
Chapter 4
Precession and Nutation of the Earth

Jean Souchay and Nicole Capitaine

Abstract Precession and nutation of the Earth originate in the tidal forces exerted
by the Moon, the Sun, and the planets on the equatorial bulge of the Earth. Discov-
ered respectively in the 2nd century B.C. by Hipparcus and in the 18th century by
Bradley, their existence and characteristics were deduced theoretically by Newton
for the precession and by d’Alembert for the nutation. After a historical review we
explain, both in an intuitive manner and by simple calculations, the gravitational
origin and the main characteristics of the precession-nutation. Then we describe in
detail two fundamental theories, one using the Lagrangian formalism, the other the
Hamiltonian one. A large final part is devoted to successive improvements of the
precession-nutation theory in the last decades, both when considering the Earth as a
rigid body and when taking into account the small effects of non-rigidity.

4.1 Introduction

Among various astronomical phenomena that have their origin in the lunar and solar
tides, the precession of the equinoxes exhibit a very small effect on the time-scale of
a human life. Yet it was discovered as early as the 2nd century B.C. by Hipparcus,
who was comparing the positions of the stars in his era to those recorded by his pre-
decessor Timocharis, about 150 years earlier. In Chap. 2 of volume III of Almagest,
Claudius Ptolemy reports the work of Hipparchus on the length of the year1: the
most surprising fact for him was that when the return of the Sun at an equinox is
measured, 1 year amounted to a little less than 365 + 1/4 days, whereas when this

1No writing by Hipparcus survives. According to O. Neugbauer in A History of Ancient Mathemat-
ical Astronomy, he lived between 190 and 120 B.C., whereas Ptolemy lived between 100 and 170.
The observations attributed to Timocharis seem to date back to a period between 300 and 270 B.C.
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return is compared to the fixed stars, he found it a little longer than this value. From
this observation, Hipparcus deduced that the celestial sphere itself (with the stars
fixed on it) was undergoing a slow motion with respect to the equinoxes, and vice
versa.

A physical explanation of the precession had to wait for more than eighteen cen-
turies, until Newton (1642–1727). In Philosophiae Naturalis Principia Mathemat-
ica published in 1687, he understood for the first time that the Earth was flattened
oblately and that the precession was caused by the gravitational torque exerted by an
external body (the Moon or the Sun), owing to this flattened asymmetry with respect
to the direction of the external body. Newton tackles the problem of the motion of the
axis of rotation of a spheroid in Corallaries 18, 20, 21, 22 of Proposition 66 of Prin-
cipia, as an application of the three-body problem. First, he studies the motion of a
satellite revolving around a planet and perturbed by the Sun. Second, he replaces the
satellite by a fluid ring, composed of infinitely many independent particles. Third,
he replaces the fluid ring by a rigid one, fixed to a homogeneous sphere. The rigid
ring, which represents the equatorial bulge, imparts to the sphere its own motion.
Newton shows that the nodal line of the equatorial plane of the sphere (containing
the ring) with respect to the orbital plane of the planet around the Sun undergoes a
retrograde motion, due to the gravitational perturbation of the Sun. Thus precession
was explained for the first time. Later on, Newton observed that, for the Earth, the
precessional motion contains two components, due to the Moon and to the Sun, and
that the ratio of the amplitudes of the two components is the same as the ratio of the
forces they exert in the phenomena of tides. He evaluates this ratio to be 4.5.

More than half a century later, in 1747, James Bradley (1693–1762), after ob-
serving for a period of roughly 20 years the transit of zenithal stars at Kew and
Wansted, remarked that the polar axis traces, in addition to the by then well-known
precession, a small loop of 18.6-year period, with an amplitude close to 9′′, that is
to say far beyond the capacity of detection with the naked eye.2

Just after this discovery, d’Alembert (1717–1783) realized that the 18.6-year pe-
riod corresponds exactly to the period of retrogradation of the nodes of the lunar
orbit with respect to the ecliptic. Then he elaborated in barely a year a complete
theory of the Earth’s rotation, improving Newton’s calculations of precession by
correcting a substantial number of errors and approximations, and by making full
use of the new mathematical tools of calculus. He succeeded in proving the exis-
tence and the nature of the nutation loop, showing that it originates from exactly the
same cause as the precession. His book, entitled Recherches sur la Précession des
Equinoxes et sur le Nutation de l’Axe de la Terre dans le Système Newtonien and
published in 1749, must be considered as the first treatise dealing with a complete
theory of the precession-nutation of the Earth. It opens the path to a new era of

2The discovery of nutation, following that of aberration, by Bradley, is officially recorded in a
memoir as a letter to Lord Macclesfield, his protector and friend, later President of the Royal
Society 1752–1764. Bradley’s memoir, dated 31 December 1747, was read at the Royal Society on
14 February 1748, and published later in the Philosophical Transactions.
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Fig. 4.1 Geometric proof of
the cancellation of the torque
exerted by an external body S

over the sphere tangential to
the ellipsoid (from [16])

increasingly refined theories of the Earth’s rotation, which we will describe in the
following.3

4.2 A Simple Geometric Explanation

In this section we show how the precession mechanism can be explained in a simple
geometric way, following the exposition in Danjon [16], from Newton’s calcula-
tions. We suppose here (Fig. 4.1) that the Earth is an ellipsoid of revolution, homo-
geneous and flattened at the poles. What is the effect of the solar attraction on the
orientation of its axis of rotation in space? It is easy to show that the effect involves
both a force, responsible for the orbital motion of the Earth around the Sun, and also
a torque, which tends to make the equator coincide with the ecliptic.

4.2.1 Precession-Nutation due to the Sun

First we can show that the attraction of the Sun on the mass included in the sphere
centered in C, and internally tangential to the ellipsoid is reduced to a force. For this
let us figure out that we cut the sphere by a plan containing the center S of the Sun
and the axis of the Earth. A and B represent two ranges of material, identical, nor-
mal to the plan of figure, and symmetrical with respect to the center C (Fig. 4.1). Of
course the two gravitational forces

−→
f1 and

−→
f2 exerted by the Sun on these ranges are

not equivalent, neither in amplitude, nor in direction. Their effects can be replaced
by a force positioned at the center C and a torque perpendicular to the plan of figure.
Now we can consider two other ranges of material A′ and B′, symmetrical respec-
tively to the ranges A and B with respect to the plan crossing C and perpendicular to
the direction CS. If we reduce in the same manner as above the gravitational attrac-
tion exerted by the Sun on A′ and B′, we observe that the resulting force is equal to
that of the ranges AB, whereas the resulting torque is exactly the opposite. As the

3Notice that Newton in his Principia predicted the semi-annual and semi-monthly nutations which
their small amplitude rendered undetectable at his time.
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Fig. 4.2 Geometric proof of
the existence of a torque
exerted by an external body S

on an ellipsoid (from [16])

total mass of the sphere can be completely decomposed into such groups as A, B,
A′, B′, we conclude that the resulting torque on the sphere is zero.

In contrast, this is not the case of the torque exerted on the part of the ellipsoid ex-
terior to the sphere, generally called the equatorial bulge. Here the symmetry which
ensured the annihilation of the torques does not generally exist. A simple geomet-
ric argument proves that fact. Let us consider (Fig. 4.2) two point like elements of
material V and W located at the surface of the Earth on the equator itself, symmet-
rical with respect to C. Then it is possible to decompose the gravitational force f1
exerted by the Sun on V into two other ones: ϕ1, parallel to CS and ϕ′

1 towards the
direction of the center CV. In the same way it is possible to decompose the force f2
into two sub-components ϕ2 and ϕ′

2. The forces f1 and f2 are obviously inverse to
the square of the distances CV and CW to the Sun. As a consequence it is also easy
to prove that the forces ϕ1 and ϕ2, parallel one to each other, are proportional to
the inverse of the cube of these distances. Therefore the torque due to the action of
the Sun on V has an amplitude larger than the torque due to this same action on W.
As a conclusion the resulting torque is represented by a vector perpendicular to the
plane of figure and oriented backward. It tends to make a rotation of the segment
VW clockwise, in such a way that the obliquity, i.e. the angle between the ecliptic
and the equator planes, decreases.

We can remark that for two particular cases, the resulting torque exerted in the
elements of material V and W is equal to zero: when the line CS is along the equa-
torial plane, or when it is perpendicular to that plane. The first case occurs during
the equinoxes, and the second one never occurs. Indeed these two cases correspond
respectively to a declination of the Sun δSun = 0° and δSun = 90°, whereas the dec-
lination of the Sun varies in the range ±23°27′. Following the fact that the result-
ing torque vanishes for the two values of the declination above, it follows that the
torque reaches its maximum for a value included between these two extrema. In
summary we can conclude that the Sun exerts on the Earth considered as an homo-
geneous ellipsoid a torque varying with its declination. This torque is zero during
the equinoxes, maximum during the solstices. The moment of this torque is located
along the equator, and tends to decrease the obliquity.

It is easy to construct a vector which verifies those properties: let us con-
sider (Fig. 4.3) a constant vector M1 in the equatorial plane directed towards the
equinox γ , and a second one M2 with the same amplitude and symmetric of M1 with
respect to the line CU, itself perpendicular to the solar hour circle (the great circle
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Fig. 4.3 Decomposition of
the external torque M into
two components: a fixed M1
and a moving M2 with the
same amplitude and
symmetric with respect to the
CU line (from [16])

Fig. 4.4 Motion of the
celestial pole P under the
effect of the solar torque
(from [16])

containing the poles and passing through the line CS). Then the resultant vector M =
M1 + M2 satisfies the properties above: its amplitude is zero during the equinoxes,
maximum during the solstices and it corresponds to the moment of a torque leading
to a decrease of the obliquity. As a consequence it is interesting to study the action
of the solar torque by analyzing independently the effects of M1 and M2.

4.2.1.1 Effect of M1: Precessional Motion

The first moment M1 tends to impart a rotation around Cγ . In the same time, the
Earth undergoes a rotation around its instantaneous axis of rotation (which at first
approximation can be considered as coinciding with the axis of figure). This angular
velocity is represented by a vector v oriented towards the pole P (Fig. 4.4). Thus the
perturbation caused by the solar attraction due to the first component M1 tends to
move P closer to the equinox γ . In other words; the instantaneous pole of rotation
is moving in such a way that its velocity v remains tangent to the hour circle of
the equinox γ . At the same time, this hour circle remains tangent at P to a small
circle centered in Q, the ecliptic pole, in such a way that the angle ̂CQP = ε, where
ε is the obliquity. In summary v is oriented towards the tangent common to the two
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Fig. 4.5 Loops traced by the celestial pole under the effect of the precession added to the semi-an-
nual and fortnightly nutation components. The leading component with period of 18.6 years is not
included in this simplified model (from [16])

circles. As a result P describes the small circle above, the obliquity ε remaining
constant. The motion of both P and γ is uniform and retrograde. In the same time,
the celestial equator undergoes a rotation around the diameter MM′ perpendicular
to the hour circle Pγ , and the point γ retrogrades along the ecliptic with an angular
velocity of 15′′.8/year. In parallel P undergoes its circular motion with an angular
velocity of 15′′.5 × sin ε = 6′′.3/year.

4.2.1.2 Effect of M2: Semi-annual Nutational Motion

The instantaneous effect of the torque with moment M2 is the following one: if the
torque acts alone, the velocity of P on the celestial sphere should be included in the
hour circle of the fictitious point towards the moment M2. This point moves on the
equator and it accomplishes two complete tropical revolutions during one tropical
year. As can be verified when referring to Fig. 4.3, it is opposed to γ during the
equinoxes and coincides with it during the solstices. As a result, the velocity vector
of P undergoing the effect of M2 moves around P in the plane tangent to the celestial
sphere in P, accomplishing two revolutions per year. In conclusion:

– the displacement of the pole P under the effect of M2 is characterized by a peri-
odic orbit, very close to a circle, with radius 0′′.55, with a 6-month period;

– this nutation of P is naturally accompanied both by a periodic displacement of
γ along the ecliptic, with amplitude 1′′.3, and a periodic variation of the obliq-
uity, with amplitude 0′′.55. This obliquity is maximum during the equinoxes and
minimum during the solstices.

4.2.1.3 Combined Precession-Nutation Motion

Now that we have characterized individually the solar precession caused by M1 and
the solar nutation caused by M2 we can combine the two effects: they result in a
cycloidal motion of the pole P in the celestial sphere, represented in Fig. 4.5. The
turning back points correspond to the equinoxes, when the amplitude of the two
torques M1 and M2 added together is zero.
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4.2.2 Precession-Nutation due to the Moon

All that has been demonstrated above for the Sun can be repeated by analogy for
the Moon. We know that the perturbing forces involved are proportional both to the
mass of the perturbing body and to the inverse of the cube of its distance. Knowing
the ratios between the masses and the distances of the Sun and the Moon, we can
conclude that the amplitude of the lunar torque is roughly 2.2 times that of the Sun.
As a consequence, the lunar precession in longitude, i.e. the linear retrogradation of
the point γ along the ecliptic due to the sole action of the Moon, reaches roughly
2.2 times that due to the Sun, that is to say 2.2 × 15′′.8 = 34′′.6 per year.

Concerning the nutation, by analogy with the semi-annual nutation coming from
the moment M2 due to the Sun, the corresponding moment due to the Moon gives
birth to a nutation with period half that of the tropical revolution of the Moon
(27.5 days). The amplitude of this semi-monthly (also called fortnightly) nutation
is much smaller than the semi-annual one due to the Sun. The point γ oscillates
around its mean (precession) motion with a 0′′.2 amplitude (instead of 1′′.3) and
in the same time its obliquity can be increased or decreased by 0′′.09 (instead of
0′′.55). The corresponding displacement of the pole P in the celestial sphere is a
small circle with amplitude 0′′.09.

Therefore, taking into account the effect of the Moon alone on the combined pre-
cession and nutation leads, as it is the case for the Sun, to a cycloidal motion of the
pole (Fig. 4.5). In that case, this motion is characterized by 27 arches per year (27
is the number of lunar half-period cycles during one year). In fact this basic repre-
sentation of the lunar nutation has been established with the implicit and simplified
idea that the Moon is moving along the ecliptic, which is not the case, for its orbit
presents an inclination of roughly 5° with respect to this last plane. Moreover the
Moon’s orbit is not fixed: its ascending node with respect to the ecliptic is precessing
in the retrograde direction, with a 18.6 years period. The effect of this retrograda-
tion is to create another nutation component, much larger than the semi-monthly
one explained above. This component is often called the principal nutation. It is
characterized by an elliptical loop (close to a circle) with 9′′ amplitude described
by the pole of rotation with respect to the celestial sphere, in this same 18.6 years
period. As a direct consequence, the obliquity is varying with this same amplitude
of 9′′ and the γ point is undergoing an oscillation with an amplitude of roughly 18′′
alternatively in the prograde and retrograde direction along the ecliptic.

4.2.3 Global Motion of the Pole of Rotation in Space

Following all the leading effects described above, the main components of the com-
bined gravitational torque exerted by the Moon and the Sun on the equatorial bulge
of the Earth are:

– a linear retrograde displacement of the γ point (the ascending node of the ecliptic
on the celestial equator) which was traditionally called the luni-solar precession
in longitude with amplitude 34′′.6 + 15′′.8 = 50′′.4 per year
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Fig. 4.6 Parametrization for
the study of the
precession-nutation motion of
the Earth.
�0 = (O,x0, y0, z0) is a fixed
inertial coordinate system;
�′ = (O,x′, y′, z′) is fixed to
the Earth. � = (O,x, y, z) is
an intermediate coordinate
system (from [16])

– an elliptical loop of lunar origin with amplitude roughly 9′′ described in a pro-
grade sense in 18.6 years.

– a quasi-circular loop of solar origin with amplitude 0′′.55 described in a prograde
sense in a half year period.

To these motions we must add the semi-monthly nutation loop already described
above and a series of smaller nutational oscillations coming from secondary compo-
nents in the perturbing function due in particular to the irregularities in the relative
orbital motion of the Moon and the Sun around the Earth; the number of these com-
ponents depends of course on the truncature limit for their amplitudes.

4.3 A Basic Mathematical Proof of the Precession-Nutation
Phenomena

As we saw in the previous section, the lunisolar precession and nutation are due
to the action, on the oblate Earth, of the torque exerted both by the Moon and the
Sun on the Earth assimilated to an ellipsoid flattened at the equator. Since Euler’s
pioneering work, we know how to deal with the motion of a body around its center
of gravity subject to a torque. Following the exposition in Danjon [16] we give the
expression for the lunisolar torque acting on the Earth as a function of the celestial
coordinates of the Sun and the Moon. Then we present the classic Euler equations
for the rotational motion of our planet. The integration of the equations will furnish
both the lunisolar precession and the main nutation components.

4.3.1 Reference Frames and Parametrization

In this subsection we define the rectangular reference systems which enable one to
characterize the rotation of our planet, O being its center (Fig. 4.6):
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Fig. 4.7 Parameters involved
in the calculations. O is the
Earth barycenter. A is a point
in the Earth. r is the distance
OA. S is the Sun barycenter.
ρ and a are respectively the
distances AS and OS
(from [16])

– �0 = (O,x0, y0, z0) is constructed in such a way that (O,x0) and (O,y0) are two
fixed directions in the ecliptic, considered as fixed in first approximation, (O, z0)

being directed towards the ecliptic pole.
– �′ = (O,x′, y′, z′) is fixed with respect to the Earth, in such a way that the axes

(O,x′) and (O,y′) are located in the equator, and (O, z′) is oriented towards the
pole of figure. We choose these axes in such a way that they coincide with the
principal axes of inertia of the Earth.

– � = (O,x, y, z) is a third rectangular coordinate system insuring the link be-
tween the two previous reference frames �0 and �′: the (O,x) axis is ori-
ented toward the ascending node of the ecliptic with respect to the equator,
(O, z) = (O, z′) has been defined previously, and (O,y) completes the triad. We
call A, B , C respectively the moments of inertia of the Earth with respect to these
three rectangular axes.

Thus the rotation of the Earth is defined by a set of 3 angles, called Euler’s angles
(Fig. 4.6):

ψ = x̂0x

ϕ = ̂xx′

ε = ẑ0z

4.3.2 Expression of the Tidal Torque

Now let us name x, y, z the rectangular coordinates in � of an element A of the
Earth with infinitesimal mass dm, and XS , YS , ZS the coordinates of the Sun in �.

The distances OS, OA, AS are respectively noted a, r , ρ (Fig. 4.7). Let us call
M� the mass of the Sun, and G the constant of gravitation. Therefore, the gravita-
tional force exerted by the Sun per mass is

f = GM�
ρ2

(4.1)
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By using the vectorial notation this force is expressed as:

GM�
ρ3

−→
AS = GM�

ρ3
−→
AO + GM�

ρ3
−→
OS (4.2)

Here we can already notice that the torque with respect to O due to the first
component at the right-hand side of this equation is zero. Therefore we can let it
aside. The amplitude of the second component can be rewritten

GM�a

ρ3
= GM�

a2
+ GM�a

[

1

ρ3
− 1

a3

]

(4.3)

The first component at the right hand side of Eq. (4.3) corresponds to an acceler-
ation independent on the position of A on the Earth. Integrated over the whole Earth,
it is the acceleration of the orbital motion of the Earth. The second component has
a small amplitude, because of the relatively very close values of a and ρ. We can
write

1

ρ3
− 1

a3
= a3 − ρ3

a3ρ3
= (a − ρ)(a2 + aρ + ρ2)

ρ3a3
≈ 3(a − ρ)

a4
(4.4)

and

GM�a

[

1

ρ3
− 1

a3

]

≈ −3GM�
a3

(ρ − a) (4.5)

In first approximation, we can regard a as constant, which means that the orbital
motion of the Earth is a circle with radius a. Moreover, according to Kepler’s third
law,

GM� = 4π2a3

T 2
= n2a3 (4.6)

Then the combination of (4.5) and (4.6) gives

GM�
[

1

ρ3
− 1

a3

]

≈ −3n2(ρ − a) (4.7)

Still in first approximation, we can consider that ρ and a are parallel (Fig. 4.7). Thus
we have

ρ − a = −r cosα = −xXS + yYS + zZS

a
(4.8)

α standing for the angle ̂AOS, x, y, z and XS , YS , ZS representing respectively
rectangular coordinates of A and S in � Finally, the elementary perturbing force
applied to the element of mass dm is given by

dF = 3
n2

a
(xXS + yYS + zZS)dm (4.9)

This force is parallel to OS. Its components along the three equatorial axes are re-
spectively (XS/a)dF , (YS/a)dF and (ZS/a)dF .



4 Precession and Nutation of the Earth 125

4.3.3 Expression of the Solar Torque

Now we can express the moment of the torque coming from the elementary force
dF on A:

d �M =
⎛

⎝

dLS

dMS

dNS

⎞

⎠ = dF

a

⎛

⎝

x

y

z

⎞

⎠ ∧
⎛

⎝

XS

YS

ZS

⎞

⎠ (4.10)

which gives, after projection on the axes (O,x), (O,y) and (O, z):

dLS = dF

a
(yZS − zYS), dMS = dF

a
(zXS − xZS)

dNS = dF

a
(xYS − yXS)

(4.11)

By combining (4.9) and (4.11), and after integration, we deduce the total torque
exerted on the whole Earth:

LS = 3n2

a2

∫

(xXS + yYS + zZS)(yZS − zYS)dm (4.12.1)

MS = 3n2

a2

∫

(xXS + yYS + zZS)(zXS − xZS)dm (4.12.2)

NS = 3n2

a2

∫

(xXS + yYS + zZS)(xYS − yXS)dm (4.12.3)

The expansion of the expressions at the right hand side of these three equations is
considerably simplified when using the following properties:

∫

x dm =
∫

y dm =
∫

zdm =
∫

xy dm =
∫

xzdm =
∫

yzdm = 0 (4.13)

∫

(

y2 + z2)dm = A,

∫

(

x2 + z2)dm = B,

∫

(

x2 + y2)dm = C (4.14)

∫

(

y2 − z2)dm = C − B,

∫

(

z2 − x2)dm = A − C

∫

(

x2 − y2)dm = B − A

(4.15)

where A, B , C are the moments of inertia of the Earth with respect to the space-
fixed axes (O,x), (O,y), (O, z). By taking into account all these equations, we
finally get the following simplified expressions for the three components:

LS = 3n2 YSZS

a2
(C − B), MS = −3n2 ZSXS

a2
(C − A)

NS = 3n2 XSYS

a2
(B − A)

(4.16)
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Here we still make an approximation consisting in assuming that A = B, which
means implicitly that the Earth is rigorously axisymmetric with respect to the (0, z)

axis. Thus the equations above become

LS = 3n2 YSZS

a2
(C − A), MS = −3n2 ZSXS

a2
(C − A), NS = 0 (4.17)

The Sun is moving along the ecliptic plane (O,x0, y0). Then it is possible to replace
the celestial rectangular coordinates XS , YS , ZS of the Sun by their expression as
function of its distance a = OS from the Earth, of its ecliptic longitude λ� counted
from γ (Fig. 4.6) and the obliquity ε, taking into account the rotation with angle ε

from the ecliptic to the equatorial frames:

XS = a cosλ�, YS = a cos ε sinλ�, ZS = a sin ε sinλ� (4.18)

Inserting these expressions in (4.17) we get

LS = 3n2(C − A) cos ε sin ε sin2 λ� = 3n2

4
(C − A) sin 2ε(1 − cos 2λ�) (4.19)

MS = −3n2(C − A) sin ε sinλ� cosλ� = −3n2

2
(C − A) sin ε sin 2λ� (4.20)

NS = 0 (4.21)

4.3.4 Expression for the Lunar Torque

By analogy with the calculations carried out above for the Sun, we can start from
Eqs. (4.16) to calculate the components of the moment of the torque exerted by the
Moon on the Earth by

– replacing XS , YS and ZS by the rectangular coordinates XM , YM , ZM of the
Moon

– replacing the scaling factor n2 by the corresponding one n′2 related to the orbital
motion of the Moon around the Earth

Indeed, calling M◦ the mass of the Moon and a′ its semi-major axis, we have

GM� = n2a3, GM◦ = n′2a′3 (4.22)

which gives

n′2 = n2
(

a

a′

)3(
M◦
M�

)

(4.23)

Still here, we consider at first approximation that the orbital motion of the perturbing
body (the Moon) is circular, with radius a′, and a/a′ = 388.93. Moreover:

M◦
M�

= M◦
M⊕

M⊕
M�

=
(

1

81.3

)

×
(

1

332 946

)

≈ 1

27 068 500
(4.24)
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where M⊕ stands for the mass of the Earth. Finally this gives n′2 = kn2 with k =
2.174. The next step consists in expressing the rectangular coordinates XM , YM , ZM

of the Moon as a function of its distance a′ from the Earth’s barycenter, the ecliptic
longitude of the Moon λM , the longitude ΩM of the Moon’s ascending node of its
orbit with respect to the ecliptic, the inclination of its orbit iM with respect to the
ecliptic, and the obliquity ε. These expressions are more complex for the Moon than
for the Sun, because by contrast to the Sun, which is moving along the ecliptic, our
satellite is moving along an orbit inclined with iM ≈ 5° with respect to this plane.
Through classical geometrical transformations we get easily:

XM = a′ cosλM (4.25.1)

YM = a′ sinλM cos ε − a′ sin ε sin iM sin(λM − ΩM) (4.25.2)

ZM = a′ sinλM sin ε + a′ cos ε sin iM sin(λM − ΩM) (4.25.3)

Finally, by substituting these coordinates of the Moon to that of the Sun in Eq. (4.17)
and by neglecting the components in i2

M , we find:

LM = 3

4
n′2(C − A)

× [

sin 2ε(1 − cos 2λM) + 2 sin iM cos 2ε
(

cosΩM − cos(2λM − ΩM)
)]

(4.26.1)

MM = −3

2
n′2(C − A)

× [

sin ε sin 2λM − sin iM cos ε
(

sinΩM − sin(2λM − ΩM)
)]

(4.26.2)

NM = 0 (4.26.3)

Then the total lunisolar torque with components L, M , N is obtained by combina-
tion of the components: L = (LS + LM,MS + MM,NS + NM). We note that the
component along (O,x) contains a constant term, with amplitude

Lconst. = 3

4
(C − A)

(

n2 + n′2) sin 2ε = 3

4
(C − A)(1 + k)n2 sin 2ε (4.27)

4.3.5 Equations for the Rotational Motion of the Earth

Now we have an explicit formulation of the lunisolar torque exerted on the Earth,
we apply the fundamental equation related to the angular momentum σ :

(

dσ

dt

)

�0

= (L)�0 (4.28)

In the moving body-fixed frame �′, this equation becomes
(

dσ

dt

)

�′
+ (ω ∧ σ )�′ = (L)�′ (4.29)



128 J. Souchay and N. Capitaine

Let us define the Earth’s rotation vector ω with coordinates ω = (ω1,ω2,ω3) in �′.
In matrix notation, we have

σ =
⎛

⎝

A 0 0
0 B 0
0 0 C

⎞

⎠

⎛

⎝

ω1
ω2
ω3

⎞

⎠ =
⎛

⎝

Aω1
Bω2
Cω3

⎞

⎠ (4.30)

Thus the combination of (4.29) and (4.30) leads to
⎛

⎜

⎝

A dω1
dt

B dω2
dt

C
dω3
dt

⎞

⎟

⎠ +
⎛

⎝

ω1
ω2
ω3

⎞

⎠ ∧
⎛

⎝

Aω1
Bω2
Cω3

⎞

⎠ =
⎛

⎝

L′
M ′
N ′

⎞

⎠ (4.31)

where L′, M ′ and N ′ are the components of L in �′.
Projected along the axes of the body-fixed frame �′ corresponding to the princi-

pal axes of inertia, these equations give, still considering that A = B:

A
dω1

dt
+ (C − A)ω2ω3 = L′ (4.32)

A
dω2

dt
− (C − A)ω1ω3 = M ′ (4.33)

C
dω3

dt
= N ′ (4.34)

Moreover the components L′, M ′ and N ′ of the lunisolar torque in �′ are related
to the corresponding ones L, M and N in � through a rotation with angle ϕ around
(O, z) = (O, z′) (cf. Fig. 4.6):

L = L′ cosϕ − M ′ sinϕ (4.35)

M = L′ sinϕ + M ′ cosϕ (4.36)

A combination of Eqs. (4.32), (4.33), (4.35) and (4.36) gives immediately the
following set of differential equations:

A

(

dω1

dt
cosϕ − dω2

dt
sinϕ

)

+ (C − A)ω3(ω1 sinϕ + ω2 cosϕ) = L (4.37)

A

(

dω1

dt
sinϕ + dω2

dt
cosϕ

)

− (C − A)ω3(ω1 cosϕ − ω2 sinϕ) = M (4.38)

C
dω3

dt
= N (4.39)

Now we consider the components ωx , ωy and ωz of the rotation vector with re-
spect to the equatorial non rotating frame �. They can be expressed by the following
elementary rotations:

ωx = −dε

dt
, ωy = dψ

dt
sin ε, ωz = dϕ

dt
− dψ

dt
cos ε (4.40)
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At the same time, these components are also deduced from ω1, ω2 and ω3 in �′ by
the rotation with angle ϕ:

ωx = ω1 cosϕ − ω2 sinϕ, ωy = ω1 sinϕ + ω2 cosϕ (4.41)

After derivation of the equations above we get easily:

dω1

dt
cosϕ − dω2

dt
sinϕ = dωx

dt
+ ωy

dϕ

dt
(4.42)

dω1

dt
sinϕ + dω2

dt
cosϕ = dωy

dt
− ωx

dϕ

dt
(4.43)

Substituting the transformations of Eqs. (4.42) and (4.43) in Eqs. (4.37) and (4.38)
leads to the following equations:

A

[

dωx

dt
+ ωy

dϕ

dt

]

+ (C − A)ωzωy = L (4.44)

A

[

dωy

dt
− ωx

dϕ

dt

]

− (C − A)ωzωx = M (4.45)

C
dωz

dt
= C

dω3

dt
= N = 0 (4.46)

Then replacing ωx , ωy and ωz by their values in function of ε, ϕ and ψ thanks to
(4.40), and after combination of terms,

−A
d2ε

dt2
− (C − A) sin ε cos ε

(

dψ

dt

)2

+ C sin ε
dϕ

dt

dψ

dt
= L (4.47)

A sin ε
d2ψ

dt2
− (C − 2A) cos ε

(

dψ

dt

)(

dε

dt

)

+ C
dϕ

dt

dε

dt
= M (4.48)

d2ϕ

dt2
− d2ψ

dt2
cos ε + dψ

dt

dε

dt
sin ε = 0 (4.49)

The third equation is equivalent to dωz/dt = 0, which means that the component
of the vector rotation along the figure axis (O, z) is constant. Moreover we know
that the rates dψ/dt and dε/dt are very small in comparison to dϕ/dt , and also
that the expressions d2ψ/dt2 d2ψ/dt2 and dψ/dt × dε/dt are negligible at first
approximation. Therefore the system of Eqs. (4.47) to (4.49) can be simplified to

C sin ε
dψ

dt

dϕ

dt
= L (4.50)

C
dε

dt

dϕ

dt
= M (4.51)

d2ϕ

dt2
= 0 (4.52)

where L (respectively M) is the sum of a solar contribution LS (respectively MS )
and a lunar one LM (respectively MM ), given by Eqs. (4.19) and (4.26.1) (respec-
tively (4.20) and (4.26.2)). The integration of both Eqs. (4.50) and (4.51) will nat-
urally give the theoretical expression of the precession-nutation in longitude ψ and
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in obliquity ε. The lunisolar precession in longitude, which is the linear variation
ψ1t of ψ comes from the constant part L0 of L:

L0 = L0
S + L0

M = 3

4
n2(C − A) sin 2ε + 3

4
n′2(C − A) sin 2ε

= 3

4

[

n2(1 + k)
]

(C − A) sin 2ε (4.53)

Inserting this value in Eq. (4.50) we get

ψ1 = 3

2

n2(1 + k)

ϕ̇

(C − A)

C
cos ε (4.54)

The physical parameter (C −A)/C characterizes the relative difference between the
moments of inertia C along the figure axis, and A perpendicular to it: it is called the
dynamical ellipticity, in the case A = B considered here. A priori all the quantities
at the right hand side of this equation are known with very good accuracy, excepted
this last parameter. n is the mean motion of the Earth: n = 2πrd./y. Moreover
n/ϕ̇ = Ts.d./Ty = 1/366.24 where Ts.d. is the period of a sidereal day and Ty is
the period of the sidereal revolution of the Earth. The obliquity ε can be considered
as constant when not taking into account the small variations Δε calculated in the
following and due to the nutation ε ≈ 23°26′21′′, which gives cos ε ≈ 0.9174. On
the other side, the lunisolar precession ψ1 is well known and determined with high
precision from observational data. Its value is set at ψ1 = 50′′.37/y. Therefore a
remarkable fact is that from (4.54) we can deduce theoretically the value of the
dynamical flattening (C − A)/C from the value of ψ1 determined observationally.

C − A

C
= 2

3

ψ1

n

φ̇

n

1

1 + k

1

cos ε

= 2

3
× 50.37

360 × 3600
× 366.24

1 + 2.74
× 1

0.9174
= 1

306.8
(4.55)

Noting Δψ and Δε the nutations respectively in longitude and in obliquity, that is
to say the periodic components of ψ and ε, we have, from (4.50) and (4.51),

C sin εϕ̇
dΔψ

dt
= L

per.
S + L

per.
M (4.56)

Cϕ̇
dΔε

dt
= M

per.
S + M

per.
M (4.57)

where the symbol per. stands fore the periodic part of each corresponding compo-
nent of the torque.

By substituting to L
per.
S , L

per.
M , M

per.
S , M

per.
M their expressions in Eqs. (4.19),

(4.26.1) (4.20) and (4.26.2) we find

dΔψ

dt
= −3

2

n2

ϕ̇

(

C − A

C

)

cos ε cos 2λ� − 3

2

kn2

ϕ̇

(

C − A

C

)

cos ε cos 2λM

+ 3

2

kn2

ϕ̇

(

C − A

C

)

cos 2ε

cos ε
sin iM

[

cosΩM − cos(2λM − ΩM)
]

(4.58)
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dΔε

dt
= −3

2

n2

ϕ̇

(

C − A

C

)

sin ε sin 2λ� − 3

2

kn2

ϕ̇

(

C − A

C

)

× [

sin ε sin 2λM − sin iM cos ε
(

sinΩM − sin(2λM − ΩM)
)]

(4.59)

Finally we can separate the nutations in longitude coming from the solar and
lunar parts:

Δψ = ΔψSun + ΔψMoon, Δε = ΔεSun + ΔεMoon (4.60)

with

ΔψSun = −3

4

n2

ϕ̇

(

C − A

C

)

cos ε
sin 2λ�

n
(4.61)

ΔψMoon = 3

2

kn2

ϕ̇

(C − A)

C

[

sin iM cos 2ε

sin ε

sinΩM

Ω̇M

− cos ε sin 2λM

2n′

− sin iM cos 2ε

sin ε

sin(2λM − ΩM)

2n′ − Ω̇M

]

(4.62)

And for the nutation in obliquity

Δε = ΔεSun + ΔεMoon (4.63)

with

ΔεSun = −3

4

n2

ϕ̇

(

C − A

C

)

sin ε
cos 2λ�

n
(4.64)

ΔεMoon = − 3

2

kn2

ϕ̇

(C − A)

C

[

sin iM cos ε
cosΩM

Ω̇M

− sin ε cos 2λM

2n′

− sin iM cos ε
cos(2λM − ΩM)

2n′ − Ω̇M

]

(4.65)

Numerically this gives

Δψ = −17′′.16 sinΩM − 1′′.263 sin 2λ� − 0′′.205 sin 2λM

− 0′′.034 sin(2λM − ΩM) (4.66)

Δε = 9′′.17 cosΩM + 0′′.548 cos 2λ� + 0′′.089 cos 2λM

+ 0′′.018 cos(2λM − ΩM) (4.67)

In this section we have explained in a simplified manner, following Danjon
[16] the various steps which lead to the theoretical expressions of the combined
precession-nutation of the Earth in space, that is to say the motion of its figure axis
in space, when undergoing the lunisolar torque. For that purpose we have made
several approximations:

– We neglected the variations of distance of the perturbing bodies (Moon and Sun)
considering that their relative motion is circular.

– We assumed that the Earth is axisymmetric (A = B), whereas in reality the Earth
is triaxial, although the relative difference of moments of inertia (A − B)/C is
much smaller than the difference (C − A)/C.
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– We considered here the Earth as a rigid body whereas in reality we must take into
account several effects of non-rigidity: those due to the elastic mantle with a fluid
outer core and a solid inner core as well as the influence of the oceans and the
atmosphere, which can no more be neglected in comparison with the accuracy of
modern observations.

– We neglected 2nd-order terms in Eqs. (4.47), (4.48) and (4.49).
– We did not take into account the gravitational effects of the planets which, al-

though being considerably much smaller than the lunisolar ones, are not negligi-
ble when compared with up-to-date observational accuracy.

– The problem has been considered in the Newtonian framework while we must
take into account the geodetic precession and geodetic nutation which are a time-
dependent rotation of the geocentric celestial reference system (GCRS) with re-
spect to the barycentric celestial reference system (BCRS) due to General relativ-
ity.

– All our calculations were done with a small precision, to 3 significant digits.

It is clear that all these simplifications, although allowing a straightforward and
clear demonstration, are not satisfactory as soon as a good accuracy is requested. In
the following we describe how the theory of the precession-nutation was pushed to
a remarkable precision thanks to recent developments, and in particular by taking
into account all the corrections mentioned above.

4.4 Alternative Theories of Precession-Nutation for a Rigid
Earth Model

Best modeling the precession-nutation of the real Earth supposes at first step a very
accurate determination of this motion when considering the simplified case of a
rigid Earth. This will serve as a basis for a more complete and accurate theory in-
cluding geophysical, atmospheric and oceanic contributions. After pioneering works
done by Woolard [79] and Kinoshita [37, 38] to elaborate a very complete theory
for rigid Earth precession-nutation, the drastic improvement of observational tech-
niques such as VLBI, reaching the sub-milliarcsecond accuracy during the 1980’s
required new investigations to develop theories available up to the same level of
precision. Competitive works appeared in the 1990’s to accomplish this challenge.
They consisted essentially in an improvement of the already well established theo-
ries mentioned above: Kinoshita’s theory based on Hamiltonian formalism with the
help of canonical variables [39, 65–67]. Woolard’s theory based on the equivalent
principles of the theorem of angular momentum and Lagrangian equations [4, 5, 54].
In the following we describe the theoretical basis of these two theoretical ways of
calculation.

The latter approach was used also by Capitaine et al. [12] with a new param-
eterization replacing the traditional Euler angles (see Sect. 4.4.1.1); this refers to
the CIP (Celestial intermediate pole) and the CIO (Celestial intermediate origin) as
introduced by the IAU 2000 Resolutions (see Sect. 4.4.1.6).



4 Precession and Nutation of the Earth 133

Fig. 4.8 Parametrization of
the rotation of a rigid body
with Eulerian variables.
�0 = (O,X0, Y0,Z0) is a
fixed inertial reference frame
and � = (O,X,Y,Z) is the
body fixed moving reference
frame. The obliquity θ is the
angle between the axes
(O,Z0) and (O,Z). The
precession ψ enables one to
determine the position of the
nodal line (O,γ ) between the
body fixed equatorial plane
(O,X,Y ) and the fixed
reference plane (O,X0, Y0).
The angle of proper rotation
φ enables one to determine
the position of the prime
meridian (O,X,Z) with
respect to the nodal axis
(O,γ ) (from [79])

4.4.1 Dynamical Equations of the Rotation of the Rigid Earth
with Lagrangian Formalism

All the calculations in this chapter are taken from Woolard [79]. The most classical
way to represent the rotation of the rigid Earth with respect to a fixed reference frame
is done through the Eulerian angles (Fig. 4.8). The two reference frames necessary
for the calculations are an inertial one �0 = (O,X0, Y0,Z0) where O stands for
the center of mass of the Earth, and a body-fixed one � = (O,X,Y,Z) in such a
way that (O,Z) is directed towards the axis of maximum moment of inertia C of
the Earth, also defined as the figure axis. (O,X) is oriented towards a point on the
equator of figure and (O,Z) completes the triad. The three axes (O,X), (O,Y ), and
(O,Z) coincide respectively with the principal axes of inertia of the Earth, namely
A, B and C, with A < B < C.

4.4.1.1 Eulerian Parametrization

The Eulerian angles can be defined as follows (Fig. 4.8):

• θ , the obliquity angle (or simply the obliquity) represents the inclination of the
equator of figure with respect to the fixed plane (P0) = (O,X0, Y0). It is generally
reckoned positively.

• ψ , the precession angle, is defined in the fixed plane (O,X0, Y0) between a ref-
erence point γ0 on (P0) and the line (O,γ ) along which the equator of figure



134 J. Souchay and N. Capitaine

(O,X,Y ) crosses the plane (P0). For the sake of simplicity we can make γ0 co-
inciding with (O,X0). Therefore we can write ψ = γ0γ .

• φ, sometimes called the proper rotation, is the angle between the axes (O,γ ) and
(O,X).

Thus the position of the axis of figure of the Earth in space is given by the set of
the three angles (ψ, θ,φ).

4.4.1.2 Euler Kinematical Equations

The rotational motion of the Earth, considered as a rigid body, about its center of
mass with respect to �0 is the combination of three independent rotations:

– a rotation at rate ψ̇ around Z0.
– a rotation at rate θ̇ around the moving line of the node (0, γ ) of the equator of

figure on the fixed plane (P0).
– a rotation at rate φ̇ around the axis of figure.

These three individual rotations compound into a resultant rotation vector ω

around the instantaneous axis of rotation passing through the center of mass O.
Its amplitude ω is the angular velocity around this axis. Therefore the position of
the axis of rotation with respect to the Earth-fixed coordinate system � is given
at any instant by the coordinates (ω1,ω2,ω3) of the rotation vector ω, which are
linked to the derivatives of the Eulerian angles through a system of equations called
the Euler’s kinematical equations. These are

ω1 = −θ̇ cosφ − ψ̇ sin θ sinφ (4.68)

ω2 = θ̇ sinφ − ψ̇ sin θ cosφ (4.69)

ω3 = ψ̇ cos θ + φ̇ (4.70)

And reciprocally, this can be written:

ψ̇ sin θ = −ω1 sinφ − ω2 cosφ (4.71)

θ̇ = −ω1 cosφ + ω2 sinφ (4.72)

φ̇ = ω3 + cot θ(ω1 sinφ + ω2 cosφ) (4.73)

4.4.1.3 Lagrange Formalism

A straightforward way to determine the equations of the rotational motion consists
in applying Lagrange’s equations. The kinetic energy of the Earth is expressed in
the following classical form:

T = 1

2

(

Aω2
1 + Bω2

2 + Cω2
3

)

(4.74)
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Now we choose the Eulerian angles ψ , θ and φ as the generalized coordinates qi

(i = 1,2,3). Then the Lagrangian function is

L = T + U = 1

2

(

Aω2
1 + Bω2

2 + Cω2
3

) + U (4.75)

where U is the force function (potential) representing the lunisolar perturbing po-
tential, which will be explicated in Sect. 4.4.3. The system can be considered as
conservative, so that Lagrange equations can be applied:

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi

= 0 (4.76)

which gives, after expansion [79]:

A
dω1

dt
+ (C − B)ω2ω3 = sinφ

sin θ

(

cos θ
∂U

∂φ
− ∂U

∂ψ

)

− cosφ
∂U

∂θ
(4.77)

B
dω2

dt
− (C − A)ω1ω3 = cosφ

sin θ

(

cos θ
∂U

∂φ
− ∂U

∂ψ

)

+ sinφ
∂U

∂θ
(4.78)

C
dω3

dt
+ (B − A)ω1ω2 = ∂U

∂φ
(4.79)

These equations are generally called the Euler’s dynamical equations

4.4.1.4 Method of Variation of Parameters

The external forces that act to affect the rotational motion of the Earth are so com-
paratively small that the equations of motion may be integrated efficiently by the
method of variation of parameters: in a first step we determine a simplified solution
that would occur were the external forces to vanish (U = 0). Then the solution is
approximatively modified (through the parameters involved) to get the motion in
actual conditions. As we have already mentioned we consider that

A − B

C
� C − A

C
(4.80)

so that, at first approximation, the set of Eqs. (4.77) to (4.79) becomes, taking into
account that ∂U

∂φ
= 0, due to the symmetry:

dω1

dt
+

(

C − A

A

)

ω2ω3 = − sinφ

A sin θ

∂U

∂ψ
− cosφ

A

∂U

∂θ
(4.81.1)

dω2

dt
−

(

C − A

A

)

ω1ω3 = − cosφ

A sin θ

∂U

∂ψ
+ sinφ

A

∂U

∂θ
(4.81.2)

ω3 = cte. (4.81.3)

According to the method of variation of parameters, we first consider that U =
0. Therefore the right-hand side of Eqs. (4.81.1) and (4.81.2) reduces to zero and
putting

μ = C − A

A
ω3 (4.82)
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leads to the trivial equations:

dω1

dt
+ μω2ω3 = 0 (4.83.1)

dω2

dt
− μω1ω2 = 0 (4.83.2)

ω3 = cte. (4.83.3)

with the obvious solutions

ω1 = f0 cosμt + g0 sinμt (4.84.1)

ω2 = f0 sinμt − g0 cosμt (4.84.2)

where f0 and g0 are constants of integration. Thus, we show from these equations
that when external forces vanish (U = 0), and by accepting the condition of ax-
isymmetry (A = B), the axis of rotation of the Earth describes with respect to the
Earth-fixed reference frame � a motion circular and uniform around the axis of fig-
ure, represented by the axis (O,Z). This motion, called the free polar motion, is
described with a frequency μ = (C − A/C)ω3.

The second step in the method of variation of parameters consists in adopting the
same kind of formalism as in (4.84.1) and (4.84.2) for ω1 and ω2 but by replacing
the constants f0 and g0 by functions f and g depending on time:

ω1 = f cosμt + g sinμt (4.85.1)

ω2 = f sinμt − g cosμt (4.85.2)

Inserting these expressions in Eqs. (4.81.1) and (4.81.2) enables to determine f

and g by quadrature:

f = f0 −
∫ (

sin(φ + μt)

A sin θ

∂U

∂ψ
+ cos(φ + μt)

A

∂U

∂θ

)

dt (4.86.1)

g = g0 +
∫ (

cos(φ + μt)

A sin θ

∂U

∂ψ
− sin(φ + μt)

A

∂U

∂θ

)

dt (4.86.2)

Then the combination of Eqs. (4.71), (4.72) and (4.73) with (4.86.1) and (4.86.2)
gives the variations of the Eulerian angles which determine the position of the axis
of figure in space:

sin θ
dψ

dt
= −f sin(φ + μt) + g cos(φ + μt) (4.87.1)

dθ

dt
= −f cos(φ + μt) − g sin(φ + μt) (4.87.2)

dφ

dt
= ω3 − cos θ

(

dψ

dt

)

(4.87.3)

The last equation can be rewritten, using Eq. (4.82), as

d(φ + μt)

dt
= C

A
ω3 − cos θ

(

dψ

dt

)

(4.88)
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4.4.1.5 The Motion of the Axis of Figure in Space

Equations (4.87.1) and (4.87.2) can be transformed into a more advantageous form,
by substituting the expressions of f and g given by Eqs. (4.86.1) and (4.86.2) in the
right-hand side, and after differentiating both members with respect to t . We find

d

dt

(

sin θ
dψ

dt

)

= (φ̇ + μ)
dθ

dt
+ 1

A sin θ

∂U

∂ψ
(4.89)

d

dt

(

dθ

dt

)

= −(φ̇ + μ) sin θ
dψ

dt
+ 1

A

∂U

∂θ
(4.90)

Using Eq. (4.88) and after re-combination, we finally obtain the derivative of the
two precession-nutation angles:

dθ

dt
= − 1

Cω3 sin θ

∂U

∂ψ
+ A

Cω3

d

dt

(

sin θ
dψ

dt

)

+ A

Cω3
cos θ

dψ

dt

dθ

dt
(4.91)

dψ

dt
= 1

Cω3 sin θ

∂U

∂θ
− A

Cω3

d

dt

(

dθ

dt

)

+ A

Cω3
cos θ

(

dψ

dt

)2

(4.92)

4.4.1.6 Modern Parametrization Based on IAU 2000 Resolutions

The Euler dynamical equations and the method of variation of parameters described
in the previous sections have been used by Capitaine et al. [12] for a modern semi-
analytical resolution (analytical representation with numerical coefficients) of the
precession-nutation equations based on the CIO based parameters.

The celestial and terrestrial intermediate origins (CIO and TIO respectively),
have been defined as origins on the equator of the CIP, based on the concept of
the “non-rotating origin” [25] when the CIP moves in space and in the Earth, re-
spectively. Their kinematical property provides a very straightforward definition of
the Earth’s diurnal rotation based on the Earth Rotation Angle (ERA) along the
equator of the CIP (Celestial Intermediate Pole) between those two origins, which
is linearly related to UT1. The ERA replaces the third Euler angle φ from the nodal
axis (O,γ ).

The CIP is defined as being the intermediate pole, in the transformation between
the celestial and terrestrial systems, separating nutation from polar motion by a spe-
cific convention in the frequency domain. That convention is such that (i) the GCRS
(Geocentric Celestial Reference System) CIP motion includes all the terms with pe-
riods greater than 2 days in the GCRS (i.e. frequencies between −0.5 cycles per
sidereal day (cpsd) and +0.5 cpsd); (ii) the ITRS (International Terrestrial Refer-
ence System) CIP motion, includes all the terms outside the retrograde diurnal band
in the ITRS (i.e. frequencies less than −1.5 cpsd or greater than −0.5 cpsd).

The CIO based precession-nutation parameters consist in the GCRS coordinates
of the CIP unit vector, either in their polar form, E and d , or their rectangular form,
X = sind cosE, Y = sind sinE (see Fig. 4.9); they contain precession and nuta-
tion of the CIP, frame bias between the equator and equinox frame at J2000.0 and
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Fig. 4.9 Parametrization of
the precession-nutation of the
equator using the CIO (σ )
based parameters: the
coordinates of the CIP unit
vector (either E and d , or
X = sind cosE,
Y = sind sinE)

the GCRS, plus the cross terms between precession and nutation [9, 10]. Y and X

replace respectively the first and second Euler angles, θ and ψ .
The CIO (Celestial Intermediate Origin) based precession-nutation equations for

a rigid axially symmetric Earth are as follows [12]:

−Ÿ + (C/A)�Ẋ = LΣ/A + F ′′ (4.93.1)

Ẍ + (C/A)ΩẎ = MΣ/A + G′′ (4.93.2)

Ω being the mean Earth’s angular velocity, LΣ and MΣ the equatorial components
of the torque referred to Σ (such that ΣN = Σ0N ), and F ′′, G′′ functions of X, Y

and of their first and second time derivatives.

4.4.2 Dynamical Equations of the Rotation of the Rigid Earth
with Hamiltonian Formalism

An alternative way to construct a theory of the rotation for a rigid Earth model con-
sists in starting from Andoyer variables [1] instead of Eulerian angles. One of the
advantages of such a choice comes from the fact that Andoyer variables are canon-
ical. Thus it is rather easy to apply a perturbation theory based on canonical trans-
formations to the rotational motion, and to separate precessional from nutational
motion, or, in other words, secular perturbations from periodic ones [38]. Moreover
it is easy to treat separately the motion of the figure, rotation and angular momentum
axes.

4.4.2.1 Andoyer Angles Parametrization

We start from the two reference frames, the inertial one �0 = (O,X0, Y0,Z0) and
the Earth-fixed one � = (O,X,Y,Z) as defined previously. We call L the angular
momentum vector of the Earth. The plane (P0) has the same meaning as in the pre-
vious section, whereas (PL) stands for the plane perpendicular to L. The Andoyer
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variables consist in 3 action variables (L,G,H) and 3 angle variables (l, g,h) de-
fined as follows (Fig. 4.10):

Action variables
They are defined with respect to the angular momentum vector.

• G is the amplitude of the angular momentum vector L
• L is the component of L along the axis (O,Z)

• H is the component of L along the axis (O,Z0)

From these definitions we can already introduce two angles which play a funda-
mental role in the theory: I is the inclination of L with respect to (O,Z0) and J its
inclination with respect to (O,Z) in such a way that

L = G cosJ, H = G cos I (4.94)

Notice that I represents the obliquity of the axis of angular momentum with respect
to the inertial axis (O,Z) and must not be confused with the classical obliquity, i.e.
the angle between the axis of figure and the basic plane (P0) (generally the ecliptic).

Angle variables
As in the case of the Eulerian angles they enable one to give the orientation of �

with respect to �0, but with the intermediary of the plane (PL) which is not involved
in this first case.

• h is the angle measured along the reference plane (P0) between the fixed point
γ0 and the node Q of (PL) with respect to (P0). Notice that it represents the
angle of precession but for the equator of angular momentum (PL) instead of the
precession ψ of the equator of figure.

• g is the angle along the equator of angular momentum (PL) between Q defined
previously and the ascending node P of the equator of figure with respect to (PL).

• l is the angle along the equator of figure between the ascending node P and the
Earth-fixed origin axis (O,X).

4.4.2.2 Relationships Between Eulerian and Andoyer Variables

In Fig. 4.10 we represent the reference planes and axes defined together with the
Eulerian angles and Andoyer action and angles. The relationships between these
two set of variables can be derived from the spherical triangle (P,Q,γ ) defined
previously. These are

cos θ = cos I cosJ − sin I sinJ cosg (4.95.1)
sin(ψ − h)

sinJ
= sin(φ − l)

sin I
= sing

sin θ
(4.95.2)

In the case of the Earth, the angle J is very small. Its amplitude does not ex-
ceed 1′′. This means that the angular momentum axis is nearly coinciding with the
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Fig. 4.10 Parametrization of
the rotation of a rigid body
with Andoyer variables with
respect to the fixed inertial
reference frame
�0 = (O,X0, Y0,Z0). The
three angle variables l, g, h

enable one to determine the
body fixed reference frame
� = (O,X,Y,Z) with
respect to �0. The three
action variables are L and H ,
respectively projections of the
vector angular momentum L
on the body fixed axis (O,Z)

and the inertial axis (O,Z0),
and G, the norm of L
(from [38])

figure axis. Therefore at the first order in J we can write from the two equations
above

ψ = h + J

sin I
sing + O

(

J 2) (4.96.1)

θ = I + J cosg + O
(

J 2) (4.96.2)

φ = l + g − J cot I sing + O
(

J 2) (4.96.3)

4.4.2.3 Andoyer Variables Referred to the Fixed and Moving Ecliptics

In practical case, the inertial reference frame �0 is defined in such a way that the
(O,X0) axis is directed towards the fixed mean equinox of a reference epoch T0 (for
instance J2000.0), the plane (P0) = (O,X0, Y0) coinciding with the mean ecliptic
of T0. For the study of the rotation of the Earth, it is convenient to adopt instead
of �0 a moving reference frame �̄ = (O, X̄, Ȳ , Z̄) in such a way that the plane
(P̄ ) = (O, X̄, Ȳ ) coincides to the moving ecliptic of the date, (O, Z̄) being directed
towards the axis of this ecliptic, and (O, X̄) towards the departure point as defined
by Kinoshita [38]. Now we can define the motions of the moving ecliptic of date
with respect to the fixed ecliptic of epoch through the set of two variables πe and
Πe: they stand respectively for the inclination and the longitude of the node of (P̄ )

with respect to (P0).
Kinoshita [38] showed that it is possible to transform the variables h, I , and

g referred to the fixed plane (P0) into a corresponding set of variables h′, I ′ and
g′ referred to a slightly moving reference plane (P̄ ), in such a way that the old
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set of canonical variables (l, g,h,L,G,H) is transformed in a new canonical one
(l′, g′, h′,L′,G′,H ′). If H designates the Hamiltonian of the system of the rota-
tional motion of the rigid Earth, the new Hamiltonian, called K , satisfies

Gdg + H dh − H dt = G′ dg′ + H ′ dh′ − K dt (4.97)

with

G′ = G, H ′ = G cos I ′ (4.98)

We can remark that the variables l and L do not depend on the reference frame:
l′ = l, and L′ = L The new Hamiltonian becomes

K = H + E (4.99)

with

E = H ′(1 − cosπe)
dΠe

dt

+ G sin I ′
[

dΠe

dt
sinπe cos

(

h′ − Πe

) − dπe

dt
sin

(

h′ − Πe

)

]

(4.100)

4.4.2.4 Hamiltonian of the System and Canonical Equations of the Rotational
Motion

According to Kinoshita [37, 38], the Hamiltonian K for the rotational motion of the
rigid Earth referred to the slightly moving reference frame �̄ defined in the previous
section is

K = F0 + E + U (4.101)

• F0 represents the kinetic energy of the rotational motion. It is written

F0 = 1

2

(

sin2 l

A
+ cos2 l

B

)

(

G2 − L2) + 1

2C
L2 (4.102)

• E is the complementary Hamiltonian component due to the change of reference
frame as explained in the previous section.

E = H ′(1 − cosπe)
dΠe

dt

+ G sin I ′
[

dΠe

dt
sinπe cos

(

h′ − Πe

) − dπe

dt
sin

(

h′ − Πe

)

]

(4.103)

• U is the disturbing potential for the rotational motion due to the external bodies
(Moon, Sun and planets). An exhaustive study of the determination of U will be
given in the next section.



142 J. Souchay and N. Capitaine

4.4.2.5 Equations of Motion

The equations of motion of the rotation of the rigid Earth are directly derived from
the property of canonicity of the adopted Andoyer variables (l, g′, h′,L,G,H ′). For
the sake of simplicity, the prime symbols are removed from the variables, and in the
moving reference frame �̄, the canonical equations can be written

d

dt
(L,G,H) = − ∂K

∂(l, g,h)
(4.104.1)

d

dt
(l, g,h) = ∂K

∂(L,G,H)
(4.104.2)

4.4.2.6 Precession-Nutation of the Axis of Angular Momentum

In the scope of this chapter dealing with the precession-nutation motion, we essen-
tially focus on the two variables h and I which represent respectively the precession
angle and the obliquity of the axis of the plane perpendicular to the angular momen-
tum vector. We have already explained that I is defined starting from the canonical
variables through the relationship H = G cos I . In addition we call Δh and ΔI the
periodic variations h and I . By writing W the determining function defined by

W =
∫

(

U
per
1 + U

per
2

)

dt (4.105)

where U
per
1 and U

per
2 stand for the periodic parts of respectively U1 and U2, we have

Δh = −∂W

H
= ∂W

∂I

∂I

∂H
= − 1

G sin I

∂W

∂I
(4.106)

ΔI = 1

G

(

− 1

sin I
ΔH + cot IΔG

)

= 1

G

(

1

sin I

∂W

∂h
− cot I

∂W

∂g

)

(4.107)

4.4.2.7 Precession-Nutation of the Figure Axis

The nutation of the figure axis (Δψf ,Δεf ) are directly deduced from the geomet-
rical relationships (4.96.1) and (4.96.2) linking the axis of angular momentum and
the axis of figure4:

Δψf = Δh + Δ

[

J sing

sin I

]

+ O
(

J 2) (4.108)

Δεf = Δθ = ΔI + Δ[J cosg] + O
(

J 2) (4.109)

4The reader must pay attention to the sign conventions: here ψ and h as well as ε and I have
the same signs. This follows the classical geometrical rules of a positive sign in the trigonomet-
ric (counter clockwise) sense, whereas for conventional astronomical rules ψ and ε are counted
positively in the clockwise sense.
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with

Δ

(

J sing

sin I

)

= 1

sin I
(singΔJ + J cosgΔg) − J sing

sin2 I
ΔI

= 1

G sin I

[

∂W

∂g
sing − W cosg

]

(4.110)

and

Δ(J cosg) = 1

G

[

∂W

∂g
cosg + W sing

]

(4.111)

These two last expressions are called the Oppolzer terms.

4.4.3 The Determination of the Disturbing Potential U

As seen in Sects. 4.4.1 and 4.4.2, whatever be the theory used to determine the
rotational motion, and more precisely the precession-nutation of the Earth, it neces-
sitates the precise calculation of the disturbing potential U exerted by the external
body (Moon, Sun, planet). This disturbing potential can be represented by expansion
in spherical harmonics of first order (U1) and second one (U2) [69]

U = U1 + U2 (4.112)

with

U1 = GM

r3

[

2C − A − B

2
P2(sin δ) + A − B

4
P 2

2 (sin δ) cos 2αE)

]

(4.113)

U2 =
∞
∑

n=3

GMMEan
E

rn+1

×
[

JnPn(sin δ) −
n

∑

m=1

P m
n (sin δ)(Cn,m cosmαE + Snm sinmαE)

]

(4.114)

where αE stands for the geocentric longitude of the perturbing body as measured
from a prime meridian on the Earth5 and δ its declination. M is the mass of the
perturbing body, r its distance from the center of the Earth. Jn, Cnm and Snm are the
coefficients of the geopotential, which characterize the repartition of mass inside the
Earth. P

j
i are the Legendre polynomials of degree i and order j .

4.4.3.1 Use of Ecliptic Coordinates

The reference plane to measure the precession-nutation motion being the ecliptic
of the date, it is convenient to express the Legendre polynomials P2(sin δ) and

5αE must not be confused with the classical right ascension α measured from an equinox.
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P 2
2 (sin δ) cos 2α as a function of the ecliptic longitude λ and latitude β of the per-

turbing body. Kinoshita et al. [40] showed how this step is possible trough the inter-
mediary of the modified Jacobi polynomials. After expansion, we find [38]:

P2(sin δ) = 1

2

(

3 cos2 J − 1
)

[

1

2

(

3 cos2 I − 1
)

P2(sinβ)

− 1

2
sin 2IP 1

2 (sinβ) sin(λ − h) − 1

4
sin2 IP 2

2 (sinβ) cos 2(λ − h)

]

+ sin 2J

[

−3

4
sin 2IP2(sinβ) cosg

− 1

4

∑

ε=±1

(1 + ε cos I )(−1 + 2ε cos I )P 1
2 (sinβ) sin(λ − h − εg)

−
∑

ε=±1

1

8
ε sin I (1 + ε cos I )P 2

2 (sinβ) cos(2λ − 2h − εg)

]

+ sin2 J

[

3

4
sin2 IP2(sinβ) cos 2g

+ 1

4

∑

ε=±1

ε sin I (1 + ε cos I )P 1
2 (sinβ) sin(λ − h − 2εg)

− 1

16

∑

ε=±1

(1 + ε cos I )2P 2
2 (sinβ) cos 2(λ − h − εg)

]

(4.115)

The same kind of expansion as a function of I , J , the coordinates λ, β and the
Andoyer variables l, g, h is done for the expression P 2

2 (sin δ) cos 2αE which takes
place in the part of the potential, depending on the triaxiality in Eq. (4.113).

Analytically, Woolard [79] and Kinoshita [38] showed that it is possible for the
Moon as well as for the Sun to express the functions P2(sinβ), P 1

2 (sinβ) sin(λ−h)

and P 2
2 (sinβ) cos 2(λ − h) etc. as Fourier series with arguments Θν themselves

combination of the five Delaunay arguments, which are

– l the mean anomaly of the Moon
– l′ the mean anomaly of the Sun
– Ω the longitude of the node
– F = λM − Ω , where λM is the mean longitude of the Moon
– D = λM − λS , where λS is the mean longitude of the Sun.

Kinoshita and Souchay [39] as well as Souchay et al. [67] generalized this kind
of formulation by introducing the mean longitudes of the planets (excepted Nep-
tune whose influence is negligible) when including the direct and indirect planetary
perturbations, as well as a the general precession on longitude pA.

In these works, Θν are written

Θν = i1l + i2l
′ + i3F + i4D + i5Ω + i6λMe + i7λVe + i8λEa

+ i9λMa + i10λJu + i11λSa + i12λUr + i13pA (4.116)
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Thus we can adopt a generic formula for the expansions used:

1

2

(

a

r

)3
(

1 − 3 sin2 β
) =

∑

ν

A0
ν cosΘν (4.117.1)

(

a

r

)3

sinβ cosβ sinλ =
∑

ν

A1
ν cosΘν (4.117.2)

(

a

r

)3

sinβ cosβ cosλ = −
∑

ν

A1
ν sinΘν (4.117.3)

(

a

r

)3

cos2 β cos 2λ =
∑

ν

A2
ν cosΘν (4.117.4)

(

a

r

)3

cos2 β sin 2λ = −
∑

ν

A2
ν sinΘν (4.117.5)

4.4.3.2 Generic Formula for the Expressions of the Potential U

According to (4.113) the determination of U presupposes the knowledge of
( a

r
)3P2(sin δ) and ( a

r
)3P 2

2 (sin δ) cos 2αE . Kinoshita [38] has shown that these ex-
pressions can be conveniently expanded in the following form:

(

a

r

)3

P2(sin δ) = 3

2

(

3 cos2 J − 1
)
∑

ν

Bν cosΘν

− 3

2
sin 2J

∑

ε=±1

∑

ν

Cν(ε) cos(g − εΘν)

+ 3

4
sin2 J

∑

ε=±1

∑

ν

Dν(ε) cos(2g − εΘν) (4.118)

and
(

a

r

)3

P 2
2 (sin δ) cos 2αE

= −9

2
sin2 J

∑

ν

Bν cos(2l − εΘν)

− 3
∑

ρ=±1

sinJ (1 + ρ cosJ )
∑

ε=±1

∑

ν

Cν(ε) cos(g + 2ρl − εΘν)

− 3

4

∑

ε=±1

∑

ρ=±1

(1 + ρ cosJ )2
∑

ν

Dν(ε) cos(2g + 2ρl − εΘν) (4.119)

in which

Bν = −1

6

(

3 cos2 I − 1
)

A0
ν − 1

2
sin 2IA1

ν − 1

4
sin2 IA2

ν (4.120)
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Cν(ε) = −1

4
sin 2IA0

ν + 1

2
(1 + ε cos I )(−1 + 2ε cos I )A1

ν

+ 1

4
ε sin I (1 + ε cos I )A2

ν (4.121)

Dν(ε) = −1

2
sin2 IA0

ν + ε sin I (1 + ε cos I )A1
ν

− 1

4
(1 + ε cos I )2A2

ν (4.122)

4.4.4 Generic Formula for the Expressions of the Nutations Δψ
and Δε

Once the potential U has been expressed as a Fourier series the nutations are de-
termined in a straightforward manner by simple integration and partial derivatives
with respect to I and h, following Eqs. (4.105), (4.106) and (4.107) [38]

• Nutation of the angular momentum axis.
For the angular momentum the nutations in longitude ΔψAM and in obliquity

ΔεAM are given by

ΔψAM = Δh = − 1

G sin I

(

∂W

∂I

)

+ O(J ) = k
∑ Eν

Nν

sinΘν (4.123)

with

Eν =
[

A0
ν − 1

2
A2

ν

]

cos I − cos 2I

sin I
A1

ν (4.124)

and

ΔεAM = ΔI = 1

G sin I

(

∂W

∂h

)

+ O(J ) = k

sin I

∑

i5
Bν

Nν

cosΘν (4.125)

where i5 is the coefficient of Ω in the argument Θν (see Eq. (4.116)) and Nν = Θ̇ν .
k is a scaling factor given by

k = 3
GM

a3ωE

2C − A − B

2C
= 3

GM

a3ωE

Hd (4.126)

where M is the mass of the perturbing body, a the semi-major axis of its orbit (in the
case of the solar potential, M is the mass of the Sun and a the semi-major axis of the
Earth), and ωE the sidereal angular velocity of the Earth. Hd = (2C − A − B)/2C

is called the dynamical ellipticity of the Earth.6 We will discuss below how it is
determined from the precession deduced from observations.

• Nutations of the figure axis.
The nutations in longitude Δψf and in obliquity Δεf of the figure axis of the

Earth are deduced from the Oppolzer terms whose expressions have already been

6In the case of axisymmetry, Hd = (C − A)/C.
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given in Eqs. (4.110) and (4.111). We have, at the first order in J [38]:

Δψf = ΔψAM + 1

G sin I

(

∂W

∂g
sing − W cosg

)

(4.127)

= ΔψAM + k

sin I

∑

ν

∑

ε=±1

εCν(ε)

ng − εNν

sinΘν (4.128)

Δεf = ΔεAM − 1

G

(

∂W

∂g
cosg + W sing

)

(4.129)

= ΔεAM + k
∑

ν

∑

ε=±1

Cν(ε)

ng − εNν

cosΘν (4.130)

4.5 Modern Precession-Nutation Theories for a Rigid Earth
Model

Face to the tremendous improvement by an order 2 or 3 of the precision in the de-
termination of the coefficients of nutation thanks to the VLBI technique, it became
necessary, at the end of the 1980’s, to construct a new rigid Earth nutation model
with an extreme accuracy, at the level of the sub-milliarcsecond (mas). During the
1990’s several groups undertook this work, which was reckoned as fundamental.
These efforts lead to the a definitive publication of the three different models called
SMART97 [5], RDAN97 [54] and REN2000 [67]. These three models based on
different theoretical foundations give very close results for the nutation coefficients
when each of them is compared to the others [64]. The level of truncature for each
coefficient of the related series of nutation in the three works was set at least to
0.1 µas instead of 0.1 mas, that is a factor 1000, with respect to the previous series
constructed by Kinoshita [38] about two decades earlier. This new truncature level
required to take into account more than one thousand components of nutation in-
stead of the 106 ones in this last paper. It forced also the authors above to include
new kinds of contribution, which although being very small, cannot be ignored. Af-
ter giving a brief review of the way of construction of the three kinds of series of
nutation above, we present in detail each of these second-order contributions

The three nutation series SMART97, RDAN97, and REN2000 differ by the
methodology used for their construction. Nevertheless they give all very close re-
sults for precession-nutation of the three axes concerned: the axis of angular mo-
mentum, the axis of rotation and the axis of figure. All the related theories use the
analytical solution VSOP87 [3] for the motion of the Sun and the planets, and the
analytical solution ELP2000 [15] for the orbital motion of the Moon.

• For the construction of SMART97, Bretagnon et al. [5] used an iterative an-
alytical method based on Eulerian dynamical equations, already described in
Sect. 4.4.1.3. They also used a numerical integration to test the validity of the
analytical developments, finding a remarkable agreement, of 16 µas for ψ and
8 µas for ε.



148 J. Souchay and N. Capitaine

• For RDAN97, Roosbeek and Dehant [54] used the torque approach. The La-
grangian equations expressing the rigid Earth response to the torque induced by
the external bodies, as seen in Sect. 4.4.1, are solved analytically. In order to vali-
date and further test their analytical model, they have also computed a benchmark
series called RDNN97 built from the DE403/LE403 ephemerids [68] and from a
numerical integration. Their comparison between RDAN97 and RDNN97 shows
that, in the time domain, the maximum difference is 62 µas for Δψ and 29 µas
for Δε, whereas in the frequency domain they are respectively 6 µas and 4 µas.

• For REN2000, Souchay et al. [67] up-dated the theory set up by Kinoshita [38]
based on Hamiltonian equations and described in details in Sect. 4.4.3. Souchay
[64] compared also the analytical nutation given by this series with numerical
integration. The r.m.s. of the residuals do not exceed 5 µas both for Δψ sin ε and
Δε.

The three independent models of nutation for a rigid Earth model mentioned
above show a remarkable agreement both between themselves (at the level of 1 µas
for the amplitude of each individual coefficient) as with numerical integration of
the equations of motion. We can conclude that any of these models is well suited to
serve as a basis for a more sophisticated theory of nutation involving a real Earth
with non rigid aspects.

Note that an iterative semi-analytical method based on Eulerian dynamical equa-
tions similar to that of Bretagnon (1997) was proposed [12] for integrating the equa-
tions directly as functions of the coordinates of the CIP in the GCRS.

4.5.1 The Construction of a Highly Accurate Rigid Earth
Precession-Nutation Model

The construction of a highly accurate rigid Earth precession-nutation model requires
a very accurate determination of the dynamical ellipticity of the Earth as well as the
investigation of second-order contributions which cannot be neglected anymore, as
given the level of truncature (0.1 µas) of the Fourier series of nutation. They can be
enumerated as:

– the direct planetary effects
– the indirect planetary effects
– the effects of the triaxiality of the Earth
– the contributions due to second-order geopotential (J3, J4)
– the crossed-nutation effects
– the J2 and planetary tilt effects
– the geodetic precession
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4.5.1.1 The Observed Precession and the Determination of the Dynamical
Ellipticity of the Earth

The fit between the observed value of the lunisolar precession in longitude and its
theoretical formula allows the determination of the dynamical ellipticity of the Earth
Hd = (2C − A − B)/2C which is the fundamental parameter for the calculation of
the potential U in Eq. (4.113), and as a consequence for the calculation of the ampli-
tude of all the nutation coefficients. The general precession in longitude pA up-dated
by Williams [78] is 5028′′.7700/cy, which represents a −0′′.3266/cy correction
with respect to a previous value adopted by the IAU 1976 General Assembly [41].
As it was explained by Kinoshita and Souchay [65], this very accurate value com-
ing from modern observations, in particular from VLBI data, and established with
respect to the moving ecliptic of the date, includes not only the lunisolar precession,
but also a combination of second-order effects. These are a spin-orbit coupling ef-
fect in the Earth-Moon system (0′′.380/cy), the effects due to the J4 geopotential
(−0′′.0026/cy), to the direct planetary gravitational influence (−0′′.0321/cy), to the
geodetic precession as given by Barker and O’Connell [2]. This geodetic precession,
also called the De Sitter precession is the relativistic rotation of the geocentric fixed
celestial system with respect to the barycentric one. Its amplitude is 1′′.9194/cy
[78].

Moreover, the difference due to the adoption of a fixed ecliptic or a moving eclip-
tic, called planetary precession amounts to 11′′.8745/cy. All these contributions
must be removed from the observed value of the general precession in longitude pA,
to isolate the sole lunisolar contribution ψA with respect to a fixed ecliptic. We find
ψA = 5040.6445′′/cy. Now ψA is also given by the following formula [65]:

ψA = ψMoon
A + ψSun

A

= 3Hd
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(4.131)

where M�, M⊕ and M◦ are respectively the masses of the Sun, the Earth and the
Moon, nE and nM the mean motions of the Earth-Moon barycenter and of the Moon,
and � the sidereal angular rate of rotation of the Earth. M0 and S0 are quantities
coming directly from computations of the lunisolar potential. They are respectively
the constant terms in the expressions 1

2 ( a
r
)3(1 − 3 sin2 β) for the Moon and for the

Sun, where λ, β and r are the ecliptic coordinates of the perturbing body (Sun or
Moon) with respect to the moving equinox and ecliptic of the date (for the Sun
β ≈ 0).

The correspondence between ψA as deduced from the observational value of pA,
at the left hand side of Eq. (4.131), and its theoretical expression at the right hand
side enables to determine Hd given its status of sole unknown parameter. In fact each
of the nutation theories above is associated by its own estimation of Hd . Bretagnon
et al. [4] in SMART97 find Hd = 0.0032737668 while Souchay and Kinoshita [66]
in REN2000 have Hd = 0.0032737548 and Roosbeek and Dehant in RDAN97 have
Hd = 0.0032737674.
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4.5.1.2 The Main Lunar Terms

The major contribution to the nutation, as considering the importance of the effect
and the number of coefficients, comes from the Main Problem of the Moon, that is
to say from the three-body problem involving the Moon orbiting around the Earth
in a quasi-Keplerian motion greatly perturbed by the Sun [15]. As a consequence
the influence of the planetary perturbations on the Moon’s orbit are treated inde-
pendently and will be considered later. Thus the only arguments entering in the
expansions of the angles Θν are the Delaunay’s arguments l, l′, F , D and Ω . The
leading nutation components are those with arguments Ω and 2Ω and respective
periods 18.6 y and 9.3 y [67]: Δψ = −17′′.2805921 sinΩ + 0′′.2090296 sin 2Ω

and Δε = 9′′.22289220 cosΩ − 0′′.0903611 sin 2Ω . For the nutation figure axis of
the rigid Earth, Souchay et al. [67] find 583 coefficients in longitude and 486 in
obliquity, when adopting a truncature level of 0.1 µas.

4.5.1.3 The Main Solar Terms

The main solar terms are those due to the quasi-Keplerian motion of the Earth. In
other words, it comes from the expansions of the geocentric ecliptic coordinates
of the Sun λ�, β� ≈ 0 and r� involved in the expression of the solar potential
given by Eqs. (4.113) and (4.115) following classical expansions of a/r� and λ�
as a function of the eccentricity of the Earth. These terms, with arguments Θν lin-
ear combinations only of the five Delaunay’s arguments in Eq. (4.116), must be
separated from those with arguments Θν including also the mean longitude of the
planets, which are coming from the perturbations of the planets and are called in-
direct planetary effects (see Sect. 4.5.1.5). The larger term in the category of the
main solar terms is the semi-annual one, with period 182.621 days (see Eqs. (4.66)
and (4.67)); its amplitude is Δψs.a. = −1′′.317090 sin(2F −2D +2Ω) in longitude
and Δεs.a. = 0′′.573034 cos(2F − 2D + 2Ω) in obliquity.

4.5.1.4 The Direct Planetary Effects

Like the Moon and the Sun, the planets induce also nutations of the Earth’s axes.
Vondrak [70] calculated for the first time these direct influences of the planets on the
nutation, showing that they could reach the 0.1 mas level for individual components.
Independently of the three theories considered here, Williams [78] calculated all
the coefficients related to the direct influence of the planets, up to 0.5 µas, both
for Δψ cos ε and for Δε. At this level of truncature he found 1, 103, 26, 22, 5
and 1 terms respectively for Mercury, Venus, Mars, Jupiter, Saturn and Uranus, the
influence of Neptune being negligible. Exhaustive tables of the direct influences of
the planets included in REN2000 can be found in Souchay and Kinoshita [66] which
show a perfect agreement with Williams [78]. The argument of each component
is a linear combination of the longitude of the Earth λEa, of the longitude of the
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perturbing planet considered and of the general precession in longitude pA. The
leading terms in longitude and obliquity are by far due to Venus and Jupiter. They
are, in µas:

Δψ = 215.0 sin(3λVe − 5λEa − 2pA) + 84.6 sin(λVe − λEa)

− 50.4 sin(4λVe − 6λEa − 2pA) + 34.9 sin(2λVe − 4λEa − 2pA)

+ 35.0 sin(2λVe − 2λEa) − 106.2 sin(2λJu + 2pA) + 33.4 sinλJu

(4.132)

Δε = 93.2 cos(3λVe − 5λEa − 2pA) − 21.9 sin(4λVe − 6λEa − 2pA)

+ 15.1 cos(2λVe − 4λEa − 2pA) + 46.0 cos(2λJu + 2pA) (4.133)

4.5.1.5 The Indirect Planetary Effects

The indirect planetary effects, first pointed out and estimated by Vondrak [71, 72]
originate from the small perturbations of the planets on the orbital motion of the
Moon around the Earth and of the Earth around the Sun. These perturbations affect
the relative ecliptic coordinates λ and β of the body causing the nutation (the Moon
or the Sun). In their turn, these little changes cause a change in the perturbing po-
tential exerted by the body. In REN2000 [67] the corresponding terms of nutation
can be recognized easily by the nature of their arguments, as a linear combination
of the Delaunay variables l, l′, F , D and Ω , of the general precession in longitude
pA and of the mean longitudes of the planets λMe, λVe etc. At high frequency the
indirect planetary effects due to Moon are dominated by two components with ar-
guments −lM + 2F + 2Ω + 18λVe − 16λEa and lM + 2F + 2Ω − 18λVe + 16λEa
and the same amplitude of 14.1 µas in Δψ . Moreover for a 100 y time interval, the
peak-to-peak amplitude of these planetary effects are of the order of 1 mas both for
the Moon’s and the Sun’s parts.

4.5.1.6 The Crossed Nutation Effects

When computing the coefficients of nutation at first order, through the intermedi-
ary of P2(sin δ) as expressed in Eq. (4.115), the obliquity angle I as well as the
longitude λ of the perturbing body are determined without taking into account the
nutations. In fact, they must be replaced respectively by I +ΔI and λ−Δh. In other
words, the nutation itself causes a slight modification of the position of the equator
which in its turn provokes a slight modification of the potential U exerted by the
perturbing body and in the determining function W given by Eq. (4.105), which
results in crossed nutation effects when applying Eqs. (4.106) and (4.107). They
concern 68 components for Δψ and 40 components for Δε, up to 0.1 µas [67]. The
leading contribution concerns the component with argument 2Ω resulting from the
crossed nutations of the leading term with argument Ω . It amounts to 1.220 mas for
Δψ and −0.238 mas for Δε.
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4.5.1.7 The J2 Tilt Effects

The J2 tilt effect comes from the particular perturbation on the motion of the Moon
around the Earth due to the shape of the Earth, i.e. its equatorial bulge. These per-
turbations involving J2 modify in their turn the potential exerted by the Moon on
the Earth. This change in the potential generates some additional second-order con-
tributions which affect in a significant manner the leading nutation coefficients of
lunar origin, with arguments Ω and 2Ω .

4.5.1.8 The Planetary Tilt Effect

This effect was pointed out by Williams [78]: the orbit planes of the planets have
small inclinations with respect to the ecliptic plane. As a consequence of the plan-
etary attractions, the ecliptic planes moves. The Moon’s mean plane of orbital pre-
cession follows the moving ecliptic closely, but not perfectly. This motion causes a
1′′.4 tilt of the plane of orbital precession to the ecliptic. This result in an additional
torque on the oblate Earth.

4.5.1.9 Effects due to the Triaxiality of the Earth

The triaxiality of the Earth is characterized by the relative difference (B − A)/C

between the moments of inertia along the principal axes perpendicular to the fig-
ure axis. Were the Earth perfectly axisymmetric, the triaxiality is zero. For the real
Earth we have (B − A)/(2C − A − B) = 0.0033536. The triaxiality takes part in
the perturbing potential U2 through the expression (A − B/4) × P 2

2 (sin δ) cos 2αE

in Eq. (4.113). The presence of the component cos 2αE with semi-diurnal period
combined with long periodic components in P 2

2 (sin δ) results after integration in
quasi-semi-diurnal terms of nutation. They are listed in Souchay and Kinoshita [66]
up to 0.1 µas. Two reasons lead to the relatively small values of the nutations due to
the triaxiality: first the smallness of the ratio above; second the fact that when car-
rying out the integration according to Eq. (4.105) a large frequency value appears
at the denominator, due to the very high semi-diurnal frequency. This contribution
is dominated by 3 coefficients at periods 0.518 d, 0.500 d, 0.499 d with respective
arguments 2Φ − 2F − 2Ω , 2Φ − 2F + 2D − 2Ω and 2Φ , where Φ is the angle
of sidereal rotation of the Earth. The respective amplitudes are 27.1 µas, 12.5 µas,
−37.8 µas for Δψ and 11.0 µas, 4.7 µas and 15.0 µas for Δε. Note that the largest
coefficient originates both from the influence of the Moon and of the Sun. At last
the combination of these sinusoidal terms with very close frequencies leads to a
beating.

4.5.1.10 Effects due to Second-Order Potential J3

The second order geopotential coefficient J3 acts on the second order poten-
tial exerted by the Moon with the intermediary of the component J3P3(sin δ) in
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Eq. (4.114). Because of the scaling factor (J3/J2) × (aE/aM) which characterizes
the amplitudes of the corresponding nutations with respect to the first order ones
depending on J2 , these amplitudes are comparatively much smaller. 17 coefficients
both for Δψ and Δε are found larger than 0.1 µas [27, 66]. This contribution is char-
acterized by a very large set of frequencies, the smallest period being 6.8 d, and the
largest one 20935 y. The leading coefficient, in mas, is −0.105 sin(−lM + F + Ω)

for Δψ and −0.1089 cos(−lM + F + Ω) for Δε.

4.6 Modern Nutation Theory for a Non-rigid Earth Model

The nutation is almost entirely due to the torques resulting from the gravitational
action of celestial bodies on the equatorial bulge of the Earth. At first approxima-
tion, one can use as a proxy, the so called rigid Earth nutation series representing
the action of the torques on a hypothetical rigid Earth, having the same moments
of inertia and high order moments as the real Earth. This rigid Earth nutation has
been largely discussed in the previous sections. Nevertheless, with the appearance
of modern observational techniques, and particularly the VLBI (Very Long Base-
line Interferometry) in the early 1980’s the precision of estimates obtainable for the
Earth orientation parameters, among which the nutation (Δψ,Δε), has increased
greatly. This fact, combined with the increasing volume and longer time span of the
data sets available, has made it possible to estimate the amplitudes of a significantly
larger number of nutation components and a much accurate value of the precession
rate. Face with these developments, the rigid-Earth nutation theory, starting from the
early 1980’s, could no more match the accuracy of observations. In other words, the
various effects due to the non rigidity of the Earth, such as changes in matter dis-
tribution, atmospheric pressure variations, oceanic motions, frictions between the
core and the mantle, etc., although remaining all relatively small, could no more be
neglected in view of the quality of observational data.

4.6.1 Definition of Prograde and Retrograde Circular Nutations

In order to deal with non-rigid Earth nutations, experts in this topic, as geophysi-
cians, introduce the concept of prograde and retrograde circular components of nu-
tation. In the following, we present their definition. Generally astronomers are con-
cerned with the lunisolar nutations in longitude Δψ and in obliquity Δε as a Fourier
series in the form

Δψ =
∑

ν

ΔψνI sinνΩ0t + ΔψνO cosνΩ0t (4.134)

Δε =
∑

ν

ΔενI cosνΩ0t + ΔενO sinνΩ0t (4.135)
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where ΔψνI and ΔψνO are, respectively, the in-phase and out-of-phase coeffi-
cients of the nutation in longitude, and ΔενI and ΔενO in obliquity. Here Ω0 =
7.292115 × 10−5 rad/s stands for the mean sidereal angular rotation rate. Notice
that the out-of-phase components are generally very small with respect to the in-
phase ones, for they characterize dissipative processes. Moreover we have shown
in Eq. (4.116) that the frequency Θν = νΩ0 is a combination of fundamental astro-
nomical arguments.

Once the formula above have been established, the in-phase parts of the compo-
nents of Δψ and Δε for any particular frequency Θν = νΩ0 constitutes an elliptical
nutation, whereas the out-of-phase parts constitutes another one. In their turn, these
paired elliptical nutations can be resolved into two circular components, one rep-
resenting a uniform rotation of the figure axis around an inertial (space-fixed) axis
in the prograde sense, and the other, in the retrograde sense. The combination of
the two prograde and retrograde circular nutations results respectively in the com-
plex components η(pro) and η(ret). This is materialized by the following relationships
[45]:

η(pro) = −1

2

(

ΔενI − ν

|ν|ΔψνI sin εA

)

+ i

2
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|ν|
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(4.136)

η(ret) = −1

2
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|ν|ΔψνI sin εA
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ν

|ν|
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where εA is the mean obliquity.

4.6.2 Early Non-rigid Earth Nutation Theories

The earliest nutation theories started from the Earth as a rigid ellipsoid [38, 79]. We
have seen previously that in this approximation only the Earth’s principal moments
of inertia and the amplitude and frequency of the tidal force are important. In pio-
neer works dealing with non-rigidity, Jeffreys and Vicente [35, 36] and Molodensky
[50] greatly extended these results by including the effects of a fluid core (already
introduced by Poincaré [53]) and of the elasticity within the mantle. They found dif-
ferences from rigid Earth results of as much as 0.02′′ for both the principal nutation
with period 18.6 y and the leading nutation of solar origin, with semi-annual period.
In comparison with the precision of the observations in the 1970’s these effects
could no more be neglected. These analytical theories take into account a simpli-
fied model of core and mantle deformation computed from a spherical non-rotating
shell. Shen and Manshina [59], in a numerical way, as well as Sasao et al. [55],
analytically, started from these previous works to include more complete dynamical
and structural models of fluid core.
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4.6.3 The Nutation Series of Wahr

The nutation series of Wahr [74] has been the standard of reference for roughly 20
years. It was adopted by the International Astronomical Union (IAU) as the basic
nutation series named the IAU 1980 nutation [58]. It was computed by solving the
equations for the field of displacements produced by the action of the tide generat-
ing potential (TGP) throughout the Earth, as applied to an oceanless elastic, ellip-
soidal Earth model derived on the assumption of a hydrostatic equilibrium. Wahr
theory can be considered as a further extension of the previous investigations men-
tioned above, with accounting more completely for the Earth’s ellipticity and rota-
tion. For that purpose he used techniques developed by Smith [62] and Wahr [73].
The first author described the linearization of infinitesimal motion for a rotating,
slightly elliptical, self-gravitating, elastic, hydrostatically prestressed and oceanless
Earth. Wahr [73] demonstrated that the forced motion of a rotating Earth could be
expanded as a decoupled sum of normal modes of the Earth. On the opposite of
what was done previously, elliptical and rotational effects were considered by Wahr
[74, 75] to compute the rotational motion.

Wahr adopted a model of Earth interior called the model 1066A of Gilbert and
Dziewonski [24], based on the assumption of a hydrostatic equilibrium. In order
to compute semi-analytically the nutation coefficients, Wahr [73] established a for-
mula expressing the transfer function between a given coefficient for the rigid Earth
model, with frequency ω, and the corresponding non rigid Earth coefficient. The
ratio between these two coefficients is given by η(a,ω)/ηr(ω) so that

η(a,ω)

ηr(a,ω)
− 1

=
[

B0 + (ω − 0.927Ω)

[

B1

ω1 − ω
+ B2

ω2 − ω
+ 1.06

ω + 3.28 × 10−3�

]]

×
[

� − ω

�

][

ω

�
+ 3.28 × 10−3

]

(4.138)

where B0, B1 and B2 are frequency-independent constants. ω1 and ω2 are the eigen-
frequencies of the Chandler Wobble (CW) and the Free Core Nutation (FCN) re-
spectively. � is the frequency of the sidereal rotation of the Earth.

Soon after its establishment, the predictions of the Wahr theory have been found
to differ from VLBI observational data by much more than the uncertainties in the
data itself. Face to this unsatisfactory result, an empirical series, called IERS96
series, constructed on the basis of some corrections to leading nutation coeffi-
cients from O–C discrepancies, was established, giving close agreement to the data
[28, 49]. This series was still improved further by Shirai and Fukushima [60, 61],
noticeably by introducing an estimated exponentially decaying free core nutation
amplitude. As in Wahr [74] these two empirical series express the nutation ampli-
tudes in terms of a resonant formula for the transfer function.
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4.6.4 Further Improvements

An exhaustive review of all the improvements done in the fields of non rigid Earth
nutation was done by Mathews et al. [48]. An important step towards a better geo-
physical accounting of nutation was taken successively by Gwinn et al. [26] and
Herring et al. [29, 30], finding that a value higher than approximatively 5 % than
that scheduled by the hydrostatic equilibrium state is needed for the dynamical el-
lipticity of the fluid core to close a gap of approximatively 2 mas (milliarcseconds)
found between the observed nutation and the IAU 1980 values. This concerns the
in phase part of the amplitude of the annual retrograde nutation. In parallel some
studies were devoted to the computation of the effects of the ocean tides [57, 76] as
well as those coming from the mantle anelasticity [77].

Alternative theoretical investigations start from the torque equations for the el-
lipsoidally stratified deformable Earth and its core. First developed by Molodensky
[50] they were improved by Sasao et al. [55] and generalized by Mathews et al.
[46, 47]. They are well suited for taking into account the dynamics of the inner
core. In the last work, the torque equations and an accompanying kinematical equa-
tion reduce to a set of simultaneous linear algebraic equations. Such formula are
very efficient to take into account the nonhydrostatic ellipticity and the use of an
electromagnetic coupling at the core mantle boundary explaining the residuals of
approximatively 0.4 mas remaining in the out-of-phase part of the retrograde annual
component after taking into account anelasticity and ocean tides effects.

An independent approach was developed abundantly and exhaustively by Getino
and Ferrandiz [21–23], starting from the same canonical equations as Kinoshita
[38]. These authors introduced modified canonical variables to apply the theory to
a non rigid Earth model taking into account an elastic mantle, a FOC (fluid outer
core), a SIC (solid inner core) and a delay in the elastic response of the Earth with
oceanic corrections. Although a final model with observations based on this work
would have offered a better fit with the observations, as the IERS96 nutation se-
ries did previously, Mathews et al. [48] underlined the lack of explicit information
concerning the fit of several parameters and their physical interpretation.

4.6.5 The Normal Modes of the Rotation of the Earth

To determine an accurate non rigid Earth nutation theory, it looks fundamental to
know the normal modes of free rotational motions of the Earth as well as the eigen-
frequencies σα which are associated with these normal modes. We will see later in
Sect. 4.7.1 that those eigenfrequencies play a leading role in the transfer function
from rigid Earth to non rigid Earth nutations. The principal normal modes acting
as resonance modes in the transfer function are enumerated below. The list is not
exhaustive: a quasi-infinite list of other normal modes exist, as the elastic vibration
modes, which should not bring wobble components.
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4.6.5.1 The Chandler Wobble (CW)

The only normal mode concerning the rigid Earth (in the approximation of the
axisymmetric case) has already been described in Sect. 4.4.1.4. It is called the free
polar motion or Eulerian free wobble. If the Earth were perfectly rigid, the fre-
quency of this free wobble should be (C − A/C)� (where � already defined in
Sect. 4.6.3 is the mean sidereal rotation rate), and its period C/C − A = 305 d.
Chandler identified for the first time this free wobble from observational data in
1891, fixing its period to 14 months. The difference was soon interpreted as due to
the deformability of the Earth [42], as well as the existence of a fluid core [34, 53]
Much more recently, Smith and Dahlen [63] showed that the pole tide produced by
the oceans should bring also a significant contribution. The amplitude of the Chan-
dler wobble is variable, never exceeding 1′′.

4.6.5.2 The Retrograde Free Core Nutation (RFCN)

The free core nutation (FCN) is a normal mode of the Earth, associated with the
existence of a rotating ellipsoidal fluid core inside a rotating elastic mantle. It oc-
curs due to the excitement of a mis-alignment of the instantaneous rotation axes of
the core and the mantle. More precisely the non spherical shape of the core-mantle
boundary (CMB) has the consequence that any rotational motion of the fluid core
relative to the mantle, with the core’s rotation axis inclined to the symmetry axis of
the CMB, causes imbalance of fluid pressure on the boundary, and a resultant torque
which tends to bring the two axes into alignment. For the PREM model of the Earth
[19], the theoretical FCN period, computed for an Earth in hydrostatic equilibrium,
is 458 sidereal days in the retrograde direction. By analyzing the nutation ampli-
tudes determined from VLBI observations, it has been shown that the FCN period
is around 432 sidereal days [17, 26]. Moreover, analyses of gravimetric recordings
in the diurnal frequency band also give a FCN period around 430 sidereal days [51].
The significant difference between the theoretical and observational values above
can be explained by the increase of about 5 % of the core flattening with respect to
the hydrostatic equilibrium value [26] One characteristic of the FCN is its variable
amplitude and phase.

4.6.5.3 The Prograde Free Core Nutation (PFCN)

In the early 90’s, several authors have shown that the presence of a solid inner core
(SIC) gives rise to another diurnal wobble mode which corresponds to a prograde
nutation [46, 47], De Vries and Wahr [18]. These last authors refer to this new
mode as the free inner core nutation (FICN), whereas it is also sometimes called
the prograde free core nutation (PFCN) Mathews and Shapiro [45]. Mathews et al.
[47] found that the relation between the wobble motion of the fluid outer core and
the mantle, in this mode, are very close to that in the already well known retrograde
FCN.
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4.6.5.4 The Inner Core Wobble (ICW)

The last free motion taking part in the transfer function is the inner core wobble
(ICW). First mentioned by Mathews et al. [46, 47], it is predominantly a rotation of
the figure axis of the inner core relative to the mantle. Moreover it would reduce to
the free wobble of the solid inner core (SIC) if the forces between the SIC and the
rest of the Earth could vanish.

4.7 The IAU 2006/2000 Precession Nutation

The IAU 2006/2000 Precession-nutation [10, 13] is composed of the IAU 2000
nutation and the IAU 2006 precession that replaced the precession component of
the IAU 2000 precession-nutation. That component consisted only in corrections,
δψA = −0.29965′′/century and δωA = −0.02524′′/century, to the precession rates
(in longitude and obliquity referred to the J2000.0 ecliptic), of the IAU 1976 pre-
cession and hence did not correspond to a dynamical theory [11].

4.7.1 The IAU 2000 (MHB2000) Nutation

The present conventional model of nutation adopted by the International Astronom-
ical Union in 2000, called MHB2000, has been developed by Mathews et al. [48].
It is based on the REN2000 rigid Earth nutation series [67] of the axis of figure.
The rigid Earth nutation was transformed to the non rigid Earth nutation by apply-
ing the MHB2000 transfer function to the full REN2000 series of the corresponding
prograde and retrograde nutations and then converting back into elliptical nutation
components. This transfer function is based on the solution of the linearized dynam-
ical equations of the wobble-nutation problem and makes use of estimated values of
seven of the parameters appearing in the theory called the BEP (Basic Earth Param-
eters).

The BEP were preliminary defined by Mathews et al. [46]. They consist of el-
lipticities e, eF and eS , and the mean equatorial moments of inertia A, AF , and AS

of the Earth, the fluid outer core (FOC), and the solid inner core (SIC). Other BEP
are compliance parameters κ , γ , ζ , β . . . which represent the deformabilities of the
Earth and of its core regions under different kinds of forcing. Another BEP is the
density ρF of the FOC at the inner core boundary (ICB). Others BEP character-
ize the gravitational coupling between the SIC and the rest of the Earth. They are
obtained from a least-squares fit of the theory to an up-to-date precession-nutation
VLBI data set Herring et al. [32]. The MHB2000 model improves the IAU 1980
theory of nutation by taking into account the effects of mantle unelasticity, ocean
tides, electromagnetic couplings produced between the FOC and the mantle as well
as between the SIC and the FOC [8]. Moreover it takes in consideration non linear
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terms which have hitherto been ignored in previous formulations. The axis of ref-
erence, often called axis of figure is the axis of maximum moment of inertia of the
Earth in steady rotation (ignoring time dependent deformations).

4.7.1.1 Analytical Formulation in MHB2000

At the basis of the formulation, consider a forced or free nutation having an angular
frequency of τ cycles per sidereal day (cpsd) in space, 1 cpsd corresponding to the
mean sidereal rotation period with angular velocity Ω . This nutation itself corre-
sponds to a wobble of the Earth’s mantle, which is a circular motion of its rotation
axis around its geometric axis, with frequency σ cpsd with respect to an Earth-fixed
frame. Thus we have σ = τ −1. The amplitude m̄(σ ) of this wobble, the amplitudes
m̄F (σ ) and m̄S(σ ) of accompanying wobbles relative to the mantle of the FOC and
the SIC, as well as the amplitudes n̄S(σ ) of the effect of the polar axis of the SIC
from that of the mantle are the dynamical variables of the wobble-nutation problem
on the frequency domain. According to Mathews et al. [46, 47] the amplitude η̄(σ )

of the nutation associated with the wobble of frequency σ cpsd is related to m̄(σ )

by

η̄(σ ) = − m̄(σ )

1 + σ
(4.139)

It follows that the transfer function T (σ, e) from the amplitude for the rigid Earth
to that for the non rigid Earth is the same for the wobble and the corresponding
nutation. It is presented as a resonance expansion of the form

T (σ, e) = R + R′(1 + σ) +
∑

α

Rα

σ − σα

(4.140)

where the resonance frequencies σα are associated with four normal modes de-
scribed in Sect. 4.6.5: the Chandler wobble (CW) the retrograde free core nutation
(RFCN), the prograde free core nutation (PFCN) due to the presence of an elliptical
solid inner core, and a free wobble of the inner core (ICW). Mathews et al. [48]
modified in some extent this formula and adopted a generalized transfer function
expressed in the form

T (σ, e/eR) = eR − σ

eR − 1
.NO

(

1 + (1 + σ)
)

4
∑

k=1

Nα

σ − σα

(4.141)

with

N0 = Hd

HdR

= e/1 + e

eR/1 + eR

(4.142)

where Hd is the dynamical ellipticity of the Earth, already defined earlier, and HdR

its value in the rigid case.
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4.7.1.2 Mantle Anelasticity Effects

Mantle anelasticity causes a small frequency-dependent phase lag in the Earth’s
response to periodic forcing besides altering the magnitude of the response. This
anelasticity is characterized by the presence of a complex and frequency dependent
shear and bulk moduli for each point of the mantle. The compliances appearing
in nutation theory are computed initially for an elastic Earth model, such as the
Preliminary Reference Earth Model (PREM) of Dziewonski and Anderson [19] by
integrating the equations of tidal deformation, together with small contributions as
the compliances coming from the Earth’s ellipticity, the Coriolis force due to the
Earth rotation, the differential rotations of the FOC and the SIC with respect to the
mantle [7]. The anelasticity contributions to the compliances at a given excitation
frequency are then computed from the same deformation equations, by evaluation
of the changes in deformations resulting from the variations of the shear modulus
μ(r) as studied by Wahr and Bergen [77].

4.7.1.3 Electromagnetic Coupling

The presence of an internal magnetic field influences the Earth’s nutation through
the effects of electromagnetic torques at the boundaries of the fluid core. Electro-
magnetic coupling is a consequence of the Lorentz force, which represents the force
experienced by current-carrying matter in the presence of a magnetic field. The in-
teraction between a magnetic field that crosses the outer core boundaries and the
motion of conducting matter on either side of these boundaries induces an elec-
tric current, which locally perturbs the magnetic field. An increase of the Lorentz
force opposes relative motion across the outer core boundaries, thereby coupling
the motion of the inner core, outer core and mantle. Buffett et al. [8] calculated
these effects on nutation by combining a solution for full hydrodynamic response
of the fluid core. The coupling of the fluid outer core (FOC) to the mantle and the
solid inner core (SIC) is described by two complex constants KCMB and K ICB that
characterize the electromagnetic torques at the core-mantle boundary (CMB) and
the inner core boundary (ICB). Predictions for KCMB and K ICB are compared with
estimates inferred from observations of the Earth’s nutation. The estimate of KCMB

can be explained by the presence of a thin conducting layer at the base of the mantle
whose conductance has been estimated. The value of K ICB can be explained with a
mixture of dipole and non dipole components.

4.7.1.4 Ocean Tides Effects

Ocean tides affect nutations through changes in the inertia tensors of the Earth as
well as its core regions due to the loading of the crust. Another cause is the con-
tribution to the global angular momentum of the Earth. Ocean tidal motions in the
diurnal band of frequencies are influenced by the FCN resonance. Wahr and Sasao
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Table 4.1 Principal terms of nutation Δψ and Δε in the theory MHB2000 [48]

Argument Period day Δψ sin(′′) Δψ cos(′′) Δε sin(′′) Δε cos(′′)

Ω 6798.384 −17.206416 0.0033338 0.001537 9.205233

2Ω 3399.192 0.207455 −0.001369 −0.000029 −0.089749

l′ 365.260 0.147587 0.001181 −0.000192 0.007387

2F − 2D + 2Ω 182.621 −1.317090 −0.001369 −0.000458 0.573034

l′ + 2F − 2D + 2Ω 121.749 −0.051682 −0.000052 −0.000017 0.022438

2F + 2Ω 13.661 −0.227641 0.000279 0.000137 0.097846

2F + Ω 13.633 −0.038730 0.000038 0.000032 0.020073

l + 2F + 2Ω 9.133 −0.030146 0.000082 0.000037 0.012902

[76] have first made theoretical estimates of the contributions from ocean tides to
nutation amplitudes, using as inputs the retrograde FCN eigenfrequency from Wahr
[75] and tide heights from ad hoc models [52, 56]. To evaluate the role of the angu-
lar momentum h̄ carried by the ocean tidal current it is enough to introduce it in the
dynamical equations of the angular momentum. In MHB2000, values of h̄ are taken
from Chao et al. [14]. In fact accurate computation of the ocean angular momentum
from ocean tide maps is difficult because of large contributions coming from small
areas where the ocean is very deep.

4.7.2 The MHB2000 Nutation Series

The MHB2000 series of nutation includes 678 lunisolar terms and 687 planetary
terms which are expressed as ‘in-phase’ and ‘out-of-phase’ components, together
with their time-variations. That model is expected to guarantee an accuracy of about
10 µas for most of his terms. In Table 4.1 we show the principal terms of nutation
Δψ and Δε, with their argument, their period, their in-phase and out-of-phase am-
plitudes. As already calculated roughly in Eqs. (4.66) and (4.67) of Sect. 4.3.5, the
largest terms have a 18.6 y period for the lunar contribution and a semi-annual pe-
riod for the solar contribution, with respective arguments the longitude of the node
of the Moon Ω and 2λEarth = 2F − 2D + 2Ω . The respective in-phase amplitudes
are 17.206′′ and 1.317′′ for Δψ , 9.205′′ and 0.573′′ for Δε.

In Table 4.2 we represent the differences between the amplitudes of the principal
terms nutation for a non rigid Earth model, taken from MHB2000 [48], and for
a rigid Earth model, taken from REN2000 [67]. These differences reach 74 mas
in Δψ and 23 mas in Δε, for the leading term with argument Ω . They are also
very important (40 mas and 20 mas) for the semi-annual component with argument
2F − 2D + 2Ω .
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Table 4.2 Differences between the amplitudes of the principal terms in Δψ and Δε obtained from
the non-rigid Earth theory MHB2000 [48] and the rigid Earth theory REN2000 [67]

Argument Period day Δψ sin(mas) Δψ cos(mas) Δε sin(mas) Δε cos(mas)

Ω 6798.384 74.1760 2.9560 1.5408 −22.6769

2Ω 3399.192 −1.5742 −0.0757 −0.0323 0.5877

l′ 365.260 22.0841 1.1817 −0.1924 7.5220

2F − 2D + 2Ω 182.621 −39.6154 −1.3696 −0.4587 19.6988

l′ + 2F − 2D + 2Ω 121.749 −1.7443 −0.0524 −0.0174 0.8189

2F + 2Ω 13.661 −6.1301 0.2796 0.1374 2.9250

2F + Ω 13.633 −0.8772 0.0380 0.0318 0.6603

l + 2F + 2Ω 9.133 −0.5633 0.0816 0.0367 0.2928

4.7.3 The IAU 2006 (P03) Precession

The IAU 2006 precession [10, 33] provides improved polynomial expressions up to
the 5th degree in time t , both for the precession of the ecliptic (previously named
“planetary precession”) and the precession of the equator (previously named “luni-
solar precession”).

The precession of the equator was derived from the dynamical equations express-
ing the motion of the mean pole about the ecliptic pole. The convention for separat-
ing precession from nutation, as well as the integration constants used in solving the
equations, has been chosen in order to be consistent with the IAU 2000A nutation.
This includes corrections for the perturbing effects in the observed quantities.

In particular, the IAU 2006 value for the precession rate in longitude is such that
the corresponding Earth’s dynamical flattening is consistent with the MHB value for
that parameter. This required applying a multiplying factor to the IAU 2000 preces-
sion rate of sin εIAU2000/ sin εIAU2006 = 1.000000470 in order to compensate for the
change (by 42 mas) of the J2000 mean obliquity of the IAU 2006 model with respect
to the IAU 2000 value (i.e. the IAU 1976 value). Moreover, the IAU 2006 preces-
sion includes the Earth’s J2 rate effect (i.e. J̇2 = −3 × 10−9/century), mostly due
to the post-glacial rebound, which was not taken into account in the IAU precession
models previously.

The contributions to the IAU 2006 precession rates for the 2nd order effects,
the J3 and J4 effects of the luni-solar torque, the J2 and planetary tilt effects, as
well as the tidal effects are from Williams [78], and the non-linear terms are from
MHB2000.

The geodetic precession is from Brumberg et al. [6], i.e. pg = 1.919883′′/cy. It
is important to note that including the geodetic precession and geodetic nutation in
the precession-nutation model ensure that the GCRS (Geocentric celestial reference
system) is without any time-dependent rotation with respect to the BCRS (Barycen-
tric celestial reference system).
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4.7.4 The Agreement of the IAU 2006/2000 Precession-Nutation
with Highly Accurate VLBI Observations

The accuracy with which Earth orientation in general and precession-nutation in
particular can be determined as a function of time has increased tremendously over
the three past decades, due to the advances in the VLBI technology, in techniques
of data analysis, and also to the expanding volume of data over a lengthening time
span. VLBI (Very Long Baseline Interferometry) can be considered as the most
powerful technique to measure the Earth Orientation Parameters (EOP) [31]. These
parameters are related to the changes of the position of the Earth’s rotation axis or
more precisely the axis of the celestial intermediate pole (CIP) with respect to its
crust, so-called polar motion, and with respect to inertial space, i.e. the precession-
nutation motion. One additional EOP is related to changes in the rotation rate of the
Earth, and is usually expressed as the difference between UT1 and the time standard
UTC (Universal Time Coordinate).

The VLBI technique measures the differential arrival times of radio-signals from
extragalactic radio-sources, which provide in particular the most stable definition
of inertial system currently available, as it is materialized by the successive up-
dates of the ICRS [43, 44]. A classical VLBI session uses a set of four to eight
radio telescopes, with separations of several thousands of kilometers, which make a
large amount of measurements of time delays and delay rates from usually 20 to 40
extragalactic radio-sources. Of the various factors which limit the accuracy of the
determination, one of the most important is the atmospheric contribution to group
delays, especially the part due to water vapor which is the most difficult to estimate
reliably [20].

Nevertheless with the basic and well reckoned assumption that rigid Earth nuta-
tion is modeled with an optimal accuracy (at the level of 1 µas), the VLBI observa-
tions allow a very accurate determination of the non rigid effects of the Earth on the
largest nutation coefficients. Herring et al. [32] showed that the analysis of over 20
years of VLBI data yields estimates of the nutation amplitudes with standard devi-
ations of ≈5 µas for the nutations with periods smaller than 400 days. They show
that at this level of uncertainty, the estimated amplitudes are consistent with the IAU
2006/2000 precession-nutation model which has been described previously.

Figure 4.11 shows the differences O–C (observed-calculated) between the over-
all nutations components dX and dY determined from combined VLBI sessions and
the same nutations calculated from the series MHB2000. The remarkable agreement
at the level of a few 0.1 mas (a few 100 µas) is clearly shown after 1995, whereas the
residuals are much larger before that date. This is clearly due to a drastic improve-
ments of the quality VLBI observations around this date. Notice a very dominant
systematic oscillation in the residuals: it is interpreted as the retrograde Free Core
Nutation (RFCN) whose origin has been explained in Sect. 4.6.5. In Fig. 4.12 we
show the residuals after eliminating empirically this systematic oscillation, taking
into account its changes in amplitude and phase. The very flat residuals enable to
conclude that the general agreement between the theoretical and observational data
is remarkable.
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Fig. 4.11 O–C difference between the celestial motion of the pole dX and dY observed from
VLBI sessions and the theoretical motion calculated from the IAU 2006/2000 precession-nutation
model (credit: IVS OPA Analysis Center, Observatoire de Paris)

Fig. 4.12 O–C difference between the celestial motion of the pole dX and dY observed from
VLBI sessions and the theoretical motion calculated from the IAU 2006/2000 precession-nutation
model. The curves correspond to those in Fig. 4.10 after the FCN signal has been empirically
subtracted (credit: IVS OPA Analysis Center, Observatoire de Paris)
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