
Chapter 5
Tides on Satellites of Giant Planets

Nicolas Rambaux and Julie Castillo-Rogez

Abstract The discovery of the satellites of the giant planets started in 1610 when
Galileo Galilei pointed his telescope toward Jupiter. Since then observations from
Earth- and space-based telescopes and outstanding in-situ observations by several
space missions have revealed worlds of great richness and extreme diversity. One
major source of energy driving the evolution of these satellites is the gravitational
pull exerted by their planets. This force shapes and deforms the satellites and the
resulting dissipation of mechanical energy can heat their interiors and drive spec-
tacular activity, such as volcanic eruptions, as for Io or Enceladus. In addition, tides
drive orbital evolution by circularizing the satellites’ orbits and synchronizing their
rotational motions.

5.1 Introduction

The giant planets of the solar system, Jupiter, Saturn, Uranus, and Neptune, have
many satellites. So far, astronomers have identified 168 giant-planet satellites1: 66
of Jupiter, 62 of Saturn, 27 of Uranus, and 13 of Neptune. All these satellites dis-
play a large variety of dynamical configurations and geophysical properties that
have been studied by continual ground-based telescopic observations and dedicated
space missions Voyager, Pioneer, Galileo, and Cassini-Huygens sent by NASA and
ESA, with international participation. Pioneer and Voyager achieved in the 70s and
80s a formidable trip across the outer solar system. They sent the first images of
the satellites surfaces, revealing an extraordinary geological richness. Then, Galileo

1See the regularly update of satellite’s number at IMCCE web service http://www.imcce.fr/hosted_
sites/saimirror/Nomenclaf.html.
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Table 5.1 Parameters characterizing outer planet satellites; a denotes the semi-major axis, e the
eccentricity, Porb the orbital period and Prot the rotational period, GM the gravity mass, R the
radius, and H the equilibrium tide of the satellites. Source: JPL (Jet Propulsion Laboratory) Solar
System Dynamics website http://ssd.jpl.nasa.gov. The period of rotation is indicated with a “C”
when the rotation is chaotic [120]. The rotational period of Nereid is not accurately determined but
certainly in the range 0.8–3 days [96]

Body a

(km)
e Porb

(days)
Prot
(days)

GM
(km3 s−2)

R

(km)
H

(m)

Io 421800 0.0041 1.769 1.769 5959.916 1821.6 3118.8

Europa 671100 0.0094 3.551 3.551 3202.739 1560.8 776.7

Ganymede 1070400 0.0013 7.155 7.155 9887.834 2631.2 500.7

Callisto 1882700 0.0074 16.69 16.69 7179.289 2410.3 89.2

Mimas 185539 0.0196 0.942 0.942 2.5026 198.20 3662.0

Enceladus 238037 0.0047 1.370 1.370 7.2027 252.10 1577.1

Tethys 294672 0.0001 1.888 1.888 41.2067 533.00 2903.5

Dione 377415 0.0022 2.737 2.737 73.1146 561.70 960.6

Rhea 527068 0.0010 4.518 4.518 153.9426 764.30 574.2

Titan 1221865 0.0288 15.95 15.95 8978.1382 2575.50 102.0

Hyperion 1500934 0.0232 21.28 C 0.3727 135.00 10.0

Iapetus 3560851 0.0293 79.33 79.33 120.5038 735.60 2.0

Phoebe 12947913 0.1634 550.30 0.45 0.5532 106.60 0.004

Miranda 129900 0.0013 1.413 1.413 4.4 235.8 1857.3

Ariel 190900 0.0012 2.520 2.520 86.4 578.9 1082.6

Umbriel 266000 0.0039 4.144 4.144 81.5 584.7 441.5

Titania 436300 0.0011 8.706 8.706 228.2 788.9 118.4

Oberon 583500 0.0014 13.46 13.46 192.4 761.4 50.9

Triton 354759 0.0000 5.877 5.877 1427.6 353.4 1.7

Nereid 5513818 0.7507 360.13 < 3 2.06 170 0.02

(1993–2003) and Cassini (2004-today) were dedicated to the Jupiter and Saturnian
systems, respectively, performing extensive observations and permitting a greater
understanding of the relationships between planets, rings, and satellites. Here, we
focus on large regular satellites with radii larger than 100 kilometers. The satellites’
main physical and dynamical properties are gathered in Table 5.1. Figure 5.1 repre-
sents the satellites as a function of their relative sizes, densities, and distance to the
parent-planet expressed in planetary radius. The sizes of the satellites range from
2631.2 km for Ganymede (larger than Mercury) to 106.6 km for Phoebe. Satellite
densities reflect their internal composition ranging from 3.6 g cm−3 for Io, dom-
inated by silicates and a large metallic core, to 0.97 g cm−3 for water-dominated
Tethys. Intermediate densities reflect variations in the relative fractions of ice, sil-
icates, and porosity. The rock mass fraction determines in part the amount of tidal

http://ssd.jpl.nasa.gov
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Fig. 5.1 Satellite density as a function of the distance to the parent-planet (expressed in planetary
radius). The relative size of the satellites is respected but is not to scale with the distance. From
left to right and top to bottom: Io, Europa, Ganymede, Callisto; Mimas, Enceladus, Tethys, Dione,
Rhea, Titan, Hyperion, Iapetus; Miranda, Ariel, Umbriel, Titania, Oberon; Triton. The satellites
Phoebe and Nereid are not represented because they are far from their planets (215 Saturn’s radii
and 223 Neptune’s radii, respectively)

dissipation expected in these objects, as ice is generally more dissipative than sili-
cates.

From Table 5.1 and Fig. 5.1, we can see that most satellites are close to their
parent-planets and thus may experience significant tidal stressing. The tidal force
results from the amplitude of the gradient of the external gravitational field be-
tween the sub-planet and the anti-planet hemispheres. This tidal force distorts the
satellite, if it is not rigid, so that the amplitude of the equilibrium tide is expressed
through [79]

H = Rs

Mp

Ms

(
Rs

d

)3

(5.1)

where Rs and Ms are the radius and mass of the satellite, Mp is the mass of the
planet, and d is the distance between the satellite and its parent-planet. Here, the
amplitude is expressed for a particle where the tide-generating body is at the zenith.
The equilibrium tide represents the ratio between the external gravitational poten-
tial and the gravity of the body. The displacement at the surface is obtained by
multiplying H by the secular Love number that represents the ability of the body
to deform when in hydrostatic equilibrium (see Sects. 5.4 and 5.5). In the case of a
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homogeneous body this factor, labeled h2, is equal to 5/2. It decreases with increas-
ing concentration of the density toward the center of the object. The tidal bulge H

increases with the size of the object and decreases with the distance to the primary.
The equilibrium tide is 3.6 km for Mimas, then around 3 km for Io and Tethys, and
then decreases to a few meters for those small satellites located beyond 10 planetary
radii, as shown in Table 5.1.

The planet is also subject to an equilibrium tide exerted by its satellites. The com-
bined planet and satellite tides drive the evolution of the satellite’s orbit, making it
contract or expand depending on the dissipation within each body. For most satel-
lites, the tides lead to orbit circularization. If the satellite is close to its parent-planet,
then the orbit evolves toward the planet’s equatorial plane, whereas for distant satel-
lites subject to little dissipation the equilibrium plane is intermediate between the
planet’s equatorial and orbital planes [87]. In addition, the tides raised on the satel-
lites lead to despinning. Most large satellites (apart from Phoebe and Nereid) are in
synchronous spin-orbit resonance, i.e. the orbital and rotational periods are equal on
average. As a consequence, the satellites show on average the same face toward the
planet, like the Moon toward the Earth.

For a satellite in spin-orbit synchronous resonance, the secular part of the tidal
potential elongates the body along the planet-satellite axis. In cooperation with the
centrifugal potential this flattens the poles of the satellite; the resulting equilibrium
figure is then a triaxial ellipsoid. Under the assumption of hydrostaticity, the equi-
librium figure brings information on the density structure of the body. Departure
from hydrostaticity may inform on the geophysical and dynamical evolution of the
object (e.g. fossil shape, mass anomalies, etc.).

The periodic part of the tidal potential deforms the body continuously and leads
to solid friction within the material. The amount of friction is a function of the
orbital eccentricity. The consequences of that process can be spectacular, such as
volcanic activity as observed on Enceladus or Io. Other outstanding signatures of
tides can be found on the surface of Europa, related to faults and cycloid cracks.
The heating resulting from tidal friction is also believed to play a role in the origin
and/or preservation of subsurface oceans in Europa, Ganymede, Titan, Triton ([49]
and references therein). Callisto is far from Jupiter so the tidal dissipation in that
object is small. However, the presence of an internal ocean has been suggested based
on Galileo’s magnetometer data. Its long-term preservation is explained by slow
heat loss [69]. Oceans inside Rhea, Titania, Oberon have been suggested but this
is still debated, in absence of observational constraints [49]. These geological and
geophysical consequences are described in many very good reviews on satellites
(e.g. [16, 49, 87, 105]; and the book on icy satellites by Grasset et al. [38]).

This chapter is divided in four sections following this introductory Sect. 5.1.
In Sect. 5.2, we outline a simple version of the tidal theory that is a toy model
useful for conveying the main concepts and illustrating the consequences of tidal
friction. Section 5.3 describes the influence of the tides on the dynamical evolution
of satellites. The equilibrium figure of a satellite resulting from tidal distortion is
described in Sect. 5.4, and in Sect. 5.5 we describe and discuss the consequences of
tidal dissipation in icy satellites.
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5.2 Tidal Potential

The historical developments leading to the modern formulation of tidal modeling
can be found in Chap. 2 of the present volume. The modern treatment of the solid
body tides began with a seminal series of papers written by Darwin [19, 20]. Since
this pioneering work, tidal modeling has been extensively explored in the literature
(e.g. [35, 37, 51, 55, 65, 72–74]). Recent laboratory measurements of the response of
planetary materials to cyclic forcing (e.g. [67] for a review) has lead to reviewing the
tidal theory (e.g. [28, 29, 31]). Traditionally, the tidal theory is developed from the
tide-generated disturbing potential into Fourier series, and a dissipative component
is related to each term. Here, for the sake of simplicity, we follow the approach of
MacDonald [65], in which dissipation is modeled in the form of a constant phase
lag. However one has to keep in mind that this approach implicitly assumes a certain
rheology for the material (response to stress) that can lead to unphysical situations
(see the review in [31] and [29]).

Now, we outline the main aspects of the tidal theory used in this chapter. The
giant planets and their natural satellites are not point-mass bodies, as generally as-
sumed in ideal mechanical systems, and they deform under the gravitational ac-
celeration of external bodies. For a satellite S of radius Rs , the mean gravitational
acceleration due to the planet P is the vector GMpSP/SP 3 where G is the gravita-
tional constant and Mp the mass of the perturbing body, i.e. the parent-planet in the
present case. For each element of the satellite M the relative distance between the
element and the planet is the vector MP. Consequently the net tidal acceleration gT

experienced by the element is

gT = GMp

(
MP
MP 3

− SP
SP 3

)
. (5.2)

It is a differential acceleration. By setting SP = d and SM = x the vector position
of an element in the satellite, MP may be decomposed as MP = SP − SM = d − x,
leading to the approximation for small values of |x|

MP −3 ≈ d−3
(

1 + 3
d
d

.
x
d

)
. (5.3)

Injecting this expression into Eq. (5.2), we obtain

gT = GMp

d3

(
3(x.e)e − x

)
, (5.4)

where e = d/d is the unit cosine vector. The Cartesian expression of the tidal force
in the rotating reference frame of the satellite is then

gT = GMp

d3
(2xp,−yp,−zp). (5.5)

The gravitational force is then stronger on the xp direction that points toward the
perturbing body and negative in the yp and zp directions. This tidal acceleration
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Fig. 5.2 Geometry of the
tidal problem in the body
reference frame (ex , ey, ez).
d is the vector pointing
towards the disturbing body
and r is the vector pointing
towards the perturbed body.
Rs targets at the surface of the
body

implies that the satellite is elongated in the direction towards the planet and flattened
in the perpendicular direction.

The tidal acceleration can be expressed through a tidal potential defined by

gT = ∇UT (5.6)

where the tidal potential UT is

UT = GMp

2d3

(
2x2

p − y2
p − z2

p

)
(5.7)

in Cartesian coordinates, or

UT = GMp

d

(
Rs

d

)2 3 cosγ ′2 − 1

2
(5.8)

in spherical coordinates. The parameter γ ′ is the angle between the position vectors
d and x as shown in Fig. 5.2. The last factor in the previous expression corresponds
to the Legendre polynomial of degree 2, and the tidal potential is then written in
synthetic form as

UT = GMp

d

(
Rs

d

)2

P2
(
cosγ ′). (5.9)

The Legendre polynomial of degree 2 results from the development performed in
Eq. (5.3). The development at higher order in |x| leads to the introduction of higher
degrees in the Legendre polynomial, and the generalized potential is then expressed
as

UT = GMp

d

∞∑
l=2

(
Rs

d

)l

Pl

(
cosγ ′). (5.10)

The non-rigid satellite is distorted by the tidal potential. According to the degree-
2 development in the potential, the satellite is elongated in two opposite directions.
The resulting bulge follows the tidal acceleration and, in the case of an elastic body,
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the bulge lies along the relative direction of the distorted satellite to the perturbing
planet, as shown by Eq. (5.5). However, if the distorted material is not purely elastic,
then the tidal bulge is offset with respect to the satellite–planet axis, i.e., the response
of the material to stress is delayed as a consequence of internal friction. This phase
lag with respect to the position of the tide-generating body induces dissipation inside
the system, and the tidal bulge modifies the gravitational potential of the satellite.
For small deformations a linear theory may be assumed, for which the tidal response
of the distorted body is proportional to the external tidal potential evaluated at the
surface. The coefficient of proportionality is called the dynamic Love number and it
depends on the density and rheological structure of the body, and of the frequency
of the excitation. Therefore, the dynamic Love number is different at each degree l,
and the additional potential of the distorted satellite at a point r in space is then
equal to

U = GMp

d

+∞∑
l=2

kl

(
Rs

r

)l+1(
Rs

d

)l

Pl

(
cosγ ′) (5.11)

(e.g. [29, 57]). The ratio (Rs/r)(l+1) comes from the Dirichlet theorem for external
potential r > Rs . As a consequence, the external potential decreases quickly as a
function of distance. For example, in the case of Miranda, the medium-sized satellite
closest to Uranus, the ratio (Rs/r) is equal to 0.0018 and the error in the potential
truncated at degree 2 is around 1/50. We then limit the description of the potential
to the second degree; the simplified potential U is then

U = k2
GMp

Rs

(
Rs

r

)3(
Rs

d

)3

P2
(
cosγ ′). (5.12)

In this potential, the quantities (Rs/d)3, γ ′ are related to the tide-raising potential
whereas the (Rs/r)3 quantity represents the response of the satellite’s potential at
degree 2 (Eq. (5.11)).

In the case of a rigid homogeneous body, the Love number k2 may be expressed
as

k2 = 3/2

1 + 19μ
2ρgRs

(5.13)

where μ is the rigidity, ρ the density, g is the surface gravity acceleration, and Rs is
the radius of the body. It is customary to introduce the dimensionless rigidity μ̃

μ̃ = 19μ

2ρgRs

(5.14)

that represents the ratio of the elasticity to the cohesive force of the body’s self-
gravity. For small icy satellites the dimensionless rigidity μ̃ is of the order of 102

and the rigidity dominates. The Love number can be thus simplified as

k2 ∼ 3

19

ρgRs

μ
(5.15)
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Fig. 5.3 Love number k2 for
different interior models
assumed for Ganymede (from
Moore and Schubert [76]).
The solid line represents
models without an internal
ocean, whereas the thickness
of the ocean is equal to
200 km (dotted line), and
20 km (dashed line). Each
model is shown for two
different assumptions on the
value of the mean rigidity of
the ice: μ = 109 Pa and
μ = 1010 Pa

whereas for a fluid body μ̃ is equal to zero and the Love number is simply

k2 = 3

2
. (5.16)

However, most satellites are not homogeneous, with radial variations in composition
and temperature (and also possibly in porosity in the smaller representatives). In this
case, the Love numbers are smaller than the values predicted by Eqs. (5.15)–(5.16)
and numerical integration is required to estimate these parameters (e.g. [13, 76, 112]
and references therein). In addition, some large satellites like Europa, Ganymede,
Callisto, and Titan might hold an internal ocean beneath their surface. In this case the
tidal Love numbers increase toward the fluid limit as illustrated in Fig. 5.3 coming
from Moore and Schubert [76].

When the tide-raising body located at d and the perturbed body disturbed by
the potential r are the same, then r coincides with d in the elastic case. In the in-
elastic case, the vector r is out of phase with respect to d due to friction created
by the motion of defects in the material. There are two main approaches for in-
troducing into the equations the delay due to friction. The first approach proposed
by Darwin [19, 20] and implemented by Kaula [57], Efroimsky and Williams [29],
Ferraz-Mello et al. [31] is in four steps. (i) The tidal potential is developed in the
form of Fourier series by expressing explicitly r and d, (ii) then, for each term of the
series, a phase lag is introduced, and (iii) the gradient of the potential is computed
with respect to the position of r, and finally (iv) d is replaced by r. This scheme
is described and discussed in details in Efroimsky and Williams [29]. The phase
lag ε is determined by the inelasticity of the body material and is a function of the
forcing frequencies. The second approach is presented below in more details. This
approach has the advantage to be simple, because the tidal lag is represented by
a time delay Δt . This approach is however limited by the fact that the dissipation
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factor, labeled Q, and the time delay Δt are linked through the following relation-
ship that assumes that the object behaves like a Maxwell body, i.e.

Δt = (ωQ)−1 (5.17)

with ω is the synodic (or tidal) forcing frequency. However, according to laboratory
measurements the frequency-dependence of the dissipation factor depends on the
forcing frequency to the power α with α between 0.1 and 0.5 (see [67]). Keeping this
limitation in mind, the lag is introduced by a Taylor development of d = r(t − Δt)

for each frequency, that leads to

d ∼ r(t) − Δt
dr(t)
dt

. (5.18)

Therefore, d can be seen as the position of r(t) with a time delay Δt in the past
relatively to the coordinate system linked to the body, and the tidal bulge is dragged
by the rotation of the body.

The phase shift between the action and the response of the body leads to energy
dissipation due to friction that can be expressed through the dissipation factor Q in-
troduced in Eq. (5.17) [65]. The dissipation factor is defined as the maximum energy
E stored during one cycle over the energy dissipated ΔE during that cycle [37]

Q = 2π
E

ΔE
. (5.19)

This definition is related to the damped harmonic oscillator model and the limi-
tation of this analogy has been discussed in Greenberg [39] and Efroimsky and
Williams [29].

The potential, Love number, and dissipation factor have been defined for a satel-
lite deformed by a tide-raising planet. These expressions are still valid in the case of
a planet deformed by a satellite by substituting all satellite parameters by planet pa-
rameters and the planet parameters by those corresponding to the tide-raising body
(satellite or the Sun). However, in the case of giant planets, the power law equa-
tion (5.17) is not applicable because the full dynamics of the atmospheric response
to the tide raising potential must be accounted for (e.g. [52]).

5.3 Tidal Dynamics

5.3.1 Introduction

Tidal interaction implies an evolution in the rotational motion and orbital parameters
of satellites mainly due to the transfer of angular momentum between the satellite’s
orbit and planet’s rotation as well as energy dissipation inside the satellite. The equi-
librium configuration for an isolated two-body problem is a satellite in synchronous
spin-orbit resonance and a circular orbit [87]. For a moon around the giant planet,
the mutual gravitational interactions with the other satellites lead to equilibrium
states close to this equilibrium configuration, as for example in the case of Io, for
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which the Laplace resonance sustains a non-zero eccentricity and then a high dis-
sipation regime as discussed below. Here we describe the tidal interaction between
isolated body and we do not introduce the effect of the orbital resonances.

5.3.2 Transfer of Angular Momentum

The tidal potential generates a tidal bulge on the perturbed body. In the purely elastic
case the tidal bulge is always aligned toward the perturbing body and, by symmetry,
the resulting torque is null. Consequently, there is no transfer of angular momentum
between the two bodies. In the inelastic case, the bulge is offset with respect to the
direction between the satellite and the perturbing body and the resulting tidal torque
drives an exchange of angular momentum.

A simple description of the angular momentum transfer can be investigated by
considering a system composed of two rotating bodies, P and S, orbiting around a
center of mass G, in circular orbit, and isolated in space. Here, we assume that P

is a planet of mass Mp larger than the mass of the second body Ms , the satellite.
The total angular momentum H of this system is the sum of the planet’s angular
momentum Hp and the satellite’s angular momentum Hs ,

H = Hp + Hs . (5.20)

The planetary angular momentum is expressed in the barycentric reference frame of
this system as

Hp = MpGP ∧ vp + IpΩp (5.21)

where GP is the direction vector between G and P , vp is the orbital velocity of the
planet around the center of mass, Ip the tensor of inertia of the planet, and Ωp its
rotational velocity. Similarly, the angular momentum of the satellite is expressed as

Hs = MsGS ∧ vs + IsΩs (5.22)

where the indices s refer to the satellite. By using the barycenter definition of G, we
simplify the expression of the total angular momentum as

H = MsPS ∧ vs + IpΩp + IsΩs . (5.23)

Consequently, the angular momentum is composed of the rotational angular mo-
mentum of each body with the satellite’s orbital angular momentum around the
planet but with the barycentric velocity. By assuming that the spins are normal to the
orbital planes the vectorial equation is expressed as a scalar equation, where Cp and
Cs are the polar moments of inertia of each body. In addition, for circular orbits, the
velocity vs can be simply expressed as vs = an with a the orbital radius and n the
mean motion. Here we assume that the orbit of the satellite and the spin of the planet
are rotating in the same sense. Triton is in a retrograde orbit, so vs is then equal to
−an. Table 5.2 presents physical parameters of the planets and satellites considered
in this chapter. It appears that the rotational angular momenta of the planets and the
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Table 5.2 Parameters of giant planets

Giant planet Radius (km) Mass (1024 kg) Prot

Jupiter 71398 1898.6 9h55m27.3s

Saturn 60330 568.46 10h39m22.4s

Uranus 26200 86.832 17.24 ± 0.01 h

Neptune 25225 102.43 16.11 ± 0.01 h

orbital angular momenta are much larger than the rotational angular momenta of the
satellites by four to five orders of magnitude. Equation (5.23) is then simplified as

H = Msa
2n + CpΩp (5.24)

that is a constant function of the motion for the isolated two body problem. This
equation shows the relationship between the variation of the semi-major axis of the
satellite (contained also in n through Kepler’s third law) and the rotation of the
planet.

To obtain the relationship between the semi-major axis and rotational rates, we
derive Eq. (5.24),

Ms

d(a2n)

dt
+ Cp

dΩp

dt
= 0. (5.25)

However, the derivation of the first term on the right-hand side is not straightfor-
ward, because a and n are related through Kepler’s third law n2a3 = G(Mp +Ms) �
GMp . After introducing Kepler’s third law and expressing n as a function of a, the
variation of the semi-major axis a is directly related to the variation of the rotational
velocity of the planet through

1

a

da

dt
= −2

Cp

MpR2
p

(
Mp

Ms

)(
Rp

a

)2 1

n

dΩp

dt
(5.26)

or
da

dt
∝ −a1/2 dΩp

dt
. (5.27)

The satellite’s semi-major axis and the planet’s angular velocity evolve in opposite
directions, that is the planet’s angular velocity decreases if the satellite’s orbit ex-
pands, and vice-versa due to the transfer of angular momentum between the orbit
and the rotation. In the case of Triton, which is in retrograde orbit, the sign of the
right-hand side is positive meaning that acceleration in the spin corresponds to an
expansion of the orbit, and deceleration in the spin implies a contraction of the orbit.
The evolution of the Triton dynamics is described in Correia [18].

The variation in the planet’s angular velocity can be computed from the gravi-
tational torque exerted by the satellite on the offset planetary bulge. The rotational
HR

p angular momentum of the planet is equal to the torque applied to the planet

dHR
p

dt
= T. (5.28)
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As HR
p = CpΩp , under the assumption that the spin vector is aligned along the

polar axis ez and Cp is assumed to be constant, we have
dΩp

dt
= 1

Cp

Tz. (5.29)

The vectorial torque is the cross-product of the radial vector between the centers of
mass of the planet and of the satellite with the tidal force resulting from the tidal
potential ∇U expressed in Eq. (5.12):

dΩp

dt
= Ms

Cp

(r ∧ ∇U)z. (5.30)

By using the potential equation (5.12) and Q defined in Eq. (5.17), we obtain the
relation

dΩp

dt
= −3

2

(
k2

Q

)
p

GM2
s R5

p

Cpa6
sign(Ωp − n) (5.31)

where the sign represents the effect of the torque braking the spin of the planet and
leading to spin synchronization (because here the orbit is assumed to be circular).
Combining Eqs. (5.26) and (5.31) with Ωp > n, we obtain the final expression of
the evolution of the orbital motion of the satellite due to the tides raised in the planet
(e.g. [37]):

da

dt
= +3

(
k2

Q

)
p

Ms

Mp

(
Rp

a

)5

na, (5.32)

or
da

dt
∝

(
k2

Q

)
p

a−11/2. (5.33)

So far these equations have been developed for a circular orbit. If the eccentricity is
non-zero, the tides raised by the satellites on the planets increase the orbital eccen-
tricity of the satellite as shown by Jeffreys [55], Goldreich [35]. By expanding the
tidal potential U , Eq. (5.12), in Fourier series and then working out the equations of
orbital element variations, the evolution of the eccentricity is derived as [37]
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The effect is to increase the eccentricity because for almost satellites we are in the
case where Ωp > n, i.e., outside the synchronous orbit (where Ωp = n). In this case,
the impulse due to the planetary tidal bulge on the satellite is larger at the periapsis,
increasing the apoapses distance and then the eccentricity.

5.3.3 Tides Raised on the Satellites

5.3.3.1 Introduction

The consequences of the tides acting on the planet have been described in the pre-
vious section and now we tackle the question of the tides acting on the satellites.
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These drive despinning and generally lead to synchronization of the satellite’s rota-
tion with its orbital motion in a time shorter than the age of the solar system. Besides,
the orientation of the satellite’s spin converges toward an equilibrium value called
the Cassini state that is generally close to the normal to the orbital plane ([10, 17];
see review in [18, 87]).

Exceptions are Phoebe and Nereid that are too far from their parent-planets, more
than 200 planetary radii (Table 5.1). Also, Hyperion stands out as the only satellite
presenting a chaotic rotation due to its strong non-spherical shape [120].

Other consequences of the tides raised on the satellites include circularization of
the orbits and contraction or expansion of the semi-major axes, depending on the
relative amounts of dissipation inside the planet and in the satellite and if orbital
resonances are present [87].

5.3.3.2 Despinning

The initial spin rate of the main satellites is estimated to be a few hours (e.g. [87]).
However, at present time most satellites are rotating synchronously (see Table 5.1).
Spin rate evolution is the consequence of the tides raised in the satellite by the
parent-planet gravitational potential. This torque may be computed from Eq. (5.31),
in which the orbit of the satellite is assumed to be circular, in the equatorial plane of
parent-planet, and the obliquity is equal to zero (e.g. [31, 35, 65])
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This torque acts to despin the satellites on a relatively short timescale, of a few
million years. The evolution of the angular momentum yields

dCsΩs

dt
= Γ (5.36)

and
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and by introducing the Love number defined in Eq. (5.15)
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The damping timescale is then estimated to be equal to [87]

τ ≈ 76

45
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ρsR2
s

)
1

n4
. (5.39)

Here, Qs is the dissipation factor, Cs the polar moment of inertia, ρs the mean den-
sity, and μs the mean bulk modulus of the satellite. For typical values of Qs = 100
and μs = 1010 Pa, we infer from Eq. (5.39) that the despinning timescale decreases
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when the satellite’s size increases. After the tidal modeling of MacDonald [65] the
resulting satellite despinning time is around a few million years, except for the
distant Iapetus whose despinning timescale is of the order of the age of the solar
system due to the large distance from Saturn [1]. However, more realistic mod-
els of dissipation gives for Iapetus a despinning time around 0.9 Gyr [13]. This
leads to the general observation that the consequences of tidally-induced stressing
may significantly vary from one modeling framework to another, and this is par-
ticularly the case for the MacDonald approach and the more elaborate modeling
developed by Efroimsky and Williams [29] or Ferraz-Mello et al. [31] based after
[19, 20].

In the case of a circular orbit, the final spin state is at the exact synchronous
resonance. However, if the orbit is eccentric the final rotational period is slightly
larger than the orbital period. For the tidal model based on [65] the spin frequency
is expressed as [63, 119]

Ωe
s = n

(
1 + 19

2
e2

)
. (5.40)

The spin frequency is larger than the orbital frequency, because the tidal torque is
larger at the periapsis and leads to a positive torque on the satellite that accelerates
its spin rate.

5.3.3.3 Spin-Orbit Resonance

Most large satellites are in synchronous resonance with a non-zero eccentricity. The
mechanism leading to the capture of the satellites in spin-orbit resonance is the
gravitational torque exerted by the parent-planet on the asymmetrical shapes of the
satellites. Therefore Eq. (5.36) becomes
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n2(Bs − As) sin 2γ = Γ (5.41)

where the second term on the left-hand side represents the restoring torque. The
angle γ is the orientation of the satellite’s long axis relative to the direction of the
satellite to the planet (e.g. [36]). The stability criterion for capture into resonance is
that the average tidal torque must be smaller than the maximum possible restoring
torque due to the parent-planet [36]. This is expressed as
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By using the expression of the tidal torque equation (5.35) and for a small eccen-
tricity, we obtain the constraint on the triaxiality of the satellite (B − A)/C for
synchronization to occur:
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Therefore if the permanent asymmetrical bulge (Bs − As) is large enough the satel-
lite can be captured into synchronous resonance. It appears that for most satellites
the hydrostatic value of (Bs −As) (Sect. 5.4) is always larger than the critical value,
implying systematic capture in resonance, as observed in nature. However, the di-
rection of the long axis of the satellite is slightly shifted from zero at the pericenter
because of the balance between the non-zero tidal torque and the permanent torque
[123]. That offset in the direction of the satellite is relatively small. For example,
in the case of Enceladus the shift is estimated at a maximum 0.57 degrees [92].
Measuring such a small displacement is challenging, even with an orbiter, but the
required measurement accuracy may be achieved with an in situ tracking device,
such as a transponder. In addition, it has been suggested that a transient regime may
occur. Indeed, since the figure axis is shifted, the shape of the satellite may relax by
creep in order to adjust to the external potential resulting in the satellite’s rotating
slightly faster than the synchronous rotation to maintain an equilibrium orientation,
and implying a non-synchronous motion of the surface [41, 121]. While there is no
direct evidence for such a motion from Voyager and Galileo images, the interpre-
tation of tidally-induced tectonic patterns at Europa seems to support this scenario
([42], [44, Sect. 5.5.5]).

5.3.3.4 Satellite Orbital Evolution

The rotational equilibrium configuration of most satellites is the synchronous spin-
orbit rotation regime, since the despinning time is generally shorter than the age of
the solar system. In this case, on average, the tidal bulge of the satellite is aligned
with the gravitational force of the planet. As a consequence, there is no transfer of
angular momentum between the satellite’s orbit and rotation. However, if the satel-
lite has a non-zero orbital eccentricity, it is deformed more strongly at the periapsis
than at the apoapsis leading to a time-varying tidal potential called radial tides. In
addition, the long-axis of the satellite oscillates around its mean value because the
velocity of the orbital motion varies along the elliptical orbit [79]: it accelerates
at the periapsis and decelerates at the apoapsis according to Kepler’s second law.
This oscillation is called the optical libration. Its amplitude is equal to twice the
eccentricity, and it leads to a second time-varying potential term called librational
tides. Due to the radial and librational tides, the orbital energy is still transferred
between the satellite’s orbit and rotation, which affects the satellite’s orbit over long
timescales [35].

Here, the energy source is the orbital energy −GMsMp/2a whose dampening
by the tidal dissipation decreases the semi-major axis. As the orbit angular mo-
mentum Msna2

√
1 − e2 is conserved, the decrease in the semi-major axis a is as-

sociated with a decrease in the eccentricity e leading to the circularization of the
orbit. The temporal evolution of the semi-major axis and eccentricity have been
expressed by Goldreich and Soter [37] for a satellite not involved in any orbital
resonance:
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We note that the semi-major axis and eccentricity evolution rates are negative lead-
ing to a decrease of both quantities as long as the eccentricity is non-zero. As the
evolution of the eccentricity is faster than the evolution of the semi-major axis
(which depends on e2), the orbit is circularized well before the semi-major axis a is
significantly modified.

The combined evolution of the semi-major and eccentricity result in the combi-
nation of the tides raised on the planet, Eqs. (5.32) and (5.34), and the tides raised
on the satellite, Eqs. (5.44) and (5.45) for satellites outside orbital resonances. The
tides raised on the satellites lead to a decrease in both the semi-major axis and eccen-
tricity, whereas the tides raised on the planet lead to an increase of both quantities,
since all major satellites of the giant planets evolve beyond the synchronous orbit
(defined by the distance to the primary at which the orbital period equals the ro-
tation period of the planet, Ωp = n). The orbital evolution of the satellites around
the same parent-planet depends on their semi-major axes, sizes, material properties,
and thermal evolution. Consequently, the satellites cross many orbital resonances, as
for example Dione and Enceladus that are currently in 2:1 resonance or the Galilean
satellites, Io, Europa, Ganymede, that are in 4:2:1 resonance (the Laplace resonance
discussed in more details below). Resonance crossing leads to an additional transfer
of angular momentum (e.g. [71]) that strongly influences the orbital evolution of
the satellites. In addition, when the satellites are in orbital resonances, eccentricity
pumping prevails over the circularization of the orbit, which further sustains tidal
heating inside the satellites as discussed in Sect. 5.5.

Tidal dissipation also affects the inclinations of the satellites orbits. The equilib-
rium configuration depends on the distance of the moon to the parent-planet [87]. If
a moon is close to its planet, the orbital precession is mainly driven by the oblateness
of the planet, and the equilibrium orbital plane coincides with the equatorial plane
of the planet. This is the case for the majority of the satellites and thus explains why
these objects have a small inclination (usually around 1 degree or less). On the other
hand, if the moon is far from its planet, the orbital precession may be dominated
by the action of the Sun, in which case the equilibrium orbital plane coincides with
the mean orbital plane of the planet (i.e. the orbital plane of the Sun seen from the
planet). In the intermediate position, the equilibrium plane is between the equatorial
and orbital planetary planes, as seen for example in the case of Iapetus [117].

5.3.3.5 Measurements of Tidal Accelerations

Measurement of the dissipation in giant planet systems through the tracking of nat-
ural satellite orbital motion started about one century ago with de Sitter [24]. The
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method consists in fitting astrometric measurements of the satellites positions ob-
served over long periods with orbital model including the tides. However, assessing
the influence of the tides on the orbital motions of the satellites is complex because
the satellites orbits are perturbed by mutual gravitational attraction with other satel-
lites as well as by the non-spherical shape of the parent-planet. Consequently, the
determination of the tides requires accurate numerical models that account for the
many dynamical perturbations expected over long duration observations, in order
to decorrelate the various dynamical effects (long periods with secular effects due
to the tides). Such studies have been performed by Lainey et al. [61, 62] on the
Galilean and Saturnian satellites.

For the Galilean system, the accelerations due to the tides have induced a cumu-
lative shift in the satellite orbital positions of 55 km, −125 km and −365 km for
Io, Europa, and Ganymede, respectively over the past 116 years analyzed by Lainey
et al. [61]. This means that Io’s orbit is contracting, while the orbits of Europa and
Ganymede are expanding.

The orbital motions of Io, Europa, and Ganymede are driven by the Laplace
resonance, i.e. their mean motions are related through (e.g. [40]):

n1 − 3n2 + 2n3 = 0 (5.46)

where 1, 2, 3 correspond to Io, Europa, and Ganymede, respectively and n is the
mean motion. This resonance results in the excitation of the satellites eccentricities
and is thus instrumental in maintaining significant tidal dissipation in Io and Europa.
However, since these satellites are evolving in opposite directions, it is expected that
they would eventually escape from the Laplace resonance [61, 97].

In addition, from the determination of the semi-major axis evolution of these
satellites Lainey et al. [61] could infer the ratios k2/Q characteristic of Jupiter and
Io. The relationship between the semi-major axis and the eccentricity evolution rates
with k2/Q are shown in Eqs. (5.32), (5.34), (5.44), and (5.45). The tides within Eu-
ropa and Ganymede are not measurable because of the orbital correlations caused by
the Laplace resonance. The tides related to Callisto are negligible because the satel-
lite is too far from Jupiter (H = 89.2 meters for Callisto whereas it is 3119 meters
for Io, see Table 5.1). The k2/Q ratio for Io is then equal to 0.015 ± 0.003, which
is consistent with the value inferred from heat flow mapping. Such a result implies
that Io’s interior is close to thermal equilibrium and that the heat flow radiated at the
surface is mainly due to tidal heating [61].

Jupiter’s k2/Q is equal to (1.102 ± 0.203) × 10−5 [61]. On top of this, geophys-
ical model of Jupiter’s interior that yields the value of k2 leads to the determination
of Jupiter’s dissipation factor. Gavrilov and Zharkov [34] predicted a value of 0.379
implying a Q factor of (3.56 ± 0.66) × 104. This value is close to the lower bound
on Q determined from the tidally-induced orbital migration of the satellites over the
age of the solar system that is in the range 6 × 104 < Q < 2 × 106 [123]. The dissi-
pation determined by Lainey et al. [61] is consistent with the dissipation models of
Jupiter. This result shows that dissipation within giant planets is much stronger than
anticipated for the past four decades.

A similar study performed by Lainey et al. [62] for the Saturnian system lead to
the determination of Saturn’s (k2/Q) equal to (2.3 ± 0.7) × 10−4. This value is one
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order smaller (so larger dissipation) than the usual value estimated from theoretical
arguments [83]. In addition, Lainey et al. [62] found that the orbit of Mimas moves
toward Saturn at a rate of da/dt = −(15.7±4.4)×10−15 au/days. It is not possible
to derive directly Mimas’ k2/Q from that rate as was done for Io because the satellite
is in resonance with Tethys and also interacts with the Saturnian rings.

The measurement of the tides expressed in the Saturnian system brings new in-
formation on the understanding of this system. For example, Enceladus presents
plumes and heat emerging from the south pole. The associated energy is estimated
to be about 15.8 ± 3.1 GW [45]. Meyer and Wisdom [71] using an obsolete ancient
determination of Saturn’s k2/Q pointed out that this power can not be produced
from tidal dissipation because it is then inconsistent with the long-term preserva-
tion of Enceladus’ eccentricity [71]. However, by taking into account the additional
transfer of angular momentum resulting from the 2:1 resonance with Dione [71]
and the new k2/Q value, Lainey et al. [62] explained both the observed heat and
the preservation of Enceladus’ eccentricity. In addition, in that framework, Saturn’s
dissipation factor is inconsistent with the scenario assuming that the moons formed
outside the synchronous orbit and then migrated to their current positions. A re-
cent model of accretion of the moons inside and at the outer edge of Saturn’s rings
appears more consistent with the observed dissipation as well as geological obser-
vations and satellite surface composition [14, 62].

In summary, astrometric measurements have led to a quantification of the dissi-
pation inside Jupiter and Saturn by combining accurate modern numerical models
and a historical astrometric record spanning more than one century. The dissipa-
tion in the Uranian and Neptunian systems has not been estimated at this time. The
strong correlation due to the Laplace resonance makes it more difficult to infer the
tidal dissipation in Europa and thus complementary methods are required to deter-
mine that parameter, for example, through accurate characterization of the satellite’s
rotation, as shown by Rambaux et al. [92] for Enceladus, or by direct measurement
of the gravity field and surface displacement [116]. Both of these techniques require
in situ observations, with a dedicated orbiter or surface tracking instruments (e.g.
beacons, very broad-band seismometer).

5.4 Static Tides and the Shape of the Moons

5.4.1 Introduction

The secular shapes of major satellites in synchronous rotation can be well ap-
proximated by a triaxial ellipsoid under the assumption of hydrostatic equilibrium
[6, 21, 125]. This shape results from the deformation of the body in response to
the centrifugal and tidal forces. The tidal force acts to elongate the moon along the
parent-planet-satellite direction. This is due to the synchronous resonance as the
satellites keep the same face towards the parent-planet. The centrifugal force acts
to flatten the satellite’s shape along its rotation axis. The combination of these two
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forces leads to a triaxial shape because the parent-planet generating the tidal force is
usually in the equatorial plane of the satellite. The amplitude of the resulting distor-
tion depends on distribution of mass inside the body. Hence shape data can be used
to obtain information on the interior.

In practice, the forces shaping the satellites present a secular and a periodic com-
ponent. The consequences of the periodic component are discussed in the next sec-
tion. Here, we focus on the time-independent (secular) contribution of the forces
and the resulting equilibrium shape of the satellite, i.e., when the satellite’s shape
had time to relax to an equilibrium ellipsoid with the long axis pointing toward the
parent-planet and the short axis aligned with the rotating axis.

The steady rotational potential determining the equilibrium shape is

Uc = Ω2
s r2

3

(
P20(cos θ) − 1

)
(5.47)

where the potential acts at a point located at (r, θ, λ) with r the radial component, θ

the colatitude, and λ the longitude. The parameter P20 is the Legendre polynomial
at degree 2 and order 0. Due to the axial symmetry, the potential is independent
from the longitude λ. Ωs is the mean angular rotation of the satellite and is equal to
the mean motion due to the synchronous rotation. The tidal potential is expressed in
spherical coordinates as in Eq. (5.8) that we recall here
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Here, the tidal potential contains both a secular and a periodic component in the
development of the radial distance d and in the orientation angle γ ′. The secular
part in d is obtained by assuming that the orbit of the satellite is circular; the secular
part of the orientation is evaluated for an equatorial orbit and assuming that the
moon is in exact spin-orbit synchronous rotation. Thus the angle γ ′ is expressed by

cosγ ′ = sin θ cosλ. (5.49)

Combining the centrifugal and tidal potentials results in
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)
. (5.50)

5.4.2 Moments of Inertia

The secular potential equation (5.50) entails a permanent deformation of the satel-
lite. The induced potential at the surface Rs of the satellite is assumed to be linear in
φ2 with a coefficient of proportionality, the secular Love number labeled here as kf :

δφ2 = kf φ2. (5.51)

The secular Love number is equal to 3/2 for a homogeneous body in hydrostatic
equilibrium. Its value decreases as density increases with depth (see Sect. 5.2).
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The response of the satellite to the secular potential induces a potential that can
be developed in spherical harmonics to degree 2 as:

δφ2 = GM

a

∞∑
n=0

(
a

r

)n+1 n∑
m=0

(Cn,m cosmλ + Sn,m sinmλ)Pn,m(sinϕ) (5.52)

and the identification between the potential equations (5.51) and (5.52) of each
degree-2 term leads to the relation

C20 = −5

6
kf q (5.53)

C22 = 1

4
kf q, (5.54)

where we have introduced the dimensionless parameter q = Ω2
s R3

s

GMs
corresponding

to the ratio of the centrifugal to the gravitational potential at the equator. The C22
coefficient is a purely tidal term, whereas C20 can be decomposed into a component
induced by the centrifugal potential (1/3) and another one from the tidal potential
(1/2). The relations (5.53) and (5.54) can be simply combined as

C20 = −10

3
C22. (5.55)

As noticed by Moore et al. [77], this relation indicates that the body responds to the
sum of the time-averaged centrifugal and tidal potentials and there is no additional
deviation from spherical symmetry. This relation is often shortly assimilated as a
consequence of the hydrostatic equilibrium. However, in order to assess the equi-
librium state of the object it is necessary to compare its shape and gravity data, as
discussed in more details below.

If the body is in hydrostatic equilibrium, another step toward understanding its in-
terior comes from the Radau-Darwin approximation. The gravitational coefficients
C20 and C22 are related to the satellite’s principal moments of inertia A, B , C (with
C > B > A) through [122]

C20 = −2C − (B + A)

2MR2
, (5.56)

C22 = B − A

4MR2
(5.57)

and the axial moment of inertia C/MR2 can be deduced from the Radau-Darwin
approximation for hydrostatic bodies [79]:

C

MR2
= 2

3

[
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5

(
4 − kf

1 + kf

)1/2]
. (5.58)

In theory, the inferred moment of inertia is a simple function of the internal mass
distribution inside an object.

In practice, satellites shapes and interiors depart from hydrostaticity due to mass
concentrations, large variations in topography at various scales, or even sometimes
a fossil bulge relic of an earlier stage in the evolution of the object. That bulge may
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be acquired before a moon became locked in spin-orbit resonance or during the
tidal migration of the satellite. A famous example is Saturn’s satellite Iapetus that
presents a large equatorial bulge frozen when the object had a rotation period of 16
hours that strongly differs from its current 80 day rotation period [12]. In the case
of endogenic sources of non-hydrostaticity (e.g. mass anomalies, stress associated
with internal activity, such as convection) the impact on the gravity and shape is
expressed at degrees higher than two [33].

5.4.3 Satellite Shapes

Under the assumption of hydrostatic equilibrium the shapes of synchronous satel-
lites may be approximated as triaxial ellipsoids with principal axes denoted (a, b, c),
where a is the long axis pointing toward the parent-planet, c the short axis along the
polar axis, and b the intermediate (equatorial) axis. The proportional factor between
the excitation and the radial response of the satellite is determined by the fluid Love
number, hf , defined as [78, 116]

u = hf

φ2

g
(5.59)

where u is the vertical tidal surface displacement and g is the gravitational acceler-
ation at the satellite’s surface. If the body is in hydrostatic equilibrium, then hf is
related to kf by the following relationship (e.g. [125])

hf = kf + 1. (5.60)

Therefore, a strengthless and homogeneous body is characterized by kf equal to
3/2 and hf to 5/2. As for kf , the Love number hf depends on the density profile.
Departure from the equality (5.60) implies that the object is not in hydrostatic equi-
librium, a crucial piece of information on the evolution of the object. Indeed, the
ability of an object’s shape to relax or to preserve non-hydrostatic anomalies over
the long term is a function of the maximum temperature reached within the object
and the mechanism driving heat transfer.

The Love number hf may be deduced from the principal axes of the ellipsoid
through [22, 125]
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, (5.62)

c = Rs

(
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6
qhf

)
(5.63)

neglecting terms of order 2 in q . Thus, by determining kf from gravity data, it is
possible to estimate the principal axis of a given satellite in hydrostatic equilibrium.
Comparison with actual shape data, if available, leads to constraints on the departure
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of hydrostaticity of the object and then on its internal and surface evolution. In
addition, these relations imply that

(a − c) = 4(b − c) (5.64)

assuming that higher orders in the parameter q can be neglected.

5.4.4 Gravity and Shape Observations

5.4.4.1 Observational Methods

The gravity field of a satellite is measured by accurately tracking the trajectory of a
spacecraft approaching the object and accounting for orbital perturbations acting on
the spacecraft. Accurate measurement of the spacecraft’s position is inferred from
the shift in the radio signal Doppler frequency tracked from Earth’s ground stations.
The requirement in the accuracy of the Doppler shift is a few hundred meters per
second.

The determination of the gravity field, and especially the C20 and C22 coeffi-
cients, requires enough flybys distributed in equatorial and polar orbits in order to
determine each coefficient independently and verify whether the hydrostaticity as-
sumption (5.55) applies to the object. When the gravity data are too sparse, it is
still possible to determine the gravity field by assuming the relation (5.55). Such
approach imposes a strong constraint on the geophysics of these bodies that has to
be kept in mind during the interpretation of the data. The gravity data reduction
technique is described in [98] review on the Galilean satellites, and in [60] for the
Saturnian satellites.

The global shape of a satellite is determined by combining the various limb pro-
files of wide-angle images and then searching for an ellipsoid that can match these
observations [22, 109, 110], or by using an altimeter such as Cassini’s RADAR
altimeter for Titan [124]. The gravity and topography fields can be combined to in-
fer constraints on the interior, such as non-hydrostatic anomalies. However, shape
and gravity observations have been obtained only for a few bodies: Io, Europa,
Ganymede, Callisto by the Galileo spacecraft and Enceladus, Rhea, and Titan by
the Cassini spacecraft (see Table 5.3).

5.4.4.2 Galilean Satellites

The density of Io is relatively high (3.530 g cm−3) indicating that this satellite is
primarily rocky. Europa also presents a high density 3.013 g cm−3 but its surface
is totally covered with ice, suggesting the presence at depth of a large rocky core.
Ganymede and Callisto have lower densities consistent with an ice mass fraction
around 30 %. Magnetometer data suggest that the three icy satellites shelter deep
oceans beneath their icy surfaces [98]. This hypothesis is also supported by the
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Table 5.3 Gravity data provided by the Galileo (a) and Cassini (b) missions. (a) Schubert et al.
[98], (b) MacKenzie et al. [66]. Rhea is not in hydrostatic equilibrium and the Radau-Darwin
approximation can not be applied, (c) Iess et al. [53]. The data for the gravity field of Enceladus
are not available at this time

Satellites C20(10−6) C22(10−6) C/MR2 kf

Io(a) −1859.5±2.7 558±0.8 0.37824±0.00022 1.3043±0.0019

Europa(a) −435.5±8.2 131.5±2.5 0.346±0.005 1.048±0.0020

Ganymede(a) −12753±2.9 38.26±0.87 0.3115±0.0028 0.804±0.018

Callisto(a) −32.7±0.8 10.2±0.3 0.3549±0.0042 1.103±0.035

Rhea(b) −931±12 237.0±4.5 − −
Titan(c) −31.808±0.404 9.983±0.039 0.3414±0.0005 1.0097±0.0039

geological record and can be explained by thermal evolution models ([9, 49, 59, 86,
98] and references therein).

The gravity fields of the Galilean satellites have been determined during the
Galileo mission that dedicated 4–5 flybys to each satellite (see a review in [98]).
As Galileo performed 4 equatorial flybys and 1 polar flyby of Io, Anderson et al. [4]
managed to decorrelate the C20 from the C22 coefficients. In the case of Ganymede
even with the equatorial and orbital flybys [2], it is not possible to decorrelate the
two coefficients and the relationship (5.55) has to be assumed [98]. Indeed, the grav-
ity field of Ganymede includes components of degree and order 4 due to mass con-
centration that could be detected by disk-cap mass anomaly modeling [85]. The sit-
uation is even worse in the case of Europa and Callisto because the gravity passes at
these objects where all in near equatorial orbit, so that only C22 could be determined
[3, 5]. However, the gravity field of Callisto presents a non-zero S22 coefficient sug-
gesting that an anomaly (interior, surface) may affect its potential [5].

At first order, the shape data available for the Galilean satellites are mostly con-
sistent with ellipsoids in hydrostatic equilibrium [5, 98]. As a consequence, con-
straints on the density profile may be obtained from inferring the secular Love
number kf from C22 through Eq. (5.54) and the Radau-Darwin equation (5.58).
Results displayed in Table 5.3 indicate that the satellites are not homogeneous be-
cause their C/MR2 values are smaller than 0.4, i.e. the upper limit corresponding
to a homogeneous spherical body. Models of these satellites matching both their
axial moments of inertia C/MR2 and mean densities indicate that Io, Europa, and
Ganymede present a core enriched in rock, while Callisto is partially differentiated
([98] and references therein).

5.4.4.3 Saturnian Satellites

The gravity and topography of the Saturnian satellites have been inferred from ob-
servations obtained by the Cassini-Huygens mission that arrived in the system on
July 1st, 2004. The Cassini orbiter performed several flybys of all major satellites
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but only a few of these flybys have been dedicated to radio science tracking that en-
ables gravity field measurement. So far, only the gravity fields of Titan, Enceladus,
and Rhea have been obtained to degree two. For the other medium-sized satellites,
only the mass has been determined from radio tracking of Cassini, so far (see a
review in [60]).

Titan has a particular place in the family of the Saturnian satellites. It is the
largest with a radius of 2575 km, i.e. 3.4 times the radius of Rhea (764 km) and it is
the only moon with a thick atmosphere, which is composed mainly of Nitrogen and
Methane. This thick atmosphere precludes the direct observation of Titan’s surface,
and only Cassini RADAR, VIMS (Visual and Infrared Mapping Spectrometer), and
the in-situ Huygens probe that revealed a fascinating world revolving around rich
geological features such as dunes, channels, lakes, impact craters, and putative cryo-
volcanos. The gravity and topography measurements bring constraints on Titan’s
interior, which will help assess the relative contribution of endogenic activity and
atmospheric processes to the evolution of the surface.

The gravity field of Titan has been determined by Iess et al. [53] based on four
dedicated gravity science flybys by Cassini. In an earlier study based on 3 flybys,
Rappaport et al. [94] inferred the gravity field to degree two and found the ratio of
C20/C22 to be different from the −10/3 value expected for an object in hydrostatic
equilibrium. However, by using one more flyby and introducing the degree 3 coef-
ficients, Iess et al. [53] inferred C20/C22 around −10/3, hence demonstrating the
importance of including higher degree terms in the inversion of gravity data. So Ti-
tan’s quadrupole field is consistent with that expected for a hydrostatically relaxed
body shaped by tidal and rotational potentials. By applying the Radau-Darwin ap-
proximation, Iess et al. inferred Titan’s polar moment of inertia C/MR2 equal to
0.3414 ± 0.0005. This information, combined with the mean density, is an impor-
tant constraint on interior models. The relatively large value of Titan’s C/MR2 (as a
reference, Ganymede’s mean moment of inertia is equal to ∼ 0.3115 [98]) suggests
that it is only partially differentiated, and that its core may contain a large fraction
of water, either in the form of ice mixed with rock [7] or as water of hydration, i.e.
water trapped in the silicate structure [11, 32].

In addition, the topography of Titan has been measured by radar altimetry data
[124]. These authors determined a ratio of (a−c)/(b−c) ≈ 2.2 that differs from the
hydrostatic equilibrium inferred by [53] from their gravity data under the assump-
tion of hydrostatic equilibrium. Thus Titan appears more flattened than predicted
for a hydrostatically relaxed body. Nimmo and Bills [81] suggested that the discrep-
ancy could be related to large lateral variations in the icy shell thickness. Choukroun
and Sotin [15] showed that this difference might be imputed to meteorological and
chemical processes acting on the icy surface as part of a methane-ethane substitu-
tion cycle. Therefore, this result highlights the importance of clearly separating the
hydrostatic contribution of the shape resulting from the secular tidal potential in or-
der to quantify the non-hydrostatic contributions due, in this case, to atmospheric
processes.

Another Saturnian satellite of major interest is Enceladus, due to its active south
polar region that may be associated with a liquid water reservoir [91, 106]. Only
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three gravity passes have been dedicated to Enceladus. While the results are not
available at this time, the preliminary data indicate that the gravity field of Enceladus
contains a non-negligible degree-three component [26]. These authors reported that
the degree 2 coefficients dominate, as expected for a synchronous satellite, but the
C20 and C22 present a small departure from the values predicted under the assump-
tion of hydrostatic equilibrium. In addition, the C30 is negative, corresponding to
a negative gravity anomaly at the south pole. The interpretation of these results is
currently under investigation and will reveal crucial information on Enceladus’ icy
shell structure.

The third Saturnian satellite for which gravity measurements have been per-
formed is Rhea, although the limited dataset (only one pass) makes it difficult
to infer robust constraints on the interior of the object. Still, it appears that, like
in the case of Enceladus, Rhea’s gravity field contains a degree-three component
[66, 82]. These authors suggested that the source of that component is the impact
basin Tirawa. The mass anomaly associated with the large crater induced a reorien-
tation of the moon’s principal axes in order to minimize the rotational energy so that
the smallest principal axis moment of inertia is oriented toward the parent-planet,
while the largest principal axis moment of inertia presents a small angle from the
normal to the orbit, following the Cassini states [87]. More gravity passes of Rhea
are required in order to better understand the relationship between its gravity field
and topography.

Thomas [108] published the triaxial shapes measured for 20 Saturnian satellites
from limb profiles. The global shape of Rhea matches a hydrostatic figure; while
for Mimas, Enceladus, and Tethys the degree 2 shapes are not consistent with hy-
drostatic equilibrium [82, 108]. Consequently, lateral variations in topography or
internal structure (e.g. mass concentrations) need to be accounted for in the inter-
pretation of the gravity measurements as these features can bear a non-negligible
signature at high-degree spherical harmonics [82].

5.5 Internal Stress

5.5.1 Introduction

In the previous section, we focused on the constant part of the tidal potential that
determines a satellite’s triaxial shape. We now focus on the time-varying potential
induced by eccentricity, obliquity, or physical librations (i.e. oscillations superim-
posed on the uniform rotation component, e.g. [46, 93]). This source of stress has
profound impact on the interior and surface of the satellite. The deformation of the
satellite results in friction within the material resulting in the satellite’s response
being out of phase with respect to the tidal forcing. This friction generates heating.
When the tidal heat production exceeds the amount of heat that can be transferred to
the satellite’s surface, partial melting of the material ensues, and volcanism becomes
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the more efficient vector of heat [77]. The most spectacular expression of tidal heat-
ing is certainly the active volcanism on Io (Sect. 5.5.3). In the case of icy bodies,
cryovolcanism acts at lower temperature, as observed on Enceladus, and suggested
for Titan, Triton, Miranda, and Ganymede (Sect. 5.5.4). Also, the stress incurred by
the periodic tidal distortion of a satellite’s surface can lead to fracturing and drive
tectonic activity (Sect. 5.5.5).

5.5.2 Tidal Heating from Mechanical Energy Dissipation

There are two approaches for the computation of tidal heating in satellites. The first
one consists in computing the heat produced at each point of the body by using the
strain-stress tensor resulting from the tidal distortion. This method has been em-
ployed in a series of paper (e.g. [89, 99, 112]) and it enables the quantification of
the heat production in each part of the body. However modeling realistic, radially
and laterally heterogeneous bodies with this method requires sophisticated numeri-
cal codes. In this chapter we focus on another, simpler approach that applies at the
global scale of the object, but is equivalent to the former. It is based on the compu-
tation of the work performed by the tides (e.g. [118]).

The dissipated energy is equal to the work rate of the tidal force. That work rate is
equal to the scalar product of the tidal force ρ∇U (where ρ is the material density
and U the tidal perturbed potential defined in Sect. 5.2) and the velocity v of an
element of the body integrated over the volume:

dE

dt
= −

∫
body

ρv.∇U dV. (5.65)

The volume integral can be transformed into a surface integral by assuming that the
interior is incompressible and homogeneous. Then we obtain

dE

dt
= −ρ

∫
body

U v.ndS (5.66)

by Gauss’ theorem. Here n is the normal to the surface and the quantity v.n is the
rate at which the surface is elevated. The phase lag between the potential U and the
elevation of the surface is then introduced as

ζ = h2
U ′

g
(5.67)

where h2 is the dynamic Love number quantifying the deformation of the object
(integrated over its radius) and U ′ is the tidal potential lagged because of friction
inside the body. Then, after computing the tidal potential and averaging over the
orbital period (short period), tidal dissipation is found as (e.g. [31, 50, 65, 89, 99,
119])

dE

dt
= −21

2

k2

Q

R5
s n

5

G
e2. (5.68)
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Fig. 5.4 Global view of
Jupiter’s moon Io taken by
Galileo in September 1997.
This composite image has
color enhanced in order to
highlight different regions
such as big red ring of Pele
volcano at the bottom left.
The dark spot close to the
center of the image was a
new distinctive structure
illustrating the ongoing
activity on Io
(http://photojournal.jpl.nasa.
gov/catalog/PIA01667),
courtesy of NASA

This expression applies to a satellite in synchronous spin-orbit resonance with neg-
ligible obliquity, orbital inclination, as well as physical libration. The general ex-
pression taking into account these additional perturbations can be found in Wisdom
[119] and Levrard [63]. The power of 5 applying to the moon’s radius and mean
motion implies increased heating in large satellites and/or satellites close to their
parent-planets. In addition, the amount of dissipated energy depends on the orbital
eccentricity (e2). This dependency is related to the source of the tidal work being
the radial and diurnal tides presented in Sect. 5.3.3.4. The contribution of the li-
brational tides is 4/3 larger than the contribution of the radial tides and the sum
of the two contributions leads to the factor 21/2. Finally, the energy rate depends
on the ratio k2/Q that is function of the capacity of the satellite interior to deform
and dissipate mechanical energy, which is itself a function of the forcing frequency
(Sect. 5.3).

5.5.3 A Hot Satellite: Io

The spacecraft Voyager 1 revealed in 1979 a unique volcanic world, Io, with active
lava flows, volcanic plumes several hundred kilometer high, and a young surface
devoid of impact craters [68, 101]. The Galileo image displayed in Fig. 5.4, shows
Io in false color in order to enhance the different geological structures, where the
white and gray features represent sulfur dioxide frost, whereas the bright red and

http://photojournal.jpl.nasa.gov/catalog/PIA01667
http://photojournal.jpl.nasa.gov/catalog/PIA01667
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black features are related to recent volcanic activity. In addition, Galileo detected
eruptions and identified a recent ring of reddish material deposits around an area
called Tvashtar Catena [58, 68].

Io’s thermal emission has been inferred from Galileo’s data between 1.2 W m−2

and 3 W m−2 [95, 115] and the global power has been found between 50 and
125 TW. For comparison, Earth’s global dissipation budget is around 3.3–4 TW
[30], i.e., 25 times smaller. In comparison, other internal heat sources (accretional,
radiogenic heating and specific gravitational energy) are several orders of magni-
tude less significant and insufficient to drive partial melting leading to volcanic
activity. This scenario was predicted by Peale et al. [90] a few weeks before the
arrival of Voyager and developed in more details by, e.g. Moore [77]. The source
of energy is related to tides raised by Jupiter on Io that are big due to Io proxim-
ity (421 000 km to compare with the Earth-Moon distance of 384 000 km), large
Jupiter’s mass (300 times the Earth’s mass), and a relatively high Io’s eccentricity
(0.0041). For illustration, the elevation of Io’s surface due to the diurnal tides is
3eh2H [16] where e is the eccentricity, h2 the surface Love number, and H the
equilibrium amplitude defined in Eq. (5.1) leading to a surface elevation of about
300 meters height.

It could be surprising that Io kept a non-zero eccentricity because the effect of
tides is to circularize the orbit. The eccentricity may be separated in two terms:
a free and a forced eccentricity (e.g. [40]). The free eccentricity depends on the
initial condition and it is damped to a very small value around 10−5 as expected
from tidal theory [40]. The forced eccentricity is related to the Laplace resonance
Eq. (5.46), and the eccentricity of Io is then pumped by the resonance with Europa
and Ganymede that allows the preservation of a non-zero eccentricity until today
[40, 88, 121].

This huge amount of energy poses the problem of the transfer of energy from
the interior of Io to the surface and the moon’s thermal equilibrium. Moore [75]
investigated the question of energy transfer by studying convection in a partially
molten core and he deduced that the heat that can be transferred is one order lower
than the observed flux. This suggests that Io is either out of thermal equilibrium or
another heat transport mechanism is taking place. Indeed, the recent determination
of Io’s dissipation factor determined by Lainey et al. [61] leads to a heat flux equal
to 2.24 ± 0.45 W m−2 that is within the range of the observed surface heat flux.
In addition, the (k2/Q) values for Io and Jupiter suggest that Io is close to ther-
mal equilibrium with the energy produced by tidal dissipation being radiated at the
surface.

The tidal heating on Io is very unique due to its spectacular consequences that
can be seen from Earth (e.g. [115]). However, tidal heating also plays a role on other
satellites like Europa where it contributes to the preservation of a deep ocean be-
neath the icy shell [47, 84, 104, 111]. Ganymede and Miranda may have encountered
past resonances that have enhanced their eccentricities and increased their tidal heat
budget leading to a possible phase of resurfacing of these satellites (e.g. [23, 100]).
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Fig. 5.5 Global view of
Enceladus taken by Cassini
space mission. The south pole
presents the famous plumes
of water ice burst into the
Saturnian system
(http://photojournal.jpl.nasa.
gov/catalog/PIA12733),
courtesy of NASA

5.5.4 Cryovolcanism

Tidal heating can lead to an exotic form of volcanism called cryovolcanism, where
the volcano erupts liquid or vapor phases of volatile elements such as water ([54]
and references therein). The Voyager’s observations of Geyser on Neptune’s moon
Triton [102] or active plumes at the south pole of Enceladus observed by Cassini
spacecraft (Fig. 5.5) [91, 106] may suggest that this process, that has no equivalent
on Earth, could be widespread in the icy satellites of the outer solar system. How-
ever, the existence of cryovolcanism on icy satellites is still debated, as for example
in the case of Titan where some cryovolcanic-looking features may actually have
a tectonic origin [16, 54, 64, 80, 103]. Nevertheless, signatures of past cryovolcan-
ism have been identified on Europa and Ganymede by the Galileo mission and on
Miranda from Voyager imaging (e.g. a review [16]).

Like for Io, Enceladus’s cryovolcanism is certainly driven by tidal dissipation
[107]. The amount of energy dissipated within Enceladus has been measured by
Cassini’s Composite Infrared Spectrometer at 5.8 ± 1.9 GW [106] and updated at
15.8 ± 3.1 GW by Howett et al. [45]. Based on the latest measurements of Saturn’s
dissipation factor, Enceladus is certainly in thermal equilibrium [62]. For Triton,
Geyser-like plumes of 8 km height have been observed by Voyager 2 [102] and the
mechanism driving the plumes appears to be recent cryovolcanism that could also
explain some enigmatic features and the young age of the Triton’s surface [16].

http://photojournal.jpl.nasa.gov/catalog/PIA12733
http://photojournal.jpl.nasa.gov/catalog/PIA12733
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Fig. 5.6 Cycloidal cracks at
the surface of Europa (from
Hoppa et al. [44])

5.5.5 Tidally Driven Tectonics

Tidal stressing leads to surface fractures at various scales, some of which may run
along the entire surfaces of icy satellites. By studying these structures geologists can
deduce properties of the surface layer such as its thickness and thermal structure. In
addition, the patterns displayed by the geological fractures can reveal key informa-
tion on the tidal history of the satellites, such as their orbital evolution, reorientation
of the outer shell as consequence of decoupling, or non-synchronous rotation of the
icy shell (see review in [16], and [56]). Helfenstein and Parmentier [43] first pointed
out a correlation between global-scale lineaments patterns and tidal stress in Voy-
ager images for Europa. Since then, three types of tectonic features induced by tidal
stress have been identified: lineaments, cycloidal cracks, and strike-slip faults (see
a review in [8] and references therein). Similar geological structures have recently
been identified on Enceladus and Triton, whereas Ganymede and Miranda show past
evidence of active tectonics [16].

The icy crust is generally modeled as an elastic layer overlying the tidally de-
formed body and the tidal stress σ is computed following the formalism developed
by Vening-Meinisz [114], Melosh [70]. Compressive stresses are defined when σ

is positive and tensional stresses when σ is negative. Fracturation occurs when the
tensile stress exceeds the tensile strength of the crust. Then the cracks propagate
following the ever-changing stress field and stop where the tensile stress becomes
insufficient. Each source of the time-varying potential presents a different stress
field whose pattern can be compared against tectonic patterns. Matching the com-
puted field stress with surface cracks can help identify the origin of the tidal stress
source and constrain the elastic properties of the crust. For example Fig. 5.6 shows
cycloidal cracks on Europa’s surface, observed by Voyager [101]. These cycloidal
structures have been interpreted as the geological consequence of diurnal variations
in the tidal stress field [44].

5.6 Conclusion

Tides rhythm the evolution of giant planets satellites like the tides on Earth rhythm
the flux and reflux on coasts. Their actions lead to despinning and endogenic activ-
ity, such as spectacular volcanism on Io and Enceladus. Tides also bear a signature
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in satellites shapes that may be measured if these objects are in hydrostatic equi-
librium. However, each satellite also appears to be unique, making the investigation
of these systems so fascinating. Many questions are still open and some of them
are still under development thanks to the Cassini space mission that has been pro-
viding astonishing results. ESA’s JUpiter ICy moons Explorer, JUICE, under devel-
opment [25] will visit the Jupiter system in the next decades (2028) and especially
Ganymede and Europa. Even the tidal theory is under an active reevaluation mo-
tivated by new laboratory experiments [67] allowing to introduce a more complex
rheological response of satellites [13, 27]. In addition, the tidal theory has to intro-
duce the presence of a subsurface ocean, expected in some satellites, that could lead
to increased dissipation energy [113].
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