
Chapter 3
Oceanic Tides

Bernard Simon, Anne Lemaitre, and Jean Souchay

Abstract The phenomena of tides are a matter of common experience: ocean tides
under the influence of the Moon and the Sun, differences of the surface level of the
oceans reaching several meters, following well-established cycles. In the present
chapter we propose a first step in the general and classical mathematical formula-
tions of the tidal potential and tidal force. Then we apply this formulation to the
concrete case of the lunisolar ocean tides at a given point of the surface of the sea.
At the end we give a review of various tidal manifestations all around the world.

3.1 Introduction

It is a well-established fact that the origin of the tides is the gravitational action of
the Moon and the Sun on objects bound to the Earth [21], but the tidal generating
force should not be confused with the gravitational attraction exerted by each of
these bodies on the water particles. The tidal generating force is actually the differ-
ence between this attraction and what the attraction would be if the particle were
located at the center of the Earth. Indeed, the centrifugal force resulting from the
orbital motion of the Earth (around the center of mass of the Earth-Moon system or
of the Earth-Sun system) is the same at every point of the Earth, while the gravita-
tional attraction varies with the proximity of the celestial bodies according to where
the particle is positioned on the surface of the Earth. At the center of mass of the
Earth, these two forces balance exactly. Since the Earth radius is small compared
with the distance to the Moon (and a fortiori to the Sun), to a first approximation for
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someone on the Earth surface the magnitude of the force is the same as if the body
(Sun or Moon) were at the zenith or the nadir. This explains the semi-diurnal tide
(two high tides and two low tides per day). During the day, a maximum force oc-
curs when the Moon crosses the upper semi-meridian and another maximum when
it crosses the lower semi-meridian, the minimum occurring when it crosses the hori-
zon (attractive and centrifugal forces are then nearly opposite). However, owing to
the inclination of the axis of the Earth’s rotation relative to the axis of the Earth’s or-
bit, the two extrema are generally not equally pronounced, and sometimes, at higher
latitudes, the Sun or the Moon never set or rise (polar night). In this case, a maxi-
mum disappears and the resulting type is diurnal (one maximum and one minimum
per day). This qualitatively explains some aspects of the tide as described in the pre-
ceding paragraph: the generative force of the tide entails diurnal and semi-diurnal
components.

In his dynamic theory presented to the Académie Royale des Sciences in 1790,
Laplace introduced the concept of tidal generating potential [12]. He was the first to
treat the tide as a problem of dynamics of water masses and not as a static problem.
According to his dynamic theory, the sea response to the tidal generating force takes
the form of extensive waves crossing the oceans with a velocity depending essen-
tially on depths. Moreover, like any wave phenomenon, these waves are reflected,
refracted, and diffused according to the nature of the propagation medium and the
shape of ocean basins. It follows that the observed tide at any point is the result of
the superposition of elementary waves which come from all parts of the ocean, each
of them being subject, during its travel, to different propagation conditions. All these
components can obviously interfere with one another, resulting in strengthened or
attenuated amplitudes according to frequencies.

The hydrodynamic equations of this phenomenon, first formulated by Laplace
[13], cannot be easily solved even with modern computing tools available, but they
remain the basis of all subsequent developments. Above all, they allow establishing
a formula, known as ‘Laplace equation’, applicable to tidal predictions and based
on two principles. The first one is that a water mass undergoing a periodic force is
subject to a periodic oscillation with the same frequency. The second one is that the
total motion of a system subject to small forces is equal to the sum of the elementary
motions created by each force.

These two principles express the assumption of the oceans’ linear response to the
action of the tidal generating force. It turns out that this assumption is well verified
in the case of Brest harbor, where tidal observations were used by Laplace to test
his theory. The tidal generating force being divided as a sum of elementary periodic
forces, the Laplace equation implies that the tide may itself be decomposed into os-
cillations of similar periods. The assumption of linearity is not inconsistent with the
fact that two parameters, the proportionality factor and the phase shift between the
tidal component and corresponding power generator, may depend on the frequency.
These parameters also depend on hydraulic conditions of wave propagation, differ-
ent from one point to another, and in practice must be determined experimentally by
analysis of available observations.

The main interest of the Laplace theory lies in its ability to provide a practical
method for prediction of high and low tides, known as ‘Laplace method’. In 1839,
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the hydrographer Chazallon [4] published the first precise scientific timetable of
tides based on this method. In this timetable hours and heights of high and low
tides at Brest were calculated. For other harbors, they were obtained using time
differences and amplitude factors. The Laplace equation has remained the basis of
calculation of tides in France for over 150 years. Before the advent of computers, no
competing method could indeed claim to provide better accuracy for the calculation
of the tide at Brest. However, because of the assumption of linearity, the Laplace
equation could not claim to be universally applicable. In fact, they have never been
used to calculate the tides at other places than Brest.

Subsequently, we must note the works of two Englishmen, William Whewell [24]
(1794–1866) and George B. Airy [1] (1801–1892) [2], who were particularly inter-
ested in the propagation of the tidal wave, the first in oceans, the second in canals
and rivers, taking friction into account. But we must wait until the late 19th century,
with the contribution of Sir William Thomson, better known as Lord Kelvin (1824–
1907), to note a real progress in the calculation of tidal predictions [23]. In 1867, the
British Association for the Advancement of Science (BAAS) set up a committee to
promote the improvement and widespread implementation of the harmonic analysis
of tides. The report of this committee was written by Kelvin himself. Some other
reports appeared on this subject, but the major contribution was the paper published
in 1883 by George H. Darwin (1845–1912) [5]. This paper presents the precise har-
monic expansion of the tidal potential, which has been universally used up to the
present day as the basis of most studies on tides. Today, the tidal harmonic com-
ponents are designated by the names assigned by Darwin. In addition, methods of
calculation, developed and adapted to the means of that era, were often transposed
without changes, even with the technological evolution of computers. However, this
development, based on an ancient lunar theory in which all elements are referred
to the orbit, was not entirely satisfactory because it is not purely harmonic: it was
necessary to introduce correction factors to account for slow changes in the compo-
nents, mainly due to the slow retrograde motion of the orbit of the Moon. The long-
term variations associated with these correction factors can be regarded as constant
over periods of the order of one year. Calculated over many years, these factors are
available as published tables [22]. The use of these tables is not quite satisfactory
for modern computing, but was very useful for manual calculation. That is probably
why Darwin remained popular, while as early as 1921 more satisfying purely har-
monic expansions such as those proposed by Arthur T. Doodson (1890–1968), were
available. Doodson [9] published in the Proceedings of the Royal Society an expan-
sion based on the lunar theory proposed by Brown in 1919 [3]. This new expansion,
digital and purely harmonic, provides many more terms than those presented by Dar-
win and does not require correction factors. Thus tables for these factors were no
longer necessary and automatic processing could be greatly improved to come into
practical use in the late 1950s. Other expansions, more complete or more accurate,
have been proposed since. However, for practical applications in tidal calculations,
they do not bring significant progress with respect to the Doodson expansions which
remain the reference.
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3.2 Basic Mathematical Tidal Theory

In this section we consider the general case of a celestial body orbiting a non rigid
planet P . This will give rise to a deformation of this planet. The hypothesis is that
this deformation is proportional to the force, to the stress itself. This is why our
fundamental aim is to calculate the force exerted on each point P of the planet
surface, due to the presence of the celestial body.

Let M be the mass of the non-rigid planet, R its mean radius. O is the position of
its center of mass, chosen as origin of the coordinates x, y, z. The celestial orbiting
body is regarded as a point mass m, with position Q. While orbiting around O it
deforms the planet, and a surface element of the planet is denoted by a position P,
at a distance r � R from the center O .

We introduce the following vector and scalar notation:

r = OP = (x, y, z), a point on the surface of the planet of mass M

r = ‖r‖, its norm

d = OQ = (u, v,w), the position of the perturbing body of mass m

d = ‖d‖, its norm

� = ‖QP‖, the distance between Q et P

3.2.1 Tidal Potential

The potential V calculated at the point P due to the presence of the orbiting body
with mass m is given by

V (x, y, z) = −G
m

�
where �2 = d2 + r2 − 2dr cosψ (3.1)

with r · d = rd cosψ and G the gravitational constant.
Let us expand this expression:

V (x, y, z) = −G
m

d

(
1 +

(
r

d

)2

− 2

(
r

d

)
cosψ

)− 1
2

= −G
m

d

∑
n≥0

(
r

d

)n

Pn(cosψ). (3.2)

Then, if we assume that R � d ,

V (x, y, z) = V0 + V1 + V2 + · · · (3.3)

� −G
m

d

(
1 +

(
r

d

)
P1(cosψ) +

(
r

d

)2

P2(cosψ)

)
(3.4)

where Pn represents the Legendre polynomial of degree n.
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• V0 is a constant term with respect to (x, y, z) and can be dropped,

V0 = −G
m

d
, (3.5)

• V1 is the potential corresponding to a system of two masses orbiting around their
center of mass,

V1 = −G
m

d

(
r

d

)
P1(cosψ) = −G

mr

d2
cosψ, (3.6)

• V2 is the first part corresponding to the tidal deformation, which is studied in
detail in this chapter,

V2 = −G
m

d

(
r

d

)2

P2(cosψ) = −G
mr2

d3

1

2

(
3 cos2 ψ − 1

)
. (3.7)

The next term in the expansion would be:

V3 = −G
m

d

(
r

d

)3

P3(cosψ) = −G
mr3

d4

1

2

(
5 cos3 ψ − 3 cosψ

)
. (3.8)

Let us rewrite the amplitude factor A2 in V2:

A2 = G
mr2

d3
= G M

r2

m

M

r3

d3
r = gξ, (3.9)

where g = G M

r2 is the gravity at the surface of the planet of mass M , and ξ = m
M

r3

d3 r

depends on the position and mass of the perturbing body.
We recall that the planet is rotating. Consequently it makes sense to speak of its

equator and P can be positioned with its latitude ϕ measured from this equator, and
an angle of longitude λ varying with the rotation of the planet. In a similar way
the orbiting point mass can be positioned through variable coordinates which are its
latitude δ and its longitude λ′.

Now we can introduce the spherical coordinates:

x = r cosϕ cosλ, y = r cosϕ sinλ, z = r sinϕ,

u = d cos δ cosλ′, v = d cos δ sinλ′, w = d sin δ.
(3.10)

They allow us to write:

cosψ = cosϕ cosλ cos δ cosλ′ + cosϕ sinλ cos δ sinλ′ + sinϕ sin δ

= cosϕ cos δ
(
cosλ cosλ′ + sinλ sinλ′) + sinϕ sin δ

= cosϕ cos δ cos
(
λ − λ′) + sinϕ sin δ, (3.11)

and consequently,

P2(cosψ) = 1

2

(
3 cos2 ψ − 1

)

= 1

2

(
3 sin2 ϕ − 1

)1

2

(
3 sin2 δ − 1

) + 3

4
cos2 ϕ cos2 δ cos 2

(
λ − λ′)

+ 3

4
cos 2ϕ cos 2δ cos

(
λ − λ′). (3.12)
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3.2.2 Tidal Force

From the tide potential V2 we can extract the expression for the corresponding tidal
force per unit of mass, F2, due to the presence of the external body situated at
(u, v,w) and acting on the surface point P with coordinates (x, y, z):

F2(x, y, z) = −∇V2(x, y, z) = ∇W2(x, y, z) =
(

∂W2

∂x
,
∂W2

∂y
,
∂W2

∂z

)
. (3.13)

For that purpose, let us rewrite W2 in terms of x, y and z:

W2(x, y, z) = G
mr2

d3

1

2

(
3 cos2 ψ − 1

)

= G
m

d5

1

2

(
3r2d2 cos2 ψ − r2d2)

= G
m

d5

1

2

(
3(xu + yv + zw)2 − d2(x2 + y2 + z2)). (3.14)

It is now easy to calculate the three partial derivatives

∂W2

∂x
= G

m

d5

(
3(xu + yv + zw)u − d2x

)

= G
m

d5

(
3rd cosψu − d2x

)
,

∂W2

∂y
= G

m

d5

(
3rd cosψv − d2y

)
,

∂W2

∂z
= G

m

d5

(
3rd cosψw − d2z

)
,

and the corresponding force per unit of mass, F2, acting on P due to Q

F2 = G
m

d3

(
3r cosψ

d
d

− r
)

. (3.15)

We can already analyse the first term, depending on ψ .

• ψ = 0 when r and d are aligned: in this configuration, F is maximal and points
toward the perturbing body.

• ψ = π when r and d are anti-aligned: in this configuration, F is again maximal
but points away from the perturbing body.

Extrapolating these remarks to any point on the surface, we can say that the
deformation at any point P of the surface of the planet is instantaneous and directly
proportional to the tidal force which creates it. In the case of a deformable planet
(like the Earth), the external surface is deformed in such a way that it corresponds
to an equipotential surface.
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3.3 Expression of the Tidal Potential for the Earth

Here we apply the mathematical principles of the previous section to express the
tidal potential V2(P) or the associated force function W2(P) = −V2(P), exerted by
an external body (Moon, Sun, planet) with mass m on a point P of the Earth [c??].
P is classically labeled by its spherical coordinates (r, ϕ,λ), with respect to the
terrestrial equator, where ϕ is the latitude and λ the terrestrial longitude, r being the
distance from the center O of the Earth to P.

The position of the perturbing body is given, as before, by its declination δ with
respect to the celestial equator and by its longitude λ′, which we replace by its hour
angle H defined by H = λ′ − λ.

Then the potential W2(P) is given by:

W2(P) = G m
r2

d3

9

4

(
sin2 ϕ − 1

3

)(
sin2 δ − 1

3

)

+ G m
r2

d3

3

4
sin 2ϕ sin 2δ cosH

+ G m
r2

d3

3

4
cos2 ϕ cos2 δ cos 2H (3.16)

= W zonal
2 + W tesseral

2 + W sectorial
2 . (3.17)

We can decompose W2 into three terms, named zonal, tesseral and sectorial,
which are characterized in the next section, where we make a large use of [c??].

3.3.1 Zonal Part of the Tidal Potential

Let us start with the zonal term, W zonal
2 :

W zonal
2 = G m

r2

d3

9

4

(
sin2 ϕ − 1

3

)(
sin2 δ − 1

3

)
. (3.18)

This term is called long period or low frequency because it does not contain the
hour angle H , which is by far the highest-frequency variable. Its variations come
from the squares of the sines of the declination (sin2 δ) of the perturbing body
(Moon, Sun, planet) around the Earth, which in reality vary slowly. It introduces
a period which is half the time of the relative revolution of the perturbing body, i.e.
roughly 14 days in the case of the Moon and 6 months in the case of the Sun. Given
the extremal values reached by the declinations, 28◦30′ for the Moon and 23◦27′ for
the Sun, the last factor is always negative.

The factor (sin2 ϕ − 1
3 ) vanishes at latitudes such that sinϕ = ±1/

√
3, i.e. at

latitudes 35◦16′N and 35◦16′S. The locus where this term vanishes are parallels
(lines of equal latitude). Taking into account that one factor is always negative, it
follows that the long-period term of potential is always positive for latitudes between
35◦16′N and 35◦16′S and negative elsewhere.

The partition in zones of latitude of this part of the potential, as it is shown in
Fig. 3.1, justifies the terminology of zonal potential.
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Fig. 3.1 Zonal distribution
of the long period component
of the tidal potential

Fig. 3.2 Tesseral distribution
of the diurnal component of
the tidal potential

3.3.2 Tesseral Part of the Tidal Potential

The second term W tesseral
2 is given by:

W tesseral
2 = G m

r2

d3

3

4
sin 2ϕ sin 2δ cosH. (3.19)

It is called diurnal, for it contains H with period of roughly one day, regardless
of the celestial body m being considered. Its nodes are the meridians normal to
the direction of the perturbing body, and the equator (Fig. 3.2). It gives a tesseral
structure of equipotential lines, whose sign changes with the declination. The period
in the hour angle is approximately 24 hours for the Sun and 24 h 50 min for the
Moon. The declination δ and parallax 1/r vary very slowly in comparison to this
diurnal frequency.

Thus they act as modulations on the diurnal term. The diurnal local maximum
is reached when the perturbing body crosses the upper or lower meridian of the
observer. The maximal extrema on the Earth are reached at latitudes 45°N and 45°S
when δ is itself at its maximum value (23◦27′ for the Sun and 28◦30′ for the Moon).
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Fig. 3.3 Sectorial
distribution of the
semi-diurnal component of
the tidal potential

The potential is zero for the points at the equator (ϕ = 0◦) and at the poles (ϕ = 90◦)
or when the declination δ of the orbiting body (Moon, Sun or planet) is zero.

3.3.3 Sectorial Part of the Tidal Potential

Finally the third term W sectorial
2 is given by:

W sectorial
2 = G m

r2

d3

3

4
cos2 ϕ cos2 δ cos 2H. (3.20)

It is called semi-diurnal, for it contains 2H , with period of roughly 12 h for the Sun
and 12 h 25 min for the Moon. Its nodes are the meridians located at 45° of longitude
eastward or westward of the meridian containing the perturbing body. These nodes
divide the Earth into four sectors. The sectorial potential is positive in the section
containing the great circle of the perturbing body and its opposite, and negative in
the other two sections.

This is the reason for which it presents a sectoral distribution (Fig. 3.3) over
the Earth. This component has two maxima and two minima per day, due to the
periodicity of cos 2H . The maximal extrema are reached at the equator (ϕ = 0◦),
when the declination of the body (δ) is zero. The semi-diurnal part of the potential
is zero at the poles (ϕ = 90◦).

3.3.4 Components of the Local Tidal Force

The local tidal force F = (Fr ,Fϕ,Fλ) at a given position P can be deduced by
simple differentiation of the tidal potential along the three local coordinate axes:
the first direction is zenital, the other two directions are horizontal, respectively in
the North-South and East-West directions. Let us recall that H = λ′ − λ, and then
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Table 3.1 Trigonometric functions appearing in the expansions of the local tidal force according
to the three rectangular directions and the three tidal families

Family Factor Vertical North-South East-West

Zonal 9
4 G m r

d3 2(sin2 ϕ − 1
3 )(sin2 δ − 1

3 ) sin 2ϕ(sin2 δ − 1
3 ) 0

Tesseral 3
4 G m r

d3 2 sin 2ϕ sin 2δ cosH cos 2ϕ sin 2δ cosH sinϕ sin 2δ sinH

Sectorial 3
4 G m r

d3 2 cos2 ϕ cos2 δ cos 2H − sin 2ϕ cos2 δ cos 2H 2 cosϕ cos2 δ sin 2H

∂W2
∂λ

= − ∂W2
∂H

. Thus we have, with a relationship similar to Eq. (3.15) but adapted to
spherical coordinates:

F = ∇W2 =
(

∂W2

∂r
,

1

r

∂W2

∂ϕ
,

1

r cosϕ

∂W2

∂λ

)
. (3.21)

Consequently we have three trigonometric functions: vertical or ∂W2
∂r

, North-

South or 1
r

∂W2
∂ϕ

, East-West or 1
r cosϕ

∂W2
∂λ

, for each tidal family (zonal, tesseral, sec-
torial). The nine resulting trigonometric functions characterizing the tidal force are
summarized in Table 3.1.

Notice that the deviations of the vertical n1 and n2 along the two horizontal axes
(North-South and East-West) are immediately derived from

n1 ≈ tann1 = 1

rg

∂W2

∂ϕ
(3.22)

and

n2 ≈ tann2 = 1

rg cosϕ

∂W2

∂λ
. (3.23)

3.4 Doodson Expansion of the Tidal Potential

The Doodson expansion is based on the theory of the orbital motion of the Moon
proposed by Brown (1919) [3], which describes the motion of the Moon in ecliptic
coordinates. Brown provided harmonic expansions of the mean longitude, latitude,
and the average horizontal parallax of the Moon in a series of trigonometric func-
tions whose arguments are linear in the mean time.

3.4.1 Previous Expansions of the Lunisolar Potential

The expressions of the lunisolar potential given by Laplace [13] in the form of
Eqs. (3.18), (3.19) and (3.20) and their derivatives are not directly suitable for the
analysis of tidal phenomena because the term 1/d3 as well as the trigonometric
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functions containing δ and H exhibit very complicated time-variations due the com-
plexity of the orbital motions of the Earth around the Sun and of the Moon around
the Earth.

Laplace already had the idea of expanding the Moon and Sun potentials in sinu-
soidal functions whose arguments are linear in time. Each term of such an expansion
can be understood as the potential of a fictitious body describing a uniform circular
motion in the equatorial plane, generating an elementary tidal component with the
period of revolution of the fictitious body, and with amplitude and phase depending
on the harbor considered. Assuming that the ocean’s response is a linear function
of the period of revolution of the Sun and the Moon for diurnal components on
one hand and semi-diurnal on the other (i.e. in narrow frequency ranges), Laplace
was able to avoid resorting to a purely harmonic expansion. He also showed how
to make the potential expansion in a form of purely harmonic components, taking
into account the main inequalities of the Moon. Then he deduced the corresponding
expressions, independently of any assumption on each component amplitude and
phase.

Kelvin [23] and Darwin [6] in 1883 [5] continued Laplace’s work by improving
the harmonic expansion of the tidal potential. Darwin’s expansions were the starting
point for the harmonic method of calculating tides which have then been used uni-
versally [8]. However, the Moon orbital theory available at that time did not allow
Darwin to find a comprehensive expansion of the potential. In particular, defects in-
duced by the motion of the lunar nodes were regarded as disturbances requiring the
use of correction factors called nodal factors. In 1921, Doodson remedied this situ-
ation and published a purely harmonic expansion containing those 386 components
whose amplitude coefficient exceeds 10−4 of the leading one. All the expansions
of the tidal potential published after Doodson’s have shown an excellent agreement
with them. In the following we explain in detail the principles of construction for
Doodson’s series of the tidal potential.

3.4.2 Doodson’s Constant

In the expression of the potential W2 in Eq. (3.16) or in Table 3.1, the trigonometric
functions are multiplied by the factor 3

4G m(r2/d3), where r and d are respectively
the distances of P and of the perturbing body (Moon, Sun, planet) to the center O of
the Earth. Therefore it seems judicious to introduce a constant scaling factor close
to it [c??].

A natural way of doing this is to replace d by its mean distance c, that is to say its
averaged value during a revolution, and to replace r by a radius ȧ such that the vol-
ume of the sphere of radius ȧ is the same as the volume of the Earth. Consequently

ā = 3
√

a2b (3.24)

where a and b are respectively the semi-major and semi-minor axis of the Earth
(considered as an ellipsoid with a circular equator).
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Then we can define the general Doodson’s constant D:

D = 3

4
G m

(
ā

c

)3

, (3.25)

and for the Moon and for the Sun, also called the Doodson’s constants:

DM = 3

4
G mM

(
ā

cM

)3

, DS = 3

4
G mS

(
ā

cS

)3

. (3.26)

Thus the ratio of these two constants is

DS

DM

= mS

mM

× c3
S

c3
M

≈ 0.4590. (3.27)

This shows why the influence of the Moon on the tides is roughly twice bigger than
that of the Sun.

With the help of the Doodson’s constant given by Eq. (3.25), Eqs. (3.18), (3.19)
and (3.20) for the potential can be rewritten as

W zonal
2 = 3D

c3

d3

(
sin2 ϕ − 1

3

)(
sin2 δ − 1

3

)
, (3.28)

W tesseral
2 = D

c3

d3
sin 2ϕ sin 2δ cosH, (3.29)

W sectorial
2 = D

c2

d3
cos2 ϕ cos2 δ cos 2H. (3.30)

3.4.3 Basic Principle

The three tidal potentials in Eqs. (3.28), (3.29), (3.30) depend on the latitude ϕ

which is constant for a given point P, and on astronomical expansions involving the
position of the perturbing body through the variables H , δ, and d . The principle is to
truncate the complete expansion to get linear functions of time to approximate the
motions, on suitable timescales. Doodson performed this calculations for specific
variables which are defined in the next section.

3.4.4 Six Fundamental Variables

The choice of six variables, which over a span of a century may be regarded as linear
functions of time, was made by Doodson on the basis of the accumulated results in
fundamental astronomy. These variables are:

• τ is the hour angle of the mean Moon shifted by 180°: τ = HM + 180◦.
• s is the mean tropic longitude of the Moon (‘selene’ is Greek for the Moon).
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Table 3.2 Main variables involved in the tidal potential with definitions, rates, periods

Variable Period definition Hourly angle Period

t = t ′ − h mean solar day 15◦.0000000 1 d

t ′ = t + h sidereal day 15◦.0410686 0.997270 d

τ = t − s mean lunar day 14◦.4920521 1.035050 d

s tropic month 0◦.5490165 27.321582 d

h tropic year 0◦.0410686 365.242199 d

p rev. mean perigee of Moon 0◦.0046418 8.847 y

N ′ rev. of lunar nodes 0◦.0022064 18.613 y

ps rev. of perihelion of Earth 0◦.0000020 20.940 y

s − N mean draconitic month 0◦.5512229 27.21222 d

s − p mean anomalistic month 0◦.5443747 27.55455 d

s − h mean synodic month 0◦.5079479 29.53059 d

s − 2h + p evection 0◦.4715211 31.812 d

h − ps mean anomalistic year 0◦.0410667 365.25964 d

h − p 0◦.0364268 411.78471 d

2(s − h) 1◦.0158958 14.76530 d

• h is the mean tropic longitude of the Sun (‘helios’ is Greek for the Sun).
• p is the mean tropic longitude of the lunar perigee.
• N ′ = −N is the mean tropic longitude of the ascending lunar node with respect

to the ecliptic. The sign is changed because N is the only variable decreasing with
time.

• ps is the mean tropic longitude of the Earth perihelion.

All these variables as well as elementary combinations of them are presented
together with their period definition (referring to some well-defined astronomical
cycle), their hourly angle, and their period, in Table 3.2.

3.4.5 Preliminary Expansions of Astronomical Trigonometric
Functions

3.4.5.1 Lunar Motion

To a first approximation, the orbit of the Moon is quasi-elliptic. However this is too
rough when we require more accuracy on its orbital motion, which is especially the
case when computing the lunar tidal potential. In fact two main irregularities must
be taken into account, respectively called evection and variation.

The evection arises because the Sun crosses twice a year the projection of the
semi-major axis of the Moon on the ecliptic (if we neglect the slow motion of the
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lunar perigee). This results in a gravitational excitation of the eccentricity, its fre-
quency being (ṡ − ṗ) − 2(ḣ − ṗ) = ṡ − 2ḣ + ṗ. The variation arises because the
eccentricity of the Moon is modified during the syzygies, when the three bodies
(Sun, Earth, Moon) are in conjunction. These two irregularities, due to the perturb-
ing gravitational action of the Sun in the framework of a three body problem, well
known as the main problem, affect the ratio c/d and the longitude λM , as well as
the classical formula of the elliptic motion. We thus have [18]

cM

dM

= 1 + Cell. cos(s − p) + Cev. cos(s − 2h + p) + Cvar. cos(2s − 2h)

= 1 + 0.0549 cos(s − p) + 0.010 cos(s − 2h + p) + 0.008 cos(2s − 2h)

which gives(
cM

dM

)3

= 1 + 0.1647 cos(s − p) + 0.030 cos(s − 2h + p) + 0.024 cos(2s − 2h)

(3.31)

and

λM = ṡ0t + C′
ell. sin(s − p) + C′

ev. sin(s − 2h + p) + C′
var. sin(2s − 2h)

= ṡ0t + 0.110 sin(s − p) + 0.023 sin(s − 2h + p) + 0.011 sin(2s − 2h).

In order to use these expansions inside the tidal potential, a last step consists in
expressing the declination of the Moon as a function of λM :

sin δM = sin ε sinλM = 0.398 sinλM (3.32)

where ε is the obliquity of the Earth (ε = 23◦27′). It follows that:

sin2 δM = 0.0792(1 − cos 2λM) (3.33)

cos2 δM = 0.921 + 0.0792 cos 2s − 0.036 cosN

+ 0.036 cos(2s − N) + · · · (3.34)

sin 2δM = 2 sin δM cos δM = 0.764 sin s + · · · (3.35)

3.4.5.2 Solar Motion

In the case of the Sun, the unperturbed elliptic motion is quite acceptable:
cS

dS

= 1 + eEarth cos(h − ps) = 1 + 0.0167 cos(h − ps) (3.36)

which gives (
cS

dS

)3

= 1 + 0.0502 cos(h − ps) + · · · (3.37)

and, for the longitude,

λS = ḣ0t + 0.0335 sin(h − p)t. (3.38)
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The expression for cos2 δS involves the same coefficients as for the Moon in
Eq. (3.34):

cos2 δS = 0.921 + 0.0792 cos 2h + · · · (3.39)

3.5 Tidal Spectrum

Now that we have obtained the necessary expansions of the trigonometric functions
of astronomical angles involved in the tidal potential W2, it is possible to express
each part of W2 (sectorial, tesseral, zonal) as a combination of sinusoidal functions
whose arguments are expressed themselves as combinations of the Doodson’s vari-
ables.

3.5.1 Characterization of the Semi-diurnal Waves

The semi-diurnal (or sectorial) waves come from the sectorial part of the potential
given by Eq. (3.30).

3.5.1.1 Lunar Sectorial Part

In the case of the Moon, HM = τ − 180◦, and by using the expansion of (cM/dM)3

and cos2 δM respectively given by Eqs. (3.31) and (3.34), we get:

(
W sectorial

2

)
M

= D

(
cM

dM

)3

cos2 ϕ cos2 δM cos 2HM, (3.40)

= DM cos2 ϕ
[
1 + 0.165 cos(s − p) + 0.030 cos(s − 2h + p)

+ 0.024 cos(2s − 2h) + · · ·]
× [0.921 + 0.0792 cos 2s + · · ·] cos 2τ. (3.41)

The result is an infinite number of terms which show frequencies symmetrically
distributed on both sides of the half lunar-day frequency. The leading oscillation is
obviously 0.921D cos2 ϕ cos 2τ . It is classically called the M2 wave and its period is
the mean lunar day, that is to say 12h25min14s. The following biggest wave is called
N2 with argument 2τ + (s − p) associated with a symmetrical wave with much
smaller amplitude and argument 2τ − (s − p). Another big wave is named K2M

with argument 2τ + s which corresponds to the sidereal day. The index M stands
for ‘Moon part’, as this wave is also present in the case of the solar part.
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3.5.1.2 Solar Sectorial Part

In a way similar to what was done above for the lunar part, we take into account that
the hour angle of the Sun is HS = τ + s − h and we use the expansions of (cS/dS)3

and cos2 δS respectively given by Eqs. (3.37) and (3.39). We get:

(
W sectorial

2

)
S

= DS

(
cS

dS

)3

cos2 ϕ cos2 δS cos 2HS (3.42)

= DS cos2 ϕ
[
1 + 0.0502 cos(h − pS) + · · ·]

× [0.921 + 0.0792 cos 2h + · · ·] cos(2τ + 2s − 2h). (3.43)

The leading wave with argument 2τ + 2s − 2h has a half mean solar-day period,
that is to say exactly 12h00min00s and is called S2. Other main oscillations are called
elliptic or declinational because they come either from the ellipticity of the Earth
orbit or from the declination of the Sun. The leading waves of the first category are
named R2 and T2 with respective symmetrical arguments 2τ + 2s − 2h − (h − pS)

and 2τ + 2s − 2h + (h − pS), those of the second category have arguments 2τ +
2s − 2h + 2h (named K2S) and 2τ + 2s − 2h − 2h.

3.5.2 Characterization of the Diurnal Waves

The diurnal (or tesseral) waves come from the sectorial part of the potential given
by Eq. (3.29).

3.5.2.1 Lunar Tesseral Part

Still by taking HM = τ − 180◦, and by using the expansion of (cM/dM)3 and
sin 2δM respectively given by Eqs. (3.31) and (3.33), we get

(
W tesseral

2

)
M

= DM

(
cM

dM

)3

sin 2ϕ sin 2δM cosHM (3.44)

= −DM sin 2ϕ
[
1 + 0.165 cos(s − p) + 0.030 cos(s − 2h + p)

+ 0.024 cos(2s − 2h) + · · ·]
× [0.0764 sin s + · · ·] cos τ. (3.45)

In contrast with the semi-diurnal part, a leading oscillation with no symmetrical
counterpart does not exist because the mean value of sin 2δM is zero (there is no
constant part in the second term of the right hand side). Thus the leading oscillations
are the two symmetrical declinational waves K1M which corresponds to the sidereal
day with argument τ + s and period 23h56min04s, and O1 with argument τ + s and
period 23h49min10s.
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3.5.2.2 Solar Tesseral Part

By analogy with the lunar part and taking into account that HS = τ + s −h we have:

(
W tesseral

2

)
S

= DS

(
cS

dS

)3

sin 2ϕ sin 2δS cosHS

= DS sin 2ϕ
[
1 + 0.052 cos(h − pS) + · · ·]

× [0.0764 sinh + · · ·] cos(τ + s − h). (3.46)

As for the Moon we find the term K1 (called here K1M) with a sidereal day period,
and argument τ + s (or t + h), coming from the combinations of the terms with
argument h and τ + s − h and its symmetric counterpart, with argument τ + s − 2h

(or t − h).

3.5.3 Characterization of the Long Periodic Waves

The long periodic (or zonal) waves come from the zonal part of the potential given
by Eq. (3.28).

3.5.3.1 Zonal Lunar Part

The lunar zonal part is written

(
W zonal

2

)
M

= 3DM

c3
M

d3
M

(
sin2 ϕ − 1

3

)(
sin2 δM − 1

3

)
. (3.47)

By using the expansions of (cM/dM)3 and cos2 δM from Eqs. (3.31) and (3.34)
and after combining the trigonometric functions,

c3
M

d3
M

(
sin2 δM − 1

3

)
= c3

M

d3
M

(
2

3
− cos2 δM

)

= −0.254 − 0.0792 cos 2s + 0.036 cosN + 0.036 cos(2s − N)

− 0.049 cos(s − p) + · · · (3.48)

Thus the main zonal lunar oscillation has an argument 2s and a semi-monthly
(fortnightly) period 13.66 d. It is called Mf (Moon, fortnightly). The second most
important term is named Mm (Moon, monthly) with argument s − p which corre-
sponds to the anomalistic month.
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3.5.3.2 Zonal Solar Part

The solar zonal part is written

(
W zonal

2

)
Sun = 3DSun

c3
S

d3
S

(
sin2 ϕ − 1

3

)(
sin2 δS − 1

3

)
. (3.49)

We use the expansion

c3
S

S3
M

(
sin2 δS − 1

3

)
= c3

S

d3
S

(
2

3
− cosS δS

)

= −0.254 − 0.0792 cos 2h − 0.0128 cos(h − p) + · · ·
(3.50)

The dominant term here is a semi-annual wave with argument 2s and period
182.62 d and an annual one with argument h − pS corresponding to the anomalistic
year with period 365.26 d.

3.5.4 Catalogue for the Lunisolar Potential

Of course it is possible to expand the lunisolar potential into an infinite series of
sinusoidal terms. The number of terms taken into account expresses the level of
truncation. George Darwin (1883) kept 91 terms, Doodson [9] kept 378 terms, and
Hartmann and Wenzel [11] kept 12 935 waves in their catalogue, called HW95,
including 1 483 waves due to the direct planetary effects. These last authors did
their calculations with DE200 numerical ephemerids of the planets and the Moon,
between the years 1850 and 2150.

In Table 3.3 we present the principal tidal waves. We have separated the lunar
waves form the solar ones. The coefficients are those coming from Doodson’s ex-
pansion, very close to those calculated by Darwin. In practice, only their relative
magnitudes are considered.

This table requires some comments:

• The coefficients of Sa and S1 are very weak: these components should not be in-
cluded because there exist other more important components which are not men-
tioned. They are introduced to take into account the annual and diurnal height
variations of tidal observations, of meteorological origin.

• As already mentioned, the components K1 and K2, sometimes called ‘sidereal
components’ since their periods equal respectively the sidereal day and the half-
sidereal day, are present in both the solar potential and the lunar potential. For all
studies concerning these components, the coefficients to consider are the sum of
the coefficients coming from both sources.

• The constant terms obviously do not intervene in the tide. The long period com-
ponents are usually very weak. They are often masked by noise of meteorological
origin and are not easily detected in tidal observations. Only components Sa and
Ssa, reflecting seasonal variations in the sea level can generally be identified.
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Table 3.3 Main components of the lunisolar tides

Symbol Name Angular speed/hour Periodicity Coefficient ×105

MOON

M0 constant term 0.00000000 50458

Mm monthly 0.54437468 27.55455017 days 8253

Msf variational 1.01589576 14.76529408 days 1367

Mf bimonthly 1.09803304 13.66079044 days 15640

2Q1 elliptic 2d order 12.85428623 28.00622177 hours 952

Q1 main elliptic 13.39866092 26.86835670 hours 7206

ρ1 evectional 13.47151452 26.72305298 hours 1368

01 lunar principal 13.94303560 25.81934166 hours 37689

M1 elliptic minor 14.49669396 24.83324814 hours 2961

K1 declinational 15.04106864 23.93446922 hours 36232

J1 elliptic 2d order 15.58544332 23.09847641 hours 2959

OO1 lunar 2d order 16.13910168 22.30607414 hours 1615

2N2 elliptic 2d order 27.89535487 12.90537453 hours 2300

μ2 variational 27.96820848 12.87175751 hours 2777

N2 main elliptic 28.43972956 12.65834808 hours 17391

NU2 evectional maj. 28.51258316 12.62600422 hours 3302

M2 lunar mean 28.98410424 12.42060089 hours 90812

λ2 evectional min. 29.45562532 12.22177410 hours 669

L2 elliptic min. 29.52847892 12.19161987 hours 2567

K2 declinational 30.08213728 11.96723461 hours 7852

M3 43.47615636 8.28040123 hours 1188

SUN

constant term 0.000000000 23411

Sa annual 0.041068640 365.24218966 days 1176

Ssa semi-annual 0.082137280 182.62109375 days 7245

P1 solar principal 14.95893136 24.06588936 hours 16817

S1 radiational 15.00000000 24.00000000 hours −423

K1 declinational 15.04106864 23.93446922 hours 16124

T2 elliptic major 29.95893332 12.01644897 hours 2472

S2 solar mean 30.00000000 12.00000000 hours 42286

R2 elliptic minor 30.04106668 11.98359585 hours 437

K2 declinational 30.08213728 11.96723461 hours 3643

• The diurnal main components are K1, O1, P1, Q1, and the main semi-diurnal
ones are M2, S2, K2, N2. They contain the main part of the tidal signal energy
and are the only waves generally taken into account in the first approximation for
quick studies.
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3.6 Tidal Behavior and Predictions Around the World

In terms of tidal prediction, through Doodson’s work in particular, the harmonic
method has provided a practical, precise and potentially universal tool. It is not
fundamentally different from Laplace’s method for it too relies on a theoretical for-
mulation including a number of fixed parameters which must be determined ex-
perimentally by analyzing the available observations. For a good accuracy, these
observations must extend over a sufficiently long time. Generally, a year of hourly
measurements is necessary to achieve the accuracy required for the purposes of nav-
igation. Moreover the results are useful only for the site where observations have
been made.

A more ambitious approach, based on the hydrodynamics of ocean basins, had
been proposed since a long time ago, by such pioneers as Bernoulli, Whewell,
Poincaré, and Harris. However given the complexity of bathymetry and coastlines,
it was not possible to obtain an accurate solution to the problem of tide modeling
until powerful computing resources came into existence. Analytical solutions are
nevertheless capable of explaining qualitatively the main features of tide propaga-
tion, for example the existence of amphidromic points. However it was the develop-
ment of numerical methods, becoming possible with the ever improving computers,
that really allowed progress in this direction. In particular, the work of the German
specialist Hansen (1949) has been the source of new attempts to solve the Laplace
equation for the real ocean [10].

It should be noted that altimetry from satellite tracking and geodesy have created
new needs for an elaborate knowledge of tides and have led to a renewed interest
in world ocean modeling. In particular, satellite altimetry, which measures the sea-
level with a quasi-centimeter accuracy, has enabled the development of much more
realistic tidal models by assimilating always more abundant data.

3.6.1 Global Characteristics

Laplace described the tides as ‘the most difficult problem of all celestial mechanics’.
The complexity of this phenomenon lies primarily in its description. The more we
want to refine it, the more we realize that some empirical rules can be established
from partial observations, which can only be coarsely generalized. It is very difficult
indeed to detect a temporal ‘rhythm’ in tidal phenomena. It is even theoretically
impossible because, in contrast to common belief, the tides are not periodic: there
is no period after which the height variations repeat exactly the same way. Indeed,
there are periods after which the same conditions are almost fulfilled, the best known
being the Saros, equal to 223 lunar months, or 6585.32 days. After this time interval,
the Moon, the Sun are nearly in the same relative positions and their orbital elements
are also nearly the same. It follows that the tidal generating force takes nearly the
same value. This does not mean that the Saros is a period of tides: after several
Saros, the resemblance with the initial tide diminishes further and further.
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Fig. 3.4 Tidal amplitudes of oceans worldwide

3.6.2 Tide Amplitudes in the Oceans

Besides the difficulties of temporal description of the tides, a spatial description
presents another set of difficulties. In terms of height first, the geographical distri-
bution of amplitudes in the oceans (Fig. 3.4) seems to follow no obvious a priori
pattern. However, we can note that the highest amplitudes are mainly located on
continental shelves around the continents, or in shallow seas such as the English
Channel. These amplitudes are very weak in semi-enclosed seas of small size (Sea
of Japan, Caribbean, Baltic, Mediterranean). Apart from these qualitative observa-
tions implying the effect of depth and size of oceanic basins, no general rule can be
established.

3.6.3 Tide Characterization

As we have shown in the previous section, the tides are mainly due to the superpo-
sition of a diurnal component (daily maximum and minimum height) and a semi-
diurnal component (two maxima and two minima per day). Nevertheless, the relative
importance of these two components varies geographically, defining types, accord-
ing to a more or less conventional classification:

• a semi-diurnal type characterized by a negligible component of the diurnal tide,
• a semi-diurnal type with diurnal inequality: the semi-diurnal component is domi-

nant but is modified by the diurnal one,
• a mixed type: the diurnal component dominates, but is modified by the semi-

diurnal one,
• a diurnal type: the semi-diurnal component is negligible.
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Fig. 3.5 Types of the dominating tides in the oceans all around the world

The distribution of these 4 types of tide in the ocean worldwide (Fig. 3.5) shows
that no general rule can be established, apart the observation that the semi-diurnal
type is dominant in the Atlantic, the other types appearing only when the semi-
diurnal amplitude is low.

3.6.4 Amphidromic Points

Another feature of the tide is its mode of spreading. The crests of each wave com-
ponent propagate around points called amphidromic points.1 These points occur
because of the combined action of the Coriolis force and the interference with
oceanic basins, seas, and bays. Each tidal component is at the origin of a differ-
ent amphidromic system. Amphidromic points for a tidal constituent (diurnal, semi-
diurnal, etc.) is characterized by the property that there is almost no vertical motion
of the oceanic mass from tidal action. Nevertheless tidal currents can appear when
water levels on two sides of the amphidromic point are not the same. This leads to a
well-defined wave pattern called an amphidromic system.

In the example of a semi-diurnal pattern spread in the Atlantic Ocean shown in
Fig. 3.6, each line, called co-tidal line, indicates the position of the crest of the wave
at a given hour, referred to the transit of the Moon at the Greenwich meridian. We
can note for example that the wave progresses from south to north along the coasts
of Europe, but from north to south along the North American coast. The rotation

1‘Amphidromic’ derives from the Greek words amphi (around) and dromos (running).
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Fig. 3.6 Co-tidal lines in
Atlantic Ocean

around an amphidromic point does not seem to follow any general rule: for exam-
ple, the two major networks of the South Atlantic rotate in opposite directions. These
co-tidal lines, representing the average semi-diurnal tide, does not exactly match the
actual tide. Amphidromic points are not absolutely fixed, and it would be wiser to
speak of amphidromic area. In addition, the diurnal component propagates very dif-
ferently: the corresponding number of amphidromic points is approximately half in
the case of the semi-diurnal component. All these tidal characteristics, with gradu-
ally more precise and abundant data, have long been subject to questions, hypotheses
(often fallacious), theoretical developments, and scientific studies conducted with
the help of technologies becoming more sophisticated and more adequate in partic-
ular thanks to the innovation of artificial satellites and powerful computers.

3.6.5 Tidal Curves

The graph versus time of sea level measurements or predictions at a given surface
point of the ocean is called a tidal curve. As an example, we show in Fig. 3.7 the
tidal curve obtained from observations at Brest of the semi-diurnal tide for one day
time span. Each minimum of the curve is called low tide and each maximum high-
tide. From the low tide to the high tide, the sea level rises during the flow phase,
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Fig. 3.7 Tidal curve observations at Brest

and decreases from high to low during the ebb phase. The difference between the
high tide level and the low tide one is called the tidal range, not to be confused with
the amplitude, which is the norm of a sinusoidal function. Nevertheless the word
‘amplitude’ is sometimes used for the tide, for which it means ‘half the tidal range’.
The heights are referred to a reference level which often comes from a nautical
chart.

Figure 3.8 shows another example of the semi-diurnal tide curve deduced from
a prediction for roughly thirty days. At the times of new and full Moon, the lunar-
and solar-induced ocean bulges line up (and add up) to produce tides having the
highest monthly tidal range (i.e. the highest high tide and the lowest low tide): they
are called the spring tides. In the opposite case, at the first and third quarter phases
of the Moon, the Sun’s pull on the Earth is at right angles to the Moon’s pull. At
this time tides have their minimum monthly tidal range (i.e. unusually low high
tide and unusually high low tide). These are called the neap tides or fortnightly
tides.

Changes in tidal range are generally recorded from a minimum (neap tide) to a
maximum (spring tide). The alternative phases of increasing and decreasing tidal
ranges are called respectively revival and waste. The time interval between one
phase as a full Moon or a new Moon, and the tidal extremum which follows im-
mediately, is called the age of the tide.
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Fig. 3.8 Semi-diurnal tides with range variations during one month at Brest

3.6.6 Tidal Curves According to Tidal Types

As mentioned before, the distinction between types of tides is somewhat conven-
tional. A classification into three types is often suggested, but the classification in
four types corresponding already defined in Sect. 3.6.3 (see Fig. 3.5) is proposed
hereafter, where we show in Fig. 3.9 four different tidal behaviors on the Earth.

3.6.6.1 Semi-diurnal Tide (Casablanca, Morocco)

This type of tide has been presented before (Fig. 3.8). It exhibits every day two
high tides and two low tides of nearly the same level, with nearly equal tidal ranges
throughout the daytime. This type of tide dominates in the Atlantic, especially in
Europe and Africa. However, as has been noted above, other types of tide are likely
to be encountered.

3.6.6.2 Semi-diurnal Tide with Diurnal Inequality (Vung Tau, Vietnam)

During a lunar day, two relatively small tidal ranges are followed by two larger tidal
ranges, or vice versa. The difference between large and small tidal ranges, called
the diurnal inequality, is maximized when the declinations of the Moon and the Sun
are themselves close to their maximum. The diurnal inequality is also observed on
European coasts, although the tide is characterized as semi-diurnal, for the diurnal
inequality is small. However, it may be very important in many ports in the Pacific
and Indian Oceans.
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Fig. 3.9 The four types of tides: examples of Casablanca (semi-diurnal), Vung Tau (semi-diurnal
with diurnal inequality), Qui Nhon (mixed) and Do Son (diurnal)

3.6.6.3 Mixed Tide (Qui Nhon, Vietnam)

Mixed tide is characterized by the succession of a semi-diurnal type and a diurnal
type during a lunar month. This type of tide is common in Indonesia, Indochina,
on the coasts of Siberia, and Alaska. It is also found in the Atlantic Ocean and the
Caribbean Sea.

3.6.6.4 Diurnal Tide (Do Son, Vietnam)

Diurnal tide presents only one high tide and one low tide per lunar day, with a tidal
range varying with the declinations of the Moon and the Sun. This type of tide,
rather uncommon, is observed mainly in the Pacific Ocean: in Siberia (with very
large ranges), in Alaska and also in Southeastern Asia.

3.6.7 Tides in Shallow Water

When propagating through shallow water, almost all primitively sinusoidal deep-
water offshore tides are deformed. The periodic components, issued from the gen-
erating force, combine themselves through nonlinear processes, creating harmonics
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Fig. 3.10 Shallow water tidal waves in the Channel at Portsmouth (above) and in the North Sea at
Hoek Van Holland (below)

which can propagate independently. The tidal curves observed in the English Chan-
nel and the North Sea coasts (Fig. 3.10) are typical examples of tidal curves after a
long progression of the tidal wave over a shallow shelf.

The propagation in estuaries exhibits other examples of distortion of the tidal
wave in shallow water. This kind of deformation is related to the laws of hydro-
dynamics, which states that the speed of a hydraulic wave is proportional to the
square root of the depth. In deep water, the difference of magnitude does not alter
the speed of propagation. On the contrary in shallow water, the peak of the wave
moves faster than the trough, so that a wave crest tends to overtake the preceding
wave. The example of the Gironde estuary in Fig. 3.11 is telling of such a behavior.

In extreme cases it forms a bore, a water bar moving upstream along a river. This
phenomenon is present in many estuaries of major rivers. The height of the bar can
reach several meters, especially in the estuary of the Amazon, the Hoogly and Indus
rivers in India and the Tsien Tang in China.



110 B. Simon et al.

Fig. 3.11 Tidal curves in the Gironde estuary

3.6.8 Spectral Characteristics of Tides

The tidal spectrum, despite being the result of a calculation, is really an objective
mode of representation of tidal phenomena, independent of any theory. It is partic-
ularly suited to tidal studies. It is not necessary to give an exact definition of the
spectrum. It only matters that it represents the amplitude, or energy, as a function of
frequency.

In Fig. 3.12 we present the spectra at two points of the Loire estuary. They are
characterized by a low resolution, which means that there is an imperfect separa-
tion of adjacent frequencies. The comparison between the two spectra shows the
evolution of the structure from the mouth of the river to upstream. These examples
show that the main characteristic of the tidal spectrum is split into separate, regu-
larly spaced clusters. The main group is the semi-diurnal one (two cycles per lunar
day).

It is worth noting that the energy increases as the frequencies decreases. A sig-
nificant noise originates from atmospheric influences. Figure 3.12 shows also the
increase of the number of harmonics when the tidal wave progresses from the mouth
of the Loire to Nantes, located one hundred miles upstream. The upstream spectrum
shows presence of energy in high frequencies. Indeed, only the first 3 groups (di-
urnal, semi-diurnal, and third-diurnal) represent the bulk of the astronomical tide
issued directly from the actions of the Moon and the Sun. Other groups appear dur-
ing the progress of the tidal waves in shallow waters.
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Fig. 3.12 Semi-diurnal tidal spectrum at Saint-Nazaire at the mouth of the Loire estuary and at
Nantes, about 100 km upstream

After analyzing more than 120 years of almost continual observations, the spec-
tral signature at high resolution of the semi-diurnal group in Brest (Fig. 3.13) ex-
hibits thin, well separated components, justifying (retrospectively) the representa-
tion of tide as harmonic series. An even better illustration is given in Fig. 3.14,
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Fig. 3.13 High resolution semi-diurnal spectrum at Brest

Fig. 3.14 High resolution M2 group
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Fig. 3.15 Model of tidal currents around the island of Batz (France)

which presents the expansion of the spectrum close to the M2 component. The main
components, clearly identified, are named after Darwin (or Doodson).

3.6.9 Tidal Currents

We can consider that any tide is an oscillation similar to a swell. In both cases, water
molecules approximately describe closed trajectories in a vertical plane. However,
unlike swell, the tide wavelength is always greater than the depth. In a homogeneous
and deep ocean, tidal motions affect the whole depth of water. All molecules of a
given vertical plane describe extremely flattened orbits. The vertical motion is the
tide, whereas the horizontal motions, incomparably more prominent, constitute the
tidal currents.

In a density stratified ocean, internal tidal waves are created, especially near con-
tinental slopes. They change the vertical structure of currents. In extreme cases, as
in the Strait of Gibraltar, for instance, the currents caused by these internal waves,
mainly semi-diurnal, may be opposite in direction between the surface and the bot-
tom. Moreover the energy dissipation of tides is mainly due to current friction at the
bottom. The study of currents may be conducted with the same tools as the study of
tides, but it is more difficult at least for two reasons: first, because of the large spatial
variability of their characteristics from one point to another and, second, because of
the much more important influence of atmospheric factors. Strong tidal currents in
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some areas justify their study in order to provide valuable help to sailors, which
constitutes an important activity of hydrographic offices. Figure 3.15 shows results
of the modeling of tidal currents around the island of Batz (France). It comes from a
navigation aid document, particularly useful in some areas where tidal currents are
sometimes violent.
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