes of 
comparisons. Finally, section  5 provides conclusions and future research suggestions. 

2 Background 

2.1 Bootstrap Problem 

When trying to solve a complex task using a high-level reward function, practitioners 
of evolutionary algorithms, and other search and optimization methods, often 
encounter a situation where no initial search pressure exists. Particularly in ER 
studies, such a bootstrap problem is said to occur if all individual controllers in the 
initial population are scored with null fitness [5], or with no detectable level of fitness 
[1], prohibiting the onset of evolution.  Overcoming this problem is one of the main 
challenges of ER [2]. Mouret & Doncieux describe the attempts to overcome the 
bootstrap problem as different schemes of incremental evolution [2]. Nelson et al. [1] 
and Mouret & Doncieux [2], independently, suggested categories of the available 
schemes. Here we refer to that of [2] including four categories: staged evolution, 
environmental complexification, fitness shaping and behavioral decomposition.  

In [3] the bootstrap problem is dealt with by adding a bootstrapping component 
that is active only when the population is sub-minimally competent. This strategy fits 
well into the fitness shaping category. In [2] and [4] the bootstrap problem is 
addressed by adding different objectives to the original fitness function. This 
approach may be categorized as a fifth category that we hereby call multi-
objectivization [6]. In [6] multi-objectivization denotes solving difficult single 
objective problems with local optima by elevating fitness dimensionality. Here we 
expand this notion to generally supporting solution of numerical difficulties by adding 
objectives.  
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2.2 Multi-objective Evolution 

ER problems may involve trade-offs between different and possibly conflicting 
objectives. In such cases the designers may set the goals as part of their problem 
definition and obtain a Pareto-optimal set of controllers (e.g. [7]). Here the interest in 
contradicting objectives, and in the corresponding non-dominated set, is different. We 
explore their potential to serve as a booster for a single objective evolution. Existing 
Multi-Objective Evolutionary Algorithms (MOEAs) should support the initial phase 
of the suggested search method. For this purpose, we slightly modified the well 
established NSGA-II algorithm [8] to suit it for use in co-evolution (see section  3.1). 

2.3 Khepera Robot Soccer 

Aggregate selection is a natural choice for competitive co-evolution. Thus, we chose to 
experiment with a domain from this category. The experimental work reported herein is 
conducted on a robotic soccer-like game following [9]. In [9], two simulated Khepera 
robots are competing to scoring more goals than each other. In Fig. 1. the robots are 
depicted as pacman-like symbols chasing the light colored circle (ball). 

The black sector within each robot’s symbol shows the Field Of View (FOV) of its 
ball sensor. The inputs to the controller are sensor primitives including: proximity, ball 
direction and width (when in FOV), “stuck”, and “goal direction”. The outputs are 
motor primitives: translation speed, rotation speed, and rotation direction. The controller 
is a fixed-structured tree of behavior modules. The top behavior modules act as 
arbitrators, propagating control resolutions downwards, and the bottom modules 
activate primitive behaviors (motor primitives). 

In [9], the fitness for one round was the sum of three components. The first 
component is meant to dominate the fitness if a goal is scored (as in aggregate 
selection). The second component favors earlier goals, and the last component favors 
the robots that stay close to the ball (a bootstrapping component). The authors indicate 
that the design of the function was a guess based on intuition and it “turned out to serve 
its purpose”. This type of selection employs fitness shaping for bootstrapping, leaving 
us with an opportunity to change the method and examine if it is beneficial.  

A practical factor in choosing this domain was that its source code has been available 
through a website provided in [9]. It made it possible for us to test alternative 
evolutionary schemes against the original one. We did encounter some problems with 
the simulator and introduced corrections, but nothing on the high-level was changed.  

 

 

Fig. 1. A snapshot of the domain (as obtained using the website provided in [9]) 
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3 Methodology 

3.1 Comparison Procedures 

In section  4 of this study several methods are compared, including random search vs. 
co-evolution, and the proposed two-phase approach vs. co-evolution. In both cases 
co-evolution is done as in [9]. To compare results the following techniques are used. 
Their implementation is available at: http://bit.ly/LC0LYA.  

Equal-Effort Comparison. Several methods have been utilized to measure progress 
in coevolution, of which most popular are Masters Tournament [11] and Dominance 
Tournament [12]. But lately these methods have been criticized to measure historical 
progress while implying to measure global progress [13]. According to [13], the 
common fallacy of these methods is that they measure performance against previous 
opponents – that is, the sequence of successive opponents against which they have 
evolved. In this case, the training set is being used as a test set. 

We decided to turn to alternative methods that do not involve a comparison of 
individuals with the opponents with which they have coevolved. The underlying 
assumption here is that separation of co-evolved populations, during a posteriori 
analysis, will bring us closer to assessing the global progress instead of the historical 
one. 

In this context we utilize the equal-effort comparison technique [13]. This 
technique is designated to compare the performance of two methods by opposing the 
champions of one method (its hall of fame) against the champions of the other, and 
tracking the respective number of victories over the course of coevolution, using 
several independent runs. The competition is conducted between individuals that were 
obtained after an equal number of evaluations, thus the name equal-effort comparison. 

On top of the basic graph that results from this technique we added some aspects of 
our own. These include the addition of 95% confidence intervals to the graph, and 
running a moving average for 5 generations to smoothen the curve. Also, we used a 
stop condition, which is introduced in the following sub-section, to decide how many 
independent runs are enough. 

End-Game Comparison. Reaching statistical significance is a justifiable 
requirement; yet, it is not always customary in ER studies. With this respect, we 
introduce a technique for statistically comparing the performance of two methods by 
opposing their best performing representatives. The proposed technique follows the 
principal not to compare individuals with the opponents with which they have 
coevolved, similarly to the previous technique. As seen in Fig. 2. , for each method 
we gather the best 5 individuals out of the final population of each run, in a set, which 
is denoted Si

j, where i is the method index (i=A or B) and j is the run index 
(j=1,…,N). We wish to ensure that N is a statistically significant number of runs but 
to keep it to a minimum. Thus, N is subject to a lower limit. An upper limit for N is 
also used to manage the computational efforts. 



56 S. Israel and A. Moshaiov 

 

Fig. 2. The sequence of end-game comparison 

At i=1, 5x5 competitions are carried out between all pairs from the two sets SA
1 

and SB
1. At i=2 additional competitions are carried out to complete all possible 

pairings with the newly introduced individuals and with the existing ones, from i=1. 
The accumulated results are depicted as a matrix in the 'Compete' block in Fig. 2. . At 
each change of the run index we calculate an averaged fitness within each best-5 set. 
To reach statistical significance we run a t-test using the obtained averaged fitness 
values and cease if the p-value reaches 0.05. If the procedure has ceased before N 
reached its upper limit then the winning method is the one with the higher mean 
fitness. Otherwise, the comparison is declared as indecisive. 

3.2 Two-Phase Method 

Motivated by the idea that MOO supports diverse search, as demonstrated in [2] and 
[4], we propose a different use of MOO as a novel approach for bootstrapping. Some 
a priori knowledge is still required, as in any bootstrapping method. However, we aim 
to make our method more generic and less sensitive to disruptive assumptions.  

Our approach is comprised of two phases. First, it exploits MOO to develop a 
population of controllers evolved to exhibit several desirable behaviors. Secondly, it 
applies aggregate selection using the previously obtained population as the seed 
population. We propose to choose the objectives for the first phase from a set of 
generally desirable behaviors in ER. These may be ‘explore environment’, ‘avoid 
obstacles’ and ‘approach target’. Of course these behavioral categories should be 
realized differently for specific domains, but we claim it is not difficult to design such 
objectives following a generic guideline - encourage useful behaviors which are not 
task specific. In Table 1, for instance, we suggested realizations for the domain used 
in this study.  
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In contrast to [2] and [4], we propose to multiobjectivize the problem only in early 
stages of evolution, disregarding the original objective in principal, and then proceed 
with the original objective alone. This approach is applicable in a wide variety of 
situations because it doesn’t alter the whole algorithm but rather adds a preliminary 
phase. 

For the MOO phase we used an open-source java-based framework, namely jMetal 
[10]. We slightly modified the well established NSGA-II algorithm to make it suitable 
for use in co-evolution. We call this variation ceNSGA-II, which means co-
evolutionary NSGA-II. The difference lies within how the offspring are evaluated. 
We let the offspring play three matches (to reduce the influence of randomness): two 
against themselves and one against each other, such that their objective-values are 
determined according to the worst score of these three trials. A short examination 
suggested that in this manner the population is driven towards desirable behaviors. 

4 Simulation Study 

4.1 Random Search vs. Co-evolution 

An initial confidence examination has been conducted to illustrate that co-evolution 
offers a clear advantage over random search. For this purpose two populations have 
been co-evolved for a fixed amount of generations, using the procedure of [9]. Then 
we generated a random population using the same amount of evaluations as was 
required for co-evolution. The evaluations of the randomly generated individuals 
served the purpose of establishing the inner ranking of the random population (about 
5-10 evaluations per individual to extract the fittest out of a population of 10-20 
thousand individuals). 

Next, we ran the end-game comparison technique between co-evolution and 
random search. The comparison was done after 65,000 evaluations (equivalent to 50 
co-evolution generations). The number of runs, N, was set in the range of [10, 30]. 
Meaning that the stop condition was not checked if there were less than 10 entries and 
that at most 30 runs were made.  

As expected, the co-evolutionary method has proven to be superior (after 10 runs 
with a p-value reaching 10-6). This unequivocal result is not surprising when 
considering the size of the search space, which makes it hard for randomly generated 
individuals to succeed. 

4.2 Objective Combinations 

For the main purpose of this study we explore which objective combinations may 
potentially lead to better results. We begin by listing, in Table 1, several broad categories 
of desirable behaviors in ER, including: (a) explore environment, (b) avoid obstacles, and 
(c) approach target. Then, also in Table 1, we list some possible realizations of these 
behaviors, as applied to the current particular domain. The realizations are formulated as 
objectives to be minimized. In the rest of this paper we denote formula (1) by 
“centerMove” or obj. 1, formula (2) by “proxiSensor” or obj. 2, etc.. 
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Table 1. Summary of suggested behavior categories and corresponding realizations for our 
particular domain. The realization formulas are objectives to be minimized and are negative by 
convention; therefore some formulas are normalized by offest and factors.  

Behavior Categories Domain Realizations Realization Formulas (Objectives) 

Explore environment   

Maximize linear speed ( )
=
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t 1

tcenterMove       (1)   

Avoid obstacles  
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Approach target  
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Next, we employed ceNSGA-II with several bi-objective combinations. The bi-

objective approach is used to make the problem easier to handle and analyze, yet the 
method is not restricted to such an approach. The realization formulas rely on sensory 
data available to the controller and are mostly self explanatory, except of formula (6). 
The later formula is the result of an amalgamation of two objectives that seemed 
reasonable to combine.  

The process of evaluating the bi-objective combinations was carried out by 
examining the non-dominated fronts in objective space and determining which 
combinations lead to well diversified fronts. We have found “proxiSensor” to be 
unsuccessful since the ball also activates the proximity sensors. We also found that 
the objectives “direction” and “ballSize” work better together than separately. This is 
because it is favorable to head towards the goal when the ball is in close sight.  

In Fig. 3., typical performance distributions are shown for two different bi-
objective combinations. We should note that the combination {obj. 1, obj. 6} had 
better diversification not only among the shown two cases but also when compared 
with other combinations; thus we proceeded with it.  

The following search parameters are relevant for the study in this section and the 
following one: for selection we used the same binary selection operator as in NSGA-
II (jMetal’s ‘BinaryTournament2’); for mutation we used a uniform mutation operator 
(jMetal’s ‘BitFlipMutation’ operator for integer representation) with probability of 
1/638; for crossover we used jMetal’s ‘SinglePointCrossover’ operator with 
probability 0.9. The operator types and values were adopted from jMetal’s examples.  
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                       (a)                                      (b) 

Fig. 3. Typical performance distribution for two bi-objective combinations: (a) {obj.1, obj.6 } 
and (b) {obj.3, obj.6 }. The instantaneous (local) Pareto front is marked with a dashed line and 
with circles around the performance vectors which comprise it.  

4.3 Two-Phase vs. Co-evolution 

Once reaching a seemingly promising objective combination, {obj. 1, obj. 6}, we set 
to examine its success in the full context of the two-phase method. First we utilized 
for this purpose the end-game comparison technique, using as competing methods the 
two-phase method and the original co-evolutionary method from [9], and setting N in 
the range [10,30].  

Table 2 shows the results for the chosen bi-objective combination, for two 
independent comparisons which differ only in the total number of evaluations. The 
difference in fitness is due to the 5,000 evaluations used in the 1st phase. It is 
emphasized that the total number of evaluations in the co-evolution method is equal to 
the sum of evaluations made by the two-phase method, in both phases.  

Table 2. End-game comparisons between the co-evolution and the two-phase methods. Two 
comparisons appear in the table separated by a dashed line. The 1st row, in each comparison, 
refers to the co-evolutionary method, and the 2nd  to the two-phase method. The 3rd till the 6th 
columns show how many generations and evaluations were used in the MOO phase and the co-
evolution phase respectively. The last two columns under ‘comparison’ show the average fitness 
and its difference as obtained in each method. The symbol * that appears in the last column 
indicates significance at the 5% level; the corresponding t-statistic appear in parentheses.  

  MOO phase co-evo. phase comparison 

Comp. № Method gen. eval. gen. eval. Avg. fitness Fitness diff. 
1 co-evo.  0 0 50 65,000 1594.0 1247.8* 

(2.27) two-phase 50 5,000 46 60,000 2841.8 

2 co-evo.  0 0 200 250,000 2438.5 143.8 

(0.45) two-phase 50 5,000 196 245,000 2582.3 
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Fig. 4. Equal-effort comparison results showing the success rate of the two phase method and 
the corresponding 95% confidence intervals versus generations. Generations are counted in 
terms of co-evolution (not to confuse with the notion of generations in the MOO phase). 
Success in a match is counted when a champion of the two-phase method defeats the 
corresponding champion of the co-evolutionary method; disregarding the fitness difference that 
led to the victory. Here the success rate was calculated based on N=30 independent runs. 

It is evident from the table that initially (after 65,000 evaluations – equivalent to 50 
co-evolution generations) the two-phase method is superior. However, there is no 
such clear conviction in the longer case (after 250,000 evaluations – equivalent to 200 
generations). To get an idea of the required computational effort we note that one 
generation is evaluated at approximately 7 seconds on a Core i5 CPU @ 2.66GHz.   

An equal-effort comparison is carried out to better understand when the advantage 
of the two-phase method fades. The results for a 375,000 evaluations long run 
(equivalent to 300 co-evolution generations) are presented in Fig. 4. 

As expected when there is no clear winner, the number of runs was 30. From the 
graph it is evident that the two-phase method rises to about 70% success rate in 100 
generations, but then in about 80 generations it regresses to the 50% equilibrium. This 
analysis is consistent with the results present in Table 2. The results indicate that the 
two-phase method has an advantage over the original method in the early stages of 
co-evolution, but this advantage fades as co-evolution progresses.  

5 Conclusions and Future Research 

A novel bootstrapping approach is proposed based on multi-objectivization and a two-
phase evolution scheme. The suggested approach is compared with a conventional 
one using co-evolution of robot controllers for a soccer game. The conventional 
method employs an intuitive domain-specific bootstrapping component, whereas the 
proposed approach aims to be generic.  

In this study we put emphasis on carefully designed and statistically significant 
comparisons. Using such comparisons, our results confirm that the two-phase method 
is better in bootstrapping the evolutionary process. We also demonstrated that it is 
possible to encourage the acquisition of useful behaviors without losing valuable 
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portions of the search space. However, from the erosion in the advantage of the two-
phase method we conclude that, at least in our simulation study, it did not succeed in 
expressing unique behaviors unreachable by conventional means after enough 
generations. 

In regard to ceNSGA-II, it is recommended that in future research various 
alternatives to evaluate and compare offspring performances will be examined, and 
the co-evolution algorithm will be optimized.  Regarding the MOO phase, it is 
conceivable that in more complex domains its positive effect will last longer and even 
persist. Further research is needed, with various domains and fitness aggregation, to 
further assess the proposed technique, based also on CPU time comparisons. Such 
studies are also expected to enable automatic selection of satisficing objective 
combinations in a generic manner.  
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Abstract. Multiobjective evolutionary algorithms (MOEAs) have at-
tracted growing attention recently. Problem-specific operators have been
successfully used in single objective evolutionary algorithms and it is
widely believed that the performance of MOEAs can be improved by
using problem-specific knowledge. However, not much work have been
done along this direction. Taking a network topology planning problem
as an example, we study how to incorporate problem-specific knowl-
edge into the multiobjective evolutionary algorithm based on decompo-
sition (MOEA/D). We propose objective-guided operators for the network
topology planning problem and use them in MOEA/D. Experiments
are conducted on two test networks and the experimental results show
that the MOEA/D algorithm using the proposed operators works very
well. The idea in this paper can be generalized to other multiobjective
optimization problems.

Keywords: Multiobjective Optimization, Evolutionary Algorithm,
MOEA/D, Network Topology Planning.

1 Introduction

Multiobjective optimization problems (MOPs) present a greater challenge than
single-objective optimization problems since objectives in a MOP contradict
one another so that no single solution in the decision space can optimize all
the objectives simultaneously. Therefore, a decision maker often wants to find
an optimal tradeoff among these objectives. Pareto optimal solutions are best
tradeoffs if there is no decision makers’ preference information. A number of
different Multiobjective evolutionary algorithms (MOEAs), such as NSGA-II [1]
and MOEA/D [2][3], have been developed for approximating the Pareto optimal
solution set.
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It is widely believed that problem-specific knowledge should be utilized in
designing of an evolutionary algorithm in order to improve the algorithm perfor-
mance. In single objective evolutionary optimization, many successful applica-
tions of problem-specific knowledge have been reported. However, not much work
have been done along this direction in MOEAs. One of the major reasons is that
most existing problem-specific techniques are for single objective optimization.
It is not very natural to use them in Pareto dominance based MOEAs, which
are most popular methods now. By decomposing a MOP into many single objec-
tive optimization subproblems, the recent MOEA/D algorithm provides a good
framework for using single objective optimization techniques for multiobjective
optimization. Many different variants have been proposed and applied on differ-
ent MOPs [4][5]. In this paper, we take topology planning problem as an example
and study how to incorporate problem-specific knowledge into MOEA/D.

Planning a network topology involves multiple objectives including minimiz-
ing the total network cost, maximizing the transport efficiency and the network
reliability, etc. In transparent optical networks (TONs), more objectives should
be considered, such as the security under intentional attacks [6] and energy-
efficiency for a green network planning [7][8].

Network topology planning is normally formulated as bi-objective optimiza-
tion problems. Kumar et al. firstly used the Pareto Converging Genetic Algo-
rithm (PCGA) to solve the problem [9], then applied a multi-island approach
with Pareto ranking method [10]. The PCGA was also used in the problem with
consideration of realistic traffic models [11][12].

In this paper, we study a network topology planning problem in TONs. It
is formulated as a tri-objective optimization problem. The MOEA/D algorithm
with generic graph operators is firstly designed to tackle the problem. Then,
we propose objective-guided operators and use them in the MOEA/D algorithm
for this problem. The main idea is to design operators using problem-specific
knowledge for all objectives, and then use them with different probabilities for
each scalar subproblem in MOEA/D. Due to the decomposition approach in
MOEA/D, the probabilities can be easily determined with the weight vectors
associated with subproblems. The proposed algorithms are evaluated on two net-
works with different sizes. The experimental results demonstrate the effectiveness
of the MOEA/D algorithm using the objective-guided operators. Our algorithm
provides a new approach for using problem-specific knowledge in MOEAs.

The rest of the paper is organized as follows. The problem is formulated
in Section 2. Section 3 describes the MOEA/D algorithm using generic graph
operators. The MOEA/D algorithm using objective-guided operators is proposed
in Section 4. The experimental results are presented in Section 5 and the paper
is concluded in Section 6.

2 Problem Formulation

Topological design of a transparent optical networks (TON) for meeting the re-
quirements of consumers is a fundamental task before its deployment. Network
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topology design involves determining the layout of links between nodes to satisfy
the requirements of average delay, cost and reliability. In packet-switching net-
works, the average delay between a source and a destination can be estimated
from queuing theory. Normally, the transferring delay is affected by the number
of intermediate hops and the traffic load on links made of a path. However, due
to the circuit-switching nature of optical networks, the average delay is mainly
determined by the hops a lightpath traverses.

Besides the traditional design objectives, energy and security-related issues
have gained much attention in recent years. For the green sustainable commu-
nication purpose, energy consumption of telecom networks should be reduced
as much as possible. Since both switching and transmission on fibers consume
power, one should try to minimize the number of intermediate hops and reuse
the network link which has been already “on” in routing of lightpaths. From
the view of topological design, we should try to minimize both the hops and the
number of links. Apparently, they are two contradictory objectives.

Random failures of nodes and links are main factors for reliability of a net-
work. When security is demanded, intentional attacks should be emphasized in
topology design. It has been shown that a scale-free complex network is robust
from random failures, but fragile under intentional attacks, e.g., removing nodes
by node degrees in descending order. So, in this paper, we consider the topology
design problem with new objectives including energy-saving and security.

The network topology problem is formally defined below.
1) Design Parameters

– N : the total number of nodes in a network;
– Cost: a cost matrix in which Cost(i, j) provides the cost of the link between

node i and j. Normally, the cost of link between node i and j can be estimated
by their physical distance and the cost factor per unit distance;

2) Objectives

– network cost : the sum of cost of all links;
– average path length: the average hops of each path. Since there may be

unreachable node pairs in a network, we use the concept of network efficiency
to calculate the objective value. The network efficiency is defined as the mean
value of inverse values of shortest path lengths in a graph. Given a graph
G=(V,E), the average path length is measured by:

Lp(G) = 1 − 1

n(n− 1)

∑
i�=j∈V

1

li,j
(1)

where n=|V | and li,j is the shortest path length from node i to node j;
– Vulnerability under intentional attacks : we use the robustness measure R

proposed by Schneider et al. [13], which is defined as:

R =
1

N + 1

N∑
Q=0

s(Q) (2)
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where N is the number of nodes in a network and s(Q) is the fraction of
nodes in the largest connected cluster after removing Q nodes. The range of
R is [0, 0.5], where R = 0 corresponds to a network with all nodes isolated,
and R = 0.5 corresponds to a fully connected network. The vulnerability of
a network under intentional attacks is calculated by:

V u(G) = 1 − 2R (3)

The average delay is measured by the average path length, while minimizing the
average path length also contributes to the saving of energy. To calculate the
shortest path lengths, the Dijkstra’s shortest-path algorithm is used. To calculate
the robustness measure R, a greedy attacking strategy is applied. That is, each
time the node with the maximal nodal degree is selected and removed from the
network and the size of the largest connected cluster is calculated.

3 MOEA/D for Network Topology Planning

The original MOEA/D algorithm [2] can be directly applied to solve the net-
work topology planning problem. We call it as MOEA/D-direct algorithm. Each
individual in the population encodes a possible network topology. A network
topology is represented by its binary adjacency matrix A where Ai,j = 1 if there
is a link between node i and j. Generic graph operators are used.

Let the adjacency matrices of two parents be A and B and the adjacency
matrix of offspring be C. The crossover operator produces an offspring C as
follows:

Ci,j =

{
Ai,j , r ≤ pc
Bi,j , otherwise

(4)

where r is a uniformly random value in [0, 1]. The parameter pc is used to control
the amount of information inherited from each parent. The offspring inherits
from A with a probability of pc and from B with a probability of (1 − pc).

In the mutation operator used in this paper, the bits in the adjacency ma-
trix are flipped with a mutation probability pm. Since undirected networks are
considered in this paper, the adjacency matrices are symmetric. Thereafter, the
crossover and mutation operators are applied only for elements when i < j, and
we always let Cj,i = Ci,j .

The generated network topology may not be connected. In reality, a network
may not be connected at its initial construction stage due to insufficient finance.
Thus, disconnected networks are considered as valid solutions to the problem in
this paper so that the algorithm can be simplified.

Parents for crossover are selected using a strategy slightly different from that
in the original MOEA/D algorithm, whose details can be found in [2]. To gen-
erate the i-th offspring, we select an index k randomly from the neighborhood
B(i), and then use the i-th individual as the first parent and the k-th individ-
ual as the second parent. After the offspring is generated, its objective values
are calculated. Then, the i-th and the k-th individual are updated if the new
individual is better than them.
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The population is initialized uniformly at random. When an individual is
initialized, any two nodes are connected with a probability pr. Assume Npop

individuals will be generated at the initial stage, then the probability pr for the
i-th individual is set to i/Npop. After an individual is generated, its objective
values are calculated and all individuals in the population are updated according
to their weighted objective values.

4 MOEA/D with Objective-Guided Operators

It is commonly believed that algorithms using problem-specific knowledge can
achieve much better performance than a generic algorithm. Therefore, heuris-
tic local search algorithms should be used within a MOEA or genetic operators
should be designed specially for a specific application problem. However, heuris-
tic operations often optimize only one objective at a time. For MOPs, we need
to optimize multiple objectives simultaneously. Using an operator to optimize
one objective has been proposed in [14] for multiobjective 0/1 knapsack prob-
lems. Using different operators for different parts of the Pareto Front (PF) in
MOEA/D has been investigated in [15].

However, There is still lack of general guidelines for designing problem-specific
operators in a MOEA. In this paper, we propose objective-guided operators to
utilize problem-specific knowledge in MOEAs. Since an operator that optimizes
only one objective can often be designed easily, the main idea is to design one
operator for each objective and then use them alternatively.

More specifically, we design the following operators for the studied problem.

– Operator for objective 1: The first objective is to minimize the total
network cost. Thus, the operator selects a node i0 randomly at first. The
most expensive link connected with it is then removed;

– Operator for objective 2: The second objective is to minimize the av-
erage path length. For this objective, we randomly select a node from the
network and compare its degree with its neighboring nodes. The node with
the maximal degree is called a local hub node. We select two local hub nodes
which are not connected, then add a link between them. By connecting ‘hub’
nodes, the average path length can be shortened with a few new links;

– Operator for objective 3: The third objective is to reduce the vulnerabil-
ity of the network to the maximal extent. We firstly find the node with the
minimal degree in the network, then connect it to an unconnected node with
the minimal cost. Since the link cost is proportional to the distance between
two nodes, the node with the minimal cost will be the nearest node from it.

MOEA/D decomposes a MOP into a number of scalar optimization subproblems.
Each subproblem has a weight vector which sets weights on different objectives.
The weight vector represents the preference of the subproblem on different ob-
jectives. Since different subproblems have different preference on objectives, we
can not apply the objective-guided operators on different subproblems in the
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same way. Instead, we use them based on the preference of the objectives. We
design an objective-guided mutation operator which is illustrated as follows.

In MOEA/D, the i-th individual xi is to find the optima of the i-th subproblem
with the weight vector λi = (λi

1, . . . , λ
i
m) where m is the number of objectives.

Normally, λi
j ∈ [0, 1] and

∑m
j=1 λ

i
j = 1. The j-th element in the weight vector

represents the preference on the j-th objective. Thus, in the objective-guided
mutation operator, we use different operators according to the value of the weight
vector. In implementation, we generate a new offspring y from the i-th individual
using the following steps:

For k = 1, . . . , rnum, do
Apply the j-th operator on xi with
probability= λi

j ;

where the j-th operator is designed for the optimization of the j-th objective.
rnum is a control parameter which determines the number of iteration in the
objective-guided mutation operator.

5 Evaluation

5.1 Experiment Setting

To demonstrate the effectiveness of the MOEA/D algorithm using objective-
guided operators (called as MOEA/D-guided), we conduct experiments on two
networks with different sizes. The parameter setting is shown in Table 1.

Table 1. Parameters of Algorithms

Variable Description Value

N total number of nodes in a network 33, 340
Npop population size (also number of subproblems) 66
Neval number of function evaluations 50000
T size of neighborhood in MOEA/D 5
pc probability in crossover operation 0.5
pm probability in mutation operation 0.05
rnum iteration number in objective-guided mutation 10

The performance metrics include [2]:

– Set Coverage (C-metric): Let A and B be two approximations to the PF of
a MOP. C(A,B) is defined as the percentage of the solutions in B that are
dominated by at least one solution in A, i.e.

C(A,B) =
|{u ∈ B|∃v ∈ A : v dominates u}|

|B| (5)
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– Distance from Representatives in the PF (IGD-metric): Let P ∗ be a set of
uniformly distributed points along the PF. Let A be an approximation to
the PF, the average distance from A to P ∗ is defined as:

D(A,P ∗) =
∑

v∈P∗ d(v,A)

|A| (6)

where d(v,A) is the minimum Euclidean distance between v and the points
in A. Here the definition is slightly different than that in [2] in order to
consider the effect of size of solution set.

– Size of Solution Set: number of non-dominated solutions found.

The quality of two solution sets with respect to Pareto dominance can be com-
pared using the C-metric. The D-metric could measure both the diversity and
convergence of a solution set in a sense. Since the actual Pareto fronts of the
test networks are not known, we use an approximation of the PF as P ∗. The
approximation of PF is obtained from all non-dominated solutions found in all
the runs of the two algorithms. The size of solution set reveals the ability of
algorithm to find non-dominated solutions.

5.2 Experiment Results

Figure 1 shows the distribution of solution set found in one run on a network
with 33 nodes. It can be seen that the MOEA/D-guided algorithm has obtained
better distributed solutions and most solutions obtained by the MOEA/D-direct
algorithm are dominated by those by the MOEA/D-guided algorithm.

On a network with 340 nodes, the results are quite different. As shown in
Figure 2, the solutions of the two algorithms have very different distributions.
The MOEA/D-direct algorithm has produced very few solutions with low values
of objective 1 (network cost). The MOEA/D-guided algorithm has generated a
lot of solutions distributed in the objective space with low values of objective
1 and relatively large values of objective 2 and 3. Thus, we can still conclude
that the MOEA/D-guided algorithm has better exploration ability than the
MOEA/D-direct algorithm on this test instance.

The performance metrics are averaged over 10 independent runs. The results
are shown in Figure 3. With the increase of the function evaluation number,
the C-metric of MOEA/D-guided vs MOEA/D-direct increases too. It implies
that more solutions of MOEA/D-direct are dominated by solutions of MOEA/D-
guided if more computational efforts are made. In the case of network with 33
nodes, the C-metric of MOEA/D-direct versus MOEA/D-guided is zero and not
shown in Figure 3a.

The D-metric values of MOEA/D-guided are lower than those of MOEA/D-
direct in the case of 33 nodes. It means that the solution set of MOEA/D-
guided is more close to the approximated Pareto front. The D-metric values of
MOEA/D-guided are higher than those of MOEA/D-direct in the case of 340
nodes. However, the values are getting closer with the increase of function evalu-
ation number. Obviously, the complexity of the problem has increased when the
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Fig. 1. Results on network with 33 nodes
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Fig. 3. C-metric, D-metric and Size of Solution Set

network scale increases. The higher D-metric values in MOEA/D-guided may
be explained by the solution set size. AS shown in Figure 3d, the final solu-
tion sets of MOEA/D-guided in both cases are larger than those of MOEA/D-
direct. With solutions distributed more widely, the distance from one solution
to the approximated Pareto front is more likely large. The larger solution set of
MOEA/D-guided also demonstrates its stronger exploration ability.

6 Conclusion

In this paper, we have investigated how to utilize problem-specific knowledge in
multi-objective evolutionary algorithms. Specifically, we have studied the net-
work topology planning problem using the MOEA/D algorithm. The algorithm
was firstly applied on the problem using generic graph operators. Then the
objective-guided operators were proposed and a way to use them in MOEA/D
was proposed. The main idea is to design one operator for each objective and
use the operators based on the weight vectors of subproblems in MOEA/D. Ex-
perimental results on networks of different scale have shown the superiority of
the MOEA/D-guided algorithm which uses objective-guided operators.

Future work includes further improvement of the algorithm on large-scale
problem instances. Other problem-specific operators may be incorporated and
other approaches to exploit problem-specific knowledge can be investigated.
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Abstract. Objective-space discretization is a popular method to con-
trol the elitist archive size for evolutionary multi-objective optimization
and avoid problems with convergence. By setting the level of discretiza-
tion, the proximity and diversity of the Pareto approximation set can
be controlled. This paper proposes an adaptive archiving strategy which
is developed from a rigid-grid discretization mechanism. The main ad-
vantage of this strategy is that the practitioner just decides the desir-
able target size for the elitist archive while all the maintenance details
are automatically handled. We compare the adaptive and rigid archiv-
ing strategies on the basis of a performance indicator that measures front
quality, success rate, and running time. Experimental results confirm the
competitiveness of the adaptive method while showing its advantages in
terms of transparency and ease of use.

Keywords: Multiobjective optimization, estimation of distribution al-
gorithms, elitist archive.

1 Introduction

Optimization problems in practice may involve more than a single objective, and
often conflicting ones. A utopian solution, that optimizes all objectives at the
same time, is unachievable. A solution x can be better than another solution y
in some objectives, but worse in others. The optimum for such multi-objective
optimization (MO) problems is thus a set of equally preferable trade-off solutions
rather than a single optimal point. We formalize the terminologies and notations
for MO used in this paper as follows:

1. Multi-objective optimization. m objective functions fi(x), i ∈ M =
{0, 1, . . . ,m−1}, without loss of generality, must all be minimized. A solution
vector x = (x0, x1, . . . , xk−1) in the decision space has an corresponding
image vector f(x) = (f0(x), f1(x), . . . , fm−1(x)) in the objective space.

2. Pareto dominance. A solution x0 dominates a solution x1 (denoted x0 

x1) if and only if (∀i ∈ M : fi(x

0) ≤ fi(x
1)) ∧ (f (x0) �= f(x1)).

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 72–81, 2012.
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3. Pareto set. A Pareto set P of size n is called a Pareto set if and only if
¬∃x0,x1 ∈ P : x0 
 x1.

4. Pareto optimality. A solution x0 is said to be Pareto optimal if and only
if ¬∃x1 : x1 
 x0.

5. Pareto-optimal set. The set PS of all Pareto-optimal solutions: PS =
{x0|¬∃x1 : x1 
 x0}.

6. Pareto-optimal front. The set PF in the objective space of all image
vectors corresponding to the solutions in PS in the decision space: PF =
{f(x) = (f0(x), f1(x), . . . , fm−1(x))|x ∈ PS}.

The optimal solution for a multi-objective optimization problem is the Pareto-
optimal set PS and its corresponding image PF . The actual size of PS and PF

may be infinite or too numerous to be obtained by finite computational resources.
In practice the desired result is often a representative solutions subset S of PS

having a reasonable size, from which decision makers are able to consider and
make their final choice. This subset S should have its image f(S) well-spread
along the Pareto-optimal front PF , which means diversity in the quality of
trade-off solutions regarding all related objectives.

Different works have shown that elitism is crucial for the convergence of
multi-objective optimization evolutionary algorithms (MOEAs) [1,2]. While eli-
tist preservation for single objective optimization is a trivial task, in which the
only best solution needs to be kept and updated along the run, multi-objective
optimization requires more complicated elitism strategies. A separate data struc-
ture, called the elitist archive, is often used to keep track of the best Pareto set,
in which every solution is not dominated by any other solution in the whole pop-
ulation nor by any other elitist solution in earlier generations. When the number
of solutions on the Pareto front is large, the archive may grow to an extreme size.
Large archives are furthermore computationally expensive to maintain. Because
computational resources are always limited, an upper bound for the archive size
is definitely compulsory. Problems occur when this upper bound is reached and
new non-dominated solutions continue to be found. One way to differentiate
MOEAs is how they treat this elitist archiving problem.

Laumanns et al. [3] propose ε-dominance and ε-Pareto set to address the
problem of convergence and diversity of the approximate set. The ε-Pareto set is
proved to have bounded size. However, Hernández-Dı́az et al. [4] point out that
the box-domination scheme for maintaining an ε-Pareto set prevents the archive
from achieving its intended upper bound. The authors then present Pareto-
adaptive ε-dominance (paε-dominance) with a curve-fitting scheme to determine
several parameters in order to generate a more suitable grid depending on the
problem being solved at hand. paε-dominance limits the types of Pareto fronts it
can handle to the curves of the family {xp

1+xp
2+. . .+xp

n = 1 : 0 ≤ x1, x2, . . . , xn ≤
1, 0 < p < ∞}, and the objective space should thus be continuous. A notable
adaptive grid archiving (AGA) strategy is presented by Knowles and Corne [5].
AGA uses a grid, which can adapt its position and size, to estimate the density
of the archived solutions in the objective space. When the archive is full, and a
new non-dominated solution is generated in a less crowded region, a solution in
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a more crowded region will be removed. If the new solution lies in an already
crowded region, it will be ignored. AGA thus can control the size of the elitist
archive, but its convergence cannot be guaranteed [5]. Furthermore, without a
priori knowledge of true Pareto front ranges, determining how many regions the
objective space should be divided into (to generate the grid) before the run is
started is an uninformed decision, and thus could easily make the grid become
too coarse-grained or too fine-grained.

In this paper, we present a new adaptive elitist archiving strategy for MOEAs.
The work is based on a straightforward rigid objective-space discretization ap-
proach that was already used in earlier research [6]. With the proposed adap-
tive elitist archiving strategy, an optimization practitioner can straightforwardly
decide her desirable archive size, and let the algorithm automatically adapt its
structure. Our paper is organized as follows. In Section 2 we describe two archiv-
ing strategies: the rigid-grid discretization, and the adaptive grid discretization.
Section 3 shows experimental results comparing the performance of the two
strategies under different parameter settings. Section 4 concludes our paper.

2 Elitists Archiving Strategies

2.1 Rigid Grid Discretization

MOEAs with competent operators (e.g., selection, modelling, and variation op-
erators) can generate good solutions which are distributed along the true Pareto-
optimal front. Because the number of non-dominated solutions may exceed the
capacity of the elitist archive, archiving strategies are needed to decide which
solutions should be stored and which solutions can be discarded. To limit the
elitist archive to reasonable sizes while ensuring that non-dominated solutions
are potentially well distributed across their ranges, the objective space is dis-
cretized into equal hypercubes, and each hypercube is allowed to contain only
one solution at a time (see, e.g. [6]). The discretization is performed by dividing
each objective dimension fi into equal segments of unit length λi; for the sake
of simplicity, here λi are set to the same λ for all objectives. Because the edge-
lengths λi of hypercubes are determined before an MOEA run, and are fixed
during the run, we refer to this method as rigid-grid discretization (RGD).

When the MOEA generates a non-dominated solution, it will go through an
acceptance test to enter the elitist archive. If the new solution is (Pareto) dom-
inated by any archive solutions, it is discarded. A new non-dominated solution
can enter the elitist archive if and only if it occupies an empty hypercube or it
dominates the solution that currently resides in the same hypercube. If the new
non-dominated solution does not dominate the occupant, that new solution is
considered as a dominated solution and is discarded as well. When a new solu-
tion is accepted into the archive, all solutions dominated by it are removed from
the archive to ensure that the archive is always a Pareto set. The pseudo-code
for adding a non-dominated solution into the archive is described in Fig. 1.

While keeping non-dominated solutions well-spread, RGD also prevents the
elitist archive from degeneration. Degeneration happens if an MOEA prunes a
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UpdateElitistArchive(A,x0,λ)

λ = (λ0, λ1, . . . , λm−1)
1 if ∃x1 ∈ A : x1 � x0 then

1.1 A′ ← A
2 else if ∃x1 ∈ A : IsSameBox(f(x0), f(x1),λ) ∧ x0 �� x1

2.1 A′ ← A
3 else

3.1 D ← {x1 ∈ A | x0 � x1}
3.2 A′ ← A ∪ {x0} \ D

4 return A′

IsSameBox(f0, f1,λ)
f0 = (f0

0 , f
0
1 , . . . , f

0
m−1),

f1 = (f1
0 , f

1
1 , . . . , f

1
m−1),

λ = (λ0, λ1, . . . , λm−1)
1 for i ← 0 to m − 1 do

1.1 if �f0
i /λi �= �f1

i /λi then
1.1.1 return false

2 return true

Fig. 1. Pseudo-code for adding a non-dominated solution x0 into the elitist archive A

non-dominated solution xg from its elitist archive at iteration g, and at a later
generation g′, the archive accepts a solution xg′

which would be dominated by
xg if xg were still in the archive. This for instance is the case for the archiving
strategies adopted in the well-known MOEAs NSGA-II and SPEA2 [7]. With
RGD, there is no need to additionally prune the elitist archive; RGD just decides
whether or not a solution is qualified to enter the archive. An occupant of a
hypercube is removed if and only if it is dominated by a better solution which is
newly accepted into the elitist archive. Because the ranges of the Pareto-optimal
front are limited, the maximal number mλ of non-dominated solutions which
can be put into the grid corresponding to a discretization level λ is bounded.
The elitist archive size is thus always less than or equal to mλ. If the MOEA
does not generate any better solutions, the elitist archive will stay the same. The
MOEA thus converges in this sense.

Experimental results showed the effectiveness of this rigid grid discretization
technique on various benchmark problems [6]. However, it requires practitioners
to set the discretization levels (i.e. the hypercube sizes) before the run. If infor-
mation about the ranges of feasible solutions in the objective space is not prior
knowledge, then setting fixed values is problematic and raises problems such as
making the archive too coarse-grained or too fine-grained. A too coarse-grained
discretized objective space misses many valuable solutions, and a too fine-grained
archive requires a considerable amount of computational resources to maintain.
Furthermore, manually setting the hypercube sizes is not a transparent manner
to control the ultimate archive size from the perspective of decision makers.

2.2 Adaptive Grid Discretization

In real-life scenarios, a practitioner may not have prior knowledge about the
ranges of the Pareto-optimal front, and she still needs to control the elitist archive
size around an allowable size t due to limitations in computational resources. We
resolve this problem by proposing an adaptive grid discretization mechanism
(AGD). Regarding available resources, the practitioner can decide her budget
for the elitist archive before an MOEA run, and the objective space will be
adaptively discretized to maintain the archive around the target size t.

The archive functions much like in the rigid case: non-dominated solutions enter
the archive, and dominated solutions are removed.When the archive size deviates
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Multi-ObjectiveEvolutionaryAlgorithm()

1 P ← Initialize()

2 F ← {f(x) = (f0(x), f1(x), . . . , fm−1(x))|x ∈ P}
3 A ← ∅
4 λ ← (0, 0, . . . , 0)
5 while ¬TerminationConditionsSatisfied() do

5.1 (S, FS) ← MakeSelection(P, F)
5.2 O ← GenerateNewSolutions(S,A)

5.3 FO ← {f(x) = (f0(x), f1(x), . . . , fm−1(x))|x ∈ O}
5.4 for i ← 0 to |O| − 1 do

5.4.1 A ← UpdateElitistArchive(A,O[i],λ)
5.5 if |A| > tup then

5.5.1 (A,λ) ← AdaptGridDiscretization(A)

5.6 (P, F) ← MakeReplacement((S, FF), (O, FO))

AdaptGridDiscretization(A)
1 low ← 1
2 high ← MAX
3 A′ ← A
4 maxi ← max{f0

i , f
1
i , . . . , f

|A|−1
i }, i ∈ {0, 1, . . . , m − 1}

5 mini ← min{f0
i , f

1
i , . . . , f

|A|−1
i }, i ∈ {0, 1, . . . ,m − 1}

6 for count ← 0 to N − 1 do

6.1 mid = low+high
2

6.2 λi =
maxi−mini

mid , i ∈ {0, 1, . . . ,m − 1}
6.3 λ ← (λ0, λ1, . . . , λm−1)
6.4 A ← ∅
6.5 for j ← 0 to

∣∣A′∣∣ − 1 do
6.5.1 A ← UpdateElitistArchive(A,A′[j],λ)

6.6 if |A| < tlow then
6.6.1 low ← mid

6.7 else
6.7.1 high ← mid

7 return A,λ

Fig. 2. Pseudo-code for adaptive grid discretization. Initially, λ is assigned a zero
vector (0, 0, . . . , 0), which means that no objective-space discretization is used. MAX
is the maximal number of segments which a dimension can be divided into. N is the
maximum number of steps in the binary search for objective-space discretization. In
this paper, we set MAX = 225 and N = 25.

too much from the target size t, the edge-lengths need to be re-determined. Be-
cause we do not want to perform the objective-space discretization every time a
single non-dominated solution is generated, we allow the elitist archive to grow
to an upper bound tup before pruning it. To prevent the adaptation process from
deleting too many solutions, we set an lower bound of tlow for the elitist archive
size. As soon as the archive size reaches the upper bound, the objective space
adaptation process is triggered. AGD first determines the ranges of all current
archived solutions in the objective space, and then performs a binary search, tar-
geted at tlow, for how many segments each range should be divided into. The final
discretization must satisfy the condition that the archive size is greater than the
lower bound and less than the upper bound (i.e. tlow < t < tup). The details of
AGD are described in Fig. 2. In this paper, we set tlow and tup as 0.75∗t and 1.25∗t,
respectively. We calibrated these values by hand taking into account that if tup is
too large or tlow is too small then the actual archive size may deviate too much
from the target, while setting the bounds closer to t increases the computational
overhead for re-discretization too much.
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AGD can be seen as a sequence of RGDs with different discretization levels λ.
When changing to a new discretization, degeneration of the elitist Pareto front can
happen because some non-dominated solutions are removed, but during an RGD,
degeneration does not happen. Ultimately, there is an iteration g when solutions
in the elitist archive already cover the ranges of the Pareto-optimal front, i.e. the
MOEA is nearing the Pareto-optimal front, and the current discretization levelλg

ensures that the maximal number of non-dominated solutions which can be put
into the grid is close to the target size t of the elitist archive (i.e., mλg ≈ t, and
mλg ≤ tup). From that iteration g, there is no need to re-discretize the objective
space any more. If the MOEA does not generate any better solutions, the elitist
archive will stay the same. The MOEA thus again converges in this sense.

3 Experiments

3.1 Benchmark Problems

In this paper, we select the MAMaLGaM (Multi-objective Adapted Maximum-
Likelihood Gaussian Model [6]) as the MOEA to be combined with the two
elitist archiving strategies above. It should be noted however that because these
archiving mechanisms work independently from the generation of new solutions,
they can be readily implemented in other MOEAs, including those aimed at
discrete parameter spaces. We carry out a performance assessment of the two
archiving strategies over 8 benchmark problems described in Table 1. ZDTi, i ∈
{1, 2, 3, 6} are well-known test problems proposed by Zitzler et al. [2]. GMi, i ∈
{1, 2} are generalizations of the MED (Multiple Euclidean Distances) problems
[8]. Developed from the well-known Rosenbrock function, BDi, i ∈ {1, 2} were
recently introduced in the MOEA literature [9]. Details about construction and
difficulty of these benchmarks can be found in the referenced research.

We refer to an approximation set S as the combination of the elitist archive
and all the non-dominated solutions in the current population. We consider
the outcome of an MOEA to be the final approximation set upon termination.
To compare the quality of approximation sets, we use a performance indicator,
denoted DPF→S .

DPF→S(S) =
1

|PF |
∑

f0∈PF

min
x∈S

{d(f (x),f0)} (1)

where PF is the Pareto-optimal front, f (x) is a point in objective space, which
is the objective value vector of a solution x ∈ S, and d(·, ·) computes Euclidean
distance.DPF→S is also referred to in literature as inverse generational distance.
It can be inferred from Equation 1 that the proximity and diversity of S with
respect to the Pareto-optimal set PS is measured in the objective space with
regard to the Pareto-optimal front PF . Because the Pareto-optimal fronts of all
test problems here are continuous and thus are infinitely large, for the sake of
computability, we approximated the true PF by uniformly sampling along it a
subset of 5000 points.
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The smaller DPF→S value an approximation set S has, the better its quality
is. In practice the Pareto-optimal front may not be known, and thus the perfor-
mance indicator DPF→S cannot be used. However, for benchmarking purposes,
where PF is available, this indicator has a two-fold advantage: it can measure
both the proximity and diversity of S with respect to PF . In our experiments, an
MOEA run with its final S having DPF→S ≤ 0.01 is considered as a successful
run because such approximation set are quite close to the true Pareto-optimal
fronts. Fig. 3 shows the default Pareto-optimal fronts and the adaptive elitist
archives with different desirable target sizes t for all the problems.
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Fig. 3. For all problems: the default front and the elitist archive of 3 different archive
size settings. Horizontal axis is f0 objective value. Vertical axis is f1 objective value.

Table 1. The MO problem test suite

Name Objectives IR

GM1

f0 =
∣∣∣
∣∣∣ 12

(
x − c0

)∣∣∣
∣∣∣d , f1 =

∣∣∣
∣∣∣ 12

(
x − c1

)∣∣∣
∣∣∣d

c0 = (1, 0, 0, . . .), c1 = (0, 1, 0, 0, . . .), d = 2

[−1; 1]10

(l = 10)

GM2

f0 =
∣∣∣
∣∣∣ 12

(
x − c0

)∣∣∣
∣∣∣d , f1 =

∣∣∣
∣∣∣ 12

(
x − c1

)∣∣∣
∣∣∣d

c0 = (1, 0, 0, . . .), c1 = (0, 1, 0, 0, . . .), d = 1
2

[−1; 1]10

(l = 10)

ZDT1

f0 = x0, f1 = γ
(
1 − √

f0/γ
)

γ = 1 + 9
(∑l−1

i=1
xi/(l − 1)

) [0; 1]30

(l = 30)

ZDT2

f0 = x0, f1 = γ
(
1 − (f0/γ)2

)

γ = 1 + 9
(∑l−1

i=1
xi/(l − 1)

) [0; 1]30

(l = 30)

ZDT3

f0 = x0, f1 = γ
(
1 − √

f0/γ − (f0/γ)sin(10πf0)
)

γ = 1 + 9
(∑l−1

i=1
xi/(l − 1)

) [0; 1]30

(l = 30)

ZDT6

f0 = 1 − e−4x0 sin6(6πx0), f1 = γ
(
1 − (f0/γ)2

)

γ = 1 + 9
(∑l−1

i=1
xi/(l − 1)

)0.25
[0; 1]10

(l = 10)

BD1

f0 = x0, f1 = 1 − x0 + γ

γ =
∑l−2

i=1

(
100(xi+1 − x2

i )2 + (1 − xi)
2)

) [0; 1]×
[−5.12; 5.12]9

(l = 10)

BDs
2

f0 = 1
l

∑l−1
i=0

x2
i

f1 = 1
l−1

∑l−2
i=0

(
100(xi+1 − x2

i )2 + (1 − xi)
2)

) [−5.12; 5.12]10

(l = 10)
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3.2 Results

All the presented results here are averaged over 30 runs. Each run has a budget of
106 fitness evaluations. MAMaLGaM terminates when it uses all the allowable
evaluations, or when all the distribution multipliers ≤ 0.5. Details about the
operations of MAMaLGaM and its components can be found in [6].

Fig. 4 shows convergence graphs of the DPF→S indicator values from the be-
ginning until termination for MAMaLGaM with the two elitist archiving strate-
gies on all benchmark problems. When the elitist archive has limited volume (i.e.,
the target size is too small, t = 10, or the grid is too coarse-grained, λ = 0.1), it
is less likely to achieve the desirable convergence (DPF→S ≤ 0.01). Otherwise,
when having archives of adequate capacity, the MOEA achieves good conver-
gence behavior for both variants of archiving mechanisms. Fig. 4 also shows that
the greater the elitist archive is, the better DPF→S indicator values it can ob-
tain. MAMaLGaM with rigid grid of λ = 0.001 shows its superiority in most of
problems because it maintains the largest number of non-dominated solutions.
Table 2 shows the average numbers of solutions in the archive for each bench-
mark problems. Because of allowing more solutions in the elitist archive, and
thus in the approximation sets, the rigid grid MOEAs do perform slightly better
than the their relatively corresponding adaptive versions (i.e., λ = 0.1 vs t = 10,
λ = 0.01 vs t = 100, λ = 0.001 vs t = 1000). The DPF→S indicator values
of RGD are thus slightly better than those of AGD. Note however, that this is
a consequence of our choice for setting λ and t, and not because of inferiority
of AGD. Doubling t would give similar DPF→S indicator values. Also, if we
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Fig. 4. Average performance of MAMaLGaM with two archiving strategies on all prob-
lems. Horizontal axis: number of evaluations (both objectives per evaluation). Vertical
axis: DPF →S . For each algorithm averages are shown both for successful runs and
unsuccessful runs, giving double occurrences of lines if some runs were unsuccessful.
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Table 2. Elitist archive sizes, success rates (i.e. the percentage of times MAMaLGaM
obtained DPF →S indicator ≤ 0.01), and average running times (measured in seconds)
of MAMaLGaM with 2 variants of elitist archiving strategies on all problems.

BD1 BDs
2 GM1 GM2 ZDT1 ZDT2 ZDT3 ZDT6

Elitist Archive Sizes

λ = 0.1 22 16 21 21 21 16 24 17
λ = 0.01 200 166 201 197 200 194 210 165

λ = 0.001 2000 1751 1975 1954 1996 1852 2020 1576

t = 10 8 8 8 8 8 8 8 9
t = 100 98 97 100 108 90 102 103 105

t = 1000 1017 974 1035 1052 957 1003 1045 964

Success Rates

λ = 0.1 100 3 100 100 93 80 90 100
λ = 0.01 100 43 100 100 100 96 100 100

λ = 0.001 100 66 100 100 100 93 100 100

t = 10 90 0 100 100 26 80 50 93
t = 100 100 66 100 100 100 96 100 100

t = 1000 100 66 100 100 100 93 100 100

Average Running Times

λ = 0.1 542 358 241 286 1101 1070 1073 1774
λ = 0.01 2015 1069 2589 2417 1161 1127 1126 2677

λ = 0.001 4892 4492 5211 5161 1903 1714 1778 4196

t = 10 536 552 160 160 1110 1105 1087 1224
t = 100 1180 719 1045 1139 1116 1106 1094 2530

t = 1000 4231 3834 4502 4498 1479 1424 1458 3925

terminate an MOEA run when it reaches the successful threshold (DPF→S ≤
0.01), it can be seen that the adaptive and rigid archives have similar convergence
behavior.

Table 2 shows the percentage of runs that an MOEA finds a final approxima-
tion set with performance indicator value DPF→S ≤ 0.01, which is considered
as successful. It can be seen that MOEAs with tiny archives have lower success
rate, which also means poorer reliability, in convergence. When the elitist archive
has adequate capacity, regardless of being a rigid or adaptive, the optimization
process will, in most of the times, converge successfully to fronts that are quite
close to the true Pareto-optimal front. This is however more dependent on the
capabilities of the other operators in MAMaLGaM rather than AGD.

Table 2 also demonstrates that the rigid and the adaptive archiving strategies
have similar running times, which can partly reflect their computational costs. It
is apparent that the greater elitist archive an MOEA has, the more expensive it
is to maintain. While the match is tied for performance (indicator values), reli-
ability (success rate), and efficiency (computational cost), the adaptive strategy
wins over the rigid grid in terms of transparency with respect to desired archive
size. For the rigid-grid discretization, the practitioner can indirectly and rela-
tively influence the archive size by adjusting the λ value, but she hardly controls
its actual growth without prior knowledge about the ranges of the objectives for
the Pareto-optimal fronts. If our adaptive archive is employed, the practitioner
simply decides the desirable target size of the elitist archive, thus its capacity,
and then let all the details be handled behind the scenes.
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4 Conclusions

In this paper, we have presented and compared two elitist archiving techniques
for evolutionary multi-objective optimization: a rigid objective space discretiza-
tion and an adaptive version. The two variants are showed to have similar conver-
gence behavior, success rate, and running time on various benchmark problems.
The advantage of the adaptive archiving strategy resides in its straightforward-
ness and transparency through which the practitioners can decide their desirable
archive size and all the archiving processes are then automatically handled. Ac-
cording to the ranges of different dimensions in the objective space, our technique
is able to select appropriate discretizations such that the final approximation set
is well-spread with good proximity concerning the Pareto-optimal front provided
that the MOEA is capable of generating such good solutions. Experimental re-
sults on benchmark problems support our above claims.

Although we only tested our adaptive archiving technique with the MAMaL-
GaM, it can be implemented into other state-of-the-artMOEAs straightforwardly
because it works independently from how new solutions are generated. Our tech-
nique is not limited to continuous search spaces as its design is not based on any
assumptions about the continuity of functions. Our technique has potential to be
applied successfully to a broad spectrum of optimization problems.
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Abstract. Through multiobjectivization, a single-objective problem is
restated in multiobjective form with the aim of enabling a more efficient
search process. Recently, this transformation was applied with success to
the hydrophobic-polar (HP) lattice model, which is an abstract represen-
tation of the protein structure prediction problem. The use of alternative
multiobjective formulations of the problem has led to significantly better
results. In this paper, an improved multiobjectivization for the HP model
is proposed. By decomposing the HP model’s energy function, a two-
objective formulation for the problem is defined. A comparative analysis
reveals that the new proposed multiobjectivization evaluates favorably
with respect to both the conventional single-objective and the previously
reported multiobjective formulations. Statistical significance testing and
the use of a large set of test cases support the findings of this study.
Both two-dimensional and three-dimensional lattices are considered.

Keywords: Multiobjectivization,protein structureprediction,HPmodel.

1 Introduction

Protein structure prediction, PSP, is the problem of finding the native (energy-
minimizing) conformation for a protein given only its amino acid sequence.
The hydrophobic-polar (HP) model is an abstraction of this problem, where
hydrophobicity is assumed to be the main stabilizing force in protein folding [6].
Even under this rather simplified model, PSP remains a challenging problem in
combinatorial optimization [1, 3]. An extensive literature exists on the use of
metaheuristics to address this problem, some of which is reviewed in [17, 22].

Multiobjectivization refers to the reformulation of single-objective problems
in terms of two or more objective functions [15]. This transformation has been
successfully used to deal with difficult optimization problems. Among them,
there can be mentioned the traveling salesman problem [12, 13, 15], job-shop
scheduling [13, 16], and problems in the fields of mobile communications [19],
computational mechanics [9] and computer vision [21]. Multiobjectivization has
also been proposed for the PSP [4, 5, 10, 20]. However, it was not until recently
that this concept was applied to the particular HP model of this problem [7, 8].
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In [7], the originally single-objective HP model was restated in multiobjective
form by decomposing the conventional energy (objective) function into two
separate objectives. Such a decomposition relies on the fact that topological in-
teractions on the lattice are only possible between amino acids whose sequence
positions are of opposite parity.1 This alternative formulation, called the parity
decomposition (PD), showed very promising results, leading to an increased search
performance in most of the conducted experiments. More recently, an improved
multiobjectivization strategy for the HP model was proposed, the locality decom-
position (LD) [8]. In LD, the decomposition of the HP model’s objective is car-
ried out by segregating local from nonlocal amino acid interactions. This locality
notion is based on the sequence distance between the interacting amino acids.

Motivated from previous findings [7, 8], this paper introduces a novel multi-
objectivization for the HP model, the H-subsets decomposition (HD). HD orga-
nizes the hydrophobic amino acids into different groups, the H-subsets. Then, the
HP model’s energy function is decomposed based on the correspondence of amino
acids to the H-subsets. The suitability of this proposal is investigated. Through
a comparative analysis, HD is evaluated with respect to the conventional single-
objective formulation and the preceding PD and LD multiobjectivizations.

This paper is organized as follows. Background concepts are covered in Sect.
2. In Sect. 3, the new proposed multiobjectivization is described. Section 4 de-
tails the implemented algorithms and the performance assessment methodology.
Results are given in Sect. 5. Finally, Sect. 6 provides some concluding remarks.

2 Background and Notation

2.1 The Hydrophobic-Polar (HP) Model

Proteins are chain-like molecules composed from 20 different building blocks
called amino acids. The hydrophobicity of amino acids is a dominant force de-
termining the functional, three-dimensional conformation of proteins. In the HP
model [6], amino acids are classified either as hydrophobic (H) or polar (P ). Pro-
tein sequences are thus of the form S ∈ {H,P}L, where L is the length of the
sequence. Valid protein conformations are modeled as Self-Avoiding Walks of the
HP chain on a lattice; i.e., each lattice node can be assigned to at most one amino
acid and consecutive amino acids in S are to be also adjacent in the lattice.

The HP model aims to maximize the interaction among H amino acids in the
lattice. Formally, protein structure prediction under the HP model is defined as
the problem of finding c∗ ∈ C such that E(c∗) = min{E(c) | c ∈ C}, being C
the set of all valid conformations. E(c) denotes the energy of conformation c:

E(c) =
∑

si,sj∈S

e(si, sj) , (1)

where e(si, sj) = −1 if si and sj form a hydrophobic topological contact, denoted
by htc(si, sj). Otherwise, e(si, sj) = 0. In hydrophobic topological contacts, two
H amino acids si, sj ∈ S are nonconsecutive in S but adjacent in the lattice.

1 This is true for the two-dimensional square and the three-dimensional cubic lattices.
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2.2 Single-Objective and Multiobjective Optimization

A single-objective optimization problem can be stated as the problem of mini-
mizing an objective function f : F → R, where F denotes the set of all feasible
solutions. The aim is to find those x∗ ∈ F such that f(x∗) = min{f(x) | x ∈ F}.

Similarly, a multiobjective optimization problem can be defined as the
problem of minimizing an objective vector f(x) = [f1(x), . . . , fk(x)]

T , where
fi : F → R is the i-th objective function, i ∈ {1, . . . , k}. The goal is to find a set
of Pareto-optimal solutions P∗ ⊂ F such that P∗ = {x∗ ∈ F | �x ∈ F : x ≺ x∗}.
The symbol “≺” denotes the Pareto-dominance relation, which is defined as
follows: x ≺ y ⇔ ∀i : fi(x) ≤ fi(y) ∧ ∃j : fj(x) < fj(y), i, j ∈ {1, . . . , k}.
If x ≺ y, then x is said to dominate y. Otherwise, y is said to be nondominated
with respect to x, denoted by x ⊀ y. The image of P∗ in the objective space is
the so-called Pareto-optimal front, also referred to as the trade-off surface.

2.3 Multiobjectivization

Multiobjectivization concerns the reformulation of single-objective problems as
multiobjective ones [15]. This is done either by adding supplementary objectives
[2, 13], or through the decomposition of the original objective function [11, 15]. In
either case, multiobjectivization introduces fundamental changes in the search
landscape, usually leading algorithms to perform a more efficient exploration.
However, the goal remains to solve the original problem, so that the original op-
tima are to be also Pareto-optimal in the multiobjective version of the problem.

The present study is based on the decomposition approach. A single-objective
problem, with a given objective function f : F → R, is restated in terms of
k ≥ 2 objectives fi : F → R, i ∈ {1, . . . , k} such that f(x) =

∑k
i=1 fi(x), ∀x ∈ F .

As the only possible effect [11], plateaus may be defined in the search landscape.
That is, originally comparable solutions may become incomparable (mutually
nondominated) with regard to the decomposed formulation. Decomposition has
been proven to be effective as a means of escaping from local optima [11, 15].

3 The H-Subsets Decomposition

In this section, an improved multiobjectivization by decomposition proposal for
the HP model is presented. First, all H amino acids in the protein sequence are
assigned to one of two groups, namely H1 or H2. The H1 and H2 groups are to
be referred to as the H-subsets. From this, a two-objective problem formulation,
f(c) = [f1(c), f2(c)]

T , is defined over the set of valid protein conformations c ∈ C:

f1(c) =
∑

si,sj∈H1

e(si, sj) +
∑

si,sj∈H2

e(si, sj) , (2)

f2(c) =
∑

si∈H1,sj∈H2

e(si, sj) , (3)

where f1(c) and f2(c) are to be minimized and e(si, sj) was defined in Sect. 2.1.
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That is, the objective function f1 accounts for hydrophobic topological con-
tacts htc(si, sj) where both the si and sj amino acids belong to the same
H-subset. On the contrary, f2 is defined for those cases where si and sj belong to
different H-subsets. Note that E(c) = f1(c) + f2(c) for all c ∈ C, which is con-
sistent with the decomposition approach for multiobjectivization, see Sect. 2.3.

The organization of H amino acids into the H-subsets can be accomplished
following different strategies, several of which are evaluated in Sect. 5.1.

4 Experimental Setup

4.1 Algorithms

A basic evolutionary algorithm (EA), the so-called (1+1) EA, is used to in-
vestigate the suitability of the proposed multiobjectivization (see pseudo-code
below). First, an initial parent individual c is generated at random. Iteratively,
an offspring c′ is created by randomly mutating c at each encoding position with
probability pm = 1

L−1 . The new individual c′ is rejected only if it is strictly worse
than the parent individual c, otherwise c′ is accepted as the starting point for
the next generation. Such a discrimination between c and c′ can be based either
on the conventional, single-objective energy evaluation, or it can be based on the
Pareto-dominance relation if using a multiobjective problem formulation. Only
solutions representing valid protein conformations are accepted during the search.

Basic (1+1) EA Archiving (1+1) EA
choose c ∈ C uniformly at random
repeat

c′ ← mutate(c)
if c′ not worse than c then

c ← c′

end if
until < stop condition >

choose c ∈ C uniformly at random
A ← {c}
repeat

c′ ← mutate(c)
if �ĉ ∈ A : ĉ ≺ c′ then

A ← {ĉ ∈ A : c′ ⊀ ĉ ∧ f(ĉ) �= f(c′)} ∪ {c′}
c ← c′

end if
until < stop condition >

It was also considered an archiving variant of the above described (1+1) EA
(see pseudo-code above). In this variant, an external archive stores the nondom-
inated solutions found along the evolutionary process. At each generation, the
offspring c′ is only accepted if it is not dominated by any individual in the archive.
If accepted, c′ is included in the archive and all individuals dominated by c′, and
those mapping to the same objective vector f(c′), are removed. Note that this
archiving strategy makes only sense for the multiobjective problem formulations.

A representation of absolute moves was adopted. That is, conformations are
encoded as sequences in {U,D,L,R, F,B}L−1, denoting the up, down, left, right,
forward and backward lattice positions for an amino acid with regard to the
preceding one. Only directions {U,D,L,R} are used in the two-dimensional case.

4.2 Test Cases and Performance Assessment

A total of 30 HP instances are used in this study (15 are for the two-dimensional
square lattice and 15 are for the three-dimensional cubic one). Due to space
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limitations, details of these instances are not provided here, but they are available
online at http://www.tamps.cinvestav.mx/~mgarza/HPmodel/. For all the ex-
periments, 100 independent executions were performed and the algorithms were
run until a maximum number of 105 solution evaluations was reached. The re-
sults are evaluated in terms of the best (lowest) obtained energy (β), the number
of times this solution was found (f) and the average energy (μ). Additionally,
the overall average performance (OAP) measure was adopted. OAP is defined
as the average ratio of the obtained μ values to the optimum (E∗). Formally:

OAP =
100%

|T |

(∑
t∈T

μ(t)

E∗(t)

)
, (4)

where T is the set of all the test cases. Larger OAP values are preferred. A value
of OAP = 100% suggests the ideal situation where the optimum solution for
each benchmark sequence was reached during all the performed executions.

Statistical significance analysis was conducted as follows. First, D’Agostino-
Pearson’s omnibus K2 test was used to evaluate the normality of data
distributions. For normally distributed data, either ANOVA or the Welch’s t
parametric tests were used depending on whether the variances across the sam-
ples were homogeneous or not (Bartlett’s test). For non-normal data, the non-
parametric Kruskal-Wallis test was adopted. A significance level of α = 0.05 was
considered.

5 Results

In this section, the (1+1) EA is used in order to evaluate and compare the
four different formulations of the HP model: the conventional single-objective
formulation (SO), the recently reported parity (PD) [7] and locality (LD) [8]
decompositions, and the H-subsets decomposition (HD) proposed in this paper.2

Given the importance that the H-subsets formation process has for the HD,
different strategies are first investigated in Sect. 5.1. Then, Sect. 5.2 analyzes the
impact of using the archiving strategy within the (1+1) EA for all the studied
formulations. Finally, a detailed comparative analysis is presented in Sect. 5.3.

5.1 H-Subsets Formation

An important issue for the proposed HD is howH amino acids are organized into
the H-subsets (H1 and H2). Therefore, the following strategies are investigated:

• FIX: the first half of H amino acids in S are assigned to H1, all others to H2.
For an odd number of Hs, the one in the middle is assigned randomly.

• RND: each H amino acid is assigned to H1 or to H2 with equal probability.
• DYNk: based on RND, but the H-subsets are dynamically and independently
recomputed after k iterations of the algorithm without achieving an improve-
ment. Different values for k are explored, k = {0, 10, 20, 25, 30, 50}, where
k = 0 refers to the recomputation of the H-subsets at each iteration.

2 LD depends on parameter δ. This parameter was set to δ = 7 as suggested in [8].

http://www.tamps.cinvestav.mx/~mgarza/HPmodel/
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Figure 1 presents the OAP measure obtained by the HD when using the above
described strategies. Results are provided for both the basic and the archiving
(1+1) EA. Also, the performance of the SO formulation is shown as a baseline.
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Fig. 1. Evaluating different strategies to form the H-subsets

It is evident from Fig. 1 that the proposed HD performed better in all cases
compared to the conventional SO formulation. The highest OAP values were
obtained when using the DYNk strategy. That is, the ability of decomposition
for allowing the algorithms to escape from local optima is further enhanced by
changing the search landscape dynamically throughout the evolutionary process.

For the two-dimensional instances, no important differences in performance
can be observed when varying k. Regarding the three-dimensional test cases, the
algorithms responded positively to the increased value for k. The DYNk strategy
with k = 30 was adopted for the experiments presented in Sects. 5.2 and 5.3.

5.2 The Impact of Archiving

This section aims at investigating the impact of using the archiving (1+1) EA
rather than the basic version of this algorithm. The results are presented in
Fig. 2, which contrasts the performance of these algorithms (in terms of the
OAP measure) when using the four studied HP model’s formulations.3
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Fig. 2. Evaluating the impact of using the archiving strategy

From Fig. 2, it can be seen that an important increase in performance was
obtained through multiobjectivization. The three multiobjective proposals (PD,
LD and HD) improved the results for both the basic and the archiving (1+1) EA

3 Although archiving is only useful in multiobjective scenarios, results of the archiving
(1+1) EA applied to the SO formulation are shown only for illustrative purposes.
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with respect to the conventional SO formulation. The proposed HD reached
the highest OAP values at solving the two-dimensional instances. In contrast,
the previously reported LD scored better results for the three-dimensional test
cases.

Although competitive, the performance of PD, LD and HD was negatively
affected by the use of the archiving strategy within the (1+1) EA. This is
contrary to what is expected in multiobjective optimization, where archiving
is essential for converging towards a set of trade-offs among the conflicting prob-
lem objectives [14, 18]. Nevertheless, in spite of being alternatively modeled and
treated as a multiobjective problem, the HP model is actually a single-objective
problem. Therefore, maintaining an approximation set of nondominated solu-
tions becomes not as important. In addition, the archiving strategy influences
the acceptance criterion of the algorithm in such a way that the introduction
of plateaus, the only achievable effect of decomposition, may be partially re-
versed [11]. That is, some of the mutually incomparable solutions can be com-
parable to those in the archive. This could lead some parts of the plateaus to
become inaccessible, thus restricting the exploration behavior of the algorithm.

5.3 Comparative Analysis

In all the cases, better results were obtained by using the basic (1+1) EA rather
than the archiving (1+1) EA, see Sect. 5.2. Thus, the basic (1+1) EA is used for
comparing in detail the four studied HP model’s formulations. Tables 1 and 2
present, 2D and 3D respectively, the best (lowest) energy (β), its frequency (f)
and the average energy (μ) obtained for each instance when using the different
formulations. Also, the OAP measure is used to evaluate the overall performance
of the approaches, see Sect. 4.2. The best (lowest) μ achieved for each instance,

as well as the best (highest) OAP values, appear shaded in these tables.

Table 1. Results for the basic (1+1) EA on two-dimensional benchmarks

SO PD LD HD

Seq. L E∗ β (f) μ β (f) μ β (f) μ β (f) μ

2d1 18 -4 -4 (4) -2.70 -4 (6) -2.71 -4 (3) -2.69 -4 (4) -2.70
2d2 18 -8 -8 (18) -6.81 -8 (24) -7.04 -8 (31) -7.16 -8 (66) -7.65
2d3 18 -9 -8 (11) -7.00 -8 (48) -7.45 -9 (2) -7.39 -9 (28) -8.27
2d4 20 -9 -9 (8) -6.84 -9 (4) -6.95 -9 (11) -7.23 -9 (48) -8.19
2d5 20 -10 -9 (3) -6.92 -10 (2) -7.08 -9 (1) -7.06 -9 (7) -7.51
2d6 24 -9 -8 (14) -6.81 -9 (1) -6.87 -9 (2) -7.30 -9 (6) -7.26
2d7 25 -8 -7 (26) -5.79 -8 (6) -5.90 -8 (7) -6.17 -8 (21) -6.51
2d8 36 -14 -13 (1) -9.97 -13 (1) -10.23 -13 (4) -10.61 -12 (30) -11.00
2d9 48 -23 -18 (5) -14.23 -19 (2) -15.20 -20 (2) -16.29 -20 (3) -17.46
2d10 50 -21 -18 (2) -13.79 -18 (1) -14.06 -19 (1) -15.07 -18 (14) -16.25
2d11 60 -36 -30 (2) -24.39 -30 (7) -25.43 -32 (1) -27.80 -32 (2) -29.11
2d12 64 -42 -29 (1) -23.82 -30 (1) -25.12 -30 (4) -26.61 -32 (2) -27.99
2d13 85 -53 -41 (1) -33.81 -41 (1) -34.54 -44 (1) -38.09 -45 (1) -39.35
2d14 100 -48 -41 (1) -30.80 -39 (3) -32.18 -39 (2) -34.41 -40 (2) -35.40
2d15 100 -50 -40 (1) -31.71 -40 (3) -32.70 -39 (7) -34.97 -40 (7) -36.68

OAP 69.22% 71.39% 74.70% 78.93%
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Table 2. Results for the basic (1+1) EA on three-dimensional benchmarks

SO PD LD HD

Seq. L E∗ β (f) μ β (f) μ β (f) μ β (f) μ

3d1 20 -11 -11 (57) -10.48 -11 (69) -10.64 -11 (94) -10.94 -11 (100) -11.00
3d2 24 -13 -13 (23) -11.30 -13 (34) -11.70 -13 (66) -12.53 -13 (78) -12.75
3d3 25 -9 -9 (57) -8.48 -9 (70) -8.65 -9 (95) -8.95 -9 (99) -8.99
3d4 36 -18 -18 (10) -15.19 -18 (13) -15.74 -18 (46) -16.97 -18 (38) -16.89
3d5 46 -35 -30 (2) -23.87 -30 (1) -25.38 -31 (1) -27.53 -30 (1) -27.26
3d6 48 -31 -29 (1) -22.79 -29 (2) -24.42 -31 (1) -26.66 -29 (4) -25.98
3d7 50 -34 -25 (6) -20.64 -27 (1) -22.07 -28 (1) -24.31 -26 (4) -23.58
3d8 58 -44 -35 (1) -27.34 -36 (1) -29.02 -36 (2) -31.98 -35 (1) -30.99
3d9 60 -55 -46 (1) -37.20 -47 (1) -40.03 -47 (3) -42.88 -49 (1) -43.02
3d10 64 -59 -45 (1) -35.59 -46 (1) -37.69 -50 (1) -43.29 -46 (1) -40.84
3d11 67 -56 -38 (2) -30.17 -39 (2) -32.65 -41 (1) -36.10 -40 (1) -35.16
3d12 88 -72 -47 (1) -36.22 -49 (1) -39.85 -53 (1) -46.13 -48 (5) -42.84
3d13 103 -58 -40 (1) -29.97 -41 (1) -31.31 -40 (1) -35.42 -40 (1) -34.25
3d14 124 -71 -43 (4) -34.51 -48 (1) -36.97 -50 (2) -43.98 -46 (1) -41.07
3d15 136 -83 -51 (1) -37.26 -52 (1) -42.11 -57 (1) -47.42 -51 (4) -45.47

OAP 66.84% 70.64% 77.23% 75.65%

As shown in Table 1, the proposedHD reached the best average performance for
13 out of the 15 two-dimensional instances. This is reflected as an OAP increase
of (78.93− 69.22) = 9.71% with respect to the conventional SO formulation. HD
allowed the OAP measure to be improved by 7.54% and by 4.23% with regard to
the previously reported PD and LD multiobjectivizations, respectively.

The LD formulation achieved the lowest average energy for 11 out of the 15
three-dimensional benchmarks, see Table 2. The best results for the remaining
four instances were obtained by the proposed HD. Although HD was inferior
to LD in most of the three-dimensional test cases, with an OAP decrease of
-1.58%, the results of this proposal are quite competitive; HD increased the OAP
measure by 8.81% and by 5.01% over the SO and PD formulations, respectively.

Table 3 outlines how the formulations compare statistically with respect to
each other in all the test cases. Each row in this table compares two formu-
lations, say A and B, which is denoted as “A/B”. If a significant performance
difference exists between A and B, the corresponding cells are marked either as+
or − depending on whether such a difference was in favor of or against A. Empty

Table 3. Statistical analysis for comparing the four studied HP model’s formulations
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Overall

PD/SO + + ++ ++ ++++++++++++++ 20+ 0−
LD/SO +++ ++++++++++ +++++++++++++++ 28+ 0−
HD/SO ++++++++++++++ +++++++++++++++ 29+ 0−
LD/PD + +++++++ +++++++++++++++ 23+ 0−
HD/PD ++++++++++++++ +++++++++++++++ 29+ 0−
HD/LD ++++ +++++++++ ++ −−− −−−−−− 15+ 9−
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cells indicate that there was not a statistically important difference between
the approaches. The rightmost column shows the overall results of this analysis.

As can be seen from Table 3, the three multiobjective approaches signifi-
cantly outperformed the conventional SO formulation in most of the cases. The
proposed HD performed significantly better than SO in 29 out of the 30 test in-
stances. Among the previously reported decompositions, the results of LD for 23
of the benchmarks were statistically superior to those obtained by PD. Compared
with respect to PD, the proposed HD formulation significantly increased the per-
formance of the algorithm for all but one of the instances (2d1). Finally, the pro-
posed HD was statistically better than LD in 15 of the instances, while there was
a significant difference in favor of LD for 9 of the three-dimensional test cases.

6 Conclusions

Multiobjectivization has proven to be a promising approach for solving difficult
optimization problems. When applied to the hydrophobic-polar (HP) model, a
simplified version of the protein structure prediction problem (PSP), this trans-
formation has significantly improved the performance of search algorithms.

In this paper, a novel multiobjectivization for the HP model was proposed,
called the H-subsets decomposition (HD). To the best of authors’ knowledge,
the HD formulation, together with the multiobjectivizations reported in [7, 8],
represent the first efforts on the use of multiobjective optimization methods to
address the HP model for protein structure prediction. The aim of this study was
to investigate the impact of using the proposed HD multiobjectivization on the
resolution of this problem. Through a comparative analysis, it has been shown
that the HD formulation evaluates favorably in most of the cases with respect
to the previously proposed multiobjectivizations for the HP model [7, 8].

Only basic evolutionary algorithms were adopted for the experiments pre-
sented in this paper. Nevertheless, from the obtained results it is expected that
multiobjectivization can improve also the performance of established
state-of-the-art algorithms for solving the HP model of the PSP. This issue needs
to be thoroughly investigated in order to derive more general conclusions.
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Abstract. Currently, a majority of existing algorithms for sparse op-
timization problems are based on regularization framework. The main
goal of these algorithms is to recover a sparse solution with k non-zero
components(called k-sparse). In fact, the sparse optimization problem
can also be regarded as a multi-objective optimization problem, which
considers the minimization of two objectives (i.e., loss term and penalty
term). In this paper, we proposed a revised version of MOEA/D based
on iterative thresholding algorithm for sparse optimization. It only aims
at finding a local part of trade-off solutions, which should include the
k-sparse solution. Some experiments were conducted to verify the effec-
tiveness of MOEA/D for sparse signal recovery in compressive sensing.
Our experimental results showed that MOEA/D is capable of identifying
the sparsity degree without prior sparsity information.

Keywords: sparse optimization, multi-objective optimization, hard/
half thresholding algorithm, evolutionary algorithm.

1 Introduction

Compressive sensing (CS) is a novel sampling theory for reconstructing sparse
signals or images from incomplete information. In recent years, it has found nu-
merous applications, such as signal recovery, image processing as well as medical
imaging [1]. A fundamental problem in CS is to find a sparse solution for under-
determined linear systems, which generally have infinite number of solutions. A
sparse solution is often defined as the one with the minimal number of nonzero
components among all solutions. Finding sparse solution involves the following
NP-hard sparse optimization problem [2]:

min ‖x‖0, s.t. Ax = y (1)

where x ∈ RN is a N -dimensional signal vector, A is a M × N measurement
matrix with M � N , y ∈ RM is a measurement vector, and ‖x‖0 stands for the
number of nonzero components of x.
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In the area of sparse optimization, greedy strategies and regularization meth-
ods are two commonly-used methods for finding sparse solutions [3–6]. The
well-known greedy methods include matching pursuit (MP) [3] and orthogonal
matching pursuit (OMP) [5]. In both algorithms, a k-sparse solution is itera-
tively constructed component by component in a greedy manner until k nonzero
components are determined. Greedy strategies only provide approximate solu-
tions for sparse optimization problems. In contrast, sparse optimization methods
based on regularization frameworks, such as �0, �1 and �0.5 [7], are more efficient
to recover k-sparse solutions since they can recover the exact sparse solution. It-
erative hard thresholding algorithm (iHardT) [8] and iterative half thresholding
algorithm (iHalfT) [7] are two representative thresholding algorithms based on
regularization frameworks.

The main difficulty in previous sparse optimization methods lies in the fact
that the sparsity degree k is unknown in many real applications. To overcome this
problem, an estimate of sparsity degree is often used both in greedy methods and
in thresholding algorithms. In fact, a sparse optimization problem can also be
modeled as a multi-objective optimization problem. Two conflicting objectives
- the loss term (‖Ax − y‖) and the penalty term (‖x‖0) should be minimized
simultaneously. The solutions balancing both objectives are called trade-offs.
In both greedy methods and regularization methods, the main goal is only to
find one k-sparse solution, which belongs to the set of trade-off solutions for the
multi-objective optimization problem. So far, not much work has been done for
solving sparse optimization problems by multi-objective methods.

Since the early 1990s, evolutionary multi-objective algorithms (MOEAs) have
received a lot of research interests [9]. The well-known representatives are
NSGA-II [10] (Pareto-based), MOEA/D [11](decomposition-based), and IBEA
[12](indicator-based). The main advantages of MOEAs lie in (i) the ability of
finding multiple trade-off solutions with even spread in a single run, and (ii)
the high possibility of finding global optima. In this work, we proposed a re-
vised version of MOEA/D with thresholding algorithm for sparse optimization.
In the proposed algorithm, the sparse multi-objective optimization problem is
decomposed into multiple single objective subproblems. Each subproblem is as-
sociated with one sparsity level and a trade-off solution. It is optimized by ex-
isting thresholding algorithms in each generation. Moreover, the sparsity levels
of subproblems are adaptively changed during the search. In our experiments,
we tested the performance of the revised MOEA/D for sparse signal recovery in
CS.

The remainder of this paper is organized as follows. In Section 2, the sparse
optimization problem in CS is introduced. Section 3 gives an overview on two
well-known iterative thresholding algorithms. MOEA/D with iterative threshold-
ing algorithm for sparse optimization is presented in Section 4. The experimental
results are reported and analyzed in Section 5. The final section concludes the
paper.
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2 Sparse Multi-objective Optimization

2.1 Sparse Optimization

A general sparse optimization problem in the CS can be formulated as the fol-
lowing bi-objective optimization problem

min{‖y −Ax‖2, J(x)} (2)

where ‖y −Ax‖2 is the loss function. J(x) is the penalty term for sparsity. The

typical examples of J(x) are ‖x‖0, ‖x‖1 =
∑N

i=1 |xi| and ‖x‖0.50.5 = (
∑N

i=1 |xi|
1
2 )2,

which correspond to three well-known regularization frameworks, denoted by
�0, �1, and �0.5, respectively.

Over the last a few years, thresholding algorithms based on regularization have
been widely used in sparse optimization. In these algorithms, a regularization
optimization problem is obtained by combining the loss function and the sparsity
function of (2) in a linear manner:

min ‖y −Ax‖2 + λJ(x) (3)

where A and y are the same as above. λ > 0 is the regularization parameter,
which is very sensitive to the performance of thresholding algorithms. The larger
the value of λ, the solution of (3) is more sparse.

Among the aforementioned regularization frameworks, the solutions of �0 reg-
ularization problem are sparsest. But �0 regularization problem is difficult to
solve since it is a NP-hard combinatorial optimization problem. To overcome
this difficulty, �1 regularization, the relaxation of �0 regularization, was sug-
gested [13]. Since �1 regularization problem is a convex quadratic optimization
problem, there exist efficient algorithms for sparse solutions. �0.5 regularization, a
special case of �q(0 < q < 1), is the other popular framework for sparse optimiza-
tion, which allows fast method for sparse solutions as they can be analytically
expressed. Compared with �1 regularization, �0.5 thresholding algorithms need
less measurements to recover sparse signals, but it is more difficult to solve .

2.2 Pareto Optimality

As shown in (2), a sparse optimization problem is in nature a bi-objective opti-
mization problem, which should have many trade-off solutions. In this work, we
focus on the following bi-objective sparse optimization problem:

min
x∈RN

{(f1(x), f2(x))} (4)

where f1(x) = ‖x‖0 and f2(x) = ‖y −Ax‖2 . A and y are the same as in (1).
In the context of multi-objective optimization, the optimality of solutions is

defined in terms of Pareto dominance. For any two solutions x(1) and x(2) in RN ,
x(1) is said to dominate x(2) if and only if fi(x

(1)) ≤ fi(x(2)) for all i ∈ {1, 2}, and
there exists at least one index j ∈ {1, 2} such that fj(x

(1)) < fj(x
(2)). A solution
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x∗ is said to be Pareto-optimal if there doesn’t exist such a solution in RN which
dominates x∗. The set of all Pareto-optimal solutions in the objective space is
called Pareto-optimal front. A solution x∗ is said to be weakly Pareto-optimal if
no solution in RN is strictly better than x∗ regarding all objectives.

2

1

Fig. 1. Weakly Pareto-optimal solutions in sparse optimization

Fig. 1 illustrates the distribution of weakly Pareto-optimal solutions in the
sparse optimization problem (4). Note that the number of these solutions is
finite because the first objective ‖x‖0 takes integer numbers in [0, N ]. Note that
part of trade-off solutions are not Pareto-optimal but weakly Pareto-optimal.
For example, all points on the right side of point K in Fig. 1 are only weakly
Pareto-optimal. In many existing sparse optimization methods, the goal is to find
the ’knee’ Pareto-optimal solution K (k-sparse) with y = Ax. Unfortunately, the
value of sparsity k is usually unknown.

3 Iterative Thresholding Algorithms

In this section, we briefly introduce two efficient iterative thresholding algorithms
for sparse optimization - iterative hard thresholding algorithm (iHardT) [14]
and iterative half thresholding algorithm [7] (iHalfT), which are based on �0
regularization and �0.5 regularization respectively.

– In iHardT, an iterative procedure is performed as follows:

x(n+1) = Hk(x
(n) +AT (y −Ax(n))) (5)

where Hk(·) is a nonlinear thresholding operator that retains the largest k
components of a vector in magnitude and sets others as zeros. Note that
AT (Ax(n) − y) is actually the gradient vector of ‖Ax− y‖2.

– In iHalfT, the important components of a vector are retained by a more
complex rule as follows:

x(n+1) = Hλ,μ,0.5(x
(n) − μAT (y −Ax(n))) (6)
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where Hλ,μ,0.5(x) = (ρλ,μ,0.5(x1)), ρλ,μ,0.5(x2), · · · , ρλ,μ,0.5(xN ))) is the
thresholding operator. The details of ρλ,μ,1/2(·) is referred to the litera-
ture [7].

4 MOEA/D for Sparse Optimization

4.1 Motivations

In most existing regularization methods, the bi-objective optimization problem
(2) is often converted into a single objective regularization optimization prob-
lem, which could be NP-hard, or have many local optimal solutions. Due to
these characteristics, these methods may suffer from being local optimizers and
having sensitivity to regularization parameter, and replying on the estimation of
sparsity degree. To determine the sparsity degree, regularization methods should
be repeatedly applied to solve regularization problems with various sparsity lev-
els. The set of all resultant solutions should be weakly Pareto-optimal and may
contain the ’knee’ Pareto-optimal solution shown in Fig. 1.

Since sparse optimization problem is a multi-objective optimization prob-
lem, the use of MOEAs to find multiple weakly Pareto-optimal solutions should
be a straightforward choice. Among all MOEAs, a recent popular algorithm -
MOEA/D is very suited for multi-objective sparse optimization problem due to
the fitness assignment based on decomposition. The main idea in MOEA/D is to
optimize multiple subproblems. Each subproblem is associated with one Pareto-
optimal solution. For sparse optimization, the objective functions of subproblems
can be defined by:

min g(s)(x) = ‖y −Ax‖2, (7)

s.t. ‖x‖0 = s,

where the sparsity level s ranges from 0 to N . Note that only the optimal solu-
tions of g(s) with sparsity level s close to sparsity degree k are preferred.

In this work, we suggested a revised version of MOEA/D based on threshold-
ing algorithms to find part of weakly Pareto-optimal solutions near the ’knee’
solution. Unlike previous variants of MOEA/D, this version evolves all sub-
problems such that the corresponding solutions are in the neighborhood of the
preferred ’knee’ solution. The detail of MOEA/D is described in the following
subsection.

4.2 MOEA/D with Thresholding Algorithm

In MOEA/D, a set of pop subproblems are defined by g(si)(x), i = 1, . . . , pop,
where si is an integer number between an estimation interval [smin, smax] includ-
ing sparsity degree k. For each subproblem g(si)(x), a solution x(i) is associated
and maintained. The general framework of MOEA/D for sparse optimization
is outlined in Algorithm 1. The following are the detailed illustrations for the
major steps in MOEA/D.
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Algorithm 1. MOEA/D for Sparse Optimization

1: Input pop- population size, #ls- maximal no. of steps in local search
2: Output P - sparse solutions, S- sparsity levels
3: Step 1: Initialization
4: initialize S = {s1, . . . , spop} and P = {x(1), . . . , x(pop)} randomly.
5: Step 2: Variation and Local Search
6: for all i ∈ {1, . . . , pop} do
7: perturb x(i) via mutation;
8: apply iterative thresholding algorithm to improve x(i) w.r.t sparsity level si.
9: end for
10: Step 3: Non-dominated Sorting
11: determine all non-dominated solutions in P and save them into Q.
12: Step 4: Sparsity Update
13: Step 4.1 sort S in an increasing order, i.e., si1 < si2 < . . . < sipop .

14: Step 4.2 determine the set of new potential sparsity levels S̃ = {�sij+0.5(sij+1−
15: sij )�|sij+1 − sij ≥ 2, j = 1, . . . , pop− 1}
16: Step 4.3 insert sparsity level in S̃ if |S̃| �= 0:
17: Step 4.3.1 si1 ← a level in S̃ randomly if |Q| > 0.5pop.
18: Step 4.3.2 sipop ← a level in S̃ randomly if |Q| ≤ 0.5pop.

19: Step 4.4 offset sparsity level if |S̃| = 0:
20: Step 4.4.1 si1 ← min{sipop + 0.5pop, smax} if |Q| = pop.
21: Step 4.4.2 sipop ← max{si1 − 0.5pop, smin} if |Q| = 1.

22: Step 4.5 replace x(i1) or x(ipop) by one solution in the half best in P if updated.
23: Step 5: Stopping Criteria
24: If stopping criteria is fulfilled, then output P and S; otherwise go to Step 2.

– In Step 2, each solution x(i) is first perturbed by a mutation operator,
and then improved by a local search procedure, i.e., iterative thresholding
algorithm. In this work, we use either iHardT in (5) or iHalfT in (6) for
this purpose. The parameter #ls is used to control the maximal number
of iterations allowed in each step of local search. x(i) is used as the starting
solution and then updated by the improved solution obtained in the previous
step. To perturb the starting solution, one of its non-zero component is set
to zero randomly. Then, we use the greedy constructive strategy in OMP to
complete the solution until si non-zero components are determined.

– In Step 3, the set of all non-dominated solutions in P are determined and
saved in Q. Note that weakly Pareto-optimal solutions for sparse optimiza-
tion problem are excluded in Q. The size of Q will tell us if the sparsity k is
among S.

– Step 4 is the core step of MOEA/D for sparse optimization, which adap-
tively updates the set S of pop sparsity levels. Step 4.1 and Step 4.2
determine the set S̃ of candidate sparsity levels. Each of them is located in
the middle of adjacent two sparsity levels in S.

– In Step 4.3 and Step 4.4, the minimum si1 or the maximum sipop among
all sparsity levels in S are updated by the candidate sparsity levels randomly
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chosen from S̃. As the search progresses, subproblems with pop consecutive
sparsity levels are expected to obtain.

– In Step 4.4, we also increase the maximal sparsity level sipop or decrease the
minimal sparsity level si1 since all sparsity levels in S may locate on one side
of the sparsity degree k. If all members of S are on the left side of k, then
we need to increase the maximal sparsity level. In this case, all members of
population are non-dominated. Otherwise, the minimal sparsity level should
be decreased if only one is non-dominated.

– Step 4.5 updates the solutions of the selected candidate sparsity level by
the member of P with the better value of f2.

5 Computational Experiments

5.1 Experimental Settings

In our experiments, we considered to recover noiseless real-valued signals. The
elements in sensor matrix AM×N and a k-sparse signal x∗ are randomly gen-
erated. MOEA/D was tested on four small instances with the length of signal
512 and sparsity degree 130, and four large instances the length of signal 1024
and sparsity degree 130. All instances are named by N -M -k. The initial range
of sparsity degree is assumed to be [50, 250]. For all instances, pop in MOEA/D
is set to 10. In local search, #ls used in iHardT or iHalfT is set to 20. The total
number of iterations is set to 10000 for the small instances and 20000 for the
large instances. MOEA/D was implemented by C++ and tested on the operating
system Windows XP with Intel Quad CPU 2.66 GHz.

5.2 Experimental Results

Table 1 summarizes the average values of mean square error (MSE) between the
sparse signals and the recovered signals found by MOEA/D with two thresh-
olding algorithms in 20 runs. The comparison of MOEA/D with iHardT and
iHalfT was also provided. From these results, we can see that MOEA/D with
both thresholding algorithms can find 130-sparse solutions for the first three

Table 1. Comparison of MOEA/D with iHardT and iHalfT for 8 instances with spar-
sity level 130 in terms of average mse to the true sparse solution

Instance MOEA/D+iHardT MOEA/D+iHalfT iHardT iHalfT

512-350-130 3.23255e-014 3.98776e-014 3.17919e-014 3.74779e-014
512-320-130 4.82847e-014 4.83276e-014 4.39184e-014 4.21504e-014
512-290-130 4.79143e-014 5.60058e-014 3.25566e-014 4.80787e-014
512-260-130 N/A 7.26465e-014 N/A N/A
1024-500-130 5.81117e-014 6.25171e-014 6.53619e-014 5.54127e-014
1024-400-130 8.05214e-014 8.43726e-014 8.79100e-014 8.54657e-014
1024-350-130 7.95822e-014 8.87359e-014 N/A 6.20355e-014
1024-300-130 N/A N/A N/A N/A
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instances since the MSE values of the solutions found by MOEA/D are quite
small. This indicates the obtained solutions are very close to the sparse solutions
(less than 10−13). However, for the instance 512-260-130, all four algorithms ex-
cept iHalfT failed to find the 130-sparse solution. When M is small, the sparse
optimization problem becomes too difficult to solve. This also happened for the
instance 1024-300-130, where all four algorithms failed to find 130-sparse solu-
tion. Overall, MOEA/D with iHalfT works better than MOEA/D with iHardT.

Fig. 5.2 plots the weakly solutions found by MOEA/D with two thresholding
algorithms for two instances 512-350-130 and 512-260-130 in one of 20 runs. It
can be seen from Fig. 5.2 (a) that the 130-sparse solution is also the ’knee’ solu-
tion along the weakly Pareto front for the instance 512-350-130. Fig. 5.2(b) shows
that MOEA/D with iHalfT still found that 130-sparse solution for the instance
512-260-130 while MOEA/D with iHardT failed. This indicates that iHalfT is
superior to iHardT in MOEA/D for the instances with less measurements. This
observation is also consistent with the results in Table 1.

.
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Fig. 2. Weakly Pareto-optimal solutions found by MOEA/D for the instance 512-350-
130 (a) and the instance 512-260-130 (b).

6 Conclusions

In this work, we suggested a revised version of MOEA/D for sparse signal recov-
ery in CS. It attempts to find a local part of Pareto front, which should include
the k-sparse solution. Our experimental results showed that MOEA/D with both
iHardT and iHalfT is effective for sparse optimization without prior sparsity in-
formation. In the future work, we plan to apply the proposed algorithm to deal
with nonlinear sparse optimization problems.
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Abstract. Recent progress in the development of Evolutionary Algorithms made
them one of the most powerful and flexible optimization tools for dealing with
Multi-Objective Optimization problems. Nowadays one challenge in applying
MOEAs to real-world applications is that they usually need a large number of
fitness evaluations before a satisfying result can be obtained. Several methods
have been presented to tackle this problem and among these the use of approxi-
mate models within MOEA-based optimization methods proved to be beneficial
whenever dealing with problems that need computationally expensive objective
evaluations. In this paper we present a study on a general approach based on an in-
expensive fuzzy function approximation strategy, that uses data collected during
the evolution to build and refine an approximate model. When the model becomes
reliable it is used to select only promising candidate solutions for real evaluation.
Our approach is integrated with popular MOEAs and their performance are as-
sessed by means of benchmark test problems. Numerical experiments, with a low
budget of fitness evaluations, show improvement in efficiency while maintaining
a good quality of solutions.

Keywords: Evolutionary Multi-objective Optimization, Expensive Optimization
Problems, Fuzzy Function Approximation.

1 Introduction

Evolutionary algorithms (EAs) proved to be very powerful and flexible techniques for
finding solutions to many real-world search and optimization problems. In fact they
have been used in science and engineering as adaptive algorithms for solving practical
problems and as computational models of natural evolutionary systems. In particular
great effort was recently devoted to develop EAs to solve Multi-Objective Optimization
(MOO) problems. Algorithms in this particular class of problems are named Multi-
objective evolutionary algorithms (MOEAs) and they aim at finding a set of representa-
tive Pareto optimal solutions in a single run, see [16] for details and examples. Despite
the great successes achieved, evolutionary algorithms have also encountered many chal-
lenges. For most evolutionary algorithms, a large number of fitness evaluations (perfor-
mance calculations) are needed before a well acceptable solution can be found. In many
real-world applications, fitness evaluation is not trivial. There are several situations in
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which fitness evaluation becomes difficult and computationally efficient approximations
of the fitness function have to be adopted. A detailed survey on proposals to speedup
the evaluation of a single configuration can be found in [8]. The most popular models
for fitness approximation are polynomials (often known as response surface method-
ology), the Kriging model, whereby Gaussian process models are parameterized by
maximum likelihood estimation, most popular in the design and analysis of computer
experiments, and artificial neural networks (ANNs). In particular in [8], it is stated that
ANNs are recommended under the condition that a global model is targeted and that
the dimension is high. The reason is that ANNs need a lower number of free parameters
compared to polynomials or Gaussian models. As an example, in [6] an inverse neural
network is used to map back from a desired point in the objective space (beyond the
current Pareto surface) to an estimate of the decision parameters that would achieve it.
The test function results presented look particularly promising, though fairly long runs
(of 20,000 evaluations) are considered.

A multi-objective evolutionary algorithm, called ParEGO [9], was devised to obtain
an efficient approximation of the Pareto-optimal set with a budget of a few hundred
evaluations. The ParEGO algorithm is based on Kringing model, and it begins with
solutions in a latin hypercube and updates a Gaussian process surrogate model of the
search landscape after every function evaluation, which it uses to estimate the solution
with the largest expected improvement. A recent work, [15], presents MOEA/D-EGO,
that is based on Fuzzy clustering and Gaussian stochastic process modeling extends the
ParEGO algorithm to generate many candidate solutions at the same time, in such a way
it is possible to evaluate them all using parallel computing. In [12] an improved Archive-
based Micro Genetic Algorithm (referred to as AMGA2) for constrained MOO is pro-
posed. AMGA2 borrows and improves upon several concepts from existing MOEAs.
Benchmarking and comparison demonstrate its improved search capability in the range
between 5000 and 20000 function evaluations.

Recently, in [2] a MOEA with hierarchical fuzzy approximation was studied to
speed-up the Design Space Exploration (DSE) of embedded computer architectures.
The Evolutionary-Fuzzy methodology, named MOEA+FUZZY, exploits the knowledge
of the embedded computer architecture with a hierarchical design of the fuzzy approxi-
mator system, this way, in comparisons with other MOEA for computational expensive
optimization problems, like ParEGO, showed to save a great amount of time and also
gives more accurate results.

In this work we present a study on a general implementation of the MOEA+FUZZY
approach that can be applied to every optimization problem, using a general strategy to
efficiently build a fuzzy function approximator. Details on MOEA+FUZZY approach
are given in section 2. Our study aims to assess efficiency and performance of MOEAs
combined with our +FUZZY approach when only a low budget of fitness evaluations is
available. To this end we integrated proposed approach with popular MOEAs and tested
four synthetic benchmarks. The setup of experiments is described in Section 3, while
numerical results are presented in Section 4. Finally Section 5 gives our conclusion and
directions for future work.
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2 MOEA+FUZZY : Multi-Objective Evolutionary Optimization
with Fuzzy Function Approximation

In this section we give a detailed presentation of our Evolutionary-Fuzzy strategy which
has the ability to avoid the real evaluation of individuals that it foresees to be not good
enough to belong to the Pareto-set and to give them fitness values according to a fast
estimation of the objectives obtained by means of a Fuzzy System (FS). The main idea
is that data collected for previously evaluated candidate solutions can be used during
the evolution to build and refine an approximate model, and through it to avoid evalu-
ating less promising candidate solutions. By doing so, expensive evaluations are only
necessary for the most promising population members and the saving in computational
costs is considerable.

The proposed approach could be informally described as follows: in a first phase
the MOEA evolves normally; in the meanwhile the FS learns from real fitness function
evaluations until it becomes expert and reliable. From this moment on the MOEA stops
using the real function evaluation and uses the FS to estimate the objectives. From
this moment on only if the estimated objective values are good enough to enter the
Pareto-set will the associated individual be exactly evaluated. This avoids the insertion
in the Pareto set of non-Pareto system individuals. It should be pointed out, however,
that a “good” individual might be erroneously discharged due to the approximation
and estimation error. At any rate, this could affect the overall quality of the solution
found only after long runs as will be shown in Section 4. The reliability condition is
essential in this flow. It assures that the approximator is reliable and that it can be used
in place of the real function evaluation. To test reliability during the training phase
the difference (approximation error) between the actual fitness function output and the
predicted (approximated) fuzzy system output is evaluated. If this difference is below
a user defined threshold and a minimum number of samples have been presented, the
approximator is considered to be reliable. This strategy avoid to pre-set the number of
samples needed by the approximator before the EA exploration starts, that is difficult
when the objective function is not known.

The MOEA and the FS represent the main components of the proposed approach.
Whereas the first one is used to select individuals to be explored, the second one is used
to evaluate them. In our approach MOEAs could be chosen among ones presented in
the literature, while the next subsection focus on fuzzy system generation strategy.

2.1 Strategy to Build a Fuzzy Approximation System during Evolutionary
Process

The MOEA+Fuzzy approach uses a Fuzzy System (FS), which has been demonstrated
to be a universal approximator [14]. In this work fuzzy systems are generated with a
method that is based on the well-known Wang and Mendel method [13]. It consists of
five steps:

– Step 1 Divides the input and output space of the given numerical data into fuzzy
regions;

– Step 2 Generates fuzzy rules from the given data;
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– Step 3 Assigns a degree to each of the generated rules for the purpose of resolving
conflicts among them (rule with higher degree wins);

– Step 4 Creates a combined fuzzy rule base based on both the generated rules and,
if there were any, linguistic rules previously provided by human experts;

– Step 5 Determines a mapping from the input space to the output space based on the
combined fuzzy rule base using a defuzzifying procedure.

The main advantages of this method are that allows to build rules step by step and
that do not require a priori knowledge about function to be approximated. In addition
from Step 1 to 5 it is evident that this method is simple and straightforward, in the
sense that it is a one-pass build-up procedure that does not require time-consuming
training. Our single-threaded implementation needs just about 10−2 seconds both to add
a new rule and to perform an evaluation of an individual even a relatively big system,
with thousands of fuzzy rules and tens of input variables, on an Intel Core i5 machine.
In our implementation the output space could not be divided in Step 1, because we
had no information about boundaries. For this reason we used Takagi-Sugeno fuzzy
rules [11], in which each i-th rule has as consequent M real numbers siz , with z ∈
[1,M ], associated with all the M outputs. TSj being the set of fuzzy sets associated
with the variable xj , the fuzzy rules Ri of the single fuzzy subsystem are defined as:

Ri : if x1 is Si1 and . . . and xN is SiN then yi1 = si1, . . . , yim = siM

where Sij ∈ TSj . Let αjk be the degree of truth of the fuzzy set Sjk belonging to TSj
corresponding to the input value x̄j . Ifmj is the index such that αjmj is the greatest of
the αjk , the ruleRi will contain the antecedent xj is Sjmj . After constructing the set of
antecedents the consequent values yiz equal to the values of the outputs are associated.
The rule Ri is then assigned a degree equal to the product of the N highest degrees
of truth associated with the fuzzy sets chosen Sij . The rules generated in this way are
”and” rules, i.e., rules in which the condition of the IF part must be met simultaneously
in order for the result of the THEN part to occur. For the problem considered in this
paper, i.e., generating fuzzy rules from numerical data, only ”and” rules are required
since the antecedents are different components of a single input vector. In this work
fuzzy sets shape is Gaussian with normal distribution. Steps 2 to 4 are iterated with the
MOEA: after every evaluation a fuzzy rule is created and inserted into the rule base,
according to its degree in case of conflicts. More specifically, if the rule base already
contains a rule with the same antecedents, the degrees associated with the existing rule
are compared with that of the new rule and the one with the highest degree wins. In
Step 5 the defuzzifying procedure to calculate the approximated output value ŷ is the
one suggested in [13]. According to this method the defuzzified output is determined as
follows

ŷj =

K∑
r=1
mr ȳrz

K∑
r=1
mr

(1)

where K is the number of rules in the fuzzy rule base, ȳrz is the output estimated by
the r-th rule for the z-th output and mr is the degree of truth of the r-th rule. In our
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implementation the defuzzifying procedure and the shape of the fuzzy sets were chosen
a priori. This choice proved to be effective as well as a more intelligent implementation,
which could embed a selection procedure to choose the best defuzzifying function and
shape to use online. The advantage of our implementation is a lesser computational
requirement of the algorithm and a faster evaluation.

3 Experimental Setup

For implementation of the MOEA+Fuzzy strategy described above we used the PISA
suite [3]. PISA stands for Platform and programming language Independent interface
for Search Algorithms and allows to implement application-specific parts (representa-
tion, variation, objective function calculation) separately from the actual search strategy
(fitness assignment, selection). Several multi-objective evolutionary algorithms as well
as other well-known benchmark problems, such the widely used set of continuous test
functions the ZTL [17] and DTLZ [5], are available for download at the PISA website
[1]. Due to space restrictions, not all results can be presented here. Instead, we will
focus on four test problems ZDT3, ZDT6, DTLZ3 and DTLZ6, that summarize main
issues encountered in our tests. Table 1 lists the synthetic test problems chosen for this
study. Test problem ZDT3 was selected because it is discontinuous, while DTLZ3 be-
cause it is multi-modal and difficult to solve. ZDT6 and DTLZ6 were selected because
they involve a highly skewed distribution of points in the search space corresponding to
a uniform distribution of points in the objective space, thus challenge an optimization
algorithm’s ability to find the global Pareto-optimal frontier. Detailed description of test
problems can be found in their respective references. Using problems presented above
we tested the proposed methodology integrating it with the 2 most popular MOEAs,
SPEA2 [18] and NSGA-II [4], and a novel version of ε-constraint evolutionary algo-
rithm ECEA [10]. In this work we tested two different set-ups of our approach in order
to assess it after different ranges of real function evaluations:

1. +FUZZY1. Fuzzy system has 9 sets for each input variable and reliability thresh-
olds are distance of 1.0 and maximum of 5000 evaluations. The minimum number
of evaluations is 200.

2. +FUZZY2. Fuzzy system has 25 sets for each input variable and reliability thresh-
olds are distance of 0.5 and maximum of 10000 evaluations. The minimum number
of evaluations is 1000.

The first set-up is intended for a very low budget of real evaluations, from some hun-
dreds to few thousand, while the second should perform better with longer runs.

Table 1. Test problems

Name Variables Objectives Remarks
ZDT3 10 2 Discontinuous
ZDT6 10 2 Skewed

DTLZ3 12 3 Multi-modal
DTLZ6 12 3 Skewed
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The performance measure we considered is the Hypervolume [19], that is the only
one widely accepted and, thus, used in many recent similar works. This index measures
the hypervolume of that portion of the objective space that is weakly dominated by the
Pareto set to be evaluated. In order to measure this index the objective space must be
bounded, then a bounding reference point that is (at least weakly) dominated by all
points should be used. In this work we applied a standard linear normalization proce-
dure, i.e. all values are normalized to the minimum and maximum value observed on
the test problem. We took as bounding point vectors [1.1,1.1] and [1.1,1.1,1.1] for two
and three objectives, respectively.

To present an uniform comparison between different problems, in Section 4 we show
the percentage of a reference hypervolume covered by algorithms under investigation.

The reference hypervolume is calculated from a reference Pareto-set, that was ob-
tained in following way: first, we combined all approximations sets generated by the
algorithms under consideration after 50000 function evaluations (i.e. 500 generations
with a population of 100 individuals), and then the dominated objective vectors are re-
moved from this union. At last, the remaining points, which are not dominated by any
of the approximations sets, form the reference set. The advantage of this approach is
that the reference set weakly dominates all approximation sets under consideration.

Identical setting is used for all the algorithms. The parameter settings used for each
algorithm are as follows: number of generations = 500; population size = 100; number
of parents = 100; number of offsprings = 100; individual mutation probability = 1.0;
individual recombination probability = 1.0; variable mutation probability = 1.0; variable
swap probability = 0.5; variable recombination probability = 1.0; mutation distribution
index = 20.0; recombination distribution index = 15.0.

4 Numerical Results

Using the experimental setup described in section 3, for each test problem, algorithms
ran twenty times with different random seed. Median values for performance indicators
are presented to represent the expected (mid-range) performance. For the analysis of
multiple runs, we compute the quality measures of each individual run, and report the
median and the standard deviation of these. Since the distribution of the algorithms we
compare are not necessarily normal, we use the Kruskal-Wallis test [7] to indicate if
there is a statistically significant difference between distributions. We recall that the
significance level of a test is the maximum probability α, assuming the null hypothesis,
which the statistic will be observed, i.e. the null hypothesis will be rejected in error
when it is true. The lower the significance level the stronger the evidence. In this work
we assume that the null hypothesis is rejected if α < 0.01.

Table 2 presents median number of real function evaluations for MOEA+FUZZYs.
As expected for ZDT problems MOEAs need less function evaluations to converge,
for this reason we chose different pre-fixed amounts of real function evaluations for
comparison reported in Table 3. To make an uniform comparison we calculated me-
dian values of +FUZZY algorithms taking into account all runs, even those with a
number of function evaluations lower than maximum threshold selected. This means
that absolute performance of MOEA+FUZZYs is sometimes slightly underestimated.
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Table 2. Real function evaluations of MOEA+Fuzzy after 500 generations with a population of
100 individuals

Test Problem / Real function evaluations of MOEA+Fuzzy
Algorithm ZDT3 ZDT6 DTLZ3 DTLZ6

median stddev median stddev median stddev median stddev
SPEA2+FUZZY1 3095 3710 374 72 5354 60 3480 378
SPEA2+FUZZY2 2246 509 1184 119 10571 112 10001 2107

NSGA-II+FUZZY1 2387 4305 338 126 5256 75 3661 339
NSGA-II+FUZZY2 2251 418 1218 131 10594 110 8549 1871

ECEA+FUZZY1 297 38 298 32 10001 0 684 77
ECEA+FUZZY2 1268 155 1294 203 10001 2 1969 2645

Table 3. Comparison of median hypervolume percentage covered after a fixed amount of real
function evaluations

Test problem / Maximum number of real function evaluations*
Algorithm ZDT3 ZDT6 DTLZ3 DTLZ6

400 1200 2000 400 1200 2000 2000 3000 5000 2000 3000 5000
SPEA2 81.26 95.90 99.30 32.80 58.61 77.43 99.38 99.52 99.64 81.06 87.65 93.68
+FUZZY1 94.27 95.42 95.59 58.08 59.04 59.04 99.35 99.48 99.65 81.14 89.34 91.63
+FUZZY2 81.25 97.75 99.00 34.19 72.40 74.61 99.35 99.48 99.64 81.00 87.61 93.91

NSGA-II 81.57 95.85 99.34 33.38 56.28 75.58 99.47 99.58 99.70 83.62 90.34 95.55
+FUZZY1 94.01 96.56 96.65 59.91 60.96 60.96 99.46 99.57 99.71 83.91 92.11 93.73
+FUZZY2 81.56 97.66 99.04 33.32 72.36 75.23 99.46 99.57 99.70 83.91 90.43 95.99

ECEA 74.48 76.16 76.39 28.87 32.94 33.59 97.36 97.40 97.53 62.48 62.72 68.24
+FUZZY1 76.25 76.25 76.25 31.17 31.17 31.17 97.35 97.39 97.51 63.09 63.09 63.09
+FUZZY2 74.85 76.25 77.47 28.53 33.08 33.90 97.35 97.39 97.54 63.04 63.11 63.15
* Median values of +FUZZY algorithms are reported taking into account also runs with a number
of function evaluations lower than the threshold used for the comparison.
Results in bold are better than others with statistical significance level α < 0.01, according to
the Kruskal-Wallis test.

In particular, looking at Table 2 we remark that none of +FUZZY algorithms reached
2000 real evaluations in ZDT6 problem. From the results of the benchmark study, we
can see that the SPEA2+FUZZYs and NSGA-II+FUZZYs perform comparably well
in ranges considered, while ECEA has a slower convergence that impacts performance
of ECEA+FUZZYs. Results in Table 3 show that fuzzy system in scenario +FUZZY1

is able to speedup the convergence of MOEAs after a very low number of real fitness
evaluations for ZDT problems. On the other hand +FUZZY2 improvement is smaller,
but its performance on longer runs is more reliable, as shown also in Table 4. Figure
1 shows two examples of hypervolume improvement during the evoluationary process.
Speedup of +FUZZYs approach is evident in Figure 1(a). In DTLZ3 there is no signif-
icant improvement thanks to fuzzy approximation strategy, while in DTLZ6 our fuzzy
approach help to improve only SPEA2 and NSGA-II evolution in the range between
2000 and 3000 as also shown in Figure 1(b).
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Fig. 1. Hypervolume coverage: (a) ZDT6 - SPEA2 ; (b) DTLZ6 - NSGA-II

Table 4. Comparison of hypervolume percentage covered after 500 generations

Algorithm Test Problem
ZDT3 ZDT6 DTLZ3 DTLZ6

SPEA2 100 100 99.95 99.85
SPEA2+FUZZY1 96.67 60.96 99.72 93.74
SPEA2+FUZZY2 99.15 75.23 99.82 97.98

NSGA-II 100 100 99.96 99.85
NSGA-II+FUZZY1 95.68 59.04 99.65 91.63
NSGA-II+FUZZY2 99.11 74.61 99.81 96.39

ECEA 87.63 39.61 98.22 94.59
ECEA+FUZZY1 76.25 31.17 97.98 63.09
ECEA+FUZZY2 77.47 33.90 97.99 63.32

Results in bold are better than others with statistical significance level α < 0.01, according to
the Kruskal-Wallis test.
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Fig. 2. Pareto set comparison: (a) ZDT3 after 400 real function evaluation ; (b) ZDT6 after 1200
real function evaluations
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As expected +FUZZY1 is more efficient that +FUZZY2, but the second setup is
able to achieve a better quality of solutions. Table 4 present results after 500 genera-
tions. MOEA+FUZZY solutions maintain a good quality even if they are not able to
find the Pareto optimal set. ZDT6 is the only problem in which, despite the great effi-
ciency improvement, +FUZZYs are not able to find a good approximation of the Pareto
optimal set, this is because MOEAs converge slowly. However this problem could be
solved using a higher minimum threshold for the fuzzy system learning strategy. Figure
2 presents two comparison: in (a) Pareto sets for ZDT3 problem are shown, demon-
strating that NSGA-II+FUZZY1 (as well as NSGA-II+FUZZY1) is able to obtain a
very good approximation of the Pareto optimal set after 400 real function evaluation;
Pareto sets for ZDT6 problem are drawn in (b), where it is shown NSGA+FUZZY2

outperform NSGA-II+FUZZY1 and classic NSGA-II, but they are still quite far from
the Pareto optimal set.

5 Conclusion and Future Work

In this paper we have presented an empirical study on use of fuzzy function approxi-
mation to speed up evolutionary multi-objective optimization. The methodology uses
a MOEA for heuristic exploration of the search space and a fuzzy system to evaluate
the candidate system individuals to be visited. Our methodology works in two phases:
firstly all individuals are evaluated using computationally expensive evaluations and
their results are used to train the fuzzy system until it becomes reliable; in the sec-
ond phase the system is used to estimate fitness of all individuals and only promising
individuals are actually evaluated to improve the accuracy of the fuzzy system.

Empirical results with low budgets of real evaluations (i.e. from hundreds to three
thousand) encourage the use of a fuzzy system as approximate model to improve ef-
ficiency of MOEAs. This is because to the strategy used to build the fuzzy system,
that allows generating an efficient fitness function approximator without any previous
learning phase and knowledge of real function. Strengths of our approach are the in-
expensive learning procedure, that could be easily integrated with every MOEA giving
the opportunity to take advantage of novel algorithms, and the possibility to set-up the
fuzzy system according to a maximum number of real function evaluations.

On the other hand fuzzy systems have the characteristic to allow to embed prior
knowledge about the function to be approximated, this could be useful in problems
where there is an expert that knows at least part of the behaviours of the objective
function to be evaluated. This will be matter of our future work along with a study on
improvement of fuzzy system learning and evaluation strategies in order to maximize
approximation performance and, thus, tackle the problem of loss of solution quality in
longer runs.
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Abstract. This paper presents a biased random-key genetic algorithm
for solving a multi-objective optimization problem concerning the man-
agement of agile Earth observing satellites. It addresses the selection
and scheduling of a subset of photographs from a set of candidates in
order to optimize two objectives: maximizing the total profit, and ensur-
ing fairness among users by minimizing the maximum profit difference
between users. Two methods, one based on dominance, the other based
on indicator, are compared to select the preferred solutions. The meth-
ods are evaluated on realistic instances derived from the 2003 ROADEF
challenge.

Keywords: Multi-objective optimization, Earth observing satellite,
scheduling, genetic algorithm.

1 Introduction

This paper studies the use of multiobjective optimization applied to the schedul-
ing of one Earth observing satellite in a context where multiple users request
photographs from the satellite. Genetic algorithms are proposed to solve the
problem and experiments are conducted on realistic instances.

The mission of Earth Observing Satellites (EOSs) is to obtain photographs of
the Earth surface satisfying users’ requirements. When the ground station center
receives requests from several users, it has to consider all users’ requirements
and output an order consisting of a sequence of selected photographs to be
transmitted to the satellites. The management problem of EOSs is to select and
schedule a subset of photographs from a set of candidates. Among the various
types of EOSs, only agile satellites are considered in our study.

An agile EOS has one on-board camera that can move in three axes: roll,
pitch, and yaw. It has more efficient capabilities for taking photographs than
for example, SPOT5, a non-agile satellite. The selection and scheduling of tak-
ing photographs with agile EOSs is more complicated because there are several
possible schedules for the same set of selected photographs. The starting time of
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each photograph is not fixed; nonetheless, it must be within a given time inter-
val. This problem is a scheduling problem and it is the issue under consideration
in this paper.

Several algorithms including greedy algorithm, dynamic programming, con-
straint programming, and local search have been applied for solving agile EOSs
scheduling problems [1]. The ROADEF 2003 challenge (see http://challenge.
roadef.org/2003/en/) requires the scheduling solutions that maximize total profit
of the acquired photographs and also satisfy all physical constraints of agile
EOSs. The winner used an algorithm based on simulated annealing [2] and the
second prize winner proposed an algorithm based on tabu search [3].

Our work considers agile EOSs scheduling problem where the requests em-
anate from different users. Hence an objective function to maximize the total
profit is not sufficient. The ground station center should also share fairly the re-
sources among users. Therefore, a multi-objective model is considered. The idea
to use two objective functions related to fairness and efficiency was proposed in
[4], and three ways were discussed for solving this sharing problem. The first one
gives priority to fairness, the second one to efficiency, and the third one computes
a set of trade-offs between fairness and efficiency. For the multi-criteria method,
instead of building a complete set of non-dominated solutions, the authors only
searched for a decision close to the line with a specified slope on the objective
function plane. In [5], a tabu search was used for the multi-satellite, multi-orbit,
and multi-user management to select and schedule requests. The upper bounds
on the profit were derived by means of a column generation technique. They
tested these algorithms with the data instances provided by the French Center
for Spatial Studies (CNES).

This paper proposes a biased random-key genetic algorithm (BRKGA) in or-
der to solve the multi-objective optimization problem for selecting and schedul-
ing the subset of required photographs from multiple users. The two objective
functions for this scheduling problem are to maximize the total profit and min-
imize the maximum difference of profit values between users. The second objec-
tive function represents the fairness of resources sharing among the users. The
solutions must also satisfy the physical constraints of the agile EOSs.

The article is organized as follows. The problem is explained in Section 2.
Section 3 describes the biased random-key genetic algorithm for solving the
multi-objective optimization problem. The computational results are reported
in Section 4. Finally, conclusions and future work are discussed in Section 5.

2 Multi-objective Optimization for Photograph
Scheduling Problem of Agile Earth Observing Satellites

According to the mission and physical constraints of agile EOSs, the requests
which are required from users cannot be assigned to a satellite directly. The
shape of the area of candidate photographs can be either a spot or polygonal. A
spot is a small circular area with a radius of less than 10 km. A polygonal area
is an area ranging from 20 to 100 km. All requests (both spot and polygonal
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area) must be managed from the ground station center by transforming the
requests into rectangular shapes called strips for which the camera can take a
photograph at once. Each spot is considered as one single strip. Each polygonal
area is decomposed into several strips with fixed width but variable length.
Each strip can be acquired following two possible opposite directions as shown
in Figure 1, only one of them will be selected in the scheduling results. Requests
can be mono or stereo photographs. A mono photograph is taken only once,
whereas a stereo photograph must be acquired twice in the same direction but
from different angles.

polygonal 

strip

possible 
acquired 
direction 

Fig. 1. A polygonal area is decomposed into several strips; each strip can be acquired
according to two possible directions

In [6], a simplified version of the problem of managing the mission of agile
Earth observing satellites was presented. An instance gives the set of candidate
requests with shape type, mono or stereo characteristic, associated gain and
surface areas. Let r be the set of requests. These requests are divided into the
set of strips s. Each strip includes details, which consist of the identity of request
R[j] where that strip is split from, the useful surface area Su[j], duration time
Du[j], and earliest and latest visible times from two ends Te[j, 0], T l[j, 0], T e[j, 1],
and T l[j, 1]. Each strip is possibly taken from two directions but only one can be
selected. Thus, our scheduling problem is solved for selecting and scheduling the
possible strip acquisition that is associated with the possible acquisition direction
of each strip. If one possible strip acquisition is selected, the other one (possible
acquisition in opposite direction) of the same strip is forbidden to be selected.
For the profit calculation of each acquired request, its profit can be calculated
by a piecewise linear function of gain depending on the fraction of taken useful
area and the whole area of each request, as illustrated in Figure 2.

Hence, we extend the case to multiple users as in [5]. However, we solve the
problem as a real bi-objective problem. The two objectives are to maximize total
profit and ensure fairness between users. For the second objective, the defined
function is to minimize the maximum difference in profit between the users. The
imperative constraints for finding the feasible solutions are: take each strip within
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Fig. 2. Piecewise linear function of gain P (x) depending on the effective ratio x of
acquired area [6]

their associated time windows, no overlapping images, sufficient transition times,
acquire only one direction for each strip, and satisfy the stereoscopic constraint
for stereo requests.

3 Biased Random-key Genetic Algorithm for the
Multi-user Photograph Scheduling

Genetic algorithm is a heuristic search method that mimics the process of natural
evolution. The starting step of genetic algorithm is the initial population gen-
eration and the population consists of several chromosomes. Each chromosome,
which is formed of several genes, represents one solution. The genetic algorithm
involves three mechanisms (selection, crossover, and mutation) to generate the
new chromosomes for the next generation and repeats to generate the new gen-
eration until the stopping criterion is satisfied.

We propose a genetic algorithm for selecting and scheduling the required pho-
tographs for the agile EOSs from multi-user requests. The biased random-key
genetic algorithm (BRKGA) [7] is used to solve this scheduling problem with
two important steps (encoding and decoding). Two methods are used to select
the preferred solutions in each genetic algorithm iteration: i) fast nondominated
sorting with crowding distance assignment [8]; ii) indicator based on the hyper-
volume concept [9]. Let p, pe, and pm be the sizes of the population, of the elite
set, and of the mutation set, respectively.

3.1 Chromosome Generation in the Encoding Process

The initial population consisting of p chromosomes is generated. Each chromo-
some consists of genes which are encoded by real values randomly generated in
the interval (0, 1]. For our problem, each strip can be taken following two oppo-
site directions (but only one direction will be selected). Each gene is associated
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with one direction of a strip, which is a possible strip acquisition that we will
just call acquisition in the sequel, for the sake of simplification. It is the reason
why we define the number of genes to be equal to twice the number of strips.

3.2 Schedule Generation in the Decoding Process

Each chromosome is decoded in order to obtain one solution, which is a sequence
of selected acquisitions of the scheduling problem. In this decoding step, the
considered priority of each acquisition depends on the gene values: from high to
low. The imperative constraints, except the stereo constraint, are verified during
each considered acquisition. The stereo constraint is checked once all acquisitions
have been treated. All constraints must be satisfied in order to obtain a feasible
solution. The flowchart of these decoding steps is depicted in Figure 3.

The example of one solution from the modified instance, which needs to sched-
ule two strips, is shown in Figure 4. Two strips are considered in this instance;
therefore the number of genes equals 4. The random-keys are generated for all
genes and each gene represents one acquisition. The decoding steps are used to
obtain the sequence of selected acquisitions and the values of the two objective
functions.

3.3 Biased Random-Key Genetic Algorithm

In BRKGA, the new population is combined from three parts (selection, crossover,
and mutation) [7]. The first part is the selection part in which we can choose a
selection method from several efficient algorithms, e.g., NSGA-II [8], IBEA [9],
SMS-EMOA [10], etc. We propose two selection methods to choose pe preferred
chromosomes (elite set) from the current population. We copy these pe chromo-
somes to the top part of the next population. The two methods are:

1. Fast nondominated sorting and crowding distance assignment
Fast nondominated sorting and crowding distance assignment methods were
proposed in the Nondominated Sorting Genetic Algorithm II (NSGA-II) [8].
In our work, the fast non-dominated sorting method is used to find the
solutions in rank zero (nondominated solutions). If the number of nondom-
inated solutions is more than the parameter setting value of maximum size
of the elite set, the crowding distance assignment method is applied to select
some solutions from the nondominated set to become the elite set. Other-
wise all nondominated solutions will become the elite set. The concept of the
crowding distance assignment method is to get an estimate of the density of
solutions surrounding a particular solution in the population.

2. Indicator based on the hypervolume concept
The use of an indicator based on the hypervolume concept was proposed
in the Indicator-Based Evolutionary Algorithm (IBEA) [9]. The indicator
based method is used to assign fitness values based on the hypervolume
concept to the population members and some solutions in the current pop-
ulation are selected to become the elite set for the next population. The
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Fig. 3. Decoding steps flowchart of one chromosome into one solution
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Fig. 4. Solution example from the modified instance, which needs to schedule two strips
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indicator-based method performs binary tournaments for all solutions in the
current population and implements environmental selection by removing the
worst solution from the population and by updating the fitness values of
the remaining solutions. The worst solution is removed repeatedly until the
number of remaining solutions satisfies the recommended size of the elite set
for BRKGA.

The second part is the bottom part which is the mutant set. It is the set of pm
chromosomes generated to avoid entrapment in a local optimum. These chromo-
somes are randomly generated by the same method used to generate the initial
population. The last part is the crossover part for which each crossover offspring
is built from one elite chromosome and one chromosome in the previous popu-
lation. Each element in the crossover offspring is obtained from the element in
elite chromosome with the probability ρe. The crossover offspring is stored in the
middle part of the new population. Hence, the size of crossover offspring set is
p−pe−pm to fulfill the remaining space of chromosomes in the next population.
The process for generating the next populations is applied repeatedly until the
stopping criterion is satisfied.

4 Computational Results

The ROADEF 2003 challenge instances (subsetA) from ROADEF Challenge
website (http://challenge.roadef.org/2003/en/sujet.php) are modified for
4-user requirements and the format of instance names are changed to a b c,
where a is the number of requests, b is the number of stereo requests, and c

is the number of strips. For the proposed biased random-key genetic algorithm,
the recommended parameter value settings is displayed in Table 1 [7]. Two pop-
ulation sizes of n and 2n, where n is the length of a chromosome, are tested.
The best solutions are stored in the archive set. If there is at least one solution
from the current population that can dominate some solutions in the archive set,
the archive set will be updated. Thus, we use the number of iterations of the
last archive set improvement to be the stopping criterion. The algorithms were
experimentally tuned and the stopping value is set to 50. The size of the elite
set is equal to the number of non-repeating photograph scheduling results from
the nondominated solutions, but it is not over 0.15p. The size of the mutant
set is 0.3p. The probability of elite element inheritance for crossover operation

Table 1. Recommended parameter values of BRKGA [7]

Parameter Recommended value

p p = a.n,
where 1 ≤ a ∈ R is a constant and
n is the length of the chromosome

pe 0.10p ≤ pe ≤ 0.25p
pm 0.10p ≤ pm ≤ 0.30p
ρe 0.5 ≤ ρe ≤ 0.8

http://challenge.roadef.org/2003/en/sujet.php
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Table 2. Results of the modified ROADEF 2003 challenge instances subsetA

Dominance-based

Instance
Hypervolume # CPU

Average σ solutions time (s)

2 0 2 - - - -
4 0 7 4.6734 × 1015 8.19837 × 1014 4.8 0
12 2 25 5.00258 × 1016 2.62563 × 1014 11.1 1611.7
12 9 28 1.23618 × 1016 1.06097 × 1015 7.1 0.3

Population 68 12 106 2.50509 × 1017 2.22774 × 1016 20.8 24.2
size n 77 40 147 2.69889 × 1016 3.93096 × 1015 25.3 77.7

218 39 295 4.62395 × 1017 1.11213 × 1017 25.4 483.9
150 87 342 4.80749 × 1017 3.59237 × 1016 27.7 938.9
336 55 483 1.24056 × 1018 1.58973 × 1017 23.8 2068.2
375 63 534 1.09387 × 1018 1.14147 × 1017 28 1878.9

2 0 2 5.43238 × 1013 0 1 0
4 0 7 5.78803 × 1015 6.11588 × 1013 7.2 0.2
12 2 25 5.08453 × 1016 6.69058 × 1013 23.5 3489.9
12 9 28 1.24857 × 1016 1.43998 × 1015 7.2 0.6

Population 68 12 106 2.51852 × 1017 2.20262 × 1016 37.5 68.8
size 2n 77 40 147 2.96205 × 1016 3.19952 × 1015 36.4 172.2

218 39 295 4.50592 × 1017 5.74569 × 1016 26.7 937
150 87 342 5.05842 × 1017 4.40302 × 1016 30.2 2013.7
336 55 483 1.15971 × 1018 1.58218 × 1017 27.7 2381.2
375 63 534 1.24831 × 1018 1.93988 × 1017 26.5 4473.1

Indicator-based

Instance
Hypervolume # CPU

Average σ solutions time (s)

2 0 2 - - - -
4 0 7 5.36459 × 1015 2.82301 × 1014 5.5 0
12 2 25 4.49038 × 1016 1.5282 × 1015 10.2 0.2
12 9 28 1.16085 × 1016 1.56771 × 1015 5.4 0.3

Population 68 12 106 2.38139 × 1017 3.06587 × 1016 9.4 24.3
size n 77 40 147 2.56001 × 1016 2.87972 × 1015 12.5 58.1

218 39 295 4.97074 × 1017 6.973 × 1016 13.3 450.5
150 87 342 4.4792 × 1017 2.9806 × 1016 12.2 852.3
336 55 483 1.26768 × 1018 1.07123 × 1017 10.3 2666.4
375 63 534 1.34292 × 1018 1.45157 × 1017 10.3 4623.4

2 0 2 5.43238 × 1013 0 1 0
4 0 7 5.81005 × 1015 5.93069 × 1013 8.8 0
12 2 25 4.9165 × 1016 1.27084 × 1015 23.1 1.1
12 9 28 1.24013 × 1016 9.66474 × 1014 8.1 1.4

Population 68 12 106 2.55655 × 1017 2.32915 × 1016 13.2 88.4
size 2n 77 40 147 2.73546 × 1016 2.72353 × 1015 14.7 223.4

218 39 295 5.30441 × 1017 3.9777 × 1016 13.2 3017.3
150 87 342 4.8244 × 1017 3.30219 × 1016 14 5276.6
336 55 483 1.41375 × 1018 8.84685 × 1016 10.3 12904.2
375 63 534 1.39739 × 1018 1.07724 × 1017 13.4 28760
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is 0.6. Two methods (dominance-based and indicator-based) for selecting some
solutions to become the elite set are tested. They are implemented in C++. We
test ten runs per instance. Hypervolumes of the approximate Pareto front are
calculated by using a reference point of 0 for the first objective and the maxi-
mum of the profit summations of each user for the second one. The average and
standard deviations values of hypervolumes, the average number of solutions,
and average CPU times are reported in Table 2. Each method obtains a set of
solutions, which considers both objective functions (maximize total profit and
ensure fairness among users) and all constraints of agile EOSs are satisfied. For
both methods, when comparing the results from two different population sizes,
most of them show that the methods with the population size 2n obtain the
better average and standard deviation values of hypervolumes and acquire more
solutions, but CPU times are higher. In the other way, when we compare results
between dominance-based and indicator-based, the average values of hypervol-
umes cannot show exactly which one obtains the better solutions. However, the
standard deviation for the population size 2n of indicator-based is better than
dominance-based. On the number of solutions and CPU time, dominance-based
obtains more solutions and spends less CPU times, especially for large instances.
Except for instance 12 2 25, dominance-based takes very high CPU time and
this is strange. Hence, more tests are done to check the number of iterations un-
til the stopping criterion is satisfied for instance 12 2 25 and instance 12 9 28.
The average number of iterations for instance 12 2 25 and instance 12 9 28 are
2657535.7 and 177.7, respectively. Therefore, instance 12 2 25 spends very high
CPU time, because it uses a huge number of iterations until the stopping cri-
terion is satisfied. For instance 2 0 2 when using the population size n, both
methods cannot reach any result, because the population size is too small for
generating the new generation from 3 parts in BRKGA. Nevertheless, the com-
putation times for large instances are quite high, that means that the efficiency
of the decoding methods certainly deserves to be improved.

5 Conclusions and Future Work

Multi-objective optimization is applied to solve the problem of selecting and
scheduling the observations of agile Earth observing satellites. The instances
of ROADEF 2003 challenge are modified in order to take account explicitly of
4-user requirements. Two objective functions are considered to maximize the
total profit and to minimize the maximum difference profit between users for
the fairness of resource sharing. Moreover, all constraints have to be satisfied. A
biased random-key genetic algorithm (BRKGA) is applied to solve this problem.
Random-key encoding generates each chromosome in the population and all of
them are decoded to be the solutions. Thus, two methods, fast nondominated
sorting with crowding distance assignment on the one hand and indicator based
on the hypervolume concept on the other hand, are used for selecting the elite
set of solutions from the population. An elite set, a crossover offsprings set, and
a mutant set are combined to become the next population. The results of the
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dominance-based and indicator-based methods with two population sizes are
compared. The approximate solutions are obtained but the computation times
for large instances are quite high.

This work is still in progress. As a future work, we plan to use other random-
key decoding methods in order to reduce the computation times. Moreover, we
will apply indicator-based multi-objective local search (IBMOLS) to solve this
problem and compare the IBMOLS results with the BRKGA results which are
proposed in this paper.
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6. Verfaillie, G., Lemâıtre, M., Bataille, N., Lachiver, J.M.: Management of the Mis-
sion of Earth Observation Satellites Challenge Description. Technical report, Cen-
tre National d’Etudes Spatiales, France (2002)
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Abstract. Concept-based MOEAs are tailored MOEAs that aim at solving 
problems with a-priori defined subsets of solutions that represent conceptual 
solutions. In general, the concepts' subsets may be associated with different 
search spaces and the related mapping into a mutual objective space could have 
different characteristics from one concept to the other. Of a particular interest 
are characteristics that may cause premature convergence due to local Pareto-
optimal sets within at least one of the concept subsets.  First, the known  
ε-MOEA is tailored to cope with the aforementioned problem. Next, the 
performance of the new algorithm is compared with C1-NSGA-II. Concept-
based test cases are devised and studied. In addition to demonstrating the 
significance of premature convergence in concept-based problems, the 
presented comparison suggests that the proposed tailored MOEA should be 
preferred over C1-NSGA-II. Suggestions for future work are also included. 

1 Introduction 

In the concept-based approach a design concept (in short – concept) is represented by a 
set of potential solution alternatives [1]. Such a representation has been termed Set-Based 
Concept (SBC). In contrast to the traditional way of evaluating concepts, the SBC  
approach allows concept selection to be based not only on optimality considerations, but 
also on performance variability, which is inherent to the SBC representation [2].  

The SBC approach unfolds various ways to compare concepts by their associated 
sets of performances in objective space [3]. The most studied approach is known as 
the s-Pareto approach [4]. It involves finding which particular solutions, of which 
concepts, are associated with the Pareto-front that is obtained by domination 
comparisons among all individual solutions from all concepts. The interested reader is 
referred to [5] for some concrete engineering examples of the s-Pareto approach. The 
current study focuses on such an approach, yet it is restricted to algorithmic aspects 
rather than to engineering examples. 

Concept-based Multi-Objective Evolutionary Algorithms (C-MOEAs) have been 
originated as a part of the development of a concept-based approach to support 
conceptual design [1]. C-MOEAs can be obtained by modifying existing MOEAs. 
This, however, should be done with care. Classical MOEAs are tested for problems 
where the decision space is common to all solutions. C-MOEAs have to deal with 
situations where some or all concepts may have, each their own search space. A 
concept-related premature convergence problem is highly expected when SBCs are 
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evolved. This is due to situations where at least one SBC may exhibit a local Pareto 
whereas the other has none. In such a case the algorithm might, at the extreme case, 
abandon a good concept. Current C-MOEAs have neither been designed to specially 
cope with this problem, nor have they been tested to examine their performance under 
such conditions (e.g., [3], [6]). The current work attempts to fill this gap, by tailoring 
ε-MOEA, [7], to finding the global s-Pareto front for SBCs. It also includes a 
comparison of the proposed algorithm with a previously reported C-MOEA (of [6]). 
The comparison is executed with a special focus on the aforementioned computational 
problem. To simulate situations each concept may have a different decision space, we 
adapt the common testing approach of MOEAs by running each concept with a 
different test function. As presented here, the proposed algorithm is proven to be 
promising for dealing with the local Pareto problem in the context of concept-based 
problems.  

The rest of this paper is organized as follows. Section 2 provides the background for 
this paper. Section 3 describes the fundamental issues concerning our methodology. 
Section 4 presents the suggested algorithm, and section 5 provides the details of the 
executed tests. Finally, section 6 concludes this paper. 

2 Background 

2.1 MOEAs' Coping with Local Pareto 

In complex problems, and in particular those with a large number of local optima, 
many existing algorithms are likely to return a sub-optimal solution. This 
phenomenon is termed premature convergence. In multi-objective problems, MOEAs 
might get stuck at a local Pareto, and hence, could fail to find the global one. There 
have been several MOEAs developed in recent years, which show promising results 
concerning the problem of premature convergence. Nevertheless, none promises 
convergence to the global Pareto-front. One way for tackling this issue is to use 
epsilon dominance (e.g. [7]). According to [7], the ε-dominance does not allow two 
solutions within any of predefined hyper-cubes (using εi in the i-th objective) to be 
non-dominated to each other, thereby allowing a good diversity to be maintained in a 
population. Furthermore, as pointed out in [7], the method is quite pragmatic because 
it allows the user to choose a suitable εi depending on the desired resolution in the i-th 
objective.  

As explained in the introduction concept-related premature convergence problem is 
highly expected when SBCs are evolved. Due to their promising characteristics, 
epsilon-based MOEAs are potential candidates to be transformed into C-MOEAs. As 
demonstrated here, such tailored algorithms can cope with the peculiarities of the 
concept-based premature convergence problem. 

2.2 Overview of Relevant Algorithms 

C1-NSGA-II and C2-NSGA-II, which are presented in [6], are C-MOEAs that involve 
tailoring of the original NSGA-II, of [8], to deal with SBCs. Both are based on a 
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simultaneous approach to the search of optimal concepts. Instead of sequentially 
evolving a single concept in each run using a classical MOEA such as NSGA-II, in C1-
NSGA-II, and also in C2-NSGA-II, the population contains solutions from several 
concepts, and they evolve simultaneously. In C1-NSGA-II solutions of a more fitted 
concepts spread on the expense of a less fitted concepts, whereas C2-NSGA-II involves a 
reduction of the population size on the expense of the less fitted concepts. These 
algorithms have been investigated for several interesting computational aspects [6]; 
however, the issue of concept-based local Pareto has neither been examined in testing C1-
NSGA-II, nor in testing C2-NSGA-II. In the current study, we use C1-NSGA-II to 
compare the proposed algorithm with. No comparisons are made with C2-NSGA-II since 
that its search mechanism is in principle the same as that of C1-NSGA-II. 

The ε-MOEA, presented in [7], is a classical MOEA, which is computationally fast 
and capable of finding a well-converged and well-distributed set of solutions. It uses 
two co-evolving populations: an EA population P(t) and an archive population A(t) 
(where t is the iteration counter). The run begins with an initial population P(0). The 
initial archive population E(0) is assigned with the ε-non-dominated solutions of P(0). 
Thereafter, two solutions, one from P(t) and one from A(t), are chosen for mating and 
an offspring solution c is created. Thereafter, the offspring solution c can enter either 
one of the two populations with different strategies. In section 4 ε-MOEA is modified 
into the proposed C-ε-MOEA.  

3 Fundamentals 

Section 3.1, which is provided here for the sake of clarity and completeness, briefly 
describes the concept-based problem that is dealt with in this paper (based on [4], and 
[6]). Next, section 3.2 provides a discussion on the need to tailor existing MOEAs 
into C-MOEAs. This discussion is required since that, in general, existing MOEAs 
can also be used, as-is, to find the s-Pareto.  

3.1 Problem Description 

In the following, we consider a finite set C of SBCs, namely of candidate-sets of 

particular solutions, where csC =  is the number of the examined concepts (SBCs). 

Each CS m ∈ , m= 1,…., cs, represents the solutions belonging to the m-th SBC. Also 

considered, for each CS m ∈ , is the feasible-set mm SX ⊆  resulting from possible 

constraints on using members of Sm. Next, let any i-th member of any Xm be denoted 
as m

m
i Xx ∈ , and let the set X be the union of the feasible members from all 

candidate-sets. In general, nm XX ∩ is an empty set for any nm ≠ .  It is noted that 

for each Sm there is an associated decision-variable space. In general, for any nm ≠ , 
it should be assumed that Sm and Sn do not have a mutual decision-variable-space.  For 
a given mapping YXF →: , the members of the union X are mapped into a mutual 
multi-objective space kRY ⊆ , such that for any Xxm

i ∈  there is one and only one 

associated vector  Yym
i ∈ , where ),....,,....( ,,,

1
im

k
im

j
imm

i yyyy = .  
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A concept-based problem involves determining, for each CSm ∈ , which represents 

the m-th concept, an evaluation-set mE  that consists of "passed-members" among the 

members of mX . For the s-Pareto approach, [4], [6], the "passed-members" are 

members of the Pareto-optimal set of X based on domination comparisons in Y among 
all members of X.  

In other words, without loss of generality, the problem amounts to min Yym
i ∈  , 

over all m and i, to find the s-Pareto front and the associated optimal set. Implicit to 
the above is that the evaluation sets are meant to be used for concept selection. 
Another implicit aspect is that the mapping, F, may involve numerical characteristics, 
which may vary from one concept to the other.  

It can be argued that the s-Pareto optimality is essentially no different from the 
Pareto-optimality [6]. Hence it is valid to ask why C-MOEAs are needed or why 
traditional MOEAs cannot be used as are.  

3.2 Why Tailoring Is Needed? 

The intention in using the s-Pareto approach is to find all the Pareto-optimal concepts, 
where each such concept has at least one member of its set being a non-dominated 
solution with respect to the entire feasible set of solutions. A tailored MOEA for 
finding the s-Pareto should ensure adequate representation of the concepts along the 
s-Pareto-front [6]. This means that the resulting set should contain individuals from 
all the Pareto-optimal concepts. Furthermore, an adequate representation means that 
the resulting subsets are well distributed on the front. 

As seen in the above section, a concept-based problem is almost equivalent to a 
classical MOP. It is therefore legitimate to ask why we cannot use traditional 
MOEAs, as are, to solve a concept-based problem. A sequential search approach is 
certainly possible, where the front of each SBC is separately found. Yet, as discussed 
in [6], the use of such an approach could mean the waste of resources on finding the 
fronts of inferior concepts. In contrast, while carrying efficiency promise, the 
simultaneous SBC search approach, involves the numerical risk of a concept-related 
premature convergence problem (see introduction).   

A simultaneous search technique could be conceived, in which the entire set of 
solutions from all concepts is treated by a traditional MOEA without any special 
tailoring to the problem. This assumes that, posterior to the evolutionary run, the 
obtained Pareto-optimal set and front can be analyzed to identify the parts associated 
with each concept. Under the assumption that no crossover can take place among 
individuals from different concepts, such a search approach is restrictive. Namely, a 
large part of existing MOEAs use a genetic algorithm approach rather than an 
evolutionary strategy one and therefore cannot be used as-is. Furthermore, as 
discussed in [6], the use of any traditional MOEA, without some tailoring, may fail to 
provide adequate representation of the concepts along the s-Pareto front even under 
the case of a mutual decision space. This is further explained below.  

Even in the case of a mutual search space and assuming that individuals from 
different concepts can mate, the search is inherently divided into different regions to 
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explore the behavior of concepts rather than just specific solutions. The end result, 
which is the s-Pareto optimal set and its associated front, should provide an 
understanding of the distribution of the concepts' representatives on the front, rather 
than just the distribution of particular solutions without their associated concepts' 
labels. A simple tailoring of a MOEA, for a simultaneous search of the s-Pareto, 
would amount to making sure that each concept has sufficient representatives in the 
population, such that even if its proportional part in the s-Pareto-front is relatively 
small, it will be adequately found. The use of a classical MOEA could fail to ensure 
that such an optimal concept will be found [6]. Even under the simple case where 
convergence characteristics of all concepts are the same, the use of a classical 
evolutionary strategy-based MOEA, with no distinction among solutions of different 
concepts may occasionally fail to produce the s-Pareto. This is especially because of 
the possible existence of "overlapping" regions in the s-Pareto-front where solutions 
from several concepts are mapped into the same or similar performances in the front. 
Such a phenomenon may become profound under a situation with a local Pareto. 

In summary, different concepts are associated with different decision spaces, or 
with different regions within a mutual decision space. This may lead to the possibility 
of a local Pareto within a concept. In a sequential search approach any MOEA that 
can overcome local Pareto would be sufficient, since that the sequential approach 
does not involve a simultaneous search within several concepts. In a simultaneous 
search approach, the existence of a local Pareto-front, within any of the concepts, 
could be detrimental, as it can cause an improper balance among the search resources 
given to each concept. 

4 The Proposed Algorithm 

4.1 Tailoring Requirements 

Generally, any state-of-the-art MOEA can be adapted to suit a simultaneous search 
for the s-Pareto. The main features of the required modifications are: 1. The division 
of the population to subsets according to the concepts; 2. The restrictions imposed 
namely no crossover among individuals of different concepts; and 3. The mechanism 
for resource distribution among the concepts. 

A tailored algorithm, termed C-ε-MOEA is introduced below. C-ε-MOEA is a 
variant of the ε-MOEA algorithm of [7] with some modifications to handle concepts. 
The following refers to meeting the tailoring requirements by the proposed algorithm. 
The first two issues are explicitly dealt with as follows. In the proposed C-ε-MOEA 
the population is divided into sub-populations; each of them represents a different 
concept. The recombination operator allows recombination only among members of 
the same sub-population. In contrast, the third requirement concerning resources is 
only implicitly involved such that a concept that has better performance compared to 
another concept will be allocated more resources than the second according to the 
proposed selection process. 
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4.2 C-ε-MOEA 

4.2.1 Main Steps of the Algorithm 
The suggested procedure is described as follows: 
1  Randomly initialize a population P(0) with equally sized subpopulations for each 

concept. The concept-basedε -non-dominated solutions of P(0), over the entire 
population, are copied to an archive population A(0) (as detailed in section 4.2.2).  

     Set the iteration counter t = 0. 
2  One solution p is chosen from the population P(t) using the “pop selection method" 

(detailed in section 4.2.3 ). 
3 One solution a is chosen from the archive population A(t) using the “concept 

archive selection method" (detailed in section 4.2.4). 
4  One offspring solution c is created using p and a. 
5  Solution c is included in P(t) using the “concept pop acceptance method" (detailed 

in section 4.2.5). 
6 Solution c is included in A(t) using the “concept archive acceptance method" 

(detailed in section 4.2.6). 
7  If termination criterion is not satisfied, set t = t + 1 and go to Step 2, else report A(t). 

4.2.2 Concept-Based Population and Archiving 
Similar to the original algorithm of [7], C-ε-MOEA uses two co-evolving populations 
including a population P(t) and an archive population A(t) (where t is the iteration 
counter). The proposed MOEA begins with an initial population P(0), which is 
composed of cs subsets of p solutions each. To meet the first tailoring requirement, as 
detailed in section 4.2.1, the A(t) and P(t) are maintained such that:  

)()( 1 tAtA i
cs
i=∪=  (1)

)()( 1 tPtP i
cs
i=∪=   (2)

Where the sub-archive )(tAi
 and sub-population )(tPi

contains individuals associated 

only with the i-th concept, and t is the iteration counter.  
The archive population A(0) is assigned with the concept-based ε -non-dominated 

solutions of P(0). The concept-based ε -non-dominated solutions are obtained 
("defined") as follows: for each hyper-box, which has at least one non-dominated 
solution from the entire P associated with it, we keep neither one such solution nor all. 
Rather, for each such hyper-box and for each concept i, which has one or more 
solutions with performances in that hyper-box, we save one solution which is selected 
randomly from the non-dominated solutions of the concept within that hyper-box. 

4.2.3 Pop Selection Method ([7]) 
This procedure repeats the procedure in [7]. To choose a solution p from P(t), two 
population members from P(t) are picked up at random, regardless of their concept 
association, and a domination check is made. If one solution dominates the other, the 
former is chosen. Otherwise, the event indicates that these two solutions are non-
dominated to each other and in such a case we simply choose one of them at random. 
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4.2.4 Concept Archive Selection Method 
In this method we randomly pick a solution a from A(t), from the subset )(tAi

 which 

corresponds to the subset )(tPi
 that p was chosen from, namely  

)({ tPp i∈  and  }|)( jitAa j =∈   (3)

If )(tAi
 is empty, we select another solution a at random from )(tPi

. This ensures that 

in step 4 (see section 4.2.1) the mating is done meeting the second tailoring 
requirement as detailed in section 4.1 

4.2.5 Concept Pop Acceptance Method 
This method defines the decision criteria for an offspring c to replace any population 
member. We compare the offspring with all population members, regardless of their 
concept association. If any population member dominates the offspring, the offspring is 
not accepted. Otherwise, if the offspring dominates one or more population members, 
then the offspring replaces one of the dominated ones (chosen at random). This means 
that in such a case a change in the allocated resources occurs; no longer the concepts 
have equal resources (see section 4.1). When both the above tests fail (that is, the 
offspring is non-dominated by the population members), the offspring replaces a 
randomly chosen population member from its’ own concept sub-population. 

4.2.6 Concept Archive Acceptance Method 
For the offspring c to be included in the archive population, the offspring is compared 
with each member of the archive, in the ε-dominance sense, as follows:  

1. If the offspring is ε-dominated by a member of the archive – it is not accepted. 
2. If the offspring ε-dominates a member of the archive – it replaces that member. 
3. If none of the following exists then the offspring is ε-non-dominated with all 

archive members. 
a.  If the offspring shares a hyper-box with an archive member, who is from 

the same concept as the offspring, then they are compared in the usual 
dominance sense – and the member which dominates is chosen. Otherwise they 
are non-dominated and the member which is closer to the B vector, as defined in 
[7], (in the Euclidean sense) is chosen. If they have the same distance – one is 
chosen at random. 

b. If none of the archive members, which are associated with the same 
concept, share the same hyper-box as the offspring, then the offspring is 
accepted. 

It is interesting to note that the suggested procedure ensures that only one solution per 
concept may exist in each hyper-box.  

4.2.7 Algorithm Properties 
The following properties of the C-ε-MOEA procedure are derived from the basic ε-
MOEA algorithm ([7]):  

1. It is a steady-state MOEA. 
2. It emphasizes concept-based non-dominated solutions, and by so emphasizes 

concepts with better performing solutions.  
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3. It maintains the diversity in the archive by allowing only one solution per 
concept to be present in each pre-assigned hyper-box on the Pareto-optimal 
front. 

4.  It is an elitist approach.  
5. It solves for the s-Pareto front within the pre-defined resolution. 

5 Results 

Two tests are reported. In each of the tests two concepts are simultaneously evolved. 
Different test functions are used for the different concepts, where one concept 
involves a multi-modal behavior, and the other exhibits a single-modality behavior. 
The used functions include: the ZDT4 multi-modal function, the discrete function, 
and the SCH function. The definitions of the above can be found in [8]. In the first 
test, ZDTt4 and SCH are used, respectively, for each of the two concepts tested. In the 
second test, SCH is replaced by  FON. The decision spaces are kept for each of these 
functions (per concept) as in [8]. All tests, which are described below, are done with a 
population size of 100 and for 250 generations. We use the real-parameter SBX 
recombination operator with probability of 0.9 and ηc=15 and a polynomial mutation 
operator with probability of 1/n (n is the number of decision variables) and ηm=20 
[8]. The results of C1-NSGA-II are taken after elite preserving operator is applied. 
Epsilon values were chosen after several trials to be 05.021 == εε . A too large 

epsilon will result in a low granulation front – small set of solutions found. A too 
small epsilon will not make the desired effect on diversity and convergence. 

Figures 1 and 2 show typical results of the s-Pareto fronts for the two tests. Clearly 
in both cases, C-ε-MOEA overcame the numerical difficulty whereas C1-NSGA-II 
failed to cope with it. Both tests were run 30 times each with random initial 
population. The statistics are included in Table 1. We use convergence and sparsity 
metrics [6] to compare between the two algorithms. It can be observed that while the 
sparsity metric is similar, there is a significant improvement in convergence when C-ε 
MOEA is used. Moreover, this is done with better efficiency as the time (measured in 
seconds) is also significantly decreased. 

 

Fig. 1. ZDT4 & SCH  
Left and Right: Front by C-ε-MOEA and by C1-NSGA-II respectively   

(ZDT4 designated by dots and SCH by pluses) 
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Fig. 2. ZDT4 & FON  
Left and right– Resulted front using C-ε-MOEA and C1-NSGA-II respectively 

(ZDT4 designated by dots and FON by pluses) 

Table 1. Statistics of the runs 

MOEA Convergence Sparsity Time 

Avg. SD Avg. SD Avg. SD 

ZDT4 & SCH 

C1- 2.8113 1.8815 0.945 0.0321 1190 115 

C-ε- 0.01016 2.43e-03 0.914 0.0710 32 0.8 

ZDT4 & FON 

C1- 0.07395 0.00692 0.931 0.0560 1719 123 

C-ε- 0.00361 1.92e-04 0.901 0.0462 42 1.7 

6 Conclusions and Future Work  

Although C1-NSGA-II has been shown to produce good results for many test cases 
involving SBCs, [6], it is shown here that it often fails to converge in the case of 
multi-modal concept-based problems. Solving such problems can result in sub-
optimal front and may lead to undesired results. This can restrict the application of 
C1-NSGA-II to real-world problems. In this paper a tailored algorithm, C-ε-MOEA, 
is proposed, based on [7], in order to deal with the premature convergence difficulty, 
which is expected in concept-based problems. The experimental results show that  
C-ε-MOEA is able to obtain the s-Pareto front on hard multi-modal test cases, where  
C1-NSGA-II fails to do so.  

It should be noted that the current study, which focuses on the s-Pareto approach, is 
likely to also be most relevant for the future extension of this work to support concept 
selection by other SBCs methods (e.g. [3]). This is expected since that, in the context 
of SBCs, the problem of concept-based premature convergence is a generic one. 
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Future work should include an expansion of the tests done here, and sensitivity 

analysis to different epsilons. It may also be beneficial to compare the proposed 
algorithm with others that could be developed based on newer algorithms such as  
in [9].   
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Abstract. In the evolutionary multiobjective optimization (EMO) community, 
indicator-based evolutionary algorithms (IBEAs) have rapidly increased their 
popularity in the last few years thanks to their theoretical background and high 
search ability. Hypervolume has often been used as an indicator to measure the 
quality of solution sets in IBEAs. It has been reported in the literature that 
IBEAs work well on a wide range of multiobjective problems including many-
objective problems on which traditional Pareto dominance-based EMO 
algorithms such as NSGA-II and SPEA2 do not always work well. In this paper, 
we examine the behavior of SMS-EMOA, which is a frequently-used 
representative IBEA with a hypervolume indicator function, through 
computational experiments on many-objective 0/1 knapsack problems. We 
focus on the effect of two mating strategies on the performance of SMS-
EMOA: One is to select extreme parents far from other solutions in the 
objective space, and the other is to recombine similar parents. Experimental 
results show that the recombination of similar parents improves the 
performance of SMS-EMOA on many-objective problems whereas the 
selection of extreme parents is effective only for a two-objective problem. For 
comparison, we also examine the effect of these mating strategies on the 
performance of NSGA-II.   

Keywords: Evolutionary multiobjective optimization, evolutionary many-
objective optimization, SMS-EMOA, mating schemes, knapsack problems. 

1 Introduction 

Evolutionary multiobjective optimization (EMO) has been one of the most active 
research areas in the field of evolutionary computation in the last two decades. Since 
Goldberg’s suggestion in 1989 [9], Pareto dominance-based fitness evaluation has 
been the mainstream in the EMO community. Almost all of well-known traditional 
EMO algorithms such as NSGA-II [7], PAES [21], SPEA [35] and SPEA2 [34] are 
categorized as Pareto dominance-based EMO algorithms. Whereas Pareto dominance-
based EMO algorithms have been successfully applied to multiobjective problems in 
various application fields [5], [6], [28], they do not always work well on many-
objective problems with four or more objectives as repeatedly pointed out in the 
literature [10], [20], [23], [37]. This is because almost all solutions in the current 
population become non-dominated with each other in early generations in the 
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application of EMO algorithms to many-objective problems [16], [17], [24]. When all 
solutions in the current population are non-dominated, Pareto dominance-based 
fitness evaluation cannot generate any selection pressure towards the Pareto front. As 
a result, the convergence property of Pareto dominance-based EMO algorithms is 
deteriorated in their application to many-objective problems. Motivated by strong 
intentions to overcome such an undesirable behavior, evolutionary many-objective 
optimization has become a hot issue in the EMO community in the last few years [1], 
[26], [27].  

Recently, two classes of nontraditional EMO algorithms have attracted a lot of 
attention as promising approaches to many-objective optimization. One is indicator-
based EMO algorithms where an indicator function is used to measure the quality of 
solution sets [3], [4], [29], [33], [36]. EMO algorithms in this class are referred to as 
indicator-based evolutionary algorithms (IBEAs). Hypervolume has been frequently 
used as an indicator function in EMO algorithms in this class because it has a good 
theoretical background such as Pareto compliance [2], [32]. By using a fast 
calculation method of the exact hypervolume [30] or an efficient approximation 
method [3], the applicability of indicator-based EMO algorithms to many-objective 
problems has been improved. SMS-EMOA [4] in this class has often been used in the 
literature. Its high search ability on many-objective problems has been clearly 
demonstrated [29].  

The other class is scalarizing function-based EMO algorithms where a number of 
scalarizing functions with different weight vectors are used to search for a wide 
variety of Pareto optimal solutions [11], [13], [19], [31]. One advantage of this class 
is the computational efficiency of scalarizing function calculation. MOEA/D [31] in 
this class has been frequently used as a high-performance EMO algorithm [12], [22]. 

Through the use of an indicator or scalarizing functions, these two classes of EMO 
algorithms overcome the main difficulty in the handling of many-objective problems 
by traditional EMO algorithms (i.e., the deterioration in their convergence property). 

Another difficulty in the handling of many-objective problems, which has not been 
stressed in the literature, is negative effects of a large solution diversity on the 
effectiveness of recombination operators. In general, the increase in the number of 
objectives in a multiobjective problem leads to the increase in the number of its 
Pareto-optimal solutions and their diversity. As a result, the diversity of solutions in 
the current population becomes very large in the application of EMO algorithms to 
many-objective problems. That is, solutions in the current population are totally 
different from each other. Since good solutions are not likely to be generated from the 
recombination of totally different solutions, large solution diversity seems to have 
negative effects on the performance of EMO algorithms on many-objective problems. 
Actually, it was shown by Sato et al. [25] that the performance of NSGA-II on many-
objective 0/1 knapsack problems was improved by local recombination. It was also 
shown that the performance of MOEA/D on many-objective 0/1 knapsack problems 
was deteriorated by increasing the size of a neighborhood structure for parent 
selection [15]. These reported results in the literature suggest the importance of the 
recombination of similar parents in EMO algorithms on many-objective problems. 

The use of mating schemes has been proposed to improve the performance of 
traditional Pareto dominance-based EMO algorithms in the literature (e.g., [14], [25]). 
However, their use has not been discussed for MOEA/D or SMS-EMOA. This is 
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because (i) these two algorithms usually show high search ability on a wide range of 
multiobjective problems, (ii) MOEA/D inherently has a local recombination 
mechanism based on a neighborhood structure of solutions, and (iii) efficient 
hypervolume calculation has been the main issue in hypervolume-based IBEAs. The 
aim of this paper is to clearly demonstrate the usefulness of mating schemes in SMS-
EMOA on many-objective 0/1 knapsack problems. 

This paper is organized as follows. First we briefly explain a mating scheme in our 
former study [14] in Section 2, which is used to implement two mating strategies: 
extreme parent selection and similar parent recombination. Next we explain our 
many-objective 0/1 knapsack problems in Section 3. Then we show the setting of our 
computational experiments in Section 4. In Section 5, it is demonstrated that only the 
similar parent recombination improves the performance of SMS-EMOA and NSGA-II 
on many-objective problems with four or more objectives while the extreme parent 
selection as well as the similar parent recombination improves their performance on 
two-objective problems. Finally Section 6 summarizes this paper. 

2 Mating Scheme with Two Mating Strategies 

In our former study [14], we proposed a mating scheme in Fig. 1 to examine the effect 
of the following two mating strategies on the performance of NSGA-II: 

(1) Selection of extreme solutions far from other solutions in the objective space. 
(2) Recombination of similar parents in the objective space. 

In the left part of Fig. 1, α candidates are selected by iterating binary tournament 
selection with replacement α times. Their average vector is calculated in the objective 
space. The farthest candidate with the largest distance from the average vector is 
chosen as Parent A. In the right part, β candidates are selected in the same manner. 
The closest candidate to Parent A in the objective space is chosen as Parent B.  

Selection of the most
extreme solution

1 2 α

Crossover

Selection of the most
similar solution to

Parent A

1 2 β

Parent A Parent B

Parent A

 

Fig. 1. Mating scheme for NSGA-II with binary tournament selection [14]. Binary tournament 
selection is replaced with random selection when the mating scheme is used in SMS-EMOA. 
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When our mating scheme is used in SMS-EMOA, α and β candidates are randomly 
selected from the population because SMS-EMOA randomly chooses parents from the 
population. The values of α and β can be viewed as showing the strength of the 
tendency to choose extreme candidates and to recombine similar candidates, 
respectively. When α = β = 1, our mating scheme has no effects on EMO algorithms. In 
our computational experiments, we examine four values of  α and β: 1, 5, 10 and 20.  

In our former study [15], we obtained good results by dynamically changing the 
values of α and β during the execution of NSGA-II. However, we handle α and β as 
pre-specified constants in this paper to clearly examine the effect of each mating 
strategy. Experimental results in this paper can be improved by dynamically changing 
the values of α and β  during the execution of NSGA-II and SMS-EMOA. 

3 Multiobjective 0/1 Knapsack Problems 

As test problems, we use multiobjective 0/1 knapsack problems with two, four, six 
and eight objectives. Our two-objective test problem is the same as the two-objective 
500-item 0/1 knapsack problem with two constraint conditions in Zitzler and Thiele 
[35]. This two-objective test problem can be written as follows: 

Maximize ,))(),(()( 21 xxxf ff=  (1)

subject to  ≤
=

n

j
ijij cxw

1
,  ,2,1=i  (2)

=jx 0 or 1, ,...,,2,1 nj =  (3)

where =
=

n

j
jiji xpf

1
)(x ,  .2,1=i  (4)

In (1)-(4), n = 500 (i.e., 500 items), x is a 500-bit binary string, pij is the profit of item 
j according to knapsack i, wij is the weight of item j according to knapsack i, and ci is 
the capacity of knapsack i. This problem is referred to as the 2-500 problem. 

As in Zitzler and Thiele [35], we can easily generate other objective functions fi(x) 
in the form of (4) for i = 3, 4, ..., 8 by randomly specifying each value of pij as an 
integer in [10, 100]. In this manner, we have generated 500-item 0/1 knapsack 
problems with four or more objectives (i.e., 4-500, 6-500 and 8-500 problems). The 
constraint conditions in (2) of the 2-500 problem are always used in our test problems 
independent of the number of objectives. This means that all of our test problems with 
a different number of objectives have exactly the same set of feasible solutions.  

For the 2-500 problem, we use the same greedy repair method as in Zitzler and 
Thiele [35] for handing infeasible solutions. Infeasible solutions are repaired by 
removing items one by one until all the constraint conditions are satisfied. The order 
of the items to be removed is specified based on the maximum profit/weight ratio (see 
[35] for details). The same greedy repair method is used for all of our test problems 
because they have the same constraint conditions.  
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4 Setting of Computational Experiments 

SMS-EMOA [4] and NSGA-II [7] are used under the following setting: 

Population size: 100,  
Termination condition: Evaluation of 400,000 solutions, 
Crossover probability: 0.8 (Uniform crossover), 
Mutation probability: 1/500 (Bit-flip mutation), 
Reference point for hypervolume calculation: Origin of the objective space. 

SMS-EMOA and NSGA-II are based on a (μ +λ)-ES generation update mechanism. 
Random selection and binary tournament selection are used for parent selection in 
SMS-EMOA and NSGA-II, respectively. In our computational experiments, μ  and λ  
are specified as μ =100 and λ =1 in SMS-EMOA and μ =λ =100 in NSGA-II. An 
initial population is randomly generated in each algorithm. Since only a single 
solution is newly generated for generation update in SMS-EMOA with λ =1, 100 
generations of SMS-EMOA are counted as one generation of NSGA-II when 
experimental results of SMS-EMOA and NSGA-II at some generations are shown. 
This is to show their experimental results after the same computation load. Average 
results are calculated over 100 runs of each algorithm on each test problem except for 
SMS-EMOA on the 6-500 problems (20 runs) and the 8-500 problems (10 runs).  

5 Experimental Results 

First we report experimental results on the 2-500 problem. In Fig. 2, we show 
experimental results of a single run of SMS-EMOA for each of the four settings of 
our mating scheme: (α, β ) = (1, 1), (10, 1), (1, 10), (10, 10). Since our mating scheme 
with α =1 and β =1 does not change SMS-EMOA, Fig. 2 (a) can be viewed as 
experimental results by SMS-EMOA without the mating scheme. The diversity of 
solutions is improved by the extreme parent selection with α =10 in Fig. 2 (b) and the 
similar parent recombination with β =10 in Fig. 2 (c). In Fig. 2 (d), the diversity is 
further improved by the simultaneous use of these two mating strategies. 
Experimental results in Fig. 2 are consistent with reported results on the 2-500 
problem in the literature [14], [18], [23] where the importance of diversity 
maintenance was demonstrated. 

For comparing the average experimental results over 100 runs between SMS-
EMOA and NSGA-II, we show the 50% attainment surface [8] in Fig. 3 for each 
algorithm with (α, β ) = (1, 1), (10, 10). In Fig. 3, our mating scheme with α =10 and 
β =10 has similar effects on SMS-EMOA and NSGA-II. That is, the diversity of 
solutions is clearly improved while the convergence is slightly degraded. 

We further examine the effect of our mating scheme with various settings of α and 
β  on the two algorithms. Experimental results are summarized in Fig. 4 where the 
average hypervolume over 100 runs of each algorithm is shown for the 4 × 4 
combinations of the four values of α and β : α =1, 5, 10, 20 and β =1, 5, 10, 20. As in 
Fig. 2, we can see that the performance of SMS-EMOA and NSGA-II is improved by 
the extreme solution selection (α >1) and the similar parent recombination (β >1). 



 Recombination of Similar Parents in SMS-EMOA 137 

15000 17000 19000 21000
14000

15000

16000

17000

18000

19000

20000

21000
M

ax
im

iz
e 

 f 2
(x

)

Maximize  f1(x)

4000th Generation
50th Generation
10th Generation

Pareto Front

 

M
ax

im
iz

e 
 f 2

(x
)

Maximize  f1(x)

4000th Generation
50th Generation
10th Generation

Pareto Front

15000 17000 19000 21000
14000

15000

16000

17000

18000

19000

20000

21000

 

(a) α =1 and β =1 (No Bias). (b) α =10 and β =1 (Extreme Parents). 
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(c) α =1 and β =10 (Similar Parents). (d) α =10 and β =10 (Extreme and Similar). 

Fig. 2. Experimental results of a single run of SMS-EMOA on the 2-500 problem 

15000 17000 19000 21000

16000

17000

18000

19000

20000

21000

M
ax

im
iz

e 
 f 2

(x
)

Maximize  f1(x)

α = 1, β = 1
α = 10, β = 10
Pareto Front

 

15000 17000 19000 21000

16000

17000

18000

19000

20000

21000

M
ax

im
iz

e 
 f 2

(x
)

Maximize  f1(x)

α = 1, β = 1
α = 10, β = 10
Pareto Front

 

(a) SMS-EMOA. (b) NSGA-II. 

Fig. 3. 50% attainment surface over 100 runs of each EMO algorithm on the 2-500 problem 
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Experimental results on other test problems are shown in Figs. 5-7. From these 
figures, we can see that the increase in the number of objectives leads to (i) better 
results of SMS-EMOA over NSGA-II, (ii) positive effects of the similar parent 
recombination with β >1, and the negative effects of the extreme parent selection with 
α >1. Fig. 8 illustrates the effects of the two mating strategies on the behavior of 
SMS-EMOA on the 4-500 problem by projecting the final population in the four-
dimensional objective space onto the f1-f2 plane. Fig. 8 (c) suggests the improvement 
in the diversity and the convergence by the similar parent recombination. 
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Fig. 4. Average results of SMS-EMOA (left) and NSGA-II (right) on the 2-500 problem 
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Fig. 5. Average results of SMS-EMOA (left) and NSGA-II (right) on the 4-500 problem 

20
10

5
1 1

5
10

20

4.9

4.4

3.9

3.4

SMS-EMOA

α
β

     

20
10

5
1 1

5
10

20

NSGA-II

4.9

4.4

3.9

3.4

α
β

 
Fig. 6. Average results of SMS-EMOA (left) and NSGA-II (right) on the 6-500 problem 
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Fig. 7. Average results of SMS-EMOA (left) and NSGA-II (right) on the 8-500 problem 
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(a) α =1 and β =1 (No Bias). (b) α =10 and β =1 (Extreme Parents). 
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(c) α =1 and β =10 (Similar Parents). (d) α =10 and β =10 (Extreme and Similar). 

Fig. 8. Experimental results of a single run of SMS-EMOA on the 4-500 problem 
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6 Conclusions 

We examined the effect of the two mating strategies (i.e., extreme parent selection 
and similar parent recombination) on the performance of SMS-EMOA through 
computational experiments on multiobjective 500-item 0/1 knapsack problems with 
two, four, six and eight objectives. These two mating strategies improved the 
performance of SMS-EMOA on the 2-500 problem with two objectives. The best 
results on the 2-500 problem were obtained when the two mating strategies were 
simultaneously used. The similar parent recombination improved the performance of 
SMS-EMOA on our test problems independent of the number of objectives. However, 
the extreme parent selection improved the performance of SMS-EMOA only on the 2-
500 problem. Its negative effects were observed on the performance of SMS-EMOA 
on our many-objective test problems. The performance of SMS-EMOA on the 2-500 
problem was similar to that of NSGA-II. By increasing the number of objectives, the 
advantage of SMS-EMOA over NSGA-II became clear. Moreover, much larger 
improvements in the average hypervolume measure by the similar parent 
recombination were obtained in Figs. 5-8 by SMS-EMOA than NSGA-II. In Fig. 2 (c) 
and Fig. 8 (c), the similar parent recombination increased the diversity without 
deteriorating the convergence.  
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Abstract. In this work, we tackle the problem of scheduling a set of jobs
on a set of non-identical parallel machines with the goal of minimising
the total weighted completion times. Artificial bee colony (ABC) algo-
rithm is a new optimization technique inspired by the intelligent foraging
behaviour of honey-bee swarm. These algorithms have shown a better
or similar performance to those of other population-based algorithms,
with the advantage of employing fewer control parameters. This paper
proposes an ABC algorithm that combines the basic scheme with two
significant elements: (1) a local search method to enhance the exploita-
tion capability of basic ABC and (2) a neighbourhood operator based on
iterated greedy constructive-destructive procedure. The benefits of the
proposal in comparison to three different metaheuristic proposed in the
literature are experimentally shown.

Keywords: discrete optimisation, metaheuristics, artificial bee colony,
unrelated parallel machines schedulling problem.

1 Introduction

The unrelated parallel machine scheduling with minimising total weighted com-
pletion times (UPMSP) considers a set J of n independent jobs that have to be
processed on a set M of m parallel non-identical machines. Each job j ∈ J has
to be processed by exactly one of the m parallel machines and no machine can
process more than one job at the same time. A job j is processed on a given
machine until completion, i.e., without pre-emption. If a job j is processed on
a machine i, it will take a positive integral processing time pij whose value is
determined arbitrarily. The objective is to schedule the jobs in such a way that
the sum of the weighted completion times of the jobs is minimised:

Minimise

n∑
i=1

wj ∗ Cj ,

where Cj represents the completion time of job j for a given schedule.
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It is important to note that the jobs assigned to a specific machine are pro-
cessed in non-decreasing order with respect to the ratio between processing time
(pij) and weight (wj). This order is known as the weighted shortest processing
time order. According to [1], sequencing the jobs in each machine following this
ordering produces an optimal scheduling for this machine.

According to the standard notation proposed by Azizoglu et al. [2] and Al-
lahverdi et al. [3], the family of problems considered in this work is notated
in the literature in the following manner: Rm||

∑
wj ∗ Cj . Different real-world

applications of scheduling on parallel machines can be found in the literature,
covering a wide variety of fields. Some of these fields are human resources [4],
production management [5,6,7], mail facilities [8], robotized systems [9], sport
tournaments [10], and chemical processes [11].

A mixed integer linear programming formulation for the UPMSP problem is
provided for the sake of completeness. Let xtji = 1 if the job j is processed in
the tth position (unit time) on machine i and 0, otherwise. And a variable Ct

ji

denotes the completion time of the job j scheduled in the tth position on machine
i. The model is stated by Azizoglu and Kirca [12] as:

min
∑
j

∑
i

∑
t

wj · Ct
ji · xtji

subject to:
∑
i

∑
t

xtji = 1 ∀j,∑
j

xtji ≤ 1 ∀t, i,

Ct
ji =

n∑
r=1

t−1∑
s=1

pir · xsri + pij ∀j, t, i,

xtji ∈ {0, 1} ∀j, t, i.

(1)

(2)

(3)

(4)

(5)

In this paper, an approach using the Artificial Bee Colony (ABC) [13,14] method
is explored for solving the UPMSP. The ABC algorithm is a new swarm op-
timization approach that is inspired by the intelligent foraging behaviour of
honey-bee swarm. It consists of three essential components: food source posi-
tions, nectar-amount and three honey-bee classes (employed bees, onlookers and
scouts). Each food source position represents a feasible solution for the problem
under consideration. The nectar-amount for a food source represents the qual-
ity of such solution (represented by an objective function value). Each bee-class
symbolizes one particular operation for generating new candidate food source
positions. Specifically, employed bees search the food around the food source
in their memory; meanwhile they pass their food information to onlooker bees.
Onlooker bees tend to select good food sources from those founded by the em-
ployed bees, and then further search the foods around the selected food source.
If the employed bee and onlookers associated with a food source cannot find a
better neighboring food source, the latter is abandoned and the employed bee
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associated with this food source becomes a scout bee that performs a search for
discovering new food sources. After the scout finds a new food source, it be-
comes an employed bee again. Due to its simplicity and ease of implementation,
the ABC algorithm has captured much attention. Besides, ABC has exhibited
state-of-the-art performances for a considerable number of problems [15,16,17].

The proposed ABC extends the basic scheme by considering two significant
elements in order to improve its performance when dealing with the UPMSP. In
the first place, after producing neighbouring food sources (in the employed and
onlooker bees phases), a local search is applied with a predefined probability to
further improve the quality of some of the solutions. Secondly, we propose a new
neighbourhood operator based on the solution constructive-destructive process
performed by iterated greedy (IG) algorithms [18,19].

The remainder of this paper is organized as follows. In Section 2, we outline
different metaheuristics proposed in the literature for the UPMSP. In Section 3,
we present in detail the proposed ABC for the UPMSP. In Section 4, we present
an empirical study that compares the behaviour of the ABC algorithm with
regards to those of other metaheuristics from the literature. Finally, in Section 5,
we discuss conclusions and further work.

2 Metaheuristics for the UPMSP

Since the introduction of this problem by McNaughton in [20], it has received
much attention and many papers have been published in this area. The research
efforts to deal with the SNIM-WCT problem have focused on three main research
lines: exact procedures, approximation algorithms through solving relaxations of
the problem, and metaheuristics procedures. Concerning the latter, Vredeveld
et al. [21] presented two types of neighbourhood functions. The first function is
called the jump neighbourhood. It consists of selecting a job j and a machine i
so that job j is not scheduled on machine i. Then job j is moved to machine i.
The second one is called swap neighbourhood. For this neighbourhood, two jobs
j and k must be selected and assigned to different machines. The corresponding
neighbouring solution is obtained by interchanging the machine allocations of
the two selected jobs. These two neighbourhood functions are applied in two
metaheuristic, a multistart local search and a tabu search.

Recently, Li et al. [22] presented a genetic algorithm approach to deal with
unrelated parallel machines scheduling using three different performance crite-
ria. In particular, the proposed approach initialises the population adding some
solutions generated by heuristics methods. The remaining ones are generated
randomly to provide enough diversity. Roulette wheel selection is used to choose
a new population with respect to a fitness-proportional probability distribution.
The crossover and mutation schemes are those proposed by Cheng et al. [23].
Elitism is considered by removing two chromosomes and adding the best two
previous chromosomes to the new generation if they are not selected through
the roulette-wheel-selection process. The experimental study performed com-
pares the proposed genetic algorithm with a set of heuristics. Results show that
the proposed algorithm outperforms the competing heuristics.
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3 Proposed ABC for the UPMSP

In this section, we describe the proposed ABC algorithm for the UPMSP. The
general scheme of the proposed approach is outlined in Figure 1. It starts by
initialising a population P with |P | − 1 random solutions (Initialise()). The re-
maining solution is initialised by means of a greedy procedure (GreedyProcedure).
Then, the following steps are repeated until time limit tmax is reached:

– Employed bees phase. In this step, employed bees produce new solutions
by means of a neighbourhood operator (GenerateNeighbour()). In order to
enhance the exploitation capability of ABC, a local search method (Lo-
calSearch()) is applied to the solution obtained by the neighbourhood op-
erator with a probability probLS.

– Onlooker bees phase. Onlookers bees look for new solutions from solutions
of the population selected by means of a binary tournament selection (Bi-
naryTournament()). Specifically, an onlooker bee selects the best food source
among two food sources that were randomly picked up from the population.
Later, each onlooker bee performs, as in employed bees phase, the neigh-
bourhood operator on the selected solution and a local search procedure.

– Scout bees phase. In this phase, the scout bees determine the solutions that
has not been improved for limit iterations and replace them by new random
solutions (Initialise()).

At the end of execution, the best solution found (Sb) is returned by the algorithm
(BestSolutionFound()).

3.1 The Greedy Procedure

The greedy constructive procedure used for the initialisation of a solution of
the population and the re-construction of partial solutions in the neighbourhood
operator works as follows. At each step, it considers placing a unassigned job
in any of the machines. For each of these options, it calculates a contribution
value according to a predefined heuristic (H). The option which causes the best
heuristic value is selected. The procedure stops once all the unassigned jobs are
allocated. The heuristic H that guided the greedy procedure is that proposed
for this problem in [22]. This heuristic distinguishes two steps. In the first one,
a job j∗ ∈ J (set of unassigned jobs) is selected according to:

j∗ = argmin{ti + pij/wj : i = 1, . . . ,m; j = 1, . . . , n},

once the job j∗ is selected, machine i∗ in which it will be processed is the one
that holds:

i∗ = argmin{ti + pij∗/wj∗
: i = 1, . . . ,m},

being ti the completion time of the last job scheduled on the machine i.
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Input: tmax, P , nd, probLS, limit,H
Output: Sb

//Number of employed and onlooker bees

1 NE ← |P |;
2 NO ← |P |;

//Initialisation phase

3 for i ← 2 to |P | do
4 Si ← Initialise() ;
5 end
6 S1 ← GreedyProcedure(H);
7 while computation time limit tmax not reached do

//Employed bees phase

8 for i ← 1 to NE do
9 E ← GenerateNeighbour(Si, nd,H);

10 E
′ ← LocalSearch(E);

11 if E
′
is better than Si then

12 Si ← E
′
;

13 end

14 end
//Onlooker bees phase

15 for i ← 1 to NO do
16 j ← BinaryTournament(S1, ..., S|P |);
17 O ← GenerateNeighbour(Sj , nd,H);

18 O
′ ← LocalSearch(O);

19 if O
′
is better than Sj then

20 Si ← O
′
;

21 end

22 end
//Scout bees phase

23 for i ← 1 to |P | do
24 if Si does not change for limit iterations then
25 Si ← Initialise() ;
26 end

27 end
28 Sb ← BestSolutionFound();

29 end

Fig. 1. ABC scheme

3.2 The Neigbourhood Operator

The proposed neighbourhood operator is based on the constructive-destructive
procedure used in IG algorithms [18,19]. IG iteratively tries to refine a solution
by removing elements from this solution, by means of a destructive procedure,
and reconstructing the resulting partial solution using a greedy constructive pro-
cedure. In this case, the proposed neighbourhood operator consists of a unique
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Table 1. 12 instance types considered concerning the unrelated parallel machines
scheduling problem. The last table column provides the maximum CPU time limit for
each instance type (in seconds).

Number of jobs (n) Number of machines (m) Time limit (s)

20
5 40
10 40

50
5 100
10 100
20 100

100
5 200
10 200
20 200

200

5 400
10 400
20 400
50 400

iteration of the constructive-destructive procedure. In the first place, nd elements
of the current solution are removed (destruction). Then, the partial solution ob-
tained before is reconstructed using a greedy procedure (construction, see Section
3.1). The greedy procedure is guided by the heuristic commented in section 3.1.

4 Computational Experiments

This section describes the computational experiments performed to assess the
performance of the ABC model presented in the previous section. Our own al-
gorithms (ABC) as well as all competitor algorithms have been implemented in
C++ and the source code has been compiled with gcc 4.5. All experiments were
conducted on a computer with a 2.8 GHz Intel i7 processor with 12 GB of RAM
running Fedora Linux V15. In this work we considered problem instances from
12 different combinations of the number of jobs (n) and the number of machines
(m). These 12 instance types are shown in the first two columns of Table 1.
Moreover, the same table shows—in the 3rd column—the maximum CPU time
allotted for each instance type (2 · n seconds). For each of the 12 instance types
ten problem instances were randomly generated, which is a common choice in
recent works dealing with this and related problems [24,25]. The weights of the n
jobs were selected uniformly at random from {1, . . . , 10} and the processing time
of job j on machine i (pij , i = 1, . . . , n and j = 1, . . . ,m) was chosen uniformly
at random from {1, . . . , 100}.

Non-parametric tests [26] have been used to compare the results of the dif-
ferent optimization algorithms under consideration. The only condition to be
fulfilled for the use of non-parametric tests is that the algorithms to be com-
pared should have been tested under the same conditions (that is, the same set
of problem instances, the same stopping conditions, the same number of runs,
etc). Specifically, Wilcoxon’s matched-pairs signed-ranks test is used to compare
the results of two algorithms.
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4.1 Tuning Experiments

In the first place, we have performed an experimental study in order to perform
a fine-tuning of the ABC presented above. The goal of the first preliminary
experiment is to identify the best combination of the values for the following
algorithm parameters:

1. Population size (|P |). Experiments with |P | in {10, 15, 20, 25, 30} were
develped.

2. Destruction size (nd). For the percentage of elements dropped
from a solution during the neighbourhood operator, values from
{5%, 10%, 15%, 20%25%} were considered.

3. Probability of performing local search (probLS). This parameter takes
values from {0.05, 0.1, 0.2, 0.5, 1}).

4. Local search procedure (typeLS). Three different local search proce-
dures [21] were tested: first-improvement local search with jump moves
(FI − JM), first-improvement local search with swap moves (FI − SW ),
and first improvement local search with both kinds of moves (FI − JSM).

5. Iterations to determine an exhausted food source (limit). Values
from {0.25 ·n, 0.5 ·n, n, 2 ·n}) were considered, where n is the number of jobs
of the instance.

For each combination of values for the different parameters (full factorial design),
we applied ABC to each of the 120 problem instances. Through a rank-based
analysis on results obtained, we identified the parameter combination with the
best average rank over all testing instances. This combination is specified in
Table 2.

Table 2. Parameters values

Parameter Value

Population size (|P |) 15
Elements dropped (nd) 25%

Local search procedure (typeLS) FI-JSM
Local search probability (probLS) 0.2

Iterations to abandon a food source (limit) 0.25 · n

4.2 Comparison with Other Metaheuristics

In this section, we compare ABC to different approaches found in the liter-
ature for tackling the UPMSP. More specifically, we considered the following
approaches (see also Section 2):

– Iterative multistart method (MultiS) [21].
– Tabu search (Tabu) [21].
– Genetic algorithm (GA) [22].



150 F.J. Rodriguez et al.

The parameter values used for each considered algorithm are those recommended
in the original works. In order to assure a fair comparison, each algorithm was
applied under the same conditions as ABC that is, each algorithm was applied
exactly once to each of the 120 problem instances. Moreover, the same CPU
time limits were used as with ABC (see Table 1).

Table 3. ABC versus competitors using Wilcoxon’s test (level of significance α = 0.05,
critical value = 13)

Competitor R+ R− Diff.?
GA 78 0 yes
Tabu 76.5 1.5 yes
MultiS 73 5 yes

The results of the considered algorithms in Tables 3 and 4 allow us to make
the following observations:

– The proposed ABC statistically outperforms all competing algorithms (see
Table 3).

– Concerning the results shown in Table 4, it is important to highlight that
ABC obtains the best average results in all the instances. Moreover, the most
significant differences with respect to their competitors are obtained on large
instances.

– Only MultiS and Tabu are able to match the results of ABC on the smallest
problem instances.

Table 4. Results of the studied algorithms averaged over the 10 instances of each of
the 12 instance types

n m ABC GA Tabu MultiS
200 50 5004 5138 5062 5063
200 20 16988 17345 17066 17045
200 10 52919 53677 53039 52979
200 5 182102 183400 182166 182130
100 20 5601 5858 5657 5608
100 10 14921 15138 14993 14926
100 5 45961 46412 46014 45062
50 20 1833 1908 1858 1833
50 10 4611 4737 4655 4611
50 5 12625 12787 12643 12625
20 10 1299 1330 1299 1299
20 5 2512 2570 2512 2512

5 Conclusions and Future Work

In this paper, we presented an ABC algorithm for the UPMSP. The proposed
algorithm add a local search procedure and a novel IG-based neighbourhood
operator to the basic ABC scheme. This neighbourhood operator is based on
the constructive-destructive procedure of IG algorithms. The resulting ABC al-
gorithm has proved to be superior, especially in the case of larger instances, to
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three different metaheuristic existing in the literature for this problem. We can
conclude from the experiments performed that this algorithm represents a very
competitive alternative to the existing methods for the UPMSP.

We believe that the ABC algorithm presented in this paper is a significant
contribution, worthy of future study. We will mainly focus on the following
avenues of possible research: (1) to adapt the ABC approach for its application
to other variants of scheduling problems on parallel machines and (2) to employ
the IG-based neighbourhood operator in ABC approaches dealing with other
challenging optimisation problems.

Acknowledgements. This work was supported by grant TIN2011-24124 of
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Abstract. This paper investigates a Particle Swarm Optimization (PSO) with a 
Self-Organized Criticality (SOC) strategy that controls the parameter values and 
perturbs the position of the particles. The algorithm uses a SOC system known 
as Bak-Sneppen for establishing the inertia weight and acceleration coefficients 
for each particle in each time-step. Besides adjusting the parameters, the SOC 
model may be also used to perturb the particles’ positions, thus increasing 
exploration and preventing premature convergence. The implementation of both 
schemes is straightforward and does not require hand-tuning. An empirical 
study compares the Bak-Sneppen PSO (BS-PSO) with other PSOs, including a 
state-of-the-art algorithm with dynamic variation of the weight and perturbation 
of the particles. The results demonstrate the validity of the algorithm. 

1 Introduction 

Inspired by the swarm and social behavior of bird flocks and fish schools, Kennedy 
and Eberhart proposed in [6] the Particle Swarm Optimization (PSO) algorithm for 
binary and real-valued function optimization. Since its inception, PSO has been 
applied with success to a number of problems and motivated several lines of research 
that investigate its main working mechanisms. One of these research trends deals with 
PSO’s parameters and aims at devising methods for controlling those parameters and 
improve the algorithms’ performance and robustness. Self-Organized Criticality 
(SOC), proposed in [2], provides interesting schemes for controlling PSO’s working 
mechanisms. In fact, SOC has been used in the past in population-based 
metaheuristics, like Evolutionary Algorithms ([5] and [7]) and even PSO [8]. 

This paper proposes a versatile method, inspired by the SOC theory [2], for 
controlling the parameters of PSO, and demonstrates that it is a viable and effective 
method. The algorithm is based on a SOC system known as the Bak-Sneppen model of 
co-evolution between interacting species (or simply Bak-Sneppen), proposed by Bak 
and Sneppen in [3]. The Bak-Sneppen PSO (BS-PSO) uses the fitness values of the 
population of co-evolving species for regulating the parameters of the algorithm. 
Furthermore, the exact same values are used for perturbing the particle’s position, 
thus introducing a kind of mutation in the PSO equations. The potentiality of the 
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proposed method as a stochastic (although with predictable global behavior) seed for 
varying the parameters is investigated here, postponing a study of a stronger 
hybridization of the SOC model and the PSO for a future work.  

A simple experimental setup was designed as a proof-of-concept. BS-PSO is 
compared with methods for controlling the inertia weight, as well as with a state-of-
the-art PSO that also combines dynamic control of the parameters with perturbations 
of the particles’ positions. The tests are conducted in a way such that each new 
component of BS-PSO is examined separately in order to investigate its effects on the 
performance of the algorithm. The results demonstrate the validity of the approach 
and show that BS-PSO, without requiring the hand-tuning of the traditional 
parameters or any additional one, is competitive with other PSOs. Furthermore, the 
base-model is simple and well-studied by the SOC theory, and may be treated as a 
black-box system that outputs batches of values for the parameters. 

2 Particle Swarm Optimization 

PSO is a population-based algorithm in which a group of solutions travels through the 
search space according to a set of rules that favor their movement towards optimal 
regions of the space. PSO is described by a simple set of equations that define the 
velocity and position of each particle. The position vector of the i-th particle is given 
by , , , , … , ), where  is the dimension of the search space. The velocity 

is given by , , , , … , ). The particles are evaluated with a fitness function 

 in each time step and then their positions and velocities are updated by: 

, , 1 , , 1 , , 1  (1)

, , 1 ,  (2)

were  is the best solution found so far by particle  and  is the best solution found 
so far by the neighborhood. Parameters and  are random numbers uniformly 
distributed in the range 0,1.0] and and  are acceleration coefficients that tune the 
relative influence of each term of the formula (usually set within the range 1.0,2.0 ). 
The first, influenced by the particles best solution, is known as the cognitive part, 
since it relies on the particle’s own experience. The last term is the social part, since 
it describes the influence of the community in the velocity of the particle.  

The neighborhood of the particle may be defined by a great number of schemes but 
most PSOs use one of two simple sociometric principles. The first connects all the 
members of the swarm to one another, and it is called , were  stands for 
global. The second, called  (  stands for local), creates a neighborhood that 
comprises the particle itself and its  nearest neighbors. In order to prevent particles 
from stepping out of the limits of the search space, the positions ,  of the 
particles are limited by constants that, in general, correspond to the domain of the 
problem: , , . Velocity may also be limited within a range in 
order to prevent the explosion of the velocity vector: , , .  
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Although the basic PSO may be very efficient on numerical optimization, it 
requires a proper balance between local and global search. If we look at equation 1, 
we see that the first term on the right-hand side of the formula provides the particle 
with global search abilities. On the other hand, the second and third terms act as a 
local search mechanism and it is trivial to demonstrate that without the first term the 
swarm shrinks around the best position found so far. Therefore, by weighting these 
two parts of the formula it is possible to balance local and global search. In order to 
achieve a balancing mechanism, Shi an Eberhart [10] introduced the inertia weight , 
which is adjusted — usually within the range [0, 1.0] — together with the constants 

 and  , in order to achieve the desired balance. The modified velocity equation is:  

, . , 1 , , 1 , , 1  (3)

The parameter may be used as a constant that is defined after an empirical 
investigation of the algorithm’s behavior. Another possible strategy is to use time-
varying inertia weights (TVIW-PSO) [11]: starting with an initial and pre-defined 
value, the parameter value decreases linearly with time, until it reaches the minimum 
value. Later, Eberhart and Shi [4] found that the TVIW-PSO is not very effective on 
dynamic environments and proposed a random inertia weight for tracking dynamic 
systems. In the remainder of this paper, this method is referred to as RANDIW-PSO. 

An adaptive approach is proposed in [1]. The authors describe the global local best 
inertia weight PSO (GLbestIW-PSO), an on-line variation strategy that depends on 
the and  values. The strategy is defined in a way that better solutions use lower 
inertia weight values, thus increasing their local search abilities. The worst particles 
are modified with higher  values and therefore they tend to explore the search space. 

In [9], Ratnaweera et al. describe new parameter automation strategies that act 
upon several working mechanisms of the algorithm. The authors propose the concept 
of time-varying acceleration coefficients. They also introduce the concept of 
mutation, by adding perturbations to randomly selected modulus of the velocity 
vector. Finally, the authors describe a self-organizing hierarchical particle swarm 
optimizer with time-varying acceleration coefficients (HPSO-TVAC), which restricts 
the velocity update policy to the influence of the cognitive and social part, 
reinitializing the particles whenever they are stagnated in the search space.  

Another method for controlling  is given by Suresh et al. in [12]. The authors use 
the Euclidean distance between the particle and  for computing  in each time-
step for each particle. Particles closer to the best global solution tend to have higher  
values, while particles far from  are modified with lower inertia. The algorithm 
introduces a parameter  that restricts the inertia weight to working values. In 
addition, Suresh et al. also uses a perturbation mechanism of the particles’ positions 
that introduces a random value in the range 1, , where  is a new parameter for the 
algorithm (see equation 4, which replaces equation 2). The authors report that the 
Inertia-Adaptive PSO (IA-PSO) outperforms several other methods in a 12-function 
benchmark, including the abovereferred state-of-the-art HPSO-TVAC.  

, 1 . , 1 ,  (4)
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Like HPSO-.TVAC and IA-PSO, the method proposed in this paper also aims at 
controlling the balance between local and global search by dynamically varying the 
inertia weight and/or the acceleration coefficients, while introducing perturbations in 
the particles’ positions (like IA-PSO, but with  controlled by the SOC model). The 
main objective is to construct a simple scheme that does not require complex 
parameter tuning or pre-established strategies.  

3 SOC and the Bak-Sneppen Particle Swarm 

In complex adaptive systems, complexity and self-organization usually arise in the 
transition region between order and chaos. SOC systems are dynamical system with a 
critical point in that region as an attractor. However, and unlike many physical 
systems which have a parameter that needs to be tuned for criticality, a SOC model is 
able to self-tune to that critical state.  

One of the properties of SOC systems is that small disturbances can lead to 
avalanches, i.e., events that are spatially or temporally spread through the system. 
Moreover, the same perturbation may lead to small or large avalanches, which in the 
end show a power-law proportion between the size of the events and its abundance.  

The Bak-Sneppen is a model of co-evolution that displays SOC properties. 
Different species in the same ecosystem are related trough several features; they co-
evolve, and the extinction of one species affects the species that are related to it, in a 
chain reaction that can affect large segments of the population. In the model, each 
species has a fitness value assigned to it and it is connected to other species in a ring 
topology (i.e., each one has two neighbors). Every time step, the species with the 
worst fitness and its neighbors are replaced by individuals with random fitness. When 
plotting the size of extinctions over their frequency in a local segment of the 
population and below a certain threshold close to a critical value, a power-law 
relationship is observed.  

This description may be translated to a mathematical model. The system is defined 
by  fitness values  arranged on a -dimensional lattice with  cells. At each time 
step, the smallest  value and its neighbors are replaced by uncorrelated random 
values drawn from a uniform distribution. The system is thus driven to a critical state 
where most species reach a fitness value above a certain threshold, with avalanches 
producing non-equilibrium fluctuations in the configuration of the fitness values. 

The behavior of the numerical values of the Bak-Sneppen model — power-law 
relationships, increasing average fitness of the population, periods of stasis in 
segments of the population punctuated by intense activity — are the motivation 
behind this study. By linking a Bak-Sneppen model to the particles and then using the 
species’ fitness values as input for adjusting the algorithm’s parameters, it is expected 
that the resulting strategy is able to control PSO. To the extent of our knowledge, this 
is the first proposal of a scheme linking the Bak-Sneppen model and PSO in such a 
way. However, SOC has been applied to this field of research in the past.  

In [7], Krink et al. proposed SOC-based mass extinction and mutation operator 
schemes for Evolutionary Algorithms. A sandpile model [2] is used here and its 
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equations are previously computed in order to obtain a record of values with a power-
law relationship. Those values are then used during the run to control the number of 
individuals that will be replaced by randomly generated solutions or the mutation 
probability of the Evolutionary Algorithm. Tinós and Yang [13] were also inspired by 
the Bak-Sneppen model to create the Self-Organized Random Immigrants Genetic 
Algorithm (SORIGA). The authors apply the algorithm to time-varying fitness 
landscapes and claim that SORIGA is able to outperform other algorithms in the 
proposed test set. In [5], Fernandes et al. describe an Evolutionary Algorithm attached 
to a sandpile model. The avalanches dynamically control the algorithm’s mutation 
operator. The authors use the proposed scheme in time-varying fitness functions and 
claim that the algorithm is able to outperform other state-of-the-art methods in a wide 
range of dynamic problems. Finally, Løvbjerg and Krink [8] apply SOC to PSO in 
order to control the diversity to the population. The authors introduce a critical value 
associated to each particle and define a rule that increments that value when two 
particles are closer than a threshold distance. When the critical value of a particle 
exceeds a globally set criticality limit, the algorithm disperses the criticality of the 
particle within a certain neighborhood and mutates it. The algorithm also uses the 
particle’s critical value to control the inertia. The authors claim that the method 
attains better solutions than the basic PSO. However, it introduces working 
mechanisms that can complicate its design. Overall, there are five parameters that 
must be tuned or set to ad hoc values. 

The proposed BS-PSO uses the Bak-Sneppen model without introducing 
complicated control mechanisms. The only exception is an upper limit for the number 
of mutations in each time-step, a practical limitation due to the nature of the model 
and the requirements of numerical optimization. Besides that, the model is run in its 
original form, feeding the PSO with values in the range 0,1.0  (species’ fitness 
values) that are used by the algorithm to control the parameters.  Please note that if 
the PSO does not interact directly with the model (which is the case in this paper), the 
model can be executed prior to the optimization process and its fitness values stored 
in order to be used later in any kind of problem (meaning also that the running times 
are exactly the same of a basic PSO). However, in order to generalize the system and 
describe a framework that can easily be adapted to another level of hybridization of 
the SOC model and PSO, it is assumed that the model evolves on-line with the 
swarm.  

In the Bak-Sneppen model, a population of species is placed in a ring topology and 
a random value between 0 and 1.0 is assigned to each individual. In BS-PSO, the 
number of species is equal to the size of the swarm. Therefore, the algorithm may be 
implemented just by assigning a secondary fitness, called bak-sneppen fitness 
(bs_fitness), to each individual in the swarm. This way, each individual is both the 
particle of the PSO and the species of the co-evolutionary model, with two 
independent fitness values: a quality measure fitness , computed by the objective 
function, and the bs_fitness , modified according to Algorithm 1.  

The main body of the BS-PSO is very similar to the basic PSO. The differences 
are: Algorithm 1 is called in each time-step, and modifies three or more bs_fitness 
values; the inertia weigh of each particle is defined in each time-step and for each 



158 C.M. Fernandes, J.J. Merelo, and A.C. Rosa 

particle  with equation 5, where  is the position of particle ;  the acceleration 
coefficients  and  are defined in each time-step by equation 6; the position’s 
update is done using equation 7, where 0,1 _ .  1 _  (5)1 _ (6)

, 1 . , 1 ,  
(7)

Algorithm 1 is executed in each time-step. At   0, the bs_fitness values are 
randomly drawn from a uniform distribution in the range 0, 1.0 . Then, the algorithm 
searches for the worst species in the population (lowest bs_fitness), stores its fitness 
value (minFit) and mutates it by replacing the fitness with a random value in 0, 1.0 . 
In addition, the neighbors of the worst are also mutated (remember that a ring 
topology connects each species with index  to its two neighbors with indexes 1 
and 1).  Then, the  algorithm searches again for the worst.  If the fitness of that 
species is lower than minFit, the process repeats: species and its neighbors are 
mutated. This cycle proceeds while the worst fitness in the population is bellow 
minFit (and the number of mutations is below the limit). When the worst is found to 
be above minFit, the algorithm proceeds to PSO’s standard procedures (see 
Algorithms 1 and 2). 

Algorithm 1 .(Bak-Sneppen Model) 

1. Set  0; set _ 2 _  
2. Find the index  of the species with lowest bak-sneppen fitness  3. Set  _  
4. Replace the fitness of individuals with indices , 1, and   1 by random values  
5. Increment mutations:  
6. Find the index  of the species with lowest fitness 
7. If _   or _ , return to 4; else, end  

Algorithm 2. (BS-PSO) 

1. Initialize velocity and position of each particle. 
2. Evaluate each particle :   

3. Initialize bak-sneppen fitness values: _ 0, 1.0  
4. Update Bak-Sneppen Model (Algorithm 1). 
5. For each particle : 

6. Set 1 _  
7. Set 1 _  
8. Update velocity (equation 3) and position (equation 7); evaluate  

9.   If (stop criteria not met) return to 4; else, end.

As stated above, a stop criterion is introduced in Algorithm 1 in order to avoid long 
mutation cycles that would slow down BS-PSO after a certain number of iterations. If 
the number of mutations reaches a maximum pre-defined value, Algorithm 1 ends. In 
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this paper, the critical value is set to twice the swarm’s size. This value was intuitively 
fixed, not tuned for optimization of the performance. It is treated as a constant and its 
effects on the algorithm are beyond the scope of this paper. It is even possible that 
other strategies for avoiding long intra-time-steps mutation cycles that do not require 
a constant can be devised. However, such a study is left for future work. The main 
objective here is to demonstrate that controlling the inertia, acceleration coefficients 
and particles’ positions with values given by a SOC model is viable and effective. 

4 Testbed Set and Results 

The experiments were designed with five benchmark functions (see Table 1). The 
minimum of all functions is in the origin with fitness 0. The dimension of the search 
space is set to 30 (except ). TVIW-, RANDIW-, GLbestIW- and IA-PSO were 
included in the tests in order to evaluate the efficiency of the method. (It is not our 
intention to prove that BS-PSO is better than the best PSOs in a wide range of 
functions. This simple experiment is mainly a proof-of-concept, and the peer-
algorithms were chosen so that the different mechanism of BS-PSO can be properly 
evaluated.)  

The population size  is set to 20 for all algorithms;  topology is used. The 
acceleration coefficients were set to 1.494, a value suggested in [4] for RANDIW-
PSO. However, and since we are using algorithms with varying parameters, it is 
expected that other PSOs require different  values. Therefore, the coefficients  were 
also set to 1.2 and 2.0 (as in the studies that introduce GLbestIW-PSO and IA-PSO). 

 is defined as usual by the domain’s upper limit and   . TVIW-
PSO uses linearly decreasing inertia weight, from 0.9 to 0.4. The maximum number 
of generations is 3000 (except , for which the limit is 1000); 50 runs for each 
experiment are conducted. Since PSO takes advantage of the fact that the optima are 
located in the centre of search space, asymmetrical initialization is often used for 
testing PSO. The initialization range for each function is given in Table 1. 

Table 1. Benchmarks for the experiments. Dynamic and initialization range. 

function mathematical representation Range of search Range of initialization 

Sphere  

f1 
 100, 100  (50, 100  

Rosenbrock 

 f2 
100 1  100, 100  15, 30  

Rastrigin  

f3 
10 cos 2 10  10, 10  2.56, 5.12  

Griewank 

 f4 
1 14000 cos √  600, 600  300, 600  

Schaffer 

f6 
0.5 sin 0.51.0 0.001  100, 100  15, 30  
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The first test compares BS-PSO with different degrees of parameter control (i.e., 
the control of the acceleration coefficients and the perturbation of position were 
disabled in order to evaluate the effects of introducing the schemes). Table 2 
summarizes the results. In the table’s header,  means that ,  or  are controlled 
by bs_fitness values; otherwise, the control is disabled and the parameter is set to the 
corresponding value. As seen in Table 2, BS-PSO was tested with inertia control 
enabled and different  values (with 0); in general, higher  lead to a better 
performance. When the dynamic control of  is enabled (i.e, , , , , 0)) the 
performance on  and  is improved, while for the other functions the fitness value 
decreases when compared to the best configuration with fixed . However, the results 
are better than those attained by suboptimal configurations, which means that it may 
be an alternative to fine-tuning the parameter. Introducing a perturbation of the 
positions with the  parameter clearly improves the results, especially when  is 
controlled by the model. (Please note that  is set to 0.25, as in [12], in order to 
compare not only fixed and SOC-based perturbation, but also BS-PSO and IA-PSO 
later in in this section).  

Table 2. BS-PSO: average and standard deviation of the optimal value for 50 trials , , → , . , ) , . , ) , . , ) , , ) , , . ) , , ) 

f1 
2.21e+04 

(7.72e+03) 
3.35e+01 

(1.90e+02) 
1.38e-15 

(3.21e-15) 
8.30e-32 

(3.47e-31) 
0.00e+00 

(0.00e+00) 
0.00e+00 

(0.00e+00) 

f2 
9.76e+07 

(2.83e+07) 
1.67e+05 

(1.17e+06) 
1.88e+02 

(2.53e+02) 
8.56e+01 

(7.98e+01)
2.61e+01 
(2.66e-01) 

2.60e+01 
(1.58e-01) 

f3 
3.57e+02 

(4.91e+01) 
2.82e+02 

(4.44e+01) 
1.11e+02 

(2.75e+01) 
2.02e+02 

(4.16e+01)
4.88e+00 

(7.73e+00) 
3.32e+00 

(7.09e+00) 

f4 
1.53e+02 

(7.30e+01) 
1.63e+00 

(5.93e+00) 
1.25e-02 

(1.26e-02) 
1.65e-02 

(2.24e-02) 
3.79e-03 

(2.29e-03) 
4.51e-03 

(4.00e-03) 

f6 
9.63e-02 

(9.43e-02) 
3.31e-02 

(4.08e-02) 
4.05e-03 

(4.72 e-03) 
5.55e-03 

(4.80e-03) 
1.55e-03 

(3.60e-03) 
3.89e-04 

(1.92e-04) 

Table 3. TVIW-PSO, RANDIW-PSO and GLbestIW-PSO 

 TVIW   .  

TVIW .  

TVIW   .  

RANDIW.  

RANDIW. RANDIW.  

GLbestIW.  

GLbestIW .  

GLbestIW   .  

f1 
1.22e-23 

(5.81e-23) 

8.64e-29 

(1.75e-28) 

2.81e-06 

(2.77e-06) 

1.12e-33

(1.90e-33)

1.22e-18 

(1.26E-18)

6.68e+02

(2.60e+02)

1.14e+05

(6.47e+03)

3.67e+04 

(8.25e+03) 

2.83e+03 

(1.92e+03) 

f2 
1.24e+02 

(1.66e+02) 

1.03e+02 

(9.31e+01) 

5.96e+02 

(1.72e+03) 

7.53e+01

(7.24e+01)

7.28e+01

(6.69e+01)

2.07e+07

(1.26e+07)

2.95e+08

(4.80e+07)

9.10e+07 

(3.41e+07) 

3.46e+08 

(9.03e+07) 

f3 
9.82e+01 

(2.44e+01) 

7.85e+01 

(2.01e+01) 

5.84e+01 

(1.39e+01) 

1.80e+02

(3.01e+01)

1.11e+02

(2.51e+01)

1.94e+02

(2.77e+01)

4.37e+02

(3.24e+01)

3.56e+02 

(3.56e+01) 

1.68e+02 

(2.79e+01) 

f4 
8.71e-03 

(1.06Ee-02)

8.66e-03 

(1.14e-02) 

1.22e-02 

(1.26e-02) 

1.25e-02

(1.64e-02)

1.04e-02

(1.50e-02)

5.96e+00

(1.62e+00)

9.77e+02

(5.30e+01)

3.08e+02 

(6.63e+01) 

2.34e+01 

(1.53e+01) 

f6 
2.34e-03 

(4.19e-03) 

2.18e-03 

(3.94e-03) 

2.34e-03 

(4.07e-03) 

4.14e-03

(4.80e-03)

4.48e-03 

(4.88e-03)

2.60e-03

(4.18e-03)

6.99e-02

(1.10e-01)

8.12e-03 

(4.05e-02) 

0.00e+00 

(0.00e+00) 
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Table 4. Kolmogorov-Smirnov statistical tests comparing the best configurations of each 
algorithm. ‘+’ sign means that PSO 1 is statistically better than PSO 2, ‘~’ means that the PSOs 
are equivalent, and ‘–’ means that PSO 1 is worse. 

PSO 1 vs. PSO 2 f1 f2 f3 f4 f6 
BS-PSO , ,  vs TVIW-PSO + + + + + 

BS-PSO , ,  vs RANDIW-PSO + + + + + 
BS-PSO , , vs GLbestIW-PSO + + + + – 

BS-PSO , , )  vs TVIW-PSO + + – – – 
BS-PSO , , ) vs RANDIW-PSO – ~ – ~ ~ 
BS-PSO , , ) vs GLbestIW-PSO + + ~ + – 

Table 5. IA-PSO: average and standard deviation of the optimal value for 50 trials 

 
.  

 

.  

.25 

.  

 

.  

 

.  

.25 

.  

 

.  

 

.  

.25 

.  

 

f1 
1.16e+04 

(8.32e+03) 

0.00e+00 

(0.00e+00) 

0.00e+00 

(0.00e+00) 

2.42e+02

(1.43e+03)

0.00e+00

(0.00e+00)

0.00e+00

(0.00e+00)

5.19e-02

(2.61e-02)

6.56e-03 

(5.34e-03) 

2.60e-02 

(1.70e-02) 

f2 
2.05e+07 

(1.43e+07) 

2.71e+01 

(4.44e+00) 

2.63e+01 

(1.29e+00) 

7.45e+04

(5.26e+05)

2.62e+01

(3.71e-01)

2.60e+01

(1.84e-01)

4.26e+02

(8.30e+02)

3.97e+01 

(2.14e+01) 

7.21e+01 

(8.25e+01) 

f3 
3.74e+02 

(3.27e+01) 

1.16e+02 

(2.10e+01) 

7,79e+01 

(2.17e+01) 

2.82e+02

(3.47e+01)

5.26e+01

(3.08e+01)

3.96e+01

(2.02e+01)

8.87e+01

(2.66e+01)

1.81e+00 

(3.12e+00) 

1.12e+01 

(1.42e+01) 

f4 
1.21e+02 

(7.57e+01) 

4.02e-03 

(2.80e-03) 

3,95e-03 

(2.22e-03) 

2,62e+00

(1.30e+01)

3.72e-03

(2.23e-03)

4.71e-03

(3.12e-03)

1.84e+00

(1.27e+01)

1.11e-02 

(7.74e-03) 

1.30e-02 

(7.08e-03) 

f6 
2.45e-01 

(7.60e-02) 

9.52e-03 

(1.37e-03) 

5.26e-03 

(4.87e-03) 

8.90e-02

(8.39e-02)

5.44e-03

(4.87e-03)

7.77e-04

(2.66e-03)

3.75e-03

(4.73e-03)

3.89e-04 

(1.92e-03) 

4.89e-04 

(2.03e-03) 

 
In order to assure fair comparisons, Table 3 shows the complete set of results 

attained by TVIW-, RANDIW- and GLbestIW-PSO. Apparently, BS-PSO 
outperforms the other algorithms in most of the scenarios. However, PSOs in Table 3 
do not include perturbation of the particle’s position and therefore they should be also 
compared to a BS-PSO with that scheme disabled ( , , 0) in Table 2): Table 4 
compares BS-PSO (with and without perturbation of the particles) to the other PSOs 
using statistical non-parametric tests (best configurations in Table 3 were chosen). It 
is confirmed that the fully enabled BS-PSO outperforms the other algorithms. As for 
the version restricted to  parameter control, it  is in general  better  than  GLbestIW, 
while being competitive with the other methods. These are interesting results, since 
the performance of BS-PSO is attained without fine-tuning the parameters. 

Table 6. Kolmogorov-Smirnov statistical tests comparing IA-PSO and BS-PSO 

PSO 1 vs. PSO 2 f1 f2 f3 f4 f6 

BS-PSO , . ,  vs IA-PSO  + + ~ + ~ 
BS-PSO , , vs IA-PSO (bs controlled ) ~ ~ + ~ + 
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A final test compares BS-PSO with IA-PSO. The later was tested with different 
acceleration coefficients and three perturbation strategies: disabled ( 0 , set to 0.25 (as in [12]) and controlled by the Bak-Sneppen model (using a Bak-Sneppen 
controlled IA-PSO permits to compare only the parameter control scheme of both 
algorithms). The results are in Table 5 and the statistical tests in Table 6. BS-PSO is, 
in general, more efficient than IA-PSO, whether the schemes are fully enabled or not. 
At this point, a question arises: what are the mechanisms behind the control scheme 
that make BS-PSO efficient in adjusting the parameters? Figure 1 gives some hints. 
The plot in the figure represents the distribution of  during a typical run of BS-PSO, 
and, although it is not the definitive answer, helps to clarify this issue. The values 
seem to keep within a range that is not only suited for  but also appropriate to model  
a mutation scheme. If the system had higher values with more frequency, the effect 
would be destructive, since it would increase exploration beyond a reasonable point. 
 

Fig. 1. Distribution of the  values of all particles in a typical run 

5 Conclusions and Future Work 

The Bak-Sneppen Particle Swarm Optimization (BS-PSO) is a variation of the basic 
PSO that uses a Self-Organized Criticality (SOC) model to control the inertia weight 
and the acceleration coefficients, as well as the perturbation factor of the particles’ 
positions. A single scheme controls three parameters making hand-tuning of the basis 
PSO unnecessary. An experimental setup demonstrates the validity of the algorithm 
and shows that the incorporation of each control mechanism may improve the 
performance or at least reduce the tuning effort. The BS-PSO is compared with other 
methods. In particular, the algorithm is able to attain better results than a recently 
proposed inertia weight PSO (IA-PSO) in most of the experimental scenarios. In a 
future work, a scalability analysis will be conducted, as well as study on the effects of 
the limit imposed to mutation events by the current algorithm, and possible 
alternatives to this ad hoc solution. The test set will also be extended and BS-PSO 
compared with the algorithms proposed in [8] and [9]. Finally, different levels of 
hybridization between the Bak-Sneppen model and PSO will be tested, in order to 
introduce information from the search into the variation scheme of the parameter 
values.  
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The Apiary Topology: Emergent Behavior

in Communities of Particle Swarms
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Abstract. In the natural world there are many swarms in any geograph-
ical region. In contrast, Particle Swarm Optimization (PSO) is usually
used with a single swarm of particles. We define a simple new topol-
ogy called Apiary and show that parallel communities of swarms give
rise to emergent behavior that is fundamentally different from the be-
havior of a single swarm of identical total size. Furthermore, we show
that subswarms are essential for scaling parallel PSO to more processors
with computationally inexpensive objective functions. Surprisingly, sub-
swarms are also beneficial for scaling PSO to high dimensional problems,
even in single processor environments.

Keywords: Particle Swarm Optimization, parallel PSO, swarm topol-
ogy, subswarms, multiple swarms, parallel computation.

1 Introduction

Particle Swarm Optimization (PSO) is a continuous function optimization al-
gorithm inspired by the flocking behaviors of birds and insects. It is typically
used with small swarms of 20 to 50 particles organized in simple topologies that
do not fully reflect the complex social interactions of insects. In agriculture, for
example, bees are managed in sets of hives called apiaries. The number of hives
in an apiary usually ranges from 10 to 150.

Using conventional topologies, a single swarm of particles often fails to scale
both to large numbers of processors and to high-dimensional problems. First,
with a large number of processors and an inexpensive objective function, com-
munication costs make parallel PSO with a single swarm impractical. Parallel
PSO naturally works well for problems with computationally expensive function
evaluations, but for inexpensive objective functions, the time to communicate a
single position can exceed the time to perform a function evaluation. Second, for
high-dimensional problems, particles are prone to premature convergence. Even
for Sphere, the simplest of benchmark functions, standard PSO struggles to find
the global optimum when the number of dimensions is 400 or greater.

Multiple swarms have been used to scale parallel PSO for inexpensive ob-
jective functions but have not been considered for scaling to high-dimensional
problems. Semi-independent swarms of particles provide a natural way to par-
allelize the computation of PSO across a set of processors without requiring

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 164–173, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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instantaneous communication [1]. However, the behavior of subswarms has not
been explored, particularly with respect to high-dimensional problems.

The Apiary topology, proposed in Section 3, spreads the population of par-
ticles among a set of small subswarms. In this topology, a subswarm is a social
entity which lies between the individual particle and the full population and
which serves as another source of emergent behavior. Each subswarm consists of
a fixed set of particles and is mostly independent of other subswarms. Periodi-
cally, a single particle in each subswarm communicates with a few particles in
other subswarms. This communication between subswarms is rare and limited,
so computation is particularly well suited to parallel computation.

The Apiary topology helps PSO scale, both to large numbers of processors
and to high-dimensional objective functions. Unlike some other proposed PSO
techniques using subswarms, this topology is simple, clearly defined, and appro-
priate for parallel PSO. Experiments, described in Section 4, show significant
improvements over standard PSO. Even in single processor environments, api-
aries produce better results in the same time and are less prone to premature
convergence for every benchmark function we tested. These results are presented
and discussed in Section 4.1. The standard parameters are justified in Section 4.2,
along with indications of when these parameters might be changed. Parallel PSO
with Apiary is compared in Section 4.3. Despite inexpensive functions being par-
ticularly challenging for parallelization, the run time is reduced from 256 minutes
with a single processor to 17 minutes with 40 processors.

2 Background Material: Particle Swarm Optimization

Particle Swarm Optimization, proposed by Kennedy and Eberhart [2], simulates
the motion of particles in the domain of an objective function. These particles
search for the global optimum by evaluating the function as they move. During
each iteration, each particle is pulled toward the best position it has sampled,
known as the personal best, and the best position of any particle in its neighbor-
hood, known as the neighborhood best.

Constricted PSO is generally considered the standard variant [3]. Each par-
ticle’s position x0 and velocity v0 are initialized to random values based on a
function-specific feasible region. During iteration t, the following equations up-
date the ith component of a particle’s position xt and velocity vt with respect to
the personal best pt−1 and neighborhood best nt−1 from the preceding iteration:

vt,i = χ
[
vt−1,i + φ

PuPt−1,i(x
P
t−1,i − xt−1,i) + φ

NuNt−1,i(x
N
t−1,i − xt−1,i)

]
(1)

xt,i = xt−1,i + vt,i (2)

where xP is the personal best, xN is the neighborhood best, φP and φN are
usually set to 2.05, uPt,i and uNt,i are samples drawn from a standard uniform

distribution, and χ = 2/
∣∣∣2 − φ−

√
φ2 − 4φ

∣∣∣ where φ = φP + φN [4].

The neighborhoods within a swarm are defined by the topology graph. The
choice of topology can have a significant effect on performance [5]. Additionally,
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the topology determines task dependencies and overhead in parallel PSO [6].
The Ring50 topology, a swarm of 50 particles where each particle has a single
neighbor on either side, is a standard starting point [3].

3 The Apiary Topology

The Apiary topology is a dynamic topology of independent subswarms which
occasionally communicate with each other. Each subswarm has an inner topol-
ogy, and the subswarms are connected in an outer topology. In most iterations,
the neighbors of each particle are defined purely by the inner topology of its
subswarm. After a fixed number of independent subiterations, each subswarm
communicates with its neighboring subswarms, as defined by the outer topol-
ogy. Each subswarm sends its neighbors the best value from any of its particles.
It updates the neighborhood best of a fixed set of particles (the neighborhood
of the first particle in the swarm) with the values from neighboring subswarms.

In the Apiary topology, subswarms share important characteristics with com-
munities in nature. Just as each bee colony has its own social structure, each
subswarm has its own particles and its own topology. Like bee colonies, the sub-
swarms are independent and rarely interact. Curiously, bees occasionally allow
foreign forage bees to enter a hive if they are fully loaded [7], and the native bees
will be able to learn from those foreign bees if they are from another colony or
even another species [8]. Likewise, a single particle in each subswarm occasion-
ally engages in light communication with neighboring swarms. In this simple
structure, subswarms are simple entities with a balance of independence and
interaction that favors emergent behavior.

This approach contrasts with previous attempts to define subpopulations in
PSO. Dynamic Multi-Swarm PSO [9] periodically shuffles by reassigning all
particles to random subswarms. This global reshuffling increases the amount of
communication required in parallel PSO and is incompatible with asynchronous
parallel PSO [10]. In contrast, neighborhoods in the Apiary topology are de-
terministic and require very little communication. Section 4.1 compares the
performance of Dynamic Multi-Swarm PSO with that of the Apiary topol-
ogy. Most subswarm approaches have introduced strategies—some of them quite
complex—to manage the migration of particles between subswarms [11,12,13,14].
Other works have used subswarm-style topologies within a limited context [6],
including completely independent subswarms [1]. Romero and Cotta’s island-
structured swarms [11], is limited to small numbers of large subswarms and
low-dimensional problems, and its conclusions do not seem to apply to high-
dimensional problems. In contrast to other approaches, the Apiary topology is
static and thus well suited to any implementation of parallel PSO, and it requires
very little communication between subswarms.

The inner and outer topologies, as well as the number of subiterations, are
changeable parameters.We recommendRing for both the outer and inner topolo-
gies, with a starting point of 5 particles per subswarm, 40 total subswarms, and
100 subiterations. These recommendations are justified in Section 4.2.
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4 Experimental Results

The Apiary topology provides significant improvements for both serial and par-
allel PSO with respect to a variety of benchmark functions. Benchmark func-
tions are computationally inexpensive enough for large-scale experimentation
but share interesting properties with challenging real-life problems. We use
the Ackley, Rastrigin, Rosenbrock, Schwefel 1.2, and Sphere benchmark func-
tions [15] with both 250 and 500 dimensions. Experiements were run on a Linux
cluster consisting of 320 nodes (Dell PowerEdge M610). Each node is equipped
with two quad-core Intel Nehalem processors (2.8 GHz) and 24 GB of memory.

Each experiment was repeated at least 40 times. We report the median in-
stead of the mean because these distributions are skewed. The 10th and 90th

percentiles illuminate both the variability and skewness. We determine statis-
tical significance using a one-sided Monte Carlo permutation test [16]. A t-test
would be inappropriate because it uses the mean statistic and assumes a normal
distribution, which we can not assume in part because of skew. Each table cell
is bolded if it is better than every other entry in its row with a p-value of 0.05.

Each table and plot presents either the median number of evaluations required
to reach a threshold or the median best value at a fixed number of evaluations or
iterations. The notation Ringn denotes a ring topology where each particle has
one neighbor on each side, and Ringm–Ringn denotes an Apiary topology with
a Ringm outer topology and a Ringn inner topology. Each benchmark function
is accompanied by its dimensionality, for example, “Sphere-500.”

The balance of this section seeks to identify some of the most interesting
observation and give greater clarity and meaning to these results. Section 4.1
compares the Ring40–Ring5 apiary with the standard recommendation of Ring.
Section 4.2 justifies the particular choice of Ring40–Ring5 as a standard starting
point. Finally, Section 4.3 demonstrates the suitability of the Apiary topology to
parallel PSO by demonstrating its efficiency in a typical parallel environment.

4.1 Apiaries in Serial PSO

Limiting the interaction between subswarms to once every 100 iterations might
be expected to compromise the performance of serial PSO in exchange for
improved parallel efficiency, but this social organization in fact improves per-
formance even in serial PSO. Figures 1 and 2 show the progress toward conver-
gence for 500 dimensional Rastrigin and Sphere respectively. The Ring40–Ring5
apiaries require the same number of evaluations per iteration as the Ring200
swarms, but they perform far better than the individual Ring swarms. Note
that the Ring200 swarm in Figure 2 converges more slowly than the Ring50
swarm because it requires more evaluations per iteration.

One might wonder whether the performance of the Apiary topology are depen-
dent on the social interactions or whether they are merely due to the repetition of
a high-variance experiment. After all, running 40 independent swarms of 5 par-
ticles would be expected to perform better than a single swarm of 5 particles.
Figure 2 includes the abysmal results of such an Independent40–Ring5 topology,
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Fig. 1. Convergence plot for Rastrigin in serial PSO, comparing an apiary (using 100
subiterations) with a swarm of the same total number of total particles (200) and a
swarm of 50 particles
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Fig. 2. Convergence plot for Sphere in serial PSO, comparing an apiary (using 100
subiterations) with a swarm of the same number of total particles (200) and a swarm
of 50 particles

thus dispelling this possibility. The difference between the independent swarms
and the apiary demonstrates emergent behavior.

We include results for the full range of benchmark functions in tabular form.
In the case of Sphere, all runs of all PSO variants eventually converge to the
global minimum. Table 1

reports the number of function evaluations to convergence. Table 2 reports
the best value obtained at a fixed number of function evaluations for the other
benchmark functions. The fixed number of evaluations for each function are
equivalent to about 6 hours of computation, specifically: 6× 106 for Ackley-250
and Ackley-500, 1× 107 for Rastrigin-250, 3.5× 106 for Rastrigin-500, 1× 107

for Rosenbrock-250, 5 × 106 for Rosenbrock-500, 6 × 106 for Schwefel1.2-250, and
2 × 106 for Schwefel1.2-500. In all cases the apiary is best with statistical signif-
icance. Though the results for the Ackley function are statistically significant,
the difference is small.
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Table 1. Median number of function evaluations to reach a value of 10−10. The best
cell in each row is bolded if statistically significant

Function Ring50 Ring200 Ring40–Ring5
Sphere-250 7.8×105 3×106 5.9×105

(10th, 90th) (7.6×105, 8.1×105) (3×106, 3.1×106) (5.9×105, 6×105)

Sphere-500 9.5×106 1.6×107 1.2×106

(10th, 90th) (3.5×106, 2.6×107) (1×107, 4×107) (1.2×106, 1.2×106)

Table 2. Median best value at a fixed number of function evaluations

Function Ring50 Ring200 Ring40–Ring5
Ackley-250 20 20 20

(10th, 90th) (20, 20) (20, 20) (20, 20)

Ackley-500 20 20 20

(10th, 90th) (20, 21) (20, 21) (20, 20)

Rastrigin-250 2.6×103 2.3×103 1.9×103

(10th, 90th) (2.1×103, 2.9×103) (2×103, 2.5×103) (1.7×103, 2.1×103)

Rastrigin-500 1.2×104 1.2×104 4.1×103

(10th, 90th) (1.1×104, 1.3×104) (8.5×103, 1.2×104) (3.9×103, 4.5×103)

Rosenbrock-250 70 3.7×102 0.0012

(10th, 90th) (0.029, 3.4×102) (2.8×102, 4.5×102) (6.1×10−9, 4)

Rosenbrock-500 4.3×1012 4.1×1012 8.8×102

(10th, 90th) (4×1012, 4.6×1012) (3.8×1012, 4.3×1012) (7×102, 1.1×103)

Schwefel1.2-250 7.4×104 2.3×105 1.6×104

(10th, 90th) (4.6×104, 1.5×105) (2.1×105, 2.7×105) (1.2×104, 2.1×104)

Schwefel1.2-500 1.6×106 2.2×106 8.1×105

(10th, 90th) (1.1×106, 2.3×106) (1.8×106, 2.8×106) (7.1×105, 9.4×105)

For some functions, the Apiary topology outperforms Dynamic Multi-Swarm
PSO [9] (DMS-PSO) in serial, while for other functions, DMS-PSO outperforms
the Apiary topology. For Sphere-500, the Apiary topology finds the minimum
faster with a small but statistically significant advantage, while for Sphere-250,
the situation is reversed (the full table is omitted due to space constraints).
Table 3 shows similarly mixed results for the other benchmark functions.

4.2 Apiary Parameters

We now justify the basic apiary parameters of a Ring40 outer topology, a Ring5
inner topology, and 100 subiterations. General recommendations set Ring50 as
a standard swarm topology [3] or even higher for difficult problems [6]. Previous
subswarm topologies have suggested that 50–100 particles per subswarm [11] or
32 particles per subswarm [1] give ideal performance. In contrast, we recommend
starting with small subswarms of about 5 particles.

Increasing the number of particles per subswarm or the total number of sub-
swarms provide improvements only in some circumstances. Table 4 compares
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Table 3. Median best value at a fixed number of function evaluations. The topology
is Ring40–Ring25 for Rastrigin and Ring40–Ring5 for Rosenbrock and Schwefel 1.2.

Function Apiary DMS-PSO

Rastrigin-250 1.5×103 4.8×102

(10th, 90th) (1.4×103, 1.6×103) (4×102, 5.9×102)

Rastrigin-500 3.3×103 1.3×103

(10th, 90th) (3×103, 3.6×103) (1.2×103, 1.6×103)

Rosenbrock-250 0.0012 1.3×102

(10th, 90th) (6.1×10−9, 4) (1.4, 2.3×102)

Rosenbrock-500 8.8×102 8.3×102

(10th, 90th) (7×102, 1.1×103) (6.4×102, 9.8×102)

Schwefel1.2-250 1.6×104 7×104

(10th, 90th) (1.2×104, 2.1×104) (5.1×104, 8.9×104)

Schwefel1.2-500 8.1×105 1.4×106

(10th, 90th) (7.1×105, 9.4×105) (1.2×106, 1.7×106)

Table 4. Median best value at n function evaluations

Function Ring40–Ring5 Ring200–Ring5 Ring40–Ring25
Rastrigin-250 1.9×103 1.7×103 1.5×103

(10th, 90th) (1.7×103, 2.1×103) (1.6×103, 1.9×103) (1.4×103, 1.6×103)

Rastrigin-500 4.1×103 3.8×103 3.3×103

(10th, 90th) (3.9×103, 4.5×103) (3.6×103, 4×103) (3×103, 3.6×103)

Rosenbrock-250 0.0012 2.6×102 0.27

(10th, 90th) (6.1×10−9, 4) (2×102, 3.2×102) (0.0016, 76)

Rosenbrock-500 8.8×102 5×103 9.4×102

(10th, 90th) (7×102, 1.1×103) (3.4×103, 1.4×104) (8.2×102, 1.2×103)

Schwefel1.2-250 1.6×104 1.5×105 3.7×104

(10th, 90th) (1.2×104, 2.1×104) (1.3×105, 1.6×105) (2.8×104, 4.8×104)

Schwefel1.2-500 8.1×105 1.6×106 1×106

(10th, 90th) (7.1×105, 9.4×105) (1.5×106, 1.8×106) (8.8×105, 1.2×106)

Ring40–Ring5 to Ring200–Ring5, an apiary with 5 times as many subswarms,
and to Ring40–Ring25, an apiary with 5 times as many particles per subswarm.
For most of the benchmark functions, the Ring40–Ring5 apiary performs signif-
icantly better than either of the larger topologies. Likewise, the Ring40–Ring5
topology significantly outperforms the others for Sphere-250 and Sphere-500
(the table is omitted due to space). For such functions, the increased number of
evaluations per iteration offsets any increased exploration provided by the larger
swarms. On the other hand, both of the larger topologies are better for Rastrigin-
250, Rastrigin-500, and Rosenbrock-500. As the number of local minima in Ras-
trigin increases exponentially with the number of dimensions, we conclude that
larger swarms are preferable for highly multimodal objective functions.

Changing the communication between swarms can affect performance dra-
matically. Using a more connected outer topology, such as Complete, gives poor
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Fig. 3. Convergence plots of the Apiary topology for the Rosenbrock function with
respect to function evaluations and time

performance in serial PSO in addition to requiring more communication in par-
allel PSO. Sharing the best value of an arbitrary member of each subswarm
instead of the best particle of each subswarm also reduces performance. Setting
the number of subiterations to 100 is high enough to provide reasonable task
granularity even for the least expensive benchmark functions in parallel PSO.

4.3 Parallel Performance of Apiaries

Benchmark functions are extremely inexpensive, yet despite the high relative
cost of communication, the Apiary topology performs extremely well in par-
allel. Figure 3 shows the results for the Rosenbrock function with both serial
and parallel computation. Performing 100 iterations on 5 particles requires only
0.2 seconds, and parallel PSO took about 0.5 seconds per iteration. With any
realistically expensive function, the overhead of 0.3 seconds would be negligible.

In a parallel context with a large number of spare processors, there may
be limited additional overhead in increasing the number of subswarms. In this
light, we revisit the conclusions from Section 4.2. In this context, the number of
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Table 5. Median best value at n iterations

Function Ring40–Ring5 Ring200–Ring5 Ring40–Ring25
Rastrigin-250 1.9×103 1.7×103 1.5×103

(10th, 90th) (1.7×103, 2.1×103) (1.6×103, 1.9×103) (1.4×103, 1.6×103)

Rastrigin-500 4.2×103 3.8×103 3.4×103

(10th, 90th) (3.9×103, 4.5×103) (3.6×103, 4×103) (3×103, 3.6×103)

Rosenbrock-250 3.6×102 2.5×102 2.9×102

(10th, 90th) (2.6×102, 4.4×102) (1.9×102, 3.2×102) (2.1×102, 3.5×102)

Rosenbrock-500 2×104 4.2×103 1.5×104

(10th, 90th) (4.5×103, 3.1×107) (3×103, 9.4×103) (3.5×103, 7.5×106)

Schwefel1.2-250 1.7×105 1.4×105 1.7×105

(10th, 90th) (1.4×105, 2×105) (1.3×105, 1.6×105) (1.3×105, 2×105)

Schwefel1.2-500 1.8×106 1.6×106 1.8×106

(10th, 90th) (1.6×106, 2.2×106) (1.5×106, 1.8×106) (1.5×106, 2.1×106)

iterations of PSO is a more appropriate measure than the number of function
evaluations [6]. With respect to iterations, Table 4 compares Ring40–Ring5 with
Ring200–Ring5 and Ring40–Ring25, which loosely represent the situations where
additional processors or time are available, respectively. If extra resources are
available, they clearly provide improvements in the pursuit of better answers.

5 Conclusions and Future Work

Organizing particle swarms into communities of subswarms significantly im-
proves the performance of PSO. We attribute the improvement to emergent
behavior from the social interaction of particles. We speculate that small groups
of particles might make progress on implicit subproblems. Likewise, subswarms
might help other subswarms get unstuck if they have prematurely converged in
individual dimensions. In any case, the behavior of particle swarm apiaries is not
explained by amount of communication, but rather the structure of the swarms.

Furthermore, we have shown that apiaries are particularly well-suited to par-
allel computation. With low communication and adjustable task granularity, the
topology is easily adapted to varying computational architectures. With an in-
expensive benchmark function, parallel PSO was able to perform about 2 outer
iterations per second and provide a speedup of 15 on 40 processors. For any
non-trivial function, the performance would be even more pronounced. Unlike
other multi-swarm topologies like DMS-PSO [9], which requires frequent global
communication, the Apiary topology requires very little communication.

We believe there are several interesting areas that are open to future work.
In particular, organizing subswarms into hierarchies is a promising possibility.
Apiaries are effective with extremely small subswarms, so a hierarchical structure
can be built with a low branching factor. For example, a three-layer apiary would
only have 53 = 125 particles, and a four-layer apiary would have 54 = 625
particles, well within the range that can be computed on a medium-size cluster.
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Abstract. In this paper, we implement ACO algorithms on a PC which
has 4 GTX 480 GPUs. We implement two types of ACO models; the
island model, and the master/slave model. When we compare the island
model and the master/slave model, the island model shows promising
speedup values on class (iv) QAP instances. On the other hand, the
master/slave model showed promising speedup values on both classes (i)
and (iv) with large-size QAP instances.

1 Introduction

Recently, GPU (Graphics Processing Unit) computation has become popular
with great success, especially in scientific fields such as fluid dynamics, image
processing, and visualization using particle methods [1]. As for parallel ACO on
GPU, Bai et al. [2], Fu et al. [3], and Delévacqa et al. [4] implemented MMAS
on GPU with CUDA and applied it to solve TSP. In [5], Diego et al. proposed
a parallelization strategy to solve the VRP with ACO on a GPU.

In a previous paper [6], we proposed an ACO to solve large scale quadratic
assignment problems (QAPs) on a GPU (GTX480) with CUDA. We used tabu
search (TS) as a local search of solutions obtained by the ACO. In the imple-
mentation, we proposed a novel threads assignment method in CUDA, which we
call MATA (Move-Cost Adjusted Thread Assignment), to reduce the idling time
of threads caused by thread divergence in a warp (see Section 2.1). We tested the
ACO using several large-size benchmark instances in QAPLIB [7]. The ACO was
able to solve the QAP instances successfully with about 20x speedup compared
with CPU computation (i7 965, 3.2GHz). As for the ACO algorithm, we use the
Cunning Ant System (cAS) [8].

In this paper, we implement the previous ACO algorithm on a PC which
has 4 GTX 480 GPUs. We implement two types of ACO models using multiple
GPUs. One is the island model, and the other is the master/slave model. In
the island model, we implement one colony on each GPU, agents (solutions) are
exchanged among colonies at defined ACO iteration intervals using several types
of topologies. In the master/slave model, we have only one colony in the CPU,
and only local search (TS) processes are distributed to each GPU.

In the remainder of this paper, Section 2 reviews of the previous study of ACO
on a GPU with MATA and shows revised results using newly tuned parameter

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 174–184, 2012.
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settings. Then, Section 3 describes how the ACO is implemented on a PC with
multiple GPUs in detail. In Section 4, experimental results and their analysis
are given. Finally, Section 5 concludes this paper.

2 A Review of an ACO on a GPU with MATA and
Revised Results

2.1 GPU Computation with CUDA

Processors in a CUDA GPU are grouped into multiprocessors (MPs). Each MP
consists of thread processors (TPs). TPs in an MP exchange data via fast-shared
memory (SM). On the other hand, data exchange among MPs is performed via
VRAM. In a CUDA program, threads form two hierarchies: the grid and thread
blocks. A block is a set of threads. A grid is a set of blocks with the same size.
Each thread executes the same code specified by the kernel function.

Threads in a block are executed through a mode called single instruction,
multiple threads (SIMT) [9]. In SIMT, each MP executes threads in groups of
32 parallel threads called warps. A warp executes one common instruction at a
time, so full efficiency is realized when all 32 threads of a warp agree on their
execution path.

2.2 ACO with TS on a GPU for Solving QAP

The QAP is the problem which assigns a set of facilities to a set of locations
and can be stated as a problem to find a permutation φ which minimizes

τ

Fig. 1. ACO with TS on a GPU

cost(φ) =

n−1∑
i=0

n−1∑
j=0

aijbφ(i)φ(j)

(1)
where A = (aij) and B = (bij)
are two n × n matrices and φ is
a permutation of {0, 1, · · · , n−1}.
Matrix A is a flow matrix between
facilities i and j, and B is the dis-
tance between locations i and j.
Thus, the goal of the QAP is to
place the facilities on locations in
such a way that the sum of the
products between flows and dis-
tances is minimized.

Fig. 1 shows the configuration of the ACO with TS to solve GAPs on a GPU
in [6]. As shown in the figure, each step of the algorithm is coded as a kernel
function of CUDA. All of the data of the algorithm are located in VRAM of the
GPU. As for the local search in Fig. 1, we implement TS based on Ro-TS [10].
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Construction of a solution is performed by the kernel function “Construct
solutions(· · ·)” in a single block. Then each m solutions are stored in VRAM. In
the kernel function “Apply tabu search(· · ·)”, m solutions are distributed in m
thread blocks. This function performs the computation of move-cost in parallel
using a large number of threads in each block. Kernel function “Pheromone
update(· · ·)” consists of 4 separate kernel functions to ease implementation.
Thus, in this configuration, the CPU performs only loop control of the
algorithm.

2.3 Move-cost Adjusted Thread Assignment (MATA)

More than 99% of computation time was used for execution of TS when we
ran the algorithm using CPU with a single thread (see Table 3 in Section 3.2).
MATA was proposed for efficient implementation of TS on a GPU.

As is well known, in TS we need to check all solutions neighboring the current
solution to obtain the best move. This move-cost calculation is costly. Let N(φ)
be the set of neighbors of the current solution φ. A neighbor, φ′ ∈ N(φ), is
obtained by exchanging a pair of elements (i, j) of φ. Then, we need to compute
move-costs Δ(φ, i, j) = cost(φ′) − cost(φ) for all the neighboring solutions. The
neighborhood size of N(φ) (|N(φ)|) is n(n − 1)/2 where n is the problem size.
When we exchange r-th and s-th elements of φ (i.e., φ(r) and φ(s)), Δ(φ, r, s)
can be calculated in computing cost O(n) [6].

Let φ′ be obtained from φ by exchanging r-th and s-th elements of φ, then fast
computation of Δ(φ′, u, v) is obtained in computing cost O(1) if u and v satisfy
the condition u, v∩r, s = ∅ [11]. To use this fast update, additional memorization
of the Δ(φ, i, j) values for all pairs (i, j) in a table are required. For each move,
we assign an index number as shown in Fig. 2. In this example, we assume a
problem size of n = 8. Thus, the neighborhood size |N(φ)| is 8 × 7/2 = 28.
As described in Section 2.2, each set of move-cost calculations of an solution is
being done in one block. The simplest approach to computing the move-costs
in parallel in a block is to assign each move indexed i to the corresponding
sequential thread indexed i in a block.

Fig. 2. Indexing of
moves (n = 8)

Here, consider a case in which a solution φ′ is obtained by
exchanging positions 2 and 4 of a current solution φ in a pre-
vious TS iteration. Then the computation of Δ(φ′, u, v), the
numbers shown in white font in black squares in Fig. 2, must
be performed in O(n). The computation of the remaining
moves are performed in O(1) fast. Thus, if we simply assign
each move to the block thread, threads of a warp diverge via
the conditional branch (u, v∩2, 4 = ∅) into two calculations;
threads in one group run in O(n) and threads in the other
group run in O(1). In threads of CUDA, all instructions are executed in SIMT
(see Section 2.1). As a result, the computation time of each thread in a warp
becomes longer, and we cannot receive the benefit of the fast calculation of O(1)
in [11].
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Fig. 3. Move-Cost Adjusted Thread Assignment

Thus, we should
remove a situation
where threads which
run in O(1) and thre-
ads which run in O(n)
co-exist in the same
warp. In MATA, we
assign move-cost com-
putations of a solu-
tion φ which are in
O(1) and in O(n) to
threads which belong
to different warps in
a block, as shown in
Fig. 3. Since the com-
putation of a move-
cost which is O(1) is
smaller than the com-
putation which is O(n), we assign a multiple number of NS computations
which are O(1) to a single thread in the block. Also, it is necessary to as-
sign multiple calculations of the move-costs to a thread, because the maxi-
mum number of threads in a block is limited (1024 for GTX 480). Let C be
|N(φ)| (C = n(n − 1)/2). Here, each neighbor is numbered by 0, 1, 2, · · · , C − 1
(see Fig. 2). Then, the thread indexed as t = �k/NS� computes moves for
k ∈ tNS , tNS + 1, · · · , tNS +NS − 1. In this computation, if k is a move in
O(n), then the thread indexed as t skips the computation. The total number of
threads assigned for computations in O(1) is TH1 = �C/NS�.

For the computation in O(n), we assign only one computation of move-cost to
one thread in the block. Although the total number of moves in O(n) is 2n−3, we
used THn = 2n threads for these computations for implementation convenience.
Since the threads for these computations must not share the same warp with
threads used for computations in O(1), the starting thread index should be a
multiple of warp size (32), which follows the index of the last thread used for
computation in O(1). Thus, the total number of threads in a block THtotal is
�TH1/32� × 32 + THn.

2.4 Revised Results

In this section, we present revised results from a previous study [6]. We tuned
TS parameters so that we can get better performance as shown in Table 1.
The machine is the same as before; i.e., a PC which has one Intel Core i7 965
(3.2 GHz) processor and a single NVIDIA GeForce GTX480 GPU. The OS was
Windows XP Professional. We updated CUDA 4.0 SDK from previous 3.1 SDK.

The instances on which we tested our algorithm were taken from the QAPLIB
benchmark library [7]. QAP instances in the QAPLIB can be classified into
4 classes; (i) randomly generated instances, (ii) grid-based distance matrix,
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(iii) real-life in-stances, and (iv) real-life like instances [11]. In this revised ex-
periment, we used 10 instances which were classified as either (i) or (iv) (please
see Table 2). Here, note that instances classified into class (i) are much harder
to solve than those in class (iv). 25 runs were performed for each instance. In
Table 1, values in parentheses are values used in [6].

Table 1. Revised parameter
values (γ is a control pareme-
ter of cAS [8])

ρ
γ

Let ITTS be the length of TS applied to one so-
lution which is constructed by ACO, and ITACO

be the iterations of ACO, respectively. Then,
ITTOTAL = m× ITACO × ITTS represents a total
length of TS in the algorithm. We define a value
ITTOTAL−MAX = m × n × 3200. In this revised
experiment, if ITTOTAL reaches ITTOTAL−MAX

or a known optimal solution is found, the algo-
rithm terminates. This ITTOTAL−MAX is larger
than the ITTOTAL−MAX in [6]. Tavg and Error(%) are mean run time and mean
error over 25 runs, respectively. The revised results are summarized in Table 2.
The effectiveness of using MATA is clearly observed as was shown in [6]. Values
of Error are smaller and values of Speedup in Tavg are larger than observed
in [6] due to revised parameter settings and longer runs.

3 Implementation of ACO on Multiple GPUs

Since there are four PCIe x16 slots in our system. we added an additional 3 GTX
480 GPUs and constructed a multi-GPU environment with a total of 4 GTX 480
GPUs. In this section, we propose two types of multi-GPU models for ACO with
MATA, to attain a fast computation speed in solving QAPs. They are the island
model and the master/slave model, the most popular parallel EAs [12, 13].

3.1 Island Model

Table 2. Revised results with MATAIsland models for EAs in a
massively parallel platform are
intensively studied in [14]. The
cAS, which is used as our
ACO model in this study,
has an archive which main-
tains m solutions (see Fig.
1). This archive is similar to
a population in EAs. In our
implementation, we exchange
(immigrate) the solutions
among GPUs. In our imple-
mentation, one ACO model in a GPU in Section 2 composes one island. In
the configuration of ACO on a GPU in Fig. 1, all m solutions are maintained in
VRAM of the GPU. In an island model, we need to exchange solutions among
islands (GPUs) depending on its topology.
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It is possible to exchange solutions among GPUs using “cudaMemcpyPeer(· · ·)”
function with CUDA 4.x. without via CPU. However, to perform exchange solu-
tions depending on a defined topology, the CPU needs to know which data should
be exchanged. This means that the CPU can’t execute the cudaMemcpyPeer(· · ·)
function without having solutions from each GPU. Since the data needs to be
sent to the CPU anyway, it is most efficient to exchange this data through the
CPU rather than doing a direct exchanged between GPUs. Thus, in our imple-
mentation of island models, solutions in VRAM are transferred between GPU
and CPU using usual “cudaMemcpy(· · ·)” function when immigrations are re-
quired as shown in Fig. 4. As for control multiple GPUs in the CPU, we use
OpenMP API.

Fig. 4. Island model with 4 GPUs

Although there are many topologies for is-
land models [13], in this study we implement
the following 4 models:

(1) Island model with independent runs
(IM INDP): Four GPUs are executed inde-
pendently. When at least one ACO in a GPU
finds an acceptable solution, then the algo-
rithm terminates.
(2) Island model with elitist (IM ELIT):
In this model, at defined ACO iteration in-
terval Iinterval the CPU collects the global
best solution from the 4 GPUs, and then dis-
tributes it to all GPUs except the GPU that
produced that best solution. In each GPU, the
worst solution in each archive is replaced with
the received solution.
(3) Island model with ring connected (IM RING): The best solution in
each GPU g (g = 0, 1, 2, 3) is distributed to its neighbor GPU (g + 1) Mod 4 at
Iinterval. In each GPU, the worst solution in each archive is replaced with the
received solution if the received one is better than the worst one.
(4) Island model with elitist and massive ring connected (IM ELMR):
In this model, first the global best solution is distributed, as performed in
IM ELIT. Then, in addition to this immigration operation, randomly selected
m×drate of solutions in the archive in each GPU are distributed to its neighbor.
Received solutions in each GPU are compared with randomly selected, non-
duplicate solutions. We use drate of 0.5 in this study.

3.2 Master/Slave Model

As mentioned in Section 2.3, more than 99% of computation time was used for
execution of TS when we ran the algorithm using CPU with a single thread (see
Table 3). In the master/slave model in this study, the ACO algorithm is executed
in the CPU as shown in Fig. 5. Let m be number of agents in the archive of
cAS, then we assign m/4 number of solutions to each GPU. When new solutions
are generated in the CPU, first, m/4 number of solutions are transferred to each
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GPU, then “Apply tabu search(· · ·)” kernel function is lunched to apply the TS
with MATA to these solutions. The improved solutions are send back to the
CPU from each GPU.

Fig. 5. Master/slave model with 4
GPUs

Note here that in practical implementation
of the master/slave model, the value of m
must be divisible by the number 4. So, we as-
signed �m/4� number of agents to each slave
GPU and we used an agents number of m′ =
�m/4� × 4 instead of m.

4 Experiment of Multiple GPUs
in Solving QAPs

4.1 Experimental Setup

The machine is the same as in Section 2.4. We
used 4 GTX 480 GPUs in 4 PCIe slots. We use
the control parameter values shown in Table 1.
We used the same QAP instances described in
Section 2.4.

Table 3. Computation time with
sequential CPU run

Termination criteria are slightly different
from those in Section 2.4. When we perform a
fair comparison of different algorithms, some-
times it is difficult to determine their termi-
nation criteria. In this experiment, we run the algorithms until predetermined
acceptable solutions are obtained and effectiveness of using 4 GPUs is measured
by average time (Tavg,4) to obtained the solutions. We obtain the speedup by
Tavg,1/Tavg,4, where Tavg,1 is average time to obtain acceptable solutions by
ACO using a single GPU configured as described in Section 3. We performed 25
runs for each experiment.

We determined acceptable solutions as follows. For the class (i) instances,
since it is difficult to obtain known optimal solutions 25 times in 25 runs with
reasonable run time, we set the their acceptable solutions to be within 0.5% of
the known optimal solutions. For the class (iv) instances, except tai150b, we set
them to known optimal solutions. We set tai150b to be within 0.2% of the known
optimal solution. We used Iinterval value of 1.

4.2 Results of the Island Models

Results of the island models are summarized in Table 4. The IM INDP is the
simplest of the island models. Thus, we use results of IM INDP as bench marks
for other island models. Except for the results from tai40a, all other island models
had improved speedup values compared to IM INDP. In the table, we showed
the average number of iterations of the ACO to obtain the acceptable solutions
(ITACO). On tai40a, this value is only 1.7. Thus, on this instance, there was no
benefit from immigration operations.
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The speedup values of IM RING and IM ELIT showed very similar results
with each other. On tai80b and tai150b, we can see super-linear speedup values.
We performed t-test between IM ELIT and IM INDP, showing a clear effect of
using this topology, especially for class (iv) instances. Since we used long-tabu
search length for class (i) instances (see Table 1), values of ITACO are smaller
than those of class (iv) instances. This could have caused the reduced effect of
immigration on class (i) instances, compared with (iv) instances.

Table 4. Results of the island models with 4 GPUs

Among the four is-
land models, IM ELMR
showed the best speedup,
except for tai40a. How-
ever, the t-test between
IM ELIT and IM ELMR
shows that the advantage
of using IM ELMR over
IM RING and IM ELIT
on class (i) instances
again becomes smaller
than on class (iv) in-
stances. The speedup val-
ues are different among
instances. Consider why
these difference occur using IM INDP as a parallel model. Let probability density
function of the run time on a single GPU be represented by f(t) and probability
distribution function of f(t) be F (t). Here, consider an IM INDP with p GPUs.
Let the probability distribution function of run time of the IM INDP with p
GPUs be represented by G(t, p). Since there is no interaction among GPUs in
IM INDP, the G(t, p) can be obtained as

G(p, t) = 1 − (1 − F (t))p, (2)

and the average run time Tavg,p is obtained as

Tavg,p =

∫ ∞

0

t ·G′(p, t)dt (3)

Table 5. Estimation of Speedup

≤≤=
≤≤−=

≤≤−=

≤= − λλ

Thus, the speedup with p GPUs is ob-
tained as Speedup(p) = Tavg,1/Tavg,p.
Table 5 shows the values of Speedup(p)
and Speedup(4) for assuming various
functions of f(t). This analysis gives us
a good understanding of the results of
IM INDP in Table 4. But for more de-
tail analysis, we need to identify f(t) by
sampling the data of run times.
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4.3 Results of the Master/Slave Model

Since computation times of TS occupy more than 99% of the algorithm (Table
3), we expected the master/slave model to show good results in the speedup.
However, as shown in Fig. 6, results on the small-size instances in this study
(tai40a, tai50a, tai60a, tai50b, tai60b) showed relatively small speedup values
against the ideal speedup value of 4. In the figure, the Speedup values are defined
in Section 4.1. Results on large-size instances (tai80a, tai100a, tai80b, tai100b
tai150b), the speedup values were nearer to ideal speedup values.

Fig. 6. Results of the master/slave model with 4
GPUs

Now we will analyze why
these results were obtained on
the master/slave model. Fig.
7 shows the average compu-
tation times of tai60a and
tai150b over 10 runs for 10
ACO iterations by changing
the number of agents m from
1 to 150 with step 1. Here,
the ACO algorithm is the mas-
ter/slave model in Section 3.2
with a GPU number setting of 1, and the computation time is normalized by
the time of m = 1. Since the number of MPs of GTX 480 is 15, we can see the
computation times increases nearly 15 interval of m. However, the increasing
times are different between these two instances.

Fig. 7. Computation times for vari-
ous number of agents

On tai60a (n = 60) instance, the differ-
ence of computation times among 1 ≤ m ≤
15, 16 ≤ m ≤30, and 31≤ m ≤45, and
46≤ m ≤60 is very small. In our implemen-
tation of TS on a GPU, we assigned one
thread block to each agent (solution), and
thus number of agents is identical to number
of thread blocks. In CUDA, multiple blocks
are allocated to one MP if computation re-
sources, such as registers, are available. In
the execution of tai60a (n = 60), this situa-
tion occurs and multiple blocks are executed
in parallel in one MP. Since in this experiment, we set m = 60 (:m = n, see Sec-
tion 4.1 and Table 1), the solutions assigned to one slave GPU is only 15. This
means the speedup using the master/slave model becomes very small as was seen
in Fig. 6.

On the other hand, on tai150b (n = 150) instances, computation times pro-
portionally increase according to m with every 15 intervals. This means that on
tai150b, a single thread block is allocated to one MP at the same time, with the
resulting speedup shown in Fig. 6. Note here that on this instances, the number
of agents assigned to one GPU is �150/4� = 37 and the total agent number of
37× 4 = 148 was used in this experiment.
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5 Conclusion

In a previous paper, we proposed an ACO for solving QAPs on a GPU by com-
bining TS local search in CUDA. There, we implemented an efficient thread
assignment method, MATA. Based on this implementation, in this paper we
implemented the algorithm on multiple GPUs to solve QAPs fast. We imple-
mented two types of models on multiple GPUs; the island model and the the
master/slave model. For these models, we experimented using QAP benchmark
instances, and gave analysis on the results.

As for the island model, we used 4 types of topologies. Although the results
of speedup much depend on the instances we used, we showed that the island
model IM ELMR has a good speedup feature. As for the master/slave model,
we observed reasonable speedups for large-size of instances, where we used large
number of agents.

When we compared the island model and the master/slave model, the island
model showed promising speedup values on class (iv) instances of QAP. On the
other hand, the master/slave model consistently showed promising speedup val-
ues both on classes (i) and (iv) with large-size QAP instances with large number
of agents. As regards to this comparison, a more intensive analytical study is an
interesting future research direction. Implementation using an existing massively
parallel platform such as EASEA [14] is also an interesting future research topic.

References

1. Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.Z., Baghsorkhi, S.S.,
Mei, W., Hwu, W.: Program optimization carving for GPU computing. J. Parallel
Distrib. Comput. 68(10), 1389–1401 (2008)

2. Bai, H., OuYang, D., Li, X., He, L., Yu, H.: MAX-MIN ant system on GPU with
CUDA. In: Innovative Computing, Information and Control, pp. 801–804 (2009)

3. Fu, J., Zhou, G., Lei, L.: A parallel ant colony optimization algorithm with GPU-
acceleration based on all-in-roulette selection. In: Workshop on Advanced Compu-
tational Intelligence, pp. 260–264 (2010)
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Abstract. We introduce a novel evolutionary algorithm where the centralized or-
acle –the selection-reproduction loop– is replaced by a distributed system of Fate
Agents that autonomously perform the evolutionary operations. This results in a
distributed, situated, and self-organizing EA, where candidate solutions and Fate
Agents co-exist and co-evolve. Our motivation comes from evolutionary swarm
robotics where candidate solutions evolve in real time and space. As a first proof-
of-concept, however, here we test the algorithm with abstract function optimiza-
tion problems. The results show that the Fate Agents EA is capable of evolving
good solutions and it can cope with noise and changing fitness landscapes. Fur-
thermore, an analysis of algorithm behavior also shows that this EA successfully
regulates population sizes and adapts its parameters.

1 Introduction

Evolutionary algorithms (EAs) offer a natural approach to provide adaptive capabilities
to systems that are by nature distributed in a real or virtual space. Examples of such sys-
tems are robot swarms that have to adapt to some dynamically changing environment,
or a collection of adaptive software agents that provide services at different locations in
a vast computer network. Such systems are becoming more and more important, and so
is the need to make them evolvable on-the-fly. The problem is that traditional EAs with
central control are not suited for these kinds of applications.

In traditional EAs we can distinguish two entities: the population of candidate solu-
tions that undergo evolution and an omniscient oracle (the main EA loop) that decides
about all individuals and performs the evolutionary operators. In situated evolution in
general, and in evolutionary swarm robotics in particular, a single oracle has a num-
ber of drawbacks [11]. Firstly, it forms a single point of failure, secondly, it may limit
scalability as it may not be able to process all the information about the individuals
in a timely manner, and thirdly, it may not be reachable for certain individuals if the
distance exceeds the feasible (or cost effective) range of communication. The natural
solution would be a system with multiple, spatially distributed EA-oracles that pro-
vide sufficient coverage of the whole population. Furthermore, the inherently dynamic
circumstances in such applications require that the EA-oracles can adjust their own
settings on-the-fly [8].

The first objective of this paper is to introduce a system that combines two funda-
mental properties by design: 1) evolutionary operators are distributed and 2) the algo-
rithmic settings are self-regulating. The key idea is to decompose the EA loop into three
separate functional components, parent selection, reproduction/variation, and survivor
selection, and create autonomous entities that implement these components. We name
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these entities Fate Agents after the ‘Moirai’ of Greek mythology. For a maximally mod-
ular system we define three types of Fate Agents, one for each EA component, and add
several Fate Agents of each type to the regular population of candidate solutions. These
Fate Agents control the evolution of both regular candidate solutions and other Fate
Agents in their direct surroundings. Because the Fate Agents also act on Fate Agents,
the population of Fate Agents evolves itself and the EA configuration becomes adaptive.

Obviously, an elegant design does not by itself justify a new system. The second
objective of this paper is an experimental assessment to answer three main questions:

1. Can this evolutionary system solve problems at all?
2. Can this evolutionary system cope with noise?
3. Can this evolutionary system cope with changing fitness landscapes?

Because the Fate Agents EA is new and has, to our knowledge, never been implemented
before, we are also interested in system behavior. Therefore, we also inspect various
run-time descriptors (e.g., the numbers of agents) that can help us understand what
happens during a run.

2 Related Work

Existing work can be related to our research from the angles of the two main properties
mentioned above: distributed, agent-based evolutionary operators and self-regulating
algorithmic settings. The latter is a classic theme in EC, often labelled parameter con-
trol or on-line parameter setting [2,8]. In this context, our work is distinguished by the
novel Fate Agent technique to modify EA parameters and the fact that it can handle all
parameters regarding selection, reproduction and population size. This contrasts with
the majority of related work where typically one or two EA parameters are handled.
Furthermore, our system naturally handles population sizes, which is one of the tough-
est problems in EAs with autonomous selection [14].

The distributed perspective is traditionally treated in the context of spatially struc-
tured EAs [12], where the cellular EA variants are the closest to our system [1]. Never-
theless, there are important differences: spatially structured EAs are based on “oracles”
outside the population that do not change over time, while our Fate Agents operate
“from within” and –most importantly– undergo evolution themselves. The combina-
tion of spatial structure and parameter control has been studied in [5] and [4], where
each location in the grid space has a different combination of parameter values. These,
however, are all set by the user at initialization and do not change over time.

Finally, our system can be related to meta-evolution [3], in particular the so-called
local meta-evolutionary approaches [10] (not the meta-GA lookalikes). Work in this
sub-domain is scarce, we only know about a handful of papers. For instance, [10]
provides a theoretical analysis, [6] demonstrates it in GP, while [9] eloquently dis-
cusses computational vs. biological perspectives and elaborates on algorithms with an
artificial chemistry flavor.

3 The Fate Agents Evolutionary Algorithm

Our Fate Agents EA is situated in a (virtual) space where agents move and interact. The
evolving population consists of two main types of agents: passive agents that represent
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candidate solutions to the problem being solved and active Fate Agents that embody EA
operators and parameters. Fate Agents form evolving populations themselves because
they act not only upon candidate solutions but also upon each other. This makes the
Fate Agents EA entirely self-regulated. By design, Fate Agents have a limited range
of perception and action: they can only influence other agents within this range. Con-
sequently, the evolutionary process is fully distributed as there is no central authority
that orchestrates evolution but different parts of the environment are regulated by dif-
ferent agents. Below we describe the agent types and functionalities and subsequently
the algorithm’s main cycle.

Candidate Solution Agents are the simplest type of agent: they only carry a genome
which represents a solution to the given problem. The fitness of a candidate solution
agent is the fitness of its genome according to this problem. In a swarm robotic applica-
tion, for example, we could have working robots and Fate robots; the principal problem
would then be to evolve controllers for the working robots. The candidate solutions
would be the controllers in the working robots encoded by some appropriate data struc-
ture and the corresponding fitness would be based on the task the working robots have
to solve. To solve an abstract function optimization problem, the candidate solutions’
genome would be no different from that in a regular EA, but the candidate solution
would be situated in and move about a virtual space, along with the Fate Agents. In
general, we assume that candidate solution agents are able to move. However, they are
passive in the algorithmic sense, being manipulated by Fate Agents.

Fate Agents personify and embody evolutionary operators: parent selection, varia-
tion/reproduction and survivor selection. Fate Agents have a limited range of operation
so that each one can act only within its local neighborhood. Fate Agents themselves
form an evolving population, hence they require a measure of fitness. We experimented
with various approaches, such as (combinations of) measures like diversity, average
and median fitness; we found that the use of the best candidate solution fitness in the
area yields the best results. Thus, the fitness of a Fate Agent is set to the fitness of
the fittest candidate solution in its neighborhood. There are three types of Fate Agents,
each responsible for different evolutionary operators: cupids select and pair up parents,
breeders create offspring while reapers remove agents to make room for new ones. Note
that they perform these operations not only on candidate solutions but on each other as
well, e.g. cupids make matches between cupids, reapers kill breeders, etc.

Cupids realize parent selection by determining who mates with whom. The selection
procedure is the same for all kinds of agents. A cupid creates lists of potential parents
by running a series of tournaments in its neighborhood. The number of tournaments
held for each type of agent depends on two values: the number of agents of that type in
the cupid’s neighborhood and a probability that this type of agent is selected. The latter
probability is different for each distinct cupid and subject to evolution in the cupid
strain. The tournament sizes also evolve. Thus, a cupid’s genome consists of four real
values representing the selection probabilities for each agent type and one integer for
tournament size.

Reapers realize survivor selection indirectly, by selecting who dies. The selection
mechanism of reapers is identical to that of cupids (with the difference that reapers’
tournaments select the worst of the candidates). Reapers’ genomes also consist of four
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selection probabilities for the different agent types and a tournament size. In earlier
versions of the algorithm we tried different mechanisms for cupids and reapers. One
approach was allowing a cupid/reaper to examine each and every agent in its neighbor-
hood and make a separate decision whether to select it or not. That selection decision
was facilitated by a simple perceptron using various measures of the agent and its sur-
roundings as input. The weights and the threshold of the perceptron evolved. We found
this representation to be overly complicated and results suggested mostly random se-
lection. A variation of the selection scheme we currently use was to also evolve the
probability that the winner of a tournament would actually be selected. Results sug-
gested that this probability had no effect, possibly because the size of the tournament
already provides sufficient control of selection pressure.

Breeders realize reproduction and variation by producing a child for a given couple
of parent agents. For all kinds of agents the breeder performs both recombination and
mutation. Breeders, as opposed to cupids and reapers, have different mechanisms for
acting upon themselves and upon other agent types. In general, a breeder is given two
parents by a cupid in the neighborhood and applies averaging crossover to produce one
offspring and then Gaussian/creep mutation (in our experiments) on that offspring. A
breeder’s genome consists of three values: the mutation step sizes for candidate solu-
tions, cupids and reapers. Thus, mutation of these agents evolves in the breeder popula-
tion. Mutation step sizes for breeders are mutated according to the following rule taken
from Evolution Strategies’ self-adaptation:

σt+1 = σte
τN(0,1)

The reason for this distinction is that if breeders’ mutation step sizes were also to evolve
then these values would be used to mutate themselves. Trial experiments showed that
this approach leads to a positive feedback loop that results in exploding values. Note,
that the implementation of the breeder depends on the application: the crossover and
mutation operators must suit the genomic representation in the candidate solutions. An
earlier version of the breeder was designed with the intention to control as much of the
reproduction process as possible. The breeders’ genome consisted of mutation rates,
mutation sizes and different parameters of crossover if applicable. It also included meta-
mutation values that were used to mutate the previous values. There were three layers
in a breeder’s genome: the lower level consisted of values involved in the variation of
candidate solutions and other Fate Agents while the upper levels were used to variate the
lower layers (and thus the breeders themselves). Results showed that this approach was
too complex and inappropriate for evolution, especially since upper level mutation step
sizes had a rather minor short-term effect on the fitness of candidate solution agents.

The Main Cycle. In the experiments for this paper, we used the Fate Agent EA to
solve abstract function optimization problems, so we had to devise a virtual space and
operations for movement. Obviously, applications in a swarm robotics or ALife setting
would come with predefined space and movement, and parts of the cycle presented here
would be superfluous.

All the agents, both candidate solutions and Fate Agents, are situated in the same
spatially structured environment, a torus shaped grid. Each cell can either be empty or
occupied by exactly one agent. The algorithm makes discrete steps in two phases.
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The first phase takes care of movement. For these experiments, we have simply im-
plemented random movement by randomly swapping contents between two neighbor-
ing cells with a certain probability.

In the second phase evolutionary operators are executed. First, both cupids and
reapers make their selections. Subsequently, offspring is produced in iterations as fol-
lows: in each iteration, a cupid with available parents and a free cell in its neighborhood
is randomly chosen. A breeder is randomly selected from the neighborhood of the se-
lected cupid and it is provided with the parents that are then removed from the cupid’s
list. The breeder produces a single child which is then placed in the empty cell. This
procedure is repeated until there are no cupids with remaining selected agents and un-
occupied cells in their neighborhood.

When offspring production has completed, reaping is performed: reapers are acti-
vated in random sequence until there are no reapers left with non-empty selection lists.
Notice that during each reaping iteration, a reaper kills only one agent (of any type).
Hence, a reaper can kill and be killed in the same reaping iteration. When reaping is
complete, the evolutionary phase is concluded and the algorithm starts a new cycle. The
overall algorithm cycle is presented in Algorithm 1.

The random sequence and individual actions of cupids and reapers during off-
spring production and reaping approximate a distributed system with agents acting au-
tonomously and concurrently. It might seem unorthodox that selection by the reapers
is performed before offspring are produced, meaning that unfit offspring are allowed
to survive and possibly reproduce. Our motivation for this order of operators is to give
Fate Agents a ‘free pass’: before a Fate Agent is considered for removal it should have
the chance to act upon its neighborhood at least once, so that its evaluation will closer
reflect its true fitness. The designed order does give this free pass to Fate Agents (at
least to cupids and breeders).

4 Experimental Setup

We conducted several experiments to validate our algorithm from a problem solving
perspective and to observe its runtime behavior. To this end we used the test functions
from the BBOB2012 test suite from the GECCO 2012 black box optimization contest,
because they are well designed and proven by several other research groups 1. Further-
more, we experimented on the Fletcher & Powell function, because it is very hard to
solve but its landscape can be easily redefined for the tests on changing fitness functions.
We performed three sets of experiments:
A As a proof-of-concept that the algorithm generally works and is capable of problem

solving and self-regulation we used 6 functions: BBOB2012 f3, f20, f22, f23, f24,
and the Fletcher & Powell. We allowed the algorithm to run for 500 generations.

B To see if the algorithm can cope with noise we used 6 other BBOB2012 functions:
f122, f123, f125, f126, f128, f129 and let the algorithm run for 1000 generations.

C To examine how well the system can recover from and adapt to sudden cataclysmic
changes we ran tests on the Fletcher & Powell function randomizing its matrices
every 250 generations. Here we allowed the algorithm to run for 2000 generations.

1 http://coco.gforge.inria.fr/doku.php?id=bbob-2012

http://coco.gforge.inria.fr/doku.php?id=bbob-2012


190 J. Bim et al.

Algorithm 1. The Fate Agent EA algorithm
generation ← 0;
while generation ≤ maxGeneration do

doMovement;
for all Cupid c do

c.SelectParents;
cupids.Add(c);

end for
for all Reaper r do

r.SelectDeaths;
reapers.Add(r);

end for
while cupids.NotEmpty do

c ← cupids.GetRandomCupid;
if c.HasNoFreeCell ∨ c.SelectedParents.Empty then

cupids.Remove(c);
else

b ← c.GetRandomNeighborBreeder;
cell ← c.GetRandomFreeCell;
a ← b.Breed(c.GetParents);
cell.placeAgent(a);

end if
end while
while reapers.NotEmpty do

r ← reapers.GetRandomReaper;
if r.agentsToKill.Empty then

reapers.remove(r);
else

r.killAgent;
end if

end while
generation ← generation + 1;

end while

For the spatial embedding we used a 100×100 grid where each cell can either be empty
or occupied by only one agent (thus there is a maximum of 10000 agents). The grid is
initialized by filling all cells with random agents of random type with the following
probabilities: 0.0625 for each Fate Agent type and 0.8125 for candidate solutions. Ran-
dom movement is implemented by swapping the contents of two neighboring cells with
probability 0.5 for each edge. Fate Agents have a neighborhood of radius 5 cells. All
our experiments are repeatable, since we offer the code of the Fate Agent EA and the
experiments through the webpage of the second author. 2

We emphasize that the purpose of these experiments is not to advocate the Fate
Agents EA as a competitive numeric optimizer but only to demonstrate its ability to

2 See http://www.few.vu.nl/˜gks290/downloads/PPSN2012Fate.tar.gz
for the whole source code.

http://www.few.vu.nl/~gks290/downloads/PPSN2012Fate.tar.gz
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solve problems and investigate its dynamics and self-regulating behavior without time
consuming robotics or ALife experiments. The numeric test suite was used merely as a
convenient testbed for evolution, thus a comparison with benchmarks or BBOB cham-
pions would be out of context.

5 Does It Work?
The results in section A in Table 1 show that the Fate Agents EA is indeed able to solve
problems, achieving good fitness on almost all BBOB test functions and a reasonably
high fitness for the very difficult FP problem. Good success ratios are also achieved for
two noiseless and three noisy functions.

Fig. 1. Example of system recovery, fitness
vs. time, experiment C, run 4

Section B of Table 1 demonstrates that our
system is able to cope with noise very well:
it achieves high fitness for all problems and a
good success ratio for three out of six noisy
functions. As was explained in Section 4 the
purpose of the experiments is not to propose
the Fate Agents EA as a numeric optimizer,
thus, we will not examine its performance on
BBOB any further or determine how compet-
itive it is.

Finally, based on the results of experiment
set C, we can give a positive answer to the
third question we posed in Sec. 1: Fig. 1
presents the best fitness over time for an ex-
ample run. The sudden drops in fitness mark the points in time when the matrix of the
FP problem is randomly changed, drastically changing the fitness landscape. As can
be seen, the system recovers from this catastrophic change, although it does not always
succeed. In general, 24 out of 30 runs exhibited at least one successful recovery while, in
total, we observed an equal number of successful and unsuccessful recoveries. It should
be noted that the FP problem is very hard and the time provided between changes is
quite short (250 generations). Nevertheless, results show that the Fate Agent EA does
possess the ability to cope with radical change even though the design has no specific
provisions for that purpose.

Table 1. Performance results for experiment sets A and B in terms of Average Best Fitness
normalized between 0 (worst) and 1 (optimal), Average number of Evaluations to Best fitness
achieved, Success Rate (success at 0.999 of normalized fitness) and Average number of Evalua-
tions to Success (only successful runs taken into account)

Set A - Static Noiseless Set B - Static Noisy
ABF AEB SR AES ABF AEB SR AES

F&P 0.53 289682 0.0 - f122 0.99 207857 0.03 240684
f3 0.87 223341 0.76 228440 f123 0.99 130996 0.96 131425
f20 0.73 210527 0.03 266631 f125 0.99 131383 0.0 -
f22 0.90 309865 0.8 328891 f126 0.99 126342 1.0 126342
f23 0.90 204382 0.0 - f128 0.97 172836 0.40 195561
f24 0.05 247797 0.0 - f129 0.99 137674 0.76 135225
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6 System Behavior

One of the most important aspects of the system’s behavior is that the population sizes
for the different types of agents are successfully regulated. They reach a balance quite
different to the initialization ratios (see Section 4) very quickly while no agent type be-
comes extinct or dominates the population even though there are no external limitations
imposed. This is a very interesting result on its own right, since regulating population
sizes in EAs with autonomous selection is an open issue [14]. An example run is shown
in Fig. 2. Agent numbers are initialized to default values but populations soon converge
and maintain a balance throughout the run. All runs across experiment sets demonstrate
similar population dynamics.

Fig. 2. Example of population breakdown
over time, experiment A f22, run 12

Considering self-adaptation in EAs, one of
the basic expectations is the adaptation of the
size of search steps (the mutation step size
σ in terms of evolution strategies). In our
system, the mutation of agents is controlled
by the breeder agents. The breeders’ genome
includes mutation step sizes for every other
agent type. Fig. 3 presents examples of three
different behaviors observed in breeder pop-
ulations. Each graph illustrates the best and
mean fitness of the candidate solution popu-
lation and the mutation step size applied to
candidate solutions averaged over the whole
breeder population. Case (a) is an example of typical evolution with mutation size
slowly converging to zero as the search converges to the optimum. Case (b) demon-
strates a successful response of the breeders to premature convergence to a local op-
timum: after around 100 generations the search gets stuck and the breeder population
reacts with a steep increase of the mutation size which helps escape and progress. Case
(c) shows a failed attempt to escape a local optimum, even though breeders evolve high
mutation sizes after the search is stuck.

Note that mutation sizes are correlated to the average fitness, not to the best fitness.
This is reasonable considering that Fate Agents have a limited range and are unaware
of global values. In all cases, the mutation size converges to zero as soon as the whole
population converges (mean fitness becomes equal to the best fitness). This implies that
the system has the ability to respond and escape local optima as long as there is still
diversity available but is unable to create new diversity after global convergence, as is
the case in Fig. 3(c).

Finally, we made an interesting observation related to spatial dynamics: results show
that, on average, cupids consistently have better fitness than reapers. Both agent types
are evaluated according to the fittest candidate solution in their neighborhood and both
agent types have the same range for these neighborhoods. We conclude that reapers are
usually found in areas with less fit individuals while cupids frequent areas with fitter
individuals. Since movement is random, this effect can only be the result of cupids’
selection probabilities: cupids in ‘bad’ areas consistently evolve a preference for select-
ing reapers while cupids in ‘good’ areas develop a preference for selecting even more
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(a) typical (A, f24, run 10) (b) successful (A, f3, run 13) (c) failed (A, f23, run 5)

Fig. 3. Three examples of breeders’ evolution and response to premature convergence. Lines rep-
resent best fitness (solid), mean fitness (dotted) and mutation step size for candidate solutions
(dashed) over time.

cupids. Furthermore, reapers almost always have very high preference for killing other
reapers and, consequently, low ages (they mostly survive only one generation).3 This
implies that cupids in bad areas create ‘reaper explosions’ that eradicate low-fitness
candidate solutions and also clean up after themselves as reapers select each other.

7 Conclusions and Future Work

Motivated by specific challenges in evolutionary swarm robotics, we introduced the
Fate Agents Evolutionary Algorithm. It forms a new type of distributed and self-
regulating EA where algorithmic operators are implemented through autonomous agents
placed in the same space where the candidate solutions live and die. This provides a nat-
ural solution to the problems of the limited range and scalability a single oracle based
EA would suffer from. Compared to alternative solutions where evolutionary operators
are embodied in the robots [13,7] Fate Agents offer increased controllability for exper-
imenters and users. Furthermore, our Fate Agents are not only operating on candidate
solutions, but also on themselves. Hence, a Fate Agents EA has an inherent capability
to regulate its own configuration.

Because proof-of-concept experiments with (simulated) robots would have taken
very much time, we performed the first assessment of this new EA with synthetic fit-
ness landscapes. To this end, we conducted experiments to explore our system’s prob-
lem solving ability and self-regulating behavior on challenging numerical optimization
problems. Results showed that the Fate Agents EA is capable of solving these problems
and of coping with noise and disruptive changes. Furthermore, it successfully regulates
population sizes and adapts its parameters.

In conclusion, the Fate Agents EA is a new kind of evolutionary algorithm that de-
serves further research from a number of angles. These include 1) applications in collec-
tive adaptive systems, such as swarm and evolutionary robotics (comparisons with other
on-line on-board evolutionary mechanisms); 2) as a new paradigm for self-adapting
EAs . Furthermore, though it may seem contradictory to our initial motivation, our
results indicate that the Fate Agents EA may also deserve further investigation as a
numeric function optimizer.

3 These observations are true for almost every run we conducted. Due to lack of space we cannot
present relevant graphs.
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Abstract. As is typical of metaheuristic optimization algorithms, par-
ticle swarm optimization is guided solely by the objective function. How-
ever, experience with separable and roughly separable problems suggests
that, for subsets of the decision variables, the use of alternative ‘guide
objectives’ may result in improved performance. This paper describes
how, through the use of such guide objectives, simple problem domain
knowledge may be incorporated into particle swarm optimization and
illustrates how such an approach can be applied to both academic op-
timization problems and a real-world optimization problem from the
domain of petroleum engineering.

1 Introduction

This paper describes a version of particle swarm optimization (PSO) that uses
‘guide objectives’ in addition to the overall objective in order to improve perfor-
mance, in particular when the problem is ‘roughly’ separable. This introduction
briefly describes the real-world problem that motivated this work, in order to give
the reader an idea of what is meant by guide objectives and rough separability.

To be able to make effective decisions regarding the exploitation of an oil
reservoir, it is necessary to create and update reservoir models. Initial models
created using geological knowledge of the reservoir are improved using observa-
tions collected over time, in a process called history matching. This involves the
adjustment of a reservoir model so that, when simulation software is applied,
the simulated behaviour is similar to that observed in the real world. This can
be posed as an optimization problem, minimizing a measure of misfit.

While we would like to automate the history matching process, incorporating
reservoir experts’ extensive domain knowledge into metaheuristic optimization
algorithms in a generally applicable way has proved difficult. The avenue of
research explored in this paper starts with the realization that, given a suitable
model parameterization, certain model parameters will affect certain components
of the misfit function to a greater degree than others. Indeed, if the reservoir
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consists of distinct regions with little inter-region communication and if the
model parameters describe regional features then the history matching problem
may be (roughly) separated into a number of smaller, regional subproblems. This
suggests that, given a suitable subset of model parameters, it may be possible
to select a subset of the misfit components to create a guide objective for these
parameters. We will show that, when using PSO, these guide objectives may be
used in combination with the overall objective in a single optimization run.

In Sect. 2 we describe how metaheuristics perform when applied naively to
separable problems and define more precisely what we mean by ‘roughly separa-
ble’ and ‘guide objective’. Section 3 describes basic PSO, while Sect. 4 describes
how PSOmay be modified to exploit guide objectives, producing the guide objec-
tive assisted PSO algorithm (GuPSO). Results on simple function optimization
problems are provided in Sect. 5.

In Sect. 6, reservoir history matching is described in more detail, including a
description of the PUNQ-S3 case study used in this paper. Application of GuPSO
to this problem and results obtained are described in Sect. 7. Finally, Sect. 8
presents conclusions and a discussion of potential areas of further research.

2 Optimization and Separable Problems

Consider the minimization of f(x, y), where x and y can take any of a thousand
values and nothing is known a priori about f . To guarantee finding the optimal
solution one must evaluate all one million solutions. However, if it is known that
f(x, y) = g(x) + h(y) then the optimal solution can be found in two thousand
evaluations by first optimizing the choice of x and then optimizing the choice
of y. Now suppose a metaheuristic is naively applied to the minimization of f .
A solution with the optimal value of x may be evaluated early in the search,
but if it is coupled with a poor choice for y its significance will be missed.
Clearly, knowledge of the problem’s separability should be exploited to improve
performance, typically by optimizing g(x) and h(y) separately.

Note that x and y may be vectors representing subsets of the decision vari-
ables. Also, it may not be obvious when this approach may be used. Suppose we
wish to minimize f(x, y) = x4 + 2x2y2 + y4. We may not separate the problem

directly, but we note that f(x, y) =
(
x2 + y2

)2
and that, since x2 + y2 ≥ 0, this

is equivalent to minimizing x2 + y2 — a clearly separable problem.
Now suppose we wish to minimize f(x, y) = x4+2x2y2+y4+ εx3y, where ε is

small. The problemmay no longer be separated as above. However, the additional
term may have limited impact on the quality of solutions: the problem may be
thought of as being roughly separable. Minimizing g(x) = x2 and h(y) = y2

separately still leads to good values for f(x, y). Therefore it makes sense to start
the search by minimizing g(x) and h(y), rapidly finding a near optimal solution,
before improving the result by optimizing f directly if desired.

In what follows, we will describe g(x) and h(y) as the guide objectives for
x and y. These objectives are used to guide our search for good values for x
and y and aid in the optimization of f(x, y). So when minimizing f(x, y) =
x4 + 2x2y2 + y4(+εx3y), we use g(x) = x2 and h(y) = y2 as guide objectives.
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3 Particle Swarm Optimization

To describe GuPSO we must first describe the basic PSO algorithm. PSO [7] is
motivated by the collective behaviour of animals, such as the flocking of birds or
swarming of bees. However, instead of a swarm of bees searching for a good source
of nectar, PSO uses a swarm of particles moving through a multidimensional
search space towards better quality solutions.

Each particle in the swarm has a position and a velocity, initialized at random.
In each iteration of PSO, the velocity of each particle is adjusted by applying an
acceleration towards the best solution visited by the particle in question and an
acceleration towards the best solution visited by the swarm. The position is then
adjusted according to the particle’s velocity. In detail, if xij is the jth component
of the position of particle i and vij is the jth component of its velocity, then
these are updated as follows:

vij ← wvij + αr1 (pij − xij) + βr2 (gj − xij) , (1)

vij ← min (vij , Vmax,j) ,

vij ← max (vij ,−Vmax,j) ,

xij ← xij + vij .

Here w is the inertia weight, α and β control the amount of acceleration towards
the particle’s personal best and the global best solutions, r1 and r2 are randomly
generated numbers between 0 and 1, pij is the jth component of the best solution
visited by particle i and gj is the jth component of the best solution visited by
the swarm. Vmax,j is the maximum velocity permitted in dimension j. Values for
w, α and β are supplied by the user.

PSO may also use methods for ensuring that decision variables remain within
their permitted bounds. In this paper we apply reflection with random damping.
However, since boundary handling is unaffected by the use of guide objectives,
we do not provide details but refer the reader to the PSO literature.

4 PSO and Guide Objectives

Now suppose we wish to apply PSO to a separable problem, for example the
minimization of f(x1, x2, x3, x4) = f1(x1) + f2(x2, x3, x4). We have suggested
above that two separate optimizations should take place — the minimization
of f1 and the minimization of f2. However, both these optimizations can be
performed concurrently by adjusting the velocity update formula as follows:

vij ← wvij + αr1

(
p
(j)
ij − xij

)
+ βr2

(
g
(j)
j − xij

)
. (2)

Here g(j) represents the best solution visited by the swarm according to the guide

objective for the jth variable, while p
(j)
i is the best solution visited by particle

i according to the guide objective for variable j. f1 acts as the guide objective



198 A.P. Reynolds et al.

for x1 while f2 acts as the guide objective for x2, x3 and x4. Notice how this
separates the optimization so that values taken by x2, x3 and x4 have no affect
on the choices for variable x1 - the evolution of x1 depends only on the values
taken by its guide objective f1, which is unaffected by the other parameters.

Merging two independent optimizations into a single run in this manner
does not produce any immediate benefits in the case of separable problems.
The advantage of the approach is that it allows for both guide objectives and
the true objective to be used when the problem is only roughly separable,
via the combination of update formulae (1) and (2) as follows:

vij ← wvij+αr1 (pij − xij)+βr2 (gj − xij)+γr3
(
p
(j)
ij − xij

)
+δr4

(
g
(j)
j − xij

)
.

(3)
The selection of appropriate values for α, β, γ and δ allows the influence of
the guide objectives on the search to be controlled. By changing the values of
these parameters during the search, the algorithm may start by using only the
guide objectives, but become increasingly influenced by the true objective until
finally it behaves like standard PSO. This approach may be effective for roughly
separable problems, where guide objectives are used to rapidly finding good
solutions but where the final refinements can only be made with reference to the
true objective. The resultant algorithm is Guided PSO or GuPSO.

5 Illustrative Results on Academic Problems

The operation of GuPSO on separable or roughly separable problems is best
illustrated on academic problems. In this section the objective is always min-
imized and variables are constrained to lie between -10 and 10. We focus on
variations of two functions: the multimodal function of Kvasnika et al. [8] and
Rosenbrock’s function [13]. The first of these is totally separable and is given by

f1 (x1, x2, . . . , xn) =

n∑
i=1

g (xi) ,

g (x) = 0.993851231+ e−0.01x2

sin (10x) cos (8x) .

f1 is used as our first test function, with n = 20 and an evaluation limit of
50,000. The guide objective for each variable, xi, is simply g (xi).

Rosenbrock’s function, given by

r (x1, x2, . . . , xn) =

n−1∑
i=1

[
(1 − xi)2 + 100

(
xi+1 − x2i

)2]
is inseparable. Our second test function is created by splitting fifty decision vari-
ables into ten equal sized blocks, summing 10 five variable Rosenbrock functions:

f2 (x1, x2, . . . , x50) =
10∑
j=1

r (x5j−4, . . . , x5j) .
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Fig. 1. The highly multimodal function g (x)

A limit of 500,000 evaluations is imposed. The guide objective for each variable
is simply the Rosenbrock function to which the variable makes a contribution.

A third test function combines f1 with a twenty variable Rosenbrock function:

f3 (x1, x2, . . . , x20) = f1 (x1, x2, . . . , x20) + 0.001h (x1, x2, . . . , x20) .

The result can be thought of as being roughly separable. An evaluation limit of
50,000 is imposed. The guide objective for xi is simply g (xi), i.e. the contribution
of the Rosenbrock function is ignored.

Experiments using the parameter values in table 1 were performed for each
problem. Parameters α, β, γ and δ in (3) were set as follows:

α = β = (1 − λ)A, γ = δ = λA . (4)

Here λ indicates the degree to which the guide objectives were used in preference
to the overall objective. For the two separable functions, λ took the values 0 or
1. For f3, values of 0, 0.2, 0.5, 0.8 and 1 were tried for λ. Experiments were also
performed with λ decreasing linearly from 1.0 to 0.0 over the course of each run.

For each value of λ, thirty runs were performed for every combination of the
remaining parameters, in order to find the best values. Thirty runs were then
repeated using the best parameter set, allowing for a fair comparison between
PSO (λ = 0) and GuPSO. Results are summarized in Table 2.

It is clear that, on the two separable problems, use of the guide objectives pro-
duces significantly better results. Indeed for f1, using guide objectives resulted
in the global optimum being found in all 30 runs, while it was never found us-
ing the true objective. However, as has been noted, identical results could be
achieved by separating the problem into 20 sub-problems and optimizing each
individually using standard PSO.

Table 1. Parameter values

Parameter Values

Swarm size 10, 20, 50, 100
Inertia weight 0.75, 0.8, 0.85, 0.9, 0.95, 1.0
Acceleration (A) 0.5, 0.8, 1.0, 2.0
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Table 2. Comparison of performance using just the true objective against using just
the guide objectives. Figures in brackets indicate 95% confidence intervals.

Problem True objective (λ = 0) Guide objectives (λ = 1)

f1 3.535 (3.190 – 3.880) 1.138 × 10−9 (1.138 × 10−9 – 1.138 × 10−9)
f2 14.05 (12.06 – 16.03) 1.703 (0.785 – 2.622)
f3 5.467 (4.939 – 5.996) 3.696 (3.687 – 3.707)

Results for f3 also show significant improvements when using the guide objec-
tives. However, the best results were only obtained when both guide objectives
and the true objective were used to guide the search, as shown in Fig. 2.
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Fig. 2. Results for the third test function. Results obtained using just the true objective
are of considerably poorer quality than those shown and are omitted to improve clarity.
Error bars show the 95% confidence intervals.

6 The History Matching Problem

History matching, or petroleum reservoir model calibration, is the process of
modifying a reservoir model so as to produce simulated outputs that closely
match pressure, production and saturation data collected from a real world reser-
voir. Model parameters that may be modified include rock porosity, vertical and
horizontal permeability, pore volume and aquifer volume. The reservoir is divided
into regions or layers within which these factors can be assumed to be approxi-
mately constant. The location of the boundary between such regions may also be
considered a modifiable model parameter. Furthermore, it may be appropriate
to adjust various multipliers, rather than the physical characteristics directly.

The objective function is a measure of misfit. Although this paper focuses
primarily on simply minimizing misfit, it is useful to obtain a range of different,
low misfit models. The resulting ensemble of reservoir models can then be used
not only to predict future output, but also to estimate the uncertainty of the
prediction — a process known as uncertainty quantification.

A number of metaheuristics have been applied to the history matching prob-
lem, including simulated annealing [14], tabu search [15], genetic algorithms
[12,5], estimation of distribution algorithms [11,3,2] and differential evolution
[6]. Recent work has also suggested that PSO may be effectively applied to this
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Fig. 3. The depth of reservoir rock and well locations in PUNQ-S3

problem [9,10]. This and the relative ease with which guide objectives may be
incorporated provides the motivation for our use of PSO.

6.1 PUNQ-S3

We apply GuPSO to the history matching of the PUNQ-S3 reservoir [1] — a
small industrial reservoir engineering model, adapted from a real field example
and widely used for performance studies of history matching algorithms.

Problem: The simulation model contains 2660 (19x28x5) grid blocks, of which
1761 are active, and 6 production wells, numbered 1, 4, 5, 11, 12, and 15. The
field is structurally bounded to the east and south by a fault, as shown in Fig. 3,
while the link to a strong aquifer to the north and west means that no injection
wells are required. The field initially has a small gas cap at the center of the
structure, and production wells are located around this gas cap.

Porosity and permeability fields for the ‘truth case’ were generated using a
Gaussian Random Fields model in such a way as to be, as much as possible, con-
sistent with the geological model. The reservoir model was completed by using
pressure, volume, temperature and aquifer data from the original model. Reser-
voir simulation was then used to generate production data (bottom-hole pressure
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BHP, water cut WCT and gas oil ratio GOR), after which Gaussian noise was
added to the well porosities/permeabilities and the synthetic production data to
account for measurement error. (For further details see [1].)

Model Parameters and Objective: In this paper we use the parameteriza-
tion of Hajizadeh et al. [6], with distinct porosity values in each of 9 homogeneous
regions (labelled A to I) per layer for 5 layers, resulting in 45 model parameters.
Parameter ranges and other details can be found in [6].

The objective function, to be minimized [4] is

M =
1

Nv

Nv∑
j=1

1

Np

Np∑
i=1

Wij

(
Oij − Sij
σij

)2

where i runs over the time points at which observations are made, j indicates
which of the 18 observations (BHP, WCT and GOR at each of the 6 wells) is
being referred to, Oij is the truth case value of observation j at time i, Sij is the
simulated value, σij reflects the measurement error and Wij is a weight factor.

7 Application to PUNQ-S3

Given a set of porosity parameters for a region, the wells that are primarily
affected by these parameters and only marginally affected by the others may be
selected. The misfit components for these wells then form the guide objective for
these model parameters, as indicated in table 3.

Table 3. Guide objectives for PUNQ-S3 were taken to be the misfit over the set of
wells most affected by model parameter in question

Region A B C D E F G H I
Guide wells 5 5, 12 5, 12 5, 12 4, 5, 12 1, 4, 15 1, 4, 11, 15 1, 11, 15 1, 11

Despite the cost of solution evaluation, the basic PSO was tuned by experi-
menting with a range of swarm sizes (10, 20 and 50) and inertia weights (0.8,
0.85, 0.9, 0.95 and 1). The acceleration parameter A (and hence α and β in
basic PSO) was set to one. For each combination of parameters, 30 runs were
performed, of 3000 solution evaluations each. The PSO results that are compared
with GuPSO in this paper were then obtained by performing additional runs of
3000 evaluations and 1000 evaluations with the best parameter combination.

Results for GuPSO were obtained using the best parameter set found for PSO,
with the exception that α, β, γ and δ were set according to (4) using a range of
values for λ. It can be seen from the results in Fig. 4 that GuPSO outperforms
standard PSO, particularly in shorter runs.
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Fig. 4. GuPSO performance for different values of λ after 3000 and 1000 solution
evaluations, averaged over 30 runs. Standard PSO is provided by setting λ to 0, while
the last bar gives the results obtained by allowing λ to vary from 1 (guide objectives
only) to 0 (true objective only) linearly over the course of the search.

8 Conclusions and Further Research

We have presented a modification to PSO whereby guide objectives are utilized
in order to improve algorithm performance. The resulting algorithm has been
shown to produce improved performance on some simple separable and roughly
separable problems. More importantly, GuPSO outperforms standard PSO on a
real-world reservoir history matching problem.

There are a number of areas of possible future research.

Other sources of guide objectives: Much of this paper assumes that guide
objectives are found via the rough separability of the problem. However, any
alternative objective that provides a better guide for the improvement of
decision variables than the true objective could be used in this approach.

Multiple guide objectives: The approach need not be limited to a single
guide objective for each decision variable. Multiple guide objectives may be
used, either at different points in the search or through further modification
of the velocity update formula.

Forgetfulness: History matching problems may be roughly separable, with the
exception of one or two model parameters that affect the entire reservoir.
GuPSO may remember a best solution for one guide objective that depends
upon old, long discarded values for the ‘global’ parameters. It may be useful
to allow GuPSO to ‘forget’ such solutions.

Other applications: In particular, GuPSO may be an appropriate approach
to reservoir development optimization. When locating new wells, predicted
oil recovery from the well should make a suitable guide objective for the well
location. However, since placement of each well affects the output of both
old wells and the other new wells, the problem is only roughly separable.
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Abstract. Collective behavior of herding animals displays a balance
between conservative cohesive forces and "‘innovation"’, or moving to-
wards a goal, as described by Couzin in 2005 (2005). We have given these
forces a quantitative mathematical form that is amenable to numerical
simulation. The simulations described herein reproduce the phenomena
that Couzin observed and indicate that a nearly 5 per cent critical mass
is sufficient to pull the whole population along, but smaller innovative
teams fail to attract a substantial following. The resulting non-linear dy-
namic equations have been applied also to modeling of financial market
dynamics, where they are seen to produce financial catastrophes by in-
ternal population dynamics alone, without any need for external forcing.
The equations can thereby also be interpreted as a model of John May-
nard Keynes’ Animal Spirits (1936) that are often evoked to describe
market psychology.

1 Introduction

Animal behaviour in schools, swarms, herds, etc. have always been puzzling even
for biologists, who study their habits on a daily basis. For a long time scientists
were convinced that direction of, for example, a flock of birds cruising the sky
is driven by a single leader in front. But Couzin et al. (2005) showed through
numerical simulations that it has to be at least 5% of the total population heading
in a specific direction to pull the whole group behind them. That same fact was
verified two years later empirically during a big experiment in Cologne by Krause
and Dyer (see Mob mentality, 2009). There, a group of 200 people was told to
move freely around a large space, 400 by 230 feet, though without communicating
with each other and just staying close to their neighbors. After some time the
groups tended to move in two concentric circles rotating in opposite direction.
Then a small subgroup of all was told to head in a specific direction and it
appeared that still 2.5% did not influence the whole population movement, but
5% did interfere the circular motion, causing the main group follow in the same
direction.

This very idea has inspired a recent study in financial market modeling by
Jabłońska (2011) and Jabłońska and Kauranne (2011) where the connections of
the models of interest with the Keynes’ animal spirits were widely discussed.
In those works, a one-dimensional model of population dynamics was used to
simulate the behavior of an ensemble of traders in electricity spot markets. Their
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results have shown that if a sufficiently big subgroup of the whole population was
bidding far enough from the mean level, the others would follow that direction
and skyrocket the price to the level a dozen times higher than the mean.

As the aforementioned model shows interesting properties, the aim of this
work is to implement and analyze the same model in two dimensions for simu-
lating dynamics of a group of individuals. The model is formed as a system of
coupled stochastic differential equations, each representing one individual in the
population. As such, most of the individuals have no intelligence of where they
are heading. They only follow interactions within the whole group. However,
a small subgroup is given a deterministic movement path, and the simulations
verify what has to be the size of that escaping group to pull the other population
members with them.

This article is structured as follows. Section 2 presents the family of population
dynamics models being the background of the final model. Section 3 describes
in detail the components of the final model and their physical and psychological
interpretation. In Section 4, numerical simulations are presented for different
model settings. Finally, Section 5 concludes and gives ideas for future work.

2 Population Spatial Dynamics

The aim of this study is to verify whether a specific population dynamics model
can reproduce the natural fact that 5% of a population can pull the whole group
towards a specific direction. This work presents an extended implementation of a
model proposed by Jabłońska (2011) and Jabłońska and Kauranne (2011), which
was then successfully used for simulation of electricity spot price behaviour. The
model is based on the Capasso-Bianchi system of stochastic differential equations
in a general form (1), used for modelling animal population dynamics by Morale
et al. (2005) or price herding by Bianchi et al. (2003) and Capasso et al. (2005).
In this approach, Xk are continuous stochastic processes representing movement
of each particle k in the total population of N individuals, based on the location
of each individual with respect to the whole population f(Xk

t ), as well as on
its local interaction with the closest neighbors h(k,Xt). Also, dW k represents
randomness in the model through Wiener process increments, with volatility
parameter σ.

dXk
N (t) = [f(Xk

t ) + h(k,Xt)]dt+ σdW k(t), for k = 1, . . . , N. (1)

Jabłońska (2011) and Jabłońska and Kauranne (2011) extended this model with
a Burgers’-type momentum component which catered for momentum in financial
markets, and implemented it for one-dimensional price dynamics of an ensemble
of traders. The referred model is presented in detail in Section 3 in Equations
(2)-(4).

The following study presents a two-dimensional version of this model which,
with suitable parameter values, can be used for simulating behaviours of large
populations of individuals.
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3 Model Formulation

This section presents in detail the model proposed in this study, as well as
numerical simulations with different model parameter values. This work is based
on the Capasso-Morale approach mentioned in Section 2. Each individual in
the population is followed separately; together they form a system of coupled
stochastic differential equations. The structure of each equation is the same and
it is related to the main idea of an Ornstein-Uhlenbeck mean reverting process.
However, the single constant mean reversion level is replaced by three individual
components, each standing for a specific type of force acting on the population
as a whole, and on its individuals separately.

The main components of the proposed model are:

Global mean: the whole population is expected to oscillate around its (mov-
ing) center of mass X∗

t ; this is related to the aggregation forces proposed by
Morale et al. (2005). This component stands for the herding phenomenon,
that is the willingness of the individuals to stay within a bigger group.

Momentum: in particular, the momentum effect h(k,Xt) should occur when
a sufficiently big subgroup of the whole population has significantly differ-
ent behavior (external information) that deviates from the total population
mean. This has been noticed in studies by Couzin et al. (2005).

Local interaction: each individual in the population can perceive its neighbors
up to a limited extent, which seems natural especially for big populations.
Therefore, each population member will follow g(k,Xt), that is the furthest
neighbor within a range that caters for the closest p% of the whole popu-
lation. This will allow the emergence of a proper repulsion force and avoid
overcrowding in any point in space. Also, individuals are deemed to follow the
farthest units of their neighborhood, thinking that those have some distinct
information in the ’big picture’ and, therefore, are far for a good reason.

Randomness: each individual’s move includes a Wiener increment to allow
randomness in the system.

Hence, the model is defined as Equation (2)

dXk
t = [γ(X∗

t − Xk
t ) + θ(h(k,Xt) − Xk

t ) + ξ(g(k,Xt) − Xk
t )]dt+ σtdWk

t (2)

where
h(k,Xt) = M(Xt) · [E(Xt) − M(Xt)] (3)

having M(X) stand for the mode of a random variable X and E(X) being a
classical expected value. Also,

g(k,Xt) = max
k∈I

{Xk
t − Xt}, where I = {k|Xk∈Nk

p%
} (4)

where Xk are continuous stochastic processes representing movement of each
particle, Nk

p% means the neighborhood of the k-th individual formed by the clos-
est p% of the population. X∗

t stands for the mean of the whole population at time
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t, and parameters γ, θ and ξ are the forces with which each of the interactions
takes place. In the original model by Jabłońska (2011) and Jabłońska and Kau-
ranne (2011) these forces are allowed to vary in time, but in this work they are
kept constant for simplicity. Also, this work extends previous implementation to
the two-dimensional case.

4 Numerical Simulations

4.1 Model Parameters

As mentioned before, some of the model parameters are fixed for simplicity and,
as there is no real life data available for calibration, they are chosen determin-
istically. The values are γ = 0.05 for the global mass center rate, θ = 10−5 for
the momentum component and ξ = 0.9 for the strength of the local interaction.
The percent for the range of the local interaction is chosen to be equal to the
size of the escape group.

With the aforementioned parameter values, the model simulation will follow
the movement of a total population of N = 200 individuals. Most of them
will move only through model dynamics, with initial locations generated from
a two-dimensional uniform distribution U2(−4h, 4h), where h = 0.05 is also
used as a grid step factor for finding the mode of the population at every time
step. That means that the grid for which we find the population mode (the
location of the spatially most concentrated individuals) is recomputed at each
time step with respect to total population spread. This two-dimensional world
is representing the usual XY plane with Euclidean distance measure. In the
following experiments there are no boundaries given for the plane. That means
that the individuals are allowed to "escape" far away from the initial point if
the system dynamics cause so.

4.2 Simulation Results

First, the simulation demonstrates the aggregative power of the model, which
is apparent even when γ = 0. The individuals, originally uniformly distributed,
quickly cluster into a few compact groups which then follow their own dynamics
as presented in Figure 1. As a small subgroup (5%) of individuals moves in
a deterministic way, one of the aggregated groups join them, and follow the
deterministic path. Whenever any two groups get close enough to one another,
they may merge. In the plots, D denotes the Euclidean distance between the
centers of mass of the subgroup and the remaining population.

In the next simulation the size of the subpopulation, also called the escape
group, is kept at the same 5% level. However, the global center of mass rate is set
to γ = 0.05, and the escape group is now moving along a circle. As presented in
Figure 2, the main stream of the population can easily follow the escape group,
keeping the distance between their mass centers at a low level, that is, it remains
smaller than the population radius. That is confirmed on the distance plot in
Figure 3.
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Fig. 1. Progress of particle movement with 5% of the population moving in a deter-
ministic way and non-active center of mass attraction

Simulations have shown that any escape size bigger than 5% produces similar
results, always keeping both groups close and well aggregated. However, if this
value is decreased, the main stream of the population starts having trouble to
keep close to the escape group, not even holding the distance constant. This is
evident for the escape size of 4%, as depicted in Figures 4 and 5 for the path
shapes and the distance plot, respectively. Apparently, the main population gets
off the escape group course as the individuals try to cut the way short and catch
the subgroup, but even that barely slows down the increase of the distance
between the mass centers. Also, the 4% fails to attract even a single member of
the main stream to their neighborhood, as opposite to the case from Figure 1.

To verify the threshold at which the main stream of the population has the
probability to remain merged with the escape group equal to 1 we run the simula-
tions multiple times for different population percent size with parameter popperc
= {0.04,0.0405,...,0.05}, and verify how often the subgroup detaches from
the whole population. With the total population size set now to N = 2000, for
each subpopulation size the simulation is repeated 30 times (independent simula-
tions). Then the distance between the groups is measured. Figure 6 presents the
results, showing that the value of popperc = 0.0485 is the threshold from which
onwards the main stream will always remain in contact with the escape group.
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Fig. 2. Progress of particle movement with 5% of the population moving in a deter-
ministic way and active center of mass attraction
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Fig. 3. Distance between the centers of mass of the escape group and the main stream
with 5% of the population moving in a deterministic way and active center of mass
attraction

The multiple runs allow us to make a rough approximation of probability
of the main stream to remain merged with the escape group with respect to
different subgroup sizes. As depicted in Figure 7, the probability is dramatically
low for 4%, then stays moderate for most of the range, and reaches almost 1 at
4.8%, and 1 at 4.85%.

Finally, once again the global mass center attraction parameter is set to zero,
to verify what percent size would suffice to hold the whole population compact
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Fig. 4. Progress of particle movement with 4% of the population moving in a deter-
ministic way and active center of mass attraction
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Fig. 5. Distance between the centers of mass of the escape group and the main stream
with 4% of the population moving in a deterministic way and active center of mass
attraction

when following the escape group. It appears, that there are two clear thresholds.
At the level of 9% the probability of the whole population remaining as one
group increases significantly from an average below 0.2 to an average of over
0.7, as presented in Figure 8. However, it is the subgroup size of 9.75% that
guarantees the population remain merged with the escape group with probability
1. Otherwise, as presented in Figure 9 for the case of 8%, most of the the main
stream of the population may loose interest in the subgroup after some time, and
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Fig. 8. Probability of the main stream to remain merged with the escape group with
respect to different subgroup sizes, with active center of mass attraction

continue its movement only with respect to its own internal dynamics. However,
some of the main stream particles stay attracted to the escape group, which is
not the case in Figure 4 for the 4% subpopulation, even with the center of mass
attraction active in the latter case.
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Fig. 9. Progress of particle movement with 8% of the population moving in a deter-
ministic way and non-active center of mass attraction

The above results are also valid with other values of model parameters. The
changes in strengths of particular interaction have mainly influence on the inner
dynamics of the main stream, that is, on its spatial density and distribution.

The model seems to be a good interpretation of the Keynes’ animal spirits.
Though not set up in financial reality, it shows well how the forces of confi-
dence in ones own knowledge and trust in somebody’s else information can form
population dynamics which can and already has been transferred to financial
modelling as well.

5 Conclusions

This study presented a two dimensional implementation of a population dynam-
ics model proposed by Jabłońska (2011) and Jabłońska and Kauranne (2011).
This approach stemming from a combination of fluid dynamics and animal spa-
tial dynamics was used previously in modelling financial time series. In this
work it was used to analyze behavior of individuals on a two-dimensional plane,
when a specific subgroup of the whole population heads in a deterministically
set direction, while the remaining part follows only its internal dynamics.
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The results have shown that which particular model setting the value of 4.85%
for the size of the escaping subgroup is a minimum necessary to pull the rest of
the population in the same direction and let it stay close to the subgroup. Any
smaller size may influence the movement of the whole population, but is not
sufficient to attract the individuals to stay constantly close to the escape. This
leads to conclusion that, as the model is able to reproduce the natural behaviour
of biological organisms (Mob mentality, 2009), then it may be appropriate to be
used as a basis for modelling animal behaviour in more complicated settings.

One suggestion for future work is to analyze the population movement when
closed in a bounded space, or having obstacles on the way. Moreover, it would
be interesting to see the model’s performance in a prey-predator setting, that is
when the total population would contain two main subpopulations: preys and
predators, whose aggregation and repulsion forces would be defined through
their biological interactions. The model should also be continuously revised for
its financial modelling applications.
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Abstract. To acquire expert skills in a sequential decision making do-
main that is too vast to be explored thoroughly, an intelligent agent has
to be capable of inducing crucial knowledge from the most representative
parts of it. One way to shape the learning process and guide the learner
in the right direction is effective selection of such parts that provide the
best training experience. To realize this concept, we propose a shaping
method that orchestrates the training by iteratively exposing the learner
to subproblems generated autonomously from the original problem. The
main novelty of the proposed approach consists in equalling the learn-
ing process with the search in subproblem space and in employing a
coevolutionary algorithm to perform this search. Each individual in the
population encodes a sequence of subproblems that is evaluated by con-
fronting the learner trained on it with other learners shaped in this way
by particular individuals. When applied to the game of Othello, tem-
poral difference learning on the best found subproblem sequence yields
substantially better players than learning on the entire problem at once.

Keywords: reinforcement learning, coevolutionary algorithms, shaping.

1 Introduction

Many real-world problems concern sequential decision making where every single
decision changes the state of the environment and results in a reward. The main
difficulties with handling such problems arise from the fact that rewards can be
delayed in time. As a result, acting greedily is not always the best strategy and,
even more importantly, it is hard to determine which actions should be credited
with future rewards. Training an autonomous agent to maximize the cumulative
payoff in this kind of problems is formalized as reinforcement learning (RL)
[1]. This machine learning paradigm encapsulates the nature-related concept of
trial-and-error search for optimal behavior, guided by the interactions between
a learner and an unknown environment.

Past research shows that the most difficult RL problems are those with a long
sequence of unrewarded decisions leading to a single payoff at the end. Typical
examples of such scenarios are board games, where the only explicit reward is
the final game outcome. One way to aid the learning process in this case is to use
the idea of shaping, borrowed from behavioral psychology [2]. It assumes that a
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learner is trained on a series of easier problems before approaching the original
one. The main difficulty with shaping is that it requires very careful selection
of training problems that should possibly approximate the desired behavior [3].
Such expert-driven shaping involves substantial amount of domain knowledge,
and can introduce unnecessary biases into the learning process. In this context,
learning from scratch remains an unbiased and thus attractive alternative.

In this paper we propose a method for autonomous shaping without giving up
the above tabula rasa attitude. We employ competitive coevolution [4] to identify
appropriate training experience for an agent that learns a game playing strategy.
This leads to mapping the original problem of optimizing an agent’s policy into
a dual problem of finding the best input for the policy learning algorithm, while
preserving the ultimate goal of learning — maximization of an adopted quality
measure. The critical question one needs to answer to implement this form of
shaping is: where can we get the simpler training problems from? In the case of
games, endgames are the most obvious form of subproblems, as they naturally
include the final rewards, which are essential to do any learning at all. Assuming
that the training experience is gathered dynamically, starting from a given initial
game state, our idea is to change this initial state in such way that the following
interactions allow for faster and more general learning. More specifically, we
consider sequences of endgames, represent them as shaping vectors, and search
for the shaping vector that provides the best possible learning gradient.

We expect that learning from the pre-selected experience will converge faster
and improve the final performance of the trained agents. Additionally, the dual
problem definition can bring even more benefits. Firstly, the selected set of sub-
problems is a valuable source of knowledge about the problem structure. Indeed,
shaping vector can be considered as an analog to the concept of underlying objec-
tives of the problem [5], which here can be interpreted as the crucial set of skills
needed for successfully operating in the given environment. Secondly, diversifi-
cation of learning experience is a natural answer to the exploration-exploitation
trade-off. Performing random moves to explore the environment (for instance,
according to the so-called ε-greedy action selection scheme) could no longer be
needed if the shaping vector is diverse enough.

2 Shaping by Initial State Selection

We consider sequential decision problems, which are defined by a state space S,
a set of possible actions A, a default initial state so ∈ S, and a subset of terminal
states. Additionally, the environment specifies a reward function r : S ×A→ R

and a transition function f : S × A → S, which can be non-deterministic. The
objective is to automate the process of learning agents that solve such problems,
i.e., maximize the expected reward. An agent’s behavior is determined by its
policy π : S → A, π ∈ Π that for each state chooses an action leading to one
of the subsequent states. The set of states traversed by an agent in a single
episode is a directed path from s0 to one of the terminal states in the transition
graph that spans S. Such paths form samples of experience that can be used for
improving the policy.
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Fig. 1. The inner and outer loops of the shaping by initial state selection

We assume that an incremental learning algorithm T : Π × S → Π is given
that, provided with a current policy πk and an initial state s ∈ S, produces
an improved policy πk+1. In the online variant considered here, learning occurs
during exploration of the state graph: a training episode T (s, πk) consists in a
simulation of agent’s traversal through S, starting in s, with a single learning
step taking place after each state transition.

It is usually assumed, particularly in the domain of board games, that the
training process starts from the default initial state, i.e., T is always applied to
s0. This seems obvious, as, in the end, we want to learn a policy capable of solving
the entire problem (e.g. playing the full game). However, for many problems the
number of states that can be reached in the initial steps of problem solving is
low, and grows exponentially with subsequent steps. As a result, a learner that
starts from s0 is doomed to overexplore the initial stages of problem solving
while underexploring the final ones.

The main tenet of the proposed approach is that training a policy on a well-
assorted, properly diversified and representative set of subproblems can be more
beneficial than confronting it with the entire problem. We implement the concept
of a set of subproblems by defining shaping vector, which is simply a vector s
of m states si ∈ S, i = {1, . . . ,m}, where, in accordance with the sequential
nature of considered problems, every si �= s0 identifies a subproblem of problem
s0 (assuming the transition graph is acyclic). A shaping vector can represent the
training experience from potentially different areas of the state graph.

We orchestrate the learning process by iteratively applying the learning algo-
rithm to consecutive elements of shaping vector: πi ← T (si, πi−1), where π0 is an
initial policy created in some arbitrary way. In this way, the experience gathered
in πi while solving subproblem si can be preserved when learning from subse-
quent subproblems. This inner learning loop (see Fig. 1) can iterate over the
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elements of experience multiple times, if needed. Ultimately, the obtained strat-
egy πs is expected to embody the knowledge derived form the set of subproblems
embedded in the shaping vector s.

The choice of subproblems to form the training experience is essential for
the performance of the trained policy. For instance, the particular assortment
of subproblems can make it impossible for the learner to visit certain states in
S during learning. In absence of objective guidelines that would help making
this choice, we delegate this task to evolutionary algorithm, which maintains a
population of individuals, each defining a training experience. Shaping vector
s forms then the genotype of an individual, while its phenotype is the policy
πs trained using the above learning procedure. Evaluation of the phenotype
formed in this way consists in running πs on the entire problem, starting from
s0, possibly multiple times if indeterminism is involved. The fitness of individual
can be then defined as, e.g., the average reward obtained by πs. In this way, the
evolutionary process becomes responsible for searching for the useful training
experiences, forming the outer loop of the proposed approach (Fig. 1).

In this paper we apply the above recipe for autonomous shaping to competitive
environments, in which solving sequential decision problems boils down to play-
ing games, and subproblems correspond to endgames. Rather than maximizing
the expected reward on a single problem in a static, single-agent environment,
we want to maximize the expected game outcome when playing against any
opponent, i.e., another agent that interferes at the decision making process.
This objective can be naturally implemented using coevolutionary algorithms,
in which the fitness of an individual depends on the outcomes of its interactions
with the other individuals in the population. Technically, we implement single-
population competitive coevolution [4]: in the evaluation phase, the strategies πs

derived from particular individuals play a round-robin tournament against each
other, and the total score received determines individual’s fitness.

Independently of the choice of the algorithm performing the outer learning
loop, the proposed approach can be then considered dual with respect to tradi-
tional methods of policy learning. Rather than aiming at acquisition of maximum
knowledge from the original problem by, e.g., tuning the parameters of the train-
ing algorithm, the focus of the method is on shaping, i.e., exposing the learner
to the ‘right’ training experience represented by selected subproblems. In short,
what to learn becomes here more important than how to learn. In this context,
the choice of the actual training algorithm T is of secondary importance: its
parameters, if any, remain fixed during the entire training process, and it only
serves as a means to assess the usefulness of particular set of initial states.

3 Experimental Setup

In the following we apply the proposed approach of autonomous shaping in its co-
evolutionary variant to the problem of learning to play the board game of Othello
(Fig. 2a). The experiments have been conducted using our coevolutionary algo-
rithms library cECJ [6] built upon the Evolutionary Computation in Java frame-
work. For each considered setup, evolutionary runs have been repeated 20 times.
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(a) Othello initial board state (b) Heuristic WPC weights

Fig. 2. Othello board and its coloring according to heuristic player weights (darker
color — greater weight)

Learner Architecture. One of the main issues to consider when learning game-
playing strategy is the architecture of the learner, which is mainly determined by
a strategy representation. Of many possible ways in which the strategies π ∈ Π
could be represented, we chose the simple weighted piece counter (WPC). WPC
assigns a weight wi to each board location i and uses scalar product to calculate
the utility f of a board state b:

f(b) =
8×8∑
i=1

wibi, (1)

where bi is +1, -1, or 0 if, respectively, location i is occupied by a black piece,
white piece, or empty. The players interpret the values of f in a complementary
manner: the black player prefers moves leading to states with larger values,
while smaller values are favored by the white player. Alternatively, WPC may
be viewed as an artificial neural network comprising a single linear neuron with
inputs connected to board locations. The standard heuristic player represented
as a WPC is illustrated in the Fig. 2b. We use it also as an opponent in our
experiments to measure the post-training performance of agents.

The Inner Learning Algorithm. We used the basic temporal difference
method TD(0) as the learning algorithm T that improves a game-playing strat-
egy on the basis of the training experience represented as a shaping vector (cf.
Section 2). The initial strategy π0 has all weights zeroed (see Eq. (1)). Given a
state si from the shaping vector s, invoking T (si, πk) consists in a single training
pass of self-play TD(0) with si as an initial state and πk determining the initial
values of WPC weights. Game outcomes determine the rewards. The weights of
WPC are modified after every move by a gradient-descent temporal difference
update rule [7] with the learning rate parameter set to α = 0.01. Each element
of the shaping vector was used as an initial state for 100 learning episodes to in-
crease the amount of experience gathered in the corresponding part of the game
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tree. TD(0) was previously applied for Othello [8], proving capable of producing
very good players in short training times.

The Outer Learning Algorithm. The outer learning algorithm, which targets
on optimizing the training experience used by the inner learning phase, is framed
as coevolutionary learning. The initial population comprises 50 shaping vectors,
each composed of m = 50 states selected randomly from games played between
two random players. The subsequent generations are bred by crossover followed
by mutation. The former operator is uniform and homologous, so an offspring
inherits m/2 randomly selected states from the first parent and the rest from
the second one, and the order of states is preserved. Mutation is applied to the
offspring with probability 0.05 per state and consists in replacing a state with a
newly generated random state. The genotype-phenotype mapping is realized by
the inner learning loop, and the evaluation consists of playing a population-wide
round-robin tournament between strategies created in this way. The players score
3, 1, or 0 points for winning, drawing, and losing, respectively. The total score
earned in the tournament becomes individual’s fitness, which is then subject to
tournament selection of size 5. Thus, we evaluate shaping vectors by judging the
performance of players created with their guidance.

4 The Results

The complete process of learning a game strategy using autonomous shaping in-
volves two phases. First, the method proposed in Section 2 attempts to evolve
the best shaping vector for the given learning algorithm. In the second phase, this
vector is employed to train a strategy, which becomes the final outcome of the
overall training process. All players in our experiments are deterministic, as well
as the game of Othello itself. Thus, in order to estimate the score of a given trained
player against the WPC-heuristic (Fig. 2b), we forced both players to make ran-
dom moves with probability ε = 0.1. This provides richer repertoire of players’
behaviors and makes the resulting estimates more continuous and robust.

Phase 1: Search for the Best Shaping Vector. The objective progress of
this procedure was monitored by assessing the quality of the fittest player, i.e.,
the player that appeared the best among all the players trained with particular
shaping vectors. We call this player the best-of-generation learner.

Figure 3 illustrates the performance of the best-of-generation learners, aver-
aged over 20 coevolutionary runs. For reference, we plot also best-of-generation
players found by standard coevolutionary search performed directly in the space
of WPC strategies (for more details see [8]). Clearly, coevolution of training ex-
perience outperforms the direct approach. The level of play it attains is very
similar to the best strategies obtained using CTDL, a hybrid of coevolution and
TDL proposed in our previous work [8].
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Fig. 3. Comparison of the average performance of the best-of-generation learners
shaped by coevolved training experience and the best-of-generation players coevolved
directly, against the WPC-heuristic opponent

Phase 2: Training the Strategy Using the Best Shaping Vector Found.
In this phase, the best shaping vector found in phase 1 is mapped to a strategy
using the genotype-phenotype mapping described in Section 2. We take a deeper
look at this inner learning process realized by TD(0) algorithm.

Figure 4 visualizes the learning from the training experience embodied by the
best shaping vector. Every thin blue curve depicts the mean performance of a
strategy trained using the best shaping vector found in one of 20 evolutionary
runs. The horizontal axis corresponds to the inner learning loop shown in Fig.
1 (as opposed to Fig. 3, where it marked the iterations of the outer loop). Each
learning episode corresponds to an application of the training algorithm (TD(0))
to a single initial state, T (si, πk), so the horizontal axis is simply the k axis.

The thick red line shown in Fig. 4 depicts the behavior of the the standard
TDL learning process, starting always from s0 (illustrated in Fig. 2a), which
gathers experience by ε-greedy action selection scheme (with ε equal to 0.1).
Standard TDL clearly stalls much earlier than the shaping approach, and attains
substantially worse performance at the end of training.

Performance against the WPC-heuristic says only a little about the overall
objective quality of a strategy, because in practice we typically aim at produc-
ing versatile and robust players, capable of winning against a wide range of
opponents. Thus, we gauged also the relative performance against other players
trained using different methods. To this aim, we confront the teams of best-of-run
strategies obtained from 20 runs with the team of players that have been trained
on full games, using TD(0) randomized self-play starting from the default initial
state s0. Table 1 presents the outcomes of that duel, with the shaping-trained
strategies sorted descendingly with respect to their outcome. The teams of strate-
gies produced using the proposed approach are clearly superior. Even the worst
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Fig. 4. The average performance of the learners trained with the best shaping vectors
(blue, one plot per vector) vs. the average performance of the learners trained from full
games (default experience, red), as a function of the number of TD(0) training episodes

Table 1. The outcomes of matches played between the teams of players obtained
using the shaping approach with a team of strategies trained using randomized self-
play TD(0)

Run # Wins Draws Losses Points % pts. Run # Wins Draws Losses Points % pts.

1 508 20 272 1544 64.33 11 476 22 302 1450 60.42

2 497 36 267 1527 63.63 12 472 33 295 1449 60.38

3 497 23 280 1514 63.08 13 475 23 302 1448 60.33

4 495 22 283 1507 62.79 14 476 15 309 1443 60.13

5 492 20 288 1496 62.33 15 472 26 302 1442 60.09

6 488 28 284 1492 62.17 16 474 17 309 1439 59.96

7 486 26 288 1484 61.83 17 465 28 307 1423 59.29

8 482 32 286 1478 61.58 18 464 24 312 1416 59.00

9 478 35 287 1469 61.21 19 453 37 310 1396 58.17

10 476 27 297 1455 60.63 20 457 24 319 1395 58.13

of them wins substantially more games than it loses. Also, the performance of
particular teams varies only slightly, with most of them scoring between 59 and
62% of all available points. This clearly suggests that the search for initial state
vectors, though intermediated by the nontrivial genotype-phenotype mapping,
repeatedly leads to producing stable and well-performing players.

5 Discussion and Related Work

The problem of selecting the training experience for a reinforcement learning
agent has been addressed by several authors. Mihalkova and Mooney [9] propose
a method for improving the reinforcement learning by allowing the learner to
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relocate, i.e., to be placed in a requested state of the environment. An agent
may benefit from this possibility by omitting the already known regions of the
environment (when the agent is “bored” and is not learning anything new) or
escaping from the parts of the state space that are unlikely to be visited again
using the optimal policy (when the agent made a wrong exploratory move and
fell “in trouble”). Relocation destinations are chosen according to an uncertainty
measure reflecting agent’s confidence about the best action in a given state.
This approach differs from ours in being inherently active — it is the learner
who makes decisions about when and where to relocate within an online training
process. In this context, our method resembles more the selective sampling used
in traditional supervised active learning [10].

A complementary passive approach is taken by Rachelson et al. [11] who
introduce the meta-algorithm of Optimal Sample Selection (OSS). Given a batch-
mode RL policy inference algorithm, a policy evaluation method, and a gener-
ative model of the environment, OSS attempts to identify a set of one-step
transitions which, when supplied to the policy learning algorithm, lead to an
optimal behavior with respect to the evaluation measure. In this method the
learning proceeds independently from the selection of training experience — the
learner cannot affect the way the experience is gathered. Also, the policy learning
algorithm is assumed to work in an offline batch manner, i.e., it exploits a fixed,
prepared in advance set of training examples (sample of transitions), without a
need of dynamically interacting with the environment. Our approach abstracts
from the character of the policy learning algorithm and is more coarse-grained
— instead of selecting single transitions, we find entire states that implicitly
identify many useful paths through the environment. This allows us to represent
the training experience in a more compact, illustrative, and generic way.

Finally, changing the initial state can be seen as a slight modification of the
learning task itself. What we finally want to achieve is then the transfer of
knowledge from a set of adjusted task to the original problem. We expect that
it can improve the learning process in the same way as the transfer learning
[12], including initial performance, time of learning and final performance. In a
similar spirit, Konidaris and Barto [13] investigate knowledge transfer across a
sequence of tasks and employ an autonomous shaping approach by augmenting
reward functions – they use the knowledge about predicted rewards from one
task to shape the reward function of the other one.

6 Summary

In learning game-playing strategies, it is typically the role of a trainer to guide
the learner through the paths of the game tree from which it can learn the
most. This study revolved around the observation that such guidance can take
on different forms. Naturally, the trainer is embodied by an opponent, e.g., an
expert player or the learner itself [14]. In the proposed method, the opponent
strategy, though varying with time, is stationary in being produced by a fixed
learning algorithm, while the role of guidance is delegated to a set of initial
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states that limit the exploration to the corresponding partial game trees. We
are not looking for an ideal trainer here, but for an ideal training experience.
Eventually, the goal is to shape the learning process so that it produces proficient
learners prepared to perform well in every, potentially unseen before, region of
environment. This goal has been attained in this study for the game of Othello:
rephrasing a learning task in a way that enables autonomous shaping led to
better performing and more versatile players. Applicability of this approach to
other interactive and non-interactive domains is to be verified in future research.
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Abstract. A composite SaaS (Software as a Service) is a software that
is comprised of several software components and data components. The
composite SaaS placement problem is to determine where each of the
components should be deployed in a cloud computing environment such
that the performance of the composite SaaS is optimal. From the com-
putational point of view, the composite SaaS placement problem is a
large-scale combinatorial optimization problem. Thus, an Iterative Coop-
erative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The
ICCGA can find reasonable quality of solutions. However, its computa-
tion time is noticeably slow. Aiming at improving the computation time,
we propose an unsynchronized Parallel Cooperative Co-evolutionary Ge-
netic Algorithm (PCCGA) in this paper. Experimental results have
shown that the PCCGA not only has quicker computation time, but
also generates better quality of solutions than the ICCGA.

1 Introduction

Cloud computing is a new computing paradigm in which all the resources are
provided to users as a service over the Internet [1]. According to Gartner, one
of the world’s leading information technology research and advisory company,
by 2014 the cloud computing services revenue is expected to reach 148.8 billion
dollars [2]. Software as a Service (SaaS) is one of the most important configurable
computing services in cloud computing [3]. It uses a software distribution model
in which software is hosted by a SaaS vendor in the cloud and made it available to
users as a service over the Internet. SaaS in cloud computing has three distinct
characteristics that differentiate itself from a traditional on-premise software.
First, it is sold on demand, typically by pay per use. Second, it is elastic - a user
can have as much or as little of the service as they want at any given time. Third,
the software that provides the service is fully managed by the SaaS vendor. These
features allow users to obtain the same benefits of on-premise software without
the associated complexity of installation, management, support, licensing, and
high initial cost, and therefore make SaaS in cloud computing so compelling.

A composite SaaS is a kind of SaaS that is developed using component-based
software development technologies. It usually consists of several software compo-
nents and data components, such as databases. The composite SaaS placement
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problem is to place those software components and data components on those
compute servers and storage servers, respectively, in the cloud such that the
performance of the composite SaaS is optimal. The problem is similar to the
task assignment problem and the terminal assignment problems addressed in
[7,6]. However, the composite SaaS placement problem is more challenging than
the task assignment problem as it has more constraints. For example, a software
component can be only placed on a compute server and the compute server must
meet the CPU and memory requirements of the software component. Thus, the
algorithms for the task assignment and the terminal assignment problem cannot
be immediately applied to solve the composite SaaS placement problem.

From the computational point of view, the composite SaaS placement is a
large-scale combinatorial optimization problem as a cloud may contain thou-
sands of compute severs and storage servers, and a composite SaaS may have
dozens of components. Thus, a Penalty-based Genetic Algorithm (PGA) was
initially developed [8]. In order to improve the quality of solutions, an Iterative
Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was then developed
[9]. Experimental results showed that the ICCGA can produce better solutions
than the PGA. However, the computation time of the ICCGA was noticeably
slow. In order to improve the computation time, this paper presents a Parallel
Cooperative Co-evolutionary Genetic Algorithm (PCCGA). The PCCGA has
been implemented and tested. Experimental results have shown that the PC-
CGA not only has quicker computation time, but also produces better solutions,
than the ICCGA. In addition, experimental results have shown that the PCCGA
has better scalability than the ICCGA.

The remaining paper is organized as follows. Section 2 formulates the com-
posite SaaS placement problem. Section 3 proposes a PCCGA model and entails
the PCCGA. Section 4 evaluates the PCCGA. Finally, section 5 concludes this
research work.

2 Problem Formulation

Let C = {c1, c2, · · · , cm} be the entire set of m compute servers and S =
{s1, s2, · · · , sn} be the complete set of n storage servers in a cloud comput-
ing environment. The compute servers and storage servers are interconnected
through a set of communication links E. The servers and the communication
links together form a cloud communication network. A cloud communication
network can be modeled in a graph G =< V, E >, where V = C ∪ S, and if
< vi, vj >∈ E if and only if there exists a communication link between vi and
vj and vi, vj ∈ V .

A composite SaaS, X , consists of a set of software components SC = {sc1, sc2,
· · · , scp} and a set of data components SS = {ss1, ss2, · · · , ssq}, where p is the
number of software components and q the number of data components in X . The
control dependencies and data dependencies between those software components
are stored in sets CD and DD, respectively.

A SaaS component has a CPU requirement and a memory requirement. A com-
pute server has a CPU capacity and a memory capacity. A software component
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sci =< sccpu
i , scmem

i > can be deployed on a compute server cj =< ccpu
j , cmem

j >
only when the compute serve cj can meet both the CPU and memory require-
ments of the software component sci, that is sccpu

i ≤ ccpu
j and scmem

i ≤ cmem
j ,

where 1 ≤ i ≤ p and 1 ≤ j ≤ m.
Similarly, a data component has a space requirement and a storage server has

a space capacity. A data component sdi =< sdspace
i > can be placed on a storage

server sj =< sspace
j > only when the storage server has enough room to hold the

data component sdi, that is sdspace
i ≤ sspace

j , where 1 ≤ i ≤ q and 1 ≤ j ≤ n.
Given a composite SaaS X =< SC, SS, CD, DD > and a cloud computing

communication network G =< C ∪S, E >, the composite SaaS placement prob-
lem is to find f1 : SC → C and f2 : SS → S such that the performance of the
composite SaaS is optimal measured by the Estimated Execution Time of the
composite SaaS, which is derived in [9].

3 Parallel Cooperative Co-evolutionary Genetic
Algorithm

This section presents an unsynchronized parallel computation model and de-
scribes the algorithm of the PCCGA.

3.1 Parallel Model

The parallel model based on which the PCCGA is developed is derived from
a cooperative co-evolution model proposed by Potter and de Jong [10]. In the
cooperative co-evolution model, a problem is divided into several interacting
subproblems. For each of the subproblems, an evolutionary algorithm, such as
genetic algorithm, is used to solve it independently, and the multiple subproblems
are solved concurrently using multiple independent evolutionary algorithms. The
interaction between the evolutionary algorithms occurs only when evaluating
the fitness value of an individual in the population of an evolutionary algorithm
as the individual is only part of the solution to the problem in the domain
and therefore in order to evaluate its fitness the PCCGA needs to combine the
individual with a representative from each of the other evolutionary algorithms
to form a complete solution. An individual is rewarded when it works well with
the representative from the other evolutionary algorithms and is punished when
it does not work well with the representative.

Based on the cooperative co-evolutionary model, we developed an unsynchro-
nized parallel model as shown in Fig. 1. In the parallel model, we decompose
the computation into two unsynchronized and parallel sub-computations. One of
the sub-computations is the placement of the software components; another the
placement of the data components. For each of the sub-computations, we use a
genetic algorithm (GA) to solve it. The communication between the two GAs is
asynchronous through a buffer. The buffer has two units. One unit keeps the best
solution from the software component placement sub-computation; the other the
best solution from the the data component placement sub-computation. At the
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Fig. 1. Parallel Cooperative Co-evolutionary Genetic Algorithm Model

end of each generation, the GAs update their best solution in the buffer. Since
the two GAs are not synchronized, one GA may update its best solution in the
buffer more frequently than the other during the computation.

3.2 Algorithm Descriptions

The PCCGA invokes a classical GA for the software component placement prob-
lem and a classical GA for the data component placement problem. Thus, before
giving the algorithm description of the PCCGA, we present the two classical
GAs. The encoding scheme and genetic operators used in the GAs are the same
with those in [9].

The GA for the Software Component Placement Problem

1. randomly generate an initial population of solutions to the software compo-
nent placement problem;

2. while the termination condition is not true
(a) get the best solution to the data component placement problem from the

buffer;
(b) for each individual in the population:

i. combine the individual with the best solution to the data component
placement problem to form a complete SaaS placement solution;

ii. calculate the fitness value of the SaaS placement solution.
(c) select individuals for recombination from the population based on their

fitness values and pair them up;
(d) probabilistically apply the crossover operator to each of the pairs to

generate new individuals;
(e) probabilistically use for the mutation operator to each of the new indi-

viduals;
(f) use the new individuals to replace the old individuals in the population;
(g) update the best software component placement solution in the buffer.
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The GA for the Data Component Placement Problem

1. randomly generate an initial population of solutions to the data component
placement problem;

2. while the termination condition is not true
(a) get the best solution to the software component placement problem from

the buffer;
(b) for each individual in the population:

i. combine the individual with the best solution to the software compo-
nent placement problem to form a complete SaaS placement solution;

ii. calculate the fitness value of the SaaS placement solution.
(c) select individuals for recombination from the population based on their

fitness values and pair them up;
(d) probabilistically apply the crossover operator to each of the pairs to

generate new individuals;
(e) probabilistically use for the mutation operator to each of the new indi-

viduals;
(f) use the new individuals to replace the old individuals in the population;
(g) update the best data component placement solution in the buffer.

The Algorithm Description of the PCCGA

1. while the termination condition is not true
(a) run the GA for the software component placement problem and the GA

for the data component placement problem in parallel;
2. combine the best solution to the software component placement problem and

the best solution to the data component placement problem in the buffer to
form a solution to the SaaS placement and output it.

4 Evaluation

This section evaluates the performance of the PCCGA, including its computation
time, quality of solution and scalability. Since there is no benchmark available
for the composite SaaS placement problem, we have to use the performance of
the ICCGA as a benchmark.

In order to conduct a comparative study of the PCCGA and the ICCGA,
we implemented both of them in Microsoft Visual Studio C#. We also devel-
oped a C# program to randomly generate a cloud communication network of
a given configuration based on the cloud model presented in [11] and another
C# program to randomly create a composite SaaS placement problem of a given
configuration.

Since the complexity of a composite SaaS placement problem depends on both
the size of the cloud communication network and the size of the composite SaaS
placement problem, we conducted two groups of experiments. In the first group
of experiments, we randomly generated a cloud communication network that
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Table 1. The characteristics of the five composite SaaS placement problems

Test Test Problem Characteristics
Problem No. of software comp. No. of data comp. Total no. of comp.

1 5 5 10
2 10 10 20
3 15 15 30
4 20 20 40
5 25 25 50

has 100 compute servers and 100 storage servers, and then randomly generated
five composite SaaS placement problems of different sizes. Table 1 shows the
characteristics of the five composite SaaS placement problems.

This group of experiments were designed to evaluate the speed-up ratio and
the quality of the solutions of the PCCGA when it is used for solving different
sizes of composite SaaS placement problems and to study how the computation
time of the PCCGA would increase when the size of the composite SaaS place-
ment problem increases. We used both the PCCGA and the ICCGA to solve
each of the five composite SaaS placement problems. Considering the stochastic
nature of the PCCGA and the ICCGA, for each of the composite SaaS placement
problems we repeated the experiment for 10 times and recorded the quality of
the solutions generated by both of the algorithms and their computation times.
The statistics about the computation time and the quality of solutions of the
two algorithms are shown in Table 2 and Table 3 respectively.

It can be seen from Table 2 that the average computation time of the PCCGA
is between 11.29% and 37.15% of the average computation time of the ICCGA
for the five test problems. However, the average estimated execution time of the
composite SaaS placement produced by the PCCGA is also better than that
produced by the ICCGA (the average estimated execution time of the PCCGA
is only between 23% and 53% of that of the ICCGA).

In addition, in the evaluation, we also compared the scalability of the PCCGA
with the scalability of the ICCGA. Fig. 2 displays how the average computation
times increased when the size of the composite SaaS increased. When the total
number of SaaS components and data components increased from 10 to 50, the
average computation time of the ICCGA increased from 278.5 seconds to 9266.8
seconds, while the computation time of the PCCGA only increased from 103.3
seconds to 1046.9 seconds linearly.

In the second group of experiments, we randomly generated a composite SaaS
placement problem that has 10 software components and 10 data components,
and randomly generated five cloud communication networks. Table 4 shows the
characteristics of the five randomly generated cloud communication networks.

Then, we used both the PCCGA and the ICCGA to solve the composite
SaaS placement problem in the five cloud communication networks of different
sizes. Considering the stochastic nature of the two algorithms, for each of the
experiments we repeated for 10 times and recorded the qualities of the solutions
and the computation times for each run of the experiments. The statistics about
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Table 2. Comparison of the computation times of the PCCGA and the ICCGA for
different composite SaaS placement problems

Test PCCGA (second) ICCGA (second)
Problem Best Worst Ave SD Best Worst Ave SD

1 69.6 154.1 103.5 27.4 188.4 419.4 278.5 96.2
2 132.6 371.4 231.5 80.4 1020.0 2416.8 1557.1 415.8
3 382.8 832.2 621.0 144.9 1743.6 6877.8 3859.9 1541.3
4 415.2 950.4 710.3 174.1 2466.0 8473.8 5505.0 2103.3
5 632.4 1938 1046.9 403.6 3436.2 15763.8 9266.82 3755.8

Table 3. Comparison of the qualities of solutions produced by the PCCGA and the
ICCGA for different composite SaaS placement problems

Test PCCGA (millisecond) ICCGA (millisecond)
Problem Best Worst Ave SD Best Worst Ave SD

1 513 89309 24958.5 29056.3 89748 129609 108866.9 12613.6
2 112 180144 36680.2 53964.5 107524 263752 140893.0 46928.2
3 22042 114729 72857.1 36736.7 130569 235881 172433.3 33817.7
4 12674 180144 129565.7 63641 174319 263752 243215.3 47358.1
5 16100 216704 123456.6 88892.8 217730 648594 316120.1 120410.2

Table 4. The characteristics of the clouds

Test Test Problem Characteristics
Problem No. of compute servers No. of storage servers Total no. of servers

1 50 50 100
2 100 100 200
3 150 150 300
4 200 200 400
5 250 250 500

the computation times and the quality of solutions of the two algorithms are
shown in Table 5 and Table 6 respectively.

It can be seen from Table 6 that the average computation time of the PCCGA
is between 17.66% and 31.89% of the average computation time of the ICCGA
for the five test problems. However, the average estimated execution time of the
composite SaaS placement produced by the PCCGA is also better than that
produced by the ICCGA (the average estimated execution of the PCCGA is
only between 45% and 55% of that of the ICCGA).

In addition, in the evaluation, we also compared the scalability of the PCCGA
with the scalability of the ICCGA. Fig. 3 displays how the average computation
times increased when the size of the composite SaaS increased. When the total
number of compute and storage servers in cloud computing increased from 100 to
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Fig. 2. The computation time increasing trend when the size of the composite SaaS
increases

Table 5. Comparison of the computation times of the PCCGA and the ICCGA in
different clouds

Test PCCGA (sec) ICCGA (sec)
Problem Best Worst Ave SD Best Worst Ave SD

1 54.0 136.2 89.4 31.3 145.2 440.4 280.3 88.5
2 115.8 440.9 288.5 107.2 813.0 2228.4 1362.4 482.3
3 233.4 1302.0 672.4 326.3 712.8 3451.2 2456.0 809.7
4 401.4 1404.6 774.6 316.9 3024.0 8580.0 4385.4 1629.9
5 771.6 1707.6 1350.5 309.9 3885.6 10029.6 7187.6 1824.2

Table 6. Comparison of the qualities of solutions produced by the PCCGA and the
ICCGA in different clouds

Test PCCGA (millisecond) ICCGA (millisecond)
Problem Best Worst Ave SD Best Worst Ave SD

1 7284 53536 28519.9 15211.9 48064 79026 66425.4 9186.6
2 34357 110918 61238.9 24669.8 97370 168355 137089.4 21842.2
3 34588 254672 162969.4 65807.6 202857 379929 295677.8 47531.4
4 120114 359175 241791.2 77513.7 368345 623340 501810.4 73681.5
5 44786 509168 274609.9 136396.5 363253 623821 547364.0 80760.1

500, the average computation time of the ICCGA increased from 280.3 seconds
to 7187.6 seconds, while the computation time of the PCCGA only increased
from 89.4 seconds to 1350.5 seconds linearly.

In all the experiments, the subpopulation sizes for the compute server GA and
the storage server GA were set at 100 in both the PCCGA ad the ICCGA. The
probabilities for crossover and mutation were set at 0.95 and 0.15, respectively,
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Fig. 3. The computation time increasing trend when the size of cloud computing in-
creases

in both the PCCGA and the ICCGA. The termination condition used in both
the PCCGA and the ICCGA was ‘no improvement on the best solution for 25
consecutive generations’. All the experiments were carried out in a computer
with 3.00 GHz Intel Core 2 Duo CPU and 4GB RAM.

5 Conclusion and Future Work

This paper has proposed an unsynchronized parallel cooperative co-evolutionary
genetic algorithm (PCCGA) for the composite SaaS placement problem in cloud
computing, and has evaluated the performance of the PCCGA by comparing it
with an iterative cooperative co-evolutionary genetic algorithm (ICCGA). The
experimental results have shown that the computation time of the PCCGA was
noticeably quicker than that of the ICCGA. In addition, the experimental re-
sults have shown that on average the quality of the solutions produced by the
PCCGA is much better than that of the ICCGA for those randomly generated
test problems. Moreover, the experimental results have shown that the PCCGA
has better scalability than the ICCGA. To the best of our knowledge, this re-
search is the first attempt to tackle the composite SaaS placement algorithm
using parallel evolutionary computation.

The SaaS placement is a large-scale complex combinatorial optimization.
Thus, how to further improve its computation time by increasing its parallelism
is an issue that we will investigate in the future, and one possible way to im-
prove the parallelism is to break down the composite SaaS placement problem
into more subcomponents using the random grouping techniques proposed in
[12]. In addition, in the PCCGA we always select the best individual from the
other population, which may not be appropriate in some cases. Thus, another
work that I will do in the future is to the selection strategy.
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Abstract. In many scientific fields, from biology to sociology, community detec-
tion in complex networks has become increasingly important. This paper, for the
first time, introduces Cooperative Co-evolution framework for detecting commu-
nities in complex networks. A Bias Grouping scheme is proposed to dynamically
decompose a complex network into smaller subnetworks to handle large-scale
networks. We adopt Differential Evolution (DE) to optimize network modularity
to search for an optimal partition of a network. We also design a novel mutation
operator specifically for community detection. The resulting algorithm, Cooper-
ative Co-evolutionary DE based Community Detection (CCDECD) is evaluated
on 5 small to large scale real-world social and biological networks. Experimen-
tal results show that CCDECD has very competitive performance compared with
other state-of-the-art community detection algorithms.

1 Introduction

Many complex systems, such as social [11] and biological networks [3], can be natu-
rally represented as complex networks. A complex network consists of nodes (or ver-
tices) and edges (or links) which respectively represent the individual members and
their relationships in systems. By representing complex systems as complex networks,
many theories and methods in graph theory can be applied to enable us to gain insights
into complex systems. Therefore, in recent years, the study of complex networks has
attracted more and more attention.

Unlike simple networks such as lattices or random graphes, complex networks pos-
sess many distinctive properties, of which community structure [1] is one of the most
studied. The community structure is usually considered as the division of networks
into subsets of vertices within which intra-connections are dense, while between which
inter-connections are sparse [1]. The identification of the community structure provides
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important information about the relationship and interaction among nodes in the com-
plex network. Such information ultimately leads to insights into how network function
and topology affect each other.

In the past few years, many algorithms have been proposed to detect the underly-
ing community structure in complex networks [1]. These algorithms can roughly be
grouped as traditional methods, such as graph partitioning, spectral methods, modular-
ity maximization methods, and methods based on statistical inference. Among them,
the most popular group is modularity maximization methods, because of its superior
performance on real-world complex networks. For modularity maximization methods,
many deterministic optimization algorithms such as greedy algorithms have been em-
ployed [1]. However, according to [4], we should also treat results from deterministic
algorithms such as greedy optimization or spectral methods with “particular caution”
because they only return one unique solution, which might “obscure the magnitude of
the degeneracy problem and the wide range alternative solutions”.

To address the above problem, we previously proposed a stochastic network commu-
nity detection algorithm, Differential Evolution based Community Detection (DECD)
[5], in which Differential Evolution (DE) was used to evolve a population of
potential solutions for network partitions, to maximize the network modularity [8]. The
results show that DECD can achieve competitive community detection results on sev-
eral benchmark and real-world complex networks. However, our further investigation
showed that DECD is not satisfactory on large-scale networks.

In order to achieve better scalability to handle large-scale networks, this paper pro-
poses CCDECD (Cooperative Co-evolutionary Differential Evolution based Commu-
nity Detection) by incorporating a Cooperative Co-evolution (CC) framework into our
DECD algorithm. To the best of our knowledge, this is the first time CC framework
has been introduced for community detection. A CC framework employs a divide and
conquer strategy, which divides a large-scale problem into subcomponents and evolves
those subcomponents independently and co-adaptively. Compared with traditional Evo-
lutionary Computation, the advantages of a CC framework are: 1) it is capable of
handling large scale optimization problems; and 2) it can better deal with problems
with complex structure. Such a framework is very natural and attractive to community
detection because of two distinctive properties of complex networks: 1) large scale,
e.g., consists of thousands or even millions of nodes; and 2) highly structured, e.g.,
hierarchical.

Apart from introducing CC framework for community detection, the other main con-
tributions of this paper include: 1) a Bias Grouping scheme to dynamically decom-
pose the complex network into smaller subcomponents; 2) a novel mutation operator
called global network mutation specifically designed for community detection; and 3)
a thorough evaluation of the performance of CCDECD on several real-world networks,
including a large scale network which consists of 6927 nodes.

The remainder of this paper is organized as follows. Section 2 introduces the de-
tails of CCDECD. In Section 3, the performance of CCDECD is tested on biological
and real-world social networks and then the experimental results are discussed. Finally,
Section 4 concludes this paper.
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2 The Proposed Algorithm

In this paper, a new algorithm based on CCDE called CCDECD is proposed for commu-
nity detection in complex networks. Similar to the random grouping framework in [15],
the main idea behind our CCDECD is also to split a large network intom s-dimensional
subcomponents, and then evolve each of them with standard DE. However, we found
that the random grouping scheme used in [15] is not suitable for a complex network
community detection problem because it will lose connectivity information of the net-
work, which is crucial for the search performance of DE on modularity. Therefore, we
introduce a novel bias grouping scheme which utilizes the connectivity information.
The key steps of our CCDECD can be summarized as follows:

Step 1) Set g = 0 where g denotes the generation number.
Step 2) Randomly initialize population Pg .
Step 3) g = g + 1
Step 4) Split the n-dimensional complex network into m sub-components Gi (i =

1, . . . ,m), where Gi consists of s indices of nodes (n = m × s) using bias grouping
scheme (See Section 2.4 for details).

Step 5) Set i = 1.
Step 6) Construct subpopulation SPi for Gi by extracting s genes as defined by Gi

from P .
Step 7) For subpopulation SPi, optimize the network division using a standard DE

by maximizing network modularity of Gi with gs generations (See Section 2.2 for de-
tails).

Step 8) Select the best individual SIbest from SPi.
Step 9 Update population Pg by replacing the s genes as defined by Gi with SIbest.
Step 10 g = g + gs
Step 11) If i < m then i++, and go to Step 6.
Step 12) Optimize the network division of the whole network represented by Pg

using a modified DE with the global network mutation operator for gg generations (See
Section 2.5 for details).

Step 13 g = g + gg
Step 14) Stop if g > gmax where gmax is the maximum number of generations and

output the best individual Ibest; otherwise go to Step 4.

2.1 Individual Representation

CCDECD uses the community identifier-based representation proposed in [14] to rep-
resent individuals in the population for the community detection problem. For a graph
G = (V,E) with n nodes modelling a network, the kth individual in the population is
a vector that consists of n genes xk = {x1, x2, . . . , xn} in which each gene xi can be
assigned an allele value j in the range {1, 2, . . . , n}. The gene and allele represent the
node and the community identifier (commID) of communities in G respectively. Thus,
xi = j denotes that the node i belongs to the community whose commID is j, and
nodes i and d belong to the same community if xi = xd. Since at most n communities
exist in G and then the maximum value of commID is n.
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2.2 Fitness Function

Newman and Girvan [8] proposed the network modularity to measure the strength of the
community structure found by algorithms. The network modularity is a very efficient
quality metric for estimating the partitioning of a network into communities and has
been used by many community detection algorithms recently [1,14,7].

CCDECD also employs the network modularity which is maximized as the fitness
function to evaluate individuals in the population. The network modularity is defined as
follows [14].

Q =

m∑
j=1

[
lj
L

−
(
dj
2L

)2
]
, (1)

where j is the commID,m is the the total number of communities, lj is the number of
links in module j, L is the total number of edges in the network and dj is the degree of
all nodes in module j.

2.3 Initialization

At the beginning of the initialization process, CCDECD places each node into a ran-
dom community by assigning a random commID and generates individuals in the initial
population. However, such random generation of individuals is likely to cause some un-
favorable individuals that consist of some nodes having no connectivity with each other
in the original graph. Considering that nodes in the same community should connect
with each other and in the simple case are neighbors, the initialization process pro-
posed in [14] is used to overcome the above drawbacks. The process works as follows:
once an individual is generated, some nodes in an individual are randomly selected and
their commIDs are assigned to all of their neighbors. By this process, the space of the
possible solutions is restricted and the convergence of CCDECD is improved.

2.4 Bias Grouping Scheme

Similar to the random group scheme proposed in [15], we proposed a bias grouping
scheme for handling large scale networks. The idea behind this bias grouping scheme
is to dynamically decompose the whole networks into smaller subcomponents which
each consist of nodes that are more likely connected to each other. Therefore, the
search algorithm can optimize these tightly interacting variables together, which will
ultimately lead to better results than splitting variables into subcomponents with un-
connected nodes. The bias grouping scheme works as follows: we randomly select s
nodes in the network, where s is the size of a subcomponent. Then we find all the first
neighbors of the s nodes and concatenate them to form a set TG. Finally, we select the
first s nodes from TG to form a subcomponent Gi (i = 1, . . . ,m). If all the s nodes
have no first neighbors, all the s nodes will be selected.
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2.5 Mutation

There are two different mutation operators in our CCDECD. For the standard DE used
in Step 3 for optimizing the division of subcomponents, the most popular “rand/1”
mutation strategy is used [6] since it has no bias to any special search directions.

In Step 5, in order to optimize the division of the global network, we design a novel
global network mutation operator: for each population, we randomly select one node i
and find all its neighbors. For each node in its neighbors, we randomly assign a proba-
bility in the range [0, 1]. If the probability of nodes is larger than the mutation rate we
predefined, their commIDs will be mutated to the commID of the selected node i. Other-
wise, nothing will be changed. This mutation can make use of connectivity information
of the network, and thus improve the search ability.

2.6 Clean-Up Step

CCDECD also adopts the clean-up operation proposed by Tasgin and Bingol [14] to
correct the mistakes of putting nodes into wrong communities in both mutant and trial
vectors and improves the search ability. The clean-up operation is based on the com-
munity variance CV (i), which is defined as the fraction of the number of different
communities among the node i and its neighbors to the degree of the node i as follows:

CV (i) =

∑
(i,j)∈E neq(i, j)

deg(i)
, (2)

where neq(i, j) =

{
1, if commID(i) �= commID(j)

0, otherwise
, deg(i) is the degree of the ith

node, E is the set of edges, and commID is the community containing ith node.
The clean-up step works as follows: Firstly some nodes are randomly selected. Then

for each of these nodes i, CV (i) is computed and compared with a threshold which
is a predefined constant obtained by experience. If CV (i) is larger than the threshold,
the community ID of this node will be assigned to the one which is the most common
community ID among the neighbors. Otherwise, no operation is performed on this node.

3 Experiments and Results

In this section, the performance of CCDECD is evaluated on 4 well known real-world
social and biological networks. CCDECD is implemented in MATLAB 7.0 and all the
experiments are performed on Windows XP SP2 with a Pentium Dual-Core 2.5GHz
processor and 2.0GB RAM. The parameters in CCDECD are set as follows: the pop-
ulation size is 30; the maximum number of cycles is cmax = 100 and m = 30; the
mutation rate for the global network mutation operator is set to be 0.2; for the standard
DE, the maximum of generations was 30 and for the “rand/1” mutation operator, the
scaling factor is F = 0.9 and the threshold value is η = 0.32. The threshold for clean
step is set to be 0.35 as used in [14].

For comparison, we implement DECD and another community detection algorithm
based on a Genetic Algorithm (GA), named GACD. We adopt the MATLAB Genetic
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Algorithm Optimization Toolbox (GAOT) to optimize the network modularity to detect
communities in networks. The GA we use is real encoded GA with heuristic crossover
and uniform mutation. The values of all the parameters use in the experiments are the
default parameters in GAOT. Moreover, for the sake of fairness, the same initialization
process and the clean-up operation in CCDECD are employed in the DECD and GACD
algorithms. The number of function evaluations of DECD and GACD is set to be the
same as CCDECD. We also adopt MATLAB implementations of Girvan-Newman (GN)
algorithm [7] from Matlab Tools for Network Analysis (http://www.mit.edu/˜gerganaa)
for comparison.

3.1 Datasets

In this paper, we selected the following 5 well known real-world social and biological
networks to further verify the performance of CCDECD: 1) the Zachary’s Karate Club
network; 2) Dolphins network; 3) the American College Football network; 4) Protein
and Protein Interaction (PPI) network and 5) Erdös collaboration network.

We selected the above 5 datasets because for small to medium scale datasets 1) to
4), their true community structures are known, which provide gold-standards, e.g., nor-
malized mutual information, for the evaluation of our CCDECD algorithm. We also
selected the Erdös collaboration network which is the largest network tested in [9]. The
characteristics of the five networks are summarized in Table 1.

Table 1. The characteristics of the five networks tested in the paper. N and M stand for nodes
and edges of the network, respectively. Qopt is the known global optimal modularity value.

Dataset N M Qopt

Karate 34 78 0.41979
Dolphins 62 159 0.52852
Football 115 613 0.60457

PPI 1430 6531 –
Erdös 6927 11850 –

3.2 Small Real-World Social Networks

We first validate our algorithm on the small-scale real-wold social networks with true
community structure: 1) the Zachary’s Karate Club network; 2) Dolphins network; and
3) the American College Football network. As pointed out in [13], performance metrics
based on network modularity Q are not always reliable. Therefore, apart from Q, we
also adopt normalized mutual information (NMI) as proposed in [2] for performance
evaluation.

Since CCDECD, DECD and GACD are stochastic optimization algorithms, we per-
form the experiments 30 times on these three networks. The average values of Q and
NMI , e.g.,Qavg andNMIavg and their best values, e.g.,Qbst andNMIbst, are com-
pared with that obtained by GN (a deterministic algorithm) from one run of an exper-
iment. We also perform two sample student’s t-test between the results obtained from
CCDECD and those from other algorithms. The results are presented in Table 2
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Table 2. Experimental results of the Zachary’s Karate Club, Dolphins and the American College
Football networks. Npr is the average predicted number of communities; Qavg and NMIavg
are the average values of modularity Q and NMI , respectively. Qbst and NMIbst are the best
values of modularity Q and NMI , respectively. The results with asterisks indicate the results are
significantly difference from the results obtained from CCDECD.

Network Algorithm Npr Qavg Qbst NMIavg NMIbst

Karate
CCDECD 4.0± 0.0 0.41979± 0.00000 0.41979 0.69± 0.00 0.69

DECD 4.1± 0.3 0.41341± 0.00446∗ 0.41979 0.65± 0.06∗ 0.71
GACD 3.3± 0.9 0.39552± 0.01492∗ 0.41724 0.69± 0.10 0.84

GN 2 0.35996 0.35996 0.84 0.84

Dolphins
CCDECD 4.1± 0.3 0.52078± 0.00026 0.52162 0.80± 0.04 0.93

DECD 4.7± 0.8 0.51557± 0.00374∗ 0.52069 0.83± 0.05∗ 0.95
GACD 4.9± 0.8 0.50987± 0.01499∗ 0.51986 0.87± 0.07∗ 1.00

GN 4 0.50823 0.50823 0.84 0.84

Football
CCDECD 10.1± 0.7 0.60382± 0.00089 0.60457 0.89± 0.02 0.93

DECD 10.1± 0.8 0.60363± 0.00071 0.60457 0.90± 0.02 0.92
GACD 8.7± 1.4 0.59044± 0.01239∗ 0.60457 0.85± 0.05 0.93

GN 12 0.59726 0.59726 0.93 0.93

From Table 2, it can be seen that CCDECD performed better than the other three
competitors, i.e., DECD, GACD and GN on the three networks. In [9], the author pro-
posed a novel multi-objective genetic algorithm (MOGA-Net) for community detection.
The objective is not to maximize modularity but to maximizes the number of connec-
tions inside each community and minimizes the number of links between the modules.
The average best Q values obtained by MOGA-Net are 0.416, 0.505 and 0.515 for
Karate, Dolphin and Football networks, respectively; and the corresponding average
NMI values are 0.602, 0.506 and 0.775. The best NMI obtained by MOGA-Net on
the Football network is 0.795, even worse than NMIavg obtained by CCDECD. Such
results show that maximizing Q with our CCDECD can also achieve better NMI , a
gold standard for evaluating CD algorithms, than MOGA-Net.

3.3 Biological Network: Yeast Protein-Protein Interaction Network

We apply our CCDECD algorithm to a biological network, e.g., Yeast Protein-Protein
Interaction (PPI) Network [3], which contains 1430 nodes (proteins) and 6531 edges
(interactions). We use CYC2008 [10], a complete and up-to-date set of yeast protein
complexes (or communities) as a reference set to evaluate the predicted modules by
CCDECD. We compute precision, recall and F-measure to measure the performance of
CCDECD. The performance of CCDECD is compared with DECD, GACD and GN.
We also adopt results from recent literature, e.g., [12] for comparison.

Similar to the experiments in [12], we use the affinity score to decide whether a
predicted module is matched with a reference complex:

Affinity(A,B) =
|A

⋃
B|2

|A| × |B| , (3)
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where A and B are two modules of proteins, e.g., one of predicted module or reference
complexes. We assume a module A matches moduleB if and only if Affinity(A,B) is
above a predefined threshold ω. Then we can define Hit(A,B) which contains all the
matched modules:

Hit(A,B) = {Ai ∈ A|Affinity(Ai, Bj) > ω, ∃Bj ∈ B}. (4)

We define precision, recall and F-measure as follows:

Recall =
|Hit(R,P)|

|R| , (5)

Percision =
|Hit(P ,R)|

|P| , (6)

F-measure =
2 × Recall× Percision

Recall + Percision
, (7)

where P is the predicted module set and R is the reference complex set.
Following the experimental settings in [12], we set ω = 0.4 and 0.5 and select the

best results from 30 runs of experiments in order to compare with their algorithms fairly.
We compared the results from Critical Module (CM) algorithm proposed in [12]. It is
worth mentioning that, due to the large size of the PPI network, the GN algorithm in
the Matlab Tools for Network Analysis failed to produce results in reasonable time.
Therefore, we adopt the results of the GN algorithm from [12] for comparison.

Table 3. The best results from 30 runs of experiments of the Yeast Protein-Protein Interaction
Network

ω Algorithm #. pred. complex Precision Recall F-measure

0.4

CCDECD 108 0.5093 0.3 0.3776
DECD 143 0.5083 0.2927 0.3715
GACD 109 0.5046 0.2902 0.3685

CM 65 0.5745 0.0667 0.1195
GN 65 0.383 0.042 0.0757

0.5

CCDECD 94 0.4681 0.2683 0.3411
DECD 115 0.4696 0.2390 0.3168
GACD 106 0.4340 0.2220 0.2937

CM 65 0.6154 0.0691 0.1241
GN 65 0.5231 0.0568 0.1025

From Table 3, we can see that compared with other algorithms, CCDECD has bet-
ter performance. It is interesting to see that, the difference of performance among
CCDECD, DECD and GACD is not as significant as those between CCDECD and
other non-population-based algorithms, e.g., CM. Such results indicate that, at least for
medium size networks, which are commonly seen in biology, population-based algo-
rithms are preferred because of their better search performance.
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3.4 Large-Scale Network: Erdös Collaboration Network

In this section, we further evaluate the performance of CCDECD with a large-scale
network: Erdös collaboration network. We report the results, e.g., average number of
communities and average values of modularity obtained by our CCDECD in compari-
son with those of DECD, GACD, GN and MOGA-Net [9] in Table 4.

Table 4. Experimental results of Erdös collaboration network. Npr is the average number of
communities; Qavg are the average values of modularity Q. The results with asterisks indicate
the results are significantly difference from the results obtained by CCDECD.

Algorithm Npr Qavg

CCDECD 194.8± 17.89 0.6390± 0.0042
DECD 407.5± 44.92 0.5598± 0.0095∗

GACD 277.4± 22.47 0.6070± 0.0108∗

MOGA-Net 302 0.5502
GN 57 0.6723

Table 4 clearly show that in terms of Qavg, CCDECD performed much better than
the other three population-based algorithms. More specifically, in contrast to the results
on small scale networks presented in Section 3.2, the performance of CCDECD in terms
ofQavg is much better than DECD and GACD, which indicates that CCDECD is more
scalable to handle large-scale networks. However, we should notice that, compared with
the greedy based GN algorithm, the results of our CCDECD is still not competitive.

4 Conclusion

This paper, for the first time, introduces the Cooperative Co-evolutionary algorithm to
detect community structure in complex networks. We have proposed the Bias Grouping
scheme to dynamically decompose the complex network into smaller subcomponents
for independent and co-adaptive evolution. We have also designed the global network
mutation operator specifically for community detection problems which exploits the
network connectivity information. We have tested our CCDECD on several benchmark
real-world social and biological networks, including the Erdös collaboration network
which consists of 6927 nodes, in comparison with DECD, GACD, GN and MOGA-Net
algorithms. Apart from the modularity value, for the small scale real-world networks,
we have also employed NMI based on true community structure as the performance
metric [13]. Compared with other state-of-the-art EACD algorithms, the experimental
results have demonstrated that CCDECD is very effective for community detection in
complex networks. Compared with greedy based CD algorithms, e.g., GN algorithm,
our CCDECD generates more accurate results on small to medium scale networks.
However, although it is a step forward, it is still not competitive to handle large-scale
network. It will be our future work to incorporate local search algorithm into our CC
framework to further improve CCDECD’s scalability.
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Abstract. One of the grand challenges in self-configurable robotics is
to enable robots to change their configuration, autonomously, and in
parallel, depending on changes in the environment. In this paper we
investigate, in simulation, if this is possible through evolutionary algo-
rithms (EA). To this end, we implement an unconventional on-line, on-
board EA that works inside the robots, adapting their controllers to a
given environment on-line. This adaptive robot swarm is then exposed to
changing circumstances that require that robots aggregate into “organ-
isms” or dis-aggregate into swarm mode again to improve their fitness.
The experimental results clearly demonstrate that this EA is capable of
adapting the system in real time, without human intervention.

1 Introduction

Within the domain of self-configurable robotics, Stoy and Kurokawa [24] have
identified a number of grand challenges, including one that a self-configurable
robot should be able to change its configuration, autonomously, and in parallel,
depending on changes in the environment. This is exactly the problem we address
in this paper.

The main assumption and working hypothesis of the present study is that this
problem can be solved by using evolutionary algorithms. Therefore, this paper
falls in the area of evolutionary robotics, to be more specific in evolutionary
swarm robotics, since we consider a swarm of robotic units that can physically
aggregate and form a so-called organism, as envisioned by the Symbrion research
project [16]. A specific feature of our system, that distinguishes it from the huge
majority of related work, is that we use on-line evolution. In most evolutionary
robotics systems the robot controllers are evolved off-line, before deploying the
robots in some operational environment, cf. [20]. In contrast, we apply on-line
evolution, after deployment, during the operational period of the robots. This
feature is essential for robotic systems that are requested to operate long peri-
ods without direct human intervention, possibly in unforeseen and dynamically
changing environments [19]. Our previous work has addressed the issue of self-
driven aggregation and we have shown that even light environmental pressure
is sufficient for the on-line evolution of aggregated organisms [27]. In this paper
we switch from a static environment, as used in [27], to a dynamically changing
one. The main research question is:

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 245–254, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Is our on-line evolutionary capable of repeatedly re-adapting the robot
controllers if the circumstances change?

To find an answer to this question we design three different environments. One
where aggregated organisms have an advantage, one where they have a disad-
vantage, and one that is neutral from this perspective. Then we expose a group
of 50 robots to a scenario where the environment repeatedly changes and try to
find out whether the organisms can adapt their sizes appropriately. To this end,
there are two important things to note. Firstly, that the behaviour of organisms
is the result of the behaviour of the individual robots that form their cells. Sec-
ondly, that robot controllers can only change through evolution and we do NOT
use any specific fitness function to reward aggregation or disaggregation, only
environmental selection.

2 Related Work

A seemingly related area of existing work is that of evolutionary optimisation
in dynamic environments [4,18]. Our kind of on-line on-board evolutionary al-
gorithms are similar to this because the actual (on-line) performance is more
important than the end result (off-line performance). However, we are working
with robots whose controllers need to be evolved on-the-fly (in vivo). Here lies
a big difference: in our application one cannot afford bad candidate solutions,
because they could ”kill” the given robot, while in a usual EA bad individuals
merely slow down the search.

Our work is related to both swarm robotics and self-reconfigurable modular
robot systems. Swarm Robotics [17] is a field that stems from Swarm Intelli-
gence [3], where swarm-robots often have the ability for physical self-assembly.
Swarm-bots were created in order to provide a system which was robust towards
hardware failures, versatile in performing different tasks, and navigating dif-
ferent environments. Similarly, self-reconfigurable modular robot systems were
designed with three key motivations: versatility, robustness and low cost. The
first two are identical to motivations for swarm-robots, while low cost can be
achieved through economy of scales and mass production as these systems use
many identical modules. Yim gives an overview of self-reconfigurable modular
robot systems in [29], the research is mainly on creation of modules in hardware
and showcasing their abilities to reconfigure and lift other modules. For our
research, we assume a self-reconfigurable robot system which is independently
mobile, as reported in [12,14,28]. The task of multiple robots connecting auto-
nomously is usually called self-assembly, and has been demonstrated in several
cases: [7,21,28,30]. Most of these however, are limited to pre-programmed control
sequences without any evolution. In self-reconfigurable robots, self-assembly is
restricted to the docking of two modules as demonstrated in [14,28].

On-Line On-Board evolution is a relatively new field in evolutionary robotics,
initiated by the seminal paper of Watson et al. [26] who present a system where a
population of physical robots (i.e. their controllers) autonomously evolves while
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situated in their task environment. Since then the area of on-line on-board evo-
lution in swarm-robotics, as classified in [6], has gained a lot of momentum
[5,10,12,13,22,25].

The work in this paper is part of the SYMBRION/REPLICATOR projects
in which robots are being developed and used that are independently mobile
and can operate as a swarm, but also have a mechanical docking mechanism
allowing the modules to form and control a multi-robot organism [12]. The most
closely related existing work is that of [2,7,8] that explores self-assembly of swarm
robots. The controllers of the so-called s-bots (Recurrent Neural Networks) were
evolved off-line in simulation, and deployed and tested in real s-bots afterwards.
That research shows it is possible to evolve controllers which create organisms.
Our present work is to demonstrate that it can be done through on-line evolution
as a response to environmental changes.

3 System Description and Experimental Setup

As explained in the Introduction, we design three different environments. One
where aggregated organisms have an advantage, one where they have a disad-
vantage, and one that is neutral from this perspective. Then we expose a group
of 50 robots to a scenario where the environment repeatedly changes and watch
whether they can adapt appropriately. In this section we describe the details.

Fig. 1. Overview of the final arena, consisting of neutral (white), organism-friendly
(light-blue), and organism-unfriendly terrains

Arena. The main idea behind our implementation is to relate the environmental
(dis)advantage of organisms to their ability to move and to use different terrains.
To be specific, we add a “basic instinct” to the robots to move eastwards (from
left to right in our arena) by defining their fitness through their positions: the
more they move to the right during evaluation, the higher. Then we create three
terrains that differ in their organism-friendliness. In the organism friendly terrain
single robots cannot progress to the right and the speed of a larger organism is
higher. Metaphorically speaking we have river with a west-bound current here,
where only multi-cellular organism have the strength to swim eastwards. We
make the organism unfriendly terrain by laying out narrow pathways where big
organisms get stuck. The neutral terrain imposes no minimum nor maximum or-
ganism size. These three terrains are laid side by side and the resulting composed
field is repeated three times in order to increase the number of environmental
changes in one run, the resulting arena is shown in Fig. 1. Note that this arena is
suited to test the populations response to changes, because robots are driven to
move to the right by the fitness function. However, this fitness is certainly does
not provide a specific reward for aggregating behaviour, thus it does not repre-
sent “cheating”. In the meanwhile, it provides a well defined measure to assess
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success of robot behaviours: the more to the right at the end of an evaluation,
the better.

Robots. We conduct our experiments with simulated e-puck robots in a simple
2D simulator: RoboRobo1. The robots can steer by setting their desired left and
right wheel speeds. Each robot has 8 sensors to detect obstacles (static obstacles
as well as other robots), as well as 8 sensors to detect the the river-like zones.

Connections. In our experiments robots can create new organisms, join an
already existing organism, and two existing organisms can merge into a larger
organism. When working with real robots, creating a physical connection be-
tween two robots can be challenging, and movements of joints are noisy because
of actuator idiosyncrasies, flexibility of materials used, and sensor noise. We
choose to disregard these issues and create a very simple connection mechanism
which is rigid the moment a connection is made. The connection is modelled as
a magnetic slip-ring, which a robot can set to ‘positive’, ‘negative’ or ‘neutral’.
When robots are close enough, they automatically create a rigid connection if
both have their ring on the ‘positive’ setting. The connection remains in place as
long a neither sets its slip-ring to ‘negative’. Thus, a positive-neutral combina-
tion is not sufficient to establish a new connection, but it is sufficient to maintain
an existing one. The neutral setting is important in this experiment to allow for
organisms to maintain a certain size, as it allows connections to be maintained
without creating new ones.

Controller. The controller is a feed-forward artificial neural network that se-
lects one of 5 pre-programmed strategies based on sensory inputs. The neural
net has 20 inputs (cf. Table 1), 8 outputs and no hidden nodes. It uses a tanh
activation function. The inputs are normalised between 0 and 1.

The output of the neural network, as described in Table 1, is interpreted as
follows: the first five outputs each vote for an action, the action with the highest
activation level is selected. The sixth output describes the desired organism size
which is used when the ‘form organism’ strategy is chosen. The seventh output
describes the direction the robot should move in when performing the ‘move’
strategy. The eighth output is the desired speed the controller wants to move in,
and is used in all strategies except ‘halt’ (which sets speed to 0).

Evolutionary Algorithm and Runs. We use an on-line on-board hybrid
evolutionary mechanism. The first constituent of the hybrid is the (μ + 1) ON-
LINE [9] method, where each robot is an island with a population of μ individuals
(genotypes encoding possible controllers) that undergo evolution locally [1]. The
other component is the peer-to-peer protocol based EVAG method [15]. The
hybridised algorithm as described in detail in [11] also allows recombination
across all robots in a panmictic overlay topology.

1 http://www.lri.fr/~bredeche/roborobo/

http://www.lri.fr/~bredeche/roborobo/
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Table 1. Neural Network inputs (left) and outputs (right)

8x Obstacle distance sensors
8x Zone distance sensors
1x Size of the organism
1x Angle to the end
1x Distance to the end
1x Bias node

Vote for Form Organism
Vote for Leave Organism
Vote for Halt
Vote for Avoid Obstacles
Vote for Move
Desired organism size
Desired direction for Move
Desired speed for Move

To represent robot controllers we use a genome which directly encodes the N
weights of the neural net using a real-valued vector of length N . This genome
is extended to include N mutation step sizes (σ′s) for these N genes. Mutation
is a standard Gaussian perturbation with noise drawn from N(0, σ) using self-
adaptation of σ′s through the standard formula’s. For recombination we use
averaging crossover. As for selection, we have a mixed system of global parent
selection and local survivor selection. That is, parents are selected using a binary
tournament over all genomes in all robots. Once the parents create a newborn
controller its fitness is assessed by allowing it to control the robot for 1000
time steps: first a ‘free’ phase of 200 time steps to allow it to get out of bad
situations, followed by an evaluation period for 800 time steps. Each 1000 time
steps therefore constitutes 1 generation. At the start of a generation a choice is
randomly made between creating a new controller as described above, or choosing
an existing controller for re-evaluation, the chance of re-evaluating is controlled
by the re-evaluation rate. At the end of the evaluation cycle the given controller
is compared to the local population of μ others and replaces the worst one if it
is better.

We ran the experiment using 50 robots, we used this number to have a rel-
atively large amount of robots, while not over-crowding the starting area. Too
many robots in the start area could lead to an inability of a controller to perform
its otherwise good behaviour by getting stuck behind bad controllers.

Table 2. Parameters

Parameter Value
Local population size 3
Mutation chance 0.4
Crossover chance 0.05
Re-evaluation rate 0.5
Initial mutation step-size 0.1
Generations 2000

We used the parameters shown in
Table 2 for our evolutionary algo-
rithm and repeated the experiment
50 times, each run lasting 2000 gen-
erations. The parameter settings are
based on parameters found in our ear-
lier paper [27] in which we used the
BONESA toolbox2 [23] to optimise
settings for crossover rate, mutation
rate, initial mutation step size, re-
evaluation rate, and population size. Our experiments are fully repeatable, as
the source code is available via the web-page of the first author3.

2 http://sourceforge.net/projects/tuning/
3 A zip-file can be found at http://www.few.vu.nl/~bwl400/papers/parcours.zip

http://sourceforge.net/projects/tuning/
http://www.few.vu.nl/~bwl400/papers/parcours.zip
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Fig. 2. Robot positions

4 Results and Analysis

This section presents the results of the experiment that have been performed.
We essentially want to investigate (1) whether the robots are able to find their
way through to the end the obstacle course, (2) analyse how they find their way
through the obstacle course with respect to the formation of organisms. We will
address both questions below.

4.1 Are They Able to Find Their Way?

In order to answer the first question, we have studied the positions of the robots
within the obstacle course over time. Hereby, we have taken the position of the
best performing robot during each run (i.e. the robot which came closest to the
end of the obstacle course), and also recorded the position of the robot closest
to the beginning of the course (the worst performing robot). Furthermore, we
have taken the position of the median robot. The results averaged over 50 runs
are shown in Figure 2. The layout of the obstacle course is shown on the y-axis
whereas the x-axis show time (by means of the number of generations).

In the figure, it can be seen that the best robot on average is almost able to
complete the entire obstacle course, meaning that it manages to pass the river
three times, and ends up in the last narrow passageway. The reason why the
best robots on average do not make it all the way to the end is due to the fact
that there are some incidental bad runs where the best robot does not even pass
the first obstacle.

When considering the worst individual, it can be seen that the worst perform-
ing robots hardly progresses within the obstacle course. On average the robots
are not able to get beyond the first river which they encounter. In fact, they do
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Fig. 3. Organism Size per Position

not even end up at the beginning of the river. The median robots manage to
pass the first set of obstacles (the river and the narrow passageway) and are also
able to pass the second river.

Overall, it can be concluded that on average a majority of the robots manage
to find a way passed the river twice as well as a single passage of the narrow
passageway. Some are able to do this three consecutive times. A minority of the
robots is hindered too much by the obstacles, resulting in them never passing
the first obstacle, namely the river.

4.2 How Do They Find Their Way?

It is interesting to see that the robots learn how to deal with the obstacles, but
the question that remains is: how do they achieve it? Do they form organisms?
And do they leave organisms? We will try to obtain some insights by studying
the behaviour of the robots on a more detailed level. Therefore, we investigate
the size of the organisms over the obstacle course to see whether they learn to
form an organism and leave it at the appropriate locations.

Table 3. Mean organism size in different
zones. Zones are defined as the start and
end of the river/narrow passage.

Zone X region Mean Std

River 1 900–1800 2.76 0.45
Corridors 1 2700–3600 1.31 0.33
River 2 4500–5400 2.07 0.27
Corridors 2 6300–7200 1.28 0.27
River 3 8100–9000 2.07 0.35
Corridors 3 9900–10800 1.30 0.23

Figure 3 shows the position in the
obstacle course on the x-axis and the
average organism size (a one denotes
a single agent that is not part of an
organism) on the y-axis.

In Fig. 3 can be seen that the aver-
age size of the organisms at the river
area is a lot higher compared to the
narrow passageway. In the neutral ter-
ritories, the robots tend to continue
with the organism size required by the
obstacle they encountered last (i.e.
after a river they remain within an



252 B. Weel, M. Hoogendoorn, and A.E. Eiben

organism, and after the narrow passageway they remain single). When look-
ing closer at the behaviour of the robots during the narrow passageway, a spike
in the centre of the passageway can be seen. We assume that this is due to the
fact that the curve in the passageway is difficult to pass for the robots, and
therefore one option for them is to try and form an organism. In the trend of
the organism size during the river passage it can be seen that the average size
of the individuals is declining a bit after the first river. This because there are
simply fewer robots around with which an organism can be formed, resulting in
a disadvantage for robots that want to form large organisms.

Table 3 shows more detailed data on the average organism size at the various
regions within the obstacle course. The standard deviations are also included.

5 Concluding Remarks and Further Research

In this paper we addressed the challenge of enabling a group of self-configurable
robots to adapt their controllers to changing circumstances autonomously, with-
out human intervention. The basic idea behind our approach is to equip the
robots with evolutionary operators that keep working, during the operational
period of the robots. Our algorithmic solution combines ideas from island-based
EAs [1] and peer-to-peer EAs [15], offering –in principle– the best of both worlds.

Our experiments have provided convincing evidence that this approach is ca-
pable of evolving the robot controllers in real time and respond to environmental
changes, without using a problem-tailored fitness function to “push” some tar-
geted behaviour. Inevitably, we used a number of simplifying assumptions and
design decisions in our experimental setup (e.g., using distance from the origin as
an abstract measure of fitness), but these did not include any specific bias either.
The emerging system behaviour was rooted in the interplay of the evolutionary
mechanism and the environmental pressure.

Further work will be carried out in two directions. Firstly, we will explore
the niche of applicability of our approach, by testing it in a number of different
cases, i.e., in different (changing) environments, with various tasks for aggregated
robots and measures of viability (fitness). One of the most interesting questions
here concerns the combination of environmental selection (open-ended evolution
for pure survival) and human-defined tasks (directed evolution with quantifiable
performance measures). Secondly, in close cooperation with roboticists, we will
port the whole machinery to real robots to validate its working in vivo.
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Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 259–266.
Springer, Heidelberg (2008)

22. Schwarzer, C., Schlachter, F., Michiels, N.: Online evolution in dynamic environ-
ments using neural networks in autonomous robots. International Journal On Ad-
vances in Intelligent Systems 4(3-4), 288–298 (2012)

23. Smit, S.K., Eiben, A.E.: Multi-problem parameter tuning using BONESA. In: Hao,
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Abstract. Funes and Pollack introduced the The buildable objects ex-
periments where lego

R© structures are evolved that may carry loads.
This paper re-evaluates and extends the approach. We propose a new
evaluation scheme using maximum network flow algorithms and a graph
representation. The obtained structures excel previous results. Further-
more, we are now able to address problems that require more than one
bearing.

Keywords: Buildable objects, physics simulation, evolutionary design.

1 Introduction

The evolution of structures with a load-carrying capacity, e.g., structural frame
design or whole buildings, is an appealing part of evolutionary design. Since the
work of Funes and Pollack [3–5], the evolution of lego R© structures serves as an
interesting application domain and research playground.

Although the problem is present for 15 years, there are still two major chal-
lenges:

– The stability of lego
R© structures is difficult to determine because the

physics of structural frame design cannot be applied. And dynamic physics
engine apply the various forces subsequently and isolated from each other
which often leads to inexactness. A more precise approximation of the forces
within a structure could improve the results considerably.

– Funes and Pollack [4] call their representation of the structure, a tree, un-
derconstrained because it induces several problems, e.g., the overlapping of
tree branches.

Also, if we consider problems with multiple bearings, the tree is not suited and
it is unclear how well the existing evaluation of the stability works.

As a consequence, we present a graph-based representation together with a
new technique for approximating the stability using flow networks based on the
findings in the master’s thesis [9]. However, the focus is on the representation
and the results for a crane and a bridge problem with multiple bearings.

2 Related Work

There are two application domains of EAs using lego
R© bricks. First, Funes and

Pollack [3–5] construct structures like cranes that are required to be stable in the

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 255–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://portal.imn.htwk-leipzig.de/fakultaet/weicker/


256 M. Waßmann and K. Weicker

presence of external forces. They use a tree-based representation and a repair
function. However, since certain connections between bricks are not represented
by the tree, the operators cannot use this information. Moreover, the approach
is limited to single bearings. In [5], 3D models are constructed. Second, Petrovic
[8] constructs models that mimic the shape of real-world objects. He uses a
direct representation in form of a list of bricks (with the respective coordinates)
– external forces are not considered.

Another relevant publication is the work of Devert et al. [2] who construct
structures using “toy bricks” without considering pinches for connecting bricks.

The problem at hand appears to be closely related to structural frame design
for which a comprehensive survey is available [7]. However, the very specific con-
nection mechanism of lego R© bricks inhibit re-using ideas from those approaches
for both constructing and evaluating structures.

Related to our representation are research projects that evolve graphs, e.g. [6].
However, as we will see later, the graphs in our representation are very restricted
such that knowledge transfer is difficult.

3 Evaluating Structures of Buildable Objects

The quality of a lego R© structure depends on the evaluation mechanism, i.e., the
computation of the forces within the structure. A graph model of the structure,
e.g. in Fig. 1, enables the evaluation similarly to [3, 4].

Fig. 2 shows the forces that affect the stability of a lego
R© structure.

Mere compressive forces do not affect the stability of structures. Tensile forces
might excess the adhesion of two connected bricks. But the moments are the
primary cause for instable lego

R© structures when they exceed the capacity of
a joint of two bricks. Basically, the forces are caused by the weight of each single
brick as well as external loads.

Funes and Pollack [3–5] computed the stability by isolating forces and mo-
ments. For each force, the resulting moment is computed at each joint which
leads to a flow network of moments and counteracting moments that are propa-
gated towardsthe bearings. At each joint, the sum of all resulting moments for all
forces must respect the moment capacity of the joint, i.e. it is a multi-commodity
network flow problem. However, this approach overestimates the moments within
the structure since the isolation of forces (and resulting moments) does not con-
sider compensation of opposing moments.

(0, 0, 6)

(3, 1, 6)

(6, 2, 8)

(7, 0, 6)

(11, 1, 6)

Fig. 1. Modelling a lego
R© structure: the placement of the bricks (left) and the corre-

sponding graph where in each vertex the first two values are the position and the third
value is the size of the brick (right)
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Fig. 2. Forces between bricks of a structure: (a) compressive force, (b) tensile force,
and (c) moment. Subfigure (d) shows the moments from (c) as pairs of forces.

Our method for evaluating the stability of a structure follows the approach
of classical statics. A system of equations is constructed, where the equilibrium
of forces and moments for each brick is described by equations. Additional in-
equalities guarantee that no connection between two bricks is stressed beyond
it’s capacity. This system of equations can be solved if for each brick the exter-
nal loads, e.g. gravitational forces or resulting moments, are counteracted by an
equal and opposite reaction.

In general, such a system cannot be solved trivially as it may be under-
determined. We have investigated two techniques to solve such a system. First,
constraint satisfaction solvers have been tried. However, the asymptotic runtime
is exponential with the number of forces which leads to an unacceptable runtime.
Instead, the system of equations is turned into maximum flow problems which
can be solved in polynomial time using the push-relabel algorithm [1].

In a first phase, we consider only the compressive and tensile forces without
moments – as if each brick is fixed in its orientation and cannot be tilted. For each
brick the forces and counteracting forces are considered and a flow network is
constructed that guarantees that all forces and counteracting forces are balanced.
The maximum flow represents a possible distribution of the forces in the lego R©

structure – resulting in the effective forces for each single brick. If the tensile
force exceeds the respective capacity of a joint the structure is not stable.

In a second phase, for each brick, the moments are computed from the effective
forces. The moments need to be balanced too – modeled as a flow network with
moments and counteracting moments. If the resulting effective moments exceed
the capacity of a joint the structure is not stable.

The two phased approach allows us to use single commodity flow networks.
However the approach has the disadvantage, that forces and moments are dis-
tributed successively and only one force distribution is calculated. Hence a bad
force distribution may lead to an impossible moment distribution. The struc-
ture is declared not stable, even though there might exist a force distribution
for which a moment distribution is possible. The approach is decribed in more
detail in [10].

Exemplarily, Fig. 3 shows a simple lego
R© structure and the flow network

model for distributing vertical forces. The source vertex s supplies the forces due
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Fig. 3. A simple structure and the flow network modelling the forces with maximal
compressive force FC and maximal tensile force FB

to the bricks’ weight and the target vertex t is connected to the bearing. Each
vertex represents a brick and each pair of edges between two vertices a joint of
two bricks. Throughout the experiments, we use the maximal compressive force
Fc = 5.44 kN and the maximal tensile force FB = 2.5 N.

This approach has the advantage that we can consider problems with an ar-
bitrary number of bearings. However, the computation of the moments is still
an approximation since the distribution of forces might be unrealistic. More-
over, additional stabilizing factors, e.g., if bricks are placed side by side, are not
considered. The maximal possible load for a structure is determined by binary
search and iterative solution of the networks.

4 Concepts of the Evolutionary Algorithm

Given the expensive evaluation function described in the previous section, we
decided to use a steady-state genetic algorithm to make the newly generated
individual immediately available (similarly to [3]). In each generation one indi-
vidual is produced with the following procedure:

1. select two parents with rank-based fitness-proportional selection
2. apply the recombination operator; if the new individual is invalid, use the

first parent
3. apply the mutation operator; if the new individual is invalid, use the recom-

binant

The new individual replaces the worst individual in the population.
The lego R© structures are represented directly as graphs like in Fig. 1. Such a

graphG = (B∪L,E) contains the vertices B (placeable bricks) and L (bearings).
Both are annotated by the position and the size of the brick. The edges in E
reflect the connections between bricks. We consider an individual to be legal iff
the bricks do not overlap pairwise and the represented structure is stable.
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For recombination, one of the following operations is applied to the parents’
brick sets B1 and B2.

horizontal cut: A brick b ∈ B1 is chosen uniformly. The new individual con-
tains all bricks {a ∈ B1|ay ≤ by} ∪ {a ∈ B2|ay > by} where cy denotes the
y-coordinate of a brick c.

vertical cut: A brick b ∈ B1 is chosen uniformly. The new individuals contains
all bricks a ∈ B1 with ax ≤ bx where cx denotes the x-coordinate of the left
end of brick c. Furthermore, all bricks a ∈ B2 are added that fulfil ax > bx
and do not overlap with the bricks selected from B1.

mixing: A random set of bricks C ⊆ B1 is chosen. Let D ⊆ B2 be the set of all
bricks, that do not overlap with the bricks in C. The new individual contains
C ∪D.

Because mixing is more disruptive, we use the probability 0.2 for mixing and 0.4
for the other two operators.

The mutation operator applies one of the following operations to the individ-
ual’s brick set B.

addition: A brick a ∈ B with size (t, 1) and a new brick b with size (t′, 1) is
chosen. The new brick is placed at position (ax + z1, ay + z2) with random
integer numbers 1 − t′ ≤ z1 < t and z2 ∈ {−1, 1}.

deletion: A brick a ∈ B is removed.
shifting: A brick a ∈ B with size (t, 1) is moved to the new position (ax+z, ay)

with random number 1 − t ≤ z < t.
replacement: A brick a ∈ B with size (t, 1) is replaced by a new brick b of

size (t′, 1) where the centre of mass is kept unchanged, i.e., b is positioned

at (ax + � t−t′
2 �, ay).

exchange: Two bricks a, b ∈ B are chosen and exchanged aligned according to
the left end of the bricks.

shifting partial structures: A random brick a ∈ B is chosen as well as a
random number z ∼ N (0, 1). All bricks b ∈ B with by > ay are moved by
�z + 1

2� along the x-axis.

The operations are applied with probability 0.1 (first two) and 0.2 (rest).
In our experiments, we start with a population of empty individuals that

contain only the given bearings. As a consequence, the evolution process focuses
on growing functional structures during the early phases. More sophisticated
initialisation procedures have not been investigated in detail.

5 Resulting Structures

Using our algorithm, we investigated two problems classes – the classical crane
problem as in [3] and a new bridge problem, which is distinct from the bridge in
[3] because we consider more than one bearing.
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Fig. 4. Calibrating the population size: final fitness after 104, 2.5 · 104, and 5 · 104
generations

5.1 Crane Problem

In the crane problem, a fixed bearing is given and the aim is to produce a
structure that is able to carry a weight load∗ ∈ IR+ at a distance length∗ ∈ IR+

from the bearing. The tuple (length∗, load∗) describes an instance of the problem
class with which we can adjust whether we want short structures that can carry
heavy loads or more outreaching structures.

The fitness of such a lego
R© structure M is measured using the function

fcrane(M) =
(
min

{
1,

length(M)

length∗
})s

· min
{
1,

load(M)

load∗
}

· (1 − c · size(M))

where length(M) is the actual length of M , size(M) the number of bricks, and
load(M) is the resulting maximum load using the physics simulation. Moreover,
s is a parameter to put more emphasis on the length of the structures (which
seems to be more difficult to evolve); the parameter c controls to what extent
the number of bricks should be minimised.

All parameters have been investigated thoroughly for the crane problem. Fig. 4
shows how the final fitness changes with varying population size. A too big
population size exhibits problems due to missing convergence. As a consequence,
we used a population with 400 individuals and 50,000 generations.

Even more interesting are the parameters s and c to modify the fitness func-
tion. Fig. 5 shows how length and load capacity change for three different values
of s. The inverse direction of the curves in the two subfigures shows that s is
a proper means to control the focus of the optimisation. However, as Fig. 6
demonstrates, there is not a unique scale for the different problem instances.

Parameter c controls the impact of the number of bricks onto the fitness
function. Fig. 7 shows that values between 10−4 and 10−3 decrease the number
of bricks considerably with only little loss in length and load capacity.

Two of our results are shown in Figures 8 and 9. The crane for (1 m, 0.25 kg)
was created using s = 1.4, c = 10−9, and 50,000 generations. Remarkable about
these crane arms is, besides achieved length and load-carrying capacity, their
quality. The graph overlay in Fig. 8 shows the regular structure of the load
arm, that allows the distribution of the applied load along as much as possible
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bricks, reducing the strain per joint. Furthermore a counter balance is used to
counteract the moment created by the load. These two features are reoccurring –
depending on the parameter c, which inhibits the creation of a counter balance –
and distinguish our solutions for the crane problem from those in the literature.
The structure left of the bearing is randomly shaped since it only serves as a
counter balance. The crane for (0.5 m, 0.5 kg) is the result of an experiment
using c = 10−3.5.

Table 1 compares the results of the Funes/Pollack approach and our results
in load and length. Although a comparison is difficult, the results of the new
approach appear to outperform the older results in both load and length.

5.2 Bridge Problem

The bridge problem requires the evolution to create a supporting structure be-
tween the bearings and the surface of the bridge where each brick is required to
support a given load.
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Table 1. Comparison of the constructed structures

Funes/Pollack Waßmann/Weicker
length load length load problem instance

0.5 m 0.148 kg 0.496 m 0.482 kg (0.5 m, 0.5 kg)
0.16 m 0.5 kg 0.256 m 1.0 kg (0.25 m, 1 kg)

0.664 m 0.236 kg (1 m, 0.25 kg)
0.296 m 0.41 kg (0.5 m, 0.5 kg)

The fitness function is designed in such a way that the evolution focusses on
connecting all parts of the bridge first:

fbridge(M) =

{
1

1+fcon(M ′) , if M ′ is not connected

1 + pmax(M
′′)

1
1+δ · csize(M), otherwise

whereM ′ is the structure extended by the road surface as mounting, fcon(M
′) is

the minimal distance between the connected components of the graph including
the mounting bricks.M ′′ is constructed by adding iteratively those bricks of the
surface for which the forces are supported by the lego

R© structure – the value
δ corresponds to the number of unsupported bricks. The factor c controls again
the number of involved bricks – in the following experiments c = 0.995 was used.

A first scenario with three bearings is shown in Fig. 10 together with one of
our first results. However, the bridge problem has not been analysed in the same
depth as the crane problem. The structure in the lower left region serves as a
counter balance and moves the centre of mass above the central bearing.

The second scenario (Fig. 11) has four bearings and requires a free space
between the two central supports.
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Fig. 11. Second bridge problem

6 Conclusion

The new algorithm convinces in two respects, the quality of the exemplary
structures as well as the reliability with which competitive structures are pro-
duced – as the calibration results demonstrate. This is due to (a) a representation
and respective operators that are designed specifically for the problem at hand
and (b) a more exact evaluation mechanism for the structures.1

Where the crane problem has been investigated thoroughly, we presented only
few preliminary results for the bridge problem with multiple bearings. Future
research should focus on this problem class as well as 3D structures for which
we tested our approach already successfully (not reported here). Furthermore,
the computation of the stability could be extended to handle external horizontal
forces like it would be necessary for tower structures.
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Abstract. Many applications of swarm robotics require autonomous
navigation in unknown environments. We describe a new collective navi-
gation strategy based on diffusion limited aggregation and bacterial for-
aging behaviour. Both methods are suitable for typical swarm robots as
they require only minimal sensory and control capabilities. We demon-
strate the usefulness of the strategy with a swarm that is capable of au-
tonomously finding charging stations and show that the collective search
can be significantly more effective than individual-based search.

1 Introduction

Swarm robotics is becoming an increasingly active field of research. This is un-
surprising, as deploying a swarm of simple, small, and inexpensive robots can
present an extremely attractive alternative to the use of a single complex and
costly robot in a significant number of application scenarios. Clearly, there are
situations where a larger robot may not be able to operate effectively at all, for
example in space constrained areas under collapsed buildings in the aftermath
of an earthquake. Here, a swarm of small robots would be far more effective in
sifting through the rubble and exploring every small cavity. Robot swarms are
also generally thought to be more resistant to damage and disruption, and to be
more resilient in the face of changing environment conditions.

For robots used in tasks such as disaster response, space exploration, or en-
vironmental tracking it is immediately obvious that robustness and adaptivity
are core requirements. A case in point is the proposed NASA mission PAM
(Prospecting Asteroid Mission) [6]: it aims to deploy a swarm of approximately
1, 000 pico-spacecraft to explore the asteroid belt. In the asteroid belt it is not
unlikely for a spacecraft to be hit by another object, so that a mission relying on
a single complex spacecraft could easily fail. A self-organising swarm could be
more resilient and also help to address the challenge of delayed communication
by performing time-critical behaviour changes autonomously.

While swarm robotics has become a very active field of research, its real-world
applications have been limited so far. Limited battery power, poor communica-
tion facilities, minimal sensory equipment and low computational processing
capacity pose significant challenges, as does the design of distributed algorithms

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 266–276, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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that reliably produce a desired collective behaviour. Typical academic test tasks
for self-organised collective control are clustering robots onto a particular po-
sition (such as a light source) [5], optimal dispersal of robots to cover a target
range [11] [8], collective transport [9], and various forms of structure formations,
such a assembling a chain of robots [4].

In this paper, we tackle a collective navigation task that arises in many realis-
tic applications: the guidance of swarm members to a common target. There are
uncountable scenarios where finding a particular target is an important sub-task
of the swarm’s mission. A prime example is a clean-up mission after an (indus-
trial) accident. Typically, more swarm members will have to be guided to the
source of contamination once it has been located by one of the swarm’s scouts to
assist with its removal and clean-up. This is akin to the recruitment mechanisms
in social insects that allow them effective exploitation of food sources through
collective transport [7].

This task is also required for the construction of our own experimental test bed
for swarm robotics. Our aim is to build a robot swarm that will autonomously
roam the building of Monash’s Computer Science Department to perform con-
tinuous inspection. One of the many challenges with this is the limited battery
capacity and thus operating time of individual swarm robots.

The e-puck robot that we are using in our experiments [12] is typically not able
to operate for more than three hours before having to be recharged. As we are
aiming for fully autonomous swarm operation, the first challenge to address was
the e-puck’s reliance on human intervention for recharging. We overcame this by
modifying the e-puck’s hardware to allow contact-less inductive charging. With
this modification it is sufficient for a robot to drive onto a specifically constructed
wireless charging platform and rest there until the batteries are fully recharged.
The details of this modification are beyond the scope of this paper and described
elsewhere [2].

However, even with autonomous charging being physically possible, the chal-
lenge remains for the robot to locate the charging platform before it runs out
of batteries. In the absence of perfect knowledge of the environment this clearly
requires the swarm to search for the charger.

A strategy for returning the e-puck to the charging platform autonomously
was developed in two parts: Firstly, a simple gradient search was implemented
on the physical e-puck robot after fitting its charging platform with an audible
beacon (Section 3.1). Audio was chosen as a gradient medium both for its relative
ease of experimentation and its imperfect gradient field (due to reflections and
interference), providing a test-case for other forms of perturbed fields such as
chemical gradients. Secondly, a collective navigation strategy was implemented,
such that an agent can be guided to the charging platform from beyond audible
range with the assistance of the swarm (Section 3.2). To do so, the swarm con-
structs a space-filling beacon structure in the environment which the searching
agent traverses toward the charging platform.1

1 For demos see http://www.csse.monash.edu.au/~berndm/autonomous_epuck/

http://www.csse.monash.edu.au/~berndm/autonomous_epuck/
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Since we are interested in swarm robots with extremely limited sensory capa-
bilities and processing power, we decided to use control algorithms that are so
simple that they can in theory be implemented on devices without any digital
computation capabilities whatsoever. To achieve this, we only used two types
of nature-inspired behaviours that could be implemented even with just analog
control circuits: bacterial gradient search [13] for the individual navigation and
Diffusion Limited Aggregation (DLA) [14] for the formation of the collective
navigation structure. The conclusion from our preliminary experiments is that
even with such extremely simple behaviours effective collective search is possible.

2 Experiment Setup

To conduct the e-puck robot experiments, we constructed a rectangular environ-
ment measuring 2.4m x 3.6m with 5cm high walls from MDF and pine (Figure
1). An omni-directional audio beacon was placed midway down the long edge
of the environment, 30cm from the wall. Pink noise was emitted from the au-
dio beacon for detection by the robot, which averaged the volume of its three
microphones during experiments to minimise rotationally induced bias.

Fig. 1. Layout of the physical environ-
ment and audio beacon for conducting
e-puck experiments

For development of the collective nav-
igation strategy, 60 virtual e-pucks were
dispersed in a 10m x 10m virtual environ-
ment using the ASEBA Framework [10].
Simulation was used as no e-puck swarm
of adequate size was available and a real
e-puck swarm of similar size would cost in
excess of $50,000. ASEBA provided phys-
ically realistic simulation of the e-puck
swarm and charging platform, the e-puck
model simulating all sensors and motors
with the exception of the speaker and mi-
crophones (see Figure 5). We ported the
Swis2D audio plugin from Webots [3] to
ASEBA, which provides 2D audio simu-
lation, to overcome this limitation. Other physical robotics simulators (such as
Webots) were considered for the simulation component, however ASEBA was
determined to be the most flexible in terms of software customisation and the
sharing of control scripts between the real-world and virtual e-pucks.

3 Algorithms

3.1 E-coli Inspired Gradient Search

We developed an audio-based search strategy by adapting the foraging behaviour
of E. coli bacteria to the capabilities of the e-puck robot. E. coli perform a gra-
dient search on the nutrient in their environment in order to move to the most
favourable location by alternating between two states: tumble and run (Figure
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2). During a tumble, the bacterium briefly rotates on the spot, randomly picking
a new direction to start moving, slightly biased toward the current direction of
travel. During a run, the bacterium moves in a relatively straight line for an
amount of time, the length of which increases when the bacterium detects that
it is moving toward a more favourable nutrient source, or decreases if moving
toward a noxious substance. Eventually, convergence on the most favourable lo-
cation in the environment occurs. The foraging behaviour has previously been
applied to distributed function minimisation problems, and identified as a po-
tential search strategy for mobile agents [13]. Note that whilst E. coli occur in
groups, this foraging behaviour is conducted individually without real interac-
tions, so that this is not a true collective swarming mechanism.

Fig. 2. E. coli bacterium foraging behaviour [13]

Whereas the E. coli
bacterium constantly mea-
sures the improvement
or deterioration in nu-
trient level while moving
through its environment,
the motor noise of the e-
puck is such that ambient
audio can be accurately
sampled only when the robot is stationary. Consequently, rather than modu-
lating the length of the current run phase based on the measured gradient, we
instead modulate the length of the following run. Also, following a run that re-
sults in a volume increase, we select a new direction randomly from a normal
distribution around the current heading, otherwise the new direction is selected
uniformly random over all directions. The search terminates when both volume
and proximity measurements indicate that the target is reached.

Although initial experiments demonstrated the search strategy to be effective,
we observed instances where an unfortunate combination of tumbles would result
in the robot passing within a few centimetres of the target without acquiring
it. To improve the search performance at close proximity to the audio beacon,
two further behaviours were activated when the robot measured a volume v
greater than some pre-determined thresholds. This threshold Vwarm is selected
sufficiently high to guarantee the robot is near the beacon and not in some local
maximum elsewhere. The area in which the robot measures a volume level above
this threshold is defined as the warm zone. Once the robot enters the warm zone,
if a subsequent run phase results in a measurement below this threshold, the
robot backtracks to the previous location (Fig. 3a, 3b). The second threshold,
Vhot, is selected sufficiently high to guarantee the robot is within approximately
5cm of the beacon, allowing for the proximity sensors to be used to steer the
robot directly to the target (Fig. 3c, 3d).

Algorithm 3.1 describes the bacterial search adapted for the e-puck robot.
N(a, b) is defined as a random number taken from a normal distribution with
mean a and standard deviation b. U(a, b) is a random number taken from
a uniform distribution between a and b. Lmin and Lmax are constants
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representing minimum and maximum drive lengths, whilst Vmin and Vmax are
constants representing the noise floor volume of the e-puck microphone and the
volume it measures when at the target. vlast is the volume measured at the e-
puck’s previous location. A series of experiments were conducted to quantify the
performance of this simple algorithm compared to a random walk baseline. The
results and analysis are given in Section 4.

Algorithm 3.1. bacterialSearch()

while target not found

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if v < Vwarm < vlast
then backtrack

else

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if Vmin < v > vlast

then

{
rotate N(0, 60)

drive length = (Lmax−Lmin)(v−vlast)
Vmax−Vmin

else

{
rotate U(0, 360)
drive length = Vmin

if v > Vhot
then drive towards closest object
else drive forward

Fig. 3. E-puck searching without backtracking (a) and with backtracking (b); without
proximity assistance (c), and with proximity assistance (d)

3.2 DLA Inspired Navigation

The usable area of the single-agent bacterial search is constrained to the area in
which the beacon is audible. To extend this area when operating as part of an
e-puck swarm, a collective navigation strategy based on DLA was implemented.
DLA is a natural process where particles aggregate in a random manner, forming
fractal-like tree structures rooted at the starting particle (Figure 4). The process
was first described in [14], and examples in nature include dust and snowflake
formation, coral growth and the path taken by lightning. The simple, self or-
ganised process generates a space-filling structure from a fixed point, making it
a suitable approach for our e-puck swarm to construct a traversable structure
rooted at the charging platform.
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3.3 Implementation

In contrast to the real-world audio beacon which emitted pink noise, the sim-
ulated audio beacon emits a single tone, such that it is identifiable as the root
of the DLA structure. The collective navigation strategy is initiated when an
agent beyond the audible range of the charging platform requires a recharge,
and sounds a call for help using a specific frequency. The assisting agents re-
transmit the call for help throughout the swarm and begin random walking.

Fig. 4. Simulated DLA structure [1]

Each assistant random walks until in
range of a DLA tone (either the signal
of the charging platform itself or that of
an aggregated agent), at which point it
stops (aggregates) and retransmits the de-
tected DLA tone at a slightly higher fre-
quency. The result is a tree of audible
nodes with the lowest frequency at the
charging platform. Each node remains in
this state until the DLA tone it initially
detected (its parent) is disabled, at which
time the agent disables its own tone and
returns to its primary task.

The agent requiring recharging contin-
uously performs the bacterial search on
the lowest audible DLA tone. As it approaches each non-root node in the struc-
ture, the node’s parent becomes audible and becomes the new target. When the
charging platform detects the agent has boarded, the root DLA tone is disabled,
releasing the entire swarm back to its primary task. As the agent traverses the
structure, node agents that detect it on its way past (using proximity sensors)
disconnect from the structure, as they are no longer required. This causes dis-
connection of all the node’s children, dramatically reducing the amount of total
agent time committed to the process. Figure 7 depicts the states and decisions
that each agent implements as part of the strategy.

3.4 Synchronisation

Scenarios were observed where one or more assisting agents broke away from
the swarm during the random walk state, but never aggregated onto the DLA
structure before the recharge request was completed. In such cases, once the
disconnected agents(s) rejoined, the swarm was incorrectly commanded back
into the random walk state, even though no agent required recharging.

With no guarantee of a fully connected swarm with respect to audio com-
munication (and thus no inherent temporal ordering of events), this issue was
resolved by having each agent maintain a clock, synchronised with the swarm.
Alert signals are no longer transmitted on one single frequency, but can fall
anywhere in the range Alo to Ahi. The frequency of an alert signal is defined
as Alo + talert, where talert is the time the alert was initiated. Each agent also
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Fig. 5. Alert signal from initiating agent (labelled “low battery”) is being relayed
through the swarm. The red cylinder (centre bottom) is the charging platform beacon;
yellow lines indicate audio communication.

Fig. 6. DLA structure has been constructed (red/orange lines), agent is travers-
ing it toward the charging platform. See also http://www.csse.monash.edu.au/

∼berndm/autonomous epuck/.

maintains a record of the most recent time they transitioned back to the primary
task state, trelease. An agent that detects an alert signal a, first confirms that
a − Alo > trelease. If it is, it relays the alert as normal. If not, the alert is ig-
nored and the agent with the more recent trelease time updates the transmitting
agent’s stale release time. To do so, we define another frequency range Rlo to
Rhi, where Rlo > Ahi. The updating agent transmits a tone on Rlow + trelease,
and upon reception, the stale agent updates its own trelease and returns to the
primary task state.

http://www.csse.monash.edu.au/~berndm/autonomous_epuck/
http://www.csse.monash.edu.au/~berndm/autonomous_epuck/
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Fig. 7. Statechart of DLA Collective Navigation Strategy

The above modifications ensured that break-away agents were brought up
to date with the state of the swarm upon their return, however it did so with
the added cost of requiring agent’s clocks to be synchronised. It is hoped that
our navigation strategy can be improved by solving the synchronisation problem
through some decentralised means.

4 Results and Discussion

The single-agent bacterial search was compared to a pure random walk using
the target acquisitions completed over 150 minutes (hence variation in n acqui-
sitions). Albeit a low baseline, we were interested in demonstrating an effective
search strategy with minimal processing and memory requirements. Between
each target acquisition, the robot performed a random walk to a new starting
position in the environment. The results indicated that the bacterial algorithm
performed significantly better than the random walk, even without the back-
tracking and proximity assistance at close range. Table 1 shows a comparison
between the algorithms.

We compared the DLA collective navigation strategy to an individual agent
search in identically configured simulation environments, such that the perfor-
mance improvement could be quantified and assessed with respect to the time
cost to the swarm. To measure the individual (unassisted) search performance,
an agent was positioned toward the opposing wall of the environment from the
charging platform, well beyond audible range. Unsurprisingly, the time to com-
plete a search from outside the audible range is extremely large, as it was simply
random walking until coming within range. A total of 21 experiments were com-
pleted, with a mean search time of 01:37:27 (hh:mm:ss), and a standard deviation
of 01:12:58. The high variance stems from the fact that the search starts out-
side of the reach of the audio beacon so that initially a pure random walk is
performed.
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Table 1. Comparison of e-puck search algorithms (150 min. observation time)

Algorithm n acquisitions μ σ

Random walk 14 8m 56s 6m 38s

Bacterial search 37 3m 05s 2m 50s

Bact. search with backtracking / prox. assist 47 2m 29s 1m 52s

Performance of the collective navigation strategy was measured by deploying
a swarm of 60 agents randomly in the environment, one agent initiating an
alert from the same location that the individual search was measured from.
As evident in the dramatically improved search time, the collective navigation
strategy proved very effective, however it did so with a substantial time-cost
to the swarm. Table 2 shows the summary of results, where tsearch is the total
search time from when the agent sounded an alert until arriving at the charging
platform, and tcost is the total time committed to the process by assisting agents.
ttraversal is the search time from the moment the searching agent makes contact
with the DLA structure through to search completion, provided to distinguish
the DLA assembly time from the structure traversal time.

Table 2. Performance of collective search over 22 experiments (hh:mm:ss)

μ σ

tsearch 00:15:06 00:06:46

ttraversal 00:09:13 00:05:33

tcost 10:58:19 05:40:20

The single-agent bacterial search proved to be an effective means of perform-
ing a gradient search with minimal processing requirements on an audio source.
It is conceivable that the search strategy could be implemented on miniaturised
robots with simple analog circuitry, making it potentially very useful for swarm
robotics applications requiring basic localisation capability with minimal hard-
ware. Whilst our experiments were limited to a simple rectangular environment,
it is anticipated that the search may also perform well in more complex environ-
ments, as audio does not require a sightline for detection, and effectively provides
a profile of the physical environment through the propagation and reflection of
sound waves.

The DLA collective navigation strategy was demonstrated in simulation to
successfully guide an agent toward its charging platform from outside audible
range. If only a single agent needs to be guided, the experiment results indicate
that the time cost to the swarm outweighs the gain in single-agent search time.
However, in applications where multiple agents need to home in on the target,
such as where collective transport is required, the net time-cost amortises quickly.
In fact, the strategy would break even in total time cost with just 7 of the 60
agents homing in on the target. At the same time the actual duration of the
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homing phase is dramatically reduced. Similarly, applications where loss of a
single agent is unacceptable would also warrant this approach.

The experiments conducted on both the e-puck and the simulated e-puck
swarm were limited to specific environment configurations, and we consider them
proof-of-concept only. With performance data for more environment configura-
tions and specifically different swarm densities, a more complete analysis of both
search strategies’ characteristics could be ascertained.

Variations on the strategy could be applied to other behavioural requirements,
for example the navigation of an entire swarm to a single location (collective
homing) or the retrieval of some object to a pre-defined point (collaborative
search-and-retrieve). In a more general sense, such a strategy may be useful for
any application requiring navigation toward a single target from anywhere in
an environment. Our research demonstrates the usefulness of two very simple
nature-inspired strategies, single-agent bacterial search and DLA-based collabo-
rative search, as the basis of such applications.
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Abstract. Global Equilibrium Search (GES) is a meta-heuristic frame-
work that shares similar ideas with the simulated annealing method.
GES accumulates a compact set of information about the search space
to generate promising initial solutions for the techniques that require
a starting solution, such as the simple local search method. GES has
been successful for many classic discrete optimization problems: the un-
constrained quadratic programming problem, the maximum satisfiability
problem, the max-cut problem, the multidimensional knapsack problem
and the job-shop scheduling problem. GES provides state-of-the-art per-
formance on all of these domains when compared to the current best
known algorithms from the literature. GES algorithm can be naturally
extended for parallel computing as it performs search simultaneously in
distinct areas of the solution space. In this talk, we provide an overview
of Global Equilibrium Search and discuss some successful applications.

Keywords: discrete optimization, meta-heuristics, global equilibrium
search.

1 Method Description

Simulated annealing (SA) [1] is a randomized metaheuristic approach that was
successfully applied to a variety of discrete optimization problems. Usually, the
search process under SA consists of a sequence of transitions between feasible
solutions that is guided by certain probabilistic rules. Standard simulated anneal-
ing is a memoryless optimization approach – the transitions between solutions are
independent from the previous search states. Global equilibrium search (GES) [2]
shares similar ideas, but, unlike simulated annealing, GES uses adaptive memory
structures to collect information about visited solutions, and actively uses this
knowledge to control future transitions.
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Consider a general formulation of a combinatorial optimization problem with
binary variables:

min{f(x)|x ∈ D ⊂ Bn}, (1)

where Bn is a set of all n-dimensional vectors, whose components are either 1
or 0, and f(x) is an objective function. At each stage of the simulated annealing
method, a set of solutions N(x) ∈ D that belong to a user-defined neighborhood
of x is generated according to some predefined rule. The method sequentially
evaluates N(x), and moves from the current solution to one of the solutions
in N(x) based on the Metropolis acceptance criterion [3], which describes the
change of states in thermodynamic systems. The transition from x to y ∈ N(x)
happens with the probability P (x → y), which depends on a temperature pa-
rameter μ:

P (x→ y) =

{
exp(−μ[f(y) − f(x)]), if f(x) ≤ f(y);

1 if f(x) > f(y).

Given a sufficient number of iterations with constant temperature parameter μ,
the SA method will converge to an equilibrium state. If we decide to terminate
it after reaching the equilibrium, then the final solution – which can be modeled
by a random vector ξ(μ, ω) – will follow a Boltzmann distribution [4]:

P{ξ(μ, ω) = x} =

⎧⎪⎪⎨⎪⎪⎩
exp(−μf(x))∑

x∈D

exp(−μf(x))
, x ∈ D

0, x /∈ D.

(2)

The set of feasible solutions D can be represented as a union of two disjoint
subsets: D1

j = {x | x ∈ D, xj = 1}, and D0
j = {x | x ∈ D, xj = 0}, representing

feasible solutions with the j-th component equal to 1 or 0 respectively. The
probability that the j-th component of random vector ξ(μ) is equal to 1 can be
expressed as

πj(μ) ≡ P{ξj(μ) = 1} =

∑
x∈D1

j
exp(−μf(x))∑

x∈D exp(−μf(x)) . (3)

The stationary probabilities πj(μ) can be used to generate random vectors that
have approximately Boltzmann distribution provided by (2). Usually, ξj(μ) and
ξi(μ) are not independent for all i �= j, therefore we can only achieve an approx-
imation of (2) when generating random solutions by fixing their components
independently according to (3). GES collects information about some solutions
from D and uses it to approximate the equilibrium distribution (2).

Let S be a subset ofD; S1
j = {x | x ∈ S, xj = 1}, and S0

j = {x | x ∈ S, xj = 0}.
For example, this set can contain all local optima discovered in the past search
stages. Instead of explicitly storing the solutions in S, it is sufficient to store
only the values that are required to approximate (3). Specifically, we set:
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Z(μ) =
∑
x∈S

exp(−μ[f(x) − min
x∈S

f(x)]) (4)

Z1
j (μ) =

∑
x∈S1

j

exp(−μ[f(x) − min
x∈S

f(x)]) (5)

Every time a new solution is included in S, these memory structures can be
updated by adding the corresponding terms to (4) and (5), without storing
complete solutions with all attributes. These values are scaled using the value
of the best objective function in S, min

x∈S
f(x). Whenever the best objective is

improved by a newly found solution, Z(μ) and Z1
j (μ) are rescaled by multiplying

each value by exp(xoldbest − xnewbest), where xoldbest and xnewbest are the old
best objective value and the new best objective value, respectively.

Using these memory structures, the stationary probabilities πj(μ) from (3)
can be approximated as

pj(μ) =
Z1
j (μ)

Z(μ)
. (6)

1.1 Intensification and Diversification

GES generates solutions according to the distribution defined by (6), or applies
a sequence of perturbations to the components of a given solution guided by (6),
which is usually more efficient in practice. The latter approach to generating new
solutions should be used when a single perturbation might lead to an infeasible
solution, in which case such perturbations are simply prohibited.

By increasing the value of the temperature parameter we can generate solu-
tions that more closely resemble the best solution in the set of known solutions
S. Let xmin ∈ S denote the best solution in S: f(xmin) = min

x∈S
f(x). If all other

solutions in S have larger objective functions, then

lim
μ→∞ pj(μ) = x

min
j .

This follows from the definition of pj(μ) and the fact that limμ→∞ Z(μ) = 1. This
property is used in GES to alternate between diversification and intensification
stages using a monotonically increasing sequence of temperature parameters:
μ1, μ2, . . ., μK . In order to calculate pj(μk) for all temperature values from this
sequence, we need to store (n+1) ·K values corresponding to Z1

j (μk) and Z(μk),
where n is the number of binary variables in the problem definition.

The specific values for the temperature parameters are usually calculated
using simple recursive formulas: μ0 = 0, μk+1 = αμk for k = 1, . . . ,K − 1. The
parameters involved in this recursion (μ1, α and K) are chosen to guarantee the
convergence to the best solution in the set S:

‖xmin
j − pKj ‖ ≈ 0
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Below, we will address the dynamic adjustment of the temperature schedule that
can be easily implemented in practice.

1.2 Alternative Memory Implementations

Even for small values of the temperature parameter μ, the expression given
by (6) can provide biased probabilities. For example, if we generate solutions
with temperature equal to zero and the set S contains only solutions with jth
component equal to 1, then the probability pj(0) = 1. To deal with this bias,
one can use alternative memory implementations.

For example, the probabilities can be approximated using the best objective
values corresponding to each component:

f0j =

{
min{f(x) : x ∈ S0

j } if |S0
j | �= 0

∞ otherwise

f1j =

{
min{f(x) : x ∈ S1

j } if |S1
j | �= 0

∞ otherwise

Let xmin be a solution from the set S with a minimum value: f(xmin) =
min{f(x) : x ∈ S}. The probability pj(μ) can be approximated as:

pj(μ) =
exp(−μ[f1j − f(xmin)])

exp(−μ[f1j − f(xmin)]) + exp(−μ[f0j − f(xmin)])
(7)

In Figure 1, we present a pseudo-code of the procedure that calculates the gener-
ation probabilities using f1j and f0j . To achieve convergence to the best solution
in the set S when using Formula (7), we penalize solutions that have the same
objective value as xmin (Figure 1, lines 10–13; 20–23). In addition, if S1

j (or S0
j )

is empty, one can use the maximum absolute difference between objective values
instead of f1j − f(xmin) (f0j − f(xmin)) to avoid premature convergence (Figure
1, lines 5, 15).

The general scheme of the GES method is presented in Figure 2. In the begin-
ning memory structures are initialized by a randomly generated solution. The
temperature cycle is repeated until nfailmax cycles without improvement to
the best found solution, xbest. Generation probabilities are recalculated at every
temperature stage using the corresponding temperature parameter. These prob-
abilities are used to generate ngen solutions that are used as initial points for
local search procedure. Locally-optimal solutions are used to update the adaptive
memory structures, which will affect the future generation probabilities.

1.3 Parallel Implementations

GES algorithm can be naturally extended for parallel computing as it performs
search simultaneously in distinct areas of the solution space. One can trivially
accelerate GES by initiating a set of copies of GES procedures with different ran-
dom seeds. Due to the randomness, each copy will follow a distinct search trajec-
tory, which often leads to significant parallel acceleration in practice [5]. Further
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Require: μ – temperature parameter μ, xmin – current best solution, f0 and f1 –
vectors of the best object values corresponding to each component, n – number
of solution components;

1: maxdif = max
j

{abs(f0
j − f1

j ) : f
1
j < ∞; f0

j < ∞; }
2: sum0 = sum1 = 0
3: for j = 1 to n do
4: if f0

j = ∞ then
5: sum0 = sum0 + exp(−μ ·maxdif)
6: else
7: if f0

j > f(xmin) then
8: sum0 = sum0 + exp(−μ[f0

j − f(xmin)])
9: else
10: if xmin

j = 0 then
11: sum0 = sum0 + 1
12: else
13: sum0 = sum0 + exp(−μ)
14: if f1

j = ∞ then
15: sum1 = sum1 + exp(−μ ·maxdif)
16: else
17: if f1

j > f(xmin) then
18: sum1 = sum1 + exp(−μ[f1

j − f(xmin)])
19: else
20: if xmin

j = 1 then
21: sum1 = sum1 + 1
22: else
23: sum1 = sum1 + exp(−μ)
24: pi(μ) =

sum1
sum1+sum0

25: return p(μ)

Fig. 1. Calculation of the transition probabilities

improvements can be achieved by sharing the best found solutions and/or the
adaptive memory structures (for example, by sending the updates to vectors
f0 and f1j ) between different copies. Such sharing is equivalent to increasing
the number of solutions, ngen, generated at each temperature stage of GES
algorithm.

2 Applications

Global equilibrium search has a number of advantages when compared to the
simulated annealing method. Firstly, the presence of adaptive memory allows
GES to outperform SA in terms of solution quality and computational speed.
Its performance was tested on classic optimization problems that capture the
complexities of modern optimization applications. Here we mention some of these
applications and provide detailed results for the quadratic assignment problem.
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Require: μ – vector of temperature values, K – number of temperature stages,
maxnfail – restart parameter, ngen – # of solutions generated during each stage

Ensure:
1: xbest = construct random solution; S={xbest}
2: while stopping criterion = FALSE do
3: x ← construct random solution
4: xmin = x
5: S = {xmin} (set of known solutions)
6: for nfail = 0 to nfailmax do
7: xold = xmin

8: for k = 0 to K do
9: p(μk) = calculate generation probabilities(S, μk)
10: for g = 0 to ngen do
11: x = generate solution(x, p(μk))
12: x = local search method(x)
13: S = S ∪ x
14: xmin = argmin{f(x) : x ∈ S}
15: if f(xmin) < f(xbest) then
16: xbest = xmin

17: if f(xold) > f(xmin) then
18: nfail = 0
19: return xbest

Fig. 2. Pseudo-code of the GES method

2.1 Unconstrained Binary Quadratic Problem

One of the well-known and most interesting classes of integer optimization prob-
lems is the maximization of the quadratic 0–1 function:

max
x∈{0,1}n

f(x) =

n∑
i=1

n∑
j=1

qijxixj , (8)

where qij are elements of an n×n symmetric real matrix Q ∈ R
n×n. This prob-

lem is referred to as an unconstrained binary quadratic programming problem.
Many fundamental problems in science, engineering, finance, medicine and other
diverse areas can be formulated as quadratic binary programming problems.
Quadratic functions with binary variables naturally arise in modeling selections
and interactions.

GES was applied to a wide spectrum of large-scale instances of the uncon-
strained binary quadratic programming problem [6]. The computational experi-
ments revealed favorable performance compared to the best known heuristics on
a set of publicly available benchmark instances [7,8,9].

2.2 Maximum Satisfiability Problem

Maximum satisfiability problem consists of finding an assignment of boolean
variables that satisfies as many given logical clauses as possible. In the weighted
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maximum satisfiability problem each logical clause has a predetermined positive
weight, and the goal is to search for an assignment, which maximizes the total
weight of the satisfied clauses.

Among various heuristic approaches for solving this problem – such as, al-
gorithms based on reactive tabu search [10], simulated annealing [11], GRASP
[12,13,14,15,16], iterated local search [17] and guided local search [18] – GES
provides the state-of-the-art performance [19] on many benchmark instances
[20,21,22,23].

2.3 Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) stated for the first time by Kooper
and Beckman in 1957 is a well known combinatorial optimization problem and
remains one of the greatest challenges in the field [24], [25]. Firstly it was for-
mulated in the context of the plant location problem. Given n facilities with
some physical products flow between them and n locations with known pairwise
distances, one should determine to which location each facility must be assigned
in order to minimize total distance × flow.

Mathematically QAP can be formulated as follows: let An×n = a(i, j) be a
matrix, where ai,jR

+ represents product flow between facilities fi and fj, let
Bn×n = (bi,j) be a matrix, where bi,j ∈ R+ represents the distance between
locations li and lj. Let p : {1, . . . , n} → {1, . . . , n} be a permutation of integers.
The cost of a permutation is defined as follows:

c(p) =

n∑
i=1

n∑
j=1

aijbp(i)p(j).

The goal is to find a permutation p∗ with a minimal cost. The QAP is well
known to be strongly NP-hard, and even small instances may require long com-
putational time. A number of practical problems can be formulated as QAP.
Among those are problems dealing with backboard wiring, scheduling, manufac-
turing, statistical data analysis, typewriter keyboard design, image processing,
turbine balancing and so on [25], [26].

We performed a series of computational experiments on well known
benchmark problems from the QAPLIB library [27] (online version is available
at http://www.opt.math.tu-graz.ac.at/qaplib/). In our implementation we used
Tabu Search algorithm as a local search method [28]. The neighborhood of a
given permutation p̂ was defined as N(p̂) = {p : ‖p − p̂‖ = 2}, where ‖ · ‖
denotes Hamming distance.

We compared our algorithm to Robust Tabu search (RoTabu), Ant Colony
and Simulated Annealing (SA) algorithms (the codes for these algorithms were
obtained from QAPLIB resource as well). Each algorithm was executed on each
instance 10 times. The experiments were performed on a 3GHz AMD computer.
In Table 1 and Table 2 we report the average deviation (in %) between the best
solution found by the algorithm and the best known solution.
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Table 1. Experiments on real world instances. Instance - problem instance name,
n - size of the instance, BKS - best known solution value, time - maximum allowed
computational time in seconds.

Instance n BKS RoTabu SA Ant Colony GES time, s

bur26a 26 5426670 0.03 0.52 0.02 0.03 0.1
bur26b 26 3817852 0.09 0.32 0.03 0.07 0.1
bur26c 26 5426795 0.03 0.29 0 0 0.1
bur26d 26 3821225 0.05 0.10 0 0 0.1
bur26e 26 5386879 0.01 0.18 0 0 0.1
bur26f 26 3782044 0.01 0.06 0 0 0.1
bur26g 26 10117172 0.01 0.30 0 0 0.1
bur26h 26 7098658 0.13 0.13 0 0 0.1
chr25a 25 3796 4.23 45.5 1.24 0 2
nug30 30 6124 0.04 5.29 0.15 0 2
kra30a 30 88900 0 3.77 0.70 0 4
kra30b 30 91420 0.01 3.59 0.04 0.01 4
tai64c 64 1855928 0.37 1.28 0 0 1
tai20b 20 122455319 0.05 8.75 0.09 0 0.1
tai25b 25 344355646 0.02 2.82 0 0 0.5
tai30b 30 637117113 0.04 2.66 0 0 1
tai35b 35 283315445 0.1 3.09 0 0 2
tai40b 40 637117113 0.43 2.12 0.11 0 2
tai50b 50 458821517 1.58 0.57 0.26 0 8
tai60b 60 608215054 1.05 0.66 0.32 0 20
tai80b 80 818415043 0.84 1.43 0.94 0.12 40

Table 2. Experiments on randomly generated instances. Instance - problem instance
name, n - size of the instance, BKS - best known solution value, time - maximum
allowed computational time in seconds.

Instance n BKS RoTabu SA Ant Colony GES time, s

tai20a 20 703482 0.05 0.55 0.44 0.06 2.5
tai25a 25 1167256 0 0.93 1.5 0 5
tai30a 30 1818146 0.29 0.47 0.93 0.03 7.5
tai35a 35 2422002 0.63 0.86 1.14 0.16 10
tai40a 40 3139370 0.78 1.01 1.43 0.30 30
tai50a 50 4941410 1.04 1.37 1.75 0.64 45
tai60a 60 7205962 1.17 1.25 1.94 0.84 60
tai80a 80 13546960 1.28 1.07 1.39 0.62 120

3 Conclusions

One of the most important qualities of GES is its ability to process and uti-
lize the solutions that are obtained by different search techniques. GES offers
a mechanism of information processing that can be used to organize an intelligent
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multi-start search that involve different optimization techniques. This collabora-
tive functionality can be effectively used in parallel implementations. Numerous
successful applications on a wide range of combinatorial optimization problems
corroborate the efficiency of the GES method.
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Abstract. Sparse matrices emerge in a number of problems in science
and engineering. Typically the efficiency of solvers for such problems
depends crucially on the distances between the first non-zero element in
each row and the main diagonal of the problem’s matrix — a property
assessed by a quantity called the size of the envelope of the matrix. This
depends on the ordering of the variables (i.e., the order of the rows and
columns in the matrix). So, some permutations of the variables may
reduce the envelope size which in turn makes a problem easier to solve.
However, finding the permutation that minimises the envelope size is
an NP-complete problem. In this paper, we introduce a hyper-heuristic
approach based on genetic programming for evolving envelope reduction
algorithms. We evaluate the best of such evolved algorithms on a large
set of standard benchmarks against two state-of-the-art algorithms from
the literature and the best algorithm produced by a modified version
of a previous hyper-heuristic introduced for a related problem. The new
algorithm outperforms these methods by a wide margin, and it is also
extremely efficient.

Keywords: Hyper-Heuristic, Genetic Programming, Envelope Reduc-
tion Problem, Graph Labelling, Sparse Matrices.

1 Background

A substantial number of problems in science and engineering require the solution
of large systems of linear equations. The effectiveness of methods designed to
handle such systems depends critically on finding an ordering for the variables
for which the distances between the first non-zero element in each row and the
main diagonal of the problem’s matrix is small [15]. This property is typically
assessed by a quantity called the size of the envelope of the matrix. Let us start
by providing a formal definition of it.

Let A be an N × N symmetric matrix with entries aij . The row bandwidth
of the ith row of A is defined as follows: bi(A) = i − min {j : aij �= 0}. In other
words, the row bandwidth is the distance (in columns) from the first non-zero
entry in a row to the diagonal [7]. The envelope of matrix A is directly related
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to its row bandwidths, and can be thought of as a function e(i, A) = bi(A) + 1,
which returns the number of elements between the first non-zero entry in a row
and the main diagonal (inclusive). Then the size of the envelope of the matrix
is defined as [20]:

|Env(A)| =
N∑

i=1

e(i, A) .

Finding a permutation of rows and columns of A which minimises the envelope
size |Env(A)| — a problem known as the Envelope Reduction Problem (ERP)
— is the focus of this paper. Since there are N ! possible permutations for an
N × N matrix, the ERP is considered, in general, a very difficult combinatorial
optimisation problem. Indeed, ERP was shown to be NP-complete [3].

1.1 Envelope Reduction Algorithms

A variety of methods have been proposed in order to address the ERP. One of
the earliest heuristic approaches for reducing the bandwidth and envelope size of
sparse matrices was introduced by Cuthill and McKee [6]. Their algorithm (CM)
is still one of the most widely used algorithms to (approximately) solve these
problems. In this method, the nodes in the graph representation of a matrix are
partitioned into equivalence classes based on their distance from a given root
node. The partition is known as level structure for the given node. In CM, the
root node for the level structure is normally chosen from the nodes of minimum
degree in the graph. George [8] observed that renumbering the CM ordering in
a reverse way (RCM) often yielded a result superior to the original ordering.
The GPS algorithm, introduced by Gibbs, Poole and Stockmeyer [10], also uses
level structures, and it is comparable with RCM in terms of solution quality,
while being several times faster. The GK (Gibbs-King) algorithm [9], which is
a variation of GPS, provides considerably better reduction of the envelope in
comparison with the original GPS, but it is often much slower in execution.
The Sloan algorithm [20] offered a significant improvement over the methods
mentioned earlier by introducing a new step in which the ordering obtained
from a variant of the GPS algorithm was locally refined. Adopting a very different
approach Barnard et al. [2] proposed the use of spectral analysis of the Laplacian
matrix associated with the graph representing the non-zero elements in a sparse
matrix as an effective method for the reduction of the envelope of a sparse matrix.
Recently, also a new variation of the GPS algorithm has been presented [21].

1.2 Hyper-Heuristics

The term hyper-heuristic was first introduced by Cowling et al. [5]. According
to their definition, a hyper-heuristic manages the choice of which lower-level
heuristic method should be applied at any given time, depending upon the char-
acteristics of the heuristics and the region of the solution space currently under
exploration. Here, a heuristic is a rule-of-thumb or “educated guess” that reduces
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the search required to find a solution. More generally a hyper-heuristic could be
defined as “heuristics to choose other heuristics” [4]. Here, we embrace a slightly
different definition and see a hyper-heuristic as a search algorithm that explores
the space of problem solvers. Genetic Programming (GP) [13,16] has been very
successfully used as a hyperheuristic. For example, GP has evolved competitive
SAT solvers [1], state-of-the-art or better than state-of-the-art bin packing al-
gorithms [19], particle swarm optimisers [18], evolutionary algorithms [14], and
TSP solvers [11].

In this paper, a hyper-heuristic approach based on GP is introduced for evolv-
ing graph-theoretic envelope reduction algorithms. Our approach is to adopt the
basic ideas of some of the best algorithms for ERP, in particular their use of level
structures, but to evolve the strategy the algorithm uses to construct permuta-
tions.1 The paper is organised as follows: in Sec. 2, we describe the proposed
hyper-heuristic for the solution of the ERP in detail; in Sec. 3, we report the
results of our experiments; and finally, our conclusions are given in Sec. 4.

2 Proposed Hyper-Heuristic

In our method for addressing the ERP, which we call Genetic Hyper-Heuristic
or GHH for brevity, GP is given a training set of matrices as input, and it
produces a novel solver for ERPs as its output. To cope with such a complex
task, following the strategy adopted in previous work [19,12], we provide GHH
with the “skeleton” of a generic level-structure-based ERP solver and we ask GP
to evolve the “brain” of that solver, that is the decision-making element of the
system which prioritises nodes for insertion into a permutation.

A description of GHH is given in Algorithm 1. For efficiency, GHH computes
the fitness of all individuals in a new generation incrementally, by testing the
whole population on a problem in the training set before moving to the next
(Step 4). For the same reason, we operate on the graph representation of sparse
matrices instead of directly acting on the matrices. Note also that, unlike previ-
ous solvers (including our method [12]) which prioritise nodes at each level in a
level structure independently, GHH is capable of exploring and sorting vertices
located beyond a specific level. More details on Algorithm 1 are provided below.

2.1 Our GP System

We used a tree-based GP system with some additional decoding steps required
for the ERP. The initial population was generated randomly using a modified
version of the ramped half-and-half method [13,16] using the functions and ter-
minals shown in Table 1 (more on these below). As shown in Algorithm 1, the
1 To the best of our knowledge, no prior attempt to use a hyper-heuristic to evolve ERP

solvers has been reported in the literature. However, we conducted previous research
with a hyper-heuristic for the related bandwidth minimisation problem where the
objective is to minimise maxi bi(A) [12]. We will compare our new envelope reduction
approach against an envelope-reduction version of such hyper-heuristic in Sec. 3.
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Algorithm 1. GHH for ERP
1: Randomly generate an initial population of programs from the available primitives.
2: repeat
3: Initialise the fitness of each program p ∈ population to 0.
4: for each instance Gi ∈ training set of ERPs do
5: Select a starting vertex s and construct a level structure rooted at s.
6: for each program p ∈ population do
7: l ← empty list
8: for each vertex v ∈ V (Gi) do
9: Insert s into array perm [1...n] and update l.

10: Scan l and if l.count = 0, then break.
11: for each vertex v′ ∈ l do
12: Execute p.
13: end for
14: Create permutation σ represented by p.
15: Sort vertices in l in order given by σ.
16: s ← first element of the ordered list l; l.remove(s).
17: end for
18: Apply perm to the adjacency list of the graph Gi.
19: Compute the envelope.
20: fitness[p] = fitness[p] + envelope(Gi, p).
21: end for
22: end for
23: Apply selection.
24: Produce a new generation of individual programs.
25: until the termination condition is met.
26: return the best program tree.

Table 1. The functions and terminals used in our GP system

Primitive set Arity Description

+ 2 Adds two inputs
- 2 Subtracts second input from first input
∗ 2 Multiplies two inputs
ED 0 Returns the number of unvisited vertices connected to each vertex
DFSV 0 Returns the distance from starting vertex for each vertex
Constants 0 Uniformly-distributed random constants in the interval [−1.0,+1.0]

fitness of a program tree (to be minimised) is the sum of the envelopes of the
solutions that it creates when run on each problem instance in the training set.

The parameters of our GP runs are given in Table 2.2 Tournament selec-
tion was used. New individuals were created by applying reproduction, sub-tree
crossover and point mutation. We also used elitism to preserve the overall best
found solution. Also, to control excessive code growth, the Tarpeian method [17]
was utilised in the system. The termination criterion used was based on the
predetermined maximum number of generations to be run.

2.2 Specialised Primitives

To make it possible for GHH to exploit the new possibilities offered by its ability
to explore and prioritise vertices located at different depths in the level structure,
we provided two special primitives, ED and DFSV (see Table 1).
2 Parameters were selected after conducting a number of preliminary experiments,

considering both the quality of solutions and run times.
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Table 2. Parameters used for our runs

Parameter Value

Maximum Number of Generations 100
Maximum Depth of Initial Programs 3
Population Size 2000
Tournament Size 4
Elitism Rate 0.1%
Reproduction Rate 0.9%
Crossover Rate 70%
Mutation Rate 29%
Mutation Per Node 0.05%

The primitive ED, which stands for Effective Degree, is motivated by the com-
mon method of sorting vertices in a level structure based on their degree in
classical ERP solvers. The degree of a vertex is the number of vertices connected
to that vertex. There is no doubt that this is of fundamental importance in node
ordering algorithms for ERP. However, we found that prioritising using the prim-
itive ED, which does not include the vertices already visited when counting the
number of vertices connected to a vertex, provides more accurate guidance.

In a level structure, all vertices in a level are located at the same distances
from the root vertex. Since in traditional ERP solvers nodes are sorted only
within each level before moving to the next, node distance from the root is an
irrelevant feature for such algorithms. However, in GHH, after the first step of
the algorithm, nodes from different levels will be present in the list l. These
nodes will thus have different distances from the root node. The primitive DFSV
captures this information. This may help prioritise vertices and break ties.3

2.3 Vertex Selection

Let us analyse Algorithm 1 from the vertex selection point of view. First, a level
structure rooted at a suitable starting vertex s (vertex of minimum degree or a
pseudo-peripheral vertex ) is constructed (Step 5). Next, an empty list l is formed
for each program p in the population (Step 7). The vertex s is then inserted into
the first position of array perm, and l is updated (Step 9). The update process
includes finding all unvisited vertices connected to s and inserting them into l.
Note that further vertices will sequentially be assigned to s and inserted in the
second, third, etc. positions in perm.

Next, the GP interpreter is called k times, where k is the number of vertices
in l (Step 12). Each call of the interpreter executes the selected program with
respect to the different values returned by ED and DFSV. The outputs obtained
from each execution of the given program are stored in a one dimensional array.
This array is then sorted in ascending order while also recording the position
that each element originally had in the unsorted array. Reading such positions
sequentially from the sorted array produces a permutation associated with the
3 Sloan [20] also uses a distance quantity in his algorithm, but he computes distances

from the end node of a pseudo-diameter.
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original program (Step 14). The vertices located in l are then ordered based on
the permutation generated (Step 15).

In Step 16, the first element of l is then removed and considered as a new
starting vertex. This process is repeated for each vertex in V (Gi) until all the
vertices of graph Gi have been numbered. Finally, perm is applied to the ad-
jacency list of the initial graph (or matrix), a new adjacency list is generated
(Step 18), and its envelope is computed (Step 19).

2.4 Training and Test Sets

We used a training set of 25 benchmark instances Gi from the Harwell-Boeing
sparse matrix collection. This is a collection of standard test matrices aris-
ing from problems in FEM grids, linear systems, least squares, and eigenvalue
calculations from a wide variety of scientific and engineering disciplines. The
benchmark matrices were selected from 5 different sets in this collection, namely
BCSSTRUC1, BCSSTRUC3, CANNES, LANPRO and LSHAPE with sizes rang-
ing from 24 × 24 to 960 × 960. This training set was used only to evolve the
heuristics. The performance of the evolved heuristics was then evaluated using
a completely separate test set of 30 matrices taken from Everstine’s collection
(DWT) and BCSPWR, both included in the Harwell-Boeing database. DWT
set is closely related to CANNES and LSHAPE sets used in our training set in
terms of its discipline and the class of problems. We also picked the six largest
instances from the BCSPWR set, which is in a totally different class compared
to the training set used. We did this to assess how well the generated heuristics
generalised in unseen situations.

3 Results

Ten independent runs of GHH with the training set specified above were per-
formed, and the corresponding best-of-run individual in each was recorded. We
then selected as our overall best evolved heuristic the best program tree from
these ten best-of-run results.4 The simplified version of the best heuristic evolved
by GHH is as follows:

(((((((DFSV + ED) + (ED * ED)) * (((DFSV * ((0.616301555473498 + (DFSV * (DFSV - -
0.156489470580821))) + ((DFSV - -0.778113556456805) * ((DFSV * 0.680593788009413) + (DFSV *
ED))))) - (DFSV - -0.778113556456805)) - 0.273723254573403)) - 0.616301555473498) + (((ED - ED) +
DFSV) - -0.163010843639733)) + ((DFSV + (0.316761550175381 * DFSV)) - 0.889497244679135)) + -
0.00709300954225148)

This function is shown graphically in Figure 1. The function is monotonic in
both ED and DFSV. For small values of ED, nodes closer to the root are preferred
4 Due to the high computational load involved in the use of hyper-heuristics one

can normally only perform a very small number of runs. However, this is normally
considered acceptable since whenever focusing on human-competitive results one is
more interested in the algorithms resulting from the application of a hyper-heuristic
than on the analysis of the hyper-heuristic itself.
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Fig. 1. Plot of the best GHH heuristic

over nodes further away. So, in a highly sparse matrix the algorithm behaves
similarly to CM. However, if there are significant differences in ED values, the
algorithm looks ahead and may prefer a deeper node with a lower ED to a closer
one with a higher ED, thus exhibiting a previously totally unexplored strategy.

We incorporated this heuristic into a level structure system and carried out
experiments with the test set. In order to assess the performance of the heuristic
generated, we compared it against two well-known and high-performance algo-
rithms: RCM and GK. In practice, both algorithms are still among the best and
most widely used methods for envelope reduction. We also tested this heuristic
against GP-HH, which is the best algorithm produced by an envelope-minimising
version of our previous hyper-heuristic method for evolving bandwidth reduction
heuristics [12]. Unlike GHH’s heuristics, GP-HH is constrained to operating at
only one level of a level structure at a time.

Table 3 shows a performance comparison of the algorithms under test. All
results associated with RCM and GK on the DWT set were taken from [20].
Because there were no results available in the literature for the BCSPWR set,
we used the highly enhanced version of the RCM algorithm contained in the
MATLAB library to compute the related envelopes. We do not report the results
of GK on the BCSPWR problems as we did not have access to the original code,
or a reliable software package.

As shown in the table, the results of GHH are extremely encouraging with
respect to the mean of the envelope values and the number of the best results
obtained (shown in the “Wins/Draws” rows). GHH’s best evolved program out-
performs RCM, GK and GP-HH’s best evolved program by a significant margin,
and produces extremely good results for the BCSPWR set.

Our system was implemented in C#, and all the experiments were performed
on an AMD Athlon(tm) Dual-core Processor 2.20 GHz. We measured the time
required for our method to solve each problem instance on this computer. The
running times for DWT 59 (the smallest instance) and BCSPWR10 (the largest
instance) were 0.0307 and 1.0094 seconds, respectively, while the average running
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Table 3. Comparison of GHH’s best evolved program against the RCM and GK algo-
rithms as well as GP-HH’s best evolved program

Envelope

Instance Dimension RCM GK GP-HH GHH

DWT 59 59 × 59 314 314 327 297

DWT 66 66 × 66 217 193 193 194

DWT 72 72 × 72 244 244 355 291

DWT 87 87 × 87 696 682 685 556

DWT 162 162 × 162 1641 1579 1611 1610

DWT 193 193 × 193 5505 4609 4851 5196

DWT 209 209 × 209 3819 4032 3851 3580

DWT 221 221 × 221 2225 2154 2335 2053

DWT 245 245 × 245 4179 3813 4884 3081

DWT 307 307 × 307 8132 8132 8644 7693

DWT 310 310 × 310 3006 3006 3045 2974

DWT 361 361 × 361 5075 5060 5060 5060

DWT 419 419 × 419 8649 8073 8635 7411

DWT 503 503 × 503 15319 15042 15139 13759

DWT 592 592 × 592 11440 10925 11933 11160

DWT 758 758 × 758 8580 8175 8479 8250

DWT 869 869 × 869 19293 15728 16942 15296

DWT 878 878 × 878 22391 19696 22074 21572

DWT 918 918 × 918 23105 20498 22032 22471

DWT 992 992 × 992 38128 34068 37288 37288

DWT 1005 1005 × 1005 43068 40141 41525 38107

DWT 1007 1007 × 1007 24703 22465 24692 24156

DWT 1242 1242 × 1242 50052 52952 50515 44666

DWT 2680 2680 × 2680 105663 99271 105967 92500

Mean 16893.50 15868.83 16710.92 15384.20

Wins/Draws 0/1 8/3 0/2 13/1

BCSPWR05 443 × 443 11227 NA 10246 5377

BCSPWR06 1454 × 1454 64636 NA 55897 29499

BCSPWR07 1612 × 1612 75956 NA 65675 32664

BCSPWR08 1624 × 1624 79811 NA 80057 33045

BCSPWR09 1723 × 1723 80983 NA 76222 42477

BCSPWR10 5300 × 5300 672545 NA 655482 296313

Mean 164193.00 NA 157263.20 73229.16

Wins/Draws 0/0 NA 0/0 6/0

Numbers in bold face are the best results.
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time was 0.1605 seconds. This reveals that our evolved algorithm is not only very
effective but also extremely efficient.

4 Conclusions

We have proposed a hyper-heuristic approach (GHH) based on genetic program-
ming for evolving envelope reduction algorithms. The algorithm is novel not
only from the point of view of being the first to use GP on this problem but
also because it incorporates new ideas for using a level structure system without
its conventional constraints. Also, we have employed two novel features in the
process of prioritising nodes for the construction of permutations.

The best heuristic generated by GHH were compared against two well-known
and high-performance algorithms, i.e., the RCM and GK, as well as the best
heuristic evolved by a hyper-heuristic method we previously developed, on a
large set of standard benchmarks from the Harwell-Boeing sparse matrix col-
lection. GHH’s best evolved heuristic showed remarkable performance, both on
benchmark instances from the same class as the training set and also on large
problem instances from a totally different class, confirming the efficacy of our
approach. The evolved heuristic was also extremely efficient.
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Abstract. The max-cut problem is to partition the vertices of a weighted
graph G = (V,E) into two subsets such that the weight sum of the edges
crossing the two subsets is maximized. This paper presents a memetic
max-cut algorithm (MACUT) that relies on a dedicated multi-parent
crossover operator and a perturbation-based tabu search procedure. Ex-
periments on 30 G-set benchmark instances show that MACUT competes
favorably with 6 state-of-the-art max-cut algorithms, and for 10 instances
improves on the best known results ever reported in the literature.

Keywords: Multi-parent crossover, memetic algorithm, local search,
graph partitioning.

1 Introduction

Consider an undirected graph G = (V,E) with vertex set V = {1, ..., n} and
edge set E ⊂ V ×V . Let wij ∈ Z be the weight associated with edge {i, j} ∈ E.
The well-known max-cut problem is to seek a partition of the vertex set V into
two disjoint subsets S1 ⊂ V and S2 = V \ S1, such that the weight of the cut,
defined as the sum of the weights on the edges connecting the two subsets, is
maximized, i.e., max

∑
u∈S1,v∈S2

wuv. The max-cut problem, more precisely its
weighted version, is one of Karp’s 21 NP-complete problems [10].

The computational challenge of the max-cut problem has motivated a large
number of solution procedures including approximation algorithms, exact meth-
ods and metaheuristics. The approximation approach (see for example [5,9,11])
provides a guaranteed performance, but is generally outperformed by other meth-
ods in computational testing. Recent examples on exact methods include the
cut and price approach [14] and the branch and bound approach [18]. For large
instances, various metaheuristic algorithms have been extensively used to find
high-quality solutions in an acceptable time. Some representative examples in-
clude GRASP [4], ant colony [8], hybrid genetic algorithm [12], tabu search
[16,13,21], scatter search [15], global equilibrium search [19] and maximum neu-
ral network [20].

In this paper, we present a memetic algorithm for the max-cut problem which
is inspired by a very recent algorithm initially designed for the balanced max-
bisection problem [22]. Experiments on a set of 30 well-known benchmark in-
stances show that our memetic approach performs very well compared with state
of the art algorithms.

� Corresponding author.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 297–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 A Memetic Algorithm for the Max-Cut Problem

2.1 Outline of the Memetic Algorithm

Memetic algorithms are hybrid search methods that typically blend population-
based search and neighborhood-based local search framework. The basic idea
behind memetic approaches is to combine advantages of the crossover that dis-
covers unexplored promising regions of the search space, and local optimization
that finds good solutions by concentrating the search around these regions. The
general architecture of our memetic algorithm for the max-cut problem is sum-
marized in Algorithm 1. From an initial population of solutions which are first
improved by a tabu search procedure, the algorithm carries out a number of evo-
lution cycles. At each cycle, which is also called a generation,m (m ≥ 2) parents
are randomly selected to serve as parents and the crossover operator is applied
to create an offspring solution, which is further optimized by tabu search. Sub-
sequently, the population updating rule decides whether the improved offspring
should be inserted into the population and which existing individual should be
replaced. We describe below the main components of our memetic algorithm.

Algorithm 1. Memetic algorithm for the max-cut problem

Require: A weighted graph G = (V,E,ω), population size p
Ensure: The best solution I∗ found
1: Pop = {I1, ..., Ip} ← GeneratePopulation(p) /* Section 2.3 */
2: I∗ ← Best(Pop)
3: while Stop condition is not verified do
4: (I1, ..., Im) ← ChooseParents(Pop) /*Randomly select m ≥ 2 parents */
5: I0 = Recombination(I1, ..., Im) /* Section 2.5 */
6: I0 ← Tabu Search(I0) /* Section 2.4 */
7: if f(I0) > f(I∗) then
8: I∗ ← I0 /* Update the best solution found so far */
9: end if
10: Pop ← Pool Updating(I0, P op) /* Section 2.6 */
11: end while

2.2 Search Space and Fitness Function

Given a graph G = (V,E) where each edge {i, j} ∈ E is assigned a weight
wij , the search space explored by our memetic algorithm is defined as the set
of all the partitions of V into 2 disjoint subsets, i.e., Ω = {{S1, S2} : S1 ∩ S2 =
∅, S1 ∪ S2 = V }. For a given partition or cut I = {S1, S2}, its fitness f(I) is the
weight of the cutting edges crossing S1 and S2, i.e.,

f(I) =
∑

i∈S1,j∈S2

wij (1)
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2.3 Initial Population

The initial population of size p is constructed as follows. For each individual, we
first assign randomly the vertices of the graph to the two vertex subsets S1 and
S2 to produce a starting solution, and then apply the tabu search improvement
procedure (see section 2.4) to obtain a local optimum. The resulting solution is
added to the population if the solution does not duplicate any solution in the
population. This procedure is repeated until 2 × p solutions are obtained from
which we retain the p best ones to form the initial population.

2.4 Perturbation-Based Tabu Search Improvement

To improve the newly generated offspring created by the crossover, we apply a
perturbation-based tabu search procedure which integrates a periodic perturba-
tion mechanism to bring diversification into the search. The general procedure
of our tabu search method is described in Algorithm 2. Starting from an given
solution, the tabu search procedure is first used to optimize the solution as far as
possible until the best solution found so far cannot be improved within a certain
number of iterations (lines 6–12), then the perturbation mechanism is applied
to the current solution to generate a new starting solution (line 13–15), where-
upon a new round of tabu search is launched. This process is repeated until a
maximum allowed number (MaxIter) of iterations is reached.

Algorithm 2. Perturbation-based tabu search for the max-cut problem

Require: A weighted graph G = (V,E, ω), initial solution I = {S1, S2}, number
Piter of consecutive iterations eclipsed before triggering a perturbation, number
MaxIter of tabu search iterations

Ensure: The best solution I∗ found and f(I∗)
1: I∗ ← I /* Records the best solution found so far */
2: Iter ← 0 /* Iteration counter */
3: Compute the move gain Δv according to Eq. 2 for each vertex v ∈ V .
4: Initiate the tabu list and tabu tenure
5: while Iter < MaxIter do
6: Select an overall best allowed vertex v ∈ V with the maximal move gain (ties

are broken randomly)
7: Move v from its original subset to the opposite set
8: Update the tabu list and the move gain Δv for each v ∈ V
9: if f(I) > f(I∗) then
10: I∗ ← I /* Update the best solution found so far */
11: end if
12: Iter ← Iter+ 1
13: if I∗ not improved after Piter iterations then
14: I ← Perturb(I) /* Apply perturbations to I */
15: end if
16: end while
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Our tabu search procedure employs a neighborhood defined by the simple one-
flip move, which consists of moving a vertex v ∈ V from its original subset to the
opposite set. Notice that this neighborhood is larger than the neighborhood used
in [22] where the move operator displaces consecutively two vertices between the
two subsets of the current solution to keep the partition balance.
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Fig. 1. An example of the initialization (left) and update (right) of the move gain

The concept of move gain is used to represent the change in the fitness function
f (Eq. 1, Section 2.2). It expresses how much a cut could be improved if a vertex v
is moved from its subset to the other subset. In our implementation, we employ a
streamlined incremental technique for fast evaluation of move gains. Specifically,
let Δv be the move gain of moving vertex v to the other subset. Then initially,
each move value can be calculated in linear time using the following formula (see
Figure 1 (left)).

Δv =

⎧⎨
⎩

∑
x∈S1,x �=v

wvx −
∑

y∈S2

wvy , if v ∈ S1∑
y∈S2,y �=v

wvy −
∑

x∈S1

wvx, otherwise.
(2)

Each time one displaces a vertex v from its set to the other set, one just needs
to update a subset of move gains affected by this move by applying the following
abbreviated calculation (see Figure 1 (right)):

1. Δv = −Δv

2. for each u ∈ V − {v},

Δu =

{
Δu − 2 × wuv, if u is in the same set as v before moving v
Δu + 2 × wuv, otherwise.
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Then each iteration of our tabu search procedure selects a move with the largest
Δ value (breaking ties randomly) whcih is not forbidden by the tabu list. Each
time a vertex v is moved from its original subset to the opposite subset, v is
forbidden to go back to its original set for a certain number tt of iterations (tt is
called the tabu tenure). The tabu tenure is tuned dynamically according to the
mechanism described in [6]. Finally, a simple aspiration criterion is applied which
allows a move to be performed in spite of being tabu if it leads to a solution
better than the current best solution.

When the best solution cannot be further improved by tabu search, a per-
turbation operator is triggered to vary the local optimum solution from which
a new round of tabu search is launched. The perturbation consists in randomly
moving γ vertices from their original subsets to the opposite subsets where γ is
a parameter which indicates the strength of the perturbation.

2.5 The Multi-parent Crossover

It is commonly admitted that, in order to be efficient, a crossover operator should
be adapted to the problem being solved and should integrate useful problem-
specific knowledge of the given problem.
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Fig. 2. An example of the multi-parent crossover operator

The max-cut problem is a grouping problem [3], i.e., a cut is composed of two
distinct groups of vertices. An important principle in crossover design for group-
ing or partitioning problems is to manipulate promising groups of objects rather
than individual objects. Such an approach for designing crossover operators has
been successfully applied to solve a number of grouping problems such as graph
coloring [7,17], bin packing [3] and graph partitioning [1,6].
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We propose a grouping-based multi-parent crossover for the max-cut problem,
the proposed crossover tries to preserve subsets (or grouping vertices) of the
vertex partitions which are common to all parent individuals. More formally,
given m chosen parents {I1, ..., Im} (m ≥ 2 is chosen randomly from a given
range, fixed at {2,3,4} in this paper), each cut Ii can be represented as Ii =
{Si

1, S
i
2}. Then we produce an offspring solution IO = {SO

1 , S
O
2 } using these m

parent individuals as follows.
We first select one subset from each of the m parents such that the cardinality

of intersection of these chosen subsets is maximal. Then we build SO
1 as the

intersection of these m selected subsets, i.e., SO
1 = arg max{|S1

x1
∩ ... ∩ Sm

xm
| :

x1, ..., xm ∈ {1, 2}}. When SO
1 is built, for each v ∈ SO

1 , v is removed from all the
parent individual subsets in which it occurs. Then, SO

2 is constructed in the same
way as for building SO

1 such that SO
2 = arg max{|S1

x1
∩ ... ∩ Sm

xm
| : x1, ..., xm ∈

{1, 2}}. If a vertex v is left unassigned after this procedure, v is placed either to
SO
1 or SO

2 at random. Figure 2 shows an example with 3 parents.
Notice that this crossover differs from that of [22] for at least two reasons. It

operates on multi-parents (instead of 2 parents) and its offspring is not required
to be a balanced cut.

2.6 The Population Updating Rule

The updating procedure of Pop is invoked each time an offspring solution is
created by the crossover operator and then improved by tabu search. Specifically,
the improved solution IO is added into Pop if IO is distinct from any solution in
Pop and the fitness f(IO) is higher (better) than the worst solution Iw in Pop.
Under this circumstance, we update Pop by replacing Iw with IO.

3 Computational Results

3.1 Experimental Protocol and Benchmark Instances

Our MACUT algorithm is coded in C and compiled using GNU GCC on a PC
(Pentium 2.83GHz CPU and 8G RAM). We show our results on a selection of 30
well-known G-set benchmark graphs (see Table 1)1 [4,13,15,16,19,21]. The first
24 instances (with at most 3000 variables) are the most popular and we include
6 additional larger instances with 5000 to 10000 variables. The edge weights of
these graphs take values in the set {-1,0,1}.

The parameters of our algorithm are determined by a preliminary experiment
on a selection of problem instances and are fixed as follows: population size p =
10, non-improvement tabu search iterations before perturbation Piter = 500,
perturbation strength γ = 150, number of tabu search iterations applied to each
offspring MaxIter = 106, number of parents for crossover m ∈ {2, 3, 4}. Given
the stochastic nature of MACUT, each instance is independently solved 20 times,
each run being limited to 30 minutes for graphs with |V | < 5000 and 120 minutes

1 Available at http://www.stanford.edu/~yyye/yyye/Gset/

http://www.stanford.edu/~yyye/yyye/Gset/
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for graphs with |V | ≥ 5000. These timeout limits are comparable with the stop
conditions used in [15,21].

3.2 Comparisons with the Best Known Results

Table 1 presents the detailed computational results of our MACUT algorithm
as well as its underlying perturbation-based tabu search (PTS). The first two
columns in the table indicate the name and the number of vertices of the
graph. Column 3 presents the best-known objective value fpre in the literature
[4,13,15,16,19,21]. Columns 4 to 7 show MACUT’s results including the best
objective value (fbest), the averaged objective value (favg) over the 20 runs, the
success rate (hit) for reaching fbest and the average CPU time in seconds (time)
over the 20 runs for which the fbest value is reached. The last 4 columns present
the results of its underlying perturbation-based tabu search.

Table 1. Computational results of MACUT and its underlying PTS on 30 G-set max-
cut instances

Instance |V | fpre MACUT PTS

fbest favg hit time(s) fbest favg hit time(s)
G1 800 11624 11624 11624 20/20 8.0 11624 11624 20/20 6.9
G2 800 11620 11620 11620 20/20 6.3 11620 11620 20/20 7.5
G3 800 11622 11622 11622 20/20 3.0 11622 11622 20/20 2.8
G11 800 564 564 564 20/20 2.5 564 564 20/20 1.9
G12 800 556 556 556 20/20 2.5 556 556 20/20 4.0
G13 800 582 582 582 20/20 3.4 582 582 20/20 4.1
G14 800 3064 3064 3063.95 19/20 450.0 3064 3063.9 18/20 661.2
G15 800 3050 3050 3050 20/20 22.1 3050 3050 20/20 24.9
G16 800 3052 3052 3052 20/20 11.6 3052 3052 20/20 10.7
G22 2000 13359 13359 13359 20/20 74.8 13359 13359 20/20 206.2
G23 2000 13342 13344 13344 20/20 280.0 13344 13343.2 12/20 651.7
G24 2000 13337 13337 13337 20/20 252.2 13337 13335.6 20/20 815.6
G32 2000 1410 1410 1410 20/20 349.2 1410 1408.3 3/20 844.6
G33 2000 1382 1382 1382 20/20 391.4 1380 1379.6 18/20 667.6
G34 2000 1384 1384 1384 20/20 220.7 1384 1381.6 2/20 512.4
G35 2000 7685 7686 7685.9 18/20 895.7 7676 7674.2 2/20 1400.9
G36 2000 7677 7679 7676.3 6/20 1395.4 7671 7669.3 1/20 1024.7
G37 2000 7689 7690 7689.65 16/20 903.7 7678 7675.8 1/20 1175.3
G43 1000 6660 6660 6660 20/20 3.6 6660 6660 20/20 3.7
G44 1000 6650 6650 6650 20/20 3.7 6650 6650 20/20 3.0
G45 1000 6654 6654 6654 20/20 18.2 6654 6654 20/20 20.1
G48 3000 6000 6000 6000 20/20 0.2 6000 6000 20/20 0.2
G49 3000 6000 6000 6000 20/20 0.4 6000 6000 20/20 0.4
G50 3000 5880 5880 5880 20/20 15.0 5880 5880 20/20 13.6
G55 5000 10236 10299 10290.8 2/20 2496.0 10235 10221 1/20 1807.3
G56 5000 3934 4016 4006.9 2/20 2897.2 3954 3941.7 1/20 2108.9
G60 7000 14057 14186 14171.1 1/20 5827.1 14065 14048.4 1/20 789.3
G65 8000 5518 5550 5538.7 1/20 5879.6 5488 5479.1 1/20 1476.5
G66 9000 6304 6352 6331.9 1/20 6203.8 6266 6255.2 1/20 2748.2
G67 10000 6894 6934 6922.4 1/20 6761.3 6901 6892.1 1/20 1142.0

From Table 1, we observe that MACUT attains the best-known result for each
of the 30 graphs. More importantly, MACUT improves on the best known results
for 10 instances (indicated in bold). The average computing time required for
MACUT to reach its best results fpre varies from 3 seconds to 1.8 hours. It is
clear that the required time to attain the current best-known objective value of
column fpre is shorter for the 10 graphs where MACUT finds improved solutions.

When comparing MACUT with its underlying PTS, one observes that MA-
CUT outperforms PTS in terms of the best and average objective values. Indeed,
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for 10 instances, MACUT is able to achieve better solution with much larger cut
values. For 15 instances, MACUT reaches larger average objective values than
PTS. In particular, it is remarkable that for each of the instances with at least
5000 vertices, MACUT performs far better than PTS. These comparative re-
sults demonstrate that the crossover operator is essential for the success of our
MACUT algorithm and help MACUT to discover better solutions that are not
attainable by our tabu search algorithm alone.

3.3 Comparisons with State-of-Art Max-Cut Algorithm

To further assess the performance of our MACUT approach, we now compare
the results of our MACUT algorithm with the most effective heuristic algorithms
in the literature. Due to the differences among the programming languages, data
structures, compiler options and computers, we do not focus on computing time.
Instead, we are mainly interested in solution quality for this experiment. We just
mention that the timeout limits we used are quite similar to those adopted by
some recent references like [15,21].

Table 2. Comparison with 6 state-of-the-art algorithms in terms of the best results
obtained

Instance fpre fbest Best results of 6 reference max-cut algorithms

GES[19] SS[15] TS-UBQP[13] VNSPR[4] CirCut[2] GRASP-
TS/PM[21]

G1 11624 11624 11624 11624 11624 11621 11624 11624

G2 11620 11620 11620 11620 11620 11615 11617 11620

G3 11622 11622 11622 11622 11620 11622 11622 11620

G11 564 564 564 562 564 564 560 564

G12 556 556 556 552 556 556 552 556

G13 582 582 582 578 580 580 574 582

G14 3064 3064 3064 3060 3061 3055 3058 3063

G15 3050 3050 3050 3049 3050 3043 3049 3050

G16 3052 3052 3052 3045 3052 3043 3045 3052

G22 13359 13359 13359 13346 13359 13295 13346 13349

G23 13342 13344 13342 13317 13342 13290 13317 13332

G24 13337 13337 13337 13303 13337 13276 13314 13324

G32 1410 1410 1410 1398 1406 1396 1390 1406

G33 1382 1382 1382 1362 1378 1376 1360 1374

G34 1384 1384 1384 1364 1378 1372 1368 1376

G35 7685 7686 7685 7668 7678 7635 7670 7661

G36 7677 7679 7677 7660 7660 7632 7660 7660

G37 7689 7690 7689 7664 7664 7643 7666 7670

G43 6660 6660 6660 6656 6660 6659 6656 6660

G44 6650 6650 6650 6648 6639 6642 6643 6649

G45 6654 6654 6654 6642 6652 6646 6652 6654

G48 6000 6000 6000 6000 6000 6000 6000 6000

G49 6000 6000 6000 6000 6000 6000 6000 6000

G50 5800 5800 5880 5880 5880 5880 5880 5880

G55 10236 10299 - - 10236 - - -

G56 3934 4016 - - 3934 - - -

G60 14057 14186 - - 14057 - - -

G65 5518 5550 - - 5518 - - -

G66 6304 6352 - - 6304 - - -

G67 6894 6934 - - 6894 - - -

Better 4 18 18 18 19 12

Equal 20 6 12 6 5 12

Worse 0 0 0 0 0 0
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Table 2 compares our MACUT algorithm with 6 state-of-the-art algorithms,
which cover the best known results for the tested instances. Columns 2 and
3 recall the previous best known results (fpre) and the best results found by
MACUT (fbest). Columns 4 to 9 present the best results obtained by these ref-
erence algorithms. The last three rows show the summary of the comparison
between our MACUT algorithm and these reference algorithms. The rows ‘Bet-
ter’, ‘Equal’ and ‘Worse’ respectively denotes the number of instances for which
our MACUT algorithm gets better, equal and worse results than the correspond-
ing reference algorithm. From the last three rows of Table 2, it is observed that
our MACUT algorithm outperforms the 6 reference algorithms in terms of the
quality of the best solution found. In comparison with each of these 6 algorithm,
MACUT achieves at least 4 better solutions and in no case, MACUT’s result is
worse than that of these reference algorithms. This experiment confirms thus the
effectiveness of the proposed memetic approach to deliver high quality solutions
for the tested 30 benchmark max-cut instances.

4 Conclusions

We presented an effective memetic algorithm for the NP-hard max-cut prob-
lem. The proposed MACUT algorithm integrates a grouping-based multi-parent
crossover which tries to preserve groups of the vertex shared by the parent solu-
tions and a dedicated perturbation-based tabu search procedure. The design of
our crossover operator is motivated by an experimental observation (not shown
in the paper due to the page limit) that groups of vertices are always shared by
high quality solutions. Experimental results confirmed that the crossover oper-
ator boosts the performance of the algorithm and helps the search to discover
high quality solutions unachievable by a local search algorithm alone. The exper-
iments of MACUT on 30 well-known G-set benchmark instances demonstrated,
by providing new best results for 10 instances, its competitiveness compared to 6
state-of-the-art algorithms. Additional studies are needed to better understand
the proposed algorithm.
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Abstract. Hyper-heuristics are a class of high-level search technologies
to solve computationally difficult problems which operate on a search
space of low-level heuristics rather than solutions directly. A iterative
selection hyper-heuristic framework based on single-point search relies
on two key components, a heuristic selection method and a move ac-
ceptance criteria. The Choice Function is an elegant heuristic selection
method which scores heuristics based on a combination of three differ-
ent measures and applies the heuristic with the highest rank at each
given step. Each measure is weighted appropriately to provide balance
between intensification and diversification during the heuristic search
process. Choosing the right parameter values to weight these measures is
not a trivial process and a small number of methods have been proposed
in the literature. In this study we describe a new method, inspired by
reinforcement learning, which controls these parameters automatically.
The proposed method is tested and compared to previous approaches
over a standard benchmark across six problem domains.

Keywords: Hyper-heuristics, Choice Function, Heuristic Selection, Cross-
domain Optimisation, Combinatorial Optimization.

1 Introduction

The term ‘hyper-heuristic’ was first used in the field of combinatorial optimisa-
tion by Cowling et al. [1] and was defined as ‘heuristics to choose heuristics ’. This
paper investigated the application of a number of random, greedy and Choice
Function-based hyper-heuristic approaches to a real-world sales summit schedul-
ing problem using two deterministic move acceptance criteria, all moves (AM)
and only improving (OI). Although the term hyper-heuristic was first used at
this time, ideas which exhibited hyper-heuristic behaviour can be traced back as
early as 1961 [2] in the field of job shop scheduling where combining scheduling
rules was shown to perform better than taking any of the rules individually. In
the first journal article to appear using the term Burke et al. [3] presented a
tabu-search-based hyper-heuristic. In this system a set of low-level heuristics are

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 307–316, 2012.
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ranked using rules based on reinforcement learning and compete against each
other for selection. The hyper-heuristic selects the highest ranked heuristic not
present in the tabu list. If an improvement is made after applying the selected
heuristic its rank is increased, if not, its rank is decreased and it is placed in the
tabu list until the current solution has changed. This hyper-heuristic was applied
to nurse scheduling and university course timetabling problems obtaining com-
petitive results. Hyper-heuristics have since been applied successfully to a wide
range of problems such as examination timetabling [3–7], production scheduling
[2], nurse scheduling [3, 8], bin packing [8, 9], sports scheduling [10], dynamic
environments [11] and vehicle routing [8, 12].

Research trends have lead to a number of different hyper-heuristics approaches
being developed, particularly those concerned with automatically generating new
heuristics, for which the original definition of a hyper-heuristic is too limited to
cover. A more general definition is offered by Burke et al. [13, 14]:

‘A hyper-heuristic is a search method or learning mechanism for selecting
or generating heuristics to solve computational search problems.’

This more general terminology includes systems which use high level strategies
other than heuristics within the definition of hyper-heuristics and covers the two
main classes of hyper-heuristics, those concerned with heuristic selection and
those with heuristic generation. Here, our concern will be those methodologies
which are used to select heuristics.

2 Selection Hyper-Heuristics and the Choice Function

Traditional single-point based search hyper-heuristics rely on two key compo-
nents, a heuristic selection method and a move acceptance criteria as decomposed
by Özcan et al. [15] and depicted in Figure 1. Such hyper-heuristics will some-
times be labelled selection method-acceptance criteria in this paper. Hyper-
heuristics using this framework operate on a single solution and repeatedly select
and apply low-level heuristics to this solution. At each stage a decision made as
to whether to accept the move until some termination criteria is met.

Cowling et al. [1] experimented with a number of heuristic selection mecha-
nisms including Simple Random and Choice Function using accept All Moves
and accept Only Improving moves as acceptance criteria. Simple Random se-
lects a heuristic to apply randomly from the set of low-level heuristics at each
point in the search. The Choice Function is an elegant selection method which
scores heuristics based on a combination of three different measures. The heuris-
tic to apply is then be chosen by a strategy based on these scores. The first
measure (f1) records the previous performance of each individual heuristic, with
more recent executions carrying larger weight. The value of f1 for each low-level
heuristic h1, h2, ..., hj is calculated as:

f1(hj) =
∑
n

αn−1 In(hj)

Tn(hj)
(1)
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Fig. 1. Classic single-point search hyper-heuristic framework

where In(hj) is the change in evaluation function, Tn(hj) is the time taken to
call the heuristic for each previous invocation n of heuristic hj and α is a value
between 0 and 1 giving greater importance to recent performance.

The second measure (f2) attempts to capture any pair-wise dependencies
between heuristics. Values of f2 are calculated for each heuristic hj when invoked
immediately following hk using the formula in Equation 6:

f2(hk, hj) =
∑
n

βn−1 In(hk, hj)

Tn(hk, hj)
(2)

where In(hk, hj) is the change in evaluation function, Tn(hk, hj) is the time taken
to call the heuristic for each previous invocation n of heuristic hj following hk
and β is a value between 0 and 1 which also gives greater importance to recent
performance.

The third measure (f3) is the time elapsed (τ(hj)) since the heuristic was last
selected by the Choice Function. This allows all heuristics at least a small chance
of selection.

f3(hj) = τ(hj) (3)

In order to rank heuristics a score is given to each heuristic with Choice Function
F calculated as:

F (hj) = αf1(hj) + βf2(hk, hj) + δf3(hj) (4)

where α and β as defined previously weight f1 and f2 respectively to provide
intensification of the heuristic search process whilst δ weights f3 to provide
sufficient diversification. In this initial work these parameters were set as static
values based on the authors experimental insight. This study showed the Choice
Function selection combined with All Moves acceptance worked well.
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Further to this work, Cowling et al. [16] described a method to adaptively
change these parameters. A mechanism is proposed which increases the weights
of α or β when using a heuristic selected by the Choice Function results in an
improvement in the objective value. Although no specific implementation details
are provided, this reward is said to be proportional to the size of improvement
over the previous solution. Conversely, if a decrease in solution quality is obtained
these weights are penalised proportionally to the change in objective value. Us-
ing this mechanism lead to an improved performance compared to the original
results. Here we will use the implementation of the Choice Function used by
Bilgin et al. [17] for benchmark function optimisation and Özcan et al. [4] and
Burke et al. [6] for Examination Timetabling. This implementation increases α
and β and reduces δ by the same value if an improvement is made and reduces
α and β and increases δ if no improvement is made.

3 Modified Choice Function

Recently the HyFlex framework [8] was proposed and developed in order to
support the first Cross-domain Heuristic Search Challenge, CHeSC 2011 [18].
HyFlex was designed with the goal of providing a common framework to test and
compare different cross domain algorithms. Currently HyFlex contains six prob-
lem domains for algorithms to be tested on; maximum satisfiability (MAX-SAT),
one-dimensional bin packing, personnel scheduling, permutation flow shop, the
travelling salesman problem (TSP) and the vehicle routing problem (VRP). Us-
ing this framework allows us to directly compare our approach with previously
proposed algorithms.

Using the classic version of the Choice Function has some limitations when
applied to the HyFlex framework. Firstly, we are often not interested in the pro-
portional improvement gained by a given heuristic but rather whether there has
been any improvement at all. In the early stages of a search, a relatively poor
heuristic could gain a large reward if it obtains a large improvement in objec-
tive value from a poor starting position. Later on in the search, a heuristic may
yield a small improvement which is much more significant in the context of the
optimisation process but will not receive such a large reward for this improve-
ment. Secondly, if no improving solutions are found for a period of time, the
Choice Function can very quickly descend into random search if the weighting is
dominated by the diversification component. This can be a useful trait however
the rate at which the diversification increases in significance must be controlled.
Özcan et al. [4] observed that Simple Random heuristic selection with Late Ac-
ceptance Strategy move acceptance performed very well on a set of Examination
Timetabling instances. In this particular case very few (4) perturbative low-level
heuristics were implemented.

We propose a modified version of the Choice Function which aims to address
these issues through the management of the parameters weighting f1, f2 and f3
inspired by reinforcement learning [19]. This mechanism will rely on a system of
reward and punishment in order to tune these parameters. Our Modified Choice
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Function does not make a distinction between the values of α or β which weight
f1 and f2 respectively and considers them as a single intensification parameter
which we will refer to as simply φ. This value will also be used to give greater im-
portance to recent performance as with the original Choice Function of Cowling
et al. [1]. The parameter to weight f3 is used to control the level of diversification
of heuristic search as before and will still be referred to as δ. In the Modified
Choice Function the score Ft for each heuristic hj is now calculated as:

Ft(hj) = φtf1(hj) + φtf2(hk, hj) + δtf3(hj) (5)

where t is the number of invocations of hj since an improvement was made
using this heuristic. At each stage, if an improvement in objective value is made
φ is rewarded and set to a static maximum value close to the upper limit of
the interval (0,1) whilst δ is concurrently reduced to a static minimum value
close to the bottom end of this interval. This leads to a greater emphasis on
intensification and greatly reduces the level of diversity of heuristic selection
choice each time an improvement is obtained. If no improvement in objective
value is made the level of intensification is decreased by linearly reducing φ and
the weighting of diversification is increased at the same rate. This gives the
intensification component of the Choice Function more time as the dominating
factor in the calculation of F . For the experiments in this paper we define the
parameters φt and δt as:

φt(hj) =

{
0.99, if an improving move is made

max {φt−1 − 0.01, 0.01}, if a non-improving move is made
(6)

and

δt(hj) = 1 − φt(hj) (7)

4 Computational Results

Prior to the original competition, the results of eight hyper-heuristics were pro-
vided by the organisers to assess an algorithms performance [18]. These hyper-
heuristics were inspired by state-of-the-art techniques from the hyper-heuristic
literature. Each hyper-heuristic performs a single run on 10 instances for each
of 4 problem domains; maximum satisfiability (MAX-SAT), one-dimensional bin
packing, personnel scheduling and permutation flow shop. They are then ranked
using a system based on the Formula One scoring system, the best perform-
ing hyper-heuristic for each instance is awarded 10 points, the second 8 points
and then each further hyper-heuristic awarded 6, 5, 4, 3, 2, 1 and 0 points re-
spectively. As this ranking system is based on relative performance, the Choice
Function and Modified Choice Function are compared to the competition en-
tries independently. All experiments were carried out on machines allowing a
hyper-heuristic 576 seconds running time for each instance by the benchmarking
tool provided by the competition organisers. In order for a fair comparison to be
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made crossover heuristics are ignored as the original Choice Function provides
no details of how to manage operators which require more than one argument.
Figure 2(a) shows the results of the Modified Choice Function using accept All
Moves as an acceptance criteria when compared with the eight hyper-heuristics
(HH1-HH8) provided for the competition. Figure 2(b) shows the results of the
same experiments using the original Choice Function and accept All Moves ac-
ceptance as implemented by Bilgin et al. [17] and Burke et al. [6].

HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 ModCF-AM

MAX-SAT 55.25 73.25 36.5 24.5 1 46 51.75 14.5 87.25
Bin Packing 59 61 76 71 15 51 39 1 17
Personnel Scheduling 64 57.5 22 50.5 50 0 49.5 31 65.5
Flow Shop 30 21 26.5 86 19.5 77.5 21 69 39.5

Overall 208.25 212.75 161 232 85.5 174.5 161.25 115.5 209.25

(a)

HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 CF-AM

MAX-SAT 58 78 39.5 25.5 1 49 54.5 15.5 69
Bin Packing 59 61 78 71 19 51 38 7 6
Personnel Scheduling 65.5 64.5 23 52.5 53 0 52 31 48.5
Flow Shop 38 27.5 32 86 25.5 78.5 26.5 70 6

Overall 220.5 231 172.5 235 98.5 178.5 171 123.5 129.5

(b)

Fig. 2. Formula One scores for a single run of Modified Choice Function - All Moves
hyper-heuristic and the CHeSC default hyper-heuristics (a) and a single run of classic
Choice Function - All Moves hyper-heuristic and the CHeSC default hyper-heuristics

From these tables we see that the Modified Choice Function outperforms all
of the CHeSC default hyper-heuristics in MAX-SAT and Personnel Scheduling.
More importantly the Modified Choice Function outperforms the original Choice
Function in all four problem domains although both versions seem to struggle
more on the Bin Packing and Flow Shop instances. This could be due to the
omission of crossover operators if such operators perform well in these problem
domain. The best performing hyper-heuristic in this set (HH4) is based on iter-
ative local search, this supports the work of Özcan et al. [20] which showed that
the FC selection hyper-heuristic framework performed well compared to other
hyper-heuristic frameworks.

Following the competition the results were provided for the competition en-
tries over a subset of the problems of all six problem domains. These results were
taken as the median of 31 runs of each hyper-heuristic on each instance. Our
results are also taken as the median of 31 runs in order to maintain consistency
and allow direct comparison to the competition entries. Figure 3(a) shows the re-
sults of the classic Choice Function and All Moves acceptance criteria compared
to the 20 competition entries using the Formula One scoring system. Figure 3(b)
shows the results of the same experiments using the Modified Choice Function
and accept All Moves as an acceptance criteria.
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Rank Name Score

1 AdapHH 181
2 VNS-TW 134
3 ML 131.5
4 PHunter 93.25
5 EPH 89.25
6 HAHA 75.75
7 NAHH 75
8 ISEA 71
9 KSATS-HH 66
10 HAEA 53.5
11 ACO-HH 39
12 GenHive 36.5
13 DynILS 27
14 SA-ILS 24.25
15 XCJ 22.5
16 AVEG-Nep 21
17 GISS 16.75
18 SelfSearch 7
19 MCHH-S 4.75
20 Classic CF - AM 1
21 Ant-Q 0

(a)

Rank Name Score

1 AdapHH 177.1
2 VNS-TW 131.6
3 ML 127.5
4 PHunter 90.25
5 EPH 88.75
6 NAHH 72.5
7 HAHA 71.85
8 ISEA 68.5
9 KSATS-HH 61.35
10 HAEA 52
11 ACO-HH 39
12 Modified CF - AM 38.85
13 GenHive 36.5
14 DynILS 27
15 SA-ILS 22.75
16 XCJ 20.5
17 AVEG-Nep 19.5
18 GISS 16.25
19 SelfSearch 5
20 MCHH-S 3.25
21 Ant-Q 0

(b)

Fig. 3. Results of the median of 31 runs of the classic Choice Function - All Moves
hyper-heuristic (a) and the Modified Choice Function - All Moves hyper-heuristic (b),
compared to CHeSC competitors using Formula One scores

Since the competition results were made available, Di Gaspero and Urli [21]
described variations of their original method (AVEG-Nep), which are also based
on Reinforcement Learning. The best of the variants included in this paper
ranked 13th overall compared to the original competitors. Here we see that man-
aging the parameter settings of a Choice Function using Reinforcement Learn-
ing inspired techniques can outperform such methods, ranking 12th overall. For
this hyper-heuristic points are only scored in two problem domains, Person-
nel Scheduling and MAX-SAT leaving room for improvement in the other four
domains. The vast majority (32.85) of these points were scored in MAX-SAT
where our method excels. When compared to the competition entries, the Mod-
ified Choice Function outperforms all other competitors. It is likely that a very
small number of heuristics are providing improvement in this problem domain
and the increased focus on intensification is providing the gain in performance.
Figure 4 shows a breakdown of the number of points awarded to each technique
over the MAX-SAT competition instances.

Using the classic choice function performs particularly badly against the other
competition entries ranking 20th out of 21 overall only obtaining a single point
in Personnel Scheduling. The Formula One scoring system is limited in that
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Fig. 4. Number of points scored in the MAX-SAT domain using the Formula One
system for each CHeSC competitor

it only measures relative performance against a set of previous approaches. As
such a more direct comparison between the two experiments can be performed
on the objective values achieved by both hyper-heuristics. Table 1 shows the
results of an independent student’s t-test on the values of each of the 31 runs for
each instance in the competition within a 95% confidence interval. These results
show the Modified Choice Function statistically significantly outperforming the
classic Choice Function completely in 3 of the 6 problem domains. In many cases
there is no statistically significant difference in performance. In only 3 of the 30
problem instances the classic choice function performs statistically significantly
better than the Modified Choice Function.

Table 1. Pairwise comparison between MCF-AM and CF-AM using independent T-
Test. In this table s+ (s-) denotes that using MCF-AM (CF-AM) is performing sta-
tistically significantly better than using CF-AM (MCF-AM), while =+ (=−) denotes
that there is no statistically significant performance variation between MCF-AM and
CF-AM however MCF-AM (CF-AM) performs slightly better (worse) on average.

Problem Domain Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

MAX-SAT s+ s+ s+ s+ s+
Bin Packing =− s+ s+ =− s−
Personnel Scheduling =− =+ =+ =− =+
Flow Shop s+ s+ s+ s+ s+
TSP s− =− s− s+ =+
VRP s+ s+ s+ s+ s+

5 Concluding Remarks

In this work we have described a modified version of the Choice Function heuris-
tic selection method which manages the parameters which weight the intensifica-
tion and diversification components of Choice Function scores through methods
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inspired by reinforcement learning. This Modified Choice Function aggressively
rewards the intensification weighting and heavily punishes the diversification
component each time an improvement is made. We have shown that managing
these parameters in such a way provides great benefits compared to a clas-
sic implementation of the Choice Function. So far, this work has been limited
to improving the Choice Function selection mechanism itself. Previous work in
the literature has suggested that performance can be improved by reducing the
search space of heuristics [22, 23]. We plan to include the method proposed by
Özcan and Kheiri [24] to reduce the set of active heuristics in combination with
the Modified Choice Function heuristic selection method and apply it to the
problem instances available in HyFlex. We restricted this study to focus on only
the selection mechanism component of a traditional hyper-heuristic, Özcan et
al. [15, 20] tested a number of hyper-heuristics over a set of benchmark func-
tions and observed that the acceptance criteria used can have a more significant
impact on the performance of a hyper-heuristic than selection mechanism. We
would like to extend this work to analyse the effect of using different move accep-
tance criteria in conjunction with the Modified Choice Function. In this paper we
have not made use of any operators in the HyFlex framework which require more
than one argument such as crossover. Drake et al. [25] described a number of
methods for managing potential second arguments for crossover and other n-ary
operators. As future work we will include the multiple argument management
techniques from this study to analyse whether including crossover operators can
benefit hyper-heuristics based on the Modified Choice Function.
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Abstract. This paper investigates the advantages provided by a
Meta-model Assisted Memetic Algorithm (MAMA) for the calibration
of a Cellular Automata (CA) model. The proposed approach is based
on the synergy between a global meta-model, based on a radial basis
function network, and a local quadratic approximation of the fitness
landscape. The calibration exercise presented here refers to SCIARA, a
well-established CA for the simulation of lava flows. Compared with a
standard Genetic Algorithm, the adopted MAMA provided much better
results within the assigned computational budget.

Keywords: Cellular Automata, Model Calibration, Meta-modelling,
Memetic Algorithms.

1 Introduction

Most applications of Cellular Automata (CA) models to the simulation of real
complex systems, require a preliminary calibration process [1,2]. The latter con-
sists of finding the unknown values of the model parameters in such a way that
the outcomes of the model itself better correspond to the observed dynamics
of the system under consideration. For such purpose, automated methods have
been developed by defining calibration as a global optimization problem in which
the solution in terms of parameter values must maximize a fitness measure [2,3].
Because of the size of the search space, such a process usually requires a large
number of fitness evaluations, which consist of computationally expensive CA
simulations. Hence, in dealing with CA calibration the use of parallel computing
is often mandatory [2]. As shown in [4], an additional strategy for increasing the
search efficiency may consists of the so-called meta-model assisted (or surrogate
assisted) optimization [5], which is based on inexpensive surrogate functions able
to approximate the fitness corresponding to the CA simulations.

However, in most cases the global search struggles to provide an accurate
solution. This is often because search heuristics, for example based on the Genetic
Algorithms (GA) operators, are more effective at exploring the search space

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 317–326, 2012.
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rather than at the fine-tuning of a particular solution candidate. Therefore, a
further enhancement of the classical calibration based on a pure global search
approach, may be obtained introducing a local search (LS) phase, which in many
applications proved to be capable of providing much more efficient and accurate
global optimization processes. For example, in the hybrid GAs known as Memetic
Algorithms [6] a sub-process of LS is introduced to refine individuals by more
or less standard hill climbing procedures. As in the case of the meta-modelling
approach, such hybridization has the main aim of increasing the overall efficiency
of the optimization process (i.e., leading to better solutions within an assigned
computational budget). In some recent applications, also Meta-model Assisted
Memetic Algorithms (MAMAs) have been described and successfully applied to
optimization problems [7,8]. However, to our knowledge the advantages provided
by a MAMA for the calibration of CAs have not been explored. Some preliminary
results in this direction are the object of this paper, in which a MAMA has been
applied to the calibration of a well-established CA for the simulation of lava
flows, namely the SCIARA model [2,9].

The paper is organized as follows. In section 2 the CA calibration problem
is formalized. Section 3 describes in detail the tested MAMA. Section 4 illus-
trates the results of the numerical experiments and section 5 concludes the paper
outlining possible future work.

2 Optimization of Cellular Automata

In many applications of the CA modelling approach the cells’ transition function
depends on a vector of constant parameters p = [p1, . . . , pn]

T , which belongs to
a set Λ (e.g. [1,2]). In particular, the overall transition function Φ gives the global
configuration Ω(t+1) (i.e. the set of all cell states) at the step t+ 1 as:

Ω(t+1) = Φ(Ω(t), p) (1)

The iterative application of Φ, starting from an initial configuration Ω(0), leads
to the CA simulation:

Ω(0) Φ−→ Ω(1) Φ−→ · · · Φ−→ Ω(t) =⇒ Ω(t) = Φt(Ω(0),p) (2)

where the dependence of the automaton configuration at the time step t on both
the initial configuration and the parameters is explicit, with the other automaton
characteristics (i.e. the model structure) being fixed.

The CA model can be optimized with respect to p to maximise the agreement
between the simulated patterns and those belonging to a spatio-temporal dataset
V̄ , which come from an experiment of the real system behaviour. In particular,
let V̄ be composed by a sequence of q configurations:

V̄ =
{
Ω̄(k) : k ∈ {0, τ1, . . . , τq}

}
(3)

where τi ∈ N indicates the time step in which a configuration is known. Starting
from Ω̄(0), and given a vector p of parameters, the process (2) can be executed
for the computation of the q − 1 configurations:
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V =
{
Ω(k) : k ∈ {τ1, . . . , τq}

}
(4)

where Ω(j) = Φj(Ω̄(0), p). The agreement θ between the real and simulated
processes is usually measured by a suitable fitness function:

θ = Θ
(
V̄, V

)
= Θ

(
V̄ , p

)
(5)

Therefore, the calibration consists of the following maximisation problem:

max
p∈Λ

Θ
(
V̄, V

)
(6)

which involves finding a proper value of p that leads to the best agreement
between the real and simulated spatio-temporal sequences.

Different heuristics have been used to tackle the automatic solution of problem
(6) [2,3]. In this paper a MAMA has been adopted, which is designed according
to some of the basic ideas described in [7]. The optimization process consists of
a GA assisted by a fitness approximation model and endowed with a LS phase.
The MAMA is used to evolve a population, whose generic chromosome is a n-
dimensional vector p. In the latter, the i-th element is obtained as the binary
encoding of the parameter pi. Each chromosome can be decoded back in a vector
of parameters p and, through performing a CA simulation, the corresponding
fitness can be computed.

3 A Meta-Model Assisted Memetic Algorithm

In the MAMA object of this paper the original fitness evaluations are partly
replaced by the fitness estimates provided by an inexpensive model. This allows
to reduce the number of CA simulations needed to evaluate the individuals
generated by the genetic operators during the search. As detailed later, the CA
simulations carried out during the optimization provide a training set T :

T =
{
〈θ(1), p(1)〉, 〈θ(2), p(2)〉, . . . , 〈θ(nt), p(nt)〉

}
(7)

where each fitness value θ(i) corresponds to a parameter vector p(i). Thus, on
the basis of the patterns in T a meta-model θ̂ is dynamically built for evaluating
each candidate solution p through the estimated fitness value θ̂(p).

It is worth noting that, given the patterns in T , either a global meta-model
or a local one can be trained [5,7]. For example, an ad-hoc surrogate of the
real fitness can be constructed for each individual p to be evaluated using only
the k nearest neighbours of p in T . However, even if a local meta-model can
potentially be more accurate than a global one, the cost of training a number of
local surrogates should be compared with the cost of the true fitness evaluation.

Since the meta-model only provides a more or less accurate approximation
of the fitness landscape, to avoid convergence to false optima the surrogate-
assisted optimization should also use, in some way, the true fitness function
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[5]. On the other hand, the involvement of the latter should be minimized due
to its high computational cost. A trade-off is provided by a suitable evolution
control strategy. In particular, the approach adopted in this paper is the so-
called individual-based control, which consists of using the true fitness function to
evaluate at each generation some of the offspring individuals (i.e. the controlled
individuals). The latter are chosen according to the so-called best strategy, in
which the exact fitness value is assigned to some of the individuals that are the
best according to the meta-model. For a detailed discussion about the commonly
adopted evolution control strategies, the reader is referred to [5].

The pseudo-code of the corresponding MAMA is outlined in Figure 1. As
in other elitist GAs, the optimization procedure begins with the initialization
and exact evaluation of a population of individuals encoding CA vectors of pa-
rameters. The evolutionary search is iterated until the assigned budget nsim of
CA evaluations is exhausted. During the search, each CA simulation leads to
a new element for the archive T of the training patterns. Usually, in the first
GA generations the set T does not contains enough elements to build a reliable
meta-model. Thus, while the current number of elements in T is less than the
threshold ρ1 nsim (see line 6), where ρ1 ∈ [0, 1], the search consists of a standard
GA, in which the fitness evaluations are carried out through CA simulations (see

line 8). Subsequently, when |T | ≥ ρ1 nsim the meta-model θ̂ is built/updated at
each generation (see line 10) in order to estimate the fitness of each individual
belonging to the set of offspring S . The adopted global surrogate is a Radial

1 Q ← populationInit();
2 for each q in Q do
3 simulateCAAndUpdateArchive(q, T );
4 while ( |T | < nsim )
5 S ← crossoverAndMutation(Q);
6 if ( |T | < ρ1 nsim )
7 for each q ∈ S do
8 simulateCAsAndUpdateArchive(q, T );
9 else

10 θ̂ ← createRBFN(T );
11 for each q ∈ S do

12 surrogateFitnessEvaluation(q, θ̂);
13 κ ← π |S|;
14 controlTheBestAndUpdateArchive(S , κ, T );
15 if ( |T | > ρ2 nsim )
16 for i = 0 to κ do
17 S [i] ←localSearchAndUpdateArchive(S [i], T );
18 end if
19 end if
20 Q ← elitistSelection(Q, S);
21 end while

Fig. 1. Outline of the meta-model assisted memetic CA optimization. The variable
nsim indicates the assigned budget of CA evaluations for the optimization process.



Optimizing Cellular Automata 321

Basis Function Network (RBFN), a special type of artificial neural network that
uses radial basis functions as activation functions [10]. The RBFN is often used
as surrogate to assist optimizations because of its good generalization ability
and because of its simpler topology compared to other networks [5,7]. Formally,
the adopted RBFN can be expressed as:

θ(p) =

nh∑
i=1

wiδ(p − ci) (8)

where nh is the number of hidden neurons, δ(x) is the kernel function, ci is the
i-th center and wi are the weights. The adopted kernel function is the Gaussian:

δ(p − ci) = exp

(
−‖p − ci‖2

2σ2i

)
(9)

where σi is the bandwidth assumed for the centre ci. In particular, the RBFN
implementation has been based on the SHARK C++ library, a machine learning
framework for regression and classification tasks including neural networks and
kernel methods [11]. The first stage for building θ̂ consists of a fully unsupervised
learning in which the centres and the corresponding bandwidths are determined.
In particular: (i) first the RBFN centres ci are obtained by few iterations of a
k-means clustering algorithm on the set T ; (ii) then the value of σi for a given
cluster centre ci is set to the average Euclidean distance between ci and the
training vectors which belong to that cluster. Subsequently, the weights wi need
to be trained to achieve good generalization. In this work, the weights of θ̂ are
trained using the iRprop algorithm [12] implemented in the SHARK library,
which is quite fast and efficient.

Once all the offspring are evaluated through θ̂, in order to avoid convergence
towards false optima, the control strategy mentioned above is applied at line
14 by invoking the function controlTheBestAndUpdateArchive. In particular, the
latter ensures that the fraction π of the individuals in S which are the best
according to θ̂ are re-evaluated through CA simulations. As a further result
of the function controlTheBestAndUpdateArchive, the first κ = π |S| offspring
in S are sorted in descending order according to their fitness. Also, each CA
simulation carried out during the control process contributes to the enrichment
of the archive T , which is used for future meta-model buildings/updates.

In an advanced stage of the optimization, in particular when |T | > ρ2 nsim,
with ρ2 ∈ [0, 1] and ρ2 > ρ1, the κ controlled individuals are taken as start-
ing point of the LS. The latter starts from each controlled individual p and is
conducted on the local Quadratic Polynomial Approximation (QPA) defined as:

θ(p) = β0 +
∑

1≤i≤n

βi pi +
∑

1≤i≤j≤n

β(n−1+i+j) pi pj = βT p̃ (10)

where:
β = [β0, β1, . . . , βnv−1]

T (11)
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is the vector collecting the nv = (n+ 1)(n+ 2)/2 model coefficients and:

p̃ = [1, p1, p2, . . . , p1p2, . . . , p
2
n]

T (12)

is the vector of the CA parameters mapped into the polynomial model. In par-
ticular, in order to improve the LS reliability, an ad-hoc local QPA is built for
each individual p on the basis of its ns ≥ nv nearest neighbours in T . In this
study, the model coefficients β are estimated using the least square method.

Even using an accurate QPA, the LS procedure may converge towards a point
that does not represent an actual improvement of the starting individual p.
Hence, at the cost of some more CA simulations, the LS has been based on a
trust-region approach [13]. In the latter, the LS iteratively operates on a region in
which the accuracy of the QPA is verified by executing ad-hoc CA simulations.
In particular, if the QPA accuracy is satisfying then the region is expanded;
conversely, if the QPA accuracy is poor then the region is contracted. In practice,
following the classical trust-region approach, the LS is structured in a sequence
of subproblems as follows:

max ψ̂(p(j) + d), j = 0, 1, 2, . . . , λ

subject to ‖d‖ ≤ r(j) (13)

where ψ̂(x) is the QPA meta-model, p(j) is the starting point of the j-th itera-
tion (i.e. p(0) is the individual to optimize), p(j) + d represents a point within
the current trust-region radius r(j). In this paper, the BLG code for solving an
optimization problem with bound constraints through a gradient method, de-
scribed in [14], is used for the trust-region subproblems. At the first sub-problem
of the LS, the radius r(0) is initialized as the average of all the ns nearest neigh-
bours of p(0) in T . Then, the value of r(j) is determined for each of the following
sub-problems on the basis of a parameter ω(j), which is computed at the end of
each subproblem as follows:

ω(j) =
θ(p(j)) − θ(p(j)opt)

θ̂(p(j)) − θ̂(p(j)opt)
(14)

where each evaluation of the function θ(x) requires a CA simulation. Then, the
trust region is contracted or expanded for low or high values of ω(j) respectively,
according to the empirical rule described in [7].

The LS process terminates when the maximum number of subproblems λ is
reached. The latter parameter represents the individual learning intensity, that
is the amount of computational budget in terms of CA simulations devoted on
improving a single solution. At the end of each LS, any locally optimized vector
of CA parameters is encoded back into the offspring according to a Lamarckian
evolutionary approach [15].

4 Calibration Tests and Discussion

A Master-slaves parallel version of the MAMA described above has been devel-
oped and applied to the last release of SCIARA, a CA model for lava flows simu-
lation. In the current implementation, based on the Message Passing paradigm, a
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Table 1. Parameters object of calibration, explored ranges and target values

Parameter Explored range Target value
for calibration

rs [0, 1] 0.096
rv [0, 1] 0.853
hs [m] [1, 50] 13.67
hv [m] [1, 50] 1.920
pc [0, 100] 8.460

master process executes the algorithm outlined in Figure 1, while the remaining
processes carry out all the required CA simulations.

In the SCIARA model, which is described in detail in [9], a specific component
of the transition function computes lava outflows from the central cell towards
its neighbouring ones on the basis of the altitudes, lava thickness and tempera-
tures in the neighbourhood. In the model, lava can flow out when its thickness
overcomes a critical height, so that the basal stress exceeds the yield strength.
The critical height mainly depends on the lava temperature according to a power
law. Moreover, viscosity is accounted in terms of flow relaxation rate, being this
latter the parameter of the distribution algorithm that influences the amount
of lava that actually leaves the cell. At each time-step the new cell temperature
is updated according to the mass and energy exchange between neighbouring
cells and also by considering thermal energy loss due to lava surface irradiation.
The temperature variation, besides the change of critical height, may lead to
the lava solidification which, in turn, determines a change in the morphology. In
SCIARA the transition function depends on the following scalar parameters: rs,
the relaxation rate at the temperature of solidification; rv, the relaxation rate at
the temperature of extrusion; hs, the critical height at the temperature of solid-
ification; hv, the critical height at the temperature of extrusion; pc, the “cooling
parameter”, which regulates the thermal energy loss due to lava surface irradi-
ation. Once that the input to the model has been provided, such as parameter
values, terrain topography, vents and the effusion rates as a function of time,
SCIARA can simulate the lava flow. The simulation stops when the fluxes fall
below a small threshold value. However, before using the model for predictive
applications, the parameters must be optimized for a specific area and lava type.
To this end, the following fitness measure was defined:

θ =
|R ∩ S|
|R ∪ S| (15)

where R and S represent the areas affected by the real and simulated event,
respectively. Note that θ ∈[0,1]; its value is 0 if the real and simulated events
are completely disjoint, being |R ∩ S|=0; it is 1 in case of perfect overlap, being
|R ∩ S| = |R ∪ S|.

For the calibration task the MAMA was compared with the corresponding
standard GA (SGA). In both algorithms a population of 100 bit-strings, each
encoding a candidate solution p = [rs, rv, hs, hv, pc], was evolved. In particular,



324 D. D’Ambrosio et al.

Fig. 2. The rugged fitness landscape generated by SCIARA

each of the SCIARA parameters was encoded on a string of 12 bits using the
intervals shown in Table 1. As for the genetic operators, the standard 1-point
crossover applied with probability pc = 1.0 was adopted, while the mutation
consisted of a bit flipping with probability pm = 1/nb, being nb the number
of bits per individual. Also, the standard Roulette Wheel Selection was applied
together with an elitist replacement scheme.

The calibration exercise concerns a real event occurred on Mt. Etna (Sicily,
Italy) in 2001 which is described in details in [2]. However, the target final config-
uration was obtained with SCIARA itself, using the set of parameters shown in
Table 1. This guarantees the existence of a zero-error solution of the calibration
problem, thus allowing for a more objective evaluation of the calibration proce-
dures. In Figure 2 the landscape generated by the fitness defined in Equation
(15) is depicted. In particular, the two surfaces were obtained executing a num-
ber of SCIARA simulations on a grid covering the whole search space, with a
refinement in a neighbourhood of the target point shown in Table 1. The rugged-
ness of the fitness landscape, which can be observed in Figure 2, is known as
one of the causes of slow convergence when using most optimization heuristics.
In these cases, it is known that using global meta-models can help on smoothing
the fitness landscape, thus speeding-up the optimization convergence. In the
preliminary experiments presented here, besides the overall effectiveness of the

Table 2. Overview of the calibration results obtained assigning to each search al-
gorithm a budget of 1000 SCIARA evaluations. The statistics were computed on 10
independent run of each algorithm.

λ Average Min Max Std. Dev.

SGA - 0.821 0.740 0.910 0.048

0 0.918 0.901 0.950 0.015
2 0.894 0.872 0.925 0.017

MAMA 4 0.910 0.862 0.966 0.035
6 0.939 0.912 0.971 0.019
10 0.901 0.860 0.921 0.019
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Fig. 3. Average behaviour of the optimization heuristics SGA and MAMA. In the
latter, different learning intensities were tested.

MAMA, also the influence of the individual learning intensity (i.e., the parame-
ter λ) was investigated. In particular, five different values of λ were considered,
namely 0, 2, 4, 6 and 10. To all runs, a budget of nsim = 1000 CA simulations
was assigned. In the MAMA, the remaining parameters were ρ1 = 0.2, ρ2 = 0.3
and π = 0.1. Therefore, up to 200 CA simulations the MAMA worked as the
SGA. Starting from 200 CA simulations, the MAMA operated exploiting the
RBFN as fitness surrogate. Only after the first 300 CA simulations, the LS was
applied to about 10 individuals per generation. For each type of heuristic search,
10 independent runs were carried out. In Table 2 an overview of the results is
shown. Within the limited budget of 1000 CA evaluations, the SGA achieved
an average fitness value of θ ≈ 0.82 and a maximum of θ ≈ 0.91. As expected,
the MAMA outperformed the SGA providing the best result for λ = 6, that is
a final average θ ≈ 0.94 and a maximum θ ≈ 0.97. Figure 3-a shows the av-
erage behaviour of the algorithms during the search process. Interestingly, for
any number of SCIARA simulations and regardless of the learning intensity, the
MAMA attained an average fitness significantly higher than that of the SGA.
In particular, the MAMA with λ = 6 reached a significant average speed of
convergence, by requiring only about one half of the computational budget to
achieve the same fitness given by the SGA at the end of the process. Since each
CA evaluation takes several minutes on a standard PC, the MAMA can thus
provide the same results of a SGA saving a few hours of computation.

As can be seen on Table 2, in the present application the trade-off between ex-
ploration and exploitation regulated by λ had a limited influence (i.e. about 5%
at most) on the achieved optimum. Probably, in this case the beneficial smooth-
ing effects provided by the global meta-model plays a major role on speeding-up
the optimization. However, it is important to remark that a small gain in the
fitness defined by Equation (15) corresponds to a significant difference in the
final map of the lava invasion.
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5 Conclusions and Future Work

The preliminary results of this study indicate that the automatic optimization
of CA models can greatly benefit by the use of a MAMA. Future work will focus
on more sophisticated strategies for choosing the individuals on which it is worth
investing CA simulations for a Lamarckian learning. In particular, an interesting
direction to explore is that proposed in [7], where a pre-selection criterion based
on a probability of improvement was adopted to rank the promising individuals.
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Abstract. Community detection is an important issue in the field of
complex networks. Modularity is the most popular partition-based mea-
sure for community detection of networks represented as graphs. We
present a hybrid algorithm mixing a dedicated crossover operator and
a multi-level local optimization procedure. Experimental evaluations on
a set of 11 well-known benchmark graphs show that the proposed algo-
rithm attains easily all the current best solutions and even improves 6 of
them in terms of maximum modularity.

Keywords: heuristic, community detection, complex networks, graph
partitioning, modularity, combinatorial optimization.

1 Introduction

Complex networks are a graph-based model which is very useful to represent
connections and interactions of the underlying entities in a real networked sys-
tem [19]. A vertex of the complex network represents an object of the real system
while an edge symbolizes an interaction between two objects. A typical exam-
ple is social network where each vertex corresponds to a particular member of
the network while the edges incident to the vertex represent the relationships
between this member and other members. Other prominent complex networks
include biological networks, citation networks, and the World Wide Web.

Complex networks typically display non-trivial topological features and spe-
cial patterns which characterize its connectivity and impact the dynamics of
processes applied to the network [17]. Discovering these particular features and
patterns helps understand the dynamics of the networks and represents a real
challenge for research [6].

In particular, complex networks may contain specific groups of highly inter-
connected vertices which are loosely associated with other groups. Such a group
is commonly called community, cluster or still module [19] and all the communi-
ties of a network form a clustering. In terms of graph theory, a clustering can be
defined as a partition of the vertices of the underlying graph into disjoint subsets,
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each subset representing a community. A community is typically characterized
by two basic factors: intra-cluster density and inter-cluster density. Intuitively,
a community is a cohesive group of vertices that are connected more ”densely”
to each other than to the vertices in other communities. To quantify the quality
of a given community and more generally a clustering, modularity is certainly
the most popular measure [18]. Under this quality measure, the problem of com-
munity detection is a pure combinatorial optimization problem. Formally, the
modularity measure can be stated as follows.

Given a weighted graph G = (V,E,w) where w is a weighting function, i.e.,
w : V × V "−→ R such that for all {u, v} ∈ E,w({u, v}) �= 0, and for all {u, v} /∈
E,w({u, v}) = 0. Let C ⊆ V and C′ ⊆ V be two vertex subsets, W (C,C′) the
weight sum of the edges linking C and C′, i.e., W (C,C′) =

∑
u∈C,v∈C′ w({u, v})

(in this formula, each edge is counted twice). The modularity of a clustering with
K communities I = {C1, C2, ..., CK} (∀i ∈ {1, 2, ...,K}, Ci ⊂ V and Ci �= ∅;
∪K
i=1Ci = V ; ∀i, j ∈ {1, 2, ...,K}, Ci ∩ Cj = ∅) is given by:

Q(I) =

K∑
i=1

[
W (Ci, Ci)

W (V, V )
−

(
di

W (V, V )

)2
]

(1)

where di is the sum of the degrees of the vertices of community Ci, i.e., di =∑
v∈Ci

deg(v) with deg(v) being the degree of vertex v.
It is easy to show that Q belongs to the interval [-0.5,1]. A clustering with a

small Q value close to -0.5 implies the absence of real communities. A large Q
value close to 1 indicates a good clustering containing highly cohesive commu-
nities. The trivial clustering with a single cluster has a Q value of 0.

Given the modularity measure Q, the community detection problem aims to
find, among the space of all possible clusterings (partitions) of a given graph, a
particular clustering with the maximal modularity Q. This is thus a highly com-
binatorial optimization problem and known to be NP-hard [3]. Consequently,
heuristic algorithms are a natural choice to handle this problem. The heuristic
algorithms proposed recently for community detection with the modularity mea-
sure belong to three general approaches: fast greedy agglomeration like [4], local
search [22,14] and hybrid algorithms like [1,13] as some examples.

In this paper, we introduce a memetic algorithm for community detection
(MA-COM). MA-COM combines a dedicated crossover operator and a multi-
level optimization procedure. MA-COM uses a quality-and-distance based pop-
ulation updating strategy to maintain population diversity. Tested on a set of
11 well-known complex networks, MA-COM attains improved solutions (with a
largerQ value) for 6 cases with respect to the best-known values of the literature.

2 Hybrid Evolutionary Algorithm

2.1 Main Scheme

Memetic algorithms are known to be highly effective for solving a number of
hard combinatorial optimization problems [16]. A memetic algorithm typically
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combines a recombination (or crossover) operator and a local optimization op-
erator. The recombination operator generates new solutions which are hopefully
located in new promising regions in the search space while the local optimiza-
tion operator searches around the newly generated solutions in order to discover
solutions of good quality.

The general scheme of our MA-COM algorithm for community detection is
summarized in Algorithm 1. Basically, MA-COM begins with an initial popu-
lation of solutions (line 1, Section 2.2) and then repeats an iterative process
for a number of times (generations) (lines 3–11). At each generation, two so-
lutions are randomly selected to serve as parents (line 4). The recombination
operator is applied to the parents to generate a new offspring solution which
is further improved by the local optimization procedure (lines 5–6, see Section
2.3). Finally, we apply a quality-and-distance based rule to decide whether the
improved offspring solution can be inserted into the population (line 10, Sec-
tion 2.4). The solution with the highest modularity discovered during the search
is always recorded (line 7-8). The whole algorithm stops if during g consecutive
generations, the modularity improvement is inferior to a given threshold ε. In the
following subsections, we give more details on the components of our algorithm.

Algorithm 1. Pseudo-code of memetic algorithm for community detection

Require: Graph G = (V,E).
Ensure: A clustering I∗ of G with a maximal modularity.
1: P = {I1, I2, ..., Ip} ← Initialize Population() /* Sect. 2.2*/
2: I∗ = argmaxI∈P {Q(I)} /* Record the best clustering found so far */
3: repeat
4: (Ii, Ij) ← Choose Parents(P )
5: I ← Recombine Parents(Ii, Ij) /* Sect. 2.3 */
6: I ← Improve(I) /* Sect. 2.2 and 2.3 */
7: if Q(I) > Q(I∗) then
8: I∗ ← I
9: end if
10: P ← Update Population(I, P ) /* Sect. 2.4 */
11: until end criterion

2.2 Initial Population

Each solution (clustering) is represented by a n-vector C where n is the order of
the graph and C[i] ∈ {1, ...,K} is the community label of vertex i. To generate
the initial population P , we employ a randomized multi-level algorithm due to
Blondel et al. (named BGLL) [1] which uses the vertex mover (VM) heuristic [22]
as its refinement procedure. Each VM application displaces a vertex from its
current community to another community if the move increase the modularity.

Specifically, we begin with the initial graphG0 (called it the lowest level graph)
where each vertex forms a community and iteratively apply the VM heuristic to
improve the modularity of the clustering C of graph G0 until no improvement
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is possible for C. From this point, we transform G0 into a new (a higher-level)
graph G1 where each vertex is a community of the clustering C and an edge links
two vertices in G1 if they represent two neighboring communities in C. Now we
apply the VM heuristic to the new graph G1 to obtain another clustering and
then use the clustering to transform G1 to a new graph G2 of higher level. This
coarsening phase stops when the last graph cannot be further improved by the
VM heuristic.

At this point, a second phase (uncoarsening) unfolds the hierarchy of graphs
starting from the highest level. At each uncoarsening step, the communities
represented by the vertices of the current graph are recovered. The uncoarsening
phase stops when the lowest level is reached to recover the initial graph G0. The
corresponding clustering of G0 constitutes an individual of the initial population
of our memetic algorithm.

Experiments show that this initialization procedure is able to provide the
memetic algorithm with diversified initial solutions of good quality.

2.3 A Priority-Based Crossover Operator

Crossover is a key element for the effectiveness of the memetic approach [16].
We develop a crossover operator which is dedicated to the clustering problem,
named priority-based crossover operator. Our crossover uses two parents (which
are selected at random from the population) to generate a new offspring clus-
tering. Random selection suffices in our context because 1) all the individuals
of the population are generally of good quality (since they are improved by lo-
cal optimization) and 2) they are sufficiently distanced in terms of community
structure due to the pool updating strategy used in Section 2.4.

The key idea of this operator is to take communities as genetic material and
try to preserve some communities from the parents. Specifically, let (I1, I2) be
two parent clusterings and p a priority vector. Let s and r be respectively the
number of communities of clusterings I1 and I2. The vector p, indexed from
1 to s + r, is defined by a random permutation of {1, 2, ..., s+ r}. The indices
between 1 and s of p denotes the communities of one parent and those between
s + 1 and s + r the communities of the other parent. Thus each community
of the parents is designated by a unique number from 1 to s + r. For each
community Ci, i ∈ {1, 2, ..., s+ r}, the corresponding value in p (i.e., p[i]) gives
the priority of Ci. By convention, a smaller p value indicates a higher priority
for the community and vise versa.

The crossover procedure generates from (I1, I2) its offspring clustering Io as
follows. We go through one by one all the communities by following the pri-
ority order given by the vector p. We begin by selecting the highest priority
community C according to p and transfer all the vertices of the community to
form a community of the offspring Io. We then pick the community C′ with
the second highest priority, remove the vertices already in Io and use the re-
maining vertices of C′ to form a new community of Io (empty community is
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discarded). We repeat this process until the community with the lowest priority
is handled. Finally, the communities of Io are re-labeled from one to the number
of communities contained in the offspring.

Figure 1 illustrates the crossover procedure applied to a small graph. Among
the 7 communities of the two parents, the one with the highest priority 1
(labeled 5 in parent 2 with vertices {1,2,8,10,13,17}) is transfered to the off-
spring. The second selected community is the one labeled 2 from parent 1 (i.e.,
{3,7,9,13,16}). After removing vertex 13 which appears already in the offspring,
we use {3,7,9,16} to form another community of the offspring. The next selected
community is labeled 1 from parent 1 ({1,2,8,10,17}), removing the shared ver-
tices leads to an empty community which is discarded. This process continues
until all the 7 communities are examined. The resulting offspring is composed
of 5 communities originating from both parents. This crossover operator leads
generally to an offspring with more communities than in the parents, deterio-
rating thus the modularity objective. To improve the quality of the offspring,
we apply the BGLL algorithm described in Section 2.2 by taking the offspring
as its initial solution. The improved offspring is then considered for inclusion
in the population according to the quality-and-distance strategy explained in
Section 2.4.
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Fig. 1. Illustration of the crossover operator. Five new communities in the offspring
are created from seven communities of two parents.
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The time complexity of the crossover operator is O(n). With appropriate data
structures, the crossover operator can be implemented in one pass of the vertices
of the graph.

Finally, we notice the the priority associated to each community can be defined
by considering other factors like the modularity and size of the community. Due
to space limitations, we do not explore these possibilities in this paper. Yet, as
shown in the experimental evaluation section, our memetic algorithm equipped
with the crossover operator using random priorities works well for the set of the
test graphs.

2.4 Population Updating Strategy

Population diversity is another critical issue in a memetic algorithm to avoid
premature convergence [16]. Our experiments show that this particularly holds
in our case due to the small size of the population used (typically several tens of
solutions). For this reason, we employ a population updating strategy which con-
siders not only the quality of the offspring, but also its distance to the solutions
of the population.

Distance Function. Let X = {X1, X2...XK} and Y = {Y1, Y2...YK′} be two
clusterings of graph G = (V,E). For an edge e = {u, v} ∈ E and a community
C of X or Y , we use e ∈ C to state the fact that the vertices u and v of e are in
the same community. Then we use the Rand Index [21] to define our distance d
between X and Y as follows:

d(X,Y ) =

∑
e∈E de(X,Y )

m
(2)

where de(X,Y ) of edge e = {u, v} is defined by:

de(X,Y ) =

⎧⎨
⎩

0 if ∃Xi ∈ X , ∃Yj ∈ Y s.t. e ∈ Xi and e ∈ Yj OR
if ∀Xi ∈ X , ¬(e ∈ Xi) and ∀Yi ∈ Y,¬(e ∈ Yj)

1 otherwise.
(3)

We can show that d (called Edge Rand Index - ERI) satisfies the conditions of
a mathematical distance and its values belong to [0,1]. Intuitively, this distance
measures the edge disagreements between two clusterings.

Updating Procedure. Let P be the current population and Io be the offspring
to be considered for inclusion in P . Let Ic ∈ P be the closest clustering to Io

according to the above distance and Iw ∈ P the worst clustering (with the small-
est modularity). Let δmin is a fixed distance threshold. We apply the following
replacement rule: if d(Io, Ic) < δmin and Q(Io) ≥ Q(Ic), then Io replaces Ic in
P ; otherwise, if Q(Io) ≥ Q(Iw) then Io replaces Iw in P .

By taking into account both quality and distance, this updating strategy
reinforces the population diversity when the search progresses.
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3 Computational Results

3.1 Experimental Setup

This section is dedicated to a performance assessment of our MA-COM algo-
rithm which is coded in Pascal. We carry out extensive experiments on a set
of 11 networks (with 34 to 27519 vertices) commonly used for community de-
tection (Table 1). Directed graphs are transformed into undirected graphs and
loops are removed. Our algorithm also takes into account weighted graphs (Cond-
mat2003). We run the program 20 times on each graph and report the maximal
modularity, the average modularity and the average computing time, based on
a PC equipped with a Pentium Core i7 870 of 2.93 GHz and of 8 GB of RAM.
The algorithm stops after 500 consecutive generations without an improvement
of modularity greater than 10−4. The values for the other parameters are the
following: population size (30), distance threshold δmin used for population man-
agement (0.01). These same values are used to report all the results of this
section, though better results could probably be obtained by fine tuning some
parameters. Experiments show that population size and distance threshold have
an important influence on MA-COM’s performance. In Section 3.2, we show our
results in terms of the modularity criterion while in Section 3.3 we analyze some
structural features of the solutions found.

3.2 Results in Terms of Modularity

Table 1 shows the results of the proposed memetic algorithm (MA-COM) com-
pared to the current best-known results (BKR) ever reported in the literature
in terms of the modularity values. We also include the results of the BGLL algo-
rithm which is used to generate the initial population of our memetic algorithm.
From Table 1, we observe that the proposed MA-COM algorithm obtains clus-
terings of equal or greater modularity for all the tested graphs. In particular, for
the 6 largest graphs (from C. elegans to the last network), MA-COM improves
the current best-known results by finding solutions with a larger modularity. For
the first 5 graphs which are also the smallest ones (with no more 200 vertices
and 3000 edges), even BGLL alone attains the current best-known modularity
values during the population initialization phase.

We also observe that the average modularity of our MA-COM algorithm is
very closed to the maximum and, for all the graphs, is always equal to or better
than the best-known result. This shows that MA-COM is quite stable, despite of
its stochastic nature. The computing time grows more than linearly with respect
to the number of edgesm. Experimental statistics show that the time complexity
could be approximated by O(mα) with α ≈ 1.3.

3.3 Structural Changes in Clusterings

In the last section, we show that MA-COM improves the solutions of the BGLL
algorithm in terms of modularity. Now we turn our attention to structural trans-
formations of solutions achieved by MA-COM from solutions given by BGLL.
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Table 1. Results on 20 runs of the proposed MA-COM algorithm on 11 commonly used
real graphs (sources in brackets). The BKR column shows the best known result with
its sources in brackets. The other columns give the average and maximum modularity
of the best solutions in the initial population (BGLL) and the final population of MA-
COM. The number of communities of the best solution is indicated between parenthesis.
Improved results are highlighted in bold.

Graph BKR BGLL [1] MA-COM
Avg Q Max Q (K) Avg Q Max Q (K) Time(s)

Karate Club [23] 0.4198 [13,20,14] 0.4198 0.4198 (4) 0.4198 0.4198 (4) 0.3
Dolphins [15] 0.529 [13] 0.5281 0.5286 (5) 0.5286 0.5286 (5) 0.5
Political Books [12] 0.527[13] 0.5273 0.5273 (5) 0.5273 0.5273 (5) 1.0
College Football [7] 0.605 [13] 0.6046 0.6046 (10) 0.6046 0.6046 (10) 1.4
Jazz [8] 0.4452 [14] 0.4452 0.4452 (4) 0.4452 0.4452 (4) 5.2
C. elegans [5] 0.452 [13] 0.4457 0.4497 (11) 0.4531 0.4533 (10) 8.3
E-mail [10] 0.582 [13] 0.5748 0.5772 (10) 0.5828 0.5829 (10) 23.1
Erdos [9] 0.7162 [20] 0.6993 0.7021 (32) 0.7184 0.7188 (34) 88.4
Arxiv [11] 0.813 [1] 0.8166 0.8181 (60) 0.8246 0.8254 (56) 197.2
PGP [2] 0.8841 [13,20] 0.8841 0.8850 (95) 0.8865 0.8867 (94) 156.7
Condmat2003 0.8146 [20] 0.8112 0.8116 (77) 0.8165 0.8170 (73) 1369.7

For this purpose, we consider, for each of the 11 graphs and each of the 20 runs
of MA-COM, the best solution I∗init (i.e., the clustering with the largest modu-
larity) from the initial population (generated by BGLL) and the best solution
I∗final from the final population (generated by MA-COM). We compute then the
distance between I∗init and I∗final using two distance measures: the well-known
Normalized Mutual Information (NMI) and the Edge Rand Index (ERI) which
is defined in Section 2.4 for population management. While NMI measures the
information shared by I∗init and I∗final, ERI indicates the percentage of edges
which disagree in the clusterings I∗init and I∗final. Table 2 show the statistics
of these measures averaged over the 20 runs for each graph. Additionally, we
indicate the averaged number of communities (indicator K) in the initial and
final population. Finally, we present the averaged sizes of the smallest and the
largest communities in the initial and final best solutions.

Table 2 shows that for the small graphs except Dolphins, the memetic al-
gorithm has a limited effect on the best BGLL clustering. On the contrary,
structural changes for other graphs are more or less important because an edges
difference of 2.7% to 13.1% are observed in the initial best and the final best
solutions. Some graphs have probably a simple structure with few local optima,
for instance PGP (with a high NMI). Some smaller graphs like C. elegans seem
to have a more complexe modularity landscape (13.1% of edges of the initial
best solutions are changed in final best solutions).

The indicator K confirms the well-known propensity of modularity based
methods to reduce the number of communities. However, the reduction is mod-
erate, indicating that the changes revealed by the ERI distance are mainly due to
moves of vertices rather than merges of communities. The good surprise comes
with the smallest and largest communities. The memetic algorithm has a clear
trend to help discover small communities (which are known to be difficult to
detect). More generally, we believe that the crossover operator of the algorithm
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Table 2. Several structural measures to compare the best solution in the initial pop-
ulation and the best solution in the final population: NMI (Normalized Mutual Infor-
mation), ERI (Edge Rand Index), K (number of communities), average sizes of the
smallest and largest community over 20 runs.

Graph NMI ERI K Smallest com. size Largest com. size
Initial Final Initial Final Initial Final

Karate Club 1.000 0.0% 4.0 4.0 5.0 5.0 12.0 12.0
Dolphins 0.976 1.9% 5.0 5.0 5.0 5.0 19.9 20.0
Political Books 0.982 0.4% 5.0 5.0 3.0 3.0 40.6 40.0
College Football 1.000 0.0% 10.0 10.0 9.0 9.0 16.0 16.0
Jazz 0.999 0.1% 4.0 4.0 21.9 22.0 62.1 62.0
C. elegans 0.733 13.1% 10.2 9.2 7.5 5.0 92.0 82.2
E-mail 0.780 9.1% 10.8 10.1 43.2 36.2 185.8 168.5
Erdos 0.771 12.0% 32.5 33.9 23.8 9.7 622.5 619.6
Arxiv 0.795 7.6% 59.6 55.5 4.5 4.5 920.5 812.2
PGP 0.915 2.7% 98.0 95.0 5.9 6.0 668.5 641.7
Condmat2003 0.758 8.9% 75.8 70.6 18.5 6.6 2478.7 2266.6
Total 0.883 5.1% 28.6 27.5 13.4 10.2 465.3 431.0

acts mainly on the ambiguous vertices which are attached to several communities
and help discover the right community for these vertices.

4 Conclusion and Perspectives

This paper deals with the community detection problem in complex networks
with the popular modularity criterion. To approximate this hard combinatorial
problem, we proposed a memetic algorithm mixing a dedicated crossover op-
erator and a multi-level local optimization procedure. The proposed crossover
operator blends the communities of two clusterings (parents) according to a pri-
ority rule. Offspring solutions are improved with the multi-level local optimizer.
To maintain a healthy population diversity, we introduce a Rand Index based
distance and consider for population management both the quality of the off-
spring and its distance to the solutions of the population. Experimental results
on a set of 11 popular networks showed that the proposed approach can easily
match the best known results in 5 cases and discover improved solutions for
the 6 other largest networks. The analysis of initial solutions and final solutions
showed the benefit of memetic approach in discovering communities of small size
that are difficult to find. This work demonstrated that the memetic approach is
a very promising method for modularity maximization. The proposed algorithm
could also be used to devise more powerful methods. One possible way would be
to embed the memetic approach into the multi-level approach in order to handle
very large networks.
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Marco Tomassini2, and Enrique Alba1
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Abstract. Recent developments in fitness landscape analysis include
the study of Local Optima Networks (LON) and applications of the El-
ementary Landscapes theory. This paper represents a first step at com-
bining these two tools to explore their ability to forecast the performance
of search algorithms. We base our analysis on the Quadratic Assignment
Problem (QAP) and conduct a large statistical study over 600 generated
instances of different types. Our results reveal interesting links between
the network measures, the autocorrelation measures and the performance
of heuristic search algorithms.

1 Introduction

An improved understanding of the structure of combinatorial fitness landscapes
can facilitate the design and further successful application of heuristic search
methods to solve hard computational problems. This article brings together two
recent developments in fitness landscape analysis for combinatorial optimisation,
namely, local optima networks (LONs) and elementary landscape decomposition.
LONs represent a new model of combinatorial landscapes based on the idea of
compressing the information given by the whole problem configuration space
into a smaller mathematical object that is the graph having as vertices the
local optima and as edges the possible transitions between them [15,16]. This
characterization of landscapes as complex networks enables the use of tools and
metrics of the complex networks domain [4] and has brought new insights into
the global structure of the landscapes studied in the past [9].

The QAP has been recently analysed using this model [9] and the clustering
structure of the local optima networks of two classes of QAP instances was
studied in [8]. The study revealed that the so-called “real-like” instances have
significantly more optima cluster (or modular) structure than the class of random
uniform instances of the QAP. Using the theory of elementary landscapes [3] the
QAP has been analysed in [6] and the elementary landscape decomposition has
been computed. This decomposition can then be used to exactly compute the
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autocorrelation coefficient and the autocorrelation length of any arbitrary QAP
instance [7].

In this article, the expression in [7] is used to calculate the autocorrelation
length of the two classes of QAP instances studied in [8]. Since for those in-
stances the LONs were exhaustively computed, the exact number of local optima
are known in all cases. This will allow us to support the autocorrelation length
conjecture [13], which links the autocorrelation length to the number of local op-
tima of a landscape. We also conduct a correlation study among several network
metrics calculated on the extracted LONs and the success rate of two heuristic
search algorithms: simulated annealing and genetic algorithms. Our goal is to
discover relationships between fitness landscape features and the performance of
heuristic search methods.

The article is structured as follows. Section 2 includes the relevant definitions,
methodologies and metrics used in this article. Section 3 presents the correlation
study and Section 4 discusses our main findings and suggests directions for future
work.

2 Background

In this section we introduce all the background concepts required in the rest
of the paper. We define the QAP, describe the LONs, introduce the network
metrics, the autocorrelation length and describe the heuristic search algorithms
used in the experimental section.

2.1 The Quadratic Assignment Problem

The QAP is a combinatorial problem in which a set of facilities with given flows
have to be assigned to a set of locations with given distances in such a way
that the sum of the product of flows and distances is minimized. A solution to
the QAP is generally written as a permutation π of the set {1, 2, ..., n}. The cost
associated with a permutation π is: C(π) =

∑n
i=1

∑n
j=1 aijbπiπj , where n denotes

the number of facilities/locations and A = (aij) and B = (bij) are referred to as
the distance and flow matrices, respectively. The contents of these two matrices
characterize the class of instances of the QAP.

For the statistical analysis conducted here, the two instance generators pro-
posed in [12] for the multi-objective QAP were adapted for the single-objective
QAP. The first generator produces uniformly random instances where all flows
and distances are integers sampled from uniform distributions. The second gen-
erator produces flow entries that are non-uniform random values. The instances
produced have the so-called “real-like” structure since they resemble the struc-
ture of QAP instances found in practical applications. These instance generators
are based on the procedures described by Taillard in [14]. In particular, uniform
instances are similar to the TaiXXXa instances of QAPLIB [5] and real-like in-
stances are similar to the TaiXXXb instances. We consider here these two types
of instances and three problem dimensions: 9, 10 and 11. Therefore, we have
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six different instance groups. For each group, 100 instances were generated for a
total of 600 QAP instances that will be used in our study.

2.2 Local Optima Networks

In order to define the local optima network of the QAP instances, we need to
provide the definitions for the nodes and edges of the network. The vertices of
the graph can be straightforwardly defined as the local minima of the landscape.
In this work, we select small QAP instances such that it is feasible to obtain the
nodes exhaustively by running a best-improvement local search algorithm from
every configuration (permutation) of the search space. The neighborhood of a
configuration is defined by the pairwise exchange or swap operation, which is
the most basic operation used by many metaheuristics for QAP. This operator
simply exchanges any two positions in a permutation, thus transforming it into
another permutation. The neighborhood size is thus |V (s)| = n(n− 1)/2. Given
a local optima s, its basin of attraction is defined as the set of solutions s′ from
which s can be reached using a hill-climbing algorithm [9].

The edges account for the transition probability between basins of attraction
of the local optima. More formally, the edges reflect the probability of going
from basin bi to basin bj , which is computed as the average over all s ∈ bi of
the transition probabilities to solutions s′ ∈ bj. The reader is referred to [9] for
a more detailed exposition.

We define a Local Optima Network (LON) as being the graph G = (S∗, E)
where the set of vertices S∗ contains all the local optima, and there is an edge
eij ∈ E with weight wij = p(bi → bj) between two nodes i and j if and only if
p(bi → bj) > 0, where p(bi → bj) is the probability of moving from basin bi to
basin bj in one step. Notice that since each optimum has its associated basin, G
also describes the interconnection of basins.

2.3 Network Metrics

We describe below the six network metrics considered in our analysis.

Number of vertices, Nv : The number of nodes of a LON is simply the num-
ber of local optima in the fitness landscape. It is exhaustively computed
running a best-improvement hill-climbing algorithm from each solution of
the search space.

Clustering coefficient, Cc : Measures the probability that two neighbors of
a given node are also neighbors of each other [4]. In other words, it accounts
for the ratio of connected triples in the graph. In the language of social
networks, it measures how likely it is that the friend of your friend is also
your friend.

Shortest path length to the optimum, Lopt: A standard metric to charac-
terize the structure of networks is the shortest path length (number of link
hobs) between two nodes in the network. In order to compute this measure
on the LONs, we considered the expected number of moves (in the case of
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QAP swap moves) to pass from one basin to the other. This expected number
can be computed by considering the inverse of the transition probabilities
between basins: 1/wij . We use this to calculate the average shortest paths
leading to the global optimum.

Disparity, Y2: Measures the local heterogeneity introduced by edge weights [4].
It indicates whether the outgoing links from a given node have mostly the
same weights (transition probabilities) or there is one outweighing the others.
Disparity for a vertex i is computed as Y2(i) =

∑
j �=i(wij/si)

2, where si =∑
j �=i wij is the so-called strength of vertex i.

Fitness-fitness correlation, Fnn: Measures the correlation between the
fitness values of adjacent local optima. More precisely, we estimate the
Spearman rank correlation coefficient between the fitness value fi of ver-
tex i and its weighted-average nearest-neighbors fitness, defined as Fw

nn(i) =
1/si

∑
j �=i wijfj .

Modularity, Q: Clusters or communities in networks can be loosely defined
as groups of nodes that are strongly connected between them and poorly
connected with the rest of the graph. To calculate the level of community
structure, also known as modularity, we consider a graph clustering algo-
rithm that is based on the simulation of network flow [10], as in [8].

2.4 Calculation of the Autocorrelation Length

Let us consider an infinite random walk {x0, x1, . . .} on the solution space such
that xi+1 ∈ N(xi). The random walk autocorrelation function r : N → R is
defined as [17]:

r(s) =
〈f(xt)f(xt+s)〉x0,t

− 〈f(xt)〉2x0,t

〈f(xt)2〉x0,t
− 〈f(xt)〉2x0,t

(1)

where the subindices x0 and t indicate that the averages are computed over all the
starting solutions x0 and along the complete random walk. The autocorrelation
length � [11] is defined as � =

∑∞
s=0 r(s). Using the landscape decomposition of

the QAP in [7] the authors provide a closed-form formula for � based on the
matrices (aij) and (bij) of the QAP instance. We will use in the present article
this formula to efficiently compute the autocorrelation length of all the instances
in our experimental study.

2.5 Heuristic Search Algorithms and the Performance Metric

We considered two well-known heuristic search algorithms: simulated anneal-
ing (SA) and genetic algorithms (GA). The SA uses a cooling factor of 0.9983
and an initial temperature of 107. The neighborhood move is the same used
for generating the LONs, namely, the pairwise exchange or swap operation in
permutation space. The GA is a steady-state GA with a population size of 100,
where one solution is computed at a time and inserted in the population using
elitist replacement. The individuals are selected using a binary tournament. The



LONs, Landscape Autocorrelation and Heuristic Search Performance 341

genetic operators are the partially mapped crossover (PMX) [2] and the pair-
wise exchange mutation operation applied with probability 0.3. We perform 100
independent runs for each algorithm and instance.

In order to measure the performance of a search algorithm solving the QAP
instances we use the success (hit) rate, defined as the fraction of the 100 inde-
pendent runs that found the global optimum. Both algorithms stop when they
reach 10, 000 function evaluations.

3 Correlation Study

Our statistical analysis considers the pair-wise correlation among the six net-
work metrics, the autocorrelation length, and the SA and GA success rates. As
mentioned above, six classes of instances are considered, including two types of
instances (‘uniform’ and ‘real-like’) as described in Section 2.1, and 3 problem
sizes 9, 10 and 11. Each of the 6 instance classes is considered separately, and
100 instances conform the sample for the statistical analysis in each class.

The main goal of our study is to discover whether some of the studied metrics
can predict the performance of a heuristic search algorithm on a given instance
class. We start, then, by showing the performance of the two selected search
algorithms: SA and GA. Figure 1 illustrates the range and distribution of the
hit rates for each algorithm and instance class, while Table 1 contains hit rate
values, number of local optima and the average shortest path length for the
instance classes. We show the values of these two network metrics because they
seem to have an impact on the hit rate, as we will see later.

SA

GA

SA

GA

SA

GA

SA GA

SA

GA

SA

GA

uniform 9 uniform 10 uniform 11 real-like 9 real-like 10 real-like 110.0

0.2

0.4

0.6

0.8

1.0

Hit rate

Fig. 1. Hit rate of the GA and SA for the 6 classes of instances considered. The boxplots
are computed on the results of the algorithms over the 100 random instances per class.
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The results suggest that, for each instance type (uniform or real-like), the hit
rates for both algorithms decrease as the instance size increases, with the only
exception of GA in the real-like 11 class. This is expected as the size of the
search space increases, and so locating the global optimum is harder. However,
the hit rates for real-like instances are much higher in all cases, which confirms
that these instances are easier to solve for both algorithms [9]. In Table 1 we
can see that real-like instances have a lower number of local optima compared
to uniform instances, which explains why real-like instances are easier to solve
than the uniform ones. A second observation is that the hit rate of the GA, for
a given instance type, does not change much when the size of the instances is
increased. However, in SA the hit rate is clearly reduced when the size increases.
That is, SA seems to be quite sensitive to the size of the instance (in addition
to the type) while GA is clearly sensitive to the type of the instance (uniform
or real-like) but little sensitive to the size.

Table 1. Number of local optima (Nv), shortest path to the optimum (Lopt) and hit
rate of the GA and SA for the 6 instance classes. We show the average and the standard
deviation.

Nv Lopt GA SA
Class Avg. Std. dev. Avg. Std. dev. Avg. Std. dev. Avg. Std. dev.

uni
n = 9 131.220 51.268 25.761 11.231 0.220 0.170 0.320 0.200
n = 10 399.840 153.097 45.217 17.120 0.185 0.190 0.155 0.105
n = 11 1337.300 453.520 76.815 26.698 0.210 0.175 0.090 0.070

rl
n = 9 14.300 7.473 8.564 4.343 0.675 0.265 0.585 0.350
n = 10 26.720 17.775 13.588 7.228 0.610 0.465 0.420 0.240
n = 11 64.420 47.410 22.508 11.563 0.585 0.370 0.295 0.235

Let us consider the correlations between the network metrics, the autocorre-
lation length and the algorithms’ performance. These are shown qualitatively in
Figure 2 for the instance sizes 9 and 11. The figure shows that the GA is not
correlated to any measure in the real-like instances of large size. Only for the
uniform instances and the ones of size 9 there are some significant correlations.
We can thus, conjecture that the measures used in this study are not useful to
predict the performance of the GA. A possible explanation is the presence of
the crossover operator, which introduces an additional neighborhood not used
for generating the LONs. On the contrary, the SA algorithm only uses a single
move operator (pairwise exchange or swap) which is the same used to generate
the LONs. In this case, the figure reveals correlation with some metrics. In par-
ticular, the correlation between the performance of SA and Lopt is the highest,
which suggests that Lopt is the measure that better predicts the behavior of SA.

In Figure 3 we plot the hit rate against some selected measures for SA and GA
in the real-like instances of size 11. The plots of the SA and GA are interleaved
in order to compare the results of the regression analysis (the regression line is
superimposed on the plot). We can observe how the line has a smaller slope in
the case of the GA for all the plots, what explains the low correlation for the GA
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Fig. 2. Correlations between the measures. An arrow pointing up means positive corre-
lation whereas an arrow pointing down means negative correlation. The absolute value
of the correlation is shown in grey scale (the darker the higher).

hit rate and the measures. But we can also observe how Lopt is a good predictor
of the SA performance.

An interesting observation that contributes to explain the robustness of the
GA over the problem size is that while hit rate for the SA is correlated with
the number of local optima, this is not the case for the GA. This suggests that
the global search characteristic of a population in GA makes it more robust
to the presence of larger number of local optima.

On the uniform instances, we can observe a positive correlation between the
performances of GA and SA, which suggests that the search difficulty is simi-
lar for both algorithms in this case. This is observed for all instance sizes al-
though the correlation decreases as the size increases. On the real-like instances,
the observation is different. In particular, for the real-like instance of size 11,
there is no correlation whatsoever between the performance of both algorithms,
which suggests that the search difficulty depends on the algorithm for these in-
stances. In other words, the hard instances for the GA are not the same as the
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Fig. 3. Regression analysis for the hit rate of SA and GA against some selected mea-
sures for the real-like 11 instances

hard instances for the SA and vice versa. We may also speculate that the GA is
more efficient at exploiting the more modular structure of the real-like instance,
which makes its search dynamic different than that of the SA on these instances.

Regarding the rest of the measures, in general, the correlations are higher in
the uniform instances than in the real-like instances. Fnn and Q seem to be the
less correlated LONmeasures (this is particularly true for the real-like instances).
The higher correlation coefficients appear between the clustering coefficient, the
disparity, the number of nodes and the path to the global optimum. The au-
tocorrelation length seems to be correlated with these measures and with the
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performance of SA. This is specially interesting, since the autocorrelation length
can be computed from the instance data, without the need to exhaustively gen-
erate the complete search space (like it happens with the LON measures). The
correlation between � and the performance of SA suggests that we can use �
as a measure of problem difficulty, when a trajectory-based search algorithm is
used. This idea is also supported by the results of Angel and Zissimopoulos [1],
which provided a positive correlation between an autocorrelation measure and
the performance of an SA. The correlation between � and the performance of
the GA is much smaller, which again indicates that it is harder to predict the
performance of the GA using this type of landscape metrics.

Finally, the correlation analysis also provides evidence of the autocorrelation
length conjecture. This conjecture claims that the number of local optima is
inversely correlated to the autocorrelation length � [13]. In [7] some results were
presented that supported the autocorrelation length conjecture. In that work,
the correlation between the number of local optima and � was between −0.1640
and −0.3256. In our case the correlation is higher (in absolute value), in the
range from −0.3729 to −0.7187. This support of the conjecture is higher in the
uniform instances than in the real-like instances of the same size.

4 Discussion

We conducted a large statistical correlation study considering QAP instances of
different types and sizes, a number of landscape metrics and the performance of
two widely known search heuristics. Our study also brings together two recent
developments in combinatorial landscape analysis, with the aim of shedding new
light on the relationships between the landscape structure and the performance
of heuristic search algorithms. Our study confirms that the real-like instances
are easier to solve by heuristic search algorithms. Clearly, in these problems, the
number of local optima in the landscape is a much better predictor of search
difficulty than the size of the search space.

Overall, the GA was a stronger algorithm to solve all the studied classes of
QAP instances. Moreover, the GA is more robust to the increase in problem
size. Interestingly, the performance of SA and GA is correlated for the uniform
instances, but this is not the case for the real-like instances. Which suggests
that the GA is better at exploiting the more clustered structure of the real-
like instances. However, predicting the performance of the GA seems to be a
harder task than predicting the performance of SA. GAs are more complex
algorithms as they incorporate a population and a recombination operator. In
particular, we found some network metrics such as the average distance to the
global optima and the number of local optima, which are good predictors of the
SA performance, but less so for the GA. The question is still open for a better
understanding and prediction of the GA performance.

Finally, our study provides supporting evidence of the correlation length con-
jecture indicating that the number of local optima is inversely correlated to
the correlation length. This is an interesting contribution, as using elementary
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landscape decomposition the autocorrelation length for QAP instances can be
exactly calculated from the instance data [7].

More detailed studies, additional metrics, sampling approaches to extract the
LONs and larger landscapes are required to better understand and predict search
difficulty in combinatorial optimization. Our study, however, is a first step that
incorporates new landscape metrics coming from the field of complex networks,
and try to correlate them with both previously studied landscape metrics and
the performance of heuristic search methods.
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Abstract. A hyper-heuristic for the one dimensional bin packing prob-
lem is presented that uses an Evolutionary Algorithm (EA) to evolve a
set of attributes that characterise a problem instance. The EA evolves
divisions of variable quantity and dimension that represent ranges of a
bin’s capacity and are used to train a k-nearest neighbour algorithm.
Once trained the classifier selects a single deterministic heuristic to solve
each one of a large set of unseen problem instances. The evolved classifier
is shown to achieve results significantly better than are obtained by any
of the constituent heuristics when used in isolation.

Keywords: Hyper-heuristics, one dimensional bin packing, classifier sys-
tems, attribute evolution.

1 Introduction

The one dimensional bin packing problem (BPP) is a well researched NP-hard
problem which has been tackled using a diverse range of techniques includ-
ing mathematically complete procedures[16], deterministic heuristics[11], biolog-
ically inspired metaheuristics [8] as well as by the field of hyper-heuristics [15].
The plethora of research and benchmark problem instances available combined
with the fact that the problem constitutes an integral part of many other more
complex problems makes it an ideal domain for investigating new techniques.

This paper presents a hyper-heuristic which attempts to predict which heuris-
tic, from an available pool, will perform best on a given problem instance. The
system incorporates a classification algorithm within an EA in an attempt to
generate predictor attributes that improve upon the classification accuracy ob-
tained using predetermined characteristics. The system, once trained using half
of 1370 benchmark problem instances, achieves results substantially better than
any individual heuristic on the unseen problem instances.

The remainder of this paper is organised as follows. The field of hyper-
heuristics and related work are introduced in section 2 with the one dimen-
sional bin packing problem domain, the benchmark problem instances and the
deterministic heuristics used in this study covered in section 3. The experimen-
tal framework is described in section 4 with the results from those experiments
presented in section 5. The paper finishes with section 6 where conclusions are
drawn and potential for future research is suggested.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 348–357, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Hyper-Heuristics

The term hyper-heuristics (HH) first appeared in relation to combinatorial opti-
misation (CO) problems in [5] although the term was first coined in [6] to describe
an amalgamation of artificial intelligence techniques in the domain of automated
theorem proving. However, the concept can be traced back to the 1960’s when
Fisher & Thompson [9] used machine learning techniques to select combinations
of simple heuristics to produce solutions to local job-shop scheduling problems.
Originally described as “heuristics to select heuristics” [2] the field has evolved
to encompass techniques including “heuristics to generate heuristics” using ge-
netic programming to create new heuristics from constituent component parts
[3,4]. All hyper-heuristics, no matter the approach, have the commonality that
they search over a landscape defined by a set of heuristics, or their component
parts, for a procedure to solve a problem rather than searching directly over the
space defined by the problem itself. A more concise review can be found in [2,1].

In [15] Ross et al., proposed a hyper-heuristic approach to bin-packing that
introduced the notion of describing the state of a problem instance according to
the percentage of items that fall into 4 pre-defined ”natural” categories relating
to item size, given as a ratio of the bin capacity1. A Michigan style Learning
Classifier System (LCS) was used to evolve a set of rules mapping problem states
to suitable heuristics. Each iteration the chosen heuristic packs a single bin with
the potential of a filler process being invoked that attempts to fill a partially filled
bin further. The remaining items are then reclassified using the new problem
state resulting in a deterministic selection of a sequence of heuristics for solving
each problem instance.

The approach presented here differs in that it does not use pre-defined cate-
gories to describe an instance’s state. Using a variable-length evolutionary algo-
rithm a set of categories is evolved that when used in conjunction with a classifier
algorithm, map the description of an instance to a suitable simple heuristic. In
contrast to [15], problem instances are only categorised once and solved using a
single heuristic. The motivation behind this is to determine whether it is possi-
ble to find an appropriate method of describing a set of problem instances such
that each instance can be mapped to the single heuristic that best solves it.
The authors of [15] showed this task to be non-trivial and were unable to find a
relationship using a perceptron. Whilst the ranges they used to describe a prob-
lem appeared “natural” choices they disregard potential relationships between
different item sizes that when combined allow for optimal bin packings.

The system presented here, conceptualised in Figure 1 , uses a heuristic selec-
tion strategy to choose which from a set of deterministic constructive heuristics
to apply to a problem instance based on knowledge of the problem domain ob-
tained during an off-line training phase. This is achieved using a classification
algorithm that attempts to match an unseen problem instance to a procedure
for solving it based on the problem instance’s characteristics. The character-
istics used are the percentages of the items with weights within a number of
ranges, expressed as ratios of the bin capacity. The divisions used are not fixed
in number or dimension but are evolved by the EA during a training phase.

1 Described in Section 4, Figure 2.
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Fig. 1. During off-line training, the EA generates problem divisions, of varying dimen-
sion and number, that the classifier assigns the best known heuristic to. The classifier’s
accuracy in predicting which is the best heuristic for a set of unseen problem instances
is used as feedback to the EA. The two graphs show the same problem instance en-
coded by the two different chromosomes shown. The x-axis depicts the evolved ranges
expressed as a percentage of the bin capacity whilst the y-axis depicts the percentage
of the instances’ items with sizes falling within each range.

The system is described in more detail in Section 4 after introducing the BPP
domain,benchmark problem instances and heuristics used during this study.

3 One Dimensional Bin Packing Problem

The objective of the one dimensional bin packing problem is to find the optimal
number of bins, OPT (I), of fixed capacity c required to accommodate a set of
n items, J = {ω1 . . . ωn} with weights ωj : j ∈ {1 . . . n} falling in the range
1 ≤ ωj ≤ c whilst enforcing the constraint that the sum of weights in any
bin does not exceed the bin capacity c (Scholl, et al., 1997). For any instance
OPT (I) must lie between the lower and upper bounds shown in Equation 1 with
the upper bound occurring when all items are greater than half the bin capacity
and the lower bound achieved when the total free space summed across all bins
is less than the capacity of one bin.

�(
∑n

j=1
ωj) ÷ c� ≤ OPT (I) ≤ n (1)

Table 1 shows the parameters from which the benchmark data sets used in this
study were generated. Data sets ds1, ds2 & ds3, introduced by Scholl et al., in
[16] all have optimal solutions that vary from the lower bound given by Equation
1. However all are known and have been solved since their introduction [17]. All
of the instances from FalU and FalT , introduced by Falkenauer in [8], have
optimal solutions at the lower bound except for one [12].

Four heuristics, three re-created and a fourth introduced here, were included
in the system. All pre-sort and select items in decreasing weight order.
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Table 1. Data sets ds1, ds3 and FalU were created by generating n items with weights
randomly sampled from a uniform distribution between the bounds given by ω. Those
in FalT were generated in a way[8] so that the optimal solution has exactly 3 items in
each bin with no free space. Scholl’s ds2 was created by randomly generating weights
from a uniform distribution in the range given by � ± δ. The final column gives the
number of instances generated for each parameter combination.

Data Set capacity (c) n ω #Problems
ds1 100,120,150 50,100,200,500 [1,100],[20,100],[30,100] 36× 20 = 720
ds3 100000 200 [20000,30000] 10
FalU 150 120,250,500,1000 [20,100] 4× 20 = 80
FalT 1 60,120,249,501 [0.25,0.5] 4× 20 = 80

Data Set c n � (avg weight) δ(%) # Problems
ds2 1000 50,100,200,500 c

3
, c
5
, c
7
, c
9

20,50,90 48× 10 = 480

– First Fit Descending (FFD) packs each item into the first bin that will
accommodate it. If no bin is available a new bin is opened. All bins remain
open for the duration of the procedure.

– Djang and Finch [7] (DJD) and an extension DJD more Tuples (DJT) in-
troduced in [15] both pack items into a bin until it is at least a third full.
Combinations of up to three (or five for DJT) items are then searched for
that best fill the remaining space with preference given to sets that use the
largest items. The bin is then closed and the procedure repeats.

– Adaptive DJD (ADJD), introduced here, packs items into a bin in descending
order until the free space in the bin is less than or equal to three times the
average size of the items remaining to be packed. It then operates like DJD
looking for the set of up to three items that best fills the remaining capacity.

It has been noted [12] that many so called “hard” benchmark problem instances
can be solved easily by simple procedures. Often benchmark instances are in-
troduced in the literature alongside procedures specifically designed to solve
them, such as those from Falkenauer whose Hybrid Grouping Genetic Algorithm
(HGGA) utilises a local search heuristic inspired by Martello and Toth’s Reduc-
tion Procedure (MTRP) [14] tailored for finding optimal sets of three items. It
has been shown for FFD and MTRP[17], and thus DJD and HGGA which both
use searches inspired by MTRP, that instances with average weights, �j → c

3

are the most complex with those where �j → c
4 ,

c
5 ,

c
6 . . . proving difficult also.2

All of the problems used here, except for those in ds2, have an average item
weight of around c

3 .
In [15] the authors showed DJT to be the most successful heuristic when used

in isolation solving 73% of instances to the known optimum. The study however
omitted ds2, on which DJT finds only 45% of the optimal solutions.3 ADJD,

2 If a solution exists at the lower bound given in Equation 1 then the total free space
�free → 0 as �j → c

i
: i ∈ N : i ≥ 3.

3 DJT will perform best where � ≥ 2
15
c as once the initial filling procedure has filled

1
3
c the remaining 2

3
c can be filled by at most five items.
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introduced here, whilst the worst performer on the complete set of problems
achieves significantly better results on the problem instances from ds2. This is
accomplished by first packing items in descending order of size until the free
space in the bin is less than or equal to average size of the items remaining to
be packed thus improving the chance of finding a combination of items to fill
the remaining capacity for problems with smaller average item weights when
compared to DJD or DJT.

In order to get a better indication of a heuristic’s performance than can be
deduced solely from the number of optimal solutions found, Falkenauer’s fitness
function, given in Equation 2, is used with k set to 2 in order to reward solutions
where any free capacity is restricted to as few bins as possible allowing for a
distinction to be made between different solutions that use an equal numbers of
bins as well as a measure of a non-optimal solution’s quality.

f(x) =
∑n

j=1

(
fillj
c

)k

÷ n (2)

A third metric used that gives a measure of a heuristic’s ability to generalise over
a diverse range of problem instances is the number of extra bins required over
the optimal number. Table 2 shows the results obtained, for each heuristic, using
these three metrics. It is interesting to note for instance, that whilst FFD rates
highly if ranked in terms of the number of optimal solutions found, it achieves
this using the second largest number of bins. In contrast ADJD, which comes
4th in terms of the number of optimal solutions found, achieves 2nd best position
if ranked by either of the other two metrics.

Table 2. The table shows the results obtained by each heuristic on different data sets
using three metrics; The percentages of problems solved using the optimum number of
bins, the ratio for which the best fitness was attained and the percentage of extra bins
required over the optimal. The headings in row 2 depict the data sets as described in
Table 1 with Tr and Te depicting the training and test sets used during the experiments
described here in section 4 and All representing the complete set of 1370 instances.
None of the heuristics used here are able to find optimal solutions to any of the instance
from FalT or ds3.

Metric Optimal Fitness Bins
Heuristic ds1 ds2 FalU Tr Te All All T e All T e

# Problems 720 480 80 685 685 1370 1370 685 1370 685
FFD 75.83 49.17 7.5 57.66 57.37 57.52 27.52 27.45 1.78 1.81
DJD 79.03 24.05 57.5 52.55 51.97 52.26 47.74 47.74 2.00 2.02
DJT 83.75 44.58 57.5 63.21 62.77 62.99 54.96 55.47 0.73 0.75
ADJD 35.83 80.21 53.75 51.09 49.05 50.07 53.80 52.26 1.12 1.13

The following section describes the system implemented in an attempt to
harness the combined abilities of the heuristics used.
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4 Experimental Framework

The system, described in Figure 3, comprises of a database containing the prob-
lem instances and corresponding solutions attained by each heuristic along with
a classification algorithm and an EA. The classifier predicts which heuristic will
perform best on an unseen problem instance whilst the EA attempts to increase
classification accuracy by evolving the predictor attributes used. Unlike other
applications in which classifiers and EAs have been combined to select which
predetermined predictor attributes should be used, the approach here uses the
EA to evolve combinations of problem characteristics not known a priori. A com-
prehensive review of EAs combined use with classification algorithms is outwith
the scope of this paper for which the reader is directed to [10].

The chromosome representation used by the EA is based on that used in [15]
in which an instances’ state is described by characteristics which included the
percentage of each instances items with weights within certain predetermined
ranges, measured as ratios of the bin capacity. The ranges used, and adopted
here as a benchmark, are shown in the chromosome representation depicted in
Figure 2. These were deemed ‘ ‘natural” choices by the authors as at most one
Huge, two Large or three Medium items can be placed in any individual bin.
These ranges, or divisions, are used as the classifiers predictor attributes with
the best heuristic being the goal, or class attribute.

In this study the EA evolves variable length chromosomes which are deliber-
ately constrained to a maximum length that was incrementally increased for each
experiment conducted. A chromosome encodes each instance from the evolution
training set by determining the percentage of items with weights in each range
which along with the known best heuristic 4 for each instance is used to train the
classifier. The ratio of evaluation training problems correctly classified is then
used as the objective fitness value. Each data used in this study was created
by generating either ten or twenty problems for each parameter combination as
described in Table 1. The partitioning of these sets used here ensures an even
distribution of instances from each parameter combination between the training
and test sets and also the subdivisions of the training set described by Figure 3.

Huge: C
2
< ωj

Large: C
3
< ωj ≤ C

2

Medium: C
4
< ωj ≤ C

3

Small: ωj < C
4

Fig. 2. For a chromosome with n genes numbered from left to right the percentage of
items pi falling into each range ri < pi ≤ ri+1 ∀i = 1, . . . , n− 1 is encoded and passed
to the classifier as predictor attributes. The terminal alleles, 0 & 100 were inferred.

4 Determined using Equation 2 with ties awarded to the computationally simplest
heuristic in the order FFD, DJD, DJT and ADJD.
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1. Separate every alternate problem into training and test sets.

2. Split the training set into evolution and evaluation sets with every

5th problem put into the evaluation set.

3. Using the best chromosome encode the evolution set and use

as predictor attributes for the classifier.

4. Train the classifier using the predictor attributes with the goal

attribute being the best heuristic for each instance.

5. Use the classifier to predict the best heuristic for each problem in

the evaluation set.

6. Measure the classification accuracy and use this figure as the

fitness measure for that chromosome.

7. After 1000 iterations use the best chromosome and the complete

training set to train the classifier.

8. The results, presented in section 5, show the ability of the classifier

to select the best heuristic for the as yet unseen test set.

Fig. 3. The system elements and numbered steps explained by the pseudo code

The classification algorithm used was taken from the Waikato Environment
for Knowledge Analysis (WEKA) package [13]. After some initial observations
a K-Nearest Neighbour Classifier was chosen and used with all parameter set-
tings as default with the exception of the variable k which was set to 2. The EA
employed, uses a steady state population, of size 40, with crossover performed
to generate one offspring each iteration with a probability of 60%. Each parent
is selected by means of a tournament between two randomly chosen competi-
tors. Crossover takes the first parent and selects all alleles up to and including
a random position, placing these into the offspring. The second parent is then
searched sequentially until an allele value is found greater than has been intro-
duced from the first parent. This and subsequent genes are appended to the
offspring. Mutation occurs with a probability of 2% and simply adds or removes,
with equal probability, one random value to the chromosome. In order to limit
the chromosome length a trimming process is employed. Should the chromosome
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produced exceed the maximum length stipulated then the closest two allele val-
ues are merged, taking on the average value of the two. This trimming procedure
is repeated as necessary until the chromosome is at most the maximum length
allowed for that experiment. Each iteration the worst member of the popula-
tion is replaced by the child if its fitness is better and an identical chromosome
does not already exist in the population. Seven experiments were conducted,
each consisting of thirty runs with each run terminated after 1000 iterations.
For each experiment, the only parameter modified was the maximum allowed
chromosome length, l. The values used were l = {3, 5, 10, 20, 50, 100, 200}. A
chromosome length of l corresponds to l + 1 ranges once the terminal alleles
representing 0 & 100 were added.

5 Results

The results obtained are shown in Figure 4. The best single individual heuristic,
when ranked by the number of optimal solutions found, was DJT which solved
62.77% (430) of the instances in the test set using an extra 0.75% more bins (452)
than the optimum. In comparison the hyper-heuristic presented here found 521

Accuracy Solved Bins
Att 3 200 3 200 3 200
Mean 72.62 74.93 73.40 74.74 0.41 0.39
SD 1.32 0.83 0.75 0.45 0.018 0.008
Normal Y Y Y Y N Y

t-test 1.27−10 6.84−11

Wilcoxon 5.86−06

Shown are the statistical test results ob-
tained for each graph by comparing the data
found for 3 and 200 attributes.

Fig. 4. The three plots, taken over 30 runs show, for the unseen 685 test problems,
the percentages of problems correctly classified and solved to the known optimal along
with the percentage of extra bins over the optimal of 60257 required. The default values
show the results obtained when using benchmark attributes (0.25,0.33,0.5). The results
of two unpaired two tailed t-tests with no assumption of equal sample variance are
given for the data sets that a Shapiro-Wilk Normality test reported as being normally
distributed with a non-parametric Wilcoxon Mann-Witney test used for the other.
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(76.06%) optimal solutions using only 0.37% (223) more bins. A ten fold cross-
validation was also conducted using the complete set of 1370 problems and the
best set of evolved predictor attributes achieving 72.99% accuracy in comparison
to 68.90% using the non-evolved default attributes.

Unlike in [15], the system described here is unable to solve any instances to
the optimum that are unsolved by any of the constituent heuristics. As different
heuristics, methodologies and problem instances are used a direct comparison is
not entirely possible. However for comparison, when trained using the evolved
characteristics that gave the best result in terms of the number of optimal so-
lutions obtained along with the truncated training set of problems used in [15]
the system presented here was able to find optimal solutions to 172 of the 223
test problems used in [15] as opposed to 166 reported by the papers authors.

6 Conclusions and Future Work

By combining heuristics the number of optimal solutions found is increased sub-
stantially over the number found by any individual heuristic. Furthermore by
evolving relevant predictor attributes for use by the classifier the goal of gen-
erating a problem description that maps individual instances to an appropriate
heuristic for solving it was achieved. The system developed is able to better gen-
eralise over a wider range of problem instances with varying characteristics than
can be addressed by any of the heuristics when used in isolation. The new heuris-
tic introduced, ADJD, has been shown to perform better on problem instances
with certain characteristics than any of the other heuristics investigated and al-
though the single worst heuristic over the complete set of benchmark instances
it is shown to increase the generality of the hyper-heuristic system presented.

It is intended to investigate expanding the work presented here in a number of
directions. Separate classifiers, one or more for each heuristic, could be combined
with each attempting to predict the fitness that its associated heuristic would
achieve when presented with an unseen problem instance. This would allow for
multiple classifiers, even of different types, to compete potentially giving rise to
improved accuracy in a similar way to ensemble classification techniques.

Another possible direction for further study is to closer emulate the research
that inspired this work, where rather than using one heuristic to completely
solve a problem instance, a sequence of different heuristics is used which are
predicted after each new bin has been packed. All of the heuristics work in this
manner already with the exception of FFD which is easily adapted, as in [15], to
exhibit the same behaviour. Initial investigations into increasing the number and
variety of heuristics used suggests that whilst the classification task increases in
complexity with the number of heuristics used, the potential for solving more in-
stances increases also. Although other heuristics were investigated initially many
were deemed too similar, such as BFD which found only one optimal solution
that FFD did not. The use of Genetic Programming techniques to generate new
heuristics could potentially allow for a broader set of simple heuristics with a
more diverse range of abilities to be incorporated such as has been investigated
in [4] albeit using a considerably smaller set of ninety benchmark instances.
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Abstract. Selection hyper-heuristic methodologies explore the space of
heuristics which in turn explore the space of candidate solutions for
solving hard computational problems. This study investigates the per-
formance of approaches based on a framework that hybridizes selection
hyper-heuristics and population based incremental learning (PBIL), mix-
ing offline and online learning mechanisms for solving dynamic environ-
ment problems. The experimental results over well known benchmark
instances show that the approach is generalized enough to provide a
good average performance over different types of dynamic environments.

Keywords: hyper-heuristics, dynamic environments, multiple popula-
tions, incremental learning.

1 Introduction

Many real world optimization problems are dynamic in nature. When solving a
problem in such environments, it is better to take the dynamism into account and
choose an appropriate optimisation approach which is able to adapt and track
the moving optima. Different types of changes may occur in the environment over
time. The dynamism in the environment can be classified based on its severity,
frequency, predictability, cycle length and cycle accuracy [2]. There are many
techniques proposed in literature to solve dynamic optimization problems. A
recent survey can be found in [5].

Recently, there has been a growing interest in Estimation of Distribution Al-
gorithms (EDAs). The performance improvement of EDAs via the development
of different algorithmic frameworks, such as multi-population approaches, in-
clusion of mechanisms addressing issues, such as hyper-mutation to deal with
diversity loss and other mechanisms are of interest for many researchers and
practitioners to solve dynamic environment problems [1,6,14,16,13,18].

There is an emerging field of research in the semi-automated design of search
methodologies: hyper-heuristics. Burke et al. [3] defined hyper-heuristics as met-
hodologies that search the space of heuristics by selecting or generating them
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to solve difficult problems. The focus of this study is selection hyper-heuristics
which attempt to improve an initially generated candidate solution iteratively
through heuristic selection and move acceptance stages [4,10]. In this paper, we
will use hyper-heuristics to denote selection hyper-heuristics. Özcan et al. [11]
proposed a hyper-heuristic framework for dynamic environments for the first
time, to the best of the authors’ knowledge. Empirical evidence suggests that
hyper-heuristics are effective solvers in dynamic environments for real valued
optimisation [7] as well as combinatorial optimisation [8].

Although variants of EDAs have been proposed to solve dynamic environment
problems, it has been observed that there is almost no single approach that
performs consistently well across different types of dynamic environments. This
is mostly because different types of methods are capable of handling particular
types of changes relatively better than others in such environments.

In this study, inspired from previous studies, we investigate the performance
of a general framework which is based on a bi-population approach hybridizing a
variant of EDA, in particular PBIL, and a selection hyper-heuristic across some
well known benchmark functions. The goal of the study is to enhance the per-
formance of PBIL enabling this approach to handle any given type of change
dynamic and hence, raise its level of generality. The framework can combine
any EDA based approach with any type of selection hyper-heuristic. We utilize
an offline learning mechanism to detect the useful operators (or operator com-
ponents) for different environments and then use an online learning selection
hyper-heuristic to select the best operator at a given time during the search pro-
cess while solving an unseen instance. The following sections discuss the details
of the proposed framework.

2 Proposed Framework

In this study, we propose a new framework exploiting the advantages of hyper-
heuristics and multi-population approaches. The framework can combine any
multi-population EDA with selection hyper-heuristics. Here we propose hyper-
heuristic based multi-population PBIL (HH-PBIL2), which is based on SPBIL2
introduced in [18]. SPBIL2 is a bi-population standard PBIL (SPBIL) algorithm.

Kiraz et al. [7], show that heuristic selection methods with learning, namely
choice function and reinforcement learning (see [10] for details) outperform oth-
ers. Both incorporate some form of a scoring mechanism. In choice function, when
scoring a heuristic, the difference between the fitness values of the offspring and the
current candidate solution is taken into account. In a dynamic environment setting,
this means that whenever a change occurs, the current candidate solution has to
be re-evaluated in the new environment. For the proposed approach this involves
re-evaluating all the candidate solutions in the current population, which is com-
putationally ineffective. Therefore, we do not use choice function as a heuristic se-
lection method. In reinforcement learning (RL) [9] heuristic selection method, each
low-level heuristic has a utility score. The scores of each heuristic are initialized to
the same value and updated during the search process based on its performance.
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At each step, the low-level heuristic with the maximum score is selected. If the se-
lected heuristic produces a better solution than the previous one, it is rewarded
by increasing its score, otherwise it is penalized by decreasing it. The scores are
restricted to vary between predetermined lower and upper bounds.

In SPBIL, a posterior probability distribution model of promising solutions is
built using statistical information obtained from the population of solution candi-
dates. This is termed as a probability vector, which is used to create a population
of solutions through sampling at each iteration. In SPBIL2, the population is
divided into two sub-populations. Each sub-population is sampled from its own
probability vector. The two probability vectors are evolved in parallel for a given
maximum number of generations. As in SPBIL, the first probability vector −→P 1 is
initialized with the central probability vector, and the second probability vector−→
P 2 is initialized randomly. The size of the initial sub-populations are equal. Af-
ter all candidate solutions are evaluated, sub-population sample sizes are slightly
adjusted within the range of [0.3 ∗ n, 0.7 ∗ n]. Then, each probability vector is
learnt towards the best solution(s) in the relevant sub-population. Similar to
SPBIL, mutation is applied to both probability vectors before sampling. Details
of SPBIL2 can be found in [18,17].

The approach proposed in this paper (HH-PBIL2) consists of two phases. In
the first phase, probability vectors corresponding to a set of different environ-
ments are learned offline, using SPBIL. Then, those learned probability vectors
are stored for later use. In the second phase, the probability vectors serve as
low-level heuristics for the RL based hyper-heuristic.

HH-PBIL2 is proposed to enhance the performance of SPBIL2 in dynamic
environments. As in SPBIL2, the population is divided into two sub-populations
and two probability vectors are used in parallel. The first probability vector −→P 1

is again initialized with the central probability vector, but the second probability
vector −→

P 2 is selected randomly from the previously stored probability vectors.
Each sub-population is sampled independently using the relevant probability
vector. The first probability vector −→P 1 is learned towards the best solution can-
didate(s) in the first population. There is no online learning step for the second
probability vector −→

P 2. At each iteration, RL heuristic selection mechanism se-
lects the probability vector with the largest score from among the previously
stored probability vectors and this probability vector is assigned as −→

P 2. The
score update scheme for the RL heuristic selection method is explained above.

We used two variants of HH-PBIL2 which differ in the information used to
update a low-level heuristic’s score. In the first variant, RL-PF, the best per-
forming candidate solution(s) from the two populations combined, are used to
update the score. In the second variant, RL-P2, the best performing solution
candidate(s) from only the second population is used to update the score.

Similar to SPBIL2, after the candidate solutions are evaluated, the next pop-
ulation sizes are slightly adjusted. However, mutation is applied only to −→

P 1.
Then, two sub-populations are sampled based on the relevant probability vec-
tors. The approach repeats the cycle until some termination criteria are met.
The pseudocode of HH-PBIL2 is shown in Algorithm 1.
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Algorithm 1. Pseudocode of the proposed approach HH-PBIL2.
1: t := 0
2: initialize

−→
P 1(0) := −→0.5

3: −→
P 2(0) is selected from RL randomly

4: S1(0) := sample(
−→
P 1(0)) and S2(0) := sample(

−→
P 2(0))

5: while (termination criteria not fulfilled) do
6: evaluate S1(t) and evaluate S2(t)

7: adjust next population sizes for
−→
P 1(t) and

−→
P 2(t) respectively

8: place k best samples from S1(t) and S2(t) into
−→
B (t)

9: if (RL-PF) then
10: send the best fitness value from the whole population to RL
11: end if
12: if (RL-P2) then
13: send the best fitness value from the second population to RL
14: end if
15: learn

−→
P 1(t) toward

−→
B (t)

16: mutate
−→
P 1(t)

17: −→
P 2(t) is selected with maximum score from RL

18: S1(t) := sample(
−→
P 1(t)) and S2(t) := sample(

−→
P 2(t))

19: t := t + 1
20: end while

3 Experimental Design

In the experiments, the proposed approaches RL-PF and RL-P2 are compared
with SPBIL and SPBIL2. The original source codes which we compared are taken
from Yang’s web site1. Our approaches are implemented based on SPBIL2. These
two techniques are briefly explained in section 2.

All approaches are applied to three Decomposable Unitation-Based Functions
(DUFs). All DUFs are composed of 25 copies of 4-bit building blocks. Each build-
ing block is denoted as a unitation-based function u(x) which gives the number
of ones in the corresponding building block. Its maximum value is 4. The fitness
of a bit string is calculated as the sum of the u(x) values of the building blocks.
The optimum fitness value for all DUFs is 100. The DUFs can be formulated as
follows [13].

fDUF1 = u(x) fDUF2 =

⎧⎨⎩
4 , if u(x) = 4
2 , if u(x) = 3
0 , if u(x) < 3

fDUF3 =

{
4 , if u(x) = 4
3 − u(x) , if u(x) < 4

DUF1 is the OneMax problem whose objective is to maximize the number of
ones in a bit string. DUF2 has a unique optimal solution surrounded by four
local optima and a wide plateau with eleven points having a fitness of zero.
DUF2 is more difficult than DUF1. DUF3 is fully deceptive [18].

The XOR dynamic problem generator [15,17] is applied to the three DUFs
to obtain dynamic test problems. The XOR generator can create a dynamic en-
vironment problem with varying degrees of difficulty from any binary-encoded
stationary problem using a bitwise exclusive-or (XOR) operator. Given a func-
tion f(x) in a stationary environment and x ∈ {0, 1}l, the fitness value of the
x at a given generation g is calculated as f(x, g) = f(x ⊕mk), where mk is a
binary mask for kth stationary environment and ⊕ is the XOR operator. Firstly,

1 http://www.brunel.ac.uk/~csstssy/publications.html

http://www.brunel.ac.uk/~csstssy/publications.html
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the mask m is initialized with a zero vector. Then, every τ generations, the mask
mk is changed as mk = mk−1 ⊕ tk, where tk is a binary template.

SPBIL, SPBIL2 and HH-PBIL2 share some common settings which are used
as suggested in [18]. The problem consists of 25 building blocks, therefore solution
candidates are of length 100. Mutation rate is 0.02 and mutation shift is 0.05.
The learning rate α is taken as 0.25 and 3 best candidate solutions are used in
the online learning of probability vectors. The population size for SPBIL is set
to 100. For SPBIL2 and HH-PBIL2, each sub-population size is initialized as 50
and they are allowed to vary between 30 and 70. In RL, score of each heuristic is
initialized to 15 and allowed to vary between 0 and 30. If the selected heuristic
yields a solution with an improved fitness, its score is increased by 1, otherwise
decreased by 1. The RL settings are taken as recommended in [12].

In the first phase of HH-PBIL2, probability vectors corresponding to a set
of different environments are learned offline using SPBIL. To generate different
environments using the XOR generator, a set of M XOR masks are randomly
generated. Then, for each mask (i.e. environment), SPBIL is executed for 100
independent runs where each run consists of 10, 000 generations. During offline
learning, each environment is stationary. At the end, for each environment, the
probability vector producing the best solution found so far over all runs is stored.
These vectors are used in in all the rest of the experiments.

This study considers the frequency of changes τ , severity of changes ρ and
cycle length CL as the type of changes in the environment. In the cyclic environ-
ments, we assume that environments return to their previous locations exactly.
None of the tested methods require that the time of a change is known.

As a result of some preliminary experiments, we determined the change pe-
riods as 50 generations for low frequency (LF), 25 generations for medium fre-
quency (MF) and 5 generations for high frequency (HF) for DUF1 and DUF2.
The change periods for DUF3 are determined as 100 generations for LF, 35 gen-
erations for MF and 10 generations for HF. In convergence plots, these settings
for LF, MF and HF correspond respectively to stages where the algorithm has
been converged for some time, where it has not yet fully converged and where
it is very early on in the search. In addition, the severity of changes are chosen
as 0.1 for low severity (LS), 0.2 for medium severity (MS), 0.5 for high severity
(HS), and 0.75 for very high severity (VHS) for random dynamic environments.
These are determined based on the definition of the XOR generator. For cyclic
dynamic environments, the cycle lengths CL are selected as 2, 4 and 8. To con-
struct cyclic environments, the masks representing the environments are selected
among the randomly generated M masks used in the offline learning phase of
HH-PBIL2. For each run of the algorithms, 128 changes occur after the initial
environment. Therefore, the maximum number of generations is calculated as
maxGenerations = changeFrequency ∗ changeCount. We performed experi-
ments to explore the effects of the severity and the frequency of the changes on
the performance of the approaches for randomly changing environments, and the
effects of the cycle length and the frequency of the changes on the performance
of the approaches for cyclic environments.
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In order to compare the performance of the algorithms, the results are reported
in terms of the offline error [2], calculated as the cumulative average of the
errors of the best candidate solutions found so far. The error of a candidate
solution is calculated as the difference of its fitness value from the fitness value
of the optimum solution at each time step. Fitness values are calculated using
the corresponding DUF definitions given above. In all our experiments, while
the location of the global optimum may change, its fitness value remains the
same and is 100 for all time steps. An algorithm solving a dynamic environment
problem aims to achieve the least overall offline error value obtained at the end
of a run. All reported results are averages over 100 independent runs. Anova and
Tukey’s HSD tests are applied to the results at a significance level of 95% to test
for statistically significant differences.

4 Results and Discussion

All test results are summarized in Table 2 for randomly changing environments
and in Table 3 for cyclic environments on all DUFs. The values in the tables
show the offline errors achieved at the end of a run, averaged over 100 runs. Due
to lack of space, the statistical significance comparison tables are not given in
the paper2.

Firstly, we analyze the effects of the learned probability vector counts (M) on
HH-PBIL2 in both randomly changing and cyclic environments. We experimen-
ted with M values of 8, 16, 32, 64. The results of the ANOVA and Tukey’s HSD
tests for statistical significance at a 95% confidence level are reported in Table 1.
In the table, each entry shows the total number of times the approach achieves
the corresponding significance state (s+, s−, ≥ and ≤) over the others on the
three DUFs for different change severity and frequency settings in randomly
changing environments and for different cycle length and change frequency set-
tings in cyclic environments. Here, the following notation is used: Given A vs B,
s+ (s−) denote that A (B) is performing statistically better than B (A), while
A ≥ B (A ≤ B) indicates that A (B) performs slightly better than B (A) and
this performance difference is not statistically significant. From the table, we can
see that M = 8 is better overall for the tested environments under all change
settings. Therefore, in the tables 2 and 3, we only report the results for M = 8.
The statistical significance tests show that the number of learned probability
vectors does not significantly affect the performance of HH-PBIL2 variants for
all change frequency-severity settings. However, for cyclic environments smaller
M values give better offline error values.

Secondly, we analyze the performance of HH-PBIL2 in dynamic environments
showing different change properties. Both for the randomly changing environ-
ments and the cyclic environments in all DUFs, SPBIL2 is significantly better
than SPBIL, except for HF cyclic changes in DUF1 and DUF2 where the per-
formance difference is not statistically significant. In the cyclic environments,
2 Statistical significance comparison tables can be download from
http://web.itu.edu.tr/etaner/ppsn2012_analysis.zip

http://web.itu.edu.tr/etaner/ppsn2012_analysis.zip
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RL-P2 is significantly better than RL-PF on average, SPBIL and SPBIL2 for all
M values and change frequencies. In the randomly changing environments, for all
HS and VHS severity settings RL-P2 is significantly better than RL-PF in all the
DUFs. For the LS and MS severity settings, their performance differences are not
statistically significant. However, statistically significant performance differences
appear in favor of RL-P2 for these severity settings in MF and HF settings in
all DUFs. In the randomly changing environments for all change severities (LS,
MS, HS, VHS) at the HF frequency setting, RL-P2 is better than SPBIL2 and
this performance difference is statistically significant. The same result is also
observed for all change frequencies (LF, MF, HF) at the HS and VHS severity
settings. For change frequency-severity combinations of LF and MF with LS and
MS, SPBIL2 is significantly better than RL-P2.

To illustrate the tracking behavior of the approaches, in Figure 1 and
Figure 2, sample plots for the error values of the generation best solution candi-
dates versus the number of generations, for four consecutive environments after
the third change on DUF2 are given. The plots show that for randomly changing
environments, increased change severities result in significant differences between
the algorithms in favor of HH-PBIL2 variants. Increased cycle lengths in cyclic
environments have a similar effect on the algorithms. But as the frequency in-
creases, the differences get smaller. Increased change frequencies have a similar
effect on all approaches in the cyclic environments too.

Table 1. Overall (s+, s−, ≥ and ≤) counts for M = 8, 16, 32, 64 in RL-PF and RL-P2

RL-P2-8 RL-P2-16 RL-P2-32 RL-P2-64 RL-PF-8 RL-PF-16 RL-PF-32 RL-PF-64
s+ 376 356 342 283 202 167 137 104
s− 64 73 88 139 218 236 273 320
≥ 44 81 80 70 70 90 76 71
≤ 83 57 57 75 77 74 81 72

Table 2. Offline errors averaged over 100 runs, on the three DUFs for different change
severity and frequency settings in randomly changing environments

Alg.
LF MF HF

LS MS HS VHS LS MS HS VHS LS MS HS VHS

DUF1

RL-PF 4.22 8.12 9.02 9.22 9.91 16.74 20.58 22.06 27.91 32.13 36.65 38.73
RL-P2 4.24 8.15 7.23 4.25 9.95 16.73 14.39 12.55 26.95 29.67 33.17 35.12
SBIL 4.11 7.91 16.72 21.76 9.55 16.08 26.73 30.45 28.00 33.84 38.05 38.73
SPBIL2 3.46 7.21 16.21 20.72 9.05 15.81 26.00 29.18 27.75 33.35 37.23 38.12

DUF2

RL-PF 9.28 19.26 19.14 15.05 21.23 34.53 39.88 42.37 50.03 56.56 63.43 64.61
RL-P2 9.28 19.16 18.52 13.39 21.40 34.37 30.48 29.00 49.04 53.19 58.64 60.67
SPBIL 9.00 18.42 38.86 45.88 20.43 34.48 51.51 54.83 52.30 60.45 65.21 65.72
SPBIL2 7.63 17.21 37.06 43.15 19.53 33.71 49.71 52.59 51.79 59.35 64.07 64.57

DUF3

RL-PF 25.57 25.92 18.95 17.79 30.44 32.22 29.41 27.24 39.77 41.90 44.42 42.90
RL-P2 25.55 25.89 19.02 17.83 30.41 32.00 25.03 25.30 38.94 39.78 41.78 40.00
SPBIL 25.46 25.81 23.98 19.46 30.12 33.17 35.29 31.53 40.18 44.51 47.18 45.94
SPBIL2 25.00 25.26 23.19 18.52 29.44 32.38 34.36 30.71 39.48 43.65 46.35 45.09
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Table 3. Offline errors averaged over 100 runs, on the three DUFs for different cycle
length and change frequency settings in cyclic environments

Alg.
LF MF HF

CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 CL=4 CL=8

DUF1

RL-PF 3.50 4.02 3.84 15.17 17.66 13.92 16.71 19.37 27.99
RL-P2 0.17 0.17 0.17 1.80 2.13 1.93 8.95 14.76 19.33

SPBIL 10.19 16.51 15.84 13.20 22.43 24.13 15.79 26.23 28.42
SPBIL2 9.08 15.73 15.29 10.73 21.05 23.08 16.24 26.20 28.19

DUF2

RL-PF 2.18 2.06 2.58 14.38 22.72 19.81 27.29 36.27 47.93
RL-P2 0.27 0.29 0.27 2.85 3.40 3.40 15.74 27.59 32.95

SPBIL 20.67 36.15 36.73 24.29 43.07 46.89 27.69 45.83 51.23
SPBIL2 17.79 33.71 34.63 20.91 40.40 44.58 28.60 45.82 50.77

DUF3

RL-PF 10.94 11.93 11.91 18.65 26.95 20.39 24.16 34.31 36.35
RL-P2 10.53 11.58 11.57 12.99 14.35 14.21 17.51 29.35 27.79

SPBIL 25.72 24.25 23.88 31.52 34.77 34.86 28.60 37.24 42.66
SPBIL2 25.00 23.48 23.07 30.35 33.49 33.95 28.44 36.38 41.49
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(c) High Severity
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(d) Very High Severity

Fig. 1. Sample plots for the error values of the generation best solution candidates
versus the number of generations for randomly changing environments based on fixed
severity - HS- (first row) and based on fixed frequency -MF- (second row) settings.
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(a) Low Frequency
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(b) Medium Frequency
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(c) CL=4
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(d) CL=8

Fig. 2. Sample plots for the error values of the generation best solution candidates
versus the number of generations for cyclic changing environments based on fixed CL=4
(first row) and based on fixed frequency -MF- (second row) settings.

5 Conclusion

In this study, we investigated the performance of a bi-population framework that
hybridizes a variant of population based incremental learning with a selection
hyper-heuristic. The framework can combine any EDA based technique with
any heuristic selection mechanism. In this study, a standard PBIL is hybridized
with a reinforcement learning selection hyper-heuristic. To explore the gener-
ality of the proposed approach we performed experiments across environments
exhibiting a range of different change dynamics on some well known benchmark
functions for two generic approaches and our proposed approach. Previous stud-
ies indicate that stand-alone generic approaches are not sufficient to deal with
different change dynamics. The results of the experiments in this study confirm
this and show that the proposed approach exhibits good performance in all the
tested change scenarios. This makes the proposed approach a solver which is
generalized enough to provide a good average performance over different types
of dynamic environments. As future work, we will experiment with hybridiz-
ing other types of EDA based methods and heuristic selection mechanisms, as
well as incorporate our approach into memory based techniques. The results are
promising which promote further study.
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10. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.

Intelligent Data Analysis 12, 3–23 (2008)
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Abstract. Hybrid metaheuristics are powerful methods for solving com-
plex problems in science and industry. Nevertheless, the resolution time
remains prohibitive when dealing with large problem instances. As a re-
sult, the use of GPU computing has been recognized as a major way to
speed up the search process. However, most GPU-accelerated algorithms
of the literature do not take benefits of all the available CPU cores. In this
paper, we introduce a new guideline for the design and implementation
of effective hybrid metaheuristics using heterogeneous resources.

1 Introduction

Metaheuristics are approximate methods that make it possible to solve in a
reasonable time NP-hard complex problems. Two main categories are distin-
guished: population-based metaheuristics (P-metaheuristics) and solution-based
metaheuristics (S-metaheuristics). Theoretical and experimental studies have
shown that the hybridization between these two classes may improve the qual-
ity of provided solutions [1]. However, as it is time-consuming, there is often
a compromise between the number of solutions to use and the computational
complexity to explore it.

Recently, graphics processing units (GPU) have emerged as a popular support
for massively parallel computing [2]. To the best of our knowledge, most GPU-
accelerated metaheuristics designed in the literature only exploit a single CPU
core. This is typically the case for hybrid metaheuristics on GPU [3–5]. Thus,
it might be valuable to fully utilize the other remaining CPU resources. It may
be particularly significant when the acceleration factors obtained by the GPU-
based algorithm are relatively modest. Indeed, since all processors are nowadays
multi-core, performance of GPU-based algorithms might be improved.

Nevertheless, designing optimization methods on such a heterogeneous archi-
tecture is not straightforward. Indeed, the major issues are mainly related to
the distribution of tasks processing between the GPU and CPU cores. In this
paper, we introduce a general guideline to deal with such issues. We propose
the re-design of hybrid metaheuristics on GPU taking advantage of every avail-
able CPU cores. In this purpose, an efficient distribution of the search process
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between the GPU and the CPU is done. At the same time, an efficient load
balancing between the GPU and the remaining CPU cores is proposed to fully
utilize all the available heterogeneous resources.

As an example of application, the quadratic assignment problem (QAP) has
been considered. Such a problem provides interesting irregular properties, since
for optimized S-metaheuristics, most of move evaluations can be done in constant
time. Thereby, speed-ups from a parallel implementation are expected to be
relatively modest. Hence, the use of multi-core resources in addition with GPU-
based metaheuristics is clearly meaningful.

The remainder of the paper is organized as follows: Section 2 highlights the
principles of parallel models for metaheuristics on GPU. In Section 3, paral-
lelization concepts for designing hybrid metaheuristics on GPU are described.
An extension of these approaches is investigated in Section 4 for exploiting het-
erogeneous resources. Section 5 reports the performance results obtained for the
QAP. Finally, some conclusions of this work are drawn in Section 6.

2 Parallel Metaheuristics on GPU

2.1 Parallel Models of Metaheuristics

In general, for hybrid metaheuristics, executing the iterative process of a S-
metaheuristic (e.g. a local search) requires a large amount of computational
resources. Consequently, parallelism arises naturally when dealing with a neigh-
borhood. In this purpose, three major parallel models for metaheuristics can be
distinguished [6]: solution-level, iteration-level and algorithmic-level.

• Solution-level Parallel Model. The focus is on the parallel evaluation of a sin-
gle solution. Problem-dependent operations performed on solutions are par-
allelized. That model is particularly interesting when the evaluation function
can be itself parallelized, as it is CPU time-consuming and/or IO intensive.

• Iteration-level Parallel Model. This model is a low-level Master-Workermodel
that does not alter the behavior of the heuristic. The evaluation of solutions
is performed in parallel. An efficient execution is often obtained especially
when the evaluation of each solution is costly.

• Algorithmic-level Parallel Model. Several metaheuristics are simultaneously
launched for computing better and robust solutions. They may be heteroge-
neous or homogeneous, independent or cooperative, start from the same or
different solution(s), configured with the same or different parameters.

2.2 Metaheuristics on GPU Architectures

Recently, GPU accelerators have emerged as a powerful support for massively
parallel computing. Indeed, these architectures offer a substantial computational
horsepower and a high memory bandwidth compared to CPU-based architec-
tures. Due to their inherent parallel nature, P-metaheuristics such as evolution-
ary algorithms have been the first subject of parallelization on GPU: genetic
algorithms [7], particle swarm optimization [8], ant colonies [9] and so on.
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Regarding S-metaheuristics, the parallelization on GPU architectures is much
harder, due to the improvement of a single solution. Therefore, only few research
works have been investigated for local search algorithms [10–12]. The same goes
on when dealing with hybrid metaheuristics on GPU, where there exists only
few parallelization approaches [3–5].

3 Design of Parallel Hybrid Metaheuristics on GPU

3.1 Parallel Evaluation of Solutions on GPU

The parallel iteration-level model has to be designed according to the data-
parallel single program multiple data model of GPUs. The CPU-GPU task par-
titioning is such that the CPU executes the entire sequential part of the handled
metaheuristic. The GPU is in charge of the evaluation of the solutions set at
each iteration. In this model, a function code called kernel is sent to the GPU
to be executed by a large number of threads grouped into blocks.

This parallelization strategy has been widely used for P-metaheuristics on
GPU especially for evolutionary algorithms due to their intrinsic parallel work-
load (e.g. in [7]). One of the major issues is to optimize the data transfer between
the CPU and the GPU. Indeed, the GPU has its own memory and processing
elements that are separate from the host computer.

When it comes to parallelization, the optimization of data transfers is more
prominent for S-metaheuristics.As a result,whendesigning hybridmetaheuristics,
the focus is on the embedded S-metaheuristic. In this purpose, we have contributed
in [13] for the parallel evaluation of solutions (iteration-level) for local search al-
gorithms. The key point of this approach is to generate the neighborhood of the
S-metaheuristic at hand on the GPU side. Such a parallelization strategy makes
it possible to minimize data transfers through the PCIe bus: the solution which
generates the neighborhood and the resulting fitnesses (see Figure 1).

3.2 Parallelization Strategies for Hybrid Metaheuristics

The previous parallelization approach stands for one S-metaheuristic on GPU
according to the iteration-level. For designing GPU-accelerated hybrid meta-
heuristics that involve a population of solutions, the algorithmic-level parallel
model has to be deeply examined. In other words, multiple executions of S-
metaheuristics on GPU have to be considered. For achieving this, previous ap-
proaches from the iteration-level must be adapted for the algorithmic-level. In
this purpose, there are fundamentally two parallelization strategies:

• One neighborhood evaluation on GPU. This approach consists in evaluating
one neighborhood (a set of solutions) at a time on GPU. According to Fig-
ure 1, a possible interpretation could be to repeat the whole process (i.e.
the repetition of the execution of a single S-metaheuristic on GPU) to deal
with as many S-metaheuristics as needed. The drawback of this approach is
that the number of threads executed for one kernel on GPU might not be
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Fig. 1. For S-metaheuristics, the generation and the evaluation of the neighborhood is
performed on GPU, and the CPU executes the sequential part of the search process

enough to cover the memory access latency for few optimization problems.
As a result, in the rest of the paper, we will not consider this approach.

• Many neighborhood evaluations on GPU. In the second approach, many
neighborhoods are evaluated at a time on GPU. For instance, given a cer-
tain iteration, if k embedded S-metaheuristics have to be performed on k
solutions, the k associated neighborhoods will be generated and evaluated
on GPU at the same time. Regarding the thread organization, a thread is
associated with many neighbor calculations. For example, a thread block
might represent a particular neighborhood from a given S-metaheuristic.
Such a parallelization strategy deals with the issues encountered in the first
approach since 1) there are enough calculations to keep the GPU multipro-
cessors busy; 2) the creation overhead of multiple kernel calls is reduced.
However, in this second approach, homogeneous embedded S-metaheuristics
are required. In such a case, the semantic of the original sequential algorithm
might be altered.

4 Parallelization Strategies for Heterogenous Resources

4.1 Multiple S-Metaheuristics on Multi-core Architectures

Parallelization approaches for hybrid metaheuristics on GPU presented in the
previous section only exploit one single CPU core. To exploit the remaining com-
putational capabilities, thread-based approaches on CPU have to be examined.

In general, for a hybrid metaheuristic, a certain number of independent tasks
is likely to be performed in parallel (e.g. a number of S-metaheuristic executions).
Therefore, the algorithmic-level parallel model is particularly adapted to CPU
architectures, since processes distributed among CPU threads do not necessary
share the same instructions and the same execution context.



372 T.V. Luong et al.

Algorithm 1. Template for each thread on multi-core CPUs

Require: p tasks and number threads;
1: offset := p / number threads;
2: tid := get thread id();
3: for k = tid * offset; k < tid * offset + offset; k++ do
4: S-metaheuristic(k);
5: end for
6: if tid < (p mod number threads) then
7: k = offset * number threads + tid;
8: S-metaheuristic(k);
9: end if

Algorithm 1 provides a template for processing independent S-metaheuristics
on multi-core architectures. Basically, p tasks (i.e. p S-metaheuristics) have to be
equally distributed among the different threads. Each CPU thread is in charge of
executing a specific number of S-metaheuristics (lines 1 and 2). Such a realization
is performed in a sequential manner (lines 3 to 5). If the number of tasks is not
proportional to the number of available cores, remaining tasks will be assigned
to the first CPU threads (lines 6 to 9).

4.2 Hybrid Metaheuristics Using Heterogeneous Resources

As previously said, one CPU thread is actually associated with the GPU-based
algorithm. The major idea for designing a hybrid metaheuristic is to manage
the other CPU threads to overlap the calculations performed on GPU. Never-
theless, most of the time, in hybrid metaheuristics, the search process evolves in
a synchronous manner at each iteration.

Algorithm 2. Hybrid metaheuristic template using heterogeneous resources

Require: m tasks, p tasks and n cores;
1: repeat
2: Hybrid metaheuristic pre-treatment on host side
3: S-metaheuristic multi-core(p,n-1) overlap
4: S-metaheuristic gpu(m)
5: Join results
6: Hybrid metaheuristic post-treatment on host side
7: until a stopping criterion satisfied

For dealing with this issue, we provide in Algorithm 2 a general template
for hybrid metaheuristics using heterogeneous resources. Let k be the number
of tasks to assess, m the number assigned to the GPU using one CPU core,
and p the number assigned to the remaining CPU cores. As quoted above, p
S-metaheuristics are executed in parallel on CPU cores (number of available
cores minus one) according to Algorithm 1 (line 3). Parallel techniques must be
performed to obtain overlapping calculations. Meanwhile,m S-metaheuristics are
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evaluated on GPU as described in Section 3 (line 4). Then, a synchronization
point is set to gather all the obtained results (line 5). Post-treatment operations
on the hybrid metaheuristic can be applied afterwards. The process is repeated
until a certain criterion is satisfied.

4.3 Load Balancing Heuristic

The remaining issue is to find an efficient load balancing between 1) the GPUusing
one single core; 2) the remaining CPU cores. Such a task repartition must be done
in accordance with the computational capability of heterogeneous resources. We
propose in Algorithm 3 a heuristic for doing this load balancing in an efficient
way. The major idea of this heuristic is to automatically tune previous m and p
parameters during the first iterations of the hybrid metaheuristic at hand.

Algorithm 3. Template for load balancing heuristic

Require: k tasks and n cores;
1: m := ceil (k / 2); p := floor (k / 2);
2: repeat
3: Hybrid metaheuristic pre-treatment on host side
4: gpu time := time (S-metaheuristic gpu(m));
5: cpu time := time (S-metaheuristic multi-core(p,n-1));
6: Hybrid metaheuristic post-treatment on host side
7: relat speedup := cpu time / gpu time;
8: if relat speedup > 1 then
9: potential p := p / relat speedup; mult coeff := k / (m + potential p);
10: m := round (m * mult coeff);
11: p := round (potential p * mult coeff);
12: else
13: potential m := m * rel speedup; mult coeff := k / (p + potential m);
14: m := round (potential m * mult coeff);
15: p := round (p * mult coeff);
16: end if
17: until a certain number of trials
Ensure: m tasks and p tasks;

At the beginning of the algorithm, tasks are equally divided between the GPU
and the CPU cores (line 1). Then, the time measurement of m S-metaheuristic
executions on GPU using one CPU core is accomplished (line 4). The same goes
on for the creation of p S-metaheuristics on the other available CPU cores (line
5). Thereafter, the relative speed-up between the two versions is calculated (line
7). If the time to evaluate m tasks on GPU is less important than the time to
compute p tasks on remaining CPU cores, then more tasks will be assigned to
the GPU during the next iteration (lines 8 to 11). Otherwise, more tasks will
be assigned to the remaining CPU cores (lines 12 to 16). In other words, m and
p values are proportionally adjusted with the relative acceleration factor. The
process is repeated until a certain number of trials.
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5 Performance Evaluation

5.1 Fast Ant System

To validate the approaches presented in this paper, the fast ant system (FANT)
metaheuristic [14] has been considered. Basically, the major idea of FANT is to
construct each solution (active ant) in a probabilistic way from the values of the
decision variables in past searches by using a memory structure. To accelerate the
convergence process, a local search algorithm is performed each time a solution
is built. The process is repeated until a certain number of iterations is reached.
The reinforcement parameter R has an impact during the intensification phase
of the FANT metaheuristic.

The embedded local search is based on the selection of the best neighbor
at each iteration. Such a selection mechanism accepting non-improving neigh-
bors, will lead to cycles during the search process. Thereby, the number of local
iterations has been restricted to n

2 (n is the instance size).

5.2 Application to the Quadratic Assignment Problem

The well-known QAP arises in many applications such as facility location or data
analysis. The evaluation function has a O(n2) time complexity. In the next imple-

mentations, a neighborhood based on a pair-wise exchange (n×(n−1)
2 neighbors)

has been considered. For each iteration of a local search, (n−2)×(n−3)
2 neighbors

can be evaluated in O(1) and 2n− 3 can be evaluated in O(n).
From an implementation point of view, since calculations may be irregular

according to the given neighbor, threads are reorganized in such a way that
threads belonging to a same group of 32 threads (a.k.a. a warp) execute the same
computation. In other words, groups of threads which perform O(1) and O(n)
calculations are clearly separated. Such a mechanism allows reducing threads
divergence due to conditional branches. Furthermore, to minimize the idle time
due to irregular computations, 2n threads are associated with O(n) calculations

and (n−1)
2 threads execute n × O(1) calculations per local search. In this way,

each thread block corresponds to one neighborhood evaluation.

5.3 Configuration

Experiments have been carried out on top of two different configurations. The
first one is an Intel Core i7 930 with 4 cores cadenced at 2.8 Ghz using a
NVIDIA GTX 480 graphic card (480 GPU cores). The second configuration
is a bi-processor Intel Xeon E5520 with 2×4 cores cadenced at 2.26 Ghz using
a Tesla C1060 (240 GPU cores). Since the first card provides on-chip memory
for L1 cache memory, techniques to cache input data using the texture memory
have only been applied to the second configuration. Posix threads have been
considered for multi-core versions.

The average time has been measured in seconds for 30 runs, and accelera-
tion factors are reported in comparison with a single CPU core. The standard
deviation is not represented since its value is close to zero.
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Table 1. Measures in terms of efficiency for the QAP using a pair-wise-exchange
neighborhood. 4 FANT implementations on different architectures are considered.

Instance

Core i7 930 2.8Ghz Xeon E5520 2.26Ghz
GeForce GTX 480 Tesla C1060

4 CPU cores 8 CPU cores
480 GPU cores 240 GPU cores

Multi-core GPU Heterogeneous Multi-core GPU Heterogeneous

tai50a 10.5×2.4 2.1×11.8 2.1×11.9|×14 .2 7.5×3.0 3.2×7.0 2.3×9.8|×10 .0

tai60a 17.8×2.4 3.4×12.7 3.3×13.1|×15 .1 12.7×3.1 5.4×7.3 3.8×10.4|×10 .4

tai80a 41.2×2.6 7.5×14.4 7.0×15.4|×17 .0 29.4×3.3 12.0×8.1 8.5×11.4|×11 .4

tai100a 81.7×2.7 15.6×14.0 13.9×15.8|×16 .7 52.3×3.8 22.3×9.0 16.2×12.3|×12 .8

tai150b 288.1×2.7 73.7×10.6 58.9×13.2|×13 .3 138.7×5.5 74.3×10.3 50.3×15.2|×15 .8

tai256c 1620.5×2.7 382.7×11.3 373.2×11.6|×14 .0 610.1×6.9 615.9×6.9 351.9×12.1|×13 .8

5.4 Experimentation

The set of experiments consists in measuring the performance of proposed par-
allelization schemes. For doing this, four FANT versions have been implemented
for the QAP. A CPU implementation using one single core, a multi-core version,
a GPU implementation and another one using all the available heterogeneous
resources. For all versions, 50 neighborhood evaluations (i.e. 50 active ants per
global iteration) at a time have been considered. Regarding the semantic of the
algorithms, there is no difference of the quality of solutions provided by both
versions. The multi-core version does not intentionally utilize one CPU core in
order to highlight the performance improvements of the heterogeneous version
(since one core is associated with the GPU). The number of global iterations
has been fixed to 10000, which corresponds to a realistic scenario in accordance
with the algorithm convergence. Experimental results are reported in Table 1.
The CPU column is not represented since the associated values can be deduced
from the other columns.

Regarding the multi-core version (number of CPU cores minus one), the ob-
tained acceleration factors grow with the instance size. For the first configuration
using three cores, these speed-ups linearly vary from ×2.4 to ×2.7. This is not
exactly the same phenomenon for the second configuration where acceleration
factors alternate from ×3.0 to ×6.9. Indeed, for smaller instances, the overhead
creation is significant in regards with the computational time. This is mainly
due to the important number of threads to be created and synchronized (seven
threads). But, as long as the size increases, the acceleration factor converges to
the expected value.

For the GPU implementation, the obtained speed-ups are quite significant but
relatively modest. They alternate from ×10.6 to ×14.4 for the first configura-
tion, and from ×7 to ×9.3 for the second configuration. Such performance results
are limited since most of move evaluations can be performed in O(1). Therefore,
the amount of computations is not enough to fully cover the memory access
latency. Furthermore, the application is memory bound since non-coalescing ac-
cesses to the global memory drastically reduces the performance of the GPU
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implementation. This is due to high-misaligned accesses present in flows and
distances matrices in QAP.

Regarding the heterogeneous version taking advantage of all CPU cores, the
performance improvements in comparison with the GPU implementation are
significant. Indeed, for the first configuration corresponding to three additional
CPU cores, acceleration factors vary from ×11.6 to ×15.8, which corresponds
to an improvement between 1% and 25%. For the second one with seven addi-
tional cores, better performance improvements between 39% and 75% (speed-ups
varying from ×9.8 to ×15.2) can be observed.

To assess the efficiency of the heterogeneous version, potential acceleration
factors are represented in italic in sub indices. These theoretical values are ob-
tained by adding the speed-ups obtained for both multi-core and GPU versions.
The performance difference, which occurs between the obtained results and the
potential speed-up, is due to synchronization points between the GPU and the
other CPU cores. One can clearly see that the acceleration factors obtained for
the heterogeneous version are not so far from the expected theoretical ones. This
is particularly the case for the second configuration containing more CPU cores.
As a consequence, the heuristic for finding a parameters auto-tuning provides
an efficient way to deal with load balancing for heterogeneous resources.

6 Conclusion

Hybrid metaheuristics having complementary behaviors allow improving the
effectiveness and robustness in optimization. Their exploitation for solving real-
world problems is possible only by using a great computational power. High-
performance computing based on heterogeneous resources is recently revealed as
an efficient way to use the huge amount of resources at disposal. However, the
exploitation of parallel models is not trivial and many issues related to the task
repartition between the GPU and multi-core architectures have to be faced.

In this paper, we have investigated on different parallelization strategies for
hybrid metaheuristics on such heterogeneous resources. In the proposed paral-
lelization approaches, the CPU manages the metaheuristic process and let the
GPU be used as a coprocessor dedicated to intensive calculations. Thereafter,
parts of these computations are distributed among the available CPU cores. Such
a task repartition is provided by an efficient heuristic for parameters tuning.

The designed and implemented approaches have been experimentally vali-
dated on the QAP using the FANT metaheuristic. The evaluation of a neighbor-
ing solution in the QAP can be performed most of the time in constant time. As
a result, for problems with modest GPU accelerations, the performance improve-
ment provided by multi-core CPUs is particularly significant (up to 75% for eight
CPU cores). In particular, we showed that our methodology enables gaining to a
×15 factor in terms of acceleration compared with a single core architecture. A
perspective of this work will be to implement the proposed approaches for other
combinatorial optimization problems, in which the computational complexity of
move evaluations is more prominent.
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With the arrival of GPU resources in clusters of workstations and grids, the
next objective is to examine the conjunction of GPU computing and distributed
computing to fully and efficiently exploit the hierarchy of parallel models of
metaheuristics. Indeed, since all processors are currently multi-core, performance
of GPU-based algorithms might be drastically improved. The challenge will be
to find the best mapping in terms of efficiency of the hierarchy of parallel models
on the hierarchy of CPU-GPU resources provided by multi-level architectures.
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Abstract. Whenever a new problem needs to be tackled, one needs to
decide which of the many existing metaheuristics would be the most ade-
quate one; but it is very difficult to know their performance a priori. And
then, when a metaheuristic is chosen, there are still its parameters that
need to be set by the user. This parameter setting is usually very problem-
dependent, significantly affecting their performance. In this work we
propose the use of an Adaptive Operator Selection (AOS) mechanism to
automatically control, while solving the problem, (i) which metaheuris-
tic to use for the generation of a new solution, (exemplified here by a Ge-
netic Algorithm (GA) and a Differential Evolution (DE) scheme); and (ii)
which corresponding operator should be used, (selecting among five oper-
ators available for the GA and four operators for DE). Two AOS schemes
are considered: the Adaptive Pursuit and the Fitness Area Under Curve
Multi-Armed Bandit. The resulting algorithm, named as Adaptive Hyper-
Heuristic (HH), is evaluated on the BBOB noiseless testbed, showing supe-
rior performance when compared to (a) the same HH without adaptation,
and also (b) the adaptive DE and GA.

Keywords: Hyper-heuristics, adaptive operator selection, parameter
control, multi-armed bandits, area under the curve.

1 Introduction

Metaheuristics have been used to solve a wide range of complex optimization
problems. Many different algorithmic schemes can be found in the literature,
each of them presenting its own specifications, resulting into different behaviors
with respect to the exploration of the search space. The resulting characteris-
tics might be more adequate or not to a given problem or class of problems. It
is very difficult, however, to know a priori which would be the most adequate
metaheuristic whenever a new problem needs to be tackled. Additionally, meta-
heuristics usually have many user-defined parameters that might significantly
affect their behavior and performance. In the case of evolutionary algorithms,
for example, there is the population size, the selection and replacement mech-
anisms and their inner parameters, the choice of variation operators and their
corresponding application rates, etc. As a result, once a given metaheuristic is
chosen, there is still the need of correctly setting its parameters, what can be
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seen as a complex optimization problem per se. There are thus two levels of
decision: (i) which algorithm should be used, and (ii) which values should be
used for setting its parameters. As of today, these decisions are usually done
by following the user’s intuition, or by using an off-line tuning procedure aimed
at identifying the best strategy for the problem at hand. Besides being com-
putationally expensive, off-line tuning however generally delivers sub-optimal
performances, as the appropriate strategy depends on the stage of the optimiza-
tion process: intuitively, exploration-like strategies should be more frequently
used in the early stages while priority should be given to exploitation when
approaching the optimum. Regarding the first decision, a solution might come
from the so-called hyper-heuristics. In [10], a hyper-heuristic is described as a
heuristic scheduler that does the scheduling over a set of heuristics in a deter-
ministic or non-deterministic way. A more comprehensive survey can be found
in [2]. Concerning the second decision, more specifically in the case of setting the
application rates of variation operators, a recent trend is to use methods that
control, while solving the problem, which variation operator should be applied
according to the recent performance of all available operators. These methods
are commonly referred to as Adaptive Operator Selection (AOS) [6].

In fact, the problem of selecting which variation operator to apply can be
seen as exactly the same problem of selecting which metaheuristic to use, but
at a different abstraction level. Thus, in this paper we propose the use of AOS
schemes at the two levels of abstraction (the hyper- and the lower level), in an
independent way, while solving the problem.

We empirically analyze the use of two prominent schemes found in the liter-
ature, the probability-based Adaptive Pursuit (AP) method [13], and the most
recent bandit-based method, referred to as the Fitness-based Area-Under-Curve-
Bandit (AUC) [5]. Both are compared with each other at both levels, and also
with what would be the choice of a Naive user, namely, the uniform selec-
tion of the operators. On the hyper-level, the AOS schemes are expected to
autonomously select, while solving the problem, which metaheuristics (in our
numerical experiments, Differential Evolution (DE) or Genetic Algorithm (GA))
should be applied. At the lower level, there are five operators for the GA case,
and four in the case DE is chosen. DE and GA were chosen because they have
been widely used in many fields and their efficiency has already been verified
several times. Other heuristics as well as more than two could have been used.

A brief overview of the GA and the DE adopted in this work, as well as
an introduction to AOS and to the existing schemes employed, is presented
in section 2. In section 3 the proposed schemes are depicted. The computer
experiments are presented in section 4, and the paper ends with some conclusions
in Section 5.

2 Background

In this work, AOS schemes are used at the hyper-level in order to select between
the DE and GA metaheuristics. Both of them will now be briefly described.
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2.1 Genetic Algorithms

Here a real-coded GA was applied with a rank-based selection scheme. Moreover,
a large number of genetic operators have already been developed and those
we adopted are listed below (considering xi, i = 1, . . . , N the variables in a
chromosome, xL

i and xU
i respectively the lower and upper bounds for xi):

– The one-point (1X) crossover operator which is the analogue of the standard
one-point crossover for binary-coded GAs.

– The Uniform crossover (UX) [12], where each gene in the offspring is cre-
ated by copying the corresponding gene from either parent according to a
randomly generated crossover mask.

– The blend crossover operator (BLX-α) [3].
– A simple mutation operator (delta mutation – DM) that increments each

variable with a given rate of application according to:

xi = pi + δΔmax

where p is the parent, x is the offspring, δ is a random number, and Δmax is
a fixed quantity, which represents the maximum permissible change in the
parent.

– The non-uniform mutation (NUM) operator [9]. When applied to an individ-
ual x at generation gen and when the total number of generations allowed
is maxgen, mutates a randomly chosen variable xi according to

xi ←
{
xi +Δ(gen, xU

i − xi) if τ = 0
xi −Δ(gen, xi − xL

i ) if τ = 1

where τ is randomly chosen as 0 or 1 and the function Δ(gen, y) is defined as

Δ(gen, y) = y(1 − μ(1− gen
maxgen )η

)

with μ randomly chosen in [0, 1] and the parameter η set to 2.

2.2 Differential Evolution

The original proposal of DE by Storm and Price [11] presents a simple and
efficient algorithm for global optimization over continuous spaces. The main
variants (or strategies) of the DE modify the way the individuals are selected to
participate in the mutation, which in the original proposal was done randomly
(called DE/rand/1/bin). The Algorithm 1 shows the pseudo-code for this variant.

The additional variants considered here basically change line 11 of Algorithm 1:

– DE/rand/2/bin:
uj,i = xj,r1 + F (xj,r2 − xj,r3) + F (xj,r4 − xj,r5)

– DE/rand-to-best/2/bin:
uj,i = xj,r1 + F (xj,best − xj,r1) + F (xj,r2 − xj,r3) + F (xj,r4 − xj,r5)

– DE/current-to-rand/1/bin:
uj,i = xj,i + F (xj,r1 − xj,ri) + F (xj,r2 − xj,r3)

where r1, r2, r3, r4 and r5 are randomly selected individuals and xj,best is the
best individual in the population.
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Algorithm 1. Algorithm DE/rand/1/bin.
input : NP (population size), GEN (# of generations), F (mutation scaling),

CR (crossover rate)

G ← 0;1

CreateRandomInitialPopulation(NP );2

for i ← 1 to NP do3

Evaluate f(−→x i,G) ; /* −→x i,G is an individual in the population */4

for G ← 1 to GEN do5

for i ← 1 to NP do6

SelectRandomly(r1, r2, r3) ; /* r1 �= r2 �= r3 �= i */7

jRand ←RandInt(1, N ) ; /* N is the number of variables */8

for j ← 1 to N do9

if Rand(0, 1) < CR or j = jRand then10

ui,j,G+1 = xr3,j,G + F.(xr1,j,G − xr2,j,G);11

else12

ui,j,G+1 = xi,j,G;13

if f(−→u i,G+1) ≤ f(−→x i,G) then14 −→x i,G+1 = −→u i,G+1;15

else16 −→x i,G+1 = −→x i,G;17

2.3 Adaptive Operator Selection

The Adaptive Operator Selection aims to adjust the application of operators while
the search process is performed, according to the operators performance. Thus,
we need to define two aspects: how to measure the performance of the operators,
usually referred to as Credit Assignment, and how to select among them after these
performance measurements are made, simply called here Operator Selection.

More specifically, the Credit Assignment firstly measures the impact caused by
the operator application in the optimization process, and then transforms this im-
pact into a meaningful numerical credit that will be used for updating the empirical
quality estimates of each operator. The most common impact measure is simply
the fitness improvement achieved by the generated offspring w.r.t. its parent(s).
Then, the credit assigned to the operator can be: (i) the Instantaneous reward, i.e.,
received after the last application; (ii) the Average of the rewards received over a
few recent applications; (iii) or the Extreme reward recently received by the oper-
ator [4]. The number of recent applications considered for the latter two is usually
a user-defined parameter, referred to as W (size of the sliding window).

For the Operator Selection, we consider here two existing schemes from the
literature, which were chosen for having shown superior performance in recent
works. The first one is called Adaptive Pursuit (AP) [13]. It calculates an ap-
plication probability for each operator, and use a roulette wheel to select the
next operator to be applied. A lower bound on the probabilities is employed
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to preserve some level of exploration, and a winner-takes-all scheme is used to
push forward the current best operator. In this work, the AP Operator Selection
scheme is used in combination with the Extreme Credit Assignment.

Although alleviating the user from the need of selecting which operators
should be applied to the problem at hand, and doing so in an on-line man-
ner, the most common operator selection schemes, including the AP method,
involve some hyper-parameters that need to be tuned as well. The use of credit
assignment schemes based on the raw values of the fitness improvements make
these hyper-parameters highly problem-dependent.

Motivated by this issue, the Fitness-based Area-Under-Curve - Bandit (AUC),
a fully comparison-based adaptive operator selection was recently proposed[5].
Its robustness comes from its Credit Assignment scheme, which is based on the
ranks of the fitness improvements, and not on their raw values. Briefly, it works
as follows. The latest W rewards achieved by all operators are ranked, and an
exponentially decaying factor is applied over the rank values, so that the top
ranked rewards have a significant weight, while the very low rewards have a
weight close to zero. These decayed rank values are then used to construct a
curve analog to the Area Under the ROC Curve, a criterion originally used in
Signal Processing and later adopted in Machine Learning to compare binary
classifiers. The ROC Curve associated to a given operator s is drawn by scan-
ning the ordered list, starting from the origin: a vertical segment is drawn when
the current offspring has been generated by s, a horizontal segment is drawn oth-
erwise, and a diagonal one is drawn in case of ties. The length of each segment is
proportional to its decayed rank value. Finally, the credit associated to operator
s is the area under this curve. This Credit Assignment scheme is coupled with a
bandit-based Operator Selection which deterministically chooses the strategy to
be applied based on (a variant of) the Upper Confidence Bound algorithm [1].

3 Adaptive Hyper-Heuristic

The adaptive algorithm proposed here combines the GA and DE techniques by
choosing during the evolutionary process which metaheuristic and which op-
erators should be used. The metaheuristics are used in an interleaved way by
choosing one of them to generate each new individual in the population, i.e.,
each new individual is generated following the choice algorithm with its opera-
tors and parent selection mechanism. The generated individual is thus compared
with the target (current) individual of the population and the fittest one is main-
tained in the population of the next generation, following the DE replacement
mechanism. The algorithms and operators are chosen by AOS methods where
the impact measure is defined by the improvement in fitness between the off-
spring (generated individual) and its parent (target individual for DE and the
best parent for GA).

A similar idea was applied to select the operators of each algorithm, i.e., the
four variants described in section 2.2 in the DE case, and the five operators in
section 2.1 in the GA case are selected according with the response of the AOS
method. The pseudo-code of the proposed algorithm is presented in Algorithm 2.
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Algorithm 2. HH-AOS
input : NP (population size), GEN (# of generations)

G ← 0;1

CreateRandomInitialPopulation(NP );2

for i ← 1 to NP do3

Evaluate f(−→x i,G) ; /* −→x i,G is an individual in the population */4

for G ← 1 to GEN do5

for i ← 1 to NP do6

op ← AOS-selectOperator();7

if op == DE then8 −→u = DE-generate-one-individual(NP, −→x G);9

else10 −→u = GA-generate-one-individual(NP, −→x G, −→p );11

if Evaluate f(−→u ) < Evaluate f(−→x i,G) then12 −→x i,G+1 = −→u ;13

if op == DE then14

AOS-ApplyReward(−→x i,G - −→x i,G+1);15

else16

AOS-ApplyReward(−→p - −→x i,G+1) ; /* −→p is the best parent17

selected to generate the new individual */

4 Comparative Results

In order to evaluate the performance of our proposal, experiments were con-
ducted using the BBOB noiseless testbed [7],which includes 24 single-objective
functions from 5 different classes with very different characteristics and levels of
complexity. The default guidelines were followed: 15 trials per function [8], with
the maximum number of function evaluations being fixed at 105×d. The BBOB
experimental set-up uses as performance measurement the Expected Running
Time (ERT), defined as follows: given a target function value, ERT is the empir-
ical expected number of function evaluations for attaining a fitness value below
the target. In other words, it is the ratio of the number of function evaluations
for reaching the target value over successful trials, plus the maximum number of
evaluations for unsuccessful trials, divided by the number of successful trials. Due
to space constraints, the presented results are restricted to dimension d = 20,
although similar conclusions can be taken for the other considered dimensions.

Our proposal, herein called Adaptive Operator Selection at the Hyper-
Heuristic (HH) level, was compared with each algorithm (DE and GA) indi-
vidually with three different selection techniques: (i) uniform selection (Naive),
(ii) the adaptive pursuit selection (AP) and (iii) the fitness area under curve
bandit selection (AUC).
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The first analysis, depicted in Figs. 1 and 2, presents a comparison among the
three operator selection techniques within HH. The uniform choice reached the
target value in an least one instance, for the highest level of precision (1e-8), in
only 12 of the 24 function, while the HH with any of the two AOS techniques
solved 17 functions. Besides, the AOS methods require fewer function evaluations
to reach the target value (Fig. 2): for 50% of the cases, HH using an AOS method
is at least two times faster than HH with the naive uniform operator selection.
Although no significant difference could be found between the AP and the AUC
AOS schemes, considering the speed-up ratio presented in the figure 2, and also
the analysis described in [6] only the latter will be used in the following. A further

Fig. 1. Empirical cumulative distribution of the bootstrapped distribution of ERT over
dimension for 50 targets in 10[−8..2] for all functions to HH

(a) A0: Naive, A1: AP (20-D) (b) A0: Naive, A1: AUC (20-D)

Fig. 2. Empirical cumulative distributions (ECDF) speed-up ratios in 20-D to HH.
ECDF of FEval ratios of Adaptive Pursuit (AP) and AUC-Bandit (AUC) divided by
Naive, all trial pairs for each function. Pairs where both trials failed are disregarded,
pairs where one trial failed are visible in the limits being > 0 or < 1. The legends
indicate the number of functions that were solved in at least one trial (AP/AUC first)
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Fig. 3. Empirical cumulative distribution of the bootstrapped distribution of ERT over
dimension for 50 targets in 10[−8..2] for all functions to DE, GA and HH, all using the
AUC adaptive operator selection

(a) A0: DE-AUC, A1: HH-AUC (20-D) (b) A0: GA-AUC, A1: HH-AUC (20-D)

Fig. 4. Empirical cumulative distributions (ECDF) speed-up ratios in 20-D to DE-
AUC, GA-AUC and HH-AUC. ECDF of FEval ratios of HH-AUC respectively divided
by DE-AUC and GA-AUC, all trial pairs for each function. Pairs where both trials
failed are disregarded, pairs where one trial failed are visible in the limits being > 0
or < 1. The legends indicate the number of functions that were solved in at least one
trial (HH-AUC first).

analysis compares the performance of the HH-AUC with both DE and GA also
using the AUC AOS mechanism. The difference is that the HH variant uses
independent AOS schemes in the two levels of abstraction, while DE and GA
have only one AOS instance selecting between their operators in the usual way.
The results are presented in Figs. 3 and 4. As it can be seen, the autonomous
selection between DE and GA done by the HH algorithm by means of the AOS
methods is able to solve more instances than both DE and GA individually. This
empirically confirms that the efficient mixture of DE and GA is better than each
of the original methods alone.
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5 Conclusions

In this paper, we propose the use of existing Adaptive Operator Selection (AOS)
schemes at the Hyper-level, in order to automatically select between different
metaheuristics for the generation of each new solution. The metaheuristics exem-
plified here were Differential Evolution (DE) and Genetic Algorithm (GA). Addi-
tionally, an independent AOS instance was also employed to automatically select
between the corresponding variation operators in the usual way, selecting between
four different operators whenever DE was chosen by the Hyper-AOS, and five op-
erators otherwise. The resulting algorithm, that can be seen as an adaptive Hyper-
Heuristic (HH), employs thus three independent instances of the recent Fitness
Area Under Curve Multi-Armed Bandit AOS algorithm [5]: one instance control-
ling the choices at the Hyper-level, and the other selecting between the operators
for the DE and GA algorithms. For both levels of abstraction, the impact of each
AOS decision is computed by means of the fitness improvement achieved when
comparing the newly generated offspring with its parent.

The proposed algorithm, tested under the light of the very comprehensive
Black Box Optimization Benchmarking (BBOB) noiseless testbed [7], showed
superior performance when compared to: (i)the same Hyper-Heuristic without
adaptive behavior (uniformly selecting between the metaheuristics and opera-
tors), and (ii) the single-heuristic counterparts, i.e., the DE and GA alone, using
the same AOS mechanism to select between their corresponding variation op-
erators. These results empirically confirm that the AOS at the Hyper-level is
efficient, and that the intelligent switching between different metaheuristics is a
path worth to be further investigated.

There are mainly two different paths that might be taken in the follow up of
this work. One concerns its extension from the algorithmic point of view, by try-
ing to improve and/or propose new AOS mechanisms for better efficiency at the
Hyper-level. The other regards its extension from the application point of view,
by analyzing the same adaptive scheme selecting among different metaheuristics
and/or considering different problem domains.

Acknowledgments. The authors acknowledge the support from CNPq (grants
140785/2009-4 and 308317/2009-2).
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Abstract. Multi-trial Lin-Kernighan-Helsgaun 2 (LKH-2) is widely con-
sidered to be the best Interated Local Search heuristic for the Traveling
Salesman Problem (TSP) and has found the best-known solutions to a
large number of benchmark problems. Although LKH-2 performs excep-
tionally well on most instances, it is known to have difficulty on clus-
tered instances of the TSP. Generalized Partition Crossover (GPX) is a
crossover operator for the TSP that efficiently constructs new solutions
by partitioning a graph constructed from the union of two solutions.
We show that GPX is especially well-suited for clustered instances and
evaluate its ability to improve solutions found by LKH-2. We present
two methods of combining GPX with multi-trial LKH-2. We find that
combining GPX with LKH-2 dramatically improves the evaluation of so-
lutions found by LKH-2 alone on clustered instances with sizes ranging
from 3,000 to 30,000 cities.

1 Introduction

The Traveling Salesman Problem (TSP) can be stated as follows: Given n cities
and an n×n cost matrix C, where entry Cij is the cost of traveling between cities
i and j, find a Hamiltonian circuit on the n cities which minimizes the sum of
travel costs between cities on the route. We restrict our attention to symmetric
instances, that is Cij = Cji.

Although the TSP is simply stated, the problem is NP-hard, necessitating
the use of heuristics for larger instances. Lin-Kernighan-Helsgaun 2 (LKH-2) [2]
is a state-of-the-art local search heuristic for the TSP based on the variable
depth local search of Lin and Kernighan (LK-search) [4]. While LKH-2 performs
exceptionally well on most instances of the TSP, its performance degrades on
clustered instances [2].

Generalized Partition Crossover (GPX) [10,9] is a crossover operator for the
TSP that produces offspring from a graph constructed from the union of two
parent solutions. It has been shown that GPX has a high probability of producing
locally optimal offspring if the parents are local optima [9]. We inspect local
optima produced by LKH-2 on clustered instances and find they have a large
number of common edges. As GPX relies on the common edges between two
solutions to perform crossover, this indicates that the local optima produced by
LKH-2 are especially well-suited for GPX.
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LKH-2 can also be used in a form of iterated local search (ILS), which Hels-
gaun calls multi-trial LKH-2. Multi-trail LKH-2 incorporates a form of crossover
known as Iterative Partial Transcription (IPT) based on the work of Möbius et
al. [6]. Instead of using a population, multi-trial LKH-2 keeps the best-so-far
solution; when it converges to a new local optimum, it applies crossover to the
current candidate solution and the previous best-so-far solution. If crossover
yields an improved solution, this becomes the new candidate solution. In this
way, LKH-2 does not require a population, or other tuning parameters associated
with population-based heuristics.

To the best of our knowledge, there are no published studies on the effective-
ness of using crossover in this way. We present empirical evidence that shows
incorporating a crossover operator into LKH-2 greatly improves the evaluation of
solutions found by LKH-2 alone. A theoretical analysis of the differences between
the GPX and IPT crossover operators proves that GPX is superior and empirical
studies show that GPX produces better solutions than IPT when crossing over
local optima produced by LKH-2.

Finally, there is also an advantage to doing multiple (parallel) runs of multi-
trial LKH-2. This creates additional opportunities to utilize crossover. This is not
like a genetic algorithm, because the runs remain independent. We present two
methods of using crossover that have not previously been utilized in combination
with LKH-2. Our results show that both methods improve solution quality over
that of multi-trial LKH-2 with no significant increase to runtime.

2 Lin-Kernighan-Helsgaun 2

Lin-Kernighan-Helsgaun 2 (LKH-2) is a variable depth search that is based on
the well known Lin-Kernighan algorithm (LK-search) [4]. LKH-2 has found the
majority of best known solutions on the TSP benchmarks at the Georgia Tech
TSP repository that were not solved by complete solvers1. At each step of the
search, LKH-2 removes and replaces k edges of a given solution. This is known
as a k-opt move. LKH-2 chains together a variable number of k-opt moves to
find a new solution with a better evaluation than the initial solution [2].

As we are not concerned with the inner workings of LKH-2, it is sufficient
to think of LKH-2 as a ‘black-box’ that produces a locally optimal solution
when given an arbitrary initial solution. LKH-2 has a number of parameters
that influence its performance; for all our experiments, we use the same settings
reported by Helsgaun to produce the best results on clustered instances [2].

2.1 LKH-2 and Clustered Instances

Papadimitriou proved that LK-search solves a Polynomial Local Search (PLS)
complete problem [8,3] by constructing graphs that force LK-Search to take an
exponential number of steps. Papadimitriou constructed a graph containing ‘bait
edges’ that lead LK-search into an extensive search for an improved solution.
1 http://www.tsp.gatech.edu/data/index.html

http://www.tsp.gatech.edu/data/index.html
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It is thought that the edges between clusters of a clustered TSP instance act
in a similar manner as the bait edges of Papadimitriou’s proof [7]. Empirical
experiments show that LKH-2 performs significantly worse on random clustered
instances than uniform random instances [2]. We conjecture that its performance
on clustered instances could be improved by exploiting crossover.

3 Generalized Partition Crossover

Generalized Partition Crossover (GPX) is a crossover operator for the TSP with
a number of interesting properties. When given local optima as parents, GPX
is highly likely to produce locally optimal children [10,9]. GPX is “respectful”,
meaning that any common edges in the parents are inherited by the offspring;
and it “transmits alleles”, meaning that all edges found in the offspring are
directly inherited from the parents. When used in a hybrid genetic algorithm
with Chained Lin-Kernighan (Chained LK) [1], GPX is able to produce higher
quality solutions than Chained LK alone [10].
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Fig. 1. An example of (a) the graph constructed by GPX from the union of two solu-
tions, Sa (dashed edges) and Sb (solid edges), and (b) how the removal of shared edges
creates subgraphs. The heavy dark lines show two partitions of cost 2, A and B. Once
GPX partitions the graph, solutions are constructed from the shared edges in (a) and
the dashed or solid edges from each subgraph in (b).

GPX works by first constructing a graph G = (V,E) from two solutions, Sa

and Sb, where V is the set of cities in the TSP instance and E is the union
of edges in the two solutions (see Figure 1(a)). To partition G, the edges in
G that are shared by both solutions are removed to create graph Gu as in
Figure 1(b). Breadth first search is then applied to Gu to identify the connected
components. Note that any connected component in Gu can be disconnected
from G by removing shared edges. We refer to the connected components in
Gu as partition components. We define the cost of a partition of graph G as
the minimal number of shared edges that must be removed to disconnect a
component from G. Whitley et al. prove that if G contains at least one partition
of cost 2, it is always possible to create at least two Hamiltonian circuits distinct
from the parents in O(n) time [9].
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After one or more partitions of cost 2 is found, GPX will recombine the parent
solutions Sa and Sb to one or more offspring. First, the common edges between
Sa and Sb are inherited. Then, the best possible offspring is obtained by greed-
ily selecting the lowest cost path through each partition component of graph G.
Additional offspring can be obtained by making non-greedy choices.

GPX is an ideal candidate for clustered instances of the TSP. As local optima
tend to have a large number of edges in common, it is likely that some of these
edges will be between clusters. This would allow GPX to partition across edges
between clusters and recombine the lowest cost paths through the clusters on
either side of the partition. If a partition component captures several clusters,
GPX will also recombine the lowest cost edges between clusters.

To determine if this is the case, we produced one hundred different local
optima with LKH-2 on a randomly generated clustered instance with 3162 cities.
On average, there were 2.10±0.04 partitions of cost 2 when pairing together these
solutions. Thus, GPX will likely be able to find multiple partition components
of cost 2 when using two local optima produced by LKH-2 as parents.

3.1 Iterative Partial Transcription and GPX

Iterative Partial Transcription [6] (IPT) is a form of crossover used by LKH-
2. When LKH-2 reaches a local optimum, it executes a random restart while
retaining the best-so-far-solution. LKH-2 uses IPT to recombine the best-so-far
solution with the new local optimum [2]. If IPT finds a solution better than the
best-so-far, the best-so-far solution is replaced. Note that this does not require
a population of solutions.

IPT constructs a graph G = (V,E) from two solutions, S1 and S2, in the same
way as GPX. IPT will attempt to partition V into two disjoint sets A and B
such that the number of edges between sets is exactly 2. Let E(A) be the set of
edges incident only to vertices in A and E(B) the set of edges incident only to
vertices in B. Offspring are formed by removing the edges in S1 that are also in
E(A) and replacing them with the edges found in both S2 and E(A). The same
process is repeated with E(B). This is identical to using Partition Crossover
utilizing only a single partition of cost 2 [9].

Given G with k partition components of cost 2, GPX will return the best
solution out of a possible 2k − 2 unique solutions [10]. As IPT uses only a single
partition, it can reach only 2k− 2 of the 2k − 2 solutions processed by GPX. We
subtract 2 as we count only solutions different from the two parent solutions.
Note that k ≥ 2 since 1 partition break the graph into 2 partition components.

For k > 2, the solutions reachable by IPT are a subset of the solutions reach-
able by GPX. Therefore, it follows that the offspring generated by GPX is guar-
anteed to be equal or better than the solution generated by IPT. When k is
larger, GPX will find a better solution with greater probability.
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3.2 Effect of Crossover on LKH-2

To the best of our knowledge, there have been no published experiments to
determine the effect of using LKH-2 with and without IPT. We therefore conduct
an experiment to validate two hypotheses: 1. The addition of a crossover operator
such as IPT can improve solutions over that of LKH-2, and 2. GPX can further
improve solutions over IPT without a significant increase in run time.

For this experiment, we used six instances from the 8th DIMACS TSP Chal-
lenge2: C3k.0, C3k.1, C10k.0, C10k.1, C31k.0 and C31k.1 with sizes 3162, 3162,
10000, 10000, 31623 and 31623, respectively. For each instance, we ran three
versions of LKH-2 with 10 random restarts: LKH-2 without crossover, LKH-2
with IPT and LKH-2 with GPX. When running LKH-2 with either crossover
operator, the crossover operator is applied to the best-so-far solution and the
local optimum produced after each restart.

As the optimal solutions are not known for all instances, we normalize the re-
sults in Table 1 by reporting the percentage above the Held-Karp bound (HKB).
The HKB is guaranteed to be within 2/3 of the optimal evaluation on Euclidean
instances, but in practice is often within 0.01% of optimal [3]. The HKB for each
instance can be found at the DIMACS TSP Challenge homepage. We find that
crossover significantly improves the solutions found by LKH-2 and that GPX
can further improve over the solutions found by IPT.

Table 2 reports the average CPU time of a single call to IPT and a single
call to GPX. We also report the percentage of the total CPU time per run of
LKH-2 accounted for by the crossover operators. For instances of 10,000 cities
and lower, IPT is slightly faster than GPX but both account for less than 0.1% of
the overall running time. GPX is faster than IPT on larger problems. Therefore
GPX can be used in place of IPT with no significant increase to the overall run
time while increasing the potential to find improved solutions.

Table 1. The minimum percentage above the Held-Karp Bound for several clustered
instances of the TSP of solutions found by ten random restarts of LKH-2 without
crossover, with IPT and with GPX. Best values for each instance are in boldface. The
p-value of a one-way ANOVA test are shown in the final row for each instance. A
significant value is denoted with (*).

Instance C3k.0 C3k.1 C10k.0 C10k.1 C31k.0 C31k.1

LKH-2
Min 0.660 0.863 1.143 1.009 1.489 1.538
Avg 0.772 1.584 1.671 1.597 1.760 1.907
Max 1.387 2.051 2.339 2.658 2.169 2.397

LKH-2 w/ IPT
Min 0.622 0.656 1.040 0.873 1.280 1.274
Avg 0.665 1.329 1.160 1.022 1.433 1.595
Max 0.786 2.051 1.396 1.419 1.663 2.397

LKH-2 w/ GPX
Min 0.622 0.651 1.031 0.872 1.270 1.267
Avg 0.660 1.326 1.159 1.021 1.426 1.591
Max 0.786 2.051 1.396 1.419 1.663 2.397

p-value 0.112 0.484 <0.001(*) <0.001(*) <0.001(*) <0.001(*)

2 http://www2.research.att.com/~dsj/chtsp/

http://www2.research.att.com/~dsj/chtsp/
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Table 2. Average run time in seconds of IPT and GPX over the 10 runs used to
produce Table 1. The numbers in parentheses represent the percentage of the total run
time of LKH-2 accounted for by the crossover operators. P-values for a standard t-test
are shown with significant values denoted by (*).

Instance C3k.0 C3k.1 C10k.0 C10k.1 C31k.0 C31k.1

IPT 0.001(0.04%) 0.001(0.04%) 0.005(0.06%) 0.005(0.06%) 0.047(0.17%) 0.052(0.18%)

GPX 0.002(0.08%) 0.001(0.04%) 0.007(0.08%) 0.006(0.07%) 0.026(0.09%) 0.029(0.1%)

p-value 0.016 0.005(*) 0.036 0.014 <0.001(*) <0.001(*)

4 Crossover and Iterated Local Search

In Iterated Local Search (ILS) [5] a perturbation operator is applied to escape
local optima. The local search is restarted on the perturbed solution, and the
process is repeated for a fixed number of iterations. Using ILS with LK-search
based heuristics has proven to be more effective than random restarts [3,1].
Helsgaun refers to the ILS version of LKH-2 as multi-trial LKH-2 [2].

Multi-trial LKH-2 uses a pseudo-random restart influenced by the best-so-
far solution when a local optimum is reached. The next iteration of LKH-2 is
then biased by ignoring any k-opt moves beginning with edges in the best-so-
far solution. Given the benefits of incorporating crossover in LKH-2 shown in
Section 3.2, we construct two methods for incorporating crossover with multi-
trial LKH-2: GPX across runs and GPX across restarts.

4.1 GPX across Runs

GPX across runs applies crossover to improve the local optima found by inde-
pendent runs of multi-trial LKH-2. At each iteration i of multi-trial LKH-2 (i.e.,
when it reaches a local optimum), we form a population of the local optima found
at iteration i of each independent run. We then apply GPX, crossing over the
best solution in the population with each other solution. The best solution found
will be stored, but not returned to the multi-trial LKH-2 runs. This preserves
diversity between the runs. Figure 2 depicts 10 independent runs of multi-trial
LKH-2; GPX across runs will crossover the solutions with the same letters.

4.2 GPX across Restarts

Another option is to crossover solutions from the same run. We could crossover the
best-so-far solution with the local optimum found at each iteration of multi-trial
LKH-2 like IPT. However, the local optimum is discarded if it is not better than
the best-so-far solution. It is possible that by doing so, low cost edges that could
potentially be used to improve the best-so-far solution are discarded. To remedy
this, we designed Subroutine 1 to maintain a population of local optima and to
crossover the population at each iteration of multi-trial LKH-2. The best solution
from the crossover becomes the starting solution for the next iteration of multi-trial
LKH-2.
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Fig. 2. A diagram depicting 10 runs of multi-trial LKH-2 run for 5 iterations per run.
The circles represent local optima produced by LKH-2. GPX across runs crosses over
solutions with the same letters. GPX across restarts crosses over solutions with the
same numbers.

Subroutine 1. Given s∗, a local optimum passed from LKH-2; c, a cost function
that sums the edge costs of a given solution, and P , a set of solutions. When the
subroutine returns, control passes back to LKH-2.
1. If P = ∅, Let P = {s∗} and return s∗.
2. Apply GPX with s∗ and each solution in P .
3. Let s′ be the offspring with best evaluation. If c(s′) < c(s∗), let s∗ = s′.
4. If |P | �= popsize, let P = P ∪ {s∗}.
5. Otherwise, let s be the solution with the poorest evaluation in P . If c(s∗) < c(s),

replace s in P with s∗.
6. Return s∗.

4.3 Effect of Crossover on Multi-trial LKH-2

We hypothesize that incorporating crossover with multi-trial LKH-2 should fur-
ther improve solution quality, especially when GPX is the crossover operator. To
test this, we ran 10 independent runs of multi-trial LKH-2 with three different
methods of crossover for 50 iterations per run on the same clustered instances as
before. Method one was multi-trial LKH-2 with IPT. IPT was applied at each
iteration to the most recent local optimum and the best-so-far solution. If IPT
produced a better solution than the best-so-far solution, it is replaced. Method
two was GPX across runs. At each iteration, GPX was applied to the 10 local
optima found by each run. Method three was GPX across restarts. Subroutine
1 with popsize = 10 was called at each iteration. When applying GPX across
restarts, the population was set to empty at the beginning of each run.

Table 3 reports the minimum, maximum and average evaluation above the
HKB after the final iteration. The data in Table 3 shows that Multi-trial LKH-2
with IPT is better than LKH-2 with IPT (see Table 1) in every problem. The
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Table 3. Minimum, average, and maximum percentage of evaluation above the Held-
Karp bound for solutions after 50 iterations of 10 runs of multi-trial LKH-2 using
different crossovers. ‘*’ signifies the known global optimum was found. Best solutions
are in boldface. The p-value of a one-way ANOVA test are shown in the final row for
each instance. All values were significant.

Instance C3k.0 C3k.1 C10k.0 C10k.1 C31k.0 C31k.1

M. LKH-2 w/ IPT
Min 0.6218 0.6153 0.7184 0.7061 0.6922 0.8824
Avg 0.6336 1.0822 0.9514 0.8890 0.9639 1.0237
Max 0.6432 1.5692 1.3341 1.2489 1.2077 1.1417

GPX Across Runs
Min 0.6180* 0.6153 0.7037 0.7036 0.6879 0.8660
Avg 0.6183 0.6156 0.7144 0.7048 0.7012 0.8843
Max 0.6190 0.6183 0.7223 0.7064 0.8053 0.9409

GPX Across Restarts
Min 0.6180* 0.6150* 0.7151 0.7912 0.9725 0.8131
Avg 0.6188 0.7117 0.7529 0.8615 1.0199 0.8525
Max 0.6254 1.5350 0.7691 1.1518 1.1430 0.9376

p-values < 0.001 0.001 0.002 0.008 < 0.001 < 0.001
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Fig. 3. Minimum (top row) and average (bottom row) evaluation above the Held-Karp
bound at each iteration across 10 runs of multi-trial LKH-2 using various crossover
methods on three instances.

same is true for the two methods using GPX. Thus, multi-trial LKH-2 with
crossover does provide a significant benefit. Comparing the results for IPT to
that of the two GPX based methods shows that GPX generally improves over
IPT. GPX Across Restarts finds the global optimum in two cases where IPT did
not. GPX Across Runs consistently improves upon IPT.
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To further assess the differences between the three methods, Figure 3 shows
the minimum and average evaluation at each iteration for several instances.
Interestingly, GPX across restarts yields the largest gain in evaluation initially.
After the second iteration, the local optima from the first iteration will be crossed
over with the local optimum produced at the second iteration. As the search was
biased away from investigating moves beginning with edges in the best-so-far
solution, the local optimum it produces and the best-so-far solution may present
ideal parents for GPX. In some cases, it finds the best solution in the second
iteration and does not improve further. This may be a result of an interaction
with the way multi-trial LKH-2 biases the search with edges in the best-so-far
solution [2].

GPX across runs is capable of consistently improving the quality of solutions
over that of IPT. The average evaluation across iterations shows larger differences
of GPX over IPT. Note that the solutions produced by GPX across runs are not
in any way used by LKH-2. Therefore, GPX across runs does not influence the
local search. On the other hand, GPX across restarts does influence the search
behavior of LKH-2. The results suggest some trade-offs in how crossover can be
exploited that might offer further opportunity for improvement.

5 Conclusion

Clustered instances of the TSP are problematic for LKH-2 [2]. Examining the
structure of clustered instances, it seems likely that crossover operators such
as GPX and IPT will perform well on clustered instances. We examine both
operators and show that they are able to significantly improve solution quality
on clustered instances when combined with LKH-2.

Furthermore, GPX is a compelling replacement for IPT in LKH-2. GPX is
able to find all partitions that IPT can find, but can utilize more of them when
constructing offspring. This allows GPX to find higher quality solutions than
IPT. GPX also has a computation cost comparable to IPT. Although IPT is
slightly faster on smaller instances, both operators require less than than 0.2%
of the overall run time of LKH-2. As the instance size grows, GPX scales better
than IPT and GPX becomes faster than IPT on larger instances.

We introduce two methods of incorporating crossover with multi-trial LKH-2.
GPX across restarts uses a subroutine to maintain a population of solutions as an
alternative to applying crossover to the best-so-far solution and a local optimum
produced by LKH-2. GPX across restarts produces better average solutions and
finds better minimum solutions on the majority of instances tested. GPX across
runs consistently improves the minimum solution quality over that of multi-trial
LKH-2 w/ IPT. This method also finds the globally optimal solution for the two
benchmark instances for which the global optimum is known.

Our results show that crossover offers significant benefits when incorporated
with a state-of-the-art local search heuristic for the TSP. We conjecture that the
benefits we observed in TSP can also be obtained in other applications using
local search; crossover leverages information about good partial solutions which
can be exploited in search after restarts.
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Abstract. In this paper we compare GPU-based implementations of
three metaheuristics: Particle Swarm Optimization, Differential Evolu-
tion, and Scatter Search. A GPU-based implementation, obviously, does
not change the general properties of the algorithms. As well, we give
for granted that GPU-based implementation of both algorithm and fit-
ness function produces a significant speed-up with respect to a sequen-
tial implementation. Accordingly, the main goal of this work has been
to fairly assess the efficiency of the GPU-based implementations of the
three metaheuristics, based on the statistical analysis of the results they
obtain in optimizing a benchmark of twenty functions within a prefixed
limited time.

Keywords: Global Continuous Optimization, Particle Swarm Optimiza-
tion, Differential Evolution, Scatter Search, GPGPU.

1 Introduction

Modern graphics hardware has gained an important role in the area of parallel
computing, since it has been used to accelerate general computations (General
Purpose Graphics Processing Unit - GPGPU - programming), in addition to
playing its natural role. CUDATM (Compute Unified Distributed Architecture)
is a parallel computing environment by nVIDIATM which exploits the massively
parallel computation capabilities of its massively parallel GPUs. In particular,
CUDA-C [14] is an extension of the C language that allows development of GPU
routines (termed kernels), that can be executed in parallel by several different
CUDATM threads, following the Single Instruction Multiple Thread model.

Among the stochastic approaches to continuous optimization, Evolutionary
Algorithms (EAs) [6] and Swarm Intelligence [1] algorithms offer a number of
attractive features: robust and reliable performance, global search capability,
virtually no need of specific information about the problem to solve, easy imple-
mentation, and, above all, implicit parallelism.

In this paper, we compare the GPU implementations of three real-valued
population-based optimization techniques: Particle Swarm Optimization (PSO)

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 398–407, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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[8], Differential Evolution (DE) [16], and Scatter Search (SS) [7] 1. They have been
tested on a benchmark of 20 numerical problems (also implemented onGPU), com-
prisingunimodal/multimodal and separable/non separable functions (seeTable 3).
The main contributions of this paper are: i. the first implementation, to the best
of our knowledge, of Scatter Search in CUDATM ; ii. a novel parallel version of DE
that solves some of the problems of previous implementations; iii. the study of these
three metaheuristics on a broader benchmark than those usually adopted to test
GPU implementations; iv. an unbiased evaluation of the effectiveness of the GPU
implementation, as each metaheuristic has been subjected to the same parameter
optimization method and run for a pre-fixed limited amount of time.

2 Basics of the Three Metaheuristics

2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization algorithm which
simulates the behavior of bird flocks. A set of particles (or solutions) move
through a “fitness” function domain (search space) seeking the function opti-
mum (best fitness value). Each particle’s motion is described by two simple
discrete-time equations which regulate the particles’ velocity and position:

vn(t) = w · vn(t− 1)

+ c1 · rand() · (BPn − Pn(t− 1))

+ c2 · rand() · (BLPn − Pn(t− 1))

Pn(t) = Pn(t− 1) + vn(t)

where Pn(t) and vn(t) are the position and velocity of the nth particle at time
t; c1, c2 and w (inertia factor) are positive constants, rand() returns random
values uniformly distributed in [0, 1], BPn is the best-fitness location visited so
far by the particle, and BLPn is the best-fitness location visited so far by any
particle in its neighborhood, which may include a limited set of particles or even
coincide with the whole swarm.

2.2 Differential Evolution

Differential Evolution has recently been shown to be one of the most successful
EAs for global continuous optimization [2,18]. Unlike traditional EAs, DE per-
turbs the current population members with the scaled differences of randomly
selected and distinct individuals. In the first iterations the elements are widely
scattered in the search space and have a great exploration ability. As optimiza-
tion proceeds, the individuals tend to concentrate in the regions of the search
space with better fitness values, so the search automatically focuses on the most

1 The code can be downloaded from http://sourceforge.net/p/libcudaoptimize

[13].

http://sourceforge.net/p/libcudaoptimize
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promising areas. In DE, every element acts as a parent vector, for which a donor

vector is created. In the original version of DE, the donor vector for the ith

parent (Xi) is generated by combining three random and distinct elements Xr1,
Xr2 and Xr3. The donor vector Vi is calculated as:

Vi = Xr1 + F · (Xr2 −Xr3)

where F (scale factor) is a parameter that strongly influences DE’s performances
and typically lies in the interval [0.4, 1]. After mutation, every parent-donor pair
generates one child (trial vector) by means of a crossover operation. Two kinds
of crossover are typically used: binomial (uniform) and exponential. Crossover
is applied with a certain probability Cr (crossover rate) that, like F , is one of
the control parameters of DE. Then, the trial vector is evaluated and its fitness
is compared to its parent’s: the better survives while the other is discarded.

2.3 Scatter Search

Scatter Search is based on a systematic combination between solutions (instead
of randomized, as is usual in EAs) taken from a subset of the population, named
the “reference set”, that is usually significantly smaller than a typical EA pop-
ulation. SS is composed of five structural “blocks” or methods (see Figure 1):

1. Diversification Generation: a population of solutions P is generated, having a
certain degree of quality and diversity. The reference setR is then drawn from
P , and includes the |R1| solutions with best fitness, and the |R2| solutions
from the reference set that are farthest from P according to the Euclidean
distance (hence, |R| = |R1| +|R2|); the evolution process acts only on R;

2. Solution Combination: in most problems a specific method to combine solu-
tions is needed, which can be applied to all solutions or only to selected ones
(e.g., the best solutions, and/or randomly selected ones). In many cases an
existing crossover operator, borrowed from other EAs, is employed;

3. Subset Generation: the procedure deterministically generates subsets of R,
to which the combination method is applied.

4. Improvement: an improvement method (typically a local search) is applied
to the original solutions and/or to combined solutions;

5. Reference Set Update: once a new solution is obtained it replaces the worst
solution in R only if it improves the quality of the reference set in terms of
fitness and/or diversity;

3 Parallel Implementation

The first parallel versions of PSO relied on multiprocessor parallel machines
or cluster of computers. With the introduction of GPUs, research shifted to-
wards GPU-based parallel PSO (GPU PSO) to alleviate multi-processor and
cluster systems inefficiencies, such as network overhead, shared memory access,
etc. In 2009 and 2010, respectively, the first implementations of PSO and DE
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Fig. 1. Block diagram of the Scatter Search Algorithm

using nVIDIA CUDATM were developed [3,4]. Also in 2009, a hybrid between
GPU PSO and pattern search, aimed at enhancing the convergence of PSO,
was presented in [20]. After that, other implementations of DE have been de-
veloped [9,21], and fast versions of PSO have been implemented by relaxing the
synchronicity constraints between particles’ evaluation and update [12].

The early GPU PSO implementations suffered from a coarse-grained paral-
lelization (one thread per particle), that neglected the opportunity to compute
the fitness function, usually the most time-consuming process, in parallel over the
problem dimensions. This aspect has been improved by the PSO implementation
evaluated in this work, first introduced in [11]. In it, a thread manages a single
dimension of each particle, adding a further level of parallelism. Similar inefficien-
cies characterized the early implementations of DE, such as a partially sequential
implementation of the fitness function and random number generation. These
problems were addressed by [9] using four kernels executed sequentially. Our
present implementation uses only one kernel for generating the trial vectors, and
another for fitness evaluation and migration. In addition, we offer three different
mutations and two kinds of crossovers, while early GPU-based DE considered
only one mutation strategy (DE/rand/1) and one kind of crossover. Regarding
SS, to the best of our knowledge, ours is the first parallel implementation of this
metaheuristic.

The performance of CUDATM code depends chiefly on the thread configu-
ration, number of kernels, and memory access schemes used. All methods pre-
sented here aim at exploiting fast-access local and shared memory instead of
slower global memory to the greatest possible extent, considering the number of
kernels as the main criterion to assess how well an algorithm can be parallelized.

PSO is divided into three kernels described in [11], while DE, as mentioned
earlier, can be implemented as two kernels. Each thread of the first kernel per-
forms the following instructions:
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– generate two or three distinct random numbers on the GPU, according to
the mutation strategy;

– calculate an element of the donor vector from the population members ran-
domly selected in the previous step;

– decide whether to include the donor or the parent element in the trial vector,
based on the type of crossover and the crossover rate, Cr.

The second DE kernel evaluates all trial vectors simultaneously in shared mem-
ory and, if the fitness has improved, it replaces the parent with the offspring.

Clearly, SS is not as inherently parallel as the two other metaheuristics (see
Figure 1). In SS a diverse population is first initialized and evaluated; diversity
is simulated by generating uniform random values for each dimension over the
whole search space. Then, to build the reference set R, a parallel sort opera-
tion is required to find R1, followed by another kernel that calculates pairwise
Euclidean distances between solutions in P − R and R, sequentially adding the
solutions that are farthest from the reference set for |R2| iterations. As for se-
lection and crossover, a kernel selects all solution pairs in the reference set for
mating, and combines them through the BLX-α crossover , generating two dis-
tinct solutions chosen with α set to (0.5 + λ) and (0.5 − λ), respectively. The
combined solutions make up the pool, to which a parallel implementation of the
Solis & Wets search method [19] is then applied as improvement method. For
the last step, we compared two methods for updating the reference set, one of
which considers both quality and diversity as in [5], while the other updates the
reference set with the best |R| solutions in (R ∪ pool). The latter yielded better
results in terms of both speed and accuracy, as proven by the automatic tuning
process described in the following section.

4 Experiments

We give for granted that the parallel metaheuristics we consider are faster than
the corresponding sequential versions on sufficiently large problems, while their
accuracy is the same for identical configurations, because they implement the
same algorithm. Many comparisons between the accuracy of the sequential ver-
sions of the algorithms [5,18] have already been made, but they gave insights on
their intrinsic features rather than on the computational efficiency of possible
implementations. In this work, we evaluate both quality and speed of their par-
allel versions, analyzing the accuracy they can achieve in a limited amount of
time, to assess the degree of parallelization that each of them allows to reach.

Table 1. Automatically-tuned parameter values used to test different optimization
techniques

DE PSO SS
Cr = 0.879 c1 = 1.862 |P | = 140
F = 0.520 c2 = 1.881 |R1| = 9, |R2| = 1

Exponential Crossover w = 0.494 λ = 0.220
Random Mutation Population Size = 125 Solis & Wets iterations = 85

Size = 48
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Fig. 2. Mean fitness vs time (up to 1 second) for six representative functions (uni-
modal separable, unimodal non-separable and multimodal non-separable), and number
of function evaluations performed in 1 second by every method for each function on
30-dimensional problems.
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Table 2. Results on the 20 functions

10 dimensions 30 dimensions
DE PSO SS DE PSO SS

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

f0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

f1 0.0 0.0 0.0 0.0 2.5e-03 9.2e-03 0.0 0.0 0.0 0.0 2.2e-06 6.3e-06

f2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1e-44 8.6e-44

f3 0.0 0.0 0.0 0.0 7.0e-45 2.9e-44 0.0 0.0 0.0 0.0 6.7e-05 3.0e-04

f4 0.0 0.0 0.0 0.0 1.1e-25 1.7e-25 0.0 0.0 0.0 0.0 5.1e-24 2.7e-24

f5 0.0 0.0 0.0 0.0 0.0 0.0 2.5e-28 3.4e-28 1.8e-28 2.2e-28 1.2e-05 1.7e-05

f6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.7e-012 9.9e-012 2.5e-03 3.3e-03

f7 9.8e-06 6.9e-05 1.0e-03 4.0e-04 2.7e-04 3.5e-04 2.1e+02 3.3e+02 3.8e+03 1.1e+03 9.9e+02 3.4e+02

f8 5.0e-01 5.0e-08 3.5e-02 1.3e-01 2.9e-01 2.5e-01 5.0e-01 0.0 4.2e-01 1.9e-01 5.0e-01 2.1e-05

f9 0.0 0.0 5.2e-01 7.8e-01 6.9e-01 9.1e-01 0.0 0.0 7.2e+01 1.6e+01 3.5e+01 9.7e+00

f10 5.9e+00 3.1e+01 1.2e+02 1.2e+02 8.1e+01 1.1e+02 1.7e+01 4.8e+01 2.9e+03 4.1e+02 2.4e+03 9.0e+02

f11 1.2e-03 4.9e-06 1.2e-03 2.9e-05 1.2e-03 2.4e-18 1.2e-02 5.1e-05 1.2e-02 1.8e-04 1.2e-02 8.7e-18

f12 0.0 0.0 1.1e-02 1.0e-02 1.1e-03 2.9e-03 7.4e-05 7.4e-04 6.3e-10 6.0e-09 1.5e-03 4.3e-03

f13 0.0 0.0 3.9e-07 4.8e-07 5.9e-01 3.3e+00 0.0 0.0 2.1e-01 7.2e-01 2.2e+01 2.6e+01

f14 0.0 0.0 6.7e-07 1.1e-06 0.0 0.0 1.1e-06 1.2e-06 4.5e-06 9.4e-07 9.3e-03 9.3e-02

f15 0.0 0.0 1.2e-03 6.5e-03 6.3e-31 4.4e-30 0.0 0.0 1.5e-28 1.2e-27 1.1e-27 2.7e-27

f16 3.3e-02 2.9e-02 1.0e-01 2.4e-02 7.3e-01 5.4e-01 3.2e-01 3.0e-02 8.5e+00 8.6e-01 8.7e+00 1.2e+00

f17 4.5e+01 2.2e+02 1.3e+00 5.1e+00 4.7e+00 8.5e+00 2.8e+04 6.1e+03 3.1e+04 1.8e+04 5.2e+03 5.6e+03

f18 1.0e-01 2.8e-17 1.0e-01 2.8e-17 9.8e-02 1.4e-02 1.9e-01 3.1e-02 2.0e-01 1.7e-02 2.4e-01 5.1e-02

f19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3e-02 1.0e-01

The algorithms we compared have a number of parameters that affect both
accuracy and parallelism. “Manual” parameter tuning is time consuming and
may introduce a bias in comparing an algorithm with a reference, due to bet-
ter knowledge of the algorithm under consideration and to possible different
time spent tuning each of them. Therefore, the automatic tuning of all three
algorithms was performed using the irace software package [10], to find the
configurations that yielded the best results in a given time: we set this time
to one second, since it is generally short enough to avoid reaching full
convergence with all three methods, allowing one to compare their short-term
performances.

The tuner was run on all 20 functions with a budget of 30000 experiments,
each being one run of one configuration on one function with a termination
criterion of one second. Since the functions have different fitness ranges, a rank-
based test is prferable to a test based on the solutions’ mean values. Accord-
ingly, the Friedman test was used to discard significantly worse configurations.
We tuned the parameters for 30-dimensional problems, and assumed that such
configurations are good also for lower-sized ones. Table 1 displays the param-
eters that have been tuned for each algorithm, and the best corresponding
values.

We compared our results to the values that are most commonly used in liter-
ature. For instance, the authors in [2] suggest F ∈ (0.4, 0.95) and Cr ∈ (0.9, 1)
for multimodal separable functions (the most common ones in our benchmark);
we obtained similar results. Regarding PSO, in most papers, c1 = c2 = 2.0 [15],
while our automatic tuning set them to slightly smaller values.

To evaluate both the effectiveness and the efficiency of the three parallel im-
plementations, tests on 20 numerical benchmark functions (see Table 3) were
run on a 64-bit Intel(R) CoreTM i7 CPU running at 2.67GHz using CUDATM

v. 4.1 on a nVidia GeForce GTS450 graphics card with 1GB of DDR memory
and compute capability 2.1 [14]. Table 2 reports the results obtained executing
100 runs per function (6000 independent runs) and setting 1 second as the only
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Table 3. Benchmark functions. For every function, the table shows the name, the
range of the search space, the formula, the multimodality (multimodal, unimodal) and
the separability (separable, non separable). All minima are in {0}n.

Name Range Formula
f0 Sphere [−100, 100]n

∑n−1
i=0 x2

i U S

f1 Elliptic [−100, 100]n ∑n−1
i=0 (106)

i−1
D−1 x2

i
U S

f2 Sum of Squares [−1, 1]n
∑n−1

i=0 ix2
i U S

f3 HyperEllipsoid [−1, 1]n
∑n−1

i=0 i2 · x2
i U S

f4 Schwefel 2.22 [−10, 10]n
∑n−1

i=0 |xi| +
∏n−1

i=0 |xi| U S

f5 Zakharov [−10, 10]n

(∑n−1
i=0 xi

2
)
+

(∑n−1
i=0 0.5 · i · xi

2
)2

+

+
(∑n−1

i=0 0.5 · i · xi
2
)4 U S

f6 Schwefel 1.2 [−100, 100]n
∑n−1

i=0

(∑i
j=0 xj

)2
U NS

f7 Schwefel 2.6 [−100, 100]n
max {Aix − B} ,
i = 0, . . . , n − 1,x = [x0, . . . , xn−1],
Ai,B defined in [17].

U NS

f8 Dixon-Price [−10, 10]n (x0 − 1)2 +
∑n−1

i=1

(
i · (2xi

2 − xi−1

)2)
U NS

f9 Rastrigin [−5.12, 5.12]n
∑n−1

i=0

{
x2
i − 10 · cos(2πxi) + 10

}
M S

f10 Schwefel 2.26 [−500, 500]n 418.9829 · n +
∑n−1

i=0

(
xi · sin

√|xi|
)

M S

f11 Katsuura [−1000, 1000]n
∏n−1

i=0

(
1 + (i+ 1)

∑d
k=1 round(2kxi)2

−k
)
− 1 M S

f12 Griewank [−600, 600]n
∑n−1

i=0

x2
i

4000 − ∏n−1
i=0 cos(

xi√
i
) + 1 M NS

f13 Rosenbrock [−100, 100]n
∑n−1

i=0 100(xi − x2
i−1)

2 + (1 − xi−1)
2 M NS

f14 Ackley [−32, 32]n −20e
−0.2

√
1
n

∑n−1
i=0

x2
i − e

1
n

∑n−1
i=0

cos(2πxi) + 20 + e
M NS

f15

Griewank
+

Rosenbrock
[−5.12, 5.12]n fgriewank(frosenbrock) M NS

f16 Scaffer [−100, 100]n

∑n−1
i=0 F (xi, xi+1), xn = x0

where F (x, y) = 0.5 +
sin2

(√
x2+y2

)
−0.5

1+0.0001(x2+y2)

M NS

f17 Schwefel 2.13 [−π, π]n
∑n−1

i=0 (Ai − Bi(x))
2 ,x = [x0, . . . , xn−1]

Ai,Bi(x) defined as in [17].
M NS

f18 Salomon [−10, 10]n − cos

(
2π

√∑n−1
i=0 xi

2

)
+ 0.1

√∑n−1
i=0 xi

2 + 1 M NS

f19 Levy [−10, 10]n
sin2(πy0) +

∑n−2
i=0

[
(yi − 1)2

(
10 sin2(πyi + 1)

)]
+

(yn−1 − 1)2
(
1 + 10 sin2(2πyn−1)

)
where yi = 1 +

xi−1

4 , i = 0, . . . , n − 1

M NS

termination criterion. The first column is the function under consideration. The
following ones are divided into two blocks according to the number of dimen-
sions (10 and 30). Within each block, the mean best fitness and the standard
deviation over all runs are reported for each method. Results reported on a grey
background highlight those case in which the median over 100 runs obtained
by the method is significantly better than the other methods, according to the
Kruskal-Wallis test, with a confidence level of 0.01.

5 Discussion

The results reported in Table 2 and Figure 2 allow one to draw some conclu-
sions about the behaviour of the three parallel metaheuristics. Conforming with
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previous results obtained by sequential implementations, DE obtained the best
results, sometimes tied with some other method, in 35 out of the 40 experi-
ments performed, while PSO was the best method, sometimes tied with some
other method, in 20 out of 40 functions, its main drawback being its tendency
to stagnate and find sub-optimal solutions more often than DE, even if a higher
number of function evaluations is run. Regarding SS, whose first parallel imple-
mentation is presented here, it obtained the best result in 12 out of 40 problems;
however, this metaheuristic, which is not as parallelizable as the other meth-
ods, as reflected by the number of kernels, has achieved better performance over
multimodal non-separable problems and time-consuming fitness functions, like
Katsuura.

All tests were run with a temporal limit of one second, a short time in which all
three methods can generally obtain results close to the optima without reaching
full convergence. Figure 2 shows that PSO requires almost three times as many
fitness function evaluations as DE to converge on 30-dimensional problems. It is
important to notice that the population size in PSO is also almost three times as
large as in DE, which justifies the larger number of fitness evaluations. However,
this may represent a shortcoming only if applied to larger-dimensional functions
than those considered in this work.

Acknowledgments. Youssef S. G. Nashed, Pablo Mesejo and Jérémie Dubois-
Lacoste are funded by the European Commission (Marie Curie ITN MIBISOC,
FP7 PEOPLE-ITN-2008, GA n. 238819). Roberto Ugolotti is funded by Com-
pagnia di S.Paolo and Fondazione Cariparma. The authors want to thank
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Abstract. The present study investigates the effect of heuristic sets on
the performance of several selection hyper-heuristics. The performance
of selection hyper-heuristics is strongly dependant on low-level heuristic
sets employed for solving target problems. Therefore, the generality of
hyper-heuristics should be examined across various heuristic sets. Unlike
the majority of hyper-heuristics research, where the low-level heuristic
set is considered given, the present study investigates the influence of
the low-level heuristics on the hyper-heuristic’s performance. To achieve
this, a number of heuristic sets was generated for the patient admis-
sion scheduling problem by setting the parameters of a set of paramet-
ric heuristics with specific values. These values were set such that nine
heuristic sets with different improvement capabilities, speed character-
istics and size were generated. A group of hyper-heuristics with certain
selection mechanisms and acceptance criteria having dissimilar intensi-
fication/diversification abilities were taken from the literature enabling
a comprehensive analysis. The experimental results indicated that dif-
ferent hyper-heuristics perform superiorly on distinct heuristic sets. The
results can be explained and hence result in hyper-heuristic design rec-
ommendations.

Keywords: Hyper-heuristics, Heuristic Set, Generality.

1 Introduction

Selection hyper-heuristics have been studied to effectively manage multiple algo-
rithms, with the motivation behind their employment being to use the heuristics’
strengths and eliminating their weaknesses, resulting in a better performance [1].
They take the search process to the heuristic level and perform without prob-
lem domain knowledge. Thus, hyper-heuristics are considered general algorithms
capable of solving a diverse range of problems. Therefore, most of the hyper-
heuristic studies in the literature deal with problem solving [2]. However, selec-
tion hyper-heuristics are not concerned with solving some problem instances, but
with managing low-level heuristic sets for solving these instances as efficiently

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 408–417, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



The Effect of the Set of Low-Level Heuristics 409

as possible. There are a limited number of studies concentrating on the heuristic
set part with heuristic set reduction or heuristic elimination strategies forming
the basis of these studies. In [3], heuristics were made tabu for certain iterations
based on their performance. A similar tabu idea was employed for a genetic
algorithm based hyper-heuristic in [4]. A heuristic subset selection mechanism
after a certain number of iterations and a heuristic set reduction strategy that
excludes heuristics in time to determine a good heuristic subset from a large
heuristic set were studied in [5]. Another heuristic subset selection approach
which temporarily eliminates poor performing heuristics was introduced in [6].
Contrastingly, in [7], different heuristic sets using multiple heuristics from the
low-level heuristics for solving the DNA sequencing problem were tested with a
suite of hyper-heuristics.

Due to the search level and problem-independent nature of selection hyper-
heuristics, generality is considered their most important trait. To show their
generality level, work on different heuristic sets, with differing features, is re-
quired. To the best of our knowledge, there is no study focusing on the effect of
different heuristic sets on the performance of hyper-heuristics. The present con-
tribution aims at filling the void mentioned by trying to determine what features
should be considered in the design phase of a hyper-heuristic from a generality
perspective. For this purpose, 11 low-level heuristics designed to solve the patient
admission scheduling problem were used to generate nine heuristic sets. These
heuristic sets exhibit differences regarding their improvement capabilities and
the speed of the residing heuristics as well as the number of utilised heuristics.
Two heuristic selection mechanisms together with seven move acceptance criteria
were adopted in building 14 hyper-heuristics with distinct characteristics rely-
ing on their selection strategies and intensification/diversification capabilities.
The computational results clearly indicated that the nature of the heuristics,
distribution of different heuristic types, size of the heuristic sets and runtime
limitations have a remarkable impact on the performance of hyper-heuristics.

In the remainder of the paper, the low-level heuristics for the patient admission
scheduling problem and heuristics sets generated based on these heuristics are
argued in Section 2. Followingly, Section 3 elaborates the tested hyper-heuristics.
Next, the computational results are presented and discussed in Section 4. In the
last section, the paper is concluded and the requirements for generality and the
future research opportunities are presented.

2 Patient Admission Scheduling Problem and Heuristics

The present study focuses on patient admission scheduling (PAS) due to its
combinatorial complexity as well as the existence of a set of heuristics. The PAS
problem concerns assigning patients to hospital rooms or beds based on the
patients’ requirements [8]. The basic components of the problem are: patients,
rooms, wards and time slots. Each patient is characterised by his/her gender,
age, pathology, room preference, admission date, and duration of the treatment.
It is assumed that every pathology can be linked to one of the hospital’s spe-
cialisms. Multiple wards of the hospital can have the same specialism, but some
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wards are more specialized than others. We distinguish between major and minor
specialisms. Every room is located on a ward of the hospital. The specialisms of
the ward are inherited to a certain degree by the rooms of the ward. A room is
characterized by its properties and its bed capacity. Depending on the patient’s
pathology, some of the room properties are mandatory or preferable.

2.1 Low-Level Heuristics

The following 11 simple low-level heuristics were used in the experiments. For
this comparison study, it does not actually matter how this set of low-level
heuristics is composed.

– LLH1: Swap all the bed assignments of a randomly selected patient with
the beds of randomly selected patients

– LLH2: Transfer all the bed assignments of a randomly selected patient to
randomly selected empty beds

– LLH3: Swap all the bed assignments between two randomly selected pa-
tients

– LLH4: Swap all the bed assignments of a randomly selected patient with
randomly selected occupied beds. Transfer the remaining assignments to the
randomly selected beds

– LLH5: Transfer all the bed assignments of a randomly selected patient to
a randomly selected empty bed

– LLH6: Swap a randomly selected bed assignment with another bed while
respecting room properties

– LLH7: Swap a randomly selected bed assignment with another bed while
respecting room preferences of the corresponding patient

– LLH8: Swap a randomly selected bed assignment with another bed while
respecting the room specialism

– LLH9: Swap a randomly selected bed assignment of a randomly selected
patient with another bed while respecting room properties

– LLH10: Swap two randomly selected beds
– LLH11: Transfer all the patients in a randomly selected room to another

randomly selected room

2.2 Differentiating Heuristic Sets

The motivation here is to generate a group of heuristic sets using the aforemen-
tioned parametric low-level heuristics for PAS. Nine heuristic sets in different
sizes, with different speed and improvement capabilities were generated by set-
ting their parameters. There exist studies concerning heuristics requiring their
parameters be set when applying a number of atomic steps [8]. Similarly, in the
present research, each heuristic has a parameter called sampling factor. This pa-
rameter constitutes the number of steps to apply the same operator for different
neighbouring solutions. For instance, LLH3 with sampling factor 4 means that
it should perform the corresponding swap operation 4 times at each iteration.
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Heuristic Sets. Nine heuristic sets under three group headings were derived
based on the 11 parametric heuristics depicted in Table 1. The first group of
heuristic sets was composed of 11 heuristics with a sampling factor of four. The
aim of using this first group is to measure the performance of various hyper-
heuristics in a default setting. The second set involves 22 heuristics with two
versions of each heuristic with sampling factors 4 and 1000. The heuristics with
sampling factor 1000 is 250 times slower than the ones with sampling factor 4.
It enables investigating how a hyper-heuristic behaves when the speed difference
among heuristics is extremely large. The last group employs 44 heuristic with
four versions of each heuristic using sampling factor values 1,4,8,16. The rea-
soning behind this setting is to evaluate hyper-heuristics on larger heuristic sets
with relatively small speed differences.

Table 1. Heuristic sets used for the experiments

Set size Sampling factors Selection type

HS1 11 4 BEST
HS2 11 4 FIRST IMPROVING
HS3 11 4 HILL CLIMBER

HS4 22 4, 1000 BEST
HS5 22 4, 1000 FIRST IMPROVING
HS6 22 4, 1000 HILL CLIMBER

HS7 44 1,4,8,16 BEST
HS8 44 1,4,8,16 FIRST IMPROVING
HS9 44 1,4,8,16 HILL CLIMBER

Each of these heuristic set groups was tested under three different conditions.
The first method, BEST , returns the best neighbouring solution after all the
sample solutions were visited at each iteration. The second approach,
FIRST IMPROV ING, uses the first improving solution found after the sam-
pling operations. The last technique, HILL CLIMBER, generates hill climbers
based on the sampling factor value. Whenever a better or equal quality neigh-
bouring solution is found during the sampling period, it is accepted.

Figure 1 depicts the average speed of performing one move on a PAS instance
by each heuristic set. According to this metric, the heuristic sets with 22 heuris-
tics, i.e. HS4, HS5, HS6, are slower than the all others. This slowness is caused
by utilising heuristics with a sampling factor of 1000. Of these, HS4 and HS6 are
the slowest, as shown in the second graph. This severe speed difference occurs
when a heuristic with the sampling factor of 1000 always checks 1000 neigh-
bouring solutions, however, HS5 stops looking for better neighbouring solutions
whenever it finds an improving one.
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Fig. 1. Number of iterations spent over time when heuristics are randomly selected

3 Tested Hyper-heuristics

Fourteen selection hyper-heuristics (2 heuristic selection × 7 move acceptance)
involving mechanisms from the literature were used for the experiments. Two
selection criteria were employed for the heuristic selection process. The first ap-
proach is the simple random (SR) heuristic selection mechanism that chooses
heuristics in a uniformly random manner. The second approach is the adaptive
dynamic heuristic set (ADHS) strategy, determining effective heuristic subsets
at runtime [9]. This strategy was also used in the winning hyper-heuristic [10] of
the first international Cross-domain Heuristic Search Challenge (CHeSC 2011)1.
The heuristic subset selection process is carried out using a performance met-
ric involving the most relevant elements to evaluate the online behaviour of
the heuristics. The details of the performance metric for heuristic i are shown
in Equation 1. Cp,best(i) represents the number of new best solutions discov-
ered during a phase. fp,imp(i) shows the total amount of improvement provided
during a phase. fp,wrs(i) indicates the total worsening caused during a phase.
fimp(i) and fwrs(i) both refer to the same measurements as the last two, but
during the whole search rather than a single phase. The remaining elements were
used to combine the improvement capabilities of the heuristics with their speed
enabling better judgement. tremain denotes the remaining execution time to fi-
nalise the whole search process. tp,spent(i) and tspent(i), the former represents
the spent execution time during a phase and the latter, from the start. The
wj values are set as weights to differentiate the importance of each individual
performance element. It is more important to have a higher value for an earlier
element.

1 http://www.asap.cs.nott.ac.uk/external/chesc2011/
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pi = w1

[(
Cp,best(i) + 1

)2(
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)]
× b+

w2

(
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)
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(
fp,wrs(i)/tp,spent(i)

)
+

w4
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)
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)
(1)

b =

{
1,

∑n
i=0 Cp,best(i) > 0

0, otw.

After a number of iterations, all the active heuristics are evaluated based on this
performance metric. The length of these iterations is denoted as phase length,
pl. The heuristics with comparatively poorer performance are excluded from the
heuristic set for a number of phases. The duration of exclusion is referred to
as tabu duration (d) and is set to d =

√
2n, where n refers to the number of

heuristics in the heuristic set. The tabu duration of the consecutively excluded
heuristics is increased by one, until 2

√
2n. If such a heuristic survives after a

phase, its tabu duration is set to its initial value. In addition, the phase length is
adapted during runtime with respect to the speed of the heuristics in the current
heuristic set.

The heuristic selection operation from these subsets is handled using a learning
automaton [9,11]. This method accommodates a vector of heuristic selection prob-
abilities. These values are reset at the end of each phase given the synchronously
performed update operation in determining which heuristics will be excluded.

The employed move acceptance strategies are as follows: adaptive iteration
limited list-based threshold accepting (AILLA) [9], great deluge (GD) [8], late
acceptance (LATE) [12], simulated annealing (SA) [8], improving or equal (IE),
only improving (OI) and all moves (AM). All of these acceptance mechanisms
immediately accept improving solutions. The first four acceptance methods,
AILLA, GD, LATE and SA, provide diversification mechanisms by accepting
worsening solutions with respect to certain dynamic threshold values. IE ac-
cepts equal quality solutions to diversify the search process. OI accepts only
better quality solutions, hence it has no diversification strategy. The last accep-
tance criterion, AM, accepts all visited solutions.

The resulting hyper-heuristics using all these sub-mechanisms, ADHS-AILLA,
ADHS-GD, ADHS-SA, ADHS-LATE, ADHS-IE, ADHS-OI, ADHS-AM, SR-
AILLA, SR-GD, SR-SA, SR-LATE, SR-IE, SR-OI, SR-AM, have distinct char-
acteristics for selecting heuristics and diversifying the search process such that
a comprehensive performance analysis can be performed.

4 Computational Results

14 hyper-heuristics were run 10 times on 7 PAS instances, dataset0 → dataset6,
attainable at http://allserv.kahosl.be/∼peter/pas/ using Pentium Core 2
Duo 3 GHz PCs with 3.23 GB memory. Each hyper-heuristic was tested on 9
different heuristic sets. The time limits were taken as 10 and 50 minutes.
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In Figure 2, the significantly best hyper-heuristics for each heuristic set are
listed for the 10 minutes and 50 minutes experiments respectively. The signifi-
cance of the performance difference is evaluated using the Wilcoxon test with a
95% confidence interval.

Regarding the 10 minutes experiments, different acceptance strategies deliver
similar performances after 10 minutes of execution in most of the cases. For
specific heuristic sets, even very simple acceptance mechanisms like OI and AM
can find similar results to those in HS3 and HS6. The explanation behind this
is as follows: the diversification characteristics of the selection mechanisms are
no longer useful due to the heuristics’ hill climbing behaviour. In addition, there
is no heuristic set for which one hyper-heuristic outperforms the others except
SR-LATE onHS9. Moreover, the hyper-heuristics involving an acceptance mech-
anism with diversification and ADHS perform poorly on HS9. For the majority
of the test cases, AILLA and LATE perform better, yet there is no general
statistically significant performance difference. For 50 minute experiments, the
hyper-heuristics with GD perform best together with different hyper-heuristics
on different heuristic sets. This can be considered as an effect of the execution
time limit increase, from 10 minutes to 50 minutes. The hyper-heuristics using
AILLA and LATE also show effective performance after running them for 50
minutes.

The hyper-heuristics generated the best results on HS1, HS2, HS7 and HS8.
The heuristic sets involve heuristics using low sampling factors with a selec-
tion type of either BEST or FIRST IMPROV ING. This means that the fast
heuristics with well balanced intensification-diversification behaviour resulted in
better performance on the tested problem instances.
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Fig. 2. The significantly best hyper-heuristics on each heuristic set after 10 minutes
(left) and 50 minutes (right) (Circles refer to the hyper-heuristics with ADHS and
squares refer to the hyper-heuristics with SR)
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Fig. 3. Average ranking of the hyper-heuristics after 10 minutes (Each graph represents
the results obtained on a heuristic set. They are ordered from left to right, top to
bottom: HS1 → HS9).
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the results obtained on a heuristic set. They are ordered from left to right, top to
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In Figure 3 and 4, the average ranking of the hyper-heuristics on each heuris-
tic set with 10 and 50 minutes execution time limits are presented. For the 10
minute experiments, ADHS performs better than SR in the majority of the cases.
However, SR provides better performance than ADHS for HS9 that accommo-
dates hill climbers, since ADHS mostly excludes the heuristics with a sampling
factor of 1 that help to diversify the search. Consequently, the remaining heuris-
tics may not be able to escape from certain local optima. For the 50 minute
experiments, the performance difference between ADHS and SR degraded when
compared to the 10 minute case. The two main reasons behind this empirical
result are the low evolvability characteristic of the solution space and the longer
running time. In this case, choosing wrong heuristics is not as influential when
compared with the 10 minute execution time experiments.

5 Conclusion

The present study examined the performance changes of 14 selection hyper-
heuristics due to different heuristic sets for the patient admission scheduling
problem. The nature of the heuristic sets, size of the heuristic sets and other
related limitations are all potential reasons why one hyper-heuristic delivers
superior results. We reviewed these conditions in various experiments to iden-
tify the hyper-heuristics’ generality levels. Nine heuristic sets were utilised in
demonstrating the effect of the heuristic sets on the performance of selection
hyper-heuristics. Each of these sets exhibits differences depending on the afore-
mentioned experimental conditions. We tested, using these heuristics sets, 14
hyper-heuristics composed of an adaptive and a random selection mechanism
combined with 7 move acceptance methods from the literature. The computa-
tional results on the tested heuristic sets showed that the best hyper-heuristic
can change based on the heuristic set used and execution time limits employed.
Particularly fast heuristic sets involving certain degree of intensification and di-
versification features showed better performance. These results also indicated
that some of the hyper-heuristic components are more valuable than others un-
der certain conditions. If the gap between speed and improvement capabilities
of the low-level heuristics is large and the allowed execution time is short, then
the heuristic selection is more important. However, if the heuristics are highly
perturbative and destructive then a move acceptance strategy with effective di-
versification capabilities is a vital requirement. Also, a very naive acceptance
mechanism like AM can deliver comparable results if the low-level heuristics
have effective improvement capabilities. We have then demonstrated how by
addressing different generality requirements.

In future work, the diversity of the application domains will be extended to
show the performance changes with respect to the relation between heuristic
search space and solution space. Additional mechanisms will be investigated to
enable more general hyper-heuristics compared to traditional approaches com-
posed of selection-acceptance pairs. Finally, a method will be devised to predict
or measure the generality level of a hyper-heuristic.
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Abstract. HyFlex is a recently proposed software framework for imple-
menting hyper-heuristics and domain-independent heuristic optimisation
algorithms [13]. Although it was originally designed to implement hyper-
heuristics, it provides a population and a set of move operators of differ-
ent types. This enable the implementation of adaptive versions of other
heuristics such as evolutionary algorithms and iterated local search. The
contributions of this article are twofold. First, a number of extensions to
the HyFlex framework are proposed and implemented that enable the
design of more effective adaptive heuristics. Second, it is demonstrated
that adaptive evolutionary algorithms can be implemented within the
framework, and that the use of crossover and a diversity metric pro-
duced improved results, including a new best-known solution, on the
studied vehicle routing problem.

1 Introduction

A hyper-heuristic is a search method or learning mechanism for selecting or
generating heuristics to solve computational search problems [6]. The main moti-
vation is to develop automated search methodologies with higher generalisation
abilities, which will potentially increase their application in practice. The HyFlex
(Hyper-heuristic Flexible) framework [13] has been recently proposed to assist re-
searchers in hyper-heuristics and autonomous search control. HyFlex consists of
two parts. First, a Java programming interface for hyper-heuristics, which splits
the heuristic search process into two modules. One module contains the problem-
specific algorithm components and other contains the problem-independent com-
ponents. Second, a library of ready-to-use problem domain modules covering hard
combinatorial optimisation problems with a rich variety of search operators and
including real-world industrial data. Two important antecedents of the HyFlex
framework are the domain-barrier hyper-heuristic conceptual framework [8], and
the PISA software framework [3].

Currently, six problem domain modules are implemented in HyFlex (which can
be downloaded from the CHeSC 2011 website [1]). These are the original four
test domains: permutation flow shop, one-dimensional bin packing, maximum
satisfiability and personnel scheduling; and the two additional domains used for
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the competition: traveling salesman and vehicle routing. HyFlex was used to
support an international research competition: the first Cross-Domain Heuristic
Search Challenge [1] that received significant international attention.

HyFlex was initially designed to support research within hyper-heuristics.
However, since the framework provides search operators of different types (mu-
tation, crossover, ruin-recreate and hill-climbing) approaches not traditionally
identified as hyper-heuristics can be implemented using the framework. For ex-
ample, several adaptive implementations of iterated local search (ILS) within
HyFlex have been published recently [4,5,17,7]. Indeed, the algorithms ranking
2nd and 3rd in the 2011 competition can be seen as adaptive ILS methods. These
approaches can be considered as hyper-heuristics as they operate in a domain
independent fashion, using limited information from the search process and fol-
lowing a modular design. Moreover, they coordinate the effort of several move
operators and local search heuristics.

The contributions of this paper are twofold. First, we describe number of ex-
tensions to the HyFlex framework that will enable the implementation of more
robust and effective adaptive search heuristics. Second, we extend a previous
adaptive ILS hyper-heuristic [17], which is a single-point search approach, by in-
corporating a population and the use of crossover heuristics. This brings hyper-
heuristics close to adaptive memetic algorithms [14]. These two approaches have
developed independently, but they share several features. In particular, they need
to provide adaptive mechanisms to autonomously guide the choice of operators
(or memes) during the search. These mechanisms have been also studied within
the evolutionary computation community using the term adaptive operator se-
lection [9,12].

The next section overviews the proposed extensions to the HyFlex interface,
while section 3 describes their implementation within a selected problem do-
main: vehicle routing. Section 4 describes an empirical study illustrating that:
(i) adaptive memetic algorithms can be successfully implemented within the
HyFlex framework, and (ii) the distance metric incorporated in HyFlex can be
used to implement state-of-the-art adaptive operator selection mechanisms. Fi-
nally, section 5 summarises our main findings and discusses routes for future
research.

2 Extensions to the HyFlex Interface

Providing additional feedback information from the search process would im-
prove the robustness and effectiveness of adaptive search heuristics. Below we
discuss the proposed extensions to the HyFlex interface, including their moti-
vation and an indication of which types of approaches may benefit from these
extensions.

Distance between Solutions: An important source of feedback for population-
based algorithms is an indication of the genotypic diversity in the population.
Moreover, recently proposed adaptive operator selection mechanisms rely on the
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population diversity as a source of feedback [12]. In order to calculate the diver-
sity of a population, a distance metric between solutions is needed. Therefore,
the HyFlex interface is extended with the following two methods:

double getMaxDistance()

double solutionDistance(int solutionIndex1, int solutionIndex2)

We assume that the minimum distance between two solutions is zero, and
that this occurs when they are exactly the same. Since different representa-
tions require different distance metrics and measurement ranges, the method
getMaxDistance returns the maximum possible distance maxd between two so-
lutions. The method solutionDistance returns a value between 0 and maxd

representing the distance between the two solutions in the memory of solutions
as indicated by the input indices.

Solution Metrics and Alternative Objective Functions: Heuristic search
approaches that dynamically modify the fitness function in order to escape local
optima or fitness plateaus can be found in the metaheuristics and artificial in-
telligence literature [2]. Moreover, a recently published hyper-heuristic approach
[18], declared the winner of a computational search competition to solve the
Eternity II Puzzle, employs alternative fitness functions in order to guide the
search. Guided local search (GLS) proposes augmenting the objective function
with a set of penalty terms on a set of solution features [16]. A solution feature is
a non-trivial property of the solution and a cost is associated to each feature. We
borrow and extend this concept in HyFlex, instead of feature, we use the term
metric to refer to additional costs or objectives associated to a given solution.
The two following two methods are included:

int getNumberOfMetrics()

double getMetric(int solutionIndex, int metricIndex)

Where the first method returns the number of solution metrics, and the second
gets the value of the given metric for the indicated solution in memory. These
metrics can then be used by the hyper-heuristic designer to implement their own
alternative objective functions to guide the search.

Additional Instances: The version of HyFlex used in the 2011 competition con-
tains 12 instances for the test domains (the 10 training instances and 2 additional
hidden instances), and 10 instance for the new (hidden) domains. Moreover, this
instance data is included within the software, and there is no flexibility for adding
new instances. Having additional instances will both improve the development
of robust online strategies, and facilitate the implementation of offline configu-
ration techniques. An approach based on offline learning for algorithm selection
obtained surprisingly good results in the 2011 challenge [11]. This is very promis-
ing, as the challenge was designed to encourage online approaches to heuristic
selection. To enable the incorporation of additional instances the method: void
loadInstanceFromFile (String fileName) is included in HyFlex, which loads the
instance indicated in the file and set is as the current instance. The file needs to
have the correct format, which will be included in the domain documentation.
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Additional Utilities: Utilities for saving and retrieving solutions from files
may facilitate both the reuse of previously found solutions and the analysis of
previous runs. The two methods below are included:

void loadSolutionFromFile(String fileName, int solutionIndex)

void SolutionToFile(String fileName, int solutionIndex)

Where solutionIndex refers to the position in the memory of solutions, and
fileName to the name of the source or destination file.

3 The Extended Vehicle Routing Domain

The vehicle routing problem with time windows involves satisfying the demand
of a set of customers, using the fewest possible vehicles, and adhering to all
constraints such as time windows, whereby a customer must be served between
two points in time. Each vehicle starts from the same point, the depot. A route
consist of a list of locations. The HyFlex VRP problem domain [17] provides
12 search operators including: 4 mutation, 2 ruin-recreate, 4 hill-climber and
2 crossover heuristics. The objective function balances the dual objectives of
minimising the number of vehicles, and minimising the total distance travelled.
Due to space constraints we refer the reader to [17] for a complete description.
We concentrate here on the problem domain extensions.

Distance Metric: We implemented a distance metric suggested in [10], which
is based on a concept formulated for the travelling salesman problem. The metric
considers the number of common edges between two solutions. For the vehicle
routing problem, an edge represents an undirected link between two locations.
The distance metric produces a value between 0 and 1 and the formula is as
follows: distance = totalEdges−commonEdges

totalEdges .

Solution Features: The solution features provided are: (1) the default objec-
tive function, which is a weighed sum of the number of routes and the distance
traveled,(2) the number of routes or vehicles, (3) the total distance traveled, and
(4) the distance of the shortest route.

Instance File Format: The instance format is the Solomon format. The in-
stance file provides the number of customers and vehicle capacity. This is followed
by a list of customers with he following attributes: (1) customer number, (2) X
co-ordinate, (3) Y co-ordinate, (4) demand, (5)ready time, (6) due date, (7)
service time.

4 Empirical Study

4.1 Algorithms

Two classes of algorithms are considered: adaptive iterated local search and
adaptive memetic algorithms. These algorithms adapt the probabilities associ-
ated to the available search operators, according to the history of their perfor-
mances. The operators are then selected according to these learned probabilities
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using a roulette wheel mechanism. Since HyFlex provides several operators be-
longing to different classes: mutation, ruin-recreate, crossover and hill-climbing;
several adaptive mechanisms may be required for selecting different operators
at different parts of an algorithm framework. This study consider two variants
of each algorithm class, which differ on the feedback information used from the
search process to adapt the choice of search operators. The first variant considers
only the fitness function improvements or deteriorations obtained after apply-
ing the search operators, while the second is based on the compass mechanism
[12], which considers a diversity metric and the running time of the operators
in conjunction with their fitness variation as sources of feedback. The under-
lying idea behind the compass control mechanism is to provide an adequate
exploration/exploitation balance. Thus, both diversity and quality are pertinent
criteria to guide the search.

Adaptive Iterated Local Search: We consider the best performing algorithm
proposed in [17], which is a multiple neighborhood ILS algorithm that includes
adaptive mechanisms for both the perturbation and improvement stages. The
perturbation stage selects among the set of available mutation and ruin-recreate
heuristics using the extreme value [9] operator selection mechanism. The im-
provement stage considers the available hill-climbers and incorporates a simple
adaptive mechanism, in which the operators are ordered according to learned
propoabilities and sequentially applied using this order. We name this algorithm
AILS. A new version of this algorithm is implemented, in which the extreme
value mechanism is substituted by the by the compass mechanisms. We call this
algorithm AILS-C.

Adaptive Memetic Algorithm: Our implementation of adaptive memetic
algorithms works as follows (see Algorithm 1). A small population (of size 4)
is generated and then goes through a recombination stage in which all possible
recombination pairs are considered and a randomly selected crossover operator
(from the available pool) is applied for each pair. From all these generated so-
lutions the best four are kept. This is a costly stage and it is only invoked a
number of times during the search process. A perturbation and improvement
stage follows. For each member of the population, a mutation or ruin-recreate
heuristic is selected from the pool according to operator probabilities learned
using a simple reinforcement learning mechanism. The solution is thereafter im-
proved by a hill-climbing heuristic. The improvement heuristic to apply is also
selected according to learned probabilities. We call this algorithm AMA. A vari-
ant is also implemented in which the reinforcement learning mechanism used in
the perturbation stage is substituted by the compass mechanism. We call this
algorithm AMA-C.

4.2 Results

The experiments were conducted using the 10 VRP test instances currently
available in the 2011 HyFlex software. These instances were originally taken
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Algorithm 1. Adaptive Memetic Algorithm (AMA).
P = GenerateInitialPopulation
repeat

P ′= RecombinationStage(P )
P ′′ = MutationAndImprovementStage(P ′)
UpdatePerturbationOperatorProb
UpdateImprovementOperatorProb
P = SelectBest(P ′ + P ′′′)

until time limit is reached

from [15] and include 5 instances from the Solomon data set and 5 from the
Gehring and Homberger data set. Both data sets include three types of instances:
Random, Clustered, and Random Clustered; according to the way in which the
customers’ locations are determined. Details about the instances can be found
in the first three columns of Table 1. In the instance name, the first number
indicates the HyFlex numbering, while the first letter whether it is a Solomom
(S) or Homberger (H) instance. The second group of letters indicates the type
of instance; and the final string corresponds to the identifier in the data set.

As a first test, we compared our two base adaptive algorithmsAMA andAILS
against the best-performing algorithms for VRP in the 2011 competition and us-
ing the original HyFlex version. We considered the competition experimental set-
ting, namely, 10 minutes per run, 31 runs per instance and the 5 competition in-
stances. These are instances 1, 2, 5, 6 and 9. Since the instances have different
objective function ranges, we selected ordinal data analysis to compare the algo-
rithms. Ifm is the number of instances and n the number of competing algorithms.
For each instance an ordinal value ok is given representing the rank of the algo-
rithm (1 ≤ ok ≤ n). An algorithm having a rank ok in a given instance is simply
given ok points, and the total score of an algorithm is the sum of its ranks ok across
them instances (this metric is known as theBorda count). In this comparison, the
number of instances m = 5 and the number of algorithms n = 5. Therefore, best
possible score is 5, and the worst possible is 25. The ranks were calculated accord-
ing to the median best objective function value across the 31 runs per instance.
Figure 1 (a) illustrates the Borda counts for AMA, AILS and the top 3 perform-
ing competitors in the 2011 challenge. Clearly, the AMA is the best performing
algorithm, producing an almost perfect score.

The next set of experiments use the the new HyFlex VRP domain and the
four algorithm variants described above, AILS, AILS-C, AMA and AMA-C. The
whole set of 10 instances were used (see Table 1). The running time was set to
20 CPU minutes and 10 runs were conducted per instance. The machine running
the tests has a 2.27 GHz Intel(R) Core(TM) i3 CPU and 4GB RAM. The Borda
count is used for comparison and the median best objective function value is
used for the ranking. This time we have m = 10 instances and n = 4 algorithms.
Therefore, the best possible score is 10 and the worst is 40. Figure 1 illustrates
the results. We can see that the two versions of the adaptive memetic algorithm
have similar performance, and clearly outperform the adaptive ILS algorithms.
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Fig. 1. Borda counts for (a) AMA, AILS and the top 3 VRP hyper-heuristics in the
2011 challenge, (b) the two variants of AMA and AILS on the full set of 10 instances
and using the extended HyFlex VRP domain. Objective is minimisation.

The boxplots shown in Figure 2 illustrate the magnitude and distribution of
the best objective values for 2 representative Homberger instances (instances 6
and 9). Each plot summarises the result of 10 runs from each algorithm. For
both instances, the AMA algorithms produce the best results. The difference in
performance is more noticeable for instance 6, but this behaviour is consistent
across all the instances. The Borda counts in Figure 1, indicate that the two
versions ofAMA have similar performance considering the median best objective
value. However, the best solutions were in most cases obtained by the AMA−C
variant as can be seen in Figure 2 and Table 1.

Finally, Table 1 shows the best solutions found by our AMA algorithms
together with the best-known solutions for the these instances. The adaptive
memetic algorithms matched the bet-known number of vehicles for all the
Solomon instances and for two of the Homberger instances. Moreover, for
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Fig. 2. Distribution of objective function values for Homberger instances 6 and 9.
Objective is minimisation.
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Table 1. VRP Instances. AMA best results vs. best-known results.

Instance No. of Vehicles Distance

Name Cust. Capacity AMA AMA-C Best-k AMA AMA-C Best-k

0-SRC207 100 1000 4 3 3 1047.42 1133.83 1061.14
1-SR101 100 1000 19 19 19 1650.8 1631.82 1645.79
2-SRC103 100 200 11 11 11 1276.82 1263.78 1261.67
3-SR201 100 200 4 4 4 1261.043 1276.45 1252.37
4-R106 100 1000 12 12 12 1268.93 1284.23 1251.98
5-HC1-10-1 100 200 100 100 100 42481.26 42485.04 42478.95
6-HRC2-10-1 250 1000 26 26 20 33272.57 32839.49 63373.15
7-HR1-10-1 250 200 100 100 100 59020.74 60517.21 53904.23
8-HC1-10-8 250 200 101 101 93 44037.96 44120.54 42499.59
9-HRC1-10-5 250 200 94 93 90 52581.52 52439.09 46631.89

instance 1 (1-SR101) AMA−C produced a shorter distance, with the same num-
ber of vehicles, which makes this a new best-known solution for this instance.
Better distances were found for instances 0 and 6, but at the expense of a larger
number of vehicles. These results are encouraging as HyFlex was designed to
explore adaptive search heuristics that operate in a domain-independent way.

5 Conclusions

We have presented a number of extensions to the HyFlex framework that will
enable the implementation of more effective adaptive heuristics, while main-
taining a high degree of modularity between the problem-independent and the
problem-dependent heuristic components. In particular, the new version sup-
ports the implementation of: (i) population-based approaches and mechanisms
for operator selection that consider diversity metrics in the solution space, (ii)
adaptive approaches that modify the fitness function or consider alternative ob-
jective functions, and (iii) offline approaches and portfolio methods that benefit
from a greater number of problem instances. This article concentrated on the
first of these extensions, namely using a diversity metric to implement more
sophisticated adaptive operator selection mechanisms. Our results suggest that
this mechanism may improve the search, in particular for locating best solutions.
Indeed a new best-known solution was found for one of the studied instances.
In future work we plan to further exploit this and the additional HyFlex fea-
tures. Our HyFlex adaptive evolutionary algorithms also supports that using a
population and crossover operators may improve the search. This is an impor-
tant result, which may encourage the evolutionary computation community, as
iterative hyper-heuristics have been traditionally single-point approaches.

The proposed HyFlex extensions were implemented and tested in a single do-
main: the vehicle routing problem. Work is in progress to incorporate these exten-
sions in other domains such as permutation flow-shop, 1D bin packing and person-
nel scheduling. We envisage the incorporation of new challenging and real-world
domains in HyFlex. We are also planning a second international challenge with ad-
ditional features. The creativity and enthusiasm of the 2011 competitors pushed
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the boundary of hyper-heuristic research. We expect that the new competition will
bring the interest and participation not only of hyper-heuristic researchers, but
also researchers in reactive search, intelligent optimisation, adaptive operator se-
lection, adaptive memetic algorithms, co-evolutionary memetic algorithms, guided
local search, adaptive large neighborhood search, autonomous search, self-* search
and automatic configuration of search heuristics to name a few.
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Abstract. This paper explores the computational power of genetic reg-
ulatory network models, and the practicalities of applying these to real-
world problems. The specific domain of financial trading is tackled; this is
a problem where time-dependent decisions are critical, and as such ben-
efits from the differential gene expression that these networks provide.
The results obtained are on par with the best found in the literature,
and highlight the applicability of these models to this type of problem.

1 Introduction

The Evolutionary Computation (EC) literature tends to adapt mostly evolution-
ary models in a Darwinian sense: a population of individuals is created, executed,
and assigned fitness scores. The most fit individuals are then more likely to sur-
vive, through a stochastic process, and the evolutionary cycle continues in this
fashion, until a stopping condition is met. This model has proven to be successful
throughout the years, but the knowledge of biological systems is ever increasing,
and there is a growing trend in exploring more complex and realistic models [2].

One of the key aspects of genetics that is seeing increasing attention is the
developmental processes that occur throughout the life of organisms. Rather than
adopting a fixed, direct mapping from genotype to phenotype, developmental
systems explore the lifelong, conditional expression of genes.

Genetic Regulatory Networks (GRNs) are a key element of gene expression
regulation in biological organisms, and one that has seen recent attention in
the EC field [1,10,13,11,5]. GRN-based algorithms explore the idea of differental
gene expression through regulatory processes, and as such are potentially useful
for dynamic and noisy environments.

This paper further explores the potential of GRNs for Evolutionary Computa-
tion, and exemplifies how to apply a recently introduced model [1] to a financial
prediction benchmark. GRN models seem well suited to this kind of problem,
where at different times of its life, an individual needs to adapt to a constantly
changing environment. The results obtained further highlight the potential of
GRNs as a computational device, and hopefully help to pave the future for their
adoption within the EC community.
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The next section introduces the biological principles behind GRNs, and details
the implementation of the model used. Section 3 then introduces the problem do-
main, and Section 4 details the experimental setup and results achieved. Section
5 concludes this study, and highlights future work directions.

2 Gene Regulatory Networks

2.1 Background

In the cell environment, DNA segments containing genes are transcribed (i.e. ex-
pressed) into mRNA (messenger RNA) strands, which, through a translation
process, are used to combine amino-acids, thus forming proteins. Some of these
proteins are known as Transcription Factors : their role is to help regulate the
expression of other genes, by binding at specific regulation sites. This process
results in complex networks, with genes producing proteins regulating the ex-
pression of other genes; these are known as Gene Regulatory Networks (GRNs).

In the work presented here, the model originally introduced by Banzhaf [1]
is used. This model consists of a binary linear genome, which is scanned for
promoter regions, identifying the location of genes. It assumes that each gene
is always composed of two regulatory sites (inhibiting and enhancing), and that
all proteins produced are transcription factors.

This model has been used frequently in the literature. It was shown to ex-
hibit similar dynamics to its natural counterparts, such as the appearance of
specific regulatory network motifs [3] and the resulting network topologies [8],
and has been evolved to optimise those topologies [12]; the resulting networks
have also been extracted and used as a computational device, for a subset of Ge-
netic Programming benchmark problems [11]. The resulting complex regulatory
dynamics have also been studied, from the evolution of oscillatory dynamics [10]
to actual control problems such as the pole balancing benchmark [13], and also
the flag-colouring developmental problem [5].

2.2 The Model

The model used represents the genome as a binary string. This string is scanned
for 32 bit long binary sequences, representing promoter regions; if found, these
identify the location of a gene. The following 32× 5 bits then represent the gene
contents, and the previous 32×2 bits represent enhancing and inhibitory regions,
respectively. Fig. 1 illustrates this.

In this model, a promoter site is the sequence XYZ01010101, where X, Y and
Z are any 8 bit sequences. The protein produced by the gene is a 32 bit binary
sequence, extracted by a majority rule between all 5 sequences of 32 bits that
compose it (that is, if 3 or more equally located bits are set to 1, then the
corresponding bit in the protein is set to 1).

Regulation works by matching the binary signature of transcription factors
and regulating sites with the XOR operation: the result is the regulating strength.
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Fig. 1. Bit string encoding of a gene. If a promoter site is found, the gene information
is used to create a protein, whose quantity is regulated by the attachment of proteins
to the enhancer and inhibitor sites.

The enhancing and inhibiting signals regulating the production of protein pi are
then calculated as:

ei, hi =
1

N

N∑
j=1

cj exp(β(uj − umax)) , (1)

where N is the total number of proteins, cj is the concentration of protein j, uj
is the number of complementary bits between the (enhancing or inhibitory) reg-
ulating site and protein j, umax is the maximum match observed in the current
genome, and β is a positive scaling factor.

The production of pi is calculated via the following differential equation:

dci
dt

= δ(ei − hi)ci , (2)

where δ is a positive scaling factor (representing a time unit). All the concentra-
tions are normalised at each time step, ensuring that

∑
i ci = 1.0 at all times;

this results in competition for resources within the cell environment.

Input and Output. The original model is a closed world, in that there is
no direct interaction with the environment. However, in most problem domains
(particularly in reinforcement learning), a training set of input values are associ-
ated with a set of responses (or outputs), and the fitness of a solution is typically
the difference between the responses obtained and a set of known correct out-
puts. To this end, a set of I/O extensions were introduced to the original model
[13], which are also used in the current work.

To introduce the notion of an input signal, extra regulatory proteins (EPs) are
injected into the system. These are not produced by any gene, but also contribute



Applying Genetic Regulatory Networks to Index Trading 431

to the regulation of all gene expressions. They represent all the variables required
to describe the state of the environment, and their concentrations reflect the
(normalised) value of those inputs (and as such are unscaled).

To extract output signals from the model, genes are divided into two classes:
TF-genes (i.e. genes encoding transcription factors), and P-genes (genes encoding
product proteins). These classes of genes are established by scanning the genome
for two different promoter sites: in this work, XYZ00000000 represent TF-genes,
and XYZ11111111 represent P-genes. While the expression levels of TF-genes
contribute to the regulatory process as before, the output of P-genes does not;
the concentration of the proteins they produce is used as an output signal.

The regulation of TF-genes remains as previously stated, using Eq. 1, but
they are normalised taking into account the concentration of EPs as well.

The regulation of P-genes is also determined by Eq. 1, but their expression is
calculated with the following equation:

dci
dt

= δ(ei − hi) . (3)

Like TF-genes, all concentrations are normalised at each time step, ensuring
that

∑
i ci = 1.0 at all times; however, the concentration of TF-proteins and

P-proteins are normalised independently.

3 Index Trading

In the financial domain, a market index is a weighted average measure of the
price of individual shares that compose that market. Rather than trading single
shares (or a portfolio of shares), a popular alternative is to trade on the share
market index via an exchange-traded fund, which mirrors as close as possible the
collective behaviour of the shares comprising the market. This type of trading
has the advantage of not being tied to fluctuations of single shares, but rather
to a broader market move. This also means that specific and unexpected share
fluctuations are slowly absorbed by the market index [6], allowing for some degree
of predictability [9].

Evolutionary algorithms have been successfully applied to financial modelling;
the reasons for their applicability include their ability to efficiently explore the
search space, and uncover dependencies between input variables, leading to their
proper inclusion in the final models [7]. Brabazon and O’Neill [4] provide an
overview of the application of evolutionary computation to financial modelling.

The work presented here follows closely the methodology of previous appli-
cations of Grammatical Evolution [15] to index trading [14,4], and uses three
datasets, from the UK FTSE 100 index, the Japan Nikkei index, and the German
Dax index. All data is drawn from the period between 1/1/1991 and 3/12/1997.

3.1 Technical Indicators

Rather than just observing the raw and historical market price data, it is useful to
pre-process this information into technical indicators. These potentially uncover
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possible useful trends and other information from the raw data series, while
simultaneously reducing the inherent noise in the series. Although a potentially
infinite number of such indicators may exist, certain classes of indicators are
regularly used by investors [9,16]. The following indicators are used in this study:

– Moving Average. This indicator returns the average price of the last n
days; as it smooths out daily price fluctuations, it can unveil the underlying
trend of the market. The parameter n controls the degree of smoothness.

– Stochastic Oscillator. This indicator returns the relative location of the
current price in relation to its full price range over a period of of n days; it
is useful in trying to predict price turning points.

– Momentum Change. This indicator compares the closing price with that
of n days ago, and returns the rate of change. It indicates trend by remaining
positive while an uptrend is sustained, or negative in the opposite case.

3.2 Datasets

Fig. 2 plots each dataset. These were divided into one training and three testing
periods, of 365 days each, for the purpose of model validation. In accordance
with previous studies [4], the data was pre-processed prior to evolution. Initially
the raw prices were transformed into a moving average with a 75 day gap; these
values were then normalised into the range of 0 to 1. This means that data from
the first 75 days was not used for the purposes of trading simulation, neither
was the data remaining after the four training and testing datasets.

3.3 Methodology

An evolved trader produces one of three signals for each day of the training or
test periods: buy, sell, or do nothing. Starting with an initial capital of $10000,
the following trading methodology is used [9,14]. If a buy signal is issued, a fixed
$1000 investment is made in the market index; this position is automatically
closed at the end of a ten day period. If a sell signal is issued, an investment
of $1000 is sold short, and it is also closed after ten days. This means that a
maximum of $10000 are invested at any given point in time. The profit or loss
at the end of each trading period takes into account a one-way trading cost
of 0.2%, and a further 0.3% to account for slippage. Uncommitted funds take
into account a risk-free rate of return, which is approximated using the average
interest rate over the entire dataset.

4 Experiments

4.1 Encoding Input and Output Variables

Four technical indicators were used in this study: a moving average of 10 days
(mAvg(10)), momentum change of 5 (mChange(5)) and 10 days (mChange(10)),
and a stochastic oscillator of 10 days (sOsc(10)). These were encoded using EPs,
as explained in Section 2.2; the signatures for the EPs were chosen to be as dif-
ferent as possible, and were encoded as follows:
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Fig. 2. Plots of the three markets analysed, and the train and test periods used. Gray
shaded areas show the initial 75 day moving average gap, and the remaining data after
the four year-long training and testing sets, and were not used for the simulations.
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mAvg(10): 00000000000000000000000000000000

sOsc(10): 00000000000000001111111111111111

mChange(5): 11111111111111110000000000000000

mChange(10): 11111111111111111111111111111111

The GRN was allowed to first run for a maximum of 100000 iterations, or until
all protein concentrations were stabilised; after this period, the trading session
begins. To synchronise the GRN with the trading simulator, a trading signal was
extracted every 2000 iterations.

To extract a trading signal from the network, the rate of change of a given
P-gene is analysed: if its concentration has increased by more than 0.1%, then a
buy signal is issued; if it has decreased by more than 0.1%, a sell signal is issued;
otherwise, a do nothing signal is issued1. All P-genes present in the genome are
tested, and the most successful one is used.

This methodology thus encodes technical indicators as regulatory proteins,
which influence the internal regulatory process of the genome, and therefore
influence the resulting concentration of P-genes, which can then be interpreted
as a trading signal. It is a very similar process as seen in previous applications
of GRNs to time-series datasets [13].

4.2 Evolutionary Setup

A (250+250)−ES evolutionary strategy was used to evolve the binary genomes:
a population of 250 individuals is used to create 250 offspring, and the best 250
of all parents and offspring are used as the new parent population (a maximum of
100 iterations were allowed). The variation operator used was a bit-flip mutation,
set to 1% and adapted by the 1/5 rule of Evolution Strategies [17].

4.3 Measuring Performance

A two-set methodology was used, with the system being trained in an initial
training set of one year. Once the training period was over, the system went
“live”, and was ran on the three test (out of sample) periods, for the purpose of
a live trading simulation.

A common passive trading strategy is Buy and Hold, where an investor buys
stocks and holds them for a long time. It is based on the idea that financial mar-
kets give a good return for investment in the long run, regardless of fluctuations
and periods of volatility. In order to evaluate the performance of the evolved
traders, their performance was compared to a buy and hold strategy for each of
the training and test datasets.

When evolving an index trader, certain aspects required special attention. It
would be inadequate to simply calculate fitness as the profit return, as this fails
to consider the risk of deploying an evolved trader [14]. A measurement of this
risk is provided by the maximum drawdown, that is, the maximum cumulative

1 This is an entirely experimental value, and has not been optimised; it was left to the
structure of the GRN to adapt to it.
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loss of the system during each of the datasets. As seen in previous studies [14,4],
this can be incorporated into the fitness calculation by subtracting the maximum
cumulative loss from the profit of each period. This is in addition to trading costs
and slippage penalties, as detailed in Section 3.3.

4.4 Results and Analysis

Table 1 presents the results obtained with the best evolved controller for the
FTSE, Nikkei and Dax markets, for the train and validation periods. The best
evolved trader for the FTSE and Nikkei markets outperforms the benchmark
buy and hold strategy, whereas on the Dax market it slightly underperforms;
this is likely linked to the fact that the Dax market is very well behaved, across
the period analysed, with very rare fluctuations. These results are on par with
similar EC approaches found in the literature [14,4].

Another interesting aspect of the evolved traders is their low investment risk.
The buy and hold strategy keeps the full available capital of $10000 invested
at all times, whereas the evolved traders kept average capital investments of
only $3582.19, $2806.85 and $3225.34, for the FTSE, Nikkei and Dax markets,
respectively. This is a combination of the inclusion of risk penalties in the fitness
function, and the fact that the system can only trade $1000 daily.

Fig. 3 plots the best evolved trader for the FTSE market. It exhibits a very
cautious approach to trading, with large periods of inactivity, resulting from a

Table 1. Best evolved traders for all datasets compared to Buy & Hold benchmark

FTSE market
Period (days) Buy & Hold Best-of-run Avg. daily inv.

Train (75 to 439) -1269.28 3275.96 5939.73
Test 1 (440 to 804) 4886.9 1083.58 2191.78
Test 2 (805 to 1169) -1089.8 541.806 3709.59
Test 3 (1170 to 1534) 1908.53 500.949 2487.67

Total 4436.35 5402.295

Nikkei market
Period (days) Buy & Hold Best-of-run Avg. daily inv.

Train (75 to 439) -6345.5 6163.38 5128.77
Test 1 (440 to 804) 1014.79 1125.6 1457.53
Test 2 (805 to 1169) -5263.49 2144.71 3679.45
Test 3 (1170 to 1534) 4040.59 1331.56 961.644

Total -6553.61 8514.05

Dax market
Period (days) Buy & Hold Best-of-run Avg. daily inv.

Train (75 to 439) -882.241 2899.86 4586.3
Test 1 (440 to 804) 4047.63 952.689 3347.95
Test 2 (805 to 1169) -551.995 608.161 1471.23
Test 3 (1170 to 1534) 2972.24 992.868 3495.89

Total 5585.634 5453.578
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Fig. 3. Best evolved trader for the FTSE index. Blue dots indicating buy, do nothing
and sell signals are plotted along with the raw market prices.

slow reaction to the regulatory proteins representing technical indicators, within
the GRN. This is mostly induced by the inclusion of the risk-free rate of return
and the maximum drawdown penalty into the fitness function. This is seen in
Fig. 3, in the third testing period, where the trader exhibits a very cautious
approach, even though the market is generally trending upwards. Further opti-
misation of structure and parameters of the GRN should improve this issue.

5 Conclusions

This paper explored the computational power of regulatory networks, and how to
apply them to a real-world financial trading domain. The methodology required
to apply GRNs was explored, and the results obtained show the potential of this
approach, with results on par with the literature.

There remains much work to be done. Regarding the current problem domain,
the evolved trader seems occasionally unresponsive to market changes; the use
of different technical indicators could improve this issue. Also, regarding the
applicability of the model, further research is required, in particular with what
concerns its parameterisation.
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Abstract. The aim of 3D-shape segmentation is to divide the surface
of an object into meaningful parts. We present a novel version of seed-
point-based segmentation including an evolutionary optimization to ob-
tain better segments. At first, some initial seeds are defined. Each of them
generates several so-called satellite seeds which enable a more detailed
control of the segment boundaries. The locations and weights of the seeds
are optimized with an Evolution Strategy. The objective function takes
the object’s curvature at the segments’ boundaries into account as well
as the length of these boundaries. An extensive evaluation and compari-
son with important existing segmentation approaches demonstrates the
great potential of our approach.

Keywords: Mesh Segmentation, Satellite Seeding, Evolution Strategy.

1 Introduction

3D-shape segmentation has become an important research topic in the field of
three-dimensional computer graphics. It is used in several domains like e.g. 3D
modeling, texture mapping, and collision detection [1]. The aim of 3D-shape
segmentation is to create a decomposition of a 3D-model like the bunny in Fig. 1
into disjoint segments according to some criteria. We focus on models where the
surface is approximated by a triangle mesh as shown in Fig. 2. In this context,
shape segmentation is also known as mesh segmentation.

Fig. 1. Overview of our approach: normal seeds, satellite seeds, the resulting segmen-
tation, and an optimized segmentation. The seeds are indicated by yellow circles.
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This paper is concerned with part-type segmentation [10], i.e. the desired
segments correspond to meaningful parts of the original mesh. A horse model,
for example, should be divided into head, body, legs, and so on. For the purpose
of part-type segmentation, human perception has to be transferred into criteria
which can be treated algorithmically. Important and often used criteria are that
patch boundaries are typically located in concave surface regions and that the
patch boundaries generally have locally minimal length. These are also the major
criteria which will be considered within the optimization process introduced in
this paper.

Several mesh segmentation approaches use seed points. The basic idea is to
determine a region around each of a finite number of properly chosen points on
the surface. The regions together induce the decomposition of the surface into
patches. The seed points may serve as control points for automatic optimization
using an Evolutionary Algorithm. The novel concept of satellite seeds introduced
in this paper extends the potential of optimizing the borders between patches
without increasing the dimension of the parameter space too much.

This paper is organized as follows. It starts with a short survey on related work
in Section 2. In Section 3, an overview of our approach is given. The approach
is described in detail in Sections 4 and 5, where the evolutionary optimization is
explained in Section 5. In Section 6, we present results including a comparison
with the results of eight state-of-the-art techniques. Section 7 concludes the
paper and discusses future work.

2 Related Work

Over the last decade, a large number of automatic mesh segmentation approaches
has been proposed. Most of them code the objective of segmentation implicitly
in an algorithm. However, some other approaches explicitly define an objective
function over a set of possible partitions, which may be optimized by an adequate
general-purpose solver, cf. e.g. [11]. Extensive surveys on mesh segmentation ap-
proaches can be found in [1,10,3].

Most of the solutions up to now are based on fixed heuristics with the aim
of an as complete as possible characterization of segmentations. In contrast,
Kalogerakis et al. [6] present a data-driven approach which learns an objective
function over a feature space from a collection of labeled training meshes, in-
dependent from a concrete mesh. It offers a flexible way of learning different
types of segmentations for different tasks, without requiring manual parameter
tuning. A still existing disadvantage is that always adequate training models are
required.

There are several possibilities of deriving a partition into segments from seed
points. The potential of satellite seeding will be demonstrated on partitions
induced in a way known from weighted Voronoi diagrams on the surface of the
mesh. Simari et al. [11,12] have used weighted Voronoi diagrams, too, but in 3D-
space using an embedding of the original mesh obtained by multi-dimensional
scaling (MDS).
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To our knowledge, there is only one mesh segmentation approach containing
an evolutionary optimization: Simari and Singh optimize the center initializa-
tion, i.e. the positions of weighted partition centers [11]. After the initialization,
they use a generalized pattern search for segmentation optimization. In contrast
to their approach, we apply an Evolution Strategy for the whole process of op-
timization. In addition, while Simari and Singh have taken the desired forms
of the parts into account by labeling the partition centers, our intention is to
obtain good segments without explicit labels.

The contributions are as follows. First, we extend the seed-point-based mesh
segmentation approach by the concept of satellite seeds. Second, we introduce
an evolutionary optimization to obtain more natural patches. Third, we present
an extensive evaluation including an automatic seeding as well as a simulated
manual seeding based on ground truth segmentations by Chen et al. [3].

3 Problem Statement and Overview of Our Approach

Given a triangle mesh defining the surface of a geometric object, a decomposition
into patches is desired where the boundaries are smooth and optimally located in
concave regions. The first aspect is based on the assumption that the boundaries
between parts of an object are generally not jagged. The latter one is based on
the minima rule [5]. Our solution adopts the seed point approach and includes
the following main components:

1. Seed definition: The seeds are defined in two steps. The first step chooses a
finite set of adequate initial seeds. In the second step these seeds automati-
cally spawn satellite seeds to get a better control of the segment boundaries
(see Fig. 1(a) and (b)).

2. Patch calculation: Given a finite set of seeds, a decomposition of the object
surface into patches is calculated (see Fig. 1(c)).

3. Optimization: Since patches usually do not match with meaningful parts, we
perform a patch optimization using an Evolution Strategy. The optimized
patches are often identical with meaningful parts (see Fig. 1(d)). In this ar-
ticle, we denote meaningful parts of an object as components and calculated
parts, which can be regarded as being meaningful, as segments.

Seed definition and patch calculation are described in Section 4, the optimization
process is introduced in Section 5.

4 Seed Definition and Patch Calculation

At first, some initial seeds are placed on the object’s surface in either a manual
or an automatic way. Useful heuristics of manual seeding are to locate one initial
seed in every expected component, and to place it as central as possible within
the component. One possible heuristic of automatic seeding also used in this
paper is to arrange the first seed far away from the object’s centroid and all
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following seeds one after another in such a way that their geodesic distance from
each other is as large as possible. In contrast to other approaches, the seeds are
presented by mesh triangles, which we call seed triangles.

Every initial seed defines a patch, which, roughly speaking, consists of all mesh
triangles that are closer to it than to all other initial seeds according to an adequate
distance function.The distance is calculated on the dual graph of the trianglemesh.
As shown in Fig. 2, each mesh triangle corresponds to a node in the dual graph.
Nodes belonging to neighbor triangles are connected with an edge.

Fig. 2. Triangle mesh with a seed triangle (a), satellite seeds (b), and the dual graph (c)

The segments’ boundaries should usually be surrounded by concave object
areas. This condition is taken into account by using a feature based distance
function which is defined by

dζ,η,νfeature(t1, t2) := dgeo(t1, t2) + ζ · dang(t1, t2) + ν · η · dshape(t1, t2), (1)

where t1 and t2 are adjacent triangles. It combines the geodesic distance, an an-
gular distance and a special distance which takes into account the object’s shape
in a local region. The influence of the different partial distances is controlled by
ζ, η ∈ R+

0 , while ν ∈ {0, 1} decides whether or not there is a need to use dshape
at all. dgeo denotes the usual geodesic distance between the centers of t1 and t2.
The distance between two neighbor nodes of the dual graph is defined as the
feature based distance of the corresponding mesh triangles.

By assigning weights to the seeds, the influence of a seed on the boundary
of its patch becomes adaptable. Having γseed as the weight of the seed triangle
tseed, the weighted-feature-based distance of a triangle t′ to tseed is defined by

dwfeature(t
′, tseed) :=

1

γseed
· ddual(t′, tseed), (2)

where ddual is the length of a shortest path in the dual graph between the nodes
corresponding to t′ and tseed. For a given seed, the weighted-feature-based dis-
tance between adjacent triangles can be estimated canonically on the dual graph
by dividing the feature based distance of the dual graph edge by the seed weight.
The assignment of mesh triangles to a patch is realized using a modified form
of Dijkstra’s shortest path algorithm on the dual graph: the seeds are processed
in increasing weight order. If a dual graph node is reached which has already
a lower weighted-feature-based distance to another seed, this node will not be
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taken into account anymore in the current run of Dijkstra’s algorithm. This mod-
ification of Dijkstra’s algorithm is necessary, because without the modification
non-connected patches may occur when different seed weights are chosen.

The reason for combining the geodesic, the angular and our special shape-
based distance is that geodesic distances are insensitive to curvature and the
part boundaries. Angular distances are insensitive to part boundaries over flat
regions. If the edge between two mesh triangles is concave, the angular distance
is high. Thus, concave edges should be crossed less often inside a patch than
edges in convex regions. The shape-based distance can be seen as an additional
quality factor, which for example penalizes the transition from a cylindric region
to a concave one.

The shapes of the patches can be influenced by moving seeds or changing
their weights initially set on 1.0. Such a variation usually has an effect on the
whole patch boundary, so that good boundary parts could be changed to the
worse while worse parts are optimized. To avoid such a deterioration of good
boundaries, we have developed satellite seeding as an extension of initial seeding.
The motivation is to divide each boundary into several smaller parts. This is
automatically done by substituting each patch by several smaller ones, which we
call subpatches. To obtain subpatches of a single patch, new seeds are arranged
around the initial seed like satellites, close to the initial one (see Fig. 2).

5 Optimization

In this section, we present our patch optimization approach using an enhanced
Evolution Strategy (ES) that can also handle integer parameters and nominal-
discrete ones (cf. [4]). The object variable vector consists of the seed positions in
form of triangle indices (assuming that each mesh triangle can be addressed by
an index), the weights of the initial and satellite seeds, the influences ζ and η,
and the flag ν. All individuals of the initial population are directly derived from
the given segmentation. In the majority of cases the optimization produces more
natural boundaries. After optimization, every patch is regarded as a segment.

5.1 Reproduction and Selection

Recombination: An extensive survey on well-known recombination strategies is
given in [2]. For our optimization problem, we have chosen different recombina-
tion strategies for the object variables. The recombination of ζ and η is realized
by an intermediate recombination operator, while for the binary valued ν a dis-
crete recombination operator is chosen. Since the seed positions are saved as
indices, they cannot be recombined with an intermediate operator, so a discrete
operator is used. However, a patch must not become decomposed after apply-
ing the recombination. Therefore, for each patch all seeds are randomly chosen
completely from one of the individuals selected for recombination.
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Mutation: All real-value parameters are mutated by adding a normally dis-
tributed random number χ ∈ R with mean 0 and standard deviation σ. Nega-
tive values are set to a small positive value. χ is recalculated for each parameter.
We have used Rechenberg’s 1/5-Rule [8] to adapt the standard deviations. The
mutation of seed positions has to be carried out in another way. The seeds are
moved over the triangle mesh in such a way that small movements occur more
often than larger ones, by using additional information stored in the mesh data
structure for mutating the seed indices. The mutation operator has to ensure
that each triangle contains at most one seed.

Selection: There are different kinds of Evolution Strategies like the (μ + λ)-ES
and the (μ, λ)-ES [2]. They differ from each other in the selection mechanism.
We have chosen a (μ, κ, λ)-ES [9] which contains the (μ + λ)-ES as well as the
(μ, λ)-ES as special cases. The (μ, κ, λ)-ES can consider all individuals with an
age smaller than the life-span κ.

5.2 Fitness Evaluation

We formulate the optimization as a minimization problem, where the fitness
value corresponds to the segmentation quality. According to the knowledge about
human perception presented in [5], we want to obtain segments which are mostly
surrounded by concave areas. On the other hand, the component boundaries
perceived by humans are usually not “jagged”. Thus, a segmentation Γ with
short segment boundaries is desired. In our fitness function

f(Γ ) :=

{
(1 − Λ) · fconcave(Γ ) + Λ · flength(Γ );Λ ∈ [0, 1] if Γ is valid,

∞ otherwise,
(3)

which is to be minimized, the first assumption is taken into account by fconcave,
the latter one by flength. A segmentation is called valid iff each patch is con-
nected, i.e. if no patch is decomposed into several parts. Segment boundaries
are polylines, all of which have edges of the triangle mesh as line segments. The
function fconcave is defined in such a way that long line segments have more
influence than shorter ones:

fconcave(Γ ) :=
1∑|E|

i=1
1

l(ei)

·
∑|E|

j=1
(

1

1 + max(αj , 0)
· 1

l(ej)
). (4)

E is a list of all edges belonging to the segment boundaries of Γ . The ith bound-
ary edge is denoted by ei and its length by l(ei). αi denotes the signed angle
between the normal vectors of the two mesh triangles adjacent to ei. This angle
is positive, if the object is concave at ei. The first factor in equation (4) is used
for scaling; it ensures that fconcave(Γ ) ∈ [0, 1]. The more concave the segment
boundaries of Γ are, the lower is the function value of fconcave.

The function

flength(Γ ) :=
1∑|Emesh|

i=1 l(e′i)
·
∑|E|

j=1
l(ej) (5)
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evaluates how “jagged” the segment boundaries are, which is related with the
length of the boundary. The smoother they are, the smaller is the function value.
Once again, the list of all boundary edges is denoted by E; the list of all edges
belonging to the triangle mesh is denoted by Emesh. While ej is the jth element
of E, e′i denotes the ith edge of Emesh. Since composition of fconcave and flength
in (3) is realized as a convex combination, the range of f is a subset of [0, 1].

6 Experiments and Evaluation

6.1 Behavior of the Optimization

A drawback of state-of-the-art techniques based on seeds is that a subopti-
mal seeding can cause wrong segments. The optimization of seed positions and
weights included in our approach compensates for this drawback. In Fig. 3, an
example for the positive effects of the evolutionary optimization can be seen. The
initial segmentation on the left side is taken as the source for two optimizations:
one using a (μ, κ, λ)-ES and one using a (μ+ λ)-ES. Both have been applied for
150 generations. Figure 3 also shows the corresponding curves of the best fit-
ness values per generation. In both cases, the resulting segmentations are much
better. In contrast, before starting the optimization, the green and the yellow
segment are not quite good; the yellow one describing the middle finger was
running down the other side of the hand up to the little finger. Please also note
that even optimal segmentations yield fitness values considerably larger than 0.

Other segmentations calculated by our prototype are shown in Fig. 4. The
results essentially correspond to human expectations. In particular, technical
models like the bearing object are almost perfectly segmented. But also the
segmentations of natural models are quite good in most cases. If still necessary
at all, jagged boundaries may be fixed by postprocessing [7].

6.2 Evaluation

Since we have demonstrated some results of our approach so far, we now measure
the quality of our segmentation method by taking segmentations manually cre-
ated by human test persons into account, that can be seen as being “optimal”.
Such segmentations are known as ground truth segmentations. We have used the
Rand Index (RI) to evaluate the discrepancy between a calculated segmentation
and a ground truth segmentation [3]. It is the relative number of all pairs of
mesh triangles which either belong to the same segment in both segmentations
or which belong to two different segments in both segmentations. With this in-
formation, the similarity of the segmentations is calculated. Originally, the Rand
Index RIorig is defined to be 1 if both segmentations are identical, and it’s range
is [0, 1]. According to [3], we use RI = 1 − RIorig as Rand Index in order to
compare our results to those of established approaches. Thus, this Rand Index
grows with increasing discrepancy. A more detailed description can be found
in [3]. Since the Rand Index can also be evaluated for segmentations of other
approaches, an objective comparison of our results with other ones is feasible.
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Fig. 3. The initial segmentation (a) was optimized by a (μ, κ, λ)-ES (b) and a (μ+λ)-
ES (c). The best individuals’ fitness values are shown for 150 generations.

Fig. 4. Segmentations achieved by our prototype

An extensive benchmark containing 380 models as well as eleven different
ground truth segmentations in the average for each model was published by
Chen et al. [3]. The models are divided into 19 categories. We have used this
benchmark to evaluate our segmentation approach.

In order to perform a large number of experiments, we have chosen two vari-
ants of defining a reasonable number of seeds individually for every model in an
automatic way. Variant 1 is given by our automatic seeding, where the number
of initial seeds is determined by taking the average segment number of all ground
truth data belonging to the current model. Variant 2 is based on the ground
truth data. The initial seeds are placed near the centroids of randomly chosen
ground truth segments. This can be seen as a simulation of a manual seeding,
which enables to evaluate the possible advantage of an expected optimal man-
ual seeding against an automatic seeding. In this sense, variant 2 can also be
considered as a lower bound (with respect to the Rand Index) for all automatic
approaches.

We have calculated one segmentation per seeding variant for each of the 380
benchmark models mentioned above with μ = 3, λ = 15, κ = 5 and an exper-
imentally determined Λ = 0.3. The optimization was stopped already after 30
generations, which turned out to be sufficient. On the left side of Fig. 5, the
influence of the optimization is shown on the basis of the Rand Index. The Rand
Index values averaged over the 380 models are shown for the situations before
and after optimization. Sat1 and Sat2 stand for our segmentation approach
using seeding variant 1 and 2, respectively. Please remember that the fitness
function is defined completely independent from the Rand Index and that even
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the best possible RI value will be positive. The latter aspect is reasoned by dif-
ferent subjective perceptions of a model and its components, which results in
different ground truth data. For example, the wings of a high-wing plane can
be interpreted as one single component or as two independent components. Ac-
cording to this, in [3], a RI of 0.1 was observed for manual segmentations that
are regarded as being optimal. For Sat2, the optimization yields a similar value,
which confirms the capabilities associated with satellite seeding.

Fig. 5. Effect of the optimization (left) and averaged RI values (right)

In the right diagram of Fig. 5, the averaged RI values of our optimized seg-
mentations and of established techniques are shown (cf. [3,6]). The established
techniques are based on Labeling and Learning (LL) [6] regarding three training
meshes for every evaluated segmentation, Randomized Cuts (RC), Shape Di-
ameter Function (SD), Normalized Cuts (NC), Core Extraction (CE), Random
Walks (RW), Fitting Primitives (FP), and K-Means Clustering (KM). A survey,
except for the LL approach, is given in [3]. Variant 1 is superior to 5 of the 8
established techniques. A great theoretical potential of the proposed approach
is demonstrated by the RI values of variant 2 which are significantly better
than those of all other techniques. A trouble of our automatic seeding is that
seeds may be placed nearby boundaries of meaningful components. This may be
unfavorable even for satellite seeding in its current version. A further question
of future research is whether the existing techniques also have a potential of
improvement which can be quantitatively estimated analogously to variant 2.

We have also investigated the influence of satellite seeding on the optimization
by taking only the initial seeds of Sat2 without satellite seeds. In this case, the
RI after optimization is 0.146, which is clearly worse than the RI in the case
of satellite seeds. Furthermore, it is also worse than in the case of Sat2 without
optimization shown in Fig. 5. This behavior is caused by the fact, that the
optimization algorithm tends to move “lonely” initial seeds onto parts bounded
by concave areas, which often results in patches that are too small for the desired
segmentation granularity. Therefore, satellite seeding as an extension of normal
seeding is obviously effective for evolutionary optimization.
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7 Conclusion and Future Work

We have presented a novel approach to mesh segmentation suitable for generating
optimized segmentations using an Evolution Strategy. Inmany cases, it yields bet-
ter results than important well-known techniques. Furthermore, our approach is
especially well suited for semi-automatic segmentation, i.e. amanual seedingwhich
can be done with minimal effort followed by automatic patch calculation and op-
timization. A major challenge of future work is to improve the automatic seeding
to reduce the gap between the segmentation qualities of Sat1 and Sat2 shown in
Fig. 5.

Further, the reliability of Sat2 as a simulation of a manual seeding could
be investigated. First tests confirm that in most cases segmentations calculated
from seedings by humans are very similar to the ones presented in this paper.

Finally, alternative fitness functions could be studied. For example, the fitness
function might also force corresponding satellite seeds to stay close to each other.
This could reduce the occurrence of invalid individuals in the parent population.

Acknowledgements. Thebunnymodel is fromtheStanford3DScanningRepos-
itory [13], all others are from the mentioned benchmark and available at [14].
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Abstract. In this article we analyze the behavior and scalability of the
CHC algorithm over a benchmark of instances of the software project
scheduling problem. Our goal is to analyze the performance of the CHC
algorithm when solving realistic NP-hard combinatorial problems and
test whether its previously reported high performance on similar prob-
lems also holds on this one. We perform a preliminary study to obtain a
suitable configuration of the parameters in the algorithm. After choos-
ing the configuration, we show the results for the problem instances in
the benchmark. To give a reference on how CHC performs and scales,
its results are compared against those of a GA. We conclude that CHC
outperforms GA in large problem instances. Moreover, CHC produces
promising results for the software project scheduling problem domain,
and could be used by practitioners.

Keywords: Software Project Scheduling, Metaheuristics, Evolutionary
Algorithms, Comparison, Benchmark.

1 Introduction

The CHC algorithm (Cross generational elitist selection, Heterogeneous recom-
bination, and Cataclysmic mutation) has been applied with success for solving
hard combinatorial optimization problems. For instance, several problems in
which CHC has been used include the design of robust network topologies [11],
the placement of wind turbines in a wind farm [3], the scheduling of tasks to pro-
cessors in an heterogeneous environment [10,12], and a multiobjective antenna
placement problem [9]. Previous works have shown that CHC is a competitive
algorithm for solving optimization problems, frequently obtaining results that
outperform those of the algorithms that were compared with it. However, it still
remains not well-known in the community, in which many theses and articles do
not use this kind of GA of low complexity and high numerical benefits.

In this article we apply for the first time CHC on this software problem. We
push CHC to the limit using this new problem with the purpose of studying
the behavior and scalability of the algorithm. Application results themselves
are competitive and help locating CHC as a state-of-the-art technique for other
applications in search based software engineering [7]. For the sake of the study,
and to highlight CHC benefits, we compare it with a GA.
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The rest of the document is organized as follows. A description of the CHC
algorithm is shown in Section 2. Section 3 presents the problem instances used
in the benchmark, the initial study of the parameters to tune up CHC, the
discussions of the results of CHC for the benchmark, and a detailed comparison
with a GA. Conclusions of the study are outlined in Section 4.

2 The CHC Algorithm

The CHC algorithm is a special type of a GA designed to promote the best
individuals in the population. One of the main characteristics of CHC is that
it does not use mutation, that is a way to introduce new information in the
population and avoid premature convergence; instead, it uses two mechanisms
to stimulate diversity: an incest prevention, which only allows the recombination
of individuals that are different enough (in terms of the Hamming distance),
and a restart of part of the population when stagnation is detected. Initially,
the threshold for allowing recombination is set to 1/4 of the chromosome length.
During the recombination process, if the two randomly selected parents meet
the condition to be recombined, then, the threshold is reduced by 1. As the
algorithm runs, individuals become similar to each other, and eventually, the
threshold to allow recombination reaches the value 0. This is how CHC detects
that the population is stuck; thus, the algorithm performs a restart in part of
the population: only the best pr individuals are kept, whereas the others are
restarted to increase the diversity.

The recombination operator in CHC is the half uniform crossover or HUX,
that is a variant of the uniform crossover (UX), and consists in the random
exchange of a half of the bits in which parents differ, as shown in Figure 1.

1 1 00 1 00 0 0 1

0 1 10 1 01 0 1 1

1 1 10 1 01 0 0 1

0 1 00 1 00 0 1 1

Fig. 1. The HUX recombination operator takes two parents and randomly decides on a
swap for those bits at which their strings differ. Bits of the string for which the parents
have the same value (highlighted in the figure) are not changed.

In Algorithm 1 we show the pseudocode of CHC as initially proposed by L.
Eshelman [5]. The code reveals those features that make CHC different from
traditional GAs: the elitist replacement strategy, the use of the HUX recom-
bination operator, the absence of mutation, and the mechanism to restrict the
recombination. The premature convergence of the population is reduced by the
recombination policy and the diversity of individuals is ensured with the restart
of a part of the population.
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Algorithm 1. Pseudocode of the CHC algorithm

initialize(P (0))
generation ← 0
threshold ← 1/4 · chromosomelength
while not stopcriterion do

parents ← selection(P (generation))
if distance(parents) ≥ threshold then

offspring ← HUX(parents)
evaluate(offspring)
newpop ← replacement(offspring, P (generation))

end if
if newpop == P (generation) then

threshold ← threshold− 1
end if
generation ← generation+ 1
P (generation) ← newpop
if threshold == 0 then

reinitialization(P (generation))
threshold ← 1/4 · chromosomelength

end if
end while
return best solution ever found

3 Experimental Analysis

This section presents the experimental analysis performed in this work. First,
we explain the problem instances of the benchmark. Then, we tune up CHC and
apply it on a set of representative instances. Finally, we compare CHC against
a GA.

3.1 Problem Instances: A Wide Representative Benchmark

To carry out the analysis of CHC, we have used 250 instances of a hard combi-
natorial problem in our benchmark. The problem itself is the software project
scheduling (SPS), that consists on the assignment of employees to tasks in a soft-
ware project in order to reduce its duration and cost [1,4]. This problem belongs
to the domain of search based software engineering [7]. The software project
scheduling is a realistic problem with capital importance in software factories.

An instance of the SPS problem specifies a set of employees, tasks, and skills
to indicate which employee can participate in which task. For every employee,
it is necessary to set his/her maximum dedication, salary, and skills. For a task,
it has to be known an estimation of the effort required, the skills needed to
accomplish it, and a list of tasks that are prerequisite of it.

A solution to the SPS problem is an assignment matrix that represents the
degree of involvement of employees to tasks (cells in this matrix have values in
set [0 1]). Such a solution has to meet all the constraints imposed by the problem.
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The objectives pursued in this problem are to reduce the duration and cost of
the software project and to fulfil the constraints.

To solve this problem with metaheuristics like CHC and GA we have to encode
the assignment matrix as a binary string. This can be done as shown in Figure
2, where cell values are discretized using four bits ([0 1] → {0, 1}4). Additionally,
we need a fitness function to quantify the relative quality of solutions. The fitness
function that we use is presented in Equation (1), and consists on a weighted
sum of the project duration (pdur), the project cost (pcost), the number of tasks
not covered by any employee (put), the number of skills not covered for the tasks
(pus), and the amount of overwork done by the employees (pow).

fitness function = +0.1× pdur
+(5.0 × 10−6) × pcost
+put + pus + pow

(1)

...

...

1.000.27 0.53 0.87

0 1 00 1 00 0 1 1 1 1 1 1 10

Assignment
array

Binary string

t1 t2 t3 t4 t5 t6 t7
e1
e2
e3
e4
e5

1.00 0.93

1.001.000.930.471.00

1.00

0.73

1.00 1.00

1.00

1.00

0.00

0.60 0.00

0.00

0.73 0.27

0.27 0.93 0.13 0.27

0.27

0.53

0.530.47

0.13

0.13

0.40

0.870.87

0.27 0.53

0.87

Assignment
matrix

Fig. 2. Representation of an assignment matrix
as a binary string

Table 1. Features of the problem in-
stances in the benchmark. The size of
the instance is the main indicator of
its difficulty.

N Size Tasks Employee
1 50 10 5
2 100 20 5
3 250 25 10
4 450 30 15
5 1250 50 25

In Table 1 we present the features of the 250 problem instances contained in
the 5 test sets (50 instances per set). For every test set we show its identification
number, the size of the contained instances, and the number of employees and
tasks. All the instances share the same number of total skills, that is 10. The tasks
of the instances require a random set of 4 to 6 skills. Additionally, employees have
a random set of 2 to 4 skills. For a more precise understanding of the instances,
we defer the interested reader to the original definition of this problem [4].

This benchmark is a large and wide set of instances since we want to actually
deal with the problem class, not just with a few instances. Also, it will allow
us to analyze algorithms at very different dimensions and difficulties, what will
constitute a real challenge for any algorithm.

The objective of the optimization technique is to compute a solution with the
lowest fitness value for every problem instance in the benchmark. The test sets
have been arranged in increasing size or difficulty, where the first one has the
smallest search space and the sixth the largest one. This arrangement of the test
sets allows us to study trends of the algorithm with increasing size of the search
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space. For the benchmark, we have used a set of problem instances created by
the generator described at http://mstar.lcc.uma.es.

3.2 Parameter Settings

Instead of fixing an arbitrary set of parameters, we perform an initial configu-
ration analysis to determine the best parameter for CHC. One random problem
instance of every test set is used to tune up the algorithm during the config-
uration analysis. The parameters studied for CHC are the population size, the
recombination probability (pc), and the percentage of population restarted (pr).
The values studied for the three parameters are:

Population size: 64, 128, 256

Recombination probability (pc): 0.5, 0.7, 0.9

Percentage of population restarted (pr): 40%, 60%, 80%

After the analysis of the parameters we computed Table 2 to study their impact
for CHC. This table contains the average fitness, its relative standard deviation
(σ), and the difference between the highest and the lowest average fitness for
the test sets 1, 2, and 4 given the values of the parameters. We performed
30 independent executions for the 27 different configurations for all the 150
instances in the three test sets. If we focus on the population size, we realize that
this parameter has the highest impact in the results of the algorithm. As the
population is increased, the results of CHC clearly improve (the fitness reaches
lower values); but there is a point at which the improvement of the fitness is
nonexistent or small enough not to justify a further increase of the population.
This behavior depends on the problem instance: for small instances (test set 1)
large populations involve no improvement but a time penalty, whereas for large
instances (test set 4) large populations produce better results.

On the other hand, if we focus on the recombination probability (pc) and the
percentage of population restarted (pr), we conclude that the average fitness and
its relative standard deviation are almost the same for the test sets. This means
that whatever the value we choose for these parameters, the average result of
CHC will be almost the same. There is also a second reading for these results, and
it is that CHC is a robust algorithm, even if the best values for the recombination
probability and the percentage of population restarted are not properly chosen.
For instance, once that the population size has been fixed to 256 individuals, the
differences between the best and the worst average fitness for test sets 1, 2, and
4 are 0.33%, 0.54%, and 0.44% respectively, thus, the impact of pc and pr in the
results is upper bounded by these values.

After these initial experiments we conclude that the values for the parame-
ters of CHC that perform the best are 256 for the population size, 0.9 for the
recombination probability, and 60% for the percentage of population restarted.
As a summary, the parameters used to test and study CHC with the problem
instances are listed in Table 3.

http://mstar.lcc.uma.es
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Table 2. Average fitness, relative standard deviation (σ), and difference between the
best and worst average fitness for a fixed value of a CHC parameter

Parameter Value Fitness
Test set 1 Test set 2 Test set 4

Avg. σ Diff. Avg. σ Diff. Avg. σ Diff.

Pop. size
64 4.75 8.75% 0.69% 11.38 13.00% 1.18% 30.62 67.70% 2.11%

128 4.48 8.00% 0.38% 10.35 9.88% 0.69% 11.33 48.25% 3.37%
256 4.35 7.52% 0.33% 9.77 9.39% 0.54% 8.09 11.19% 0.44%

pc

0.5 4.52 8.91% 9.37% 10.49 12.66% 15.81% 16.60 95.36% 136.33%
0.7 4.52 8.94% 9.09% 10.50 12.80% 15.69% 16.71 95.16% 136.43%
0.9 4.53 9.0%6 9.49% 10.51 12.89% 16.14% 16.74 95.22% 136.17%

pr

40% 4.53 9.00% 9.25% 10.49 12.65% 15.60% 16.67 95.05% 136.69%
60% 4.53 8.96% 9.26% 10.50 12.86% 15.83% 16.69 95.87% 136.54%
80% 4.53 8.95% 9.54% 10.51 12.85% 16.08% 16.68 94.81% 135.41%

3.3 Discussion on the Results

Here we describe the results obtained after applying the CHC algorithm to solve
the problem instances of the benchmark. The two aspects in which we focus
are the fitness value and the execution time. On the one side, the fitness value
quantifies the performance of the algorithm to allow future comparisons. On
the other side, the execution time accounts the time it takes the algorithm to
compute a solution. The execution time makes it possible to study how the CHC
algorithm could behave on optimization problems as complex as this, and how
does it scale when the size of the problem gets increased.

In Table 4 we show the results of CHC. The table presents the number of the
test set in the benchmark and for it the fitness and time values. For the fitness
we show its average value for all the instances in the test set. Also, we include
the maximum (σmax) and the average (σ) of the relative standard deviation.
The maximum is the one of the instance in the test set which has the largest
deviation; the average is that of the instances in the test set. The values were
computed by running 30 independent executions for the 250 instances of the 5
test sets. In total we made 7500 independent runs to get lessons on the algorithm
and the problem class instead of just on one instance or small problem study.

Table 3. Parameter settings for CHC

Parameter Value

Max. number of iterations 500
Population size 256
Offspring size 256
Recombination probability 0.9
Recombination operator HUX
Restarted population 60%
Selection strategy Random
Replacement strategy Ranking

Table 4. Experimental results for CHC

N Fitness Time (s)
Avg. σmax σ Avg. σ

1 4.35 4.53% 2.50% 2.98 11.70%
2 9.77 7.37% 4.06% 8.64 12.23%
3 7.91 8.15% 3.62% 21.64 13.26%
4 8.01 11.00% 3.86% 38.06 7.68%
5 25.56 23.31% 12.60% 100.93 5.32%
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The analysis of the fitness indicates that CHC is a stable algorithm that
produces solutions that are similar in terms of quality. This means that even with
a few executions CHC is capable of finding promising solutions for the instances
in a robust manner. As we studied in the previous section, the quality of the
results have more to do with the population size than with the recombination
probability (pc) or the percentage of population restarted (pr).

Now, if we turn to the execution time we find that the larger the problem
size, the longer it takes to finish the computation. Generally, we observe that
the execution time of the algorithm is close to linear, even when the search space
grows exponentially (Figure 4). This is a great point for CHC, because it means
that we can expect the algorithm to solve even larger problem instances in an
acceptable amount of time.

3.4 Comparison against GA

To put the results of CHC in a wider context, we compare it with a GA. GA is a
metaheuristic inspired in biological evolution [8]. It codifies problem solutions as
individuals subjected to an evolutionary process [2,6]. During each iteration the
algorithm selects, recombines, and mutates individuals to evolve the population.
As iterations go by, new individuals are computed with better solutions codified.

We use the classic formulation of GA: it combines the single point crossover
(SPX) recombination operator, and the mutation operator that randomly modi-
fies selected positions in the solution. For the configuration analysis we follow the
same procedure as in CHC. The parameters that we consider in the initial anal-
ysis are the populations size, the recombination probability, and the mutation
probability, whose candidate values are:

Population size: 64, 128, 256
Recombination probability: 0.5, 0.7, 0.9
Mutation probability: 0.01, 0.05, 0.1

Applying the same guidelines as with CHC, we conclude that the best values for
the parameters are 256 individuals for the population, 0.7 for the recombination

Table 5. Parameters used for GA

Parameter Value

Max. number of iterations 500
Population size 256
Offspring size 256
Recombination probability 0.7
Recombination operator SPX
Mutation probability 0.1
Bit flip probability 0.01
Selection strategy Random
Replacement strategy Ranking

Table 6. Results of the experiments for GA

N Fitness Time (s)
Avg. σmax σ Avg. σ

1 4.65 16.12% 6.26% 6.70 5.87%
2 11.54 27.58% 13.52% 14.84 4.30%
3 21.14 39.87% 19.91% 25.06 3.33%
4 59.16 28.61% 15.25% 39.16 3.92%
5 249.89 11.23% 6.32% 106.96 4.80%
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probability, and 0.1 for the mutation probability. The settings finally used for
GA in the experiments are listed in Table 5.

The results obtained using the GA are listed in Table 6. The table presents the
number of the test set in the benchmark and for it the fitness and time values.
For the fitness we show its average value for all the instances in the test set. Also,
we include the maximum (σmax) and the average (σ) of the relative standard
deviation. The values were computed by running 30 independent executions for
the 250 instances of the 5 test sets. Compared with CHC, GA produces worse
solutions and it takes more time to compute them. We also realize that GA has
serious problems for test sets 3, 4, and 5: the fitness, which has to be minimized,
is on average 2.67, 7.31, and 9.78 times larger than in CHC. This comparison is
shown in Figure 3, where the central mark is the median, the edges of the filled
box the 25th and 75th percentiles, and the whiskers extend to the most extreme
values. The results show that the GA is not an efficient algorithm to solve as
large and difficult instances for the software project scheduling problem.

It is interesting to study the results for each test set independently. In Figure 3
we offer a graphical comparison of the fitness value for CHC and GA. We can see
that for small size instances (test sets 1 and 2) CHC beats GA by a thin margin;
on the other side, when the size of the instances get increased (test sets 3, 4,
and 5), then CHC overcomes GA in a notorious way. It is also important to note
that CHC requires fewer fitness evaluations to reach certain fitness value. While
GA carried out 128256 evaluations for every instance in all the test sets, CHC
performed by average 44500, 66995, 104861, 123427, and 128256 evaluations for
test sets 1 to 5. This happens because of the incest prevention mechanism in
CHC, that avoids the recombination of solutions that are similar to each other.
For the comparison of the fitness, the Kruskal-Wallis test has been carried out
to check if the differences in the algorithms are statistically significant. All the
statistical tests are performed with a confidence level of 99%, and all of them
have passed this tests.
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Fig. 3. Fitness comparison of CHC and GA for the test sets in the benchmark

In Figure 4 we show the execution time that it takes for CHC and GA to
perform 500 iterations depending on the size of the instances in the test set.
The sizes of the instances in the test sets are 50, 100, 250, 450, and 1250 respec-
tively (Table 1). We see that the CHC algorithm always takes less time than GA
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to finish the computation. This is because CHC performs fewer fitness evalua-
tions than GA, as stated previously. This means that CHC can solve the same
instances than GA in less execution time.

To conclude, in Figure 5 we present the average fitness evolution of CHC
and GA for the 500 iterations. We notice that the fitness value of CHC always
remains below the fitness of the GA, no matter the test set. Thus, it is obvious
that CHC converges faster to a promising solution. Globally, the GA needs more
iterations to find promising solutions, and specifically, for test set number 5 it
seems that 500 iterations are not even enough.

4 Conclusions

In this work we have presented a study on the performance of CHC when solving
a benchmark of problem instances concerning software project scheduling. We
focused on CHC because it has proven to be an efficient, fast, and powerful
algorithm in the past, but still not well-known compared to other evolutionary
algorithms. For the experiments, we faced the algorithm to a set of instances of
the software project scheduling problem, that is a capital problem in software
engineering. Finally, we compared the results achieved by CHC with a GA.

The analysis of the results obtained allows drawing some conclusions on the
behavior of CHC. For instance, the population size was the parameter of the al-
gorithm which had the highest impact in the results for the benchmark. Particu-
larly, once that the population size was fixed to 256 individuals, the improvement
produced by the variation of the probability of recombination and the percentage
of population restarted was at most 0.54% (small, in comparison). This means
that CHC is a robust algorithm that produces good results with a wide set of
values for the parameters.
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Regarding the comparison of CHC with GA, the CHC algorithm beats the
GA in every single test set for both: in quality of the solutions and in execution
time. The CHC algorithm always produce better solutions than the GA, and
the larger the instance the better the result of CHC compared with the GA.
Additionally, the execution time of CHC is always shorter than the execution
time of the GA. In relation with this, CHC not only needs less time to find a
promising solutions but also it takes less iterations to reach it. As a consequence,
we can suggest that CHC is a better algorithm than the GA for this problem.
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Abstract. Evolutionary algorithms need measures of how appropriate
a solution is in order to make decisions. This is always a problem for
evolving art as codifying aesthetics is a complex task. In this paper we
consider the problem of evaluating melodies. The evaluation of melodies
in evolutionary music is an open problem that has been tackled by many
authors with interactive evaluation, fitness-free genetic algorithms and
even neural networks. However, all approaches based on formal analysis
of databases or formal music theory have been partial, which is some-
thing to be expected for such a complex problem. Thus, we present many
metrics that can be used for evaluating melodies and their practical re-
sults when applied to a Bossa Nova database of melodies coded by the
authors. Although the paper is meant to extend the cycle of possible
ideas for evolutionary composers, we argue that there is still much to be
developed in this field and each genre of music will always need specific
measures of quality.

Keywords: Evolutionary Music, Genetic Algorithms, Evaluation of
Melodies.

1 Introduction

Evolutionary Algorithms and Algorithmic Composition methods need to mea-
sure how appropriate a solution is in order to make decisions. Easy ways to
evaluate melodies would be comparing tunes, using only music theory or having
a mentor to guide the process.

Evaluating music and art faces many challenges that we discuss in Section 2.
Given the open problems for music evaluation and the methods recently pro-
posed, we focus this paper on the definition of metrics more formally based on
music theory or data extraction, as we develop the idea in Section 3.
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In this context, we describe a list of metrics divided in many categories from
Section 4. In parallel to those metrics from a musicology research, we also show
the results of those metrics on a database of Bossa Nova melodies the authors
have created. We discuss each of those metrics as Information Retrieval or Com-
putational Musicology processes.

In our discussion of the results, in Section 5, we argue that this work should
be useful for scientists intending to create algorithms for generating melodies but
there will always be metrics which will be more useful for genre-specific music
generation.

2 Forms of Music Evaluation

Codifying aesthetics is a complex task and the biggest problem in evolutionary
composition [1]. Approaches to circumvent codifying aesthetics such as inter-
active evolution [2,3,4], fitness-free GAs [5] and neural networks [6,7], all still
present many drawbacks.

Using a human mentor usually leads to fitness bottlenecks [3,4]. Fitness-free
algorithms [5,8] are bolder proposals but they also avoid studying the problem
and oblige the genetic operators to be conservative. Most works based on Neural
Networks do not have the ability to generalize beyond training sets [6,8,7].

Thus, an open problem is to create automatic evaluation functions [1] machine
representable, capable of measuring human aesthetic properties and practically
computable. They should not only define what is more likely to occur on melodies
but they should also allow creativity when considering all the different aesthetic
objectives to generate ideas not imagined before [9]. Computational aesthetic
evaluation is a distinctly non-trivial unsolved problem [1].

3 Automatic Objective Functions

Many different metrics based on perceptions of the composer or music theory
can be employed to analyze melodies in a process of algorithmic composition
[10]. In this paper we present many automatic metrics and their results on a
database of Bossa Nova melodies manually created by the authors.

There have been partial attempts to automate measures of fitness [1,11] and
studies on which features are most important [11]. Those include four part har-
monization [12] and jazz melodies [13], for instance. The influence of the genetic
operators on musical features has also been partially studied [14,5]. Target values
have also been used to measure fitness [15,16,17].

From an analysis over the literature, most algorithms do not examine the
possible relation between all categories of metrics possible [10]. Thus, we define
metrics that should be applicable to most classical, baroque or popular twentieth-
century melodies and the results of their employment on a database of melodies.

With many analyses of those melodies from different points of view, we can
compare the results to a potential solution from our generative algorithm. Some
results indicate parameters with normal distribution, such as in the distribution
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of pitches, which can be tested in the candidate solution with a Jarque-Bera test
[18]. Some results may show that parameters come from another distribution,
such as in the distribution of rhythmic proportion, which can be compared to
a candidate solution with a Two-sample Kolmogorov-Smirnov test [19]. Some
parameters may only represent categorical values, which can be compared with
a nominal statistical test [20]. Finally, other results indicate potential individual
target values for the melodies, such as the tempo of each melody, which can be
directly included in objective function values as the distance from the target.

4 Metrics and Results

In order to give a good representation of the mentioned metrics, we have created
a database with 26 Bossa Nova melodies from Tom Jobim’s songbook [21] and
manually coded by the authors. All the data is available from the authors1.

4.1 Tonality, Pitches, and Intervals

We first detect the key of each melody with the K-S key-finding algorithm [22],
based on key profiles. As the melodies may even have key changes, it may be a
simplistic approach, but all the keys detected matched the key signature in the
scores and the results can give us an idea of the keys as we can see in Table 1.
Thus, we transpose all songs to C (or its minor relative, Am) to make key de-
pendent analyzes possible, such as the detection of dissonances. The correlation
of the algorithm’s key profiles to the pitch distribution of the pieces leads to a
representation of the strength of each key, as in Figure 1(a). The correlation val-
ues are significantly higher for the C major and A minor key profiles, indicating
some relevance of the method applied. The results can also be projected on a
self-organizing map trained with key profiles [23], as in Figure 1(b).

Table 1. Key Profiles

C C# D D# E F F# G G# A A# B Total

12% 0% 15% 0% 4% 4% 0% 4% 0% 4% 0% 4% 46%

c c# d d# e f f# g g# a a# b Total

0% 0% 15% 0% 12% 4% 12% 4% 4% 4% 0% 0% 54%

The pitches used in all melodies are in Figure 2(a), showing that the distribu-
tion of the notes is very normal. However, by shifting all melodies to the same
key, we have a large difference of occurrence between consecutive notes, as in
Figure 2(b). This is due to dissonant notes, which are strange to the main scale.

Given the 12 note classes, the modulo of a pitch number by 12 is the class of this
note. The occurrence of those pitch classes gives a better idea of the scales used in
the melody, as in Figure 2(c). We can see a higher occurrence of notes of the diatonic
1 http://www.alandefreitas.com/downloads/problem-instances.php

http://www.alandefreitas.com/downloads/problem-instances.php
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(a) Correlation (b) Results projected on a SOM

Fig. 1. Melody keys

scale of C. The note variety is also different for each melody. A method of measuring
pitch variety [11] is by dividing the number of distinct notes in a melody by 12,
as in Figure 2(d), which shows that the variety of pitches is very different among
the melodies but all melodies use more than 70% of the possible notes. Another
aspect of pitch variety is pitch range [11], or the difference between the highest and
lowest pitches. As we can see in Figure 2(e), the pitch range has a more normal
distribution, centered on a range of 16 pitches.

Other useful metrics are the beginning and ending pitches, and the note dis-
tribution weighted by duration. For our database, this measure did not represent
much difference, as we can see in Figure 2(f).

Perhaps, more important than the pitches themselves are the intervals be-
tween them. Figure 3(a) shows the intervals present in our melodies. In accor-
dance with theoretical models [24], intervals of small size are more common than
large ones. Figure gives a good representation of the interval sizes used in the
melodies. In fact, it is a common practice to penalize very large intervals in the
evaluation of the solutions [13]. However, this can be only applicable to some
genres of music and an approach based on a better analysis is recommended. If
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we combine the information of the notes to the intervals, we are going to find
out that the probability of the next note depends on the current note, as shown
in Figure 3(b). Also similarly to the notes, we can analyze the interval variety
for each song, as in Figure 3(c).

Contour refers to the movements being performed by the melodies. There are
many sorts of contour [25] and the direction of those movements may be easier to
remember than the movements themselves [26]. An easy way to analyze contour
is to measure how many intervals are ascenders or descenders, and the stability
in relation to direction. Table 2 shows the values of ascenders and descenders
in general or in relation to the last interval. The values in bold represent the
contour stability, which is a criterion that has also been used in evolutionary
algorithms [11], and represented for each song in Figure 4(a). Another simple
form of controlling contour is through the average contour direction [13,11].

Table 2. Contour

Ascendent Unison Descendent

After an ascendent 30.17% 18.78% 51.03%
After an unison 19.92% 55.24% 24.82%

After a descendent 45.36% 14.57% 40.06%

In general 33.52% 26.95% 39.52%

By analyzing pitches and tonality together, we can have an idea of the disso-
nances used in the songs. From Figure 2(c) we can see that it would be more than
reasonable to analyze dissonance in terms of the proportion of notes that do not
belong to the diatonic scale. Thus, the probability of a dissonant note is 30.53%,
but Figure 4(b), which represents the occurrence of dissonance divided by the
number of possible dissonant notes, shows how this value can vary considerably.

Attraction of dissonant notes to tonally stable notes happens to 55.25% of
the dissonances. However, this measure may overlap with the measure of second
order notes, as shown in Figure 3(b).

Narmour’s Implication-Realization Model [27] is a study on melodic expectancy
based on many principles that consider expectation of the listener after a given
interval. With a quantification of the principles in model [28,29], we can either
penalize melodies that disrespect the principles or measure how much the melodies
follow the model.



Automatic Evaluation of Bossa Melodies 463

As the model can be context-specific or inefficient to consider tonally stable
intervals [30], we can also use the interval values in the melodies to infer our own
model of expectancy which would be specific for our goal. Figure 4(c) shows such
a model, where the rows represent implicative intervals and columns represent
realized intervals. The model confirms the expectation of small intervals. Melodic
attraction should also be considered by this model of expectation as we have
different responses for different pitches [31]. One way of doing that would be to
infer 12 different models according to the current note.

4.2 Rhythm, Patterns, and Phrases

The first feature that determines the rhythm is the duration of notes. Figure
5(a) shows a second order analysis of the proportion of note durations. From
36 possible values of duration present in the melodies, the histogram is based
on the durations shorter than 4 beats and longer than 1/4 of a beat [29]. The
patterns show a tendency of repetition in the duration of following notes. Another
interesting pattern is that the first notes in a melody, shown in Figure 5(b), tend
to have shorter duration than the last notes, shown in Figure 5(c). The rhythmic
proportion in each melody is the duration of the longest note divided by the
duration of the shortest note, as shown in Figure 5(d). Similarly to what we did
to the pitches, we can also calculate the duration variety in the melodies, as in
Figure 5(e). Part of the rhythmic analysis is not only the duration of the pitches
but also how much silence we have in the melodies. In Figure 5(f) we have the
amount of silence (as at most 2 beats without notes) per melody. In some cases,
even more than 10% of the melody may be silent.

We have mentioned the duration of the notes but another important informa-
tion is when the notes are played. A hierarchical grid of note locations may exist
in the expectation of Western melodies [32]. For instance, the note positions in
the musical measure are represented in Figure 5(g). Also the first notes (and last
notes) may use different positions, as the example in Figure 5(h). In fact, only
6 values of note position are used for the first notes while 16 values are used for
all notes. The note positions can also be weighted by the duration of those notes
as it alters how listeners perceive those notes [33]. Figure 5(i) shows the relation
between those two components.
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Once we have information related to pitches and rhythm we can find patterns
in the melodies. By autocorrelating a melody with a delayed copy of itself [34],
we can identify patterns in a melody. The correlation values go from 0 to 1, and
the correlation value is always 1 at point 0, when we compare a melody shape
with a copy of itself, as shown in Figure 6(a). The three areas represent the
maximum, mean, and minimum correlation. Similarly to the contour shape, we
can apply the same technique to only pitches or duration values.

Another way of looking at the patterns is to identify the number of patterns
of a specific size in a melody. We can analyze that in Figure 6(b), where each
row represents a melody, each column represents a pattern size and the colors
represent the amount of that pattern. Short patterns are naturally more common
as longer and rare patterns may represent the repetition of phases in the melody.
The same metric can be applied to notes or duration values.

We can divide melodies into musical phrases. Figure 6(c) shows the number
of phrases per melody according to a rule-based approach [35]. There are also
approaches based on probability [36]. The size of those phrases can also be
analyzed and with those values it is possible to also study the value of the
parameters for each musical phrase as well as the relation between neighbor
phrases in relation to pitch and rhythm.
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5 Discussion and Future Work

All the metrics presented here can lead to different models according to the spe-
cific genres of music. Those models, in some cases, can even lead to problems
which are simple to solve in polynomial time. In that case, evolutionary com-
putation could be even unsuitable for composing. On the other hand, with all
the information to be considered when generating compositions, it is unlikely to
exist a good model of composition which is too trivial.

Although there are many other metrics that could be considered in the eval-
uation of melodies, such as contour shapes or rhythmic variation, the authors
do not have the pretension to formulate all of them as it would not be feasible.
However, by studying at least some of the most important metrics in relation to
each category of analysis, this paper can surely give some background to scien-
tists with intention to be evolutionary composers. Natural extensions of the ideas
presented here would be to apply all the metrics on melody phrases separately
and to filtrate which metrics are most important. It would be also important
to perform second-order analysis on the melodies to look for potential relations
between the metrics.

Once we are able to generate melodies that follow patterns of a studied
database, another issue is also the diversity and originality of the solutions gen-
erated by the algorithm, as we do not want the algorithm to either return always
the same “best” melody [5] or to ignore the originality needed in masterpieces
[37]. Once we have considered those issues, we can focus on applying the statis-
tical methods mentioned in Section 3 to get more formal objective values.

In regard to evolutionary computation, an important issue in the future will
also be how to put all those metrics together into one or many objective functions
and which genetic operators will be appropriate for those functions. So far, the
formalized evaluation metrics for evolutionary music have only been partial and
this paper should expand the ideas considered by evolutionary composers on
their work. However, as music is a very contextual form art, specific metrics will
always need to be created for specific genres of music.
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Abstract. This paper considers a real-world optimization problem involving the
discovery of cost-effective equipment sizing strategies for the chromatography
technique employed to purify biopharmaceuticals. Tackling this problem requires
solving a combinatorial optimization problem subject to multiple constraints, un-
certain parameters (and thus noise), and time-consuming fitness evaluations. After
introducing this problem, an industrially-relevant case study is used to demon-
strate that evolutionary algorithms perform best when infeasible solutions are
repaired intelligently, the population size is set appropriately, and elitism is com-
bined with a low number of Monte Carlo trials (needed to account for uncer-
tainty). Adopting this setup turns out to be more important for scenarios where
less time is available for the purification process.

1 Introduction

Monoclonal antibodies (mAbs) represent the fastest growing category of therapeutic
biopharmaceutical drugs due to their unique binding specificity to targets. The manu-
facturing process for mAbs is costly and time-consuming, and can be divided into two
phases (see Fig. 1): upstream processing (USP) and downstream processing (DSP). In
USP, mammalian cells expressing the mAb of interest are cultured in bioreactors. Then
the broth moves to DSP, where the mAb is recovered, purified and cleared from viruses
using a variety of operations including a number of chromatography steps. Chromatog-
raphy operations are identified as critical steps in a mAb purification process and can
represent a significant proportion of the purification material costs (associated e.g. with
the use of expensive affinity resins and large amounts of buffer reagents). Whilst alter-
natives to traditional column chromatography platforms are emerging, industry prac-
titioners are still reluctant to perform major process changes [1]. At the same time, it
is important to determine how best to use existing production facilities for mAbs [2].
This is particularly challenging given the significant improvements in USP productivi-
ties that have been accomplished over the past decade with higher mAb concentrations
(titres) being achieved in cell culture. These improvements have not been matched in
purification capacities, leading to concerns over purification bottlenecks and the desire
to continuously optimize the design and operation of existing chromatography steps.
Hence, to efficiently exploit these cell culture improvements, and account for the in-
creasing demand for therapeutic mAbs, it has become critical to identify cost-effective
purification processes [1].

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 468–477, 2012.
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Fig. 1. Typical flowsheet for an antibody manufacturing process

An approach to realize this identification step, which is also adopted here, is to
develop simulation models of mAb manufacturing processes and identify promising
chromatography setups using computational methods. For example, in [3] the authors
present a simulation model to identify windows of operation for the column diameter,
bed height and loading flowrate of a chromatography step using productivity and cost
of goods (COGs) as performance criteria. A model to find combinations of protein load
and loading flowrate that meet yield and throughput constraints has been developed
in [4]. The discrete-event simulation framework proposed in [5] allows the selection
of optimal chromatography column diameters over a range of titres. The methodology
used in [3–5] consists of selecting and evaluating specific values within the full range of
variation of the critical parameters. However, such an approach may not be feasible for
very large decision spaces as considered here, which drives the need for more efficient
optimization methods in this domain.

This study addresses this issue by investigating the application of evolutionary op-
timization methods for the discovery of chromatography column sizing strategies —
defined here by the diameter and bed height of a column, the number of columns used
in parallel, and the number of cycles a column is run for — that are cost-effective in
terms of COGs per gram (COG/g) of product manufactured. This discovery task can be
formulated as a combinatorial (single-objective) optimization problem subject to mul-
tiple constraints and interacting decision variables, uncertain parameters and expensive
fitness evaluations (represented by time-consuming computer simulations). Over the
years, evolutionary algorithms (EAs) have proven to be efficient, flexible and robust
optimizers for challenging optimization problems of this type — which are commonly
referred to as closed-loop optimization problems [6, 7].

An industrially-relevant case study is used to investigate how to tune some of the
simple EA configuration parameters: population size, degree of elitism, number of
Monte Carlo trials (needed to cope with uncertain parameters), and constraint-handling
method. The fitness landscape of different scenarios of the case study are analyzed
also to observe which landscape features pose a particular challenge when optimizing
equipment sizing strategies.

The rest of the paper is organized as follows. The next section describes the chro-
matography sizing problem considered in this work in more detail. Section 3 outlines
the case study, choice of algorithms and the parameter settings considered for tackling
the case study. The experimental results are presented and analyzed in Section 4, and
Section 5 concludes the paper.
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nCOL,1
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i = 3

Fig. 2. A candidate solution (sizing strategy) with k = 3 chromatography steps. Each step i =
1, ..., k is defined by the bed height hi and diameter di of columns, number of cycles nCYC,i each
column is used, and the number of columns nCOL,i operating in parallel.

2 Problem Domain: Chromatography Equipment Sizing

The chromatography equipment sizing problem can be represented as a combinatorial
optimization problem with the task of finding the most cost-effective chromatography
sizing setup for a sequence of chromatography steps used in the purification process
of mAbs. In the following the decision variables, objective function, constraints, and
uncertain parameters to which this problem is subject to are described.

Decision Variables: Fig. 2 shows the encoding used to represent a solution x to the
chromatography sizing problem. For each chromatography step 1 ≤ i ≤ k (k is the total
number of steps) (e.g. affinity or ion-exchange chromatography) four discrete decision
variables were defined related to the sizing and operation of chromatography columns:
bed height hi and diameter di of columns, number of cycles nCYC,i each column is used,
and the number of columns nCOL,i operating in parallel. That is, the problem is subject
to l = k · 4 discrete variables in total. For each step i, the variables define the (i) total
volume of resin Vi available for the purification of a product at that chromatography
step, and the (ii) processing time Ti that the chromatography step takes; both parameters
are calculated according to standard mass balance equations as follows [8]:

Vi = π · d2
i /4 · hi · nCYC,i · nCOL,i (1)

Ti = nCYC,i · hi · (CV BUFF,i + CV LOAD,i/nCOL,i) · ui, (2)

where CV BUFF,i and CV LOAD,i are the number of column volumes of buffer and prod-
uct load per cycle, and ui is the linear flowrate of the resin used at step i.

Objective Function: Our objective f is to find a chromatography sizing setup that
yields minimal cost of goods per gram (COG/g) of product manufactured. The COGs
include both direct (resource) costs (e.g. resin, buffer and labor costs) and indirect costs
(e.g. facility-dependent overheads, such as maintenance costs and depreciation), and is
divided by the total annual product output P to yield the metric COG/g. The COG/g
values are obtained by running a detailed process economics model, which simulates
the different purification steps based on mass balance and cost equations as defined
in [8].

Constraints: The problem is subject to two types of constraints:

1. Each chromatography step i = 1, ..., k needs to satisfy a resin requirement con-
straint to ensure that the resin volume Vi available for purification at step i is
sufficient to process the mass of product Mi entering that step, given the resin’s
dynamic binding capacity DBC i and the maximum utilization factor κ. Formally,
this constraint can be defined as
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Vi ≥ Mi · κ
DBC i

. (3)

Solutions violating this constraint are considered infeasible and handled using one
of the constraint-handling strategies introduced in Section 3.

2. There is also a demand constraint to ensure that the amount of product manufac-
tured P is sufficient to satisfy the annual demand D, or P ≥ D. This constraint
may be violated for column sizing strategies with long chromatography processing
times Ti. The use of COG/g as the objective function (recall that the product out-
put P is in the denominator of this metric) was found to be sufficient to cope with
this constraint. Hence, if a solution violates the demand constraint, then it is not
considered infeasible.

Uncertainties: Uncertainty related to the product titre can have a significant impact on
the annual product output P . As the equipment sizing is a function of an expected titre
value for bioreactors through to chromatography columns, titre fluctuations can cause
(i) failure to meet demand (if titre is lower than expected) or (ii) product waste (if titre
is higher than expected and equipment capacity is insufficient to process the excess).
Other sources of uncertainty (e.g. yield) may be present and are realistic but are not
considered in this paper.

3 Experimental Setup

This section describes the case study, search algorithms and their parameter settings as
used in the subsequent experimental analysis.

Case Study Setup: The case study considered in this work is industrially-relevant and
focuses on a single-product mAb manufacturing facility that employs a process se-
quence as shown in Fig. 1 (with k = 3 chromatography steps) to satisfy a total product
demand of D = 500kg/year with an expected titre of 3g/L. Titre variabilities were
modeled using the triangular probability distribution, Tr(2.6,3.0,3.4). Three scenarios
of this case study with different ratios of USP:DSP trains were investigated: 1:1, 2:1
and 4:1. The USP train refers to the number of bioreactors operating (in a staggered
mode), and an increase in the USP:DSP ratio corresponds to a decrease in the DSP
window, the time available to perform chromatography. The range of possible decision
variable values is 15 cm ≤ hi ≤ 25 cm (11 values), 50 cm ≤ di ≤ 200 cm (16 values),
1 ≤ nCYC,i ≤ 10 (10 values), 1 ≤ nCOL,i ≤ 4 (4 values), i = 1, 2, 3; i.e. there are
(11 · 16 · 10 · 4)3 ≈ 3.5 · 1011 sizing strategies in total. The sizing strategy employed
in industry is obtained based on empirical rules: a single column nCOL,i = 1 with a
fixed bed height of hi = 20 cm is run for a fixed number of cycles nCYC,i = 5 with the
diameter size di being calculated such that the resulting total resin volume Vi (Equation
(1)) satisfies the resin requirement constraint (Equation (3)).

Search Algorithms: To gain insight into the behavior of evolutionary search algo-
rithms on the chromatography sizing problem, four types of search algorithms were
considered: a standard generational genetic algorithm (SGA), a genetic algorithm with
generation gap (GA-GG), a genetic algorithm with a (μ + λ)-ES reproduction scheme
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(GA-ES), and a population of stochastic hill-climbers (PHC). All four algorithms began
the search with the same initial population containing μ randomly generated solutions.
The algorithms used also the same mutation operator, which selected a decision vari-
able value at random from the set of possible values. SGA used uniform crossover and
random flip mutation as the variation operators, and binary tournament selection (with
replacement) for parental selection; for environmental selection, it replaced the entire
current population with the offspring population. GA-GG and GA-ES differ from SGA
in the environmental selection step only. With GA-GG, the new population was formed
by selecting the fittest μ solutions from the combined pool of the offspring population
and the two fittest solutions of the current population. With GA-ES, a greater degree of
elitism was employed and the fittest μ solutions from the combined pool of the current
population and the offspring population were selected. PHC maintained a population of
stochastic hill-climbers, which, at each generation g, independently underwent muta-
tion and replaced their parent if it was at least as fit.

Accounting of Uncertainty: To account for titre variabilities, m Monte Carlo trials
(based on the probability distribution Tr(2.6,3.0,3.4)) were performed for each candi-
date solution. The fitness of a solution was then the average of the COG/g values across
the m trials, and this average was updated if a solution happened to be evaluated multi-
ple times during an optimization procedure.

Handling of Infeasible Solutions: Five constraint-handling strategies were analyzed
to cope with infeasible solutions (violating Equation(3)). Four of them (RS1, RS2, RS3
and RS4) repaired infeasible solutions, i.e. modified the genotype of a solution, while
strategy RS5 avoided repairing.

The four repairing strategies iteratively increased the values of the decision variables
(associated with a particular chromatography step i), one variable at a time, until Equation
(3) was satisfied or until the maximum value of a variable was reached, in which case the
value of another variable was increased. The sequence in which the variables were mod-
ified affected the search. To investigate this effect, different sequences, represented by
the strategies RS1 to RS4, were analyzed. The strategy RS1 applied repairing according
to the decision variable sequence di → nCYC,i → hi → nCOL,i (where i is the chro-
matography step violating Equation (3)); this sequence represents typical rules applied
in equipment sizing scale-up models. The strategy RS2 employed the inverse sequence of
RS1. The strategies RS3 and RS4 switch between different repairing sequences during
an optimization procedure. While RS3 chooses at random between the two sequences
employed by RS1 and RS2, the strategy RS4 chooses at random among all possible re-
pairing sequences (note, there are 4! sequences in total) whenever it needs to be repaired.
The approach employed by RS4 is plausible e.g. if no prior knowledge about promising
repairing sequences would be available. The strategy RS5 does not apply repairing but
penalizes infeasible solutions by degrading their fitness by a large penalty value c.

The experimental study investigated different settings of the parameters involved in
the search algorithms. The default settings used are given in Table 1. Any results shown
are average results across 20 independent algorithm runs. A different seed was used for
the random number generator for each EA run but the same seeds for all strategies. This
allows for the application of a repeated-measures statistical test, the Friedman test, to
investigate performance differences between algorithmic setups.
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Table 1. Default parameter settings of search algorithms

Parameter Setting

Parent population size μ 80
Offspring population size λ 80

Per-variable mutation probability 1/l
Crossover probability 0.6

Constraint-handling strategy RS1
Number of generationsG 25

Penalty value c 5000
Monte Carlo trials m 25

4 Experimental Results

Before analyzing the behavior of evolutionary search algorithms on the chromatogra-
phy equipment sizing problem, an indication of the properties of the fitness landscapes
spanned by three case study scenarios is given. For this, the adaptive walks method al-
ready used in [7] was adopted. This involved performing 1000 adaptive walks (using a
fixed titre of 3g/L) on the landscape of each scenario, and recording the length and final
fitness of each walk. Figure 3 shows the distribution of both measurements in the form of
boxplots. From Figure 3(a)it can be observed that increasing the USP:DSP ratio decreases
the average length of an adaptive walk. That is, the landscape becomes more rugged, or,
equivalently, the number of local optima increases. This pattern is due to tighter DSP win-
dows, which cause more solutions to violate the demand constraint and thus makes the
problem harder to solve. This also causes an increase in the COG/g values as indicated
in Figure 3(b). The next section presents an analysis of how the search algorithms fared,
for both the deterministic (using a fixed titre of 3g/L) and stochastic scenario.

Deterministic Product Titre: Figure 4(a) analyzes the performance of the search
algorithms as a function of the population size μ. The aim of this experiment was
to understand whether a large population should be evolved for few generations, or
a small population for many generations. This understanding is important when op-
timizing subject to limited resources, such as limited computational power and time
constraints. The figure illustrates that: (i) a population size of around 40 ≤ μ ≤ 80
yielded the best performance for the GA-based algorithms, (ii) GA-ES found the most
cost-effective strategies, and (iii) random search outperforms PHC. Small population
sizes, or search algorithms employing no elitism, such as SGA, did not perform well
due to the high probability of getting trapped in one of the many local optima of the
fitness landscape. Large population sizes converged slowly due to the low number of
generations available for optimization. PHC was inferior to random search because the
hill-climbers could get trapped in local optima, in which case further improvements
were unlikely, while random search kept on generating (at random) new and poten-
tially fitter solutions. (The performance of random search is constant for varying μ as it
depends only on the number of function evaluations performed.)
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Fig. 3. Boxplots showing the distribution of the (a) length and (b) final fitness (COG/g) of 1000
adaptive walks for different USP:DSP ratios. The box represents the 25th and 75th percentile with
the median indicated by the dark horizontal lines. The whiskers represent the observations with
the lowest and highest value still within 1.5 · IQR of the 25th and 75th percentile, respectively;
solutions outside this range are indicated as dots.

Figure 4(b) investigates the performance impact of the constraint-handling strategies
RS1 to RS5 when augmented on GA-ES (a similar performance impact was present
for the other search algorithms). It demonstrated that the constraint-handling strategy
employed had an effect on the convergence speed and the final solution quality. It also
indicated that a repairing strategy (RS1, RS2, RS3 and RS4) should be preferred over
a non-repairing one (RS5). The superior performance of RS1 is due to the fact that the
variable di is modified (increased) first to repair a solution. Unlike to the other vari-
ables, an increase in di is often sufficient to just satisfy the resin requirement constraint
without increasing the processing time. From the performance obtained with RS2, RS3
and RS4 it can be concluded that if di cannot be changed, then either the variable nCYC,i

or hi should be modified to meet the resin requirement constraint.

Stochastic Product Titre: The performance of the algorithms was then investigated
in the presence of uncertain product titres. Figure 5 indicates that uncertainty impacts
negatively the convergence speed and under certain circumstances also the final solu-
tion quality. This impact tends to be less severe as the degree of elitism employed by
an algorithm increases (i.e. the performance of GA-ES is less affected than the one of
SGA). Elitism can help circumventing this issue as it causes a population to converge
(quickly) to a (local) optimal region and then exploit this region. However, on the other
hand, too much elitism (Figure 5(a)) may disturb and prevent the discovery of inno-
vative solutions; here, optimization in a stochastic environment using relatively small
values of m can yield better performance than optimization in a deterministic environ-
ment due to the greater randomness in the search. When the optimizer does not employ
elitism (Figure 5(b)), however, any additional randomness in the search may be a bur-
den (as it can cause a population to oscillate between different search space regions,
preventing or slowing down convergence towards promising regions).

Figure 6 shows the sizing strategies for the most expensive chromatography step
(i = 1) found by GA-ES for the USP:DSP ratios 1:1 (Figure 6(a)) and 4:1 (Figure 6(b))
at the end of the search across 20 independent algorithmic runs. For both scenarios,
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Fig. 4. (a) Average best COG/g (and its standard error) obtained by different search algorithms
as a function of the population size μ; the total number of fitness evaluations was fixed to 2000,
i.e. the number of generations is G = 	2000/μ
. (b) Average best COG/g, as a function of the
generation counter g, obtained by GA-ES using different repairing strategies. Both experiments
were conducted on a chromatography equipment sizing problem featuring a ratio of USP:DSP
trains of 4:1. For each setting shown on the abscissa, a Friedman test (significance level of 5%)
has been carried out: In (a), GA-ES performs best for μ > 40, and in (b), RS1 performs best in
the range 1 < g < 15.
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Fig. 5. Average best COG/g (and its standard error) obtained by (a) GA-ES and (b) SGA in a
deterministic and stochastic environment (using different values for the number of Monte Carlo
trials m) as a function of the generation counter g. For each setting shown on the abscissa, a
Friedman test (significance level of 5%) has been carried out: In (a), GA-ES with m = 10
performs best for g > 15, and in (b), SGA, deterministic, performs best in the range 1 < g < 6.

the solutions shown have COG/g values that do not differ by more than 3% of each
other. Comparing the most cost-effective sizing strategy found by GA-ES (filled bub-
ble) with the strategy used in industry (filled diamond), GA-ES is able to reduce the
COG/g for 1USP:1DSP and 4USP:1DSP by up to 5% (mainly through sizing strate-
gies featuring smaller h1 and/or d1 in combination with more cycles nCYC,1) and 20%
(through sizing strategies exhibiting fewer cycles nCYC,1 and larger d1), respectively.
Another advantage of EAs is that the result of an optimization procedure is a set of
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Fig. 6. Column sizing strategies for the most expensive chromatography step (i = 1) found by
GA-ES at the end of the search across 20 independent algorithm runs (within an uncertain opti-
mization environment) (bubbles) for the scenarios (a) 1USP:1DSP and (b) 4USP:1DSP. The size
of a bubble is proportional to the variable d1; all solutions feature the setup nCOL,1 = 1. The fit-
ness values of all solutions found by the EA for a particular scenario are within 3% of each other.
For each scenario, the filled bubble represents the optimal setup found by the EA. The setup used
by industry is indicated with a filled diamond and was not part of the solution set found by the
EA.

cost-efficient sizing strategies (rather than a single strategy), providing flexibility and
freedom to account for facility space restrictions and user preferences when it comes
to selecting a final sizing strategy. Note, the EA finds more similar solutions for the
scenario 4USP:1DSP than for 1USP:1DSP because the problem is harder to solve, as
already indicated in the landscape analysis conducted previously.

5 Conclusion and Future Work

This paper has considered a real-world problem concerned with the discovery of cost-
effective equipment sizing strategies for purification processes (with focus on chro-
matography steps) of biopharmaceuticals. This application can be formulated as a
combinatorial closed-loop optimization problem subject to (i) expensive fitness eval-
uations, (ii) multiple dependent decision variables, (iii) constraints, and (iv) uncertain
parameters.

The study revealed that EAs can identify a diverse set of equipment sizing strategies
that are more cost-efficient than the strategies used in industry. In particular, the analysis
demonstrated that an EA performs best when elitism is used in combination with a small
number of Monte Carlo trials (to cope with uncertain parameters), infeasible solutions
are repaired using a non-trivial strategy, and (when resources are limited) a medium-
sized population (a size between 30 ≤ μ ≤ 80) is evolved for a relatively large number
of generations.
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Future research will look at extending the equipment sizing problem considered here
with decision variables related to the sequence of a purification process employed. This
will make the optimization tool developed more versatile, and also help gain more in-
sights into the working of EAs.
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Abstract. Simple continuous estimation of distribution algorithms are
applied to a benchmark real-world set of problems: packing circles in a
square. Although the algorithms tested are very simple and contain mini-
mal parameters, it is found that performance varies surprisingly with pa-
rameter settings, specifically the population size. Furthermore, the pop-
ulation size that produced the best performance is an order of magnitude
larger that the values typically used in the literature. The best results in
the study improve on previous results with EDAs on this benchmark, but
the main conclusion of the paper is that algorithm parameter settings
need to be carefully considered when applying metaheuristic algorithms
to different problems and when evaluating and comparing algorithm per-
formance.

Keywords: Estimation of Distribution Algorithms, Circles in a Square
Packing Problems, Parameter Settings.

1 Introduction

Some of the strengths of metaheuristic optimization algorithms are their gen-
eral applicability and ease of implementation to produce good results. When an
algorithm is proposed and evaluated in the literature, parameter values are re-
quired to be specified. While it is recognized that parameters need to be adjusted
for different problems (or, with self-adaptive parameter tuning techniques, dy-
namically during execution), the hope is that performance should be relatively
insensitive to parameter values and that the default values will be a reason-
able starting point. These assertions are not frequently checked in experimental
studies in the literature.

In this paper simple continuous Estimation of Distribution Algorithms (con-
tinuous Univariate Marginal Distribution Algorithm (UMDAG

c ) and the Estima-
tion of Multivariate Normal Algorithm (EMNA)) are applied to a benchmark
real-world set of geometric packing problems (circles in a square). The problems
are representative of real-world packing problems and are known to be challeng-
ing for optimization algorithms. In Sec. 2 we describe the EDAs used and the
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circles in a square packing problems. The methodology used is a sequence of
experiments and results which are described in Sec. 3. In Sec. 4 a discussion of
the results is given and the paper is concluded.

2 Background

2.1 Continuous EDAs: UMDAG
c and EMNA

Estimation of Distribution Algorithms are a class of population-based meta-
heuristics that utilize a probability distribution to direct the search process.
One of the simplest EDAs is the continuous Univariate Marginal Distribution
Algorithm UMDAG

c [10]. In UMDAG
c , new individuals/candidate solutions are

generated using a factorized product of univariate Gaussian distributions. Fol-
lowing truncation selection (retaining the fraction τ of the fittest individuals),
the parameters of these distributions are updated via their maximum likelihood
estimates over the selected individuals. The algorithm is summarized in Table 1.

Table 1. General pseudocode for UMDAG
c

Given: population size p, selection parameter τ
BEGIN (set t = 0) Generate p individuals uniformly random in the search space
REPEAT for t = 1, 2, . . . until stopping criterion is met

Select psel < p individuals via truncation selection
Estimate model parameters μt, σ

2
t via Max. likelihood

Sample p individuals from N (μt, σ
2
t )

t = t+ 1
ENDREPEAT

EMNA is a similar algorithm but uses a full multivariate Gaussian distribution
instead of a factorized product of univariate distributions. The only change to
the pseudocode is the estimation of a sample covariance matrix Σt rather than
individual σ2t values. Many of the continuous EDAs proposed in the literature use
a Gaussian distribution and extend on the basic UMDAG

c and EMNA algorithms.
For implementation, EMNA and UMDAG

c have two parameters: p and τ . For
τ , a range of values have been used in the literature (e.g τ = 0.8 [7]) though
there seems to be a preference for smaller values (e.g. τ=0.2 or 0.3 [3,8,14],
τ=0.5 [5,6,10]). For p, various values have been used from 200 up to 2000 for
test problems typically of dimensionality up to 50-D. p has also been scaled with
dimensionality, e.g. in [2] it is suggested that for UMDAG

c , p ≥ 15d0.5+5 and for
EMNA, p ≥ 4d1.5+16 (note that these guidelines are for modified versions of the
algorithms, incorporating adaptive variance scaling and anticipated mean shift).
In the results below problems up to 60-D are used; these rules would recommend
p ≥ 121 and p ≥ 1875 respectively.
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2.2 Circles in a Square Packing Problems

Circles in a square (CiaS) is a class of well-studied geometric packing problems.
Given the unit square defined in a 2D Euclidean space and a pre-specified num-
ber of circles, nc, constrained to be of equal size, the problem is to find an optimal
packing; i.e. to position the circles and compute the radius length of the circles
such that the circles occupy the maximum possible area within the square. All
circles must remain fully enclosed within the square, and cannot overlap. Math-
ematically, the problem can be stated as follows [1]. Let C(zi, r) be the circle
with radius r and center zi = (yi1, y

i
2) ∈ IR2. Then the optimization problem is:

rn = max r (1)

C(zi, r) ⊆ [0, 1]2, i = 1, . . . , nc (2)

Cint(zi, r) ∩ Cint(zj , r) = ∅ ∀ i �= j (3)

where Cint is the interior of a circle. Alternatively, the problem can be refor-
mulated as finding the positions of nc points inside the unit square such that
their minimum pairwise distance is maximized. In this case the problem (and
constraint) can be restated as:

dn = maxmin
i�=j

‖ wi − wj ‖2 (4)

wi ∈ [0, 1]2, i = 1, . . . , nc (5)

It is known that a solution to (4) can be transformed into a solution to (1) using
the following relation:

rn =
dn

2(dn + 1)
.

From the point of view of evaluating metaheuristic optimization algorithms,
the problem given by (4) is convenient because generating a feasible candidate
solution simply requires placing a set of n points within the unit square. Note
that the optimization problem is over 2nc continuous variables (the coordinates
of each point wi in the unit square).

CiaS packing problems represent a challenging class of optimization problems.
In general, they cannot be solved using analytical approaches or via gradient-
based mathematical optimization. These problems are also believed to generally
contain an extremely large number of local optima. For the related problem of
packing equal circles into a larger circular region, Grosso et al. use a computa-
tional approach to estimating the number of local optima by repeatedly running
a local optimization algorithm over a large number of trials [9]. Although a con-
servative estimate, this indicates that the number of local optima grows unevenly
but steadily, with at least 4000 local optima for nc = 25 and more than 16000
local optima for nc = 40.

Castillo et al.[4] present a survey of industrial problems and application ar-
eas that involve circle packing: including cutting, container loading, cylinder
packing, facility dispersion, communication networks and facility and dashboard



Beware the Parameters: EDAs Applied to Circles in a Square Packing 481

layout problems. CiaS packing problems can be considered as a simplified ver-
sion of such real-world problems and have received a large amount of attention
in the mathematical, optimization and operations research literature (see [4] for
a recent overview). For most values of nc below 60 and for certain other values,
provably optimal packings have been found using either theoretical or compu-
tational approaches (see [12] and the references therein). For larger values of
nc, finding provably optimal packings in general becomes increasingly difficult
and time-consuming. The Packomania website [11] maintains an large list of the
optimal (or best known) packings for many values of nc from 2 up to 10000,
along with references and other related resources.

Previous work has also applied heuristics and global optimization algorithms
to CiaS problems with the aim of finding good solutions but without a guarantee
of global optimality. Some general-purpose metaheuristics such as simulated an-
nealing have been applied [13] as well as special-purpose metaheuristics designed
for the problem (see [1,4,12]). There have been few applications of evolutionary
or population-based metaheuristics to CiaS problems. UMDAG

c was previously
applied to CiaS with little attempt to optimize the algorithm parameters, and
performance was relatively poor.

2.3 Formulating EDAs for CiaS Packing

Using the formulation given in (4), the feasible search space of a CiaS problem is
defined by the unit hypercube [0, 1]2nc ⊂ IR2nc . The UMDAG

c algorithm starts
with an initial population generated uniformly across the search space. It is
clearly easy to achieve this for CiaS problems and this is the approach taken
here. Note however that the use of heuristics exploiting problem knowledge may
lead to improved starting populations.

The feasible search space for CiaS problems is similar to the simple (often
symmetric) box boundary constraint assumed on many commonly used mathe-
matical test functions for benchmarking continuous metaheuristics. However for
CiaS problems, any candidate solution with one or more coordinate values out-
side this region will be infeasible (with an undefined objective function value), in
contrast to an artificial test function (e.g. mathematical equation) where the ob-
jective function can still be evaluated outside the feasible search space. A naive
application of UMDAG

c will thus result in large numbers of infeasible solutions
being generated, since all univariate Gaussian distributions within the model are
capable of generating component solution values in the range [−∞,∞]. While
it is possible to employ a general constraint handling technique (e.g. creating a
penalty function), a simple approach is taken here by repairing infeasible solu-
tions utilizing a small amount of prior knowledge about the problems. Given that
the objective of the problem (in Eqn. 4) is to maximize the minimum pairwise
distance of the nc points to be positioned in the unit square, it is to be expected
that optimal solutions for any size problem will involve positioning a subset of
points on the boundary of the square1. Therefore, to facilitate the generation of

1 Equivalently, an optimal packing of circles will always contain circles that touch the
boundary of the square.
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such candidate solutions, any value in a solution vector generated during a run of
UMDAG

c that lies outside the feasible region is reset to the (nearest) boundary.
That is, ∀ wi = (w1, w2), i = 1, . . . , nc, if w1 < 0, then set w1 = 0 or if w1 > 1
then set w1 = 1, with identical conditions for w2. This simple check is performed
on every generated individual and guarantees the feasibility of every candidate
solution.

3 Experimental Methodology and Results

In this Section a series of experiments are described and results presented for
UMDAG

c and EMNA on CiaS problems. Experiment (a) is a screening experi-
ment to determine reasonable algorithm parameter values which are then applied
to a range of CiaS problems (Experiments (b) and (c)). The first objective is to
provide a set of results on these problems that can be used in comparison for
future research. However the experiments are sequential and dependent, hence
the results obtained in Experiment (a) lead to further investigation of the value
of p (with interesting results) in Experiments (b) and (c). The intention is to be
as transparent as possible about the experiments in contrast to reporting only
the best results obtained after an unreported amount of parameter tuning has
taken place.

The maximum number of function evaluations for each experimental trial
needs to be sufficiently large to ensure that the algorithm has sufficient time to
converge. From the point of view of solving the problem, we anticipate that the
algorithm can obtain good performance in a reasonable amount of function eval-
uations (e.g. polynomial in the problem dimensionality). From the experimental
point of view, we have a finite amount of computing resources and want to con-
duct repeated trials of experiments to examine the statistics of the experiments.
For all the experiments in this paper, the maximum number of functions evalu-
ations was set to MAXF = 107 and each experiment was run for 30 repeated
trials (random initializations).

3.1 Experiment (a): Screening for τ and p

The aim of the first experiment was to determine values for τ and p that provide
good performance. A single problem size (nc = 5) was selected for the experi-
ment, towards the smaller end of the range (for computational speed) but not
at the end of the range (in the hope that higher-dimensional problem features
are present in this problem). The assumption is that parameter values deter-
mined on this problem size will also work well for other CiaS problem sizes.
Note however that it is an assumption made for practical considerations, to find
a reasonable starting point for further experiments. It is unlikely to be optimal
(indeed the experiments further below confirm this with respect to p). Since
0 < τ ≤ 1, a linear grid of 10 values (0.1, 0.2, . . . , 1.0) are selected for experimen-
tation. This assumes that varying τ on a linear scale in this range will provide a
reasonable indication of the sensitivity of performance to τ . For population size,
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1 ≤ p < PMAXF . In practice, p = PMAXF only allows for a single generation of
the algorithm (which amounts to uniform random search). In addition, psel must
be large enough to provide a valid estimate of the UMDAG

c model parameters.
Given that MAXF = 107, the possible range for p spans orders of magnitude,
hence the value chosen here were 20, 200, 2000 and 20000.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Selection parameter

P
er

fo
rm

an
ce

 R
at

io

 

 

p = 20
p = 200
p = 2000
p = 20000

Fig. 1. Results from Experiment (a): performance of UMDAG
c on the nc = 5 problem.

Lines show averages and error bars standard deviations of performance over 30 trials.

Fig. 1 shows the average and standard deviation performance results for this
experiment. Performance is reported as a ratio given by dn

f(xb)
where dn is the

objective function value of the known global optimum (or best known solution)
and f(xb) is the objective function value of a solution found by the algorithm
(or a statistic over such values). This means that the optimal performance value
is 1 and e.g. a value of 1.5 indicates a solution that is 1.5 times (or 50% worse
than) the value of the global optimum (smaller values are better). It is clear
that the larger population sizes (p = 2000 and p = 20000) provide much better
performance. In these cases, a small selection parameter value gives the best
performance and the performance seems relatively insensitive to τ in the range
[0.2, 0.5]. Outside this range, performance deteriorates significantly. Note that
τ = 1 corresponds to no selection pressure (i.e. UMDAG

c repeatedly samples and
estimates its distribution in a form of random search). For p = 20 the value
of psel is very small for small values of τ , which is a likely cause of the high
variability of results in the p = 20 curve when τ < 0.8.

The best performing values of τ are in close agreement with the values used
previously in most of the literature. A population size of 2000 has also been
used previously although it is a relatively large value. However the largest value
used (p = 20000) is an order of magnitude larger and provides good performance
(including the best average value at τ = 0.2).
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3.2 Experiment (b): Performance across Problem Size and p

On the basis of the results from Experiment (a), τ = 0.2 was chosen as a suitable
value for the selection parameter. In Experiment (b), UMDAG

c was run with
τ = 0.2 for problem sizes nc = 2, 3, . . . , 30 (i.e. 4D - 60D problems). Different
population sizes were also run again at the same orders of magnitude except the
smallest (i.e, p = 100, 1000, 10000).
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Fig. 2. Results from Experiment (b): Performance of UMDAG
c across problem sizes

nc = 2, 3, . . . , 30

These results (Fig. 3) show that the performance with p = 10000 is dramati-
cally better than the smaller sizes across all problem sizes tested and the differ-
ence increases steadily with problem dimensionality. For p = 10000, the average
performance remains within approximately 20% of the global optimum. This im-
proves on previous results on these problems with UMDAG

c [7], highlighting the
importance of algorithm parameter settings even with a simple algorithm such
as UMDAG

c . Although for the most part performance worsens gradually with
problem size, there are a few exceptions that were more difficult for UMDAG

c

(e.g. nc = 4, 9, 16) than the next largest problem in each case (regardless of p).
This is surprising because these problems have an intuitively simple solution
(corresponding to a uniform grid layout of circles in the square). Further ex-
periments are required to understand why these problems are more difficult for
UMDAG

c .

3.3 Experiment (c): Further Evaluation of p

To investigate more closely the performance of UMDAG
c for large populations,

the next experiment tested additional population sizes of p = 10000, 12000, 13000,
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Fig. 3. Results from Experiment (c): mean performance results for all problem sizes
nc = 2, 3, . . . , 30 (crosses) across population sizes tested
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Fig. 4. Results from Experiment (d): mean and standard deviation of performance for
EMNA across problem sizes

14000, 15000, 16000, 25000, 30000 for all problem sizes nc = 2, 3, . . . , 30. The av-
erage performance results are shown in Fig. 3. The results show that performance
has unexpected sensitivity to the population size: performance is relatively good
for p = 10000, deteriorates rapidly at p = 12000, 13000, 14000 and 15000, be-
comes good again at p = 16000 and 25000 before finally becoming worse again
at 30000. This behaviour is unusual and does not seem explainable purely by
properties of the algorithm. One possibility is that there is some property of the
CiaS problems that has a complex interaction with the estimation of the EDA
Gaussian model, but this requires further investigation.
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3.4 Experiment (d): Evaluating EMNA with the Same Parameter
Settings

In the final experiment, the performance of UMDAG
c is compared with EMNA. It

is assumed that parameter values that worked well for UMDAG
c could work well

with EMNA because the algorithm are somewhat similar, however this cannot
be guaranteed. EMNA was run with τ = 0.2 and p = 14000, 15000, 16000 across
all problem sizes. The results are shown in Fig. 4.

The performance of EMNA for these parameter settings was very similar to
that obtained for UMDAG

c . The large variability in performance between the
population sizes used is also true for EMNA.

4 Discussion and Conclusions

The experimental results above are an example of the impact that algorithm
parameters can have on the performance of a metaheuristic optimization algo-
rithm. UMDAG

c and EMNA have a minimal number of parameters compared
to most other algorithms and performance was not expected to be highly sen-
sitive to their settings. Nevertheless, the results show that it is important to
devote some effort to choosing these values to obtain good performance. The
values obtained and used here may not provide optimal performance for other
problems and some experimentation with parameter values is necessary. For the
best parameter settings tested, UMDAG

c and EMNA were able to obtain reason-
able performance (i.e. within 20% of the global optimum value) for the range
of CiaS problems considered, which is a significant improvement over previous
results with UMDAG

c [7]. These results were obtained with a typical value for τ
(0.2) but with a much larger population size (p = 10000, 25000) than has been
previously used.

The results show surprising performance variability with p between 10000 and
30000 which demands further investigation. To our knowledge, the literature does
not provide an immediate explanation for this. It would be very interesting if
this performance difference can be attributed to some specific characteristics of
the CiaS problems themselves. An alternative is some kind of implementation
or numerical error (64-bit Matlab R2011b was used for all the experiments on
a Linux PC). The non-monotonic behaviour of performance with problem size
(Fig. 3) also needs to be investigated and explained. One possibility is that the
repair mechanism used to handle the problem constraints has had a significant
impact on these particular problem sizes.
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Abstract. The Natural Evolution Strategies (NES) family of search al-
gorithms have been shown to be efficient black-box optimizers, but the
most powerful version xNES does not scale to problems with more than
a few hundred dimensions. And the scalable variant, SNES, potentially
ignores important correlations between parameters. This paper intro-
duces Block Diagonal NES (BD-NES), a variant of NES which uses a
block diagonal covariance matrix. The resulting update equations are
computationally effective on problems with much higher dimensional-
ity than their full-covariance counterparts, while retaining faster conver-
gence speed than methods that ignore covariance information altogether.
The algorithm has been tested on the Octopus-arm benchmark, and the
experiments section presents performance statistics showing that BD-
NES achieves better performance than SNES on networks that are too
large to be optimized by xNES.

1 Introduction

Natural Evolution Strategies (NES; [11]) have been shown to efficiently optimize
neural network controllers for reinforcement learning tasks [2; 7; 10]. This family
of algorithms searches the space of network weights by adapting a parameterized
distribution (usually Gaussian) in order to optimize expected fitness by means
of the natural gradient. The two main variants of NES, xNES [3] and SNES [7],
make a trade-off between generality and efficiency: xNES (like CMA-ES [5]) uses
a full covariance matrix, capturing all possible correlations between the weights
but at a cost of O(w3), where w is the number of weights. Unfortunately, xNES
does not scale to the space of even modest size neural networks, with hundreds
of weights. At the other extreme, SNES ignores weight correlations altogether
in exchange for O(w) complexity, by using a diagonal covariance matrix. Even
though it cannot solve non-separable problems, it seems to work well for neu-
roevolution, arguably because of the high number of possible solutions for any
given network structure.

SNES updates its search distribution two orders of magnitude faster than
xNES, but, by not taking into account epistatic linkages between network weights

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 488–497, 2012.
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(e.g. arising from correlated inputs), does not make full use of strong regularity
inherent in many control problems. For example, sensors positioned near each
other on a robot body will likely generate correlated readings, and therefore the
corresponding weights processing sensory information will probably be correlated
as well.

In this paper, we introduce a new NES variant that is intermediate between
SNES and xNES in that it allows for correlations between subsets of search
dimensions (e.g. weights), by using a search distribution with a block-diagonal
covariance matrix. By allowing correlations only between some weights, the com-
putational complexity can be reduced significantly vis-a-vis xNES, but this re-
quires first identifying which weights should be grouped together. In a general,
unconstrained optimization setting such properties of the objective (fitness) func-
tion are not known a priori. However, in neuroevolution, the phenotypic struc-
ture provides a natural way to decompose the search space by grouping together
those weights which belong to the same neuron (i.e. network sub-function).

This Block Diagonal NES (BD-NES) uses one full covariance matrix for each
neuron, allowing correlations between all weights of a given neuron, but ignoring
correlation between weights of different neurons. This approach is similar to
cooperative coevolution [4; 6], where each neuron is represented by a separate
sub-genotype, and the complete individual is constructed by concatenating the
sub-genotypes.

The next section derives the new algorithm from the NES family. Section 3,
presents comparative results against SNES. Section 4, discusses the results and
provides some ideas on how to further improve this approach.

2 Block Diagonal Natural Evolution Strategies

BD-NES can be viewed as multiple xNES [3] algorithms running in parallel, one
for each block in the covariance matrix of the search distribution. Of course, the
blocks can be of different size if the relationship between problem dimensions
is known in advance (i.e. whether any two dimension are separable). Here, in
the context of neuroevolution and in the absence of this kind of knowledge,
the division of the network weights into blocks is determined by the number of
neurons in the network architecture, Ψ .

Figure 1 describes the block-diagonal covariance matrix used by the search
distribution. Each neuron, i has its own block, Σi, that captures all of the co-
variances between its incoming connections. Algorithm 1 presents the code for
BD-NES. First, the mean vectors, μi ∈ R

c, and c × c covariance matrices, Σi,
i = 1..n, are initialized, where n is the number of neurons, and c is the number of
incoming connections per neuron. Each generation (the while loop), λ networks
are constructed by sampling from each Gaussian sub-distribution to obtain ψ
neuron chromosomes, zi, i = 1..ψ, (line 5) which are then concatenated into a
complete genome, z, (line 7). The genomes are then transformed into networks,
and evaluated. The fitness achieved by a networks is passed to its constituent
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Fig. 1. Block Diagonal covariance matrix: The search distribution has a separate
block in its covariance matrix for the each neuron (i.e. the covariance between neurons
is zero) in the network architecture being evolved. The block size for a given neuron
is the number of connections entering that neuron. To evaluate the gradient from the
distribution, samples are drawn from the blocks, and then concatenated to construct
the full genotype.

neuron chromosomes (line 10) and used to update the corresponding mean, and
dedicated covariance block using xNES (line 14), described next.

Let p(z | θ) denote the density of the Gaussian with parameters θ = (μ,Σ).
Then, the expected fitness under the search distribution is

J(θ) = Eθ[f(z)] =

∫
f(z) p(z | θ) dz .

The gradient w.r.t. the parameters can be rewritten as

∇θJ(θ) = ∇θ

∫
f(z) p(z | θ) dz

= Eθ [f(z) ∇θ log (p(z | θ))] ,

(see [11] for the full derivation) from which we obtain the Monte Carlo estimate
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∇θJ(θ) ≈ 1

λ

λ∑
k=1

f(zk) ∇θ log (p(zk | θ)) (1)

of the search gradient. The key step then consists of replacing this gradient,
pointing into the direction of (locally) steepest descent w.r.t. the given parame-
terization, by the natural gradient

∇̃θJ = F−1∇θJ(θ) ,

where F = E

[
∇θ log (p (z|θ))∇θ log (p (z|θ))�

]
is the Fisher information matrix;

leading to a straightforward scheme of natural gradient descent for iteratively
updating the search distribution

θ ← θ − η∇̃θJ = θ − ηF−1∇θJ(θ) ,

with learning rate parameter η. The sequence of (1) sampling an offspring pop-
ulation, (2) computing the corresponding Monte Carlo estimate of the fitness
gradient, (3) transforming it into the natural gradient, and (4) updating the
search distribution, constitutes one generation of NES.

In order to render the algorithm invariant under monotonic (rank preserving)
transformations of the fitness values, fitness shaping [11] is used to normalize
the fitness into rank-based utilities uk ∈ R, k ∈ {1, . . . , λ}. The individuals are
ordered by fitness, with z1:λ and zλ:λ denoting the most and least fit offspring,
respectively. The distribution parameters are then updated using the “fitness-
shaped” gradient:

∇θJ =
λ∑

k=1

uk · ∇(θ) log (p(zk:λ | θ)) . (2)

Typically, the utility values are either non-negative numbers that sum to one,
or a shifted variant with zero mean.

Using the same exponential local coordinates as in [3], the update equations
for the sub-distributions are:

μi
new ← μi + ημ ·

λ∑
k=1

uk · zik

Ai
new ← Ai · exp

(
ηA
2

·
λ∑

k=1

uk ·
(
zikz

i�
k − I

))

where Ai is the upper triangular matrix resulting from the Cholesky decompo-
sition of covariance block Σi, Σi = Ai�Ai.

This approach assumes weights of different neurons not to be correlated, but
given the high number of feasible solutions in continuous control problems such
constraint does not usually limit the search.
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Algorithm 1. BD-NES(Ψ)

1 Initialize (μ1, Σ1) . . . (μn, Σn)
2 while not solved do
3 for k ← 1 to λ do
4 for i ← 1 to ψ do
5 zik ∼ N (μi, Σi)

6 end

7 zk ← Concatenate(z1k . . . z
ψ
k )

8 fitk ← Evaluate(zk)
9 for j ← 1 to ψ do

10 fitik ← fitk
11 end

12 end
13 for i ← 1 to ψ do
14 (μi, Σi) ← UpdateXNES(μi, Σi, (z

i
1 . . . z

i
λ))

15 end

16 end

Computational Complexity

SNES and xNES can be thought of as special cases of BD-NES. Let P be a
partition of the weights consisting of b blocks of the same size s, and w be the
total number of weights. SNES considers all weights to be uncorrelated, so s = 1,
and b = w, whereas in xNES all of the weights are considered to be correlated:
b = 1 and s = w, producing the full covariance matrix.

The dominant operation in the NES update step in terms of computational
complexity is the covariance matrix inversion. The computational cost under this
framework is proportional to the cost of inverting each matrix block, times the
number of blocks being inverted, O(bs3). For BD-NES, with neurons defining
the covariance blocks, b = ψ and s = c, where ψ is the number of neurons in the
network, and c is the number of connections per neuron (i.e. the node degree).

For single layer feed-forward networks, c depends only on the number of in-
put/output units specified by the problem domain, and not on the number of
neurons, so the complexity becomes O(ψ); the same as SNES, with an hidden
constant depending on the number of input units in the network.

For fully-connected recurrent neural networks, c grows with the number of
neurons c ∼ ψ (each additional neuron adds a connection to every other neuron),
thus the complexity becomes O(ψ × ψ3) = O(ψ4), which is between SNES and
xNES, as in such networks w ∼ ψ2, making the complexity of SNES O(ψ2) and
that of xNES O(ψ6). The complexity improves further if we assume that for large
networks the connectivity is sparse, with neurons having a fixed average number
of recurrent connections, k, as is the case in real-world complex networks, which
exhibit the small world property [1]. In this case, BD-NES reduces to O(ψ), since
c = k is constant.
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Fig. 2. Octopus-Arm Acrobot Task. A flexible arm consisting of n compartments,
each with 3 controllable muscles, must be lifted from its initial downward-pointing
position (left), against gravity, to touch a goal location (black dot) with its tip. The
behavior shown was evolved through BD-NES.

3 Experiments

BD-NES was tested on a version of the octopus arm control benchmark. This
environment was chosen because it requires networks with thousands of weights
and therefore cannot be solved using modern evolutionary strategies like xNES
and CMA-ES that use a full covariance matrix for the search distribution.

3.1 Octopus-Arm Acrobot Task

The Octopus Arm [12; 13] (see figure 2) consists of p compartments floating in
a 2D water environment. Each compartment has a constant volume and con-
tains three controllable muscles (dorsal, transverse and ventral). The state of a
compartment is described by the x, y-coordinates of two of its corners plus their
corresponding x and y velocities. Together with the arm base rotation, the arm
has 8p+ 2 state variables and 3p+ 2 control variables.

In the standard setup, the goal of the task is to reach a target position with
the tip of the arm, starting from three different initial positions, by contracting
the appropriate muscles at each 1sec step of simulated time. It turns out that it
is very easy to get close to the target from two of the initial positions. Therefore,
we devised a version, shown in figure 2, where the arm initially hangs down
(in stable equilibrium due to gravity), and must be lifted to touch the target
above, on the opposite side of the environment, with its tip. The task is termed
the octopus arm acrobot due to its similarity with the classic acrobot swing-up
task [9].

Also, instead of the standard 8 “meta”–actions that simplify control by con-
tracting groups of muscles simultaneously (e.g. all dorsal, all ventral, etc.), the
controllers must instead contract each individual muscle independently.

3.2 Network Architecture

Networks were evolved to control a n=10 compartment arm using fully-connected
recurrent neural networks having 32 neurons, one for each muscle (see figure 3).
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Fig. 3. Network architecture. The octopus arm is controlled by a single layer re-
current neural network with 82 inputs and 32 neurons (outputs), one for each muscle
in the arm.

The networks have a 32 × 82 input weight matrix, a 32 × 32 recurrent weight
matrix and bias vector of length 32, for a total of 3, 680 weights.

The size of a full covariance matrix to search in 3, 680 dimensions is 3, 6802 =
13, 542, 400 entries. Yet each of the 32 neurons has only 82+32+1 = 115 incoming
connections, so the covariance blocks in BD-NES that have to be inverted have
only 1152 = 13, 225 entries, three orders of magnitude fewer than for the full
covariance matrix.

3.3 Setup

BD-NES was compared with SNES. To provide a baseline, random weight guess-
ing (RWG; [8]) was also used, where the network weights are chosen at random
(i.d.d.) from a uniform distribution. This approach gives us an idea of how dif-
ficult the task is to solve by simply guessing a good set of weights.

The population size λ is proportional to the number of weights, w, being

evolved; set here to λ = 50. The learning rates are ημ = log(w)+3
5
√
w

and ησ =
ηµ

2 .

Each run was limited to 10, 000 fitness evaluations. The fitness was computed
as: [

1 − t

T

d

D
, 0

]
, (3)

where t is the number of time steps before the arm touches the goal, T (set
to 100) is the maximum number of time steps in a trial, d is the final distance
of the arm tip to the goal, and D is the initial distance of the arm tip to the
goal. This fitness measure is different to the one used in [12], because minimizing
the integrated distance of the arm tip to the goal causes greedy behaviors. In
the viscous fluid environment of the octopus arm, a greedy strategy using the
shortest length trajectory does not lead to the fastest movement: the arm needs
to be contracted first, then rotated, and finally stretched upwards towards the
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Fig. 4. Performance on octopus-arm acrobot. BD-NES (top, blue) and SNES
(bottom, red) performance on the octopus arm benchmark. Curves are averages over
20 runs, with error bars showing the corresponding variance.

goal. The fitness function favors behaviors that reach the goal within a small
number of time steps.

3.4 Results

Figure 4 shows the fitness of the best network found so far for the three methods,
averaged over 20 runs (bars indicate variance). BD-NES reaches a fitness equal
to the final fitness of SNES at around 7000 evaluations (30% fewer evaluations),
and does so in 15% less cpu-time1 (55.4min for BD-NES, 65.4min for SNES).

Figure 5 shows the neuron chromosomes at the end of a typical run of (a)
SNES and (b) BD-NES, projected into 3D via principal component analysis.
Each point denotes a neuron sampled from one of final sub-distributions. In all
SNES runs the neuron distributions overlap (note scale), suggesting that the
neurons are functionally more similar than the neurons comprising a network
BD-NES, where neuron clusters are more distinct. While similarity between
neurons is to be expected given the similar function that muscles in adjacent
compartments must perform, different parts of the arm must perform slightly
different tasks (e.g. the muscles controlling the rotation at the base), so that the
specialization occurring in BD-NES could explain the better performance.

1 Reference machine: intel i7 640M at 3.33GHz and 4GB of ram DDR3 at
1066MHz. Mathematica implementation of search algorithm using the Java imple-
mentation of the octopus arm available at: http://www.cs.mcgill.ca/~idprecup/
workshops/ICML06/octopus.html.

http://www.cs.mcgill.ca/~idprecup/workshops/ICML06/octopus.html
http://www.cs.mcgill.ca/~idprecup/workshops/ICML06/octopus.html
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Fig. 5. Neuron specialization. The plots show the 115-dimensional neuron chro-
mosomes in the final population of a typical run, projected into 3D by PCA, for (a)
SNES and (b) BD-NES. For SNES, The neuron clusters overlap and are concentrated
in a small region of the search space. For BD-NES, neuron distributions form distinct
clusters, that are more spread out.

4 Discussion

BD-NES is a novel algorithm of the NES family allowing for partial correlation
information to be retained while limiting the computational overhead. The ex-
periments show that block diagonal covariance matrix adaptation can scale up
to over 3000 dimensions, and search more efficiently than its diagonal-covariance
counterpart, SNES.

For problems where the number of inputs is very large (e.g. video input),
decomposing the network at the level of neurons will not work. In this case,
neurons can use receptive fields that receive only part of the full input, as is
done in convolutional networks. Or, blocks can be built based on inputs rather
than neurons, each block representing the covariance matrix for the weights of
all connections from a particular input to all neurons. Future work will start by
applying the method to a vision version of the task used here, where the network
does not receive the state of the arm, but instead sees the arm configuration from
a 3rd-person perspective, and must solve the task using high-dimensional images
as input.

Acknowledgments. This research was supported by Swiss National Science
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tonomous Control”. Thanks to Jan Koutńık for inspiration and support.
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Abstract. There is a demand to maximize the number of successful
couples in matchmaking parties called “Gokon” in Japanese. In this pa-
per, we propose a method to find good affinity patterns between men and
women from resulting Gokon matches by encoding their attribute infor-
mation into solutions and using an evolutionary computation scheme.
We also propose a system to assign the best members to Gokons based
on the method. To derive good affinity patterns, a specified number of
solutions as chromosomes of evolutionary computation (EC) are initially
prepared in the system. By feeding back the results of Gokon to the
solutions as fitness value of EC, semi-optimal solutions are derived. To
realize the proposed system, we need simultaneous search of multiple dif-
ferent good affinity patterns and efficient evaluation of solutions through
as small number of Gokons as possible with various attribute members.
To meet these challenges, we devise new methods for efficient selection
operation inspired by Multi-niches Crowding method and reuse of past
Gokon results to evaluate new solutions. To evaluate the system, we used
the NMax problem assuming that there would be N good affinity pat-
terns between men and women as a benchmark test. Through computer
simulations for N = 12, we confirmed that the proposed system achieves
almost twice as many good matches as a conventional method with about
half the evaluation times.

Keywords: Evolutionary Computation, Matchmaking Party, Multi-
niches Crowding.

1 Introduction

Recently, the low birthrate has become a serious problem in Japan. One of the
reasons for the problem is the lack of opportunities to find a marriage partner.
For this reason, several local governments and enterprises have provided oppor-
tunities for unmarried people to meet potential marriage partners. In particular,

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 498–507, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Finding Good Affinity Patterns for Matchmaking Parties Assignment 499

matchmaking parties called “Gokon” are now attracting considerable attention
in Japan. It is important for such a matchmaking party to assign participants
so that the number of man and woman pairs likely to begin relationships is
maximized. We regard this pair as a “good match”. However, assigning mem-
bers to a Gokon so as to maximize the number of good matches is difficult since
affinity between men and women is not yet well-understood (prediction prob-
lem), and determining the best Gokon members is also difficult (combinatorial
optimization problem). In this paper, we propose a system to solve these two
problems.

To resolve the prediction problem, Evolutionary Computation (EC) [1] is used.
EC is a well-established method for solution search of the target system and has
a wide range of applications [2]. The system has concatenations of man and
woman attribute information (called the attribute, hereafter) as solutions of EC
(chromosomes or individuals) to find semi-optimal solutions representing a good
affinity by feeding back the number of good matches in a Gokon as fitness values.
To resolve the combinatorial optimization problem, we set Gokons as many as
possible and assign, to each Gokon, a specified number of men and women who
have attribute similar to good affinity obtained as a solution. It is perhaps not
the best way, but we focus mainly on resolving the prediction problem in this
paper.

Since our target prediction problem is a multimodal problem, EC has to find
many peaks (good affinity patterns) in the domain of affinity patterns. However,
most of the existing application studies treat how to find the peak of a unimodal
problem [2]. Our previous research also did not devise a method for solving
multimodal problem [3]. So, the method inspired by Multi-niches Crowding [4]
selection which has a reputation in the EC domain as a technique to calculate
the multi-maximum of multimodal function is adopted in the proposed system.
To find optimal solution of the target problem, an incredibly large number of
Gokons are needed. Thus, the method using archival records to evaluate the
solution instead of doing new Gokons is adopted.

We compared performance of the proposed system with the greedy approach
using computer simulations. The volume of attribute and number of peaks in
affinity domain is twice as large as in previous research [3], and the function
of good match is defined taking into account the uncertainty in the real world
at this time. Through computer simulations, we confirmed that the proposed
system can generate almost twice good matches in half real Gokons compared
to the greedy approach.

2 Gokon Problem

The Gokon problem is to divide a large population (system users) into small
groups (Gokon) with the same number of men and women with good affinity
where each user can be included in different Gokons until he/she makes a match.

Input: The input of the problem is the sets of male participants and female
participants denoted by B = {b1, b2, · · ·} and G = {g1, g2, · · ·}, respectively.
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Each man bi ∈ B and each woman gj ∈ G have k attributes (bi1, bi2, · · ·, bik)
and l attributes (gj1, gj2, · · ·, gjl) respectively, where each attribute represents
his/her feature and/or personality.

Output: The output of the problem is to make h groups (Gokons) that can be
overlapped, where each Gokon has L men and L women from B and G.

Number of Gokons is h, and the i-th Gokon is represented by [Bi, Gi]. The
output is Gokon assignment [B1, G2], · · · , [Bh, Gh] to optimize objective function
and unknown evaluation function F .

Objective Function: Evaluation function F , which returns the number of good
matches in the Gokon [Bi, Gi], is defined. Objective function is to maximize the
sum of F for all h Gokons, and is given by

maximize
∑

i∈{1,...,h}
F (Bi, Gi) (1)

3 Proposed System

We propose a system to evolve the evaluation function of the Gokon problem
using EC and compute Gokon participant lists as shown in Fig. 1. The system
is composed of solutions representing good affinity between men and women
and the following three operators. The EC operator executes EC calculation
(Selection, Crossover and Mutation) to the solutions and generates candidate
solutions (indicated in Fig. 1 as Step.1). The Assignment Operator gener-
ates a participant list corresponding to each candidate solution (indicated in Fig.
1 as Step.2). The Evaluation Operator gives fitness value to each candidate
solution (indicated in Fig. 1 as Step.3). Finally, we update the solutions using
candidate solutions. Running through these steps, solutions will improve gradu-
ally toward optimal solutions. Here, we define initial solutions as first generation
and the solutions updated t − 1 times as t-th generation. At the evaluation of
candidate solution, we want to reduce the number of Gokon times because the
optimal participant lists cannot be obtained until the system finds good affinity.
Until this point, the system inflicts a time and money loss on participants to
make good matches. So, it is desirable to be able to evolve candidate solutions
without doing actual Gokons. Then, we devise a method using archival records
of attributes of good matches indicated in Fig. 1 as Stock.

3.1 Solution

Each solution of EC is coded as a concatenation of attribute of a man and a
woman who are likely to make a good match. The first half of each solution
shows the attribute of a man, and the remaining half shows that of a woman as
in Fig. 2.

Input of the system, man and woman attribute correspond to each half of the
solution. Those attributes are obtained by the system from a user questionnaire
and personality test, the Temperament and Character Inventory (TCI) [5].
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Fig. 1. Outline

Fig. 2. Example of solution representation

However, what information is important for determining an affinity is not
known well academically, and matchmaker companies use slightly different in-
formation on their own. For example, TCI has many question items but the
result of the test is categorized into 12 patterns (it takes only 4 bits). To deter-
mine the element factor of affinity, we estimate that the necessary information
size to encode the solution is down to 20 bits each for man and woman (totally
40 bits).

3.2 EC Operator

The EC Operator performs three operations in solutions: selection, crossover and
mutation. We adopted one-point crossover and mutation that are commonly used
as the EC operations.

However, the Gokon problem is a multimodal function with multiple good
affinities, and solutions need to have diversity to search for multi-optimal so-
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Fig. 3. Scheme of Multi-niches Crowding Factor

lutions. Therefore, we adopted a selection method considering Multi-Niches
Crowding [4](hereafter, we call this the MNC method), which is one of the repre-
sentative methods for keeping diversity in solutions. The MNC method prevents
the increase of similar solutions in subsequent generations.

In the proposed method, first we select randomly m (m ≤ |St|) solutions
as S∗t without overlapping from St as shown in Fig. 3. Second, we select n
(n ≤ |St|) solutions by roulette selection from t-th solutions St. The we apply
EC operations, crossover and mutation, assignment and evaluation to those, and
get Dt (|Dt| = n). Finally, we find the most similar s∗ ∈ S∗t for each d ∈ D
and bring down d or s∗, which has the higher fitness value, into next generation
St+1.

3.3 Assignment Operator

This operator assigns members into the Gokon corresponding to each candidate
solution (generate participant list of Gokon). If a man and woman have the
same attributes as a candidate solution and make a good match, it is natural
and preferable to use this result in calculating a fitness value of this candidate
solution. However, there are very few men and women who have exactly the
same attributes as the candidate solution. So, this operator assigns a specified
number of men and women in the order of similarities. After this operation,
participants are ready to start the Gokon.

Fig. 4. Operation of Assignment Fig. 5. Operation of Evaluation
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3.4 Evaluation Operator

The evaluation operator gives results of the Gokon as a fitness value of the corre-
sponding candidate solution. These results are obtained by the participants joining
each Gokon through a questionnaire. After a Gokon, each participant answers the
questionnaire about the participants of the opposite sex. We use the number of
good matches in the Gokon as fitness value of the solution, with adjustment con-
sidering similarities (described in Sect. 3.3) between their attributes and candidate
solution. That means if a candidate solution is not similar to the attributes of man
and woman who make a good match, the match should not contribute to the eval-
uation of the solution.

Then, we prepare the new index of the similarities called matchrate. Candi-
date solution is denoted by vector s = (s1, · · · , sk+l). We define a pair of man and
woman as (b, g), where attributes of b are (b1, b2, · · · , bk) and g are (g1, g2, · · · , gl),
a vector concatenating those attributes is x = (b1, b2, · · · , bk, g1, g2, · · · , gl) de-
noted by (x1, x2, · · · , xk+l). Hereafter, we call this x the attribute vector. At this
time, matchrate C is given by

C(s,x) =
∑k+l

i=1 match(si, xi)
k + l

(2)

Here, match is defined as follows.

match(si, xi) =
{

1 when (si = xi)
0 (otherwise) (3)

Thus, the sum of the matchrate value in the Gokon is given as the fitness value
of the candidate solution as shown in Fig. 6. The fitness value is going to be 0
when there are no good matches.

Fig. 6. Calculation of matchrate Fig. 7. Evaluation using stock

Furthermore, using this matchrate, we can give fitness value using archival
records of good matches without doing a real Gokon. As shown in Fig. 1, we reserve
attribute vectors of good matches, called stock, in the early phase. When evaluating
the candidate solution, we apply the assignment operator to the stock and real users
in the ratio ofX% to 100−X%. We regard data from Stock as attribute vectors of
real users for evaluating the candidate solutions as shown in Fig. 7.
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4 Experiments

We conducted a computer simulation to evaluate how efficiently the proposed
system can solve the Gokon problem. For evaluation, we defined a benchmark
test called the NMax problem [3].

In the experiment, first we want to confirm if the MNC method works well.
Thus, we compared the solutions obtained with and without MNC. We define
the optimum achievement rate as a metric to evaluate the solutions for this
purpose.

We also measured the total number of good matches for all Gokons using
solutions at 1, 000-th generation. We compared the results between the proposed
method and the greedy method, which is the conventional way to greedily search
for good affinity patterns (i.e., peaks).

4.1 The Benchmark Test (NMax Problem)

The NMax Problem is the problem where N arbitrary bit strings represent the
solutions [3].

Input: Input of NMax Problem is attribute vector x defined in Sect. 3.4 and
N peak vector P = (p1, · · · ,pN ) where pi = (pi

1, · · · , pi
k+l). In the experiment,

b = (b1, b2, · · · , bk) and g = (g1, g2, · · · , gl) are given randomely like (1 0 · · · 1).
Output: Output of NMax is given as follows.

fNMax(x) = max1≤j≤N (match(x,pj)) (4)

Here, j is the index of N which indicates the peak of NMax and match(x,p) is
defined as Eq.(3). The output of the NMax Problem is the degree of how close
the input vector x is to one of the peaks of the NMax problem. When N = 1,
p1 = {1, 1, · · · , 1}, the NMax Problem is identical to the OneMax Problem. We
make a strong assumption that the NMax Problem can represent the existence
of N good affinity patterns (attribute vectors) in real-world.

In this experiment, we improve the NMax Problem to be more realistic. In
real-world Gokon, human decision is often affected by the situation or the state
of mind. So, we add the randomness into the NMax function. The function G,
output of NMax Problem, returns the probability of making a good match by
using fNMax as follows.

G =
{

1 − 1−fNMax

1−β (β ≤ fNMax)
0 (otherwise)

(5)

Here, β is the threshold to make a good match. When output of fNMax is smaller
than β, probability of a good match G equals 0, while for fNMax more than β,
P increases linearly.
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4.2 Optimum Achievement Rate

To evaluate solution s, using optimal solutions pi indicated in Fig. 9 and match
function defined as Eq.(3), the optimum achievement rate R is given by

R = max1≤i≤n(match(s,pi)) (6)

This is the degree of how close the solution is to one of the optimal solutions of
the NMax problem. So, the average value of the solutions described as bellow is
key to understand how close the solutions are to good affinities.

R =
∑|St|

i=0 Ri

|St| (7)

4.3 Comparative Method

In the greedy method, the candidate solution is updated to its most similar
attribute vector of man and woman who make a good match as shown in Fig. 8
and bring down solutions which has the higher fitness value into next generation,
instead of EC operation. This method intends to improve the solutions gradually
as generations progress.

Fig. 8. Greedy Method Fig. 9. NMax Problem (N = 12)

4.4 Experimental Setup

Input Data: The number of participants is 6, 000 (3, 000 men and 3, 000 women),
length of attribute of participant (|bik|, |gjl|) is 20 bits (so that attribute vec-
tor and solution length are 40 bits each), the number of attribute vectors in
stock is 500, the threshold β to make a good match is 0.5 and Gokon size is 30
(|Bi| = 15, |Gi| = 15). Each user can only participate in Gokon five times. The
system replaces the user who made good match or participated Gokon five times
with a new user in every generation.

The EC Parameters: The number of solutions is 30, the selection rate is 0.5,
the crossover rate is 0.95, the mutation rate is 0.2. The solutions are initially
generated by uniform random number.
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In this experiment, if there exist no man and woman who have attribute
similar to the peak of NMax indicated in Fig. 9, the number of good matches
will dramatically decrease. This prohibits the progress in evolving solutions.
Thus, we prepare new attribute randomly which has 1 to 100% similarity to
each peak.

In general, it is important to consider what attributes are needed and how the
attributes are coded as we described in Sect. 3.1. However, in this experiment,
we focus on investigating whether our proposed algorithm can effectively find
optimal solutions (i.e., N good affinities).

4.5 Results

We show the optimum achievement rate for 12Max Problem at 1,000-th gener-
ation in the cases using MNC and not using MNC, respectively in Figs. 10 and
11. The optimum achievement rate R is shown as an average value of solutions.

Fig. 10. Using MNC (R = 81%) Fig. 11. Not using MNC (R = 63%)

As a result, the method using MNC can obtain about 18% higher value than
the method not using MNC.

As shown in Table 1, optimum achievement rate is obtained after 1,000 EC
generations, and number of couples (good matches) is calculated by applying
an assignment operator to the solutions at the 1,000-th generation. Here, R is
shown as an average value of 30 trials, and plus-minus means the standard devia-
tion which started from different initial solutions generated randomly. Proposed
(Stock use: 50%) in Table 1 is the case using stock. In this case, the total times
of real Gokon is 5,250, almost half the times as without stock (stock use: 0%).
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Table 1. Comparison of proposed and greedy method

R± S.D. Number of couples Number of real Gokon
Optimal* 100 ± 0% 6302 ± 24 pairs 0 Times
Proposed (Stock use: 0%) 82 ±1 % 5003 ± 102 pairs 10,000 Times
Proposed (Stock use: 50%) 80 ± 1 % 4698 ± 132 pairs 5,250 Times
Greedy 64 ± 7 % 2530 ± 334 pairs 10,000 Times
* At the case when giving optimal solutions (Fig. 9) into solutions.

5 Conclusions and Future Work

In this paper, we defined the Gokon problem, which assigns men and women
who are likely to make good matches in the same Gokon. We also proposed
the Evolutionary System to solve the problem and evaluated the system using
computer simulation. For the 12Max problem, which is the problem of finding
12 unknown peaks (i.e., good affinity patterns), we confirmed that the proposed
system achieves 82% similarities to optimal solutions and almost twice as many
good matches as the conventional method with about half the evaluation times.

As part of future research, we plan to fill the gap for applying the proposed
system to actual Gokons. To obtain the results of this experiment, we needed
Gokon data for 5 to 10 thousand times. Major companies in this domain in
Japan perform Gokons about 2 to 15 thousand times a year. Thus, if we can use
such data, the system will be available within a more practicable timeframe.
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Abstract. Several general benchmark generators (BGs) are available
for the dynamic continuous optimization domain, in which generators use
functions with adjustable parameters to simulate shifting landscapes. In
the combinatorial domain the work is still on early stages. Many attempts
of dynamic BGs are limited to the range of algorithms and combinatorial
optimization problems (COPs) they are compatible with, and usually the
optimum is not known during the dynamic changes of the environment.
In this paper, we propose a BG that can address the aforementioned
limitations of existing BGs. The proposed generator allows full control
over some important aspects of the dynamics, in which several test envi-
ronments with different properties can be generated where the optimum
is known, without re-optimization.

1 Introduction

Over the years, there has been a growing interest for dynamic optimization prob-
lems (DOPs). However, after years of research, the field of dynamic optimization
still has many open issues. One of them is the development of suitable dynamic
benchmark generators (BGs) that can be easily adapted by researchers. A bench-
mark can be defined as standard test problems designed for the development of
new algorithms and the comparison with existing ones.

A DOP can be otherwise defined as a series of several static instances. Hence,
a straightforward, but not efficient, method to construct a dynamic test problem
is to switch between different static instances that will cause dynamic changes.
However, several general dynamic BGs have been proposed that re-shape the fit-
ness landscape, including: 1) Moving Peaks [1]; 2) DF1 [10]; and 3) exclusive-or
(XOR) [16]. The first two benchmark problems work for the continuous domain
where they use functions with adjustable parameters to simulate shifting land-
scapes. The continuous space can be modelled as a “field of cones” [10], where
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each cone is adjusted individually to represent different dynamics. A similar
approach is not feasible for the combinatorial space because the landscape is in-
distinct and cannot be defined without reference to the optimization algorithm.

The XOR DOP generator [16] is the only dynamic BG for the combinatorial
space that can convert any static binary-encoded problem (with known opti-
mum) to a dynamic environment without affecting the global optimum value.
In this way, one can see how close to the optimum each algorithm performs. A
similar approach does not exist for permutation-encoded problems, such as the
travelling salesman problem (TSP) and the vehicle routing problem (VRP).

In this paper, a general dynamic BG for permutation-encoded (DBGP) prob-
lems is developed which can convert a static problem instance to a dynamic
one, by modifying its encoding. The experiments on some static benchmarks
with known optimum show that the dynamic changes affect the algorithm but
the optimum remains the same. Furthermore, the experiments show that DBGP
can be directly applied to other variants of the fundamental TSP, e.g., the ca-
pacitated VRP [9].

The rest of the paper is organized as follows. Section 2 gives a summary
of dynamic optimization, including the performance measurements, algorithmic
methods, and BGs currently used. Section 3 describes the proposed DBGP. Sec-
tion 4 presents the experimental study, in which DBGP is used to generate
several dynamic test problems from static TSPs and VRPs. Finally, Section 5
concludes this paper with concluding remarks and directions for future work.

2 Background

2.1 Dynamic Combinatorial Optimization

The objective for static optimization problems is to find the optimum solution
efficiently. For DOPs, the environment changes as a function of time t, which
causes the global optimum to move. Hence, the objective for DOPs is to track
the moving optimum efficiently. Formally, a combinatorial DOP can be defined
as Π = (X ,Ω, f, t), where Π is the optimization problem, X is a set of feasible
solutions, Ω is a set of constraints, f is the objective function which assigns an
objective value to a solution x(t), where x(t) = {x1, . . . , xn} is a vector of n
discrete optimization variables that satisfy the constraints Ω, and t is the time.

The main aspects of “dynamism” are the frequency and the magnitude of
environmental changes. The former corresponds to the speed and the latter to
the degree of an environmental change, respectively. An environmental change
may involve factors like the objective function, input variables, problem instance,
constraints, and so on, that cause the optimum to change.

The environmental changes are classified into two types: dimensional and non-
dimensional changes. Dimensional changes correspond to adding/removing vari-
ables from the problem. Such environmental changes affect the representation
of the solutions and alter a feasible solution to an infeasible one. A repair oper-
ator may address this problem, but requires a prior knowledge of the problem
and the dynamic changes. Non-dimensional changes correspond to the change
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of the variables of the problem. Such environmental changes do not affect the
representation of the solutions, and, thus, are easier to address.

2.2 Nature-Inspired Approaches in Dynamic Environments

There is a growing interest in the evolutionary computation (EC) community
to apply nature-inspired algorithms to address combinatorial DOPs due to their
inspiration from nature, which is a continuous adaptation process [5]. Popular
examples of such algorithms are evolutionary algorithms (EAs) [6] and ant colony
optimization (ACO) algorithms [2].

One common characteristic of these nature-inspired algorithms is that they
are iterative. Hence, they are able to transfer knowledge from previous iterations
and adapt to the new environment [1]. EAs have search operators to exchange
information between a population of individuals. In ACO algorithms, ants share
their pheromone trails with other ants to communicate.

The difference between an EA and an ACO algorithm lies in that the former
maintains an actual population of μ solutions, whereas the latter consists of a
“virtual” population. More precisely, ACO is a constructive heuristic in which
all the ants deposit pheromone to mark their solution every iteration. Therefore,
the information of the solutions is only kept to the pheromone trails. The con-
structive procedure of ACO is biased by the existing pheromone trails and some
heuristic information available a priori [2].

2.3 Performance Measurements

For DOPs, it is difficult to analyze the adaptation and searching capabilities
of an algorithm. This is because there is no agreed measurement to evaluate
algorithms and researchers view their algorithms from different perspectives.
Different measurements have been proposed to compare algorithms such as “ac-
curacy, stability, and reactivity” [14], “collective mean fitness” [11], “accuracy
and adaptability” [15], and “performance and robustness” [13].

A common method used to compare algorithms for DOPs is the best offline
performance [5], which is defined as:

PB =
1

G

G∑
i=1

⎛⎝ 1

R

R∑
j=1

P ∗
ij

⎞⎠ , (1)

where G is the number of iterations, R is the number of independent runs, and
P ∗
ij is the fitness of the best solution of iteration i in run j after the last dynamic

change. Apart from the performances which describe the best the system can
do, other researchers are concerned for measurements which can characterize
the population as a whole [13]. Traditionally, the target in DOPs is to track
the moving optimum over time [5]. Recently, a new perspective on DOPs has
been established, known as robust optimization over time (ROOT), where the
target is to find the sequence of solutions which are robust over time [17]. More
precisely, a solution is robust over time when its quality is acceptable to the
environmental changes during a given time interval.
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Other researchers want to observe “how close to the moving optimum a so-
lution, either robust or not, is?”. Probably it is the best way to evaluate the
effectiveness of an algorithm for DOPs, in addition to the time needed to con-
verge to that optimum. However, the global optimum is needed for every chang-
ing environment and this is very challenging due to the NP-Hardness of most
combinatorial optimization problems (COPs). Since a DOP can be considered
as several static instances, a direct way is to solve each one to optimality, which
may be non-trivial or even impossible, especially for large problem instances. It
may be possible on small problem instances, but then it will reduce the useful-
ness of benchmarking. Hence, the need for a BG to address the challenges of
comparison is increased, but it is even harder to develop a BG for DOPs with
known optimum in COPs, without re-optimization.

2.4 Benchmark Generators for DOPs

The field of dynamic optimization is related to the applications of nature-inspired
algorithms [5]. The area is rapidly growing on strategies to enhance the perfor-
mance of algorithms, but still there is limited theoretical work, due to the com-
plexity of nature-inspired algorithms and the difficulty to analyze them in the
dynamic domain. Therefore, the development of BGs to evaluate the algorithms
is appreciated by the EC community. Such tools are not only useful to evaluate
algorithms but also essential for the development of new ones.

The XOR DOP generator [16] is the only benchmark for the combinatorial
space that constructs a dynamic environment from any static binary-encoded
function f(x(t)), where x(t) ∈ {0, 1}n, by a bitwise XOR operator. It simply
shifts the population of individuals into a different location in the fitness land-
scape. Hence, the global optimum is known during the environmental changes.

In the case of permutation-encoded problems, where x(t) is a set of numbers
that represent a position in a sequence, researchers prefer their own benchmark
instances to address different real-world applications, e.g., the dynamic TSP
(DTSP) with exchangeable cities [4], DTSP with traffic factors [8], and dynamic
VRP (DVRP) with dynamic demands.

3 Proposed Dynamic Benchmark Generator

3.1 General Framework

Most research ondynamic optimizationhas beendonewithEAs onbinary-encoded
COPs. Recently, ACO has been found effective on permutation-encoded DOPs,
e.g.,DTSP [8].Due to the highnumber of specializedBGs for permutation-encoded
COPs the establishment of a generalized one that converts the base of a static COP
to a dynamic one is vital. Most of the existing BGs are not easily available and they
are difficult to be adapted. Moreover, on each environmental change, the fitness
landscape is modified no matter whether dimensional or non-dimensional changes
are applied. Hence, it is impossible to know how close to the optimum an algorithm
performs on each environmental change.
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Younes et al. [18] introduced a general benchmark framework that applies a
mapping function on each permutation-encoded individual. The mapping func-
tion swaps the labels, i.e., the city index, between two objects and all the indi-
viduals in the population are treated in the same way. This way, the individuals
represent different solutions after a dynamic change but the fitness landscape
of the problem instance does not change. However, this generator is restricted
to the range of algorithms and COPs that they are compatible with, and it is
limited to the accuracy regarding the magnitude of change.

The proposed DBGP is designed to allow full control over the important
aspects of dynamics and convert the base of any benchmark static COP with
known optimum to a dynamic one without causing the optimum to change. Such
static instances can be obtained from the TSPLIB1 and VRPLIB2, where most
of the instances have been solved to optimality.

The basic idea of the proposed DBGP is to modify the encoding of the problem
instance, instead of the encoding of each individual, i.e., the distance matrix,
without affecting its fitness landscape. To illustrate such a dynamic change, let
G = (V ,E) be a weighted graph where V set of n nodes and E is a set of
links. Each node ui has a location defined by (x, y) and each link (ui, uj) is
associated with a non-negative distance dij . Usually, the distance matrix of a
problem instance is defined as D = (dij)n×n. Then, an environmental change
may occur at any time by swapping the location of some node i with the location
of some node j. In this way, the values in the distance matrix are re-allocated
but the optimum remains the same; see Fig. 1.

The dynamic environments constructed by DBGP3 may not reflect a full real-
world situation but achieve the main goal of a benchmark in which the optimum
is known during all the environmental changes. In other words, DBGP sacrifices
the realistic modelling of application problems for the sake of benchmarking.
Moreover, it is simple and can be adapted to any TSP and its variants to compare
algorithms in dynamic environments.

3.2 Frequency and Magnitude of Change

Every f iterations a random vector r(T ) is generated that contains all the objects
of a problem instance of size n, where T = �t/f� is the index of the period of
change, and t is the iteration count of the algorithm. For example, for the TSP
the objects are the cities which have a location (x, y). The magnitude m of
change depends on the number of swapped locations of objects.

More precisely, m ∈ [0.0, 1.0] defines the degree of change, in which only the
first m× n of r(T ) object locations are swapped. In order to restrict the swaps
to the first cities, a randomly re-ordered vector r′(T ) is generated that contains
only the first m×n objects of r(T ). Therefore, exactly m×n pairwise swaps are

1 Available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
2 Available at: http://neo.lcc.uma.es/radi-aeb/WebVRP/ or
http://www.or.deis.unibo.it/research pages/ORinstances/

VRPLIB/VRPLIB.html
3 Available at: http://www.cs.le.ac.uk/~mm251

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html
http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html
http://www.cs.le.ac.uk/~mm251
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Fig. 1. Illustration of the distance matrix with the optimum solution of the problem
instance before and after a dynamic change

performed using the two random vectors starting from the first pairs. In Younes’
generator [18], the magnitude of change is expressed as the number of swaps
imposed on the mapping function. In this way, the objects affected from the
dynamic change may not correspond to the predefined magnitude parameter.
For example, if m = 0.5, half of the objects may be swapped with the remaining
half of the objects of the optimization problem. Hence, the change affects all the
objects and may be considered as m = 1.0.

The frequency of change is defined by the constant parameter f which is
usually defined by the algorithmic iterations. However, before each environmen-
tal change, the previous pairwise swaps are reversed, starting from the end of
r(T−1) and r′(T−1). In this way, the environmental changes are always applied
to the encoding of the initial static problem instance.

3.3 Effect on Algorithms

DBPG can be applied to algorithms that either maintain an actual population or
not, because the dynamic changes occur to the encoding of the actual problem
instance. In this way, the solutions of EAs with the same encoding as before
a dynamic change have a different cost after a dynamic change. On the other
hand, the constructive procedure of ACO is affected since different heuristic
information is generated whereas the pheromone matrix remains unchanged.

In general, DBGP shifts the population of EAs and biases the population of
ACO algorithms to a new location in the fitness landscape. Younes’ generator
assumes that the solver has a population of solutions since the mapping function
is applied on the encoding of each individual, e.g., EAs. Hence, it cannot be
applied to algorithms that do not maintain an actual population, e.g., ACO.
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Another advantage of the DBGP against Younes’ generator [18] is that in the
VRP the solutions after a dynamic change may represent an infeasible solution
when EAs are used. This is because when the label of the customer changes
then its demand changes, and the capacity constraint is possible to be violated.
Hence, a repair operator or a penalty function has to be applied. The proposed
DBGP overcomes this problem since only the location of the customer changes
whereas the label and the demand remain unchanged.

3.4 Cyclic Dynamic Environments

The default dynamic environments generated by DBGP do not guarantee that
any of the previously generated environment will re-appear. Such environments
are called random dynamic environments in this paper. In fact, some algorithms
that are enhanced with memory are expected to work better on dynamic envi-
ronments that re-appear in the future [1]. Such environments are called cyclic
dynamic environments in this paper, and they can be generated as follows. First,
we generate K random vectors (r(0), . . . , r(K− 1)) with their corresponding re-
ordered vectors as the base states in the search space. Initially, the first base state
is applied. Then, every f iterations the previous dynamic changes are reversed,
and then the new ones are applied from the next base state. In this way, it is
guaranteed that the environments generated from the base states will re-appear.

DBGP has two options for cyclic dynamic environments regarding the way
the base states are selected: 1) cyclic, where the base states are selected as in a
fixed logical ring; and 2) randomly, where the base states are selected randomly.

From the above cyclic environment generator, we can further construct cyclic
dynamic environments with noise as follows. Each time a new base state is to be
selected, swaps are performed from the objects that are not in the r(T ) with a
small probability, i.e., pnoise. Note that the swaps occurring from the noise are
reversed in the same way as with the dynamic changes above.

3.5 Varying f and m Parameters

In the random and cyclic environments, the f and m parameters remain fixed
during the execution of the algorithm. An additional feature of DBGP is to
vary the values of f and m with a randomly generated number with a uniform
distribution in [1, 100] and [0.0, 1.0], respectively, for each environmental change.

4 Experimental Study

In this section, we perform some preliminary experiments based on two of the
best performing ACO algorithms, i.e., MAX − MIN Ant System (MMAS)
and Ant Colony System (ACS) [2], on two well-known COPs, i.e., TSP and
VRP. From some static benchmark instances of these problems a set of dynamic
test cases is generated using the proposed DBGP to test if the parameter m
corresponds to the degree of a dynamic change.
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Fig. 2. Overall offline performance of ACO algorithms for different problems with
different dynamic properties against the known global optimum

In Fig. 2 we illustrate our preliminary results on dynamic test environments
with different properties. The algorithms perform 1000 iterations for 30 runs and
PB, defined in Eq. (1), is chosen. On each iteration the algorithms perform the
same number of function evaluations for a fair comparison. The first two graphs
represent the performance of the aforementioned algorithms to a DTSP with a
cyclic environment (of four base states), the middle graphs represent a DVRP
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with a random environment and the last ones a DTSP with varying m and f
(left) and the corresponding values of m for each iteration (right).

From the experiments we can observe that MMAS performs much closer to
the optimum when m = 0.1, since the changing environments are similar and
the knowledge transferred is useful. On the other hand, the performance of ACS
is inferior to MMAS in all dynamic test cases. The most important observation
from the experiment is the reaction of algorithms to different values of m. In
Fig. 2, the algorithms have a small drop in the offline performance when a change
occurs with m = 0.1, and a large one when m = 0.75. This shows that DBGP
defines and controls the degree of change with parameter m appropriately.

5 Conclusions and Future Work

The construction of benchmark DOP generators is important for the empirical
comparison of algorithms in the EC community, due to the limited theoretical
work available. This paper proposes a general BG for dynamic permutation-
encoded COPs that modifies the encoding of the problem instances, to introduce
dynamic changes. The proposed DBGP converts any static benchmark instance
to a dynamic test environment with different properties.

In order to test DBGP, some preliminary experiments with dynamic test envi-
ronments generated with DBGP for the DTSP and DVRP are carried out using
ACO algorithms. From the experiments, it can be investigated how close to
the optimum each algorithm converges on each environmental change. Although
DBGP lacks a real-world application model, it is a simple method to empirically
analyze algorithms on permutation-encoded DOPs, and can be easily adapted.

Therefore, an interesting future work is to add to the DBGP more real-world
related models, such as the time-linkage property where the future behaviour of
the problem depends on the current or a previous solution found by the algorithm
[12]. Furthermore, it will be interesting to integrate DBGP with the ROOT
framework [3,17]. Another future work, is to test DBGP on more permutation-
encoded problems, such as the capacitated arc routing problem, which is the arc
counterpart of the VRP [9].
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Abstract. We analyse the impact of dynamic training scenarios when evolving
algorithms for femtocells, which are low power, low-cost, user-deployed cellular
base stations. Performance is benchmarked against an alternative stationary train-
ing strategy where all scenarios are presented to each individual in the evolving
population during each fitness evaluation. In the dynamic setup, different training
scenarios are gradually exposed to the population over successive generations.
The results show that the solutions evolved using the stationary training scenar-
ios have the best out-of-sample performance. Moreover, the use of a grammar
which produces discrete changes to the pilot power generate better solutions on
the training and out-of-sample scenarios.

1 Introduction

Femtocells are low power, low-cost, user-deployed cellular base stations (BS), which
operate in dynamic environments. A significant issue facing the developers of the algo-
rithms which control the behaviour of femtocells is how best to design the algorithms to
handle these unforeseen, dynamic environments. In previous studies [12, 11] we have
successfully examined the suitability of Genetic Programming (GP), and a grammar-
based form of GP [14], Grammatical Evolution (GE) [6], to generate control algorithms
for these devices. In these earlier studies a predefined, static set of scenarios are exposed
to the evolving population to determine the quality of the evolving solutions.

Our aim in this study is to examine the impact of the training scenarios employed on
the quality of the evolved solutions. More specifically we ask:

– Is there a difference in the robustness of solutions (out-of-sample) based on the use
of stationary versus dynamic training scenarios?

The remainder of the paper is structured as follows. In Sect. 2 the femtocell problem
is described. Experiments and results are in Sect. 3 and 4. Finally, the conclusion and
future work is presented in Sect. 5.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 518–527, 2012.
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2 The Femtocell Problem

As is the case with other physical network infrastructure such as base stations, there
are a number of issues surrounding the optimal placement of the hardware in addition
to the design of algorithms which manage the performance of hardware networked in
this manner. Femtocells are low power, low-cost, user-deployed cellular base stations.
Therefore, in the case of femtocells the designer of the software does not know a-priori
where (and how many) femtocells might be deployed in a site.

If we consider an intended area of coverage, e.g. an office environment as shown in
Fig. 1(c), where a group of femtocells is deployed to jointly provide end-user services,
we focus on the problem of distributed coverage optimisation by adjusting the pilot
power of the BS in order to alter the coverage of the femtocells. The objectives are:

Mobility: To minimise mobility events (handovers) between femtocells and macrocells
within the femtocell group’s intended area of coverage.

Load: To balance the load amongst the femtocells in the group to prevent overloading
or under-utilisation.

Leakage: To minimise the leakage of the femtocell group’s coverage outside its in-
tended area of coverage.

There have been previous studies of applying EC to telecommunication problems [1].
But only two specifically regarding femtocell coverage algorithms and EC, one using
GP [12] and another using GE [11]. Most related work in the literature regarding cellu-
lar coverage optimisation deals with centralised computation methods [16, 8], e.g. the
calculation of parameters such as the number and locations of BS, pilot channel trans-
mit powers, or antenna configurations using a central server running an optimisation
algorithm. Many studies also focus on determining the optimal BS numbers or place-
ments to achieve the operator’s quality of service or coverage target. This approach is
not always practical because network design is restricted by BS placements, and in the
case of femtocells these are physically deployed by the end-user.

3 Experimental Setup

In the femtocell problem we face a number of challenges, the most pressing of which
are (i) fitness evaluations are computationally expensive, and (ii) it is not clear how best
to design the fitness evaluations in terms of the type and number of training scenarios
presented to the evolving population. In this study we focus on understanding how to
best design a fitness function by examining the robustness of solutions evolved using
dynamic and stationary training scenarios. In terms of computational expense, the dy-
namic training scenarios are potentially attractive as less scenarios are presented to each
individual of the population, thereby reducing the evolutionary algorithms run time. In
addition, there are potentially performance gains to be achieved by adopting dynamic
environments during evolutionary runs, for example, see [15]. We therefore study the
robustness of solutions depending on how they have been evolved. The two approaches
we use to drive evolution are:
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Stationary training scenario: The fitness function employs multiple training scenar-
ios at each generation. The training fitness is calculated as the average fitness across
each training scenario presented to the individual.

Dynamic training scenario: The fitness function is comprised of a single training
scenario at each generation and as the generations progress the training scenario
changes.

The guidance of the search towards a solution is different for each setup. The stationary
setup is comprised of multiple training scenarios, where evolution is trying to find a
general solution by averaging the fitness over several scenarios. The reasoning is that
solutions that are too specialised will be avoided since a solution must have good fitness
on all the scenarios. In contrast, the dynamic setup exposes the evolving population to
a single scenario which changes over time, attempting to guide the population towards
solutions which can behave well on scenarios presented over different environmental
conditions. There are more assumptions and uncertainties in the dynamic scenario re-
garding the robustness of the solution. First, the search must be given enough evalua-
tions in each scenario to find good solutions. Then, the next scenario needs to be similar
enough to allow the search to gain advantage from existing parts in the solutions. Thus,
this is a potentially powerful approach for stimulating generic parts in solutions. Al-
though it requires the capability of the search method and setup to represent and identify
general components which are preserved during the search.

3.1 Simulation Model

A user mobility and traffic model is employed, where users are initially randomly placed
at way points on the map and moving at a speed of 1ms−1, spending some time at
a way point before moving to another. In total 50, 200 and 400 users are modelled,
in low (l), medium (m) and high (h) load scenarios. Each user’s voice traffic model
produces 0.2 Erlangs of traffic during 24 hours of simulated operation time, with the
algorithm adjusting the femtocell pilot power after collecting statistics for 30 minutes.
The algorithm start time for each femtocell is randomly dithered with, and the initial
pilot channel power ρ = −30dBm, ρ ∈ [−50,−49, . . . , 11]. Femtocell to macrocell
handovers are triggered when a user terminal’s pilot channel receive power from the
best femtocell goes below −100dBm. Outside cell users move east-west and west-east
on the north and south edges of the map. When the signal leakage is strong enough the
outside user request a handover to the femtocell and a rejection is recorded. The outside
user tries to connect once to each leaking femtocell when moving through the femtocell
coverage.

Office (O12, O8, O4). The number of BS in the office environment are 12, 8 and 4,
shown in Fig. 1. The scenario with 12 BS is denoted O12. In O4 the coordinates have
been slightly altered compared to the O8 and O12 scenarios, by moving the BSs closer
to the walls.

The building is an office with cubicles, closed meeting rooms, and toilets. The ex-
terior of the building is mainly glass and the interior is mostly light interior walls and
cubicle partitions. This is a realistic plug-and-play femtocell deployment, which can be
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(a) Od4 (b) C5 (c) O12

Fig. 1. Received pilot power for the Outdoor(Od4) 1(a), Cross(C5) 1(b) and Office(O12) 1(c)

sub-optimal due to the lack of exhaustive cell planning. In the simulation each femto-
cell has a maximum capacity of 8 voice calls, a macrocell underlay coverage is also
assumed. A path loss map is generated for the 450m x 500m area for each femto-
cell. For shorter distances the PL, path loss (dB) at d (meters) from a BS is mod-
elled as 38.5 + 20log10(d) + PLwalls, with a smooth transition to 28 + 35log10(d) +
PLwalls otherwise. A correlated shadow fading with a standard deviation of 8 dB
and spatial correlation of r(d) = ed/20. The assumed transmission losses for the ex-
plicit building model are a function of the incident angle, this model is taken from
Ho et al. [12].

Outdoor (Od4). There are no walls and the BS placement is the same as in O4.

Cross (C5). There are walls and 5 BS. All the way points and hot-spots are different
from O12 and set to explicitly model the need for load balancing by overloading some
cells and under utilizing others. Moreover, a different path loss model is used.

The training scenarios are Od4, C5, O12 with medium load, the validation scenario
is O4l, and the test scenarios are O8, O4 at low, medium and high load. The dynamic
setup starts with Od4, see Fig. 1(a). The next scenario is C5 Fig. 1(b). The last scenario
is O12 Fig. 1(c). Thus, there is an increase in number of BS and the walls between each
scenario. The stationary scenarios evaluate on all the scenarios at every iteration.

3.2 Evolutionary Algorithm

In this study we use a Matlab implementation of GE, GEM 1. Two different grammars
are tested (denoted CG and SRCG). A conditional grammar that changes the pilot power
with discrete values and a conditional equation grammar changing the pilot power with
continuous values calculated from generated equations. The search space is very differ-
ent for the grammars. A difference in performance is to be expected with the number
of fitness evaluations used. In addition, the expected result from the different scenar-
ios would be that stationary scenarios should perform well since it is always the same
underlying simulation model. The setup is the same as Hemberg et al. [11].

1 http://ncra.ucd.ie/GEM/GEM.tgz

http://ncra.ucd.ie/GEM/GEM.tgz
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<CODE> ::= if gt(my_handover, MT)
if gt(my_load, LT)

if gt(my_macro_requests, LeT)
<function>

else
<function>

else if gt(my_macro_requests, LeT)
<function>

else
<function>

else if gt(my_load, LT)
if gt(my_macro_requests, LeT)

<function>
else

<function>
else if gt(my_macro_requests, LeT)

<function>
else

<function>
<function> ::= <terminal><function> | <terminal>
<terminal> ::= my_power = increase_power(my_power);

| my_power = decrease_power(my_power);
| my_power = do_nothing(my_power);

Fig. 2. Conditional statement grammar (CG)

<function> ::= my_power = <expr_0>;
<expr_0> ::= (<expr><op><expr>) | <pre-op>
<expr> ::= (<expr><op><expr>) | <var> | <var> | <var> | <var>

| <pre-op> | <pre-op_step> | <pre-op_monotone>
<pre-op> ::= sin(real(<expr>)) | cos(real(<expr>))

| log(real(<expr>)) | tan(real(<expr>))
<pre-op_monotone> ::= exp(real(<expr>)) | uminus(<expr>)
<pre-op_step> ::= atan(<expr>) | tanh(<expr>) | sigmoid(<expr>)
<var> ::= my_power | my_load | my_handover | my_macro_requests

| <cnst>
<cnst> ::= <nr><nr> | <nr> | 0.<nr><nr> | 0.<nr>
<nr> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Fig. 3. Symbolic Regression and Conditional Statement Grammar (SRCG). Only the differences
between the CG (Fig. 2) is shown

Conditional Statement Grammar (CG). We construct a grammar using conditional
statements. The thresholds and the size of the increase and decrease of power needs to
be predetermined. Here the change is 1dBm and the thresholds are mobility (MT = 0),
leakage (LeT = 0) and load (LT = 7).

Symbolic Regression and Conditional Statement Grammar (SRCG). Creates equa-
tions and uses thresholds as in CG. Only the differences in CG and SRCG are shown
in Fig. 3. To create the SRCG we combine the grammar in Fig. 2. The multiple <var>
productions keeps the grammar from “exploding”, see Harper [10]. The grammar
adopted in this study is in MATLAB syntax. A wide range of functions were used and
only the real valued part of the function values was used. The unary minus is uminus.

Fitness Function. Statistics of mobility, load and leakage are collected over a speci-
fied update period. These statistics are then used as inputs into the algorithm, and for
calculating the fitness. The duration of the simulation is T , the number of femtocells is



Evolving Femtocell Algorithms with Dynamic and Stationary Training Scenarios 523

N , and x is a vector of femtocells. The fitness is a vector comprised of the fitness for
each function, f = [fM (M(h, r)), fL(L(x)), fLe(Le(x))]. The mobility objective is
conflicting with load and leakage, leakage can also conflict with load. All the objectives
are normalized and equally important.

Mobility fitness is the number of handovers and relocations of users. The mobility
events between femtocells and macrocells are recorded for each period. The number
of femtocell handovers is h, macrocell handovers is hM , femtocell relocations is r,
and macrocell relocations is rM . Mobility, M , is the ratio of update periods where a
mobility event occurs divided by the total number of update periods.

MM
b (h, r) =

T∑
t=0

N∑
i=1

hMit +
T∑

t=0

N∑
i=1

rMit

Mb(h, r) =M
M
b (h, r) +

T∑
t=0

N∑
i=1

hit +

T∑
t=0

N∑
i=1

rit

The mobility fitness is maximised when there are no handovers or relocation to the
macrocell underlay, and is 0 when all femtocell user handovers are to or from macro-
cells, otherwise

M(h, r) =

{
MM

b (h, r)/Mb(h, r) ifMb(h, r) > 0

1 ifMb(h, r) = 0

Load fitness has the objective that the femtocells should serve enough users. It is based
on the ratio of average number of times the load has been greater than a defined max-
imum load threshold, LT , and the total load, including the macrocell. If the mean cell
load during an update period exceeds LT then L is equal to one, else it is equal to zero.
Cell load is 0 ≤ x ≤ 8 in this scenario, LT = 7, below the capacity of the femtocell,
to prevent operation at full capacity. Total load is the sum of the femtocells and the
macrocell, LM .

L(x) =

{
LT if x > LT

x if x ≤ LT

Average load is L(x) =
∑T

t=0

∑N
i=1 L(xit)/LM (xt).

Leakage fitness is the number of outside users trying to use the femtocell. Leakage
increases the number of unwanted users captured, which increases the signalling load
to the core network. The leakage, Le is the ratio of blocked calls, y, to the maximum
number of macrocell users, CMU , 0 ≤ y ≤ CMU with Le(y) = 1 − y/CMU .

GE Parameters. The evolutionary parameter settings for the GE algorithm are pre-
sented in Table 1.

Nodal mutation [4] is used instead of the standard integer mutation. The multiple
objectives are tackled with the NSGA-II, see Deb et al. [5]. When reinitializing indi-
viduals the max derivation tree depth is picked from the distribution of derivation tree
depths in the first front. This is both an attempt to restrict bloat and search at derivation
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Table 1. Parameter settings for the experiments (dynamic setup (DTS) stationary setup (STS))

Parameter Value
Max wraps 2
Codon size 128
Population size 20
Initialisation Ramped half-and-half
Initialisation depth 8
Generations STS:10; DTS:30
Tournament size 2
Crossover probability 0.5
Mutation 1 event per individual
Parsimony pressure True
Runs 28

tree depths where good solutions have been found. All evaluated solutions are added to
a tabu list and if a solution is in the tabu list the solution will be reinitialized [11]. Fur-
thermore, monotone solutions are not allowed, i.e. only static, increasing or decreasing
power.

To find solutions which maximizes one objective and those which have uniform fit-
ness components we use the method from Jain et al. [13] to modify the fitness, where
a score of one is the components are uniform and zero they are non-uniform, φ(x) =
(
∑n

i=0 xi)
2

n
∑n

i=0 x2
i

. We penalise the fitness function vector, f(x) to get f ′(x) by modifying it

with its score, h(x), where h(x) = 1 − φ ◦ f(x) and f ′(x) = e−h(x)(1 − h(x)
1/4

).

4 Results

The grammars and setups are run independently 28 times with different seeds for the
pseudo-random number generator. To simplify the presentation the average of the fit-
ness function vector is shown. Figure 4(b) outlines the results, in terms of the run time
of the dynamic (DTS) versus stationary (STS) setups. We can observe substantially
lower run times for the DTS. Both setups use the same number of fitness evaluations
and the total run-time was also significantly different, from a t-test at a 0.05-level, for
all comparisons except SRCG in DTS and STS.

With respect to the quality of solutions evolved using the different training scenarios,
training results are presented in Figure 5, validation performance in Fig. 4(a), and out-
of-sample performance outlined in Table 2.

The mean fitness of all objectives from the training fitness of all solutions in the
population, excluding extreme solutions, progresses towards higher fitness, shown in
Fig. 5. Since there are changes in the fitness function and the values are the average
of the front it is possible for the fitness value to drop. The values decrease when more
solutions with lower average are added to the first front. The difference between the
methods is significant as can be seen by the non-overlapping error-bars. The graphs
show that the representation in CG finds good solutions very fast in comparison to
SRCG. The SRCG also has a larger standard deviation. Note that the graphs only show
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Fig. 4. In Fig. 4(a) the average validation fitness of the first front is shown, which is slightly
increasing. The values decrease when more solutions with lower average are added to the first
front. In Fig. 4(b) comparison of evolutionary run times for the dynamic and stationary training
scenarios. On average run times are considerably lower for the dynamic training scenarios, and
on comparison of the grammars adopted the SRCG form provides additional gains.

Table 2. Fitness on test data for the non-extreme solutions on the first front. The columns show to-
tal number of solutions on the fronts in the runs (Total), average fitness of the solutions on the first
front (Avg Fit), standard deviation (Std), median (Med ), minimum (Min) and maximum (Max).

Version Total Avg Fit Std Med Min Max
CG STS 59 0.467 0.033 0.471 0.374 0.521
SRCG STS 97 0.301 0.077 0.316 0.130 0.458
CG DTS 84 0.349 0.172 0.421 0.031 0.506
SRCG DTS 110 0.244 0.120 0.265 0.000 0.451

the training fitness during the runs and it is not possible to compare the values between
DTS and STS since the fitness in the dynamic scenario is only for the current scenario.
Thus, a validation scenario was used and in Fig. 4(a) the average validation fitness of
the first front is shown, which is slightly increasing.

The non-extreme solutions from the first front for each run are evaluated on the
test scenarios. The average of the fitnesses and the average of the first front is chosen
in order to allow simple comparisons. This approach was chosen since there can be
multiple solutions with the same fitness but different phenotypes and the out-of-sample
quality of the solutions is unknown. There is a significant difference in fitness according
to the non-parametric Wilcoxon rank sum test for equal medians at a 0.05-level for all
values. Thus, we can conclude that for the femtocell scenarios examined here the test
performance was best when using the STS setup. It is worth noting that with the SRCG
and the DTS some solutions generated invalid values in the test scenarios. As expected
the DTS have a higher standard deviation compared to the STS.
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Fig. 5. Average training fitness of non-extreme solutions

5 Conclusions and Future work

A significant issue facing the developers of the algorithms which control the behaviour
of femtocells is how best to design the algorithms to handle these unforeseen, dynamic
environments. In this study we examined this issue with respect to the design of fitness
functions for an evolutionary algorithm which evolves algorithms to control femto-
cell behaviour. More specifically we asked “Is there a difference in the robustness of
solutions (out-of-sample) based on the use of stationary versus dynamic training sce-
narios?”. Given the experimental setup adopted in this study it was found that, while
the dynamic training scenarios result in more efficient run times, the stationary train-
ing scenarios produce more robust solutions. In future work we will examine different
approaches to the dynamic environment setup, and adopt a wider range of scenarios
in each case. There are also potentially many lessons to be learned from, for example,
the statistical machine learning literature on best to design training to achieve solu-
tions which generalise beyond training data (e.g., [7, 3, 9, 2]). We will examine if these
methods can complement the evolutionary search adopted here.
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Uludağ, Gönül II-358
Urbanowicz, Ryan J. I-266
Urli, Tommaso I-102

Vanden Berghe, G. II-408
Verbeeck, K. II-408
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