
Chapter 8
Stellar Tides

Jean-Paul Zahn

Abstract To a first approximation, a binary star behaves as a closed system; there-
fore it conserves its angular momentum while evolving to its state of minimum ki-
netic energy, where the orbits are circular, all spins are aligned, and the components
rotate in synchronism with the orbital motion. The pace at which this final state is
reached depends on the physical processes responsible for the dissipation of the tidal
kinetic energy. For stars with an outer convection zone, the dominant mechanism is
presumably the turbulent dissipation acting on the equilibrium tide. For stars with
an outer radiation zone, the major dissipative process is radiative damping operating
on the dynamical tide.

I shall review these physical processes, discuss uncertainties in their present treat-
ment, describe the latest developments, and compare the theoretical predictions with
the observed properties concerning the orbital circularization of close binaries.

8.1 Introduction

A fundamental property of isolated mechanical systems is that they conserve their
total angular momentum while they evolve. This is true in particular for binary stars,
and star-planet(s) systems, as long as one can ignore the angular momentum that is
lost by the winds or by gravitational waves. Through tidal interaction, kinetic energy
and angular momentum are exchanged between the rotation of the components and
their orbital motion. In general, as we shall see, the system evolves toward an equi-
librium state of minimum kinetic energy, in which the orbit is circular, the rotation
of both stars is synchronized with the orbital motion, and their spin axes are perpen-
dicular to the orbital plane. How rapidly the system tends to that state is determined
chiefly by the strength of the tidal interaction, and therefore by the separation of the
two components: the closer the system, the faster its dynamical evolution. But it also
depends strongly on the efficiency of the physical processes that are responsible for
the dissipation of kinetic energy into heat.
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Provided these dissipation processes are understood well enough, the observed
properties of a binary system can deliver important information on its evolutionary
state, on its past history, and even on the conditions of its formation. The first step
is thus to identify these physical processes, and one may wonder why this has not
been seriously undertaken until the 1990s, while the tidal theory as such had already
reached a high degree of sophistication, starting with the pioneering work of Dar-
win [2]. The reason can be found in Kopal’s classical treatise, where he declares
from start that he is interested only in ‘dynamical phenomena which are likely to
manifest observable consequences in time intervals of the order of 10 or 100 years,
and if so, tidal friction can be safely ignored’ [14].

But stars live much longer than us human beings, and this is why we shall con-
sider here changes in the properties of binary systems that span their evolutionary
time scale; we shall discuss in particular the circularization of their orbits, which is
both easy to observe and easy to interpret. We shall deal mainly with binary stars,
although much of what follows may be applied also to star-planet systems. In the
latter case, however, owing to the stark contrast between the mass of the star and
that of the planet, the system may not reach the equilibrium state mentioned above,
as we shall see in the next section.

8.2 Equilibrium States

To seek such equilibrium states, we follow here the method introduced by Hut [11].
Consider a binary system whose components (star or planet) are characterized by
their mass (M1,M2), moment of inertia (I1, I2), and rotation vector (Ω1,Ω2). Their
orbits around the center of mass have an eccentricity e and the sum of their semi-
major axes is a. The total angular momentum vector of the system is given by

L = h + I1Ω1 + I2Ω2, (8.1)

where h designates the orbital momentum, with

h2 = G
(M1M2)

2

M1 + M2
a
(
1 − e2). (8.2)

If one ignores the loss of angular momentum through winds or gravitational waves,
L remains constant and it defines an inertial frame perpendicular to it; with respect
to that plane, the orbital plane is inclined by an angle i. The Cartesian projections
of h on the inertial frame are chosen such that

h = (h sin i,0, h cos i). (8.3)

The total mechanical energy of the system (kinetic + gravitational) amounts to

E = −G
M1M2

2a
+ 1

2
I1|Ω1|2 + 1

2
I2|Ω2|2. (8.4)
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A state of equilibrium is achieved when this E reaches a minimum under the con-
straint of fixed angular momentum, say L = L0. Such a state satisfies the variational
equations

∂

∂xi

E + λ · ∂

∂xi

L = 0, (8.5)

where λ = (λx, λy, λz) is the Lagrangian multiplier, and where the xi represent the
nine parameters a, e, i, and Ω1,k , Ω2,k (k = x, y, z).

The next step is to derive these nine variational equations:

G
M1M2

a
+ (λx sin i + λz cos i)h = 0, (8.6)

(λx sin i + λz cos i)
e

(1 − e2)
h = 0, (8.7)

(λx cos i − λz sin i)h = 0, (8.8)

Ω1,k + λk = Ω2,k + λk = 0, k = x, y, z. (8.9)

It is easy to check that this system has a unique solution, where the orbits are cir-
cular (e = 0), the rotation axes are perpendicular to the orbital plane (i = 0), and
where the rotation of the two components is synchronized with the orbital mo-
tion: Ω1 = Ω2 = ω, with the orbital angular velocity ω obeying Kepler’s third law
ω2 = G(M1 + M2)/a

3.
The angular momentum of these equilibrium states may be expressed as a func-

tion of the orbital frequency:

L =
[

G2(M1M2)
3

(M1 + M2)

]1/3

ω−1/3 + (I1 + I2)ω, (8.10)

which has a minimum for

ω2 = ω2
cr =

[(
1

3(I1 + I2)

)3
G2(M1M2)

3

(M1 + M2)

]1/2

(8.11)

where

L = Lcr = 4

[
(I1 + I2)

27

G2(M1M2)
3

(M1 + M2)

]1/4

. (8.12)

No equilibrium state can exist below the critical value Lcr: for L < Lcr the system
evolves with ever increasing orbital frequency (see Fig. 8.1), and this may eventually
lead to its coalescence [11]. This occurs when the orbital angular momentum is less
than 3 times the rotational angular momentum of the two components. In practice,
this can only occur in very close systems, when the mass ratio is small enough:

M2

M1
<

3I1

M1R
2
1

(
R1

a

)2

. (8.13)

This the case for transiting planets, as was shown by Levrard et al. [20]. But here we
shall deal mainly with close binary stars, for which L > Lcr, and these will evolve
towards a stable equilibrium state (located on the continuous line in Fig. 8.1).
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Fig. 8.1 Angular momentum
of the equilibrium states of
binary systems: stable
equilibria are drawn in
continuous line, unstable
equilibria in dotted line. No
equilibrium state can be
achieved below the critical
value Lcr

8.3 The Equilibrium Tide

We begin with the most simple concept: that of the equilibrium tide, where one
assumes that the star under consideration is in hydrostatic equilibrium, and that, in
the absence of dissipation mechanisms, it adjusts instantaneously to the perturbing
force exerted by its companion (star or planet).

8.3.1 A Crude Estimate of the Tidal Torque

For simplicity, let us assume that the orbit is circular. When the rotation of the star is
synchronized with the orbital motion, the tidal bulges are perfectly aligned with the
companion star; their elongation δR1 and mass δM1 are easily estimated, neglecting
numerical factors of order unity:

δM1

M1
≈ δR1

R1
≈ (f2 − f1)

GM1/R
2
1

≈ M2

M1

(
R1

d

)3

, (8.14)

where d is the distance between the two components, and f1 and f2 the forces that
are exerted on the tidal bulges, as shown in Fig. 8.2. However, when the rotation
is not synchronized, any type of dissipation causes a lag α of the tidal bulges, with
respect to the line of centers, and the star then experiences a torque Γ which tends
to drag it into synchronism:

Γ ≈ (f2 − f1)R1 sinα ≈ −δM1

[
GM2R1

d3

]
R1 sinα = −GM2

2

R1

(
R1

d

)6

sinα.

(8.15)
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Fig. 8.2 Tidal torque. When the star under consideration rotates faster than the orbital motion
(Ω > ω), its mass distribution is shifted by an angle α from the line joining the centers of the two
components, due to the dissipation of kinetic energy. Since the forces applied to the tidal bulges
are not equal (f1 > f2), a torque is exerted on the star, which slows it down and therefore tends to
synchronize its rotation with the orbital motion (Ω → ω)

The tidal angle α is a function of the lack of synchronism, since it vanishes for
Ω → ω, Ω being the rotation rate and ω the orbital angular velocity. In the simplest
case, called the weak friction approximation, α is a linear function of the lack of
synchronism: α = (Ω − ω)δt , where δt is the time lag of the tidal bulge, and is
thus constant in this approximation. That angle depends also on the strength of the
physical process that is responsible for the dissipation of kinetic energy, which may
be measured by its characteristic time tdiss, with α inversely proportional to that
time. This leads us to

α = (Ω − ω)

tdiss

R3
1

GM1
, (8.16)

where we have rendered α non-dimensional by introducing the most ‘natural’ time,
namely the dynamical (or free-fall) time (GM1/R

3
1)−1/2.

Inserting this expression of α in (8.15) we obtain the tidal torque

Γ = − (Ω − ω)

tdiss
q2MR2

(
R

d

)6

, (8.17)

where q = M2/M1 is the mass ratio between secondary and primary components.
From here on, when there is no ambiguity, we shall drop the index 1 from R1
and M1.

The weak friction law (8.16) is applicable to fluid bodies, such as stars and gi-
ant planets, assuming that the dissipation is of viscous nature, and that the viscosity
does not depend on the tidal frequency, namely on (Ω − ω). (As we shall see later
on, this condition is not necessarily fulfilled.) In that case the correct expression
for the tidal torque, which one derives from the full equations governing the prob-
lem, is precisely of the form given above (Eq. (8.17)). From it, we may draw the
synchronization time tsync:

1

tsync
= − Γ

I (Ω − ω)
= 1

tdiss
q2 MR2

I

(
R

a

)6

, (8.18)

where I is the moment of inertia of the star; here the torque has been averaged over
the orbit, whose semi-major axis is a. We shall see later on how the dissipation time
tdiss may be evaluated.
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Since the instantaneous orbital velocity varies along an elliptic orbit, so does
also the torque applied to the primary. This has the effect of changing the orbital
eccentricity, at a rate given by the circularization time

1

tcirc
= −d ln e

dt
= 1

tdiss

(
9 − 11

2

Ω

ω

)
q(1 + q)

(
R

a

)8

, (8.19)

again in the weak friction approximation; the companion star contributes a similar
amount. Note that in binary stars, synchronization proceeds much faster that cir-
cularization, because the angular momentum of the orbit is in general much larger
than that stored in the stars (IΩ � Ma2ω); this is not necessarily true in star-planet
systems, as we have seen in Sect. 8.2. One verifies that the eccentricity decreases
near synchronization, but not for fast rotation: it was Darwin [2] who first pointed
out that the eccentricity actually increases when Ω/ω > 18/11.

8.3.2 Turbulent Convection: The Most Powerful Mechanism for
Tidal Dissipation

The dissipation time tdiss, which determines the tidal torque and hence the dynamical
evolution of the binary system, is often treated as a free parameter, to be adjusted by
the observations. We prefer to derive it from the physical processes that convert the
mechanical energy of the tide into heat. The first of such processes that comes into
mind is viscosity. But in stellar interiors, the viscosity due to microscopic processes
is very low: it amounts typically to ν ≈ 10–103 cm2 s−1. Therefore the (global) vis-
cous timescale R2/ν is much longer than the age of the Universe.

Radiative damping is more efficient: the dissipation time is then of the order of
the Kelvin-Helmholtz time: tKH = GM/RL, where L is the luminosity of the star.
But (R/a) is raised to such a high power in (8.18) and (8.19) that tsync—and tcirc
even more so—easily exceed the life-time of the star.

However viscosity still plays a key role in those regions of stars and planets that
are the seat of turbulent convection. There the kinetic energy of the large scale flow
that is induced by the tide cascades down to smaller and smaller scales, until it
is dissipated into heat by viscous friction. The force which acts on the tidal flow
may then be ascribed to a ‘turbulent viscosity’ of order νt ≈ vt
, where vt is the
r.m.s. vertical velocity of the turbulent eddies, and 
 their vertical mean free path (or
mixing-length). The tidal dissipation time introduced in (8.18) scales as the global
convective time:

1

tdiss
= 6λ2

tconv
where tconv =

[
MR2

L

]1/3

; (8.20)

the quantity λ2 is determined by a summation of νt over the whole star

λ2

tconv
= 4176

35
π

R

M

∫
x8ρνt dx, (8.21)
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where ρ is the density and x = r/R the normalized radial coordinate. This ex-
pression is approximate: it applies to a star with a thick convection zone, and
it was established assuming that the whole luminosity is carried by convection
[32, 44].

The convective dissipation time is very short: tconv = 0.435 yr in the present Sun,
and for this reason turbulent convection is the most powerful dissipation mechanism
acting on the equilibrium tide [44]. It works particularly well in stars possessing an
outer convection zone, such as solar-type stars. Assuming that the whole heat flux
is carried by convection and that the star is fully convective, λ2 = 0.019α4/3, with α

(not to be confused with the tidal lag introduced above) being the classical mixing-
length parameter [47].

In stars with a convective core, tidal dissipation due to turbulent convection is
considerably reduced, since it scales as (rc/R)7 with the radius rc of that core [44].
Furthermore, in such cores the convective turnover time easily exceeds the tidal
period, and therefore the straightforward definition of the turbulent viscosity taken
above, i.e. νt ≈ vt
, can no longer be applied, as we shall see next.

8.3.3 Which Prescription for Fast Tides?

When the local convective turnover time tover = 
/vt exceeds the tidal period Ptide,
it seems appropriate to replace the mean free path by the distance that turbulent
eddies are traveling during, say, half a tidal period. The turbulent viscosity is then
given by

νt = vt
min[1,Ptide/2tover], (8.22)

ignoring numerical coefficients of the order of unity [44]. This reduction occurs
mainly in the deepest layers of a convection zone, since the convective turn-over
time increases roughly as the 3/2 power of depth.

The same problem was addressed somewhat later by Goldreich and Nicholson
[5], when they estimated the tidal damping in Jupiter. They remarked that ‘though
the largest convective eddies move across distances of order 
Ptide/tover in a tidal
period, they do not exchange momentum with the mean flow on this time scale.’
Assuming that the Kolmogorov spectrum applies to convective turbulence, they re-
tained in that spectrum only the eddies whose turnover time (or life time) is less than
a tidal period; in that case, the turbulent viscosity scales as

νt = vt
min
[
1, (Ptide/tover)

2]. (8.23)

They concluded that ‘tidal interactions between Jupiter and its satellites have played
a negligible role in the evolution of the latters’ orbits.’

The question of which of these prescriptions should be applied has long been
considered as Achilles’ heel of tidal theory. One could even question the validity of
the very concept of turbulent viscosity, since we know that stratified convection is
hardly a diffusive process: the transport of heat and momentum is partly achieved
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Fig. 8.3 Turbulent viscosity acting on a tidal flow in a stellar convection zone. The vertical com-
ponent of that viscosity was determined by Penev et al. [30] by applying an oscillating large-scale
shear on a numerical simulation of turbulent convection; it decreases with the forcing frequency f .
The result (in solid line) is compared here with several prescriptions that have been proposed for
the loss of efficiency of turbulent friction when the tidal period becomes shorter than the convective
turn-over time

by long-lived plumes, and it is not easy to predict how these will interact with the
large scale tidal flow.

I believe that the question will be settled through high resolution numerical sim-
ulations of turbulent convection. A first step has been taken by Penev et al. [30, 31],
who studied the dissipation of a large-scale shear flow, varying periodically in time,
when it is imposed on a 3-D convection simulation. They followed the method out-
lined by Goodman and Oh [9] to derive the viscous stress tensor. They confirmed
that convection acts indeed as a turbulent viscosity on such a flow, since the off-
diagonal components of the viscous tensor are one order of magnitude smaller than
the diagonal components. They also observed that the vertical component of that
tensor is about twice that of the horizontal components, due to the anisotropy of tur-
bulent convection. Moreover, as can be seen in Fig. 8.3 borrowed from their article,
they found that this turbulent viscosity decreases as f −1, where f is the forcing
frequency, which is here lower than the convective frequency. Hence they validated
the first recipe (8.22) quoted above, although it remains to be seen whether their
result holds in more realistic, hence more turbulent regimes.

It thus appears that turbulent dissipation operates in two regimes, depending on
how the tidal period compares with the local convective turn-over time, which in
a convection zone varies with depth by several orders of magnitude. To ensure a
smooth transition between these two regimes, one may take

νt = vt


[
1 +

(
2tconv

Ptide

)2]−1/2

, (8.24)
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Fig. 8.4 The two regimes of turbulent dissipation (Eq. (8.24)). As long as the local convective
turn-over time remains shorter than the tidal period (tconv < Ptide), the turbulent viscosity νt (in
black dashed line) is independent of the tidal frequency, and the inverse quality factor k2/Q (in red
continuous line) varies proportionally to the tidal frequency (σl) (so does also the tidal lag angle).
When tconv > Ptide, νt varies proportionally to the tidal period, whereas k2/Q does no longer
depend on the tidal frequency. νt and k2/Q have been scaled by the value they take respectively
for tconv/Ptide → 0 and → ∞ (from Remus et al. [32], courtesy A&A)

as illustrated in Fig. 8.4. In the upper part of a convective envelope, where the con-
vective turnover time is shorter than the tidal period, neither νt nor tdiss depend on
the tidal period; the tidal dissipation varies proportionally to the tidal frequency (cf.
Eq. (8.21)), and the tidal bulge has a constant time lag: this is what has been called
the weak friction approximation [12]. But in the opposite case, when the life span
of the convective eddies exceeds the tidal period, which is likely to occur at the base
of convection zones, the tidal torque is independent of the tidal frequency; so are
also the tidal lag angle and the quality factor Q which will be discussed next. Note
that these two regimes still persist once the summation of νt over depth has been
performed in (8.21).

8.3.4 The Quality Factor

In planetary sciences one often prefers to characterize the tidal dissipation by a
dimensionless quality factor Q defined as

Q−1 = 1

2πE0

∮ (
−dE

dt

)
dt, (8.25)
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where E0 is the maximum energy associated with the tidal distortion and the integral
is the energy lost during one complete cycle [7]. This is equivalent to specify the
tidal angle, since α = 1/(2Q).

This quality factor Q is always combined with the Love number k2, which mea-
sures the mass concentration in the star; in a homogeneous body k2 = 3/2. In
fluid bodies, such as stars with convection zones or giant planets, the tidal torque
is given by a summation over the star of the turbulent viscosity, as we have seen
above in Sect. 8.3.2, and Q is related to the coefficient λ2 we have introduced there
(Eq. (8.21)):

k2

Q
= 4

λ2

tconv

(
R3

GM

)
(ω − Ω). (8.26)

Usually Q is treated as a positive quantity, and the sign of the tidal torque is imposed
according to that of (ω − Ω).

We see that the quality factor Q depends both on intrinsic properties of the star
(or the planet) and on the degree of synchronism, and this fact is often overlooked
when comparing the Q of different planets or satellites in the solar system. If, as it
has been suggested (cf. [29]), the circularization period of late-type binary stars is
roughly consistent with Q = 106, it means that λ2 is inversely proportional to the
tidal frequency (ω − Ω), hence that the turbulent viscosity is reduced according to
the first prescription (8.22). If one chooses instead the quadratic reduction (8.23), as
done in the paper quoted above, Q scales as the tidal frequency.

8.3.5 Beyond the Weak Friction Approximation

When the turbulent viscosity depends on the tidal period, the weak friction approx-
imation no longer applies, and Hut’s elegant method can no longer be applied to
determine the tidal torque. It is then necessary to break the tidal potential in its mul-
tiple Fourier components, of frequencies σ = (jω−mΩ), and to sum up the torques
exerted by each of these. Keeping only the second order spherical harmonics of the
potential, and up to second order terms in eccentricity e, which is sufficient for many
purposes, one has

U = GM2

a

(
r

a

)2{
−1

2
P2(cos θ)

[
1 − 3

2
e2 + 3e cosωt + 9

2
e2 cos 2ωt

]

+ 1

4
P 2

2 (cos θ)

[
− e

2
cos(ω − 2Ω)t +

(
1 − 5

2
e2

)
cos(2ω − 2Ω)t

+ 7e

2
cos(3ω − 2Ω)t + 17

e2

2
cos(4ω − 2Ω)t

]}
. (8.27)

Each component of the tidal potential produces a tidal flow of frequency σ =
[jω−mΩ], which experiences a different turbulent viscosity νt , since it depends on
the tidal frequency (cf. Sect. 8.3.3). This is reflected in the coefficient λ2 introduced
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above in (8.21), which takes a different value λm,l for each tidal frequency. In a star
with a deep outer convection zone, such as a late-type main-sequence star or a red
giant, this parameter varies approximately as

λm,l = 0.019α4/3
(

3160

3160 + η2

)1/2

with η = [jω − mΩ]tconv, (8.28)

where tconv is given in (8.21) and α is the familiar mixing-length parameter.
The equations governing the orbital evolution of the binary system then take the

following form, to second order in e and assuming for simplicity that all spins are
aligned [47]:

d lna

dt
= − 12

tconv
q(1 + q)

(
R

a

)8(
λ2,2

[
1 − Ω

ω

]

+ e2
{

3

8
λ0,1 + 1

16
λ2,1

[
1 − 2

Ω

ω

]

− 5λ2,2
[

1 − Ω

ω

]
+ 147

16
λ3,2

[
3 − 2

Ω

ω

]})
, (8.29)

d ln e

dt
= − 3

tconv
q(1 + q)

(
R

a

)8

×
(

3

4
λ0,1 − 1

8
λ2,1

[
1 − 2

Ω

ω

]
− λ2,2

[
1 − Ω

ω

]
+ 49

8
λ2,3

[
3 − 2

Ω

ω

])
,

(8.30)

plus similar contributions of the secondary star (we recall that q = M2/M1). Note
that we have added here the contribution of the axisymmetric part of the perturbing
potential (which varies also in time when the orbit is eccentric, and yields the term
in λ0,1). The angular velocity of the primary star obeys

d

dt
(IΩ) = 6

tconv
q2MR2

(
R

a

)6(
λ2,2[ω − Ω]

+ e2
{

1

8
λ2,1[ω − 2Ω] − 5λ2,2[ω − Ω] + 49

8
λ2,3[3ω − 2Ω]

})
,

(8.31)

and likewise for the secondary star. One verifies that the total angular momentum is
conserved, i.e. that

d

dt

[
GM1M2

(M1 + M2)1/2
a1/2(1 − e2)1/2 + I1Ω1 + I2Ω2

]
= 0. (8.32)

Equation (8.32) reduces to (8.18) and (8.31) to (8.19) when all λm,j → λ2, in the
weak friction approximation.
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8.4 Confronting the Theory of the Equilibrium Tide
with the Observations

Having identified the most efficient dissipation mechanism, namely turbulent con-
vection acting on the equilibrium tide, we shall now examine how well it accounts
for the observed properties in binary stars involving at least one component possess-
ing an outer convection zone. We shall treat in turn the case of solar-type binaries
on the main-sequence, that of such binaries during their pre-main sequence phase,
and finally that of binaries in which one component has evolved to the giant stage.

8.4.1 Solar-Type Binaries on the Main Sequence

Applying Eq. (8.19) to a binary of equal components of solar mass and age tage, one
finds that its orbit should be circular if its period is less than about

Pcirc = 6

(
tage

5 Gyrs

)3/16

days. (8.33)

To obtain this result we assume that the rotation is synchronized with the orbital
motion, and that the eccentricity decreased from e = 0.30, a typical value for non-
circularized binaries, to e = 0.02, taken as detection threshold for the eccentric or-
bits.

Koch and Hrivnak [13] were the first to compare this theoretical prediction with
the distribution e(P ) of field binaries drawn from Batten’s catalogue of spectro-
scopic binaries, and they found them to be compatible, although the transition pe-
riod Pcirc between circular and elliptic orbits was rather poorly defined, as one may
expect with such a sample mixing stars of different mass and age.

But the fact that the transition period is a slowly increasing function of age should
be observable, by measuring the eccentricity of coeval cluster binaries. Such a trend
was found indeed by comparing the results of several surveys [3, 17, 26]. This in-
cited Mathieu and Mazeh [21] to suggest that the determination of Pcirc could serve
to evaluate the age of a cluster. However for M67, a cluster of about solar age, they
found that the transition period was between 10.3 and 11 days, well above the pre-
dicted 6 days, suggesting that tidal dissipation was about 20 times more efficient
than inferred from the mixing-length theory.

Recently Mathieu et al. [22] gave a summary of the beautiful work accomplished
over more than a decade by several dedicated teams (Fig. 8.5). They found that the
transition period for circularization increases with age beyond 1 Gyr, but that it is
more or less constant for younger stars, around Pcirc ≈ 7–8 days. It thus appears that
two different mechanisms are at work, one operating on old binaries, and another
that circularizes the young binaries even on the PMS.
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Fig. 8.5 Transition periods
for circularization, below
which the binary orbits are
circularized, are displayed vs.
age for six coeval stellar
samples: PMS [25], Pleiades
[26], Hyades [3], M67 [17],
NGC 188 [22] and Galactic
halo stars [18]. Note the near
constancy of this period
below 1 Gyr, at about
Pcirc ≈ 8 days, and its
increase with age beyond.
(From Mathieu et al. [22];
courtesy ApJ)

8.4.2 Orbital Circularization During the Pre-Main-Sequence
Phase

The rate at which orbits are circularized depends strongly on the radius of the star:
according to (8.19) −d ln e/dt ∝ R8. Therefore one expects that most of this cir-
cularization should occur on the PMS, where the stellar radius is much larger than
later on the main-sequence. This suggestion was first made by Mayor and Mermil-
liod [23], and I verified it with L. Bouchet by integrating Eqs. (8.30)–(8.32) which
describe the tidal evolution of solar-type binaries, starting at the birthline defined
by Stahler [36, 37]. Since on the PMS the convective turnover time can exceed the
orbital period, it will also exceed the period of most Fourier components present
in the tidal perturbation (cf. (8.28)), and therefore one must take into account the
reduction of the turbulent viscosity, as was discussed in Sect. 8.3.5.

The result is displayed in Fig. 8.6, for a binary consisting of two solar-mass stars.
The initial conditions were taken as R = 4.79R�, e = 0.3, (Ω/ω) = 3, and the or-
bital period P was chosen such that the eccentricity would drop to 0.005 when the
binary reaches the zero age main-sequence (ZAMS). The rotation quickly synchro-
nizes with the orbital motion (in less than 105 yrs), but thereafter the tidal torque
weakens because the convection zone retreats, while the star keeps contracting;
therefore the rotation speeds up again to about (Ω/ω) = 2 at the ZAMS, with our
choice of initial conditions. Once the star has settled on the MS, synchronization
proceeds unhindered, and is achieved by an age of 1 Gyr. The eccentricity first in-
creases, as long as (Ω/ω) > 18/11 (cf. Eq. (8.19)), and then it steadily decreases
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Fig. 8.6 Evolution in time of
the eccentricity e, the orbital
period P and of the ratio
between rotational and orbital
frequencies (Ω/ω), for a
system with two components
of 1 M�. The initial period
has been chosen such that the
eccentricity would decrease
from 0.300 to 0.005 when the
binary reaches the zero age
main-sequence (indicated by
the arrow). (From Zahn and
Bouchet [49]; courtesy A&A)

to reach its final value e = 0.005 at the ZAMS. Little circularization occurs there-
after on the MS. Angular momentum is transferred from the rotation to the orbit,
which explains why the orbital period increases from 5 to 7.8 days. This final pe-
riod depends rather weakly on the mass of the components, and it represents thus
the transition period for circularization, in the absence of other tidal braking mech-
anisms.

This transition period agrees remarkably well with the properties of late type
binaries younger than 1 Gyr, including the PMS stars, and thus there is little doubt
that the circularization in these stars is due to the action of the equilibrium tide
early on the PMS. The main uncertainties in the theoretical prediction are the initial
radius Ri (Pcirc scales as Ri to the power 15/16) and the recipe used to reduce
the turbulent viscosity when the tidal period becomes shorter than the convective
turnover time. We took here the linear prescription (8.22); with the other, quadratic
prescription (8.23) the predicted transition period would be substantially shorter,
contrary to what is observed.

It is important to note that binaries in their early MS stage may be circularized
while still not synchronized, which may seem paradoxical since the synchroniza-
tion time (8.18) is much shorter than the circularization time (8.19). It stresses the
necessity of following the whole tidal evolution of a given binary, starting from
‘reasonable’ initial conditions.

8.4.3 Circularization of Binaries Evolving off the Main-Sequence

Another clever test for the tidal theory was performed by Verbunt and Phinney [40],
who chose for that a sample of wide binaries containing a giant star, because they
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Fig. 8.7 Observed
eccentricities of binaries
including a giant component
vs. the change in eccentricity
predicted by the tidal theory,
invoking the equilibrium tide
with turbulent dissipation in
the convection zone
(Verbunt [40], courtesy
A&A). In the upper panel the
giant components are
assumed to be on the
asymptotic giant branch;
some corrections have been
applied to obtain the result of
the lower panel (see text)

wanted to avoid what they call the ‘troublesome problem of pre-main sequence cir-
cularization’ that we just discussed. Moreover, in such binaries the tidal period ex-
ceeds the convective turnover time, so that there is no need to worry about reducing
the turbulent viscosity. They considered 29 binaries with giant components in sev-
eral galactic clusters, whose age and distance are well established. They integrated
the circularization equation (8.19) for these binaries from the MS to their present
location in the HR diagram, and presented the result in the form −� ln e/f , where
� ln e is the change in eccentricity, and f a factor that depends on the convection
theory used to calculate the turbulent dissipation. For the classical mixing-length
treatment that was employed in Sect. 8.3.2, f is of order unity.

Figure 8.7 displays the observed eccentricity of these binaries (each individ-
ually labeled by a letter) as a function of the predicted drop in eccentricity
−� ln e (or rather log[−� ln e/f ] to accommodate the wide range of results). For
log[−� ln e/f ] > 0), the orbit should be circularized, whereas it should remain el-
liptic for log[−� ln e/f ] < 0. Phinney and Verbunt first assumed that all their bi-
naries are presently on the asymptotic giant branch (core helium burning), because
they stay there 10 times longer than previously on the red giant branch (shell hydro-
gen burning).

The result is shown in the upper panel: the great majority of binaries complies
with the theoretical prediction, displaying circular orbits for log[−� ln e/f ] > 0 and
eccentric obits for log[−� ln e/f ] < 0. However there are 4 notable exceptions: bi-
nary ‘a’ has kept an eccentricity of 0.30, while its orbit should still be circular, and
binaries ‘A’, ‘B’, ‘y’ have circular orbits, where these should be elliptic. Phinney
and Verbunt concluded that binary ‘a’ must still be ascending the red giant branch,
thus avoiding circularization, and that the other 3 binaries may have undergone an
exchange of matter, which very efficiently circularizes the orbit, and therefore that
they should have an evolved companion, such as a white dwarf. After these adjust-
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ments, the 4 binaries are no longer exceptions, as can be seen in the lower panel;
moreover, the fact that the transition from circular to elliptic orbits occurs in the
vicinity of log[−� ln e/f ] ≈ 0 confirms that the parameter f is indeed of order
unity, thus validating the theory of the equilibrium tide with turbulent dissipation.

Two years later Landsman et al. [16] announced that the secondary of S1040
in M67, the binary labeled ‘A’, is indeed a white dwarf, confirming the brilliant
conjecture of Verbunt and Phinney that it must have experienced an episode of mass
exchange.

We may thus conclude that turbulent viscosity acting on the equilibrium tide
explains most observations, with the important exception of the circularization of
main-sequence binaries older than about 1 Gyr, for which it seems that we have to
seek another dissipation mechanism. A plausible candidate for that is the dynamical
tide, which we shall examine next.

8.5 The Dynamical Tide

Due to its elastic properties, a star can oscillate in various modes: acoustic modes,
internal gravity modes, inertial modes, where the restoring force is respectively the
compressibility of the gas, the buoyancy force in stably stratified regions, and the
Coriolis force in the rotating star. If their frequency is low enough, these modes can
be excited by the periodic tidal potential; the response is called the dynamical tide.

8.5.1 Gravity Modes Excited by a Close Companion

The modes that have received most attention so far are the tidally excited gravity
modes; associated with radiative damping, they have first been invoked for the tidal
evolution of massive main-sequence binaries [45]. For these modes, the restoring
force is provided by the buoyancy, whose strength is measured by the buoyancy
frequency N , given by

N2 = gδ

HP

[(
∂ lnT

∂ lnP

)

ad
− d lnT

d lnP
+ ϕ

δ

d lnμ

d lnP

]
, (8.34)

using classical notations, and μ being the molecular weight (δ = −(∂ lnρ/∂ lnP)T,μ

and ϕ = (∂ lnρ/∂ lnμ)T,P are unity for perfect gas).
The modes that are most excited are those whose frequency is close to the tidal

frequency, and these are of high radial order: typically they have more than 10 or 20
radial nodes in the radiation zone, because their wavelength scales as λr ∝ rσ/N ,
and because the tidal frequency σ , of the order of days−1, is much lower than the
buoyancy frequency N , of the order of 1 hour−1. See Fig. 8.8 for a typical exam-
ple of such modes, in a 4 M� star of 94 Myr. Dissipation has been neglected, and
therefore the mode is an adiabatic standing wave; note that it is evanescent in the
convective core, where N2 ≈ 0.

These gravity modes couple with the periodic tidal potential in the vicinity of the
convective core, whereas their damping occurs mainly near the surface, because the
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Fig. 8.8 Gravity mode of period 4 days in a 4 M� star of 94 Myr. Only the horizontal displacement
ξh is shown, scaled such that the radial component ξr = 1 at the surface; it has 20 radial nodes. The
insert focuses on the region close to the convective core, where the eigenfunction displays strong
oscillations due the steep composition gradient. The effect of rotation is neglected (from Hasan et
al. [10], courtesy A&A)

thermal damping rate, which scales roughly as the cube of the temperature, is much
higher there than in the deep interior. The angular momentum drawn from the orbit
is deposited near the surface, and hence it is the surface layers that are synchronized
first with the orbital motion. As was emphasized by Goldreich and Nicholson [6],
this synchronization is further sped up because the local tidal frequency experienced
by the fluid entrained in the differential rotation, σ = 2Ω(r)−2ω, tends to zero, and
so does also the radial wavelength λr , as we have seen above, thus enhancing the
damping.

At low enough tidal frequency, the tidal wave is completely damped (meaning
that is has become a pure propagating wave), and one can use the WKB treatment
to evaluate the total torque applied on the star [45]. For the synchronization time
(assuming uniform rotation) one finds

1

tsync
= − d

dt

∣∣∣∣
2(Ω − ω)

ω

∣∣∣∣

−5/3

= 5

(
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(
R

a

)17/2

,

(8.35)

and likewise for the circularization time, assuming that synchronization has already
been achieved:

1

tcirc
= −d ln e

dt
= 21
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(
R

a

)21/2

; (8.36)

the companion star contributes a similar amount. E2 is a parameter measuring the
coupling between the tidal potential and the gravity mode: it depends sensitively on
the size of the convective core, and thus on the mass of the star. Its expression is
given in Zahn [45]; it has been tabulated by Claret and Cunha [1] for various stellar
models, as shown in Fig. 8.9; for a 10 M� ZAMS star, it is E2 ≈ 10−6.

This theory was initially developed for pure gravity modes, and as such it was
strictly applicable only to non-rotating stars. It was later extended by Rocca [34]
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Fig. 8.9 Tidal parameter E2 characterizing the strength of the dynamical tide, cf. (8.35) and (8.36).
It is displayed here on a logarithmic scale, as a function of mass (in solar units), near the ZAMS.
The solid line reports the results of earlier computations by Zahn [45]. The insert shows the de-
pendence of E2 on the relative size of the convective core (from Claret and Cunha [1]; courtesy
A&A)

to (uniformly) rotating stars; she showed that taking the Coriolis force into account
modifies only slightly the results presented above.

8.5.2 Circularization of Massive Binaries

Giuricin et al. [4] were the first to compare the predictions of the tidal theory with the
properties of early-type binaries, thus possessing an outer radiation zone. Applied
to binaries with two identical components of mass between 2 and 15 M�, Eq. (8.36)
predicts a transition value of R/a ≈ 0.25 for the normalized radius, i.e. the radius
expressed in units of semi-major axis.1 This value is in good agreement with the

1This value depends little on mass [46]; if it were translated into tidal periods, the transition periods
would spread between 1 to 2 days, depending on mass, which explains why it is preferable to use
R/a for the observational test.
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Fig. 8.10 Eccentricity e vs. normalized radius R/a for early-type binaries (spectral types O, B, F)
listed in Batten’s catalogue (from Giuricin et al. [4]; courtesy A&A)

Fig. 8.11 Left panel: e cosω vs. relative radius R/a for detached eclipsing binaries in the SMC.
Right panel: same for the LMC, full dots based on V lightcurves, open dots based on R lightcurves.
Data from MACHO and OGLE surveys. (From North and Zahn [27]; courtesy A&A)

observed distribution of eccentricities vs. fractional radius displayed in Fig. 8.10,
although many binaries are circular for R/a < 0.25.

A similar investigation was recently carried out on eclipsing binaries which had
been detected in the Magellanic Clouds during the MACHO and OGLE campaigns
[27]; the results are shown in Fig. 8.11. Here again the e vs. R/a distribution
strongly suggests a transition value of R/a = 0.255, in excellent agreement with
theory. However an important fraction of binaries are circular at lower fractional
radius: it is as if there were two populations of binaries, one complying with the
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predictions above, and the other experiencing another, more efficient tidal damping.
Histograms of the eccentricity distribution at given R/a confirm that impression,
and so does also a much wider survey carried out by Mazeh et al. [24].

On may wonder why the binaries in the Magellanic Clouds behave so similarly
to those in our Galaxy: they have lower metallicities, and therefore somewhat larger
convective cores, and one would expect that these differences be reflected in the
coefficient E2. However the radii differ too, and the two effects compensate each
other such that the predicted transition periods are very nearly the same.

8.5.3 Resonance Locking in Early-Type Binaries

A decade ago, Witte and Savonije [41, 42] revisited the theory of the dynamical
tide, by making full account of the Coriolis force. Instead of projecting the forced
oscillations on spherical functions, they solved the governing equations directly in
two dimensions (r, θ ), for various values of the angular velocity Ω and of the tidal
frequency σ = jω − 2Ω in the rotating frame. When the orbit is circular and the
star rotates in the same sense as the orbital motion, only one retrograde mode can be
excited at σ = 2ω − 2Ω . But when the orbit is elliptic, many other tidal frequencies
appear: σj = jω−2Ω with |j | = 1,3, etc. (see Sect. 8.3.5), and both retrograde and
prograde modes can be excited. Therefore it is very likely that a binary undergoes
some resonances during its evolution, both because the tidal frequency shifts in the
course of synchronization, and because the eigenfrequencies are affected by the
structural changes of the stars.

In earlier works [6, 34, 45], the effect of resonances on tidal evolution was largely
ignored on the belief that stars would move quickly through such resonances, since
their width �σ is inversely proportional to their amplitude. But Witte and Savonije
[42] pointed out that this is not necessarily true, and that a binary can be trapped
into a resonance, for elliptic orbits. Retrograde and prograde modes exert torques of
opposite sign, and when they balance each other, they may lock the star into such
resonances. Moreover, structural changes also can conspire to favor such locking.
The consequence is that circularization is sped up by such resonances, as demon-
strated by several specific cases they have studied. The results are rather sensitive
to the initial conditions, which may explain the observations mentioned above con-
cerning the Magellanic Clouds binaries, namely that for the same orbital period (or
fractional radius), some binaries are circular while the others are not, as if there were
two tidal damping mechanisms.

8.5.4 Resonance Locking in Late-Type Binaries

Let us come back to the late-type main-sequence binaries. We have seen that turbu-
lent dissipation of the equilibrium tide, at least in its present state, cannot explain the
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circularization observed in binaries older than 1 Gyr. This incited Terquem et al. [39]
and Goodman and Dickson [8], to examine whether the dynamical tide could not be
responsible for the observed circularization. Both teams invoked radiative damping
as dissipation mechanism, as had been done previously for early-type stars. But here
such damping is rather weak, because the oscillation modes are evanescent in the
convection zone, where thermal dissipation would be strongest. Therefore, contrary
to what has been found in early type stars, oscillations modes can enter in resonance
at very low tidal frequency, i.e. very close to synchronization. This means that one
has to deal with modes which have up to thousand radial nodes, which puts a serious
burden on the numerical work, as experienced by Terquem et al.; they restricted their
exploration to the vicinity of 3 orbital periods, but included turbulent dissipation in
the convection zone, where the modes are evanescent. On the contrary, Goodman
and Dickson chose a semi-analytical WKB approach, much as in Zahn [46].

Though their quantitative results differ somewhat, the conclusions of the two
teams agree, namely that the dynamical tide cannot account for the circularization
of the oldest late-type binaries; comparing the predicted transition periods, one sees
that it is less efficient than the equilibrium tide.

The problem was re-examined shortly after by Witte and Savonije [43], who
anticipated that here also resonance locking could play an important role. Instead
of performing the direct 2D calculations as for the early-type binaries, given the
high order of the modes, they used the so-called ‘traditional approximation’, which
retains only the radial component of the rotation vector. The r and θ variables then
separate again, as in the non-rotating case, the horizontal functions being the so-
called Hough functions [35], which contrary to the spherical harmonics depend also
on the rotation rate. The tidal torque is displayed in Fig. 8.12, as a function of the
forcing frequency.

Today this process of resonance locking in the dynamical tide thus appears as the
most efficient process, on the main-sequence, among all that have been explored.
When starting with quasi-synchronous or super-synchronous stars, the predicted
transition period is a slowly increasing function of age; for 5 × 109 yrs, this pe-
riod is about 7 days, thus higher than that predicted by the equilibrium tide (6 days).
But even so, the theoretical predictions are well below the observed ones, unless
one allows for very slow, and rather unrealistic initial rotation (such as a period of
100 days). Let us recall that below 1 Gyr the observations agree very well with the
transition period derived for the PMS circularization through the equilibrium tide,
as we have seen in Sect. 8.4.2

8.6 Tidal Damping Through Inertial Modes

While gravity modes propagate only in stably stratified regions, there is another type
of modes, the inertial modes, that are able to propagate also in neutrally stratified
convection zones. They owe their existence to the Coriolis force, and hence their
frequency, in the frame of the rotating star, is bound by the inertial frequency 2Ω .
They may thus be excited by the tidal potential, much as the gravity modes, provided
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Fig. 8.12 Tidal torque versus forcing frequency σ̄ , scaled by the break-up frequency Ωc , in a
binary of two 1 M� stars, showing the resonances with prograde g-modes (σ̄ > 0), retrograde
g-modes (σ̄ < 0), and inertial modes (−2Ω < σ̄ < 0). (From Savonije and Witte [35]; courtesy
A&A)

the tidal frequency is less than the inertial frequency 2Ω . These modes have received
little attention so far, until very recently.

Recently Ogilvie and Lin [29] have studied numerically the rôle of these inertial
modes in damping the tides, in a solar-type star. The results are depicted in Fig. 8.13.
One sees that their contribution (left panel), through their viscous dissipation in the
convection zone, can be as large as that of the gravito-inertial modes in the radiation
zone (right panel). The dashed lines show the effect of switching off the Coriolis
force, and the dotted line, in the left panel, that of increasing the turbulent viscosity
by a factor 10. Note that Ogilvie and Lin opted for the quadratic reduction of that
turbulent viscosity (Eq. (8.22)), which probably underestimates the contribution of
the equilibrium tide.

A remarkable property of these inertial modes is that their peak amplitude, at
resonance, does not depend on the strength of the viscosity, as can be seen in the left
panel of Fig. 8.13. This is because these modes are described in the inviscid limit
by an equation that is spatially hyperbolic, and hence their characteristic rays are
focused on wave attractors, where most of viscous dissipation occurs, and whose
thickness scales in such a way as to render the dissipation independent of viscosity,
as explained in detail by Ogilvie and Lin.

8.7 Conclusion and Perspectives

The reader may wonder why I made no attempt here to reconcile the theoretical
predictions for the synchronization of the binary components with their observed
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Fig. 8.13 Dissipation rate Q′, defined in (8.25) and (8.26), as a function of the tidal frequency ω̂

normalized by the rotation frequency Ω . The solar model has a spin period of 10 d. Left: Q′ from
the viscous dissipation of inertial modes in the convection zone. Right: Q′ from the excitation
of Hough modes in the radiative zone. The dashed lines show the effect of omitting the Coriolis
force, hence reducing the dissipation to that of the equilibrium tide. The turbulent viscosity has
been reduced according to prescription (8.23). The dotted lines show the result of increasing that
turbulent viscosity by a factor of 10. (From Ogilvie and Lin [29]; courtesy ApJ)

surface rotation. The reason is that in most cases the tidal torque acts mainly on
the outermost part of the star, which is thus synchronized much more rapidly than
the interior; therefore the interpretation of the surface rotation requires modeling the
transport of angular momentum within the star, in particular where it proceeds at the
slowest rate, i.e. in the radiation zones. This is a difficult task that only now begins
to be undertaken seriously (cf. [38, 48]), but I am confident that we will see much
progress in solving this problem in a not too distant future.

To summarize this review, the two tidal dissipation processes that have received
most attention so far are turbulent friction acting on the equilibrium tide, which was
first described in the 60s [44], and radiative damping on the dynamical tide, which
was identified in the 70s [45]. These processes operate respectively in convection
zones and in radiation zones, and they have been quite successful in explaining
the observed orbital circularization of binary stars. This is particularly true for the
early-type MS binaries, for which we have now at our disposal very large samples
gathered during the OGLE and MACHO campaigns: their transition period is pre-
cisely defined and it agrees extremely well with that predicted by the theory of the
dynamical tide, which is thus validated. However many of these binaries are circu-
larized well above this transition period, as if they had experienced another, more
efficient tidal dissipation mechanism. A plausible explanation for this behavior is
that these binaries have undergone several episodes of resonance locking, as was
described by Witte and Savonije [41, 42].

On the other hand, the equilibrium tide damped by turbulent dissipation accounts
very well for the properties of binaries containing a red giant, as was demonstrated
by Verbunt and Phinney [40]. It also explains the transition period of about 8 days
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observed in late-type binaries that are younger than about 1 Gyr: the explanation
is that these have been circularized during the PMS phase, when they were much
larger and fully convective. The only serious discrepancy today seems to be the be-
havior of late-type main-sequence binaries older than 1 Gyr, whose transition period
increases with age and is higher than that predicted when applying straightforward
the theory of the equilibrium tide. Here again one may invoke the dynamical tide
with resonance locking in the radiative core of these stars, as was shown by Witte
and Savonije [43].

Their mechanism appears thus highly promising, and it ought to be further ex-
plored. For instance, one should take into account that the tidal torque is applied
primarily to specific regions: the outer convection zone in late-type MS stars and
the outermost part of the radiation zone in early-type stars. These regions are syn-
chronized more quickly than the rest of the star, and therefore differential rotation
develops in their radiation zone. This has the effect of increasing the thermal damp-
ing, since the local tidal frequency tends then to zero as the tidal wave approaches
the synchronized region, as I explained in Sect. 8.5.1.

For late-type binaries, a highly interesting alternative is offered by the damping
of inertial waves in their convective envelope, which is being explored by Ogilvie
and Lin [29]. This process is likely to play an important role also in giant planets
[28]. The difficulty in studying these waves is that they require highly resolved 2D
numerical calculations, since the so-called traditional approximation is no longer
applicable to render the problem separable.

Work is in progress on several other points, and I shall quote only a few. Kumar
and Goodman [15] have studied the enhanced damping of the oscillations triggered
in tidal-capture binaries, due to non-linear coupling between the eigenmodes, which
is extremely strong in such highly eccentric orbits. Rieutord [33] is examining the
possibility that the so-called elliptic instability may occur in binary stars; this in-
stability is observed in the laboratory when the fluid is forced to rotate between
boundaries that have a slight ellipticity, and it leads to turbulence [19]. Even the
equilibrium tide in late-type binaries is being revisited [32], solving at last the irri-
tating problem of the ‘pseudo-resonances’ encountered in Zahn [44].

To conclude, I am very pleased to witness this revival of the theory of stellar
tides; it owes much to the discovery of extrasolar planets and to the wide surveys
mentioned above, which I didn’t anticipate forty-five years ago. . .
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